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CHAPTER 1

STRUCTURAL SEPARATIONS BY ION MOBILITY-MASS SPECTROMETRY:

FUNDAMENTAL THEORY TO EMERGING APPLICATIONS

1.1.  Introduction

Emerging techniques in mass spectrometry (MS) have found great utility in many
applications ranging from nanotechnology to the life sciences, including natural product
discovery. The rapid nature of MS analysis, which occurs on the order of microseconds
(us), makes it one of the first choices for studies requiring large sample sets where high-
throughput is necessary. MS is often the preferred technique where sample volumes are
limited, as only femtomole quantities may be required due to its high sensitivity. The
wide-spread acceptance of MS has led to a growing number of database and informatic
tools to facilitate identification of molecular species. For fields driven to obtain
biologically significant data from complex samples, such as those in the life sciences, the
availability of these tools is highly promising. However, limitations of MS arise in the
form of same mass, termed isobaric, species that contribute to chemical noise. To
distinguish species of similar mass, enhanced selectivity can be accomplished by pairing
MS with additional separations.

Pre-ionization separation techniques, such as high performance liquid
chromatography (HPLC) or gas chromatography (GC) for condensed- and gas-phase
separations, respectively, are commonly interfaced with MS. The pairing of MS with
chromatographic separations has led to measurable benefits for fields such as proteomics

and metabolomics, in terms of extended sensitivity as well as enhanced informatics to

1



handle multidimensional data sets that are often encountered in natural product discovery
endeavors. The fundamental theory described here is framed to support these natural
product discovery efforts. LC-MS and LC-MS/MS have become the primary analytical
platform for the analysis of serum, plasma, and additional complex biological matrices
for metabolites and proteins of biological relevance.”’ Quantitative measurements of
fluxes in metabolite levels of microorganisms and cells are routinely performed by GC-
MS.*  An alternative to chromatographic partitioning techniques is gas-phase ion
mobility (IM) separation, a type of electrophoretic separation, which is substantially more
rapid (us-ms vs. min-hrs) than bi-phasic partitioning techniques. Separations by IM are
performed by the differential diffusion of ions on the basis of their structures, and provide
molecular information orthogonal to that obtained from chromatographic separation
strategies. Pre-ionization separations can be integrated with IM-MS for further gains in
data dimensionality, as IM is a post-ionization separation.

A number of outstanding monographs are available for those seeking a more
detailed discussion of IM-MS fundamentals, instrumentation, and applications.'®"” This
chapter aims to highlight the utility and progress of IM-MS for the identification and
interrogation of natural products, specifically secondary metabolites. Section 1.1.1.
provides a historical perspective of MS and IM-MS, and introduces the reasoning for
coupling IM and MS and the fundamentals for obtaining structural information from IM-
MS data. Section 1.1.2 describes leveraging conformation space analysis for rapid
characterization of biomolecular species with particular emphasis on primary and
secondary metabolites. An outlook on the future directions of secondary metabolite

discovery and characterization by IM-MS is provided in Section 1.3.



1.1.1. Historical Perspective on lon Mobility and Mass Spectrometry

The discovery of X-rays by Rontgen and first studies of ion movement in the gas
phase by Rutherford and Zeleny in the late 1890s mark the earliest fundamental
explorations of the techniques later to be known as MS and ion mobility spectrometry
(IMS) (Figure 1.1)."'® Despite the proximity in time of their foundational experiments,
development of IM and MS did not occur in synchrony. MS has benefitted from
relatively consistent expansion since the first mass spectrometer was developed in the
1910s, which has resulted in a number of diverse techniques for mass analysis. Predating
many other mass analyzers, the description of the Kingdon trap was first published in the
1920s and has since been recognized as the precursor of orbitrap mass analyzers for high-
resolution MS.""** Now a work-horse instrument in many mass spectrometry labs, the
time-of-flight (TOF) mass analyzer has its roots in the early 1940s when Stephens first
published the concept of mass analysis based on a fundamental equation of physics.”'
Years later, in the mid-1960s, Mamyrin updated the TOF to include a focusing reflectron

2224 The establishment of both matrix-

to improve the resolution of the mass analyzer.
assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) in the late
1980s, with reports of intact proteins of 100kDa and greater mass ionized by MALDI-
and ESI-MS, furthered the utility of MS for life sciences applications.”>’

The foundations of contemporary IM lie in the fundamental studies of ion motion
in the gas-phase conducted in the late 1890s to mid-1920s. It was Zeleny in 1898 to

whom development of the first IM spectrometer is attributed. Using an electric field and

several gases, his IM spectrometer measured the ratio of velocities of negative and
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Figure 1.1. A timeline highlighting selected significant advances in the developments of
MS (left) and IM (right) from their foundations in the 1890s to more contemporary
achievements. (Adapted with permission from Hines, K. M.; Enders, J. R.; McLean, J.
A., Multidimensional Separations by Ion Mobility-Mass Spectrometry. In
Encyclopedia of Analytical Chemistry, Myers, R. A., Ed. John Wiley & Sons: 2012.
Copyright 2012, John Wiley & Sons.)



positive ions.'® In the mid-1920s, Tyndall performed mobility measurements on the ions

in air with great attention to experimental conditions.**>*

While these early studies were
monumental in the development of IM, further progress focused on fundamental reaction
parameters in astrophysics over the next thirty years.

Progress in IM research accelerated in the 1960s, when McDaniel, Edelson and
colleagues first published work detailing IM and MS analyses performed in tandem.”> **
Within the following decade, the first commercially developed IM spectrometer was
available and referred to as plasma chromatography at the time of its release.”” The
primary market for IM spectrometers was for the detection of illicit drugs and explosives
for security applications.’*®

The 1980s generally saw a rapid growth in the application of analytical tools to
life science research, and not unlike MS, the utility of IM to the biological sciences was
explored. The first reports of IM separation of multiply charged proteins was published
by Dole and colleagues in the mid-1980s using an ESI-IM spectrometer.”” Bowers and
colleagues published the first works on the IM-MS separation of peptides in the
1990s,***! while Jarrold, Clemmer, and colleagues used IM-MS to probe the gas-phase

4243 1t was these studies and others, which revealed the

conformations of intact proteins.
potential of IM-MS as an analytical tool for interrogating biologically-relevant queries
such as the gas-phase structures of peptides, proteins, and other biomolecules.

Research in the field of IM greatly accelerated through the late 1990s to the
present (Figure 1.2). In large part this acceleration is attributed to the first commercial

offerings of integrated IM-MS instruments in the early 2000s rather than standalone IMS

devices (Figure 1.2, top). Likewise, exponential growth has been observed in the
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Figure 1.2. Histograms illustrating the number of publications (top) and patents (bottom)
using IM-MS from 1970-2010. A search of the phrase “ion mobility with MS” was
entered into SciFinder to obtain the data presented above. (Adapted with permission from
Hines, K. M.; Enders, J. R.; McLean, J. A., Multidimensional Separations by Ion
Mobility-Mass Spectrometry. In Encyclopedia of Analytical Chemistry, Myers, R. A., Ed.
John Wiley & Sons: 2012. Copyright 2012, John Wiley & Sons.)



development of new IM and IM-MS instrumentation and technology as indicated by the
number of patents (Figure 1.2, bottom). This growth is expected to continue due to
additional commercial offerings and their wider acceptance in fields such as imaging **

and macromolecular complex characterization.*

1.1.2. Ion Mobility-Mass Spectrometry: Correlation of Two Dimensions

Integration of IM and MS provides analyte information of two types: (i) from the
IM dimension, structural information in the form of the ion-neutral collision cross
section, and (ii) from the MS dimension, mass information in the form of a mass-to-
charge ratio (m/z). A typical representation of IM-MS data is presented in Figure 1.3,
which was acquired from an extract of an actinomycete collected from the Blue Springs
cave.*® The plot of drift time (ms) versus mass-to-charge (m/z) shown as panel (A) is
referred to as conformation space.”” In this instance, signal intensities are indicated in the
form of a grey scale, where lightest grey represents low intensity signals and black
represents high intensity signals. Integration over all mobility space in the 2D plot (A)
produces a mass spectrum (B) comparable to the output of an MS-only analysis. In
contrast, integration of the 2D plot (A) across all m/z space produces an IM drift time
profile (C) comparable to the output of an IM-only analysis. The tricyclic antibiotic
siamycin I, produced by a streptomycete within the actinomycete class, is highlighted by
the black rectangle in (A). For this particular signal (multiply charged analyte with m/z
601.391), the integration can be performed about a defined area of conformation space, as

indicated by the black rectangle. Performing the described integration yields the drift



time profile (E) and m/z spectrum (C) for siamycin II isolated from other components of
the actinomycete extract.

As illustrated in Figure 1.3. signals are correlated between overall structure and
mass, which is related to density. This correlation arises because biomolecules are
typically comprised of only a few atoms (C, H, O, N, P and S) and their masses scale as
volume, or length cubed. Collision cross-sections (CCSs) are effectively a measure of
surface area, and therefore scale as length squared. Given the limited set of building
blocks for biomolecules, they generally exist within a narrow range of densities. For
example, peptides are comprised of amino acids, glycans consist of sugar moieties, and
lipids are constructed of one or more fatty acid tails with discrete head groups. The
practical implication is that the IM and MS dimensions of each biomolecular class are
highly correlated as both measurements scale by length. Correlation between two
dimensions of separation can be both advantageous and challenging compared to more
orthogonal multidimensional separations.*® In terms of complex sample analysis, this can
be advantageous as each class of biomolecule (e.g. peptides, carbohydrates, lipids, etc.)
exists with a unique average density or packing efficiency in the gas phase, which
translates into a particular correlation in IM-MS spectra containing such species (Figure
1.4). The more challenging aspect of highly correlated separation dimensions is
decreased peak capacity relative to more orthogonal techniques. For example, peak
capacity is on the order of 10’-10* for LC-Fourier Transform-MS (LC-FT-MS), while it
is approximately 10>-10% for IM-MS.**! The deficit in IM-MS peak capacity is
mitigated by its extraordinarily high peak capacity production rate of approximately 10°s”

"in contrast to 10*s™ for LC-FT-MS." This is generally attributed to the decreased
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Figure 1.3. (A) A 2D ESI-IM-MS plot of conformation space for an extract of an
actinomycete collected from the Blue Springs cave. (B) An integrated mass spectrum
across all mobility space. (C) An integrated IM drift time profile across all m/z space. For
the multiply charged signal m/z 601.391 corresponding to the tricyclic antibiotic siamycin
I, integrating the defined region of drift time-m/z space (highlighted black rectangle in
(A)) yields the extracted m/z (D) and drift time (E) profiles corresponding to the signal of
siamycin II in the absence of chemical noise. This figure was reproduced with
permissions from an invited book chapter for the Natural Product Analysis:
Instrumentation, Methods, and Applications: “Structural Separations for Natural Product
Characterization by Ion Mobility-Mass Spectrometry: Fundamental Theory to Emerging
Applications,” by Sarah M. Stow, Nichole M. Lareau, Kelly M. Hines, C. Ruth McNees,
Cody R. Goodwin, Brian O. Bachmann, and John A. McLean. Vladimir Havli¢ek and
Jaroslav Splzek, Eds. John Wiley & Sons, 2014.



separation time of the gas-phase electrophoresis relative to bi-phasic partitioning

techniques such as GC or LC.”!

1.1.2.1. Complex Sample Analysis by IM-MS

Complex biological sample analysis in contemporary omics typically
encompasses the measurement of a single molecular class. For example, preparation of
samples for MS analyses typically requires enrichment of one particular type of
biomolecule, such as proteins for proteomic experiments, where information for all other
biomolecules is lost. Among the primary reasons for depleting biological samples for
particular molecular classes are: (i) to remove undesired endogenous species which
contribute to the chemical noise; (ii) to remove highly abundant endogenous species,
such as lipids, which have ion suppressive effects and consequently limit dynamic range;
and (iii) to simplify mass spectra for greater confidence in subsequent identification or
quantitation. Thus, IM provides similar advantages to LC and GC separations to mitigate
sample complexity issues; however, the separation times in IM are nearly 4-5 orders of
magnitude faster than LC or GC.

The correlation of m/z and collision cross section by length has advantageous
implications for complex sample analysis. The different classes of biomolecules separate
in the order of increasing gas-phase packing efficiencies or densities: lipids <
peptides/proteins < carbohydrates < oligonucleotides.”*”° This trend is visible in 2D IM-
MS plots in the form of unique regions of CCS-m/z correlation for each class of
biomolecule, as depicted in Figure 1.4. This general order is highly conserved regardless

of the particular parameters of the analysis, which allows for predictive power in the
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assignment of unknown species based on their location in conformation space. Additional
discussions of these trends are reported at length in Chapter II. In addition to broad
assignment of biomolecular classes, more fine-grained structural information can be
resolved within the correlation region of a particular biomolecular class. For example,
this enables discrimination of cyclic peptides from linear peptides, or phosphorylated
peptides from their unmodified counterparts.*® >

Relative to MS-only methods, there are several practical benefits of the structural
separation of biomolecular classes observed in IM-MS analyses. For analysis of bacterial
extracts by IM-MS like the one shown in Figure 1.3, peptide species can be isolated from
non-peptide interferences by extracting the region of 2D conformation space containing
peptides. This not only improves confidence in identifications, but also effectively
increases the dynamic range.*” While they would be challenging to detect by MS-only,
IM structural separations can readily resolve isobaric species resulting from
conformational isomers or alterations in amino acid sequence based on differences in

their preferred conformations.”>~"%

1.1.2.2. Configurations of IM and MS Dimensions

Because both IM and MS separations occur in the gas phase, IM-MS allows for
some versatility in the ordering and arrangements of the IM and MS separations due to
their correlation. Depending on the particular experimental goals, a number of
configurations are possible. A box diagram representing a typical IM-MS instrument is
shown in Figure 1.5(A, left). The ion mobility drift cell is positioned between the ion

source and the mass analyzer. The choice of ion source and mass analyzer can be tailored
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Figure 1.4. A hypothetical depiction of conformation space occupied by different classes
of biomolecules. At a given mass, lipids exhibit the least average density, while
nucleotides exhibit the highest average density. (Adapted with permission from Fenn, L.
S.; McLean, J. A., Biomolecular structural separations by ion mobility-mass
spectrometry. Analytical and Bioanalytical Chemistry 2008, 391 (3), 905-909. Copyright
2008, Springer)
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to the information desired; however, MALDI and ESI ion sources are most common for
life science applications. Most conventional arrangements utilize an orthogonal TOFMS
for full MS analysis of mobility dispersed ions, while quadrupole MS is better suited for
the transmission of a single m/z. A typical ESI-IM-TOFMS spectrum is shown in Figure
1.5(A, right).

Two arrangements for performing IM-MS/MS are possible depending on the
location of the ion activation. The first, termed pre-mobility fragmentation, is shown in
Figure 1.5(B). In this arrangement, an ion activation region precedes the IM and mobility
measurements are acquired for each fragment ion and any unfragmented precursor
species. A collision cell may also be placed after the IM region, as shown in Figure
1.5(C). This post-mobility fragmentation arrangement provides temporal separation of
precursor species by IM resulting in fragment ions correlated to the precursor by the IM
drift time. This arrangement allows for multiplexed MS/MS experiments in which
fragmentation is performed on nearly all ions.®' In contrast to scanning MS/MS methods,
pre-fragmentation mass selection is not necessary in these configurations as the fragment
ions are dispersed in the mobility cell prior to mass analysis, but a quadrupole may be
included for mass filtering if desired. Additional dimensions of MS/MS, MS, IM or
IM/IM can be incorporated to suit particular experimental needs. If greater peak capacity
is required, pre-ionization separations such as LC, GC or capillary electrophoresis (CE)

can be interfaced with the IM-MS as well (Figure 1.5 D).*"*%°-62
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Figure 1.5 (left) Flow charts depicting different IM and MS experimental arrangements.
(right) Data representative of information obtained from the corresponding experimental
arrangement. (A) The most common arrangement of IM-MS consists of an ion source
interfaced with an IM region, followed by a mass analyzer and detector. (B) An
arrangement for IM-MS/MS in which the collision cell precedes the IM region. This
provides mobility information about the resulting fragment ions and is referred to as pre-
mobility fragmentation. (C) An arrangement for IM-MS/MS in which the collision cell is
placed after the IM separation. This post-mobility fragmentation arrangement provides
fragment ions correlated to their precursor by a common IM drift time. (D) Pre-ionization
separations such as HPLC or GC can be integrated with IM-MS for enhancement of data
dimensionality. (Adapted with permission from Hines, K. M.; Enders, J. R.; McLean, J.
A., Multidimensional Separations by Ion Mobility-Mass Spectrometry. In
Encyclopedia of Analytical Chemistry, Myers, R. A., Ed. John Wiley & Sons: 2012.
Copyright 2012, John Wiley & Sons.)
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1.1.3. Deriving Structural Information from IM-MS Measurements

The motivations for utilizing IM separations are two-fold: (i) to disperse ions in
time to reduce sample complexity, and (ii) to obtain coarse-grained structural information
in the form of collision cross sections, which can be refined by molecular modeling
techniques. Several platforms for performing IM separations exist and are categorized
based on the nature of the IM electric field, i.e. electrostatic or electrodynamic.
Electrostatic, or uniform-field, IM separations can be described by the principles of the
kinetic theory of gases, and therefore provide absolute structural information.
Alternatively, electrodynamic IM separations cannot presently be described by this
theory, and therefore provide relative structural information when compared to structural
standards. The derivation of absolute structural information from electrostatic field IM
separations is discussed below, and is followed by a brief discussion of complementary

molecular simulation strategies for interpreting absolute or relative structural information.

1.1.3.1. Transforming Drift Times to Collision Cross Sections

In an ion mobility experiment, separation occurs as ions traverse the electric field
and collide with neutral gas molecules based on the prevailing physical properties of ion
charge state and ion surface area. The number of collisions with neutral gas molecules is
proportional to the rotationally-averaged ion surface area (A%), which is directly related to
the ion’s structure and termed the ion-neutral CCS. Under the assumptions that these ion-
neutral collisions are brief and elastic, the kinetic theory of gases can be used to derive an
equation relating the IM measurement and separation parameters to CCS.

The drift velocity (v,) of an ion through the drift cell is defined by the length of

the drift cell (L) and the drift time (z;) of the ion. Under the condition that the
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electrostratic field is weak, the ion velocity through the neutral gas can also be defined in

terms of the ion’s mobility constant (K) and the electrostatic field strength (E):

vy =~ =KE (1)

ta
When the electrostatic field is sufficiently weak (i.e. low-field conditions) and a Maxwell
distribution can be used to describe the thermodynamic equilibrium of ion velocities, the

mean thermal velocity is:

1

Vrnean = (220)? @)

TTMy

where k; is the Boltzmann constant, 7 is the temperature of the gas in Kelvins, and M, is
the molar mass of the drift gas. The remainder of the ion velocity is accounted for by a
minimal component of velocity in the direction of the electrostatic field. Thus, IM is
typically considered directed diffusion. It is convention to normalize K to standard
temperature and pressure (STP) conditions of 0°C and 760 Torr, referred to as the

reduced mobility, (Ky):

_ b 273
Ko = K76() T 3)

The low-field condition is important as K is not constant at high field conditions. When
K is constant, the ion-neutral collision cross section (£2) and K, are inversely related
through the following expression:

1/ 1/
_ Usm 2 ze [L+L 2760 T I 1 (4)
06 (kg2 lmi T my p 273 Ny Q

Ky

where N is the number density of the drift gas and at STP, m; and m, are the masses of
the ion and neutral gas, respectively, in the form of the ion-neutral collision pair’s

reduced mass, and ze is the ion’s charge.
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To calculate 2 from the empirical measurement of an IM separation, Eqns. (1)
and (3) are substituted for Ky to incorporate #; and Eqn. (4) is rearranged into the form

commonly referred to as the Mason-Schamp equation:

] 1
_usm)'2 ze [1 4 /2 tgg 760 T 1
16 (kgry/almi * my L p 273 Ny

(5

Equation 5 holds under the assumption that the total translational energy does not
change upon ion-neutral collisions in the IM drift cell, but there are limits to this

63-66

approximation. Nevertheless, Eqn. (5) is generally accepted as that used for reporting

CCSs in uniform field experiments unless otherwise noted by the particular study.

1.1.3.2. Computational Approaches for Collision Cross Sections

The CCS term derived from experimental IM-MS measurements provides a
rotationally-averaged surface area of the analyte ion. However, this descriptor of ion size
is relatively broad and does not offer detailed structural information. In order to obtain
more detailed structural information consistent with the surface area that is measured,
computational modeling methods are often used.

These computational modeling methods consist of generating a statistical
ensemble of three-dimensional conformations of the ion, followed by an in silico IM
experiment to determine the corresponding CCS of each ion conformation. Although
quantum mechanics (QM) can be used for small molecules, typically molecular dynamic
(MD) calculations are used to rapidly generate possible ion conformations. A common
MD protocol consists of a temperature program to allow the molecular structure to
sample the conformation space at high temperatures and then cool randomly selected

structures slowly. These protocols are often termed simulated annealing or elevated
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temperature MD. The success of a MD calculation relies on selecting a force field that is
parameterized for the molecules of interest and an appropriate temperature that imparts

6769 Force field selection is further

sufficient energy for conformational diversity.
complicated in that secondary metabolites typically encompass moieties of multiple
biomolecular classes and/or contain difficult to parameterize elements such as transition
metals. Because force fields are utilized in MD to model molecular movement and
therefore imprecision in dynamics could result in erroneous structure, force field
selection is critical.

An alternative approach to requiring parameterized force fields is distance
geometry.”’ Distance geometry generates conformations based on sampling inter-atomic
distances between the atoms in the molecule. With appropriate distance parameters, it is
possible to sample all conformational space, avoiding potential energy minima that can
be encountered in molecular dynamics. Once these initial conformations are generated,
they must undergo a short energy minimization, introduction of an ion, and then a
subsequent energy minimization to represent possible ion conformations. Effectively,
distance geometry treats molecular structure as a geometry problem rather than a
chemical one. Chemistry is reintroduced as the final step in energy minimization of the
resulting structures. The energy minimization calculations can be performed with the
Merck Molecular Force Field 94x (MMFF94x) in the Molecular Operating Environment
(MOE) Software from the Chemical Computing Group.”' Note that force fields in this
context are only used to relax the resulting structures rather than explore conformational
space as in MD simulations. The Merck force field is parameterized for drug like

molecules, which should be an accurate description of many secondary metabolites.
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Subsequently, each final structure is subjected to in silico IM using MOBCAL initially

63,64,72,73

developed by Jarrold and coworkers, or Sigma developed by Bowers and

Wyttenbach,®>%"*

1.2. Utilization of Conformation Space for Exploration of Primary and Secondary
Metabolites
It is becoming increasingly difficult to isolate new natural products using
conventional separation methods and analytical techniques. The search for natural
products with biological relevance has been a focus of many research laboratories since

1,2 .
“ Due to the extensive search

the isolation and identification of penicillin in the 1940s.
for new chemical entities (NCEs), many easily isolated compounds have already been
identified, leaving more difficult to isolate molecules uncharacterized. However, based
on genomic sequencing analysis of producers of clinically relevant natural products, it is
estimated that a vast majority of secondary metabolic compounds have not been isolated.’
Beyond the fundamental problem of gene transcription, new paradigms in separation
strategies targeting orthogonal properties should greatly expand the scope of natural
product discovery.

A comparison across multiple classes of primary and secondary metabolites
indicates differences in molecular weight, degree of oxidation, cyclization, and atom
type, among others. For example, the antibiotic vancomycin has multiple oxidations,
cyclizations, and halogen atoms, creating a conformation distinct from non-secondary

metabolic species in that molecular weight regime. These chemical modifications are

distinct from primary metabolites, which impact the overall structural conformation that
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the molecule adopts. In turn, these secondary metabolite structural differences result in
altered molecular densities ultimately manifested by the occupation of different regions
within conformation space, as discussed in Section 1.1.2.

Contemporary efforts are underway to construct an atlas of conformation space to
direct the rapid identification of molecules from complex biological matrices based on

56,75

prevailing molecular density preferences. There are few compendiums summarizing

the conformation space in which different molecular species are predicted to occur. The
largest data sets are centered on linear peptides and proteins, as described elsewhere.”®”
More modest data sets were recently generated for other primary metabolites such as
carbohydrates, lipids, and oligonucleotides.”> While each class of primary metabolites is
composed of largely conserved chemical moieties, secondary metabolites can incorporate
multiple chemical features from the primary metabolic classes (e.g. lipopeptides,
glycosylation, aminoglycosides, etc.), as well as unique structural and chemical
functionality (e.g. cyclization, oxidation, halogenation, etc.). Sections 1.2.1 and 1.2.2

address leveraging conformation space to differentiate primary and secondary

metabolites based on their chemical and structural differences.

