
THE SPECIFICATION AND IMPLEMENTATION OF A MODEL OF

COMPUTATION

By

Ryan Thibodeaux

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May, 2008

Nashville, Tennessee

Approved:

Professor Gábor Karsai

Professor János Sztipanovits

To my family,
for your unwavering love and support

through all my endeavors.

ii

ACKNOWLEDGEMENTS

This work was sponsored by the Air Force Office of Scientific Research, USAF, under

grant/contract number FA9550-06-0312 and the NSF/ITR, titled Foundations of Hybrid

and Embedded Software Systems, award number CCR-0225610.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . viii

Chapter

I. INTRODUCTION . 1

Thesis Objective . 3

II. BACKGROUND: DEVS MODELING FORMALISM 5

Atomic DEVS Models . 5
Coupled DEVS Models . 6
Summary . 7

III. DEVS MODEL OF A TIME-TRIGGERED PLATFORM 8

Time-Triggered Model of Computation 8
Time-Triggered Platform Modeling Framework 11

Time-Triggered Communication Controller 11
Time-Triggered Task Scheduler 15

Summary . 17

IV. AN OFF-THE-SHELF PLATFORM IMPLEMENTATION 20

Platform Implementation Architecture 20
High Resolution Timeouts and Scheduling in Linux 23
Communication Controller . 26

Initialization and Node Discovery 26
Synchronization of the Hyperperiods 27
Synchronization of the Communication Controller with the VM 31
Transmitting and Receiving TT Messages 33
Timing Properties of Message Passing 35
Summary of Results for Communication Controller 39

FRODO: A Virtual Machine . 40
The FRODO Task Model . 40
Run-Time Execution . 41
Timing Properties of FRODO 43

Summary . 44

iv

V. USE CASE: TRIPLE-MODULAR REDUNDANCY 47

Triple-Modular Redundancy . 47
Experimental Description . 48
DEVS Model and Simulation of a TMR System 49
Implementation of TMR on FRODO 52
Comparing Results of DEVS and FRODO 55
Summary . 57

VI. CONCLUSION . 60

Future Work . 61

BIBLIOGRAPHY . 63

v

LIST OF TABLES

Table Page

1. Message communication timing properties 37

2. Summary of timing properties for current implementation 46

3. Scheduled messages and tasks for TMR compass example (hyperperiod
of 150ms) . 51

4. Segment of DEVS++ simulation output for TMR compass example . . 53

5. FRODO output . 54

vi

LIST OF FIGURES

Figure Page

1. High-level architectural view of a TT system 12

2. DEVS model of the time-triggered communication controller 14

3. DEVS model of the communication bus 14

4. DEVS model of the time-triggered task scheduler 16

5. DEVS model of a time-triggered task 17

6. Activity timeline over the execution of a time-triggered schedule 17

7. Coupled DEVS model of a TT MoC equipped node and the bus 19

8. System architecture of a single node 22

9. General implementation configuration of nodes for experiments 24

10. Node synchronization process viewed from the bus 28

11. Hyperperiod synchronization across four nodes 30

12. Message communication timing properties 38

13. Timeline of events for TMR compass example 51

14. Varying response times to message “m3” on node “C4” 56

15. Execution traces of TMR example . 58

vii

LIST OF ABBREVIATIONS

API Application Programming Interface

CNI Communication Network Interface

DEV S Discrete Event System Specification

ET Event-Triggered

MoC Model of Computation

TMR Triple-Modular Redundancy

TTMoC Time-Triggered Model of Computation

TT Time-Triggered

TTA Time-Triggered Architecture

TTP Time-Triggered Protocol

V M Virtual Machine

viii

CHAPTER I

INTRODUCTION

The integration of computing devices into more and more of our surrounding technolo-

gies has been ongoing over the past two decades. The continuing trend in technology-

driven fields (e.g. automotive industry, consumer electronics, automation, etc.) is to

increase the available computational resources and software-based implementation in or-

der to add functionality and lower costs. Unlike typical software systems targeted for

personal computers and web-based applications, these embedded systems are subjected

to physical constraints as a result of their necessary interaction with the physical environ-

ment and/or the limited availability of computational, communication, and physical (e.g.

power) resources. This interplay between the continuous-time dynamics of the physical

world and the discrete-time computational model of software only complicates the de-

sign process for embedded systems. Consequently, embedded software systems designers

have tried to construct reasoning/modeling frameworks that leverage techniques from

both continuous-time and discrete-time systems in order to alleviate some of the design

challenges. Ultimately, any approach intended to design, model, and analyze embedded

software systems can become an accepted technology only if it is adaptable to a variety

of application domains and formal enough to provide logical assurances.

Typically in the design of software systems, partitioning a functional software specifi-

cation into distinct modules or components is often considered a requirement of “good”

software engineering practices. Each component provides some functional or behavioral

utility, and the composition of the components across well-defined connections/interfaces

is intended to result in the desired system behavior. Deriving any notion of the overall

behavior from component-level descriptions is contingent upon an established understand-

ing of the rules that govern the how the components are connected, i.e. the structure of

the system and the legal interaction patterns between components that occur over time

(the operational semantics). Generally, a collection of these rules targeted for a set of

systems that share a common syntax is called a Model of Computation (MoC) [7].

1

Considering the MoC attributed to a design is fundamental to understanding the

behaviors that can and will emerge during system execution, providing an unambiguous

specification of the MoC and its influence over components is pivotal to successfully mod-

eling run-time behaviors. Various tools and approaches have been developed to tackle

the issue of describing MoC-s, each of which offers its own strengths and weaknesses

depending on its underlying objective: mathematical rigor, simulation, verification, etc.

We contend that all of these objectives are commendable and important to understand-

ing embedded software systems; however, we hold that it should be primary to provide

designers a mathematically precise reasoning framework that considers the operational

description of a system fundamental to effective software engineering. Furthermore, ef-

fectively communicating the consequences of a component-based implementation over a

chosen MoC requires that a modeling framework must be able to express characteristics

inherently present in embedded systems, mainly heterogeneous classes of behaviors and

temporally-aware computing.

Given the wide range of applications and complexity of embedded systems, it should

come as no surprise that one computational model cannot be universally applied to

describe all system behaviors and events. Instead, designers rely on a multitude of MoC-

s for capturing different types of components and interactions. In the most general

case, how and when components logically execute and communicate with each other

can be described by two types of responses: event-triggered (ET) and time-triggered

(TT). ET responses are reactive: the occurrence of a discrete event (e.g. the arrival of a

message, an interrupt request for service, or changing a variable) elicits a response from

the system as fast as possible or with some measurable quality of service. Conversely,

TT systems initiate an event or activity only at predefined moments of time laid out

according to a fixed schedule. The synchronization of TT events across components

implies they maintain an agreement on the current state and ongoing progression of

“system” time. ET systems are much more unpredictable, whereas TT systems are

fundamentally deterministic. Unfortunately, most implementations of embedded systems

cannot be classified as strictly ET or TT, but contain a mix of both depending on the

2

function of a component or set of components (a subsystem). Obviously, the applicability

of an approach for modeling embedded software hangs on its ability to sufficiently capture

at least these general classes of behaviors (separately and intermixing them), and it must

provide a mechanism to account for the continuous progression of time beyond discrete

incremental changes of a fixed-resolution counter.

The need for capturing properties and characteristics of a MoC that greatly affect

the run-time execution of a system has underscored the stated desirables of a mod-

eling framework thus far. Attention to these implementation-specific details is often

captured in a system model commonly referred to as an execution framework or plat-

form. A platform provides the operational services dictated by the chosen MoC that

orchestrate the behaviors and interactions of the constituent software components during

execution. In embedded software systems, platforms can be real-time operating systems,

middleware frameworks, component execution frameworks, or kernels. Many abstract

specifications of software systems and MoC-s try to avoid if not outright reject the need

to model implementation-specific details (e.g. protocols, timing, component scheduling,

and synchronization mechanisms); however, there are specific embedded software do-

mains where the precise knowledge and understanding of a platform and its execution

logic is paramount to producing the desired system with a level of certainty regarding

its performance and reliability. One such domain of systems is high-confidence real-time

systems, where suboptimal performance or failures can result in loss of human life or

property (e.g. flight control and avionics systems, automotive applications, robotics,

manufacturing, health and safety monitoring, etc.).

Thesis Objective

Considering the behavioral and temporal challenges prevalent throughout embedded

software system design, we propose the development of a modeling framework that can

describe various MoC-s and their influences on component-based software systems with a

focus on their operational behaviors that unfold over the progression of time. We require

the use of a modeling language that is not only mathematically precise and conducive

3

to reasoning techniques but also fully capable of expressing a system’s state evolution as

a result of the occurrence of events and the ongoing progression of time. Our proposed

selection for the modeling approach, DEVS [10, 11], further extends our framework with

the capability to rapidly prototype and simulate a modeled system (components, con-

nections, and MoC(-s)) such that designers can evaluate resulting execution traces for

logical and temporal correctness.

Furthermore, we will illustrate how to use the proposed modeling framework to de-

velop an implementation of a strictly TT platform intended for deploying distributed real-

time systems. A representative model of the platform will be constructed and then used

to derive the execution logic of the platform, which will be implemented on off-the-shelf

software and hardware components. We envision this exercise will show that modeling

an execution platform intended for implementation has many benefits and consequences:

it eases the process of developing the implementation by equipping the designer with a

design blueprint, it allows evaluating the correctness of the implementation against the

reference behaviors of the model, it provides system designers a framework to evaluate

how MoC-s determine run-time behaviors of an application, and benchmarks/properties

of the implementation can be integrated into the platform model to improve the fidelity

of timed simulations.

4

CHAPTER II

BACKGROUND: DEVS MODELING FORMALISM

The Discrete Event System Specification (DEVS) formalism [10, 11] is a mathematical

language intended to unambiguously describe time-driven systems. A DEVS system is

characterized by states, input/output events, a time base, and functions that describe

the evolution of the system state based on the occurrence of events and the passage

of time. Like other discrete event formalisms, DEVS captures the changing variable

values (event occurrences) over well-defined time segments; however, unlike most discrete

event simulators, DEVS allows the instantaneous occurrence of events, i.e. the length of

the time segments between events is variable (over continuous time) instead of over fixed

time steps [12]. Initially, simpler (atomic) models are created to describe the fundamental

dynamic behaviors of a system, and then larger (coupled) models are constructed from a

network of the simpler models to produce a complete system specification.

Atomic DEVS Models

An Atomic DEVS model is represented by the 7-tuple structure [2]

MA = 〈X, Y, S, s0, τ, δx, δy〉, where

• X is a set of input events.

• Y is a set of output events.

• S is a finite set of discrete states.

• s0 is the initial state.

• τ : S → R+
0,∞ is the time advance function. It returns a non-negative real number

(the lifespan of the current state) that indicates how long the system can remain in

the current state without the arrival of new input events.

• δx : Q×X → S is the input transition function where

5

Q = {(s, ts, te)|s ∈ S, ts = τ(s), te = [0, ts]}

and te is the elapsed time since the last entering of state s.

• δy : S → Y ×S is the output transition function. It specifies the next internal state

of the system and the generated output events whenever the lifespan of the current

state expires.

Time is a continuous variable in all DEVS models with a constant rate of one. Note,

this does not imply that the lifespan of a state, τ(s), is also a continuous variable; instead,

the lifespan is given only as a result of evaluating δx or δy, i.e. upon entering a state.

