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CHAPTER 1 

Introduction 

1.1 Motivation 

 

Each year, an estimated 300,000 new cases of breast cancer are diagnosed (1).  Fortunately, 

many new molecularly specific, effective treatments are available for these patients. However, 

clinical selections of the most efficacious drug regimen for an individual breast tumor remain 

rather arbitrary, based on static measurements of the presence or absence of several biomarkers, 

including the estrogen receptor (ER) and the human epidermal growth factor receptor 2 (HER2) 

in the diagnostic biopsy. Furthermore, therapy effectiveness is most commonly determined by 

tumor size regression, or growth in the case of ineffective treatments. Therefore, treatments may 

not be identified as ineffective until weeks or months after treatment is initiated. Due to the 

heterogeneity of tumor genotype and phenotype, sub-populations of cells, innately within the 

original tumor or arising as a result of treatment, can cause therapy relapse (2). A technology 

capable of quickly and accurately predicting and monitoring therapy effectiveness is imperative 

for guiding therapeutic decisions, especially as additional drugs are approved for clinical use.   

This dissertation develops a light-based technology, optical metabolic imaging (OMI), for 

monitoring metabolism changes due to anti-cancer therapy and for predicting tumor response to 

anti-cancer therapy.  Current methods, such as palpation, fluorodeoxyglucose positron emission 

tomography (FDG-PET), magnetic resonance imaging (MRI), and ultra-sound size 

measurements to assess therapeutic response lack the resolution and/or sensitivity to provide 

accurate measures of response (3-7).  OMI measures the fluorescence intensity and lifetime of 

intrinsic cellular metabolism coenzymes, nicotinamide adenine dinucleotide (NADH) and flavin 

adenine dinucleotide (FAD), which provide a robust measure of cellular metabolism (8, 9).  
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Furthermore, OMI is high-resolution and non-invasive, which allows longitudinal studies of tumor 

heterogeneity.   

Preliminary (Appendix C) and early studies (Chapters 3-4) demonstrated the unique 

sensitivity of OMI to drug-induced metabolism changes.  Therefore, an organoid-based platform 

was developed to enable high-throughput screening of drug response. Organoids are 

macrosuspensions derived from primary tumors and contain all the innate cells and 

microenvironment of the tumor (10, 11).  Therefore, organoids are an attractive, relevant platform 

to test drug response.  The second part of this dissertation (Chapters 5-6, Appendices 4-5) 

characterizes OMI in excised tissues and organoids, and robustly validates an organoid-OMI 

screen for predicting drug response for breast cancer patients.   

1.2 Specific Aims  

The objectives of this dissertation are to fully characterize OMI endpoints and OMI 

analysis, develop OMI for monitoring anti-cancer drug-induced cellular metabolism changes in 

vivo, and demonstrate feasibility of an organoid-OMI technology for clinical translation.    

Aim 1: Characterize subpopulation analysis of OMI data to quantify heterogeneous 

cell populations.  Tumor heterogeneity contributes to therapy resistance; and this aim develops 

OMI analysis techniques to identify and quantify heterogeneity within OMI data.  Subpopulation 

analysis (SPA) techniques were developed to quantify heterogeneous cell populations within OMI 

data. OMI-SPA was characterized by simulation experiments and validated with cell co-culture 

experiments. Generic simulation experiments characterized the relationships between sample size, 

data standard deviation, and subpopulation mean separation distance required for OMI-SPA to 

identify subpopulations. 
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Aim 2: Determine the sensitivity of OMI to breast cancer subtypes and therapeutic 

response in vitro and validate OMI measures of response in human breast cancer xenografts 

in vivo. OMI endpoints, redox ratio, mean NADH lifetime, and mean FAD lifetime, were analyzed 

across a panel of breast cancer cells, including ER+, HER2+, and triple negative, and validated 

with assays of cellular metabolism. Responsive and resistant cells were treated with the clinically 

used HER2-inhibitor trastuzumab, to determine OMI sensitivity to therapeutic response.  

Additionally, OMI variables were analyzed to assess statistical correlation or independence with 

other OMI variables and biochemical assays of cellular metabolism.  In vivo OMI was also 

performed on xenograft models of HER2 overexpressing breast cancers responsive, resistant, and 

partially responsive to the HER2 inhibitor, trastuzumab.  In vivo OMI endpoints of response were 

compared to current clinical measures (FDG-PET). Tumor size and immunohistochemical (IHC) 

endpoints (proliferation, cell death) served as gold standards of drug response.  

Aim 3: Characterize OMI endpoints in excised tissues.  There are many challenges to 

in vivo OMI measurements.  However, freshly excised or frozen tissues are more accessible, can 

be obtained during routine medical procedures, and enable OMI technologies to be implemented 

remotely.  This aim compares OMI endpoints of tissue in vivo, excised tissue over 48hr, and flash-

frozen and thawed tissues, in order to determine if excised or frozen tissues can be used when in 

vivo experiments are not feasible. 

Aim 4:  Validate organoid-OMI measured tumor response with in vivo OMI in human 

breast cancer xenografts and compare organoid-OMI measured tumor response with 

measures of response in human breast cancers. Organoid culture of primary human tumor tissue 

is an attractive platform for testing and predicting drug response.  Organoids contain all the original 

cells and microenvironment of the original tumor and therefore, may respond to treatments in a 
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similar manner.  In this aim, organoids were generated from two xenograft models of breast cancer, 

one responsive and one resistant to trastuzumab.  The organoids were treated with a panel of anti-

cancer drugs and imaged over a 72hr time course.  Organoid response to the drugs was assessed 

from the OMI index, a combination variable of individual OMI endpoints. Organoid-OMI 

response was compared to in vivo drug response of the breast cancer xenografts, as measured by 

changes in tumor size, and to gold standard IHC.  Heterogeneity of drug response was assessed by 

subpopulation analysis of the OMI index. Additionally, feasibility for growing organoids from 

primary, human breast tumor biopsies was demonstrated.  Organoids were generated from six 

primary human tumors and were treated with clinically relevant anti-cancer drugs. OMI was 

performed on the organoids over a 72hr time course and OMI data was analyzed to identify 

heterogeneity in response.  OMI measured response was compared to measurements of cell death 

and proliferation within the organoids after 72hr of drug treatment.   

1.3 Dissertation Outline 

This dissertation has been organized in the following manner: 

Chapter 1 is the introduction and provides the motivation behind the research and outlines 

the specific aims that are addressed.  Chapter 1 also includes a brief summary of the chapters. 

Chapter 2 provides background information on breast cancer and breast cancer treatment 

strategies, cellular metabolism, and optical technologies.  In particular, fluorescence lifetime 

imaging is discussed.   

Chapter 3 reports and fully characterizes the subpopulation analysis technique developed 

for identifying heterogeneity in cell populations of OMI data.  This work presents specific and 

generalized simulation experiments to demonstrate the limits of the subpopulation analysis 
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technique.  Additionally, the technique is tested on experimental data of two co-culture cells lines.  

This work was published in 2015 in Biomedical Optics Express (12). 

Chapter 4 contains the cell line and in vivo OMI experiments which characterized the OMI 

technology and demonstrated different metabolic profiles in trastuzumab responsive and resistant 

cells upon treatment with trastuzumab.  First, this chapter provides the results of a cyanide 

experiment which validate the imaging of NADH and FAD, two co-enzymes of metabolism.  This 

chapter also reports the basal OMI endpoints of a panel of cell lines.  Finally, this chapter explores 

changes in OMI endpoints when responsive and resistant cells are exposed to the anti-HER2 

antibody, trastuzumab.  In vivo xenograft experiments of three different models confirm the cell 

line results.  Furthermore, FDG-PET was performed on a parallel cohort of mice to directly 

compare OMI measured drug response with a clinically used technology.  This work was published 

in 2013 in Cancer Research (13).  

Chapter 5 demonstrates the stability of OMI endpoints in freshly excised and frozen tissues.  

Performed on the hamster cheek pouch model, this work quantifies the timeline for obtaining OMI 

measurements in freshly excised tissues before significant changes in metabolism occur.  This 

work was published in 2012 in the Journal of Biomedical Optics (14). 

 Chapter 6 reports the OMI-organoid experiment results.  First, OMI-organoid drug 

response was tested in two xenograft models and the OMI-predicted drug response correlated with 

in vivo tumor growth.   Next, feasibility with organoid generation and OMI-measurements was 

shown for 6 different primary human breast cancer samples.  This work also demonstrates the 

utility of single-cell analysis and sub-population modeling techniques to identify heterogeneity in 

cellular metabolism following drug treatment.  This work was published in 2014 in Cancer 

Research (15). 
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 Chapter 7 provides a summary of the major results and objectives of this dissertation.  The 

impact of this research is also discussed and several future directions are recommended.  Finally, 

Chapter 7 also contains a discussion of this work’s contribution to the field and societal impact. 

 Appendix A contains supplementary tables and figures for Chapter 3.  

 Appendix B contains supplementary tables and figures for Chapter 4. 

 Appendix C reports a preliminary study in which the optical redox ratio was explored in 

ER and HER2 overexpressing breast cancer cell lines.  In this study, the NADH and FAD 

fluorescence was obtained on a confocal fluorescence microscope.  This work was published in 

2012 in Biomedical Optics Express (16).  

 Appendix D contains the image analysis protocol that was developed to automatically 

segment NADH and FAD autofluorescence images into individual nucleus, cytoplasm, and cell 

regions.  This enabled fast processing of OMI data sets and heterogeneity analysis of single-cell 

data.  This work was published in 2014 as an SPIE Proceedings paper (17).   

Appendix E explores the use of frozen tissues to generate organoids.  These experiments 

compare two different freezing protocols, flash freezing in liquid nitrogen and slow freezing in 

DMSO, for the preservation of bulk tissues for subsequent thawing, organoid generation, and OMI 

measures of drug response.  This work is currently in preparation for publication. 

 Appendix F reports changes in collagen content and organization due to trastuzumab 

treatment in two xenograft models, one resistant and one responsive to trastuzumab.  Collagen can 

be imaged with second harmonic generation imaging which provides high resolution images of 

collagen fibers which can be quantitatively assessed for collagen density and alignment.  This work 

was published in 2015 in Journal of Biomedical Optics (18). 
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CHAPTER 2 

Background 

2.1 Clinical Problem: Treatment Selection in Breast Cancer 

Introduction 

Each year, approximately 300,000 new cases of breast cancer are discovered and 

approximately 40,000 women die from breast cancer (1).  While primary breast cancer tumors are 

usually painless and have relatively few major complications, the tumors can metastasize and travel 

throughout the body, causing malignant tumors in essential organs which can result in death.  The 

probability of death from breast cancer varies widely across patients with differing tumor size, 

estrogen receptor status, and age of diagnosis (2).  Breast cancer treatment and prognosis are greatly 

correlated with tumor expression of certain receptors, such as the estrogen receptor (ER) and the 

human epidermal growth factor receptor 2 (HER2).   

Due to the wide range of genetic mutations and phenotypes present in cancers, a host of 

drugs are available and in development for targeted therapeutic action.  Yet, few biomarkers exist 

to direct drug selection.  Often, patients are prescribed a fixed drug regimen and tumor response 

(based on tumor size) is determined weeks or months after treatment begins. Clinical treatment 

decisions and pre-clinical drug development studies would greatly benefit from the development 

of robust biomarkers of tumor response. 

Risk Factors 

 Breast cancer can occur in both genders; however, it is more prevalent in women than men 

(3).   Genetic, hormonal, and dietary factors are thought to contribute to the likelihood of the 

development of breast cancer (4).  Additional risk factors include age, ethnicity, and environmental 

factors, such as exposure to radiation (1).   
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Breast cancer can be caused by genetic mutations.  Five to ten percent of all women with 

breast cancer have a mutation of the BRCA-1 and BRCA-2 genes (5).  Individuals with either but not 

both mutations do not have an increased incidence of  breast cancer (5).  The estimated lifetime risk 

of developing breast cancer for women with both mutations is estimated between 40-85% (5). 

   

 

Figure 2.1: Breast Cancer Incidence.  Incidence of American women with breast 

cancer across five ethnic groups: whites, Hispanics, African Americans, 

Asians/Pacific Islanders, and American Indians/Alaskan Natives (1). 

 

 Breast cancer incidence and mortality rates are linked with ethnicity (Fig. 2.1).  According to 

reports from the National Cancer Institute, white American women have the highest incidence of 

breast cancer.  However, African-American women have the highest mortality rates from breast 

cancer.  Incidence and mortality of breast cancer is lowest in Hispanics, Asians/Pacific Islanders, and 

American Indians/Alaskan Natives (1). 
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Diagnosis 

 The diagnostic process for breast cancer has evolved to include many procedures and imaging 

modalities.  The initial suspicious lump is generally discovered by the patient or doctor during a 

physical examination (3).  Symptoms of breast cancer include presence of a lump or thickening of the 

breast, change in the size or shape of the breast, changes in the skin of the breast, and fluid discharge 

(6).  Usually the lump is painless, but on retrospect, the patient may remember mild discomfort from 

the area (3).   

