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CHAPTER I 

 

OVERVIEW 

 

 Interactive effects are currently an area of interest to genetic epidemiologists. 

Genetic interaction has long been of interest to biologists studying yeast, worms, mice, 

and other model organisms. However, in humans, these effects must usually be detected 

using samples from real populations and statistical analyses. Statisticians have been 

working on approaches to detect and characterize interactions throughout the history of 

statistics. Methods for detecting these interactions usually feature searches through large 

spaces of possible multilocus models, followed either by statistical adjustment or 

permutation testing. Herein, some issues common to many methods that search for 

interactions are explored, and some solutions are proposed.  

Chapter II lists and describes the Specific aims of this dissertation.  Each of these 

tasks was completed and approved by committee before this document was compiled. 

 Chapter III provides introduction and background information on topics relevant 

to the projects executed for this dissertation. Some of the literature that preceded and was 

necessary for this dissertation to be completed is reviewed. Also, statistical methods that 

are relevant to this work are discussed. The pedigree disequilibrium test, multifactor 

dimensionality reduction pedigree disequilibrium test, transmission disequilibrium test, 

multifactor dimensionality reduction algorithm, and genotype pedigree disequilibrium 

test are described in detail. Other methods relevant to studying interactions and 

association are also included. 
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Chapter IV describes some initial work done by members of the Ritchie lab with 

genomeSIMLA (SIMulation of Linkage and Association), a software package used for 

simulation studies presented later. Genome wide association studies and other simulation 

software packages are reviewed in the introduction and background sections. The 

immediate predecessors, genomeSIM and SIMLA are also discussed. The techniques 

used to simulate realistic data for human populations are presented in the methods 

section, as well as the means used to scan parameters and evaluate linkage 

disequilibrium. We also provide details about the implementation of the software and 

some of its capabilities. In the results section we show some examples of results from the 

parameter sweep.  

 Chapter V describes a series of simulation studies which were performed to 

evaluate the cross-validation extension to the multifactor dimensionality reduction 

pedigree disequilibrium test (MDR-PDT). The revised algorithm is a valid test of 

multilocus association in pedigree data when searching through several orders of genetic 

models. It is demonstrated that performing regression on the best model after MDR-PDT 

analysis is a procedure that is strongly biased to the alternate hypothesis. Also, simulation 

demonstrates that the specificity of the hypothesis test for MDR-PDT is low when strong 

main effects are present in the data. This property of MDR-PDT is more problematic as 

the sample size increases, as the signal to noise ratio increases for the model loci as 

sampling precision increases. To solve these problems, a regression-based test of 

interaction was proposed, where a saturated conditional logistic regression model was 

fitted for the best model from the MDR-PDT analysis. For hypothesis testing, 

permutations are run as usual and likelihood ratio statistics from regression are calculated 
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for the best multilocus model from each permutation. This provides a distribution of 

statistics which represent the null hypothesis of no interaction after an exhaustive search. 

This procedure was performed on data simulated with genomeSIMLA in which purely 

epistatic disease susceptibility models were simulated alongside MDR-PDT with cross-

validation. The power of MDR-PDT with cross validation was higher than that of MDR-

PDT with cross validation followed by regression; however, this is offset by the 

advantages in interpretability of results. It is also shown in this chapter that when two 

main effects without interaction are present in the data, MDR-PDT without the regression 

procedure rejects the null hypothesis much more than the nominal rate, while the 

regression procedure maintains very high specificity for these scenarios. 

 Chapter VI describes a series of analyses performed on an Alzheimer’s disease 

dataset consisting of both case-control and family-based samples. The data were collected 

for 10 candidate genes on 47 markers common to both datasets. Univariate tests of allele 

and genotype frequency differences were performed at each locus and further confirmed 

the association of APOE in both samples. All of the results that were nominally 

significant had effect size estimates calculated in both case-control and family samples 

separately. Haplotype association tests revealed associated haplotypes in the ACE gene 

for both samples. This result is strongly supported by the literature. Additionally, MDR 

and MDR-PDT analyses were performed in case-control and family-based samples 

respectively to search for multilocus models. MDR-PDT found significant 2 and 3 locus 

models, but these were not confirmed by MDR analysis of the case-control data. 
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 Chapter VII describes the conclusions of this work and the future directions for 

further investigations. Extensions to case-control data and studies comparing the MDR 

regression procedure to FITF are proposed.  



 5

CHAPTER II 

 

INTRODUCTION AND BACKGROUND 

 

Epistasis 

Gene-gene and gene-environment interactions are long-recognized phenomena 

that are becoming a focus of the method-development arm of human genetics.  

Descriptions of epistasis have been developing throughout the history of genetics.  Sewell 

Wright described the relationship between genotype and phenotype as dependent on 

dynamic interactive networks of genes and environmental factors (Wright 1932).   

As individual susceptibility loci displaying main effects are discovered, many 

disease etiologies remain unknown; supporting the hypothesis that statistical epitasis 

plays a role in many disease models. Statistical epistasis was defined by Fisher as 

deviation from additivity in a mathematical model (Fisher 1918). In genetics a 

statistically epistatic relationship between multilocus genotypes and phenotype is not 

discernable through consideration of a linear combination of variables. This is a 

population-level phenomenon, as opposed to biological epistasis, which is the result of 

the physical interactions of biomolecules in individuals (Moore and Williams 2005). 

Variation in biologically epistatic processes among individuals within populations causes 

epistatic statistical signals (Moore and Williams 2005).  

 The simultaneous selection of factors makes detecting and characterizing 

statistical epistasis difficult. Methods designed to perform searches involving many 

comparisons in high dimensions, and studies powered to capture subtle effects are 



 6

required to unravel statistically epistatic disease models. Otherwise, given data containing 

a statistically epistatic disease model where two or more risk variables do not have 

significant main effects, a highly powered study searching for single-locus effects would 

fail and potentially present type I errors as findings (Hirschhorn et al. 2002). Even if the 

loci do have detectable main effects, failure to find an interaction among them would 

leave trait variance unexplained, leading to doomed future studies searching elsewhere 

for more susceptibility loci. The difficulty experienced by genetic epidemiologists when 

attempting to replicate association studies is perhaps evidence of this phenomenon 

(Ioannidis 2007). For interactions in particular, clear and specific statistical hypotheses 

must be tested to determine where efforts to replicate should be expended. 

 Traditional parametric statistics such as logistic regression (LR) (Hosmer and 

Lemeshow 2000) have limited utility when searching for interactive effects in a large 

search space, whether they are genes (Templeton 2000) or environmental exposures 

(Schlicting and Pigliucci 1998). Like other parametric methods, LR does not adjust well 

for high dimensionality in analysis of interactions. When modeling high-order 

interactions with insufficient data, this can lead to coefficient and standard error inflation, 

leading to inaccurate estimates of effect sizes and very wide beta parameter confidence 

intervals due to high sampling variance in cells with low counts (Hosmer and Lemeshow 

2000).  

 As the number of predictor variables increases, the number of comparisons 

necessary to explore the entire statistically epistatic search space expands rapidly. 

Variations of LR have been considered for these situations. Applying stepwise LR to this 

problem by only including factors that exhibit a significant marginal or main effects in 
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the final model seems promising (Marchini, Donnelly, and Cardon 2005); however, 

factors participating in purely interactive effects with no main effects will not be 

detected.  

 Several derivations of the logistic regression procedure have been developed to 

detect statistical epistasis. Some of these are logic regression (Kooperberg et al. 2001), 

Monte Carlo logic regression (Kooperberg and Ruczinski 2005), automated detection of 

informative combined effects (DICE) (Tahri-Daizadeh et al. 2003), patterning and 

recursive partitioning (PRP) (Bastone et al. 2004), classification and regression trees 

(CART) (Breiman et al. 1984) and multiple adaptive regression splines (MARS) (Cook, 

Zee, and Ridker 2004). 

 Statistical epistasis has also been pursued via data mining and machine learning 

approaches such as pattern recognition and data reduction. Pattern recognition describes 

the use of an algorithm to discover data patterns that discern groups from fully 

dimensionalized data. An example is neural networks (NN) (Ripley 1996). Data 

reduction is the collapsing or mapping of data into lower-dimensional space. Examples of 

data reduction are the combinatorial partitioning method (CPM) (Nelson et al. 2001), 

restricted partitioning method (RPM) (Culverhouse, Klein, and Shannon 2004) for 

continuous outcomes, multifactor dimensionality reduction (MDR) (Hahn, Ritchie, and 

Moore 2003; Hahn and Moore 2004; Moore 2004; Moore et al. 2006; Moore 2007; 

Ritchie et al. 2001; Ritchie, Hahn, and Moore 2003), and generalized MDR (Lou et al. 

2007).   

 MDR was developed to address the shortcomings of other methods used to assess 

effects only observable within high orders of dimensionality, such as that which occurs in 
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statistical epistasis. MDR collapses data into simpler patterns relevant to interaction and 

makes comparisons between interactions to evaluate their effects. The method seeks to 

reduce dimensionality of a search space by classifying multilocus genotypes into high or 

low risk classes. These classes are based on ratios of affected to unaffected subjects in 

population data or discordant sib pairs (DSPs), with a cases/control ≥ 1 ratio usually 

considered high-risk. The result is compared to an empirical null distribution from a 

permutation test. A significant result indicates that cases are more likely than controls to 

have a given multilocus genotype, and can be a useful hypothesis-generating tool when 

searching for interactive effects. 

MDR was shown to find genetic models optimized with regard to classification 

error by functioning similar to a naïve Bayes classifier using the ratio of status counts 

within multilocus genotypes to detect interactions (Hahn and Moore 2004). A naïve 

Bayes classifier treats each measured variable as a statistically independent element and 

finds the highest posterior probability that an outcome belongs to an observation. This 

posterior is found as the probability of some outcome times the product of the conditional 

probabilities of each measured variable given that outcome. For genotypes predicting 

affection status, the standard application of the naïve Bayes classifier would be the 

maximum posterior among the two hypotheses (Hahn and Moore 2004): 

 

p(aaBB is low risk) = p(low risk) p(aa | low risk) p(BB | low risk) 

(2-1) 

p(aaBB is high risk) = p(high risk) p(aa | high risk) p(BB | low risk) 

(2-2) 
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This application of the naïve Bayes classifier only observes main effects of measured 

variables, making it insensitive to interactive effects. To overcome this shortcoming, 

MDR collapses the set of independent variables into one aggregate variable and 

calculates the probabilities of the aggregate instead of the probability for each variable: 

 

p(aaBB is low risk) = p(low risk) p(aaBB | low risk) 

(2-3) 

p(aaBB is high risk) = p(high risk) p(aaBB | high risk) 

(2-4) 

 

 Examining the relative frequency of cases to controls for some multilocus 

genotype and comparing that frequency to a threshold of one in a balanced dataset is 

conceptually similar to using a naïve Bayes classifier to categorize genotypes into high 

and low-risk classes (Hahn and Moore 2004).  

MDR has detected genetic interactions contributing to risk in several diseases. 

Some examples are: sporadic breast cancer (Ritchie et al. 2001), essential hypertension 

(Moore and Williams 2002; Williams et al. 2004), atrial fibrillation (Tsai et al. 2004), 

type II diabetes (Cho et al. 2004), coronary artery calcification (Bastone et al. 2004), 

myocardial infarction (Coffey et al. 2004), schizophrenia (Qin et al. 2005), and amyloid 

polyneuropathy (Soares et al. 2005). However, these results remain to be replicated in 

independent datasets. 
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Association  

Association analysis maps genomic space to traits at high resolution by measuring 

the departure from independence of alleles or genotypes at a single locus with disease 

status. This is distinct from linkage mapping, which observes within-family transmission 

of a relatively large genomic region and returns the ratio of probabilities that the region is 

linked versus unlinked to disease status (Risch and Merikangas 1996).  Essentially, 

linkage analysis asks what location in the genome is relevant to a trait, while association 

asks what allele or genotype at a locus is relevant. Association studies require a high-

density of single-nucleotide polymorphisms (SNPs) or other markers for comprehensive 

coverage between markers. In contrast, linkage requires many fewer polymorphic sites, 

but benefits greatly from more alleles at each site.  

 Case-control population data analysis has been the predominant study design for 

association testing. These methods were the antecedents of family-based association tests 

and are relatively easy to perform. Case-control studies are theoretically straightforward 

and statistically powerful; however, perfect implementation of these techniques is elusive 

because well-matched controls can be very difficult to ascertain. This is compounded 

with the often violated assumptions of homogeneous, randomly mating, infinite 

populations, and spurious signals resulting from potential population stratification and 

admixture. Population stratification occurs when the frequency of exposures and 

outcomes differ among subsets of the data, and can lead to false positive and negative 

findings, as reviewed in (Cardon and Palmer 2003). Admixture occurs when offspring are 

born to parents from different populations, and thus are not representative of either 

population. For these reasons, and the difficulties inherent in interaction searches, the 
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many unreplicated association studies are not surprising (Hirschhorn et al. 2002). 

Additionally, the choice of study design may be determined by the trait that is studied. 

Early-onset traits may be more straightforward for ascertaining offspring parents and 

siblings, since appropriate unrelated juvenile controls are difficult to collect. Conversely 

for late onset diseases it might be easier to collect case-control samples, since parents and 

siblings of elderly persons are likely unavailable. 

Family-based association  

Family-based association methods have some properties that are complementary 

to a case-control experimental design. These methods inherently counter the effects of 

population stratification by comparing counts of alleles or genotypes transmitted to 

affected samples to counts of transmissions to unaffecteds and/or counts of untransmitted 

alleles or genotypes. The advantage of this measurement is that the underlying allele and 

genotype frequency (exposure) of the control samples are matched to the cases (Cordell 

and Clayton 2005). Additionally, these designs allow estimation of maternal or paternal-

specific genotypic effects, maternal-fetal interaction, and imprinting effects (Cordell, 

Barratt, and Clayton 2004; Weinberg, Wilcox, and Lie 1998; Weinberg 1999). Two 

disadvantages are the difficult ascertainment of entire families and the extra genotyping 

burden of at least one triad per case-control pair (Cordell and Clayton 2005). Considering 

the advantages above, alongside the existence of many family datasets ascertained for 

linkage analysis, and the need to use family-based designs for some traits, development 

of family-based association methods relevant to this project proceeded as follows.  
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Transmission Disequilibrium Test (TDT) 

Because of the challenges inherent in the case-control design, the 

transmission/disequilibrium test (TDT) was developed (Spielman, McGinnis, and Ewens 

1993). The TDT is based on transmission of alleles from parents to affected offspring. 

Because of this, the test only has power to detect associations in the presence of linkage. 

The TDT also avoids control sampling bias by using parental controls. The TDT is most 

powerful under a multiplicative risk model (Clayton 1999). This model specifies that the 

presence of two disease alleles confers the squared risk ratio of one allele. This restriction 

indicates that under a dominant, recessive, or any nonmultiplicative model, that the 

statistic might lose power to localize susceptibility loci. One may infer from a significant 

TDT result that the tested allele is linked and associated with a susceptibility allele. The 

TDT does not assume Hardy-Weinberg equilibrium (HWE), and is a valid test of 

association in stratified populations.  

The TDT has some known limitations. The statistic suffers from type I error rate 

inflation when there are missing parental genotypes (Curtis and Sham 1995) or 

genotyping error (Gordon et al. 2001; Mitchell, Cutler, and Chakravarti 2003). (Mitchell, 

Cutler, and Chakravarti 2003) proved mathematically that genotyping error can cause 

increases in the TDT type I error rate. They showed these errors can cause apparent 

transmission distortion at markers with alleles of unequal frequency that indicates 

common allele overtransmission. Additionally, in 79 published studies reviewed by 

(Mitchell, Cutler, and Chakravarti 2003), the major allele was reported as overtransmitted 

to affected offspring 39% of the time, whereas case-control studies of the same markers, 

the common allele was often identified as a protective factor. Other limitations of the 
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TDT are that the tests are for nuclear families, only a single affected child could be 

selected from any pedigree, and both parents must be available for genotyping. The latter 

often prevents TDT use in late-onset disorders. A further shortcoming of the test is that it 

requires transmissions to be independent under the null hypothesis. Therefore, within a 

region of linkage in a family with several affected siblings, the requirement would be 

violated and potentially result in elevated type I error. This is because the alleles 

transmitted within the family would not be independent due to the physical constraint of 

linkage and commensurate lack of independent assortment. Removal of these samples 

results in the loss of data and power. Thus the TDT is not capable of analyzing more 

complex family structure than the trio. 

Several similar tests have been designed to alleviate this (Boehnke 1986; Horvath 

and Laird 1998; Spielman and Ewens 1998). One alternative is the Sib-TDT (S-TDT) of 

Spielman and Ewens. This technique allows multiple siblings and multiple alleles to be 

tested with good power compared to other tests (Monks, Kaplan, and Weir 1998). S-TDT 

compares marker allele frequencies in affected and unaffected siblings. Only a single 

DSP is required per family for the test, but power can be increased by the addition of 

more unaffected sibs. 

Other family-based association methods 

The next generation of family-based tests of association suffered from fewer 

invalid scenarios than the TDT. They use information from affected and unaffected 

offspring, and empirically estimate the variance of the underlying distribution of 

genotypes to normalize the statistic. Some of these are the pedigree disequilibrium test 

(PDT) (Martin et al. 2000), the genotype pedigree disequilibrium test (genoPDT)(Martin 
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et al. 2003), and the family-based test of association (FBAT) (Horvath, Xu, and Laird 

2001). 

The pedigree disequilibrium test (PDT) (Martin et al. 2000), was developed for 

use in large general pedigrees with diverse structure. The fundamental measure of the test 

is the difference in allelic transmissions to affected and unaffected subjects and 

transmitted and untransmitted counts within families. The PDT is a valid measure of 

association in complex pedigrees, meaning that the type I error rate does not increase, 

even when multiple affected family members are used. This is because in the PDT the 

independent measures contributing to the normalized statistic, T, are entire pedigrees not 

individual transmissions. Like the TDT, the PDT does not assume HWE and is not 

affected by stratification. The PDT has been used in several recent association studies 

(Deak et al. 2005; Ermakov et al. 2006; Vyshkina et al. 2005) and continues to gain 

popularity in the field.  

The TDT and PDT compare allelic transmissions to determine whether linkage 

and association exists between alleles at a disease locus and the alleles of a marker locus. 

The genoPDT uses genotypes as the unit of observation. For autosomal loci, an 

individual has two alleles that may act additively, alone, or interact to influence risk. 

When this occurs, it may be that neither allele is solely accountable for disease 

susceptibility. Allele-based methods do not observe joint-influence effects on risk. This is 

a crucial observation necessary to detect association in disease models featuring 

genotypic interaction.  

Family-based tests of association modeling genotypic risk were proposed (Schaid 

and Sommer 1993; Weinberg, Wilcox, and Lie 1998) which examined likelihood of 
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marker data for trios or DSPs parameterized in terms of two genotypic risk ratios. Power 

studies showed that these genotype-based tests can be more powerful than TDT for 

recessive or dominant disease models, depending on the degree of dominance and allele 

frequencies (Schaid and Sommer 1994; Weinberg, Wilcox, and Lie 1998). Unfortunately, 

these methods are not valid tests of linkage and association for multiple sibships 

(Weinberg, Wilcox, and Lie 1998), meaning that type I errors representing linkage alone 

would occur at a higher rate than expected.   

 The genoPDT was developed to address this. The genoPDT is a simple 

modification of the PDT procedure, where genotypes are observed instead of alleles. The 

genoPDT is a valid test of association in the presence of linkage in nuclear or extended 

pedigrees (Martin et al. 2003). The geno-PDT has been employed in several genetic 

studies of human disease, for instance assisting in the search for susceptibility loci in 

autism (Ma et al. 2005; Skaar et al. 2005).  

 The fusion of the two methods, MDR and genoPDT, provide an opportunity to 

explore epistatic associations in family data. This is a previously unavailable modality for 

the study of human disease. The multifactor dimensionality reduction pedigree 

disequilibrium test (MDR-PDT) (Martin et al. 2006) is the first method to conduct 

family-based indirect association epistasis research. The MDR-PDT is designed to detect 

indirect association through Linkage Disequilibrium (LD) between tested loci and 

epistatic disease model loci in diverse family structures. It functions by calculating the 

genoPDT statistic for the multilocus genotypes for an interaction between some number 

of loci. Models are evaluated based on the value of a summed statistic and tested for 

significance by calculating an empiric null distribution by permutation testing.  
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Methods 

Multifactor dimensionality reduction (MDR) algorithm 

MDR is a method designed to detect and test for multilocus effects in case-control 

data. The algorithm for conducting an MDR analysis is as follows: 

1. An exhaustive list of all possible interactions within the orders specified by the user is 

generated. MDR randomly splits the data into k portions, for use in k-fold cross-

validation. Cross validation (CV) functions optimally between 5 and 10 intervals, with 

lower values of k optimized for computation time (Motsinger and Ritchie 2006). 

2. In k-1/k of the data, the samples are stratified by multilocus genotype and the counts of 

cases and controls within each strata are tabulated.  