Two types of transitions describe the evolution of state for a given atomic DEVS

model: internal and external transitions. Internal transitions occur when the lifespan of

a state is reached and result in entering some new state and the generation of some set

of output events given by δy. External transitions result from the arrival of a new input

event that triggers a state change under the enabling conditions given by δx. External

transitions occur instantaneously and generate no output events.

Coupled DEVS Models

Like other automata-based modeling languages, constructing complex systems using

one atomic or flat DEVS model is possible but very tedious and cumbersome. This ap-

proach is not only laborious but also prone to error, lacks generality, and most likely

results in an incomprehensible system specification. DEVS helps steer designers away

from this path by promoting the use of hierarchical and modular model specifications

within its generalized framework. A large DEVS model can be constructed by coupling

or composing simpler DEVS models across well-defined interfaces. Through this cou-

pling, events generated from one subsystem model can be passed “horizontally” (between

peer systems) and “vertically” through the hierarchy to other subsystem models (where

subsystems are atomic or coupled models as well).

A Coupled DEVS model is given by the 7-tuple structure [2]

6

MC = 〈X, Y, D, {Mi} , EIC, ITC,EOC〉, where

• X is a set of input events.

• Y is a set of output events.

• D is a set of names of sub-components.

• {Mi} is a set of DEVS models where i ∈ D. Mi can be an atomic or coupled DEVS

model.

• EIC ⊆ X ×
⋃

i∈D

Xi is a set of external input couplings where Xi is the set of input

events of Mi.

• ITC ⊆
⋃

i∈D

Yi ×
⋃

i∈D

Xi is a set of internal couplings where Yi is the set of output

events of Mi.

• EOC ⊆
⋃

i∈D

Yi × Y is a set of external output couplings.

The semantics for the progression of time and state evolution within a coupled DEVS

model follow directly from the semantics of an atomic DEVS model. Whenever MC re-

ceives an input event, the coupled DEVS transmits the input event to the sub-components

through the set of external input couplings, and when a sub-component produces an out-

put event, the coupled DEVS transmits the output event to the other sub-components

through the set of internal couplings and it also produces an output event of MC through

the set of external output couplings.

Summary

DEVS provides a general modeling formalism for describing discrete-event systems

with semantic constructs for physical time, discrete events, discrete states, and hier-

archical composition of models. Accordingly, its wide-scale applicability, mathematical

underpinnings, and model simulation support provided by various tools and libraries (e.g.

DEVS++ [2], DEVSJAVA [12], Adevs [8], etc.) make it a viable option as a modeling

framework for capturing and investigating MoC-s and their effects on software systems.

7

CHAPTER III

DEVS MODEL OF A TIME-TRIGGERED PLATFORM

This chapter introduces the use of the DEVS modeling formalism for specifying MoC-

s for execution platforms in an implementation-independent manner. Given a set of

software components and their connections, a selected execution platform and its MoC

determine the execution semantics of the individual components and the legal interac-

tions between components. We believe that the following approach enhances a software

developers reasoning about a system design by providing simulation/prototyping capa-

bilities for models of software components and their couplings over a selected MoC. In

this example the interested platform is a TT MoC motivated by the Time-Triggered Ar-

chitecture (TTA) [4] of the Vienna University of Technology and Dr. Hermann Kopetz.

Time-Triggered Model of Computation

Once a chosen MoC is attributed to a software system, the MoC defines the struc-

tural, behavioral, and temporal properties that will characterize the system’s behavior

throughout execution [7]. Furthermore, the precise specification of a MoC is fundamental

to understanding how system-level properties will arise from the component-level behav-

iors and interactions, i.e. compositionality. The use of the DEVS modeling framework is

intended to leverage its precise mathematical foundations for unambiguously specifying

MoC-s, and the operational nature of DEVS models will facilitate the analysis of modeled

system behaviors and serve as a logical framework for migrating from models of MoC-s

to their implementation.

The application domain of distributed real-time systems (industrial processes, avia-

tion, automotive, etc.) depends on software-based implementations of physical control

systems [3]. These applications are typically modeled by the following behavior: sense

environmental/physical data (speed, heading, temperature, etc.), perform some process

calculations based on the sensed input, apply an adjustment to the environment through

8

actuators (motor, piston, pump, etc.), and repeat this process continuously. This con-

tinual operation of trying to achieve a desired reference level of performance through

repetitive processing steps motivates the use of strictly periodic models of system behav-

ior. Safety and reliability are of the utmost criticality for any implementation intended

to meet the desired controlled operation for such systems; failures may result in physical

harm (if not death) to humans, animals, or property. Consequentially, these expectations

on such systems have motivated the use of techniques that will guide designers towards

implementations that are analyzable and verifiable regarding system performance.

One such approach for building dependable, periodic control systems is through the

use of the Time-Triggered Model of Computation (TT MoC) [3]. In a TT system, trig-

gering signals are generated over the progression of time according to statically defined

schedules produced in the design phase. The requisite a priori knowledge of when events

and actions are to occur through the use of static schedules produces systems that are

more conducive to predictive modeling and analysis. Typically, these systems are con-

structed by partitioning the software-based functionality into concurrently executing soft-

ware components, called tasks, that execute over a set of computational hardware units or

processors, called nodes, and nodes are connected via a network for passing data between

tasks within messages. An execution platform that implements the TT MoC on a node

will use the TT control signals to initiate/terminate task execution, start the transmis-

sion of data messages, and initiate interactions with the physical environment or other

systems.

The TTA [4] developed at the Vienna University of Technology by Dr. Hermann

Kopetz is an industrial-level development framework produced by TTTech Computertech-

nik AG that provides the aforementioned services of the TT MoC for the dependable

execution of safety-critical real-time systems. TTA further maintains the dependable

execution of TT systems by offering redundant communication buses, a fault-tolerant

time synchronization algorithm, and infrastructure for the replication of hardware and

software subcomponents. The TTA requires the strict synchronization of system time

and real-time data (i.e. state of variables) across all constituent nodes along with the

9

complete separation of the TT execution of software tasks from the TT communication

protocol via a well-defined hardware interface (the Communication Network Interface or

CNI). This separation along with the well-defined interaction mechanisms that deter-

mine how and when information may cross (if at all) the CNI are intended to further

ensure the temporal and operational accuracy of executing systems. Furthermore, these

restrictions support the use of the TTA as a composable architecture capable of handling

the dynamic integration of nodes during run-time along with the use of heterogeneous

node-level implementations in both hardware and software.

The logical and physical separation at the CNI allows a system built using the TTA to

rely on various communication protocols for transporting messages between nodes. How-

ever, any viable candidate must be able to reliably transmit all TT messages according to

the strict periodic message schedule with the necessary guarantee that data will be trans-

mitted from the source to the receiver in the well-defined time interval between which the

application-level tasks update the CNI and retrieve data from the CNI on their respective

nodes. The TTA offers two Time-Triggered Protocols (TTP-s) as possible candidates:

TTP/C and TTP/A. TTP/C [5] is intended for high-confidence systems that require the

highly dependable transmission of TT messages between nodes and multiple mechanisms

for avoiding faults or deleterious behaviors. TTP/A [6] is a low overhead implementa-

tion of a TTP that relies on a non-fault-tolerant master/slave configuration of nodes for

passing TT messages. TTP/A is intended for lightweight sensor/transducer-level applica-

tions of distributed real-time systems, e.g. process control systems and low-level sensing

in automotive systems.

In purely TT systems, the schedules that describe the tractable execution across all

nodes are strictly periodic. For both task execution and message passing, the execution is

separated into continuously repeating periods or cycles, called hyperperiods. Consequen-

tially, this periodicity requires that the schedules specify only those timed events and

actions that are invoked over a single hyperperiod. Each schedule sequentially orders all

task execution or message instances in a given hyperperiod, and it is the foremost respon-

sibility of the TT execution platform to maintain the timely execution of the schedules

10

over each hyperperiod cycle while the system is operational. Due to the causal dependen-

cies between tasks executing and their resulting data that gets passed in the scheduled

messages, the hyperperiod must be the same for both schedules.

The TT MoC DEVS specification presented below captures the general TT execution

services required for the strictly periodic execution of software-based control systems:

scheduled execution of software tasks or components, scheduled transmission of data

messages, and synchronization mechanisms for ensuring lock-step execution of the system

across all nodes. As this specification grows, mechanisms for fault-tolerance and improved

robustness common to platforms such as TTA will be included. However, the objective

of this framework is to be flexible enough to investigate the heterogeneous composition

of MoC-s that allow behaviors other than those offered by strictly TT systems; therefore,

the abstract specification of the individual DEVS components is of critical importance.

Time-Triggered Platform Modeling Framework

We now present the corresponding DEVS model of an execution platform that provides

the aforementioned services of the TT MoC for a networked system of nodes (see Figure 1).

The following sections will describe the primary components running on a single node

that are responsible for maintaining the scheduled transmission of messages and execution

of software tasks, the TT communication controller and TT task scheduler respectively.

Also, models of a communication bus and software tasks are provided in order to illustrate

how the modeling framework could be used to prototype a specified system. In the current

manifestation of the modeling framework, all of the DEVS models are constructed using

the DEVS++ C++ library [2] created and maintained by Dr. Moon Ho Hwang.

Time-Triggered Communication Controller

The primary responsibility of a TT communication controller is to accurately follow

a fixed message schedule. A message schedule is generated offline, passed as an input

to the platform, and cyclically evaluated throughout the execution. Unlike the strict

time division multiple access scheduling rules of TTA and the TTP/C protocol [4, 5],

11

Figure 1: High-level architectural view of a TT system

this platform does not place any minimum or maximum on the amount of data that

can be sent from a node in a round/cycle of the hyperperiod except those constraints

that maintain the feasibility of the message schedule. Instead, the static message schedule

specifies which node sends a message at an exact scheduled offset (the phase) with respect

to the start of the hyperperiod. Each schedule round is one hyperperiod long, and the

hyperperiod is of fixed duration. A node will be allotted no messages/slots if it is not

expected to transmit any data within a schedule round. If a message is expected to be

sent with a frequency greater than one within a round, it will be listed as many times in

the schedule as it is expected with each appropriate scheduled transmission time. The

length of each message, in bytes, is also indicated in the message schedule.

Establishing and maintaining TT communication across a network of nodes imple-

mented using this platform proceeds according to the listed steps (see below). Figure 2

below is a DEVS model specification of the behavior as well. Within the DEVS repre-

sentation, the italicized text (e.g. f(msg.size)) directly below a state label (e.g. SYNC,

RECV, and IDLE) indicates the lifespan of its corresponding state. Also, a lifespan

labeled as f () is a function of its argument, and a lifespan labeled with ϕ represents a

constant. Variables next and HP Time are used to indicate the index (starting from 1)

of the next scheduled message and the start time of the current hyperperiod respectively.

The function Time() returns the current global time value. The event-triggered (exter-

nal) and time-triggered (internal) transitions between states are represented by solid and

12

dashed black arrows respectively. The semicircles on the boundaries of the model repre-

sent the event ports of the model: protruding ports are output ports and inlayed ports

are input ports. Lastly, not present in Figure 2 but used in Figure 3, the subscript of a

label (e.g. reli and stopnext) corresponds to an index value.

The logical execution steps for the TT communication controller proceed in following

manner:

1. Synchronize all of the nodes on the network. Extremely important for ensuring

the nodes begin executing the message schedule simultaneously. The amount of

time to synchronize is dependent upon the underlying hardware and the chosen

synchronization algorithm.

2. Transmit the hyperperiod start signal (marks the beginning of schedule execution).

3. Transmit data messages according to their strictly scheduled order and phase. Con-

currently, allow reception of messages from other nodes. If a message is transmitted,

ensure that a collision on the communication bus does not take place and proceed

to the next scheduled event (either sending the next message or waiting for the end

of the hyperperiod). If a message is received, process the message so that it can

be used by software applications. The processing time depends on the size of the

message data.

