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ABSTRACT 

 

 

Small molecules have value in their ability to modulate protein activity in ways that 

are not accessible using conventional genetic methods, and their potential to be 

developed into therapeutics.  As genetic causes of human disease are identified, many 

are found to play an integral role in embryonic development as well.   The purpose of this 

dissertation is to utilize vertebrate embryonic development as a platform for discovery and 

characterization of chemical probes using phenotype guided development.  I discovered 

three molecules, Eggmanone, Incaskin, and Ogremorphin based on ability to perturb 

development of a composite of 29 anatomical features. Using these anatomical features 

as a query against the wealth of reference genotype-phenotype data in ZFIN, I identified 

the targets of the small molecules as PDE4, CK2α, and GPR68.  Using eggmanone, I 

characterize a novel role for PDE4 in regulation of HH signaling, and show that it could 

be a useful therapeutic target for smo inhibitor resistant cancers. Using incaskin, I show 

an unbiased phenotypic clustering methodology for target deconvolution; furthermore, I 

show that incaskin is a highly selective, potent CK2α inhibitor which provides a 

therapeutic approach for targeting cancers down stream of APC in Wnt signaling. Using 

ogremorphin, a first in class inhibitor of GPR68, I show that proton sensing GPR68 is 

critical neural crest migration. Furthermore, I show that proton-sensing GPR68 represents 

a novel chemically tractably therapeutic avenue for development of an anti-metastatic 

agent. This body of work contributes to novel discovery of small molecules, signaling, and 

developmental biology  
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CHAPTER 1 

INTRODUCTION 

 

 

Phenotypic Screening 

 For much of human history, therapies for various ailments came about from astute 

phenotypic observations and serendipity (Mueller and Scheidt, 1994).  For instance, the 

origins of digoxin, a cardiac glycoside currently in use for heart failure, can be traced 

directly to a traditional herbal remedy for dropsy made from the foxglove plant (Mueller 

and Scheidt, 1994; Norman, 1985).  With the advent of modern biochemistry and 

molecular biology, drug discovery became dependent on the target-based approach to 

systematically screen for thousands and even millions of agents that modulate a particular 

biological target chosen based on a rational therapeutic hypothesis.  In the decades that 

followed, an unprecedented number of new therapeutics have transformed modern 

medicine and pharmaceutical industry (Kinch et al., 2014).  However, despite the 

disproportionate focus and funding on target based approaches for the past two decades, 

the pharmaceutical industry as a whole delivered fewer “first-in-class” drugs using this 

approach than using a phenotypic approach ((Swinney and Anthony, 2011).  In fact, the 

cost, and the risks, of developing a new pharmaceutical entity have skyrocketed in the 

recent decades, with the costs of developing a new drug seeming to grow exponentially, 

a trend termed “Eroom’s Law,” to contrast with the Moore’s Law describing exponential 

growth in computing power (Scannell et al., 2012).  There are a number of reasons for 

this alarming decline in efficiency of pharmaceutical development.  Obvious reasons 
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include unforeseen off-target effects and toxic metabolites that result in deleterious effects 

in humans.  While late stage failure in clinical trials captures headlines, a key reason for 

the sustained decline in productivity may lie in the earliest stages of drug discovery: 

specifically, poor target selection.  For an industry grown around target-based discovery, 

picking a wrong target based on an invalid therapeutic hypothesis can be a death knell, 

a situation made worse by the fact that consequences might not be apparent until 

significant expenditure of time and effort.  There are numerous causes of poor target 

selection, but chief among them appears to inadequate insight into human 

pathophysiology provided by in vitro and preclinical models (Bracken, 2009; Worp et al., 

2010).   

Given the pitfalls of target-based screening, phenotypic screening has reemerged 

as an attractive alternative and complementary approach to drug discovery.  As the name 

implies, this approach focuses on phenotypic perturbations – observable changes in 

complex biological function caused by small molecules - to identify chemical modulators 

of physiological or disease processes in a target agnostic manner.  The observed 

phenotype results from integration of all cellular pathway perturbations in the context of 

an active biological system, be it an individual cell or an entire organism. A phenotypic 

screen identifies chemotypes that affect a biologically meaningful target or targets, 

including key nodes responsible for integrating cell pathways and behaviors.  Importantly, 

since a phenotypic screen is conducted without regard to a priori knowledge of targets, it 

has the potential to discover new therapeutic targets, which may have greater impact at 

the systems level than established targets.  Moreover, in contrast to target-based 

screens, a phenotypic screen permits discovery of compounds that effect a desired 
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outcome via engaging multiple targets in a synergistic manner that may not have been 

otherwise anticipated.  Indeed, recent studies have shown that polypharmacology is not 

necessarily deleterious, and that engagement of multiple targets can sometime be more 

effective for treatment of certain disease (Roth et al., 2004).  While a knowledge of the 

precise pharmacological target is traditionally considered essential, although not required 

by the FDA, to push a drug development forward; there is increasing willingness to be 

target agnostic provided there is a compelling biological rationale and an unmet medical 

need (Mullard, 2015).   

In contrast to traditional observational approaches, which were low-throughput and 

therefore depended on serendipity, the modern phenotypic screen combines the 

advantages of phenotype-based approaches with the latest high-throughput chemical 

screening capabilities.   In this review, we will provide a brief overview of various models 

used in phenotypic screens, with a focus on zebrafish based screens, which has emerged 

as a powerful in vivo model amenable to high-throughput and high-content analyses, and 

a look to the future of phenotypic screening. 

 

Phenotypic screening modalities  

Modalities of phenotypic screens can be broken into two components: the 

biological model and the assay outputs. These two factors must be considered prior to 

any screen. A number of model systems have been used in phenotypic screening, 

ranging from single cells, to organoids and whole organisms.  

Cell based screens vary in scope of potential readouts from a simple cell viability 

assay to complex cell behavior analyses.  At the simple end of the spectrum, most 
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screens for potential anti-cancer agents are cell viability assays using established cancer 

cell lines (Shoemaker, 2006).  At the complex end, Lum and colleagues have screened 

small molecules in HCT116 human colorectal cancer cells using multiplexed luciferase 

assays and dot blotting to monitor multiple pathways simultaneously (Kulak et al., 2015). 

By assessing multiple pathways in a quantitative manner, they were able to collapse the 

cellular phenotypes elicited by individual compounds into a “fingerprint.” Traditionally, 

determining mechanism of action (MOA) can be laborious, however; such an approach 

provides mechanistic insights by clustering compound induced “fingerprints” to those 

obtained from an siRNA library (Kulak and Lum, 2013). Cell based screens have also 

been conducted in an image based analytics paradigm. Peppard and colleagues 

identified novel autophagy regulators in HeLa cells expressing LC3 (microtubule-

associated protein light chain3)-GFP (green fluorescent protein) fusion protein as an 

autophagy readout. LC3 is normally cytosolic, however during autophagy is recruited to 

autophagosomal membranes, which manifest as GFP granules in this read out.   When 

nutrient starved cells are treated with lysomotropic agent hydroxychloroquine (HC), which 

inhibits the lysosome, LC3-GFP degradation by autophagy is blocked. Using HCS imager 

Incell 3000, a 250,000 compound screen was conducted to identify inhibitors of the 

formation of autophagosomes, which was thresholded as <4 GFP granules (Peppard et 

al., 2014) Notably, the authors validated this assay with wortmannin, a known inhibitor of 

autophagosome formation and used this as a positive control to set the threshold.   

While most cell based screens have been conducted in established cell lines 

grown in simple monolayers or suspension, investigators have developed 3-D organoid 

models of tumor cells, with the aim of developing an in vitro model that is more relevant 
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to human tumor biology, including the role of metabolically quiescent tumor stem cells 

and the effect of hypoxia gradient within solid tumors.   For instance, Walsh and 

colleagues have developed a model of spheroids derived from primary human tumors, 

utilizing intrinsic fluorescence properties of FAD and NADH called optical metabolic 

imaging (OMI).  OMI has previously been shown to serve as an early endpoint biomarker 

for drug response (Walsh et al., 2013). Using this technique the authors carried out a 

screen for small molecules that altered metabolic activity of tumor spheroids (Walsh et 

al., 2014).    

In the past few years, human induced pluripotent stem cells (hiPSCs) have 

emerged as a promising human biological platform for phenotypic screening.  Since their 

initial description less than a decade ago, researchers have created iPSC models of a 

myriad of human diseases using patient-derived iPSCs (Tang et al., 2016).  For example, 

Burkhardt and colleagues have generated hiPSC from ALS patients and demonstrated 

that neurons differentiated from these hiPSCs exhibit TDP-43 aggregation, a pathological 

hallmark of ALS. Using an image-based screen based on TDP-43 aggregation in neurons 

generated from ALS hiPSCs, they discovered that known small molecule inhibitors of the 

Na+/K+ ATPase, GSK3 and CDK could ameliorate this phenotype, providing supporting 

not only for prior studies that have implicated these proteins as potential ALS therapeutic 

targets but also the use of patient-derived iPSCs for drug discovery (Burkhardt et al., 

2013).      

Cell based screens, while providing an inexpensive, quantitative and high 

throughput platform for phenotypic screening, suffer from several disadvantages. Despite 

advances in engineered tissue constructs, cultured cells do not exist in a native biological 
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context and lack critical tissue interactions and paracrine factors which clearly play an 

important role in vivo.  Compound liabilities such as poor metabolic stability, suboptimal 

bioavailability and undesirable off-target as well as on-target effects are not recognized 

early on during the primary screen.  Such issues can be addressed from the start with in 

vivo chemical screening of living organisms and whole animals. Thus far, large-scale in 

vivo phenotypic screens have been conducted in various model multicellular organisms 

ranging from nematode such as c. elegans to vertebrates such as zebrafish. For instance, 

Petraschek and colleagues have performed a small molecule screen for compounds that 

affect aging in the nematode. From this screen, they identified 60 compounds that 

increase c. elegans lifespan without obvious deleterious effects.  Concordant with existing 

genetic models of aging, over half of the hit compounds increased the animal’s resistance 

to oxidative stress (Ye et al., 2014).  Importantly, this screen revealed a large number of 

candidate targets that are conserved in humans and hence represent potential 

therapeutic targets to slow aging.  Of course, c. elegans is still a very simple animal 

organism, with a rudimentary physiology, lacking for instance discrete circulatory system. 

Moreover, c. elegans has a very short life cycle (approximately 3.5 days) and each adult 

hermaphrodite has precisely 959 cells, making them less suitable for modeling certain 

diseases like cancer.  Finally, due to their substantial evolutionary divergence from man 

(Figure 1), the targets of small molecules identified in invertebrates like c. elegans and 

Drosophila may not be conserved in man and even then the human orthologs may have 

divergent functions, making phenotypic screens using invertebrates less than ideal for 

drug discovery. 
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Figure 1 Comparison of model organisms used in phenotypic screens. 
Commonly accepted numbers for generation time and brood size are listed, along with media for animal 
maintenance, evolutionary divergence, gene number and genome size. Also listed, the evolutionary 
divergence from man and the amino acid sequence identity to the human BMP receptor ALK2 (hALK2). 
Unit cost: approximate cost of animals needed to screen a 96-well plate of compound libraries, in triplicate. 
*For mice, this is the approximate cost to purchase 288 mice from Jackson Labs. **Cost of iPSC varies 
significantly depending on differentiated cell type, culture methods and screening conditions. Relative 
throughput/ease of scalability: ++++, very high (close to in vitro HTS); +++, high (up to tens of thousands 
compounds/week); +, low (up to hundreds of compounds/week) 
 

 

Zebrafish screens 

We believe that zebrafish represent a “sweet spot” for large-scale phenotypic 

screens in terms of biological complexity, physiologic similarities to humans, small size 

and fecundity.  Zebrafish are also far less costly to maintain in large numbers necessary 

to conduct a large-scale screen than mammals like mice. Although zebrafish have many 

important physiological differences from humans, they have numerous similarities such 

homologous organ systems and complex tissue architectures.  Moreover, the majority of 

the functional domains of human proteins and zebrafish orthologs are highly conserved; 

many, if not a majority, of the small molecules discovered in zebrafish screens should 

have similar effects, or at least identical targets, in man.  The first proof of principle that 

zebrafish could be useful for a large-scale in vivo phenotype screen came from a study 



 8 

that was conducted by Peterson and colleagues in 2000. In this study, the authors 

demonstrated that zebrafish embryos can be arrayed and screened in a 96-well format, 

and that small molecules which affected embryonic development and body patterning 

could be identified based on discrete perturbations to various anatomic structures 

(Peterson et al., 2000). Moreover, given the rapid development of zebrafish, which have 

a functional circulatory system by 24-hours post fertilization (hpf) and free swimming 

larvae by 72-hpf, the timeframe required for a phenotypic readout is similar to many cell 

based assays.  Sixteen years since this landmark study, dozens, if not hundreds, of 

chemical screens have been carried out in zebrafish (Rennekamp and Peterson, 2015).  

The phenotypic screens can be broadly be categorized into four major types by assay 

output: morphological, therapeutic, pathway and behavioral (Williams and Hong, 2011). 

These four categories cover the majority of assays that have been performed in zebrafish 

and are meant to serve as a general framework for discussion of different assay types, 

rather than be comprehensive or mutually exclusive.  Screens for compounds that 

modulate a diverse range of form and function, such as regeneration, lipid absorption and 

angiogenesis (Rennekamp and Peterson, 2015), while not specifically discussed here 

can be considered within the frame of the four categories.   

Morphological 

As the name indicates, the morphological screen involves identification of hit 

compounds based on their ability to cause specific and reproducible morphologic 

deviations from normal.  The main feature of the morphology-based approach is the 

variable data depth of the screen, since they are by definition multi-dimensional (Williams 

and Hong, 2011). The screener has the choice between obtaining “shallower data” by 

focusing exclusively on a single anatomical feature to “deeper data” to detect any 



 9 

discernable morphologic changes throughout the embryo. In a screen for compounds that 

result in altered dorsoventral (DV) patterning, we used tail length as a primary endpoint 

(Yu et al., 2008), since embryos with dorsalized pattern have grossly shortened, twisted 

tail (Mullins et al., 1996). This single point screen has resulted in the discovery of 

dorsomorphin, the first small molecule inhibitor of the bone morphogenetic protein (BMP) 

pathway (Hao et al., 2013; Yu et al., 2008) as well as a Wnt pathway modulator (Hao et 

al., 2013).  Even when focused on a single feature, the phenotypic screen can obtain 

additional information, increasing data depth.  For example, Colanesi and colleagues 

performed a chemical screen looking specifically at the pigmentation of zebrafish embryo. 

From this simple phenotypic screen, they could subdivide the hit compound into 10 

categories based on specific pigmentation alterations; these included reduced numbers 

of iridiophores and/or melanophores, changes in color depth in either cell type, ectopic 

numbers of chromatophores, abnormal shape of melanophores and so on (Colanesi et 

al., 2012).   

Since the zebrafish embryo is transparent, the screener can simultaneously score 

for specific changes to a predefined morphologic feature and any morphologic changes 

in the rest of the body.  We adopted this “all comer” approach to identify a novel hedgehog 

pathway inhibitor and a lysophosphatidic acid (LPA) receptor inhibitor (Hao et al., 2010a; 

Shelton et al., 2013; Williams and Hong, 2015; Williams et al., 2015).  Importantly, 

because this screening approach is unbiased with respect to pathways and targets, it has 

the potential to allow discovery of novel mechanistic insights to regulation of pathways 

involved in embryonic development.  Moreover, since it is open to all possible 

morphologic perturbations, the depth of phenomic data acquired is limited only by 
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technology related to high-content image analysis.  In addition, morphological screens 

are not limited to anatomical features visible by standard microscopy.  For example, 

multiple groups have utilized transgenic fish expressing fluorescent markers in the 

endothelium to identify compounds that perturb the vasculature (Reynolds et al., 2016; 

Tran et al., 2007). Similarly, others have utilized transgenic fish expressing a fluorescent 

marker in cardiomyocytes to screen for compounds that effect both heart structure and 

function (Burns et al., 2005; Ni et al., 2011). It is also possible to conduct a fairly large-

scale screen involving in situ hybridizations to screen for compounds that perturb 

expression patterns of a cell or tissue marker.  For example, Zon and colleagues carried 

out an in situ hybridization-based screen to identify small molecules, such as leflunomide, 

which affect crestin-expressing neural crest cell development (White et al., 2011).    

By definition, the morphology based screens are flexible, compatible with many 

derivations to discover small molecules that perturb many cell types and anatomical 

structures. Morphologic screens also serve as starting points for finding molecules that 

affect cell behaviors as well; for example, looking at the quantity and location of 

leukocytes or neutrophils at a singular time point after tail resection provides information 

about where those cells are located, as seen in Liu et al, and Robertson et al. From here 

the authors used secondary assays to identify compounds that modulate the migration of 

these cells (Liu et al., 2013b; Robertson et al., 2014). An obvious shortcoming of the 

morphology-based screen is the lack of direct therapeutic relevance; nevertheless, the 

discovery of dorsomorphin by this approach has directly contributed to new therapeutic 

strategies for numerous human diseases such as heterotopic ossification, anemia, IBD, 
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and cancers (Hong and Yu, 2009; Hover et al., 2015, 2016, Owens et al., 2013, 2015; 

Wang et al., 2012) and has spawned several ongoing drug development programs.  

Therapeutic 

The therapeutic screen uses zebrafish with a disease phenotype to identify small 

molecules that specifically ameliorate this phenotype. In contrast to the morphological 

screen in which deviations from norm are the “hit” criteria, in this category, a return 

towards the normal phenotype would be a “hit”.   In the first of such therapeutic screens 

in zebrafish, Peterson and colleagues used the gridlock mutant, a zebrafish model of 

aortic coarctation lacking normal tail circulation at 24 to 48-hpf, to identify small molecules 

which restored tail circulation (Peterson et al., 2004). Similarly, Peal and colleagues used 

the breakdance mutant, a zebrafish model of Long QT proarrhythmic syndrome due to a 

mutation in the KCNH2 potassium channel, to screen for compounds that ameliorate the 

proarrhythmic phenotype. In a relatively small screen of 1200 compounds, they identified 

two compounds that restored normal heart beating and therefore have potential as anti-

arrhythmic agents (Peal et al., 2011).  In addition, other human disease models, such as 

Duchenne muscular dystrophy (DMD), have been successfully screened for compounds 

that suppressed the disease phenotypes (Kawahara and Kunkel, 2013).  

Therapeutic screens have been successfully carried out in non-genetic disease 

models as well.  Cardiomyopathy is a relatively common serious sequela of cancer 

treatment with the chemotherapeutic doxorubicin.  Peterson and colleagues developed a 

zebrafish model of doxorubin-induced cardiomyopathy, and conducted a counter-screen 

for cardioprotective compounds (Liu et al., 2014). Of the 3000 screened compounds, they 

discovered two, visnagin and diphenylurea, which protected cardiac function without 

mitigating the chemotherapeutic effects.  In a similar manner, the Peterson group also 
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screened for chemoprotectors against cyanide poisoning, and identified four potential 

antidotes (Nath et al., 2013).  In a search for candidate compounds that can accelerate 

recovery after acute kidney injury (AK), Cosentino et al screened for small molecules that 

increase proliferation of renal progenitor cells in zebrafish embryos (Cianciolo Cosentino 

et al., 2013). This screen identified histone deacetylase inhibitor methyl-4-

(phenylthio)butanoate (PTBA), which enhanced recovery after acute kidney injury 

(Cosentino et al., 2013) and reduced postinjury renal fibrosis in mice (Skrypnyk et al., 

2015).  Finally, investigators have developed Mycobacterium marinum infection and 

human carcinoma xenograft models in zebrafish (Jung et al., 2012; Takaki et al., 2012). 