3. Using the information from step 2, the ratios of cases/controls in each class among all 

multilocus genotypes within a combination of loci are established 

4. A variable denoting high or low risk is established for each genotype of the multilocus 

combination. The decision rule for this coding is determined either by a simple threshold 

of 1 for the ratio of cases to controls, or by comparing the ratio of cases to controls for 

each strata to the ratio in the data of fully genotyped individuals for the model under 

consideration, if Balanced Accuracy (BA) is used for imbalanced data, where counts of 

cases and controls differ. Balanced Accuracy is the arithmetic mean of sensitivity and 

specificity, and has been shown to be a superior fitness metric when data are imbalanced 

(Velez et al. 2007). 
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5. The ratios are combined to form one variable summarizing risk with two levels for 

each multilocus comparison. Balanced accuracy is computed and used to select models 

from each order of comparison, or number of loci, for testing.  

6. Steps 2-5 are repeated for all models generated in step 1. 

7. The model with the highest BA is tested in the remaining 1/k of the data to determine 

the model’s ability to predict outcomes in independent datasets. For k CV intervals, k 

models will be tested in test sets. 

8. This procedure is repeated k times. Minimized average prediction error and maximized 

cross-validation consistency over the k-fold cross-validation procedure are used to select 

the final model. If these two criteria support different models, then the model with fewest 

loci is selected, according to the principle of statistical parsimony (Ritchie et al. 2001; 

Ritchie, Hahn, and Moore 2003). 

9. A permutation test is conducted to evaluate significance. (described below) 
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Figure 2-1. Multifactor dimensionality reduction (MDR) algorithm.  
  

 

To estimate the statistical significance of the result, permutation testing is 

employed. To estimate the empirical null distribution of results, affection status is 

randomized according to the original proportions in the dataset. This disrupts associations 

that may exist between predictor and outcome variables. The MDR procedure is 

performed as above on the permuted data. This procedure of generating permuted data 

and subsequent analysis is repeated 1000 times. The actual result is compared to the 

distribution of ordered results from the permutations to determine significance. A 

significant result suggests a main or joint effect on risk of genotypes at tested loci. 

 Power studies with simulated data have shown that MDR has good power to 

detect epistatic disease models in the presence of 5% genotyping error and 5% missing 

data. The method loses some power in the presence of 50% phenocopy, and is not robust 
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to 50% locus heterogeneity (Ritchie, Hahn, and Moore 2003). However, recent work with 

heterogeneity has revealed that this result may lead to undue pessimism since MDR can 

find some models functioning in complex diseases (Ritchie et al. 2007). Power is lowered 

slightly by 10,000 noise variables, and type I error is stable at the nominal rate for at least 

100-variable simulated datasets (Edwards et al. 2008b). This is in contrast to parametric 

methods, such as logistic regression, due to strict significance criteria imposed by 

multiple comparisons correction. Because MDR uses population data, stratification and 

admixture lowering power and inflating the type I error rate are also a concern. 

Pedigree disequilibrium test (PDT) 

The PDT is an addition to the lineage of transmission disequilibrium tests, begun 

by (Spielman, McGinnis, and Ewens 1993) with the TDT. The composition of the TDT 

is:    

 

   

(2-5) 

 

Considering a biallelic marker locus, where Yi is a random variable defined as Yi 

= (M1 transmitted allele – M1 not transmitted allele) for i = 1,…, h heterozygous parents 

to affected offspring. The TDT is conducted on affected trios only and is a test of 

association in the presence of linkage. The null hypothesis of the TDT is that there is 

association but no linkage to disease at the tested allele. The alternate hypothesis is there 
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is linkage and association to disease at the tested allele. The TDT assumes transmissions 

from heterozygous parents to affected offspring are independent. The TDT is not a valid 

test of linkage and association when multiple affected offspring are considered in a 

region of linkage, as a significant result might only represent linkage and not association 

(Weinberg, Wilcox, and Lie 1998). For this reason, the TDT is suboptimal for the 

purpose of following linkage analysis where diverse pedigrees have been ascertained, as 

it requires that a single affected trio be selected from each pedigree.  

Use of the TDT for multiple loci has been considered by (Spielman, McGinnis, 

and Ewens 1993), using a Bonferroni correction for multiple tests. (McIntyre and Weir 

1997; McIntyre et al. 2000) showed use of this correction is appropriate when markers 

are not associated or linked; however, when markers are in linkage disequilibrium, TDTs 

at different markers correlate, resulting in a conservative correction due to 

nonindependence of tests. This results in a loss of power if the Bonferroni correction is 

used.   

 The PDT originally was published as an averaged statistic (Martin et al. 2000), 

where deviations from independent assortment were cataloged by the statistic D. 

 

 

(2-6) 

  

Where within an informative nuclear family, at some multiallelic locus, random 

variables XT from trio families are defined as (#times allele is transmitted to cases – 
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#times the allele is not transmitted to cases) and XS as (#times allele is transmitted to 

affected sib – #times allele is not transmitted to unaffected sib). Define a random variable 

D as the sum of X values for a pedigree divided by the number of X values. Each 

informative pedigree provides one D statistic. An informative pedigree is either a nuclear 

family with at least one affected child with both parents genotyped at the locus with one 

parent heterozygous, a DSP with different genotypes at the locus with or without parental 

genotypes, or an extended pedigree with at least one informative nuclear family or DSP 

(Martin et al. 2000; Martin, Bass, and Kaplan 2001; Martin et al. 2003). The PDT statistic 

is constructed by the equation: 

 

   

(2-7) 

 

T is a random variable given as the ratio of the sum of Ds in the numerator and 

the square root of the sum of squared Ds is the variance estimate in the denominator. 

Under the null hypothesis: E(X) = 0, E(Di) = 0, E(T) = 0, and Var(T) = 1 (Martin et al. 

2000). 

Under the null hypothesis, the estimate of the statistic variance is the sum of 

squared Ds. The variance of T is also the variance of the sum of all Di. The variance of 

the sum of D statistics is equal to the sum of the variances of the D statistics. This is an 

application of the principle that independent variances are additive with regard to their 
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contribution to the variance of the aggregate of independent parts. Under the null 

hypothesis E(Di) = 0, and E(ΣDi) = 0, D is a family’s transmission deviation score with 

excess transmissions to cases as the fundamental measurement. The variance of a given D 

statistic is given by the square of that D. The expected value of the sum of squared 

independent D statistics estimates the variance of the sum of all Di and the T statistic 

(Equation 2-7), which under the null hypothesis has a standard normal N(0,1) 

distribution. 

 

  

(2-8) 

 

 Because of these properties, under the null hypothesis the squared T statistic is 

equivalent to a chi-square with one degree of freedom. This makes significance 

assessment straightforward for a tested allele. 

In a simulated power study, PDT was superior to Sib-TDT in 5,000 replicates of 

250 three-generation families for 6 models of varying genetic effect and 5,000 replicates 

of 500 nuclear families with 2 or 5 sibs for 2 models each. PDT was found to be 

relatively robust to affected misclassification rates as high as 50% in 5,000 replicates of 

150 extended pedigrees with at least one affected sibling for 2 models. Type I error rates 

were at the appropriate level for 6 genetic models in 5,000 replicates of 250 pedigrees 

and also for varying sample sizes with 10,000 replicates of 25, 50, 100, and 250 pedigree 

datasets for one model (Martin et al. 2000).     
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This version of the statistic was found to introduce a possible bias under some 

genetic models (Martin, Bass, and Kaplan 2001). The bias arises when the critical 

assumption of the PDT, E(T) = 0 under the null hypothesis, is violated in some scenarios. 

For some family structures this assumption is violated and the type I error rate could 

increase. (Martin, Bass, and Kaplan 2001) provides the example of a fully penetrant 

dominant biallelic model with no phenocopies, rare disease allele d1, and common wild-

type allele d2, such that there is one segregating copy per pedigree of the disease allele. 

In the example, extended three generation pedigrees are sampled with 6 equally likely 

transmission patterns. Note that all potentially biased pedigrees have affected grandparent 

(GP2), parent (P2), and offspring (O). Otherwise, there is at most one affected triad per 

pedigree. Consider a biallelic marker locus (M1, M2) with minor allele M1 such that only 

one founder is a heterozygote for M1, with equal probability of heterozygosity among the 

three founders (GP1, GP2, P1). The possible transmission patterns and PDT calculations 

are detailed below. 
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Figure 2-2. Transmission patterns and pedigree disequilibrium test calculations from 
(Martin, Bass, and Kaplan 2001). 

 

 

E(D) for these pedigrees is -1/6, causing E(T) ≠ 0 under the null hypothesis, 

which violates an assumption and increases the type I error. This bias is corrected by the 

statistic: 

 

  

(2-9) 

 

 This is the form of the statistic employed by the genoPDT and the MDR-PDT. 

This statistic has E(D) = 0 and E(T) = 0 for the pedigrees above. The T calculation is 
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unchanged. This formulation is driven by the concept that weight is added for each 

informative transmission per pedigree, allowing a pedigree to affect the statistic in 

proportion to its information contribution. Pedigree analysis using statistics based on 

sums of random variables were also proposed in (Abecasis, Cookson, and Cardon 2000; 

Martin, Kaplan, and Weir 1997; Rabinowitz and Laird 2000; Teng and Risch 1999).   

In a power and type I error study of six genetic models in (Martin, Bass, and 

Kaplan 2001), PDT-sum had more power for each model than PDT-old with appropriate 

type I error rates.   

 The genoPDT is a simple modification of the PDT procedure, where genotypes 

and not alleles are observed. The genoPDT is applicable to nuclear or extended 

pedigrees, and can either be used to test a particular genotype, or a global test of all 

genotypes at a locus simultaneously (Martin et al. 2003). As with the PDT, the statistic is 

N(0,1) under the null hypothesis, meaning that for a given genotype’s T2, significance 

can be assessed by comparison to a chi-squared distribution with one degree of freedom. 

The global statistic is the averaged T2 statistic across genotypes at a locus multiplied by 

g-1/g genotypes and compared to a chi-squared with g-1 degrees of freedom. It was 

reported in (Kaplan, Martin, and Weir 1997; Martin, Kaplan, and Weir 1997), that this 

statistic converges asymptotically to a chi-square with g-1 degrees of freedom under the 

null hypothesis when genotype frequencies are equal. For other frequencies, the 

distribution is approximate, but performed well in simulated data (Kaplan, Martin, and 

Weir 1997). 

 To examine power and type I error for geno-PDT in (Martin et al. 2003), 

simulation studies were conducted with recessive, dominant, and additive modes of 
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inheritance, high and low prevalence, and with equal marker and disease allele 

frequencies. To estimate type I error, 5000 datasets of 200, 100, and 50 families were 

simulated and tested for global and individual genotypes. Type I error rates were close to 

the nominal level for most tests except for those with less than 3% minor allele 

frequency, for which the global test is conservative. For power, genoPDT was compared 

to PDT in 1000 replicates of 200 nuclear families and was found to be more powerful 

than PDT for all but additive models.   

Multifactor dimensionality reduction pedigree disequilibrium test (MDR-PDT) 

The MDR-PDT is an approach that uses the genoPDT statistic within the MDR 

algorithm (Martin et al. 2006). MDR is a nonparametric procedure designed and 

optimized to find plausible hypotheses about multi-dimensional epistatic models in 

discrete population or DSP data, allowing the inference of a main or joint effect on 

disease risk at or near tested variables. The null hypothesis of MDR is that there are no 

main or joint effects on disease risk of any factor considered. The alternate hypothesis is 

that there is a main or joint effect on risk among the data considered. The assumptions of 

MDR are that data have two outcome groups, cases and controls are unstratified with 

regard to allele and genotype frequency, and are independent or DSP-matched. 

 The genoPDT statistic measures transmission disequilibrium of genotypes to 

affected offspring in general pedigrees, allowing the inference that a tested locus is in LD 

with a susceptibility locus. The null hypothesis of the genoPDT is that linkage is present 

with no association to disease among the tested variables. The alternate hypothesis is that 

both linkage and association are present between measured genotypes and disease 

variants. The assumptions of the genoPDT are two outcome groups, that each pedigree is 
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independent of other pedigrees in the data, linkage is present between tested loci and a 

disease variant, and a standard normal test statistic distribution under the null hypothesis. 

 These two methods form the MDR-PDT, a technique designed to discover loci in 

LD with susceptibility loci that act alone or jointly on risk in diverse family architectures. 

MDR-PDT allows the inference that the best model is composed of genetic factors that 

are related to trait variation. The null hypothesis of the MDR-PDT is that there is no 

association with disease among variables considered, and that no tested factors act alone 

or epistatically with other tested factors to influence the tested trait. The alternate 

hypothesis is that there is linkage and association among tested variables with variants 

which may act alone or jointly to increase risk. The assumptions of MDR-PDT are the 

same as those for the genoPDT. 

 The MDR-PDT is a within-family measure of indirect or direct association 

between genotype and disease. As described above, the genoPDT statistic functions 

within the framework of the MDR algorithm (Figure 2-1). The genotypes are the same as 

those for which MDR would find the ratio of affecteds to unaffecteds. All possible DSPs 

are generated for each sibship and pooled. This pool of cases and controls are considered 

to determine which genotypes are high and low risk. The T statistic is calculated for the 

pooled high-risk genotypes for each interaction. Let this T be the MDR-PDT statistic. 

The models are ordered and evaluated by the T statistics. A permutation test is applied to 

estimate an empiric null distribution for significance assessment. The steps of MDR-PDT 

follow (Figure 2-3). 
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Figure 2-3. Multifactor dimensionality reduction pedigree disequilibrium test (MDR-
PDT) algorithm. 

 

 

1. All possible DSPs are generated within each sibship (affected times unaffected) and 

pooled.  

2. Each genotype is determined to be high or low risk by comparing the ratio of cases to 

controls from the pooled DSPs to a threshold τ, such as τ = 1, which indicates positive or 

negative association with affected status. 

3. Statistics for high-risk genotypes are calculated using the D in Eq. 5 with the function 

in Eq. 3. This is the MDR-PDT statistic for this model. A CE is also calculated for the 

model, as in the training set for MDR. 
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4. The procedure repeats for every combination of K loci, calculating an MDR-PDT 

statistic and CE for each, choosing the largest MDR-PDT statistic as the final result. 

5. A permutation test is performed to determine the distribution of the null hypothesis, to 

which the result from step 4 is compared for significance assessment. 

The permutation test is conducted to discover the significance of an n-locus test. 

Formally, it is performed to test the null hypothesis that the pooled n-locus high-risk 

genotype statistic is independent of disease status.  

The test is based on the idea that under the null hypothesis there is no association 

between status and genotype. Therefore, any combination of affected sibs is equally 

likely for a given sibship. In general, for a sibship with s siblings (a affected, u 

unaffected), there are s!/(a!u!) equally likely permutations. To conduct a test, one of these 

permutations is randomly selected for each sibship. Each pedigree of real data has a null 

counterpart of the same size in the pseudosample with same genotypes but randomized 

status. For families with parental genotypes and a single affected offspring, the 

permutation test uses transmitted and untransmitted parental alleles in a pseudocontrol 

rather than genotypes of discordant siblings. The status of the original case and the 

pseudocontrol created from the untransmitted parental alleles are then permuted for the 

test. Steps 1-4 are performed to find the value of a maximum MDR-PDT statistic for n-

loci and the associated CE from the empirical null distribution. Repeated many times, the 

null distributions of the maximum MDR-PDT statistic and CE for an n-locus comparison 

are approximated. The p-value of the result from the original unpermuted data can be 

estimated by the proportion of the null distribution that exceeds it. This is an empiric p. 

The test based on the permutation procedure should have the correct type I error, even for 
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sparse data. If the model is significantly associated with disease, it should have a statistic 

larger than those arising by chance from permuted data. 

In simulation-based power studies (Martin et al. 2006), the same 2-locus models 

used to evaluate MDR (Ritchie, Hahn, and Moore 2003) were tested and compared 

between MDR and MDR-PDT. Simulations of three pairs of 2-locus models with minor 

allele frequencies of 0.5, 0.25, and 0.1, respective heritabilities of 5%, 2% and 0.8%, and 

equal marginal penetrances were evaluated. Examples are presented with 50% phenocopy 

error, where in triads, 50% of offspring were simulated with random genotypes, and in 

DSPs, 50% of affected sibs were randomly simulated. 100 replicate 200-triad datasets of 

each type were analyzed. Power was also investigated for DSPs vs. larger discordant 

sibships with 2 affecteds and 1 unaffected (AAU). 100 replicate datasets of each type 

were simulated for each model with and without 50% phenocopy error. 

 Performance of MDR-PDT was as good as or better than MDR with 10-fold cross 

validation for trios compared to the transmitted/untransmitted DSPs without 50% 

phenocopy error. This difference in power increases as the heritability of the model falls, 

with MDR-PDT being stronger relative to MDR for lower heritability models. For trios 

simulated with phenocopy error, MDR was slightly more powerful. In the comparison of 

MDR-PDT between AAU and DSP sibships, the AAU sibships were at least as powerful 

in every circumstance, and were most often more powerful with and without phenocopy 

error. This illustrates the gains in power experienced by MDR-PDT for larger pedigrees. 

 Type I error rate was evaluated for 1, 2 , and 3-locus tests at p = 0.05 (Martin et 

al. 2006). Samples of 200 triads or 200 AAU sibships with no parental data were 

simulated with random loci. Best models were chosen by the algorithm and evaluated by 
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the permutation test. Type I errors were close to nominal, ranging from 0.042 to 0.054. 

This result proves the validity of the permutation procedure as a test for an n-locus result. 

 These developments described in Chapter II led directly to the methodological 

and applied specific aims described in the subsequent chapters. The development of 

family-based tests of association for general pedigrees, and methods developed to detect 

multilocus associations led directly to the analysis of pedigree data to search for epistasis. 

The methodological extensions provided in Chapter V are the result of observations made 

during those analyses.  
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CHAPTER III 

 

HYPOTHESIS AND SPECIFIC AIMS 

 

Hypothesis: The MDR-PDT algorithm will have improved utility upon the 

conclusion of my aims by the integration of cross validation and 

further extensions developed over the course of evaluating power.   

 

Specific aim 1: Implement cross-validation into the MDR-PDT algorithm.  

 Cross-validation is a procedure in which the data are randomly split into nearly 

same-size fractions and analysis is performed on each fraction to discover consistently 

supported models. The purpose of CV is to minimize Type-I error by using a measure of 

consistency across the analyses and assist in selection of best models. This approach is 

part of the conventional MDR algorithm, and has been experimentally demonstrated to be 

effective.  

 

Specific aim 2: Conduct simulation-based power and alpha studies. 

 Power and Type I error of the MDR-PDT without CV has been assessed 

previously. Data will be simulated for a variety of circumstances where epistatic disease 

models, heritabilities, odds ratios, minor allele frequencies, and numbers of interacting 

loci are varied to rigorously test the algorithm with CV.  
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Specific aim 3: Implement the likelihood ratio test of significance into MDR-PDT. 

 The specificity of MDR-PDT is low when strong main effects are present in the 

data. Fitting saturated conditional logistic regression models for MDR-PDT models from 

real and permuted data allows the null hypothesis of no interaction to be specifically 

tested. This approach will take advantage of the speed of MDR-PDT and provide a single 

valid p-value for the correct null hypothesis. This technique will be applied to the data 

simulated in AIM 2. 

 

Specific aim 4: Apply MDR-PDT to a real dataset. 

 MDR-PDT has been applied to an Alzheimer’s disease (AD) dataset in previous 

studies. We have also analyzed a larger AD dataset using MDR-PDT, APL, and the 

parametric geno-PDT. The results of these analyses will are presented here. 
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CHAPTER IV 

 

GENERATING LINKAGE DISEQUILIBRIUM PATTERNS IN DATA 
SIMULATIONS USING GENOMESIMLA 

 
 

Overview 

Genome-Wide association (GWA) studies are becoming a common tool for the 

exploration of the genetic components of common disease.  The analysis of such large 

scale data presents unique analytical challenges, including problems of multiple testing, 

correlated independent variables, and large multivariate model spaces. These issues have 

prompted the development of novel computational approaches. Thorough, extensive 

simulation studies are a necessity for methods development work to evaluate the power 

and validity of novel approaches.  Many data simulation packages exist, however, the 

resulting data is often overly simplistic and does not compare to the complexity of real 

data; especially with respect to LD.  To overcome this limitation, we have developed 

genomeSIMLA.  GenomeSIMLA is a forward-time population simulation method that 

can simulate realistic patterns of LD in both family-based and case-control datasets. In 

this manuscript, we demonstrate how LD patterns of the simulated data change under 

different population growth curve parameter initialization settings.  These results provide 

guidelines to simulate GWA datasets whose properties resemble the HapMap. 