 Several imaging modalities are used to detect lumps in the breast that are too small to be found 

in a physical exam.  A mammogram is an x-ray image of the breast tissue which can show lumps and 

calcified tissues (6).  Due to increased rates of survival and treatment outcomes with early cancer 

detection, women over 40 are encouraged to annual mammogram screenings for breast cancer (1). 

An ultrasound can be used to determine whether the lump is solid or fluid filled (6).  MRI images are 

also used to distinguish normal breast tissue from benign lesions (6).    

Fine needle aspiration and core needle biopsy procedures extract cells of suspicious lumps for 

histological analysis.  In fine-needle aspiration, a needle is used to extract a small amount of liquid 

from the cyst or lump to determine the pathology of the suspicious lesion (3).  Fine-needle aspiration 

is performed on large tumors and fluid filled tumors.  A core needle biopsy is used to extract cells of 

lesions for histological analysis (3).  Open surgical biopsy can also be performed if the lump is too 

small for the needle biopsies or if the needle biopsies are inconclusive (3).  

 Histopathology of the biopsied tissue provides characterization of the tumor and guides 

therapy selection.  Pathologists inspect the cells for the presence of abnormal or cancerous cells.  The 

biopsied cells are also stained for expression of ER and HER2 to determine if the patient is eligible 

for targeted therapies.   
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Common Breast Cancers 

 A carcinoma is a malignant tumor derived from epithelial cells (3).  In breast tissue, epithelial 

cells line the ducts, acini, or lobules which are the locations where breast cancer can develop (3).  

When examined microscopically, cancer cells exhibit changes within the cell different from normal 

epithelial cells (3).   When viewed macroscopically, the changes within the cells cause alterations in 

the arrangement of cells in relation to each other leading to the tumor appearance (3).  Breast cancer 

can be divided into two main categories: in situ carcinoma (Fig. 2.2) and invasive carcinoma (Fig. 

2.3).  In situ carcinoma is where the proliferating, malignant cells are confined by the basement 

membrane surrounding the ducts.  Between 1 and 5% of breast cancer cases are independent in situ 

carcinoma (4). Invasive carcinomas are cases where the proliferating cells invade the breast stroma 

and tissue spaces (3).   

 

   

 

Figure 2.2: Carcinoma In Situ. In ductal carcinoma in 

situ, diseased tumor cells are confined by the duct (6). 
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Figure 2.3: Invasive Carcinoma.  Invasive 

carcinoma cells outgrow the duct and spread into the 

surrounding tissue (6). 

 

 

2.2 Role of Receptors in Breast Cancer 

Estrogen Receptor (ER) 

 

 The estrogen receptor (ER) has several functions in breast cancer tumors.  The ER can act as 

a transcription factor.  In this pathway, estrogen binds to the ER causing it to phosphorylate, which 

dissociates several attached proteins such as heat shock protein 90 (HSP-90), resulting in an ER with 

a different conformation in an active form (7).  The activated ER binds with other factors, co-

activators or co-repressors, in the nucleus to moderate gene transcription (7).  ER can also activate 

non-genomic pathways in the cytoplasm.  In one example, the activated ER activates the mitogen-

activated protein kinase pathway (MAPK) which increases cellular metabolism and promotes cell 

growth (7).  Hormonal therapies, such as tamoxifen, bind ER without activating it, reducing the 

oncogenic effects of ER signaling. 

Human Epidermal Growth Factor Receptor 2 (HER2) 

 HER2 is overexpressed in approximately 30% of primary breast cancer tumors and is 

associated with more aggressive tumors, increased recurrence, and poor patient outcomes (8).  HER2 



14 

 

is commonly expressed in breast tissue, including non-cancerous cells; thus, overexpression beyond 

the basal expression of normal tissue is clinically monitored.  Breast tumors are tested for HER2 

overexpression by fluorescence in situ hybridization which labels copies of the HER2 gene with 

fluorescence tags (9).  The HER2 pathway is thought to activate PI3K, a major driver of cellular 

metabolism (Fig. 2.4).  HER2 inhibitors prolong survival in responsive patients by impairing the 

oncogenic effects of HER2 signaling (10). 

 

Figure 2.4: HER2 and PI3K Pathway. HER2 pathway activation 

activates PI3K and AKT (11). 

 

 

2.3 Current Breast Cancer Treatments 

 Treatments for breast cancer include surgical intervention, chemotherapy, radiation, and 

targeted therapeutics.  Often, breast cancer treatment involves a multimodal approach, using several 

different therapies to combat different aspects of the disease.  Age, menopausal state, disease stage, 

histology, and receptor expression influence the selection of therapy to optimize treatment to each 

specific cancer.   

 Traditionally, mastectomy was the most common surgical intervention and treatment of breast 

cancers (12).  Mastectomy was preferred because other surgical interventions, such as lumpectomies, 
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had a high recurrence, 25-50% while only 1-2% of mastectomy patients had recurrence; however 

lumpectomy procedures have greatly improved (12).  Surgical management for malignant breast 

cancers is frequently paired with radiation therapy, chemotherapy, and targeted therapies.    During 

surgery, lymph nodes are removed and dissected to determine whether metastases from the breast 

cancer tumors have migrated to the lymph nodes and throughout the body.   

 The treatment of inoperable late-stage or inflammatory breast cancer is a similar multimodal 

approach.  A biopsy first provides histology of the breast cancer revealing ER status, progesterone 

receptor status, and HER2 status.  Radiation, hormonal, and chemotherapy treatments are attempted 

initially (13).  Upon favorable prognosis with the initial therapy, surgery may be performed (13).  

Stage IV, recurrent, and metastatic breast cancer is combated with a variety of surgical, radiation, and 

hormonal therapies.   

 In addition to surgical interventions, chemotherapy and radiation therapy are often utilized to 

combat breast cancer.  Radiation therapy uses high-energy electromagnetic radiation to kill cancer 

cells.  Radiation therapy is often used in conjunction with breast conserving surgeries, lumpectomy, 

because this combination has the same outcomes as mastectomy (14, 15).  Systemic chemotherapy 

may also be used to target local and metastatic breast cancer.  Chemotherapy is often used in 

combination with other agents, additional chemotherapy drugs, hormonal agents, or targeted drugs. 

Targeted Breast Cancer Therapies 

 

Recent breast cancer research has focused on therapeutic agents targeting specific 

pathways within the cancerous cell.  Breast cancers expressing ER are often treated with 

tamoxifen, an ER antagonist.  Breast tumors which overexpress HER2 display more aggressive 

cancer progression (8). Trastuzumab and lapatinib, two therapeutic agents that inhibit HER2, 

prolong survival in patients with HER2-overexpressing breast cancers.   
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Recent studies have proven that tamoxifen is an effective hormonal drug for the systemic 

treatment of breast cancer (16).  Tamoxifen prevents estrogen from binding to breast cancer cells, 

preventing the activation of ER.  An analysis of 80,273 women in 71 trials of tamoxifen found that 

after five years, the death rate by breast cancer was reduced by 31% (16).  In this trial, worse outcomes 

were associated with ER-negative receptor status and a longer duration of treatment (16).  Current 

recommendations are that tamoxifen treatment be terminated after five years due to the development 

of tamoxifen resistant tumors (17, 18).   Tamoxifen can be an advantageous anti-cancer agent for 

breast cancer cases of ER-positive tumors.  Currently several aromatase inhibitors are in clinical trials 

as possible alternatives to tamoxifen (13).   

Breast cancers that overexpress HER2 are treated with HER2 inhibitors such trastuzumab and 

lapatinib.  A high concentration of HER2 receptors expressed by breast cancer cells is associated with 

increased tumor progression and metastases (9).   Trastuzumab is a monoclonal antibody that binds 

HER2, while lapatinib is a small molecular inhibitor which binds both HER2 and the epridermal 

growth factor receptor.  Both trastuzumab and lapatinib prolong survival in patients with HER2 

overexpressing breast cancers (19-21).  Trastuzmab specifically binds to the extracellular domain of 

HER2 and prevents activation of the intracellular HER2 tyrosine kinase.  Furthermore, trastuzumab 

has additional mechanisms of action, including blockade of HER2 dimerization, increased HER2 

endocytosis and degradation, and induction of antibody-dependent cellular cytotoxicity (ADCC) (22, 

23). Trastuzumab induces cytostatic effects by arresting the cell cycle in the G1 phase and inhibits 

signaling involved in cell survival (24, 25).   Lapatinib is a small molecule inhibitor which binds 

HER2 and prevents the formation of activated HER2 dimers, preventing the activation of the HER2 

cascade and reducing the oncogenic effects of HER2 signaling (19).   
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Due to the importance of choosing the correct treatment for breast cancer patients, tumor 

biopsies are screened for hormone receptors.  Currently, malignancy, ER, and HER2 expression is 

determined by histology staining and fluorescence in situ hybridization (FISH) of the biopsy 

specimen.  Treatment plans are determined based on the stage and size of the tumor and presence 

or absence of ER and HER2. 

2.4 Tumor Heterogeneity and Resistance 

Another factor influencing treatment decisions and ultimately limiting the clinical outcome 

of breast cancers is resistance to chemotherapy and targeted therapies.  Only 57% of patients with 

ER-positive breast cancers respond to tamoxifen therapy (26).  Similarly, approximately one-third 

of breast tumors that overexpress HER2 do not respond to trastuzumab and lapatinib therapy (21), 

and about 40% of patients do not respond to paclitaxel, a chemotherapy (27).  Resistance to 

therapies can be innate or acquired. 

Drug resistance by tumors may arise from subpopulations of cancer cells within the tumor 

that are resistant to the given treatment (28, 29).  These subpopulations of cells are inherent to 

tumors due to the highly mutagenic nature of cancer (28).  In this model, individual cells with 

differing genotypes can arise within tumors and lead to sub-populations of cells that express 

different oncogenic transformations, possibly respond differently to therapies, and can repopulate 

the tumor (Fig. 2.5).  However, recent research has demonstrated varying behaviors among tumors 

with identical genes, suggesting that cancer cell behavior is influenced by more than just genetic 

mutations (30).  Novel therapeutics are in development to overcome clinical resistance to these 

therapeutic inhibitors (10).  Early identification of the tumors that will respond to targeted therapies 

versus those that are resistant, will expedite clinical decisions regarding course of treatment, and 

will improve the clinical outcomes of breast cancer patients.  
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Figure 2.5. Theories of tumor heterogeneity. (29) 

 
Alternative Treatment Options for Resistant Tumors 

If a tumor is resistant to traditional therapies, patient treatment can be tailored to improve 

clinical outcome. For example, the patient can receive more aggressive surgical intervention and 

experimental drugs and drug combinations. Many new drugs, including HER3, mTOR, and PI3K 

inhibitors, are in development to overcome therapy resistance (31-39).   

In HER2 overexpressing cancers, possible mechanisms to overcome trastuzumab 

resistance include inhibition of down-stream effectors of HER2 that may be activated, even in the 

absence of HER2 signaling.  For example, HER2 signaling activates PI3K/Akt/mTOR, which 

regulates cellular glucose metabolism (31). In a tumor with HER2-overexpression, mutations 

within the PI3K signaling pathway can allow continued PI3K activation even when HER2 is 

inhibited by trastuzumab or lapatinib (31, 33, 37). In this way, a heterogeneous tumor may contain 

subpopulations of tumor cells with varying levels of response to HER2 inhibition. Indeed, efforts 



19 

 

to overcome HER2 inhibitor resistance include combined therapy of HER2 inhibitors with PI3K 

inhibitors (31, 37).  Combined treatment to target HER2 and PI3K may increase therapy efficacy 

and decrease tumor recurrence.  Similarly, HER3 can dimerize with HER2 to produce similar 

signaling effects within cells; therefore, HER3 inhibitors are being explored for combined 

treatment with trastuzumab (31).   

2.5 Cellular Metabolism  

Introduction to Cellular Metabolism 

 Cellular metabolism encompasses the biochemical processes within a cell which generate 

energy.  Typically, these processes are broadly categorized into aerobic and anaerobic respiration.  

In mammalian cells, anaerobic respiration includes glycolysis, the breakdown of glucose into 

pyruvate, which occurs without oxygen in the cytoplasm.  Aerobic respiration includes oxidative 

phosphorylation, the citric acid cycle, and the electron transport chain.  These processes occur in 

the mitochondria and require oxygen.  Nicotinamide adenine dinucleotide (NADH) and flavin 

adenine dinucleotide (FAD) are coenzymes that serve as electron carriers during cellular 

metabolism processes (Fig. 2.6) (40). 
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Figure 2.6: Cellular respiration and the roles of NADH and FAD. 