These two models allow for identification of compound that selectively kill pathogen or 

tumor cells without affecting the health and viability of zebrafish.  The paradigm of 

therapeutic screening in zebrafish is attractive because of its immediate therapeutic 

relevance. While such screens show promise, using the correct model for screening is 

critically important to ensure the validity of the therapeutic target. With the ease of genetic 

editing through CRISPR/Cas9, this platform would be particularly well suited for 

monogenic diseases with well understood pathophysiology, as zebrafish based models 

could be rapidly developed and screened.  

Pathway 

The pathway screen involves identification of hit compounds based on their ability 

to perturb the function of a specific pathway of interest. As with other phenotypic screens, 

the assay is unbiased with respect to a particular molecular target; however, it limits the 

scope of potential targets as the hit must interact with a specific pathway in a measurable 

manner.  This modality relies on pathway-specific read outs in the zebrafish.  One of the 

first pathway screens in zebrafish was conducted by Molina and colleagues. In this study, 
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the authors took advantage of the fact that gene expression of dual specific phosphatase-

6 (dusp6), a feedback regulator of FGF (fibroblast growth factor) signaling, is itself a 

robust reporter of FGF pathway activations.  They used a transgenic zebrafish expressing 

a destabilized GFP expressed under the control of a dusp6 promoter. In this platform, the 

GFP fluorescence intensity provides quantitative read out of the signaling activity (Molina 

et al., 2009).  From this screen, Molina and colleagues identified a compound (E)-2-

benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), and used chemical 

genetic epistasis and computational approaches to show that the compound targeted 

dusp6 itself.  One drawback of GFP reporters in zebrafish is that quantification of 

fluorescence can be difficult given the dynamic nature of the transgene expression pattern 

and that the orientation of the zebrafish in a well can dramatically affect the apparent 

signal intensive.  To address some of these issues, in vivo luciferase reporter fish lines 

have been developed (Becker et al., 2012; Weger et al., 2013).  

Finally, a single assay could have a combination of morphological, therapeutic and 

pathway outputs  For example, in the axin mutant embryos, ectopic activation of the 

canonical Wnt/-catenin signaling results in an eyeless phenotype (van de Water et al., 

2001), and the axin mutant phenotype can be recapitulated with BIO, an inhibitor of 

GSK3, a key component of the -catenin destruction complex inhibitor.  Moreover, 

windorphen, a canonical Wnt pathway inhibitor, can rescue the eyeless phenotype in axin 

mutants (Hao et al., 2013).  Using this Wnt pathway-specific morphologic phenotype as 

a read out, Nishiya and colleagues conducted a chemical suppression screen and 

discovered that GGTI-286, a geranylgeranyltransferase 1 (GGTase I) inhibitor, could 

block canonical Wnt signaling downstream of the -catenin destruction complex (Nishiya 
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et al., 2014).   In the developing zebrafish embryo, individual pathways do not exist in 

isolation; therefore, a phenotypic screen designed to interrogate one signaling pathway 

may lead to serendipitous and sometimes context specific interaction with other 

pathways.   

Behavioral  

One of the major unmet therapeutic areas is in neuropsychiatric diseases, for 

which many target based drug discovery efforts have failed. Such difficulties and the fact 

that many current neuropsychiatric medicines trace their roots to clinical observations on 

neurobehavioral effects of drugs originally intended for other indications have motivated 

investigators to consider behavioral screens to discover novel, and hopefully 

physiologically relevant, neuropsychiatric drug targets.  For this, zebrafish larvae seem 

ideal since they are amenable to high-throughput chemical screens and they exhibit 

numerous complex behaviors reminiscent of some human behaviors.  In one of the first 

behavior-based chemical screen in zebrafish, Rihel and colleagues screened over 5,000 

compounds for modulators of restfulness or wakefulness.  This screen resulted in the 

identification of 463 unique structures that altered zebrafish  behavior (Rihel et al., 2010). 

Of these compounds, known modulators of major neurotransmitters were found to 

recapitulate many of the behavioral effects observed in mammals.  For example, 

clonidine, a α2-adrenergic receptor agonists used as a treatment for ADHD (attention 

deficit hyperactivity disorder) and gaining use as a sedative, was found to also have 

sedating effects in zebrafish. Subsequent behavioral screens for compounds that 

modulate responses to photic and acoustic stimuli yielded compounds that not only 

modulate immediate responses to these stimuli, but also more complex behaviors such 

as habituation (Kokel and Peterson, 2011; Wolman et al., 2011). This technology has 
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been expanded to a battery of tests to identify novel neuroactive compounds with a 

distinct behavioral profile, a “fingerprint,” which can then be used to inform mechanism of 

action studies (Bruni et al., 2016; Rennekamp et al., 2016).  With ongoing advances in 

behavioral analysis algorithms, it may one day be possible to screen for compounds that 

modulate increasingly complex behaviors.  Given difficulties in developing drugs for 

neuropsychiatric diseases by targeted approaches, zebrafish-based behavioral screens 

represent a bold new path for this important unmet medical need as well as opportunities 

to improve our understanding of animal behavior. 
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Figure 2 Proposed zebrafish phenotypic screens incorporating human genome–phenome 
information to accelerate therapeutic discovery. 
Human genome–phenome information provided by electronic health record (EHR)-coupled DNA database 
and by human genetic diseases studies drive formulation of therapeutic hypotheses (“human biology-based 
therapeutic hypotheses”). To test these hypotheses, zebrafish models of human genetic diseases are 
generated by genomic editing and employed in phenotypic screen for novel or known compounds which 
ameliorate the disease phenotypes. These compounds are then advanced for further development, 
including compound optimization and testing in appropriate preclinical disease models. Alternatively, a 
target-agnostic morphology-based screen is carried out. Subsequently, targets of hit compounds identified, 
and each target evaluated in silico against human genome–phenome database to determine whether a 
viable therapeutic hypothesis can be formulated. If so, these hits are advanced for further development, 
including compound optimization and testing in appropriate preclinical disease models. 

 

Beyond discovery 

While still relatively new, the impact of zebrafish-based chemical screens has been 

notable. In the past decade, the rate of published zebrafish screens has risen steadily, 

with an average impact factor of 9.5, as of 2013 (Rennekamp and Peterson, 2015).  While 

dissemination of knowledge through the publication of a chemical screen is the primary 

goal for academics, a secondary, implicit goal is therapeutic discovery, ultimately to 

impact human health.  Among a number of compounds originally identified in zebrafish 
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chemical screens with therapeutic potential, several have resulted in industry 

partnerships for preclinical and clinical development.  For instance, Oricula Therapeutics 

is developing Proto-1 for prevention of hearing loss, Novo Biosciences is developing a 

metalloproteinase-13 (MMP13) inhibitor for peripheral neuropathy, and La Jolla 

Pharmaceuticals is developing BMP receptor inhibitors for fibrodysplasia ossificans 

progressiva (FOP) and other rare diseases.  The most advanced therapeutic lead 

resulting from a zebrafish screen is the PGE2 inhibitor Prohema(North et al., 2007), which 

has shown promising results in a randomized, controlled Phase II study of patients 

undergoing hematopoietic stem cell (HSC) transplantation for the treatment of 

hematologic malignancies (Fate Therapeutics, 2016).  Given these early successes, it 

seems reasonable to anticipate that there will be many more therapeutic leads resulting 

from zebrafish chemical screens in the coming decades.   

 

Next Steps: Genomics and drug discovery 

There are currently about 7,000 known rare diseases in man, and roughly 4,000 

of these have been linked to a single genetic cause (Lander, 2015; Stelzer et al., 2016).  

Some, like familial hypercholesterolemia, are fairly common, found in 1 in 500 individuals, 

while other are extremely rare like Fibrodysplasia Ossificans Progressiva (FOP), found in 

1 in 2 million individuals.  Taken together, about 10% of the US population is estimated 

to be afflicted with a rare disease, representing a significant healthcare burden (Heemstra 

et al., 2009).  Of the disease associated genes in the Online Mendelian Inheritance in 

Man (OMIM) database, 82% have at least one zebrafish ortholog (Howe et al., 2013).  

With the advances in genome editing technology, such as the clustered regularly 
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interspaced short palindromic repeats CRISPR/Cas9 nuclease technique, it is now 

feasible to generate zebrafish models of virtually all human Mendelian diseases (Figure 

2).  Once a disease phenotype or a surrogate phenotype is established in zebrafish 

mutants, a therapeutic screen for compounds that ameliorate these phenotypes should 

be straightforward.  With the advances in genomic sequencing technologies, the number 

of ultra-rare genetic diseases is expected to increase significantly in the coming decade.  

In such a scenario, one can easily envision harnessing the power of zebrafish phenotypic 

screens, perhaps using a panel of known bioactive small molecules or FDA approved 

drugs, to help accelerate drug discovery and repurposing efforts for rare genetic diseases 

(Figure 2).  

A unique advantage of phenotypic screens is the discovery of novel, previously 

unrecognized components involved in a biological process or a disease pathophysiology, 

and chemical tools to modulate them.  However, the discovery of new pharmacological 

targets and new pharmacological classes by themselves do not ameliorate the most 

important reason for the high rate of failure in drug development: uncertainties associated 

with target selection.  Based on the first principles, the risks associated with target 

selection are inherently lower for human Mendelian conditions.  For instance, the 

knowledge that rare individuals lacking proprotein convertase subtilisin/kexin type 9 

(PCSK9) have better lipid profiles and are protected from atherosclerosis and myocardial 

infarctions was an important factor in rapid development and approval of PCSK9 inhibitor 

for treatment of hypercholesterolemia (Cohen et al., 2005, 2006; Kotowski et al., 2006; 

Zhao et al., 2006).  But the power of human genetics need not stop with rare Mendelian 

conditions.  At Vanderbilt University Medical Center (VUMC), a large human DNA 
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repository, named BioVU, has been linked to de-identified electronic health records (EHR) 

within the Synthetic Derivative (SD) database.  Using BioVU as a human genome-

phenome analysis platform, a phenome-wide association study (PheWAS) can be carried 

out to determine what clinical phenotypes are associated with single nucleotide 

polymorphisms (SNPs) in a given gene (Figure 2;Denny et al., 2016).  Using this 

approach, we not only identified potential new indications of our small molecule BMP 

inhibitors but also potential on-target side effects, which will be valuable for eventual 

clinical trials and post-marketing surveillance (CCH, personal communication).   

How might zebrafish-based phenotypic screens leverage the power of human 

genetics to accelerate drug discovery?  As discussed above, zebrafish models of human 

Mendelian genetics can be used to carry out therapeutic screens for compounds that 

ameliorate the disease phenotype (Figure 2).  Alternatively, a novel pharmacological 

target identified in unbiased morphologic screens can be interrogated by phenome-

genome databases such as BioVU to determine whether alterations in that gene are 

associated with a disease phenotype and/or therapeutic effects, dramatically lowering the 

risks of a drug development program (Figure 2).  If carried out on a large scale, such 

efforts might dramatically accelerate drug discovery and repurposing efforts to meet the 

anticipated need for targeted therapies for rare and common diseases (Figure 2).  In 

summary, zebrafish is a versatile platform that has a bright future as a drug discovery tool 

in the Era of Personalized Medicines. 
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Phenoclustering for target identification 

Chemical genetic screening for small molecules that affect in vitro and in vivo 

phenotypes is drug development paradigm that is increasing recognized as a viable 

alternative to the classical target-based drug discovery paradigm. As a model organism 

for such screening, the zebrafish is becoming a favorite because of its rapid development, 

high fecundity, low cost, vertebrate orthologies and liquid aquaculture allowing for precise 

and scalable screening. However, because of the organism’s complexity, screening can 

yield numerous and often complex phenotypes. The traditional method of target 

identification is affinity chromatography, which is both time and labor intensive with 

predilection for identifying the most abundant proteins that may or may not be biologically 

relevant. Although newer approaches such as drug affinity responsive target stability 

(DARTS) and yeast three hybrid systems are promising, target identification requires a 

separate platform distinct from the original in vivo screening models(Williams and Hong, 

2011). By contrast, a key advantage of an in vivo phenotype-based chemical screen using 

zebrafish and other animal models is that the developing animal itself can provide crucial 

clues as to the pathway being disrupted. As such, biological responses to small molecules 

with known activity can be quantified and used as a reference for clustering responses of 

unknown compounds, with a supposition that tightly clustered compounds will have 

similar mechanisms of action (Figure 3). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811947/figure/F1/
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Figure 3 Annotation of small molecule libraries through hierarchical clustering can be done in a 
number of models; in silico, in vitro and in vivo 
The data generated for the query compound in these models is then compared to a reference data set 
through clustering. The nearest neighbor should have a similar or the same target as the query compound 
(yellow). 

 
 

In silico Clustering 

High-throughput screening has become a staple of drug development; and has 

resulted in the formation of a large repertoire of information on PubChem. As of August, 

2011, over 30 million chemically unique compounds have been deposited in the 

PubChem database. Furthermore, over 500 thousand bioassay records have been 

uploaded, representing over 130 million experimental bioactivity results. With this wealth 

of data Han and colleagues were able to mine the PubMed bioactivity spectra by 

hierarchical clustering and were able to understand the biological mechanisms of target-

small molecule interactions(Han et al., 2009). One such example was the compound 

myricetin (PubChem CID:5281672), a flavonoid that is commonly found in natural food 
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source. By examining the bioactivity spectra, they found that the molecule is an inhibitor 

of several proteins such as aldehyde dehydrogenase, Leishmania Mexicana pyruvate 

kinase, and stress-activated protein kinase. This finding was confirmed in a literature 

search where the mechanism of action of this molecule had been described(Han et al., 

2009). This was a principle proof that structurally similar compounds have similar 

bioactivity spectra. Therefore, the same group later used a similar method and 

investigated 37 small molecules in the context of their PubChem bioactivity spectra and 

chemical similarity. They found that compounds that were then examined in the context 

of the NCI-60 clustered into groups with similar mode of actions, which strongly correlated 

with chemical structures(Cheng et al., 2011). The NCI-60 is a project run by DTP 

(Developmental Therapeutic Program) and NCI (National Cancer Institute), designed to 

screen up to 3,000 compounds per year for potential anticancer activity against 60 

different human tumor cell lines, representing leukemia, melanoma and cancers of the 

lung, colon, brain, ovary, breast, prostate, and kidney. The service is provided at no cost 

to the individual who submits their compound. Given the results of this study, the authors 

suggest that the NCI-60 activity spectra could be used as a standardized resource for 

identifying compounds that have similar mechanisms of action through a clustering 

approach. 
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In vitro Clustering 

Phenoclustering is being applied in vitro with high-throughput annotation of cell 

morphology after exposure to known and previously undescribed bioactive molecules. 

For example, Tanaka and colleagues screened 107 compounds that were structurally 

similar in 5 separate cell lines. By looking at features such as area form factor and staining 

with Hoechst and alpha-tubulin they were able to identify a more potent a structural analog 

of PP, hydroxy-PP, which binds not only the src-family kinase Fyn but rather a completely 

different biomolecule, the oxidoreductase CBR1(Tanaka et al., 2005). This method could 

be expanded and utilized with a more diverse chemical library, and possibly more read 

outs to allow for in vitro phenotypic target identification. 

Another in vitro clustering approach utilizes the gene responses (transcriptomic 

fingerprint) elicited by exposure to small molecule. Connectivity Map and Mantra are two 

platforms developed for mouse and human genomes(Iorio et al., 2010; Lamb et al., 2006). 

In short, the gene response for an unknown compound is ranked and then clustered 

against a database of compounds with known mechanisms of actions and the mechanism 

is inferred. With this new technique, it was possible to infer a new mechanism of action 

for the FDA approved drug Fausudil, suggesting that it could be used as a therapeutic 

agent to induce autophagy(Iorio et al., 2010). 
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In vivo clustering  

Conceptually, phenoclustering has been widely used by developmental biologists 

for many years. Arguably, the pioneers of the “in vivo phenomics” are Eric Wieschaus and 

Christiane Nusslein-Volhard, whose seminal contribution was, not just in identification of 

mutations that cause patterning defects in Drosophila embryo, but in classification the 

mutant loci into groups based on distinct patterning defects(Nüsslein-Volhard and 

Wieschaus, 1980). From drosophila to other model organisms, clustering of mutant loci 

resulting from large-scale mutagenesis screens based on morphologic phenotypes has 

become a central theme in developmental genetics. One such example of a large-scale 

forward genetic screen in vertebrates was the Tubingen Screen carried out at the Max-

Planck Institute. Mutants were first clustered according to defects in areas such as jaw/ 

craniofacial development, retinal development, early arrest, pigmentation, and neural 

development(Haffter et al., 1996). They were then further clustered according to similarity 

of the defects - for example, the early arrest mutants were clustered by the timing of 

developmental arrest. The core logic behind such clustering is that mutations that have 

similar phenotypes are related by developmental pathway or mechanism. In other words, 

mutants that exhibited similar phenotypes were found to be caused by mutations in the 

same gene or in the genes in the same developmental pathway. By analogy, compounds 

found to cause specific phenotypes in a high content chemical genetic screen can be 

clustered based on distinct phenotypes, and compounds that elicit similar phenotypes 

presumed to target a common gene or distinct genes in a common developmental 

pathway. 
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To facilitate target identification of bioactive compounds discovered in phenotype 

based chemical screens, phenomic clustering will involve comparison of the small 

molecule-induced phenotypes to an annotation of phenotypes generated when each 

gene in the organism’s genome is disrupted. In recent years, RNAi-based 

phenoclustering has been successfully used in to elucidate individual gene functions in 

C. elegans and Drosophila(Boulton et al., 2002; Fuchs and Boutros, 2006; Piano et al., 

2002). Moreover, Sugimoto and colleagues have developed a database of RNAi 

knockdown phenotypes in c. elegans which can be mined for genes that exhibit the 

phenotype a small molecule elicits(Sugimoto, 2004). The wealth of phenome-genome 

data makes c. elegans a choice model for phenotypic chemical screens. 

Few studies have undertaken the use of phenoclustering in vertebrate models. 

Kokel and colleagues recently used the zebrafish model in a high-throughput screen to 

identify neuroactive small molecules(Kokel and Peterson, 2011). The major hurdles to 

using a hierarchical clustering analysis in the context of a chemical screening are deciding 

the appropriate measurements that need to be made; and generating enough data points 

to be able to harness the full power of clustering analysis. By utilizing photomotor 

response (PMR), a startle response to high-intensity light, Kokel, et al. screened 14,000 

small molecules(Kokel and Peterson, 2011). Simply put, this assay measured whether 

the zebrafish embryos moved more or less in response to light stimuli. Since a single 

qualitative reading, such as increased or decreased movement, is insufficient, they 

developed multiple quantifiable read outs. Moreover, rather than simply quantifying 

motion in four broad phases of PMT (Background, Latency, Excitation, and Refractory), 

Kokel further divided the Excitation period into three segments and the Refractory period 
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into two, obtaining a 14 data-point barcode for each small molecule(Kokel and Peterson, 

2011). 

A pilot study with several known small molecules with known neuroactivity across 

different mechanisms (adrenergic, dopaminergic, and serotonergic) demonstrated that, 

not only were the PMR profiles reproducible across days, embryos, and replicates, but 

the pharmacological effects mirrored that of what happens in mammalian systems. For 

example, isoproterenol, a psycho-stimulant, increased activity throughout PMR while 

apomorphine, a dopamine agonist, lengthened PMR latency. With these profiles and 

others in place, a large-scale screen of 14,000 compounds yielded 1,627 hit compounds 

that were then clustered(Kokel and Peterson, 2011). Interesting, many of the clustered 

hits that shared a similar activity profile also showed similar chemical scaffolding, 

demonstrating the strength of this approach to identify chemical motifs having similar 

bioactivities. The true strength of clustering utilized by this method is the potential for 

target identification. Of 15 compounds that exhibited a "slow-to-relax" phenotype, two, 

STR-1 and STR-2, were novel compounds that clustered closely with eserine, a known 

inhibitor acetylcholinesterase (AChE). Indeed, Kokel et al. demonstrated that STR-1 and 

STR-2 are novel AChE inhibitors(Kokel and Peterson, 2011). In a similar behavioral study 

using zebrafish, Rihel et al. used rest/wake behavior as a platform for small molecule 

screening. Implementing a similar behavioral fingerprint and then utilizing hierarchical 

clustering, they uncovered novel mechanisms involved in the regulation of rest-wake 

behaviors, including the role of ERG potassium channels and immunomodulators like 

NSAIDs(Rihel et al., 2010). Importantly, this method could facilitate target identification. 