 

 
Adapted from: Edwards TL, Bush WS, Turner SD, Dudek SM, Torstenson ES, Schmidt 
M, Martin E, Ritchie MD. Generating linkage disequilibrium patterns in data simulations 
using genomeSIMLA. Lecture Notes in Computer Science, in press (2007). 
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Introduction 

The initial success of the human genome project is the nearly complete 

characterization of the consensus human sequence (Finishing the euchromatic sequence 

of the human genome 2004; Lander et al. 2001). This has greatly increased our ability to 

describe the structure of genes and the genome and to better design experiments. Perhaps 

of even more importance for disease gene studies is the HapMap data (The International 

HapMap Project 2003). This vast pool of characterized common differences between 

individuals greatly increases our ability to perform targeted or GWA studies by using the 

measured patterns of LD as a foundation for single nucleotide polymorphism (SNP) 

selection and data interpretation. SNPs are single base changes in DNA that vary across 

individuals in a population at a measurable frequency. GWA studies interrogate hundreds 

of thousands of SNPs throughout the entire human genome to map disease susceptibility 

or drug response to common genetic variation.  

LD is the nonrandom association of alleles at multiple SNPs. This association can 

be quantified by the squared Pearson’s product-moment correlation coefficient (r2). Also 

available is a related measure, D’, which is the proportion of the maximum possible r2 

given a difference in allele frequencies. The r2 value gives an indication of the statistical 

power to detect the effect on disease risk of an ungenotyped SNP, whereas D’ is 

indicative of past recombination events.   

Advances that increase the complexity of data simulations will permit 

investigators to better assess new analytical methods.  GenomeSIMLA (an extension of 

(Dudek et al. 2006)) was developed for the simulation of large-scale genomic data in 

population based case-control or family-based samples.  It is a forward-time population 
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simulation algorithm that allows the user to specify many evolutionary parameters to 

control evolutionary processes.  GenomeSIMLA simulates patterns of LD representative 

of observed human LD patterns through realistic processes of mating and recombination.  

This tool will enable investigators to evaluate the sampling properties of any statistical 

method that is applied to large-scale data in human populations. We describe the 

algorithm and demonstrate its utility for future genetic studies with GWA. 

  Background 

Multiple technologies now allow a GWA design to be implemented by 

genotyping between 500,000 and 1.8 million SNPs with high fidelity and low cost. It is 

conceivable that technological advances will lead to whole genome sequencing in the not 

too distant future that will involve generating 10-20 million base pair variations per 

individual. In a GWA approach, a dense map of SNPs is genotyped and alleles, 

genotypes, or haplotypes are tested directly for association with disease.  Estimates 

suggest that with 500,000 SNPs, ~50-75% of the common variation in the genome is 

captured (de Bakker et al. 2005).  Recent studies have shown that the precise extent of 

coverage is dependent on study design, population structure, and allele frequency (Barrett 

and Cardon 2006).  Regardless, GWA is by far the most detailed and complete method of 

genome interrogation currently possible.  GWA has successfully detected association 

with genetic variation in several common diseases including breast cancer (Easton et al. 

2007; Hunter et al. 2007), type II diabetes (Saxena et al. 2007; Scott et al. 2007; 

Welcome Trust Case-Control Consortium 2007; Zeggini et al. 2007), obesity (Lyon et al. 

2003), myocardial infarction (McPherson et al. 2007) and others (Welcome Trust Case-

Control Consortium 2007). 
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GenomeSIM and SIMLA 

GenomeSIM (Dudek et al. 2006) was developed for the simulation of large-scale 

genomic data in population based case-control samples.  It is a forward-time population 

simulation algorithm that allows the user to specify many evolutionary parameters and 

control evolutionary processes. SIMLA (or SIMulation of Linkage and Association) 

(Bass, Martin, and Hauser 2004; Schmidt et al. 2004) is a simulation program that allows 

the user to specify varying levels of both linkage and LD among and between markers 

and disease loci.  

SIMLA was specifically designed for the simultaneous study of linkage and 

association methods in extended pedigrees, but the penetrance specification algorithm 

can also be used to simulate samples of unrelated individuals (e.g., cases and controls). 

We have combined genomeSIM as a front-end to generate a population of founder 

chromosomes. This population will exhibit the desired patterns of LD that can be used as 

input for the SIMLA simulation of disease models.  Particular SNPs may be chosen to 

represent disease loci according to desired location, correlation with nearby SNPs, and 

allele frequency. Using the SIMLA method of disease modeling, up to six loci may be 

selected for main effects and all possible 2 and 3-way interactions as specified in 

(Marchini, Donnelly, and Cardon 2005) among these 6 loci are available to the user as 

elements of a disease model. Once these loci are chosen the user specifies disease 

prevalence, a mode of inheritance for each locus, and relative risks of exposure to the 

genotypes at each locus. An advantage of the SIMLA approach to the logistic function is 

it can simulate data on markers that are not independent, yet yield the correct relative 
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risks and prevalence. Many simulation packages using a logistic function for penetrance 

specification do not have this capability. Modeling of purely epistatic interactions with no 

detectable main effects, as in genomeSIM, is also supported separately and can simulate 

2-way, 3-way, up to n-way interactions. Purely epistatic modeling allows the user to 

specify a model odds ratio, heritability, and prevalence for disease effects. Thus, the 

marriage of genomeSIM and SIMLA has allowed for the simulation of large scale 

datasets with realistic patterns of LD and diverse realistic disease models in both family-

based and case-control data. 

Alternative genetic data simulation packages 

Several genetic data simulation packages are currently available.  SIMLINK 

(Boehnke 1986; Ploughman and Boehnke 1989), SIMULATE, and SLINK (Weeks, Ott, 

and Lathrop G.M 1990) will simulate pedigrees from an existing dataset.  Coalescent-

based methods (Kingman 1982) have been used for population based simulation in 

genetic studies; however, standard approaches which are extremely efficient in 

simulating short sequences, are not successful for long sequences. GENOME is a novel 

coalescent-based whole genome simulator developed to overcome previous limitations 

(Liang, Zollner, and Abecasis 2007).  HAP-SAMPLE uses the existing Phase I/II 

HapMap data to resample existing phased chromosomes to simulate datasets (Wright et 

al. 2007).  In recent years, forward-time population simulations have been developed 

including easyPOP (Balloux 2001), FPG (Hey 2005), FREGENE (Hoggart et al. 2007), 

and simuPOP (Peng and Kimmel 2005). All of the existing simulation packages have 

strengths and weaknesses.  The motivation for developing genomeSIMLA is to achieve 

the ability to simulate: 1) realistic patterns of LD in human populations, 2) GWA datasets 
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in both family and case-control study designs, 3) single or multiple independent main 

effects, and 4) purely epistatic gene-gene interactions in efficient, user friendly software.  

Existing simulation packages can do one or more of these, but few are able to succeed in 

all areas. 

 

Methods 

 GenomeSIMLA 

GenomeSIMLA generates datasets using a forward-time population simulator 

which relies on random mating, genetic drift, recombination, and population growth to 

allow a population to naturally obtain LD features. An initial population (or pool of 

chromosomes) is generated using allele frequencies and positions for a set of desired 

SNPs or random allele frequencies for real or synthetic SNP locations. Recombinant 

gametes are created based on intermarker recombination probabilities calculated using 

Kosambi (accounting for recombination interference) or Haldane (accounting for 

multiple events between polymorphisms) genetic mapping functions. Recombination 

probability between two polymorphisms is determined by the Kosambi or Haldane 

function of the map distance based on a 1 centimorgan per 1 million bases genetic map. 

The number of crossover events for a pair of parental chromosomes to generate gametes 

is a random Poisson variable where the expected number of events is the sum of all 

intermarker recombination probabilities for the chromosome. The two resulting gametes, 

one from each parent, are then combined to create a new individual. The mapping 

approximation of 1 million bases per centimorgan is applied here; however, other values 

could be applied to simulate population-specific genetic maps or recombination hotspots. 
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The random mating and recombination process continues on the pool of chromosomes for 

a set number of generations to generate realistic patterns of LD and produce sufficient 

numbers of chromosomes for drawing datasets.  After the pool of chromosomes has 

developed suitable LD and grown to a useful size, datasets can be drawn by randomly 

sampling chromosomes with replacement to create nonredundant individuals. Disease-

susceptibility effects of multiple genetic variables can be modeled using either the 

SIMLA logistic function (Bass, Martin, and Hauser 2004; Schmidt et al. 2004) or a 

purely epistatic multi-locus penetrance function (Moore et al. 2004) found using a genetic 

algorithm. These individuals are either mated to yield pedigrees, for family-based 

datasets, or are evaluated by a logistic function or a purely epistatic penetrance function 

of their genotypic exposures to determine disease status for case-control datasets.  

Figure 4-1 illustrates the general steps involved in producing a simulated dataset. 

As a first step, genomeSIMLA establishes the size of the genome based on the user 

specified parameters.  The total number of SNPs is unlimited except by hardware 

considerations. We are currently able to simulate at least 500K SNPs.  The simulator 

generates the number of SNPs, recombination fraction, and allele frequencies within user 

specified margins or boundaries.  GenomeSIMLA then generates an initial population (or 

pool of chromosomes) based on the genome established in the previous step.  For each 

SNP in the genome, the simulator randomly assigns an allele to each chromosome based 

on the allele frequencies of the SNP.  A dual-chromosome representation is used for 

creating individuals to allow for an efficient representation of the genome and for 

crossover between chromosomes during the mating process.  The genotype at any SNP 
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can be determined simply by adding the values of the two chromosomes at that position.  

As a result, the genotypes range from 0 to 2 at any SNP.  

The initial population forms the basis for the second generation in the simulation.  

For each cross, four chromosomes are randomly selected with replacement to create two 

individuals to be the parents for a member of the new generation.  Each parent 

contributes one haploid genome to the child.  GenomeSIMLA creates the gametic 

genotype by recombining the parent’s chromosomes.  The total number of chromosomes 

in the pool can be constant or follow a population growth model (linear, exponential, or 

logistic). This will determine the number of mating/crossover events that occur.  

GenomeSIMLA continues through a specified number of generations depending on the 

desired LD patterns.   
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Figure 4-1. Simulator overview. This figure demonstrates the steps of the 
genomeSIMLA algorithm for simulating data as described in the text. In summary, the 
process of simulating data is as follows: 

1. Develop the chromosome pool using either artificial intermarker distances and 
recombination or positions from real data. Set the parameters of the population 
growth to fit the desired LD properties. 
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2. Select loci to be the disease susceptibility loci in the simulation. Loci can be 
searched for using built-in search tools allowing the user to screen loci based on 
allele frequency, block size, and position. 

3. Specify the disease model. Either multiple loci with main effects and interactions 
among them or purely epistatic effects can be modeled 

4. Simulate data by either drawing individuals for case-control data or founders for 
family data. 

 

 

To create datasets, chromosomes are sampled from the pool with replacement and 

affection status is assigned based on the user-specified penetrance table or logistic 

function.  Samples are drawn until the desired number of cases and controls are 

accumulated.  In family-based simulation, founders are drawn and offspring are created 

using the same methods as applied in the pool generation steps. The penetrance function 

is applied to the parents and offspring to determine status and the resulting pedigrees are 

retained in a dataset if the study ascertainment criteria are met. Otherwise the pedigrees 

are discarded and the founder chromosomes are allowed to be drawn again. 

GenomeSIMLA: implementation 

Performance on desktop grade hardware and interpretable results reporting were 

main goals of software development. Users can simulate data on modern desktop 

hardware with at least three Gigahertz processors and two Gigabytes of RAM and have 

their datasets within 24-48 hours for many parameter settings; though the exact time will 

be dependent upon the particular growth curve used and the desired chromosome pool 

size.  To achieve these goals we focused on memory requirements, threading, and LD 

plotting. 

    C++ allows us to utilize memory with minimal overhead; however, retaining 100,000 

chromosomes of 500,000 SNPs each is not a trivial task. To maintain this within the 
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limits of a modern desktop machine, we represent each chromosome as a binary string. 

Also, unless otherwise specified, genomeSIMLA will only have a single chromosome 

pool in memory. One drawback of using the binary string for a chromosome is that we 

are limiting genomeSIMLA to biallelic data. By retaining a single pool in memory, our 

memory requirements fall reasonably under 2 gigabytes of RAM. 

We have implemented two different threading mechanisms to allow users to take 

full advantage of the hardware available to them. When using genomeSIMLA in 32bit 

environments, there are at most 4 Gigabytes of memory available to the system. To 

accommodate users with multiple processors running 32bit operating systems, we allow 

specification of the number of threads per chromosome. This incurs a minimal memory 

increase but can speed the calculations up considerably. However, when running 

genomeSIMLA under 64bit, we allow for configurations to specify any number of 

chromosomes be managed simultaneously. This is limited by available hardware and 

process time scales almost linearly with the number of processors available. 

To address our reporting needs, we implemented our own LD plotter. Existing LD 

plotting software, such as haploview, could not accommodate whole chromosome data.  

As a result, genomeSIMLA is capable of generating whole chromosome LD plots similar 

to those generated by haploview. Calculating whole-genome LD statistics on large 

chromosomal pools is a computationally intensive process.  To reduce computation time, 

LD statistics can be optionally calculated on a sample of the entire pool.   

Growth Curve Parameter Sweep 

To develop an understanding of the consequences of different population growth 

curve parameter settings, we have designed a series of experiments.  The hypothesis is 
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that some combination of population growth parameters will emulate the average profile 

of correlation by distance observed in the HapMap data. We used a generalized logistic 

curve, or Richards curve, to model realistic population growth (Richards 1959) Equation 

4-1.  The Richards growth curve consists of five parameters: A -- the initial population 

size or lower asymptote, C -- the carrying capacity of the population or the upper 

asymptote, M -- the generation of maximal growth, B – the growth rate, and T – a 

parameter that determines if the point of maximal growth occurs near the lower or upper 

asymptote.  
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This function provides a parameterized theoretical basis for population growth, 

though real population growth likely has more stochastic variability.  To allow variability 

in population growth, we implemented a jitter parameter that draws a random number 

from a uniform distribution over a range specified by the user and adds or subtracts that 

percentage from the population size predicted by the growth curve.  For the purposes of 

the parameter exploration in this study, however, the jitter parameter was set to zero.   

We scanned through a wide range of parameters to find population growth profiles 

providing suitable correlation among genetic variables for data simulation.  Since there 

were five parameters to vary and many possible values for each, we were still limited to a 

small subset of the possible sets of growth parameters available (Table 4-1).  Prior to this 

study, we performed a number of parameter sweeps to evaluate ranges that were likely to 
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yield interesting and realistic LD patterns (results not shown) in a population of 100,000 

chromosomes.  For this study, we split the parameter sweep into three scans. In total, 726 

combinations of parameter settings were examined for average LD over distance.  

 

Table 4-1. Parameter sweep of population growth parameters for the logistic function: 
settings for three scans. 

Parameters Scan 1 Scan 2 Scan 3 

A - Lower asymptote 500, 750, 1000 100, 150, 200, 
250, 300 750, 1000, 1250, 1500 

C - Upper asymptote 120k, 500k, 900k 110k, 120k 120k 
M - Maximum growth 

time 
305, 315, 325, 335, 

345, 355 350, 400, 450 500, 1000, 1500, 2000, 
2500, 3000 

B - Growth rate 0.005, 0.0075, 0.01 0.018, 0.02, 0.022, 
0.025 

0.02, 0.025, 0.03, 0.035, 
0.04 

T - Maximum growth 
position 0.1. 0.2, 0.3 0.1 0.1 

Total parameters 486 120 120 
 

 

We predict that a common usage of genomeSIMLA software will be to simulate 

case-control and family-based whole-genome association datasets containing 300,000-

500,000 biallelic markers across the genome. These data could be used to evaluate the 

sampling properties of new or established association methods or techniques to 

characterize the genetic structure of populations. While genomeSIMLA can simulate data 

of this magnitude, for this study, we wanted to focus on a single chromosome.  Thus, we 

simulated the 6031 chromosome 22 markers used on the Affymetrix 500K SNP Chip.  

  To visualize the results of each parameter combination, average R2 by distance in 

kilobases was graphed for the simulated data and for the CEPH (Caucasian), Yoruba 
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(African), and Chinese/Japanese HapMap populations. This representation captures 

global estimates of correlation by distance across the entire chromosome. 

 

Results 

Parameter settings in Scan 1 did not yield LD which was comparable to HapMap 

samples. A trend was observed among the better fitting models that the parameters C and 

T always functioned best when set to 120k and 0.1, respectively. Scan 2 examined very 

small initial populations and more rapid growth to strengthen LD profiles through rapid 

genetic drift. These unfortunately also resulted in the fixing, or drifting to zero frequency, 

of many alleles. Scan 3 focused on larger initial populations, late maximum growth, and 

rapid growth. These simulations were the most successful and resulted in several curves 

which approximated LD in HapMap samples well. One such example is presented in 

Figure 4-2.   

While not a perfect fit to any population, the curve represents a good 

approximation of the correlation observed in the data. Of note is the fit in the shorter 

ranges, since short range LD is more related to the power to detect associations with 

disease susceptibility loci (Durrant et al. 2004).  A sample of the actual LD observed 

among the markers is presented in Figure 4-3. The goal of this study was to obtain data 

which on average is similar to HapMap data. Since we initialized the chromosomes with 

random minor allele frequency and the measure r2 is sensitive to this parameter, it is not 

expected that each intermarker correlation will be identical to the value calculated from 

the HapMap data. However, it can be seen here that the major features and regions of 

high and low correlation are captured. The growth curve in Figure 4-2 and the LD shown 
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in Figure 4-3 were generated with the following parameters: A=1500, C=120000, 

M=500, B=0.02, T=0.1.  D’, an alternate measure of LD, was more difficult to fit than 

R2. The curves for the simulated data generally were stronger than those observed for the 

real data in the short ranges but weaker at long ranges. The reasons for this are unknown 

but are a topic of further study for genomeSIMLA. 

 

 

 

Figure 4-2. Average R2 by distance (kb) for simulated, CEPH (Caucasian), YRI (Yoruba 
African), and CHB/JPT (Chinese/Japanese) samples 

 

 

 



 49

 

 

Figure 4-3. Sample of LD from the simulation detailed in Figure 2 of R2 plots from 
HapMap CEPH samples (above) and simulated data. 

 
 
 

We also measured the time to completion for various size simulations. We 

examined the markers for the Affymetrix 500K in chromosomes 1 and 22 and the full 

chip (Table 4-2) for the growth parameters in Figures 4-2 and 4-3. To reduce the time 

required to scan a growth curve for ideal LD patterns, genomeSIMLA utilizes both 

sampled and complete LD. When generating sampled LD plots, genomeSIMLA draws 

LD plots for a small region (1000 SNPs) of each chromosome and limits the 

participants to a relatively small number (1500). 
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Table 4-2. Time to completion for pool advancement to 100,000 chromosomes and 
graphical LD calculation and representation for up to 500,000 SNPs on Dual quad core 
2.33 Ghz and 16 GB RAM  

Simulation Processors LD Calculation Time 
Chr1 1 Sampled 13m 41s 
Chr1 1 Complete 88m 45s 
Chr1 4 Sampled 5m 41s 
Chr1 4 Complete 33m 4s 
Chr22 1 Sampled 2m 15s 
Chr22 1 Complete 12m 27s 
Chr22 4 Sampled 1m 33s 
Chr22 4 Complete 4m 30s 
500k 4 Sampled 74m 52s 
500k 4 Complete 367m 54s 
500k 8 Sampled 29m 22s 
500k 8 Complete 123m 21s 

 

 

Discussion 

We found that tuning the parameters to emulate the average pattern of correlation 

in real human populations was difficult. However, some settings we used provided good 

qualitative fit to the observed real data. Statistical evaluation of these distributions was 

difficult, since tests on distributions are extremely sensitive and strong ceiling effects 

were observed. We initialized our chromosome pools with random allele frequency 

independent data, and only allowed the recombination probabilities to directly mimic 

those expected from the Kosambi function for the HapMap physical distances.  This 

procedure was a proof of principle that it is neither necessary to directly resample 

HapMap chromosomes or use computationally inefficient coalescent models to 

effectively simulate the properties of unobserved samples from real human populations.  

One potential reason for the deviations of our simulated data from those observed 

in the HapMap populations was that genomeSIMLA simulates phased chromosomes with 
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no heterozygote ambiguity.  As a result, genomeSIMLA does not employ an Expectation 

Maximization (EM) algorithm (Excoffier and Slatkin 1995) to phase genotype data.  The 

phased data available from the HapMap is processed from raw genotypes using PHASE 

(Stephens and Scheet 2005), which is a notably different means of LD calculation.  The 

effects of EM algorithms on the observed average LD by distance when the true LD is 

known has not been investigated, but will be a topic of further study. 

The results we observed here show that genomeSIMLA is an effective platform 

for simulating large-scale genetic data. Each individual pool was expanded to 100,000 

chromosomes before termination, which typically took less than 10 minutes including LD 

calculation.  Additionally, methods other than purely stochastic independent initialization 

for pools of chromosomes could be used, which could lead to superior data properties and 

less generations of population growth. 