1.2.1. Leveraging Conformation Space for Primary Metabolites

Metabolic studies have proven difficult due to the size and complexity of the
metabolome, which is comprised of thousands of metabolites having varied functional
groups and chemical properties. A complicating factor for metabolite analysis by MS
strategies is that they generally occur over a limited mass range (ca. 100-1000 Da) and

thus the predicted frequency of nominally isobaric, but distinct, species can be quite high
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and difficult to distinguish without additional separation. The integration of IM with MS
allows the separation of isobaric species, which is helpful in metabolic profiling within
dense regions of conformation space occupied by multiple subclasses of metabolites.
Table 1.1 lists a number of metabolomics studies which demonstrate the advantages of
IM-MS for structurally diverse metabolite species. Profiling studies of blood, liver,
lymph, and urinary metabolomes with IM-MS illustrate the separation of chemical noise
while simultaneously monitoring metabolic changes.*™ Studies utilizing IM-MS have
also focused on metabolomics of prostate, skin, and colon cancer cell lines with the goal

of identifying new diagnostic metabolic markers.**™

Real-time temporal metabolic
monitoring of Jurkat cells by IM-MS has been demonstrated.*® Targeted pharmacokinetic
analyses have benefitted significantly from IM-MS in the characterization of drugs and

their metabolites.®”*?

By including IM separations, Trim ef al. demonstrated improved
separation of isobaric MALDI matrix interferences from metabolites in whole body tissue
sections,” while others have utilized IM-MS to study common microorganisms such as
Aspergillus fumigatu, Candida species, and E. coli.”>”> Collectively, these general
metabolic studies have demonstrated great utility in the combination of IM with MS.

Complimentary with these general metabolic studies are targeted analyses for sub-classes

of primary metabolic species including those focused on carbohydrates and lipids.

1.2.1.1. Carbohydrates and Glycomics
Carbohydrates are ubiquitous metabolites and occur as one of the most common, and
least studied, posttranslational modifications. In contrast with fields such as MS-based

proteomics, glycomics faces several challenges such as the natural low abundance and
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heterogeneity of isobaric structural and positional isomers.”®”” Structurally-based
separations afforded by IM-MS are well suited to probe the complex spectrum of
carbohydrates. Several selected studies of carbohydrates with IM-MS are listed in Table
1.2. Standards and references have been widely used to benchmark the benefits of IM-
MS for carbohydrate analysis, such as the ability to deconvolute structural and positional

54,55,93,98-109

carbohydrate isomers. The added dimension of IM can enhance carbohydrate

ion signal-to-noise by the separation of chemical noise, which assists in the analysis of

110-115

low abundant analytes in complex samples. These advantages were demonstrated

. . . 110,111
for carbohydrate signatures of diseases such as liver cancer.

1.2.1.2. Lipids and Lipidomics

It is becoming increasingly recognized that lipid structure plays an important role
in ultimate function, which is largely dictated by the variety of fatty acids and head group
moieties (e.g. phosphatidylcholine, phosphatidylserine, sphingomyelin, etc.) from which
they are composed.''®'"” Complications arise in MS analyses due to the limited mass
range that lipids occupy, generally from 500 to 1200 Da, and the high number of isobaric
species resulting from differences in double bond position and geometric isomerism of
the fatty acyl tails. Selected examples of IM-MS studies centered on lipid analyses are
listed in Table 1.3. Importantly, IM-MS allows separation of subclasses of lipid
references and standards based on structural characteristics within these subcategories,
and is capable of distinguishing sn-1 and sn-2 lipids when combined with ion activation

53-55,118-120

and fragmentation strategies. The analysis of lipids in complex biological
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samples has been demonstrated by IM-MS, characterizing systems from brain tissue to .

. 44,93,121-127
coli lysates.”™"™

1.2.2. Leveraging Conformation Space for Secondary Metabolites

In comparison to the characterization of primary metabolites, there are relatively few
studies examining the utility of IM-MS for the discovery of secondary metabolites. The
present discussion centers on the discovery of secondary metabolites rather than broad
scale metabolic profiling. Despite the long medicinal history of secondary metabolites,
IM-MS for secondary metabolite discovery is an emerging technology. Sun et al. used
UPLC-IM-MS to structurally characterize indole alkaloids in yohimbe bark, which are
utilized in dietary supplements.'*® In this study, structural separations facilitated the
identification of structural isomers of the indole alkaloids when no standard reference
compounds were available for product quality control. Dorrestein and coworkers
demonstrated the efficacy of IM-MS data dimensionality for secondary metabolite
discovery, specifically from cyanobacteria as illustrated in Figure 1.6.'” The 2D
conformation space plot is annotated with regions describing where molecules possessing
halogenation and/or cyclization were identified. Corresponding mobility selected mass
spectra labeled T1-4 depict the enhanced signal-to-noise obtained over MS-only analyses.
Significantly, this represents one of the emerging directions for using conformation space
in IM-MS for the discovery of secondary metabolites possessing differences in
cyclization and atom type on the basis of structure. The conformational consequence of
peptide cyclization was explored by Goodwin et al. to distinguish cyclic peptide

conformation space from that predicted for linear peptides.*®
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In this work, absolute CCS values were reported for a large suite of cyclized
species, which demonstrated that they adopt more dense structures than their linear
counterparts. This can direct secondary metabolite discovery when signals arise in
regions mapped to secondary rather than primary metabolic species. This work also
underscores the value of using computational approaches for interpreting structural
consequences of secondary metabolic attributes (e.g. cyclization, oxidation, halogenation,
etc.). Building on this approach, Derewacz et al. identified a series of NCEs termed

mutaxanthenes from actinomycetes, in part by conformational analyses with IM-MS."*°

1.3.  Emerging Application of lon Mobility Separations to Secondary Metabolite
Discovery

The addition of IM to conventional complex extract screening protocols provides distinct
advantages over MS alone, though there remain a few challenges. One potential
consideration for the integration of IM separations is that depending on the experimental
arrangement, scattering losses can result in a modest reduction in sensitivity. However,
secondary metabolite discovery workflows typically involve comparatively high
concentrations of analyte for purification and structural determination predominantly
through follow-up NMR methodologies, which requires significantly more sample than
MS or IM-MS (ca. fmol). The measurement of positive and negative ions of unknown
secondary metabolites is desirable as foreknowledge of ionizability and adduct formation
is usually not available. Although in principle there is no limitation to performing polarity
switching to measure both positive and negative ions such as performed on triple

quadrupole instruments (< sec.), polarity switching on most contemporary IM-MS
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platforms are presently performed on timescales (min.) not amendable to
chromatographic separations. These potential limitations are mitigated by the increased
peak capacity afforded through the addition of IM, which can serve to decrease
chromatographic analysis time. Herein, we describe three emerging directions in
secondary metabolite discovery that are directly facilitated by IM-MS, namely: (i)
conformation-based prioritization of secondary metabolites, (ii) untargeted IM-MS-based
secondary metabolite workflows, and (iii) imaging IM-MS for spatial characterization of

secondary metabolite distributions.

1.3.1. Prioritization and Dereplication of Secondary Metabolites

As discussed in Sections 1.1.2 and 1.2, IM has demonstrated the ability to
perform biomolecular class separation based upon prevailing intramolecular forces that
dominate and the subunits that are assembled to create biomolecules (e.g. amino acids to
form peptides, sugars to form glycans, etc.).”® These inherent properties give rise to
mobility-mass correlations, also commonly referred to in the literature as “trendlines.”
Several of these mobility-mass correlations are well-established, as illustrated in Figure
1.4. As a result, deviations from the predicted mobility-mass correlation may be exploited
for secondary metabolite isolation-lead compound prioritization purposes. For example,
comparison of the mobility-mass values of peptidic secondary metabolites as they relate
to the linear peptide mobility-mass correlation has demonstrated the value of IM-MS in a
secondary metabolite discovery workflow.*® In this study, peptidic secondary metabolites
with differential cyclization, atom substitution (e.g. halogenation), and glycosylation

were analyzed using IM-MS and compared to linear analogues. The chemical and
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Figure 1.6. A 2D conformation space plot and corresponding mass spectra in the analysis
of cyanobacteria metabolite production. Note, the axes in (A) are inverted relative to that
elsewhere in this chapter. (A) Conformation space plot with selected regions of interest
where particular molecules were identified as: (T1) singly-charged hydrocarbons
incorporating nitrogen, (T2) singly-charged linear halogenated natural products, (T3)
doubly-charged cyclic halogenated natural products, and (T4) doubly-charged species.
(B) Mass spectra corresponding to those integrated over the annotated regions in (A).
(Adapted with permission from Esquenazi, E., Daly, M., Bahrainwala, T., Gerwick, W.
H., Dorrestein, P. C., Bioorg. Med. Chem. 2011, 19, (22), 6639-6644.)
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structural properties of these species resulted in the average gas-phase conformational
density of peptidic secondary metabolites to be greater than linear peptides of the same
m/z (Figure 1.7). This general motif was used to prioritize the tricyclic peptide siamycin
II from a crude extract, demonstrating the application of an IM-MS driven prioritization
method. It can be envisioned that the mobility-mass correlation can be extended to other
secondary metabolite classes, and a more general approach to extract prioritization may
follow. It should be noted that the structural and chemical properties of secondary
metabolites transcend conventional biomolecular classes, and a more generalized
approach to applying IM for predictive power may be applicable.

A critical and sometimes rate limiting step in secondary metabolite discovery is
the process of unknown compound “dereplication,” which is defined as determining if an
unknown compound of interest has been previously isolated and structurally elucidated.
Through coupling IM-MS with pre-ionization separations, such as LC, the resulting
increased peak capacity provides a means to perform untargeted fragmentation for
dereplication purposes. This has been utilized to provide in-depth, single-pass analysis of
crude extracts, and is exceedingly valuable for lead compound dereplication, in addition
to untargeted microbial metabolomics. In general, this method typically operates under
the principle of acquiring both low- and high-energy mobility-separated evaluation, with
high-energy fragmentation occurring post-mobility separation (see Section 1.1.2.1). As a
result, for a given scan, an intact mobility separated spectrum and a mobility separated
fragmentation spectrum exist. When considering utilizing high-resolution TOFMS data,

intact spectra are necessary for accurate mass and isotopic distribution data for candidate
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Figure 1.7. Conformation space plot depicting the relative increased gas-phase density of
peptidic natural products when compared to linear peptides. IM-MS plot comparison of
the collision cross sections of cyclic peptides compared to a trendline best representative
of linear peptides for the mass range of 1100-2300 Da. Though deviations vary
considerably, on average the peptidic natural products analyzed adopted denser gas phase
conformations. Symbols are as follows: e-[M+H]"; m-[M+Na]"; A-[M+K]"; and -
[M+Cu]". (Adapted with permission from Goodwin, C. R.; Fenn, L. S.; Derewacz, D. K.;
Bachmann, B. O.; McLean, J. A., Structural Mass Spectrometry: Rapid Methods for
Separation and Analysis of Peptide Natural Products. Journal of Natural Products 2012,
75 (1), 48-53.)
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chemical formula determination. These data, in addition to spectrophotometric
information, are integral to initial dereplication of unknown compounds. The acquisition
of untargeted high-energy data provides the ability to unambiguously dereplicate lead
compounds based upon database matching using known chemical information (i.e.
accurate mass, UV-Vis absorbance, chemical formula), and comparing matching
structures with observed fragmentation data. Since fragmentation occurs post-mobility
separation, product ions can be correlated to precursor species based upon the retained
mobility values. In other words, a product ion will share the same mobility as the
precursor, as shown in Figure 1.5(C). In this manner, fragmentation spectra for many ions
are observed simultaneously with no loss of duty cycle. These mobility-separated high-
energy spectra can then be exported for in silico fragmentation comparison to congruent
database matches using any number of available software packages (e.g. MetFrag, Mass

Spectrum Interpreter) or for in silico interpretation using Sirius."'

This provides a rapid
method of dereplicating lead compounds from a single analysis of a crude extract. A
powerful addition to dereplication and prediction procedures would be the addition of
CCS values to database entries. As CCS values are intrinsic properties, they may be used

to confidently assign identity to an unknown, when complimenting additional chemical

information.

1.4.  Conclusions
Secondary metabolite discovery is often challenged by the lack of analytical
techniques that can properly separate these species from their complex biological

matrices. In contrast with genomics, transcriptomics, and proteomics, the molecular
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diversity of metabolomics is so broad that there is no “one-size-fits-all” separation
technique to reduce sample complexity to the molecular class of interest. Many
contemporary metabolomics studies utilize a range of separation strategies prior to
identification, including LC, GC, and CE among others. In all of these cases, there is
bias in the class of molecules that are preferentially analyzed based on the
physiochemical properties of the separation technique. For example, LC is biased in the
differential hydropathy of the analytes to be separated, GC is biased towards the volatility
of the species, and CE is biased towards analyte electrophoretic physical constraints. Gas
phase electrophoresis on the basis of structural conformation and mass by IM-MS is well
suited for secondary metabolite discovery as these species often contain uncommon
structural characteristics. Ongoing research in IM-MS is currently creating molecular
atlases suitable for mapping conformation space of different molecular classes including
secondary metabolites to drive discovery of NCEs. Recent studies have demonstrated
great potential utility for secondary metabolite discovery. Emerging application areas
utilizing untargeted molecular characterization and improved dereplication will aid in
lead compound prioritization. These will invariably include imaging IM-MS to consider
spatial distribution of secondary metabolites from microorganism interactions among

other allied areas as forefront research directions in drug discovery.

1.5. Objectives of Dissertation Research
Ion mobility and mass spectrometry techniques play a key role the advancement
of biological sample analysis. The added dimension of IM to MS allows for rapid IM

separations (ms) prior to the MS analysis (us). Combined, IM-MS allows for the
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simultaneous analysis of multiple classes of biological molecules as different classes of
molecules are separated due to their gas phase packing efficiency. My dissertation
research has focused on the development of methodologies utilizing the unique
capabilities of ion mobility-mass spectrometry. Chapter II describes these capabilities and
evaluates figures of merit for a commercial high resolution IM-MS instrument.
Considerations for different drift gas experiments are also described. Regions occupied
by lipids, peptides, carbohydrates and alkyl ammonium salts are described as well. This is
the first extensive multi-class nitrogen CCS study reported.

With these correlation regions define, Chapter III focuses on the IM-MS
separations of carbohydrates and peptides. A simple LC-IM-MS method for
carbohydrates is reported. The method supports both glycomic and a proteomic analysis,
as it is amenable to proteomics LC platforms. The method was demonstrated on a series
of maltose standards and branched glycans released from bovine fetuine. To obtain finer
structural detail of carbohydrates, proteins and glycoproteins, a multimodal fragmentation
method was developed. Using a combinatorial fragmentation approach in which ions are
exposed to electron transfer dissociation (ETD) and subsequently collision induced
dissociation (CID), a more comprehensive sequencing results. As ETD and CID are
commentary techniques, different fragmentation information is acquired at each stage.
Key to these experiments is the use of IM between the two stages of fragmentation. This
allows for the deconvolution of spectra such that both modes can be utilized during the
same experiment. This was demonstrated on a protein, ubiquitin, and a glycosylated

carcinoembryonic ntigen 2 (CGM2).
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Chapters II and III developed methods for multiclass CCS measurements, LC
separations of carbohydrates and peptides, and comprehensive fragmentation techniques
for proteins, glycopeptides, and carbohydrates. With methodology in place for
carbohydrate and peptides, Chapter IV focuses on techniques for the analysis of small
molecules. In particular, the methods were developed to support natural product
discovery in search of novel metabolites. Potential metabolite candidates are structurally
unique and typically contained peptidic and carbohydrate motifs. The methods of
Chapters II and III have the potential to assist in the structural separation and elucidation
of molecules with these motifs. Specific to small molecule analysis, Chapter IV describes
a chip-based LC-IM-MS method. Small molecules are separated on a column embedded
in a polyacrylamide chip. The addition of IM to traditional LC-MS metabolomics
methods brings a dimension of separation with potential for use in dereplication. Chapter
IV describes these separations and theoretical modeling to support the experimental CCS
measurements. Methods presented here have the potential to aid in glycomic, proteomic
and metabolomics research. A key focus of each chapter is the importance of IM-MS for
the analysis of biological samples. Lastly, Chapter V summarizes the dissertation and

discusses future directions of each project.
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CHAPTER 2

CONFORMATIONAL ORDERING OF BIOMOLECULES IN THE GAS PHASE BY

HIGH RESOLUTION DRIFT TUBE ION MOBILITY-MASS SPECTROMETRY

2.1. Introduction

With the rising demand for high-throughput analyses of increasingly complex
samples, ion mobility-mass spectrometry (IM-MS) has found broad application in the
analysis of biological systems, as this rapid 2D separation (ms and ps, respectively)
provides comprehensive molecular information regarding analyte size, mass, and relative
abundance. In ion mobility, separation is achieved by low-energy interactions of charged
analytes with an inert buffer gas (conventionally helium or nitrogen), where analyte size-
to-charge ratio is measured as a function of the time required to traverse the mobility
region.' As a means of comparison with other laboratory measurements, drift time values
are either normalized to standard temperature and pressure as a reduced mobility (Ko) or
converted to a collision cross-section (CCS) value, the latter of which is a size parameter
related to the averaged momentum transfer impact area of the molecule.” Structural
information in the form of CCS values assists in the characterization of analytes by
biomolecular class, as these classes are known to separate in IM-MS space and adopt
conformational correlations due to prevailing class-specific structural folding in the gas-
phase.” * These class-specific mobility-mass correlations can be used as a predictor for
molecule class, demonstrating the potential value of IM-MS structural separations for life

sciences research which seek systems biology level information. Expanding upon this
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concept, CCS-based molecular prediction has previously been explored for peptides,
utilizing intrinsic size parameter calculations™ ¢ and machine learning algorithms’ for
sequence prediction, but no detailed study of other biochemical classes has yet been
undertaken.

The separation and characterization of biological samples by IM-MS has been
achieved using both commercial and laboratory built instrumentation. Virtually all
contemporary commercial IM-MS instruments utilize nitrogen as the buffer gas for IM
separations, motivated by practical considerations of cost, availability, and technical
considerations for pumping requirements and electrical discharge. The most common
commercial IM-MS platform utilizes an electrodynamic field (i.e., a traveling wave
potential) for mobility separation,® and drift time measurements must be calibrated
against electrostatic drift tube data in order to convert these measurements to CCS
values.” ' Conversely, many independently constructed instruments incorporate uniform
electrostatic field mobility regions utilizing helium as the buffer gas. Uniform field
measurements serve as the benchmark for electrodynamic CCS value determination, as
the CCS obtained from a uniform field drift tube can be determined empirically through
kinetic theory.''™"

One common practice among researchers utilizing IM-MS is calibration of
nitrogen-based traveling wave ion mobility measurements against helium-based CCS
values reported in the literature.> '* The use of helium-based CCS values to calibrate
nitrogen-based drift time measurements results in calibrated “helium-equivalent” CCS
values, which can be useful for comparing with literature values and correlating

15, 16,19

measurements to theory. There is, however, concern that this practice introduces
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added experimental error, as nitrogen vs. helium mobility measurements differ
substantially in magnitude, and the success of calibration strategies relies heavily on
careful selection of calibrants that accurately describe the sample conditions, charge state,

%1417 Differences in CCS values

mass range and chemical class of the system of interest.
in helium versus nitrogen arise due to several factors including intrinsic size differences
between the buffer gases, mass effects which factor into the momentum transfer cross-
section (the experimental CCS), and the over 8 fold difference in gas polarizability
between helium and nitrogen (0.21 x 10* and 1.74 x 10>* cm’, respectively).'> '**
Recently, a prototype IM-MS instrument utilizing nitrogen drift gas was
developed (Agilent Technologies, Santa Clara, CA). This instrument incorporates a
uniform electrostatic field ion mobility separator bracketed by electrodynamic focusing
devices (ion funnels), which allows for high sensitivity and direct measurements of CCS
values in nitrogen.” ' Presented in this report is an extensive and diverse database of
empirically-derived nitrogen CCS measurements (594 values), which comprises four
molecular classes and expands upon several previous databases for the structural

. . . . 5,7,9,20-23
characterization of biological molecules.™ " ™

This affords the opportunity to explore
the fundamental considerations of buffer gas composition and the subsequent effects on

ion mobility parameters (reduced mobility and CCS) across different molecular classes.

2.2. Experimental Methods
2.2.1. Preparation of Standards
Lipids. All solvents and buffers were purchased as HPLC grade from Sigma-

Aldrich (St. Louis, MO, USA). Dry lipid extracts were purchased from Avanti Lipids
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(Birmingham, AL, USA) and constituted in chloroform prior to analysis. Lipid extracts
include sphingomyelins (SM, porcine brain), glycosphingolipids (GlcCer, porcine brain),
phosphatidylcholines (PC, chicken egg), phosphatidylserines (PS, porcine brain), and
phosphatidylethanolamines (PE, chicken egg). For analysis, lipid standards were diluted
in 90% chloroform/10% methanol (v/v) with 10 mM sodium acetate to a final
concentration of 10 pug/mL. Putative identification of lipids was performed using the
exact mass measurement through the Lipid Metabolites and Pathways Strategy (LIPID
MAPS) Structural Database (LMSD).** A full list of identified lipids can be found in the
supporting information.

Carbohydrates. Carbohydrate dextrins (linear and cyclic) and sugar alcohol
standards were purchased from Sigma-Aldrich. Lacto-N-difucohexaose I and II and
lacto-N-fucopentaose I and II were purchased from Dextra Laboratories (Reading, UK).
All carbohydrate standards were prepared as received and reconstituted in water with 10
mM ammonium acetate to final concentrations of 10 pg/mL. For cationization, 10 mM
NaCl, 10 mM LiCl, 10 mM CsCl, 10 mM KCIl, and 10 mM RbCI solutions were prepared
in water to a final concentration of ca. 10 uM. A full list of identified carbohydrates can
be found in the supporting information.

Peptides. Predigested peptide standards (MassPREP) were purchased from
Waters (Milford, MA, USA). Peptide standards (SDGRG and GRGDS) were purchased
from Sigma-Aldrich. All peptide standards were received as a lyophilized powder and
reconstituted in 10 mM ammonium acetate in water to a final concentration of 10 pg/mL.
The MassPREP digestion standard mix contained approximately equimolar

concentrations of four tryptically digested proteins: Alcohol Dehydrogenase (ADH,
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yeast), Serum Albumin (BSA, bovine), Phosphorylase B (PHOSPH, Rabbit) and Enolase
(ENOLASE, yeast). Peptide identifications were assigned based on exact mass of all
possible tryptic peptides (no missed cleavages) produced by the Expert Protein Analysis
System (ExPASy) PeptideMass proteomics tool” (Swiss Institute of Bioinformatics,
Lausanne, Switzerland) using the SWISS-PROT database entry number for each intact
protein (P00330, P02769, P00924 and P00489, respectively). A full list of identified
peptides can be found in the supporting information.

Quaternary Ammonium Salts. Tetraalkylammonium (TAA) salts with alkyl chain
lengths between 1 and 18 carbons (TAA1 to TAA18) were purchased from the following
sources: TAA2, TAA4, TAA6, TAA7T, TAA10, TAA12, and TAA16 from Sigma-
Aldrich; TAA1, TAA3, TAAS, and TAAS from Acros Organics; and TAA18 from Alfa
Aesar. All TAA salts were supplied with a stated purity of greater than 98% and were
prepared as received. TAA1 to TAAS were prepared in 50% methanol/50% water, while
TAA10, TAA12, TAA16 and TAA18 were prepared in 50% methanol/50% isopropanol.
Final concentrations were ca. 1 pg/mL. A full list of primary TAA salt standards and

concomitant ions identified in the samples can be found in the supporting information.