For example, MRS-1220, an adenosine A3 receptor antagonist, which clustered with 
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monoamine oxidase (MAO) inhibiting antidepressants, was found to inhibit in vitro MAO 

activity with an IC50 of ~1 μM(Rihel et al., 2010). 

 

Advances for in vivo phenoclustering 

As an in vivo model for phenoclustering, the zebrafish has incredible potential. 

Among small animal models amenable to large scale chemical screens, zebrafish is the 

lone vertebrate, sharing the highest genetic homology to humans. Moreover, the 

structural, physiological and behavioral similarities permit elegant behavioral studies as 

described above as well as other studies that examine specific organ systems(Williams 

and Hong, 2011). 

As for morphology-based phenoclustering, analyzing the shape of an organ in the 

zebrafish via standard microscopy might not yield enough quantitative data points for 

hierarchical clustering. Nonetheless, there are exciting emerging technologies that could 

overcome the limitation of morphology-based chemical screens(Sabaliauskas et al., 

2006). For example, Canada and colleagues developed a system for high-throughput 

histology and image capture for whole mount zebrafish, as well as a program SHIRAZ, 

an automated histology image annotation system for zebrafish phenomics(Canada et al., 

2011). The authors focused on the retina, which consists of seven easily discernable 

layers, and quantified for each layer various phenotypic attributes, such as absence, 

necrosis, disorganization, and hypotrophy(Canada et al., 2011). By utilizing this 

technology, it may be possible to conduct large-scale morphology-driven phenotypic 

small molecule screens that generate more than enough data to allow for hierarchical 
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clustering, and, with a trained set using known bioactive compounds, target identification 

as well. 

 

Signaling pathways 

In the course of the study of chemical genetics of vertebrate development the 

unbiased nature of screening methodology causes diversification of knowledge with 

projects operating on separate distinct parts of development and distinct signaling 

pathway.  The three molecules identified and studied operate on three different pathways, 

hedgehog wnt, and proton sensing.    

 

Hedgehog Pathway and inhibitors 

The hedgehog (HH) signaling pathway was first discovered in 1980 by Nusslein-

Volhard and Wieschaus and their analysis of mutations found in the fruit fly drosophila 

melanogaster(Nüsslein-Volhard and Wieschaus, 1980). This progressed to the 

identification of three orthologs of the HH ligand in vertebrates; sonic hedgehog (SHH), 

indian hedgehog (IHH), and desert hedgehog (DHH) in the 1990s (Echelard et al., 1993; 

Krauss et al., 1993; Roelink et al., 1994).  These early discoveries identified the 

importance of this pathway as one of the major signaling pathways active during 

embryonic development. It was soon after this discovery that ectopic HH activity was 

implicated in cancer(Fan et al., 1997; Oro et al., 1997). Since these early findings, 

hedgehog signaling has been implicated in numerous mechanisms of cancer proliferation, 

propagation, and survival(Hanna and Shevde, 2016).  Given the importance of this 

pathway in both development and disease, studies have dissected many of the 

components of hedgehog signaling and a concerted effort has been made in both 
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academia and industry to develop therapeutics targeting this pathway. In this review, we 

will examine the canonical components of HH signaling, the non-canonical effectors of 

HH signaling, and small molecule modulators that have been developed for the pathway.  

Hedgehog ligand biogenesis and release 

The starting point of canonical HH signaling begins with the formation of the ligand. 

Although there are three ligands in vertebrates SHH is the most widely expressed and 

well-studied. SHH exhibits a dose dependent response in the developing neural tube and 

understanding the morphogenic gradient is still a very active field of study.  SHH is first 

produced as a propeptide that undergoes proteolytic cleavage to produce an N-terminal 

signaling fragment that concomitantly attaches a cholesterol moiety (Porter et al., 1995, 

1996). Palmitoylation also occurs as a further lipid modification with the aid of the 

acyltransferase Skinny hedgehog/HHAT(Chamoun et al., 2001). This lipid modified SHH 

leaves the producing cell with the aid of both the transmembrane protein Dispatched and 

the secreted protein SCUBE2(Caspary et al., 2002; Hollway et al., 2006). While these 

critical molecules are known, the exact mode by which SHH gets to the receiving cell is 

still not well understood. Several models have been proposed ranging from freely 

diffusing soluble SHH, exosome particles and actin based cytonemes(Vyas et al., 2014; 

Zeng et al., 2001).  How and where these mechanisms are employed will be of great 

interest as they may provide novel druggable targets for HH related disorders. 

Hedgehog signal transduction 

When HH ligand is encountered by the receiving cell it binds the receptor 

Patched1, with the aid of one or more accessory molecules including Boc, Cdon, and 

Gas1(Izzi et al., 2011). While it is not fully understood how these co receptors work, 

Patched, when bound, relieves the repression of Smooothened (Smo) to trigger 
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downstream signal transduction events.  HH signaling is ultimately regulated through 

three transcription factors Gli1-3.  This transcription factor is bound and sequestered by 

Suppressor of Fused (Sufu)(Kogerman et al., 1999). Furthermore, SuFu also regulates 

Gli protein level, and proteolytic processing into a repressor form (Chen et al., 2009b).  

However, SuFu is also thought to play a positive role, as loss of SuFu can also reduce 

Hh induction of high-threshold neural tube fates, such as floor plate(Oh et al., 2015).  In 

vertebrates, the primary cilium is utilized for transducing HH signaling (Corbit et al., 2005). 

The current model places Smo becoming enriched at the cilium tip through targeting by 

Pitchfork and Gprasp2(Jung et al., 2016). At this time, the kinesin Kif7 and the SuFu-Gli 

complex translocate to the ciliary tip as well(Pedersen and Akhmanova, 2014; 

Tukachinsky et al., 2010).  While the components of the pathway are enriched at the tip 

of the primary cilium it is thought that SuFu, through an as yet unidentified mechanism, 

dissociates from the Gli transcription factor, allowing it to become transcriptionally active. 

Gli2 and Gli3, when they are not active, undergo proteolytic cleavage in the cytoplasm to 

form a transcriptional repressor Gli2-R and Gli3-R. However, Gli1does not contain a 

repressor domain and can only function as an activator(Li et al., 2011; Schrader et al., 

2011). Phosphorylation of Gli is a critical regulator of HH activity; the kinase CK1 

promotes HH by sustaining Gli activity, GSK3B promotes Gli3 processing when 

sequestered by SuFu, AMPK phosphorylation of Gli1 suppresses activity, and PKA 

phosphorylation of Gli promotes and represses HH activity in a residue dependent 

manner (Kise et al., 2009; Li et al., 2015; Niewiadomski et al., 2014; Shi et al., 2014).    

The combinatorial activity of these three transcription factors ultimately define and control 

transcriptional response of target genes. 
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Non-canonical Hh signaling 

In addition to the signaling cascade described above other signaling pathways are 

thought to interact with HH signaling, in one or more contexts. One such pathway is the 

Ras-raf-mek pathway; in pancreatic cancer ectopic Kras activity results in increased Gli 

activity(Ji et al., 2007; Nolan-Stevaux et al., 2009). Similarly in gastric cancer, the Ras-

mek-erk pathway positively affects Gli transcriptional activity(Seto et al., 2009). Other 

extracellular ligands such as TGFB are also thought to control hedgehog signaling.  In 

fibroblasts it was found that TGFB signaling through smad3 potently induced Gli-1 and 

Gli-2 expression(Dennler et al., 2007). In breast cancer MDA-231 cells, this HH activity 

functioned independently of Smo(Johnson et al., 2011). More directly it was shown that 

Gli2 has a SMAD3 transcriptional binding site(Dennler et al., 2007). Furthermore, studies 

with JQ1, an inhibitor of BRD4, a   bromodomain and extraterminal (BET) family of 

member inhibited Gli1 expression in HH driven tumors, and revealed that BRD4 directly 

occupies Gli1 and Gli2 promotors(Long et al., 2014; Tang et al., 2014). Finally, PDE4D 

has been established as a critical regulator of Gli activity independent of SuFu (Williams 

et al., 2015).  

Small molecules targeting the hedgehog pathway 

The discovery and development of small molecule tool compounds represent an 

invaluable resource for researchers. Furthermore, these small molecules can potentially 

be developed into therapeutic agents for HH driven pathologies such as BCC, Gorlin 

syndrome and medulloblastoma. As described above, the HH pathway is has numerous 

components but can be categorized into three general categories; molecules that act on 

or before Smo, those that act on targets downstream of Smo, and noncanonical 

approaches (Figure 4). 
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Figure 4 Schematic of Hedgehog signaling 
 

There is currently a single inhibitor that functions upstream of Smo, Robotnikinin. 

This Macrocyclic molecule binds directly to the N-terminal SHH fragment and prevents 

the ligand from binding the receptor Patched(Stanton et al., 2009). Smo antagonists 

represent a large and successful body of molecules. The first HH inhibitor, still considered 

the status quo in research is Smo inhibitor Cyclopamine (Chen, 2016). This compound 

was initially discovered from its teratogenic effects on sheep grazing on Veratrum 

californicum.  The use of this small molecule tool and SAG (Smo agonist) have been 

invaluable for determining the role of HH in numerous cancers(Chen, 2016). 

Subsequently, Smo antagonists have been advanced into clinical trials by several 

companies including Genentech (GDC-0449), Novartis (LDE225), Bristol-Meyers Squibb 

(BMS-833923), and Pfizer (PF-04449913).   Notably GDC-0449 and LDE225 have both 

been FDA approved for Basal Cell Carcinoma.  

While these advances with Smo inhibitors have been spectacularly successful, a 

number of researchers have uncovered that BCC can become refractory to Smo inhibition 
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at a rate of ~21% of patients (Brinkhuizen et al., 2014; Chang and Oro, 2012; Sharpe et 

al., 2015). Possible solutions to this and other resistances lie in targeting downstream of 

Smo.  The number of compounds that antagonize HH down stream of Smo is limited by 

the number of known targets. The majority of development has centered on Gli 

antagonists such as GANT58 and GANT61(Lauth et al., 2007). One such Gli antagonist 

Arsenic Trioxide has made it into Phase IV studies for leukemia. There has also been a 

discovery of a series of molecular scaffolds HPI1-4 that antagonize hedgehog signaling 

through various mechanisms, primarily downstream of Smo(Hyman et al.). One molecule, 

Ciliobrevin (HPI-4), was later identified as a dynein ATPase inhibitor that targets the 

primary cilium which is critical for HH signaling(Firestone et al., 2012). These other 

inhibitors and targets of the canonical HH pathway represent possible avenues of future 

therapeutic development          

Another option for targeting Smo inhibitor resistant cancers is to target the non-

canonical pathways, for which many have inhibitors that have made it into man.  It has 

been shown that pathways such as RAS/MAPK activate and contribute to the Smo 

inhibitor resistance in BCC (Zhao et al., 2015). Therefore, inhibitors like Sorafenib an FDA 

approved RAF inhibitor or PD0325901 (a MEK inhibitor in Phase III trials)  could serve as 

adjuvant or therapy for resistant BCC. Further the use of LY2157299 (in Phase II), a TGF-

B inhibitor could also serve to target HH driven cancers that are refractory to Smo 

inhibition(Perrot et al., 2013). Targeting activity of Gli indirectly with BRD4 or PDE4 

inhibitors, JQ1 and Eggmanone also represent a therapeutic strategy(Stecca and 

Pandolfi, 2015; Williams et al., 2015).  
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Wnt Pathway and inhibitors 

The wnt ligand was initially discovered as wingless in a screen of drosophila 

mutants in 1980 by Nusslein Volhard and Weischaus.  Around the same time Int-1 was 

discovered as a factor that was upregulated during the oncogenic transformation caused 

by MMTV (Nusse and Varmus 1982). The two genes were reconciled after half a decade 

of research as the same gene, merging the names into Wnt-1(Rijsewijk et al 1987). Using 

the drosophila model, a cascade of components were determined using epistasis, 

resulting in the identification of porcupine, dishevelled, armadillo and zeste-white3 

(Cadigan and Nusse, 1996; van den Heuvel et al., 1993; Manoukian et al., 1995; 

Riggleman et al., 1990; Siegfried et al., 1994).   Further discoveries were made possible 

when mouse wnt-1  was injected into a xenopus embryo, resulting in a duplication of the 

primary axis (McMahon and Moon, 1989a, 1989b). This elegant and robust assay allowed 

researchers to identify and interrogate other components such as TCF/LEF, frizzled and 

LRP(Behrens et al., 1996; Bhanot et al., 1996; Merriam et al., 1997; Wehrli et al., 2000).    

 Although wnt was identified as having an oncogenic role in 1982 an renewed fervor 

for its clinical roles occurred in the early 1990s when APC (adematous polyposis coli), 

was identified as an oncogene driving a hereditary form of colon cancer (Nakamura et al., 

1991). This protein was later found to interact with the human ortholog of armadillo, b-

catenin (Rubinfeld et al., 1993). Since the time of these discoveries careful genetic, 

molecular and biochemical studies have elucidated where and how these and other 

components are orchestrated during signaling in development and disease. 

Wnt ligand biogenesis and release 

The starting point of canonical wnt signaling begins with the formation of the ligand. 

There are 19 vertebrate wnt ligands that can activate the pathway. The wnt ligand is 
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synthesized in the ER (endoplasmic reticulum) of the producing cell.  This protein is  lipid 

modified in a process dependent in on the ER embedded acetyltransferase 

Porcupine(Galli et al., 2007).  In the absence of Porcupine  Wnt proteins accumulate in 

the ER (van den Heuvel et al., 1993). This palmitolated wnt is transferred to the Golgi 

complex which houses the protein Wntless (Hausmann et al., 2007). Wntless complexes 

with the wnt ligand to facilitate its subsequent extracellular release(Herr and Basler, 

2012).  The Wnt ligand is associated with the protein Dlp, which facilitates binding to the 

Frizzled receptor(Yan et al., 2009). While these critical molecules are known, the exact 

mode by which Wnt gets to the receiving cell is still not well understood.  Several models 

have been proposed ranging from freely diffusing soluble Wnt, exosome particles, actin 

based cytonemes and even filopodia(Gross et al., 2012; Stanganello and Scholpp, 2016; 

Stanganello et al., 2015). How and where these mechanisms are employed will be of 

great interest as they may provide novel druggable targets for wnt related disorders. 

Wnt signal transduction 

When wnt ligand binds to the receiving cell through the receptor Frizzled, with the 

aid of co receptors LRP5 and LRP6(Baig-Lewis et al., 2007; Bhanot et al., 1996). Frizzled 

is a 7-transmembrane receptor that share structural similarities to G-protein coupled 

receptors (GPCRs).  Although it is not fully understood, how or whether, G proteins are 

essential mediators for wnt signaling it has been shown that G q depletion can mitigate 

wnt signaling(Liu et al., 2005).  The key event upon wnt binding of Frizzled (Fz) and LRP  

is the phosphorylation of LRP(Zeng et al., 2005). These phosphorylation sites, mediated 

through CK1 and GSK3B, recruit Dvl and Axin to LRP6 upon activation (Davidson et al., 

2005; Mao et al., 2001; Wong et al., 2003; Zeng et al., 2005).  While not fully understood, 

when DVL and axin are recruited, it relieves the repression of -catenin (caused by the 
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APC destruction complex) to trigger downstream signal transduction events(Stamos and 

Weis, 2013). 

In the absence of a Wnt stimulus, β-catenin, a structural protein and transcriptional 

activator for wnt signaling is degraded (Ozawa et al., 1989; Rubinfeld et al., 1993). This 

degradation is regulated by a multiprotein “destruction complex” consisting of Axin, APC 

and the kinases Casein kinase 1 (CK1) and GSK3 . These kinases sequentially 

phosphorylate a “degron” recognized by β-TrCP (Aberle et al., 1997; Lagna et al., 1999). 

β-TrCP as a consequence causes B-catenin to become proteosomally degraded, and 

unable to activate transcription(Aberle et al., 1997).  Ultimately, the outcome of Wnt 

signaling results in the transactivation of genes -catenin (Figure 5). Wnt pathway 

activation causes β-catenin accumulation in the nucleus, in a manner that is not well 

understood. Nuclear -catenin  primarily interacts with TCF/LEF family of DNA-bound 

transcription factors (Arce et al., 2006; Behrens et al., 1996). TCF represses transcription 

through the repressor Groucho. However upon β-catenin binding to TCF, transcriptional 

activators take the place of Groucho (Daniels and Weis, 2005) (Daniels and Weis, 2005). 

These transcriptional co-activators are chromatin/histone modifying proteins such as 

CBP/300 Histone acetyl transferases, PAF1, and BRG1(Mosimann et al., 2009; Willert 

and Jones, 2006). 
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Figure 5Schematic of WNT signalling 
Figure taken from "Trends in Cell Signaling Pathways in Neuronal Fate Decision", book edited by Sabine 
Wislet-Gendebien, ISBN 978-953-51-1059-0 

 

Small molecules targeting the Wnt pathway 

The discovery and development of small molecule tool compounds represent an 

invaluable resource for researchers. Furthermore, these small molecules can potentially 

be developed into therapeutic agents for wnt/ -catenin driven pathologies including but 

not limited to familial adenomatous polyposis, colon cancer, melanoma and 

adenocarcinoma(Bodmer, 2006; Mohammed et al., 2016; Rimm et al., 1999). Although 

there is excitement about potentially developing therapeutics for wnt driven pathologies, 

there are currently no FDA approved molecules that target Wnt signaling. As described 

above, the wnt pathway is has numerous components but can be categorized into three 

parts; Extracellular/receptor level molecules, cytoplasmic/ destruction complex level 

molecules, and nuclear/ CBP level molecules. 

There are currently two biologics developed that target the reception of wnt ligand. 

The first, OMP-54F28 is a soluble form of frizzled cysteine rich domain(Le et al., 2015). 
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OMP-54F28 therefore binds free WNT ligand that is in the extracellular space. This 

biologic is in Phase I dose escalation studies for both late stage pancreatic cancer and 

recurrent ovarian cancer.  The second is OMP-18R5 a frizzled antibody. This particular 

antibody although developed against Frizzled 7, interacts with Frizzled 1,2,5,and 8 as well 

through a shared epitope in the extracellular domain(Gurney et al., 2012). This biologic 

was placed on partial clinical hold during its phase 1a trial(Le et al., 2015).  Additionally, 

the small molecule LGK974 targets WNT secretion through the inhibition of the acetyl-

transferase porcupine(Liu et al., 2013a). Singaporean A*STAR (agency for science 

technology and research) lead  Experimental Therapeutics Center used this paradigm to 

develop ETC-159 which is in Phase1 clinical trials.(Duraiswamy et al., 2015). While these 

agents have been efficacious in preclinical models of various cancers, cancers that are 

driven by APC, or other ligand independent mechanisms of activated wnt signaling would 

be refractory to the treatment. 