The speed and scale of the genomeSIMLA software is sufficient to provide timely 

results to investigators conducting power studies for various methods. The software 

architecture ensures that the user can access all available computational power to do very 

large whole-genome size studies.  The time to completion for various size simulations for 

single and multiple processors are presented in Table 4-2. Those times include the time 

required to calculate and provide an interactive graphical interface of LD pictures for 

locus selection. These times are very fast given the computational task and represent the 

advanced implementation which is presented here. Demonstrations, manuals, and 

genomeSIMLA software for Mac, PC, and Linux are available for download at 

http://chgr.mc.vanderbilt.edu/genomeSIMLA. With this capability, researchers who 
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develop novel methods to analyze genetic data can quickly and accurately estimate the 

performance and sampling properties of those methods. 
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CHAPTER V 

 

A GENERAL FRAMEWORK FOR FORMAL TESTS OF INTERACTION 
AFTER EXHAUSTIVE SEARCH METHODS WITH PRACTICAL 

APPLICATIONS TO MDR-PDT 
 
 
 

Overview 

As genetic epidemiology looks beyond mapping single disease susceptibility loci, 

interest in detecting epistatic interactions between genes has grown. The dimensionality 

and comparisons required to search the epistatic space and the inference for a significant 

result pose challenges for testing epistatic disease models. 

 The Multifactor Dimensionality Reduction Pedigree Disequilibrium Test (MDR-

PDT) was developed to test for multilocus models in pedigree data. In the present study 

we rigorously tested MDR-PDT with new cross-validation (CV) and omnibus model 

selection algorithms by simulating a range of heritabilities, odds ratios, minor allele 

frequencies, and numbers of interacting loci. Additionally, given that the permutation-

based hypothesis test of the MDR-PDT does not evaluate effect modification across 

genotypes and that this property might inflate the Type I error rate for the null hypothesis 

of no interaction, we chose to implement a regression-based permutation test.  

  We found that MDR-PDT performs similarly with 5 and 10 fold CV. Also, the 

sensitivity did not fall a large amount when MDR-PDT selected best models using the 

omnibus approach compared to the n-locus approach. We also demonstrate that fitting a 

regression model on the same data as analyzed by MDR-PDT is a biased procedure and is 

not a valid test of interaction. The regression-based permutation test implemented here 
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conducts a valid test of interaction after a search for multilocus models, and can be used 

with any method which conducts a search to find a multilocus model representing an 

interaction. 

 

Introduction 

Gene-gene (epistasis) and gene-environment interactions are long-recognized 

phenomena that have become a focus of the method development arm of genetic 

epidemiology. Descriptions of interaction have been developing throughout the histories 

of statistics and genetics. Interaction or effect modification was defined by R.A. Fisher as 

the deviation from additivity in a mathematical model (Fisher 1918). Sewell Wright 

related this concept to genetics by stating that the relationship between genotype and 

phenotype is dependent on dynamic interactive networks of genes and environmental 

factors (Wright 1932).  

The implication of Fisher’s view is that a statistically epistatic relationship 

between multilocus genotypes and phenotype featuring effect modification is not 

detectable with a linear combination of variables. This describes the regression model 

with no interaction term. The regression term for an interaction specifically tests the null 

hypothesis that simultaneous exposure to multiple factors does not significantly increase 

the link function beyond the sum of average changes in the link function for exposure to 

each factor. Statistical epistasis is thereby a population-level event measured on average 

outcomes among samples, as opposed to biological epistasis (Bateson 1909), which is the 

result of the physical interactions of biomolecules in individuals (Moore and Williams 

2002). It has been postulated that variation in biologically epistatic processes among 
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individuals within populations yields epistatic statistical signals (Moore and Williams 

2005).  

Epistasis can be easily observed at the population level in S. cerevisiae (Tong et 

al. 2001), and these observations have elucidated novel gene functions influencing 

extensively studied biological processes (Tong et al. 2004; Schuldiner et al. 2005). 

Epistasis has also been observed in Drosophila Mercatorum for the abnormal abdomen 

phenotype (DeSalle and Templeton 1986; Hollocher et al. 1992; Hollocher and 

Templeton 1994) as listed in (Templeton 2000). Animal models of Hirschsprung disease 

in mice have demonstrated effect modification and epistasis among genes (Cantrell et al. 

2004). In humans, explorations of genetic statistical epistasis have been performed for 

several diverse traits with various methods, such as adverse drug reactions (Wilke, 

Moore, and Burmester 2005), Alzheimer disease (Martin et al. 2006), asthma (Chan et al. 

2006; Millstein et al. 2006), autism (Ma et al. 2005; Ashley-Koch et al. 2006), bladder 

cancer (Andrew et al. 2006), schizophrenia (Morris et al. 2007; Qin et al. 2005), multiple 

sclerosis (Brassat et al. 2006), irinotecan metabolism (Culverhouse, Klein, and Shannon 

2004) and many others. These studies demonstrate that variation in genes that function 

together in and across biochemical pathways can have unforeseen effects on phenotypes, 

and that exhaustive searches through these spaces can reveal models that predict gene 

functions and phenotype outcomes (Segre et al. 2005). As individual susceptibility loci 

with main effects on various traits are discovered, large amounts of trait variance remain 

unexplained for many diseases; suggesting statistical epistasis may play a role in many 

disease phenotypes.  
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 From a method development perspective, the difficulties encountered when 

searching for replicable statistical epistasis in human populations are essentially two-fold. 

The first difficulty encountered is multiple comparisons, due to the extremely large space 

that must be searched to exhaustively catalog all possible interactions for a set of 

variables. This problem is usually solved with permutation testing, where the entire 

search is performed on randomized data many times to estimate the distribution of 

statistics under the null hypothesis of no association after a same-size search. The other 

main difficulty is the curse of dimensionality (Bellman 1961), and essentially refers to the 

loss of precision due to excessive data subdivision. In regression, when modeling high-

order interactions with insufficient data the curse of dimensionality causes coefficient and 

standard error inflation, leading to inaccurate estimates of effect sizes and low precision 

(Hosmer and Lemeshow 2000).  

 Traditional parametric statistics such as logistic regression (Hosmer and 

Lemeshow 2000) have limited utility when searching for interactive effects in a large 

search space, whether searching through genetic loci (Templeton 2000) or environmental 

exposures (Schlicting and Pigliucci 1998). These methods do not natively adjust for 

many comparisons or accommodate scenarios with high dimensionality. As the number 

of predictor variables increases, the number of comparisons necessary to explore the 

entire statistically epistatic search space expands rapidly.  

As discussed in Chapter II, several derivations of the logistic regression procedure 

have been developed to detect statistical epistasis such as the focused interaction testing 

framework (FITF) (Millstein et al. 2006), and stepwise logistic regression (Marchini, 

Donnelly, and Cardon 2005); however, purely interactive effects or those with weak main 
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effects are not likely to be detected, and higher order interactions still suffer from the 

curse of dimensionality. 

Many solutions to the curse of dimensionality have been proposed using data 

mining and machine learning approaches such as pattern recognition and data reduction. 

Pattern recognition describes the use of an algorithm to discover data patterns that discern 

groups from fully dimensionalized data (See Chapter II). These ideas are implemented in 

MDR (Hahn, Ritchie, and Moore 2003; Hahn and Moore 2004; Moore 2004; Moore et al. 

2006; Moore 2007; Ritchie et al. 2001; Ritchie, Hahn, and Moore 2003) for discrete 

outcomes. MDR in particular maps data from several variables with many dimensions to 

a single binary variable which can then be used in any other context, such as regression 

or contingency table statistics, for association analysis. 

The data reduction step of MDR is amenable to decreasing the dimensionality of 

genetic variables for logistic regression or any other subsequent method for modeling the 

relationship between multilocus genotypes and phenotype (Velez et al. 2007; Moore et al. 

2006; Martin et al. 2006). Logistic regression assumes linear relationships between 

exposures and outcomes, and is also iterative for maximum likelihood estimates, 

resulting in insensitivity to detect some disease models and computational inefficiency. 

Therefore, MDR is optimized for sensitivity and computational speed, acknowledging the 

difficulties inherent in exhaustive searches for epistasis. 

The MDR-PDT was developed to perform exhaustive searches for epistasis in 

pedigree data. As described in Chapter II, MDR-PDT uses all informative offspring when 

calculating association statistics, and has superior power in family data than MDR. 
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The initial debut of MDR-PDT did not feature cross validation (CV) or a means to 

select from among orders of models, two features of MDR. Cross validation is a feature 

of the original MDR algorithm that is used to find consistent signals in the data and select 

a single best model from among orders of model. This procedure has been shown to be 

effective in simulation studies at multiple levels of CV (Motsinger and Ritchie 2006). 

Here we present an algorithm to perform CV in family data and select a best model from 

among models of various sizes. 

Another element of analyzing real datasets with MDR or MDR-PDT is the 

structure of the hypothesis test performed on the best models observed by the algorithms. 

The null hypothesis of the permutation test is no association signal from the loci, as 

defined by the ability of the high-low risk variable to identify variation in penetrances 

across multilocus genotypes. MDR and MDR-PDT make no assumptions about the 

statistical relationship between loci and traits or about the mode of inheritance at 

individual loci (Ritchie et al. 2001; Ritchie, Hahn, and Moore 2003). As a result, this null 

hypothesis is very general and is capable of detecting disease models featuring nonlinear 

effects and purely epistatic effects (Moore 2004). However, this strength can also be a 

weakness, since this test will not distinguish between groups of noninteracting main 

effects and interactions among variables with or without main effects. Thus the 

interpretation of a significant result for an MDR or MDR-PDT model is not clear, and the 

investigator is left with a constellation of loci and no knowledge about the relationship 

among them, other than they are associated as a group with the trait. Additionally, we 

show here that hypothesis tests with a null of no interaction performed post hoc using a 

regression procedure on a multilocus model on the same data where an MDR or MDR-
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PDT analysis was conducted are substantially biased toward the alternate hypothesis. Due 

to this lack of specificity in the MDR and MDR-PDT procedures and bias in post hoc 

estimation techniques, a valid test of interaction for an MDR or MDR-PDT model is 

presented here. 

Materials and methods 

MDR-PDT 

 The MDR-PDT procedure and hypothesis test is described in Chapter II (Figure 

2-1). 

 Cross validation 

 A notable difference between MDR and MDR-PDT from the (Martin et al. 2006) 

simulation studies is the ability of MDR to choose a single best model when several 

orders of model, for instance 2-locus and 3-locus, have been considered. In practice this 

is a very important capability since it allows much larger searches to be performed under 

a single hypothesis test, thus increasing sensitivity by removing the need for multiple 

testing corrections across orders of model post-hoc. This capability from MDR is based 

on the CV procedure.  

To implement CV in MDR-PDT, the consideration of how to evenly split the data 

must be taken. In MDR, the data are case-control, with each individual representing an 

independent observation and proportion of the data available. In MDR, the data are 

binned into equal-size bins prior to analysis based on counts of cases and controls, with 

no regard for missing data, so some bins may be unequal splits for some loci. For MDR-

PDT the data are independent pedigrees of various structures and sizes, each contributing 

different amounts of information to the dataset. The units of information which are used 



 60

by MDR-PDT are discordant sibling pairs (DSPs) and transmitted/Untransmitted (T/UT) 

pairs, so the quantification of this information is necessary to evenly bin the pedigree 

data.   

 Consider a dataset consisting of pedigrees containing extended sibships of 

arbitrary size. Let xij be the number of possible DSPs and T/UT pairs from a sibship 

sharing both parents in a pedigree, where i indexes sibhips i = (1,2, … , n) in a pedigree j, 

j = (1,2, … , m). xi will be found in a sibship by ((Affected sibs x Unaffected sibs) + 

Affected sibs). Thereby, xij = ∑xi for full sibships within a pedigree j. This gives the 

maximum information available to the statistic for that pedigree. Let X = ∑j∑xij for all j 

pedigrees be the total such pairs of offspring from all families in the dataset. xij/X gives 

the proportion of potential observations from each pedigree compared to the proportion 

of total possible observations for the entire dataset. To perform CV, randomly split the 

data by putting intact families into k bins, the value of k specified by the user. Let ki be 

the proportion of information from the total data for a bin, given by ki = ∑(xij/X) for i = 

(1, 2, … , k). Set a variance threshold Vx for the variance across values of ki across bins 

for the split, where the variance will not exceed Vx. The variance for a split into n bins of 

the dataset will be V = Σk(ki(X) – 1/k(X))2/k. Compare Vx to V. If Vx < V, reject the split 

and repeat the procedure 30 times. Continue until Vx > V. If no split provides a 

satisfactory binning of the data, relax Vx or change the number of bins. 

 Once the data are split into approximately equal parts, an extension allowing best 

model selection for MDR-PDT is possible. Each CV interval is used as a test set as in 

MDR to develop a measure of how well a model will predict disease status in 

independent samples. This procedure also provides a measure of cross-validation 
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consistency (CVC) for each model found. One issue in MDR-PDT that is not a problem 

for MDR is the fact that the MDR-PDT statistic that is calculated for the best model is 

not comparable across orders of models. As a result, this statistic cannot be used to 

determine across orders of model which is the strongest signal. Because of this, two 

fitness metrics were employed to select best models. Prediction error (PE) and the 

matched odds ratio (MOR) were both calculated and power calculations for each were 

performed. The prediction error is defined as the average classification error from test 

sets during the CV procedure. The matched odds ratio is calculated by pooling the DSPs 

or T/UT pairs from test set pedigrees and plotting them in a 2x2 table relating the 

high/low risk variable to status. The ratio of DSPs and T/UT pairs that are correctly 

classified to those that are incorrectly classified is a matched odds ratio. The average 

MOR is calculated from test sets across CV intervals. The omnibus procedure is as 

follows and is illustrated in Figure 5-1. 
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Figure 5-1. MDR-PDT algorithm with CV 

 

 

1. Data are split into K equal parts 

2. All possible DSPs and T/UT pairs are generated within each sibship (affected times 

unaffected) and pooled within K-1/K of the data. This is a training set.  

3. Each genotype is determined to be high or low risk by comparing the genoPDT 

statistic (Martin et al. 2003) from the pooled DSPs and T/UT pairs to a threshold τ, such 

as τ = 0, which indicates positive or negative association with affected status. 

4. Statistics for high-risk genotypes are calculated using the MDR-PDT statistic (Martin 

et al. 2006).  
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5. The procedure repeats for every combination of loci within the order range specified, 

calculating an MDR-PDT statistic for each, choosing the largest MDR-PDT statistic from 

each order as the best model. 

6. Matched odds ratios or prediction error is calculated from the testing set for each best 

model of each order using the high-low risk levels established during training. 

7. Steps 1-6 are repeated in the other splits of the data, so that each CV interval is used as 

a test set. Where the same model is observed in multiple training sets, a measure of CVC 

is observed. To select the best from among all models found in training, CVC is 

considered first, then the tiebreaker is decided using the average PE or MOR from test 

sets.   

A permutation test is performed to determine the distribution of the null 

hypothesis of no association. The result from step 7 is compared to this distribution for 

significance assessment. 

 Regression test of interaction 

 To conduct a formal test of interaction among the variables in a model resulting 

from an exhaustive search, the size of the search must be accounted for when determining 

the critical value of the statistic for significance. Otherwise when comparing the statistic 

to the parametric value for significance, the test is not valid and is strongly biased toward 

the alternate hypothesis. To accomplish a valid test, a straightforward extension to the 

MDR-PDT or MDR algorithm is implemented. For simplicity, MDR-PDT will be 

referred to here, but this method is also applicable to MDR results. 

 Where a best two through N-locus model is found by the MDR-PDT omnibus 

algorithm, the genotypes at the model loci are determined to be high or low risk by 
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individual assessment of each model locus by MDR-PDT. This binary coding for 

genotypes is then used to fit saturated full and reduced conditional logistic regression 

equations with multiplicative interaction terms assessing effect modification for 

simultaneous exposure to high-risk genotypes for each model locus. The interaction term 

corresponding to the best model from the MDR-PDT search is removed for the reduced 

model, leaving any nested interaction terms in place, and the likelihoods of each model 

are recorded. A likelihood ratio statistic is calculated for this interaction term. Then the 

data are permuted as usual, and MDR-PDT chooses the best two through N-locus model 

for each permutation. The regressions are fit as in the original data and the resulting 

likelihood ratio statistics from each permutation are sorted from largest to smallest. The 

statistic from the real data is then compared to this distribution for significance 

assessment.   

 Simulations 

Power and Type I error of the MDR-PDT without CV has been measured in 

(Martin et al. 2006). GenomeSIMLA (Edwards et al. 2008a) software has been developed 

by merging the software packages genomeSIM (Dudek et al. 2006) and SIMLA (Bass, 

Martin, and Hauser 2004; Schmidt et al. 2004) (Chapter IV) to simulate pedigree data 

with purely epistatic penetrance tables. 

Epistatic models were simulated with a genetic algorithm, modified from (Moore 

et al. 2004), for 2 and 3 loci, minor allele frequency of 0.2 or 0.4, and heritability of 

0.005, 0.01 0.03, 0.05 or 0.1 There were a total of 20 genetic models, each of which were 

simulated as 100 20-locus datasets with 100, 500, and 1000 pedigrees (Table 5-1). The 

odds ratio in this table is the average ratio of odds between high-risk and low-risk cells, 
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where high-risk cells are those multilocus genotypes for which the penetrance equals or 

exceeds the prevalence for the model. All penetrance tables used to simulate genetic data 

are presented in the Appendix. 

 Pairs of noninteracting model loci were simulated in 500 and 2000 20-marker 

DSP pedigrees. The effect sizes of the model loci were simulated at relative risks 1.5, 2, 

4, and 6. The model loci were independent and had a dominant model for the minor allele 

with relative frequency of 0.2. All loci in the simulations were independent to provide 

conservative estimates of power due to increased data noise. It is expected that data with 

extensive correlation among non-model loci would provide fewer spurious signals 

relative to independent loci since correlated loci would tend to behave similarly to one 

another in epistatic models, thereby effectively reducing the number of independent non-

model variables. This is analogous to the principles underlying the multiple testing 

correction method of (Nyholt 2004) 
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Table 5-1.  Models examined in the simulation study. 
Loci Minor allele frequency Heritability Odds Ratio 

2 0.2 0.005 1.1 
2 0.2 0.01 1.26 
2 0.2 0.03 1.53 
2 0.2 0.048 1.79 
2 0.2 0.09 3 
2 0.4 0.005 1.15 
2 0.4 0.01 1.28 
2 0.4 0.03 1.56 
2 0.4 0.05 1.79 
2 0.4 0.1 2.85 
3 0.2 0.005 1.19 
3 0.2 0.01 1.36 
3 0.2 0.03 1.58 
3 0.2 0.05 2.1 
3 0.2 0.1 3.2 
3 0.4 0.005 1.21 
3 0.4 0.01 1.32 
3 0.4 0.03 1.52 
3 0.4 0.05 2.23 
3 0.4 0.12 3.5 

 

 

Type I error of Conditional Logistic Regression with correction for sharing 

among multiple affected siblings in regions of linkage (Siegmund et al. 2000), MDR-

PDT with CV, with and without the LR procedure were estimated by simulating 1000 20-

marker 500-DSP datasets with no penetrance function specified and random minor allele 

frequency.  

To estimate the type I error rate of regression following an MDR-PDT search, the 

best 2-locus model was chosen from each null dataset using MDR-PDT. Two loci were 

also chosen at random from each dataset. The genotypes at each model locus were then 

classified as high or low-risk using MDR-PDT. This coding was then used in the 

subsequent regression for each model, where a likelihood ratio statistic was calculated for 
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each interaction term and compared to a chi-squared, one degree of freedom distribution 

for significance assessment.  

To estimate the Type I error rate for MDR-PDT with CV and the regression 

procedure following an MDR-PDT search, each of the 1000 null datasets were permuted 

100 times to determine whether the best model from the original null dataset exceeded 

the 5th largest value from the 100 permutations, corresponding with an alpha of 0.05. 

Where a null dataset yielded a statistic that equaled or exceeded the 5th largest 

permutation, a Type I error occurred and was scored.  

 

Results 

Type I error of regression after MDR-PDT 

The Type I error rate for the experimental scenario where random pairs of loci 

were chosen and followed by fitting full and reduced regression models with and without 

the interaction term was 0.048. This is very close to the nominal rate and serves as a 

negative control to demonstrate that there are not other biases present in the regression 

procedure. The Type I error rate of the likelihood ratio statistic for the regression 

interaction term corresponding to MDR-PDT two-locus models when compared to chi-

squared with one degree of freedom was 0.39. Therefore, testing effect modification 

using logistic regression in the same dataset where an MDR-PDT result was found is a 

biased procedure. We later show that this bias can be remedied by permutation testing the 

interaction term statistic (shown below).  
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Type I error of MDR-PDT in the presence of independent main effects 

 When strong main effects are present in a dataset, MDR-PDT might find, test, and 

reject the null hypothesis for models consisting of these loci. MDR-PDT does not 

recognize that these models do not represent effect modification. If the null is rejected, 

these findings are type I errors with regard to the null hypothesis of no interaction. 

