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CHAPTER I 

 

BACKGROUND AND SIGNIFICANCE 

 

1.1 Angiogenesis 

 

Angiogenesis is the formation of new capillaries from the existing 

vasculature. Angiogenesis is an essential part of female reproductive functions, 

embryonic growth and development, and tissue repair and regeneration. 

However, even in these circumstances, angiogenesis is strictly regulated and 

briefly activated (1). Many pathological processes, such as arthritis and 

tumorigenesis, are characterized by persistent, abnormal angiogenesis. 

The microvasculature consists of endothelial cells and their basement 

membranes, and pericytes. The vascular endothelium is relatively quiescent, with 

one of the most infrequent rates of mitotic division in the body, dividing 

approximately once every three years (2). Certain pathological conditions, 

however, change the resting phenotype to an angiogenic phenotype, resulting in 

the establishment of a new capillary network. Studies have shown that 

angiogenesis is a well-defined process that occurs in the following stages (3-8):  

 Angiogenic growth factors are released in response to tissue injury    

           and hypoxia.  

 Endothelial cells produce proteinases that degrade the 

microvascular basement membrane and the extracellular matrix. 
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 Endothelial cells migrate through the basement membrane and  

           extracellular matrix.  

 Endothelial cells proliferate, and form tubes and lumena. 

 Nascent endothelial cell tubes anastomose, forming a vascular  

           network. 

 Smooth muscle cells and pericytes are recruited to the vasculature,  

           leading to microvascular stabilization. 

 

1.2 Ocular angiogenesis 

 

Pathological ocular angiogenesis is commonly referred to as ocular 

neovascularization (NV). NV is a central feature of retinopathy of prematurity 

(ROP), proliferative diabetic retinopathy (PDR), and age-related macular 

degeneration (AMD); the leading causes of blindness in infants, working age 

individuals, and the elderly, respectively (9-11). Although NV tends to occur at a 

relatively late stage in the course of many ocular disorders, it is nonetheless a 

highly attractive target for therapeutic intervention, because it represents a final 

common process in diseases that are multi-factorial in etiology, and it is the event 

that leads directly to vision loss. Vision loss is due to the pathologic nature of the 

blood vessels that develop in these disease conditions; they are fragile, non-

patent, and leaky, and fibrovascular proliferation and migration into the vitreous 

ultimately leads to tractional retinal detachment. 
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A recent review article employed multiple epidemiologic studies and U.S. 

census data to estimate the prevalence of ROP, PDR, and AMD (12). Based on 

this work, individuals affected by neovascular forms of ROP, DR, and AMD 

collectively number well into the millions of Americans. Other retinal conditions 

with neovascular sequelae, such as sickle cell retinopathy and vascular occlusive 

disorders, are less prevalent, but remain clinically significant.  

Prior to 2005, laser photocoagulation was the prevailing treatment for 

conditions characterized by ocular NV. Laser photocoagulation involves 

cauterizing blood vessels with the heat of a fine-point laser beam. This ablative 

approach offers short-term benefits to certain subgroups of patients (13-15), but 

is associated with significant adverse effects (16,17). Laser photocoagulation 

burns and destroys part of the retina, and therefore results in some permanent 

vision loss. Laser photocoagulation may cause some loss of central and 

peripheral vision, worsened night vision, and a decreased ability to focus. 

Moreover, because this approach fails to address the underlying stimuli that 

initiate pathologic blood vessel growth, it is associated with high rates of 

persistent and recurrent disease (14,18), accompanied by an increased 

frequency of severe vision loss (19). 

Because of the clear limitations of this treatment for ocular NV, there is a 

compelling need to develop new, rational therapeutic approaches. One attractive 

approach is to target the underlying pro-angiogenic stimuli, so as to achieve a 

sustained therapeutic effect. The development of such treatments depends on a 

clear understanding of the cellular and molecular processes involved in 
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angiogenesis, and of the specific characteristics of these processes within the 

tissues of the eye. 

 

1.3 Molecular mechanisms of ocular angiogenesis 

 

Ischemia-induced hypoxia is a central feature of ROP and PDR, and may 

worsen AMD, and other neovascular disorders of the eye. It has long been 

accepted that hypoxia stimulates retinal angiogenesis (20,21). In 1948, 

Michaelson first proposed that retinal hypoxia stimulates the production of a 

diffusible angiogenic factor. Since that time, various pro-angiogenic growth 

factors have been identified, each mediating a number of diverse angiogenic cell 

behaviors. Of the growth factors involved in retinal angiogenesis, VEGF-A is 

thought to be a principal mediator (22). 

VEGF-A is the prototypical member of the VEGF family of growth factors.  

This family includes placental growth factor (PlGF), VEGF-A, VEGF-B, VEGF-C, 

VEGF-D, and the virus encoded VEGF-E. VEGF-A is hereafter referred to as VEGF.  

VEGF is a 46 kD homodimeric glycoprotein that serves as a cell survival factor, 

vasopermeability factor, and angiogenic growth factor (23). VEGF protein is 

produced via alternative splicing of a single VEGF gene, yielding five distinct 

variants comprised of 121, 145, 165, 189, and 206 amino acids (24). The 121, 145, 

and 165 variants are diffusible, whereas the larger VEGF variants (189 and 206) 

remain bound to the cell surface and the extracellular matrix through their interaction 

with, and binding affinity for, heparin (25). Major splice variants, and the exons that 
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comprise them, are depicted in Figure 1. Exons 1–5 contain the VEGF receptor-

binding domain, while exons 6 and 7 contain heparin-binding domains.  

Hypoxia has been shown to regulate VEGF activity at the level of: gene 

transcription, mRNA stability, translation, and protein secretion (26). Chronic 

tissue hypoxia induces VEGF production through the transcriptional activator 

hypoxia-inducible factor 1 (HIF-1).  HIF-1 accumulates as a result of low oxygen, 

Figure 1. The associations between VEGF family members and the VEGF receptors. Also 
shown are the major VEGF variants formed by alternative splicing of the VEGF gene. The 
splice variants differ in their expression of exons 6 and 7, which mediate heparin binding, and 
therefore, the solubility of the splice variants. 
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binds to hypoxia response elements (HREs) in the promoter regions of various 

genes, and stimulates the expression of hypoxia-inducible genes and angiogenic 

growth factors like VEGF (27-31). In the retina, hypoxia-induced VEGF 

production has been demonstrated most consistently and dramatically in the 

Müller cells, the predominant glial cells within the retina (32-34). 

VEGF production is also regulated by stimuli other than hypoxia. In fact, a 

variety of stimuli, including other growth factors, cytokines, hormones, and 

cellular stressors activate VEGF, particularly at the level of transcription. These 

stimuli ultimately activate various transcription regulatory factors, which bind to 

promoter regions on the VEGF gene. Some of the transcription factors that bind 

to VEGF promoter regions and activate VEGF transcription are: AP-1, AP-2, 

CREB, Egr-1, HIF, Sp1, Sp3, and STAT3 (for a comprehensive review, see 35). 

After VEGF is produced and secreted by Müller cells, and to a lesser 

extent other cell types, it binds with high affinity to its cognate tyrosine kinase 

receptors expressed on the surface of endothelial cells, VEGFR-1 (Flt-1) and 

VEGFR-2 (KDR or Flk-1) (23). VEGF-VEGFR signaling plays a critical role in the 

physiological angiogenesis that takes place as a normal part of embryonic growth 

and development. Inactivation of even a single allele of the VEGF gene results in 

embryonic lethality (36). Formation of blood vessels is severely impaired in mice 

lacking a single allele of the VEGF gene. VEGF knockout embryos also 

demonstrate defective vasculogenesis, large vessel formation, capillary 

sprouting, and remodeling of the yolk sac vasculature. Furthermore, inactivation 

of either Flt-1 or Flk-1 results in embryonic lethality (37,38). Flt-1 null mice exhibit 
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vascular disorganization. Flk-1 null mice exhibit severely disrupted 

hematopoiesis, vasculogenesis, and endothelial cell differentiation. These 

findings point to the importance of VEGF and its receptors in physiological, 

developmental angiogenesis. By extension, retinal vascular development is 

dependent upon VEGF signaling. 

Findings from several studies demonstrate the importance of, and 

interaction between, VEGF and the VEGFRs, to the development of the retinal 

vasculature (39-45). In both humans and animals, VEGF expression is first seen 

in astrocytes, which are located adjacent to the inner limiting membrane of the 

retina. The astrocytes, and VEGF expression, advance from the optic nerve-head 

towards the retinal periphery. This wave of VEGF expression precedes the 

development of the retina’s superficial vascular net (40,42,46,47). Once the 

vessels reach the peripheral extent of the retina, VEGF expression disappears 

from the superficial vascular net, and is instead expressed by Müller cells in the 

inner nuclear layer of the retina (40). This second wave of VEGF expression is 

responsible for driving the development of the retina’s deep vascular net.  In 

total, these studies demonstrate that VEGF expression in the retina is both 

temporally and spatially related to the development of the retinal vasculature.  

 Mice expressing only VEGF-164 demonstrate normal retinal vascular 

development. Alternatively, mice expressing only VEGF-120 demonstrate 

retarded venous and arterial development; and mice expressing only VEGF-188 

demonstrated normal venous development, but little retinal arterial growth (48).  
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While both VEGFR-1 and VEGFR-2 play critical regulatory roles in 

developmental angiogenesis, the neovascular effects of VEGF are primarily 

mediated through VEGFR-2 signaling (49). Upon VEGF binding, VEGFR-2 

dimerization and tyrosine autophosphorylation initiate complex signal transduction 

cascades that result in diverse endothelial cell behaviors. These VEGF-induced 

behaviors include survival, proliferation, migration, and nitric oxide production 

leading to increased vascular permeability (23,50-54). Thus, VEGF signaling through 

Figure 2. VEGFR-2 signaling pathways leading to angiogenic endothelial cell activities. 
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VEGFR-2 activates the angiogenic phenotype in endothelial cells, and these 

behaviors result in retinal NV (Figure 2). 

Inhibition of VEGF using anti-sense oligonucleotides, chimeric proteins, 

monoclonal antibodies, and VEGF peptides has been shown to inhibit oxygen-

induced retinal angiogenesis in animals and humans (55-58). Inhibition of KDR, 

and the use of soluble Flt-1 have both been proven efficacious at reducing the 

severity of retinal NV in animal models of ocular angiogenesis (59, 60). The 

results obtained lend support to the strategy of targeting VEGF induction and/or 

activity as an appropriate ocular therapeutic modality. 

 

1.4 Current treatments 

 

VEGF is widely regarded as a principle growth factor mediating the 

development of ocular NV (22). This belief has led to the development of a class 

of therapeutics for the treatment of neovascular AMD based on VEGF 

antagonism (61,62). These treatments are the only FDA-approved alternatives to 

ablative laser photocoagulation, previously discussed. VEGF antagonists 

currently employed in clinical practice include: pegaptanib (Macugen®, Pfizer), 

an RNA-like aptamer that binds and inhibits VEGF-165, the predominant 

pathologic splice variant of VEGF; bevacizumab (Avastin®, Genentech), a 

humanized mouse monoclonal antibody to human VEGF that was approved for 

systemic administration in the treatment of cancer, but is used off-label in the 

treatment of AMD; and ranibizumab (Lucentis®, Genentech), the F(ab) fragment 
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of an anti-VEGF similar to Avastin®, which is approved for use in AMD. The 

therapeutic efficacy of these VEGF antagonists has been remarkable, although 

there are important limitations that stem, in part, from the requirement to 

administer the antagonists by frequently repeated intravitreal injections. In 

addition to the discomfort and costs associated with the procedures, this 

approach leads to high peaks levels and prolonged trough levels of antagonist, 

during which time it is sub-therapeutic. This unfavorable pharmacokinetic profile 

may contribute to reduced efficacy, as exemplified by the incomplete arrest of 

disease progression observed in many patients, and the frank resistance to 

therapy that characterizes others. Periods of very high levels of the antagonist 

may contribute to both local and systemic toxicity. Morbidity related to the 

intravitreal injections is another important limitation of the current treatment 

regimen (63). The most frequent and problematic injection-related toxicity is the 

development of endophthalmitis, a potentially blinding condition (64), observed at 

a rate as high as 1.3% per patient per year in clinical studies. This toxicity is 

expected to rise as the treatment becomes part of standard practice and is 

performed outside of the rigorous settings of clinical trials in academic centers.  

Finally, it remains unclear if chronic administration of anti-VEGF drugs will exert a 

negative influence on the retinal neurons that are known to express VEGF 

receptors or on the sensitivity and responsivity of the retinal or choroidal 

vasculature to VEGF stimulation. In fact, it is likely that chronic inhibition of VEGF 

may lead to increased VEGF receptor expression (our unpublished findings), 

which may worsen the angiogenic response if the therapy is not maintained.  
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Thus, although VEGF-centric therapies clearly reduce NV, they do not 

completely eliminate it. Combination therapies, or therapies that simultaneously 

target more than one point along the angiogenic cascade (e.g. up- and down-

stream of VEGF receptor activation), are an unmet need in ophthalmology. 

Therapeutics designed to target the angiogenic cascade at more than one point 

have the potential to provide a more powerful and effective therapeutic target for 

angiogenic diseases of the eye. In order to design such therapeutics, a solid 

understanding of the molecules with more than one role in the process is 

necessary. 

 

1.5 COX-2 

 

The cyclooxygenase (COX) enzymes are responsible for catalyzing the 

production of prostaglandin H2 (PGH2) from membrane-derived arachidonic acid. 

PGH2 is an unstable intermediate that is rapidly converted, by tissue- and cell-

specific synthases, to biologically active prostaglandins (PGD2, PGE2, PGF2, 

PGI2) and thromboxanes (TXA2) (Figure 3). There exist at least two isozymes of 

COX, COX-1 and COX-2, the products of two different genes located on two 

different chromosomes. The two enzymes catalyze identical reactions and retain 

60% amino acid sequence identity. COX-1, however, is typically regarded as a 

housekeeping enzyme whose constitutive expression and prostanoid 

[prostaglandin (PG) and thromboxane] products are responsible for maintenance 

of the gastric mucosa, platelet aggregation, and regulation of the renal 
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vasculature (65). COX-2, on the other hand, is the product of an immediate early 

gene, and it can be induced by mitogens, cytokines, and tumor promoters (66).  

Once the COX enzymes catalyze their production, prostanoids bind to 

their cognate G-protein-coupled receptors (GPCRs) on the surface of target cells. 

The receptors determine the extent and biological activity of the prostanoids. 

PGF2, PGI2, and TXA2 signal through the FP, IP, and TP receptors, respectively. 

PGD2 signals through the DP and CRTH2 receptors. PGE2 signals through the 

EP1, EP2, EP3, and EP4 receptors. Signaling through DP, IP, EP2, and EP4 

Figure 3. The cyclooxygenase cascade. In response to some stimulus, cPLA2 liberates 
arachidonic acid from membrane phospholipids. The COX and prostanoid synthase enzymes 
then convert arachidonic acid to the five biologically active prostanoids. 



  13 

stimulates the activation of adenylyl cyclase (AC), resulting in increased cyclic 

AMP (cAMP) production. Signaling through EP3 and CRTH2 results in reduced 

cAMP production. Signaling through FP, TP, and EP1 results in calcium 

mobilization (67). The precise tissue-specific and cell-specific signaling pathways 

and the biological roles mediated by each of the prostanoid receptors have yet to 

be determined. 

COX-2 is elevated in various cancers, including colorectal cancer. Patients  

who regularly take non-steroidal anti-inflammatory drugs (NSAIDs) for the 

treatment of chronic pain and heart disease demonstrate a 40-50% reduction in 

the incidence and severity of colorectal cancer (68). NSAIDs are compounds that 

inhibit the activity of the COX enzymes. These findings led to the suggestion that 

COX-2 and the prostanoids may act as tumor promoters (69,70).  At least one 

tumor-promoting function of the prostanoids is the stimulation of angiogenesis 

(71-73). 

The prostanoids exhibit angiogenic effects both up- and downstream of 

growth factor production. Upstream, the prostanoids have been shown to 

mediate the expression of pro-angiogenic molecules. They have been shown to 

induce VEGF and bFGF in various cell types (70,74-76). Researchers studying 

angiogenesis related to various cancers and other neovascularizing conditions 

have demonstrated, using pharmacological and genetic manipulation of COX-2, 

that COX-2 inhibition resulted in reduced VEGF production, in vitro and in vivo 

(77-80). Downstream, pro-angiogenic factors such as hypoxia, VEGF, bFGF, 

TNF-α, and IL-1 have been shown to induce endothelial cell expression of COX-2 
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(81-84), and COX-2-derived prostanoids stimulated proliferation, migration, and 

tube formation in human umbilical vein endothelial cells (HUVEC) (85). COX-2-

selective inhibitors have been shown to block the proliferation and migration of 

vascular endothelial cells (86-89). Several prostanoids have been shown to 

induce angiogenesis in various angiogenesis assays and cancer models 

(72,73,90-92). Furthermore, specific inhibition of COX-2 has been shown to 

inhibit angiogenesis in the cornea or within experimental tumors (93-96), and this 

anti-angiogenic effect can be reversed by prostaglandin treatment (81,91). 