2.2.2. Instrumentation

A schematic of the instrumentation used to obtain the cross-section measurements
is shown in Figure 2.1. The instrument used in this work is a commercial prototype IM-
MS which incorporates a drift tube coupled to a quadrupole time-of-flight mass
spectrometer (IM-Q-TOFMS, Agilent Technologies, Santa Clara, CA). For this work, an

orthogonal electrospray ionization (ESI) source (Agilent Jet Stream) was utilized which

52



incorporates a heated sheath gas nebulizer to aerodynamically focus and desolvate ions
prior to introduction into the vacuum system. lons from the ESI are introduced to a
single-bore glass capillary tube which is resistively coated across its length, allowing the
nebulizer to be maintained at ground potential, while the exit end of the capillary can be
biased to around 2100 V.*® Tons exiting the capillary are introduced into a tandem ion
funnel interface consisting of a high-pressure transmission ion funnel in the first stage,*’
followed by a second stage trapping ion funnel which incorporates a dual-grid ion gate.*®
The second stage ion funnel trap operates as an ion focusing and accumulation region
whereby temporally narrow (typically 100 to 150 ps) ion pulses are gated into the IM
spectrometer.

Mobility separation occurs in a 78 c¢cm uniform field drift tube comprised of a
series (ca. 150) of 50 mm internal diameter gold-plated ring electrodes. The buffer gas is
high purity nitrogen. lons traverse the drift tube under the influence of a weak electric
field (10 to 20 V-cm) and consequently drift under low-field conditions. The
combination of extended drift length, precision electronics, and high drift voltages
enables high resolution ion mobility separations in excess of 60 resolving power (t/At,
observed for a +1 ion, m/z 294). Resolving power values can vary, and do not depend on
the class of molecules being investigated. Ions exiting the drift region are refocused
axially using an ion funnel and traverse a differential pressure interface region by means
of a resistively-coated hexapole ion guide. Following the hexapole, ions are introduced

into a modified Q-TOFMS (Agilent 6550), which incorporates a quadrupole mass filter
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Figure 2.1. Details of the prototype IM-MS instrumentation used in this study. (A) A
picture of the ion optical elements of the ion mobility component. (B) A representative
schematic of the instrumentation used with significant components annotated.
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and collision cell to enable mass-selective ion fragmentation experiments. The TOFMS is
capable of greater than 40,000 mass resolving power and can acquire MS spectra at a rate
of up to 8.3 kHz (120 ps transients at m/z 1700). Additional instrumentation details are

provided in Figure 2.1.

2.2.3. Experimental Parameters

All 2D IM-MS spectra were acquired via direct infusion using positive mode
electrospray ionization (Agilent Jet Stream Source) with a flow rate of ca. 10 pL/min.
The Jet Stream source was operated with a nitrogen sheath gas temperature between 400
and 600 K (solvent dependent) at a flow rate of 12 L/min. Nitrogen drying gas applied at
the source entrance was heated to ca. 570 K at a flow rate of 10 L/min. The source was
operated in positive mode with the following voltages: ground potential emitter, -4.5 kV
capillary entrance, and -1.8 kV nozzle. The three ion funnels were operated as follows:
high-pressure funnel RF 100 Vpp (peak-to-peak) at 1.5MHz, 150 V DC; trapping funnel
RF 100 Vpp at 1.2 MHz, 180 V DC; rear funnel RF 100 Vpp at 1.2 MHz, 200 V DC. The
IM drift gas pressure (nitrogen) was maintained at ca. 4 Torr and ca. 300 K, while the
drift potential varied from 750 V to 1450 V, which represents an E/N ratio of 7 to 15 Td.
In this E/N range, the mobility operates under low field conditions as all analytes
investigated exhibited a linear change in drift times with respect to the electric field. Data
was acquired with a modified version of the MassHunter software (Agilent
Technologies). The mass measurement was calibrated externally using a series of
homogeneously-substituted fluorinated triazatriphosphorines (Agilent tuning mixture, ca.

100 to 3000 m/z), which are characterized as being amphoteric and nonreactive.
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Additionally, a mixture of tetraalkylammonium salts (TAA3 to TAA18) was added to all

samples as an internal mass and mobility calibration standard for positive mode analysis.

2.2.4. Collision Cross-Section Calculations

Uncorrected drift times are extracted as centroid values using a beta version of the
IM-MS Browser (Agilent Technologies). This uncorrected drift time represents the total
transit time of the ions, including the mobility drift time and the flight time through the
interfacing IM-MS ion optics and MS. Because the non-mobility flight time component
(the transit time of ions outside the drift region) is independent of the drift voltage, this
value can be determined from a plot of the measured drift time versus the inverse drift

23,29
voltage,”™

where a linear fit to the data will indicate the non-mobility time component
(y-intercept) in the limit of infinite electric field (1/V of zero). Time measurements are
obtained from a minimum of six different drift voltages, ranging from 750 V to 1450 V.
The determined non-mobility time is subtracted from the uncorrected drift times in order
to obtain the corrected ion mobility drift time. Corrected drift times are used to determine
the gas-phase momentum transfer collision cross-section (CCS) using the Mason-Schamp
relationship,”® incorporating the scaling terms for standard temperature and pressure.
Based on a propagation-of-error analysis incorporating the limits of precision for

individual experimental parameters, we estimate the accuracy of all CCS values to be

better than 2% (see supporting information).
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2.3. Results and Discussion
2.3.1. Database Description and General Cross-Section Trends in Nitrogen

A total of 594 nitrogen collision cross-section values were measured empirically
in this study, representing three biomolecular classes (lipids, carbohydrates, and
peptides), and TAA salts. This includes 92 peptides, 125 carbohydrates, 314 lipids, and
63 TAA salts and TAA salt derivatives. All CCS values were measured in positive ion
mode and all represent singly-charged analytes, of which 63 are molecular ions, 111 are
protonated species, 273 are sodiated, 124 are potassiated, and the remaining representing
other cations (lithium, rubidium, and cesium). The range of CCS values measured spans
from 140-460 A%, covering a mass range of 130-2150 Da. Summary statistics regarding
the CCS database are provided in Table 2.1. The average RSD of all database values was
0.3% (£0.1%), with each CCS value representing an average of 11 (+4) measurements. A
complete list of all analytes and respective CCS measurements is provided as

supplemental material.

TAA salts ranging from tetrapropylammonium (TAA3) to
tetraoctadecylammonium (TAA18) were analyzed and a subset of these measured CCS
values were compared with literature values in order to estimate the CCS measurement
accuracy.'® Results of this comparison are summarized in Table 2.2. Where CCS
literature values existed for nitrogen, the absolute differences were found to be less than
1% and, in most cases, less than 0.5% deviation was observed. All TAA salts investigated

exhibited excellent CCS measurement reproducibility (less than 0.5% RSD).

A scatter plot of CCS versus m/z for all database values is presented in Figure

2.1A, separated into chemical classes. We refer to this type of 2D IM-MS projection as
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conformational space analysis,4’ 31 as the differential scaling of mass (m/z) and size (CCS)

between molecular classes is indicative of differences in gas-phase packing efficiency.*

2.3.2. Description of the Fits to the Empirical Data

Several different equation functional forms were evaluated in order to determine
which expression best described molecular class correlations between CCS and m/z
values, and, it was found that the datasets were adequately described by a power-law
relationship (y=Ax"), based upon the coefficient of determination (R?). Conceptually,
power-law equations are descriptors for several phenomena related to mass-size scaling,
including allometric scaling laws in biology,”” stellar velocity dispersion relative to black
hole mass (M-sigma relation),”” and the well-known square-cube law, first described by
Galileo,”* which universally relates any shape’s increase in volume relative to its surface
area. Additionally, power-law relationships are scale-invariant such that different power-
law functions can be related by a simple scaling factor, which has implications for
describing universal relationships independent of the specific details of the measurement.

The resulting power-law fits to the empirical data are presented in Figure 2.2B.
Coefficients and associated R* values are summarized in Table 2.1. The data inclusion
bands projected in Figure 2.2B representing +5% deviation from the line of best fit. Other
inclusion band sizes are summarized in Figure 2.2B, inset, averaged across the four
datasets. For all datasets, a £5% inclusion band incorporated an average of 94% (£4%) of
data. Decreasing the band to +4% results in an average of 86% (+3%) of data being
included (a decrease of ca. 8% data inclusion), whereas increasing the band to £6% only

incorporated an additional 3% (£2%) of data on average. Thus, the £5% data inclusion
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band represents an optimal balance between specificity and data incorporation.
Interestingly, the £5% band describes all datasets similarly, regardless of chemical class.

Several observations can be made from the data contained in Figure 2.2. The TAA salts
were found to exhibit the highest CCS values relative to m/z, and were located in a region
of 2D IM-MS space, which was disparate from the biomolecules. Previously, TAA salts
were recommended as an ion mobility calibrant due to their low propensity for forming
clusters, which otherwise complicates the interpretation of mobility data.”> Here, it is
found that in addition to the lack of clustering, the TAA salts are useful mobility-mass
calibrants as the complete series (1 to 18 carbons) span a wide range of CCS values (107
to 400 A?), m/z values (75 to 1027 Da), and occupy a region of 2D IM-MS space where
biomolecules are not predicted to occur. Carbohydrates were observed to have the lowest
CCS values relative to their mass, while peptides and lipids occupy similar regions of
conformational space. In general, all of the biochemical classes surveyed were readily
separated above a mass of ca. 1200 Da, indicating that differences in relative gas-phase

packing scale with molecular size and mass.

2.3.3. Extraction of Sub-Trend Information from the Data

From a cursory analysis of the CCS database described in this report, it is evident
that the general chemical class information is retained through the specific mobility-mass
correlation trends in the 2D IM-MS projection. While class separations are unambiguous
at the higher m/z values (beyond ca. 1200), class-specific trend information is still largely
retained within the regions of overlap. For example, within the intermediate region

where the majority of signals occur (m/z 700 to 1000), the class-specific mobility-mass
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Figure 2.2. (A) A scatter plot of the CCS values measured in this study, separated by
chemical class. (B) Best fit lines of the data, separated into class and fit to a power-law
function. Also shown are data inclusion bands representing +£5% deviation from the best
fit line. The inset bar graph represents the amount of data included within different sized
inclusion bands. Fit equations and their corresponding coefficients of determination (R?)

can be found in Table 2.1.
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correlations partition into distinct bands which can be subjected to a probability
distribution analysis for molecular class information (see, for example, Figure B2). The
molecular information derived from such trends hold promise for conducting
comprehensive omics experiments whereby unknown analytes originating from a
complex sample (e.g., blood, tissue, whole cell lysate) can be prioritized based upon their
likely chemical class. This biomolecular filtering would allow for the sorting of unknown
analytes into distinct identification workflows, as lipid, peptide, metabolite, and glycan
identification methods often warrant searching of specific databases. In order to
determine the detail of class-specific information obtained from the conformational space
analysis, select coarse biomolecular classes were further categorized into finer specific
sub-classes. Figure 2.3. contains a detailed analysis of carbohydrates, which were further
delineated into glycans (human milk oligosaccharides), cyclic dextrins (cyclodextrins),
and linear dextrins (maltose polysaccharides). Figure 2.3. A and B illustrates the relative
location of each carbohydrate sub-class in conformational space, while Figure 2.3. C
describes the data as a histogram relative to the best fit line.

In general, there is no strong correlation between the carbohydrate sub-classes,
with all signals distributed in relatively the same locations with respect to the power-law
fit. This suggests that the carbohydrates surveyed do not adopt strong structural
differences, which can be easily differentiated in the 2D analysis. On the other hand, the
sub-classes chosen here represent broad descriptors for carbohydrate structure, and as
such are not structurally-descriptive sub-classifications. For example, glycans can
represent both linear and branched oligosaccharides and thus occupy a broad region of

the total carbohydrate conformational trend. Interestingly, the cyclization of sugars
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Figure 2.3. A sub-class analysis of carbohydrates, with sub-classes comprised of human
milk derived glycans, cyclic, and linear dextrins. (A) A scatter plot of the relative
location of carbohydrate sub-classes in 2D IM-MS conformational space. (B) An
expanded region of the scatter plot where all three sub-classes of carbohydrates are
observed. (C) A histogram analysis of carbohydrate sub-class deviation in 2D IM-MS
space relative to the best fit line. In general, the carbohydrate sub-classes do not
differentiate into distinct regions of conformational space.
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(cyclodextrins) does not seem to enhance gas-phase packing efficiency as compared with
their linear analogues. A more comprehensive carbohydrate dataset may engender sub-
class differentiation, or differences may bear out for more limited situations such as
positional and structural isomers or various metal-coordinated species.’® It should also be
noted that the data projected in Figure 2.2. includes various alkali cationized species.
While previous work has indicated that carbohydrate gas-phase ion structure is strongly
influenced by the cation,”” it is difficult to draw any definitive cation-specific effects in
this work due to the structurally-diverse nature of the analytes (the cation-specific
carbohydrate analysis is provided in Appendix B, Figure B.1.).

Application of a similar sub-class analysis to the lipid dataset is illustrated in
Figure 2.4. In this case, the lipid dataset is substantially larger than the carbohydrate
dataset (N=314 vs. N=125, respectively), and measurements were obtained from five
distinct lipid structural classes. These lipid sub-classes can be broadly categorized into
two structural classes as sphingolipids (SM, GlcCer) and glycerophospholipids (PE, PC,
PS). It is qualitatively evident in Figure 2.4. A and B that each class of lipid exists in a
distinct region of conformational space. The histogram distribution analysis in Figure 2.4.
C (right panel) indicates that sphingolipids fall predominantly above the best fit line
(97% in region 1), whereas glycerophospholipids (Figure 2.4. C, middle panel) are more
broadly dispersed around the mobility-mass correlation (33% in region 1, 65% in region
2), and adopt denser gas phase conformations than sphingolipids. These results suggest
that, with proper structural sub-class descriptors, conformational space analysis is capable

of differentiating finer structural detail beyond general biomolecular class.
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Figure 2.4. A sub-class analysis of lipids comprised of PE, PC, PS, GlcCer, and SM
lipids. These lipids are further categorized into two general structural groups:
glycerophospholipids (PE, PC, PS) and sphingolipids (GlcCer, SM). (A) A scatter plot of
the conformational ordering of each sub-class of lipid. (B) An expanded region of the
scatter plot detailing a preferentially ordering of the different lipid sub-classes in
conformational space. (C) A histogram analysis and locations of general lipid structural
groups relative to the best fit line. Unlike carbohydrates, individual lipid sub-classes
partition into distinct regions of 2D IM-MS space, allowing for finer structural
information to be extracted from the conformational space analysis.
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2.3.4. Comparisons between Helium and Nitrogen CCS Values

The diverse compilation of CCS values described in this report allows for direct
comparisons against helium-derived CCS values reported in the literature. Of the over
3000 singly-charged helium CCS values surveyed from the literature, overlapping
measurements exist for 119 nitrogen CCS values in the current database (8 TAA salts, 49
lipids, 38 peptides, and 24 carbohydrates; refer to supporting information). Differences
between helium and nitrogen-derived CCS measurements have been previously noted for
atomic species,”® small molecules and peptides,”” and, more recently, proteins and large
protein complexes.” > Here, we add the differences observed for TAA salts, lipids, and
carbohydrates, in addition to corroborating previous peptide observations.

A scatter plot of the overlapping helium and nitrogen CCS values is provided in
Figure 2.5. A. Vertical error bars representing +2% are also included, although this error
is sufficiently small such that most of the error bars are obscured within the scale of
individual data points. Figure 2.5. B contains the power fits to the data, which are useful
in visualizing differences between datasets. In general, gross separation trends between
chemical classes are retained within the helium and nitrogen-based datasets, with
qualitatively similar conformational space ordering being exhibited regardless of the drift
gas (i.e. carbohydrate density > peptide density > lipid density > TAA salt density).
Figure 2.5. C contains the same overlap data as projected on a plot of nitrogen versus
helium CCS values. In Figure 2.5. C, all of the class-specific data reside within the same
region of the projection, indicating that overall differences between helium and nitrogen
CCS are systematic within this range, and thus can be accounted for to allow conversion

of one dataset to another, with some loss in precision associated with error propagation.
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Figure 2.5. Comparisons between helium and nitrogen-derived CCS values. (A) A scatter
plot of class-specific subsets of CCS data measured in both helium and nitrogen. (B)
Power fits to the data projected in panel A. (C) Correlation plot of helium vs. nitrogen
(D) Absolute differences in CCS between helium and nitrogen
measurements, plotted as a function of mass-to-charge. In general, nitrogen CCS values
are significantly larger than helium, with subtle differences being observed between

CCS values.
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This possibility of generating effective helium-based CCS values from nitrogen
measurements was previously noted by Bush et al. for peptides and proteins.” ' **
Recently, Pagel and Harvey noted good correlation (less than 1.5% error) between helium
and nitrogen CCS measurements for singly-charged carbohydrates, though significant
error was introduced when multiply-charged values were incorporated into the
calibration.'” Here we confirm a strong correlation between singly-charged helium and
nitrogen CCS values for lipids, peptides, carbohydrates and TAA salts. It should be
cautioned, however, that the relationship between helium and nitrogen-based CCS values
are both charge-state and mass-dependent,” and it is expected that any correlation
between the two measurements would deviate at the extremes of low and high mass. In
fact, Bush et al. previously noted that cross-calibration error from nitrogen to helium
CCS is higher at lower masses (up to 15% error) where the magnitude of the CCS value
is small, while at higher masses, the error can be reduced to as low as 2.2% for predicting
helium CCS from nitrogen measurements.’

It was also noted in this study and elsewhere that calibration across different
chemical classes (e.g., using literature peptide values to calibrate lipids'*) introduces
additional and significant error (ca. 7%), further underscoring the importance of
compiling a chemically diverse set of empirical drift tube CCS values. Figure 2.5. C,
inset contains the linear best fits to the data, with the axes rescaled to a region where data
exists for all four chemical classes. Linear fits are extrapolated (dotted lines) for
visualization purposes. Here, the small but notable differences between chemical classes
can be observed as offset correlation lines, which corroborate with the absolute CCS

differences between helium and nitrogen noted previously for each chemical class.
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Specifically, peptides, carbohydrates, and lipids fall along a similar helium-nitrogen CCS
correlation trend, while the TAA salts exhibit a slightly lower correlation. Interestingly,
all class correlations exhibit similar slopes (ca. 1), suggesting that the factors which give
rise to the cross-sectional differences between helium and nitrogen (buffer gas size, mass
and polarizability) affect different chemical classes in a similar manner across a broad
range of both size and mass.

Absolute CCS differences between the helium and nitrogen datasets are plotted as
a function of mass in Figure 2.5D, with error bars representing £2% CCS uncertainty.
Average absolute CCS differences are projected as a horizontal line through each class
distribution, with the following values: TAA salts, 58 (£3) A% lipids, 70 (£4) A%
carbohydrates, 74 (+8) A% and peptides, 73 (£5) A’. Cross-sectional differences are
lowest for the TAA salts, while lipids, carbohydrates and peptides differ by
approximately the same amount. Overall, there is a small but notable increase in the
helium-nitrogen CCS difference with increasing mass for all classes except lipids where a
limited mass range is surveyed. This suggests that the nitrogen and helium CCS are not
increasing at the same rate relative to the mass of the analyte, with the greater CCS
increase occurring in nitrogen. Wyttenbach et al. recently noted that ion systems up to ca.
760 Da (sodiated PEG5) still exhibit strong contributions from the ion-neutral interaction
potential in their measured CCS.*' From their atomic superposition argument, it would be
expected that with nitrogen buffer gas, the combined effect of each atomic potential for
large polyatomic systems would give rise to a steeper increase in CCS than with helium
buffer gas, since the atom-nitrogen interaction potential is stronger than the atom-helium

interaction potential. In other words, the stronger interaction potential of nitrogen would
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be expected to scale with the number of atoms in the ionic system being measured, at
least to a first approximation. lon systems with different heteroatom compositions (e.g.,
lipids vs. peptides) would also be expected to exhibit different scaling of mass to CCS
between helium and nitrogen; this effect cannot be definitively observed in the relatively
narrow mass range surveyed in this work, though cursory effects of gas polarization seem
to be present in the enhanced high-mass separation of lipids and peptides in nitrogen vs.
helium. A discussion of the polarization effects specific to carbohydrates and applications
to alternate instrument platforms is reported in Appendix B. Such class-specific CCS
differences may bear out as more overlapping measurements are obtained in future

studies.

2.4. Conclusions

The large database of nitrogen-derived CCS values presented here offers a
glimpse at the intrinsic intermolecular packing forces of four chemically-different
molecular classes across a relatively wide range of both size (ca. 150 to 450 A%) and mass
(ca. 150 to 2200 Da). Four molecular classes were investigated in this study, with relative
gas-phase densities observed as follows, from least to most efficient packing: TAA salts,
lipids, peptides and carbohydrates. The biopolymers (carbohydrates and peptides)
demonstrated the highest efficiency for gas-phase packing, and among these,
carbohydrates tend to adopt the most compact gas-phase CCS values. This observation is
somewhat intuitive in that carbohydrates have considerable degrees of freedom and can
adopt both linear and branched primary structures. In contrast, lipids exhibit the largest
CCS values among the biomolecules investigated, and this observation appears to be

intrinsic to the inability of lipids for forming compact, self-solvated structures in the gas-
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phase. Noteworthy among these findings is that despite the significant differences
between helium and nitrogen in terms of mass, degrees-of-freedom (atomic vs. diatomic)
and polarization, the biomolecular class trends observed here for the nitrogen-based ion
mobility are qualitatively the same as those previously observed in helium.” ** We do
observe evidence that these qualitative trends between the two drift gases are not retained
at low mass, and a more detailed investigation of helium and nitrogen-based ion mobility
studies for low mass analytes (less than 200 Da) will be the subject of future studies.

We emphasize that these studies are only possible by the remarkable advances
made over the past decade in the development of biological IM-MS instrumentation. The
IM-MS described in this report can achieve high resolving powers with high sensitivity,
making it possible to observe and characterize low abundance isomeric species in highly
complex samples with unprecedented scale and throughput. While we have purposely
chosen to report only the highest abundant species, we note that the observation of
multiple ion mobility peak features (i.e., mass isomers) is routine with this
instrumentation. As the analytical capabilities of distinguishing low-abundance isomeric
species become widely accessible, we begin to move towards a new paradigm whereby it
no longer becomes the question of if a particular isomer exists, but rather how much if it

is present and in what context.

2.5. Associated Content

A brief description of drift gas considerations for carbohydrates and applications
for alternative instrumentation are reported (Figure B.1., B.2., B.3., and Table B.1.).

Empirically measured transport properties for the analytes evaluated in this work (Tables
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B2, B3, B4, & BS5). A summary of the overlapping helium and nitrogen CCS
measurements compared in this study (Table B6). This material is available in Appendix

B.
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CHAPTER 3

APPROACHES FOR SEPARATION AND CHARACTERIZATION OF GLYCANS
AND GLYCOCONJUGATES BY RAPID CHROMATOGRAPHY, ION MOBILITY-

MASS SPECTROMETRY, AND MULTIMODAL SEQUENCING TECHNIQUES

3.1. Introduction

Systems biology greatly enhances the study of complex biological processes by
expanding on traditional reductionist approaches, where individual components are
targeted (i.e. glycomics). Systems biology strategies allow for the comprehensive
analysis of biological samples as a whole. To support these systems analyses strategies,
we have developed ion mobility-mass spectrometry (IM-MS) techniques to study
biological systems in the gas phase through class specific structural separations. Proteins,
lipids, and carbohydrates, which exhibit overlapping signals in a 1-D mass spectrum, are
separated in IM-MS because each biomolecular class occupies a unique region of
conformational space.'™ Thus, IM-MS analysis is able to differentiate molecules present
in complex biological samples with minimal sample purification, which greatly improves
upon current methodologies. IM-MS provides broad scale biological structural

descriptors, which can be further honed to describe class and subclass descriptors.””

Glycoproteins are highly implicated in protein stability, cellular signaling and
other key biological functions. Glycosylation is one of the most common and least

studied post translational modifications (PTMs) due to complexity and corresponding
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separation challenges.”"’

Traditional mass spectrometry (MS) techniques often require
extensive treatment prior to analysis. lon mobility —mass spectrometry (IM-MS)

addresses several of these analytical challenges as molecules are separated by structure

(IM) and mass (MS),Z’ 11-12
3.1.1.  LC-IM-MS Glycan Analysis

Structural analysis of N-linked glycan and glycan conjugates is challenging due to
the high level of heterogeneity of glycan isomers and the corresponding difficulty of
separation.”” The study of non-derivatized (native) glycans poses additional challenges
due to their low abundance and the inherent preference of sodium-coordinated glycans in
endogenous biological matrices containing salts which partitions analyte signal into
multiple ion channels and contributes to interfering chemical noise. Liquid
chromatography (LC) and mass spectrometry (MS) techniques are frequently used for
rapid characterization of carbohydrate samples, but commonly require extensive sample
preparation and purification as well as multi-stage fragmentation analysis (tandem MS) in
order to gleam structural information.'>”!