However, the null hypothesis of MDR-PDT is a general null of no association, leading to 

rejection for such scenarios. This situation is more severe as effect and sample size grow 

(Tables 5-2a, b). The false positive rate when evaluating these models for the regression 

extension in the absence of effect modification is zero, demonstrating that the specificity, 

defined as 1-(false positive rate) is extremely superior to that of the conventional 

permutation test. This evaluation was performed as a power study and not a type I error 

study, meaning that the power reported is the power to detect the model loci as the best 

model and reject the null from a permutation test, rather than the rate at which any model 

might reject the null. Therefore, the regression-based test of interaction remedies this 

problem at the testing stage of the algorithm. 

 

 

Table 5-2a. Type I errors with regard to the null hypothesis of no interaction occur in 
MDR-type algorithms for 500 DSP families. 

Relative 
Risk 

MDR-
PDT 

power 
prediction 

error 

MDR-
PDT 

power 
matched 

odds ratio 

Regression 
power 

prediction 
error 

Regression 
power 

matched 
odds ratio 

1.5 0 0 0 0 
2 7 0 0 0 
4 21 2 0 0 
6 29 4 0 0 
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Table 5-2b. Type I errors with regard to the null hypothesis of no interaction occur in MDR-type 
algorithms for 2000 DSP families. 

Relative 
Risk 

MDR-
PDT 

power 
prediction 

error 

MDR-
PDT 

power 
matched 

odds ratio 

Regression 
power 

prediction 
error 

Regression 
power 

matched 
odds ratio 

1.5 4 0 0 0 
2 17 1 0 0 
4 54 24 0 0 
6 58 50 0 0 

  

 

Type I error of the regression permutation test 

 The regression-based permutation test was conducted in 1000 500-DSP datasets 

with no penetrance function. One hundred permutations were performed for each null 

dataset due to long computation times. The Type I error of the procedure was 0.058 at an 

alpha rate of 0.05. This value was not significantly different from 0.05. The Type I error 

rate for the MDR-PDT with CV alone was 0.052. 

MDR-PDT N-locus vs. omnibus 

These results show that for a variety of models, the CV procedure and omnibus 

model selection criteria, as described in Figure 5-1, function well (Figures 5-2a-e). The 

sensitivity of five and ten-fold CV are very similar across all the simulated scenarios. 

Also, the sensitivity of the PE and MOR metrics were very similar. Compared to the n-

locus search, where only interactions of the order present in the simulated model were 

sought, the n-locus with CV performed almost as well as or better as n-locus searches 

without CV. The omnibus search, where two and three-locus models were examined, 

tended to lose some sensitivity; however, this can be explained by the larger number of 

comparisons performed for those searches. 
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Figure 5-2a.  MDR-PDT with N-locus searches with and without cross-validation versus 
the omnibus procedure for broad-sense heritability 0.005. 
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Figure 5-2b.  MDR-PDT with N-locus searches with and without cross-validation versus 
the omnibus procedure for broad-sense heritability 0.01. 
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Figure 5-2c.  MDR-PDT with N-locus searches with and without cross-validation versus 
the omnibus procedure for broad-sense heritability 0.03. 
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Figure 5-2d.  MDR-PDT with N-locus searches with and without cross-validation versus 
the omnibus procedure for broad-sense heritability 0.05. 
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Figure 5-2e.  MDR-PDT with N-locus searches with and without cross-validation versus 
the omnibus procedure for broad-sense heritability 0.1. 
 

 

MDR-PDT omnibus permutation test vs. regression permutation test 

 These experiments compare the power of permutation testing of either the PE or 

MOR fitness metrics after CV with the MDR-PDT omnibus procedure with model 

selection by either PE or MOR followed by the regression-based permutation test. Only 

the models from the N-locus vs. omnibus experiments with broad-sense heritabilities of 

0.03 or larger were tested. The results from those experiments are presented in Figures 5-

3a and 5-3b. These results show that the regression-based permutation test is less 

powerful than the MOR or PE fitness functions. This loss of power was anticipated, since 

another level of model evaluation was added to the algorithm with more specificity than 

the previous metrics. For some models, the regression test is competitive, but never more 

powerful. It is also notable for having power in multilocus models displaying no marginal 

main effect. 
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Figure 5-3a. Power of MDR-PDT with either PE or MOR with or without the regression extension to detect simulated two-locus 
models 
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Figure 5-3b. Power of MDR-PDT with either PE or MOR with or without the regression extension to detect simulated three-locus 
models 
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Discussion 

We have introduced three extensions to the MDR-PDT: an algorithm for binning 

families evenly for CV, a means of selecting from among orders of multilocus models, 

and a test of effect modification which has much higher specificity than the previous 

method of hypothesis testing. 

In general, the regression-based testing approach is less powerful than the MDR-

PDT omnibus permutation test. However, the power for the MDR-PDT regression test is 

reasonable considering the many sources of error which may lead to incorrect inferences 

when using methods that search for interactions. It is more likely in real data that a result 

that rejects the null hypothesis of the regression-based test will replicate in an 

independent sample with methods looking for interactions than a result which rejects the 

general null of no association. Knowing the relationships between the variables in a 

model and the trait of interest is crucial to prediction and understanding the roles of 

factors in complex disease. Therefore, we advocate tests that provide high specificity and 

interpretability, at the expense of some statistical power.  

We also investigated the bias introduced in parametric statistics when tests are 

performed for MDR-PDT models in the same data as the models were found. We found 

that such procedures are very biased to the alternate hypothesis and lead to many Type I 

errors. The distribution of the null must be adjusted for the size of the search conducted 

for the test to be valid; otherwise strong bias is introduced into results. 

 We developed a new algorithm for splitting families into CV intervals, and a new 

means of selecting best models from among several orders of model. We showed these 

methods are effective in simulated data and do not greatly decrease the sensitivity of 
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MDR-PDT. This approach is philosophically identical to the original MDR algorithm. 

We also developed a valid test of the null hypothesis of no interaction, and showed it has 

reasonable performance in scenarios where there are negligible main effects. It is 

expected this method would perform better where the interacting main effects were not 

very small, since the method uses the binary risk variable from MDR-PDT at a single 

locus to encode genotypes for regression. The primary method for searching epistatic 

spaces with regression, FITF (Millstein et al. 2006), explicitly requires that main effects 

be present in multilocus models to be detected. We do not have this constraint, and so a 

broader class of models may be detected. Additionally, use of MDR-PDT to 

constructively induct model locus genotypes to the high and low-risk variable for 

regression substantially reduces the dimensionality of modeling from 3n to 2n and the 

sparseness that arises due to the curse of dimensionality. 

Regression in general offers a flexible framework for testing generalized 

associations between variables. Part of the strength of the regression modeling approach 

is the specificity with which hypotheses may be tested. However, in the context of 

modeling interactions from a large space of possible multilocus models, this can also be a 

weakness. The possible ways to model interactions, encode genotypes, and correct for 

multiple comparisons make regression cumbersome in epistasis searches. Here, we offer 

a nonparametric framework for detecting multilocus models, encoding genotypes with 

constructive induction, specifically modeling interactions, and adjusting null distributions 

of interaction test statistics for the size of the search conducted. 

Some future directions of this work will include extending this test of effect 

modification to case-control data for MDR. Additionally, more sensitive methods for 



 77

interaction detection than regression, such as generalized estimating equations (Liang and 

Zeger 1986; Zeger and Liang 1986), which may improve sensitivity while preserving 

specificity (Hancock et al. 2007). We also will incorporate the ability to include 

covariates in the regression models to adjust for potential confounding.  

This approach is very flexible, and could be adapted to any method searching for 

epistasis using a permutation test. For instance, one could fit linear regression models for 

RPM  (Culverhouse, Klein, and Shannon 2004) multilocus models for quantitative traits. 

The approach might be applied to exotic computational methods such as genetic 

programming neural networks (Motsinger et al. 2006), which use computer learning and 

evolution principals to search for models. Regardless of the means to search for 

interactions and the test used to provide a specific test of the null hypothesis of no effect 

modification across genotypes, this framework incorporates the qualities of methods 

designed to accommodate the curse of dimensionality and multiple comparisons with the 

specificity of parametric modeling methods. 
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CHAPTER VI 

 

AN ASSOCIATION ANALYSIS OF ALZHEIMER CANDIDATE GENES 
REVEALS A RISK HAPLOTYPE IN ACE AND MULTILOCUS ASSOCIATION 

BETWEEN ACE, A2M AND LRRTM3 
 
 
 

Overview 

Alzheimer ’s disease (AD) is the most common form of progressive dementia in 

the elderly. It is a neurodegenerative disorder characterized by the neuropathologic 

findings of intracellular neurofibrillary tangles and extracellular amyloid plaques that 

accumulate in vulnerable brain regions. AD etiology has been studied by many groups, 

but since the discovery of the APOE ε4 allele, no further genetic variation has been 

mapped conclusively with the late-onset form of the disease. In this study, we examined 

genetic association with late-onset Alzheimer’s susceptibility in 738 Caucasian families 

and an independent case-control dataset exploring 11 candidate genes. In addition to tests 

for main effects and haplotype analyses, the Multifactor Dimensionality Reduction 

Pedigree Disequilibrium Test (MDR-PDT) was used to search for single-locus effects 

and 2-locus and 3-locus gene-gene interactions associated with AD in the family data.  

We observed significant haplotype effects in ACE in both family and case-control 

samples. ACE was also part of a significant 2-locus and 3-locus MDR-PDT joint effects 

model with Alpha-2-Macroglobulin (A2M), which mediates the clearance of Aβ, and 

Leucine-Rich Repeat Transmembrane 3 (LRRTM3), a nested gene in Alpha-3 Catenin 

(CTNNA3) that binds Presenilin 1. These genes are related to amyloid beta clearance; 

thus this constellation of effects might constitute an axis of susceptibility for late-onset 
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AD.  This consistent result between independent data sets of families and unrelated cases 

and controls is strong evidence in favor of ACE as a susceptibility locus for AD. 

 

Introduction 

Alzheimer’s disease (AD) (OMIM 104300, 104310) is the most common form of 

progressive dementia in the elderly. More than 4 million Americans are afflicted with this 

debilitating disorder and many studies have been conducted to elucidate an etiology. The 

discovery of the APOE ε4 risk factor demonstrated that genetic analysis can be successful 

in complex disease research. However, between 42% and 68% of cases do not carry the 

ε4 allele (Henderson et al. 1995; Lucotte et al. 1994; Ritchie et al. 1996; Hardy, Myers, 

and Wavrant-De 2004). Additional environmental and genetic factors likely play a role in 

Alzheimer’s susceptibility. Some of these putative factors are explored in the current 

study. Genes known to interact with presenilins, amyloid beta (Aβ) clearance, and 

cardiovascular disease are surveyed due to their known or hypothesized biological 

relevance. 

 One gene that has been associated with the early onset form of AD is amyloid 

precursor protein. Duplications in this gene have been associated with the disease 

(Rovelet-Lecrux et al. 2006).  Amyloid precursor proteins and presenilins influence 

autosomal dominant, early-onset disease due to altered Amyloid Protein Precursor 

processing, leading to Aβ deposition (Goate 2006; Hardy 1997; Levy-Lahad et al. 1995; 

Rogaev et al. 1995; Sherrington et al. 1995). Variation in these genes has not been shown 

to influence late-onset susceptibility, which is far more prevalent. They do, however, 

provide insight into the pathophysiology of the disorder. The ε4 allele of APOE causes 
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increased risk of AD, while the ε2 allele is protective (Chartier-Harlin et al. 1994; Corder 

et al. 1993). The mechanism by which APOE ε4 influences risk of AD is unknown, but is 

likely related to Aβ processing (Bales et al. 1999).  

 Fourteen years after the discovery of APOE, single-locus approaches by many 

groups have not discovered any additional candidates consistently associating with late-

onset AD. This inability to unravel the mechanism underlying the trait, given steadily 

increasing ascertainment and genotyping capability, illustrates the difficulty of finding 

AD genes.   

One of these candidate genes is angiotensin converting enzyme (ACE) (Alvarez et 

al. 1999; Kehoe et al. 1999; Scacchi et al. 1998). ACE functions in several biological 

systems that may lead to AD, such as the cardiovascular and Aβ pathways (Hu et al. 

2001). ACE is part of the renin-angiotensin system regulating homeostasis (Reid 1992). 

ACE plasma concentrations are increased in persons bearing a 287bp deletion in intron 16 

of the gene (Rigat et al. 1990). This ACE I/D is also a risk locus for cardiovascular 

disease (Hessner et al. 2001; Malik et al. 1997), which may share some common 

etiological factors with AD (Breteler et al. 1994; Hofman et al. 1997). ACE may also 

promote Aβ degradation, providing a more direct link to AD (Hemming and Selkoe 

2005; Hu et al. 2001).  

Some other genes where previous associations have been observed but 

inconsistently replicated are alpha-2-macroglobulin (A2M) (Blacker et al. 1998) and 

alpha-T-catenin (CTNNA3), and a nested gene leucine-rich repeat transmembrane protein 

3 (LRRTM3) (Ertekin-Taner et al. 2003; Martin et al. 2005). A2M has protease inhibitor 

activity (Bergqvist and Nilsson 1979), and mediates the clearance of Aβ deposits. The 
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marker rs3832852, a 5bp insertion/deletion in intron 18, has been studied in many 

samples and demonstrates a significant main effect in our analyses (Supplementary Table 

1). CTNNA3 binds to beta catenin which then interacts with presenilin 1, variants in 

which are associated with early-onset AD. There have also been previous reports of 

linkage to late-onset AD at the CTNNA3/LRRTM3 locus, in addition to CTNNA3 

association with Aβ-42 levels in late-onset AD families (Ertekin-Taner et al. 2000; 

Ertekin-Taner et al. 2003). ACE, A2M and LRRTM3 were also found as the best 

multilocus model by Multifactor Dimensionality Reduction Pedigree Disequilibrium Test 

(Martin et al. 2006) analysis of our family sample.      

The study of gene-gene interactions has become a common element of current AD 

candidate gene research. The presence of gene-gene interactions explaining AD risk 

could explain why the search for AD loci since the APOE discovery has been relatively 

fruitless (Ioannidis 2007). Such interactive effects can exist without the presence of 

substantial main effects, making detection with single-locus analysis unlikely 

(Hirschhorn et al. 2002). Such a scenario requires the evaluation of all participating sites 

for detection, or proxy sites in linkage disequilibrium (LD) with those mutations. New 

methods for the analyses of large interaction search spaces are now available and were 

applied here for family and case-control data (Martin et al. 2006; Ritchie et al. 2001; 

Ritchie, Hahn, and Moore 2003). Due to strong biological and epidemiological evidence 

of a genetic etiology for AD but lack of consistent single-locus findings, AD would 

appear to be an ideal trait to begin a search for epistasis among past candidates. 

The goal of this study is to explore effects explaining AD through single-locus 

analysis, haplotypes, and epistatic gene-gene interactions among these variants.  
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Table 6-1. Family data details and ascertainment 

Family 
Type 

Total 
Families 

CAP 
Families 

NIMH 
Families 

IU 
Families

Discordant 
sibling 
pairs 

Affected 
Relative 

Pairs 
Multiplex 580 87 349 124 1111 1153 
Singleton 158 78 3 29 161 0 

 

 

Materials and methods 

Study population 

Family data: The data for this study consisted of genotypes in both a family 

sample and an independent case-control sample. The family sample has been described 

elsewhere (Martin et al. 2005) and contains 738 families collected through three 

ascertainment groups: the Collaborative Alzheimer Project (CAP: The Joseph and 

Kathleen Bryan ADRC and the Center for Human Genetics at Duke University, the 

Center for Human Genetics Research at Vanderbilt University Medical Center, and the 

University of California at Los Angeles Neuro-psychiatric Institute); National Institutes 

of Mental Health (NIMH); and the National Cell Repository for AD at Indiana University 

Medical Center (IU). The family sample is described in Table 6-1. The singleton dataset 

contains 158 families with one sampled affected family member and any number of 

unaffected siblings. The multiplex dataset contains 580 families with at least two sampled 

affected family members. 

All affected individuals met the NINDS/ADRDA criteria for probable or definite 

AD. Unaffected relatives from the CAP and NIMH sites showed no signs of dementia 

upon examination. Unaffected individuals from IU were classified based on self report. 
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The mean (SD) age at onset (AAO) in affected individuals was 72.31 (9.09) years, and 

the mean (SD) age at examination (AAE) was 74.82 (11.02) years.  

Case-control data: The case-control dataset consisted of 296 unrelated cases and 

566 unrelated controls independent of the family data. The average age of exam (standard 

deviation) for cases was 79.02(6.76), and controls was 73.63(6.30). The average age of 

onset (SD) for cases was 71.78(7.82). The age of onset in cases and age of examination in 

controls were not significantly different. Unrelated cases were determined to be affected 

by examination based on the same criteria as the cases in the family data. Priority for 

selection was given to cases where age of onset was known, Parkinson’s disease (PD) 

was not present, depression status was known, and documentation proving AD was 

available. Unaffected controls required unaffected status confirmed by examination, no 

first-degree relatives with AD, no PD, otherwise no dementia, and adequate DNA for 

genotyping. Unrelated cases and controls were collected at the Center for Human 

Genetics at Duke University and the Center for Human Genetics Research at Vanderbilt 

University Medical Center. Also ascertained in the case control data was hypertension 

status, which was measured by survey as having ever being diagnosed with hypertension.   



 84

Table 6-2.  Gene and SNP information for Alzheimer’s candidate genes 
Chromosome Alleles 

Gene SNP rs# Position 
(bp) Band Major/Minor 

Role 

rs10842971 9194563 12p13.31 A/T Coding exon 
rs3213831 9208040 12p13.31 T/C Coding exon 
rs2277413 9209051 12p13.31 C/T Coding exon 
rs3213832 9212768 12p13.31 C/T Coding exon 

PZP 

rs12230214 9238059 12p13.31 C/G Coding exon 
rs16918212B 9276225 12p13.31 C/A Not annotated 

rs34362B 9276692 12p13.31 C/T Not annotated A2MP 
rs17804080B 9279277 12p13.31 C/T Not annotated 
rs1799986 55821533 12q13.3 C/T Coding exon 
rs1800127 55825349 12q13.3 C/T Coding exon 
rs1800174 55846076 12q13.3 G/A Intron (boundary) 
rs1800181 55864555 12q13.3 C/T Intron (boundary) 
rs2075699 55871411 12q13.3 C/T Coding exon 
rs1800154 55875926 12q13.3 C/T Coding exon 
rs1800165 55877493 12q13.3 T/C Intron (boundary) 

rs11172124 55881222 12q13.3 G/A Intron (boundary) 
rs9669595 55881333 12q13.3 G/A Intron 

LRP1 

rs7956957 55889082 12q13.3 G/C Promoter 
rs1786927 67352267 10q21.3 G/A Intron 
rs2126750 67507709 10q21.3 T/A Intron 
rs7911820 67534145 10q21.3 G/T Intron 

rs12357560 67534187 10q21.3 T/C Intron 
rs7070570 67534610 10q21.3 A/G Intron 
rs7074454 67534965 10q21.3 T/C Intron 
rs6480140 67538887 10q21.3 A/C Intron 

CTNNA3 

rs997225 67952976 10q21.3 G/A Intron 
rs1925583 68349950 10q21.3 G/T Promoter 
rs942780 68406547 10q21.3 A/G Intron LRRTM3 

rs1925617 68434823 10q21.3 T/G Intron 
rs6668576 157130094 1q23.2 T/C Intron 

rs10494342 157130193 1q23.2 T/G Intron 
rs2038781 157130457 1q23.2 G/C Intron 

rs12239747B 157134138 1q23.2 A/G Coding exon 
rs7528638B 157136976 1q23.2 C/G Intron (boundary) 
rs6427515 157138184 1q23.2 C/T Intron 

NCSTN 

rs4656256 157144092 1q23.2 A/G Promoter 
rs3789662 227135608 1q42.2 A/G 3' UTR 

COG2 
rs7536290 227143437 1q42.2 A/G 3' UTR 
rs3789670 227150449 1q42.2 C/T Intron 
rs2478545 227150856 1q42.2 C/T Intron 

rs4762B 227152712 1q42.2 G/A Coding exon 
rs2148582 227156534 1q42.2 T/C Intron (boundary) 

AGT 

rs5051B 227156607 1q42.2 C/T Promoter 
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rs5050B 227156621 1q42.2 T/G Promoter 
rs1326886 227166495 1q42.2 A/G Promoter 
rs3832852 9137444 12p13 CCATA/del Splice Site 

A2M 
rs1800433A 9123618 12p13 A/G Coding Exon 

APOE ε2, ε3, ε4 50101007 19q13.31 ε2, ε3, ε4 - 
rs4291 58907926 17q23.3 A/T Promoter 
rs4295 58910030 17q23.3 G/C Intron (boundary) 
rs4311 58914495 17q23.3 C/T Intron (boundary) 
rs4329 58917190 17q23.3 A/G Intron 

rs4646994 58919636 17q23.3 del/ins Intron 
rs4343 58919763 17q23.3 G/A Coding exon 
rs4353 58924154 17q23.3 A/G Intron 

ACE 

rs4978 58927493 17q23.3 T/C Coding exon 
A genotyped only in family data 
B genotyped only in case-control data 

 

Genotyping methods 

The list of SNPs selected for this study is shown in Table 6-2. The rationale for 

including each gene in the list of candidates is detailed in Table 6-3. The SNPs were 

designed to be genotyped on the Applied Biosystems, Taqman 7900HT allelic 

discrimination system and were either custom (Assay by Design) or inventoried (Assay 

on Demand) assays.  All genotyping reactions were run according to the standard 

genotyping methods as outlined by Applied Biosystems protocols and were performed on 

3ng of genomic DNA per reaction.  All SNPs were held to a minimum genotyping 

efficiency of 95%.  Quality control was performed on the SNPs by using matched pairs of 

quality control samples placed within and between the 384 well plates.  Laboratory 

technicians were blinded to the matching pattern, affection status, and pedigree 

information. 
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Table 6-3. Names and roles of candidate genes in AD 
Gene 

Symbol Gene Name Candidate Rationale 

PZP Pregnancy Zone Protein closely related to A2M, maps to the same region 

A2MP Alpha 2 Macroglobulins of pregnancy PZP analog, may participate in cardiovascular 
remodeling 

LRP1 Low density lipoprotein receptor-related 
protein 1 APOE receptor related protein 

CTNNA3 Catenin, Alpha-3 alpha-T-catenin binds beta-catenin; 
beta-catenin interacts with PSEN1 

LRRTM3 Leucine rich repeat transmembrane 3 nested gene in CTNNA3 
NCSTN Nicastrin forms complex with PS1 and 2 

COG2 Component of oligomeric golgi complex 
2 

essential component of intracellular protein 
trafficking 

AGT Angiotensinogen enzymatic target of ACE 

A2M Alpha 2 Macroglobulin mediates the clearance of A-Beta, 
the main component of amyloid beta deposits 

APOE Apolipoprotein Epsilon validated AD association, VLDL transport 

ACE Angiotensinogen converting enzyme associations found previously between ACE and 
AD 

 

 

Family data  

PDT: The PDT is described in Chapter II. 