 

1.6 COX-2 and the eye 

 

COX-2 has been localized to various ocular tissues, and its expression 

has been found, or can be induced, in the following structures: cornea, iris, 

cilliary body, various cell types within the neuroretina, and the retinal pigment 

epithelium (RPE) (95,97-100). The expression of the COX-2 enzyme in these 

ocular tissues suggests a functional role for its prostanoid products. Indeed, 

ocular prostanoids have been shown to mediate the cornea’s inflammatory 

response (101,102), intraocular pressure (103,104), retinal blood flow (105), and 

maintenance of the blood-retinal-barrier (106). Additionally, inhibition of COX has 

been effective at reducing the production of VEGF and corneal, retinal, and 

choroidal NV in relevant models of ocular disease. 

In experimental models of corneal angiogenesis, various groups have 

demonstrated that the non-selective NSAIDs indomethacin and ketoprofen, as 
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well as the COX-2-selective agent NS-398 significantly reduced the severity of 

NV (95,107,108). In experimental models of retinal angiogenesis, investigators 

have demonstrated that inhibiting various points along the COX cascade reduced 

pathological NV. Cytosolic phospholipase A2 (cPLA2) is the enzyme responsible 

for liberating arachidonic acid, the substrate for the COX enzymes, from 

membrane phospholipids. Rodents treated with a cPLA2 inhibitor demonstrated 

reduced oxygen-induced retinal NV (109). Non-specific inhibitors of COX such as 

nepafenac, as well as COX-2-selective inhibitors such as APHS, etodolac, and 

rofecoxib, have all been shown to have a similar anti-angiogenic effect 

(77,110,111). In models of laser-induced choroidal NV (LCNV), nepafenac, 

etodolac, and lumiracoxib (another COX-2-selective agent), all effectively 

inhibited the development of CNV (77,112,113). These data suggest that COX-2 

mediates various aspects of corneal, retinal, and choroidal NV.  

In summary, although various groups have demonstrated the efficacy of 

COX inhibition at reducing ocular NV, little work has been done to determine 

which of the COX-2 derived prostanoid(s) is (are) involved in mediating VEGF 

production, downstream angiogenic endothelial cell behaviors, and ocular 

angiogenesis. Because of this gap in ocular angiogenesis research, we 

examined the specific involvement of COX-2 and COX-2-derived prostanoids in 

ocular angiogenesis. Figure 4 very generally depicts our working model of the 

role of COX-2 in angiogenic cell behaviors, with implications for conditions 

characterized by retinal NV. The goal of our research was two-fold. We wanted to 

1) better understand the role of COX-2-derived prostanoids in ocular angiogenic 
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disease, and 2) use the knowledge gained through our research to identify more 

specific therapeutic targets. 

 

Figure 4. Schematic distillation of retinal angiogenesis. We typically distill retinal angiogenesis 
into its two most basic components, growth factor production and growth factor consumption. In 
these studies, we examined the role of COX-2, COX-2-derived prostanoids, and the prostanoid 
receptors on hypoxia-induced VEGF production by Müller cells and VEGF-induced angiogenic 
cell behaviors by endothelial cells. 
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2.1 Abstract 

 

Nepafenac is a potent NSAID that rapidly penetrates the eye following 

topical ocular administration. In the eye, nepafenac is converted to amfenac, 

which has unique time-dependent inhibitory properties for COX-1 and COX-2. 

The purpose of the present study was to investigate the capacity of amfenac to 

inhibit discrete aspects of the angiogenic cascade in vitro, and to test the efficacy 

of amfenac and nepafenac in vivo, using the rat OIR model.  

Müller cells were treated with amfenac, celecoxib (COX-2), or SC-560 

(COX-1), and hypoxia-induced VEGF and PGE2 were assessed. Endothelial cells 

were treated with amfenac, celecoxib, or SC-560, and VEGF-induced 

proliferation and tube formation were assessed. Rat pups were subjected to OIR, 

received intravitreal injections of amfenac, celecoxib, or SC-560, and 

neovascularization (NV), prostanoid production, and VEGF were assessed. 

Other OIR-exposed pups were treated with topical nepafenac, ketorolac, or 

diclofenac, and inhibition of NV was assessed. 

Amfenac treatment failed to inhibit hypoxia-induced VEGF production. 

Amfenac treatment significantly inhibited VEGF-induced tube formation and 

proliferation by endothelial cells. Amfenac treatment significantly reduced retinal 

prostanoid production and NV in OIR. Nepafenac treatment significantly reduced 

retinal NV in OIR; ketorolac and diclofenac had no effect. 

Nepafenac and amfenac inhibit OIR more effectively than the 

commercially available topical and injectable NSAIDs used in this study. Our data 
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suggests that there are COX-dependent and COX-independent mechanisms by 

which amfenac inhibits OIR. Because it is bioavailable to the posterior segment 

following topical delivery, nepafenac appears to be a promising advancement in 

the development of therapies for neovascular eye diseases. 

 

2.2 Introduction 

 

Pathological ocular angiogenesis, or ocular neovascularization (NV), is a 

pivotal pathologic feature of several prevalent, sight-threatening eye diseases. In 

developed countries, retinopathy of prematurity (ROP), proliferative diabetic 

retinopathy (PDR), and age-related macular degeneration (AMD) are the leading 

causes of irreversible blindness in infants, working-age adults, and the elderly, 

respectively (9,10,12). Clinical and experimental evidence suggests that 

ischemia-induced hypoxia is a central etiological factor in retinal NV (114,115). 

For example, several retinal cell types respond to hypoxia by up-regulating 

production of vascular endothelial growth factor (VEGF), the principal growth 

factor promoting retinal NV (32,33,116). Among these retinal cells, Müller cells 

exhibit the most consistent and dramatic increase in VEGF synthesis and 

secretion when subjected to experimental hypoxia (32-34). VEGF binds with high 

affinity to VEGF receptors (VEGFR-1 and VEGFR-2) expressed on the surface of 

endothelial cells, initiating signal transduction cascades that lead to angiogenic 

endothelial cell behaviors (51-53,55). 
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Cyclooxygenase (COX) enzymes are responsible for the biosynthesis of 

prostanoids [prostaglandins (PG) and thromboxanes] from arachidonic acid. 

Studies suggest that COX-1, the constitutively active isoform of COX, plays a 

role in angiogenic cell behaviors and carcinogenesis (117-122). Additionally, 

evidence suggests that the inducible isoform of COX, COX-2, plays a key role in 

regulating angiogenesis through the induction of prostanoid synthesis. 

Prostanoids subsequently induce the expression of pro-angiogenic factors such 

as VEGF and bFGF in many cell types (75,76), and several prostanoids have 

been shown to induce angiogenesis in in vitro and in vivo assays of human 

angiogenesis and cancer (72,73,90-92). A subset of prostanoids, under some 

conditions, have been shown to be deleterious to the retinal vasculature in ways 

other than promoting growth factor production. Prostanoid levels are higher in the 

retinas of infants than in the retinas of adults (123,124). Prostanoids are involved 

in maintaining retinal and choroidal blood flow (125,126). Specifically, the infant’s 

retinal prostanoid complement, coupled with their age-dependent responses to 

the prostanoids, leads to increased retinal vascular relaxation and dilation 

(124,127,128). This effect is particularly harmful to premature infants on oxygen 

therapy who do not yet have the ability to auto-regulate retinal and choroidal 

blood flow; prostanoids serve to enhance oxygen delivery to already-saturated 

retinal tissue, which is known to worsen the pathology of ROP (125,129). COX-2-

dependent production of TXA2 can lead to endothelial cell cytotoxicity, worsening 

the retinal microvascular degeneration in ischemic retinopathies (130,131). 

Prostanoid signaling through the EP3, EP4, DP, TP, and IP receptor have all been 
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implicated in mediating discrete cell behaviors that are invovled in the 

development or pathology of ischemic retinopathies (110,132-135). Selective 

inhibition of COX-2 also prevents pathological angiogenesis in the cornea, retina, 

and experimentally-induced tumors (93-96,111). Therefore, non-steroidal anti-

inflammatory drugs (NSAIDs) that inhibit the activity of the COX enzymes may be 

viable pharmacologic agents for the treatment of retinal neovascularization (NV).  

In 2005, the U.S. Food and Drug Administration (FDA) approved the 

topical NSAID, NEVANAC (nepafenac; 0.1% ophthalmic suspension) for the 

treatment of pain and inflammation associated with cataract surgery (136-139). 

The active ingredient in NEVANAC is nepafenac, a potent, reversible COX-1 

and COX-2 inhibitor (Kulmacz RJ, et al. 2007: EVER E-Abstract e473). 

Nepafenac is a pro-drug with superior penetration of cornea and scleral tissues 

(140). It is quickly metabolized in vivo by amidases in the iris/cilliary body and 

retina/choroid to form amfenac (136). Amfenac is an NSAID with antipyretic and 

analgesic properties, and it inhibits both COX-1 and COX-2 activity (137). 

Amfenac, like nepafenac, is a reversible inhibitor of both COX-1 and COX-2, but 

unlike nepafenac, amfenac has unique time-dependent inhibitory properties for 

both COX-1 and COX-2, implying that with time, amfenac irreversibly binds the 

enzymes, accounting for amfenac’s prolonged activity (Kulmacz RJ, et al. 2007: 

EVER E-Abstract e473).  

Topical ocular administration of nepafenac inhibits posterior segment NV 

in mouse models of oxygen-induced retinopathy (OIR) and laser-induced 

choroidal NV (LCNV), and it inhibits the functional abnormalities and retinal 
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vasculopathy observed in rats with streptozotocin-induced diabetes (77,141). 

Topical ocular administration of nepafenac reduced retinal VEGF expression in 

the mouse model of OIR (77). This observation is similar to the reported findings 

demonstrating the anti-VEGF effects of COX-2 inhibitors in tumor angiogenesis 

models (142). 

In order to better understand its bioactivity, we used in vitro assays of 

angiogenic cell behaviors to determine the capacity of amfenac to inhibit discrete 

aspects of the angiogenic cascade in the retina. We evaluated the effect of 

amfenac on hypoxia-induced VEGF production by Müller cells. Then, we looked 

at the effect of amfenac on VEGF-induced angiogenic cell behaviors in retinal 

endothelial cells. To further investigate the therapeutic potential of nepafenac for 

human use, we tested the efficacy of amfenac and nepafenac in vivo, using the 

rat model of OIR developed in our laboratory. This model produces a pattern of 

pathological pre-retinal NV mimicking that of premature infants with ROP (143). 

The results of these studies more fully define the mechanism(s) by which 

nepafenac mediates its anti-angiogenic effect, as well as demonstrate where 

COX enzymes appear to exert their influence during pathologic retinal 

angiogenesis. 
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2.3 Materials and methods 

 

Materials 

Nepafenac (NEVANAC, 0.1% ophthalmic solution), amfenac, and 

vehicle were synthesized and provided by Alcon Laboratories, Inc. Ketorolac 

tromethamine (Acular, 0.5% ophthalmic solution; Allergan, Inc.), diclofenac 

sodium (Voltaren, 0.1% ophthalmic solution; Novartis), and celecoxib 

(Celebrex; Pfizer) were obtained from commercial sources. SC-560 was 

purchased from Cayman Chemical (Ann Arbor, MI). 

 

Isolation and culture of primary rat retinal Müller cells 

Primary rat retinal Müller cell cultures were established from postnatal day 

(P)7 Long Evans rat pups according to well-established methods (144). Briefly, 

enucleated eyes were placed in soaking medium, Dulbecco’s Modified Eagle 

Medium Low Glucose (DMEM; HyClone; Logan, UT) supplemented with 1X 

Antibiotic/Antimycotic Solution (Sigma; St. Louis, MO), overnight. The following 

day, eyes were incubated in digestion buffer, comprised of the soaking medium 

plus 0.1% trypsin and 70 U/ml collagenase, for 60 minutes at 37ºC. Retinas were 

then dissected, triturated, plated, and grown in DMEM supplemented with 10% 

fetal bovine serum and 1X Antibiotic/Antimycotic Solution. Cultures were 

maintained at 37ºC in a 5% CO2/95% air (20.9% oxygen) atmosphere (normoxia) 

in a humidified incubator (NuAire; Plymouth, MN). Müller cells were identified by 
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immunocytochemical staining for cellular retinaldehyde binding protein (CRALBP; 

Abcam; Cambridge, MA). Passages three to six were used for experiments. For 

treatment of Müller cells with hypoxia, a CO2-enriched environment was 

generated with a BBLTM GasPak Pouch system (Becton-Dickinson; Sparks, MD). 

 

Quantitative real time RT-PCR of VEGF in rat Müller cells 

Primary rat Müller cells were seeded in 10-cm Petri dishes at equal 

density and maintained in normoxia. At 80% confluency, the cells were treated 

with vehicle (0.1% DMSO) or increasing concentrations of amfenac (0.1 to 10 

µM) and placed in hypoxia for 24 hours. Total RNA was isolated from the cells 

using Trizol reagent (Invitrogen Corporation; Carlsbad, CA). Each RNA sample 

was quality-controlled for DNA and protein contamination. For VEGF 

amplification, cDNAs were reverse transcribed using the High-Capacity cDNA 

Archive Kit (Applied Biosystems; Foster City, CA) according to manufacturer’s 

instructions. Quantitative real-time RT-PCR was performed in duplicate by co-

amplification of rat VEGF vs. β-actin (endogenous normalization control) in 

separate tubes, using gene-specific TaqMan Gene Expression Assays according 

to the manufacturer’s instructions (Applied Biosystems; primer and probe 

sequences used in this assay are proprietary). 

 

Quantification of rat Müller cell-derived VEGF and PGE2 levels 

Primary rat Müller cells were seeded in 12-well plates at equal density and 

maintained in normoxia. At 80% confluency, cells were treated with vehicle (0.1% 
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DMSO) or 10 µM amfenac, celecoxib, or SC-560, and then maintained in 

normoxia or hypoxia for 24 hours. Culture medium from cells was collected and 

assayed for VEGF and PGE2 concentration with colorimetric sandwich ELISA kits 

(R&D Systems; Minneapolis, MN) according to the manufacturer’s instructions. 

Cells were washed with CMF-PBS (Invitrogen), lysed with cold lysis buffer 

(Promega; Madison, WI), and protein concentration was determined with a 

bicinchoninic acid assay (BCA; Pierce; Rockford, IL). The amount of VEGF and 

PGE2 (pg/ml) in the culture medium was normalized to total protein concentration 

(mg/ml) of cell lysates. 

 

Culture of human retinal microvascular endothelial cells (HRMEC)  

Primary human retinal microvascular endothelial cells (HRMEC; Cell 

Systems; Kirkland, WA) were seeded in tissue culture flasks coated with 

attachment factor (Cell Signaling; Danvers, MA) and cultured with endothelial 

basal medium (EBM; Cambrex; East Rutherford, NJ) supplemented with 10% 

FBS and EGM single quots (Cambrex). When experimental conditions required 

serum free (SF) medium, MCDB 131 medium (Sigma) containing 1X 

Antibiotic/Antimycotic Solution was used. Cultures were maintained at 37ºC in a 

5% CO2/95% air (20.9% oxygen) atmosphere (normoxia) in a humidified 

incubator. 
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HRMEC tube formation assay 

In vitro tube formation by HRMEC was carried out in 12-well plates coated 

with growth factor-reduced Matrigel® matrix (Becton-Dickinson). HRMEC were 

seeded at 3×104 cells per Matrigel-coated well in complete culture medium. After 

4.5 hours, the culture medium was removed and the cells were treated with SF 

medium alone or SF medium containing 25 ng/ml VEGF (R&D Systems) in the 

presence or absence of amfenac, celecoxib, or SC-560 (0.01 to 1 µM). Twenty-

four hours later, three images of tubes per well were captured using a DMC 

digitizing camera (Polaroid; Cambridge, MA) mounted on an IMT-2 inverted 

microscope (Olympus; Melville, NY). Capillary-like structures were measured 

using Image J software (NIH; Bethesda, MD), and the mean tube length per area 

of the field was calculated for each well. 