Ion mobility-mass spectrometry (IM-MS) addresses several analytical challenges
related to the complex heterogeneity of glycans through rapid gas-phase separations
based on structurally selective IM, which is complementary to MS.”** The IM-MS
separation improves analytical sensitivity by partitioning signals of interest from
endogenous or exogenous chemical noise. Furthermore, structural information can be
derived from mobility measurements that are specific to isomeric species. The

methodologies described in sections 3.1.1., 3.2.1.-4., 3.2.6., 3.3.1., and 3.4.1. have been

developed for the analysis of native or non-derivatized glycan using LC-IM-MS. With
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minimal sample preparation and no prior purification necessary, this robust methodology
can be applied to various complex glycan samples.

Initial motivation for this study was to develop methodologies for integrating
multiple omics workflows (glycomics and proteomics) towards a comprehensive IM-MS-
based structural analysis of glycoproteins.** To minimize time and cost, a single stage of
liquid chromatography was utilized, and a method was optimized wherein both proteins
and non-derivatized glycans could be fractionated on the same reverse-phase (RP)
column. Typical glycoproteomics workflows target either peptides or glycans, but rarely
both in the same experiment. For many research facilities that address a wide spectrum of
samples (e.g., omics cores and systems-based centers) it would be advantageous in terms
of cost, time, sample comparability, and consumption to conduct proteomic, glycomic
and glycoproteomic studies on the same LC-MS platform. The ability to utilize the same
RP column for both analyses results from adjusting solvent gradients such that glycan
studies are carried out under normal phase solvent conditions. This combination of a RP
column with a normal phase gradient allows for the stabilization of non-derivatized
glycans and produces primarily protonated and minor sodium coordinated glycan signals.
This results in the observance of predominately protonated carbohydrate ions within the
IM-MS spectra. While this convention is not necessary in some cases, many studies
benefit from native glycan analysis. Three different approaches for glycan analysis by
MS methods are described in Figure 3.1.

The traditional biochemistry approach for glycoprotein analysis by MS is
described in Figure 3.1. Scheme 1 in which glycoproteins are denatured, reduced, and

alkylated followed by digestion with trypsin. Samples are separated such that proteomic
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analysis is carried out independently of glycomics analysis.'> **

Enzymes such as
PNGaseF are utilized to cleave glycans from the peptide backbone. In this context,
glycans are typically derivatized, commonly by permethylation, or fluorescently tagged,
to affect glycan separation and/or enhance detection. Although the separation and
detection capacity of the presently reported strategy may be reduced over those of
labeling, labeling methodologies require extensive separation and purification in addition
to alteration of the free glycan structure through derivatization. The present methodology
obviates the need for and attendant challenges of labeling including perturbation and
potential contamination of the sample and increases throughput by not requiring different

LC column technologies between proteomics and glycomics.**>*

Fenn et al. published a
simultaneous glycoproteomics protocol in which glycoprotein samples are sequentially
processed with trypsin and PNGase F in the same vial which simplifies purification
requirements while eliminating the sample fractionation step.”* IM-MS was then utilized
to simultaneously acquire both proteomic and glycomic information from the same
sample. These analyses were carried out using either matrix assisted laser
desorption/ionization (MALDI) or direct infusion electrospray ionization (ESI) sources.
In order to batch process samples with ESI and obtain an additional dimension of pre-
ionization separation through LC, the techniques originally developed by Fenn and co-

workers were further optimized for the studies presented here using bovine fetuin as a

biological standard.
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Scheme 1 Scheme 2 Scheme 3

Glycoprotein Glycoprotein Glycoprotein
Denature, reduce, Denature, reduce, Denature, reduce,
alkylate alkylate alkylate
Digest with trypsin Digest with trypsin N-Linked glycan
l l release by PNGase F
Purification and N-Linked glycan l
separation release by PNGase F  Analysis of glycans
/ \ by IM-MS
Peptide N-Linked Simultaneous analysis
analysis glycan release of peptides
by MS by PNGase F and glycans
by IM-MS
Derivatization
(permethylation)

Derivatized glycan
analysis by MS

Current proteomic/ Simultaneous Glycomic specific
glycomic approach omics aproach approach using
using IM-MS IM-MS

Figure 3.1. (Scheme 1) A standard protocol for glycoprotein analysis. Purification and
derivatization (permethylation) methods are commonly necessary to increase analytical
sensitivity, resulting in a time consuming and complex procedure.’® (Scheme 2)
Previously reported protocol for the simultaneous omics approach using IM-MS.** This
protocol allows both peptides and N-linked glycans to be simultaneously analyzed with
minimal sample preparation. Sensitivity gains are afforded by the use of IM-MS.
(Scheme 3) The protocol describes the separation and analysis of carbohydrates without
modification by IM-MS. In this scheme, glycoproteins are subjected to denaturing by
heat followed by PNGase F enzyme incubation prior to analysis. This procedure
simplifies the interpretation of carbohydrates without derivatization or further
purification
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3.1.2. Multimodal Fragmentation of Glycopeptides

Glycomic and glycoproteomic studies are often challenging due to the biological
complexity and corresponding difficulty of separation. MS techniques play a critical role
in the analysis of carbohydrates and PTMs of proteins such as glycosylation.®> One
promising approach is sequencing by tandem mass spectrometry. Novel sequencing
workflows were developed that utilize fragmentation techniques to obtain finer structural
detail of glycoconjugate and glycoprotein complexes. Although common to proteomics,
vibrational activated collision induced dissociation (CID) does not retain glycosylation
PTMs. Electron transfer dissociation (ETD), however, is a radical driven fragmentation

3439 Further

technique which preserves PTMs in a manner complementary to CID.
supporting the utility within glycoproteomic applications, the capabilities of ETD has
been extended to the structural sequencing of carbohydrates.**' While ETD is a more
comprehensive technique for glycoprotein analysis, data analysis can be difficult due to
interfering background signals. The addition of IM separations to ETD-MS analysis

assists in fragmentation analysis as interfering signals may be deconvoluted.**

The IM-MS configuration allows for radical driven fragmentation by ETD and
subsequent vibrational activated CID fragmentation as complementary techniques in
support of structural assignment. Several studies have utilized a combinatorial

fragmentation approach incorporating both collision-based and radical-based

46-50

fragmentation modes. Donohoe et al. demonstrated a IM-CID method with

subsequent ETD fragmentation.’’ Williams and coworkers described a two-stage

52-53

fragmentation method separated by IM. Katzenmeyer et al. utilize this workflow for
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cationized polyesters.”* Methods proposed here utilize the mobility separation between
poly prop y sep

fragmentation stages to assist in the deconvolution of the complementary techniques.

Presented here is an application of these techniques using the IM separation for
data deconvolution, resulting in both ETD and CID fragmentation spectra obtained in one
experiment. Methodologies for characterizing proteins and glycoproteins by ETD-IM-
CID-MS show promise as a more comprehensive sequencing strategy. The workflow was
benchmarked using a protein standard, ubiquitin, and subsequently applied to a
glycopeptide, carcinoembryonic antigen (CGM2). Research recently described the
significance of glycan profiling of CGM2 from human tumor tissue for improved tumor
diagnosis and treatment.” The analysis of a CGM2 standard validates the methodology
for glycopeptide studies. Combining broad and fine structural studies in this manner
creates a toolbox for extensive analysis of proteomics, glycomics, and more generally,

integrated omics at large.

3.2. Experimental Details
3.2.1. Sample Preparation for LC Glycan Analysis

A 1 mg mL" sample of bovine fetuin (Sigma Aldrich) was prepared in 10 mM
sodium phosphate buffer solution to a final volume of 100 pL. To denature the protein,
the sample was heated to 90°C for 10 minutes and subsequently cooled to room
temperature. While alkylation and reduction is recommended, it was not necessary as
sufficient cleavage of the glycan was achieved for this experiment with only denaturing
by heat. The sample was then treated with 10 pL of 500 units/mL. PNGaseF (Sigma

Aldrich) followed by incubation at 37 °C for 24 hours. To quench PNGaseF activity, the
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sample was heated to 90°C for 5 minutes followed by 15 minutes in the -20°C freezer.
The sample was dried down by a vacuum concentrator (speedvac) and reconstituted in
approximately 250 puL of 100% ACN with 0.1% TFA and remaining protein content was
precipitated by centrifugation. The glycan containing solvent (~150-200 pL) was
transferred to an LC maximum recovery vial. It should be noted that removal of protein
content is an optional step for IM-MS analysis as the protein will not occupy the same

region of conformational space as the glycans.

3.2.2. Sample Preparation for Multimodal Sequencing

Glycopeptide samples were purchased from Protea Biosciences Inc (Morgantown,
WV, U.S.A)). Glycosylated Carcinoembryonic Antigen (CGM2) was prepared according
to the manufacture’s product information protocol. Briefly, CGM2 was reconstituted in
500 puL Optima LC/MS grade water with 0.1% Formic Acid (Fisher Scientific, Ottawa,
Ontario, Canada) for a final concentration of 1 pmol/uL. The sample was then vortexed,
sonicated, and transferred to a 1.5 mL Eppendorf tube. Ubiquitin from bovine
erythrocytes and substance P standards were purchased from Sigma Aldrich (St. Louis,
MO, U.S.A.) and reconstituted in LC/MS grade water and methanol (1:1, v/v) to a final
concentrations ranging from 10 pg/mL to 10 pg/mL. Both 1,3-dicyanobenzene and
nitrosylbenzene ETD reagents were purchased as part of the MS ETD Reagent Kit from

Waters Inc. (Milford, MA, U.S.A.).
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3.2.3. Liquid Chromatography Conditions

Fetuin samples were analyzed using an Acquity UPLC system (Waters, Milford,
MA) coupled to the ESI source of a Synapt G2 HDMS instrument using a Waters HSS
C18 column (1.8 um, 1.0 x 100 mm) stored at 40°C. Samples are loaded into an
autosampler which is held at 4°C. The LC solvents are prepared such that solvent A
consists of 100% H,O with 0.1% TFA and solvent B consists of 100% ACN with 0.1%
TFA. Alternately, buffered solvents can be used to make this method compatible with the
analysis of less stable samples. The maltose sample contained 10pug mL™" of each M1,
M3-M7 in 10 mM ammonium acetate with 0.1% formic acid. The chromatographic
separation used 100% H,O with 0.1% formic acid and 100% ACN with 0.1% formic acid
as solvents A and B, respectively. Sample can also be spiked with small amounts of Nal
or NaCl to induce ionization preference of the sodiated species. The 20 minute method
starts with 100% solvent B and linearly transitions to 100% solvent A over the course of
12 minutes and held for 3 minutes for at 60 uL min" with an injection volume of 5 pL.
The flow is then reversed to initial conditions for the remainder of the experiment. This

1s summarized in Table 3.1.

3.2.4. Ion Mobility- Mass Spectrometry Conditions for LC Glycan Analysis
IM-MS data is collected in positive resolution mode over a mass range of 100-
4000 Da using the following instrument conditions; 3.5 kV capillary, 80°C source

temperature, 40 V sampling cone, 2 V extraction cone, and 150 °C desolvation
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Table 3.1. LC Method Details

Tir_ne Flow ':a?F % Solvent Sol\:/eont B | Curve
(min) (ML min™) | A (Water) (ACN)
1. Initial 60.000 0.0 100.0
2. 1.00 60.000 0.0 100.0 6
3.12.00 60.000 100.0 0.0 6
4.15.00 60.000 100.0 0.0 6
5.15.10 60.000 0.0 100.0 6
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temperature. The traveling wave velocity was set to 650 m s and wave height to 40 V
for mobility separation. Fragmentation data was collected post-mobility in the transfer
region with a collision energy ramp from 5-30 eV in a MS® experiment. The
incorporation of MS/MS to this method allows for the potential of carbohydrate
identification by fragmentation. When this capability is employed in a secondary function
during the LC run, fragmentation spectra is automatically acquired and can be
customized using a targeted precursor mass lists or various CID voltage ramps dependent
on the type of analysis required. A key advantage to fragmentation post-mobility is
related to the alignment of fragment peaks as they retain the mobility of their respective
56, 57

precursor. Lock mass correction was applied using Leucine-enkephalin to maintain

high mass accuracy.

3.2.5. Instrument Conditions for Multimodal Sequencing Analysis

All experiments utilized a Waters Synapt G2-S HDMS instrument fitted with an
ETD upgrade kit. Samples were directly infused at a rate of 10 pl/min using either the
Synapt built in fluidics or a Harvard Apparatus (Holliston, MA U.S.A.) syringe pump for
limited sample volumes. All data was acquired in positive resolution mode. The
following source conditions were used: a capillary and sample cone voltages of 2.2 kV
and 0 kV, respectively, a source temperature of 100 °C, a source offset of 60, a
desolvation temperature of 250 °C and desolvation gas flow rate of 100 L/hr, cone gas
flow of 25 L/hr, and a nebulizer gas flow of 6 bar. The ETD reagent was introduced
through the ETD reagent chamber. ETD reagent ionization was adjusted in negative ion

mode to determine optimized makeup gas flows for 25 L/hr, a discharge voltage of 0.9
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kV, and a current of 20 pA. Trap settings were amended for ETD experiments as follows:
a trap DC entrance and bias of 0 and 35 V, respectively, a trap gate of -2 V, a trap DC
and DC exit of -3V, a trap wave velocity of 300 m/s and height of 0.3 V, a trap pressure
of 5.9x10 mbar, a trap gas flow of 14 mL/min, a collision energy of 4 eV and a mobility
delay after trap release of 1000 ps. ETD refill functions were set the ETD refill mass to

the mass of the reagent ion, refill scan interval time of 1 s and a 0.1 s refill scan time.

Mobility settings varied to accommodate a both larger mass precursor ions and
smaller mass fragment ions. However, the mobility settings generally utilized a gas flow
of 40 mL/min and IMS pressure of 3.56, a helium cell gas flow of 150 mL/min and
pressure of 2.47x10", an IMS DC entrance and exit of 10 and 0 V, helium cell DC and
exit of 35 and -20 V, an IMS wave velocity of 300 m/s and height of 25 V, an optional
variable wave velocity from 300 to 1000 m/s linearly. Transfer settings without CID
fragmentation post mobility were a transfer gas flow of 0.8 mL/min, a transfer DC
entrance and exit voltages of 5 and 15 V, respectively, a transfer wave velocity of 300
m/s and height of 3.1 V, a transfer region pressure of 1.6x107 and a collision energy of 0
to 0.5 eV. Transfer settings with CID fragmentation retain the same settings as previously
mentioned with the exception of the collision energy that ranges from 5 to 50 eV and can
be optionally ramped. Quadrupole selection was used prior to ETD fragmentation with a

scan time of 1 s and interscan time of 0.015 s.

3.2.6. Data Analysis of LC-IM-MS Glycan Separations
Data is processed off line with Driftscope software v2.5 (Waters, Milford, MA),

which allows mobility selection of regions of the IM-MS data that pertain to
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carbohydrate signals. Liquid chromatography data is analyzed through MassLynx
(Waters, Milford MA). Both drift time selection and liquid chromatography selection

precedes the generation of mass spectra in MassLynx.

3.2.7. Data Analysis of Multimodal Sequencing

Data was analyzed manually with the assistance of predicted fragment ions using
ProSight PTM Ion Predictor (The Kelleher Group, Northwestern University, Chicago, IL,
U.S.A.) to predict c/z and b/y ions given then protein or peptide sequence. CGM?2 ions
were predicted by adding a custom mass shift modification on the asparagine
corresponding to the mass shift of the GIcNAc attached. Additionally, ChemBio Draw
v12 (PerkinElmer Inc., Waltham, MA) assisted in visual manual interpretation of
fragmentation data. All mobility data was accessed using Driftscope v2.5. Subsequently,

raw and drift time filtered mass spectra were analyzed in MassLynx.

3.3. Results and Discussion
3.3.1. Results of LC-IM-MS Analysis of Glycans

Non-derivatized free glycans elute with the initial aqueous solvent plug in typical
RP-LC separations, thus optimization focused on procedures amenable to the separation
of free glycans with a RP column. By running a normal phase gradient (organic to
aqueous) over a RP C-18 column, separation conditions are created which extends the
retention time of carbohydrates disparate from the initial solvent plug as observed in
Figures 3.2. (b) and (d). In this mode, non-derivatized glycans are retained by the column

and elute at approximately 6 minutes into the 20 minute chromatographic run. While the
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chromatographic separation observed is not as well separated as in other methods (such
as hydrophilic interaction LC (HILIC)), the addition of LC to previously reported IM-MS
based glycoproteomics protocols further increases peak capacity and allows separation of
non-derivatized glycans on a RP column.

This is demonstrated in Figures 3.2. (a) and (c) as a series of maltose standards
elute in the solvent plug of a reverse phase gradient resulting in lower ion intensity when
compared to (b) and (d) which were separated by a normal phase gradient on the same
column. Impurities in the sample (such as the presences of maltooctaose (M8)) appear in
(b) and (d), illustrating the increased sensitivity of the chromatographic separation for
higher mass carbohydrates. Additionally, the lower abundance of signal in (c) in
comparison to (d) supports this claim. This allows glycan analysis to be conducted on a
standard MS instrument platform fitted with an RP column, such that both glycomic- and
proteomic-based samples can be prepared and batch processed with the auto-sampler and
conventional RP column of the LC system.

Another consequence of this approach is that glycans are predominately ionized
as protonated glycans (M+H) in contrast to MALDI and direct infusion ESI where
glycans are predominately ionized as alkali metal-coordinated (M+Na or M+K) species.
It should be noted that this LC-IM-MS analysis of non-derivatized glycans with a RP
column also creates alkali metal-coordinated ions as minor products (Figure C.1.) which
can be utilized to compare previously published glycan MS results, where these species
are more typical. As MALDI-MS is considered a gold standard due to high sensitivity for

26, 27, 58

carbohydrate analysis, LC-IM-MS data obtained in this study were evaluated with
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Figure 3.2. (a) A 2D LC-ESI-IM-MS plot of a mixture of maltose standards separated
using a reverse phase gradient on a CI8 column. A region of singly charged ions
corresponding to the maltose series is annotated by a dashed line. (b) A 2D LC-ESI-IM-
MS plot of the same maltose standard mixture using the same column as in figure (a)
with a normal phase gradient (organic to aqueous). (c) A mobility selected mass spectrum
illustrating the carbohydrate series peaks as annotated by a dashed line in (a) where the
base peak intensity is 2.93x10%. (d) The mobility-selected area occupied by the maltose
ion series as noted by a dashed line in (b) where the base peak intensity is 3.78x10".
Maltose abbreviations are as follows: maltose (M1), maltotriose (M3), Maltotetraose
(M4), maltopentaose (M5), maltohexaose (M6), maltoheptaose (M7), maltooctaose (MS).
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respect to data obtained by MALDI-IM-MS by the previously published methodology
described in Figure 3.1., Scheme 2 in further detail in the supplementary information.*

The utility of IM-MS separations for glycan analysis is further illustrated by
Figure 3.3. The integrated mass spectrum (panel b) represents the data as would be
obtained by conventional ESI-MS analysis alone. A region of mobility space occupied by
fetuin carbohydrate species is selected (annotated in Figure 3.3. (a)). Thus, subsequent
data-analysis discrimination of the chemical and chemical noise produces an enhanced
mass spectrum representative of the doubly charged, non-derivatized glycan species
(Figure 3.3. (¢)).

It should be noted that signal abundances in Figure 3.2. and 3.3. describe peak
intensities relative to the base peak with 100% intensity. Figure 3.2. (c¢) and (d) display
relative ion abundances from 300-1600 m/z such that the base peak of the spectrum
represents a relative abundance of 100%. The relative abundance of the base peak in 3.2.
(c) was 2.93x10* and in 3.2(d) 3.78x10*. Figure 3.3. (b) and (c) display relative ion
abundances from 950-1650 m/z such that the base peak of the spectrum represents a
relative abundance of 100%. The relative abundance of the base peak in 3.3(b) was

1.15x10%nd 6.57x10° in 3.3(c).

3.3.2 Results of Multimodal Sequencing

3.3.2.1 Mobility Assisted Electron Transfer Dissociation of a Protein Standard

To benchmark electron transfer dissociation-ion mobility-mass spectrometry (ETD-IM-
MS) experiments, a well-studied 76 amino acid protein, ubiquitin, was analyzed by both

ETD-MS and ETD-IM-MS workflows. The [M+6H] ™ ion with a m/z of 1427.61 was
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Figure 3.3. LC-ESI-IM-MS plot and extracted mass spectra from bovine fetuin
deglycosylated using PNGase F (protocol from Scheme 3, Figure 3.1). (a) A 2-D IM-MS
spectrum corresponding to the analysis of carbohydrates from a model glycoprotein
(fetuin). Selected region for +2 glycans represent the extracted mass spectrum (c). (b) An
integrated mass spectrum illustrating the chemical and chemical noise which would be
present without the use of the mobility separation where the base peak intensity is
1.15x10". (c) Extracted mass spectrum of free N-linked glycans from fetuin where the
base peak intensity is 6.57x10°. Carbohydrate structures are represented here and
elsewhere by the annotations in (c) as follows: o -mannose, A -sialic acid, m -N-
acetylglucosamine, and o -galactose. LC separations are performed on a RP column
under normal-phase gradient conditions which give rise to an ionization preference for
protonated carbohydrate ions.

95



selected as the precursor ion of interest by the quadrupole prior to ETD fragmentation in
the trap region. Figure 3.4. (a) describes a 2D IM-MS plot of ubiquitin with emphasis on
resulting ETD fragment ¢ and z ions and side product charge reduction. Panel b illustrates
a mass spectrum resulting without mobility (ETD-MS) where charge reduction products
are more predominant than the minor ¢ and z ion fragment products. These findings are
described previously in the literature on this instrument system.”” Utilizing the mobility
selection post analysis, it is possible to remove background signals to enhance areas of
interest annotated in the 2D IM-MS plot of Figure 3.4. (a). Figures 3.4. (b) and (c) further
illustrate the ability to enhance signals of interest as the predominant ions in spectra 2.4.
(b) correspond to ¢ and z ions as ETD fragmentation products of the [M+6H] ™ precursor
ion. Figure 3.4. (c) contains mobility-selected spectra of the charge-reduced species. Both
mass spectra and drift time values can be analyzed after mobility selection to obtain
conformational information in the form of a collision cross section supported by

60-63 Mobility separation after ETD fragmentation

theoretical computational modeling.
enhances the fragmentation spectra through the reduction of interfering chemical
background such as charge-reduced species, thus enhancing the signal-to-noise ratio of
the fragment ions. Further, previous studies have demonstrated separation of ¢ and z ion

types.”> Spectra obtained in this manner allows for a simpler assignment of sequence

annotation, thus reducing the time require for data analysis.
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Figure 3.4. Electron transfer dissociation of ubiquitin. A. The 2D IM-MS plot of
ubiquitin after initial mass selection for the +6 charge state ion. The regions correlating to
ETD product ions and charge-reduced product ions are annotated by yellow dashed box.
B. An ETD-MS only spectrum. This mass spectrum illustrates the relative low abundance
of ETD fragments in relation to endogenous chemical noise (charge reduced species). C.
An IM-MS selected mass spectrum from the region annotated in yellow in Figure 1.A.
ETD fragments of the +6 ubiquitin ion are annotated as ¢ and z ions in the spectra.
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3.3.2.2. Comprehensive Sequence Analysis by Multimodal ETD and CID

fragmentation

Further optimization of mobility-assisted fragmentation techniques takes
advantage of complementary fragmentation techniques. To best utilize the combination
of ETD and CID fragmentation, ion mobility is used to deconvolute multimodal spectra.
ETD fragmentation occurs prior to mobility analysis in the trap region of the instrument.
Consequently, ¢ and z fragments resulting from ETD are analyzed in the IM region. After
mobility, CID fragmentation occurs in the transfer region. Fragments produced after the
IM analysis retains the mobility information of the precursor ion. This results in aligned
fragmentation spectra where all fragments appear in a horizontal alignment in 2D IM-MS
space. Mobility selection of the data assists the deconvolution of the ETD fragmentation
spectra as described previously from the CID post-mobility aligned spectra. The
complexity of overlapping multimodal fragmentation spectra is reduced through the
mobility selection process, enhancing feature assignments in both complementary

fragmentation experiments.