4. End of hyperperiod is reached (a schedule cycle has been completed).

5. Repeat process starting from step 2.

The requisite model (for simulating multi-node systems) of the communication bus

is straightforward (see DEVS model in Figure 3). The model makes no assumptions

regarding a specific hardware or protocol implementation for the bus, but all of the system

nodes are expected to be connected to the bus for broadcast communication. Also, only

one message can be on the bus at any given time; however, the message schedule for the

TT MoC is typically constructed with this constraint in mind.

Indicated in Figure 3, the bus is initially idle and will remain so until a message is

received on any of its recv() ports. In this model a unique triple of ports (recv(), send(),

13

Figure 2: DEVS model of the time-triggered communication controller

and coll()) is created for each node in the system, and the nodes and their respective ports

are differentiated by an index value (i and j in this example). Following the reception of

a message, the bus will remain busy for some amount of time that is a function of the size

of the data message, i.e. the transmission time over the bus. If no other message arrives

during this time, the message will be sent to all nodes on the network. Conversely, if

a new message does arrive from any node while the bus is busy, a collision occurs, the

collision signal is sent to all nodes, and the data messages are lost.

Figure 3: DEVS model of the communication bus

14

Time-Triggered Task Scheduler

Much like the communication controller, the TT task scheduler is primarily responsible

for initiating the periodic execution of the software tasks based on a static task execution

schedule initially passed as an input to the system. The current implementation model

does not allow the preemption of tasks, i.e. only one task is released for execution at any

given time and it finishes its execution before another task is allowed to begin executing.

In order to properly maintain the timely execution of all tasks according to the schedule,

the TT task scheduler is also responsible for terminating executing tasks that have yet

to finish prior to reaching their worst-case execution time (WCET).

The task schedule for a node is similar to the message schedule mentioned in the

preceding section. The schedule first specifies the hyperperiod that must match that of

the message schedule. Next is an ordered listing of all task invocations. An invocation is

listed for each time a task is to execute within a hyperperiod, and each listing specifies

the scheduled release time (the phase) and WCET of the task invocation. Synchronizing

the execution of the task schedule with the message schedule maintains the correctness of

execution with respect to the system performance; therefore, each new round of the task

schedule has to be initiated by the arrival of an event from the underlying communication

controller indicating that a new schedule round is beginning. If no such event is received,

then no tasks will be released for execution.

Not surprisingly, the implementation logic of the TT task scheduler is not dissimilar

from the TT communication scheduler. Following along with the DEVS model in Figure 4,

the execution steps are:

1. Synchronize the execution of the task schedule with the message schedule. Task

execution cannot begin until the hyperperiod start signal is received from the com-

munication controller.

2. Release tasks for execution according to their scheduled order and phase.

15

3. Upon the halted execution of the previously released task, move on to the next

scheduled event: either the next task invocation or resynchronizing with the com-

munication controller. Halted execution of a task is the result of either its self-

completion or forced when its WCET is reached.

4. End of the hyperperiod is reached.

5. Repeat process starting from step 1.

Figure 4: DEVS model of the time-triggered task scheduler

The DEVS TT task model (see Figure 5) is very simple since it is not intended to

capture the actual logic of the software or how data is manipulated; instead, it merely

supplies the timed execution traces for TT tasks. As indicated by the model, a task will

remain idle until it is released for execution by the task scheduler. The task will continue

executing until it finishes or it is forced to terminate by the TT task scheduler. The

execution time of the task (the lifespan of the state RUN) is modeled as a probabilistic

function based on the task’s WCET. On an actual system, the execution time of a soft-

ware task would be dependent upon many factors (hardware, software, and environmental

16

activity); however, the DEVS model must make the assumption that the WCET param-

eter was determined as a reasonable estimate based on the possible execution profiles of

the system.

Figure 5: DEVS model of a time-triggered task

Putting all of these components together yields a coupled DEVS model for a single

node that is presented in Figure 7. Also, Figure 6 is an example snapshot of a continuously

executing TT system representative of the periodic execution of TT schedules. In Figure 6

each labeled time ti,p indicates the occurrence of event i in the hyperperiod round p and

∆i is the events corresponding durative action time (e.g. transmission delay of a message

or execution time of a task).

Figure 6: Activity timeline over the execution of a time-triggered schedule

Summary

In this chapter we have presented a modeling framework for describing MoC-s and

execution platforms in a non-implementation specific context using the DEVS modeling

formalism. This framework is intended to facilitate the specifying of MoC-s and their

17

interactions in a mathematically precise and analyzable way, and the use of DEVS and its

various tools allows software developers to construct executable models of their software

systems. With this prototyping capability, developers can evaluate how a chosen MoC

influences the behavior and temporal properties of their software applications.

Furthermore, an example MoC based on the TTA [4] was specified using the model-

ing framework. This platform, commonly used digital control systems, is based on the

strictly periodic execution of software tasks and transmission of data messages to pro-

mote deterministic system performance. The underlying logic responsible for ensuring

the behavioral characteristics of the MoC along with a template for modeling software

tasks were provided to illustrate how to construct a model of a single node, and a simple

communication bus model for sharing data between such nodes was provided for build-

ing larger models of networked nodes (a distributed system). The following chapter will

present an implementation of the discussed TT MoC on off-the-shelf hardware and soft-

ware components that used the preceding DEVS model as a logical guide for developing

the execution platform.

18

Figure 7: Coupled DEVS model of a TT MoC equipped node and the bus

19

CHAPTER IV

AN OFF-THE-SHELF PLATFORM IMPLEMENTATION

This chapter presents how the previously introduced TT MoC was implemented on

off-the-shelf hardware and software components as a possible target execution platform

for periodic digital control systems. Although the TTA has been developed and matured

over many years in both research and industrial settings, it lacks the flexibility and ex-

tensibility for introducing other MoC-s or behaviors into the execution platform. These

restrictions motivated the following execution platform that offered the same determin-

istic execution of the TTA with a hardware/software-independent platform Application

Programming Interface (API). The resulting platform uses an abstract Virtual Machine

(VM), FRODO, for executing TT software tasks coupled with a communication con-

troller that provides the TT transmission of data messages between networked nodes, all

of which is implemented using readily available infrastructure.

Platform Implementation Architecture

The platform’s implementation architecture is based on the logical separation prin-

ciples similar to those of other TT platforms like Giotto [1] and TTA [4]: the periodic

execution of software tasks is determined solely by the passage of time and the current

operational mode of the system, i.e. events such as the arrival of new data messages

do not affect the timing of task execution. Accordingly, only the most recent data val-

ues, representative of some control signals, are relevant to calculations performed by TT

tasks; therefore, a globally shared memory construct is used to read-in and update data

throughout execution. The resulting architecture is provided below in Figure 8. In the

figure, solid black arrows represent the flow of data throughout the system whereas the

dashed black arrows (see TT Task Scheduler) indicate the sending of events.

As indicated at the lowest level of Figure 8, a shared bus architecture is used for the

transmission of TT messages between nodes. There are no explicit restrictions placed on

the communication protocol used; however, it needs to be a relatively high bandwidth

20

connection that can be isolated from other networks to ensure communication integrity

with as little overhead as possible. Currently, a standard Ethernet connection utilizing

UDP broadcast communication is used to connect nodes in an isolated network across an

Ethernet hub, a Netgear DS104 (with 4 10/100 ports). The physical nodes used in the

deployment are Soekris net4801 units. These embedded boards come with a 266MHz 586

processor, 256MB of SDRAM, 3 10/100 Ethernet ports (each with an individual network

interface controller), 2 serial ports, and 12 general purpose I/O pins. Also, each board is

running a Linux 2.6.x kernel with no supplemental real-time patches. Linux was chosen

since it is not only free but also widely accepted for embedded applications; however,

in the near future, other deployments will be evaluated with an emphasis on porting

the execution platform to other hardware/software configurations with an interest in

operating systems that offer more “real-time” execution capabilities. Also, the selected

programming language for the current implementation was C++.

Also illustrated in Figure 8 is the shared memory structure used to hold the relevant

data that results from the calculations of the TT tasks (see the box in between the

TT Communication Controller and TT Tasks) and is passed between nodes in the TT

messages. This data structure contains one memory location for each unique message

instance defined in the message schedule. Over the execution of a hyperperiod, all of the

nodes should maintain the same data set, i.e. each node updates the respective memory

location of a received data message regardless of which task (even if it is not on this node)

will potentially use the data. The data is persistent as long as it is not updated; however,

it is immediately overwritten whenever new data is available, i.e. there is no queuing

of data. The representation of the shared memory in Figure 8 also indicates that the

memory locations must be accessed controlled (see the white ”X” across the access point

on the top of the box). This is to prevent race conditions if both a TT Task and the TT

Communication Controller are trying to update the same memory location. Currently,

a POSIX mutex variable that functions as a binary semaphore is used to regulate access

to the shared memory. In future extensions to the platform, it would be advantageous

to pursue other approaches to synchronizing/regulating access to the shared memory

21

that did not involve potential blocking conditions on the calling threads. One approach

could use two buffers and an indicator variable: the indicator points to the buffer that

was previously updated by the last write operation and is currently ready to provide

data upon a read operation. The next write operation updates the other buffer, and the

indicator variable will switch to the newly updated buffer when the write is complete.

This switching occurs with every new write operation. Accordingly, a write operation,

even for large data sizes, never blocks a concurrent read operation, unlike the mutex.

Figure 8: System architecture of a single node

From the details presented thus far concerning the implementation, we see that the

active components running at any given time on the platform can be the TT commu-

nication controller, the TT task scheduler or VM, and any currently active TT task.

Consequently, the implementation must provide mechanisms for handling the concurrent

22

execution of these entities. Linux provides two types of such concurrency objects: pro-

cesses and POSIX threads. POSIX threads were selected for this implementation since

they require less overhead and a suite of threads in the same process share the same

memory space. Furthermore, they do not place any restrictions on the use of C++ as

the selected programming language.

Throughout the rest of this chapter and the following one, a common system config-

uration (see Figure 9) is used for experiments and benchmarking the execution platform.

There are up to four independent nodes connected via a shared Ethernet network. Any-

where from zero to three nodes will have some sensing device used as a data input and

either zero or one device will have an actuator output device. Each specific example will

be briefly described when it is used, but this is the common configuration.

Concerning the experimental configurations as well, for reasons that will become ev-

ident in subsequent sections, an additional input to the system is required at run-time

beyond the already mentioned message and task execution schedules. This additional

input is a configuration file that lists the set of nodes that are expected to be on the

network and part of the system during operation. The file merely contains unique iden-

tifiers that are used to differentiate between the nodes, and each node is provided its

corresponding unique identifier during system initialization. The system will not go into

operation unless all nodes are present and each node matches with a specified unique

identifier.

High Resolution Timeouts and Scheduling in Linux

Linux supports halting the execution of a thread for an arbitrary amount of time

with microsecond resolution using the clock nanosleep() function. This function uses a

predefined POSIX timer object as the reference clock for timeouts, and it can timeout for

a specified amount of time or until it reaches some specific time value in the future. This

function was used as the baseline method for scheduling events on the platform since the

typical applications required a timing resolution around the one half to one millisecond

range; however, this function was not without its limitations.