Motivation for Using Cellular Metabolism as a Measure of Tumor Response to Therapy 

Cancer cells often exhibit abnormal cellular metabolism.  Unlike normal cells that rely on 

oxidative phosphorylation to generate ATP, or that use glycolysis under anaerobic conditions, 

cancer cells often generate ATP through aerobic glycolysis (41).  This observation is generally 

expressed as the Warburg effect.  Interestingly, oncogenic protein signaling in breast cancer cells 

often drives metabolism processes.  
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Figure 2.7: Role of HER2 in cellular metabolism. HER2 activation pathway and effect on 

cellular metabolism through PI3K in anti-HER2 drug sensitive and resistant cells. (42) 

 
Many up-regulated oncogenes, including ER and HER2, directly affect or activate down-

stream regulators of cellular metabolism pathways.  ER regulates gene expression of glucose 

transporter proteins and proteins involved in oxidative phosphorylation and the citric acid cycle 

such as isocitrate dehydrogenase which actively reduces NAD+ to NADH (43-46).  HER2 mediates 

metabolism through signaling of the PI3K/AKT/mTOR pathway which directs transcription of 

glycolytic enzymes (47, 48).  In mouse models of HER2 overexpressing breast cancer, trastuzumab 

and lapatinib inhibited PI3K activity and decreased glucose uptake (Fig. 2.7) (32, 34, 36, 42).  

Furthermore, drug resistant cancers often display abnormal utilization of cellular 

metabolism pathways. Resistance to therapeutic agents, including the HER2 inhibitors lapatinib 

and trastuzumab, activates hypoxia signaling in the presence of adequate oxygen, consistent with 

the activation of aerobic glycolysis. Furthermore, PI3K pathway activation, which is a major driver 

of aerobic glycolysis, is often elevated in trastuzumab- or lapatinib-resistant breast cancer cells 

(32, 37, 49, 50).  Possible mechanisms of trastuzumab resistance include metabolic activation by 

proteins outside of the PI3K/AKT/mTOR pathway (Fig. 2.7) and continued activation of 
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PI3K/AKT/mTOR despite HER2 inhibition (31, 32, 35, 49, 51). Therefore, cellular metabolism 

may be a powerful reporter of cellular malignancy and therapeutic efficacy due to the direct 

relationships between oncogene driven PI3K/AKT/mTOR activation and inhibition by anti-cancer 

drugs.  

Metabolism Imaging Modalities 

Current methods to monitor cellular metabolism and assess therapy response include 

immuno-histochemical (IHC) assessment of metabolic regulators, fluorodeoxyglucose positron 

emission tomography (FDG-PET), diffuse optical tomography (DOT), and metabolic flux 

analyses (37, 52-56). FDG-PET and IHC endpoints have been evaluated clinically as biomarkers 

of response (52, 55, 57-61).  Evidence of metabolism-based contrast for tumor response to targeted 

inhibitors was demonstrated with the use of FDG-PET, which is capable of detecting areas of high 

glucose uptake, such as is seen in many solid tumors (62). A preliminary study of lapatinib-treated 

breast cancers showed changes in cellular metabolism, as measured by FDG-PET, after 1 month 

of lapatinib treatment (60). Yet, these currently available technologies provide only low resolution 

images and cannot resolve sub-populations of cells that may cause therapy relapse.  FDG-PET and 

other technologies that monitor therapy response are limited to the evaluation of the single regimen 

received by the patient, and cannot predict a more efficacious treatment regimen if non-response 

is detected.  Given the high cost and limitations of these procedures, it is unlikely that these will 

be adopted as standard of care, underscoring the need for more efficient, accurate, and cost-

effective methods of identifying receptor expression and therapeutic response.   
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2.6 Fluorescence Lifetime Imaging 

Fluorescence  

 Particular molecules, called fluorophores, are capable of emitting a photon of longer 

wavelength when excited by a photon of an optimal energy.  This phenomenon is illustrated in the 

Joblonski diagram (Fig. 2.8).  Several biomolecules are natural fluorophores, including collagen, 

tryptophan, NADH, FAD, and elastin.  These fluorophores are often referred to as 'auto-

fluorescent' because the addition of fluorescent dyes or antibodies is not required for imaging 

contrast. 

 

Figure 2.8: Jablonski Diagram of Fluorescence.  When a fluorophore is 

excited by a photon (hυexcitation), the fluorophore enters an excited state.  

Sometime later, the fluorophore returns to ground state and emits a photon 

(hυemission) (63). 

 

Multiphoton Fluorescence 

 Multi-photon fluorescence microscopy uses the additive effect of two photons with one-

half the energy necessary to excite the fluorophore (Fig. 2.9).  The localized focus point of the 

excitation beam and negligent probability of two-photon excitation occurring outside the focal 

point of the beam, allows single pixel illumination and wide-field emission collection to increase 

depth-resolution and signal-to-noise ratio of weak fluorophores (Fig. 2.9) (64). In addition, multi-

photon excitation wavelengths are double that of single photon fluorescence. This shifts the 
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excitation of NADH and FAD into the near infrared (NIR) optical window where light absorption 

by tissue constituents is minimized (Fig. 2.10). 

 

Figure 2.9:  Multiphoton fluorescence. Focal point of single photon (A) and two photon (B) 

fluorescence (65).  

 

 

Figure 2.10: Relative absorbance of tissue constituents. Deeper tissue 

penetration is achieved by using excitation light in the NIR optical 

window (66). 
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Fluorescence Lifetime Imaging 

Fluorescence lifetime imaging (FLIM) measures the average time a fluorophore is excited, 

or the time between an excitation photon absorption and emission photon.  Fluorescence lifetime 

values report differences in the conformation and binding of the fluorophore as well as 

microenvironment changes, including pH, temperature, and proximity to quenchers such as free 

oxygen (64).  A fluorescence decay curve plots the intensity of fluorescence of a region or pixel 

over time following excitation and is a cumulative recording of multiple events (Fig. 2.11). 

Fluorescence lifetime decays can be modeled as an exponential decay, or as a multi-exponential 

decay in the case of multiple lifetimes present in the sample (Fig. 2.11). Fluorescence lifetimes 

can be measured by time correlated single photon counting (TCSPC).  TCSPC electronics time 

individual fluorescence events and generate fluorescence decay curves with repeated observations. 

TCSPC is the optimal fluorescence lifetime imaging technique for high accuracy of lifetime 

measurements and the low light levels observed with endogenous fluorophores (64). 

 

Figure 2.11:  Fluorescence lifetime decay curve.  After deconvolving the 

system response, decay data is modeled as an exponential decay to extract 

lifetime parameters, 𝐼(𝑡) = 𝛼1𝑒𝑥𝑝
−𝑡/𝜏1 + 𝛼2𝑒𝑥𝑝

−𝑡/𝜏2 + 𝐶, where I(t) is the 

fluorescence intensity at time t after the excitation pulse, 1 and 2 are the 

weighted contributions of the short and long lifetime components (1+2) 

= 1 and 1 and 2 are the short and long lifetime components, respectively, 

and C accounts for background light. 
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The fluorescence lifetimes of NADH and FAD are affected by the fluorophore 

microenvironment, with influencing factors including local oxygen levels, temperature, pH, 

fluorophore confirmation, and protein binding (64, 67). Fluorescence lifetime values remain fairly 

unexplored as reporters of cellular metabolism; however, exploratory studies have observed 

differences in NADH lifetime values in malignant and pre-malignant tissues (68, 69). Typically, 

in tissues, NADH and FAD molecules exist in two configurations, either unbound (free in solution) 

or protein-bound (67, 70).  The fluorescence lifetime of protein-bound FAD and free NADH is 

short due to dynamic quenching of the adenine moiety (67, 70, 71).  Therefore, the free FAD and 

protein-bound NADH have longer lifetimes.   

Optical Imaging of Metabolism 

Dynamic profiles of cellular metabolism can be obtained with optical metabolic imaging 

(OMI). OMI probes the endogenous fluorescence properties of two coenzymes involved in 

metabolism, reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine 

dinucleotide (FAD).  Optical imaging is an ideal modality for probing chemical specificity and 

molecular contrast within tissues, including auto-fluorescence imaging of NADH and FAD, which 

allows quantitative measurements of cellular metabolism.  In oxidative phosphorylation, NADH 

is oxidized to NAD+ and FAD is reduced to FADH2 (Fig. 2.12).  In glycolysis, NAD+ is reduced 

to NADH (Fig. 2.12).  Because fluorescence intensity is proportional to fluorophore concentration, 

the optical redox ratio (NADH fluorescence intensity divided by FAD fluorescence intensity) 

represents relative amounts of glycolysis and oxidative phosphorylation within a cell (72). 
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Figure 2.12: Optical redox ratio. The optical redox ratio is 

the relative intensity of cellular NADH fluorescence to FAD 

fluorescence. 

 

The optical redox ratio is a proven method of probing cellular metabolism and has been 

used to differentiate cancerous from non-cancerous tissues in a variety of models including oral  

and breast cancer (69, 72-77).  Ostrander et al. showed the optical redox ratio is sensitive to ER 

expression in breast cancer cell cultures and that treatment with tamoxifen decreased the redox 

ratio of those cells that were responsive to tamoxifen, but not those that lacked the estrogen 

receptor (77).   The optical redox ratio is used to examine changes in cellular metabolism due to 

receptor expression and cellular response to targeted therapies. 

The fluorescence lifetimes report changes in the microenvironment of NAD(P)H and FAD 

and are especially sensitive to the binding state of the fluorophore, as well as local temperature, 

pH, and proximity to quenchers such as molecular oxygen (64).  Both NAD(P)H and FAD 

fluorescence lifetimes can be either short or long, depending on the binding state of NAD(P)H and 

FAD (free or bound to an enzyme complex) (67, 70). Previous studies have shown that OMI 

endpoints are sensitive to metabolism differences between cancer subtypes (78-80).  Additionally, 

the OMI endpoints provide dynamic readouts of cellular metabolism and detect pre-malignant 

transformations within tissues (68, 69), classify subtypes of breast cancer cells (78, 79), and detect 



28 

 

response to anti-cancer drugs (80).  Furthermore, fluorescence microscopy is uniquely suited to 

study tumor heterogeneity in cells and tissues due to the high resolution capabilities of microscopy 

and molecular specificity attained by probing endogenous fluorophores.  For this reason, OMI 

endpoints are attractive biomarkers of therapeutic response because they directly report cellular 

function, rather than a static measure of the genetic code. 

FLIM Instrumentation 

 
Figure 2.13:  Multiphoton fluorescence microscope used to obtain NADH and FAD 

fluorescence lifetime images. 

 
 A custom built, commercial multi-photon fluorescence microscope (Bruker) is used to 

acquire NADH and FAD autofluorescence images (Fig. 2.13).  In this experimental set up, a 

titanium: sapphire laser (Coherent Inc.) provides the excitation light and is tuned to 750 nm for 

excitation of NADH and 890 nm for FAD excitation.  A 40X water-immersion objective (1.15 

NA) or a 40X oil-immersion objective (1.3 NA) couples the excitation and emission light through 

an inverted microscope (TiE, Nikon).  A GaAsP PMT (H7422P-40, Hamamatsu) detects emitted 

photons.  A pre-amplifier and TCSPC electronics (SPC-150 card) enable fluorescence lifetime 

imaging. 

Selection of Imaging Parameters 

 Imaging parameters were optimized for excitation of NADH and FAD.  Excitation 

wavelengths and emission filters were chosen to ensure adequate isolation of NADH and FAD 
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fluorescence.  The peak excitation wavelength for NADH is near 350 nm and emission spans 400-

500 nm (Fig. 7) (81).  FAD excitation peak is near 450 nm.  FAD emission spans 500-600 nm (Fig. 

2.14) (81).  For multiphoton excitation, NADH is excited at 750 nm and FAD is excited at 890 

nm.  Emission between 400-480 nm is collected for NADH, with the assumption that FAD 

excitation at 750 nm and emission at 400-480 nm is negligible.  For FAD, 500-600 nm emission 

light is collected.  Isolation of NADH and FAD fluorescence can be verified by a cyanide 

experiment.  Average laser power, pixel dwell time, and lifetime imaging time are optimized to 

ensure adequate signal for lifetime decays without damage or photobleaching of the sample.  The 

average laser power is 7.5-7.8 mW for NADH and 8.4-8.6 mW for FAD. A pixel dwell time of 4.8 

s is used.   Images of 256x256 pixels are acquired using an integration time of 60 seconds.  For 

consistent redox ratio measurements, system parameters, including laser power, PMT voltage, and 

integration time are maintained across all imaging sessions. 

 

 

 

Figure 2.14.  NADH and FAD Fluorescence Emission Spectra.  Fluorescence 

emission spectra for NADH (triangle) and FAD (circle, square) (81). 
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2.7 Organoid Culture 

 

Primary tumors can be cultured ex vivo as organoids, which contain the malignant tumor 

cells and the supporting cells from the tumor environment, such as fibroblasts, leukocytes, 

endothelial cells, and hematopoietic cells (82). Interactions between cancer cells and stromal cells 

have been shown to mediate therapeutic resistance in tumors (83). Therefore, organoid cultures 

provide an attractive platform to test cancer cell response to drugs in a relevant, "body-like" 

environment. Furthermore, multiple organoids can be generated from one biopsy, enabling high-

throughput tests of multiple drug combinations with a small amount of tissue to identify the most 

effective treatment for an individual patient. 
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CHAPTER 3 

Optical Metabolic Imaging Quantifies Heterogeneous Cell Populations 

Walsh AJ, Skala MC, “Optical metabolic imaging quantifies heterogeneous cell populations,” 

Biomedical Optics Express, 2015; 6(2):559-573. 