Figure 3.5 illustrates this mobility enhanced multimodal fragmentation methodology for
ubiquitin. The [M+6H]+6 ion with a m/z of 1427.61 was mass selected in the quadrupole
prior to ETD fragmentation in the transfer region under the same conditions as described
for ETD-IM-MS previously. After mobility analysis, ions are fragmented in the transfer
region by collision-induced dissociation with argon gas at various voltages relative to the
approximate size of the precursor ion of interest. Figure 3.5. A depicts the 2D IM-MS

plot with regions corresponding to ETD fragments and CID fragments annotated by a
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Figure 3.5. The ETD-IM-CID-MS analysis of ubiquitin. A. An IM-MS plot of the mass
selected +6 ubiquitin ion analyzed by multimodal fragmentation. ETD product ions are
annotated with a white dashed box position on a diagonal. CID post mobility product ions
are annotated by blue, and white boxes. B. An IM-MS selected region, annotated by the
blue dashed box in Figure 3.5. A, correlating to the CID fragmentation of ubiquitin. The
b and y ions produced by the CID fragmentation retain the mobility of the precursor ion
MS plot (Figure 3.5. A). This allows for easier data analysis
and deconvolution of the spectra by mobility selection. C. An IM-MS selected mass
spectrum from the yellow dashed box annotated in Figure 3.5. A representing the charge-

and are aligned in the 2D IM-

reduced species of the ETD reaction.
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diagonal line and horizontal lines, respectively. Figure 3.5. B describes the mass spectra
obtained without mobility selection. Spectra without mobility selection represents the
data complexity from ETD-CID-MS experiments in contrast to ETD-IM-CID-MS. Figure
3.5. C is the mobility selected CID spectra aligned to the precursor [M+6H]™ ion. This
spectra illustrates the spectral deconvolution gained with the addition of ion mobility.
Specifically, the placement of an IM cell between two regions of fragmentation assists in
the selection of correlation regions as depicted in Figure 3.5. A. Spectra can be obtained
from both modes of fragmentation simultaneously in one experiment allowing for a

comprehensive multimodal fragmentation and thus sequencing of a protein.

3.3.2.3. Comprehensive Sequencing of a Glycopeptide by ETD-IM-CID-MS

To evaluate the utility of this methodology for posttranslational modification
sequencing, in particular glycosylation, a glycopeptide was subjected to the same
workflow as the benchmarking protein, ubiquitin. The carcinoembryonic antigen 2
(CGM2) glycopeptide was selected as it contains 10 amino acids with an N-linked
GlcNAc. This simple system allows for the sequencing of the amino acids as well as the
position of the site of glycosylation. Fragmentation by ETD in the first stage retains the
PTM modification, GIcNAc, at the 8 position. The amino acid sequence can be determine
by the ¢ and z fragment ion spectra. After mobility analysis, an ETD fragment serves as
the precursor ion of CID in the secondary stage of fragmentation. Figure 3.6. A depicts a
2D IM-MS plot of the CGM2 glycopeptide with regions corresponding to ETD

fragments, CID fragments, and charge reduced side products of the ETD fragmentation.
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Figure 3.6. The multimodal fragmentation and comprehensive sequencing of the CGM2
glycopeptide. A. The IM-MS plot of the ETD-IM-CID-MS analysis of the mass selected
doubly-charged CGM2 glycopeptide ion. ETD fragment ions are annotated by a yellow
box. CID fragment ions are annotated by blue and white boxes. B. The ETD
fragmentation spectrum produced by selecting the region annotated by the yellow box in
Figure 3.6. A. This spectrum illustrates the ¢ and z ions produced aiding in the
sequencing of the glycopeptide while retaining PTM (glycosylation at the asparagine
reside). C. The post-mobility CID fragmentation spectrum obtained by IM-MS selection
of the blue box in Figure 3.6A. The spectrum depicts the loss of the N-linked glycan from
the co ETD fragment as a result of the CID fragmentation. Additionally, ETD fragment
ions which did not disassociate prior to mobility are disassociated in the post-mobility
fragmentation region as a result of collision energy. This process produces ¢ and z ions
aligned in the 2D IM-MS plot. Note the alignment of fragments as CID occurs after the
mobility analysis, assisting in the deconvolution of multimodal fragmentation.
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Figure 3.6. B and 3.6. C illustrate the ETD and CID fragmentation spectra, respectively.
Figure 3.6. describes the ETD fragments along the sequence of the CGM?2 peptide, which
retain the carbohydrate PTM. This allows for mapping of the sites of glycosylation and
illustrates the PTM retention during this fragmentation mechanism. Secondary
fragmentation by CID then cleaves the carbohydrate from the peptide as described in

figure 3.6. The loss of 203 Da corresponds to the loss of a GIcNAc.

A full workflow of the ETD-IM-CID-MS technique for glycopeptides is described
in Figure 3.7. This multimodal fragmentation allows for the comprehensive sequencing
of both the amino acid sequence of the peptide as well as the sites of glycosylation. The
addition of ion mobility between the two complementary stages of fragmentation
supports deconvolution of the spectra. This produces simplified spectra for annotation

and assists in data analysis as both ETD and CID are run simultaneously.

3.4. Conclusions
3.4.1. Conclusions for LC Glycan Analysis

The methodology described herein is readily amenable to LC systems with RP
columns allowing for simultaneous omics experiments (proteomics and glycomics) to be
conducted on the same analytical platform. To further confirm the effectiveness of the LC
methodology for N-linked glycan analysis, studies can be optimized in a mode which
obtains MS/MS spectra simultaneously. In this manner, we can begin to assemble
comprehensive and multi-dimensional datasets of a suite of biomolecules obtained from

minimally processed samples (See Appendix C).>% >’
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Figure 3.7. A schematical representation of the ETD-IM-CID-MS analysis of the CGM2
glycopeptide. A. The initial structure of the doubly-charged CGM2 glycopeptide ion
annotated with a cleavage site for ETD fragmentation. B. The structure of the singly
charged ¢y ETD product ion after fragmentation. Note the glycosylation at the asparagine
side chain remains intact through the ETD fragmentation process. The glycosidic bond is
annotated for cleavage by CID post-mobility. C. The subsequent CID fragmentation
product ion by which the glycan has been cleaved. This deglycosylated singly charged
fragment is the result of both ETD and CID complementary fragmentation techniques
coupled by ion mobility.
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3.4.2. Conclusions for Multimodal Sequencing

Multimodal fragmentation supported by ion mobility separation provides a
comprehensive sequencing approach for glycosylated peptides and proteins. These
methods can be extended to other post-translational modifications as well. This
configuration supports simultaneous ETD and CID fragmentation in one experiment.
After ETD fragmentation and IM, all ions can be subjected to CID producing fragment
spectra that are mobility aligned. Fragmentation stages separated by ion mobility are
deconvoluted in the data analysis by selecting regions of 2D IM-MS space. Mapping the
amino acid sequence and the glycosylation sites can be achieved simultaneously in this
workflow. Addition examples of spectral deconvolution using ion mobility-mass
spectrometry in support of multimodal fragmentation can be found in Appendix C.
Examples are shown for both ubiquitin and the CGM2 glycopeptide. The incorporation of
multimodal fragmentation techniques with the separation capabilities of ion mobility
produces a rich dataset of deconvoluted spectra. Multimodal sequencing enhances the
analysis of glycaopeptides, and proteins with a more comprehensive approach supported

by ion mobility separations.

3.4.3. Summary of IM-MS supported glycoproteomics

A simple method for the analysis of non-derivatized glycans using a reverse phase
column on a liquid chromatography- ion mobility- mass spectrometry (LC-IM-MS)
instrument was described. Methodology supports both glycomic and proteomic work

flows without the necessity of switching columns. To obtain finer structural details, a
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multimodal fragmentation method was developed such that ETD and CID modes were
activated sequentially. The use of IM allows for the deconvolution of fragmentation
modes resulting in a more comprehensive sequencing. The chromatographic and
fragmentation methods are presented in this chapter as platforms enabling integrated
omics research. Key to these methodologies is the unique separation capabilities of ion

mobility-mass spectrometry.
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3.6 Associated Content

Supporting Information. The following experimental details and figures are included in

Appendix C. A 2D IM-MS plot and spectra illustrating the charged adduct distributions

of carbohydrates separated by the LC-IM-MS method (Figure C.1.). A mobility profile

describing the separation in the IM cell of branched glycans cleaved from bovine fetuin is

reported. (Figure C.2.). Comparisions of the LC method to that of the method considered

to be the gold standard for carbohydrate analysis, MALDI, is provided (Figure C.3.). A

detailed description to the experimental methods supporting the LC-IM-MS method are

reported in Appendix C.1.1. A comparison of LC total ion current traces are presented.

(Figure C.4.).
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CHAPTER 4

CHIP-BASED LIQUID CHROMATOGRAPHY ION MOBILITY-MASS
SPECTROMETRY STRATEGIES IN SUPPORT OF SMALL MOLECULE

ANALYSIS

4.1. Introduction

Metabolomics is a rapidly emerging field in chemical biology due to its ability to
provide information concerning the physiological state of an organism.'” Biomarker
discovery, a goal in metabolomics, is proving key to diagnosing diseases at early stages
in patients. In order to perform these studies, analytical techniques are required that can
analyze complex biological samples. While LC-MS techniques provide retention time
and mass-to-charge ratio (m/z) information that can be compared with databases to aid in
identification®®, database searching does not always yield an unambiguous metabolite
identity. Ion mobility-mass spectrometry (IM-MS) allows for the separation of ionized
molecules based on their size and shape, in addition to their m/.” Drift time data
obtained from IM-MS can be used to determine the collision cross section (CCS) of these
ions.  This additional feature of the metabolite ion allows for more accurate
identifications to be made in complex biological samples.'*"?

Initial motivation to incorporate chip-based technology to the IM-MS platform is
two-fold. First, many metabolomics extracts are challenged with limitations of sample

size. Chip-based technology would reduce the sample volume required in many cases.

Second, the inclusion of liquid chromatography to the IM-MS platform would provide
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addition dimension of separation, therefore expanding the variables comprising features.>
1320 Metabolomics often utilizes the separation power of LC-MS based technologies as
the metrics from each provide information about polarity of the molecule, as well as the
mass and charge, respectively.®® The added dimension of IM introduces a size and shape
descriptor to the analysis. In particular, this additional descriptor has potential for
dereplication in discovery efforts. By expanding separation in four dimensions (RT, DT,
m/z, and relative intensity), the peak capacity of the analysis is increased, thus supporting
the potential to distinguish molecular features previously collapsed by signals sharing the
variables of LC-MS alone.

The study reported here explores small molecules from approximately 100 Da to
900 Da across several subclasses of metabolites such as vitamins, carbohydrates, and
organic acids among others. Samples were analyzed using chip-based LC technology
integrated with an IM-MS instrument. To benchmark this methodology, multi-field CCS
measurements were compiled in both helium and nitrogen drift gases. Single-field CCS
measurements support LC as CCS values can be obtained on the LC time scale. In
addition to experimental CCS values, theoretical CCS values can also be obtained by
computationally sampling the conformational space of the molecule of interest. DTIM
CCS measurements are obtained directly using the kinetic theory of gases and can
arguably generate CCS values that show better agreement with theoretical CCS values
based on current theoretical approaches.

Typically, these theoretical studies include a method for obtaining a theoretical
structure by sampling the conformational space followed by an in silico CCS calculation

for each conformation. The theoretical CCS value that most closely agrees with the
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experimental value is then selected for further structural investigations. Additional
approaches consider one low energy structure either from experiment (X-ray
crystallography and NMR) or theoretical calculation and determine a theoretical CCS
value for the individual structure. Rather than attempting to calculate a specific CCS
value, we propose the generation and use of theoretical CCS ranges that result from
sampling all the conformational space of the molecule. Developing a comprehensive
database of these theoretical CCS ranges for typical metabolite molecules will facilitate
the identification process.

While the long-term goal of this work is to aid in identification of unknown
metabolites through database generation of theoretical CCS ranges, there is also an
additional benefit to finding these ranges. They can serve as a guide when determining
experimental CCS values for metabolite standards. Metabolites generally occupy a low-
mass region of the spectra, which suffers from complexity due to noise from the sample
and instrumental noise at that mass region. This makes feature selection and
identification a challenge for these compounds. Benchmarking experimental CCS values
against the theoretical ranges that result from sampling all conformational space of the
metabolite can provide extra validation for the CCS value. The work presented here
shows that good agreement can be found between experimental and theoretical CCS
values for metabolite standards and serves as an early step in generating databases of

theoretical CCS ranges for metabolomics research.
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4.2. Experimental Methods
4.2.1. Preparation of standards

The metabolite samples, HPLC grade methanol, and tetraalkyammonium
bromides (TAA 1-8) were purchased from Sigma-Aldrich (St. Louis, MO). Tune mix was
provided from Agilent Technologies (Santa Clara, CA). Water with 0.1% formic acid
(Optima) grade was obtained from Thermo Fisher Scientific (Waltham, MA). Metabolite
samples were at a concentration of 10mmol in 1:1 methanol:water containing 0.1%
formic acid. Small molecule, metabolite, and drug compound standards were purchased
from Sigma Aldrich (St. Louis, MO, USA) and prepared as received in either 10mM
ammonium acetate in H,O or 10mM ammonium acetate in methanol, depending upon
solubility. Final concentrations ranged from Ing/mL to 10pg/mL. A full list of

metabolites analyzed can be found in the Supporting Information (Table D3).

4.2.2. Instrumentation

Collision cross section experiments were performed on an Agilent 6560 IM-
QTOF instrument equipped with a HPLC Chip Cube interface and microflow binary
liquid chromatography (Agilent Technologies, Santa Clara, CA). The chip based
interface utilizes an Agilent 1260 Infinity High Performance Micro Autosampler. Details
of the IM-QTOF instrumentation are provided elsewhere,”"* % but, briefly, the IM-MS
consists of a 78 cm uniform-field drift tube coupled to a high resolution QTOFMS
(m/Am 40,000). The buffer gas (helium or nitrogen) was maintained at a pressure of ca. 4
Torr and the drift voltages were varied in order to correct for the non-IM flight time of

ions through the interfacing ion optics. The collision cross section calculator available
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with the IM-MS Browser software utilizes the Mason-Schamp equation to determine

experimental CCS values for the metabolites.

4.2.3. Data Acquisition Parameters
4.2.3.1. Liquid Chromatography Conditions

The binary HPLC setup was comprised of a capillary pump, a nanopump with
degasser, and a microwell autosampler. Both the capillary and nano pumps infused binary
solvents A and B, Optima LC grade water with 0.1% formic acid and Optima LC grade
acetonitrile with 0.1% formic acid (ThermoFischer Scientific, Waltham, MA),
respectively. All pumps were set to return to initial conditions at 15 minutes. LC methods
were based on the ultra-high capacity chip application note.> Briefly, the capillary pump
infused 98% solvent A at 4 uL/min with a pressure limit of 200 bar and a flow deviation
limit of 3% for the duration of the chromatographic run. The nano pump was set to micro
flow mode with a flow rate of 0.3 pL/min and a pressure limit of 200 bar with a flow
deviation of 3%. The 15 min gradient began with 98% solvent A and lowered to 68% A
over 5 minutes. The gradient was then adjusted to 20% solvent A at 8.5 minutes and held
for one minute after which the initial gradient was reestablished. A timetable describing
the solvent composition across the duration of the 15 minute chromatographic run is
included in the Appendix D (Table D.5.). For samples injected through the
microautosampler, a 2 pL injection was drawn at 20 pL/min and ejected at 40 pL/min
with a wait time of 5 seconds post drawing the sample. A flush out factor of four times

the injection volume (in this case 8 pL) was applied to ensure the sample was completely
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transferred to the column. Gradients remained isocratic at 98% solvent A for all direct

infusion experiments through the chip.

4.2.3.2. Chip Conditions

Liquid chromatography on chip utilized the ultra-high capacity (UHC) chip
designed for small molecule analysis, UHC Chip (II) G4240-65010 (Agilent
Technologies). The polyimide chip was etched to incorporate an enrichment and
analytical column. First, the sample is loaded onto the 500 nL, 25 mm enrichment
column and after flushing, the value is switched automatically to the analytical column.
The analytical column consists of a 75 um by 150 mm channel packed with a reversed
phase HPLC material, Zorbax 80SB-C18 300 A particles. Direct infusion for multi-field
CCS experiments utilized a calibration chip designed for MS calibration and diagnostics,
Calib-Chip (II) G4240-61010 (Agilent Technologies). The chip contained a 75 um by
100 cm empty channel allowing for the infusion of standards for calibration and infusion
of small molecules by direct infusion for multi-field CCS experiments. The maximum
pressure was set to 150 bar for this chip. The flow rates from an external syringe pump

were set between 0.3-0.6 pL/min.

4.2.3.3. Source Conditions

The chip cube source conditions utilized a zero air generator (Parker Hannifin,
Haverhill, MA) supplying between approximately 5 L/min mixed with ultra-high purity
nitrogen gas for a final gas flow between 10-13 L/min at a temperature of 250 °C. The

capillary voltage was set between 1650 V to 2100 V depending on chip, solvent, and
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analytes of interest. The fragmenter was set to 175 V, skimmer at -30 V, and octopole RF

at 400.

4.2.3.4. IM-MS Parameters

The IM-MS instrument was calibrated using the phosphazine standards (Agilent
tuning mixute, Agilent Technologies) over a mass range of 50-1700 Da. The mobility
was tuned for sensitivity and resolution using these compounds for both helium and
nitrogen drift gases for the respective drift gas experiments prior to interfacing the chip
cube to the IM-QTOF. Mass calibration was performed through the direct infusion chip if
needed. Acquisition parameters were as follows: front funnel pressures at ~3.8 Torr, IM
drift tube at ~4 Torr; mass range from 50-1700 m/z; 18 IM transients/frame; maximum
drift time of 60 ms; trap fill and release times of 20,000 ps and 150 ps, respectively; drfit
tube entrance voltage at 500 V. All methods were developed for positive ion mode
experiments. Multi-field helium mobility analyses typically collect mobility data at 7
different voltages for 2 minutes each with a total run time of 14 minutes. Voltages in
helium were 400, 450, 500, 550, 600, 700, and 800 V with a 250 V bias resulting in a
field of 1.92, 2.56, 3.21, 3.85, 4.49, 5.77, and 7.05 V/cm, respectively. Multi-field IM
studies with nitrogen drift gas were run using 8 different voltages for 0.5 minutes each
time point. Voltages were ramped from 800, 900, 1000, 1100, 1200, 1400, 1600, and
1800 V creating a field of 7.05, 8.33, 9.62, 10.90, 12.18, 14.74, 17.31, and 19.87 V/cm,
respectively. Single field drift tube experiments were collected by direct infusing the

sample of choice at one field condition in the drift tube. To obtain CCS measurements,
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tune mix is applied to the chip cube wick as an standard. Additionally, tune mix is

typically measured before, after, and periodically interspaced during sample queues.

4.2.4. Experimental Collision Cross-Section Calculations
4.2.4.1. Multi-field CCS Calculations

As previously mentioned, the experimental drift time values are converted to
CCS in the Mass Hunter IMS Browser B 7.01 software package (Agilent Technologies)
using the Mason-Schamp equation. Initially, drift times are collected at several voltages
in order to plot a relationship between the drift time and the inverse of the electric field.
This plot allows the user to systematically determine the dead time, or the fraction of time
ions are not in the drift tube. This dead time, or T is then subtracted to correct for a drift
time representing only the time an ion spends in the drift tube. Immediately following
this process, the software determined the mass of the ion, charge state, mass of the
collision gas, pressure and temperature of the ion selected. The built in CCS calculator
used this information to calculate a CCS value for each voltage frame. CCS values from
at least two different days were compiled to account for possible environmental variables

in the laboratory.

4.2.4.2. Single-field CCS Calculations

The tune mix was run before, after, and intermittently between samples sets at a
set drift voltage. In addition, the tune mix was applied to the calibrant wick in the chip
cube source housing to desorb during each run. All samples were collected using the

same voltage as the tune mix. This matched voltage allowed for a correlation factor to be
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determined for each voltage. These values were input to the single-field CCS calculator
in the Mass Hunter IMS Browser software. With the known relationship of drift time and
voltage, the software produces a CCS value for each ion selected manually, or for each
feature through the molecular feature extractor (MFE). The MFE analyzed data to
identify compounds with four unique descriptors, retention time, drift time, m/z, and
relative ion intensity, or counts. The MFE function will process a feature list with both
drift time and cross section if the previously mentioned correlation factors have been
included. Multiple LC runs were analyzed in this manner and the resulting CCS values

were averaged.

4.2.5. Theoretical Collision Cross Section Calculations

The generation of theoretical collision cross sections utilizes a distance geometry
based computational as described by Stow et al.** Briefly, two dimensional neutral
structures of each small molecule were acquired from PubMed and geometrically
optimized. After initial optimization, a proton or alkali cation such as sodium or
potassium were coordinated with the optimized molecule. These structures are depicted
in the appendix (Figures D.2.-D.7.). The distance geometry protocol then sampled
conformational space of each molecule based on the interatomic distances of the structure
as to avoid selection of potentially inappropriate force fields. All structurally possible
three-dimensional structures were clustered to remove analogous conformations.
Clustering thresholds are described in the appendix (Figure D.8.). Conformations were

then energy minimized and subjected to appropriate software to determine a theoretical
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CCS value from the energy-minimized conformation. Details and parameters are further

described in the appendix (Section D 1.1. and Table D.6.)

4.3. Results and Discussion

The metabolites analyzed in this study span a m/z range of 90.03 Da to 851.26 Da
and represent different subclasses of metabolites including organic acids, nucleotides,
vitamins, carbohydrates, and other classes. Samples were analyzed using both helium and
nitrogen drift gases to describe the versatility of these analyses, as well as to determine
practical challenges associated. LC separations and direct infusion of samples were
performed on chip. Multi-field CCS measurements were obtained through direct infusion
measurements to populate a basis set of experimental CCS values for small molecules in
both helium and nitrogen. Single-field CCS measurements were utilized to support LC
separations on chip. This allowed CCS values to be obtained continuously across the
course of an LC run without requiring multiple runs are varying voltages. Data was
further supported by theoretical modeling of CCS in both helium and nitrogen.
Conformational space was explored such that a range of all structurally possible
conformations of a molecule were subjected to modeling obtaining the resulting
theoretical CCS. This provides a theoretical CCS range for each small molecule studied
here. Advantages of a theoretical range include the ability to tease out possible false
assignment of CCS based on structural feasibility. A CCS range mitigates challenges
associated with reporting one finite structure for a particular experimental CCS value.

Lastly, theoretical CCS ranges provide added confidence in experimental values.
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4.3.1. Compilation of Multi-field Experimental CCS Values

Approximately 60 small molecule ions were analyzed using helium drift gas
across a mass range of 122.10 Da to 851.26 Da. All data was compiled with mass (Da)
and collision cross section (A%) in a two-dimensional conformation space plot in Figure
4.1 A. This data includes singly-charged ions with either sodium, potassium or a proton
adducted. Details of these parameters are described in the Appendix D (Table D.3. and
Table D.4.). To best describe the region of conformation space occupied by the small
molecules studied, a power fit was applied to the data with the resulting equation y =
4.027x*°*® and a coefficient of determination, R?, of 0.9476. This correlation
approximation was depicted on the plot as the dashed blue line. Data was then analyzed
against the % deviation from the power fit trend as plotted in the inset histogram. It was
determined that a 6% deviation from the correlation approximation would best describe
the data as it included 86% of the data. This 6% deviation was annotated on the
conformation space plot of Figure 4.1. A as the two solid black lines.

In a similar manner as the helium CCS dataset, approximately 40 small molecule
ions were measured using nitrogen drift gas. This dataset spans a mass range of 165.07
Da to 851.26 Da as depicted in Figure 4.1. B. This collection of nitrogen CCS values are
best described by a power fit with the equation y = 18.022x***! and a R? of 0. 9468
plotted as the dotted blue line. The best fit correlation band for the nitrogen data was
determined to be a deviation of 5% from the fit line. At 5% deviation from the power fit
correlation line, 90% of the data points fall within the band as described in the inset
histogram. It should be noted that the helium CCS values generally are smaller in

magnitude for the same ion as the corresponding nitrogen CCS value. This is due to the
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Figure 4.1. Conformational space plots summarizing small molecule descriptors of ions
in both A) helium and B) nitrogen drift gases. The mass and CCS descriptors are fitted
with a power fit trend, which represents the best correlation fit for the data in a blue
dotted line. Data was then analyzed to determine the correlation band by the inset. The
inset of A) depicts that a correlation of 6% deviation from the trend incorporated 86% of
the data. The black lines represent the 6% correlation bands for helium IM-MS data. The
inset of B) describes the included data within each correlation band. The 5 % correlation
band is depicted as the black lines on the 2D nitrogen IM-MS plot.
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interactions between the drift gas and the ion, which are described previously in the
literature. These datasets provide a measure of multi-field CCS values to benchmark both
single-field CCS values in support of chip based LC-IM-MS and the development of

theoretical CCS ranges.