23

Figure 9: General implementation configuration of nodes for experiments

First, the Linux documentation indicates that even though the scheduling and timing

mechanisms behind clock nanosleep() guarantee that it will never return from a timeout

prior to the specified target time, it provides no guarantees regarding how long after

the target time it will return. This is a non-ideal implementation for real-time systems

with strict timing requirements; however, we had no other available options using Linux

routines or access to hardware-level interrupts and timers that would have provided a

higher-level of timing safety.

Considering the general applications that would be running on the platform (mainly

a suite of strictly periodic threads) and the isolation of the system, it became apparent

that the scheduling overhead and computational demand on the system during execution

would be periodic if not nearly constant. Further analysis of the system and use of the

clock nanosleep() function indicated that there is a baseline or minimum overshoot from

the target timeout value, and this error typically stabilizes to a slightly larger value during

system operation. The minimum overshoot or baseline resolution of the function was

determined to be about 40µs. This implies that no matter what non-negative, non-zero

value is specified as the target timeout value, the function will return no sooner than 40µs

after it. Unfortunately, the error encountered during operation is typically computational

load dependent; therefore, a dynamic adjustment approach was implemented to try to

24

minimize this error to ensure the most accurate timing as possible for scheduling. The

resulting high-resolution timeout routine was implemented using the following process.

First, the clock nanosleep() minimum offset is determined during system initialization

using test calls. All subsequent calls to timeout a thread (the communication controller

or VM thread) are reduced by the current offset value for that thread (note: a different

offset is maintained for each thread). If the desired timeout is less than the current offset,

the system will busy-wait until the desired time is reached and then return. Otherwise,

the offset reduction is taken and the new value is passed to clock nanosleep() as the new

desired timeout value. Upon returning from the timeout, the error is measured (difference

between the current time and the desired time), and the offset value is adjusted by adding

or subtracting some proportion of the error as long as the error is not too large such

that the new adjustment would cause instability or oscillations in subsequent calls, i.e.

extremely large errors must be ignored since the system will most likely not produce

similar results in subsequent calls.

This offset adjustment approach is similar to using a proportional feedback controller

from control theory to correct for operational errors; however, this implementation would

have to be modified to fit a strict proportional controller model in order to discuss the

stability or performance (e.g. steady-state error) of the controller. To be analyzable as

such, the use of a discrete-time proportional controller would require that the timeouts

would have to be strictly periodic with a fixed timeout value and continuously running

even when a timeout by the communication controller or VM has not been requested.

This option was explored as an interesting application of a control-theoretic approach

to achieving accurate sub-millisecond timeouts in Linux; however, the overhead from

running the adjusted timeouts with periods ranging from 150 – 500µs resulted in starving

the other executing threads of computation time and increased the response time of the

communication controller and VM threads.

Since the system load is currently very predictable during execution, the adjustment

value typically reaches a stable value very quickly once the execution of the schedules

begins, i.e. there is little ramp-up time or “pipeline filling”. Testing has shown that

25

this method is accurate enough to yield consistent timeout errors less than 20µs. Un-

fortunately, as the system’s load and external interactions with other networks and/or

applications become less predictable, this correction scheme will no longer be effective or

nearly as accurate. At such a time, the need for fine-grained timing control (hardware-

level access and/or interrupts) will become a necessity to meet the strict timing demands

of most TT systems.

Communication Controller

Given a system configuration and the cyclic message and tasks schedules, it is the

responsibility of the TT communication controller on each node to maintain communi-

cation with the other nodes of the system and their partnered TT task schedulers in

order to properly execute over the schedules in a synchronized manner. We will now de-

tail the specific implementation approaches and performance benchmarks of the current

off-the-shelf platform implementation using the previously detailed hardware/software

configuration.

Initialization and Node Discovery

We now provide the implementation details of how the system nodes initially syn-

chronize to confirm all are ready to begin executing. In this preliminary version of the

execution platform, a fault-tolerant algorithm for establishing and maintaining node syn-

chronization was not utilized since this is a non-trivial task in of itself for embedded and

real-time systems. Instead, a simple master-slave approach that makes assumptions con-

cerning the possible execution conditions and bus activity was chosen; however, improving

the approach to be more robust (like the method used in TTA) would be worthwhile.

At initialization, each node must determine if it is the “master” node or one of the

“slaves”. Currently, the master is assigned to be whichever node has the first unique

identifier listed in the system configuration file, and accordingly, all other nodes assume

the role of a slave. As the designated master, a node must first ensure that all of the

nodes listed in the configuration file are present before execution is allowed to begin (the

26

node discovery process). The master node begins the discovery process by transmitting

a synchronization message onto the network. The execution can proceed only if the

master receives a synchronization acknowledgment message from each and every slave

listed in the configuration file. Until all acknowledgements are received, the master will

continually transmit the synchronization message every (N+1)*5 milliseconds, where N

is the number of slave nodes. Conversely, when a slave node starts its initialization and

reaches the node discovery step, it will wait indefinitely until it receives the synchro-

nization message. Upon receipt, it will transmit its synchronization acknowledgement

message at pos*5 milliseconds after receipt, where pos is the integer index of the slave

node’s unique identifier in the configuration file. Accordingly, the discovery process is

complete when all slaves have acknowledged the synchronization message, and the master

node will conclude the process with the transmission of multiple completion messages.

Figure 10 shows an oscilloscope output of the message activity for this process with

four nodes (note: the major intervals of the time axis are 10ms apart). The top channel

corresponds to the master and the three other channels are the slaves. The brief pulses

on each channel represent the transmission of a message. Initially, the master transmits

the synchronization message, each slave then acknowledges the message at the proper

5ms intervals, and finally, the master sends out four synchronization complete messages

at 20ms intervals (tries to ensure that all slaves receive this completion signal). This

process is fairly rudimentary; however, all experiments on an isolated network have never

failed to properly synchronize during initialization.

Synchronization of the Hyperperiods

Once the master is sure that all nodes are present, it is now responsible for initiating

and maintaining a synchronized start of the hyperperiod (message schedule execution)

for every cycle the system is operational. This is critical to maintaining functional cor-

rectness of the system, because the misaligned execution of the message schedule could

increase the latency between the sampling of an input and the subsequent application

27

Figure 10: Node synchronization process viewed from the bus

of a control-related adjustment on the output of the system, i.e. degrade controller per-

formance. Unfortunately, the current implementation’s selected infrastructure (Linux,

POSIX threads, non-hardware level timers, etc.) constrains the allowable overhead or

computational requirements that the execution platform can introduce; therefore, the

current method for synchronizing the hyperperiods is not fault-tolerant or robust. Ide-

ally, the migration of this platform to more “real-time” capable hardware/software will

enable the development of more thorough synchronization methods.

Similar to the discovery process, the slave nodes will not start the upcoming hyperpe-

riod unless the appropriate message is received from the master node. After completing

the discovery process or concluding a previous schedule round, the master transmits the

hyperperiod start message on the network, and each individual node will immediately

begin executing the message schedule after receiving this message, including the master.

The master receives the message as well since the UDP broadcast protocol will send it to

all nodes in the addressed subnet regardless of the sender. Once the message is received,

each communication controller stores the current time as the start epoch of this round

28

of the schedule and then transmits the scheduled TT messages that originate from its

data set. The precision of this approach rests squarely on the uniform arrival time of

the message to all of the nodes, including the master. This too is a naive approach to

maintaining correct system performance; however, the current implementation charac-

teristics (especially the restrictions on outside network activity) seem to provide a stable

environment for yielding only marginal errors in the accuracy of the start time of each

hyperperiod (see Figure 11(a)).

Figure 11(b) is another oscilloscope output of the activity of a set of four nodes over

two hyperperiods of execution. Ignoring the details of how to interpret the various pulses

on each channel, attention must be directed towards the two vertical cursor lines (a solid

line on the right and a dashed line on the left). The cursors are positioned at the start

of two hyperperiods, and the vertical pulse on each channel that is aligned with each

cursor represents when each node began executing the hyperperiod. In this example

the hyperperiod was 20ms and channel one corresponds to the master node. We can

see at both hyperperiod synchronization instances that all four nodes begin executing

at nearly the same time (usually within 30µs for all nodes, see Figure 11(a)). Also, the

two cursors are placed to measure the time interval between these instances, and we

can see that the measured time interval between the synchronization points was near

20.1ms. This error of about 100µs represents a deviation of 0.5% for this single instance;

however, further data analysis over thousands of hyperperiods of varying lengths yielded

an average hyperperiod error of about 40µs with a standard deviation on the order of

10µs. This means that it will typically take greater than 20,000 hyperperiods or schedule

rounds before the accumulated deviation of the execution reaches one second.

Currently, this error between consecutive hyperperiods goes uncorrected in terms of

when the messages are scheduled in the currently executing hyperperiod, e.g. the trans-

mission of a message scheduled to occur 1ms after the start of the hyperperiod, tHP , will

occur at time tHP +1ms even if the current hyperperiod started 50µs later than it should

have (the corrected time would be tHP +1ms−50µs). A more robust implementation (like

TTA) with better clock synchronization and/or hardware-level timing capabilities could

29

(a) Difference in hyperperiod start times

(b) Length of hyperperiod

Figure 11: Hyperperiod synchronization across four nodes

30

account for this deviation (or possibly provide perfectly periodic execution); however, the

inability to truly guarantee how accurately the master can send out the synchronization

message (based on a timeout) or how quickly the communication controller can be no-

tified of the arrival of a new message (from the select() routine) make adjusting for this

deviation a risk with serious ramifications in tightly scheduled systems (e.g. skipping

message instances).

Since the synchronization is based on the transmission of a message across the net-

work, the delay introduced by transmitting a message has to be accounted for when the

master node is determining what time to schedule the transmission of the synchronization

message. Network isolation allows this delay to be compensated for using a fixed offset to

indicate how long before the start of the next “ideal” hyperperiod that the synchroniza-

tion message should go out on the bus. Through extensive testing and benchmarking,

the current conservative compensation value was determined to be 250µs. This is consid-

ered conservative since it produces the presented synchronization accuracy with very few

cases where the start of the next hyperperiod occurred earlier than the ideal time. Larger

compensation values have been tried to reduce the average error to near zero; however,

they always increased the likelihood of starting a schedule round early.

Synchronization of the Communication Controller with the VM

The simultaneous execution of both the message and task schedules is one of the

primary requirements of the TT MoC for maintaining proper controller performance

(keeps the tasks operating on the most current data). Upon establishing the start of

a given hyperperiod across the nodes, the communication controller of each node must

further synchronize the start of the hyperperiod with its respective TT task scheduler or

VM (see “HP Start” event in Figure 7). Given the selected Linux platform, the simplest

and least computationally restrictive method of signaling to the VM to begin executing

the task schedule was through the use of a POSIX mutex (a binary semaphore). The

specifics of the VM execution semantics will follow in a later section, but we briefly

mention some details here.

31

The communication controller is always given possession of the mutex during the

system initialization process. Directly following the synchronization of the hyperperiods

across all of the system nodes, the communication controller releases the mutex and briefly

halts execution for a specified amount of time (currently 350µs). This pause allows the

underlying operating system to reschedule the thread execution to allow the VM thread

to acquire the mutex long enough to save the current time value as the start of its hyper-

period. The VM immediately releases the mutex, the operating system reschedules the

awaiting communication controller thread, and the communication controller reacquires

the mutex and begins executing over its message schedule. Each subsequent hyperperiod

must be synchronized between the two threads as well; therefore, the VM must try to

reacquire the mutex at the end of each its hyperperiods (it will be blocked) such that it is

ready to save the new hyperperiod start time the next time the communication controller

releases the mutex.