There are 4 major mechanisms for wnt inhibition downstream of the receptor, in 

the cytosol.  First are the DVL inhibitors, 3289-8625 and FJ9(Fujii et al., 2007; Grandy et 

al., 2009). Second are the Tankyrase inhibitors IWR-1 and XAV939(Chen et al., 2009a; 

Huang et al., 2009b). These molecules increase b-catenin degradation through 

stabilization of axin. This target is being developed and has a promising lead compound 

G007-LK for in vivo usage(Voronkov et al., 2013).  The third and fourth mechanisms are 

CK1a agonism and CK2α antagonism. These casein kinases both regulate B-catenin 

activity. CK1a is allosterically activated by Pyrvinium (a previously FDA approved anti-

helminthic), and CK2α is targeted by the inhibitors TBB, apigenin and CX-4945(Barua et 
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al., 1979; Cozza et al., 2011; Thorne et al., 2010).  Notably, CX-4945  is currently in phase 

1 for advanced solid tumors or multiple myeloma. 

Finally, there are two mechanisms in the nucleus to block the transcriptional 

response to wnt signaling. The first are molecules that block b-catenin interactions, 

PFK115-584, CCGP049090 (Minke et al., 2009). Second are molecules that inhibit 

activation of translational co-activators CBP and P300 histone acetyl transferases, which 

are blocked by ICG-001 and windorphin respectively(Emami et al., 2004; Hao et al., 

2013). Notably, ICG-001 is in clinical trials for colon cancer and leukemias.      

 

H+ extrusion and sensing 

pH sensing is an oft overlooked aspect of physiology outside the function of the 

stomach, kidneys, and buffering of blood. At a cellular level a large focus is placed on 

cytosolic pH regulation and the acidification of lysosomes.  However it is becoming 

apparent that H+ ions are more than a byproduct mitochondrial metabolism but also serve 

a critical role in diseases ranging from inflammatory diseases like asthma and arthritis, to 

cancer and heart disease(Odunewu-Aderibigbe and Fliegel, 2014; Okajima, 2013; Webb 

et al., 2011). The following section will review proton extrusion mechanisms, and 

mechanisms that sense these protons, ASICs, TRPs and GPCRs (Figure 6).  
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Figure 6 Proton sensing mechanisms 
(A)  Diagrammatic representation of GPCR TRP and ASIC activity (B) Activity ranges of TRP ASIC and 
GPCRs 
 
 
H+ extrusion 

There are 4 major ways that protons are extruded from the cell, Na+-H+ exchanger 

(NHE), H+-K+ ATPase, vacuolar-type H+ ATPase (v-ATPase) and H+ channels. NHE 

release protons from cells across the plasma membrane through the exchange of a Na+ 

ions.  NHE1 is a major form of this family of proteins which is ubiquitously expressed 

(Mattei et al., 1988). Homozygous missense mutations in  NHE1 have been linked to 

Lichtenstein-Knorr syndrome, which is characterized by progressive ataxia and hearing 

loss(Guissart et al., 2015) H+-K+ ATPase is a hetero dimer, assembled from an alpha and 

Beta subunit. The pump can extrude protons against the concentration gradient by 

utilizing the hydrolyzation of ATP. H+-K+ ATPase is often targeted for treatment of 

gastroesophageal reflux and peptidic ulcers with proton pump inhibitors (PPI) such as 

omeprazole. However usage of PPI have been linked to dementia(Gomm et al., 2016; 

Trifirò et al., 2006). Vacuolar ATPase (v-ATPase) is similar to H+-K+ ATPase in utilizing 

ATPase to drive protons across the plasma membrane against the concentration 
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gradient. V-ATPase is a large  300kD+ molecular assembly that is found in the 

membranes of many organelles, including lysosomes and secretory vesicles.(Mazhab-

Jafari and Rubinstein, 2016).  Mutations in multiple components of v-ATPase have been 

linked to distal renal tubular acidosis (dRTA)(Karet et al., 1999; Stover et al., 2002). H+ 

channels are unique among the proton extrusion mechanisms as they allow the transport 

of protons along the concentration gradient. These voltage sensitive channels open 

during membrane depolarization(Cherny et al., 1995). These four mechanisms account 

for the majority of all proton efflux in vertebrates.  

H+  sensing 

There are 3 major ways that protons are sensed by the cell, acid sensing ion 

channels (ASICs), transient receptor potential channels (TRP channels) and acid sensing 

G- protein coupled receptors (GPCRs). ASICs are trimeric proteins that respond to pH 

ranges 4.5-6.8 and import Cations such as Ca+ and Na+(Wemmie et al., 2013).  ASICs 

are widely expressed in both the peripheral and central nervous system(Zeng et al., 

2014).  The function of multiple ASIC family members have been linked to neuronal 

function, and health (Wemmie et al., 2013).   

ASICs and TRP channels were once thought to be the only way cells sensed 

extracellular pH until Ludwig established the proton sensing ability of the orphan receptors 

GPR68 and GPR4. They belong to a family of GPCRs (G Protein Coupled Receptors) 

that are activated by decreasing pHe (extracellular pH), being inactive at pH 7.4 and fully 

active at pH 6.8(Ludwig et al., 2003).   The members of this class of receptors are GPR68 

(OGR1), GPR4, GPR65 (TDAG8), and GPR132 (G2α), which share an amino acid 

homology (Ishii et al., 2005; Liu et al., 2010; Ludwig et al., 2003; Murakami et al., 2004; 

Radu et al., 2005; Saxena et al., 2012; Seuwen et al., 2006; Sun et al., 2010; Wang et 
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al., 2004; Yang et al., 2007).   These receptors activate a wide array of different G-

proteins: GPR68 stimulates Gq leading to phospholipase C activity resulting in Ca+ flux, 

and Gs to stimulate cAMP synthesis(Ludwig et al., 2003; Saxena et al., 2012). GPR4 

activates Gs which in turn activates adenylyl cyclase causing cAMP (cyclic adenosine 

monophosphate) accumulation(Chen et al., 2011). It has been demonstrated that GPR65 

in macrophages also activates Gs which causes cAMP accumulation and subsequent 

PKA (cyclic AMP activated protein kinase A) activation (Mogi et al., 2009). Finally 

GPR132, although it is a member of this family, has less defined pH sensing capabilities 

and activates RhoA through Ga13 in response to LPA (lysophosphatidic acid).(Kabarowski 

et al., 2000; Murakami et al., 2004)   These three mechanisms account for the majority of 

all proton efflux in vertebrates. 

H+ sensing in development 

Few studies have investigated the role of pH regulation in development. In 

Xenopus, intracellular acidification was found to be important for development of the 

posterior part of the embryo(Gutknecht et al., 1995). Conversely, intracellular alkalization 

was found to be necessary for the specification of anterior neural cell fates (Uzman et al., 

1998). Furthermore, disruption of the H+-V-ATPase, a proton pump,  disturbed pH 

regionalization and craniofacial morphogenesis in Xenopus (Vandenberg et al., 2011). 

Finally, in both Xenopus and zebrafish, the H+-V-ATPase plays a conserved role in 

establishing left-right asymmetry(Adams et al., 2006).  Together these studies highlight 

the importance of transient proton efflux in the developing vertebrate embryo.  

However, how these effluxes are translated into a cellular response is not 

understood. The effects of the extracellular pH are thought to be mediated through one 

of three mechanisms: ASICs (acid sensing ion channels), TRP (transient receptor 
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potential) channels, and acid sensing GPCRs (Glitsch, 2011). ASICs and TRPs share a 

number of similarities; both are ion channels responsive to a wide pH range are expressed 

mainly in nervous tissue, and are found in distant evolutionary phyla such a c. 

elegans(Brand et al., 2012; Xiao and Xu, 2011).  Notably, proton mediated signaling has 

been characterized in excitatory cells. In the retina, protons have been shown to mediate 

lateral inhibition(Wang et al., 2014).  In isolated neurons localized proton transients have 

been shown to activate ASICs(Zeng et al., 2015).  By contrast, acid sensing GPCRs 

sense a narrow pH range, are widely expressed, and found only in the vertebrate 

lineage(Seuwen et al., 2006).  Acid sensing GPCRs have been shown to function in 

numerous cells outside the neuronal lineage; loss of GPR4 causes wide spread vascular 

abnormalities, GPR68 regulates contraction in airway smooth muscle cells, a multiple 

family members have been shown to regulate inflammation (Okajima, 2013; Saxena et 

al., 2012; Yang et al., 2007). Taken together, the ability to modulate proton sensing 

GPCRs might represent new avenues for treatment of multiple diseases and pathologies.   
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CHAPTER 2 

MATERIALS AND METHODS 

 

 

Chemical Screen  

All zebrafish experiments were approved by Vanderbilt University Institutional 

Animal Care and Use Committee. Chemical screen for small molecules that perturb 

dorsoventral axis was performed as previously described (Hao et al., 2010b, 2013; 

Williams et al., 2015; Yu et al., 2008). Briefly, pairs of WT zebrafish were mated, and 

fertilized eggs were arrayed in 96-well microtiter plates (5 embryos/well) containing 100 

l E3 water. At 4-hpf, small molecule library from Vanderbilt High Throughput Screening 

Facility was added to each well to the final concentration of 10 M. Embryos were 

incubated at 28.5C until 24 and 48-hpf, when they were examined for gross morphologic 

changes indicative of dorsalization of the embryonic axis. A total of 30,000 compounds 

were screened. 

Whole-Mount Zebrafish In Situ Hybridization 

In situ hybridization was performed as previously described (Westerfield, 2000). 

Zebrafish krox20, pax2.1, ptc1, foxd3 probes were synthesized as previously described 

(Concordet et al., 1996; Krauss et al., 1991; Oxtoby and Jowett, 1993; Stewart et al., 

2006). 
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Whole Mount Immunofluorescence 

Unless otherwise stated, manipulations were performed at RT. Embryos were fixed 

in 4% paraformaldehyde (PFA) at 4 °C overnight. Embryos were blocked with blocking 

solution (1x PBS, 1% BSA, 1% Triton-X100, 0.1% DMSO) for 2 hours. Embryos were 

incubated with primary antibodies diluted in block solution overnight at 4 °C. Embryos 

were washed in 1x PBS with 1% Triton-X100 for 60 min. Embryos were incubated with 

secondary antibodies diluted in blocking solution for 2 hours. Primary antibodies specific 

against Myh1/2/4/6 (F-59) were obtained from Santa Cruz (1:50 dilution). Fluorescence 

immunocytochemistry was performed using anti-mouse secondary antibody Alexa 488 

(1:500 dilution, Invitrogen). 

Alcian Blue staining 

Staged embryos and larvae were anesthetized with Tricaine and killed by 

immersion in 4% formaldehyde (prepared from paraformaldehyde, and buffered to pH 7 

in phosphate-buffered saline (PBS)).  The fixed animals were rinsed in acid–alcohol 

(0.37% HCl, 70% EtOH), and stained overnight in Alcian blue (Schilling et al.,1996a) After 

differentiation in several changes of acid–alcohol the preparations were rehydrated. 

Following rinsing and clearing in a solution of 50% glycerol and 0.25% KOH, the cartilages 

were visualized under a stereo microscope. 

Zebrafish Injections 

Plasmid encoding dnCK2α was a kind gift from Isabel Dominguez(Dominguez et 

al., 2004). RNA was synthesized as previously described(Dominguez et al., 2004). OGR1 

morpholino 5'-TTTTTCCAACCACATGTTCAGAGTC-3' was synthesized by Genetools. 

Morpholino and mRNA was injected as previously described(Westerfield, 2000) 
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Cell Culture and Transfection 

STF293, HEK293, Hela, DU145, and RKO cells were cultured in DMEM 

supplemented with 10% FBS (GIBCO) and 1% penicillin-streptomycin (Cellgro). SW480 

cells were cultured in RPMI supplemented with 10% FBS (GIBCO) and 1% penicillin-

streptomycin (Cellgro).  HCT116 cells were cultured in DMEM/F12 supplemented with 

10% FBS (GIBCO) and 1% penicillin-streptomycin (Cellgro). 

Luciferase Reporter Assays  

For WNT/b-catenin signaling assay, STF293 cells (HEK293 cells stably 

transfected with TOPFLASH (TCF/LEF1-optimized promoter)-firefly luciferase reporter) 

(Thorne et al., 2010) were seeded in 96-well plates, and incubated overnight with the 

various concentrations of compound and WNT3a-conditioned media (made according to 

directions in the American Type Culture Collection website). The cells were then lysed, 

and cell extracts were subjected to Steady-Glo luciferase assay (Promega) according to 

manufacturer’s instructions. The results were normalized to cell titer, as determined using 

Cell Titer-Glo luminescence assay (Promega) 

Western Blotting  

Cells were lysed in CelLytic cell lysis buffer (Sigma) or M-PER lysis buffer (Thermo 

Scientific) supplemented with protease inhibitor cocktail (Sigma) and phosphatase 

inhibitor cocktail 2 (Sigma). Cell lysate was resolved in SDS-PAGE and transferred onto 

PVDF membrane. The b-catenin, and alpha-tubulin were detected by Odyssey system 

(Li-Cor bioscience) after incubation with the appropriate primary and secondary 

antibodies. Primary antibodies used include mouse anti-active b-catenin (Millipore), rabbit 

anti-pan b-catenin (Santa Cruz), rabbit anti-phospho-S370 PTEN (Abcam), rabbit anti-
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cleaved caspase 3(Cell Signaling technology), mouse anti-  tubulin (Santa Cruz) goat 

anti-Gli2 and goat anti-Gli3 (R & D Systems); rabbit antip-T197-PKA-C, (Cell Signaling 

technology), rabbit anti-Lamin-A/C (Cell Signaling technology). The secondary antibodies 

used include IRDye 680-conjugated goat anti-rabbit IgG (Li-Cor Bioscience, 1:5000 

dilution). 

Immunostaining of β-catenin translocation 

Human colon carcinoma RKO cells were treated with 20µM windorphen in the 

presence or absence of Wnt3a for 24 hours. The cells were fixed in 4% paraformaldehyde 

and blocked in PBS-Tween-BSA (0.2% Tween 20 and 1mg/ml BSA in PBS) overnight at 

4°C. The cells were then incubated with mouse anti-active-beta catenin antibody 

(Millipore Clone 8E7) for 4 hours at room temperature. After three times of wash with 

PBS, the cells were then incubated with the secondary anti-mouse Alexa-594 antibody 

(Cell Signaling) for two hours, and DAPI was used to nucleus counterstaining. 

Immunostaining of PKA phosphorylation and Gli2 ciliary translocation 

NIH3T3 cells were plated on poly-D-lysine-coated glass coverslips and were 

cultured at 37 °C, 5% CO2 in DMEM medium containing 10% fetal bovine serum until 

reaching 75% confluency, at which time the culture medium was switch to 0.5% serum 

for cilia formation. Cells were treated with 20 nM SAG in the presence or absence of 5 

µM eggmanone. Untreated cells were used as a control. After overnight incubation, cells 

were washed with PBS, fixed for 10 min. in 4% PFA, permeabilized 20 min. at –20 °C 

with cold methanol, blocked with PBS/1% BSA, and incubated with primary antibodies: 

anti-phosphoThr197PKA catalytic domain (Cell Signaling, Danvers, MA), Arl13b (Tamara 

Caspary), anti-γ tubulin (Sigma Aldrich, St. Louis, MO), anti-IFT88 (Proteintech, Chicago, 
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IL) and/ or anti-Gli2 (Jonathan Eggenschwiler, Univ. of Georgia). Cells stained for IFT88 

required acetone permeabilization in lieu of methanol. For co-IF of p-PKA and Arl13b, an 

additional overnight blocking step using unconjugated rabbit IgG was required between 

primary antibody incubations since both antibodies were produced in rabbit. Fluorescent 

conjugated secondary antibodies were used for visualization. 

Cancer Cell Viability Assay  

The following cancer cell lines were seeded into 96-well plates and incubated 

overnight: Hela, SW480, RKO, DU145 and HCT116. The following day, media was 

replaced with media containing incaskin/ eggmanone at varying concentrations. Cells 

were incubated for an additional 72 hr., at which time CellTiter Blue (Promega) was added 

to each well as per manufacturer’s recommendations. After 3 hr. of incubation, plates 

were read in a Modulus microplate reader (Promega) at 590nm and cell titer results were 

normalized to wells containing cells without incaskin compound. 

RT-PCR  

NIH3T3 cells were stimulated with 3 µM purmorphamine in the presence of 

eggmanone or DMSO for 24 hours. Sufu-/- cells were treated for 24 hours. Cells were 

collected and RNA isolated with the RNeasy kit (Qiagen, Valencia, CA). After subsequent 

cDNA amplification using Superscript III (Invitrogen, Carlsbad, CA), samples were 

quantified by comparing Q-PCR cycle thresholds (Ct) for gene expression normalized to 

GAPDH. The following TaqMan probe and primer sets (Applied Biosystems) were used: 

GAPDH (Mm99999915_g1), Gli1 (Mm00494646_g1) and Ptc1 (Mm01306905_m1).  

Melanoma and hiPSC-NCC cells we collected and RNA isolated with the RNeasy kit 

(Qiagen, Valencia, CA). After subsequent cDNA amplification using Superscript III 
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(Invitrogen, Carlsbad, CA), samples were quantified by comparing Q-PCR cycle 

thresholds (Ct) for gene expression normalized to GAPDH. Zebrafish embryos were 

raised, staged and collected according to standard conditions, and trizol-chloroform 

extraction was performed to isolate RNA(Westerfield, 2000). After subsequent cDNA 

amplification using Superscript III (Invitrogen, Carlsbad, CA), samples were quantified by 

comparing Q-PCR cycle thresholds (Ct) for gene expression normalized to actb1. Primer 

sequences found below: 

 

Zebrafish BioRAD Assay ID Chromosome location 

GPR4 qDreCED0009735 15:28172077-2817222 

GPR65 qDreCID0014173 17:2589919-2594987 

GPR68 qDreCED0006683 17:38892083-38892229 

GPR132-1 qDreCED0007674 17:39927946-39928094 

GPR132-2 qDreCED0021794 20:18408237-18408372 

GPR132-3 qDreCID0022336 15:12244897-12268724 

actb qDreCED0020462 1:7727158-7728668 

 

Human  Forward Reverse 

GPR4 CCCTCCTGTCATAATTCCATCC TGGTCTACAGGGAAGAGATGAG 

GPR65 TGGCTGTTGTCTACCCTTTG CCACAACATGACAGCATTGAAG 

GPR68 GTTTGAAGGCGGCAGAAATG GTGGAATGAGGAGGCATGAA 

GPR132 TTCAGGAGCATCAAGCAGAG CGAAGCAGACTAGGAAGATGAC 

GAPDH GTTTGAAGGCGGCAGAAATG GTGGAATGAGGAGGCATGAA 

ITGB3 GGACACAGCCAACAACCCAC AGGAGGCATTCTGGGACAAAG 
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CCND1 CCGTCCATGCGGAAGATC GAAGACCTCCTCCTCGCACT 

CD44 CACGTGGAATACACCTGCAA GACAAGTTTTGGTGGCACG 

ZEB2 GAAAGTGGCATGTATGCATGTGA CGATAAGGTGGTGTTTGTGTTT

G 

SNAIL2 ATTGCCTTGTGTCTGCAAGATCT TCTGTCTGCAAAAGCCCTATTG 

MMP2 GGCCCTGTCACTCCTGAGAT GGCATCCAGGTTATGGGGGA 

MMP9 TTGACAGCGACAAGAAGTGG GCCATTCACGTCGTCCTTAT 

N-cadherin CACTGCTCAGGACCCAGAT TAAGCCGAGTGATGGTCC 

 

 

PDE Assays 

Assays were performed by Caliper Life Science (Hopkinton, MA). Reactions were 

carried out in 100 mM HEPES, pH 7.5, 5 mM MgCl2, 1 mM DTT, 0.0015% Brij-35, with 

20 pM PDE enzyme and 1.0 µM cAMP substrate. Twelve compound concentrations were 

screened for each assay in duplicate. To 1 µL of 100X compound in 100% DMSO was 

added a 2X solution of enzyme in 49.5 µL and the mixture was incubated for 10 minutes 

(final DMSO concentration was 1%). To the mixture was added 49.5 µL of 2X cAMP 

substrate, and the reaction was incubated at R.T. for one hour. The reaction was stopped 

by addition of a solution consisting of 100 mM HEPES pH 7.5, 24 mM EDTA, 0.015% Brij-

35, and 5% DMSO and read on LabChip® EZ Reader. Cyclic AMP substrate and 5’-AMP 

product are separated by charge using electrophoretic mobility shift and product formed 

is compared to control wells to determine inhibition. Results were analyzed with 

GraphPad and fit to non-linear regression with variable slope. 
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Target Profiling Assays for Kinases, GPCRs and Phosphatases 

Kinase profiling assays were performed by DiscoverRx (San Diego, CA) using a 

phage display model. GPCR profiling assays were performed by Millipore (St. Louis, MO) 

using in cells expressing Gα15, a promiscuous G protein that enhances GPCR coupling 

to downstream Ca2+ signaling pathways. Phosphatase profiling assay was performed by 

Millipore (Dundee, UK) 

Generation of Zepac clustering method 

Data on Phenotype of zebrafish genes was downloaded from ZFIN.org.  