4.3.2. Development and Considerations of Chip-based LC-IM-MS

An HPLC chip cube was interfaced with a 6560 IM-QTOF for LC experiments of
small molecules under helium and nitrogen drift gas conditions. In order to obtain CCS
values on an LC timescale, single-field ion mobility CCS were utilized. Single-field IM
analyses mitigate traditional LC-IM challenges such that a CCS for each molecular
feature of interest could be produced for each individual LC run without the need of
running multiple runs at varying voltages in a pseudo multi-field manner. To benchmark
the utility of chip-based LC-IM-MS, a mixture of 7 small molecules at a concentration of
Ing/mL diluted in a starting mobile phase of 98% solvent A and 2% solvent B. 2 pL of
the sample mixture was injected through the micro-autosampler and loaded onto the UHC
Chip (II) and separated by a 15 minute gradient with subsequent helium IM separation
and mass analysis described previously. An example workflow is described in Figure 4.2
such that the LC base peak chromatogram in Figure 4.1 A depicts the LC trace from the
chip cube prior to IM interpretation of the data. Data can be further analyzed using the
IM-MS dimensions as described in Figure 4.2. B. Figure 4. 2. B depicts the 2D IM-MS

plot
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Figure 4.2. A workflow illustrating the utility of chip based-LC-IM-MS for a mixture of
seven small molecules. A) A base peak chromatogram depicting a chromatogram prior to
feature analysis. B) A 2D IM-MS plot illustrating the complexity of the molecular
features within the LC range 5.5-12.5 minutes. C) The 2D IM-MS plot after features have
been annotated by the data analysis software producing the four descriptors listed in
Table 4.1. D) A feature specific chromatogram colored with overlaid ion chromatograms
based on features found in C. The seven metabolites in the mixture annotated in C are
atenolol (blue), caffeine (grey), quinine (orange), atropine (green), metoprolol (purple),
propranolol (black), and imipramine (red).
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over the chromatographic region of interest (5.5-12.5 minutes). The data analysis
software assists in feature identification as shown in Figure 4.2. C. The thresholds were
set to include only singly-charged ions within the chromatographic region of interest and
a minimal ion intensity n the molecular feature extraction software. These thresholds
were set to ensure ions in the LC region of interest were not excluded, but were set more
strictly to exclude unwanted features in other cases.

The resulting features were annotated by the software as seen in Figure 4.2 C.
Using the mobility single-field coefficients determined by the tune mix run under the
same IM-MS conditions, the software can compile CCS values from the drift times
obtained in the raw experimental data of Figure 4.2 B and 4.2 C. With the features of
interest annotated, the seven metabolites were then correlated back to the LC as all
variables are described in the feature finding process. The annotated feature specific
chromatogram in Figure 4.2 D depicts overlaid feature specific LC traces. Each trace is
distinguished by a color representing one of the seven metabolites described in more
detail in Table 4.1. Table 4.1. reports the analyte with corresponding color to Figure 4.2.
D, the retention time, m/z, drift time for the single-field LC-IM-MS experiment, CCS
values and relative standard deviations (RSD) for both single- and multi-field CCS
experimental measurements and the corresponding error between these, as well as the
theoretical range and a representative structure in agreement with the experimental CCS
value. It should be noted that there was good agreement with single and multi-field CCS
experiments. With the exception of atropine, all compounds were below 0.5% error.

Atropine had an increased error of 1.3%. This was likely due to the high intensity of the
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Table 4.1. The 7 metabolites examined by chip-based LC-IM-MS with descriptors obtained by
single-field CCS measurements.

Feature Retention| m/z | Drift | Single] CCS | Multi | CCS % Theoreticall Representative
Time Time | Field | %RSD| Field | %RSD| Error|CCS Structure in
(min) (ms) |CCS CCS Range Agreement with
(A?) (A?) (A?) CCs
Atenolol 5.72 267.15] 22.70| 95.4 0.1 | 95.4 05| 0.1 |96.9-117.0 *‘i‘t
Caffeine 8.96 195.09| 17.77 | 74.3 0.1 | 743 0.5 | 0.1 |78.9-78.9 ﬁi
9.13 325.16]| 26.80 112.7| 0.2 | 113.0] 0.5 | 0.3 |110.7-120.0 %\%
Atropine 9.35 290.18| 24.68| 107.3| 0.1 | 105.9] 0.7 | 1.3 |99.9-113.4 Ex it
Metoprolol | 995 |268.19] 25.94|109.1| 0.1 | 109.4] 0.5 | 0.1 |99.1-122.8 W
Propranolol| 11.64 [260.14] 23.80| 99.9 0.1 | 100.1] 0.5 | 0.1 |94.6-111.8 w
Imipramine | 12.03 |281.18| 24.40| 102.4| 0.1 | 1026/ 0.5 | 0.1 |101.7-113.1| Qg‘

Descriptors include chromatographic retention time, m/z, drift time and corresponding single-
field CCS with % relative standard deviation (RSD), multi-field CCS measurement with %RSD,
the % error comparing single and multi-field CCS values. The table also includes theoretical
CCS ranges and a representative structure, which agree with the experimental CCS value.
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peak, making it difficult to accurately assess the apex. Regardless, the increased error of
1.3% was below the 2% error considered to be acceptable for CCS measurements.” The
average error for this study of small molecules in helium by single-field CCS was 0.3%
(= 0.4). This table reports the extent of feature information that can be obtained in
support of small molecule analysis on chip-based LC-IM-MS platforms.

Theoretical CCS ranges and a cluster representative conformation that agrees with
the experimental CCS value are included in Table 4.1. These ranges give further
confidence in the experimental CCS value as we see agreement for all the metabolites
except caffeine and atenolol. Atenolol and caffeine are both small metabolites and
although the range and experimental CCS value do not agree they are within 1.5% and
6.2%, respectively. This may suggest a lower bound m/z cutoff of approximately 200 m/z
for comparison of experimental CCS values and theoretical CCS values. Further insight
into deviations between experiment and theory are discussed further in Appendix D.1.3.
The sample conformations give insight into the structural differences that cause

separation of these species in the gas phase.

4.3.3. Theoretical CCS Values Support Experimental CCS Values

Theoretical CCS ranges were determined for the metabolites investigated
experimentally in this study. Ranges for all metabolites were determined based on the
most compact structure (smallest CCS) to the most elongated structure (largest CCS)
generated theoretically. Although many structures are not energetically favorable, all
structures chemically possible due to interatomic distance constraints were included.

These structures set the bounds for the extremes of possible structural conformations.
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Figure 4.3. (A) Theoretical ranges helium CCS ranges for all small molecules listed in
Table D.2. The experimental CCS values are overlaid as a circular marker. Experimental
CCS markers are colored blue if it is in agreement with the theoretical range and red if it
does not. (B) Theoretical nitrogen CCS ranges for all small molecules listed in Table D.3.
The experimental CCS values are overlaid as a circular marker (blue agrees, red does not)
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Theoretical ranges have been projected with overlaid experimental CCS values obtained
in helium drift gas and nitrogen drift gas below in Figures 4.3 A and 4.3. B, respectively.
Figure 4.3 A spans a mass range from approximately 90 Da to 850 Da and a CCS range
from approximately 50 A*to 225 A®. Experimental CCS values that were in agreement
with the theoretical CCS range were projected with a blue marker. Values, which did not
agree are projected with a red marker. It can be noted that experimental CCS values and
theory agree well for masses approximately >200 Da in helium drift gas. Difficulties in
modeling molecules less than 100 Da in helium drift gas is discussed in greater details in
Appendix D (sections D 1.2-1.4.). Although there was some disagreement, the majority
of experimental values agree with the theoretical CCS values ranges for helium drift gas
experiments.

Nitrogen drift gas experiments produced ca. 40 CCS values supported by
theoretical CCS ranges. Figure 4.3. B depicts the theoretical CCS ranges with
experimental values overlaid. Similar to Figure 4.3. A, experimental values in agreement
with theory were colored blue and those disagreeing with theory were colored red. A
mass range of approximately 100 Da to 850 Da and a CCS range of approximately 100
A?to 350 A” was covered in the conformational space plot. Disagreement was observed
below 300 Da and was described in Appendix D. Briefly, the computational approaches
have difficulty simulating the polar interactions of the nitrogen drift gas on smaller
molecules. In addition, the placement of the proton or cation to the small molecule was
another concern. These issues will be address as part of the future directions for this
work. Although there are limitations for some of the smaller metabolites studied, the

theoretical ranges do support the majority of the experimental CCS values presented here.
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The theoretical modeling adds confidence in the experimental work and has great

potential for use in future metabolomics endeavors.

4.3.4. Time Advantage with the Chip-Based LC and Distance Geometry Modeling
Method

One major drawback that has hindered computational modeling of large sets of
molecules in support of IM-MS research is the time that is required for many of these
calculations. If each metabolite requires weeks or months of computational time to
produce theoretical CCS ranges, creating databases of these ranges would take much too
long to prove useful. Distance geometry circumvents this issue because it generates these
CCS ranges on the time scale of hours or days, not weeks or months. Similarly, the chip-
based LC platform performs LC separations on the microscale. This results in
chromatographic runs of 15 minutes for the small molecules examined in Figure 4.2.
Minimizing the LC time required allowed samples to be batch processed in a higher
throughput manner. Additionally, the support of single field CCS greatly decreases the
time required for LC-IM-MS as a CCS can be obtained without running the sample under
different drift voltage conditions to obtain CCS values.

The histogram in Figure 4.4 show the time required for generating the set of
conformations for the metabolites used in this study in comparison to the experimental
separation methods. The time required for MS (black) and IM (green) measurements is
on the order of us and ms respectively, with LC (red) methods requiring several minutes.
With the time required for sampling the conformational space of metabolites ranging

from minutes (cyan for small metabolites) to hours (blue for large metabolites), results in
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Figure 4.4. Bar graph showing the time required for the experimental separation methods
(m/z in black, drift time in green, and chip cube liquid chromatography in red) and the
distance geometry protocol used to sample the conformational space (cyan for the
smallest metabolite and blue for the largest metabolite).
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a more favorable time scale for the generation of theoretical CCS values. Additional time
is required to obtain an initial starting structure for the distance geometry calculation and
for the theoretical CCS calculation for the resulting conformation. The time requirements
for various approaches are tabulated in the supplemental materials along with
independent data for each of the metabolites analyzed theoretically in this study. Data for
protonated species is shown in the supporting information (Figure D.9.A.) and for
sodiated species (Figure D.9.B.). Calculation of the theoretical CCS depends greatly on
the drift gas and the level of theory used. Although the CPU time plotted in Figure 4.5
and Figure D.9. is not fully encompassing, it more clearly reflects the time required for
conformational sampling with distance geometry methods. These additional time
requirements may add anywhere from two hours to two days to the calculation. While
this increases the time required, initial structure parameterization and in silico theoretical
CCS measurements are required for any conformational sampling approach in support of
IM-MS measurements. Combining the capabilities of chip-based LC, single-field CCS
measurements and a distance geometry theoretical CCS method greatly reduces the time
required to perform LC-IM-MS with theoretical support. These time advantages reduce

resources required to obtain CCS values and increased throughput.

4.4. Conclusions

The integration of a chip-based HPLC to IM-MS methodology for metabolomics
analysis has been demonstrated for a series of small molecules in both helium and
nitrogen drift gases. First, a database of small molecules were analyzed by direct infusion

through a calibration chip prior to IM-MS analysis. These small molecules were
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subjected to multi-field CCS measurements as done in traditional drift tube IM-MS CCS
studies. Using these values as a basis set to benchmark single-field CCS measurements,
the IM-MS experiments supported analyses on the timescale of the LC separation.
Single-field CCS measurements were performed in both helium and nitrogen. Small
molecules were separated using a small molecule reversed phase chip for LC separation
prior to IM-MS analysis. The single-field CCS values were found to have good
agreement with the multi-field values supporting this strategy of IM measurements.

The use of single-field CCS allows for the curation CCS values during the time
scale of the LC run without requiring replicate analysis at additional drift voltages. With
a higher throughput methodology for LC-IM-MS, these efforts may be applied to
metabolomics at large. A key advantage of this technology is the additional dimensions
IM offers in comparison to traditional LC-MS experiments. Combined, LC-IM-MS
provides a four dimensional descriptor (RT, DT, m/z and relative intensity) of the features
in complex samples. Expansion of peak capacity assists in the search for unique
molecular features. These efforts are well suited for discovery of structurally diverse
metabolites. Additional advantages of this workflow is the considerable reduction of time
as the LC is performed on the order of minutes without the need for subsequent runs at
varying drift voltages. The employment of single-field IM analyses reduces the number
of runs required, and provides a mean for four-dimensional separations. These
separations are further supported by the development of theoretical CCS ranges.

Applying the distance geometry conformational sampling protocol to metabolite

compounds proves to be a time efficient method for generating accurate theoretical CCS
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ranges. Future studies will aim to gain insight into incongruences between the

experimental and theoretical CCS values.

4.5. Associated Content

Supporting Information. A description of the computational methods are reported in
section D. 1.1. A discussion of theoretical CCS values is provided (Sections D 1.2-1.4.,
Figures D. 1., Table D.1.) List of all metabolites examined are reported (Table D.2.).
Empirically measured experimental collision cross section values and theoretical ranges
for the analytes evaluated in this work in both nitrogen and helium drift gases (Tables
D.3.-D.4.). Chromatographic solvent composition timetables are provided. (Table D.5.).
Structures of metabolites with respective attached protonated species or coordinating
cation species are included (Figues D.2.-D.7.). A figured describing the determination of
RMSD cutoffs for distance geometry calculations is shown (Figure D.8.). Details
describing initial parameterization and theoretical CCS calculations are described (Table
D.6.). CPU time considerations for sampling conformational space are provided (Figure

D.J9.). Sample theoretical computational space plots are also reported (Figure D.10.).
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS FOR ION MOBILITY AND MASS

SPECTROMETRY TECHNOLOGIES IN SUPPORT OF INTEGRATED OMICS

5.1. Summary

The emergence of the fields of integrated omics and systems biology has challenged
traditional analytical techniques, as improved throughput, separation, and sensitivity,
among others were required. Traditionally, complex sample analysis relied greatly on
class-specific methodology run in parallel. For example, proteomic and glycomic
analyses have been processed separately, as compound types vary from amino acid based
peptides to cyclic sugar residues of carbohydrates. Ion mobility and mass spectrometry
techniques challenged these traditionally approaches with an additional dimension of
separation supporting integrated omics analysis.

The separation capabilities of ion mobility combined with mass spectrometry allow
for simultaneous analysis of glycomics and proteomics samples. Compounds that would
be convoluted by potentially occupying the same regions of the mass spectrum are
separated in the IM dimension. The structural diversity that makes selection of a
traditional separation technique challenging is the basis for separation by IM-MS. During
IM-MS analysis, classes of biological molecules occupy different regions of
conformation space. Biological classes differ in their gas-phase packing efficiency and

thus traverse an ion mobility drift cell in relation to their size and charge. The gas-phase
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electrophoretic separation of IM is well suited for integration with mass spectrometry as
both are rapid gas phase techniques on the timescale of ps and ms, respectively.

Previous applications of IM-MS for carbohydrates, lipids, and metabolites have been
described in Chapter I. Cases for incorporating multidimensional separation techniques
coupled to IM-MS analysis were also explored. Specifically, multidimensional separation
techniques support metabolomics analyses through dereplication in discovery efforts.
Methods described in Chapters II-IV were developed to approach the challenges
associated with glycomics, proteomics, metabolomics and complex sample analysis as a
whole.

Investigations into the ordering of biological classes in conformational space
explored peptides, lipids, carbohydrates and alkyl ammonium salts by nitrogen drift gas
IM-MS were described in Chapter II. This presented the first comprehensive analysis of
biomolecular separations and ordering in 2D IM-MS space for nitrogen gas experiments.
As current trends in the IM-MS field are moving from helium based IM studies towards
nitrogen based IM studies, this fundamental study lays the groundwork for biological
separations using nitrogen. Similar to helium separations, biological classes exhibit
packing efficiency trends such that lipids < peptides < carbohydrates. An extensive
database of CCS values in nitrogen was presented in Appendix A and summarized in
Chapter II. Descriptors of each class were reported and comparisons between drift gases
are also addressed in the aforementioned sections.

With descriptors of common biological classes described in Chapter II, Chapter III
focused on using the described IM-MS separation capabilities to analyze glycomic and

proteomic data simultaneously. A simple liquid chromatography method was developed
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for IM-MS analysis of glycans under conditions for peptide analysis. Typically, glycan
based LC separations utilize a HILIC or specialized columns, and often require the
derivatization of the carbohydrate. Derivatization modifies the structure of the
carbohydrate and requires manipulation of the original sample as well as the removal of
other biological classes prior to analysis. Similarly, traditional proteomic analyses utilize
reverse phase columns, which do not retain carbohydrate as they are eluted with the
solvent plug. Chapter II described a method in which a normal phase gradient is applied
to a reverse phase column removing the carbohydrates from the solvent plug. IM
separation post-analysis allows for the enhancement of the glycan signal by removing the
chemical noise. In this manner, LC columns can be used in both glycomic and proteomic
analysis, reducing waste, cost, and time required.

Expanding on separation methodology for simultaneous glycomics and proteomics, a
series of multimodal fragmentation techniques to elucidate structural detail for
glycoproteomics are described in Chapter III. Using the separation power of IM to
deconvolute spectra, it was shown that both ETD and CID fragmentation modes could be
sequentially activated within the same experiment. Combining ETD and CID allowed for
a more comprehensive sequencing of glycoproteins. First, glycans were retained by
radically driven ETD fragmentation providing information about the location of the
glycan on the protein and peptide backbone. Following ETD fragmentation and IM
separation, ions were subjected to a second stage of CID fragmentation. IM supports the
deconvolution of spectra such that spectra containing ETD and CID fragments could be

analyzed independently. Using this techniques, a glycosylated carcinoembryonic antigen
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CGM2 was sequenced by ETD-IM-CID-MS, demonstrating the structural detail provided
by from multimodal sequencing supported by IM.

Building on the techniques described in Chapters II and III, Chapter IV discussed the
development of chip-based LC-IM-MS techniques for small molecules. These
methodologies were designed to support natural product discovery efforts, in search of
structurally unique molecules, which often contain peptidic and glycomic motifs.
Methods for glycomic and proteomic analyses from previous workflows can be applied to
these chip-based methods for a comprehensive analysis of small molecules with
structural diversity. Chip-based LC-IM-MS was demonstrated for a series of
approximately 50 small molecules. A database of experimental and theoretical CCS
values was curated for IM studies in both nitrogen and helium. These descriptors along
with retention time, m/z, and relative intensity, define each molecular feature for use in
dereplication. This was the first example of a four dimensional separation of metabolites
on a chip-based LC integrated with a drift tube IM-MS instrument in both nitrogen and
helium drift gases. The addition of molecular modeling provided added confidence in the
experimental data and presented a new method for comparing experimental and
theoretical CCS values.

These workflows described in this dissertation support the separation and analysis of
complex samples. In particular, the methodologies presented in this dissertation are well
suited for application towards the elucidation of structurally unique small molecules
decorated with glycomic and peptide motifs as part of natural product discovery

Initiatives.
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5.2. Future Directions
5.2.1.Conformational Ordering of Biomolecules

Biomolecular class regions of correlation were described for lipids, peptides,
carbohydrates and alky-ammonium salts in Chapter II. One key expansion of this
research, yet to be explored, is the regions of correlations for interclass biological
molecules, such as glycolipids, and peptidoglycans. Understanding the influence of one
class on another could assist in prediction regions for post-translational modification
work. One such example would be the influence of the addition of a carbohydrate on a
peptide in terms of CCS. In order to study this effect, a broad mass range of peptides and
proteins would have to be measured both glycosylated and de-glycosylated to determine
if there is a statistically significant deviation due to the addition of the carbohydrate
motif.

An alternative avenue of research stemming from the conformational ordering
studies in Chapter II is the analysis of the coordinating ion to the CCS of the molecule.
Preliminary data explored the influence of the coordinating ion on the CCS specifically
for carbohydrates. These studies measured ca. 40 carbohydrates on a commercial drift
tube IM-MS instrument. A combination of human milk derived glycans and common
carbohydrate standards such as maltose sugars have been selected and analyzed on a
commercial drift tube based IM-MS instrument. Carbohydrates were analyzed in metal
complexes to gleam insight on the influence of sodium, potassium, lithium, rubidium, and
cesium, on the observed IM separation. Figure 5.1. depicts the influence of the metal ion
on the structure by measure of CCS. By comparing specific ion adducts to the trend of all

carbohydrates, the influence can be noted by positive or negative deviation from the

144



correlation line. Figure 5.1. illustrates the negative deviation from the fit of the cesium-
adducted ions. Conversely, lithium-adducted ions have a positive deviation from the fit.
The mass of the ion is accounted for when comparing the CCS value. This indicates a
trend in which the structure of the carbohydrate collapses in the presence of the cesium
ion. Similar trends have been described previously, but were restricted to carbohydrates
with at least five rings in a branched structure.'” Here, as few as a three rings follows this
trend. An expansion on this dataset with theoretical modeling support would provide a
more detailed analysis of the structural impact of the alkali ion. Additional interests may
lie with the presence of these alkali metals and other coordinating ions such as calcium
and magnesium in relation to biological relevance.

Studies of intraclass or multi-class molecules such as glycopeptides and glycolipids,
as well as the student of cation coordination effects on molecular structure are potential
future directions of the research described in Chapter II. The analysis of glycopeptides
and glycolipids may provide information about predicted regions of these biologically
important subclasses. Additionally, the influence of a carbohydrate motif on the CCS of a
peptide or protein, as seen in post-translational modifications, may suggest possible
changes in the structure of the molecule. The study of the influence of alkali metals on
carbohydrate CCS may also provide information structural changes in coordination

events.
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Figure 5.1. Histogram of carbohydrate CCS deviation from a the carbohydrate class fit.
A series of ca. 40 carbohydrates were analyzed in six different cation forms: adducted to
lithium, potassium, sodium, rubidium, and cesium as well as the protonated form. From
this, all 163 ions were plotted in IM-MS space and a power fit equation was used to
describe the carbohydrate trend. The histogram above illustrates the influence of the
adducted ion on the CCS, accounting for mass of the ion. The cesium ion in red projects
data falling in negative deviation from the fit. The lithium ion in blue exhibits positive
deviation from the fit.
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5.2.2. Approaches for the Separation and Characterization of Glycans
5.2.2.1. A Simple LC-IM-MS Method for the Analysis of Glycans

Methods were developed for simultaneous analysis of glycomics and proteomics by
LC-IM-MS. These methods were benchmarked against a series of maltose carbohydrate
standards as well as glycans cleaved from bovine fetuin. The subsequent analysis of the
peptide fractions in addition to the cleaved glycans would demonstrate further the
separation capabilities. Simultaneous trypsin digest to cleave the protein to peptides and
treatment with PNGase F to cleave glycans from the peptide backbones would result in
free peptides and glycans. The LC-IM-MS method proposed here could be implemented
with subsequent fragmentation. This would exploit the separation capabilities as both

classes could be analyzed and sequenced.

5.2.2.2. Multimodal Sequencing Supported by Ion Mobility

Chapter III described multimodal sequencing using both ETD and CID
fragmentation stages to comprehensively sequence ubiquitin and CGM2. Expanding on
these studies, a top-down multimodal sequencing of a larger protein with PTM could
benefit from these methodologies. As the PTM would be retained in the ETD mode of
fragmentation, the protein backbone could be sequenced. Additionally, the CID post-IM
would provide drift time correlated spectra releasing the PTM. Other studies could utilize
CID pre-IM to cleave the PTM with post-IM CID to sequence the released PTM
molecule. In a similar manner, this workflow may have use for lipidomics in which
glycolipids could be treated in a similar manner. For carbohydrate studies, the

multimodal sequencing could provide information about structural isomers. ETD
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fragmentation would create cross-ring cleavages while the CID fragmentation would

cleave at glycosidic linkages.