Obviously, using a mutex introduces a time lag between when the communication

controller stores the current time value for the start of the hyperperiod versus when the

VM can do the same (since the operating system has to reschedule the threads); however,

this error can also be mitigated by subtracting a fixed offset value from the VM’s saved

hyperperiod start time. Once again, the predictability of this error results from the

restriction that no other activity will be taking place on either the communication bus

or the node itself while the system is operational (common underlying assumptions of

the TT MoC for digital control applications). The current offset adjustment value is

130µs and the measured average error between the saved hyperperiod start times for the

two threads is typically 15 – 20µs with very little deviation. This too is a conservative

adjustment value, i.e. the message schedule runs slightly ahead of the task schedule;

however, the TT MoC (especially in TTA [4]) dictates the primacy of accurate data sets

over the scheduled execution of tasks. Once again, the values of 350µs and 130µs for this

process had to be determined by benchmarking the chosen platform since both are highly

software and hardware specific.

32

Transmitting and Receiving TT Messages

Now that all of the main tenants of synchronizing the communication controllers

have been presented, the process of transmitting and receiving TT messages can be dis-

cussed. The logical operation of this process has already been presented in the DEVS

description of the communication controller (see Figure 2); it is similar to most cycle

executive operations over a pre-defined schedule. The communication controller properly

transmits messages according to the sequential message schedule, and it must also listen

for any incoming data messages on the communication bus while waiting to send out

the messages. When a scheduled transmission time is reached, the communication con-

troller obtains the current value of the data message from shared memory, packages the

message for transmission, sends the message out on the shared communication bus via

the underlying communication library, and moves on to repeat the process for the next

scheduled message or awaits the start of the next hyperperiod if the end of the message

schedule has been reached. Even though the high-resolution timeout mechanism (ad-

justed clock nanosleep() routine) discussed above is capable of accurately scheduling the

communication controller to awake when it is time to transmit a scheduled message, it

cannot concurrently notify the communication controller when an incoming message has

arrived via the communication bus. A different mechanism is required for this behavior,

and it is provided by the select() function.

As a brief note, we would like to indicate how a message is packaged for transmis-

sion such that the reception side of message passing can be as quick as possible. The

current implementation first retrieves the message data from the shared memory, and

then the following string is attached to the front of an outgoing message: “(msg pos)”.

Here, msg pos indicates the index of the message in the message schedule. Since all nodes

use the same message schedule, any node that receives this message can quickly deter-

mine from this index value which memory location to update with the new data. This

implementation was also intended to add as little overhead as possible to the message

communication process.

33

The select() function allows us to specify that we would like to listen to a communi-

cation endpoint (a UDP socket in this implementation) for any activity, i.e. the arrival

of a new data message. If any message comes in on this endpoint after calling select(),

it will return from being called indicating that a new message is available. Furthermore,

a timeout alarm can also be specified that will cause select() to return if the timeout

expires and no new message has yet been received (a timeout of length “null” will allow

select() to wait for a new message indefinitely). This seems to provide all of the features

needed by the communication controller to schedule message transmissions and concur-

rently listen for new data messages; however, the underlying implementation of select()

is not without its limitations.

According to the Linux documentation, the timeout feature of select() is influenced

by the operating system’s timer interrupt. Regarding the select() function, this periodic

signal, called a “jiffy”, indicates the periodic points in time that the operating system

will check to see if the timeout of the select() has expired. Our Linux kernel uses a jiffy

with a period of 4ms; therefore, select() will only check the timeout alarm’s status every

4ms. Obviously, any application that requires sub-millisecond resolution for scheduling

cannot depend purely on this function, and such is the case for the TT communication

controller. However, it does not mean the select() function’s capabilities cannot be used

if properly handled.

Instead of calling select() when a timeout must be specified for sending the next

message and listening to the communication bus, the communication controller simply

calls a “listen” routine and indicates the target time of the next scheduled event. This

routine will use select() as described in the previous paragraph only if the timeout is

greater than two times the jiffy period (8ms in this case). Any less of a timeout runs

the risk of not being properly handled by the scheduler since a timeout that expires in

between two jiffy signals is not handled until the later one. For example, a timeout of

4ms that starts 100µs after the jiffy signal will actually last 7.9ms. When it is safe to use

select(), the new timeout value (TOnew) is an integer multiple of the jiffy period (Pjiffy)

given by the following equation.

34

TOnew = Pjiffy ∗ (bTOcurr ÷ Pjiffyc − 1) (1)

When the desired timeout is less than 8ms, it is necessary for the listening routine to

busy-wait and periodically check the communication endpoint for a new message. Busy-

waits can be very expensive if they poll too quickly, but they can also increase response

time to new messages if they do not check often enough. When the minimum allowable

time interval between consecutive messages is 1ms (this is the typical constraint placed

on all experiments thus far), a busy-wait period of 400µs was determined to be quick

enough without using up too much processing time such that other threads (such as the

VM) were starved.

After repeatedly performing the busy-wait operation, eventually the busy-wait period

will be larger than the amount of time until the desired target time is reached. When this

occurs, a timeout for the exact amount of remaining time is requested. Both the busy-wait

calls and the final timeout request are handled using the offset-adjusted clock nanosleep()

routine described earlier.

Timing Properties of Message Passing

Throughout the description of the communication controller’s implementation on the

deployment platform of the Soekris net4801 boards running the Linux operating system,

various detailed timing properties or limitations were provided to give a reasonable ex-

pectation of how accurately this off-the-shelf implementation could follow a predefined

message schedule given certain assumptions. While these details are of the utmost impor-

tance to the schedule generation process for determining the schedulability of a designed

system, the timing properties of physically sending, receiving, and processing message

data on this implementation have yet to be discussed. Not only are these properties

extremely important to schedule generation but they also exhibit the most variability.

Through various experiments and tests, the logical correctness of this implementation

has been proven and its degree of accuracy in scheduling events has been quantified. Now,

35

we must look at how the chosen platform affects the main phases of passing a message

between nodes: from memory to the communication medium (transmission delay), across

the communication medium from transmitter-to-receiver, and from the medium to the

memory of the receiver (reception delay).

In order to gather results over a range of message sizes that could potentially be used in

real-world applications, the following data was gathered assuming communication buffers

of 4096 bytes (or 4KB). These are the buffers used by the underlying communication

library (responsible for implementing the UDP protocol) that interacts directly with the

operating system to move data on and off the communication medium. This buffer size

is also used in the communication controller for retrieving message data from the shared

memory; however, the actual size of the messages in memory is specifically provided in

the message schedule and not equal to the buffer size. The only stipulation is that all

messages must be of a size less than the message buffer, i.e. splitting-up message data

across multiple messages is not allowed.

First, the timing properties of the communication medium in this implementation are

the least influential. Given any medium (100Mbps Ethernet in this case) with dedicated

hardware and well-defined message protocols, generating an estimate of how long it takes

to physically move data across the medium is fairly straightforward with access to prop-

erties such as packet size, bandwidth, etc. On this platform, the transmission time was

only readily measurable by the time interval starting when the communication library

relinquishes control of a data message to the operating system to move onto the commu-

nication medium and ending when the “listen” routine of the receiver’s communication

controller determines a new message has been received. Every test has shown that this

time interval is typically 70 – 80µs; however, a conservative approach would be to assume

100µs.

On the sending side of a message transmission, the transmission delay was measured

starting from the point the communication controller is awakened from a timeout for

the next scheduled message transmission to the point where the communication library

has successfully passed all of the message data to the operating system to put onto the

36

communication medium. The converse is true for the reception delay of a message: it

starts when the listening routine is notified a new message has arrived and ends when

all of the updated message data has successfully been written into the shared memory

of the receiving node. In summary, these values try to capture the entire message pass-

ing overhead that is introduced by both the operating system and the communication

controller’s implementation.

The following data (see Table 1 and Figure 12) was captured by testing a configuration

of four nodes where each node was responsible for sending two messages of the same size

each hyperperiod. Each test was conducted using four different configurations such that

all four nodes assumed the role of master at least once. In total, the following values

were determined from sending over 4000 messages per specified message size. These tests

assumed an ideal scenario for uninterrupted communication where no periodic tasks were

running and each message was scheduled 12ms apart from the next message (avoids any

effects of the busy-wait implementation of the listening routine). Consequently, these

results are a baseline or starting point for determining how closely messages can be

scheduled provided a specific design.

Table 1: Message communication timing properties
Message Size(Bytes) Transmission Delay(µs) Reception Delay(µs)

1 288 141
2 283 139
4 287 139
8 287 142
16 290 146
32 292 153
64 295 163
128 306 192
256 321 241
512 359 342
1024 390 549
2048 686 970
4091 1021 1801

37

(a) Transmission delay

(b) Reception Delay

Figure 12: Message communication timing properties

38

Summary of Results for Communication Controller

The results from the above description of the communication controller provide the

relevant timing properties that determine how closely a set of messages could be scheduled

with relative confidence that messages would arrive at the receiver nodes before the new

data is used by the TT tasks for calculations. From the results we can see that the use

of large messages (> 512 bytes) can very quickly require consecutive messages in the

schedule to be separated by more than 1ms in order to have any certainty that collisions

or insufficiently slow response times will not occur. Still, the variability of the timings

that result from the use of Linux timing utilities (e.g. clock nanosleep() and select())

dictate that it is not recommended to schedule any set of messages (regardless how small

the message sizes are) with a separation interval smaller than 1ms. Furthermore, the

reception delay values for the various message sizes must be taken into consideration

when scheduling the TT tasks as well; the data in Table 1 must be used as a baseline for

determining when a message must be transmitted so that the data is available to a task

when it is released for execution.

Concerning the average timing properties: overshoot of timeout utilities (20µs), mis-

alignment of hyperperiod start time between nodes (30µs), deviation from ideal hyperpe-

riod intervals (40µs), hyperperiod synchronization lag between the communication con-

troller and VM (20µs), and the message passing delays between nodes (see Table 1), the

deviation from the ideal hyperperiod intervals is the least readily accounted for by either

fixed offset adjustments or sufficient slack time between scheduled events. Currently, this

deviation does accumulate over the operation of the system; therefore, the start of each

hyperperiod will more than likely be misaligned from the ideal hyperperiod start time.

This error would affect the controller performance since the accumulation effectively al-

ters the period of execution of a control task (analogous to changing the sampling rate

of a controller). Adaptive strategies in the communication controller and/or the tasks

themselves could try to account for this; however, this underlying problem must be mit-

igated for this platform (in any of its potential hardware/software manifestations) to be

applicable to safety-critical systems.

39

In conclusion, the presented implementation for the communication controller is capa-

ble of scheduling the periodic transmission of data messages over a shared communication

bus with tens of microseconds accuracy. Granted that assumptions regarding the isolation

(from external forces) of the network and the individual nodes seem idealistic, they are

not atypical in the applications such an execution platform is intended for since it is often

necessary to take as many precautions as possible to provide guarantees for reliability,

robustness, and quality of performance. However, there are extensions and improvements

to be made in order to provide a deployable TT communication controller.

FRODO: A Virtual Machine

In the control-oriented application domains previously discussed, TT tasks perform

computations and environmental interactions in a strictly periodic fashion in order to

maintain some level of desired system performance. This periodic execution model is ex-

tremely critical to these applications since the fundamental concepts and mathematical

models of digital control theory typically assume this periodic behavior. Accordingly,

any run-time system or VM that purports to support such applications must be able to

precisely initiate the execution of periodic tasks according to a predefined schedule and

provide other required interaction mechanisms (communication methods, synchronization

primitives, etc.). The current implementation of the TT task scheduler (FRODO) is in-

tended to provide these run-time mechanisms required by purely TT control applications;

however, future extensions to FRODO will introduce other heterogeneous interaction

mechanisms and task execution models (e.g. Event-Triggered MoC, remote-procedure

calls, rendezvous, etc.).