 

HRMEC cell proliferation assay 

VEGF-induced HRMEC proliferation was measured using a modified MTT 

assay. Each well of a 96-well plate was coated with a fibronectin/hyaluronic acid 

(HA) matrix and seeded with 3×104 cells. Complete medium was added and the 

cells were incubated for two days. The medium was then aspirated, and the cells 

were incubated with SF medium overnight. The following day, culture medium 

was removed and the cells were treated with SF medium alone or SF medium 

containing 25 ng/ml VEGF (R&D Systems) in the presence or absence of 

amfenac, celecoxib, or SC-560 (0.01 to 10 µM). Twenty-four hours later, 25 µL of 

a 5 mg/ml solution of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
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(MTT; Molecular Probes; Eugene, OR) was added to each well and incubated for 

4 hours under normal growth conditions. One hundred microliters of lysis buffer 

[20% SDS in 50:50 dimethylformamide (DMF) and H2O with 2.0% acetic acid and 

0.05% HCl] was then added to each well, and the plates were incubated 

overnight at 37°C and read (Spectramax 190; Molecular Devices; Sunnyvale, CA) 

at 570 nm. Absorbance values were translated to cell number using standard 

curves consisting of six cell densities assayed in quadruplicate. The data 

obtained from the MTT assay and cell counts using a hemocytometer in the 

presence of trypan blue (Sigma) were found to be highly correlated (r2=0.933, 

data not shown). A standard curve of absorbance at 570 nm vs. HRMEC number 

was then produced. 

 

Oxygen-induced retinopathy (OIR) in the rat 

All animal procedures used in this study were approved by the Vanderbilt 

University Institutional Animal Care and Use Committee and were performed in 

accordance with the ARVO Statement for the Use of Animals in Ophthalmic and 

Vision Research. Litters of Sprague-Dawley rat pups and their mothers (Charles 

River Laboratories; Wilmington, MA) were transferred within four hours after birth 

to oxygen exposure chambers where they were subjected to alternating 24 hour 

periods of 50% oxygen and 10% oxygen for 14 days. Control rats were raised 

simultaneously in room air. On postnatal day (P)14, the oxygen-exposed rats 

were returned to room air. 
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Quantification of retinal prostanoids 

On P14, following removal from the oxygen chambers, rats were 

administered amfenac (0.05 µg; 40 µM) or vehicle by single intravitreal injection, 

according to a well-established procedure (145). One day later, on P15, retinas 

were harvested and homogenized. The lipid soluble prostaglandin compounds 

were extracted with a Sep-Pak C18 column (Waters; Milford, MA) and were 

nitrogen-evaporated. O-methoxyamine derivatives were formed by treatment with 

2% methoxyamine-HCl in water at room temperature for 30 minutes. Compounds 

were extracted with ethyl acetate and subsequently converted to 

pentaflurobenzyl esters. The compounds were chromatographed on TLC plates 

with ethyl acetate/methanol. The compounds were then converted to 

trimethylsilyl ether derivatives and analyzed by negative ion chemical ionization 

mass spectrometry coupled with a gas chromatography system (Agilent 

Technologies; Palo Alto, CA). 

 

Quantification of retinal VEGF levels 

On P14, following removal from the oxygen chambers, rats were 

administered amfenac (0.05 µg; 40 µM) or vehicle by a single intravitreal 

injection, according to a well-established procedure (145). Because there is a 

peak in retinal VEGF two days post-oxygen exposure in this model (146), rats 

were sacrificed on P16 and retinas were harvested and subjected to lysis by 

homogenization. The total protein concentration of samples was measured by 

BCA. Retinal VEGF levels were measured with a VEGF colorimetric sandwich 
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ELISA kit (R&D Systems) according to the manufacturer’s instructions. The final 

mass of retinal VEGF was standardized to total retinal protein. 

 

Quantification of retinal neovascularization (NV) 

Using commercially available formulations and drop-tainers, nepafenac 

(0.03%, 0.1%), ketorolac (0.5%), diclofenac (0.1%) or vehicle was dropped 

directly onto the cornea two or four times a day, depending upon experiment. 

Topical dosing was performed between P14 and P19. A separate group of 

oxygen-exposed rat pups received a single intravitreal injection of amfenac (0.05 

µg; 40 µM), celecoxib (0.075 µg; 40 µM), SC-560 (0.07 µg; 40 µM), or vehicle 

(0.1% DMSO) at P14, after return to room air. Our estimations of vitreous volume 

indicate that these concentrations of injected NSAIDs lead to vitreous 

concentrations that fall within the middle range of the concentrations used for in 

vitro assays. Regardless of pharmacologic treatment, all oxygen-exposed rats 

were sacrificed on P20, 6 days following return to room air. The eyes were 

enucleated, and retinas were dissected and placed in 10% neutral buffered 

formalin [CMF-PBS (Invitrogen) with 37% formaldehyde solution (Fisher 

Scientific; Fair Lawn, NJ)] overnight at 4°C. The retinal vasculature was stained 

for adenosine diphosphatase (ADPase) activity, according to well-established 

procedures (147). Images of ADPase-stained retinas were digitized, captured, 

and displayed at 20X magnification. The total retinal area and the retinal area 

containing vasculature were independently measured. For each retinal image, 

pre-retinal vessel tufts were outlined, the pixels within an encircled area were 
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counted, and the total number of pixels from all areas were summed and 

converted to square millimeters.  

 

Statistical analysis 

Data were analyzed with commercial software (JMP; SAS Institute; Cary, 

NC). Analysis of variance (ANOVA) with appropriate post-hoc analyses were 

used to analyze data. 

 

2.4 Results 

 

Intravitreally-injected NSAID efficacy in rat OIR 

The effect of 0.05 µg amfenac on OIR-induced retinal NV was compared 

to two other NSAIDs, 0.075 µg celecoxib (COX-2 inhibitor) and 0.07 µg SC-560 

(relatively COX-1-specific inhibitor). This concentration of amfenac (40 µM) was 

empirically chosen using the rat model of OIR; the concentrations of celecoxib 

and SC-560 were matched to this concentration, to standardize treatment. 

Because amfenac does not possess the tissue-penetration characteristics of its 

pro-drug, nepafenac, and because celecoxib and SC-560 are not topically 

formulated, they were delivered directly to the target tissue with a single 

intravitreal injection. Oxygen-exposed rats received a single intravitreal injection 

of amfenac, celecoxib, or SC-560 on P14 and were sacrificed on P20. Amfenac 

significantly (p < 0.005) reduced the mean area of pre-retinal NV, compared to 
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vehicle-treated eyes (Figure 5). Celecoxib and SC-560 failed to inhibit OIR-

induced retinal NV at the doses tested. 

 

Effect of OIR on retinal prostanoids with and without amfenac 

Amfenac effectively inhibited NV in the rat OIR model, in contrast to 

celecoxib and SC-560. Thus, we sought to determine, more specifically, the 

way(s) in which the bioactive metabolite of nepafenac, amfenac, inhibited 

pathological angiogenesis. The effects of the OIR model and amfenac treatment 

on retinal prostanoid levels were surveyed. On P14, oxygen-exposed rats 

received a single intravitreal injection of vehicle or amfenac (0.05 µg; 40 µM). 

Figure 5. The effect of intravitreally-injected amfenac (40 µM), celecoxib, and SC-560 on the 
severity of OIR in the rat. Amfenac significantly reduced (* p < 0.005) OIR-induced retinal NV, 
but neither celecoxib nor SC-560 demonstrated an effect at the concentrations tested. Each 
bar represents the mean ± SEM. 
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One day later, on P15, the retinas were harvested and retinal prostanoid levels 

were measured. Compared to room air control retinas, the retinas of oxygen-

exposed rats demonstrated increased levels of each of the five prostanoids. 

Intravitreal amfenac treatment significantly reduced levels of PGE2, PGF2, TxB2, 

and 6-keto-PGF (p < 0.001) (Figure 6). This data demonstrates that amfenac 

inhibits COX and prostanoid production as expected, suggesting a possible 

explanation for the observed anti-angiogenic effect of amfenac in Figure 5. 

Figure 6. The effect of OIR and amfenac on retinal prostanoid levels. Compared to room air 
control retinas, the retinas of OIR rats demonstrated increased levels of each of the five 
prostanoids. Intravitreal amfenac treatment (40 µM) significantly reduced levels of PGE2, PGF2, 
TxB2, and 6-keto-PGF (* p < 0.001) in OIR rat retinas. Each bar represents the mean ± SD. 
 

 

Effect of amfenac on rat Müller cell VEGF expression 

Since amfenac decreased retinal prostanoid levels and reduced NV in oxygen-

exposed rats, the effect of amfenac on specific angiogenic cell behaviors was 
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studied using in vitro methods. In order to determine whether or not amfenac 

inhibited hypoxia-induced VEGF production, rat Müller cells were treated with 

increasing doses of amfenac (0.1 to 10 µM), and placed in hypoxia for 24 hours. 

Quantitative RT-PCR analysis of VEGF revealed that amfenac exhibited no effect 

on hypoxia-induced VEGF mRNA expression in rat Müller cells (Figure 7). 

Figure 7. The effect of amfenac on hypoxia-induced VEGF expression in Müller cells. 
Quantitative RT-PCR analysis of VEGF revealed that amfenac exhibited no effect on hypoxia-
induced VEGF mRNA expression in rat retinal Müller cells. Each bar represents the mean ± SD. 
 

 

Effect of NSAIDs on VEGF and PGE2 production in rat Müller cells 

It is important to note that a change in VEGF mRNA does not always 

correlate with a change in VEGF protein (Wang FE, et al. IOVS 2004;45:ARVO 

E-Abstract 3711). Because the production, secretion, and turnover of VEGF 

protein directly contributes to the pathology observed in the rat OIR model, we 
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determined the effect of amfenac treatment on VEGF protein in hypoxic rat 

Müller cells. Rat Müller cells were treated with 1 µM amfenac, celecoxib, or SC-

560 and placed in hypoxia for 24 hours. Amfenac, celecoxib, and SC-560 had no 

Figure 8. The effect of amfenac, celecoxib, and SC-560 on Müller cell production of VEGF 
and PGE2. (A) 1 µM amfenac, celecoxib, and SC-560 had no effect on hypoxia-induced 
VEGF production in rat retinal Müller cells. (B) However, amfenac, celecoxib, and SC-560 
treatment significantly reduced PGE2 levels in these cells (* p < 0.001). This finding suggests 
that SC-560, at this concentration, is non-selective, inhibiting COX-2 as well as COX-1. Each 
bar represents the mean ± SD. 
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significant effect on hypoxia-induced VEGF production in rat Müller cells (Figure 

8A). However, amfenac, celecoxib, and SC-560 treatment profoundly and 

significantly reduced PGE2 levels in these cells (p < 0.001), implying that 

hypoxia-induced VEGF expression in rat Müller cells is not affected by 

pharmacologic manipulation of the COX-2 enzyme (Figure 8B). Since inhibition 

of COX did not reduce pro-angiogenic VEGF production in rat Müller cells, it 

cannot explain the inhibition of retinal NV by amfenac. 

 

Effect of amfenac on retinal VEGF production 

To complement our in vitro data (Figure 8A), we returned to the OIR 

model in order to determine whether amfenac inhibited retina-wide, as opposed 

to Müller cell-derived, VEGF production. Amfenac (0.05 µg; 40 µM) was 

administered by a single intravitreal injection to oxygen-exposed rats upon return 

to room air. Two days later, retinas were harvested and retinal VEGF levels were 

measured. As expected, oxygen-exposed rats experienced a 4-fold increase in 

retinal VEGF compared to room air controls (Figure 9). However, and in 

agreement with our in vitro findings, amfenac treatment demonstrated no 

significant effect on retinal VEGF in oxygen-exposed rats. Although a modest 

(20%) reduction in mean VEGF level was observed following amfenac treatment, 

this result was not statistically significant. Retinal VEGF levels following topical 

nepafenac treatment were also assayed to determine whether the natural in vivo 

metabolism of amfenac was required in order to achieve a VEGF response, and 

again no effect was observed (data not shown). 
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Effect of amfenac on VEGF-induced HRMEC behaviors 

Because nepafenac proved ineffective in preliminary in vitro assays, we 

used its bioactive metabolite, amfenac, to determine the effect of the drug on 

angiogenic endothelial cell behaviors. The effects of amfenac, celecoxib and SC-

560 on VEGF-induced tube formation and proliferation were examined. VEGF-

induced (25 ng/ml) HRMEC tube formation (as determined by mean tube length) 

was significantly inhibited by amfenac (p < 0.001), the COX-2-selective celecoxib 

(* p < 0.001; † p < 0.006), and, at higher concentrations, the relatively COX-1 

selective SC-560 (* p < 0.001; ‡ p < 0.01) (Figure 10). Amfenac also lead to a 

significant reduction (32.5%; 10.00 + 2.12 in VEGF-treated HRMEC vs. 6.75 + 

2.45 in 0.01 µM amfenac-treated HRMEC) in the number of HRMEC branch 

points in this assay (p < 0.0233; data not shown). VEGF-induced HRMEC 

proliferation was significantly inhibited by amfenac and celecoxib (p < 0.001, 

Figure 9. The effect of intravitreally-injected amfenac on retinal VEGF production. In 
agreement with the in vitro findings, 40 µM amfenac treatment demonstrated no significant 
effect on retinal VEGF levels in OIR rats. Each bar represents the mean ± SEM. 
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respectively) in a dose-dependent manner, whereas SC-560 (p < 0.001) was only 

inhibitory at the highest concentration tested (Figure 11). Although 10 µM SC-

560 significantly inhibited VEGF-induced HRMEC proliferation, this concentration 

is known to inhibit both COX-1 and COX-2, and to exert COX-independent 

Figure 10. The effect of amfenac, celecoxib, and SC-560 on VEGF-induced HRMEC tube 
formation. (A) HRMEC tube formation was induced by 25 ng/ml VEGF, and this induction was 
significantly inhibited by amfenac (* p < 0.001), the COX-2-selective NSAID celecoxib (* p < 
0.001; † p < 0.006), and, at higher concentrations, the COX-1 selective NSAID SC-560 (* p < 
0.001; ‡ p < 0.01). Each bar represents the mean ± SD. (B) A representative image of tube 
formation in VEGF-stimulated HRMEC. (C) A representative image of tube formation in 
VEGF-stimulated HRMEC treated with 1 µM amfenac. Amfenac-treated HRMEC demonstrate 
reduced tube formation. 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effects. These experiments suggest that amfenac, likely through COX inhibition, 

affects discrete aspects of the angiogenic cascade downstream of VEGFR-2 

activation. 

 

Topical nepafenac efficacy in rat OIR 

Topical administration of a drug that has the capacity to substantially 

reduce retinal NV would be a promising advancement in the development of 

therapies for neovascular eye diseases. Thus, we tested the capacity of topical 

Figure 11. The effect of amfenac, celecoxib, and SC-560 on VEGF-induced HRMEC 
proliferation. VEGF-induced HRMEC proliferation was significantly inhibited by amfenac 
and celecoxib (* p < 0.001) in a dose-dependent manner, and by SC-560 (* p < 0.001) at 
the highest concentration tested. The effect of SC-560 at the highest concentration may be 
attributed to lethality. Each bar represents the mean ± SD. 
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nepafenac to inhibit retinal NV in the rat model of OIR. Oxygen-exposed rats 

were treated with topical nepafenac four times daily (QID) or twice daily (BID) 

from P14 through P19 and were sacrificed on P20. Nepafenac (0.1%) delivered 

QID or BID significantly reduced (p < 0.001) the amount of pre-retinal NV in an 

apparent dose-dependent manner (Figure 12). Like nepafenac, ketorolac and 

diclofenac are labeled for the treatment of pain and inflammation following 

cataract surgery. We compared the effect of topical nepafenac (0.1%, QID) to 

these commercially available, topically formulated NSAIDs, ketorolac (0.5%, QID) 

and diclofenac (0.1%, QID), on OIR-induced retinal NV. Nepafenac significantly 

reduced the mean area of pre-retinal NV by 59.3% (p < 0.007), but neither 

ketorolac nor diclofenac demonstrated an effect at the tested doses (Figure 13).  