Phenotypes seen within the first 48 hours were then curated. And multiple descriptors for 

each anatomical feature per gene were concatenated.  Genes with no noted phenotype 

for anatomical features were imputed as normal. This database was then converted into 

nominal values of 0 = normal or 1 = abnormal or into levenshtein distances in Excel. The 

database was then imported into Orange and open source data mining software. For 

nominal clustering Jaccard similarity index was used, for levenshtein values phenotypic 

changes were viewed as vectors with distance and therefore Euclidean distance was 

used.    

 

VBA script for levenshtein calculation in excel 

Public Function WeightedDL(source As String, target As String) As Double 

 

    Dim deleteCost As Double 

    Dim insertCost As Double 

    Dim replaceCost As Double 

    Dim swapCost As Double 

 

    deleteCost = 1 
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    insertCost = 1.1 

    replaceCost = 1.1 

    swapCost = 1.2 

 

    Dim i As Integer 

    Dim j As Integer 

    Dim k As Integer 

 

    If Len(source) = 0 Then 

        WeightedDL = Len(target) * insertCost 

        Exit Function 

    End If 

 

    If Len(target) = 0 Then 

        WeightedDL = Len(source) * deleteCost 

        Exit Function 

    End If 

 

    Dim table() As Double 

    ReDim table(Len(source), Len(target)) 

 

    Dim sourceIndexByCharacter() As Variant 

    ReDim sourceIndexByCharacter(0 To 1, 0 To Len(source) - 1) As Variant 

 

    If Left(source, 1) <> Left(target, 1) Then 

        table(0, 0) = Application.Min(replaceCost, (deleteCost + insertCost)) 

    End If 

 

    sourceIndexByCharacter(0, 0) = Left(source, 1) 

    sourceIndexByCharacter(1, 0) = 0 

 

    Dim deleteDistance As Double 

    Dim insertDistance As Double 

    Dim matchDistance As Double 
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    For i = 1 To Len(source) - 1 

 

        deleteDistance = table(i - 1, 0) + deleteCost 

        insertDistance = ((i + 1) * deleteCost) + insertCost 

 

        If Mid(source, i + 1, 1) = Left(target, 1) Then 

            matchDistance = (i * deleteCost) + 0 

        Else 

            matchDistance = (i * deleteCost) + replaceCost 

        End If 

 

        table(i, 0) = Application.Min(Application.Min(deleteDistance, insertDistance), matchDistance) 

    Next 

 

    For j = 1 To Len(target) - 1 

 

        deleteDistance = table(0, j - 1) + insertCost 

        insertDistance = ((j + 1) * insertCost) + deleteCost 

 

        If Left(source, 1) = Mid(target, j + 1, 1) Then 

            matchDistance = (j * insertCost) + 0 

        Else 

            matchDistance = (j * insertCost) + replaceCost 

        End If 

 

        table(0, j) = Application.Min(Application.Min(deleteDistance, insertDistance), matchDistance) 

    Next 

 

    For i = 1 To Len(source) - 1 

 

        Dim maxSourceLetterMatchIndex As Integer 

 

        If Mid(source, i + 1, 1) = Left(target, 1) Then 

            maxSourceLetterMatchIndex = 0 

        Else 
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            maxSourceLetterMatchIndex = -1 

        End If 

 

        For j = 1 To Len(target) - 1 

 

            Dim candidateSwapIndex As Integer 

            candidateSwapIndex = -1 

 

            For k = 0 To UBound(sourceIndexByCharacter, 2) 

                If sourceIndexByCharacter(0, k) = Mid(target, j + 1, 1) Then candidateSwapIndex = sourceIndexByCharacter(1, k) 

            Next 

 

            Dim jSwap As Integer 

            jSwap = maxSourceLetterMatchIndex 

 

            deleteDistance = table(i - 1, j) + deleteCost 

            insertDistance = table(i, j - 1) + insertCost 

            matchDistance = table(i - 1, j - 1) 

 

            If Mid(source, i + 1, 1) <> Mid(target, j + 1, 1) Then 

                matchDistance = matchDistance + replaceCost 

            Else 

                maxSourceLetterMatchIndex = j 

            End If 

 

            Dim swapDistance As Double 

 

            If candidateSwapIndex <> -1 And jSwap <> -1 Then 

 

                Dim iSwap As Integer 

                iSwap = candidateSwapIndex 

 

                Dim preSwapCost 

                If iSwap = 0 And jSwap = 0 Then 

                    preSwapCost = 0 
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                Else 

                    preSwapCost = table(Application.Max(0, iSwap - 1), Application.Max(0, jSwap - 1)) 

                End If 

 

                swapDistance = preSwapCost + ((i - iSwap - 1) * deleteCost) + ((j - jSwap - 1) * insertCost) + swapCost 

 

            Else 

                swapDistance = 500 

            End If 

 

            table(i, j) = Application.Min(Application.Min(Application.Min(deleteDistance, insertDistance), matchDistance), 

swapDistance) 

 

        Next 

 

        sourceIndexByCharacter(0, i) = Mid(source, i + 1, 1) 

        sourceIndexByCharacter(1, i) = i 

 

    Next 

 

    WeightedDL = table(Len(source) - 1, Len(target) - 1) 

End Function 

 

Jaccard similarity calculation 

 

 

Euclidean distance calculation 
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Library preparation and RNA-sequencing 

RNA samples were submitted to the Vanderbilt VANTAGE core for RNA-seq. RNA 

quality was determined using the 2100 Bioanalyzer (Agilent Technologies; Santa Clara, 

CA). The RNA integrity number (RIN) of each sample was 10. Libraries were prepared 

using the TruSeq RNA Sample Prep Kit (Illumina; San Diego, CA) to enrich for poly(A)-

containing mRNA and generate cDNA. Library quality was also confirmed using the 2100 

Bioanalyzer. The libraries were sequenced using a 150 bp paired read protocol on the 

Illumina HiSeq 2500 (Illumina).  

Sequence alignment, differential expression and pathway analysis 

Sequence alignment and differential expression were performed using GALAXY 

server. TopHat was used to align paired sequence reads to the UCSC human reference 

genome hg19 using default parameters, and differential expression was calculated using 

cuffdiff. Comparisons were made between vehicle- and OGM treated WM115 cells. 

Pathway analysis was done using Database for Annotation, Visualization and Integrated 

Discovery (DAVID ) v6.8(Huang et al., 2009a). 

Chemical synthesis 

The following syntheses were carried out by Vanderbilt Synthesis Core:  

Synthesis of GPR68 antagonist. 

 

Benzothiohydrazide. To a solution of 2-((phenylcarbonothioyl)thio)acetic acid (3.0 g, 

14.13 mmol) in NaOH solution (10 M, 30 mL) was added hydrazine (1.11 mL, 35.33 mmol) 
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at 0 oC. The reaction mixture was stirred for 5 hr. at room temperature, acidified to pH 5 

using 2N HCl then chilled on ice. A white solid was filtered and recrystallized from tepid 

water to afford the title compound as white crystals (1.30 g, 61 %). 

5-ethyl-5'-phenyl-3'H-spiro[indoline-3,2'-[1,3,4]thiadiazol]-2-one. 

Benzothiohydrazide (0.7 g, 4.6 mmol) and 5-ethylindoline-2, 3-dione (0.89 g, 5.05 mmol) 

were dissolved in ethanol (9 mL). The reaction mixture was heated at 40 oC for 2 hr. and 

cooled to room temperature. The precipitate was filtered, washed with ethanol, and 

recrystallized from methanol to afford the spiro compound as yellow solid (1.36 g, 95 %). 

 

Eggmanone Synthesis  

 

 

Eggmanone was synthesized starting from commercially available cyclohexanone. 

Elaboration of cyclohexanone utilizing the Gewald protocol provided the 2-

aminothiophene after stirring at RT overnight, which was reacted with CS2 followed by 

dimethylsulfate to give the dithiocarbamate (Fondjo, et al., 2006; Alagarsamy, et al., 
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2006). Cyclization to the 2-thioxo-2,3- dihydrothienopyrimidinone was realized with 2-

methylallylamine•HCl and triethylamine in acetonitrile at 80 °C overnight (Ivachtchenko, 

et al., 2004). Finally, S-alkylation with 2- (chloroacetyl)thiophene provided eggmanone 

after stirring at RT for 4 hours. 
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CHAPTER 3 

EGGMANONE 

 

 

Introduction 

Hedgehog (Hh) signaling represents an important therapeutic target for the 

treatment of cancer. While its signal transduction and resulting downstream gene 

transcription are essential to vertebrate embryonic patterning and development, aberrant 

Hh signaling is responsible for a variety of malignancies including basal cell carcinoma 

(BCC), medulloblastoma, small cell lung cancer, and pancreatic cancer(Kar et al., 2012; 

Ng and Curran, 2011). Classical Hh signaling requires the presence of the extracellular 

ligand Sonic hedgehog (Shh), which upon binding to the transmembrane receptor 

Patched (Ptc) causes Ptc to remove its inhibitory influence on the G protein-coupled 

receptor Smoothened (Smo) (Ryan and Chiang, 2012). Activation of Smo then leads to 

nuclear translocation of the Gli family of transcription factors and induction of Hh target 

gene transcription. In the absence of the hedgehog family of ligands, Gli2 and Gli3 are 

processed to their repressor forms leading to transcriptional inhibition. Many details 

regarding signal transduction between Smo activation and Gli-mediated gene 

transcription remain unclear. 

A wide array of small molecules that target Smo, including the canonical Hh 

inhibitor cyclopamine, have been shown to mediate tumor progression (Carney and 

Ingham, 2013; Taipale et al., 2000). Additionally, the Smo antagonist vismodegib is 

approved by the United States Food and Drug Administration for the treatment for 
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advanced BCC (Robarge et al., 2009; Von Hoff et al., 2009). However, downstream-of-

Smo oncogenic mutations and acquired resistance due to Smo binding pocket mutations 

have limited the efficacy of this and other clinically promising therapeutics (Yauch et al., 

2009). Therefore, the identification of novel downstream Hh signaling mediators could 

represent a new therapeutic opportunity for Hh-dependent malignancies. 

 

Results 

Discovery of eggmanone, a novel small molecule hedgehog inhibitor, from an in vivo 

chemical genetic screen 

 A screen of approximately 30,000 small molecules for their ability to effect 

alterations in embryonic zebrafish dorsoventral patterning identified a series of structurally 

related compounds represented by the prototype termed eggmanone (Figures 7A). 

Eggmanone reliably and selectively reproduced the zebrafish Hh-null phenotype with 

features ranging from ventral tail curvature, small eyes, loss of pectoral fins and enlarged, 

rounded somites to loss of neurocranial chondrogenesis and impaired slow muscle 

formation (Figures 7B-7D) (Barresi et al., 2000; van Eeden et al., 1996a, 1996b; Hirsinger 

et al., 2004; Wada et al., 2005). Consistent with loss of Hh signaling, we confirmed 

abrogation of the Hh-target gene Patched (Ptc)-1 expression in bud-stage adaxial cells, 

pectoral fin fields, and the somites resulting from eggmanone treatment (Figures 7E and 

7F). 
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Figure 7 Eggmanone affects embryonic zebrafish patterning through inhibition of Hedgehog 
signaling 
(A) Chemical structure of eggmanone (Egm), (3-(2-methylallyl)-2-((2-oxo-2-(thiophen-2-yl)ethyl)thio)-
5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine-4(3H)-one). (B) Zebrafish embryos treated with 2 μM 
Egm starting at 4-hours post fertilization (hpf) exhibited a range of phenotypes found in Hh pathway 
mutants, including ventral tail curvature, loss of pectoral fins, and smaller eyes. (C) Alcian blue staining 
following 2 μM Egm treatment at 4-hpf revealed altered craniofacial development including the jaw. (D) 
Trunk slow muscles immunostained with anti-MyHC antibody (F59) showed altered slow muscle 
formation upon Egm treatment (2 μM). (E) Egm treatment (1 μM) abolished Hh-
responsive Ptc1 expression in adaxial cells at 12 hpf (arrows). (F) Egm treatment (1 μM) ablated Hh-
responsive Ptc1 expression in the pectoral fin bud at 48-hpf (arrows and asterisks). (G) Egm inhibited 
Sonic hedgehog (Shh)-responsive Gli-luciferase (Gli-Luc) reporter activity in a dose-dependent manner 
when stimulated with Shh conditioned medium (n = 4 for each condition, results represented as mean 
relative luciferase units (RLU) ± standard error of the mean (SEM); p-value <0.0184, starting at 1 μM). (H) 
Egm inhibited purmorphamine-induced (3 μM) Gli-Luc reporter activity in a dose-dependent manner 
(mean ± SEM, n = 4 for each condition; p-value <0.0054, starting at 0.5 μM). (I) Egm inhibited 
purmorphamine-induced (3 μM) Ptc1 expression in NIH3T3 fibroblasts (mean ± SEM, n = 3, expression 
normalized to GAPDH, p-value <0.003, starting at 1 μM). 
 

 

Given that eggmanone elicited a loss-of-Hh phenotype in zebrafish, we tested its ability 

to directly affect Hh signaling in the mouse Hh reporter cell line Shh-Light2 (Taipale et al., 

2000).  Eggmanone inhibited Hh-inducible Gli-responsive luciferase (Gli-Luc) activity in a 
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dose-dependent manner when stimulated with the exogenous ligand Shh (Figure 7G). In 

contrast, cells transiently overexpressing Gli2 retained their Gli-Luc activity following 

eggmanone treatment (Figure 8D). Moreover, luciferase reporter assays for other key 

signaling pathways, such as BMP, were negative (Figure 8E). Taken together, our results 

indicate that eggmanone’s pharmacological target lay specifically in the Hh pathway 

upstream of Gli. 

 

Eggmanone exerts its Hh-inhibitory effects downstream of Smo 

Since most Hh inhibitors act through Smo, we examined eggmanone’s effects at 

the level of Smo signaling. Specifically, eggmanone retained its Hh-inhibitory activity 

when Shh-Light2 cells were stimulated with the Smo-agonist purmorphamine, blocking 

both Gli-Luc activity and Ptc1 expression (Figures 7H and 7I) (Sinha and Chen, 2006). 

Importantly, eggmanone failed to compete for Smo binding with BODIPY-cyclopamine 

when HEK293 cells overexpressing Smo were pre-treated with 5 nM of the fluorescent 

ligand followed by treatment with concentrations of eggmanone up to 10 μM (Figure 8F) 

(Chen et al., 2002). Therefore, these results confirmed that eggmanone targeted the Hh 

pathway downstream of Smo, and taken in concert with our previous findings, we 

demonstrated that eggmanone acts between Smo and Gli-mediated transcription to block 

Hh signaling. 
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Figure 8 Eggmanone acts within the Hedgehog pathway, downstream of Smoothened and upstream 
of Gli transcription. 
(A) Liquid chromatography/mass spectrometry analysis confirmed the purity of synthesized eggmanone. 
LCMS, single peak, UV=215 nm, RT=1.344 min, 100.0%, m/z = 416.6 [M+1]. (B)1H NMR (600 MHz, 
CDCl3): δ 7.93 (dd, J = 3.7, 0.8 Hz, 1H), 7.72 (dd, J = 4.9, 0.9 Hz, 1H), 7.19(dd, J = 4.8, 3.9 Hz, 1H), 4.92 
(s, 1H), 4.70 (s, 2H), 4.63 (s, 1H), 4.56 (s, 2H), 2.95 (dd, J = 6.2, 5.9 Hz, 2H), 2.69 (dddd, J = 6.1, 6.0, 1.9, 
1.5 Hz, 2H), 1.87-1.76 (m, 4H), 1.82 (s, 3H). (C) 13CNMR (150 MHz, CDCl3): δ 186.2, 161.4, 158.0, 155.2, 
142.8, 138.2, 134.5, 133.0, 131.8, 131.5, 128.2, 118.7, 111.1, 48.5, 39.4, 25.4, 25.1, 22.9, 22.2, 20.3. (D) 
Egm showed no significant effect on Gli-luciferase reporter activity under Gli2 overexpression conditions. 
Values reported as mean relative luminescence units (RLU) ± standard error of the mean (SEM). (E) Egm 
had no significant effects on BMP4-responsive reporter (BRE-Luc) activity in C2C12BRA reporter cells. 
BRE-Luc (BMP responsive element-driven luciferase) cells were stimulated with 50 ng/mL BMP4 ligand. 
Values reported as mean RLU ± SEM. (F) Egm (10 µM) did not compete with BODIPY-cyclopamine (5 nM) 
for Smo binding, in contrast to KAAD-cyclopamine (200 nM), which effectively competed with BODIPY-
cyclopamine (5 nM) for Smo binding in cells transiently overexpressing Smo. Scale bar 10 µm. 
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To rule out its action at alternative Smo binding sites, we investigated 

eggmanone’s ability to inhibit Hh signaling in Sufu−/− mouse embryonic fibroblasts 

(MEFs), which display constitutively active signaling downstream of Ptc and Smo (Chen 

et al., 2009; Lin et al., 2014). Specifically, eggmanone significantly reduced transcription 

levels of Gli1 and Ptc1, whereas, as expected, the Smo antagonist cyclopamine showed 

no inhibition (Figure 9A). Thus, taken in concert with our previous findings, eggmanone 

acts between Smo and Gli-mediated transcription to block Hh signaling. 
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Figure 9 Eggmanone alters the activity of Gli transcription factors 
(A) Quantitation of mRNA transcripts of Gli1 and Ptc1 in Sufu−/− cells when treated with 10 μM Cyc (mean 
± SEM, n = 7, not significant) or 10 μM Egm (mean ± SEM, n = 10, *** = <0.0001), expression normalized 
to GAPDH. (B) Immunostaining for the cilium marker Arl13b (red) and Gli2 (green) of unstimulated MEFs 
(top), MEFs stimulated with SAG (20 nM) in the presence of DMSO control (middle) or 5 μM Egm (bottom). 
Co-localization of Gli2 (yellow) in the primary cilium remained unchanged in Egm treated MEFs. 
Representative cilium (white box) magnified to the right, scale bar of left column 10 μm; columns 2–4 scale 
bar 0.2 μm. (C) Representative western blot for full length Gli2 in nuclear (top, n = 4) and whole cell (middle, 
n = 2) fractions of NIH3T3 cells. Western blot of Gli3 (bottom, n = 3) from whole cell lysate of C3H10T1/2 
cells. Neg, unstimulated. SAG, stimulated with SAG (100 nM) for 1.5 hours (Gli2) or 24 hours (Gli3). 
SAG+FSK, co-treated with SAG and FSK (30 μM). SAG+Egm, co-treated with SAG and Egm (10 μM). 
Corresponding western blots for nuclear Lamin-A/C and whole cell α-tubulin as loading controls. FL, full-
length, active forms of Gli2 and Gli3. R, repressor form of Gli3. (D) Quantitative analysis of the mean ratio 
of normalized nuclear full length Gli2 to normalized whole cell Gli2 from (C). (E) Quantitative analysis of the 
ratio of full length to repressor form of Gli3 from (C) (mean ± SEM, n = 3 for each condition; ** = 0.0095; * 
= 0.028, vs. SAG). 
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Eggmanone differentially affects Gli transcription factors 

 The primary cilium plays a critical role in Hh signal transduction (Corbit et al., 2005; 

Rohatgi et al., 2007). Smo translocation to the cilium propagates Hh pathway activation 

through the ciliary trafficking of Gli (Wong et al., 2009). Therefore, we examined whether 

eggmanone affected Gli trafficking to the primary cilium, where Gli transcription factors 

undergo activation prior to proteolytic processing and subsequent translocation to the 

nucleus to either promote or inhibit transcription (Haycraft et al., 2005; Liu et al., 2005). 