The FRODO Task Model

Figure 5 and its respective logical description briefly laid out the fundamental points

of the task execution model; however, we would like to further clarify all of the specifics in

order to understand how applications have to be structured in order to use this execution

framework.

40

At system initialization, the VM (FRODO) is provided the task schedule as an or-

dered list of all task execution instances that must occur in one hyperperiod. Each

instance in the schedule will indicate the unique identifier of the task to execute and

the scheduled release time (the phase) of the task instance relative to the start of the

hyperperiod. Moreover, the system must be provided a header and a source file at

compile-time that initialize the internal data structure for each task and provides the

task’s functional implementation (source-level instructions) respectively. Currently, the

internal data structure supplements the descriptions from the task schedule with each

task’s respective (expected) WCET parameter.

With this information, the VM now knows when to schedule each task for execution

relative to the start of the hyperperiod, where to find the source code/function implemen-

tation of each task, and when to stop a task from executing. The last remaining detail

is how each task accesses the data (from shared memory) it must operate on to perform

its calculations. Instead of having the VM handle all data transfers between tasks and

shared memory, the current implementation allows each task to directly access data from

shared memory in the same manner as the communication controller. Remember, this

data is the same data that is encapsulated in the TT messages, and the shared memory

structure is access-controlled (see Figure 7). This approach of removing the VM as an

intermediary to shared memory was intended to both simplify the required task model

(otherwise, all messages used as input or output to a task would have to be provided

at compile-time) and reduce the overhead required to read/update data (tries to ensure

timeliness of execution).

Run-Time Execution

During system initialization, the necessary steps for properly configuring the VM

with the provided task information are performed and the POSIX thread for the VM

is created. The system is always configured such that the communication controller

thread has already begun executing when the VM thread starts. This ensures that the

VM does not acquire the hyperperiod synchronization mutex before the communication

41

controller. By doing so, the VM will immediately be blocked from executing until the

first “HP Start” signal is received from the communication controller (see discussion on

synchronization of hyperperiod execution).

Upon successful synchronization with the communication controller, the VM must

sequentially release each task for execution according to the task schedule using the same

logical process that the communication controller uses for the message schedule. For-

tunately, the run-time responsibilities of the VM are less restricting than those of the

communication controller, i.e. the VM does not have to both schedule tasks and concur-

rently be listening for any other activity. Therefore, when the VM needs to schedule a

task for execution by requesting a timeout, the VM can use the adjusted clock nanosleep()

routine instead of having use to select() or busy-waiting.

Whenever the adjusted clock nanosleep() routine returns and the scheduled release

time of the next task has been reached, the VM initiates the execution of the task’s

functional code. When a task needs to be released for execution, the VM creates a new

POSIX thread that will be passed a pointer to the task’s internal data structure and the

VM halts its own execution (more on this below). When this new task thread executes,

a generic function for the VM calls the task’s implementation code using a predefined

function pointer found in the task’s data structure that was just passed as the thread’s

parameter. While the task’s thread is executing, the VM thread has been halted using the

adjusted clock nanosleep() routine and should awaken at the expiration of the executing

task’s allowable execution time (calculated as the task’s release time plus its WCET).

Upon awakening from the timeout, the VM immediately guarantees the termination of

the executing task by forced cancellation using the pthread cancel() function, and the

VM will either repeat the process for the next scheduled task or wait to receive the

hyperperiod synchronization signal from the communication controller.

Unfortunately, the POSIX thread library supports only a limited number of usable

utilities for dynamically controlling thread execution for TT applications (the wholesale

creation of a new thread and forcibly cancelling a thread when its WCET is reached).

42

Future implementations will more than likely be able to exploit features common to more

“real-time” capable frameworks that don’t require such overhead-expensive operations.

Timing Properties of FRODO

Regardless of the inefficiencies of the current implementation and the use of POSIX

threads, experimentation has shown that the VM is still capable of accurately scheduling

a set of periodic tasks at the specified release times and terminating their execution when

their WCET has been reached.

First, we would like to revisit the hyperperiod synchronization across the communi-

cation controller and VM threads. As previously mentioned, the current implementation

yields an average lag time for the VM of 15 – 20µs. This means the VM typically saves

the hyperperiod start time slightly after the communication controller. This amount of

error is very marginal considering the typical minimum time interval between scheduled

tasks and messages is on the order of hundreds of microseconds if not more than a mil-

lisecond. Also, this lag could be accounted for by moving up the scheduled release time

of tasks from the ideal time granted there is enough slack time available.

Concerning the accuracy with which task execution is initiated and terminated, both

events are solely determined by the use of the offset-adjusted clock nanosleep() routine.

Accordingly, the effective release time of a task (from the viewpoint of when the VM

creates the task’s thread) is determined by how accurately the adjusted clock nanosleep()

routine awakens at a given timeout value, an average delay of 20µs. The same result also

applies to the awakening of the VM for terminating an executing task once its WCET is

reached. Another timing property that was important to capture was how long it takes

the operating system to successfully terminate the task thread if it still running when

the VM is awakened. Tests found that the POSIX utilities for forcibly cancelling a still

executing thread added an additional overhead of 20µs.

Considering these results, the current VM implementation is very capable of schedul-

ing a set of periodic control tasks with sufficient accuracy to meet the timing requirements

for applications that operate with periods on the order of milliseconds. The non-ideal

43

timing of the VM operations can all be accounted for by adjusting the task schedule

(moving scheduled times earlier) if the average errors are assumed and there is sufficient

slack time between scheduled events. Obviously, there will be limitations to how well

this system can tolerate intermittent loading and interrupts during execution, but the

current selection of “non-real-time” hardware and software does not yet undermine the

capabilities of this system to support TT control applications.

Summary

This chapter presented the detailed specification of an execution platform capable of

providing the run-time services of the TT MoC. The implementation used only readily

available hardware devices and the standard Linux operating system, and the opera-

tional logic responsible for maintaining the periodic execution of both TT message and

task schedules was extracted from the executable DEVS specification of the TT MoC

provided in the previous chapter. This realization of the execution platform successfully

illustrates how the DEVS modeling framework can facilitate the operational specification

and rapid prototyping of software systems. Motivated by the TTA, the resulting node-

level implementation architecture consists of a communication controller, a task scheduler

or VM, the individual software tasks, and a shared memory structure that allows the ex-

change of data elements between the tasks and the communication protocol (similar to

the CNI of TTA). Lastly, a multi-node system can be built upon any communication

medium that supports a shared bus configuration for broadcast communication.

Although the platform can meet behavioral expectations of TT systems by logically

executing the periodic schedules, the use of off-the-shelf hardware and software compo-

nents introduces temporal inaccuracies during execution that would result in suboptimal

performance in most real-time systems. The discovered timing errors and adjustment

factors specific to this implementation are provided in Table 2. Even though the errors

are non-ideal, many of them can be corrected or disregarded by adjusting the schedules to

align events at the desired time and ensuring there is enough slack time (when it is avail-

able) in between scheduled events. Unfortunately, the inter-hyperperiod interval error

44

is not readily corrected without substituting hardware or extending the implementation

with more complex synchronization algorithms. Regardless of the method, improving

the hyperperiod synchronization at the system-, node-, and thread-level could greatly

improve the performance and reliability of this platform. Taking into consideration the

given timing properties, it is recommended that all scheduled events (task release, task

termination, message transmission, and hyperperiod synchronization) should be sepa-

rated by at least 1ms; more time should be added if it involves the transmission of large

data messages.

The timing errors and properties in Table 2 help system designers construct realistic

expectations of how a system will execute on the physical implementation. Also, they

can be reintegrated into the DEVS model of the MoC. In the original DEVS model of

the TT MoC (see Figure 7), many of the lifespan functions of states were specified with

the knowledge that any concrete platform implementation would introduce delays and

timing inconsistencies; however, providing specific values or distributions for the lifespans

was unreasonable without having a reference implementation. Now equipped with the

current implementation and its timing characteristics, the lifespans of the DEVS model

can be updated to match these parameters/variances in order to improve the accuracy

of the model simulations when compared against the physical execution platform. This

will be illustrated in the following example.

In the following chapter, the envisioned design process that utilizes the DEVS mod-

eling framework to develop applications for the above execution platform is presented. A

simple example application used in various real-time systems is modeled and simulated

in DEVS and then deployed on the execution platform. The resulting execution traces

from DEVS and the platform are compared to determine if the updated DEVS model

can produce simulation traces temporally equivalent to the run-time execution.

45

Table 2: Summary of timing properties for current implementation
Description Value(µs)

Adjusted clock nanosleep() error 20
Inter-hyperperiod interval error 40
Intra-hyperperiod node sync. error 30
Transmission delay of hyperperiod

250
sync. message
VM hyperperiod sync. error 20
Timeout for VM sync. 350
Busy-wait period for select() 400
Transmission delay over Ethernet 100
Shared memory to bus delay >280 (see Table 1)
Bus to shared memory delay >140 (see Table 1)
Releasing a TT task error 20
Terminating a TT task error 40

46

CHAPTER V

USE CASE: TRIPLE-MODULAR REDUNDANCY

As a guiding example, we show how to use the DEVS modeling framework in con-

junction with the FRODO execution platform to prototype, deploy, and evaluate (for

correctness) a common software design strategy for distributed real-time systems. A

representative DEVS model of a distributed real-time system will be constructed, and

the DEVS simulation engine will enable us to evaluate if the given implementation model

(task and message schedules) produces an execution trace indicative of the desired system

operation. The modeled system will then be deployed on the FRODO platform and sup-

plemented with the executable task code to see if the platform execution can discernibly

match the execution trace generated from the DEVS engine.

Triple-Modular Redundancy

Some level of resilience to faults in the value domain is a necessity in any fault-tolerant

real-time system. Since all data elements present in these systems are directly affected by

hardware (e.g. sensors, communication infrastructure, and processors), the presence of a

hardware fault will most certainly affect the system performance if it goes unnoticed and

uncorrected. For many decades, this potential pitfall has motivated the use of redundant

hardware units to boost the trustworthiness of operational data. However, comparing

data from two sources alone cannot solve the problem (which one to choose?); therefore,

a minimum of three independent hardware units is required to provide any assurance of

data integrity.

Determining data consensus from three hardware units is called Triple-Modular Re-

dundancy (TMR) [3]. A TMR implementation further requires a fourth independent

entity, the voter, to perform the comparison between the three data values to establish

the majority agreement. Two common techniques used by a voter to establish a data

agreement are exact and inexact voting: data values must be either identical or within a

tolerated difference interval respectively. After a result has been determined, it is passed

47

on to memory or some other application-level component, and the process repeats with

the next available data set. Various other strategies can be employed for taking corrective

action if one of the sources continually sends fault-indicative data or if all three sources

produce three distinct data values.

Experimental Description

In order to construct a system model, we must first gather the system components

and establish how they restrict the implementation. First, we will once again assume

the system configuration of Figure 9: four Soekris net4801 embedded boards that com-

municate using the UDP protocol over an isolated 100 Mbps Ethernet network. In this

experiment, a physical sensing device is attached to three of the nodes (as the configu-

ration indicates) and the fourth node functions as the voter. The chosen sensor is the

Honeywell HMR3300 digital compass. Digital compasses are common instruments in dis-

tributed control applications, especially aviation systems. These systems obtain physical

orientation information from such sensors (the HMR3330 provides directional heading,

roll, and pitch) to facilitate the precise positioning and tracking of moving objects. Each

node equipped with a compass will read in the sensor data and extract the data compo-

nent of interest (directional heading in this case), and the voter application on the fourth

node will determine the majority agreement between the three data values.