 

Figure 12. The effect of topical nepafenac on the severity of OIR in the rat. 0.1% nepafenac, 
given QID or BID from P14-P19, significantly reduced (* p < 0.001) OIR-induced retinal NV. 
Each bar represents the mean ± SEM. 
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Figure 13. The effect of topical nepafenac, ketorolac, and diclofenac on the severity of OIR in 
the rat. (A) Drugs were administered topically, QID, from P14-P19. Nepafenac significantly 
reduced (* p < 0.007) OIR-induced retinal NV. Ketorolac and diclofenac failed to demonstrate 
an effect. Each bar represents the mean ± SEM. (B) A representative image of NV in vehicle-
treated eyes. (C) A representative image of NV in nepafenac-treated eyes. As demonstrated 
by representative ADPase-stained retinal flat mounts, nepafenac significantly reduced retinal 
NV.  
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2.5 Discussion 

 

The goal of this study was two-fold. First, we used three in vitro assays to 

determine the capacity of amfenac to inhibit discrete aspects of retinal 

angiogenesis. Using these model systems, we were better able to determine 

where in the angiogenic cascade COX isoforms exert their influence. Second, in 

order to further investigate the therapeutic potential of nepafenac as an 

angiostatic agent for human ocular use, we tested the efficacy of nepafenac in 

vivo, using the rat model of OIR developed in our laboratory.  

In 2005, the FDA approved nepafenac for the treatment of pain and 

inflammation associated with cataract surgery (136-139). In the eye, nepafenac 

is converted to an active metabolite, amfenac, which like nepafenac is a 

reversible inhibitor of both COX-1 and COX-2, but unlike nepafenac has unique 

time-dependent inhibitory properties for both COX-1 and COX-2 (Kulmacz RJ, et 

al. 2007: EVER E-Abstract e473). Thus, we wanted to determine if, and more 

specifically how, amfenac inhibited pathological angiogenesis. Amfenac inhibits 

COX activity and COX-dependent prostanoid production. The cancer literature 

has shown that COX-2 and the prostanoids are involved in the angiogenesis that 

occurs during tumor growth (69-73). Moreover, recent studies have shown that 

COX inhibitors, including topical nepafenac, ameliorate various experimental 

pathologies in the posterior segment of the eye (77,111,112,138,141,148-151). 

We tested the hypothesis that amfenac, by virtue of its capacity to inhibit COX 
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activity, would inhibit pathological angiogenesis. This was done using three 

NSAIDs with varying selectivities for COX-1 and COX-2. Amfenac is a relatively 

non-selective NSAID, inhibiting both COX-1 (IC50 = 0.25 µM) and COX-2 (IC50 = 

0.15 µM) (137). Celecoxib is highly COX-2-selective (COX-2 IC50 = 0.06 µM, 

COX-1 IC50 = 19 µM) (152). SC-560 is relatively COX-1-selective (COX-1 IC50 = 

0.009 µM, COX-2 IC50 = 6.3 µM) (153). Only amfenac inhibited NV in the rat OIR 

model (Figure 5). 

It is possible that amfenac demonstrates superior ocular pharmacokinetics 

and bioavailability, and/or pharmacodynamic mechanisms than do celecoxib and 

SC-560. Or, amfenac may exert distinct COX-independent effects that mediate 

its angiostatic activity. The non-selective nature of amfenac’s COX inhibition may 

be one possible pharmacodynamic explanation for its superior performance. The 

importance of inhibiting both COX isoforms during ischemia-induced retinal NV 

has been suggested by results from studies using COX-1 null and COX-2 null 

mice (154). Due to its superior performance, we wanted to determine, more 

specifically, the way(s) in which amfenac inhibited pathological angiogenesis. We 

surveyed the effects of the oxygen exposure model and amfenac treatment on 

retinal prostanoid levels (Figure 6). All five of the prostanoids exhibited at least a 

two-fold increase upon exposure to the OIR protocol, suggesting a potential role 

in the development of retinal NV. The observed increase in retinal prostanoid 

production in oxygen-exposed rats could be due to: (1) increased cPLA2 level or 

activity, which serves to liberate arachidonic acid, the substrate that is converted 

by COX into prostanoids; (2) increased level or activity of COX-2; (3) increased 
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prostanoid synthase activity; (4) decreased levels of 15-PGDH, which is the key 

enzyme responsible for the biological inactivation of the prostanoids; or (5) some 

combination of these. Regardless of the mechanism by which prostanoids were 

increased, intravitreal injection of amfenac significantly inhibited the response. 

Retinal NV can be studied in vitro by distilling it into two basic 

components: hypoxia-induced VEGF production by retinal, e.g. Müller, cells and 

VEGF-induced angiogenic behaviors (proliferation and tube formation) in 

endothelial cells. We tested the capacity of amfenac to inhibit each of these 

processes in vitro so that we could more clearly define its mechanism of action in 

vivo. Amfenac had no effect on hypoxia-induced VEGF expression or production 

by rat Müller cells (Figure 7 and Figure 8A). This was confirmed in vivo: 

amfenac did not significantly decrease retinal VEGF levels in OIR rats (Figure 9). 

These data suggest that amfenac likely does not inhibit retinal NV in the rat 

model of OIR by reducing hypoxia-induced VEGF production. In accordance with 

our findings, Kern et al. reported that topically applied nepafenac did not reduce 

the increased retinal VEGF production found in diabetic rats (141). These results 

suggest that VEGF inhibition is unlikely to be a major contribution to amfenac’s 

anti-angiogenic activity. Our results contradict those of Takahashi et al. who 

showed that topical nepafenac reduced retinal VEGF mRNA in mice exposed to 

the OIR model (77). The discrepancy between our findings and Takahashi et al.’s 

findings may be due to: (1) inherent differences between the rat and mouse 

models of OIR; (2) inherent differences between the two species; or (3) the fact 

that Takahashi et al. looked at VEGF mRNA, whereas we looked at protein. It is 
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important to note that a change in VEGF mRNA does not always correlate with a 

change in VEGF protein (Wang FE, et al. IOVS 2004;45:ARVO E-Abstract 3711). 

Because the production, secretion, and turnover of VEGF protein directly 

contributes to the pathology observed in the rat OIR model, we chose this 

endpoint. Point number two brings up an important distinction, because it calls 

into question the universal capacity of NSAIDs to affect VEGF production.  

Since amfenac, a potent COX inhibitor, had no effect on VEGF production 

in vitro or in vivo, it is unlikely that pharmacologic manipulation of COX-2 affects 

this process. We tested this hypothesis using three different NSAIDs with varying 

selectivities for COX-1 and COX-2. The NSAID concentrations used in vitro were 

chosen because they fall within the range that allows us to distinguish between 

COX-1 and COX-2 effects. Amfenac, celecoxib, and SC-560 significantly 

inhibited Müller cell PGE2 production (Figure 8B), indicating that they did, in fact, 

inhibit COX activity in our cultures. However, the drugs had no effect on hypoxia-

induced VEGF production. This demonstrates that hypoxia-induced VEGF 

production by Müller cells is not diminished by pharmacologic inhibition of the 

COX-2 enzyme, and that the inhibition of pro-angiogenic VEGF production by 

Müller cells does not appear to be the mechanism by which amfenac inhibits 

retinal NV. It is possible that COX-dependent prostanoid production may 

influence VEGF production by other retinal cell types [as Amrite et al. have 

shown in retinal pigment epithelial (RPE) cells] (155), although our in vivo studies 

suggest that this is not the case in the rat model of OIR (Figure 9). Therefore, 
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COX inhibition by NSAIDs likely influences hypoxia-induced angiogenic cell 

behavior and OIR by a bioactivity unrelated to VEGF induction. 

Although we chose to focus on VEGF, it is possible that COX-dependent 

prostanoid production influences the production of angiogenic factors other than 

VEGF. Cheng et al. demonstrated that PGE2 induces bFGF expression in 

cultured rat Müller cells (75). Others have demonstrated that a different 

prostanoid, PGF2, induces bFGF expression in rat osteoblasts and endometrial 

adenocarcinoma explants (156,157). These and other studies demonstrate that 

there are other angiogenic factors whose production may be prostanoid-

dependent, and thus inhibited by amfenac treatment. We did not assess 

amfenac’s effect on these proteins [namely bFGF, the VEGF receptors, 

erythropoietin (EPO), adenosine, or insulin-like growth factor (IGF)]. Instead, we 

chose to look at the effect of amfenac on VEGF-stimulated angiogenic 

endothelial events because: (1) despite the presence and potential involvement 

of other, prostanoid-dependent angiogenic factors in the retina, none have been 

demonstrated to be both necessary and sufficient for the development of retinal 

NV, as VEGF has; (2) we see increases in VEGF in our model of OIR, but do not 

see increases in bFGF (158); and (3) HRMEC are exposed and respond to 

VEGF in human ROP, making it an appropriate means by which to stimulate and 

manipulate (with amfenac) angiogenic endothelial cell behaviors in vitro.  

Next, we sought to determine whether the effect of amfenac on retinal NV 

was being mediated through the inhibition of VEGF-induced angiogenic 

behaviors in endothelial cells. VEGF binds and activates high affinity VEGF 
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receptors on retinal endothelial cells (159). Binding of VEGF to VEGFR-2 

induces receptor dimerization and tyrosine autophosphorylation, activating 

complex and incompletely-defined signaling cascades (159). These signal 

transduction pathways ultimately lead to the induction of various endothelial 

behaviors necessary for angiogenesis, including proliferation, migration, survival, 

and the production of nitric oxide that leads to increased permeability. We tested 

the effect of amfenac, celecoxib, and SC-560 on two of these VEGF-induced 

behaviors: tube formation and proliferation. Amfenac and celecoxib dose-

dependently inhibited both VEGF-induced behaviors. These findings confirm 

those of Wu et al. who reported that HUVEC demonstrated reduced VEGF-

induced proliferation and tube formation when they were treated with NS-398 (a 

COX-2-selective inhibitor) or with siRNA directed against COX-2 (89). In our 

studies, the relatively-specific COX-1 inhibitor SC-560 was only mildly effective 

against tube formation alone (Figure 10 and Figure 11). Notably, 10 µM SC-560 

significantly inhibited VEGF-induced HRMEC proliferation. This concentration of 

SC-560 inhibits COX-2 (in addition to inhibiting the COX-1 target enzyme) and 

exerts COX-independent effects on HRMEC proliferation, suggesting an 

explanation for its dramatic effect. Notably, amfenac inhibited two measures of 

tube formation, mean tube length and the number of HRMEC branch points 

(Figure 10). The effect of COX-2 inhibition on endothelial cell branching has 

been documented in the literature, and was confirmed by our study (89). 

Amfenac, likely through inhibition of COX-2, affects discrete aspects of the 

angiogenic cascade downstream of VEGFR-2 activation. It is known that VEGF-
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stimulated endothelial cells produce PGs (160). It is also known that PGs 

stimulate proliferation and tube formation, therefore demonstrating angiogenic 

effects (86,161). Our data suggests that the capacity of nepafenac to inhibit 

proliferation and tube formation is dependent on its capacity to inhibit pro-

angiogenic PG production by COX-2. This in vitro data suggests that nepafenac’s 

mechanism of action in ROP is dependent on its capacity to inhibit endothelial 

cell bioactivities like proliferation and tube formation, two behaviors that are 

central to the development of pathological ocular NV in ROP.  

Safe and effective anti-angiogenic therapies that can be delivered 

noninvasively remain an unmet need in ophthalmology. Lucentis®, an anti-VEGF 

antibody fragment (Fab) delivered via intravitreal injection, is the current 

standard-of-care for neovascular age-related macular degeneration (AMD). 

During multiple registration studies, intravitreal injections of Lucentis® stabilized 

vision in over 90% of patients, and improved vision in up to 40% of patients. 

However, repeated intravitreal injections were necessary for the majority of 

patients to maintain this level of benefit (162-166). Intravitreal injections require 

an office visit, are often expensive, can be physically uncomfortable, and they 

expose the patient to a number of potential vision-threatening complications such 

as intraocular infection. Topical administration of a drug that has the capacity to 

substantially reduce retinal NV would be a promising advancement in the 

development of therapies for neovascular eye diseases. Nepafenac, topically 

applied to the cornea two or four times daily, significantly inhibited the 

development of retinal NV in the rat model of OIR (Figure 12). This finding is 
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consistent with those of Takahashi et al. who reported that topical nepafenac 

inhibited ischemia-induced retinal NV in mice (77). We hypothesized that the 

anti-angiogenic effect of nepafenac was due to its capacity to inhibit COX and 

pro-angiogenic prostanoid production. However, it was unexpected that 

nepafenac proved to be unique in its capacity to significantly inhibit oxygen-

induced retinal NV; ketorolac and diclofenac demonstrated no significant effect 

(Figure 13). This observation cannot be explained by the COX-2 selectivities of 

the three compounds, because their respective COX-2 IC50’s are within the same 

range: amfenac = 0.15 µM, ketorolac = 0.086 µM, and diclofenac = 0.038 µM 

(137,167). A more plausible explanation is that topical nepafenac likely has 

superior bioavailability to the posterior segment. In early pre-clinical trials, 

nepafenac exhibited superior corneal penetration and suppressed prostanoid 

production by the iris/cilliary body and retina/choroid more efficiently and for a 

longer duration than did diclofenac (136,137). In rabbits, topical administration of 

0.1% nepafenac  lead to nanomolar concentrations of amfenac in both anterior 

and posterior segment tissues, above the COX-2 IC50, indicating sufficient 

penetration for inhibitory activity (Hariprasad SM, et al. IOVS 2009:50:ARVO E-

Abstract 5999). Topical administration of nepafenac provided highest 

concentrations in the sclera > choroid > retina > vitreous. Pharmacologically 

relevant concentrations in the posterior segment were achieved through a 

scleral/choroidal distribution. Together, these data suggest that prostanoid 

synthesis is an important aspect of oxygen-induced retinal NV and that 

nepafenac’s inhibitory effect on retinal NV is due, at least in part, to its capacity to 
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efficiently penetrate the cornea/sclera and inhibit COX-dependent prostanoid 

synthesis in the retina. 

The findings that HRMEC treated with amfenac and celecoxib 

demonstrate reduced VEGF-induced tube formation and proliferation suggest 

that there are COX-2-dependent mechanisms through which amfenac inhibits 

oxygen-induced retinal NV. Amfenac and celecoxib may also inhibit VEGF-

induced angiogenic cell behaviors through COX-2-independent mechanisms. For 

example, Amrite et al. reported that choroidal endothelial cells treated with 

celecoxib demonstrated reduced proliferation, but that the anti-proliferative effect 

of celecoxib was independent of its COX-2-inhibitory action (168). Nepafenac 

appears to be a rational therapeutic strategy for the non-invasive treatment of 

oxygen-induced retinopathies and other neovascular diseases of the eye, and it 

appears that nepafenac’s mechanism of action is dependent on its capacity to 

inhibit endothelial cell bioactivities like proliferation and tube formation, two 

behaviors that are central to the development of pathological ocular NV.  

Evidence suggests that oxidative compounds play a role in ROP and other 

angiogenic diseases of the retina (141,169-171). The retina is particularly 

susceptible to oxidative damage because it has a high rate of oxygen 

consumption (172). Furthermore, premature infants have an incompletely 

developed antioxidant system, leading to a reduced ability to scavenge reactive 

oxidative species (ROS) (173). This may increase their vulnerability to the effects 

of damaging oxidative species. These findings have led to a large body of basic 

and clinical research focused on understanding the effect of antioxidant 
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supplementation in ROP. A meta-analysis of clinical studies that tested the effect 

of vitamin E supplementation on the incidence and severity of ROP development 

demonstrated that vitamin E supplementation led to a 52% reduction in the 

development of stage 3 ROP (characterized by NV) (174). Vitamin E, superoxide 

dismutase, and apocynin (an NADPH oxidase inhibitor) have all been shown to 

prevent the development of pathological features that present in the rat model of 

ROP (175-178). More recently, Kern et al. have shown that nepafenac 

demonstrates anti-oxidant activity (141). Nepafenac inhibited diabetes-induced 

production of superoxide anion (a ROS) in rat retinas. It is known that ROS 

activates cytosolic phospholipase A2 (cPLA2) and COX-2, which can lead to the 

production of potentially pro-angiogenic PGs (179,180). cPLA2 is the enzyme 

responsible for liberating arachidonic acid, a COX substrate, from membrane-

derived phospholipids. cPLA2 has been shown to have a pro-angiogenic effect 

on retinal cell behaviors (109). These may be additional mechanisms of 

nepafenac’s action: it may prevent the ROS-dependent activation of cPLA2 

and/or COX-2 and the resultant PG-induced angiogenic cell behaviors. Although 

we did not assess nepafenac’s anti-oxidant capacity in our model of ROP, it is 

feasible that a portion of nepafenac’s mechanism of action may have been 

related to its capacity to scavenge damaging ROS. 