Thus, under pathway stimulation with SAG (Frank-Kamenetsky et al., 2002; Chen et al., 

2002b), a Smo agonist, MEFs stained for Gli2 confirmed trafficking of Gli2 to the primary 

cilium (Figure 9B). Importantly, with co-treatment of SAG and eggmanone, Gli2 properly 

localized to the proximal tip of the cilium as marked by the ciliary maintenance protein 

Arl13b. Additionally, with the recent report of ciliobrevin D, a small molecule that 

antagonizes the cytoplasmic motor dynein resulting in defective retrograde transport and 

causes gross ciliary malformation, we sought to examine whether eggmanone affected 

cilium structure and trafficking (Hyman et al., 2009; Firestone et al., 2012). In NIH3T3 

cells stained for the ciliary maintenance protein Arl13b, cilium structure was unaffected 

by eggmanone, and in contrast to ciliobrevin D, the ciliary transport protein IFT88 

remained intact following eggmanone treatment (Figure 10). Thus, in light of unaltered 

structure and ciliary trafficking of Gli, we focused on elucidating eggmanone’s effects on 

Gli processing and nuclear translocation. 

Under regulation by Hh signaling, each Gli transcription factor is differentially 

processed to form either Gli full length (FL) activators or Gli repressors (R) which then 

translocate to the nucleus to either activate or inhibit downstream gene transcription. 
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However, the relative importance of Gli processing and nuclear translocation varies 

between individual factors. For instance, the differential processing of Gli3 is more 

sensitive to the Hh pathway status than Gli2, which remains predominantly in its GliFL 

form regardless of Hh activity (Hui and Angers, 2011). Thus, we separately investigated 

Gli2FL nuclear accumulation and proteolytic processing of Gli3FL to Gli3R. Hh pathway 

stimulation with SAG led to an increase in the fraction of Gli2FL in the nucleus, and this 

nuclear accumulation was inhibited by eggmanone and the adenylyl cyclase (AC) 

activator forskolin (FSK) (Figures 2C, 2D). SAG treatment also inhibited processing of 

Gli3FL to Gli3R, and both eggmanone and FSK restored Gli3R formation (Figures 9C, 

9E) (Humke et al., 2010). Taken together, these data suggest that eggmanone functions 

upstream of Gli processing and nuclear translocation to exert its Hh-inhibitory effects. 

 

Figure 10 Eggmanone does not affect ciliary structure or IFT 
Immunostaining for the cilium marker Arl13b (red) and IFT88 (green) of NIH3T3 cells without stimulation 
(top), stimulated with SAG (20 nM) in the presence of DMSO control (second), 100 µM ciliobrevin D (CB, 
third), or 5 µM Egm (bottom). Scale bar 2 µm. 
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Eggmanone causes selective activation of protein kinase A at the basal body 

 An emerging understanding of Gli transcription factor activity involves direct 

phosphorylation by PKA at two separable steps: repressor formation, and activation for 

nuclear translocation (Pan et al., 2009; Wolff et al., 2013; Tuson et al., 2011; Wang et al., 

1999; Zeng et al., 2010; Niewiadomski et al., 2014). As our Gli2 and Gli3 western data 

(Figure 9) correlated well with this picture, we next investigated eggmanone’s effects on 

PKA autophosphorylation. Immunostaining and quantification of phospho-threonine 197-

PKA (p-T197-PKA) following eggmanone treatment strikingly indicated a significant 

increase in PKA activity at the base of the primary cilium, corresponding to the basal 

body, when co-stained with the ciliary maintenance protein Arl13b (Figures 11A, 11B). 

However, western blotting of whole cell lysates indicated no significant increase in p-PKA 

levels upon eggmanone treatment (Figure 11C), hinting at the possibility of localized PKA 

activation by eggmanone. PKA’s localization to the basal body has been previously 

reported as a mechanism for control of Gli processing prior to its trafficking to the nucleus 

to inhibit Hh signaling (Tuson et al, 2011). To confirm this localization, co-staining of p-

T197-PKA and γ-tubulin, which associates with the basal body, further revealed robust 

PKA activation at the basal body due to eggmanone treatment (Figure 11D, 11E). Taken 

together with the Gli processing and translocation data, localized PKA activation may be 

responsible for mediating eggmanone’s effects on Hh signaling. 
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Figure 11 Eggmanone modulates the activity of PKA at the basal body 
(A) Immunostaining for the cilia marker Arl13b (green) and the autophosphorylated form of the PKA catalytic 
subunit (phospho-T197-PKA; red) in NIH3T3 cells unstimulated (left), or stimulated with the Smo agonist 
SAG (20 nM, middle) demonstrated a low baseline PKA activation; co-treatment with SAG and Egm (5 μM, 
right) increased local PKA activation at the base of the primary cilium. Representative cilium (white box) 
magnified in the inset. Scale bars 10 μm. (B) Quantitative analysis of the local activation of phospho-T197-
PKA at the cilium (C) and peri-cilium (P) (mean ± SEM, n = 3 for each condition, * = 0.031 vs. SAG alone 
at the peri-cilium), as shown in (A). (C) Western blot of NIH3T3 whole cell lysates for phospho-T197-PKA 
(bottom) and α-tubulin (top). SAG was treated at 20 nM and Egm at 5 μM. (D) Immunostaining for the basal 
body marker γ-tubulin (green) and the autophosphorylated PKA catalytic subunit (phospho-T197-PKA; red) 
in NIH3T3 cells unstimulated (top), or stimulated with SAG (20 nM, middle) and Egm (5 μM) (bottom). Scale 
bars 10 μm. (E) Quantitative analysis of p-PKA intensity at the basal body from (D); RFU, relative 
fluorescence units (mean ± SEM, n = 21 for each condition, *** = <0.0001 vs. SAG alone). 
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Figure 12 Eggmanone exerts its Hedgehog-inhibitory effects through antagonism of 
phosphodiesterase 4 
(A) In vitro PDE activity assays across ten PDE super-family members by Egm (20 μM). (B) Dose response 
curve of Egm against PDE4D3 (red), PDE3A (blue), PDE10A2 (purple), PDE11A4 (green). IC50s were 0.072 
μM, 3.00 μM, 3.05 μM and 4.08 μM respectively. (C) Transient overexpression of wild type PDE4D3 induced 
Hh reporter activity (* = 0.0026 vs. pCS2 control), which was abolished by 5 μM Egm (p <0.0001 vs. 
PDE4D3 WT). Transient overexpression of dominant negative (DN) PDE4D3 decreased Hh reporter activity 
(* = 0.0121 vs. pCS2 control). Data is reported at mean ± SEM. (D) Rolipram (Rol) inhibited Sonic hedgehog 
(Shh)-responsive Gli-luciferase (Gli-Luc) reporter activity when stimulated with Shh conditioned medium (n 
= 4 for each condition, results represented as mean RLU ± SEM, p-value <0.003, starting at 1 μM).  
 

 

Eggmanone inhibits hedgehog signaling through antagonism of phosphodiesterase 4 

 PKA is one of numerous proteins known to localize to the basal body, where it is 

anchored by A kinase-anchoring proteins (AKAPs) (Terrin et al., 2012). Additionally, PKA 

activation occurs in response to the ubiquitous secondary messenger cyclic adenosine 
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monophosphate (cAMP), which is synthesized by adenylyl cyclases (AC) and is degraded 

by phosphodiesterases (PDE). Following this logic, we hypothesized that eggmanone’s 

Hh-antagonism could be due to PDE inhibition and tested its ability to inhibit PDEs (Figure 

12α). Eggmanone potently inhibited PDE4D3 and only inhibited three other family 

members greater than 50% at 20 μM. No other PDE family members were inhibited by 

eggmanone more than 18%. This data correlated well with IC50 values for four PDE 

members, where eggmanone displayed potent and selective antagonism of PDE4D3 with 

an IC50 of 0.072 μM, approximately 40- to 50-fold selective over other PDEs (Figure 12B). 

Conveniently, PDE4D3 has been shown to complex with PKA and AKAP9 at the 

centrosome, lending additional validity to PDE4 as eggmanone’s cellular target (Terrin et 

al., 2012). Counter-screening of eggmanone against a broad and comprehensive panel 

of 442 kinases, 158 GPCRs, and 21 phosphatases revealed no other targets inhibited by 

eggmanone at greater than 50% at 10 μM. Based on these results, eggmanone was 

confirmed to be a potent and selective PDE4 inhibitor. 

 

PDE4 modulates Hh signaling in vitro 

 Considering the previous lack of direct correlation between PDE inhibition and Hh 

blockade, we sought to molecularly confirm this association. First, the PDE isoform most 

potently inhibited by eggmanone, PDE4D3, was transfected into Shh-Light2 cells and was 

shown to significantly increase signaling over the levels observed when stimulated with 

SAG (Figure 12C). This increased signaling was returned to basal level upon treatment 

with eggmanone. Furthermore, transfection of a dominant negative catalytically inactive 

PDE4D3 construct led to a reduction in Hh signaling which was further abrogated by 
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subsequent eggmanone treatment. Finally, if PDE inhibition modulates Hh signaling, we 

reasoned that the broad-spectrum PDE4 inhibitor rolipram should display inhibitory 

activity in the Gli-Luc reporter assay. Indeed, Shh-Light2 cells stimulated with Shh 

followed by treatment with increasing concentrations of rolipram did reduce Hh signaling 

levels, albeit with lower potency than eggmanone (Figure 12D). These results confirm 

that decreased cAMP concentrations due to higher PDE4 activity can promote Hh 

signaling, and the converse situation can lead to Hh inhibition. 

 

Discussion 

 Hh and PDE4 have been independently identified as promising targets for cancer 

therapy. As previously mentioned, Hh has been shown to drive tumor progression in BCC, 

medulloblastoma, and other cancers (Kar et al., 2012; Ng and Curran, 2011). PDE4 has 

primarily been implicated as a driver of central nervous system (CNS) tumors such as 

medulloblastoma and glioblastoma as well as lung and breast tumors (Goldhoff et al., 

2008; Sengupta et al., 2011). Moreover, much evidence points to overexpression of PDE4 

in a wide variety of tumors, and the resulting decrease in cAMP has been associated with 

increased prevalence of malignancies. In light of this information and our presented data, 

we show that PKA acts as a linchpin to link PDE4 to Hh signaling. 

 Based on our data from cellular characterization of eggmanone’s Hh-inhibitory 

activity, we propose a signaling model that illuminates previously unclear portions of the 

Hh signaling mechanism. During the normal active pathway state, PKA remains minimally 

active due to low cAMP concentrations associated with PDE4 hydrolytic activity. GliFL 

does not undergo phosphorylation by PKA and translocates to the nucleus to promote 
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gene transcription. When PDE4 activity is inhibited, increasing concentrations of cAMP 

activate PKA leading to Gli phosphorylation and processing to Gli repressor.  

 Using an unbiased in vivo chemical genetic screen for small molecules that perturb 

Hh signaling, we identified eggmanone, a novel highly selective PDE4 inhibitor and used 

it as a probe to discover a novel role of PDE4 in regulation of Hh signaling downstream 

of Smo.  To our knowledge, this work represents the first demonstration of a direct and 

specific link between PDE4 inhibition and Hh blockade. In light of prior associations of 

PDE4 and Hh with variety of malignancies, our study highlights a novel therapeutic 

strategy that exploits the dual roles of PDE4 in Hh signaling and cancer.  
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CHAPTER 4 

ZePAC: ZEBRAFISH PHENOTYPIC ANATOMICAL CLUSTERING 

 

 

Introduction  

In the past decade the phenotypic screening has regained interest as a 

complementary approach to in vitro screening for early drug discovery (Williams and 

Hong, 2016). A critical component of this resurgence is the rising cost of drug 

development caused by late stage failures (Swinney and Anthony, 2011). New avenues 

for discovery of tractable and relevant disease modifying targets are of primary import.  

Targeting of developmental pathways and signaling cascades represents a resource of 

untapped potential. For example, CSCs (cancer stem cells) utilize pathways essential for 

embryonic development and tissue homeostasis, such as WNT, Hedgehog (HH), and 

Notch pathways (Takebe et al., 2015). The FDA recently approved the first Hedgehog 

inhibitor Vismodegib, which targets the smoothened receptor, for treatment of basal cell 

carcinoma (Fecher and Sharfman, 2015).  This drug provides the first clinical proof of 

principle for the development of therapeutics around developmental pathways. 

In a previously described phenotypic screen we identified novel small molecule 

regulators of BMP, VEGF, Hedgehog and WNT (Hao et al., 2010b, 2013; Williams et al., 

2015; Yu et al., 2008). Windorphen a novel P300 selective inhibitor was discovered 

through its ability to perturb dorsoventral patterning in zebrafish development. During 

zebrafish development WNT plays a bimodal role; during the early phase WNT is critical 

for establishing the Spemann-mangold organizer which determines the dorsal pole. The 
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later phase consists of WNT signals in ventrally determined progenitors. The signaling 

cascade initiates with WNT ligand binding to Frizzled receptors to trigger dissociation of 

the destruction complex resulting in β-catenin nuclear translocation. The stability of β-

catenin is tightly controlled through the degradation complex, which consists of APC, axin, 

CK1 and GSK3B (Nakamura et al., 1998).  CK1 and GSK3B are kinases that 

phosphorylate B-catenin at various serine residues, allowing degradation through the 

proteasome (Kimelman and Xu, 2006). Inhibition of these factors leads, or dissociation 

from the destruction complex are two mean by which WNT activation occurs.  Once in the 

nucleus, β-catenin binds TCF/LEF and recruits the transcriptional co-activators p300 

and/or CBP resulting in target gene transcriptional activation. (Ashihara et al., 2015).  

WNT represents a particularly interesting target for therapeutics, as under normal 

physiological conditions WNT signaling controls stem cell homeostasis (Klaus and 

Birchmeier, 2008). Further WNT signaling is thought to drive a large number of cancers, 

including but not limited to colon and pancreatic cancers (Klaus and Birchmeier, 2008).  

However, a WNT inhibitor has yet to gain FDA approval, a promising clinical trial of the 

biologic OMP-54F28/Fzd-Fc has been found to have a negative off target effect of bone 

mineral density decreases (NCT01608867).   

In forward mutagenesis screens, as the genome is more saturated, multiple alleles 

in the same gene are discovered. Although these mutants are different, the phenotypes 

would be similar enough that genetic complementation tests are conducted. Therefore, 

mutations in different loci of the same gene create similar phenotypes, and even 

mutations in different genes in the same pathway can create similar phenotypes. Building 

on this concept, chemical probe utilization during development in zebrafish have shown 
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that specific inhibition of proteins with small molecules can phenocopy loss of function 

mutations (Yu et al., 2008).  In previous chemical screens for modulators of 

developmental pathways, phenotype of chemical perturbations have been used to 

associate the compound to a known pathway (Hao et al., 2010b, 2013; Williams et al., 

2015; Yu et al., 2008). However, this approach is highly dependent on the depth of human 

knowledge and is biased toward commonly known phenotypes. Target and pathway 

identification is possible in numerous contexts through Phenoclustering (Williams and 

Hong, 2013).  Zebrafish have been used in biomedical research for over 40 years, with 

data from mutants and genetic perturbations aggregated by ZFIN for many years, 

representing a large data set that is beyond the scope of human processing. To date, this 

data has not yet been fully utilized toward for target/ pathway identification.  

 Herein we report the use of a phenotypic clustering platform ZEPAC (Zebrafish 

Phenotypic Anatomical Clustering), an unsupervised hierarchical clustering method for 

pathway identification of small molecules using a zebrafish phenotypic screening. In proof 

of concept we apply ZEPAC to a small molecule, here in called incaskin (ICN), a novel 2-

(2-phenylethenyl)quinolone, which antagonizes WNT signaling, both in vivo and in vitro, 

through CK2α. Insilico modelling suggests that ICN binds the CK2α active site with 

exquisite selectivity. Further, ICN inhibits CK2α in purified enzyme assays and 

phosphorylation of CK2 specific phosphorylation of PTEN-S370. Finally, ICN differentially 

inhibits growth of WNT driven tumors.  Together these represent a novel chemical 

biological tool for the study of CK2α in WNT signaling. 
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Figure 13 . Development and execution of ZePAC (Zebrafish Phenotypic anatomical clustering) 
(A) Schema for the steps taken to develop ZePAC. (B) Venn diagram of genes with phenotypes annotated 
in axis, eye, and head anatomical features. Table of 16 genes that are shared in the three categories (Wnt 
genes: BOLDED, Ciliary Genes: Italicized). (C) Hierarchical clustering of nominal descriptors. (D)Applying 
Levenshtein text distance to descriptors allow more granularity of data and gradients to form for hierarchical 
clustering. (E)  Small extract of wnt and hedgehog genes clustered show segregation of genes based on 
similarity of phenotypes extracted from text descriptors. 
 

 

Results 

Pathway segregation based on genotype-phenotype association database  

 We curated data on 29 anatomical features discernable by standard light 

microscopy in the first 48 hours of embryonic development from ZFIN’s publicly available 

genotype phenotype database consisting of 15439 gene-descriptor-affected structure 

data points. These were concatenated into 9813 gene-affected structure pairs among 

2909 genes. The average gene therefore had 3.4 affected structures. Any structures in 
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the dataset that did not have phenotype annotations were imputed as normal. This 

database was then given nominal values of 1 being affected and 0 being unaffected. As 

a feasibility study, we assessed if this database was capable of finding groups of pathway 

genes based on affected structures. The WNT pathway is known to affect axis length, 

head size and retinal development in zebrafish development. By generating a simple 

Venn diagram of genes containing annotated perturbations in these features, we identify 

a subset of genes that are enriched for WNT signaling components; interestingly, as cilia 

are profoundly important for wnt signaling, ciliary proteins bbs1, cobl, and kif11 also were 

found in this grouping (Figure 13B). However, this was a biased approach selecting 

specifically for known features and ignoring the rest of the 26 anatomical features. Taking 

an unbiased approach, genes were hierarchically clustered using unsupervised learning 

using a jaccard similarity index between the phenotypes.  While still clustering WNT 

components together, other genes were also well represented (Figure 13C). This result 

indicated that assigning nominal values for data reduction causes loss of data depth, and 

resultant convergence of dissimilar phenotypes (e.g.  loss of structure, vs increased size 

of structure). To reduce loss of data depth, we restored granularity to the data for affected 

structures using levenshtein text distance calculations as vector distances for descriptors 

deviating from “normal” (Figure 13D).  Further, clustering this data using Euclidean 

distance for vectors allows the segregation of signaling pathways like WNT and 

hedgehog, based on unsupervised clustering using anatomical phenotype descriptors. 