MDR-PDT: The MDR-PDT is described in Chapter II. 

The presence of a statistically significant signal from MDR-PDT is not 

necessarily an interaction in the formal sense. This result may be due to a strong main 

effect, group of main effects, a nested interaction, a combination of any of these, or an 

actual interaction representing effect modification across genotypes. Such an interaction 

should be formally tested using conditional logistic regression.  

Tag SNPs in family data were chosen using tagger, a function within the 

haploview software package (Barrett et al. 2005; Gabriel et al. 2002) for the MDR-PDT 

analyses to remove redundant variables from the data, which reduce the power of MDR-

PDT. An r2 threshold of 0.8 and LOD of 3 were used to choose tag SNPs in order to 
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eliminate nearby markers with very similar information and maximize power for MDR-

PDT analysis. The abridged data contained 32 of the original 47 markers.     

Conditional logistic regression: For single-locus effect size evaluation, the 

referent group was the major allele homozygote. The adjustment of Siegmund et al. 

(Siegmund et al. 2000) was implemented to correct confidence intervals for familial 

correlation in regions of linkage. 

Association in the presence of linkage (APL): The Association in the Presence of 

Linkage (APL) statistic (Chung, Hauser, and Martin 2006; Martin et al. 2003) was 

employed to measure haplotype associations in family data. APL measures the difference 

in the number of copies of an allele or haplotype in affected offspring from the expected 

number of copies under the null hypothesis of no association conditional on parental 

genotypes. APL uses nuclear families with at least one affected offspring. When parental 

genotypes are missing, they are inferred using the expected probabilities of consistent 

parental mating types. APL correctly adjusts for correlated transmissions to multiple 

affected siblings by estimating IBD probabilities. The probability IBD 0, 1, 2 and the 

haplotype frequency are estimated by EM algorithm (Clark 1990; Excoffier and Slatkin 

1995; Long, Williams, and Urbanek 1995). 

To estimate the variance of the APL statistic, a bootstrapping approach is used 

(Chung, Hauser, and Martin 2006). Bootstrap samples are taken with replacement across 

families, forming same-size pseudosamples consisting of replicates of some families and 

missing others at random. The variance of the APL statistic calculated for all 

pseudosamples is the estimated sampling variance for the statistic. This variance can be 

used to test the null hypothesis of no association allowing for the presence of linkage. 
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Case-control data analysis 

Chi-square and Fisher’s exact tests: To test for association of sex with genotypes 

in the case-control data chi-squared or Fisher’s exact tests of differences between 

frequencies of alleles and genotypes between sexes were performed in controls at each 

marker. This test should detect where sampling error has distorted the distribution of 

alleles or genotypes by sex at autosomal markers. Since there is a difference in 

prevalence by sex in AD, such a scenario in the data could cause confounding. If the 

genotype frequency tests were significant at the 0.05 level, then sex-stratified chi-squared 

or Fisher’s exact tests of Hardy-Weinberg Equilibrium (HWE) and association with 

disease at alleles and genotypes were performed. 

Sex stratification, single site allele and genotype frequency and association, and 

HWE analyses in controls were performed using Powermarker statistical software 

(Zaykin et al. 2002). Where the number of observations for a cell from the 3x2 table 

stratifying the data by genotype and status was five or less, Fisher’s exact test was used to 

assess HWE and association with AD. 

MDR: MDR (Ritchie et al. 2001) was used to search for interactions in the case-

control data. MDR exhaustively screens all possible interactions and ranks results by the 

signal detected by balanced accuracy and cross-validation consistency in case-control 

data to find models with the most potential to be real interactions. MDR performs well 

across many genetic simulation scenarios where purely epistatic relationships existed 

between status and a set of variables with an absence of main effects (Ritchie, Hahn, and 

Moore 2003).  
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In the case-control data, all models including APOE were highly significant by 

the permutation test. APOE was deleted and the analysis was run again. Tags were 

chosen using the same criteria as in the family data.  

Logistic regression: To estimate single-locus effect sizes in parallel with the 

family data, effect sizes in case-control data were estimated using logistic regression 

using the major allele homozygote as the referent group (Stata Corp 2005). 

Haplotype analysis: Haplotype analyses for case-control data were performed 

using the haplo.cc and haplo.glm functions in Haplo.Stats (Schaid et al. 2002). A 3-

marker sliding window was run to identify associations among correlated sets of markers. 

Full haplotypes were tested and haplotype exposure odds ratios were estimated using the 

most frequent haplotype as the referent group. 

Bioinformatic tools: The website SNPer (Riva and Kohane 2004) and Entrez 

PubMed were used to collect information on candidate genes and genotyped markers. 

Online Inheritance in Man (OMIM) (Online Mendelian Inheritance in Man 2006) was 

used to collect information about the phenotype and candidate genes. The Alzgene 

database at www.Alzgene.org (Bertram et al. 2007) was also used to collect information 

about AD association studies. 

Multiple testing was accounted for depending on the type of analysis. MDR and 

MDR-PDT both inherently correct for the search conducted with permutation testing. 

Multiple tests of main effects were corrected using Nyholt’s method SNPSpD (Nyholt 

2004) with the modification of (Li and Ji 2005). The effective number of tests for the 47 

markers that were in both datasets was 28.9 for the founders from family data and 29.4 

for the controls from the case-control data, showing the similarity of correlation among 
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these independent samples. To commit as few type I errors as possible, the threshold for 

significance from the case-control dataset were applied to the results, to yield a threshold 

for significance of 0.0017.  

For purposes of assessing significance where two tests have been performed for 

the same null hypothesis in independent samples, we used Fisher’s method (Fisher 1950) 

to merge p-values from the same SNP in different samples. We then compared the 

merged p-value to the threshold for significance given the effective number of 

independent tests established by SNPSpD. This threshold is determined by the Sidak 

correction for multiple tests (Sidak 1967) which is slightly more liberal than the 

Bonferroni correction but provides the exact correction necessary to return the 

experiment-wise error rate to the desired level. 

 

Results 

Family data single-locus results 

For the family dataset, single-locus associations were examined with allele and 

genotype PDT statistics. These results are presented in Table 6-4. Either alleles or 

genotypes at 17 markers in 8 candidate genes were significantly associated with AD in 

the families without correction for multiple testing. Of these, only APOE survives a 

conservative Bonferroni correction for tests at all markers.  PZP SNP rs12230214 (C/G), 

a nonsynonymous L/V change located in exon 11 (allele p = 0.18, genotype p = 0.05). 

Two LRP1 SNPs, rs9669595 (A/G), located in intron 65 (allele p = 0.02, genotype p = 

0.04), and rs7956957 (G/C), located in intron 78 (allele p = 0.08, genotype p = 0.02). 

Two CTNNA3 intron 13 SNPs, rs7911820 (G/T) (allele p = 0.02, genotype p = 0.03) and 
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rs7074454 (C/T) (allele p = 0.01, genotype p = 0.02) and 1 intron 14 SNP, rs12357560 

(T/C) (allele p = 0.06, genotype p = 0.03). One LRRTM3 intron 7 SNP, rs1925617 (T/G) 

was significantly associated with AD (allele p = 0.65, genotype p = 0.01). One NCSTN 

intron 2 SNP, rs2038781 (G/C) was significantly associated (allele p = 0.05, genotype p = 

0.04). rs3832852 (ins/del), a 5-base insertion in A2M that spans the upstream splice site 

for exon 18 (allele p = 0.01, genotype p = 0.01). The APOE allele ε4 was highly 

significantly associated with AD in both allele and genotype tests (allele p < 0.001, 

genotype p < 0.001). The remaining seven markers significantly associated with disease 

at alleles and genotypes were all found in ACE. The ACE markers were: rs4291 (A/T), 

239 base pairs upstream of exon 1 (allele p = 0.02, genotype p = 0.01); rs4295 (G/C), an 

intron 2 marker (allele p = 0.07, genotype p = 0.03); rs4311 (C/T), an intron 9 marker 

(allele p = 0.1, genotype p = 0.03); rs4646994 (del/ins), a 287bp indel in intron 16 (allele 

p = 0.02, genotype p = 0.07); rs4343 (A/G), a synonymous coding SNP in exon 16 (allele 

p = 0.01, genotype p = 0.03); rs4353 (A/G), a marker in intron 19 (allele p = 0.04, 

genotype p = 0.04); and rs4978 (C/T), a synonymous coding SNP in exon 23 (allele p = 

0.01, genotype p = 0.01).  



 92

Table 6-4.  Single-locus analysis of AD candidate genes in family data 
P-Value 

2Genotype-PDT Gene rs# 
Risk 
Allele 

 
1Allele-PDT 

114 12 225 
3Global-PDT 

rs10842971 A 0.167 0.305 0.886 0.26 0.458 
rs3213831 C 0.585 0.503 0.651 0.894 0.448 

rs2277413* T 0.077 0.032 0.087 0.871 0.082 
rs3213832 T 0.216 0.215 0.216 1 0.359 

PZP 

rs12230214* G 0.182 0.066 0.05 0.663 0.085 
rs1799986 T 0.605 0.9 0.69 0.239 0.595 
rs1800127 C 0.421 0.421 0.421 1 0.421 
rs1800174 A 0.362 0.685 0.614 0.389 0.679 
rs1800181 C 0.111 0.378 0.472 0.146 0.321 
rs2075699 T 0.199 0.559 0.421 0.194 0.41 
rs1800154 C 0.071 0.164 0.855 0.198 0.298 
rs1800165 C 0.243 0.686 0.426 0.218 0.463 

rs11172124 A 0.67 0.812 0.443 0.487 0.687 
rs9669595* A 0.023 0.223 0.313 0.038 0.103 

LRP1 

rs7956957* G 0.08 0.883 0.07 0.022 0.057 
rs1786927 G 0.9 0.956 0.943 0.9 0.992 
rs2126750 A 0.095 0.103 0.87 0.287 0.281 

rs7911820* G 0.016 0.029 0.297 0.206 0.083 
rs12357560* C 0.06 0.028 0.029 1 0.041 
rs7070570 G 0.078 0.052 0.076 0.864 0.099 

rs7074454* C 0.005 0.019 0.295 0.112 0.048 
rs6480140 A 0.553 0.134 0.061 0.327 0.107 

CTNNA3 

rs997225 A 0.825 0.593 0.475 0.655 0.717 
rs1925583 T 0.763 0.585 0.634 0.928 0.355 
rs942780 G 0.054 0.096 0.368 0.237 0.19 LRRTM3 

rs1925617* T 0.652 0.01 0.001 0.092 0.001 
rs6668576 T 0.34 0.37 0.693 0.67 0.683 

rs10494342 G 0.555 0.553 0.555 1 0.792 
rs2038781* G 0.052 0.035 0.026 0.317 0.031 
rs6427515 T 0.815 0.814 0.814 1 0.964 

NCSTN 

rs4656256 G 0.396 0.425 0.535 0.726 0.683 
rs3789662 G 0.532 0.523 0.589 0.865 0.784 COG2 
rs7536290 A 0.819 0.966 0.731 0.413 0.768 
rs3789670 C 0.457 0.437 0.441 1 0.671 
rs2478545 C 0.867 0.833 0.863 1 0.976 
rs2148582 T 0.839 0.295 0.195 0.451 0.328 AGT 

rs1326886 G 0.378 0.236 0.157 0.336 0.236 
rs3832852* del 0.002 0.001 0.004 0.544 0.002 

A2M 
rs1800433 A 0.315 0.131 0.2 1 0.271 

APOE ε2, ε3, ε4* ε4 <0.001 <0.001 <0.001 <0.001 <0.001 
rs4291* A 0.015 0.012 0.1 0.392 0.038 ACE 
rs4295* G 0.068 0.028 0.054 0.864 0.058 
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rs4311* T 0.106 0.963 0.054 0.026 0.056 
rs4329 G 0.092 0.324 0.708 0.113 0.298 

rs4646994* ins 0.017 0.072 0.857 0.074 0.116 
rs4343* A 0.01 0.076 0.974 0.027 0.069 
rs4353* G 0.04 0.255 0.581 0.044 0.152 
rs4978* C 0.008 0.115 0.593 0.012 0.048 

 
1Allele-PDT- Association test for alleles 

2Genotype-PDT-Association test for genotypes, bold numbers indicate genotypes overrepresented in cases  
3Global-PDT- Global test of association for all genotypes at the locus 
4Major allele homozygote 
5Minor allele homozygote 
*Nominally significant association observed at this marker 

 

 
 

 
Figure 6-1. Odds ratio estimates of effect size from family data using conditional logistic 
regression and the correction of Siegmund et al. All estimates are for markers that were 
significantly associated with AD at alleles or genotypes in either family or case-control 
data. Estimates are for the homozygote major allele (11) as the referent group versus the 
other 2 genotypes (221, 122). 
1Homozygous minor allele vs. homozygous major allele - 22 genotype compared to 11 (referent group) 
2Heterozygote vs. homozygous major allele -12 genotype compared to 11 (referent group) 

 

 

Conditional logistic regression was run to estimate the effect sizes observed in the 

family sample among those markers that were significant at either alleles or genotypes in 
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families or case-control samples. Of note in these estimates are those estimates for 

markers that were significantly associated in the case-control sample (Table 6-5, and 

described below), thus attempting to remedy the bias encountered when effect size 

estimation and association detection are performed on the same data. The major allele 

homozygote was used as the referent group for these analyses. These results are detailed 

in Figure 6-2. APOE had a very strong effect in these data for the ε4 homozygote (OR = 

31.1 95% CI = 7.37-130) and the ε4 heterozygote (OR = 4.57 95% CI = 3.28-6.57). Other 

than APOE, seven significant single-locus genotype effects in five genes were observed 

in the family data. The PZP marker rs12230214 (OR = 1.42, 95% CI = 1.04-1.95) had a 

statistically significant effect for the CG heterozygote. Two CTNNA3 markers showed a 

significant effect: rs12357560 (OR 1.37, 95% CI = 1-1.87) for the TC heterozygote and 

rs7074454 (OR 0.69, 95% CI = 0.48-0.99) for the TC heterozygote. The LRRTM3 marker 

rs1925617 (OR 0.619, 95% CI = 0.44-0.87) had a significant effect estimated for the TG 

heterozygote. The A2M marker rs3832852 (OR = 1.81, 95% CI = 1.25-2.64) had a 

significant effect estimate for the splice site deletion heterozygote. Two markers in ACE 

had significant effect estimates. They were rs4291 (OR = 0.48, 95% CI = 0.21-1.0) for 

the A allele homozygote and (OR = 0.64, 95% CI = 0.47-0.88) for the AT heterozygote, 

and rs4295 (OR = 0.62, 95% CI = 0.45-0.85) for the GC heterozygote. 
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Table 6-5.  Single-locus analysis of AD candidate genes in case-control data 
P-value 

Gene rs# 
Minor 
Allele 

 

Minor 
Allele 

Relative 
Freq. 

1HWE 
(controls) 

 
2Allele 3Genotype 

rs10842971 T 0.316 0.278 0.231 0.184 
rs3213831 C 0.423 0.156 0.325 0.464 
rs2277413 T 0.302 0.718 0.853 0.921 
rs3213832 T 0.057 1 0.696 0.641 

PZP 

rs12230214 G 0.282 0.007 0.551 0.288 

rs16918212 A 0.1 0.462 1 0.739 
rs34362 T 0.271 0.07 0.718 0.417 A2MP 

rs17804080 T 0.098 0..311 0.919 0.458 

rs1799986 T 0.158 0.86 0.527 0.566 
rs1800127 T 0.021 0.616 0.538 0.534 
rs1800174 A 0.25 0.496 0.512 0.851 
rs1800181 T 0.241 0.151 0.502 0.779 
rs2075699 C 0.242 0.475 0.663 0.529 
rs1800154 T 0.318 0.362 0.231 0.499 
rs1800165 C 0.254 0.489 0.826 1 
rs11172124 A 0.253 0.6 0.503 0.511 
rs9669595 A 0.33 0.682 0.508 0.798 

LRP1 

rs7956957 C 0.35 0.666 0.6 0.861 

rs1786927 A 0.409 0.471 0.569 0.851 
rs2126750 A 0.348 0.528 0.205 0.439 
rs7911820 T 0.377 0.616 0.168 0.389 
rs12357560 C 0.232 0.599 0.909 0.922 
rs7070570 G 0.272 0.403 0.997 0.766 
rs7074454 C 0.375 0.679 0.149 0.356 
rs6480140* C 0.367 0.377 0.613 0.008 

CTNNA3 

rs997225* A 0.209 0.709 0.033 0.082 

rs1925583 T 0.467 0.443 0.964 0.633 
rs942780 G 0.195 0.621 0.724 0.78 LRRTM3 

rs1925617 G 0.46 0.203 0.408 0.435 

rs6668576 C 0.466 0.291 0.854 0.91 
rs10494342 G 0.053 1 1 0.917 
rs2038781 C 0.043 0.579 0.549 0.501 
rs12239747 G 0.052 1 0.707 0.928 
rs7528638 G 0.053 0.654 0.556 0.766 
rs6427515 T 0.068 0.717 0.902 1 

NCSTN 

rs4656256 G 0.19 0.363 0.054 0.123 

rs3789670 T 0.103 0.807 0.192 0.278 
COG2 

rs7536290 G 0.152 0.066 0.943 0.885 

rs3789670 T 0.103 0.807 0.192 0.278 
rs2478545 T 0.213 0.106 0.46 0.452 

rs4762 A 0.123 0.017 0.597 0.528 

AGT 

rs2148582 C 0.399 0.302 0.159 0.262 
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rs5051 T 0.394 0.219 0.128 0.253 
rs5050 G 0.163 0.043 0.471 0.299 

rs1326886 G 0.084 0.353 0.124 0.285 

A2M rs3832852 del 0.15 0.403 0.878 0.608 

APOE ε2, ε3, ε4* ε4 0.087 0.95 <0.001 <0.001 

rs4291 T 0.378 0.611 0.541 0.324 

rs4295 C 0.381 0.6 0.71 0.233 

rs4311 T 0.492 0.125 0.191 0.437 

rs4329 G 0.435 0.608 0.103 0.211 

rs4646994 ins4 0.443 0.751 0.065 0.105 

rs4343* A 0.433 0.513 0.048 0.144 

rs4353 G 0.438 0.349 0.082 0.191 

ACE 

rs4978 C 0.447 0.948 0.201 0.389 
1HWE-Hardy Weinberg Equilibrium 
2Allele-chi-square test comparing allele frequencies of Alzheimer cases to controls 
3Genotype-chi-square test comparing genotype frequencies of Alzheimer cases to controls 
4Minor allele at rs4646994 is a 287bp insertion 
*Nominally significant association observed at this marker 

 

 

Case-control data single locus results 

 The results of tests at single loci from the case-control data are in Table 6-5. 