Various stimuli, including COX-derived PGs, stimulate endothelial nitric 

oxide synthase (eNOS) (181). Stimulation of eNOS leads to the production of 

nitric oxide (NO), a potent signaling molecule. NO plays a role in maintaining 

blood flow and vascular tone. Increased NO production leads to vasodilation, 
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which can be particularly harmful to the retinas of premature infants on oxygen 

therapy. In adults, retinal blood flow and choroidal blood flow are tightly 

regulated; when an adult retina is exposed to hyperoxia, retinal and choroidal 

blood vessels constrict, limiting excessive oxygen delivery to the retina.  This 

vascular regulation is lacking in infants. Failure of the vasculature to constrict in 

response to high oxygen, coupled with the vaso-dilatory effect of high NO, means 

that the infant is particularly sensitive to the deleterious consequences of hyper-

oxygenation. This inability to limit oxygen delivery may contribute to the infant’s 

susceptibility to hyperoxia-induced ROP (182). These findings suggest that 

inhibiting COX-derived PG production will inhibit deleterious NO production, 

providing protection against hyperoxia-induced retinopathy. We have shown that 

amfenac inhibits PG production in vitro and in vivo  (Figure 6 and Figure 8). 

Although we did not assess nepafenac’s capacity to inhibit NO production in our 

model of ROP, it is possible that a portion of nepafenac’s mechanism of action 

may have been related to its capacity to prevent PG-mediated NO production 

and vasodilation. Notably, NO inhibition may also be detrimental to premature 

infants on supplemental oxygen therapy. eNOS and NO  are required for the 

development of normal lung vasculature. MacRitchie et al. have shown that there 

is reduced eNOS in the pulmonary circulation and respiratory tract of preterm 

lambs on oxygen therapy and suggest that reduced eNOS may play a role in the 

development of chronic lung disease in the lambs (183). Furthermore, eNOS 

deficient mice exhibit defective lung vascular development and respiratory 

distress (184). Therefore, if it is found that nepafenac inhibits NO production and 
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has a beneficial effect on the ocular vasculature in models of ROP, it’s effect on 

the pulmonary vasculature will need to be carefully assessed in clinical trials.   

Pharmacologic inhibition of COX-2 did not have a major effect on hypoxia-

induced VEGF production in our models. Despite pharmacologic inhibition, 

residual COX activity may have remained, which could continue to produce pro-

angiogenic prostanoids with the capacity to affect VEGF production (75,76). 

Alternatively, Lukiw et al. reported that hypoxia-induced VEGF production was 

directly regulated by HIF-1, and only indirectly regulated through NF-κB-

mediated COX-2 in choroidal endothelial cells (185). This suggests that HIF-1-

dependent VEGF production may have the capacity to overpower the effect of 

COX-2-inhibition, and could explain the results of our Müller cell studies. In order 

to more clearly define the role of COX-2 in this process, it is necessary to assess 

VEGF production in COX-2 knock-out animals and the cells derived from these 

animals. These studies are on going. 
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3.1 Abstract 

 

Non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit COX 

activity, reduce the production of retinal VEGF and neovascularization in relevant 

models of ocular disease. We hypothesized that COX-2 mediates VEGF 

production in retinal Müller cells, one of its primary sources in retinal neovascular 

disease. The purpose of this study was to determine the role of COX-2 and its 

products in VEGF expression and secretion. These studies have more clearly 

defined the role of COX-2 and COX-2-derived prostanoids in retinal 

angiogenesis. 

Müller cells derived from wild-type and COX-2 null mice were exposed to 

hypoxia for 0-24 hours. COX-2 protein and activity were assessed by western 

blot analysis and GC-MS, respectively. VEGF production was assessed by 

ELISA. Wild-type mouse Müller cells were treated with vehicle (0.1% DMSO), 10 

µM PGE2, or PGE2 + 5 µM H-89 (a PKA inhibitor), for 12 hours. VEGF production 

was assessed by ELISA.  

Hypoxia significantly increased COX-2 protein (p < 0.05) and activity (p < 

0.05), and VEGF production (p < 0.0003). COX-2 null Müller cells produced 

significantly less VEGF in response to hypoxia (p < 0.05). Of the prostanoids, 

PGE2 was significantly increased by hypoxia (p < 0.02). Exogenous PGE2 

significantly increased VEGF production by Müller cells (p < 0.0039), and this 

effect was inhibited by H-89 (p < 0.055). 
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These data demonstrate that hypoxia induces COX-2, prostanoid 

production, and VEGF synthesis in Müller cells, and that VEGF production is at 

least partially COX-2-dependent. Our study suggests that PGE2, signaling 

through the EP2 and/or EP4 receptor and PKA, mediates the VEGF response of 

Müller cells.  

 

3.2 Introduction 

 

Angiogenesis, the formation of new capillaries from the existing 

vasculature, is a process subject to exquisite regulation. Numerous pathological 

conditions are characterized by persistent, abnormal angiogenesis. In the eye, 

pathological angiogenesis, or ocular neovascularization (NV), is the leading 

cause of blindness in developed countries (9,10,12). Prevalent diseases in which 

ocular NV is a central feature include retinopathy of prematurity (ROP), 

proliferative diabetic retinopathy (PDR), and age-related macular degeneration 

(AMD or ARMD). To effectively prevent and treat ocular NV, a more thorough 

understanding of the cellular and molecular mechanisms involved in the 

angiogenic process is necessary.  

Neovascularization within the eye is often the result of ischemia, which 

induces tissue hypoxia (114,115). In response to retinal hypoxia, various pro-

angiogenic growth factors are produced, each mediating a number of angiogenic 

cell behaviors. Of the growth factors involved in retinal angiogenesis, vascular 

endothelial cell growth factor (VEGF) is thought to be a principal mediator (22). In 
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response to retinal hypoxia, several cell types exhibit increased VEGF production 

(32,33,116). This has been demonstrated most consistently and dramatically in 

Müller cells, the predominant glial cells within the retina (32-34). Notably, Müller 

cell-specific deletion of VEGF-A significantly inhibits NV in mice exposed to 

oxygen-induced retinopathy (186). 

The cyclooxygenase (COX) enzymes are responsible for catalyzing the 

production of biologically active prostanoids (prostaglandins and thromboxanes) 

from phospholipid-derived arachidonic acid. The cancer literature has 

demonstrated a role for COX-2, the inducible isoform, and its prostanoid 

metabolites in the angiogenesis that occurs during tumor growth (69-73). 

Prostanoids can induce the expression of pro-angiogenic factors such as VEGF 

and bFGF in a wide variety of cell types (75,76). 

COX-2 has been localized to various ocular tissues, and its expression 

has been found, or can be induced, in the following structures: cornea, iris, 

cilliary body, various cell types within the neuroretina, and the retinal pigment 

epithelium (RPE) (95,97-100). The expression of the COX-2 enzyme in these 

ocular tissues suggests a functional role for its prostanoid products. In fact, 

inhibition of COX has been effective at reducing the production of VEGF and 

corneal, retinal, and choroidal NV in relevant models of ocular disease 

(84,107,110-113,187-189). However, although various groups have 

demonstrated the efficacy of COX inhibition at reducing the production of VEGF 

and NV, little work has been done to determine which of the COX-2 derived 
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prostanoid(s) is (are) involved in mediating VEGF production, which stimulates 

angiogenic endothelial cell behaviors, and results in ocular angiogenesis. 

In this study, we used an in vitro assay of hypoxia-induced VEGF 

production combined with cells isolated from COX-2 null mice to more precisely 

determine the role of COX-2 and its products in stimulating mouse Müller cell 

VEGF production. These studies are important because VEGF is the growth 

factor that stimulates the pathological angiogenesis characteristic of ROP, PDR, 

AMD, and a number of other blinding conditions. These studies have further 

defined the roles of COX-2 and COX-2-derived prostanoids in this discrete 

aspect of retinal angiogenesis. 

 

3.3 Materials and Methods 

 

Isolation and culture of primary mouse Müller cells  

Primary Müller cell cultures were established from P7 wild-type C57/129 

mouse pups and COX-2 null mouse pups on the same background (breeders 

were a generous gift from Dr. Sudhansu Dey, Cincinnati Children’s Hospital 

Medical Center), according to well-established methods (144). Briefly, enucleated 

eyes were placed in soaking medium, Dulbecco’s Modified Eagle Medium 

(DMEM; HyClone) supplemented with 1X Antibiotic/Antimycotic Solution (Sigma), 

overnight. The following day, eyes were incubated in digestion buffer, which is 

comprised of soaking medium plus 0.1% trypsin and 70 U/ml collagenase, for 20 

minutes at 37ºC. Retinas were then dissected, triturated, plated, and grown in 
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DMEM supplemented with 10% fetal bovine serum and 1X Antibiotic/Antimycotic 

Solution. Cultures were maintained at 37ºC in a 5% CO2/95% air (20.9% oxygen) 

atmosphere (normoxia) in a humidified incubator (NuAire). The identification of 

Müller cells was confirmed by immunocytochemical staining with a monoclonal 

antibody against vimentin (Affinity Bioreagents; Golden, CO), an intermediate 

filament protein normally expressed in Müller cells, and with a monoclonal 

antibody against cellular retinaldehyde binding protein (CRALBP; Affinity 

Bioreagents). Passages three to six were used for experiments. Normoxic and 

hypoxic conditions (< 1.0% oxygen) were generated with an Isotemp 3-gas 

Laboratory CO2 Incubator with O2 control (Kendro Laboratory Products; 

Asheville, NC) and a Proox Model 110 Gas Oxygen Controller (BioSpherix; 

Lacona, NY). Appropriate humidity and 5% CO2 were maintained. 

 

Western blot analysis  

Wild-type and COX-2 null mouse Müller cells at 70% subconfluency were 

exposed to hypoxia for 0, 2, 6, 12, 18, or 24 hours. The lysates were matched for 

protein concentration, and proteins were resolved by 10% SDS-PAGE minigels 

(Bio-Rad; Hercules, CA) and transferred to 0.2 µM nitrocellulose membranes 

(Bio-Rad). Membranes were blocked in TBS containing 0.1% Tween-20 (Sigma) 

and 1% BSA (Sigma) overnight at 4ºC. The blots were incubated with antibodies 

recognizing COX-1 and COX-2 (Cayman) for one hour, followed by an anti-rabbit 

IgG HRP antibody (Promega) for 45 minutes, at room temperature. Following 

thorough washings, the proteins were visualized with enhanced 
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chemiluminiscence (ECL; Amersham; Piscataway, NJ). Membranes were 

stripped and reprobed for β-actin (Sigma). Digitized images of Western blots 

were quantified using Image J software (NIH). Raw densitometric values were 

normalized against internal control (β-actin). 

 

Müller cell prostanoid measurement 

Wild-type mouse Müller cells at 70% subconfluency were treated with 

0.5% serum medium and exposed to either normoxia or hypoxia for 0, 2, 6, 12, 

18, or 24 hours. Conditioned medium was collected and the lipid soluble 

prostanoids were reverse-phase, solid-phase extracted using Sep-Pak C18 

columns (Waters) and nitrogen-evaporated. O-methoxyamine derivatives were 

formed by treatment with 2% methoxyamine-HCl in water at room temperature 

for 30 minutes. Compounds were extracted with ethyl acetate and subsequently 

converted to pentaflurobenzyl esters. The compounds were chromatographed on 

TLC plates with ethyl acetate/methanol. The compounds were then converted to 

trimethylsilyl ether derivatives and analyzed by negative ion chemical ionization 

mass spectrometry coupled with a gas chromatography system (Agilent 

Technologies). The amount of each prostanoid (ng/ml) in culture medium was 

normalized to total protein concentration (mg/ml) of cell lysates using a BCA 

assay (Pierce). Thus, any variation in prostanoid production due to differences in 

cell densities was resolved. 
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Hypoxic induction of VEGF in Müller cells  

Wild-type and COX-2 null mouse Müller cells at 70% subconfluency were 

exposed to hypoxia for 0, 2, 6, 12, 18, or 24 hours. Culture medium from 

experimental dishes was collected and assayed for VEGF protein concentration 

with a colorimetric sandwich ELISA kit (R&D Systems) according to the 

manufacturer’s instructions. The assay recognizes the 164 amino acid residue 

splice variant of mouse VEGF. Cells were washed with cold calcium- and 

magnesium-free PBS (Invitrogen) and lysed with cold lysis buffer (Promega). The 

amount of VEGF (pg/ml) in culture medium was normalized to total protein 

concentration (mg/ml) of cell lysates using a BCA assay (Pierce). Thus, any 

variation in VEGF production due to differences in cell densities was resolved. 

 

PGE2 and H-89 treatment of Müller cells 

Wild-type mouse Müller cells at 70% subconfluency were serum-starved 

for 6 hours, and then pre-treated with 5 μM H-89 (Cayman Chemical) for 1 hour. 

Following pre-treatment, the cells received fresh serum-free medium with H-89, 

and were treated with 10 μM PGE2 (dinoprostone; Cayman Chemical) for 12 

hours. Culture medium from experimental dishes was collected and assayed for 

VEGF protein concentration as described above. 
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Statistical analysis 

Data were analyzed with commercial software (JMP; SAS Institute). 

Analysis of variance (ANOVA) with Dunnet’s post-hoc analyses and t tests were 

used to analyze parametric data.  

 

3.4 Results 

 

Effect of hypoxia on COX-2 protein and activity 

Wild-type mouse Müller cells exposed to hypoxia showed increased levels 

of the COX-2 protein (Figure 14). The densitometry of the COX-2 bands 

(normalized against the densitometry of the β-actin bands) was quantified, and 

demonstrated that COX-2 was maximally and significantly (p < 0.05) induced 6 

and 12 hours after hypoxic treatment. Müller cells isolated from COX-2 null mice 

lack COX-2, as demonstrated by western blot analysis (Appendix 1). COX-1 is 

the isoform of COX classically recognized as being constitutively active (65). 

Importantly, hypoxia did not lead to increased COX-1 in wild-type cells (Figure 

14). Nor did hypoxia stimulate COX-1 in COX-2 null cells, indicating that COX-1 

was not compensating for the absence of the COX-2 enzyme (Figure 14). Due to 

the fact that COX-2 is an enzyme, an increase in the level of the protein does not 

necessarily indicate that activity is increased. In order to assess COX-2 activity, 

we assessed the concentration of PGE2 in the conditioned medium from hypoxia-

treated cells. We chose to look at PGE2 as a surrogate marker of COX-2 activity 



  62 

because COX-2-derived PGE2 is the prostanoid product most consistently 

upregulated in angiogenic tumor models (190). Consistent with an increase in 

COX-2 protein, COX-2 activity, as demonstrated by increased PGE2 production, 

is likewise significantly increased (* p < 0.02; † p < 0.05; ‡  p < 0.05) by hypoxia 

(Figure 15).  

 

Figure 14. The effect of hypoxia on COX-1 and COX-2 in mouse Müller cells. Wild-type 
mouse Müller cells demonstrated an increase in COX-2 upon exposure to hypoxia. Neither 
wild-type nor COX-2 null mouse Müller cells demonstrated an increase in COX-1 upon 
exposure to hypoxia. Additionally, COX-1 did not appear to be compensating for genetic 
deletion of the COX-2 gene in null cells. 
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Effect of hypoxia on VEGF production 

We have previously demonstrated the effect of hypoxia on Müller cell 

production of VEGF (191). We chose to look at a time course of VEGF production 

by hypoxic Müller cells because we hypothesized that COX-2-derived 

prostanoids mediate VEGF production in these cells, and we wanted to 

empirically determine the time course, and therefore likelihood, of these events 

being mechanistically linked. VEGF levels were significantly (p < 0.0003) 

increased over time in hypoxia, peaking at 24 hours (Figure 16). Hypoxic 

Figure 15. The effect of hypoxia on COX-2 activity in wild-type mouse Müller cells. 
Consistent with increased COX-2 protein, COX-2 activity was likewise significantly increased 
(* p < 0.01; † p < 0.025; ‡ p < 0.05) by hypoxia, as determined by the production of COX-2-
derived PGE2. Each bar represents mean + SD. 
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treatment lasting longer than 24 hours led to cell death, and hence, later time 

points were not examined. 

 

Effect of COX-2 deletion on VEGF protein 

In order to determine the COX-2-dependent effect on hypoxia-induced 

VEGF production by mouse Müller cells, we cultured wild-type and COX-2 null 

mouse Müller cells, exposed them to hypoxia for increasing periods of time, and 

assessed VEGF level. VEGF production was reduced in hypoxic COX-2 null 

cells, compared to wild-type cells, at every time point. This effect was statistically 

significant (p < 0.05) after 12, 18, and 24 hours of hypoxic treatment (Figure 17). 