(Figure 13E). 
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Figure 14 Incaskin 48hpf phenotype clusters with known Wnt pathway mutants and exhibits Wnt 
like dorsalizing activity 
(A) Chemical structure of Incaskin, 2-[(E)-2-phenylethenyl]quinoline. (B)  48hpf Phenotype of embryos 
treated with ICN at 4hpf. (C)  ZePAC clustering results. ICN clusters with Wnt components wnt8a, gpc4, 
wnt5a and vangl2. (D) In situ hybridization of 6-somite-stage (12-hpf) embryos to evaluate expression of 
the dorsal markers Krox20, which marks rhombomeres 3 and 5. In comparison to untreated embryos (left), 
expression is dramatically expanded in incaskin (ICN) treated embryos (right). Dorsal view, anterior is to 
the bottom.  (E) In situ hybridization of 12-somite-stage (16-hpf) embryos to evaluate expression of the 
dorsal markers pax2.1, which marks mid-hindbrain boundary. In comparison to untreated embryos (left), 
expression is dramatically expanded in incaskin (ICN) treated embryos (right). Dorsal view, anterior is to 
the bottom.  (F) Differential temporal effects of ICN (10 μM).  Treatment of embryos right after fertilization 
results in loss of anterior structures and ventralization of embryos. Treatment at 4hpf results in shortened 
axis and dorsalization of embryos is between 4 to 6-hpf. Treatment at 9hpf resulted in few truncated 
embryos.  
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Pheno-clustering of novel small molecule for target pathway identification   

To directly assess whether this machine learning approach could predict the target 

pathway of a novel small molecule based on induced phenotype, we selected a novel 

unannotated 2-(2-phenylethenyl)quinoline, here in called incaskin (ICN) (Figure 14A). In 

brief ICN was discovered a screen of approximately 30,000 small molecules for their 

ability to effect alterations in embryonic zebrafish patterning; fertilized zebrafish embryos 

were arrayed into 96-well microtiter plates, exposed at 3 to 4-hours post fertilization (hpf) 

to a 10uM compound library, and then visually assessed for perturbations.  ICN was given 

phenotypic description including but not limited to decreased axis length, abnormal brain 

morphology, decreased eye size, and increased head size (Figure 14B, Table 1). After 

calculating levenshtein distances for our phenotypic descriptions against “normal”, we 

appended ICN into our genotype-phenotype database and clustered the perturbations. 

ICN clustered closely to WNT signaling components wnt8a, gpc4, vangl2 and wnt5b 

(Figure 14C). WNT signaling is critical for establishing ventral cell fates between 4-6 hours 

(Hao et al., 2013; Schier and Talbot, 2005). Incaskin treatment at 4 hours induced marked 

expansion of the dorsal markers and krox20, a marker of rhombomeres 3 and 5 at the 6-

somite (Figure 14D), and pax2.1, which demarcates mid-hindbrain boundary and otic 

placode at the 10-somite stage (Figure 14E). In contrast to BMP inhibition, but consistent 

with the biphasic role of WNT in axis patterning, incaskin treatment also reproducibly 

caused ventralization of zebrafish embryos when treated during early blastula. (Figure 

14F).  Taken together these phenotypes predict that incaskin regulates WNT signaling 

and furthermore causes dorsalization of key markers and exhibits a biphasic role on axis 

formation, consistent with inhibition of WNT signaling. 
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Table 1 Phenotypic descriptors of ICN treatment 

 

Incaskin inhibits activation of β-catenin and nuclear subsequent nuclear translocation 

To define the mode of action of ICN on the canonical WNT signaling pathway, we 

assessed activation of β-catenin in embryo lysates. Embryos treated with ICN reduce 

levels of active, non GSK3B phosphorylated, β-catenin. (Figure 15A). Notably there is a 

small mobility shift in both active and total β-catenin, suggesting a change in 

phosphorylation. To assess if the target for ICN is conserved in mammalian cells a WNT 

reporter cell line, STF293, were used. In STF293 cells, addition of WNT3a conditioned 

media alone robustly induced β-catenin dependent luciferase activity, and this WNT3a-

induced reporter activity was blocked by ICN in a dose-dependent manner (Figure 15B). 

Next, in human colon carcinoma RKO cells, we found that ICN affected WNT3a-induced 

translocation of β-catenin to the nucleus (Figure 15C). Taken together, these results 

suggest that ICN selectively targets a signaling component in the WNT pathway that 

modulates the phosphorylation and translocation of β-catenin. 
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Figure 15 Incaskin inhibits nuclear translocation of B-catenin 

(A) Western blot of B-catenin and active b-catenin.  ICN reduces levels of active b-catenin with no significant 
effect on total b-catenin or tubulin levels.  Differences in mobility suggest different phosphorylation states 
(B) Incaskin (ICN) inhibited Wnt signaling induced by Wnt3a conditioned Media   TOPFLASH-luciferase 
assays in STF293 cells. (n = 4, results represented as mean RLU, relative luciferase units). (C)  ICN 
treatment blocks Wnt3a-induced β-catenin nuclear translocation in RKO cells. RKO cells were 
immunostained for β-catenin (red) and counterstained with DAPI (blue) following 24-hour incubation without 
Wnt3a, with Wnt3a, and with Wnt3a plus ICN (10 μM).  
 

Incaskin is a CK2α inhibitor 

 β-catenin is tightly regulated by a number of kinases. Building on the evidence 

above, we examined kinases as a possible molecular target of Incaskin. ICN binding was 

screened against a diverse panel of 442 kinases (DiscoverRx KINOMEscan) using an in 

vitro ATP-site competition binding assay at a concentration of 10 μM. 8 kinases that 
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exhibited greater than 95% displacement from the immobilized ligand by Incaskin were 

further assayed in purified enzyme assays (Figure 16A). The in vitro purified enzyme 

assays showed that Incaskin has inhibitory activity against CK2α (casein kinase 2α), 

CK2α2 and CAMK2  (calcium/calmodulin-dependent protein kinase II beta); IC50s 687, 

4414, and 7089 nM, respectively (Figure 16B). Incaskin exhibited no further inhibitory 

activity against any other potential targets identified in the Kinomescan.  

Crystal structures of CK2α catalytic domains have been determined in the 

presence of ATP and other ligands (Niefind et al., 1998). The catalytic domain, consisting 

of a catalytic loop Arg155 to Asn161, for CK2α is somewhat unique and is capable of 

using ATP and GTP (Niefind et al., 1998). These structures enabled us to perform 

unbiased docking simulations to identify potential Incaskin binding sites. Incaskin was 

docked to the structure of CK2α determined by X-ray crystallography (Protein Data Bank 

identifier 3WAR). Molecular docking software (Pyrx) was run using blind docking over the 

entire molecule using Genetic algorithm and suggested that ICN competitively binds to 

the CK2α ATP binding pocket (Figure 16C). This binding pocket was then extracted in 

iGEMdock and ICN was docked to predict interacting residues and binding modes (Figure 

16D).  Taken together this molecular model suggests that the north-east nitro group form 

critical hydrogen bonds with lys68 and asp175 for inhibition of CK2α (Figure 16D, E).  
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Figure 16 Incaskin selectively targets CK2α 
(A) KinomeScan profiling of Incaskin at a concentration of 10 μM against 442 kinases. (B) IC50 results of 
in vitro purified kinase assays for interacting targets from Kinomescan.  (C)  Blind Docking simulations of 
ICN with CK2α (PDBID:3WAR) based on Lamarckian genetic algorithm in PyRx predicts binding in the 
active site. (D)  Docking pose of CK2α (PDBID:3WAR) with incaskin using hex v6 algorithm. The receptor 
is represented as ribbon form and ligand as solid model. (E) Binding energy was determined as 
−164 (kcal/mol), predicted hydrogen bond interactions at LYS68, VAL116 and ASP157.  
 

To test the hypothesis that hydrogen bonds formed by the northeast functionality 

are important for ICN action two analogs were acquired with a loss of the nitro functional 

group with either bromine (ICN4343) or ethyl ether functional group (ICN7863) (Figure 

17A). The in vitro purified enzyme assays showed that ICN, ICN4343 had inhibitory 
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activity against CK2α (casein kinase 2α), IC50s 687, 23400nM, respectively, while 

ICN7863 had no CK2α inhibitory activity up to 30uM (Figure 17B). Purified enzyme 

assays further showed that while ICN had inhibitory activity against CAMK2 , IC50 7089, 

ICN4343 and ICN7863 had no CAMK2  inhibitory activity up to 30uM. Furthermore, loss 

of CK2α inhibitory activity for ICN7863 correlates with loss of WNT antagonism in STF293 

assay (Figure 17C). Taken together these findings determine the structural determinant 

for ICN inhibition of WNT signaling through CK2α.  

 

Genetic manipulation with CK2α modulates zebrafish dorsoventral patterning 

  The possibility that Incaskin inhibits CK2α to modulate WNT during zebrafish 

development is consistent with the important role of CK2 in xenopus dorsoventral 

patterning (Dominguez et al., 2004; Song et al., 2000). However, the role of CK2α in 

zebrafish has not been established. It is known that CK2α (zgc:86598) is ubiquitously 

expressed throughout development (Thisse et al., 2004). We hypothesized that injection 

of kinase inactivated (dominant negative) CK2α should serve to phenocopy 

pharmacological inhibition of CK2α by Incaskin. Indeed, injection of capped mRNA 

encoding DN-CK2α resulted in both ventralized embryos and dorsalized embryos (Figure 

17D). The dual role, both dorsalizing and ventralizing activities, of Incaskin and KI-CK2α 

can be explained by the dual functionality of WNT signaling during axis formation in 

zebrafish where maternal WNT signaling is necessary for establishing the dorsal  
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Figure 17 Loss of CK2α kinase activity causes incaskin phenotype 
(A)  Analogs of Incaskin with altered Northeast portion were obtained. (B) IC50 results of in vitro purified 
kinase assays for potential relevant targets CK2α and CAMK2B.  (C) Alterations of northeast portion of 
incaskin lose wnt inhibitory ability. (D)  Dominant negative CK2α injected zebrafish recapitulate Incaskin 
phenotype. (E) Incaskin inhibits CK2 specific phosphorylation of PTEN at residue S370 in HEK293 cells. 
 

organizer, and later zygotic WNT plays a role in the formation of tail and ventral structures. 

Finally, to assess if CK2α kinase activity is affected in cellular contexts we examined the 

site serine 370 on PTEN, which is a CK2 specific phosphorylation site(Miller et al., 2002). 

Cells treated with ICN had reduced pS370 PTEN compared to DMSO treatment (Figure 

17E). This data with the data above suggest that ICN inhibits CK2α phosphorylation 

activity which, in turn inhibits WNT signaling in vitro and in vivo. 
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Incaskin robustly induces apoptosis signaling in Wnt dependent tumor cells 

  Canonical Wnt/β-catenin signaling has been strongly linked to the development of 

numerous malignancies, particularly gastrointestinal cancers of which 90% are thought 

to involve aberrant Wnt signal activation (Clevers, 2006; Moon et al., 2004; Reya and 

Clevers, 2005). To ascertain therapeutic potential of chemical inhibition of CK2α, we 

investigated Incaskin’s effects on the viability of cancer cells.  Cell viability assays with 

increasing concentrations of ICN for 72 hours reflect that human carcinoma cell lines 

noted to have activation of Wnt signaling, such as human colon cancer cell lines SW480, 

HCT116, and RKO and prostate cancer cell lines DU145 and medulloblastoma Daoy (Lu 

et al., 2009; Suzuki et al., 2008), exhibited sensitivities to killing by incaskin (IC50s of 

15.0, 19.2, 21.8, 19.0 μM, respectively; Figure 6A, B). In contrast, Hela cells were 

relatively refractory to the effects of Incaskin.  In human colon adenocarcinoma HCT116 

cells, in which Wnt signaling is constitutively activated due to mutant APC (adenomatous 

polyposis coli) gene that is protected from degradation via the destruction complex, 

Incaskin (10 μM) prevented nuclear translocation of -catenin to the nucleus (Figure 6C) 

and caused activation of apoptosis through cleavage of caspase-3 after 72 hours of 

treatment (Figure 6D). These observations suggest that selective CK2α inhibitors like 

Incaskin may be an attractive chemical probe for interrogating Wnt pathway in cancer 

cells. 

  



 88 

 

 

Figure 18 Incaskin promotes apoptosis in Wnt dependent tumor cell lines 
(A) Percentage of viable human cancer cells (SW480, RKO, DU145, PC3 DaoY and HCT116), as 
determined by cell titer assays, following 72-hour treatment with increasing concentrations of ICN (n=4 for 
each data point). (B) IC 50 values for tumor cell lines. (C)  ICN treatment  blocks aberrant β-catenin nuclear 
translocation in HCT116 cells. HCT116 cells were immunostained for β-catenin (green) and counterstained 
with DAPI (blue) and actin (red) following 24-hour incubation ICN (10 μM). (D) ICN treatment induces 
cleaved caspase-3 in HCT116 cells. HCT116 cells were immunostained for β-cleaved caspase(green) and 
counterstained with DAPI (blue) and actin (red) following 24-hour incubation ICN (10 μM).  
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Discussion  

 In this study, we used publicly available genotype-phenotype data to develop a 

hierarchical clustering method to facilitate pathway identification for small molecule 

modulators of zebrafish development. We used gene-phenotype association across over 

2,900 genes and 29 anatomical features to segregate clusters of gene interactors that 

modulate elicit a spectrum of anatomical perturbations during the first 48 hours of 

zebrafish development. We validate that genes that are related are responsible for similar 

phenotypes and therefore cluster together. For computation of difference between normal 

and observed differences for the anatomical structures we used Levenshtein distance, 

string distance based measure, for terms for each anatomical feature from a publicly 

developed database. However, this is not without flaws. Verbosity of data curators and 

potential observational bias of curators for some phenotypes over others can introduce 

artificial “phenotypic noise”. Despite these confounders, a clear segregation of gene 

families is seen in our hierarchical clustering pathway prediction strategy.  

To directly test the feasibility of pathway deconvolution method ZEPAC, we chose 

to identify the target of a previously unannotated a 2-(2-phenylethenyl)quinolone, ICN. 

Through use of anatomical phenoclustering we were able to predict that ICN was involved 

in wnt signaling. Further investigations identified that ICN was a highly selective CK2α 

inhibitor that inhibits nuclear translocation of β-catenin. Finally, we show that incaskin can 

selectively kill cancer cells in which Wnt signaling is aberrantly activated. This is 

concurrent with data from the clinical trial (NCT00891280) using CK2α inhibitor CX-4945 

for a wide spectrum of cancers that over express CK2α including but not limited to Lung, 

Renal, Head and neck, Prostate and Colorectal cancer.  
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Currently there are a few commercially available CK2α inhibitors used as chemical 

probes: DMAT, TBB and DRB. DMAT and TBB are derivatives of one another with IC50s 

of 0.14 and 0.5uM, respectively (Duncan et al., 2008). However, DRB which is structurally 

distinct has a higher IC50 of 13uM.  As with many kinase inhibitors, these compounds are 

far from specific; a small assay of 80 kinases (less than 1/5th of the human kinome) 

revealed that TBB and derivatives also target PIM1 (provirus integration site for Moloney 

murine leukemia virus), PIM2, PIM3, PKD1 (protein kinase D1), HIPK2 (homeodomain-

interacting protein kinase 2) and DYRK1a (dual-specificity tyrosine-phosphorylated and -

regulated kinase 1a) with some potency (Pagano et al., 2008). While these chemical 

probes have provided some important insight into CK2α biology there is concern of off 

target effects. With an IC50 of 0.67uM, Incaskin’s potency is equal to or better than 

currently available CK2α inhibitors. Moreover, it is exquisitely selective for CK2α, with 

only one other possible target in CAMK2b at a 10-fold lower affinity. Furthermore, having 

been first characterized in zebrafish, Incaskin has already demonstrated its efficacy in 

vivo. These features of potency, selectivity, and in vivo efficacy make Incaskin an ideal 

probe for the study of CK2α in vivo. 

As Phenotype-based chemical genetic screening becomes more common and 

throughput increases, the consequences of a bottleneck of target identification become 

more significant. Because traditional target identification approaches are linear and labor 

intensive, targets for only a small number of “hit” compounds can be pursued. By contrast, 

hierarchical clustering based on phenotypic similarity has the potential to dramatically 

increase the throughput of small molecule target identification efforts, and mechanism of 

action studies. These pathway predictions can be done in real time with annotation of the 
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phenotype.   Furthermore, using this methodology as a framework, advancements in 

machine learning and image analysis/recognition have the potential to supplement this 

approach and remove observer bias for phenotypic assessment.    
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CHAPTER 5 

OGREMORPHIN 

 

 

Introduction 

Highly malignant, invasive, and metastatic cancers have markedly elevated 

glycolytic activity, producing an oncogenically favorable acidotic extracellular 

environment; a phenomenon called the Warburg effect(Vander Heiden et al., 2009). This 

acidification (pHe < 7.4) of the environment is marked by increases in efflux mechanisms 

H+ATPases and Na+-H+ exchangers(Martinez-Zaguilan et al., 1993; McLean et al., 

2000; Miraglia et al., 2005; Sennoune et al., 2004). Furthermore acidification promotes 

tumor malignancy, including metabolic reprogramming and invasiveness, the cellular 

mechanisms that mediate these phenomena are poorly understood(Justus et al., 2013; 

Webb et al., 2011).   Investigations have shown that in numerous animal models of solid 

tumors, small molecule inhibition of NHE1 can have an effect on tumor growth and 

metastasis(Matthews et al., 2011).  

Melanoma is one of the most aggressive human cancers; patients having 

metastsatic melanoma have a median survival of less than 12 months(Tas, 2012). 

Melanomas derives from neural crest derived melanocytes. It has been shown that 

numerous mechanisms and genes are shared between neural crest cells and 

melanoma(Gong, 2014; Takahashi et al., 2014, 2013). Neural crest cells initially form from 

a neuroepethelial population that undergoes a transition into a migratory cell type 

(Morales et al., 2005). The neural crest cells interpret a complex interplay of proximal and 
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distal signals to invade the surrounding tissue and migrate to the developmentally 

relevant location(Takahashi et al., 2013). Therefore small molecules that perturb 

melanogenesis in zebrafish could potentially identify new therapeutic avenues. Indeed 

several screens have been conducted to validate this approach(Chen et al., 2012; Cheng 

et al., 2016; Colanesi et al., 2012). In this investigation, we used the zebrafish embryonic 

pigmentation model to identify a modulator of neural crest migration, identified as an 

inhibitor of proton sensing GPCR (G protein coupled receptor), GPR68, that modulates 

migratory behavior of melanoma cells in vitro and in vivo.  Furthermore, Human Phenome 

wide association study identified 2 variants in GPR68 that significantly increase the risk 

of tumor metastasis to bone and liver. 

 

Results 

 

Figure 19 Discovery of Ogremorphin 
(A) Structure of Ogremorphin (B) Control Zebrafish embryo at 48hpf (C) OGM treated embryo at 48hpf 

 

 

Ogremorphin inhibits GPR68 

In an unbiased screen of ~30,000 small molecules, assaying for their ability to 

induce phenotypic changes in morphology, we identified a (3R)‐5‐ethyl‐5'‐(naphthalen‐1‐

yl)‐1,2‐dihydro‐3'H‐spiro[indole‐3,2'‐[1,3,4]thiadiazole]‐2‐one here in called Ogremorphin, 

based on the formation of a strip of melanocytes along the dorsal ridge of the embryo. 
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(Figure 19). In addition to pigmentation defects, Ogremorphin reproducibly induced 

ventral curvature, wavy notochord, shortened body axis, craniofacial defects, and loss of  

 

Figure 20 GPR68 knock down phenocopies OGM treatment 
Samples: Rows top to bottom; Control embryos, GPR68 morphants, OGM treatment. Phenotypes: columns 
left to right; Lateral view alcian blue stained 5dpf zebrafish, ventral view of alcian blue stained embryos, 
retinal iridophores at 3dpf, bright field at 48hpf, bright field of view of notochord at 48 hpf. Bottom row 
quantification of phenotypes shown above N>100 for each phenotype.  
 