The timing characteristics of the FRODO platform on the Soekris boards have been

determined, so we must now consider how the use of the HMR3300 impacts the system

scheduling. As a time-triggered system, the rate at which the sensor provides data will

have the greatest effect on how frequently the TMR application must execute to evaluate

the data set. The HMR3300 documentation indicates the sensor’s data update rate is 8

Hz, the maximum communication speed is 19200 Baud over a serial link (UART), the

maximum length of the output data string from one sensor reading is 20 bytes, and the

serial protocol requires 10 bits to communicate one data byte (1 start bit, 8 data bits, 1

stop bit). Also, the directional heading (in degrees) will be the first entry in the output

string of the sensor with possible values 0.0 – 359.9 (it is separated from the next entry

48

by a comma). Consequently, the calculated worst-case time interval between consecutive

sensor readings is 135.42ms (see equation below). This value will determine the period

and WCET for tasks that collect the sensor readings as well as the hyperperiod of the

task and message schedules.

1

8
s +

(
20 bytes

1

) (
10 bits

1 byte

) (
1 s

19200 bits

)
= 135.42ms (2)

DEVS Model and Simulation of a TMR System

A DEVS model of the TMR system is not intended to capture the operational logic

implemented by the TT tasks; instead, the DEVS model enables the developer to eval-

uate how a provided set of message and task schedules results in a timed event trace

through simulation. Given that the DEVS model of the TT MoC is detailed with state

lifespan functions that capture the timing variability of the physical execution platform

(e.g. hyperperiod synchronization, message/task scheduling, data-dependent message

transmission, etc.), the produced event traces can illustrate to the developer possible

deviations from the desired scheduled execution that could result in message collisions,

missed data messages, or other undesirable behaviors.

Accordingly, message and task schedules for the implementation of the TMR compass

example must be constructed considering the timing information derived from the com-

pass documentation and the known system configuration. First, the system configuration

and the experimental description make the task and message allocation straightforward:

all four nodes will have one TT task (three will gather data from a compass and the

fourth will act as the voter) and each node will send one message per hyperperiod (the

three sensor nodes will each send a message containing their latest compass reading and

the voter will send a message containing the data value agreed upon by the TMR evalua-

tion). Regarding the scheduling of the tasks and messages, the calculated worst-case time

interval between sensor readings (135.42ms) has the greatest influence over the schedules

since this value determines how often a new set of data values is available for the voter

to evaluate according to the chosen TMR agreement criterion. Common practice of TT

49

real-time systems dictates this worst-case time interval parameter should be used to set

the WCET of the three sensor reading tasks—a value of 137ms was chosen to give plenty

of slack time in case of timing inconsistencies. Luckily, the WCET parameter of the TMR

voter task can be much shorter since it merely performs a quick comparison of the data

set—2ms was chosen. Concerning the ordered execution of tasks, the three sensor tasks

can execute simultaneously (on independent nodes) since they read independent sensors,

and the voter task will execute shortly thereafter since it operates on the most recent

sensor readings.

The last scheduling decision is how to fit the messages between the completed sensor

readings and the TMR task execution. Obviously, the three sensor data messages must

be serialized since they cannot share the bus. Considering this type of application is com-

mon to control systems that desire the least amount of latency between a sensor reading

and the resultant output action, it would be best to schedule the messages as closely as

possible without the potential for collisions. Considering the recommendations from the

description of the execution platform to schedule messages at least 1ms apart, the conser-

vative approach was taken here by allowing 1.5ms between message transmissions. The

extra time was included to account for possibly slow response times since the receivers

would be in the busy-wait phase of listening to the bus (see description of TT commu-

nication controller implementation). Furthermore, the delay between the completion of

the first sensor reading task and its corresponding message transmission (1.5ms) is larger

than the delay between the completion of the TMR voter task and its respective data

message (0.5ms), since the likelihood of the sensor reading task expending its WCET is

much higher than the TMR voter task doing the same (the former has to interact with

hardware to read data whereas the latter performs a simple data comparison). Taking

into account these timing characteristics, the hyperperiod for both the message and task

schedules was selected to be 150ms. The corresponding message and task schedules are

indicated in Table 3 and their ideal event trace is illustrated in Figure 13 (the time axis

is in milliseconds). Note the 1ms interval between the transmission of message “m3” and

the start of execution for the TMR voter task. This shortened time frame was intentional

50

and will be used to illustrate the varying timed behaviors that can occur on the FRODO

platform (see Figures 14(a) – (c)).

Table 3: Scheduled messages and tasks for TMR compass example (hyperperiod of 150ms)

Node ID
Messages Tasks

ID: (Phase(ms), Size(bytes)) ID: (Phase(ms), WCET(ms))

C1 m1: (139.0, 5) sensor COMPASS 1: (0.5, 137.0)
C2 m2: (140.5, 5) sensor COMPASS 2: (0.5, 137.0)
C3 m3: (142.0, 5) sensor COMPASS 3: (0.5, 137.0)
C4 m4: (145.5, 5) compute TMR: (143.0, 2.0)

Figure 13: Timeline of events for TMR compass example

Given these schedules and the ideal-case event traces, we can now examine how the

DEVS simulation of the modeled execution framework in Figure 7 introduces timing

inconsistencies to the event traces that are indicative of potential behaviors on the im-

plementation of the TT execution platform. If the schedules were created without proper

consideration, the simulation may illustrate how deteriorated controller performance if

not outright failures could occur.

51

The output below (see Table 4) is a segment of the DEVS simulation trace (generated

using DEVS++ and the above specifications of the message schedule, task schedule, and

a listing of the four controllers). Any time a discrete transition (internal or external)

occurs throughout the simulation, the DEVS simulator logs the transition along with

the pre- and post-transition state information (not shown) for the entire coupled model.

Each line in the listing below is one such transition that matches with the events shown

in the in timeline of Figure 13. The last segment of each transition line indicates the time

of occurrence for the transition in milliseconds (e.g. the first transition specifies that the

communication controller of node “C2” synchronized the start of the hyperperiod with

its VM at a time 0.007ms after the start of execution). Following down with the rest

of node “C2” transitions: it released its sensor reading task at 0.527ms, the task com-

pleted executing at 137.472ms (slightly before its WCET), it received message “m1” at

139.526ms, it transmitted its message “m2” at 140.529, and it started its next hyperpe-

riod at 150.044ms. All of the scheduled events for “C2” occurred later in the simulation

than compared to the ideal trace; however, none of these errors introduced a discrepancy

in execution that would necessarily lead to a failure.

Implementation of TMR on FRODO

Getting the TMR compass application running on the Soekris boards equipped with

the FRODO execution platform required the same schedules and controller configuration

file as the DEVS simulation along with the actual source code for the tasks. Without

getting into great detail, it is not hard to imagine that the code was fairly straightforward

(especially considering three tasks perform the same function). The sensor reading tasks

had to open a communication link to the sensors using the serial port of the Soekris

boards and a Linux file descriptor, and upon acquiring each new sensor reading, the

tasks had to parse the data in order to extract the directional heading value from the

string (the bytes leading up to the first comma). Lastly, the newly obtained heading

value was written into the shared memory location of the appropriate message (“m1”,

“m2”, or “m3” depending on which node) to later be transmitted by the communication

52

Table 4: Segment of DEVS++ simulation output for TMR compass example

//First synchronization of hyperperiods across the four nodes
({!C2.CC.C2_HPS,?C2.VM.C2_HPS},t_c=0.007)-->
({!C4.CC.C4_HPS,?C4.VM.C4_HPS},t_c=0.011)-->
({!C3.CC.C3_HPS,?C3.VM.C3_HPS},t_c=0.014)-->
({!C1.CC.C1_HPS,?C1.VM.C1_HPS},t_c=0.016)-->

//Release of the three sensor reading tasks
({!C2.VM.sensor_COMPASS_2_REL,?C2.sensor_COMPASS_2.rel},t_c=0.527)-->
({!C3.VM.sensor_COMPASS_3_REL,?C3.sensor_COMPASS_3.rel},t_c=0.529)-->
({!C1.VM.sensor_COMPASS_1_REL,?C1.sensor_COMPASS_1.rel},t_c=0.534)-->

//Completion of sensor reading tasks
//note: this is self-completion and not forced by the VM
({!C2.sensor_COMPASS_2.fin,?C2.VM.sensor_COMPASS_2_FIN},t_c=137.472)-->
({!C3.sensor_COMPASS_3.fin,?C3.VM.sensor_COMPASS_3_FIN},t_c=137.475)-->
({!C1.sensor_COMPASS_1.fin,?C1.VM.sensor_COMPASS_1_FIN},t_c=137.485)-->

//Transmission of message ‘‘m1’’
({!C1.CC.C1_Send:(m1,5),?Bus.TTBus.0_busRec:(m1,5)},t_c=139.032)-->

//Receipt of message ‘‘m1’’
({!Bus.TTBus.1_busSend:m1,?C2.CC.C2_Rec:m1},t_c=139.526)-->
({!Bus.TTBus.2_busSend:m1,?C3.CC.C3_Rec:m1},t_c=139.526)-->
({!Bus.TTBus.3_busSend:m1,?C4.CC.C4_Rec:m1},t_c=139.526)-->

//Transmission of message ‘‘m2’’ and ‘‘m3’’
({!C2.CC.C2_Send:(m2,5),?Bus.TTBus.1_busRec:(m2,5)},t_c=140.529)-->
({!C3.CC.C3_Send:(m3,5),?Bus.TTBus.2_busRec:(m3,5)},t_c=142.021)-->

//Release and completion of TMR voter task
({!C4.VM.compute_TMR_REL,?C4.compute_TMR.rel},t_c=143.03)-->
({!C4.compute_TMR.fin,?C4.VM.compute_TMR_FIN},t_c=144.977)-->

//Transmission of ‘‘m4’’
({!C4.CC.C4_Send:(m4,5),?Bus.TTBus.3_busRec:(m4,5)},t_c=145.518)-->

//Second synchronization of hyperperiods
({!C4.CC.C4_HPS,?C4.VM.C4_HPS},t_c=150.030)-->
({!C3.CC.C3_HPS,?C3.VM.C3_HPS},t_c=150.043)-->
({!C2.CC.C2_HPS,?C2.VM.C2_HPS},t_c=150.044)-->
({!C1.CC.C1_HPS,?C1.VM.C1_HPS},t_c=150.053)-->

53

controller. The TMR voter task first retrieves all three sensor readings from its shared

memory, and then applies the TMR evaluation function to determine the consensus on

the current heading of the system. The agreed upon data value is then written into the

shared memory location of message “m4” to later be transmitted. In this example, an

inexact evaluation function was used.