Figure 16. The effect of hypoxia on wild-type mouse Müller cell production of VEGF. Hypoxia 
significantly increased VEGF production in wild-type mouse Müller cells (* p < 0.0003), with a 
time course that lagged behind that of hypoxia-induced COX-2 protein and activity, 
suggesting that some degree of VEGF production may be stimulated by COX-2-derived 
prostanoids. Each bar represents mean + SD. 
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These data demonstrate that VEGF production by mouse Müller cells is at least 

partially dependent on COX-2 and COX-2-derived bioactive prostanoids.  

 

Effect of hypoxia on prostanoid production 

In order to more clearly define which of the prostanoids might have been 

influencing hypoxic VEGF production, we analyzed prostanoid production in cells 

that had been maintained in normoxia and hypoxia for 24 hours. We chose to 

examine prostanoid production at this time point because the cells remained 

viable and demonstrated maximal VEGF production. Hypoxic treatment 

significantly increased (p < 0.02) levels of PGE2. Although levels of PGF2, PGI2, 

Figure 17. The effect of COX-2 deletion on VEGF protein. VEGF production was reduced in 
hypoxia-treated COX-2 null cells, compared to wild-type cells, at every time point.  This effect 
was statistically significant (* p < 0.05) after 12, 18, and 24 hours of hypoxic treatment, 
indicating that VEGF production is partially COX-2-dependent. Each bar represents mean + 
SD. 
 



  66 

and TXA2 also were increased by hypoxia, the results were not statistically 

significant (Figure 18). We performed the same survey in COX-2 null Müller 

cells, and as expected, baseline (normoxia) prostanoid production was 

dramatically reduced and the cells failed to demonstrate any hypoxia-reactivity 

(data not shown). These data demonstrate that several of the prostanoids are 

increased in the wild-type response to hypoxia, and suggest that PGE2, 

particularly, may play an important role in VEGF production by hypoxic mouse 

Müller cells. 

 

 

Figure 18. The effect of hypoxia on prostanoid production by wild-type mouse Müller cells. 
Twenty four hours of hypoxia led to significantly increased (* p < 0.02) levels of PGE2. 
Although levels of PGF2, PGI2, and TXA2 were increased by hypoxia, the results were not 
significant. Each bar represents mean + SD. 
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Effect of PGE2 and PKA inhibitor H-89 on prostanoid production 

In order to more clearly define the role of COX-2-derived PGE2 on VEGF 

production, Müller cells were treated with PGE2 and their ability to produce VEGF 

was assessed (Figure 19). We chose to use wild-type cells because the COX-2 

null cells do not produce measurable quantities of VEGF following overnight 

serum-starvation and subsequent treatment with a low serum concentration, as 

required in this assay. We chose to use PGE2 (10 µM dinoprostone) because our 

GC-MS data (Figure 18) indicated that this prostanoid was significantly 

increased by hypoxia. We chose to treat the cells for 12 hours because there 

Figure 19. The effect of PGE2 and PKA inhibition on VEGF production by wild-type mouse 
Müller cells. Twelve hours of PGE2 (10 µM) treatment significantly (* p < 0.0039) increased 
VEGF production by Müller cells. The PGE2-induced increase in VEGF was completely 
inhibited († p < 0.0055) by treatment with 5 µM H-89, a PKA inhibitor. These data suggest 
that the effect of PGE2 on VEGF induction is mediated by the EP2 and/or EP4 receptors. Each 
bar represents mean + SD. 
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was a 6-12 hour lag time between maximal COX-2 induction and maximal VEGF 

production, and we believe that these two events are mechanistically linked and 

that 12 hours may be needed for COX-2 and the prostanoids to affect the VEGF 

transcription and translation machinery. Dinoprostone significantly (* p < 0.0039) 

increased VEGF production. The PGE2-induced increase in VEGF was 

completely inhibited († p < 0.0055) by treatment with the PKA inhibitor H-89. 

These data suggest that the effect of PGE2 on VEGF induction is mediated by 

the EP2 and/or EP4 receptors, receptors known to signal through the PKA 

pathway (192). 

 

3.5 Discussion 

 

Recent studies indicate that inhibiting the COX enzymes is an effective 

means by which to inhibit VEGF production and NV in relevant models of ocular 

disease (107,110-13,187-189). COX inhibitors have demonstrated efficacy in 

corneal, retinal, and choroidal models of angiogenesis. Although these studies 

have demonstrated the efficacy of COX inhibition at reducing the production of 

VEGF and NV, little work has been done to determine the mechanism by which 

COX-2 and its prostanoid products mediate VEGF production and the resultant 

ocular angiogenesis. In this study, we used an in vitro assay of hypoxia-induced 

VEGF production to examine the role of COX-2 and the prostanoids in mediating 

VEGF production by mouse retinal Müller cells, the cells that most consistently 

and dramatically increase production of VEGF in response to angiogenic 
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stimulation, as a necessary first step in the process of defining a more specific 

therapeutic target in the treatment of retinal NV (32-34,186).  

It is well known that retinal ischemia-induced hypoxia is one driving force 

behind retinal NV (114,115). It is also known that hypoxic challenge induces 

COX-2 in various cell types, including vascular endothelial cells, corneal 

epithelial cells, and various tumor cell lines (83,193-197). We looked at the COX-

2 response of mouse Müller cells exposed to hypoxia for increasing periods of 

time. In response to hypoxia, wild-type mouse Müller cells demonstrated 

significantly increased levels of COX-2 and prostanoid production (Figures 14, 

15 and 18). These data agree with the findings of others (referenced above) and 

were expected, COX-2 is an immediate early gene, rapidly and transiently 

induced by a variety of stimuli (198). Herein, we have also shown that wild-type 

mouse Müller cells demonstrated significantly increased levels of VEGF in 

response to hypoxia (Figure 16), and VEGF levels were increased with a 

temporal sequence that lagged behind COX-2 induction and activity. The time 

sequence of VEGF production by hypoxic mouse Müller cells is consistent with 

the hypothesis that there are COX-2-dependent aspects of VEGF production.  

Previous studies have demonstrated that COX-2 is involved in mediating 

growth factor production in various cell types, and in response to various stimuli 

(75,76). The present study has shown that COX-2 was upregulated and activated 

by hypoxia, and VEGF levels were increased, in an in vitro assay of hypoxia-

induced VEGF production. We have also shown that, compared to wild-type 

cells, COX-2 null mouse Müller cells treated with hypoxia produce significantly 



  70 

less VEGF (Figure 17). This finding suggests that COX-2 and its prostanoid 

products play a role in the VEGF response of Müller cells. These data agree with 

the findings of others; researchers studying angiogenesis related to various 

cancers and other neovascularizing conditions have demonstrated, using 

pharmacologic and genetic manipulation of COX-2, that COX-2 inhibition resulted 

in reduced VEGF production, in vitro and in vivo (77-80). Of more relevance to 

the eye, NSAID use has been effective at reducing the production of VEGF and 

NV in relevant models of ocular disease (107,110-113,154,187-189). Our findings 

have important implications for conditions characterized by retinal NV. Retinal 

hypoxia leads to increased production of VEGF, and VEGF is thought to be a 

principal mediator of the angiogenesis that occurs in retinal NV (22). The Müller 

cells most consistently and dramatically increase production of VEGF in 

response to retinal hypoxia (32-34,186). We have shown that genetic deletion of 

COX-2 and the resultant reduction in prostanoid synthesis led to a significant 

reduction in hypoxia-induced VEGF production by Müller cells. However, COX-2 

activity leads to the production of five bioactive prostanoid products. Thus, our 

results led us to investigate which of the prostanoids were involved in VEGF 

production by mouse Müller cells, in order to define a more selective 

chemotherapeutic target for the treatment and management of retinal NV. 

COX-2 activity results in the formation of five biologically active 

prostanoids (PGD2, PGE2, PGF2, PGI2, TXA2). In response to hypoxia, wild-type 

mouse Müller cells demonstrated significantly increased levels of PGE2 (Figure 

18), suggesting that this prostanoid might play a role in mediating VEGF 
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production. In fact, treating Müller cells with PGE2 significantly increased VEGF 

production (Figure 19). Of relevance to our focus, Cheng et al., using pure, 

primary cultures of rat Müller cells, demonstrated that PGE2 significantly induced 

VEGF mRNA, with maximal VEGF mRNA noted 2 hours post-prostaglandin 

treatment (75). Our PGE2 data confirms what has been shown in the literature – 

that PGE2 stimulates VEGF production in widely diverse cell types (132,199-

203). PGE2 affects a wide range of physiological and pathological processes by 

binding to distinct cell surface G-protein-coupled receptors (GPCRs). PGE2 binds 

and activates one (or more) prostaglandin E (EP) receptors: EP1, EP2, EP3, and 

EP4 (67). The receptors demonstrate distinct, as well as opposing, effects on 

intracellular signaling events. Of these receptors, EP2 and EP4 couple to Gs and 

mediate a rise in cAMP concentration and subsequent PKA activity. We chose to 

focus our attention on these receptors because Müller cells derived from EP1 and 

EP3 null mice failed to inhibit hypoxia-induced VEGF production by Müller cells 

(Appendix 2). There have been numerous reports in the literature demonstrating 

a role of these two receptors in mediating PGE2-induced angiogenic cell 

behaviors (132,199-201). We sought to determine whether this was the case in 

our model system. Of particular interest, in our model system, hypoxia led to a 

2.5-fold increase in PKA activity (data not shown). As shown in Figure 19, the 

PKA inhibitor virtually abolished PGE2-induced VEGF production in mouse Müller 

cells. These findings agree with a large body of published findings (75,204-1206). 

Our data suggests that PGE2 signals through the EP2 and/or EP4 receptor(s), 

activating PKA, which ultimately leads to VEGF production by Müller cells.  
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Although we have focused our attention on PGE2 and its cognate 

receptors, it is possible that one or more of the other prostanoids, specifically 

PGI2 or PGF2, both of which were stimulated by hypoxia (Figure 18), play a role 

in mediating retinal NV. These prostanoids signal through the IP and FP 

receptors, respectively. A review of these receptors implicates both of them in 

angiogenic cell behaviors and tumor progression (207). Additionally, the IP 

receptor is predominantly coupled to Gs, meaning that its activation leads to 

increased cAMP production and PKA activity. In the future, it will be important to 

determine whether all prostanoids that demonstrate pro-angiogenic activity in 

Müller cells signal through PKA, and affect VEGF production similarly. To more 

clearly define the specific role(s) of the EP2 and EP4 receptors, as well as the IP 

and FP receptors in retinal NV, we have planned studies using pharmacologic 

agents as well as genetically modified mice and cells derived from their retinas. 

Preliminary, non-optimized studies have shown that latanoprost, a PGF2 analog, 

significantly increased VEGF production by COX-2 null Müller cells (Appendix 

3). 

We have, for the first time, used COX-2 null mouse Müller cells to show 

that COX-2 and at least one of its prostanoid products, PGE2, is involved in 

VEGF production. Our study implicates PGE2, signaling through the EP2 and/or 

EP4 receptor(s), in mediating the VEGF response of the cells. Figure 20 depicts 

our working model, illustrating how COX-2 activation leads to VEGF production in 

these cells. This information may provide a more selective chemotherapeutic 
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target for the prevention and/or treatment of conditions in which retinal 

angiogenesis is a pathologic feature. 

 

 

 

 

 

Figure 20. A flowchart demonstrating the way that we hypothesize COX-2 mediates hypoxia-
induced VEGF production by Müller cells. In response to hypoxia, COX-2 is up-regulated, 
leading to increased production of pro-angiogenic PGE2. PGE2 binds to the EP2 and/or EP4 
receptors, activating G proteins that couple to increased cAMP production. cAMP activates 
PKA, which is involved in mediating VEGF production. 
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4.1 Abstract 

 

PGE2 binds to PGE2 receptors (EP1-4). The purpose of the present study 

was to investigate the role of the EP4 receptor in angiogenic cell behaviors of 

retinal Müller cells and retinal microvascular endothelial cells (RMEC), and to 

assess the efficacy of an EP4 antagonist in rat models of oxygen-induced 

retinopathy (OIR) and laser-induced choroidal neovascularization (LCNV). 

Müller cells derived from COX-2 null mice were treated with increasing 

concentrations of the EP4 agonist PGE1-OH and wild-type Müller cells were 

treated with increasing concentrations of the EP4 antagonist L-161982; VEGF 

production was assessed. Human RMEC (HRMEC) were treated with increasing 

concentrations of L-161982 and cell proliferation and tube formation were 

assessed.  Rats subjected to OIR or LCNV were administered L-161982 and 

neovascular area was measured.  

COX-2 null mouse Müller cells treated with increasing concentrations of 

PGE1-OH demonstrated a significant increase in VEGF production (p < 0.0165). 

Wild-type mouse Müller cells treated with increasing concentrations of L-161982 

demonstrated a significant decrease in VEGF production (p < 0.0291). HRMEC 

treated with increasing concentrations of L-161982 demonstrated a significant 

reduction in VEGF-induced cell proliferation (p < 0.0033) and tube formation (p < 

0.0344). L-161982 treatment significantly reduced pathological 

neovascularization in OIR (p < 0.0069) and LCNV (p < 0.0329).  
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Preliminary investigation has demonstrated that EP4 activation or inhibition 

influences the behaviors of two retinal cell types known to play roles in 

pathological ocular angiogenesis. These findings suggest that the EP4 receptor 

may be a valuable therapeutic target in neovascular eye disease. 

 

4.2 Introduction 

 

Angiogenesis, the formation of new capillaries from an existing 

vasculature, is a tightly regulated physiological process essential for 

reproduction, embryonic growth and development, and tissue repair and 

regeneration (1). In these circumstances, angiogenesis is strictly regulated and 

briefly activated.  Conversely, pathological processes, such as arthritis and 

tumorigenesis, are characterized by persistent, poorly regulated angiogenesis. In 

the eye, pathological angiogenesis, or ocular neovascularization (NV), is the 

leading cause of irreversible blindness in developed countries (9,10,12). Ocular 

NV is a defining feature of retinopathy of prematurity (ROP), proliferative diabetic 

retinopathy (PDR), and neovascular age-related macular degeneration (AMD or 

ARMD). To more effectively prevent and treat ocular NV, a thorough 

understanding of the cellular and molecular mechanisms involved is necessary. 

Retinal NV is often the result of ischemia-induced hypoxia (114,115). In 

response to retinal hypoxia, several cell types increase their production of pro-

angiogenic growth factors. Of the growth factors involved in retinal NV, vascular 

endothelial growth factor (VEGF) is recognized as the principal mediator of 
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ocular NV (32,55,116). Hypoxia-induced VEGF production has been 

demonstrated most consistently and dramatically in Müller cells, the predominant 

glial cells within the retina (32-34,186). Once VEGF is produced and secreted, it 

binds and activates two cell-surface receptor tyrosine kinases, VEGFR-1 (Flt-1) 

and VEGFR-2 (KDR/Flk-1), with high affinity (23). These receptors are expressed 

on the surface of endothelial cells. VEGFR-2 is the principle receptor involved in 

VEGF signal transduction leading to angiogenesis (49). VEGFR-2 activation 

initiates a number of signal transduction cascades leading to angiogenic 

endothelial cell behaviors such as survival, permeability, proliferation, and 

migration (23).  

The cyclooxygenase (COX) enzymes catalyze the biosynthesis of five 

biologically active prostanoids (prostaglandins and thromboxanes) from 

membrane-derived arachidonic acid.  The prostanoids include PGD2, PGE2, 

PGF2, PGI2, and TXA2. There is ample evidence of a role for COX-2, the 

inducible COX isoform, and its prostanoid metabolites, principally PGE2, in tumor 

angiogenesis (69-73).  

The prostanoids affect a wide range of physiological and pathological 

processes by binding to distinct cell surface G-protein-coupled receptors 

(GPCRs). PGE2 binds and activates one (or more) of four prostaglandin E (EP) 

receptors: EP1, EP2, EP3, and EP4 (67). The receptors demonstrate distinct, as 

well as opposing, effects on intracellular signaling events. The EP1 receptor 

couples to Gq and mediates a rise in intracellular calcium concentration. The EP2 
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and EP4 receptors couple to Gs and mediate a rise in cAMP concentration. In 

contrast, the EP3 receptor couples to Gi, reducing cAMP concentration.  

Various groups have determined a direct role for PGE2 and EP4 in 

angiogenic gene expression (199,208), angiogenic cell behaviors (209-215), and 

the angiogenic component of tumor growth (209,216-219). However, the majority 

of these studies have been conducted using in vitro and in vivo models of colon 

cancer.  It remains to be determined whether the EP4 receptor plays a similar 

role in ocular NV. 