 

3.1 Abstract 

 The genetic and phenotypic heterogeneity of cancers can contribute to tumor 

aggressiveness, invasion, and resistance to therapy.  Fluorescence imaging occupies a unique niche 

to investigate tumor heterogeneity due to its high resolution and molecular specificity.  Here, 

heterogeneous populations are identified and quantified by combined optical metabolic imaging 

and subpopulation analysis (OMI-SPA).  OMI probes the fluorescence intensities and lifetimes of 

metabolic enzymes in cells to provide images of cellular metabolism, and SPA models cell 

populations as mixed Gaussian distributions to identify cell subpopulations.  In this study, OMI-

SPA is characterized by simulation experiments and validated with cell experiments.  To generate 

heterogeneous populations, two breast cancer cell lines, SKBr3 and MDA-MB-231, were co-

cultured at varying proportions.  OMI-SPA correctly identifies two populations with minimal mean 

and proportion error using the optical redox ratio (fluorescence intensity of NAD(P)H divided by 

the intensity of FAD), mean NAD(P)H fluorescence lifetime, and OMI index.  Simulation 

experiments characterized the relationships between sample size, data standard deviation, and 

subpopulation mean separation distance required for OMI-SPA to identify subpopulations. 

3.2 Introduction 

Solid tumors are highly heterogeneous, both across patients and within individual tumors.  

Tumor heterogeneity may contribute to tumor aggression, invasion, metastases, and therapy 

resistance (1-3).  Studies of tumor heterogeneity are challenging because traditional cell and tissue 

analyses require pooling of proteins, RNA, or DNA from hundreds to thousands of cells, which 
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provides information on the protein and genetic expression of the majority of cells but may mask 

unique expression profiles and phenotypes of heterogeneous populations.  Therefore, a technology 

capable of resolving cancer cell behaviors at single cell resolution is imperative for studies of 

tumor heterogeneity.   

Breast cancers are often classified into three subtypes based on the expression or lack of 

expression of oncogenic proteins within the malignant cells.  In particular, estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), are used to 

classify breast cancers and inform clinical therapy selection. Breast cancer clinical subtypes 

include: triple negative (not expressing any of the three receptors), ER positive (expressing ER but 

lacking HER2 overexpression), and HER2 overexpressing (overexpressing HER2 receptors, ER 

and PR may be expressed or not).   Primary tumors are heterogeneous, containing subpopulations 

of cells with different genetic profiles and protein expression (1, 4, 5).  Therapy selection is often 

based on the expression or lack of expression of ER and HER2 in a small sampling of cells, a 

biopsy.   However, due to heterogeneity across large tumors and within the biopsy itself, 

populations of cells with different receptor expression and/or adaptations that make them resistant 

to therapy, may escape clinical detection (1). This suggests that different portions of a tumor may 

respond differently to treatment, and while therapies are selected to target the majority of cells, 

there may be subpopulations of malignant cells not adequately targeted.  Subpopulations of cells 

with stem cell like behaviors may contribute to drug resistance and recurrent tumor growth (6).  

Cancer stem cells comprise between 3 and 35% of the number of cells within a solid breast tumor 

(6). 

Fluorescence microscopy is uniquely suited to study tumor heterogeneity in cells and 

tissues due to the high resolution capabilities of microscopy and molecular specificity attained by 
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probing fluorophores.  Dynamic profiles of cellular metabolism can be obtained with optical 

metabolic imaging (OMI). OMI probes the endogenous fluorescence properties of two coenzymes 

involved in metabolism, reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavin 

adenine dinucleotide (FAD). NAD(P)H and FAD are used in multiple metabolism processes 

including glycolysis and oxidative phosphorylation. The endpoints of OMI include the redox ratio, 

NAD(P)H fluorescence lifetime, FAD fluorescence lifetime, and a combination variable, the OMI 

index. The redox ratio is the intensity of NAD(P)H fluorescence relative to the intensity of FAD 

fluorescence and provides relative information on the global metabolism of the cell (7, 8).  The 

redox ratio is sensitive to shifts in metabolic pathways (7, 9).  The fluorescence lifetimes report 

changes in the microenvironment of NAD(P)H and FAD and are especially sensitive to the binding 

state of the fluorophore, as well as local temperature, pH, and proximity to quenchers such as 

molecular oxygen (10).  Both NAD(P)H and FAD fluorescence lifetimes can be either short or 

long, depending on the binding state of NAD(P)H and FAD (free or bound to an enzyme complex) 

(11, 12). Previous studies have shown that OMI endpoints are sensitive to metabolism differences 

between cancer subtypes (9, 13, 14).  Additionally, the OMI endpoints provide dynamic readouts 

of cellular metabolism and detect pre-malignant transformations within tissues (15, 16), classify 

subtypes of breast cancer cells (9, 13), and detect response to anti-cancer drugs (14). 

This study describes and validates OMI subpopulation analysis (OMI-SPA) for 

identification and quantification of cellular heterogeneity.  OMI can be performed at high 

resolution to allow reporting of OMI endpoints at the single-cell level.  Heterogeneity of the cell 

population can then be assessed by subpopulation analysis (SPA).  SPA uses mixed distribution 

Gaussian models with multiple components to fit the population density representation of the data.  

In this study, we used both computational simulation and co-cultured experiments to validate OMI-
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SPA for identification and quantification of cellular subpopulation heterogeneity. Simulation 

experiments demonstrate the population characteristics required for robust SPA identification of 

two subpopulations.  These experiments were validated by OMI-SPA of heterogeneous samples 

created by co-culturing two different breast cancer cell lines, a triple negative breast cancer (MDA-

MB-231) and a HER2+ cell line (SKBr3) at varying proportions.  These two cell lines were chosen 

to represent cell populations responsive (SKBr3) and resistant (MDA-MB-231) to the anti-HER2 

antibody, trastuzumab.  The OMI endpoints and morphology of these two cells are sufficiently 

different to allow computational separation and heterogeneity analysis.   

3.3 Methods 

3.3.1 SKBr3 and MDA-MB-231 Specific Simulations 

The average and standard deviation for the experimentally measured redox ratio, NAD(P)H 

mean lifetime, and FAD mean lifetime for the SKBr3 cells and MDA-MB-231 cells cultured 

independently were determined and used to generate model data sets. A random number generator 

(Matlab) was used to generate a data set of repeated observations within the distributions of the 

OMI endpoints for a population of N cells, containing a percent SKBr3 cells and b percent MDA-

MB-231 cells. N, a, and b were varied to investigate the ability of OMI-SPA to identify two 

populations under a range of conditions.  N ranged from 25 to 1000 cells and a varied from 0 to 1 

(b = 1-a, and varied from 1 to 0).  These simulate data sets were then evaluated with subpopulation 

analysis (Methods 2.2). 

3.3.2 Subpopulation Analysis (SPA) 

Each cell population is modeled as a Gaussian mixture distribution model (9, 14, 17),  

𝑓(𝑦; Φ𝑔) =  ∑ 𝜋𝑖𝜙(𝑦; 𝜇𝑖, 𝑉𝑖)
𝑔
𝑖=1 ,  
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where g is the number of components, 𝜙(𝑦; 𝜇𝑖, 𝑉𝑖) represents a normal probability density function 

with mean i and variance Vi, and i is the mixing proportion.  g represents the unknown 

parameters, (i, i, Vi): i =1…g in a g-component model. The mixture model is fitted by maximum 

likelihood using the expectation maximization algorithm to determine the optimum parameters, 

(, , V), (Matlab).  In the simulation and co-culture experiments, data is modeled three times as 

Gaussian mixture distribution models with 1-3 components (g = 1, 2, or 3).  Fit parameters for 

each model including the Akaiki information criteria (AIC), population means, population 

standard deviations, and proportions, were recorded.  The AIC information criteria is a measure of 

model goodness of fit and is minimized in the optimal model (18).  The most representative model 

of the data was selected as the model with the lowest AIC. 

3.3.3 Cell culture 

MDA-MB-231 and SKBr3 cells were grown separately in DMEM with 10% fetal bovine 

serum and 1% penicillin: streptomycin. Cells were plated at a density of 106 cells per 35-mm glass 

bottom petri dish (MatTek Corp.), 48 hours before imaging, in the following proportions based on 

cell count (Table 3.1): 100% (106) MDA-MB-231 cells; 70% (7 x 105) MDA-MB-231 cells and 

30% (3 x 105)  SKBr3 cells; 50% (5 x 105)  MDA-MB-231 cells and 50% (5 x 105) SKBr3 cells; 

30% (3 x 105) MDA-MB-231 cells and 70% (7 x 105) SKBr3 cells; and 100% (106) SKBr3 cells.  

Two 35-mm glass bottom petri dishes were plated per group. 

3.3.4 Fluorescence lifetime instrumentation  

Fluorescence lifetime imaging was performed on a custom built multi-photon microscope 

(Bruker), which has previously been described (9, 14, 19).  Excitation and emission light are 

coupled through a 40X oil immersion (1.3 NA) objective of an inverted microscope (Nikon, TiE). 

For NAD(P)H excitation, a titanium:sapphire laser (Coherent Inc.) was tuned to 750 nm (average 
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power 7.5-7.9 mW). For FAD excitation, the laser was tuned to 890 nm (average power 8.4-6 

mW).  Bandpass filters, with a 440-480 nm passband for NAD(P)H and a 500-600 nm passband 

for FAD, isolated emission light. A pixel dwell time of 4.8 s was used to acquire 256x256 pixel 

images.  Each fluorescence lifetime image was collected using time correlated single photon 

counting electronics (SPC-150, Becker and Hickl) and a GaAsP PMT (H7422P-40, Hamamatsu).  

Photon count rates were maintained above 5x105 for the entire 60 second image acquisition time, 

ensuring no photobleaching occurred and adequate signal for fluorescence lifetime decay fits. 

3.3.5 Cell imaging 

Cells were imaged directly through the bottom of 35mm glass-bottom petri dishes (MatTek 

Corp). For each dish, six representative fields of view were imaged, for a total number of ~200 

cells per group. First, an NAD(P)H lifetime image was acquired, and then an FAD lifetime image 

was acquired from the same field of view.  Sequential fields of view were separated by at least 1 

field of view, 270 m. 

3.3.6 Generation of redox ratio images 

A fluorescence intensity image was generated by integrating the fluorescence lifetime 

decay over time for each pixel in the lifetime image.  The total number of NAD(P)H photons per 

pixel was then divided by the total number of FAD photons per pixel and used to create a redox 

ratio image for each field of view (Matlab, Mathworks). NAD(P)H and FAD fluorescence specific 

to cellular metabolism is localized in the cytoplasm and mitochondria.  Therefore, the redox ratio 

image was thresholded to remove background and nuclear fluorescence, and the average redox 

ratio for each remaining cell cytoplasm was computed (ImageJ).  Cells were manually segmented 

in ImageJ. 
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3.3.7 Generation of NAD(P)H and FAD lifetime images 

For each pixel, the photon counts for the 9 surrounding pixels were binned (SPCImage). 

Fluorescence lifetime components for each pixel were computed by de-convolving a measured 

system response curve from urea crystals and fitting the fluorescent decay to a two component 

model, 𝐼(𝑡) =  𝛼1 exp (−
𝑡

𝜏1
) + 𝛼2 exp (−

𝑡

𝜏2
) + 𝐶. In this model, I(t) is the fluorescence intensity 

at time t after the laser excitation pulse, 1 and 2 are the fractional contributions of the free and 

bound molecules (i.e. 1 + 2 = 1), 1 and 1 are the fluorescence lifetimes of the short and long 

lifetime components, and C is a constant that accounts for background light. Matrices of the 

lifetime components were exported as ascii files for further processing in ImageJ. The mean 

lifetime, m = 11 +22, was computed for each pixel to create a mean lifetime image for each 

field of view. The NAD(P)H m and FAD m for each cell cytoplasm was computed and recorded.  

The OMI index (14) is a linear combination of mean centered redox ratio, NAD(P)H m, and FAD 

m data and can be computed per cell as follows: 𝑂𝑀𝐼 𝐼𝑛𝑑𝑒𝑥 =  
𝑅𝑅𝑖

〈𝑅𝑅〉
+

𝑁𝐴𝐷(𝑃)𝐻 𝜏𝑚𝑖

〈𝑁𝐴𝐷(𝑃)𝐻 𝜏𝑚〉
−

𝐹𝐴𝐷 𝜏𝑚𝑖

〈𝐹𝐴𝐷 𝜏𝑚〉
. 