5.2.4. Methodology and Theory in Support of Small Molecule Analysis

A chip-based LC-IM-MS method was developed in support of small molecule
analysis with support of theoretical CCS ranges. The method was applied to curate a
database of experimental and theoretical CCS values of small molcules in both helium
and nitrogen drift gases. Trends in separation power between the two drift gases has yet
to be explored. These molecules could aslo be run with a third drift gas, carbon dioxide,
to explore the influence of a collision gas with higher polarization constants. The chip-
base LC methods should be applied to samples in a complex matrix to determine the
ability of the system to handle potentially dirty compounds. The in-line filter should
remove larger particulates prior to the column. A complex matrix would also demonstrate
the ability of the LC-IM-MS separation to assist in molecular analysis of samples with
larger numbers of features. The technology has the potential to assist in system biology
based experiments due to the added dimension of separation afforded by IM to a

traditional LC-MS experiment.

5.3. Conclusions

Ion moblity and mass spectrometry based techniques have been explored in
support of integrated omics and systems biology. The historical landscape of IM and MS
was described with emphasis on figures or merit and utility to biological sample analysis.

Specifically, small molecule separation and dereplication benefits from IM-MS based
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methods. The ordering of biological classes in confromational space was described. A
series of lipids, peptides, carbohydrates and alkyl ammonium salts were analyzed on a
high resolution commerical drift tube IM-MS instrument using nitrogen drift gas. These
classes were analyzed and described with correlation fits to each class. Focusing on
peptides and carbohydrates, a simple LC separation method was developed to analyze
carbohydrates on the same platform typically utilized for proteomics studies. In this way,
both peptides and glycans can be analyzed on one platform making glycoproteomics
accessable to more laboratories. To analyze glycoproteomic molecules with a focus on
finer structural detail, multimodal sequencing was developed on an IM-MS platform. The
addition of IM to multimodal fragmentation allowed for the deconvolution of ETD
fragmentation and subsequent CID fragmentation within one experiment. The
combination of techniques provides a more comprehenisve analysis of glycopeptides.
Lastly, methods were developed specifically for small molcules with an emphasis on
structurally unique metabolites.

The methods described in Chapters II-III focus on approached for glycans and
peptides which can be applied to metabolites containing carbohydrate or peptidic motifs.
The chip-based LC-IM-MS methods allow for an added dimension of separation from
traditional LC-MS metabolomic methods. Using a drift tube IM-MS instrument, CCS
values are acquired in both nitrogen and helium drift gases. To further support these
efforts, theoretical CCS values are calculated to provide added confidence in the
experimental workflow. These descriptors (retention time, drift time, m/z, and relative
intensity) assist in the dereplication of small molecules. The workflows presented in this

dissertation provide a novel mechanism by which IM mediated separation can be utilized
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to enhance the analyses of complex biological samples. Combining broad and fine
structural studies creates a comprehensive toolbox for the determination of class
descriptors and molecular identification. The addition of IM to MS allows for the analysis
of multiple classes simultaneously and has the potential to enhance the analysis of
metabolomics, glycomics and more generally, complex biological samples in the future.
Moreover, these methodologies can be applied to clinical applications for diagnostics and
biomarker development. The broad application for these techniques exemplifies the

versatility of ion mobility-mass spectrometry.
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR CHAPTER II

B. 1. Supplemental Materials for Ordering of Biomolecules in the Gas Phase

Bl1.1. Comments Regarding Limits of Precision for the CCS Measurements Presented
in this Work

The experimental uncertainty is determined from technical replicates representing a
minimum of six measurements of CCS, obtained during separate instrument acquisitions. We
consider a parsimonious approach essential when compiling a database, and thus individual CCS
measurements which contributed to a percent relative standard deviation (RSD) beyond 0.5%
were generally found to be indicative of a poor centroid fit (i.e., multiple peak features or low ion
counting statistics) and ultimately were not included in the datasets reported in this manuscript.
While all CCS values reported are better than 0.5% in experimental uncertainty, the accuracy
associated with the result is a sum of this experimental reproducibility and the uncertainty
associated with measuring each experimental parameter. The CCS uncertainty for significant
experimental parameters is estimated as follows for the lowest CCS value measured in this work
(TAA3, 144 A?): Pressure +0.05 Torr (+1.3%), temperature £1 K (£0.3%), drift voltage £2.5 V
(£0.2%), and time centroid extraction +0.1 ms (£0.6%), resulting in a total uncertainty of +1.5%,
as propagated through the Mason-Schamp equation. There is good reason to believe that the
measurement precision is better than what is estimated in the above example. Thus, the accuracy

of all values within the database is estimated to be better than 2%.

B.1.2. Notes on Supplemental Tables

In many cases, lower abundance concomitant species were present in the

analytical standards, denoted as derivative signal in the tables. Analyte identities for the
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derivative signals are putative and based on the mass measurement. No special
considerations were made to optimize for accurate mass data, and so the measured mass
and associated accuracies reported in the tables are as obtained from the production
prototype instrumentation using an offline calibration. CCS and K, measurement
precision representing experimental reproducibility error (o) is reported along with the
number of measurements (N). The total accuracy of all transport property values (CCS

and K) is estimated to be better than 2% (refer to the above discussion).

B.1.3. Symbol Key, Definitions, and Associated Equations:

Mass Accuracy — Mass accuracy (in ppm) is calculated from the following
expression:

Exact Mass — Measured Mass 106

Mass Accuracy = Exact Mass

Ky — Reduced mobility (the mobility scaled to standard temperature and pressure), as
calculated from the following equation:

K - L? (273.15)( P )
Ty, \ T 760

Here, L is the drift length (cm), V' is the drift voltage (V), #, is the corrected drift times (s),

T is the drift gas temperature (K), and P is the drift gas pressure (Torr). This gives the
units of Ky in V-cm™+s™. Reduced mobility values are classically reported for small mass

ions, and provided in the following tables for convenience.

CCS — The first approximation solution of the momentum transfer collision cross-
section, as calculated from the following equation (the expanded Mason-Schamp

relationship, Mason & Schamp 1958):

1

1 =
CCS_(?)-Z-eC) ( 21 )5 Mion + Mygs \2 (V-td 273.15 P )
~\16-N kg-T Mion * Myas 12 T 760
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Here, Z is the integer charge state of the ion (unitless), e, is the constant for elementary
charge (1.60217657 x 10" C), N is the gas number density (determined from the ideal
gas law, in units of molecules/m’),k is the Boltzmann constant (1.3806488 x 10% J-K™"),
Mioy 18 the ion mass (Da), and myg,, is the neutral drift gas masses (N in this work, Da),

respectively. Other terms are as described previously.

Note that here and by convention, the CCS is reported in units of A* (square
angstroms). In order to obtain square angstroms directly from the above calculation, it is
necessary to multiply the expression (in m?) by 102, with consideration given for
converting the above terms to the proper units: e. (C), N (molecules/m?), ks (J-K"), T

(K), mipn and mgqs (kg), V (V), td (s), L (m), and P (Torr).

The CCS expression above is considered a first approximation due to the actual
dependency on the cross section on the effective ion temperature (two-temperature
theory, Mason & McDaniel 1988, Chapter 6-2-C), which is the gas temperature plus the
field-induced ion temperature. In the Agilent IM-MS instrument described in this
manuscript, for the smallest ion investigated (TAA3, m/z 186) at the highest drift field
utilized (20 V-cm™ at 4 Torr, or ca. 15 Td) the field-induced ion temperature is ca. 3 K
greater than the gas temperature (Wannier 1953). This affects the magnitude of the CCS
by less than 0.5% for the ions investigated in this work and so only the drift gas
temperature is used for all CCS calculations. For low mass ions where the CCS values
are small, incorporating a higher-order (two- or three-temperature) scaling may be

significant.

RSD — Relative standard deviation represents the measurement precision (reported as a
unitless percentage) and is calculated as follows:
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o
RSD = —-100
average

Here, o is the standard deviation from multiple measurements.

Analyte Source — Can be either from a known analytical standard, or as a
derivative signal which represents a concomitant ion signal that appears in the samples,
often at lower abundances than the standard. For example, the TAA salts were analyzed
as received with a reported purity of 98%. The instrument sensitivity was high enough to
observe additional ions representing differences of CH, (m/z 14), which is suggestive of
low abundance impurities possessing various alkyl chain lengths. Note that for the lipid
samples, the analyte sources were biological extracts purified into specific lipid classes,
thus analyte identifications are putatively based on the mass measurement and the

expected mobility-mass correlation trends.

B 1.4. Considerations of Fundamental Differences of CCS Measurements in He and
Nitrogen Buffer Gas

Due to the commercial availability of electrodynamic IM-MS instruments, many
groups currently perform mobility separations in nitrogen. The majority of previously
published CCS values have been measured in helium as most homebuilt instruments
utilize helium buffer gas. The use of helium based CCS values for the calibration of drift
times acquired on a TWIM-MS instrument in a nitrogen buffer gas increases the error
associated with the calibrated CCS values obtained.! This stems from the differing
interaction potentials of helium and nitrogen gases. The use of helium as a buffer gas in a

drift region represents the closest experimental approximation to a purely elastic
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collision. This allows for the most accurate description of the molecular cross section as
the collisions the analyte would experience with the buffer gas would be nearly elastic
describing only the size or surface area of the analyte. Contrary to helium, buffer gases
such as nitrogen deviate further form the ideal elastic collision as the size of the buffer
gas has increased, and parameters such as polarization, charge density and interaction
potentials are more influential in the collision.

This trend is visible in a dataset of carbohydrate signals selected across a mass
range of about 300-1200 Da plotted in Figure B.1. Figure B.1. (a) depicts the shift in CCS
due to the change in buffer gas from helium (yellow data series) to nitrogen (blue data
series). The change in CCS as a percentage of the experimental CCS for lactose is
56.22% where as a larger carbohydrate analyte such as B-cyclodextrin deceases to
38.04%. Generally, this deviation decreases with increasing mass. Figure B.1. (b)

llustrates the

Calculations were performed to determine the contribution of the size of the
buffer gas in the resulting CCS. Additionally, these calculations describe the remaining
influence of nitrogen as opposed to helium when accounting for size effects and are
illustrated in Figure B.2. A collision cross section was corrected (CCS’) by using the
Van der Waal’s (VDW) radius to calculate the area (A%) difference between helium and
nitrogen buffer gases, where the VDW area was subtracted from the empirical CCS for
the respective buffer gas. The contribution of the VDW radius to the CCS is described in
Figure B.2. (b). Resulting differences in CCS’ values for nitrogen and helium illustrate
that the CCS measured is influenced by additional effects such as polarization, impact

parameters, and charge density (see Figure B.2. (b)). The resulting difference between

156



nitrogen and helium CCS’ values support the necessity of a CCS database obtained from
experiments using nitrogen as the contributing parameters are not easily compensated by
theoretical calculations or modeling.”” Additionally, a nitrogen based set of CCS
standards would improve upon calibration methods for obtaining CCS on a TWIM-MS
instrument. The current methods convert drift times measured in nitrogen buffer gas to
helium based CCS values. As a result of the transition between buffer gasses, additional
error is introduced as the parameters associated with nitrogen are not accounted for in the

calibration process.
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Figure B.1. (a) An IM-MS plot of selected carbohydrate ions measured independently in
both helium and nitrogen buffer gases using electrostatic field instruments. There is an
average deviation of 45% (£9%) between the helium and nitrogen CCS values for
carbohydrates. (b) A comparison plot between CCS measured in helium verses nitrogen.
A positive deviation to the central axis is observed.
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Figure B.2. (a) A 2D IM-MS plot of selected carbohydrate ions across a mass range of
350-1000 Da measured independently in both helium and nitrogen buffer gases where
cross sections are calculated by the Mason-Schamp equation. CCS values were corrected
for the contribution of the size of the buffer gas using the Van der Waals (VDW) radius
resulting in values termed CCS’. (b) A cartoon schematic of fundamental differences of
CCS measurements in helium and nitrogen buffer gases.* The theoretical CCS illustrated
describes the contribution of helium and nitrogen buffer gases based on the VDW radius

alone.
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Challenges of CCS Measurements from TWIM-MS

Due to the varying electric field applied to the mobility region in TWIM-MS, the
Mason-Schamp equation cannot be solved to determine the CCS value from traveling
wave data. To mitigate this challenge, several groups have utilized mobility calibration
methods.'” Calibration methods commonly convert drift times measured in nitrogen
using known CCS values of standards measured in helium. To reduce the error associated
with the change in buffer gas, the nitrogen database described above serves as a source
for calibrant standards measured in nitrogen. Although both DTIM and TWIM separate
based on collisions with a buffer gas, fundamental differences in separation time prevent
the use of correction factors.' Figure B.3. (a) plots empirical drift times for a series of
carbohydrates, where the top series in blue was acquired from an electrostatic field
(DTIM) MS instrument and the lower series in green was performed on an
electrodynamic (TWIM) MS instrument, both using nitrogen as a buffer gas. The
difference in time scale arises mainly from the varied length of the drift cells (78 cm
DTIM cell and 25.4 cm TWIM cell). The electrodynamic field data was adjusted by a
multiplicative factor in Figure B.3. (b) to illustrate that linear scaling does not align the
data sets. It can be noted that the trends of the two series differ in that the electrodynamic
field produces a more linear series than that of the electrostatic field data. This
characteristic is exemplified in Figure B.3. (c-d) where 5 carbohydrate ions were selected
across a mass range of approximately 300-1200 Da. While the molecules are separated in
the same order (based on size and charge), the distributions differ due to fundamental
differences in the mobility field, and further demonstrate both the challenge and the

necessity of mobility calibrations for electrodynamic mobility analyses.
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Figure B.3. (a-b) A series of carbohydrates analyzed in both electrostatic and
electrodynamic field IM-MS instruments. (a) A plot of the raw drift time data from the
two platforms, where the electrostatic field data is represented by blue triangles and the
electrodynamic field data by green squares. (b) Plots describing the application of a
multiplicative factor of 2.8 to the electrodynamic field drift times to better demonstrate fit
shape. In both plots (a) and (b) it can be noted that the electrodynamic field data adopts a
more linear fit to the overall trend of the dataset than that of the electrostatic field data.
(c-d) Five selected carbohydrate ions across the mass range of approximately 300 to 1200
Da plotted by their drift time chromatograms.
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The database summarized in Table B.1 provided a sample set of data for
benchmarking a modified calibration method. A series of carbohydrate ions were
measured on the TWIM-MS instrument using nitrogen as the buffer gas and the TAA
salts as calibrants. Due to differences in solubility, the TAA salt calibrant series is not
suitable as an internal calibrant for the carbohydrate mix. Thus, a novel calibration
method was developed for this study. TAA salts were intermittently acquired using the
G2-S lockspray infusion port. Every 10 seconds, the instrument acquired IM-MS data in
a secondary function which was accessed post analysis to measure the drift times of the
TAA salts. Alternatively, the TAA salt mixture could be run before or after the sample
acquisition. A calibration curve was produced using the drift times of the TAA salts and
the CCS values obtained on the DTIM instrument. Table B.1 summarizes CCS values
from both electrostatic and electrodynamic IM-MS instruments for 10 selected
carbohydrate ions. The series of carbohydrates in Table 2 have an average percent error
of 1.2%, which is within the bounds of experimental error.® Calibration of the
electrodynamic drift time measurements may be further improved by the use of matched
(same chemical class) calibrant sets. The CCS values obtained on the electrostatic field
instrument provide values for calibration of electrodynamic field instruments for those
lacking access to an electrostatic field instrument. Similarly, the peptide and lipid datasets

would be well suited for calibration of peptide and lipid based studies, respectively.
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B.1.4. Carbohydrate Nomenclature:

I. Hexose assignments in the database are based on exact mass measurement. The
exact type of hexose is uncertain

2. All pentose identifications are assigned as fucose in the database as this is the
only pentose present in the samples

3. N-acetylated hexosamine are labeled such that the exact type of hexose is

uncertain.

B.1.5. Carbohydrate abbreviations not previously listed:

Lacto-N-fucopentaose I Fucal-2GalB1-3GlcNAcB1-3Galf1-4Glc
Lacto-N-fucopentaose II GalB1-3[Fucal-4]GlcNAcB1-3Galp1-4Gle
Lacto-N-difucohexaose I Fucal-2Galp1-3[Fucal-4]GlcNAcB1-

3GalB1-4Glc

Lacto-N-difucohexaose I1 Galp1-3[Fucal-4]GIcNAcB1-3GalP1-
4[Fucal-3]Glc

a-cyclodextrin Cyclomaltohexaose

B-cyclodextrin Cyclomaltoheptaose
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B.1.6. Lipid Nomenclature:
Glycerophospholipids:

Ex. PC x:y
PC, PE, PS = abbreviated names for phosphatidylcholine,
phosphatidylethanolamine, phosphatidylserine respectively
x = total number of carbons in fatty acid chains
y = total number of double bonds in fatty acid chains
Sphingolipids:

Ex. SM x:y
SM, GlcCer = abbreviated names for sphingomyelin and cerebroside
respectively

x = total number of carbons in the amide linked fatty acid of the
ceramide plus eighteen carbons from the sphingosine backbone

y = total number of double bonds, one trans double bond in the
sphingosine backbone plus the number of double bonds in the amide

linked fatty acid of the ceramide

Hydroxylation on Cerebrosides:

Ex. GlcCer x:y h
h = denotes hydroxylation on the number two carbon (from the
carbonyl) of the amide linked fatty acid

Alkyl Ether Linkage

Ex. PS O-x:y
x = total number of carbons in fatty acid chains
y = total number of double bonds in fatty acid chains
O = alkyl ether substituent
O-0O = alkyl ether substituent occurs on both chains
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APPENDIX C

SUPPLEMENTARY MATERIALS FOR CHAPTER III

C.1. Supplemental Materials for a Simple LC Glycan Separation
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Figure C.1. Charge Adduct Distribution for Bovine Fetuin Released Glycans (a) A 2D
IM-MS plot of glycans released from bovine fetuin after treatment with PNGaseF as
discussed in the manuscript. Free non-derivatized glycans are separated by the method
described above. Doubly charged glycans are annotated as (b). (b) A mobility selected
mass spectrum of doubly charged free glycans from fetuin. A glycan segment of the mass
spectrum was selected and magnified in the inset noted as (c). (¢) A mass spectrum
depicting the presence of both proton adducted and sodium adducted glycan species. As
noted in the manuscript, the protonated species is more prominent than that of the sodium
adducted species.
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Figure C.2. Mobility Separation of N-Linked Glycans Cleaved from Bovine Fetuin. A
series of drift time chromatograms for five of the glycans released from bovine fetuin.
(a)- (e) Mobility chromatograms specific to the mass of the glycan depicted to the left of
the peak. Relative abundances are noted to the right of the mobility peak. Some peaks do
not fit a Gaussian profile, indicating the potential for multiple isomers. Further mobility
and fragmentation studies to distinguish these overlapping isomeric peaks contributing to
the mobility chromatogram are beyond the scope of this manuscript. (f) A total mobility
chromatogram summed from the region annotated as the region of glycans in the 2D IM-
MS plot in Figure C.1. above.
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Figure C.3. Experiments in this study utilize Scheme 3 for the separation and analysis of
carbohydrates from the model glycoprotein, bovine fetuin. MALDI-IM-MS serves as
additional confirmation of LC-ESI-IM-MS results. (a) A 2-D MALDI-IM-MS plot of
conformation space for the analysis of fetuin carbohydrates. Selected regions for singly
charged glycans represent the extracted mass spectrum (b). (b) Mass spectrum of free N-
linked glycans from fetuin. (c) A 2D LC-ESI-IM-MS plot of conformation space for the
analysis of fetuin carbohydrates with annotated regions representing the mass spectra, (d)
and (e), of the doubly- and triply-charged glycans, respectively.
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C.1.1. Comments on Mobility Separation of N-linked Glycans Cleaved from Bovine
Fetuin

It should be noted that analysis of carbohydrate by MALDI results in primarily
singly charged glycans, [M+Na]", whereas LC-ESI-IM-MS preferentially creates doubly-
and triply- protonated ions, [M+2H]™* and [M+3H]"” respectively. In LC-ESI-IM-MS,
the sodiated glycan ions are presents as minor ionization products. The protocol for most
MALDI-MS studies of glycans involves doping the sample-matrix solution with trace
levels of salt to promote ionization. This gives rise to the sodiated glycans observed in
Figure C.3. (b). The LC-IM-MS analysis of fetuin glycans compares favourably (in terms
of both the appearance of representative ion signals and their corresponding signal-to-
noise) to that of the previous MALDI-IM-MS experiments. This is demonstrated in the
spectra in Figure C.3. (d) and (e), which show well-resolved doubly and triply-charged

glycan signals.
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Figure C.4. LC TIC Chromatogram of a Mixture of Maltoses. Liquid chromatography
total ion chromatograms of a series of maltose standards (M3-M7). C.4. (a) is an LC
chromatogram for the reversed phase gradient annotated with a star for the region of
sugars. C.4. (b) illustrates an LC chromatogram using the proposed method of a normal
phase gradient and annotates the regions which contain maltose sugars with stars.
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APPENDIX D

SUPPLEMENTARY MATERIALS FOR CHAPTER IV

D. 1. Supplemental Materials for Small Molecule Methodology for Experimental and

Theoretical Analyses

D.1.1. Theoretical Collision Cross Section Calculations Methods

In order to generate theoretical ranges for large sets of metabolites, a
computational approach is needed that can perform this task in a time efficient manner.
Current metabolomics databases contain thousands of metabolites, which, regardless of
the size of the chemical compounds, is a daunting task for an extensive conformational
sampling study. Many conformational sampling techniques utilize molecular dynamics
(MD) methods which rely on force fields to describe molecular classes. The various
classes of molecular compounds that are represented in the metabolome make it difficult,
if not impossible, to find one force field that would accurately describe every metabolite.
These challenges suggest that the protocol utilizing distance geometry methods
developed in the previous chapter should prove useful in this study. Distance geometry,
which samples conformational space based solely on interatomic distances within the
molecule, does not rely on a force field to sample conformational space and is a very time
efficient computational technique.

Starting structures for all 50 metabolites were obtained from PubChem. These

neutral structures initially underwent a geometry optimization at the Hartree Fock level of
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theory with a 6-31G* basis set in the Gaussian 09 software.' These structures were used
to generate the cation coordinating structures for the remainder of the calculation. Each
of the neutral structures was also protonated based on pKa values and known protonation
sites found in the literature.” These protonated structures also underwent a geometry
optimization at the Hartree Fock level of theory with a 6-31G* basis set. The structures
of the 50 metabolites with their site of protonation identified can be found in the
supporting information (Figures D.7-D.12). The geometry optimization not only provides
a good starting structure, but it also provides the electrostatic potential needed for partial
charge derivation for introducing cations and later energy minimization steps. After the
initial geometry optimization, both the protonated and neutral structures underwent a
distance geometry calculation with DGEOMO95’ to generate all possible three-
dimensional conformations of the metabolite. The distance restraints utilized in this
program are described elsewhere in the literature,” but a brief description will be provided
below. This program provides an RMSD cutoff to reject generated conformations that are
too similar to other generated conformations. The set of metabolites spans a mass range
of 90 — 828 Da and the number of rotatable bonds ranges from 0 — 25. This suggests that
different RMSD cutoffs may be needed across this range. Values of 0.5, 0.75, and 1.00
RMSD were used for mass ranges of 90-199 Da, 200-399 Da, and 400-828 Da,
respectfully. These values were determined based on conformational sampling
capabilities and their effects on resulting CCS ranges. This data can be found in the
supporting information (D.13).

Once the conformations were generated from distance geometry, a sodium cation

was added to each of the neutral metabolites with the xLeap software found in
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AMBERI14’. The cation is placed with the neutral molecule according to the electrostatic
potential grid. The cationized metabolites, as well as the protonated metabolites, then
underwent a short energy minimization with the sander module in AMBER to generate
low energy conformations.’ A theoretical CCS value was then determined for each
conformer, or for a subset of conformers (depending on the size of data set), using either
MOBCAL"™ or PSA'"". Details on the subsets of conformers used for this calculation

can be found elsewhere in the appendix (Table D.14.).

D.1.2. Analysis of a Representative set of Small Molecules

The experimental CCS of 10 of these metabolites is overlaid with the theoretical
CCS range in Figure 3. The blue circles indicate agreement between experiment and
theory where red circles indicate disagreement between the two. Helium results are
shown in Figures 3A and 3B and nitrogen results in Figures 3C and 3D. The results are
further split into groups of small mass metabolites (Figures 3A and 3C) and large mass
metabolites (Figures D.1.A and D.1.D) for viewing clarity. For the small mass
metabolites, we see poor agreement for fucose [H+] and kynurenate [H+] for both helium
and nitrogen. Both of these metabolites are small (165.08 and 190.05) and reflect the
disagreement observed with the smaller metabolites (caffeine and atenolol) mentioned
previously. This suggests that there might be a lower end cutoff for utilizing the
theoretical ranges to support and guide experimental CCS measurements. Melatonin,
cocaine, and ondansetron are the remaining three metabolites shown in Figures 3A and
3C. For Melatonin and cocaine we see good agreement with both helium and nitrogen

whereas for ondansetron we only see agreement with helium. This is similar to results for
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the larger metabolites in Figures 3B and 3D where we see good agreement for colchicine,
raffinose, glutathione oxidized and maltopentose in helium and nitrogen, but for folate we
only see agreement in helium. Disagreement of folate and ondansetron in nitrogen only
suggest and error on the theoretical CCS calculations.