In this study, in vitro experiments were performed to investigate the 

influence of the EP4 receptor on discrete aspects of retinal angiogenesis.  First, 

prostanoid-mediated VEGF production was assayed to investigate the role of the 

EP4 receptor in stimulating Müller cell VEGF production.  Second, the effect of 

EP4 receptor antagonism on VEGF-induced endothelial cell proliferation and tube 

formation was investigated in retinal microvascular endothelial cells (RMEC).  

Finally, to further investigate the therapeutic potential of EP4 receptor antagonism 

for human use, two clinically relevant in vivo models of ocular NV were used.  

Rat models of retinal and choroidal NV were used to assess the efficacy of EP4 

receptor antagonism. These studies will help to define the role of the EP4 

receptor in mediating pathological ocular angiogenesis. 
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4.3 Materials and Methods 

 

Isolation and culture of primary mouse retinal Müller cells   

Primary retinal Müller cell cultures were established from P7 wild-type and 

COX-2 null mice (a generous gift from Dr. Sudhansu Dey, Cincinnati Children’s 

Hospital Medical Center) according to well-established methods (144). Briefly, 

enucleated eyes were placed in soaking medium, Dulbecco’s Modified Eagle 

Medium Low Glucose (DMEM; HyClone) supplemented with 1X 

Antibiotic/Antimycotic Solution (Sigma), overnight.  The following day, eyes were 

incubated in digestion buffer, comprised of the soaking medium plus 0.1% trypsin 

and 70 U/ml collagenase, for 20 minutes at 37ºC.  Retinas were then dissected, 

triturated, plated, and grown in DMEM supplemented with 10% fetal bovine 

serum and 1X Antibiotic/Antimycotic Solution.  Cultures were maintained at 37ºC 

in a 5% CO2/95% air (20.9% oxygen) atmosphere (normoxia) in a humidified 

incubator (NuAire).  Passages three to six were used for experiments. 

 

Culture of human retinal microvascular endothelial cells (HRMEC)  

Human retinal microvascular endothelial cells (HRMEC; Cell Systems) 

were cultured in tissue flasks coated with attachment factor (Cell Signaling) in 

endothelial basal medium (EBM; Cambrex) supplemented with 10% FBS and 

EGM single quots (Cambrex). When experimental conditions required serum free 

(SF) medium, EBM with no FBS or single quots was used. Cultures were 
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maintained at 37ºC in a 5% CO2/95% air (20.9% oxygen) atmosphere (normoxia) 

in a humidified incubator. 

 

Müller cell VEGF induction 

Müller cells were isolated from wild-type and COX-2 null mice and grown 

to 70% sub-confluency. In one experiment, COX-2 null cells were serum-starved 

for 12 hours (DMEM supplemented with 1X Antibiotic/Antimycotic Solution) and 

then treated with vehicle (0.1% DMSO) or increasing concentrations (0.1 to 10 

µM) of the PGE2 EP4 agonist, PGE1-OH (Cayman Chemical), in 2% serum 

medium.  After 6 hours, culture medium from experimental dishes was collected 

and assayed for VEGF protein concentration. In a separate experiment, wild-type 

mouse Müller cells were serum-starved for 12 hours, and then pre-treated with 

vehicle (0.1% DMSO) or increasing concentrations (1 to 5 µM) of the EP4 

antagonist, L-161982, in 2% serum medium. Forty-five minutes later, the cells 

were treated with 10 µM PGE2 (Cayman Chemical). After 12 hours, culture 

medium from experimental dishes was collected and assayed for VEGF protein 

concentration. For both experiments, VEGF protein concentration was measured 

using the mouse VEGF-164 ELISA kit (R&D Systems) according to the 

manufacturer’s instructions.  Cells were washed with cold calcium- and 

magnesium-free PBS (Invitrogen Corporation) and lysed with cold lysis buffer 

(Promega). The amount of VEGF (pg/ml) in culture medium was normalized to 

total protein concentration (mg/ml) of cell lysates using a BCA assay (Pierce). 

These experiments were independently repeated two times. 
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HRMEC proliferation 

HRMEC were seeded in 10% serum EBM at 3x103 cells per well in a 96-

well plate, and allowed to attach and settle.  HRMEC were serum-starved for 12 

hours, and then treated with 1% serum medium in the absence or presence of 25 

ng/ml VEGF. Some of the cells treated with VEGF received increasing 

concentrations (1 to 5 µM) of L-161982, for 24 hours. Cells were then labeled 

with BrdU for 12 hours, and BrdU incorporation was quantified with a colorimetric 

ELISA (Roche; Indianapolis, IN) according to the manufacturer’s instructions. 

The experiment was independently repeated four times. 

 

HRMEC tube formation 

Six-well tissue culture plates were coated with 500 µL of growth factor-

reduced Matrigel (Becton-Dickinson). HRMEC were seeded at 40,000 cells/well 

and treated with serum-free EBM containing vehicle (0.1% DMSO) or 3, 5 or 10 

µM L-161982. The cells were cultured for 24 hours at 37ºC in a 5% CO2 

atmosphere. Tubes were observed with an IMT-2 inverted microscope 

(Olympus), and images were captured with a DMC digitizing camera (Polaroid 

Corporation). Six fields per well were captured for quantitative analysis. The 

digitized images were imported into Image J software (NIH). Capillary-like 

structures of more than two cell lengths were assessed, and the mean tube 

length per field of each well was calculated. The average tube length of each 
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treatment group was reported. The experiment was independently repeated three 

times. 

 

Oxygen-induced retinopathy (OIR) 

All animal procedures used in this study were approved by the Vanderbilt 

University Institutional Animal Care and Use Committee and were performed in 

accordance with the ARVO Statement for the Use of Animals in Ophthalmic and 

Vision Research. Litters of Sprague-Dawley rat pups and their mothers (Charles 

River Laboratories) were transferred within four hours after birth to oxygen 

exposure chambers where they received alternating 24 hour periods of 50% 

oxygen and 10% oxygen for 14 days (143). On post-natal day 14 (P14), the 

oxygen-exposed rats were returned to room air. Vehicle (0.1% DMSO) or the EP4 

antagonist, L-161982 (0.01, 0.1, and 0.7 µM), was administered to oxygen-

exposed rats at P14 by intravitreal injection, according to well-established 

methods (145). Six days after removal to room air, on P20, the rats were 

sacrificed, and their retinas dissected. Following dissection, the retinas were 

stained with ADPase, using well-established methods (171). Abnormal retinal 

neovascularization was measured via computer-assisted image analysis (145). 

 

Laser-induced choroidal neovascularization (LCNV) 

Laser-induced rupture of Bruch’s membrane was performed to produce 

CNV in 6-week-old, male Brown Norway rats, as previously described (220). 

Using a hand-held cover slip as a contact lens, an argon laser photocoagulator 



  84 

(532 nm) mounted on a slit-lamp (Coherent Novus Omni) was employed to 

create four lesions in both the left and right eyes of each animal (50 µm spot size, 

0.1 second duration, 360 mW). The animals’ eyes were then divided into the 

following treatment groups [vehicle (0.1% DMSO); 0.01 µM L-161982; 0.1 µM L-

161982; 1 µM L-161982] and received an intravitreal injection at the temporal ora 

1, 3, and 7 days following laser treatment. Fourteen days after laser application, 

rats were sacrificed to measure the extent of CNV at the Bruch’s membrane 

rupture sites. Endothelial cells in CNV lesions were identified by staining RPE-

Bruch’s membrane-choroid flatmounts using FITC-conjugated isolectin B4 

(Sigma), and the elastin of the extracellular matrix was identified using an elastin 

antibody conjugated to Cy3 (Sigma). Areas of abnormal vascular growth were 

measured via computer-assisted image analysis using high-resolution digital 

images of the stained choroid-sclera-RPE flat-mounts. This experiment was 

independently repeated two times.  

 

Statistical analysis 

Data were analyzed with commercial software (JMP; SAS Institute). 

Analysis of variance (ANOVA) with appropriate post-hoc analyses were used to 

analyze data. 
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4.4 Results 

 

Effect of an EP4 agonist, PGE1-OH, on VEGF production 

To investigate the contribution of the PGE2 EP4 receptor to VEGF 

production, COX-2 null Müller cells were treated with increasing concentrations 

(0.1 to 10 µM) of PGE1-OH, an EP4 receptor agonist. Treatment lasted 6 hours. 

Agonism of the EP4 receptor significantly (* p < 0.0001; † p < 0.006; ‡ p < 

0.0165) increased VEGF production by COX-2 null Müller cells, in a dose-

dependent manner (Figure 21). 

Figure 21. The effect of an EP4 agonist, PGE1-OH, on VEGF production in COX-2 null 
mouse Müller cells. PGE1-OH significantly increased VEGF production by COX-2 null cells. 
Each bar represents the mean ± SD. * p < 0.0001; † p < 0.006; ‡ p < 0.0165 (Dunnet’s post-
hoc analysis). For each bar, n = 4. 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Effect of an EP4 antagonist, L-161982, on PGE2-induced VEGF production 

To further investigate the contribution of the PGE2 EP4 receptor to VEGF 

production, wild-type Müller cells were pre-treated with increasing concentrations 

(1 to 5 µM) of L-161982, an EP4 receptor antagonist, for 45 minutes, followed by 

10 µM PGE2 stimulation. Treatment lasted 12 hours. Antagonism of the EP4 

receptor significantly (* p < 0.0066; † p < 0.0291) decreased PGE2-induced 

VEGF production by wild-type Müller cells (Figure 22). 

 

Figure 22. The effect of an EP4 antagonist, L-161982, on PGE2-induced VEGF production by 
wild-type mouse Müller cells. L-161982 pre-treatment significantly decreased PGE2-induced 
VEGF production by wild-type mouse Müller cells. Each bar represents the mean ± SD. * p < 
0.0066; † p < 0.0291 (Dunnet’s post-hoc analysis). For each bar, n = 4. 
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Effect of an EP4 antagonist, L-161982, on VEGF-induced HRMEC 

proliferation 

To investigate the contribution of the EP4 receptor to VEGF-induced 

HRMEC proliferation, HRMEC were treated with VEGF and increasing 

concentrations (1 to 5 µM) of the EP4 receptor antagonist, L-161982. L-161982 

significantly (* p < 0.0001; † p < 0.0033) inhibited VEGF-induced cell proliferation 

in HRMEC (Figure 23). 

 

 

 

Figure 23. The effect of an EP4 antagonist, L-161982, on VEGF-induced HRMEC 
proliferation. HRMEC proliferation was stimulated with 25 ng/ml VEGF. L-161982 significantly 
decreased VEGF-induced cell proliferation in HRMEC. Each bar represents the mean ± SD. * 
p < 0.0001; † p < 0.0033 (Dunnet’s post-hoc analysis). For each bar, n = 11. 
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Effect of an EP4 antagonist, L-161982, on HRMEC tube formation 

To investigate the influence of the EP4 receptor on HRMEC tube 

formation, HRMEC were treated with increasing concentrations (3 to 10 µM) of 

the EP4 receptor antagonist, L-161982. L-161982 caused a dose-dependent 

decrease in HRMEC tube formation, and significantly (* p < 0.0344) inhibited 

tube formation at the highest dose tested (Figure 24 and 25). 

Figure 24. The effect of an EP4 antagonist, L-161982, on HRMEC tube formation. L-161982 
significantly decreased tube formation in a dose-dependent manner. Each bar represents the 
mean ± SD. * p < 0.0344 (Dunnet’s post-hoc analysis). For each bar, n = 3. 
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Effect of an EP4 antagonist, L-161982, on OIR in the rat 

Figures 21 through 25 demonstrate that EP4 activation or inhibition 

influences the behaviors of two retinal cell types that are known to play roles in 

the pathological ocular angiogenesis characteristic of neovascular retinopathies. 

Next, the efficacy of the EP4 antagonist L-161982 was tested in the rat model of 

OIR. At P14, OIR rats received either vehicle (0.1% DMSO) or L-161982 (0.01, 

Figure 25. The effect of an EP4 antagonist, L-161982, on HRMEC tube formation. L-161982 
(10 µM) significantly decreased tube formation, as depicted in representative 
photomicrographs. A. HRMEC treated with vehicle (0.1% DMSO); B. HRMEC treated with 10 
µM L-161982. 
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0.1, or 0.7 µM) by intravitreal injection. Six days post-injection, the retinas were 

dissected, flat-mounted, stained, and assessed for extent of neovascularization 

via computer-assisted image analysis. As shown in Figures 26 and 27, EP4 

receptor antagonism significantly [0.769 ± 0.141 (0.7 µM) * p < 0.0001; 1.088 ± 

0.210 (0.1 µM) † p < 0.001; 1.267 ± 0.175 (0.01 µM) ‡ p < 0.0069 vs. 2.126 ± 

.204 mm2 (vehicle-treated)] inhibited the severity of neovascularization in the OIR 

model. 

Figure 26. The effect of an EP4 antagonist, L-161982, on the severity of oxygen-induced 
retinopathy in the rat. L-161982 significantly decreased the severity of OIR in a dose-dependent 
manner. Each bar represents the mean ± SEM. * p < 0.0001; † p < 0.001; ‡ p < 0.0069 (Dunnet’s 
post-hoc analysis). For vehicle, n = 9; 0.01 and 0.1 µM, n= 10; 0.7 µM, n = 11. 
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Effect of an EP4 antagonist, L-161982, on the severity of LCNV in the rat 

The efficacy of L-161982 was tested in a second model of ocular 

neovascularization, the rat model of LCNV. Rats received intravitreal injections of 

vehicle (0.1% DMSO) or 0.01, 0.1, or 1 µM L-161982 on days 1, 3, and 7 

following laser treatment. Rats were sacrificed 14 days post-laser treatment. 

Analysis of stained flatmounts demonstrated that L-161982 significantly [172.666 

± 18.068 (drug-treated) vs. 257.133 ± 12.472 µm2 (vehicle-treated); * p < 0.0329] 

reduced the severity of the LCNV response at the highest concentration tested (1 

Figure 27. The effect of an EP4 antagonist, L-161982, on the severity of oxygen-induced 
retinopathy in the rat, as visualized by representative ADPase-stained retinal flat mounts. L-
161982 significantly decreased the severity of OIR. A. Eye treated with vehicle (0.1% 
DMSO); B. Eye treated with 0.7 µM L-161982. 
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µM), as indicated by a reduced area of choroidal endothelial cell infiltration at the 

lesion site (Figures 28 and 29).                                                          

 

4.5 Discussion 

 

The COX-2 enzyme leads to the production of five bioactive lipids 

(prostanoids) that mediate diverse physiological and pathophysiological 

processes. Of the prostanoids, PGE2 is most consistently increased in 

angiogenic human tumors (69-73). We have demonstrated that PGE2 is 

Figure 28. The effect of an EP4 antagonist, L-161982, on the severity of laser-induced 
choroidal neovascularization in the rat. The highest concentration of L-161982 significantly 
decreased the severity of LCNV. Each bar represents the mean ± SEM. * p < 0.0329 
(Fisher’s LSD post-hoc analysis). For vehicle and 1 µM, n = 16; 0.01 µM, n = 28; 0.1 µM, n = 
24. 
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increased in in vitro experiments that model retinal angiogenic cell behaviors, 

and in in vivo models of retinal angiogenesis (data not shown). Preliminary 

studies conducted in our lab suggest that the effect of PGE2 on retinal 

angiogenesis is mediated by the EP4 receptor. This hypothesis is based on the 

following preliminary findings: 1) Müller cells derived from EP1 and EP3 knockout 

Figure 29. The effect of an EP4 antagonist, L-161982, on the severity of laser-induced 
choroidal neovascularization in the rat, as visualized by isolectin B4 (green) and elastin (red) 
stained RPE-Bruch’s membrane-choroid flat mounts. The highest concentration of L-161982 
was able to significantly decrease the severity of LCNV, as indicated by decreased choroidal 
endothelial cell infiltration around the laser-induced wound site. A. Eye treated with vehicle 
(0.1% DMSO); B. Eye treated with 1 µM L-161982. 
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mice fail to inhibit angiogenic cell behavior, as measured by hypoxia-induced 

VEGF production (Appendix 2); and 2) specific agonists of EP1-3 fail to elicit a 

VEGF response in COX-2 knockout Müller cells. To our knowledge, this study is 

the first to examine and demonstrate a role for the EP4 receptor in retinal 

angiogenesis.  