Three markers in 2 genes significantly deviated from HWE in controls. One was the PZP 

marker rs12230214, minor allele frequency (MAF): 0.28 (p = 0.01). The AGT markers 

rs5050, MAF: 0.16 (p = 0.04) and rs4762, MAF: 0.123 (p = 0.01) also significantly 

deviated from HWE.  

Allele and genotype frequency differences among controls between males and 

females were significant at 4 markers in 4 genes. These tests were conducted to make 

observations regarding potential confounding by sex where sampling error had caused 

association of autosomal alleles and genotypes with sex in controls. Such spurious 

associations in the data might lead to confounding since there is an association between 

sex and AD.  
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PZP marker rs12230214 (allele p = 0.01, genotype p = 0.05), LRP1 marker 

rs1800127 (allele p = 0.03, genotype p = 0.03), LRRTM3 marker rs942780 (allele p = 

0.01, genotype p = 0.02), A2M marker rs3832852 (allele p = 0.01, genotype p = 0.02), all 

had significantly different frequencies by sex in controls at both alleles and genotypes. 

Each of these markers was tested separately in males and females for HWE and allele and 

genotype frequency differences between cases and controls. Among these tests, 

significant deviations from HWE were found in control females for PZP marker 

rs12230214 (p = 0.02). 

Statistically significant single-locus differences in allele or genotype frequency 

between cases and controls were observed at 3 markers in 2 genes. One marker in ACE 

was significantly associated with disease at alleles. rs4343 (A/G) MAF: 0.46, a 

synonymous SNP in exon 16 (allele p = 0.05, genotype p = 0.14). Two markers in 

CTNNA3 were significantly associated with disease. The markers rs6480140 (A/C) MAF: 

0.37, a SNP in intron 14 (allele p = 0.61, genotype p = 0.01) and rs997225 (A/G), a SNP 

in intron 10 (allele p = 0.03, genotype p = 0.08). The APOE marker MAF: 0.09, (allele p 

< 0.001, genotype p < 0.001) was very strongly associated with disease. Again only 

APOE survived a conservative Bonferroni correction for multiple tests at all loci. 

Merged results 

Merged p-values for the family and case-control single-locus tests were analyzed 

using Fisher’s method (Fisher 1950). This approach allows for the evidence against the 

null hypothesis across tests to be combined into a single statistic for each null hypothesis. 

Global p-values were used from the family-based tests on genotypes. The results of this 

analysis are presented in Table 6-6.  
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Table 6-6. Merged p-values from case-control and family data using Fisher’s method 
Gene rs # Allele  

p-value 
Genotype  
p-value 

rs10842971 0.164 0.293 
rs3213831 0.506 0.534 
rs2277413 0.245 0.271 
rs3213832 0.435 0.568 

PZP 

rs12230214 0.331 0.115 
rs1799986 0.683 0.703 
rs1800127 0.563 0.560 
rs1800174 0.498 0.895 
rs1800181 0.217 0.597 
rs2075699 0.399 0.548 
rs1800154 0.084 0.432 
rs1800165 0.523 0.820 
rs11172124 0.704 0.719 
rs9669595 0.064 0.288 

LRP1 

rs7956957 0.194 0.197 
rs1786927 0.855 0.987 
rs2126750 0.096 0.382 
rs7911820* 0.019 0.143 
rs12357560 0.213 0.162 
rs7070570 0.276 0.271 
rs7074454* 0.006 0.087 
rs6480140* 0.706 0.007 

CTNNA3 

rs997225 0.125 0.225 
rs1925583 0.961 0.560 
rs942780 0.166 0.431 LRRTM3 

rs1925617* 0.618 0.004 
rs6668576 0.649 0.917 
rs10494342 0.882 0.959 
rs2038781 0.130 0.080 
rs6427515 0.961 0.999 

NCSTN 

rs4656256 0.104 0.292 
rs3789670 0.335 0.550 

COG2 
rs7536290 0.972 0.942 
rs3789670 0.301 0.500 
rs2478545 0.765 0.802 
rs2148582 0.402 0.297 

AGT 

rs1326886 0.190 0.249 
A2M rs3832852* 0.013 0.009 

APOE ε2, ε3, ε4* <0.001 <0.001 
rs4291* 0.047 0.066 ACE 
rs4295 0.195 0.072 
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rs4311 0.099 0.115 
rs4329 0.054 0.237 

rs4646994* 0.009 0.066 
rs4343* 0.004 0.056 
rs4353* 0.022 0.132 
rs4978* 0.012 0.093 

 * Nominally significant association observed at this marker 

 

Several markers in ACE were nominally significant at alleles and trending at 

genotypes. CTNNA3 marker rs7074454 was also significant at alleles and trending at 

genotypes. A2M SNP rs3832852 was nominally significant at alleles and genotypes. 

Again, Only APOE survived a Bonferroni correction for multiple tests.  

 

 

Figure 6-2. Odds ratio effect size estimates for significant single-locus associations from 
case-control data. All estimates are for markers that were significantly associated with 
AD at alleles or genotypes in either family or case-control data. Estimates are for the 
homozygote major allele (11) as the referent group versus the other 2 genotypes (221, 
122). 
1Homozygous minor allele vs. homozygous major allele - 22 genotype compared to 11 (referent group) 
2Heterozygote vs. homozygous major allele - 12 genotype compared to 11 (referent group) 
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To estimate the effect of each significant finding from family or case-control data, 

odds ratios and 95% confidence intervals using the major allele homozygote as the 

referent group were estimated in the case-control data using logistic regression from the 

STATA statistical software package. Since the markers associating with AD did not 

significantly differ in genotype frequency by sex, no adjustment for confounding by sex 

was performed. Also, since no difference was detected between age of onset and controls, 

no adjustment for age was performed. These results are presented in Figure 6-3. Of note 

in these results are those loci which demonstrated association in the family sample. 

Significant effects were detected at APOE ε4 homozygotes (OR 16.1 95% CI = 8.6-30.2), 

APOE ε4 heterozygotes (OR 4.55 95% CI = 3.28-6.29), the CTNNA3 SNP rs997225 GA 

heterozygote (OR 1.39 95% CI = 1.02-1.89) and ACE SNP rs4343 for the minor allele 

homozygote, (OR 1.49 95% CI = 1.0-2.23). Markers in ACE were also assessed for 

confounding by hypertension status. After forcing hypertension status into the models the 

OR point estimates did not change substantially, indicating that hypertension was not a 

confounder for those variables. 

Haplotype results   

Haplotype analysis was performed across all candidate markers in pairwise LD as 

defined by a D’ of 0.95 or greater in the family data with APL using a 3-locus sliding 

window. These tests identified overlapping 3-locus haplotypes in the ACE gene that were 

significantly associated with AD in the family data set. Results of this procedure are in 

Table 6-7a. These results suggest a consistent signal of association with disease on a 

common haplotype background throughout these ACE markers. This signal is from a 

chromosome containing an array of minor alleles at each of these markers. This diffuse 
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association signal is detectable at each individual marker, but this phenomenon is also 

observed in the case-control data, which makes the family result worthy of note. Also, the 

p-values observed at these overlapping 3-locus haplotypes are smaller than those for most 

of the single-locus statistics. 
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Table 6-7a.  Significant family and case-control data haplotype association in ACE 
APL haplotypes 3-Marker Scan P-value 

Gene Markers Haplotype Relative 
Frequency Haplotype Global

rs4291 – rs4295  AG 0.495 0.383 0.672 
rs4311 – rs4329 – rs46469941 TGI 0.460 0.045 0.290 
rs4329 – rs46469941 – rs4343 GIA 0.450 0.013 0.020 
rs46469941 – rs4343 – rs4353 IAG 0.450 0.004 0.004 

ACE 

rs4343 – rs4353 – rs4978 AGC 0.450 0.003 0.020 
 1 289 base pair Alu repeat: D major allele (289bp absent), I minor allele (289bp present) 

 

 

Table 6-7a.  Significant family and case-control data haplotype association in ACE 
Haplo.stats 3-Marker Scan Relative Frequency

Gene Markers Haplotype Cases Controls OR CI P-value

rs4291 - rs4295  AG 0.65 0.61 1.13 0.89-1.45 0.338 
rs4311 - rs4329 - rs46469941 TGI 0.48 0.43 1.21 0.98-1.48 0.06 
rs4329 - rs46469941 - rs4343 GIA 0.48 0.43 1.22 1-1.49 0.046 
rs46469941 - rs4343 - rs4353 IAG 0.48 0.43 1.23 1.01-1.51 0.048 

rs4343 - rs4353 - rs4978 AGC 0.48 0.43 1.22 1.01-1.50 0.049 

ACE 

rs4311 - rs4329 - rs4646994 - rs4343 - rs4353 - rs4978 TGIAGC 0.48 0.42 1.22 1.01-1.50 0.041 
1 289 base pair Alu repeat: D major allele (289bp absent), I minor allele (289bp present) 
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In the family data, the ACE gene contained several significant markers and 

overlapping associated haplotypes. No other regions in the family sample contained 

significant haplotypes. To follow up this observation, and to validate the haplotype 

findings in ACE from the family data, the Haplo.Stats software package was used to 

estimate haplotype frequencies and test haplotype associations in ACE in case-control 

data. The results of both sets of tests in family and case-control data are presented in 

Tables 6-7a and 6-7b. A sliding window scan of the markers in ACE, analogous to that 

performed in the family data, was conducted among markers in strong LD (r2 > 0.9, D’ > 

0.95) in both datasets. This scan yielded an odds ratio and 95% confidence interval for all 

haplotypes versus the most common haplotype, and a chi-squared test for haplotype 

frequency differences between cases and controls. Every 3-locus haplotype in ACE 

between rs4311 and rs4978 had a chi-squared p-value < 0.05. The 2-locus haplotype 

including rs4291 and rs4295 was not significant in either dataset. The 6-locus haplotype 

including rs4311, rs4329, rs4646994, rs4343, rs4353, and rs4978 had an OR estimate 

very close to 1.2 and 95% confidence intervals at approximately 1.0-1.5, which was very 

similar to those estimates for the 3-locus sliding window through that region. This 

indicates that chromosomes in this area of the gene tend to be either all major or minor 

alleles with little recombination in two primary haplotypes. Also of interest is the 

similarity of haplotype frequency estimates between the family and case-control data. 

The consistent estimated susceptibility haplotype frequency and pattern of significance 

strongly suggests a main effect is present in this gene.  
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MDR-PDT results 

Having explored single-locus main effects at alleles, genotypes, and haplotypes, 

we began a search for multi-locus signals significantly associated with disease using the 

MDR-PDT in family data and MDR in case-control data. The MDR-PDT models are 

presented in Table 6-8 and Figures 6-3a and 6-3b. MDR and MDR-PDT were run with all 

markers and every model including the APOE marker was highly significant by the 

permutation test. To remove the very strong APOE signal from the data, the APOE 

marker was then removed from the data and another search for interactions was 

conducted among tags. Haplotype tag SNPs were chosen using the haploview software 

function tagger (r2 = 0.8, LOD = 3), and the best models were found by MDR and MDR-

PDT. The best two and 3-locus models from the full data without APOE contained the 

same markers as those chosen from the tag SNP data for the MDR-PDT. This indicated 

that the signal observed at these models was detected by MDR-PDT, but the known issue 

of power loss with increasing numbers of markers caused the failure to reject. No MDR 

model was significant by the permutation test. The best MDR model was a 3-locus model 

including LRP1 SNP rs1800165, PZP SNP rs3213831, and PZP SNP rs10842971 (CVC 

2/5, PE 43.41, p-value = 0.34). Two significant signals were found by MDR-PDT. The 2-

locus model included rs1925617 in LRRTM3 and rs4295 in ACE (MDR-PDT statistic p < 

0.001). The 3-locus model included rs1925617 in LRRTM3, rs4291 in ACE, and 

rs1800433 in A2M (MDR-PDT statistic p < 0.001).  
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Table 6-8.  Summary of MDR-PDT results 

# of 
Loci 

Best Model For 
Each Interaction SNPs T 

Statistic 

Classification
Accuracy 

(%) 
1 [ LRRTM3 ] rs1925617 3.32 54.32 
2 [ LRRTM3-ACE ] rs1925617-rs4291 4.49 56.89 

3 [ LRRTM3-ACE-A2M ] rs1925617-rs4291-
rs1800433 5.65 59.58 

 

 

 

 
High-Risk 

Low-Risk 
 

6-3a. MDR-PDT two locus model. Summary of multilocus interactions between LRRTM 
and, ACE. Each multifactorial cell is labeled as “high risk” or “low risk”.  For each 
multifactorial combination, empirical distributions of cases (left bar in cell) and controls 
(right bar in cell) are shown. The classification accuracy for the 2-locus model is 56.89% 
(p-value <0.001), with a t-statistic of 4.49 (p-value <0.001). 
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6-3b. Summary of multilocus interactions between LRRTM3, ACE and A2M. Each 
multifactorial cell is labeled as “high risk” or “low risk”.  For each multifactorial 
combination, empirical distributions of cases (left bar in cell) and controls (right bar in 
cell) are shown. The classification accuracy for the 3-locus model is 59.58% (p-value < 
0.001) with an MDR-PDT-statistic of 5.65 (p-value < 0.001). 
 

 

Discussion 

These results highlight the ACE gene as a risk factor in AD. In both family and 

case-control samples, significant associations were observed when considering ACE 

haplotypes. Notably in the case-control samples, only one single-locus test was 

marginally significant at rs4343 for the test on genotypes, but the haplotype tests on 

specific, overlapping sets of alleles were significant. The p-values from the family data 

haplotype analysis were also smaller than those from the single-locus analysis, suggesting 

more signal was detected when considering the entire region. This finding strongly 

indicates that a genetic background exists in ACE in the Caucasian population that is 

associated with this array of alleles and AD. This replication in both data types strongly 

supports the hypothesis that the ACE gene may harbor real risk variants for AD. 
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Some of the evidence for ACE association was found across many studies in 

recent meta-analyses of association results (Lehmann et al. 2005). Haplotype associations 

have also been previously observed in ACE for AD in five independent case-control 

samples (Kehoe et al. 2003). We observed significant haplotype association with 

different markers than those studies in case-control and family data, further supporting 

the hypothesis of association of the gene to late-onset AD. 

The ACE intron 16 I/D polymorphism, a marker in the associated haplotype, has 

been previously reported to associate with AD. This association has a plausible biological 

explanation, since ACE degrades Aβ peptide in vitro (Hu et al. 2001), and the insertion 

allele results in decreased plasma levels of the ACE protein (Hemming and Selkoe 2005; 

Rigat et al. 1990; Tiret et al. 1992).  

Overall, association results in the ACE gene for Caucasians have been 

inconsistent in past studies. In 31 case-control association studies in Caucasians with 

markers in ACE reviewed by (Bertram et al. 2007), there were 12 positive findings, 15 

negative findings and 4 trends suggesting association between ACE and AD. The sample 

sizes were larger in studies where positive associations were observed (1-sided t-test p-

value for cases = 0.04, p-value for controls = 0.03, p-value for overall sample size = 

0.02), suggesting that differential power might explain some of the previous 

inconsistency. Additionally, associations of AD with A2M have been inconsistent, where 

in Alzgene.org there have been six positive associations, two trends and 35 negative 

associations observed in case-control Caucasian samples for markers in that gene. 

However, in family data there were three positive, one trend, and two negative 

associations. Most of those studies were performed on rs3832852. There was not a 
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significant sample size difference across study outcomes for sample sizes. For CTNNA3, 

there were seven negative and two positive associations in case-control samples, but in 

family samples four of five studies found variants associating with AD. Evidence exists 

for associations at each of these genes, and interactions among them may explain some of 

the previous inconsistency.  

Interactions likely are relevant to genetic epidemiology of AD, and the MDR-

PDT represents a unique capability to search for such effects in family data. MDR, the 

analogous approach in case-control data, has been used to find several interactive effects 

for various phenotypes. MDR has been used to detect genetic interactions contributing to 

risk in several diseases. Some examples are: sporadic breast cancer (Ritchie et al. 2001), 

essential hypertension (Moore and Williams 2002; Williams et al. 2004), atrial 

fibrillation (Tsai et al. 2004), type II diabetes (Cho et al. 2004), coronary artery 

calcification (Bastone et al. 2004), myocardial infarction (Coffey et al. 2004), 

schizophrenia (Qin et al. 2005), and amyloid polyneuropathy (Soares et al. 2005). MDR-

PDT has been shown in simulation to have better power than MDR when families are 

large, as in these data (Martin et al. 2006). 

The family and case-control analyses detailed in this manuscript were conducted 

in parallel with the exception of the haplotype analysis, which was done in families and 

then on the ACE markers specifically in the case-control data. This was done to compare 

results from either dataset and produce stronger initial findings for future replication. The 

ACE haplotype results were somewhat unexpected, since the individual markers did not 

show much association signal in the case-control sample, yet the haplotype analysis 

revealed the association.  
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 Single-locus analysis in the family sample yielded many more significant results 

than in the case-control samples. The family dataset was relatively large with more than 

4,500 individuals, compared to 860 from the case-control data. More power was available 

to detect relatively subtle effects in families than in case-control samples. The estimated 

effects of associated genotypes in the family sample were similar to the estimates from 

the case-control sample for most of the interesting markers which were detected in either 

sample. This supports the reliability and generalizability of these estimated values for 

these markers. 

To maximize sensitivity, uncorrected p-values are presented, with the exception 

of MDR-PDT which adjusts within each k-locus test. All the tests performed in this 

analysis were considered significant at the 0.05 level. The rate at which significant results 

corroborate one another when the null is true is the product of the alpha levels, or for 

these analyses 0.0025, so there is some inherent protection from Type I error in this study 

design. In total, 259 tests were performed to detect association during this analysis. If the 

null hypothesis were true for every test performed, and if all tests were completely 

independent, which these are not due to LD and variable sharing among models, then the 

expectation would be 12.95 95% CI [6.08, 19.83] Type I errors throughout these results 

at the 0.05 alpha level. There are 32 p-values that are 0.05 or less from these 259 tests (z-

score = 5.44, p = 2.6x10-8), suggesting that association signals exist in these data and that 

the null hypothesis is not true at all tested variables. Five significant tests corroborated 

each other between the samples, all in ACE. This far exceeds the expectation of 0.26 such 

events across all pairs of tests. The strict assumptions of this z-score test are not met here; 
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however, neither are the assumptions of the Bonferroni correction or the false discovery 

rate procedure (Benjamini and Hochberg 1995) which assume independent tests.  

Future directions for these investigations into the mechanism underlying late-

onset AD should include further ascertainment and genotyping in the ACE gene, as well 

as functional studies targeting potential molecular etiologies involving ACE. Plasma 

levels of ACE and putative downstream targets relevant to AD should be measured to 

make observations regarding coordinate regulation, feedback systems, and continuous 

measurements further explaining this pattern of association. The presence of A2M and 

CTNNA3/LRRTM3 SNPs in the MDR-PDT model also point to Aβ accumulation as a 

factor predicting late-onset AD, as these genes all relate to Aβ clearance. Perhaps these 

variants and others related to Aβ clearance with similarly subtle effects are sufficient to 

cause disease for late-onset cases among more aged persons, whereas other more acute 

genetic lesions elsewhere, such as in the presenilins, might precipitate an earlier onset. It 

may be that we have already discovered the main causes of AD in the constellation of 

weak main effects that have been observed to date. The attributable risk of the ACE 

haplotype alone explains about 16.6% of late-onset AD cases among those exposed to the 

haplotype. For the entire Caucasian population, the population attributable risk for the 

haplotype explains about 8%, or 320,000 late-onset Alzheimer’s cases. While this 

fraction is small, it has been replicated here and elsewhere, implicating this locus as not 

only contributing modest risk, but also supporting the biological hypothesis regarding 

plasma concentrations of ACE and their relationship to Aβ concentrations. 
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CHAPTER VII 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Conclusions 

New developments in genotyping technology have provided genetic 

epidemiologists with novel tools with which to study traits. These developments were 

made without certain knowledge of how best to use platforms with hundreds of thousands 

of polymorphisms in human populations. Applying these tools effectively for mapping 

genomic locations to traits can proceed in several ways. The most conceptually 

straightforward approach is one where financial cost is not a consideration and enough 

samples are collected to provide sufficient statistical precision for current association 

methods to overcome whatever multiple testing corrections are applied to the analysis. 

Such an inelegant approach would only be available for traits that pose the most serious 

threats to public health and that were relatively common and straightforward to ascertain. 

Even under these hypothetical circumstances, some aspects of trait mapping may yet 

elude investigators. The search for epistatic disease models is an example of an analysis 

problem that poses conspicuous challenges that have not yet been thoroughly explored in 

simulation for GWA data. Haplotype association mapping is also a difficult issue, both 

for reasons of computation required and for result visualization and inference. It is for all 

these commonly acknowledged reasons that sophisticated software such as 

genomeSIMLA as presented in Chapter IV should be developed to assist in statistical 

method development. Thereby more efficient statistical methods, GWA analysis software 
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packages, study designs, and specific analytical issues can be evaluated for sampling 

properties in realistic data scenarios. Traits that might not receive such grandiose support 

as the major public health problems might become accessible to study with GWA with 

improved methodological approaches, the overall cost of human genetics studies 

decreased, and the rate of success increased. 