3.3.8 OMI-SPA Behavior Simulations 

Simulation experiments were performed to model the behavior of OMI-SPA for 

generalized data.  In the first simulation, populations of cells were generated with a normalized 

mean of 1 and equal proportions of the two populations.  The standard deviation and distance 

between the means was varied from 0-1 and 0-2, respectively.  In the last simulations, the mean 

distance was varied from 0-2, the population proportions varied from 0-1, and the standard 

deviation of the populations was 0.05, 0.1, 0.25, or 0.5.  These normalized standard deviation 

values span the range typically observed in OMI data (9, 14).  Simulated cell populations were 

generated for each mean distance, population proportion, and standard deviation at increasing 
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sample sizes (up to 10,000) to determine the minimum sample size necessary to resolve two 

subpopulations (AIC2 < AIC1 -20). 

 

3.4 Results 

3.4.1 MDA-MB-231 and SKBr3 Simulations 

First, SPA was performed on simulated cell populations using experimentally determined 

mean and standard deviation values of the redox ratio of SKBr3 and MDA-MB-231 cells, 1.92 +/- 

0.39 and 1.06 +/- 0.22, respectively.  The AIC represents a model goodness of fit and is minimized 

in the optimal model (18).  The AIC includes penalties for an increased number of model 

components, to account for increased fitness of models with increased components (18).  The AIC 

for two components is less than the AIC for the single component model (AIC1-AIC2 > 0) at large 

sample sizes and SKBr3 proportions less than 0.8 (Fig. 3.1a).  The error of the SKBr3 redox ratio 

mean is greatest (>10%) at high and low proportions and low sample sizes (Fig. 3.1b).  SKBr3 

redox ratio mean error is minimized (<5%) at high sample sizes and proportions near 50% (Fig. 

3.1b).  Likewise, MDA-MB-231 mean error is maximal (>10%) at small sample sizes and low 

proportions, and minimized (<5%) with high sample sizes and proportions around 50% (Fig. 3.1c).  

The large errors of MDA-MB-231 mean values at SKBr3 population proportions greater than 0.8, 

correspond to data points where the two-component model fit the data less well than the single 

component model.  The population proportion error, or the error of how many cells are attributed 

to each cell subpopulation, is minimal (<5%) at high sample sizes and at SBRr3 proportions less 

than 80% (Fig. 3.1d). 
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Figure 3.1.  Behavior of OMI-SPA to model simulated data using the redox ratio mean and 

standard deviation of SKBr3 and MDA-MB-231 cells.  (a) Difference in the AIC values of 1 

and 2 component Gaussian models of the simulated cell populations as a function of varying 

sample sizes and varying proportions (0% to 100%) of SKBr3 cells.   AIC1-AIC2 > 0 indicates two 

component model is a better fit than the one-component model.  (b) Error of the mean redox ratio 

computed for the SKBr3 subpopulation, and (c) MDA-MB-231 population.  (d) Error of the 

estimated proportion of the SKBr3 subpopulation. 

 

Similar simulations demonstrate the ability of OMI-SPA to identify SKBr3 and MDA-MB-

231 subpopulations using NAD(P)H m values (Fig. 3.2).  The SKBr3 cells have a mean NAD(P)H 

m of 1.31 +/- 0.13 ns and the MDA-MB-231 cells have a mean NAD(P)H m of 0.85 +/- 0.11 ns, 

determined from experiments.  In the simulation, OMI-SPA identifies two populations in all 

simulated data sets with a sample size greater than 75 (Fig. 3.2a) and the error of the SKBr3 and 

MDA-MB-231 subpopulation means identified by the models is within 1% at sample sizes greater 

than 100 and proportions between 20% and 80% (Fig. 3.2b-c).  Likewise, the proportion error is 

minimized (<5%) at sample sizes > 200 and SKBr3 proportions between 20 and 80%. 
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Figure 3.2.  Behavior of OMI-SPA to model data simulated from the mean and standard 

deviations of NAD(P)H m of SKBr3 and MDA-MB-231 cells.  (a) Difference in the AIC values 

of 1 and 2 component Gaussian models of the simulated cell populations as a function of varying 

sample sizes and varying proportion of SKBr3 cells.  (b) Error of the mean NAD(P)H m 

computed for the SKBr3 subpopulation, and (c)  MDA-MB-231 population.  (d) Error of the 

estimated proportion of the SKBr3 subpopulation. 

 

Finally, the simulations were repeated using the mean and standard deviations of the 

SKBr3 and MDA-MB-231 mean FAD lifetimes, which were experimentally measured as 1.09 +/- 

0.10 ns and 1.12 +/- 0.13 ns, respectively.  For most of the simulated cell populations, the two 

component model does not have an AIC value less than the single component fit (Fig. 3.3a).  The 

error of the FAD lifetime values for the modeled SKBr3 and MDA-MB-231 subpopulations was 

within 10% of the true FAD lifetime values except at sample sizes < 100 (Fig. 3.3b-c); however, 

the error of the proportion of cells assigned to each subpopulation was greater than 10% at almost 

all sample sizes and proportions (Fig. 3.3d). 
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Figure 3.3.  Behavior of OMI-SPA to model data simulated from the mean and standard 

deviations of the FAD m of SKBr3 and MDA-MB-231 cells.  (a) Difference in the AIC values 

of 1 and 2 component Gaussian models to the simulated cell populations as a function of varying 

sample sizes (N) and varying proportion of SKBr3 cells.  (b) Error of the mean FAD m computed 

for the SKBr3 subpopulation and (c) MDA-MB-231 population.  (d) Error of the estimated 

proportion of the SKBr3 subpopulation. 
 

A.4.2 MDA-MB-231 and SKBr3 co-culture experiments 

High-resolution images (Fig. 3.4) demonstrate the variability of redox ratios, NAD(P)H 

mean lifetimes, and FAD mean lifetimes between the two cell lines. MDA-MB-231 cells have a 

lower redox ratio, a shorter mean NAD(P)H lifetime, and a longer mean FAD lifetime, than SKBr3 

cells.  The images from the co-culture experiments demonstrate heterogeneity in cellular 

morphology and fluorescence imaging endpoints (Fig. 3.4).  The images from the co-culture 

experiments were examined manually and each cell designated as SKBr3 or MDA-MB-231 based 

on morphology.  Any cells that could not be identified were excluded from the analysis.  While 

the cells were plated at the following proportions, 30/70%, 50/50%, and 70/30%, the manual 
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analysis verified the heterogeneity of the co-cultured experiments and reports the actual 

proportions of the imaged cells for each co-culture group (Table 3.1). 

 

Figure 3.4. Representative OMI images of co-cultured cells. Representative 

images of the redox ratio (NAD(P)H/FAD), NAD(P)H mean lifetime, and FAD 

mean lifetime of MDA-MB-231 cells, SKBr3 cells, and mixed populations. 
 

Table 3.1: Experimental groups for the SKBr3 and MDA-MB-231 co-culture experiments.  

Experimental 

Group 

Portion of MDA-MB-

231 Cells  

Portion of SKBr3 

Cells 

 Plated Observed Plated Observed 

Group 1 0 0 1 1 

Group 2 0.3 0.37 0.7 0.63 

Group 3 0.5 0.60 0.5 0.40 

Group 4 0.7 0.82 0.3 0.18 

Group 5 1 1 0 0 

 

OMI-SPA of the co-culture experiment reveals that the single cell data sets are modeled 

best by a one component Gaussian distribution model and data from the co-culture groups are best 

modeled by two component Gaussian distribution models.  OMI-SPA of the redox ratio correctly 

identifies two populations in all three co-culture experiments (Fig. 3.5).  The mean redox ratio 

values of the SKBr3 modeled populations are within 6% of the true mean redox ratio (defined as 

the mean redox ratio of manually classified SKBr3 cells) (Table 3.2).  Likewise, the mean error of 
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the MDA-MB-231 cells ranges is 5% or less for all co-culture experiments (Table 3.2).  The error 

of the model-estimated proportion of each subpopulation of cells is 5% or less for all three co-

culture groups (Table 3.2).  The error of the standard deviations for the identified SKBr3 

populations ranges from 5% for the 100% SKBr3 culture to 25% for the 30% SKBr3 culture, while 

the standard deviation errors for the MDA-MB-231 model redox ratios is 10% or less for all 

experiments (Table 3.2). 

The mean redox ratio for each population of cells, SKBr3 and MDA-MB-231, was 

compared across all experimental groups to evaluate the stability of the redox ratio when cells are 

grown in different environments.  The MDA-MB-231 cells grown independently of the SKBr3 

cells had a mean redox ratio of 1 and a standard deviation of 0.23.  The mean MDA-MB-231 redox 

ratio was not significantly different for any of the co-culture experiments: 0.97+/- 0.22 for 70% 

MDA-MB-231 cells, 0.99+/-0.2 for 50%, and 0.82 +/- 0.25 for 30%.  Likewise, the redox ratio for 

the SKBr3 cells was similar when the cells were cultured without and with the MDA-MB-231 

cells.  The only statistically significant (p<0.05) difference in redox ratio was observed for the 

SKBr3 cells grown in the 30% SKBr3/70% MDA-MB-231 culture versus the 100% SkBr3 culture, 

1.2+/-0.5 vs. 1.8 +/- 0.39, respectively.  These results suggest that the redox ratio remains relatively 

stable irrespective of whether cells are grown independently or in co-culture. 
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Table 3.2: Mean, proportion (P), and standard deviation and % errors computed from 

the optimal fitting Gaussian distribution model of the co-culture experimental data.   

Proportion SKBr3/ 

MDA-MB-231 

Population 1 (SKBr3) Population 2 (MDA-MB-231) 

Mean 

(%Error*) 
P (%Error) 

Std 

(%Error) 

Mean  

(%Error) 
P (%Error) 

Std  

(%Error) 

Redox 

Ratio 

100%/0% 1.91 (6) 1 (0) 0.39 (5) - - - 

70%/30% 2.11 (3) 0.68 (4) 0.55 (18) 0.82 (0.5) 0.32 (5) 0.23 (6) 

50%/50% 1.88 (2) 0.44 (4) 0.60 (16) 1.02 (3) 0.56 (4) 0.18 (10) 

30%/70% 2.12 (5) 0.23 (5) 0.73 (25) 1.02 (5) 0.77 (5) 0.21 (1) 

0%/100% - - - 1.06 (6) 1 (0) 0.23 (6) 

NAD(P)H 


m 

(ns) 

100%/0% 1.31 (0.1) 1 (0) 0.13 (0.3) - - - 

70%/30% 1.25 (0.2) 0.65 (2) 0.11 (4) 0.83 (3) 0.35 (2) 0.11 (16) 

50%/50% 1.18 (3) 0.44 (4) 0.14 (17) 0.81 (3) 0.56 (4) 0.10 (17) 

30%/70% 1.20 (7) 0.28 (10) 0.18 (28) 0.83 (2) 
0.72 

(10) 
0.10 (11) 

0%/100% - - - 0.85 (0.1) 1 (0) 0.12 (0.2) 

FAD 


m 

(ns) 

100%/0% 1.09 (0.1) 1 (0) 0.10 (0.3) - - - 

70%/30% 1.02 (5) 0.61 (0.02) 0.09 (41) 1.19 (8) 0.39 (2) 0.15 (19) 

50%/50% 1.12 (11) 1 (0.6) 0.14 (28) - - - 

30%/70% 1.03 (6) 0.18 (0.01) 0.10 (1) 1.12 (4) 
0.82 

(0.3) 
0.12 (5) 

0%/100% - - - 1.17 (0.4) 1(0) 0.13 (0.2) 

OMI 

Index 

100%/0% 1.67 (0.1) 1 (0) 0.31 (0.3) - - - 

70%/30% 1.81 (0.02) 0.62 (1) 0.38 (1) 0.47 (1) 0.38 (1) 0.23 (3) 

50%/50% 1.62 (6) 0.40 (0.2) 0.47 (16) 0.49 (4) 
0.60 

(0.2) 
0.20 (11) 

30%/70% 2.06 (2) 0.17 (1) 0.36 (20) 0.56 (0.2) 0.83 (1) 0.23 (2) 

0%/100% - - - 0.54 (0.7) 1 (0) 0.21 (0.2) 

* % error computed for the mean, proportion, and standard deviation of the endpoint values 

between the manually classified SKBr3 and MDA-MB-231 cell populations and the results of the 

best-fit SPA model. 