For the metabolites that do agree, they tend to fall toward the lower end of the
theoretical ranges. This observation is due to the fact that all possible three-dimensional
conformations are generated with the distance geometry approach producing larger
theoretical CCS values than observed experimentally. The addition of the cation, and to
some degree the proton, causes the metabolites to form more densely packed
conformations which correspond to smaller CCS values.

For the metabolites that do not agree determining the source of error depends on
whether the experimental value fell above or below the theoretical range and if we see
disagreement in both gases. If the experimental CCS value falls below the theoretical
range, there is likely error associated with the theoretical calculation. It is also likely that
if we see agreement in helium, but not nitrogen then the error is likely resulting from the
theoretical CCS calculation. While nitrogen is becoming more popular for experimental
CCS measurements, the theoretical CCS calculations are better suited for comparison
with helium CCS measurements. New and improved techniques, such as PSA, are being
developed with capabilities to obtain theoretical nitrogen CCS values, but this work is
still preliminary at this time.

If the experimental CCS value falls above the theoretical range, there is likely
error associated with the experimental measurement. Experimental errors either stem

from false peak identifications, poor resolution or failure in assumptions for the kinetic
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theory of gases. The kinetic theory of gases, on which CCS calculations are based,
assumes completely elastic interactions between the drift gas and the molecular ion. For
the smaller metabolites, the polarizability effect of nitrogen is stronger. This corresponds
to more inelastic interaction that results in longer drift times and larger CCS values. This
trend is observed when the experimental CCS values falling above the theoretical CCS
ranges for the smallest metabolite values. Experimental values could also be incorrect
due to the false identification of peaks in the IM-MS experiment. Endogenous and
exogenous noise in the low mass region of the spectra makes feature selection and
identification a challenge for these compounds. Deviations between the theoretical and

experimental CCS values will be discussed in further detail in the following section.

D.1.3. Incongruences Between Theoretical Ranges and Experimental Values

At this point it is important to mention possible sources of error for both
experimental CCS measurements and theoretical CCS calculations. These sources of
error likely contribute to disagreement between the two CCS values and are summarized
in Table 2 below. First, the experimental errors will be discussed. Although instrument
capabilities are constantly improving, poor mobility resolution for the mass range of the
metabolite samples could result in misidentified metabolite ions. Faint sample peaks or
endogenous sample noise can make identification difficult for certain species. The
remaining sources of error that will be discussed for experimental CCS measurements
concern the ion-neutral interaction between the metabolite ion and the neutral drift gas
molecules. The Mason-Schamp equation assumes elastic interactions between the ion and

netural buffer gas. Previous work has shown that this assumption holds for
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measurements made in helium, which is a small (4 Da), monoatomic atom. The
assumption no longer holds for the larger (28 Da) diatomic nitrogen gas molecule.*'*
The inelastic interaction between the gas phase ion and nitrogen drift gas results from
momentum transfer during the collision, which corresponds to a longer drift time and
thus larger CCS values.”> This momentum transfer will have a greater effect on these
small metabolite ions and therefore altering their experimental CCS values to differ from
a purely structural measurement. In addition to their size difference, helium and nitrogen
have considerably different polarizability values, 0.205A° and 1.641A° respectively.’
While it has been suggested that polarizability of different drift gases does not effect CCS
measurements for larger gas phase ions, it may play a role for the smaller metabolites
examined in this work.

There are also sources of error for the theoretical CCS calculations. Distance
geometry arguably samples all possible conformations space making it difficult to claim
that certain experimentally observed conformations may not have been generated.
Achieving appropriate coordination of the cation is more difficult with distance geometry
methods and therefore the modeling could fail to generate the observed experimental
structures. The remaining sources of error result from the theoretical CCS calculations
methods. Both the projection superposition approximation (PSA) and the trajectory
method (TM) were used in this work to calculate theoretical CCS values. The PSA
calculation starts with the projection approximation, which calculates the area of two-
dimensional projected images of the molecule. The calculation then uses a shape factor,
which is a measure of the concavity of the molecular surface of the ion, to adjust the

projection approximation CCS value.
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In order to obtain nitrogen CCS values a set of “preliminary parameters” are used.
It is speculated that these parameters are based on previous measurements and theory.
The authors of PSA admit that there is room for improvement in these parameters and
thus this could contribute to error in these calculated CCS values. This approximation
approach only considered the structure of the ion and therefore does not directly
incorporate ion-netural interactions that are know to have an influence on CCS for drift
gases other than helium. With the exception of the twelve metabolites that do not contain
the appropriate ratio of carbon, oxygen, and nitrogen, the PSA method was used to
determine theoretical CCS values. The TM is a more rigorous approach to determining
theoretical CCS values and was used for the twelve remaining metabolites. It integrates
under scattering angles to obtain the rotationally averaged surface area or CCS of the ion.
This approach incorporates Lennard-Jones potentials in an attempt to accurately describe
the ion-netural interaction. Although this is a theoretically rigorous approach, it can fail
to accurately generate CCS values that agree with experimental CCS values. This is most
likely due to the method not completely accounting for the polarizability and momemtum
transfer that both effect the CCS measurement. Modifications to the original calculation
attempt to more accurately model nitrogen as a diatomic atom'’ but for small molecules
where polarizability and momentum transfer play a larger role in CCS determination
there is still a deviation between experiment and theory.

In order to obtain a clearer picture of ion-neutral interactions in the gas phase, a
MD simulation could be performed that would mimic the environment of a drift tube
used in an IM experiment. This would allow for the actual interactions between the

sample ion and the neutral buffer gas to be observed under the pressure and temperature
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conditions that occur experimentally. While this approach would provide very helpful
insight into the ion-neutral interactions that influence CCS measurements, it is outside the

scope of the present work.

D.1.4. Concluding Remarks on Theoretical Modeling of CCS Values

Ten of the metabolites in the initial data set were not compared to theoretical CCS
values due to their preference to form negative ions. Future work will aim to generate
theoretical conformations for the negative ions as well as for larger sets of metabolites.
Distance geometry should prove useful for the negative ions because the challenge of an
additional proton or cation will no longer be a concern.

These theoretical CCS ranges will benefit future generation of CCS values as they
provide a benchmark for the experimental measurement. Once the deviations between the
theoretical ranges and experimental values are fully understood, corrected databases of
theoretical CCS ranges can be constructed. These databases will then offer an additional
feature for identifying metabolites in future metabolomics studies.
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Figure D.1. The experimental CCS values (blue and red circles) for the DTIM instrument
are compared with the theoretical CCS ranges (grey bars with black end points) in these
plots. The m/z values are plotted on the x-axis and the CCS values are plotted on the y-
axis. Results for helium are shown in A) for a selected group of low mass metabolites and
in B) for a selected group of high mass metabolites. Results for nitrogen are shown in C)
for a selected group of low mass metabolites and in D) for a selected group of high mass
metabolites. Blue circles indicate agreement between experiment and theory where red
circles indicate disagreement between the two.
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Potential Sources for Error in CCS Calculations

Experiment Theory
* Poor resolution * (ation sampling
* Poor senesitive for small ions * Approximation based
calculations

* lonand drift gas interaction * Scattering angle calculations

Table D.1. Potential sources of error for both experimental and theoretical
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Table D.2. The metabolites examined in this study are listed in the table below with their m/z

values.
Metabolite m/z Metabolite m/z
(Abbreviation) (M+H)'[M+Na]" (Abbreviation) (M+H) [M+Na]"
Lactic Acid (91.04) Biotin (245.10)
(LA) [113.02] (BIO) [267.08]
Choline 104.11 [M]" 2’deoxyadenosine (252.11)
(CHO) (2DE) [274.09]
Nicotinic Acid (124.04) Thiamine 265.11 [M']"
(NIC) [146.02] (THI)
5-Fluorouracil (131.03) Adenosine (268.10)
(5FL) [153.01] (ADO) [290.09]
Leucine (132.10) Guanosine (284.10)
(LEU) [154.08] (GUA) [306.08]
Amphetamine (136.11) Ondansetron (294.16)
(APH) [158.09] (OND) [316.14]
Salicylic Acid (139.04) Cocaine (304.15)
(SAL) [161.02] (COC0C) [326.14]
Fucose (165.08) Glutathione (308.09)
(FUCO) [187.06] (GTA) [330.07]
Quinolinic Acid (168.03) NANA (310.11)
(QUN) [190.01] (NAN) [332.10]
Uric Acid (169.04) CMP (324.06)
(URC) [191.02] (CMP) [346.04]
Glucose (181.07) UMP (325.04)
(GLU) [203.05] (UMP) [347.03]
Mannose (181.07) Sucrose (343.12)
(MAN) [203.05] (SUC) [365.11]
Tyrosine (182.08) Melibiose (343.12)
(TYR) [204.06] (MEB) [365.11]
Sorbitol (183.09) AMP (348.07)
(SOR) [205.07] (AMP) [370.05]
Kynurenate (190.05) LacNAc (370.13)
(KYN) [212.03] (LAC) [392.12]
Citric Acid (193.03) Colchicine (400.18)
(CIT) [215.02] (COL) [422.16]
MDMA (194.12) ADP (428.04)
(MDM) [216.10] (ADP) [450.02]
Caffeine (195.09) Folate (442.15)
(CAF) [217.07] (FOL) [464.13]
ADMA (203.15) Glycodeoxycholate (450.32)
(ADM) [225.13] (GLY) [472.30]
Pantothenic Acid (220.12) Verapamil (455.29)
(PAN) [242.10] (VER) [477.27]
GlcNAc (222.10) Raffinose (505.18)
(GLO) [244.08] (RAF) [527.16]
GalNAc (222.10) Glutathione (613.16)
(GAL) [244.08] Oxidized (GOX) [635.14]
Melatonin (233.13) Stachyose (667.23)
(MLT) [255.11] (STA) [689.21]
Thymidine (243.10) Acetyl coenzyme (810.13)
(THY) [265.08] A (ACA) [832.11]
Cytidine (244.09) Maltopentose (829.28)
(CYT) [266.07] (MLP) [851.26]
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Table D.3. Feature descriptors for small molecules in nitrogen drift gas

Mass Theoretical

Mass Measured ACC CCSs SD CCS CCS Range
Compound lon (Da) Mass (Da) (ppm) (A% (AY) RSD N (A%
N-ethylaniline H+  122.10 122.10 -12.54  66.4 0.3 0.4% 12 -
Amphetamine H+  136.11 136.11 19.24  60.8 0.8 13% 12 69.6-71.7
Leucine Na+ 154.08 154.10 7464 716 0.4 0.6% 20 70.3-87.6
Fucose H+ 165.08 165.09 -80.60  75.2 0.4 0.5% 14 67.8-69.6
Quinolinic Acid H+  168.03 168.03 11.79 67.9 0.6 0.9% 20 68.9-69.5
Benzophenone H+ 183.08 183.08 17.95 80.9 0.4 0.5% 6 -
Fucose Na+ 187.06 187.06 -9.94 77.7 0.5 0.6% 14 73.3-75.9
Quinolinic Acid Na+  190.01 190.01 9.62 74.3 0.4 0.5% 14 75.3-75.5
Kynurate H+  190.05 190.05 -9.39 72.9 0.4 0.6% 14 77.3-80.7
MDMA H+ 194.12 194.11 23.17 83.2 0.5 0.6% 14 82.5-87.2
Caffeine H+  195.09 195.08 17.41 76.2 0.4 0.5% 14 78.9-78.9
Glucose Na+ 203.05 203.06 -15.00  85.1 0.6 0.7% 14 73.9-81.3
Mannose Na+  203.05 203.05 -4.65 74.7 0.5 0.7% 14 73.2-81.0
Sorbitol Na+ 205.07 205.07 5.39 78.9 0.4 05% 21 74.7-88.2
Kynurate Na+ 212.03 212.03 -3.01 83.8 0.5 0.6% 14 87.2-87.2
MDMA Na+ 216.10 216.10 15.93 86.2 0.4 0.5% 14 84.9-93.8
Caffeine Na+ 217.07 217.07 -12.71 835 0.4 0.5% 14 86.6-86.6
Pantothenic Acid H+  220.12 220.11 28.58 85.7 0.4 0.5% 14 83.0-94.1
Melatonin H+  233.13 233.12 31.30 93.0 0.6 0.6% 14 91.4-102.5
Pantothenic Acid Na+ 242.10 242.09 31.13 86.7 0.6 0.7% 14 86.6-103.2
GalNAc Na+ 244.08 244.08 3.29 84.1 0.5 0.6% 14 85.5-104.7
Cytidine H+ 244.09 244.08 46.05 84.1 0.4 05% 7 87.0-92.3
biotin H+  245.10 245.08 83.57 86.6 0.5 0.6% 14 85.9-100.4
2'-deoxyadenosine H+ 252.11 252.11 8.17 88.8 0.6 0.7% 14 89.4-96.8
Melatonin Na+ 255.11 255.10 37.01 96.7 0.6 0.6% 14 94.4-111.0
Propranolol H+  260.17 260.17 -0.60  100.1 0.5 0.5% 12 94.6-111.8
Thymidine Na+ 265.08 265.07 30.32 94.6 0.5 0.6% 20 93.1-104.6
Thiamine (vit B) M 265.11 265.11 18.49 99.8 0.7 0.7% 21 97.5-107.3
Cytidine Na+ 266.08 266.06 45.05 91.9 0.5 0.6% 7 90.7-98.4
Atenolol H+ 26717 267.17 0.22 95.4 0.5 0.5% 12 97.0-117.6
Adeonsine H+  268.10 268.10 7.36 89.8 0.5 0.6% 14 92.3-98.7
Metroprolol H+  268.19 268.19 0.22 109.4 0.6 0.5% 13 99.1-122.8
2'-Deoxyadenosine Na+ 274.09 274.09 13.88 94.0 0.5 0.6% 14 93.5-104.4
Imipramine H+ 281.20 281.20 3.07 102.6 0.5 0.5% 12  101.7-113.1
Adeonsine Na+ 290.09 290.08 12.13 94.1 0.6 0.6% 14 95.3-105.2
Atropine H+  290.18 290.17 4.51 106.3 0.7 0.7% 12 99.9-113.4
Ondansetron H+  294.16 294.13 87.47  107.5 0.7 0.6% 14  102.5-113.0
Cocaine H+  304.15 304.13 94.61  107.0 0.6 0.6% 14  105.7-1115
NANA H+  310.11 310.08 93.84  100.5 0.5 05% 7 97.9-1077
Quinine H+ 325.19 325.19 9.51 113.0 0.6 0.5% 12  110.7-120.0
ump Na  347.03 347.02 23.73 99.3 0.6 0.6% 14 96.7-117.7
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AMP
Sucrose
Melibiose
AMP
Colchicine
LacNAc
Colchicine
Folate
Verapamil
Folate
Verapamil

Raffinose

Glutathione Oxidized
Glutathione Oxidized

Stachyose
Maltopentose

Maltopentose

H+
Na+
Na+
Na+
H+
Na+
Na+
H+
H+
Na+
Na+
Na+
H+
Na+
Na+
H+

Na+

348.07
365.11
365.11
370.05
400.18
406.13
422.16
442.15
455.29
464.13
477.27
527.16
613.16
635.14
689.21
829.28
851.26

348.06
365.08
365.10
370.04
400.17
406.12
422.15
442.13
455.28
464.11
477.26
527.14
613.14
635.11
689.18
829.24
851.22

19.56
65.67
22.12
22.57
25.25
26.16
28.07
41.39
29.80
42.11
33.34
37.74
39.27
42.39
43.84
49.79
52.56

102.0
104.0
106.6
107.2
130.4
117.5
133.4
123.6
141.8
132.6
145.3
135.5
148.9
149.7
155.9
174.9
174.5

0.6
0.6
0.6
0.6
0.9
0.7
0.9
0.8
0.9
0.8
1.0
0.8
1.0
1.0
1.2
1.5
1.4

0.6%
0.6%
0.6%
0.6%
0.7%
0.6%
0.7%
0.7%
0.7%
0.6%
0.7%
0.6%
0.7%
0.7%
0.8%
0.8%
0.8%

14

14
14
14
14
14
21
14

14
14
14
14
14
14
14

99.0-116.5
104-123.2
102.8-124.3
101.0-124.2
126.5-137.2
111.0-135.7
130.4-142.0
120.1-156.0
135.0-171.8
122.9-165.9
136.8-178.7
127.8-158.1
142.1-200.4
145.2-204.7
149.6-190.2
167.2-222.7
167.07-226.9
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Table D.4. Feature descriptors for small molecules in nitrogen drift gas

Mass SD Theoretical
Mass Measured ACC CCSs CCs CCS Range
Compound lon (Da) Mass (Da) (ppm) (A (A RSD N (A%
fucose H+  165.08 165.07 -53.3 127.3 0.55 0.4% 16 128.9-132.3
kynurenate H+  190.05 190.05 -13.8 138.0 096 0.7% 16 125.5-127.4
caffeine H+  195.09 195.09 -15.4 151.6 0.77 0.5% 15 140.1-141.0
mannose Na+ 203.05 203.05 -13.1 150.2 0.77 0.5% 16 130.5-151.8
sorbitol Na+ 205.07 205.07 -17.6 152.9 1.00 0.7% 16 133.5-159.6
kynurenate Na+ 212.03 212.03 -17.3 155.4 1.11 0.7% 16 137.5-139.9
pantothenic acid Na+ 242.10 242.10 -19.2 1544 056 0.4% 16 133.2-154.3
GIcNACc Na+ 244.08 244.08 -11.9 164.2 0.73 0.4% 16 127.4-138.8
Melatonin Na+ 255.11 255.11 -17.4 160.6 0.57 0.4% 16 154.9-178.2
propranolol H+  260.17 260.16 -8.3 162.2 041 0.3% 16 -
thymidine Na+ 265.08 265.08 -16.7 167.9 1.06 0.6% 16 143.1-158.9
biotin Na+ 267.08 267.07 -17.0 167.1 164 1.0% 16 116.7-164.5
atenolol H+  267.17 267.17 -7.0 156.5 040 0.3% 16 =
adenosine (peak 1) H+  268.10 268.10 -17.4 153.2 193 13% 16 159.2-169.3
adenosine (peak 2) H+  268.10 268.10 -16.7 162.7 1.08 0.7% 16 159.2-169.3
metroprol H+  268.19 268.19 -9.2 171.5 0.58 0.3% 16 -
imipramine H+ 281.20 281.20 -15.9 1654 045 0.3% 16 =
Adenosine Na+ 290.09 290.08 -14.6 171.8 056 03% 8 161.9-175.9
atropine H+  290.18 290.18 1.4 175.5 210 1.2% 16 =
ondansetron H+ 294.16 294.16 -6.2 172.7 052 0.3% 16 173.9-193.2
cocaine H+ 304.15 304.15 -16.7 168.6 0.55 0.3% 16 166.6-179.3
quinine H+ 325.19 325.19 -7.1 179.8 0.69 0.4% 16 -
NANA Na+ 332.10 332.09 -17.0 168.7 0.52 0.3% 16 143.1-167.5
chloroamphenicol Na+ 345.00 345.00 -11.9 180.6 0.75 0.4% 16 -
umMmp Na+ 347.03 347.02 -14.8 1789 0.85 0.5% 15 146.6-182.5
melibiose Na+ 365.11 365.10 -11.2 178.5 0.63 0.4% 16 166.7-209.3
Sucrose Na+ 365.11 365.10 -16.6 1734 050 0.3% 16 170.1-211.0
AMP Na+ 370.05 370.05 -10.7 180.8 432 24% 16 167.0-203.8
AMP K+  386.03 386.26 592.0 199.1 0.55 0.3% 16 =
colchicine H+  400.18 400.17 -9.3 196.3 0.58 0.3% 16 189.8-206.2
LacNAc Na+ 406.13 406.13 -10.7 187.5 0.52 03% 16 157.4-190.0
colchicine Na+ 422.16 422.15 -10.5 203.3 090 0.4% 16 195.9-214.8
colchicine K+  438.13 438.13 -10.2 201.6 0.62 0.3% 16 =
verapamil H H+  455.29 455.29 -6.1 209.3 0.60 0.3% 16 207.6-262.0
folate Na+ 464.13 464.12 -10.7 2069 0.68 0.3% 16 209.9-266.4
verapamil Na+ 477.27 477.27 -10.5 217.3 1.00 0.5% 16 210.3-273.1
raffinose Na+ 527.16 527.15 -9.7 210.2 0.64 03% 16 197.2-260.7
gluthatione oxidized H+ 613.16 613.15 -9.1 2258 0.70 0.3% 16 212.5-288.5
stachyose Na+ 689.21 689.21 -9.2 2355 0.73 03% 16 227.5-288.9
maltopentaose Na+ 851.26 851.26 -8.9 2569 0.87 0.3% 16 254.1-349.3
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Table D.5. Timetable of solvent composition for the nanopump during chip based LC
runs in support of single field CCS measurements.

Time (min) w/él(‘ng(.)A.) w/(fl(%CF}.IA.) Flow (uL/min)
0 98% 2% 0.3
1 5.00 68% 32% 0.3
2 8.50 20% 80% 0.3
3 9.50 20% 90% 0.3
4 9.51 98% 3% 0.3
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Figure D.8. Determination of RMSD cutoff for distance geometry calculations is based
on the data in this plot. The CCS is on the x-axis and the theoretical ranges are plotted for
these 10 metabolites for different RMSD cutoff values used in the distance geometry
calculation to determine how this affects the conformational space sampled. The yellow
indicates a cutoff of 1.0 A, the green a cutoff of 0.75 A, and the pink a cutoff of 0.5 A.
The different shapes represent different gas phase ions. Based on the results above, a 0.5
A cutoff was used for metabolites with a molecular weight less than 200 Da, a 0.75 A
cutoff was used for metabolites with a molecular weight less between 200 and 400 Da,
and a 1.0 A cutoff was used for metabolites with a molecular weight more than 400 Da.
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Table D.6. Initial Parameterization and Theoretical CCS Calculations for Selected
metabolites are displayed below. The initial parameterization includes a geometry
optimization and an electrostatic potential grid calculation.

Molecule

CPU Time

Initial Parameterization (m/z,
method)

Lactic acid [M] (90.03, HF)

4 min 54 sec

Biotin [M] (244.09, HF)

2 hours 22 min 47 sec

Maltopentose [M] (828.27, HF)

1 day 3 hours 43 min 31 sec

Amphetamine [M] (135.10, HF)

14 min 26 sec

Amphetamine [M+H]" (136.11, PM6) 42 sec
Verapamil [M] (454.28, HF) 15 hours 24 min 56 sec
Verapamil [M+H]" (455.29, PM6) 30 min 34 sec

Theoretical CCS Calculation (m/z, method, number of structures)

Colchicine [M+Na]" (422.16, PA, 30)

1 min. 44 sec.

Colchicine [M+Na]" (422.16, PSA,
30)

21 min. 39 sec.

Fucose [M+Na]" (187.06, TM, 2)

~ 1 day

Raffinose [M+Na]" (527.16, TM, 2)

~ 4 days
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Figure D.9. The CPU time required for sampling the conformational space with the
distance geometry protocol is shown in these plots for the a) protonated species and b)
sodiated species. The CPU time is presented on the x-axis in log scale and the metabolites
are listed on the y-axis. The [M]" species are shown with the sodiated data.
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Figure D.10 Sample theoretical conformational space plots to show which conformations
were selected for nitrogen CCS calculations. The data is shown for helium, and the
conformations that were used for nitrogen are shown in red. For metabolites where 100 or
less conformations were generated with distance geometry they were all submitted to
PSA N, calculations as shown in a) for cytidine. When more than 100 conformations
were generated with distance geometry as shown in b) for glutathione oxidized low
energy conformations than span the CCS range were selected for the PSA N
calculations. For molecules that do not contain the appropriate ratio of carbon, oxygen
and nitrogen atoms as is the case for stachyose as shown in c) the trajectory method in
MOBCAL must be used to get nitrogen CCS value. This calculation is very
computationally expensive and only the smallest and largest CCS conformations are used
to the MOBCAL N;, calculation.
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