We observed significant association in the Alzheimer’s family and case-control 

samples at the ACE locus (Appendix Table 1). This association is commonly accepted by 

many familiar with the genetic epidemiology of Alzheimer’s disease, although without 

the strength of evidence or certainty of the APOE locus. Additionally, we observed a 

significant multilocus model including three genes involved in Aβ processing, which 

included ACE. While no biological network of genes has been directly implicated in 

Alzheimer’s susceptibility, it is likely that this pathway is important given these 

associations and the histopathological hallmarks of AD. Future studies of AD should 

continue to apply multilocus methods to accumulate evidence for networks of genes, 

rather than restricting searches to single loci.  

During the analysis of the Alzheimer’s data with MDR-PDT and MDR, a 

phenomenon occurred that demanded further study. All models that included the APOE 

locus were highly significant by the permutation test. Since it is not likely that effects at 

all these loci undergo modification in the presence of simultaneous exposure with APOE 

variants, alternative explanations were sought. Upon contemplation of this scenario and 

the structure of the null hypothesis for the permutation test for MDR and MDR-PDT, it 

became apparent that strong main effects cause rejection of the null hypothesis. Since 

these methods are designed to find interactions in particular, this lack of specificity would 



 113

cause the reporting of Type I errors in the literature with regard to finding genetic effect 

modifiers. This issue was recognized in the original MDR-PDT literature, and the means 

used to determine whether signals were the result of epistasis was to fit a regression 

model post hoc and assess the interaction term corresponding to the best model from 

MDR or MDR-PDT. We showed here with simulation that this procedure is not valid 

when both analyses are performed in the same data. We also show with simulation that 

the specificity of the MDR-PDT permutation test decreases as main effects and sample 

size increase. The solution we propose in Chapter V is to fit full and reduced regression 

models to data using constructive induction to encode genotypes as binary variables. The 

likelihood ratio statistic for the interaction term corresponding to the best model from 

MDR-PDT is recorded for comparison to the empirical null from the subsequent 

permutation test. By using this measure, the null hypothesis is changed to no interaction, 

and we show with simulation that specificity in the presence of independent main effects 

is returned to 100%. Some disadvantages of this method are that the power relative to the 

original permutation procedure is reduced, the MDR-PDT is still as liable as ever to find 

the strong main effects as the best model, and the computation time is somewhat 

increased. However, the null will not be rejected for inappropriate scenarios, which was a 

major shortcoming of the previous approach. 

 

Future Directions 

 GenomeSIMLA: The work presented here is preliminary to many future projects. 

For genomeSIMLA, some future projects are to perform a methodological comparison of 

several current GWA simulation methods. The computation time and properties of the 
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data produced would be evaluated for similarity to known human samples. The flexibility 

of trait modeling and embedded tools for data evaluation would also be a featured part of 

the comparison. Additional improvements to the algorithm would be to incorporate 

population stratification and admixture capability, population bottlenecks, new mutation, 

multiple-generation family data, more disease susceptibility loci, quantitative traits, and 

selection. We feel that the tools we have developed thus far provide a good basis from 

which to implement all these extensions. We most likely will also incorporate the 

coalescent modeling software GENOME as an optional front-end instead of the forward-

time option. This option would be named GENOMESIMLA for those who prefer 

coalescent-based simulations. The benefit of the modular design of the software we have 

developed thus far is that we can easily incorporate other approaches for use with our 

modeling and visualization capability. 

 Regression test of significance: For the regression-based hypothesis test for 

MDR-PDT, an immediate future direction is to implement the analogous methodology 

for MDR to be used with case-control data. A project that would result from that work 

would be the comparison of the MDR-logistic to FITF. In such a simulation study, 

models featuring interaction with and without main effects would be simulated in large-

scale data simulated with genomeSIMLA. We anticipate that these results will show that 

MDR-logistic has power to detect interactions with no main effects while FITF does not. 

We also anticipate that this study will show that MDR-logistic has better power than 

FITF when the number of loci in an interaction is large. The improved power for large 

models is because of the use of constructive induction to encode genotypes for regression 

with MDR-logistic and the resulting dimensionality reduction. FITF does not enjoy this 
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benefit. For instance, for an MDR-logistic model with 3 loci, there are 23, or 8, levels of 

exposure, for FITF, there are 33, or 27. For 4 locus models, there are 24, or 16, for MDR-

logistic and 34, or 81, for FITF. For large numbers of loci, we expect the power of MDR-

logistic to be superior due to the use of permutation testing. FITF uses an FDR correction 

for multiple tests that assumes all models and loci are independent. This conservative 

correction becomes more statistically inefficient relative to the permutation test as the 

search space increases. Of course, it is already known that FITF has no power to detect 

models with no main effects, a shortcoming we shall be quick to point out.  

 Some further extensions of the effect modification tests after searches for 

interactive models might be to augment methods featuring neural networks, such as 

grammatically evolving neural networks with methods which test for interaction. Also, 

other faster and more powerful methods to test for effect modification will be sought.  

 GWA analysis: Another area of interest is the analysis of GWA data. Currently, 

MDR and MDR-PDT are too slow to run permutation tests in these data. This is because 

there are 125.99 billion 2-locus models in a dataset with 500,000 markers. However, even 

if permutation testing were possible in these data, it is likely that the critical values for 

significance after such an immense search will be so extreme that there will be no power 

to reject the null in a hypothesis test without huge sample sizes. The compromise I 

propose is to simply split the data in half, run MDR on the first half to find interesting 

models, and then conduct hypothesis tests with a null of no interaction with regression in 

the other half. This may initially seem an unreasonable compromise, but it carries several 

notable advantages. The first advantage is multiple testing. Since the two samples are 

independent, there is no need to adjust the regression results for the search by MDR. If 
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only one model is tested with regression, then the parametric alpha of 0.05 could be 

applied to declare significance. Another advantage not available with the current 

permutation testing strategy is the possibility of finding multiple interactions with a 

single MDR run. If for instance the alternate hypothesis of interaction is true for several 

models, and they represent several of the top ten MDR models, then there is a good 

chance to reject these nulls at an alpha of 0.005 with even half of a moderate to large 

sample. Finally, the most important advantage to this approach is feasibility and speed. 

Currently, it takes about 4 days on 160 processors to conduct a single search for 2-locus 

models with MDR in 500 cases and 500 controls. One thousand permutations would take 

10.95 years to perform on 160 processors, and perhaps a million permutations or more 

would be a more reasonable approximation for the tails of the null distribution for such 

an immense search space. This procedure could be performed in a few days, and would 

have more power than the impossible permutation procedure. 

 Other future directions: Finally, I have interest in adapting the spectral 

decomposition methods of Nyholt to interaction searches. This method could be a means 

of circumventing permutation testing altogether. It would not be feasible for GWA data, 

but it could be useful for MDR-PDT, which has an especially slow permutation test. 

Essentially, a correlation matrix would be computed for the interaction terms for all 

possible interactions, and Nyholt’s procedure run. This should adjust the threshold for 

significance for the formal test of interaction for the entire search space by determining 

the effective number of independent tests performed, as in SNP data with LD. While not 

as statistically efficient as permutation testing, this could be done almost instantly, as 
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opposed to a permutation test which might take a week or longer. If significant, a 

permutation test would be run to obtain a more accurate estimate of significance. 

 Ultimately, methods which both simulate epistasis and detect epistasis with 

analysis will be important features of any comprehensive effort to explain genetic 

susceptibility to disease. These advances provided in this dissertation are incremental 

steps toward that goal. More efficient statistics and more advanced simulations, 

combined with sound study design and thoughtful analysis will continue to reveal the 

genes, and by extension the mechanisms that lead to complex genetic disease.  
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APPENDIX 

 

Penetrance tables 

 

 Penetrance tables in order from Table 5-1 

Table 5-1.  Models examined in the simulation study. 
Model Loci Minor allele frequency Heritability Odds Ratio

1 2 0.2 0.005 1.1 
2 2 0.2 0.01 1.26 
3 2 0.2 0.03 1.53 
4 2 0.2 0.048 1.79 
5 2 0.2 0.09 3 
6 2 0.4 0.005 1.15 
7 2 0.4 0.01 1.28 
8 2 0.4 0.03 1.56 
9 2 0.4 0.05 1.79 
10 2 0.4 0.1 2.85 
11 3 0.2 0.005 1.19 
12 3 0.2 0.01 1.36 
13 3 0.2 0.03 1.58 
14 3 0.2 0.05 2.1 
15 3 0.2 0.1 3.2 
16 3 0.4 0.005 1.21 
17 3 0.4 0.01 1.32 
18 3 0.4 0.03 1.52 
19 3 0.4 0.05 2.23 
20 3 0.4 0.12 3.5 
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Model 1 
aabb   0.151 
aabB   0.155 
aaBB   0.165 
aAbb   0.153 
aAbB   0.161 
aABB   0.082 
AAbb   0.182 
AAbB   0.046 
AABB  0.530 
 
 
 
Model 2 
aabb   0.157 
aabB   0.139 
aaBB   0.184 
aAbb   0.144 
aAbB   0.186 
aABB   0.010 
AAbb   0.136 
AAbB   0.105 
AABB  0.793 
 
 
 
Model 3 
aabb   0.514 
aabB   0.587 
aaBB   0.604 
aAbb   0.604 
aAbB   0.436 
aABB   0.369 
AAbb  0.467 
AAbB   0.643 
AABB  0.907 
 
 
 
Model 4 
aabb   0.238 
aabB   0.315 
aaBB   0.000 
aAbb   0.271 
aAbB   0.099 
aABB   0.788 
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AAbb   0.305 
AAbB   0.155 
AABB  0.000 
 
 
 
Model 5 
aabb  0.315 
aabB   0.525 
aaBB   0.183 
aAbb   0.505 
aAbB   0.066 
aABB   0.807 
AAbb   0.342 
AAbB   0.487 
AABB  0.045 
 
 
 
Model 6 
aabb   0.193 
aabB   0.205 
aaBB   0.247 
aAbb   0.203 
aAbB   0.199 
aABB   0.210 
AAbb   0.247 
AAbB   0.205 
AABB  0.103 
 
 
 
Model 7 
aabb   0.171 
aabB   0.155 
aaBB   0.105 
aAbb   0.160 
aAbB   0.152 
aABB   0.137 
AAbb   0.087 
AAbB   0.150 
AABB  0.309 
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Model 8 
aabb   0.417 
aabB   0.361 
aaBB   0.713 
aAbb   0.454 
aAbB   0.489 
aABB   0.352 
AAbb   0.488 
AAbB   0.484 
AABB  0.315 
 
 
 
Model 9 
aabb   0.201 
aabB   0.156 
aaBB   0.016 
aAbb   0.157 
aAbB   0.150 
aABB   0.131 
AAbb   0.017 
AAbB  0.131 
AABB  0.529 
 
 
 
Model 10 
aabb   0.140 
aabB   0.496 
aaBB   0.511 
aAbb   0.425 
aAbB   0.345 
aABB   0.325 
AAbb   0.724 
AAbB   0.164 
AABB  0.192 
 
 
 
Model 11 
aabbcc  0.203 
aabbcC  0.203 
aabbCC  0.283 
aabBcc  0.203 
aabBcC  0.207 
aabBCC  0.211 
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aaBBcc  0.257 
aaBBcC  0.229 
aaBBCC  0.029 
aAbbcc  0.208 
aAbbcC  0.201 
aAbbCC  0.214 
aAbBcc  0.195 
aAbBcC  0.214 
aAbBCC  0.000 
aABBcc  0.221 
aABBcC  0.065 
aABBCC  0.065 
AAbbcc  0.269 
AAbbcC  0.209 
AAbbCC  0.004 
AAbBcc  0.221 
AAbBcC  0.076 
AAbBCC  0.038 
AABBcc  0.000 
AABBcC  0.059 
AABBCC  0.050 
 
 
 
Model 12 
aabbcc  0.144 
aabbcC  0.145 
aabbCC  0.207 
aabBcc  0.146 
aabBcC  0.167 
aabBCC  0.160 
aaBBcc  0.250 
aaBBcC  0.198 
aaBBCC  0.023 
aAbbcc  0.153 
aAbbcC  0.169 
aAbbCC  0.138 
aAbBcc  0.156 
aAbBcC  0.175 
aAbBCC  0.012 
aABBcc  0.030 
aABBcC  0.000 
aABBCC  0.077 
AAbbcc  0.279 
AAbbcC  0.016 
AAbbCC  0.031 
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AAbBcc  0.134 
AAbBcC  0.030 
AAbBCC  0.119 
AABBcc  0.003 
AABBcC  0.028 
AABBCC  0.422 
 
 
 
Model 13 
aabbcc  0.452 
aabbcC  0.505 
aabbCC  0.488 
aabBcc  0.497 
aabBcC  0.322 
aabBCC  0.246 
aaBBcc  0.442 
aaBBcC  0.659 
aaBBCC  0.793 
aAbbcc  0.463 
aAbbcC  0.363 
aAbbCC  0.641 
aAbBcc  0.440 
aAbBcC  0.689 
aAbBCC  0.418 
aABBcc  0.140 
aABBcC  0.687 
aABBCC  0.583 
AAbbcc  0.566 
AAbbcC  0.292 
AAbbCC  0.225 
AAbBcc  0.377 
AAbBcC  0.650 
AAbBCC  0.116 
AABBcc  0.436 
AABBcC  0.418 
AABBCC  0.385 
 
 
 
Model 14 
aabbcc  0.153 
aabbcC  0.151 
aabbCC  0.147 
aabBcc  0.159 
aabBcC  0.095 
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aabBCC  0.261 
aaBBcc  0.000 
aaBBcC  0.758 
aaBBCC  0.006 
aAbbcc  0.158 
aAbbcC  0.104 
aAbbCC  0.189 
aAbBcc  0.129 
aAbBcC  0.347 
aAbBCC  0.016 
aABBcc  0.002 
aABBcC  0.002 
aABBCC  0.002 
AAbbcc  0.331 
AAbbcC  0.003 
AAbbCC  0.000 
AAbBcc  0.083 
AAbBcC  0.004 
AAbBCC  0.037 
AABBcc  0.010 
AABBcC  0.009 
AABBCC  0.032 
 
 
 
Model 15 
aabbcc  0.418 
aabbcC  0.570 
aabbCC  0.231 
aabBcc  0.297 
aabBcC  0.426 
aabBCC  0.722 
aaBBcc  0.259 
aaBBcC  0.791 
aaBBCC  0.707 
aAbbcc  0.533 
aAbbcC  0.033 
aAbbCC  0.430 
aAbBcc  0.532 
aAbBcC  0.557 
aAbBCC  0.536 
aABBcc  0.487 
aABBcC  0.249 
aABBCC  0.192 
AAbbcc  0.202 
AAbbcC  0.589 
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AAbbCC  0.433 
AAbBcc  0.858 
AAbBcC  0.154 
AAbBCC  0.623 
AABBcc  0.292 
AABBcC  0.258 
AABBCC  0.316 
 
 
 
Model 16 
aabbcc  0.176 
aabbcC  0.175 
aabbCC  0.152 
aabBcc  0.184 
aabBcC  0.174 
aabBCC  0.188 
aaBBcc  0.173 
aaBBcC  0.186 
aaBBCC  0.092 
aAbbcc  0.177 
aAbbcC  0.181 
aAbbCC  0.169 
aAbBcc  0.181 
aAbBcC  0.173 
aAbBCC  0.179 
aABBcc  0.186 
aABBcC  0.172 
aABBCC  0.158 
AAbbcc  0.181 
AAbbcC  0.182 
AAbbCC  0.119 
AAbBcc  0.168 
AAbBcC  0.184 
AAbBCC  0.170 
AABBcc  0.110 
AABBcC  0.168 
AABBCC  0.544 
 
 
 
Model 17 
aabbcc  0.156 
aabbcC  0.157 
aabbCC  0.133 
aabBcc  0.149 
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aabBcC  0.149 
aabBCC  0.157 
aaBBcc  0.149 
aaBBcC  0.151 
aaBBCC  0.114 
aAbbcc  0.165 
aAbbcC  0.142 
aAbbCC  0.143 
aAbBcc  0.155 
aAbBcC  0.164 
aAbBCC  0.140 
aABBcc  0.124 
aABBcC  0.132 
aABBCC  0.141 
AAbbcc  0.158 
AAbbcC  0.147 
AAbbCC  0.123 
AAbBcc  0.132 
AAbBcC  0.141 
AAbBCC  0.084 
AABBcc  0.108 
AABBcC  0.149 
AABBCC  0.704 
 
 
 
Model 18 
aabbcc  0.519 
aabbcC  0.419 
aabbCC  0.467 
aabBcc  0.726 
aabBcC  0.519 
aabBCC  0.414 
aaBBcc  0.499 
aaBBcC  0.372 
aaBBCC  0.689 
aAbbcc  0.305 
aAbbcC  0.678 
aAbbCC  0.541 
aAbBcc  0.506 
aAbBcC  0.476 
aAbBCC  0.627 
aABBcc  0.425 
aABBcC  0.643 
aABBCC  0.441 
AAbbcc  0.786 
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AAbbcC  0.519 
AAbbCC  0.624 
AAbBcc  0.472 
AAbBcC  0.420 
AAbBCC  0.238 
AABBcc  0.519 
AABBcC  0.569 
AABBCC  0.802 
 
 
 
Model 19 
aabbcc  0.383 
aabbcC  0.659 
aabbCC  0.449 
aabBcc  0.602 
aabBcC  0.233 
aabBCC  0.485 
aaBBcc  0.457 
aaBBcC  0.756 
aaBBCC  0.222 
aAbbcc  0.635 
aAbbcC  0.249 
aAbbCC  0.374 
aAbBcc  0.517 
aAbBcC  0.641 
aAbBCC  0.411 
aABBcc  0.154 
aABBcC  0.475 
aABBCC  0.531 
AAbbcc  0.510 
AAbbcC  0.560 
AAbbCC  0.657 
AAbBcc  0.189 
AAbBcC  0.346 
AAbBCC  0.864 
AABBcc  0.387 
AABBcC  0.747 
AABBCC  0.597 
 
 
 
Model 20 
aabbcc  0.198 
aabbcC  0.712 
aabbCC  0.719 
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aabBcc  0.455 
aabBcC  0.312 
aabBCC  0.431 
aaBBcc  0.094 
aaBBcC  0.360 
aaBBCC  0.746 
aAbbcc  0.483 
aAbbcC  0.273 
aAbbCC  0.387 
aAbBcc  0.527 
aAbBcC  0.514 
aAbBCC  0.294 
aABBcc  0.523 
aABBcC  0.403 
aABBCC  0.019 
AAbbcc  0.639 
AAbbcC  0.105 
AAbbCC  0.580 
AAbBcc  0.213 
AAbBcC  0.440 
AAbBCC  0.386 
AABBcc  0.701 
AABBcC  0.877 
AABBCC  0.626 
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Appendix Table 1. Significant associations observed in Chapter VI 
Gene rs number risk 

allele 
family 
allele 

family 
genotype 

CC 
allele 

CC 
genotype 

Fisher's 
allele 

Fisher's 
genotype 

PZP rs2277413* T 0.077 0.082 - - - - 
PZP rs12230214* G 0.182 0.085 - - - - 

LRP1 rs9669595* A 0.023 0.103 - - - - 
LRP1 rs7956957* G 0.08 0.057 - - - - 

CTTNA3 rs7911820* G 0.016 0.083 - - - - 
CTTNA3 rs12357560* C 0.06 0.041 - - - - 
CTTNA3 rs7074454*† C 0.005 0.048 - - 0.006 0.087 
CTTNA3 rs6480140§† C - - 0.613 0.008 0.706 0.007 
CTTNA3 rs997225§ A - - 0.033 0.082 - - 
LRRTM3 rs1925617*‡† T 0.652 0.001 - - 0.618 0.004 
NCSTN rs2038781* G 0.052 0.031 - - - - 

A2M rs1800433‡ A - - - - - - 
A2M rs3832852*† del 0.002 0.002 - - 0.013 0.009 

APOE ε2, ε3, ε4*† ε4 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
ACE rs4291*‡ A 0.015 0.038 - - - - 
ACE rs4295* G 0.068 0.058 - - - - 
ACE rs4311* T 0.106 0.056 - - - - 
ACE rs4646994*† ins 0.017 0.116 - - 0.009 0.066 
ACE rs4343*§† A 0.01 0.069 0.048 0.144 0.004 0.056 
ACE rs4353*† G 0.04 0.152 - - 0.022 0.132 
ACE rs4978*† C 0.008 0.048 - - 0.012 0.093 

*Significant at alleles or genotypes in family sample 
§Significant at alleles or genotypes in case-control sample 
‡Part of Significant MDR-PDT models 
†Significant by Fisher’s merged p-value statistic
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