 
Figure 3.5. Redox ratio histograms. Histograms of redox ratios, quantified per cell, of a 

population of approximately 200 cells of varying percentages of MDA-MB-231 cells and 

SKBr3 cells measured experimentally. The solid blue line represents best mixed-model 

Gaussian distribution fit. The red dashed curves represent the two component contributions, 

if a two component model is optimal. Histograms are normalized to have a total area of 1. 
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The mean NAD(P)H m values of the two cell lines grown independently are 1.3 ns for 

SKBr3 cells and 0.85 ns for the MDA-MB231 cells (Fig. 3.6a-b).  SPA of the NAD(P)H m data 

from the co-culture experiments reveals two populations for all three co-culture groups (Fig. 3.6c-

e).  The errors of the means of the computationally determined SKBr3 and MDA-MB-231 

subpopulations are within 7% of the respective, true NAD(P)H m means (Table 3.2).  Likewise, 

the proportion of cells attributed to each population as determined computationally by the SPA 

models, is within 10% of the true populations and the standard deviation errors within 28% (Table 

3.2).  To demonstrate the cellular heterogeneity visually, the average NAD(P)H m value of each 

cell was used to classify cells as SKBr3 or MDA-MB-231, and cells are color coded red if SKBr3 

and blue if MDA-MB-231 (Fig. 3.7).  An NAD(P)H m cut-off value of 1.06 ns was chosen because 

it is equal-distance, 1.9 standard deviations, from each mean and minimized classification error.  

This NAD(P)H m threshold value yielded an overall accuracy of 95.2% to correctly classify all 

cells, with 94.2% of SKBr3 cells correctly classified and 95.5% of MDA-MB-231 cells correctly 

classified. 
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Figure 3.6. NAD(P)H m histograms. Histograms of NAD(P)H m from populations of 

approximately 200 cells of varying percentages of MDA-MB-231 cells and SKBr3 cells. The 

solid blue line represents the best mixed-model Gaussian distribution fit. The red dashed curves 

represent the two component contributions, if a two component model is optimal. Histograms 

are normalized to have a total area of 1. 

 

 

Figure 3.7. Representative color coded images. Images with cells color coded red if the cell 

mean NAD(P)H m value is greater than 1.06 ns and blue if the NAD(P)H m value is less than 

1.06 ns. 

 

SPA of the heterogeneous co-cultures is less successful at separating the two populations 

using the FAD m (Fig. 3.8, Table 3.2).  While two populations are identified in the 30/70% 

experiments, the model fails to identify two populations in the 50/50% group (Fig. 3.8d).   
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Figure 3.8 FAD m histograms. Histograms of FAD m from populations of approximately 200 

cells of varying percentages of MDA-MB-231 cells and SKBr3 cells. The solid blue line represents 

the best mixed-model Gaussian distribution fit. The red dashed curves represent the two 

component contributions, if a two component model is optimal. Histograms are normalized to have 

a total area of 1. 

 

 

 

 
Figure 3.9 OMI index histograms. Histograms of OMI Index from populations of approximately 

200 cells of varying percentages of MDA-MB-231 cells and SKBr3 cells. The solid blue line 

represents the best mixed-model Gaussian distribution fit. The red dashed curves represent the two 

component contributions, if a two component model is optimal. Histograms are normalized to have 

a total area of 1. 
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The OMI index is a linear combination of mean centered redox ratio, NAD(P)H m, and 

FAD m values computed per cell (14).  The mean OMI index values for SKBr3 and MDA-MB-

231 cells are 1.67 +/- 0.31 and 0.54 +/- 0.22, respectively.  OMI-SPA of the OMI index for the co-

culture experiments resolves a single population for the 100% SKBr3 and 100% MDA-MB-231 

groups and two populations for each of the co-culture groups (Fig. 3.9).  The error of the SKBr3 

subpopulation OMI index means is <6% for all co-culture experiments grant (Table 3.2).  The 

mean error for the OMI index for the modeled populations of MDA-MB-231 cells are all less than 

4% (Table 3.2), and the proportions for the SKBr3 and MDA-MB-231 populations within 1% 

(Table 3.2).  The standard deviation error for the modeled SKBr3 populations is 20% or less for 

all experiments and 11% or less for the MDA-MB-231 populations (Table 3.2). 

3.4.3 Behavior of AIC and SPA 

Simulations were performed to determine the characteristics of data sets from which two 

distinct subpopulations can be resolved.  In the first experiments, populations of size N = 300 were 

generated with a random number generator and each population proportion was 0.5.  All 

populations had a normalized mean of 1, and the distance between the means was varied from 0-

2.  The standard deviation of the populations varied from 0-1.  For these simulations, the two 

component model is most representative of the data (AIC2<AIC1) at low standard deviations and 

at greater distances between the means (Fig. 3.10a).  If a cutoff of AIC2<AIC1 is used to select the 

most representative model, a two component model is most representative when the standard 

deviation < 0.46*(distance between means) + 0.0821.  However, if the difference AIC1-AIC2 must 

be greater than 5% of AIC1, then standard deviations < 0.2563*(Distance between means) + 0.0832 

describes the populations with two components that can be identified by OMI-SPA.  However, 

even though the AIC selects a two component model for these populations, the error of the 
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computed population mean values, standard deviations, and proportions increases with increased 

subpopulation standard deviation and decreased distance between the means (Fig. 3.10b-d).   

 

Figure 3.10. Behavior of OMI-SPA for generalized data. Simulation initial conditions include 

a population of size N = 300 cells, each population proportion was 0.5, and all populations had a 

normalized mean of 1. The distance between the means was varied from 0-2.  The standard 

deviation of the populations varied from 0-1.  (a) AIC difference for the 1 and 2 component models 

to fit the simulated data.  (b) Error of the mean, (c) error of the variance, and (d) error of the 

subpopulation proportions computed for the two-component models of the simulated data. 
 

Similar simulations were performed to determine the sample size necessary to resolve two 

populations of known, normalized mean distances, standard deviations, and proportions (Fig. 

3.11).  In Fig. 3.11, the simulations, in which the normalized distance varied from 0-2 and the 

proportion of each population varied from 0-1, are repeated at increasing standard deviation values 

(a) 0.05, (b) 0.1, (c) 0.25, and (d) 0.5.  These simulations demonstrate that SPA requires a larger 

sample size to identify two subpopulations at smaller distances between the means (Fig. 3.11).  As 

the standard deviation increases, an increased sample size is required to identify subpopulations.  
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SPA fails to identify two subpopulations within a sample size of 10,000, at low mean distances: 

mean distances < 0.3 for a standard deviation of 0.05, mean distances < 0.4 for a standard deviation 

of 0.1, mean distances < 0.6 for a standard deviation of 0.25, and mean distances < 0.8 for a 

standard deviation of 0.5.  Additionally, SPA fails to identify two populations in data sets up to 

10,000 cells, at percentages of 0 and 1, as expected for uni-modal populations.  Increased sample 

sizes are required to identify populations of very small proportions, in the 0.02-0.12 range (Fig. 

3.11c).  The dashed red circle (Fig. 3.11b) and red dashed line (Fig. 3.11d) encompass measured 

subpopulations (9, 14) in breast cancer (see 3.5 Discussion). Altogether, these simulations on 

normalized data sets demonstrate the relationships between mean distance, standard deviation, 

population proportion, and sample size necessary to resolve two subpopulations.  

 

Figure 3.11. Minimum sample size for OMI-SPA for populations of varying parameters. 

Minimum sample size (N), if less than 10,000 cells, required to resolve two populations with 

minimal population mean and proportion error (AIC2<AIC1-20) at varied mean distances (0-2) and 

population proportions (0-1).  Standard deviation of the populations was varied: (a) 0.05, (b) 0.1, 

(c) 0.25, and (d) 0.5.  The red, dashed circle in (b) encompasses the majority of normalized OMI 

endpoint mean distances and proportions of subpopulations observed in patient-derived organoids.  

The red, dashed line (d) represents the normalized distance (1.16) and standard deviation between 

two HER2 positive cell lines, one responsive to trastuzumab and one resistant. 
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3.5. Discussion 

Recent evidence suggests that tumor heterogeneity is a major source of drug resistance (1).  

Cancer stem cell populations may contribute to drug resistance and tumor recurrence (6).  Within 

breast cancers, stem cells can compromise 3-35% of the tumor cells (6).  Therefore, non-invasive 

single cell analysis technologies that can monitor changes in cellular subpopulations over time are 

critically needed to understand and combat drug resistance in tumors.  Optical imaging of 

NAD(P)H and FAD is highly sensitive to metabolic differences among breast cancer subtypes (9, 

14), and can be performed at high resolution for single-cell analysis.  Here, we demonstrate the 

capabilities and limitations of OMI-SPA to quantify subpopulations of cells by co-culture and 

simulation experiments. 

Simulations of the OMI-SPA behavior for co-cultured SKBr3 and MDA-MB-231 cells 

(Fig. 3.1-3) demonstrate that for these two cell lines, OMI-SPA will be able to identify the two 

populations, with minimal mean and proportion error, using the NAD(P)H m values at population 

sizes greater than 50 cells and at proportions between 0.1 and 0.9 (Fig. 3.2).  The normalized 

distance between mean redox ratios for SKBr3 and MDA-MB-231 is greater than that of NAD(P)H 

m (0.57 vs. 0.42), but the normalized average standard deviation is twice as great for the redox 

ratios than NAD(P)H m (0.22 vs. 0.12).  Therefore, the redox ratio simulations demonstrate that 

OMI-SPA can resolve two populations with minimal mean and proportion error at larger sample 

sizes (>100 total cells) and proportions between 20 and 80% SKBr3 (Fig. 3.1).  While the 

normalized average standard deviation of the SKBr3 and MDA-MB-231 FAD m values is 0.10, 

the smallest of these three OMI endpoints, the normalized mean FAD m distance for SKBr3 and 

MDA-MB-231 cells is only 0.06, and OMI-SPA is unable to identify two populations in the FAD 

m simulations due to this small difference in means of the two populations (Fig. 3.3).  This 
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highlights the fact that OMI-SPA can identify two populations only if the two populations have 

sufficiently large mean separation and small standard deviations. Otherwise, OMI-SPA cannot 

identify both subpopulations.   

Co-culture experiments of SKBr3 and MDA-MB-231 cells were performed to test OMI-

SPA on experimental data.  Due to the large differences in mean redox ratio and NAD(P)H m, the 

redox ratio and NAD(P)H m images of co-cultured SKBr3 and MDA-MB-231 cells appear 

heterogeneous (Fig. 3.4).  This highlights the advantage of microscopy techniques that provide 

images for qualitative and quantitative assessment. Furthermore, false-coloring of the images 

based on the cellular NAD(P)H m values visually demonstrates the presence of SKBr3 cells and 

MDA-MB-231 cells in the images of co-cultured cells (Fig. 3.7).  OMI-SPA of the redox ratio and 

NAD m values of the co-cultured SKBr3 and MDA-MB-231 cells identified two subpopulations 

with minimal error (Fig 3.5, 3.6; Table 3.2).  OMI-SPA of the FAD m data failed to resolve two 

populations in the 50%/50% co-culture experiment, which was expected from the simulation data 

that suggested the FADm means were too similar for OMI-SPA to distinguish (Fig. 3.8). 

The OMI index is a linear combination of the redox ratio, NAD(P)H m, and FAD m, and 

provides a single optical variable that is highly sensitive to cellular metabolic changes with 

receptor expression and drug response in breast cancer (14).  Subpopulation analysis of the OMI 

index of co-cultured SKBr3 and MDA-MB-231 cells identifies two subpopulations when grown 

at 30/70%, 50/50%, and 70/30% with minimal error in population means, standard deviations, and 

subpopulation proportions (Fig 3.9, Table 3.2).  In comparison with the three individual OMI index 

constituents, the OMI index has the greatest normalized mean distance between SKBr3 and MDA-

MB-231 cells, 1.02, and a normalized standard deviation, 0.24, indicating robust SPA for these 

two cell lines. 
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Generalized simulations were performed to assess the characteristics of data sets that can 

be accurately modeled as two subpopulations by OMI-SPA.  These generalized simulations can 

be used to predict SPA performance for any two subpopulations by computing a subpopulation 

mean separation distance and standard deviation normalized to the mean of the data set.  The 

results of these simulations (Fig. 3.10-11) demonstrate the relationships between sample size, 

population standard deviation, and distance between means necessary to resolve two populations.  

A larger standard deviation is tolerated if the distance between means is greater (Fig. 3.10) or the 

sample size is larger (Fig. 3.11).  OMI-SPA subpopulation mean, standard deviation, and 

proportion errors increase with increased population standard deviation and decreased distances 

between means (Fig. 3.10).  Cancer stem cells compromise 3-35% of the cells within a tumor (6), 

and the generalized OMI-SPA results (Fig. 3.11) demonstrate the capabilities of OMI-SPA to 

resolve these small populations provided that the stem cells have different OMI endpoints from 

the non-stem cell population. 