Müller cells derived from COX-2 null mice exhibit reduced VEGF 

production (Yanni SE, et al. IOVS 2007;48:ARVO E-Abstract 51), presumably 

due to the absence of COX-2 and pro-angiogenic prostanoid production. We 

have demonstrated that VEGF can be stimulated in COX-2 null Müller cells by 

the EP4 agonist PGE1-OH (Figure 21). Compared to wild-type cells, COX-2 null 

cells in culture do not demonstrate any significant difference in the protein level 

of EP4 (data not shown). This suggests that the results in Figure 21 are not due 

to EP4 compensation in COX-2 null cells. We have also demonstrated that PGE2-

induced VEGF can be inhibited by the EP4 receptor antagonist, L-161982 

(Figure 22). To our knowledge, this study is the first to use primary cultures of 

Müller cells derived from COX-2-deficient mice. Our Müller cell data compliments 

a growing body of data in the literature: various cell types and model systems 

have been used to demonstrate that VEGF production is at least partially 

dependent on the EP4 receptor (199,201,216,221,222). We have also 

demonstrated that HRMEC treated with the EP4 antagonist L-161982 exhibit 

reduced VEGF-induced cell proliferation and tube formation (Figures 23 – 25). 

Notably, L-161982 significantly inhibits HRMEC proliferation at a concentration 

lower than that required to inhibit HRMEC tube formation. Under our assay 
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conditions, tube formation requires little, if any, cell proliferation. The finding that 

L-161982 more effectively inhibits HRMEC proliferation than tube formation 

suggests that the EP4 receptor differentially regulates angiogenic endothelial cell 

behaviors, exerting a much stronger influence on proliferation than migration. 

The fact that only the highest concentration (10 µM) of L-161982 demonstrated 

an effect on HRMEC tube formation suggests that the EP4 receptor might not 

play an important role in vascular reorganization (as modeled by this assay), but 

may play a more important role in sprouting angiogenesis. Additional 

experiments could be used to corroborate the role of EP4 in sprouting 

angiogenesis in vitro. Additionally, in order to more clearly define the activity of L-

161982, it will be necessary to explore the signal intermediates affected by drug 

treatment. Our HRMEC data also complement the literature, which demonstrates 

that in other cell types, the EP4 receptor is involved in ERK activation, cell 

proliferation, and angiogenic cell behavior (211,213,214). Ideally, the 

investigators would have liked to assess the effect of EP4 agonism in VEGF-

induced HRMEC assays (proliferation and tube formation). The appropriate way 

to perform this experiment is in the absence of endogenous prostaglandin 

production and influence. Therefore, cells isolated from COX-2 null mice are the 

optimal experimental venue. Unfortunately, this approach is not possible for the 

following reasons: in culture, COX-2 null mouse RMEC (MRMEC) lose their EC 

phenotype, and do not survive passaging, rendering them useless in in vitro 

assays of the type required. After unsuccessfully trying this approach, the 

authors investigated siRNA knockdown of COX-2 in HRMEC, in order to use 
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knockdown cells for agonist studies. However, only 60% knockdown was 

obtained, despite trying several siRNA sequences alone and in combination. In 

these cases, enough residual COX-2 activity remained to confound the results 

obtained using knockdown cells treated with the EP4 agonist. In the future, it will 

be of great value to attempt to isolate MRMEC from COX-2+/- mice (cells that 

have less COX-2 protein than wild-type cells), followed by siRNA knockdown of 

residual COX-2. This experimental approach may yield MRMEC lacking COX-2 

activity, which can be used in the assays described above. Alternatively, other 

means of achieving stable knockdown should be explored. 

These experiments indicate that the EP4 receptor mediates distinct 

angiogenic cell behaviors in two retinal cell types that are known to play roles in 

the pathological ocular angiogenesis characteristic of neovascular retinopathies. 

This finding is significant because it suggests that EP4 receptor inhibition has the 

potential to affect the ocular angiogenic cascade at more than one point, 

providing a more powerful and effective therapeutic target for angiogenic 

diseases of the eye and other tissues. 

As an initial step in determining therapeutic potential, we tested the 

efficacy of the EP4 antagonist L-161982 in rat models of OIR and LCNV and have 

shown that this compound reduced the severity of neovascularization in both 

model systems (Figures 26 – 29). In both models, L-161982 was injected into 

the vitreous cavity. Thus, L-161982 may be more bioavailable at sites of pre-

retinal NV than at sites of sub-retinal NV, explaining the drug’s superior 

performance in OIR vs. LCNV. L-161982, at high concentrations, binds and 
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activates the angiotensin II AT1 receptor, which has angiogenic activity (223). Of 

particular relevance, the angiogenic activity of the AT1 receptor has been 

demonstrated in a mouse model of oxygen-induced retinopathy (224,225). 

Additionally, L-161982 has the following Ki values for other prostanoid receptors 

(in µM): 0.024 for EP4, 0.71 for TP, 1.90 for EP3, 5.10 for DP, 5.63 for FP, 6.74 

for IP, 19 for EP1 and 23 for EP2. Some of these receptors have demonstrated 

angiogenic activity, as detailed in the literature (207). Thus, the in vivo 

concentrations chosen should be selective for EP4. For this reason, we chose to 

inject low concentrations of L-161982 in the OIR and LCNV models. In order to 

complement the data presented herein, and to more clearly define the specific 

role(s) of the EP4 receptor in ocular neovascularization, without the confound of 

AT1 receptor activation, studies using EP4 null cells and animals are currently 

underway. Preliminary data suggests that the pharmacologic data presented 

here will be validated by studies using genetically modified mice and cells 

derived from their retinas. 

Various models of in vivo angiogenesis and tumor growth have similarly 

demonstrated the EP4 receptor to be pro-angiogenic, and that EP4 receptor 

inhibition elicits an anti-angiogenic effect (209,214,216,218,219). The data 

presented here suggest that the EP4 receptor exerts its angiogenic influence by 

promoting VEGF production by Müller cells and that antagonism of the receptor 

inhibits VEGF production by Müller cells and endothelial cell proliferation and 

tube formation. These novel findings suggest that EP4 receptor antagonism may 
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be a rational therapeutic strategy for the treatment of human neovascular eye 

disease. 
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CHAPTER V 

 

CONCLUDING REMARKS 

 

COX-2 and the prostanoids are up-regulated in many types of human 

cancers (70,226-228). These findings implicate these proteins in the 

angiogenesis that occurs as a part of the disease process. In fact, COX-2 

inhibition has proven to be an effective means by which to inhibit tumor growth in 

animal models of disease (69,229-231). In large part due to data derived from 

coxib-treated animals, there have been several hundred clinical trials designed to 

assess the efficacy of COX-2 inhibitors, alone or as a therapeutic adjuvant, on 

the regression of human tumors. Unfortunately, many of the human clinical trials 

using COX-2 inhibitors were suspended because of the occurrence of adverse 

cardiovascular effects (232,233). Broad inhibition of COX-2 and all five of the 

downstream prostanoids appears to be a therapeutic strategy of limited clinical 

utility. This is likely because the prostanoids mediate a wide variety of 

physiological, as well as pathophysiological, processes. Selectively inhibiting one 

component of the COX-2 enzymatic cascade (e.g., one of the five prostanoids, or 

one of the nine receptors) may provide a more rational approach, one that is 

safer and more tolerable, but remains highly effective. 

In the eye, various groups have demonstrated that COX inhibitors reduced 

the severity of pathological ocular angiogenesis in animal models 

(77,95,107,108,110-113,189). However, little work has been done to determine 



  100 

which of the COX-2-derived prostanoid(s) is (are) involved in mediating VEGF 

production, downstream angiogenic endothelial cell behaviors, and ocular 

angiogenesis. Because of this gap in ocular angiogenesis research, we 

examined the specific involvement of COX-2, COX-2-derived prostanoids, and 

prostanoid receptors in ocular angiogenesis. The goal of our research was two-

fold. We wanted to: 1) better understand the role of COX-2-derived prostanoids 

in ocular angiogenic disease, and 2) use the knowledge gained through our 

research to identify more specific therapeutic targets. 

In order to better understand ocular angiogenesis, we typically distill it into 

its two most basic components: growth factor production by Müller cells, and 

growth factor consumption by (and stimulation of angiogenic cell behaviors in) 

endothelial cells. Surprisingly, NSAID-treated Müller cells did not demonstrate 

reduced hypoxia-induced VEGF production (Figure 8A). This finding contrasted 

with a body of scientific data, collected from a variety of cell types, which 

demonstrated the capacity of NSAIDs to inhibit pro-angiogenic VEGF production 

(79,155,234-236). However, COX-2 is an enzyme, and therefore despite NSAID 

treatment, it is likely that residual COX-2 activity remained, which stimulated 

prostanoid production, and resulted in VEGF induction. In order to address this 

possibility, we isolated Müller cells derived from COX-2 and prostanoid receptor 

knockout animals. We showed that genetic deletion of COX-2 significantly 

reduced hypoxia-induced VEGF production (Figure 17), the principal growth 

factor responsible for the development of retinal NV. Furthermore, and more 

specifically, we showed that of the COX-2-derived prostanoids, PGE2 was 
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significantly increased in response to hypoxia (Figure 18), and a stable analog of 

PGE2 stimulated VEGF production by Müller cells (Figure 19). This finding 

complements that of Cheng et al., who demonstrated that PGE2 stimulated an 

increase in VEGF mRNA in cultured rat Müller cells (75). It is also likely that one 

of the other COX-2-derived prostanoids, specifically PGF2 or PGI2, both of which 

were increased by hypoxia, participates in VEGF production by Müller cells. In 

order to address this question unequivocally, future experiments should be 

designed using COX-2 null cells and stable analogs of each of the prostanoids, 

alone and in combination. Preliminary, non-optimized studies have shown that 

latanoprost, a PGF2 analog, significantly increased VEGF production by COX-2 

null Müller cells (Appendix 3). This finding suggests that the FP receptor may 

constitute a rational therapeutic target in neovascular eye disease, either alone 

or in combination with other prostanoid receptors. This experiment, and a 

complementary experiment using a PGI2 analog, must be optimized and 

repeated. Studies are underway to determine the effects of FP and IP 

antagonism on hypoxia-induced VEGF production by Müller cells.  

Our Müller cell data motivates a complementary set of experiments to be 

performed downstream, in endothelial cells. Specifically, it is of importance to 

understand: which prostanoids are increased by VEGF-treatment of RMEC; do 

RMEC increase production of the same prostanoids as Müller cells, under 

relevant treatment conditions (i.e., VEGF treatment); does genetic deletion of 

COX-2 affect VEGF-induced RMEC angiogenic cell behaviors (survival, 

proliferation, migration, permeability); does one prostanoid, or several in 
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combination, rescue the phenotype (if there is one) of COX-2 null RMEC? The 

most ideal venue for many of the experiments listed above is COX-2 null RMEC. 

While we have successfully isolated these cells, we have been unsuccessful in 

our attempts to amplify them, or with achieving adequate knockdown with siRNA. 

Future efforts should be spent optimizing one of these two methodologies. It will 

be of great value to attempt to isolate MRMEC from COX-2+/- mice (cells that 

have less COX-2 protein than wild-type cells), followed by siRNA knockdown of 

residual COX-2. This experimental approach may yield MRMEC lacking COX-2 

activity, which can be used in endothelial cell assays. Alternatively, other means 

of achieving stable knockdown in RMEC should be explored. Stable analogs of 

PGF2 and PGI2, as well as inhibitors of FP and IP, are currently being assessed 

in angiogenic endothelial cell assays. Once these experiments have been 

completed, the vision research community will have a more thorough 

understanding of the role of COX-2 in endothelial cell angiogenic behaviors. This 

information, in conjunction with the Müller cell data, will facilitate our 

understanding of the molecular basis of ocular angiogenic disease, as well as the 

development of a more specific therapeutic target, or combination of targets. 

As a first step towards understanding the mechanisms of, and developing 

a novel therapeutic target for, ocular angiogenic diseases, we demonstrated that 

EP4 receptor antagonism significantly inhibited angiogenic cell behaviors in two 

retinal cell types that are known to play roles in the pathological ocular 

angiogenesis characteristic of neovascular retinopathies. Specifically, EP4 

receptor antagonism inhibited Müller cell production of VEGF and endothelial cell 
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proliferation and tube formation. Additionally, antagonism of the EP4 receptor in 

vivo significantly inhibited NV associated with both OIR and LCNV (Chapter IV). 

It is important to mention that although we did achieve significant inhibition of NV 

with the EP4 antagonist, its therapeutic effect was much less dramatic than that 

of other compounds tested in the lab. In fact, intravitreal injection of an EP4 

receptor antagonist was less effective than topical administration of a broad COX 

inhibitor, in our model of OIR (Figures 12 and 26). This finding suggests that: 1) 

the COX inhibitor may have exerted COX-independent anti-angiogenic effects; 

and/or 2) the EP4 receptor is not the sole prostanoid receptor with a role in this 

pathology. Thus, additional experiments should be designed to ascertain 

precisely which prostanoids are increased in VEGF-treated endothelial cells and 

their specific roles in angiogenic endothelial cell behaviors (as described above), 

compared to the prostanoids involved in Müller cell angiogenic activity, and then 

a list of prostanoid receptors with potential involvement both up- and downstream 

of VEGF production can be generated. The results of those studies might 

suggest that targeting a different prostanoid or prostanoid receptor, alone or in 

combination with EP4, will provide enhanced therapeutic efficacy, which is the 

ultimate goal of this project, and virtually all studies conducted in the Penn lab. 

Based upon our findings, we presented a simplified model (Figure 20) of 

the way that we expect PGE2 to affect VEGF transcription in Müller cells. The 

EP4 receptor is typically coupled to a Gs G-protein, which increases the activity of 

adenylyl cyclase, and levels of intracellular cAMP (71). It has been established 

that increased cAMP activates PKA, leading to phosphorylation of CREB (and 
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other) transcription factors. Phosphorylated CREB attracts CREB-binding protein 

(CBP), and the CREB-CBP protein complex binds to the CREB response 

element (CRE) on the VEGF gene, stimulating transcription. This over-simplified 

model may be the primary mechanism by which the EP4 receptor affects VEGF 

production in other cell types (215). However, prostanoid receptors activate 

widely different intracellular signaling pathways in both tissue- and cell-specific 

manners. In fact, Fujino et al., in two different studies, demonstrated 1) that the 

EP4 receptor leads to transcriptional activation in a PI3K/ERK-dependent manner 

(237); and 2) that the EP4 receptor can couple to a Gi G-protein, inhibiting cAMP 

production in certain cell types (238). Future experiments should be designed to 

assess specifically: 1) which type of G-protein is activated by EP4 stimulation of 

Müller cells (Gs, Gi, or Gq); 2) which downstream signaling intermediates the G-

protein activates or inhibits (PKA, PKC, PI3K); and 3) specifically how their 

activation leads to transcription of the VEGF gene (which transcription factors are 

activated, and the promoter regions of the VEGF gene they bind). These studies 

will provide the vision research community with a deeper understanding of the 

role of prostanoids in at least one angiogenic cell behavior. A complementary set 

of experiments should be conducted in RMEC in order to ascertain the signaling 

intermediates that mediate angiogenic cell behaviors coupled to EP4 (and other 

prostanoid receptor) activation. 

In conclusion, these studies have contributed much of what is currently 

known about the role of COX-2 and the prostanoids in pathological ocular 

angiogenesis. Although our findings are significant, additional experiments may 
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yield discoveries that, in conjunction with the results presented herein, will 

ultimately benefit the vision community in the form of a precisely targeted, highly 

effective pharmacotherapeutic for diseases such as ROP, PDR, and AMD.  
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APPENDICES 

 

Appendix 1. Western blot demonstrating the lack of COX-2 protein in Müller cells isolated from 
COX-2 null mice. Müller cells were isolated from wild-type and COX-2 null mice. The cells were 
cultured in DMEM with 10% FBS and 1X antibiotic/antimycotic, and exposed to hypoxia for 24 
hours. Levels of COX-2 protein were assessed by western blot analysis. 

 

Appendix 2. Müller cells isolated from DP, EP1, and EP3 null mice fail to demonstrate reduced 
hypoxia-induced VEGF production. Müller cells were isolated from wild-type and receptor 
knockout mice, cultured in DMEM with 10% FBS and 1X antibiotic/antimycotic, and exposed to 
hypoxia for 24 hours. VEGF was quantified by ELISA. 
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Appendix 3. Preliminary study demonstrating the effect of latanoprost, a PGF2 analog, on VEGF 
production by COX-2 null Müller cells. COX-2 null Müller cells were serum-starved overnight, and 
then treated with increasing concentrations of latanoprost in 2% serum DMEM. Treatment lasted 
6 hours. VEGF was quantified by ELISA. * p < 0.0044 
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