 

retinal iridophores (Figure 20). The loss of melanophores, iridophores and craniofacial 

cartilage are consistent abrogation of neural crest development(Kwak et al., 2013). 

Ogremorphin was assessed for activity against 158 GPCRs based on its chemical 

structure; in a single point assay and significantly inhibited LPA1, GPR14/UT2R, and 

GPR68/OGR1 (Figure 21B). Commercially available inhibitors of LPA1 (Ki16425) and 

GPR14 (SB657510) were both assayed and failed to induce a noticeable phenotype at 
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concentrations up to 200X the IC50 (Figure 21C).   Around a core pharmacophore of 

Ogremorphin we assayed a series of analogs, and dialed out LPA1 receptor activity 

(Figure 21). Taken together, the data suggests that inhibition of GPR68 leads to the 

observed phenotype.    

 

Figure 21 OGM inhibits GPR68 
(A) Core pharmacophore of OGM class (B) GPCRscreen for target identification (C) Small scale SAR and 
interrogation of targets  
 

 

Genetic inhibition of GPR68 phenocopies Ogremorphin treatment 

Given the chemical evidence that GPR68 inhibition correlated to induction of 

phenotype, we knocked down GPR68, for which there is only one ortholog in zebrafish. 
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Increasing doses of GPR68-morpholino induced the same morphological changes as 

Ogremorphin treatment, namely craniofacial cartilage perturbation, loss of pigmentation 

and iridophores, and wavy notochord (Figure 20). This data suggests that loss of GPR68 

activity is responsible for Ogremorphen induced phenotype in zebrafish.  

 

Figure 22 H/K ATPase inhibition phenocopies GPR68 inhibition 
(Top) Table of H+ extrusion inhibitors and resulting phenotypes. Phlorizin included as a general antiport 
inhibitor control. (Bottom) Left, Control embryo at 48hpf. Middle, OGM treated embryo, Right, Omeprazole 
treated embryo 
 

 

Proton efflux inhibition phenocopies Ogremorphin treatment 

GPR68 has been shown to be activated by mild acidification, inactive at pH7.4 but 

fully active at pH 6.8(Ludwig et al., 2003).  Three major proton efflux mechanisms are V-

ATPase, H/K ATPase, and NHE. Given these facts we hypothesized that one of these 

mechanisms lie upstream GPR68 and therefore inhibition of one or more of these 

mechanisms would result in a similar phenotype. These mechanisms were assayed with 

by a series of inhibitors and we found that H/K ATPase inhibition, specifically omeprazole 

and lansoprazole treatments resulted in the same short axis, waxy notochord loss of 

pigmentation phenotype (Figure 22).  As H/K ATPase is an antiporter we show that 
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blocking other antiport mechanisms such as Na/glucose ATPase does not affect the 

embryo. Therefore, these results suggest that GPR68 senses protons specifically 

extruded by H/K-ATPases during development. 

 

Figure 23 OGM perturbs migration of neural crest cells 
(Top) Left, FoxD3 insitu hybridization of CTL and OGM embryos at 10 somite stage. Middle close up of 
dorsally localized NCC progenitor, OGM progenitors look less ventrally localized. Right, 24hpf embryo 
expressing Crestin-GFP. OGM embryos have less migratory streams of NCC than CTL.  
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Figure 24 Expression of GPR68 during zebrafish development 

 

Ogremorphen inhibits neural crest migration 

 Given the perturbations in multiple Neural crest lineages, Ogremorphin could act 

through altering fate specification of neural crest progenitors. Neural crest are specified 

through the expression of transcription factor FoxD3(Stewart et al., 2006). FoxD3 

expression was comparable in embryos treated with Ogremorphin and control embryos 

at 10 somite stage (Figure 23). After specification neural crest cell migrate, first ventrally 

and organized streams and then throughout the rest of the body(Kulesa et al., 2010).  

These migratory neural crest cells express crestin. Using transgenic crestin:GFP embryos 

we visualized migration in real time, and found migration severely mitigated in 

Ogremorphin treated embryos at 24 hpf (Figure 23). This data suggests that GPR68 is 

necessary for neural crest migration.  Leveraging the temporal control that small 

molecules afford, we inhibited GPR68 in a series of time windows, and determined a 

critical period for neural crest phenotype to be between 12-18hpf (Figure 23). This window 

correlates to both the time of neural crest migration and a peak in GPR68 expression 
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during development (Figure 24). Finally in a scratch assay for migration of human induced 

pluripotent stem cell (hiPSC)-derived Neural crest cells Ogremorphen treated cells 

migrated significantly less than the control cells(Figure 25) (Avery and Dalton, 2016). 

Taken together this data suggests that GPR68 plays a critical role in neural crest 

migration. 
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Figure 25 hiPSC NCC migration is abrogated by OGM 
(A) hiPSC-NCC cells were grown to confluence and denuded with p200 tip. Cells were allowed to migrate 
for 18hours. (B) Quantification of 4 replicates. **P<0.01 

 

 

Figure 26 Melanomas express GPR68 
(A) QPCR of neural crest marker SOX10 and PAX3 with GPR68. HiPSC-NCC and melanoma cell lines all 
express these markers. (B) Data curated from GSE3189. GPR68 expression increases with melanoma 
progression (C) QPCR of other acid sensing GPRCs in melanoma cell lines ** P<0.01 *** P<0.001 
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Ogremorphen inhibits melanoma migration 

Numerous parallels are found between neural crest cells and cancer during 

migration, at the level of expression and behavior(Powell et al., 2013).   Having shown a 

link between GPR68 and neural crest migration, we then examined whether this 

relationship is retained in human melanoma cell lines. Indeed 3 human melanoma lines 

A2058, MeWo and WM115 all express neural crest lineage markers, Sox10 and Pax3, 

and express GPR68(Figure 26). Moreover, it was found that GPR68 expression increases 

in sequentially in the nevus and melanoma in human melanoma samples(Zhao et al., 

2016, GSE3189). Notably GPR68 is the only acid sensing GPCR expressed in all three 

human cell lines assayed (Figure 26).  Behaviorally, it has been shown that 

transplantation of human SK-Mel 28 melanoma cells into the neural tube of developing 

embryos causes the cells to migrate along the same streams as the endogenous neural 

crest cells(Schriek et al., 2005). In a scratch assay for migration of 3 human melanoma 

cell lines, Ogremorphen treated cells migrated significantly less than the control cells 

(Figure 27).  Furthermore, in a 3D model of melanoma extravasation, Ogremorphen 

treated WM115 cells migrated significantly less than the control cells (Figure 27). Taken 

together this data suggests that GPR68 plays a critical role in melanoma migration in 

vitro. 
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Figure 27 OGM attenuates melanoma migration and extravasation 
(A) Melanoma cell lines cells were grown to confluence and denuded with p200 tip. Cells were allowed to 
migrate for 18hours in the presence of OGM or EIPA. (B) Quantification of 4 replicates. (C) Schematic of 
Collagen gel extravasation assay (D) Ctl cells were able to extravasate out of gel readily, OGM treated cell 
were not able to extravasate (E) Quantitation 4 replicates *P<0.05 **P<0.01 *** P<0.001 
 

 

 

GPR68 regulates cell adhesion 

 Previous studies in primary human tumor lines showed  that acidification of media 

promotes expression of  metastatic factors MMP-2, MMP-9 and IL-8, which are hallmarks 

of EMT(Rofstad et al., 2006). Therefore, we investigated ogremorphin’s affects EMT gene 
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expression. QPCR of Zeb2, snail2, MMP2, n-cadherin and mmp-9, markers of a 

mesenchymal cell type were not consistently reduced across cell lines with ogremorphin 

treatment (Figure 28). To broadly assess transcriptomic changes after 24hours of 

Ogremorphin treatment, RNAseq was conducted on wm115 cells (Figure 29). This data 

showed that no epithelial markers increased with 7 out 36 mesenchymal markers 

decreased more than 1-fold (Figure 30). Pathway analysis of downregulated genes 

identified significant enrichment in three pathways (-log P <5), ECM-receptor interaction, 

regulation of actin cytoskeleton, and focal adhesions.  

 

Figure 28 OGM does not act through EMT 
QPCR of prognostic markers of Melanoma progression and EMT markers are not consistently reduced with 
OGM treatment 

 



 104 

 

Figure 29 RNAseq of OGM treated WM115 

 

Figure 30 RNAseq results of EMT markers  
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Table 2 Pathway Analysis 
 

 

To confirm an effect of Ogremorphin on cell adhesion, adhesion assays with plastic 

and fibronectin coated plates in differing pH conditions were carried out.  OGM inhibited 

cell adhesion to fibronectin in acidified media but not pH 7.8 media (Figure 31). Focal 

adhesions complexes are necessary for adhesion and migration; localization of NHE-1, 

proton efflux machinery, to focal adhesion complexes has previously been 

reported(Grinstein et al., 1993; Stüwe et al., 2007a). Given the results above we assayed 

for formation of FA adhesions in response to acidic pH and GPR68 inhibition.   Staining 

of Paxillin revealed increased focal adhesions in acidified media which was mitigated by 

Ogremorphin (Figure 31).  Taken together, GPR68 regulates focal adhesions to modulate 

adhesive ability of melanoma cells. 
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Figure 31 GPR68 modulates Focal adhesion formation 
(Top) Number of WM115 cells adherent to 96 well plate after 1 hour with and without Fibronectin coating 
at varying pH. Total number of cells seeded per well =10,000. OGM Abrogates binding in acidic media. 
(Bottom left) Immunofluorescence of Actin and focal adhesion marker paxillin. pH 6.6 shows increase in 
stress fiber like actin bundles and increased paxillin positive loci per cell. This trend is abrogated by OGM 

(Bottom right) Quantitation of Focal adhesions per cell.   
 

 

Acidification acutely increases cellular motility through GPR68  

Adhesion critically modulates the cellular mechanics of migration. We employed 

time-lapse microscopy to evaluate the effect of acidification on the velocity of migratory 

Wm115 cells. 30-minute stimulation of acidic media increased total migratory capacity of 

cells by 50%, with a corresponding 50% increase in velocity (Figure 32).  Additionally, 

Ogremorphin treatment mitigated the increase in migration and velocity caused by 

acidification (Figure 32). Following this logic, we hypothesized that GPR68’s effect on 

mobility is through modulation of cellular contraction, and tested it in a collagen gel 

contraction assay (Figure 32). Stimulation of GPR68 with a published GPR68 agonist 
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decreased collagen area(Russell et al., 2012). Furthermore, this effect was abrogated 

with Ogremorphin (Figure 32). Cellular contraction is most proximally mediated through 

the molecular motor MLC2(Mierke et al., 2008). Notably, MLC2 has also been implicated 

in focal adhesion maturation(Kuo et al., 2011). To determine if acidification induced 

mobility is mediated through MLC2, we utilized scratch assays in media pH7.8 and 6.8.  

Acidification increased the amount of wound closure, this increase in wound closure upon 

acidification is mitigated in GPR68 (Ogremorphin) and MLC2 (blebbistatin) inhibition, but 

not mitigated with Rock (Y27632) inhibition (Figure 32). Furthermore, acidification 

induced phosphorylation of MLC2 which was mitigated by GPR68 inhibition (Figure 32). 

Based on these results, acid induced GPR68 stimulation promotes phosphorylation of 

MLC2 and subsequent increase in contraction and mobility.  
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Figure 32 GPR68 stimulates myosin mediated cell contractions 
(Top) Migratory behavior of WM115 after 30minute exposure to pH change with or without OGM (A) 
Quantification of total distance travelled by cells (B) Average velocity of cells during time-lapse. (C) Random 
selection of paths traveled by WM115 cells in each condition. (D) Collagen gel contraction assay. pH affects 
rigidity of collagen fibers so small molecule GPR68 agonist was used (E) Quantification of scratch assay 
conducted with acidic stimulation and inhibitors of Rock and MLC2 (F) Western blot of MLC2 
phosphorylation increased after 10minutes of stimulation is abrogated by OGM     

 

GPR68 variants associated with secondary metastasis  

 Extending the phenotypic discovery of Ogremorphin we hypothesized that variants 

of human GPR68 that alter the activity could play a disease role in cancer. Deidentified 

Electronic health records linked to gene sequence information has been used in 

Phenome-wide association studies(Denny et al., 2016). In a manner inverse to Genome 

wide association studies, PheWAS allows one to query what phenotypes (expressed as 

ICD-9 codes) are associated with certain single nucleotide polymorphisms (snps). 

Querying this database for 6 snps of GPR68, found on the exome chip, and identified 3 

variants that were associated with ICD-9 codes (table). These snps rs61745750, 
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rs61745752, and rs200839166, are coding variants resulting in E330N, E336X and 

D259N respectively (figure). Notably, secondary malignancy of bone and secondary 

malignant neoplasm of the liver were signals with P<0.05, and an odds ratio of ~3 for 

rs61745750, rs61745752 (figure). These two variants exhibit a linkage disequilibrium, and 

result ultimately in a truncation is on the C-terminal tail of GPR68 (Figure 33).  These 

results suggest that in addition to our in vitro studies that show that GPR68 modulation of 

in melanoma results in decreased motility, that human variants in GPR68 are linked to a 

clinical outcome of secondary metastasis.  

 

Table 3 Cancer related PhEWAS for GPR68 using BioVU database 
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Figure 33 Schematic of coding variants of GPR68 associated with cancer in EHR  
 

 

Discussion 

A close correlation exists between acidosis, as measured by fetal blood pH, and 

clinical outcome and low Apgar score(Omo-Aghoja, 2014). However, few studies have 

investigated the role of pH regulation in development. Notably, H+-V-ATPase perturbation 

has been shown to be critical for development of the posterior part of the embryo, 

craniofacial morphogenesis, and establishment of right-left asymmetry in 

xenopus(Adams et al., 2006; Gutknecht et al., 1995; Uzman et al., 1998; Vandenberg et 

al., 2011). However, how these effluxes are translated into a cellular response is not well 

understood.  In our current study, we show that genetic and pharmacologic inhibition of 

GPR68 abrogates the neural crest cell migration in zebrafish, furthermore, that this 

mechanism is present in hiPSC-NCC.  We show that, omeprazol and lansoprazole, 

inhibitors of H+/K+-ATPase, phenocopy GPR68 inhibition. Taken together, this data 

suggests that neural crest cell migration is dependent on GPR68 sensing protons 

extruded via H+/K+-ATPase.  
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Targeting proton dynamics, and the dysregulation of pH has emerged as a 

possible therapeutic avenue for cancer(Parks et al., 2013; Webb et al., 2011). As 

mentioned above, acidification promotes tumor malignancy, including metabolic 

reprogramming and invasiveness, (Justus et al., 2013; Webb et al., 2011). GPR68, when 

overexpressed in PC3 prostate cancer cells have significantly reduced metastasis.(Singh 

et al., 2007). Furthermore, in ovarian cancer cells HEY1, overexpression of GPR68 

reduced cell migration and increased cell adhesion (Ren and Zhang, 2011). The 

conclusions drawn from these overexpression studies suggest that GPR68 is a tumor 

metastasis suppressor. Based on our mechanistic studies, GPR68 does play a critical 

role in establishing strong ECM contacts under acidified conditions, concurrent with 

previous studies. However, we also found that these strengthened contacts correlate with 

increased velocity in Wm115 and with contractile ability of cells in collagen gel assay. Our 

data suggests that GPR68 activation creates stronger extracellular contacts through focal 

adhesion complex formation and MLC2 phosphorylation, which increases cellular motility 

of melanoma.  In contrast to previous overexpression studies we examine the role of 

GPR68 at its basal level, and modulate the activity through acidification and small 

molecule inhibition with ogremorphin. Membrane proteins in particular are susceptible to 

generating artifacts through a number of possible mechanisms including activation in the 

wrong cellular domain and saturation of the proper membrane localization.  Recent 

studies have implicated that proton efflux forms an acidic microenvironment along the 

leading edge of migrating melanoma cell line MV3(Stock et al., 2007; Stüwe et al., 2007b). 

Therefore a localized activation of GPR68 along the leading edge of could be convoluted 

in overexpression experiments by causing increased adhesion through out the cell and 
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not just the leading edge, thereby skewing interpretation of the results. Notably, GPR68 

appears to play a multifaceted role during tumor metastasis, as activity of GPR68 in the 

host environment is also critical for tumor metastasis in both prostate and melanoma 

models (Li et al., 2009; Yan et al., 2014).  Therefore, based on our data from 

ogremorphen’s activity on human melanoma in vitro, we propose that GPR68 is a 

chemically tractable target for inhibition of tumor metastasis. 

 Using an unbiased in vivo chemical genetic screen for small molecule modulators 

of embryonic development, we identified ogremorphin, a first in class inhibitor of proton 

sensing GPR68 and used it as a probe to elucidate a novel role for GPR68 in regulation 

of neural crest migration in zebrafish. This inhibitory activity correlated with attenuated 

migratory capacity in human neural crest cells and human melanoma cell lines in vitro. 

Finally, an unbiased computational platform with EHR-genotype records identified rare, 

potentially functional SNPs that increase odds of tumor metastasis.  Our study highlights 

not only a novel therapeutic strategy that exploits the role of GPR68 in melanoma 

migration, but a phenotype driven discovery platform that leverages the emergent 

technologies of whole organism based zebrafish screens and human biology of phenome 

wide association studies.  
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CHAPTER 6 

SUMMARY AND FUTURE DIRECTIONS 

 

 

The vision of chemical biology is to develop potent and specific small molecule 

inhibitors for every chemically tractable protein.  A targeted, linear approach requires vast 

amounts of time, man power and expertise. Alternatively, a shotgun approach of targeting 

developmental pathways during zebrafish development provides a massively parallel 

system, allowing a “shot gun” approach to discovery. For unbiased screens to reach their 

full potential, a multiplex approach to target identification should also be taken. The 

objective of this body of work was to contribute to the pursuit of developing chemical tools 

for interrogation of novel biology by advancing the use of whole organism screening and 

phenoclustering for target identification. Through the experiments described in this 

dissertation, we have advanced multiple fields of biology in multiple ways: 

(1) Identification of 3 new molecular tools for interrogation of targets. 

(2) Identified a new component of hedgehog signaling 

(3) Developed a framework for phenoclustering for parallel target 

deconvolution 

(4) Identified and interrogated developmental role of GPR68 during neural crest 

development in zebrafish 

(5) Show that GPR68 could be a therapeutically tractable target for anti-

metastatic molecules  
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This work generates a plethora of questions the: 

(1) How does inhibition of PDE4 with EGM cause selective activation of PKA 

at the basal body? 

(2) Is the mechanism of action for EGM only through PDE4? 

(3) How is specificity of CK2α achieved given its exquisite selectivity? 

(4) How does CK2α modulate translocation of B-catenin to the nucleus?  

(5) Can we expand our phenocluster database in an unbiased fashion for better 

elucidation of target mechanisms? 

(6) Does GPR68 really sense protons gradients in vivo? Where are they 

coming from? 

(7) Can OGM prevent metastasis in vivo? 

(8) What are the functional consequences of GPR68 variants? 

(9) What proportion of zebrafish active compounds have conserved activity in 

human systems? 

(10) Can phenotype guided discovery efforts be translated in a private sector 

environment by the pharmaceutical industry? 
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