The utility of OMI-SPA is to identify subpopulations of cells within unknown, 

heterogeneous populations.   OMI-SPA has been used in xenograft and patient derived- primary 

tumor organoids to identify subpopulations with varied response to anti-cancer drug treatment 

(14).  The normalized mean separation for the OMI index of trastuzumab responsive (BT474, 

ER+/HER2+) cells and resistant cells (HR6, ER+/HER2+) is 1.16 and the normalized OMI index 

standard deviation is 0.42 for responsive cells and 0.28 for resistant cells (9).  The normalized 

simulation experiments (red dashed line; Fig. 3.11d) suggest that OMI-SPA will be able to resolve 

heterogeneous populations of responsive and non-responsive cells, if there are at least 500 cells in 

the population.  Analysis of primary-tumor derived organoids with heterogeneous drug-response, 

identified subpopulations of cells with varied OMI index values (14).  The normalized mean 
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separation for OMI-SPA subpopulations within patient primary tumor derived organoids ranged 

from 0.4-1.4, population percentages ranged from 0.15-0.85, and the normalized standard 

deviations ranged from 0.02 to 0.36.  As indicated by the red dashed circle (Fig. 3.11b), OMI-SPA 

can resolve these subpopulations with high mean separations with as few as 100 cells, and can 

resolve the majority of these subpopulations with less than 500 cells.   

Heterogeneous tumors may contain more than two subpopulations and the characteristics 

of these subpopulations may be unknown in advance.   Furthermore, the metabolism of these 

subpopulations may change dynamically over time and in response to stimuli.  SPA, as described 

here, can be used to evaluate the presence of multiple subpopulations.  Additionally, the simulation 

experiments (Fig. 3.10 and 3.11) generalize the OMI-SPA technique and show this is a robust 

method for populations of cells with varying OMI endpoint means and standard deviations and not 

limited to the two specific cell lines used in the co-culture experiments.  Furthermore, one 

advantage of OMI is the non-invasive capabilities which enable imaging of in vitro samples over 

time to study subpopulation and individual cell dynamics.  Altogether, OMI-SPA is a robust, 

attractive platform for evaluating and monitoring subpopulation heterogeneity. 

OMI-SPA assumes that the OMI endpoints distributions for each population exhibit 

normality.  A Wilk-Shapiro test for normality revealed that the NAD(P)H and FAD mean lifetimes 

of both cell lines exhibited normality but the OMI index did not for either cell line and neither did 

the redox ratio for the SKBr3 cells.  The lack of normality of these data sets may introduce error 

when modeled as Gaussian curves.  Even with this know error, however, the errors for the mean 

OMI index modeled for both cell lines and the errors for the SKBr3 redox ratio in the co-culture 

experiments was less than 6%, suggesting OMI-SPA performs well with these distributions 
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represented as Gaussian curves. SPA can be improved to account for different data distributions 

by using additional distributions that better represent the homogenous population. 

The results of this experiment demonstrate that OMI-SPA can be used to identify cancer 

cell subpopulations based on the OMI endpoints: redox ratio, NAD(P)H mean lifetime, FAD mean 

lifetime, and OMI index.  Furthermore, these results characterize the relationships between sample 

size, standard deviation, and mean distance required for OMI-SPA to accurately describe the two 

populations.  Our previously published analyses of cellular subpopulations within in vivo tumors 

(9) and patient-derived tumor organoids (14) also indicate that OMI-SPA can accurately identify 

cell subpopulations with a sample of as few as 300 cells.  
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CHAPTER 4 

Optical Metabolic Imaging Identifies Breast Cancer Glycolytic Levels, Sub-Types, and 

Early Treatment Response 

Walsh AJ, Cook RS, Manning HC, Hicks DJ, Lafontant A, Arteaga CL, Skala MC, “Optical 

metabolic imaging identifies breast cancer glycolytic levels, sub-types, and early treatment 

response,” Cancer Research. 2013; 73(20):6164-74. 

4.1 Abstract 

Abnormal cellular metabolism is a hallmark of cancer, yet there is an absence of 

quantitative methods to dynamically image this powerful cellular function.  Optical metabolic 

imaging (OMI) is a non-invasive, high-resolution, quantitative tool for monitoring cellular 

metabolism.  OMI probes the fluorescence intensities and lifetimes of the autofluorescent 

metabolic co-enzymes reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine 

dinucleotide (FAD).  We confirm that OMI correlates with cellular glycolytic levels across a panel 

of human breast cell lines, using standard assays of cellular rates of glucose uptake and lactate 

secretion (p<0.05, r=0.89).   Additionally, OMI resolves differences in the basal metabolic activity 

of untransformed from malignant breast cells (p<0.05), and between breast cancer sub-types 

(p<0.05), defined by estrogen receptor (ER) and/or HER2 expression or absence.  In vivo OMI is 

sensitive to metabolic changes induced by inhibition of HER2 with the antibody trastuzumab 

(Herceptin) in HER2-overexpressing human breast cancer xenografts in mice.  This response was 

confirmed with tumor growth curves and stains for Ki67 and cleaved caspase-3.  OMI resolved 

trastuzumab-induced changes in cellular metabolism in vivo as early as 48 hours post-treatment 

(p<0.05), while FDG-PET did not resolve any changes with trastuzumab up to 12-days post-

treatment (p>0.05).  In addition, OMI resolved cellular sub-populations of differing response in 

vivo that are critical for investigating drug resistance mechanisms.  Importantly, OMI endpoints 
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remained unchanged with trastuzumab-treatment in trastuzumab-resistant xenografts (p>0.05).  

OMI has significant implications for rapid cellular-level assessment of metabolic response to 

molecular expression and drug action, which would greatly accelerate drug development studies. 

4.2 Introduction 

Cellular metabolism produces energy and macromolecules necessary for cell survival.  

Abnormal metabolism is involved in many of the diseases that cause the greatest burden of 

morbidity and mortality in the developed world.  Many malignant cancer cells maintain high rates 

of glycolysis in the presence of oxygen (1) and oncogenic transformation is linked with changes 

in metabolic rates. For example, the HER2 receptor tyrosine kinase, which is amplified in about 

20% of invasive breast cancer, potently activates the phosphatidylinositol-3 kinase 

(PI3K)/Akt/mTOR pathway, a master regulator of glucose metabolism (2, 3).  Patients with HER2 

gene-amplified breast cancers present with more aggressive disease and generally have a poor 

prognosis (4). HER2 inhibitors, such as the antibody trastuzumab (Herceptin), provide substantial 

clinical benefits. However, the action of HER2 inhibitors is limited due to innate and acquired 

drug resistance (5).    

Clinically and in preclinical drug development, there is a need for high-resolution, non-

invasive, functional imaging tools to monitor and predict drug efficacy vs. lack of efficacy. In 

cancer research, the primary endpoint of drug efficacy is tumor regression.  However, cellular and 

molecular changes precede changes in tumor size. If these molecular endpoints could be identified 

and measured, they would provide biomarkers predictive of drug response or drug resistance. 

Cellular metabolism is particularly sensitive to upstream molecular interventions, and therefore 

may be a powerful biomarker of early drug response. The HER2 inhibitor trastuzumab, for 

example, inhibits PI3K-mediated glucose metabolism (6-8).  Current preclinical and clinical 
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methodologies to assess metabolic state in tumors in situ include fluorodeoxyglucose-positron 

emission tomography (FDG-PET), immunohistochemical (IHC) assessment of levels of metabolic 

regulators, and metabolic flux analyses (7, 9-13).  Yet each of these techniques fails to capture 

dynamic changes in metabolic state and poorly reflect sensitivity to drug efficacy (7, 9, 14-18).   

Optical metabolic imaging (OMI) exploits the autofluorescent properties of reduced 

nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), two metabolic 

co-enzymes.  We use multi-photon fluorescence and time-correlated single photon counting to 

measure the optical redox ratio and fluorescence lifetimes of NADH and FAD in living cells and 

tissues.  The optical redox ratio is the ratio of NADH fluorescence intensity divided by FAD 

fluorescence intensity (19), and provides a dynamic measure of cellular metabolism (8, 19-21).  

The fluorescence lifetime, the time a molecule remains in the excited state, is independent of inter- 

or intra- instrument variability, resolves free and bound protein configurations, and is influenced 

by preferred protein-binding of the molecules and proximity to quenchers (e.g. oxygen) (22).    

NADH and FAD each have two-component fluorescence decays.   For NADH, the short lifetime 

(1) corresponds to NADH free in solution, while the long lifetime (2) corresponds to protein-

bound NADH (23).  Conversely, protein-bound FAD corresponds to the short lifetime, while free 

FAD corresponds with the long lifetime (24). The shorter fluorescence lifetimes of both protein-

bound FAD and free NADH are due to dynamic quenching by the adenine moiety (22, 25).  The 

mean fluorescence lifetime (m) is the weighted average of the short and long lifetime components, 

m = 11+22, where 1 and 2 are the fractional contributions of the short and long lifetimes, 

respectively.  

The images acquired by OMI provide sufficient resolution and contrast to distinguish the 

cellular and extracellular tissue compartments, as the collagen-enriched extracellular matrix 
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generates a strong second harmonic signal that has a lifetime and spectral emission distinct from 

cellular NADH and FAD (26).  Resolution is adequately high to isolate single cells, allowing 

identification of inflammatory infiltrates in the stroma and tumor epithelia.  This single cell-level 

resolution may be useful for identifying resistant sub-populations of cells that pre-exist in the 

tumor and are responsible for cancer relapse.   

Because OMI is inexpensive, fast, and directly measures dynamic changes in cellular 

metabolism that reflect glycolysis, oxidative phosphorylation, and metabolic enzyme 

microenvironment interactions, we investigated the potential of OMI as a tool for monitoring 

metabolic response to targeted therapies in human breast cancer cells and xenografts.  OMI was 

validated by measuring metabolic inhibition by cyanide, and by comparison with standard assays 

of glycolytic metabolism.  The sensitivity of OMI to breast cancer sub-types was confirmed. 

Finally, the OMI-measured response of mouse xenograft models treated with trastuzumab was 

compared with FDG-PET, IHC, and tumor size measurements.  This work represents a significant 

advancement in the tools available to study cellular metabolism and tumor response to treatment 

in living systems. 

4.3 Materials and Methods 

4.3.1 Fluorescence lifetime instrumentation  

A custom built, commercial multi-photon fluorescence microscope (Prairie Technologies) 

was used to acquire fluorescence images.  A 40X water-immersion objective (1.15 NA) or a 40X 

oil-immersion objective (1.3 NA) coupled the excitation and emitted light through an inverted 

microscope (TiE, Nikon).  A titanium:sapphire laser (Coherent Inc.) was tuned to 750 nm for 

excitation of NADH and 890 nm for FAD excitation.  The average laser power was 7.5-7.8 mW 

for NADH and 8.4-8.6 mW for FAD.  A pixel dwell time of 4.8 s was used.   A GaAsP PMT 
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(H7422P-40, Hamamatsu) detected emitted photons.  A 400-480 nm bandpass filter isolated 

NADH fluorescence.  A 500 nm high pass dichroic mirror and a 500-600 nm bandpass filter 

isolated FAD fluorescence.   

Fluorescence lifetime images were acquired using time correlated single photon counting 

(TCSPC) electronics (SPC-150, Becker and Hickl).  TCSPC uses a fast detector PMT to measure 

the time between a laser pulse and fluorescence event.  Each image of 256x256 pixels was acquired 

using an integration time of 60 seconds.  No change in the photon count rate was observed, 

ensuring that photobleaching did not occur. The instrument response function (measured from the 

second harmonic generated signal of urea crystals excited at 900 nm) full width at half maximum 

was measured to be 260 ps.  The single-component fluorescence lifetime of a fluorescent bead 

(Polysciences Inc.) was measured daily.  The measured fluorescence lifetime of the bead was 2.1 

± 0.08 ns (n = 18), which is consistent with published studies (20, 27). 

4.3.2 Cell culture  

All cell lines were acquired from the ATCC except the HR6 cell line (28) which was 

provided by the Arteaga lab.  The non-cancerous mammary epithelium cell line, MCF10A, was 

cultured in MEBM (Lonza) supplemented with cholera toxin, penicillin: streptomycin, bovine 

pituitary extract, hydrocortisone, insulin, and human epidermal growth factor.  All malignant cell 

lines were grown in DMEM (Invitrogen) with 10% fetal bovine serum and 1% penicillin: 

streptomycin. The growth media for the HR6 cell line was further enhanced with 25 g/ml 

trastuzumab (Vanderbilt Pharmacy).  For fluorescence imaging, cells were plated at a density of 

106 cells per 35 mm glass-bottom imaging dish (MatTek Corp.) 48 hours before imaging.   

The MCF10A cell line was used as a daily fluorescence standard for the redox ratio, and 

imaged each day measurements were acquired.  All other cell lines were imaged on at least two 
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different days.  A total of 18 different locations were imaged for each cell line (58 for MCF10A 

cells) from six different dishes (three images were acquired from each dish, see Appendix A Table 

A.1). 

4.3.3 Cyanide experiment  

NADH and FAD fluorescence lifetime images of three locations of three dishes were 

acquired.  Media of two of the MCF10A dishes was removed and replaced with cyanide 

supplemented MCF10A growth media (4 mM NaCN, Sigma).  The cells were allowed 5 minutes 

for the cyanide to react, and post-cyanide NADH and FAD fluorescence images were acquired 

from three unique locations from each dish. 

4.3.4 Trastuzumab perturbation 

The effect of HER2 inhibition by trastuzumab was tested in HER2-overexpressing cells.  