Table 5: FRODO output

m1: 074.0

m2: 074.1

m3: 074.1

TMR: 74

m1: 074.2

m2: 074.1

m3: 074.2

TMR: 74

m1: 070.5

m2: 074.2

m3: 074.2

TMR: 74

m1: 079.9

m2: 074.2

m3: 074.1

TMR: 74

m1: 087.7

m2: 074.1

m3: 074.1

TMR: 74

m1: 087.7

m2: 074.1

m3: 074.1

TMR: 74

Table 5 is a segment of the run-time data (the output

of the executing tasks) as it goes through the tasks for the

TMR agreement evaluation. Each set of four lines lists the

three sensor readings for the directional heading (“m1”,

“m2”, and “m3”) followed by the result of the TMR voter

task performing the evaluation (“m4”). This implementa-

tion uses a very unintelligent version of inexact voting: any

two sensor readings with the same integer value form a ma-

jority consensus, i.e. the decimal point values are ignored,

and the previous consensus value is taken if all three sensor

readings disagree. From the run-time data of Table 5, we

can see that the first two samples of the sensors produced

a three-way agreement (a heading of 74 degrees), and then

this is followed by a series of sporadic values for “m1”, yet

“m2” and “m3” continue to maintain a consensus of 74 de-

grees. This very simple but practical example is meant to

supplement the results presented in Figure 15(b) that il-

lustrate this implementation of the TT execution platform

can produce tractably correct execution results/traces in

both the temporal and value domains.

While previously determining the message and task

schedules, it was indicated that the time interval between

the transmission of message “m3” and the execution of the

TMR voter task was only 1ms instead of 1.5ms. This was

54

done to illustrate the variability in the system and why the choice of 1.5ms for the other

event spacing intervals was a motivated selection.

Figures 14(a)–(c) are samples that were taken during execution of the TMR system;

each one captures a different point at which the communication controller of node “C4”

received message “m3” and had updated the contents of shared memory. The first, short

pulse in the left of each output indicates the receiving of the message, and the second,

longer pulse is the execution of the TMR voter task. The scope’s cursors were used to

measure the time interval between receiving the message and starting the execution of

the task. These three samples (168µs, 360µs, and 592µs) are indicative of the typical

values that continually appeared while running this experiment.

This wide range of time intervals can be explained by the busy-wait phase of the TT

communication controller’s “listening” routine. Since node “C4” will be transmitting a

message less than 8ms after the transmission of message “m3” (3.5ms to be exact), the

use of the select() function is limited to busy-waiting due to the “jiffy” signal problem.

Unfortunately, when message “m3” is transmitted and reaches “C4”, there is no way of

knowing where in a busy-wait cycle node “C4” is halted; therefore, one cannot explicitly

predict how long before “C4” will respond to the new message. Given that the current

busy-wait period is 400µs, it is not surprising that the extreme cases of the response time

interval are near 400µs apart (the other excess time can be attributed to inaccuracies in

the adjusted clock nanosleep routine and overhead of returning from function calls in the

implementation). Once again, the inaccessibility to low-level timing and communication

infrastructure of the hardware restricts the ability to schedule messages and tasks very

closely; however, using a time interval of at least 1ms (if not 1.5ms) is not restricting

enough to make the FRODO execution platform unusable to TT systems.

Comparing Results of DEVS and FRODO

Figure 15(a) and Figure 15(b) show the corresponding execution traces of the TMR

example from the DEVS and FRODO execution frameworks respectively. Due to the

resolution of the oscilloscope (used for the FRODO trace) and the large hyperperiod,

55

(a) Short(168µs)

(b) Medium(360µs)

(c) Long(592µs)

Figure 14: Varying response times to message “m3” on node “C4”

56

the trace segment only captures the activity directly after the completion of the senor

reading tasks leading up to the next hyperperiod synchronization point (the output starts

134ms after the previous hyperperiod synchronization). The events of greatest interest

are labeled in both traces: message transmission (m1−4), task execution (Compass1−3

andTMR), and the hyperperiod synchronization (tHP). Furthermore, the narrow pulses

that appear on each channel directly following the transmission of a message are the

other nodes indicating the completed reception of the preceding message (see recv). This

verifies that the message is received and properly stored in shared memory before any of

the subsequent tasks (such as the TMR voter) require the message data.

Firstly, it is important to note that the output in Figure 15(b) verifies that the physical

implementation of the TT MoC is successfully scheduling the transmission of messages

and the execution of tasks such that the desired timed event traces are produced (with

a quantifiable degree of error). This current implementation on off-the-shelf hardware

and software without “real-time” capabilities can effectively schedule events with tens of

microseconds accuracy. Secondly, comparing this output with the DEVS execution trace

(Figure 15(a)) shows that the updated DEVS model of the TT MoC can produce run-

time simulations of the same system with similar timing errors/variances. Recall, this was

achieved by simply incorporating the performance data gathered from the implementation

into the lifespan functions of discrete states in the DEVS specification of the TT MoC.

Summary

In this chapter we used a common software approach to providing a level of value do-

main fault-tolerance in distributed real-time systems to demonstrate the presented system

design strategy of using the DEVS modeling framework paired with a TT execution plat-

form. A simple application that provided Triple-Modular Redundancy for reading sensor

data was developed by first considering the timing effects introduced by the selected

sensor hardware, then prototyping a possible implementation with the DEVS modeling

framework to evaluate possible event traces derived from the generated execution sched-

ules and the DEVS model of the TT MoC, and finally, deployed on the physical TT

57

(a) DEVS

(b) FRODO

Figure 15: Execution traces of TMR example

58

execution platform to determine if the true run-time performance of the system matched

expectations.

Unfortunately, the results did corroborate the previous concerns that timing variances

would be exhibited in the execution traces due to the “non-real-time” implementation of

the execution platform; however, the errors are not completely unaccounted for in the

current implementation and potential extensions could further mitigate their effects. Also,

the isolated operating conditions of the execution platform are preventative measures that

further restrict the likelihood of the timing variances becoming unbounded or measurably

worse than the figures obtained during testing and benchmarking.

The same “non-ideal” operation confirmed that the generated simulation runs from

the DEVS modeling framework are comparable to the execution traces of the timed events

from the execution platform. Furthermore, the operational (data domain) behavior of the

executing system was confirmed as well, thereby supporting the objective of construct-

ing a completely TT execution platform capable of providing time-deterministic system

execution using off-the-shelf hardware and software components.

59

CHAPTER VI

CONCLUSION

This thesis introduced a modeling framework for describing the operational semantics

of Models of Computation. Models of computation are specified using the DEVS model-

ing formalism [10, 11] in order to capture the run-time logic that initiates the execution

and interactions of software components. The selection of DEVS was a calculated choice

motivated by the similarities between the underlying semantics (functions) that describe

the state evolution of a DEVS model and the classes of behaviors common to embedded

systems: event-triggered and time-triggered. Consequently, DEVS is a viable client for

exploring the effects of composing heterogeneous models of computation to yield more

complex behavioral and interaction patterns. Modeling such challenging (yet very real-

istic) software systems will not obfuscate the inner workings of model execution under

incomprehensible logic or notation, but will illustrate to a developer the consequences of

intermixing behavioral/interaction types in the same natural reasoning the systems are

originally conceptualized, i.e. operationally.

To supplement the description of the modeling framework, an example showed how

a DEVS representation of a model of computation can be implemented on readily avail-

able hardware and software. The physical realization of the model provides an execution

platform intended to execute software components according to the model of computa-

tion. Specifically, a DEVS model of the time-triggered model of computation served as

a blueprint for implementing the necessary platform logic, and the resulting system suc-

cessfully performed the periodic execution of message and task schedules with marginal

timing errors.

This exercise of capturing the logic in DEVS before developing the physical plat-

form greatly reduced the mental effort required to realize the execution logic of the

time-triggered system. Instead, the challenges faced during implementation arose when

attempting to achieve the accurate scheduling of events using hardware and software

60

components not intended for timing-precision or real-time behavior. Bounded and pre-

dictable timing results were achieved by strictly isolating the individual nodes and the

communication network from external event/interrupt sources (a common assumption in

safety-critical systems).

These results are useful for reasoning about run-time performance and the limitations

of scheduling tasks and messages on the platform. Also, the same data was integrated

into the DEVS model of the time-triggered model of computation (as updated lifespans)

in order to reflect the limitations of the platform. Using the updated model, a simple

real-time application was developed using the modeling framework and then implemented

on the platform. The execution results from each were then compared to see if the DEVS

simulation could reasonably match the run-time behavior of the physical implementation.

Analysis proved that indeed the execution traces of the DEVS model introduced timing

variances and delays in the occurrences of scheduled events that were similar to the in-

accuracies of the physical implementation. By introducing these implementation-specific

details, the DEVS framework empowers the developer to reason about a design and its

physical limitations without having the platform or providing the application-level code.

Future Work

Regarding the platform implementation, it could most obviously benefit from im-

provements in the algorithms and techniques used to synchronize the scheduled events

across the individual nodes. Instead of adjusting the offsets and errors that result from

the limitations of Linux, it would be more effective and fitting of real-time systems if a ro-

bust approach was taken that would synchronize the clocks and/or account for clock drift

on each node. Still, the current use of the standard Linux operating system is non-ideal

since it provides no guarantees regarding timing and manipulating/accessing low-level

hardware for timing and message handling is very cumbersome. Porting the implemen-

tation to more “real-time” capable operating systems has always been planned (and is

outright necessary to meet strict real-time requirements); therefore, this implementation

61

was developed with as few as possible Linux-specific constructs and techniques. Ideally,

the effort required to migrate the implementation to other platforms will be minimal.

The DEVS modeling framework presents plenty of opportunities for potential growth

in uses and adaptations. First, more models of computation with richer behavioral sets

need to be specified in order to evaluate the usefulness and capabilities of this approach.

With more behavioral categories and experience, the possibility to compose heteroge-

neous models of computation becomes a possibility as well. The ability to model and

operationally interpret the consequences of intermixing behaviors and interactions will

be extremely useful, and the approach presented here seems to be very conducive to

tractably following the effects of such compositions. Still, with more use and complex

behaviors, the need to analyze DEVS models and execution traces in a mathematically

rigorous framework will become apparent. This framework and DEVS in general do

not support such techniques [9]; therefore, investigating other reasoning frameworks and

analysis tools that would readily support the reinterpretation of DEVS models into their

native syntax would be worthwhile.

62

BIBLIOGRAPHY

[1] Thomas Henzinger, Benjamin Horowitz, and Christoph Kirsch. Giotto: A time-
triggered language for embedded programming. Proceedings of the IEEE, 91:84–99,
January 2003.

[2] Moon Ho Hwang. DEVS++: C++ Open Source Library of DEVS Formalism.
http://odevspp.sourceforge.net/, first edition, May 2007.

[3] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Boston, 1997.

[4] Hermann Kopetz and Günther Bauer. The Time-Triggered Architecture. Proceedings
of the IEEE, 91(1):112–126, Jan 2003.

[5] Hermann Kopetz and Günter Grünsteidl. TTP - A protocol for fault-tolerant real-
time systems. Computer, 27(1):14–23, 1994.

[6] Hermann Kopetz, Michael Holzmann, and Wilfried Elmenreich. A universal smart
transducer interface: TTP/A. International Journal of Computer System Science &
Engineering, 16(2), Mar. 2001.

[7] Edward A. Lee and Alberto L. Sangiovanni-Vincentelli. A denotational framework
for comparing models of computation. Technical Report UCB/ERL M97/11, EECS
Department, University of California, Berkeley, 1997.

[8] Jim Naruto. Adevs (A Discrete EVent System simulator) C++ Library.
http://www.ornl.gov/∼1qn/adevs/index.html, 2008.

[9] Hans Vangheluwe. Personal communication with Dr. Gábor Karsai, 2006.

[10] Bernard P. Zeigler. Theory of Modeling and Simulation. John Wiley, 1976.

[11] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. Theory of Modeling and
Simulation. Academic Press, Inc., Orlando, FL, USA, 2000.

[12] Bernard P. Zeigler and Hessam S. Sarjoughian. Introduction to DEVS Modeling and
Simulation with JAVA. DEVSJAVA Manual. http://odevspp.sourceforge.net/, 2003.

63