The cells were plated at a density of 106 cells per imaging dish, 48 hours before imaging.  At 24 

hours before imaging, the growth media was exchanged for growth media containing 25 g/ml 

trastuzumab.  This dose of trastuzumab, 25 g/ml, was chosen to mimic therapeutic drug dosage 

in patients (29). 

4.3.5 Mouse xenografts  

This study was approved by the Vanderbilt University Animal Care and Use Committee 

and meets the National Institutes of Health guidelines for animal welfare.  MDA-MB-361 cells 

(106), BT474 cells (108), or HR6 cells (108) in 100µl Matrigel were injected in the inguinal 

mammary fat pads of female athymic nude mice (J:NU; Jackson Laboratories).  Tumors were 

allowed to grow to ~150mm3. Tumor-bearing mice were treated with trastuzumab (Vanderbilt 

University Medical Center pharmacy) or control human IgG 10 mg/kg twice weekly for two 

weeks.  This dose of trastuzumab was chosen to mimic therapeutic drug dosage in patients (30). 
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4.3.6 OMI xenograft imaging  

Isoflurane-anesthetized mice were used for vital imaging, by removing the skin overlying 

the tumor, overlaying the tumor with a coverslip, and placing the mouse on the microscope stage.  

NADH and FAD fluorescence lifetime images of three different tumor locations were acquired 

each day.  After imaging, mice were humanely euthanized while under anesthesia.  Each OMI 

group contained 3 mice, each with 2 tumors for a total n of 6 tumors at each time point. 

4.3.7 FDG-PET imaging  

The FDG-PET protocol follows published methods (7, 31, 32). The mice were fasted 

overnight and allowed to acclimate to the PET facility for 1hr on a warm water pad.  A single 

retroorbital injection of ~200 Ci (100l) of [18F]FDG was administered.  Following a 40-min 

distribution period, 20-min static PET scans were collected on a Concorde Microsystems 

microPET Focus 220 (Siemens) while mice were anesthetized with isoflurane.  PET images were 

reconstructed using the ordered subsets expectation maximization algorithm (33).  FDG-uptake 

values were obtained by isolating the uptake of each tumor volume and correcting for the injected 

dose.  Each FDG-PET group contained 5 mice, each with 2 tumors for a total n of 10 tumors. 

4.3.8 Quantification of the optical redox ratio  

The optical redox ratio was computed from the NADH and FAD fluorescence lifetime data.  

The photons detected at each pixel in an image were integrated over time to compute the sum of 

photons per pixel.  The total number of NADH photons was divided by the total number of FAD 

photons at each pixel to create a redox ratio image (Matlab, MathWorks).  The redox ratio image 

was thresholded to remove background and nuclear fluorescence and the average redox ratio for 

the remaining cell cytoplasms was computed.  This approach has been confirmed to be consistent 

with redox ratios obtained with steady-state detection (8, 21).   
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4.3.9 Quantification of fluorescence lifetime components 

For each image, a threshold was selected to eliminate background and nuclear fluorescence 

(SPCImage, Becker and Hickl).  A binning of nine surrounding pixels was used.  Then, the 

fluorescence lifetime components were computed for each pixel by de-convolving the measured 

system response and fitting the resulting exponential decay to a two-component model, 

CtI
tt
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 21 /

2
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1 expexp)(
  , where I(t) is the fluorescence intensity at time t after the laser 

excitation pulse, 1 and2 are the fractional contributions of the short and long lifetime 

components, respectively (i.e. 1 +2 = 1), 1 and2 are the fluorescence lifetimes of the short 

and long lifetime components, and C accounts for background light.  A two-component decay was 

used to represent the lifetimes of the free and bound configurations of NADH and FAD (20, 23, 

24).  The average lifetime component values and a mean fluorescence lifetime  

( 2211  m ) for each image were computed in Matlab.   

4.3.10 Statistical analysis  

A rank sum test of means was used to test for significant differences due to cyanide.  A 

Bonferroni correction for multiple-comparisons was used on rank sum tests of means of the 

metabolic values from the panel of cell lines.  A rank sum test of means was used to identify 

significant differences when cell lines were treated with trastuzumab and to find differences in the 

in vivo xenograft experiments.  A student's t-test of means tested for significantly different FDG 

uptake values between control and trastuzumab-treated xenografts.  For all statistical tests, an alpha 

significance level of 0.05 was used and the test was assumed to be two-way. 

Spearman's rank correlation coefficient was used to identify correlations.  Both a 

correlation coefficient (r) and a P-value were computed.  An alpha level of less than 0.05 signified 
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significance.  Scatterplots of the significant correlations confirmed that the correlation was due to 

data trends and not a single outlier. 

4.3.11 Computation of intra- and inter- cellular variation  

Inter-cellular variation was visualized by histogram representation of the mean metabolic 

measure (optical redox ratio, NADH m, or FAD m) for all cells.  The histogram was fit to one, 

two, and three component Gaussian curves to determine the number of modes within the data.  The 

fit with the lowest Akaike information criterion (AIC) was selected to represent the probability 

density function of the histogram (34).  Intra-cellular variation was computed as the average 

coefficient of variation (standard deviation divided by mean) for each cell and averaged over all 

cells. 

4.3.12 Percentage of mitotic cells  

The percentage of proliferating cells was measured by flow cytometry.  Cells were plated 

at a density of 106 cells per 35 mm dish.  After 48 hours, the cells were labeled with  Phospho-

Histone H3 (Ser10) antibody (Cell Signaling Technology) and a secondary antibody, Alexa Fluor 

488 goat anti-rabbit IgG (Invitrogen) enabled detection of labeled cells by flow cytometry. 

4.3.13 Glycolytic Index  

Media glucose and lactate concentrations were measured using standard assay kits 

(Amplex® Red Glucose/Glucose Oxidase Assay Kit (Invitrogen) and L-Lactate Assay Kit (Eton 

Bioscience Inc.)). Concentrations of glucose and lactate in the cell growth media were determined 

at the time of plating (0hr) and at the time of imaging (48hr).  The “glycolytic index” was computed 

as the moles of glucose consumed within 48hr divided by the moles of lactate produced in 48hr.     
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4.3.14 Histological analysis   

Tumors were collected and placed in buffered formalin, paraffin embedded, sliced, and 

stained with H&E.  Additional slides were stained for Ki-67 and cleaved caspase-3.  Staining 

protocols were verified in positive control samples.  The percentage of positively stained cells was 

quantified from 5 fields of view from 3 tumors in each group. 

4.4 Results 

 
Figure 4.1 Cyanide validation experiment. Graphical representation (a) of the 

relationship between HER2, NADH and FAD.  HER2 activation drives an increase in 

glycolysis, which produces NADH.  The pyruvate generated in glycolysis can enter the 

mitochondria as a reactant in oxidative phosphorylation.  Oxidative phosphorylation 

consumes NADH and produces FAD.  A net gain of NADH relative to FAD is observed 

with HER2 activation due to a relative increase in glycolysis.  Inhibition of HER2 by 

trastuzumab reduces cellular glycolysis rates resulting in a decrease of cellular NADH 

relative to FAD.  NADH and FAD are highlighted as the fluorescent molecules in this 

diagram, and molecules in bold indicate the net direction of the reaction.  Optical redox 

ratio (b), NADH m (c), and FAD m (d) of MCF10A (non-malignant) cells before (n=9) 

and after (n=6) treatment with 4 mM NaCN. m is the mean lifetime (m = 1*α1 + 2*α2).  

*P <0.05. 
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Figure 4.1a demonstrates the relationship between HER2 and the fluorescent molecules 

NADH and FAD.  HER2 activation drives an increase in glycolysis, which generates NADH.  The 

pyruvate produced in glycolysis can enter the mitochondria as a reactant in oxidative 

phosphorylation.  Oxidative phosphorylation consumes NADH and produces FAD.  A net gain of 

NADH relative to FAD is observed with HER2 activation due to a relative increase in glycolysis.    

4.4.1 Validation 

Chemical inhibition of oxidative phosphorylation affects the relative fluorescence 

intensities of NADH and FAD in a cell (35), so this perturbation was used to validate the optical 

imaging approach (Fig. 4.1b-d, Appendix A Fig. A.1). Cyanide (which disrupts the electron 

transport chain) induced the predicted trends23, 27: an increase in the optical redox ratio and a 

decrease in NADH m.  Unreported until now, FAD m increased with cyanide treatment.   

4.4.2 Metabolic profiling of breast cancer cells 

 
Figure 4.2 Representative OMI images. Representative images of the optical redox ratio 

(NADH/FAD; first row), NADH m (second row), and FAD m (third row) of MCF10A (non-

malignant) and malignant breast cells.  Scale bar represents 30 μm.  The redox ratio is normalized 

to the mean daily MCF10A mean redox ratio as a daily fluorescence standard. m is the mean 

lifetime (m = 1*α1 + 2*α2). The ER and HER2 status of each cell line is provided under its name. 
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High resolution images (Fig. 4.2) allowed visualization of cellular morphology and cell-

to-cell variability of the optical redox ratio and NADH and FAD fluorescence lifetimes for human 

breast cell lines (Appendix A Table A.1). Cellular fluorescence localized to the cytoplasm of cells.   

ER+/HER2- cells displayed increased redox ratios over that seen in triple-negative cells (P<0.001; 

Fig. 3a), and the greatest redox ratios were measured in HER2 gene-amplified cells (P<0.001).  To 

account for any differences in cellular proliferation rates among the cell lines and demonstrate that 

the redox ratio is not a reporter of cellular proliferation (Appendix A Fig. A.2a), we normalized 

the redox ratio to the % mitotic cells (Appendix A Fig. A.2b) and found similar trends, increased 

redox ratio/% mitotic cells in ER+ cells and the greatest redox ratio/% mitotic cells in HER2+ 

cells.  

 

Figure 4.3 In vitro OMI results. (a) The optical redox ratio (mean +/- SE), (b) NADH m, and (c) 

FAD m for a panel of breast cancer cell lines.  (d) A scatterplot of NADH m versus redox ratio/% 

mitotic cells [non-malignant (NM), triple negative (TNBC)]. (h) Correlation between redox 

ratio/% mitotic cells and glycolytic index.  Unless indicated with a line, stars (*) indicate 

statistically significant differences with the MCF10A (non-malignant) cells and bullets (•) indicate 

statistically significant differences with the HER2+ cells grouped together.   ** P <0.001,  •• P < 

0.001.  n = 18 for all malignant cell lines and n = 58 for MCF10A. 
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NADH m of HER2+ and ER+ cells were increased over that measured in non-malignant 

cells (P<0.001; Fig. 4.3b), but were statistically similar to each other (P=0.5).  Triple negative 

cells exhibited the shortest NADH m.  Reduced free and protein-bound NADH lifetimes (1 and 

2) were observed in the triple negative and ER+ cells (Appendix A Fig. A.3a-b).  The portion of 

free NADH (1) was decreased in the HER2+ cells compared to the non-malignant cells (Appendix 

A Fig. A.3c). Compared to non-malignant cells, FAD m was increased in all malignant cells 

(P<0.001), with the longest FAD m observed in ER+/HER2- cells (P<0.001; Fig. 3.3c).  Increased 

FAD 1 and 2 values, as well as a reduced 1 (contribution of bound FAD) contributed to the 

increased FAD m observed in the malignant cells (Appendix A Fig. A.3d-f).  A scatterplot of 

NADH m vs. redox ratio/% mitotic cells (Fig. 4.3d) allowed accurate clustering of data-points of 

non-malignant, triple-negative, ER+, and HER2+ cells.  Scatterplots of FAD m vs redox ratio and 

NADH m vs FAD m allow separation of triple negative and non-malignant cells (Appendix A 

Fig. A.4). 

We compared OMI to cellular rates of glucose uptake and lactate secretion, or the 

“glycolytic index”.  A Spearman's rank correlation coefficient (r) of 0.89 (P<0.05) defined a 

positive correlation between the optical redox ratio/% mitotic cells and the glycolytic index (Fig. 

4.3e).  Neither NADH m nor FAD m correlated with the glycolytic index or the redox ratio 

(Appendix A Table A.2).   
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4.4.3 Trastuzumab response in vitro 

 

Figure 4.4 In vitro trastuzumab response. (a) The redox ratio (mean +/- SE) decreases with 

trastuzumab-treatment in responsive (BT474) and partially responsive (MDA-MB-361) cells but 

remains unchanged in cells with acquired resistance to trastuzumab (HR6). (b) NADH m (mean 

+/- SE; m = 1*α1 + 2*α2) is shorter in trastuzumab-treated responsive cells (BT474) and cells 

with acquired resistance (HR6), but unchanged in cells with poor response (MDA-MB-361).  (c) 

FAD m (mean +/- SE) is shorter in trastuzumab-treated BT474 but unchanged MDA-MB-361 and 

HR6 cells. * indicates significance between control and treated, unless otherwise indicated. (d) 

Distribution density modeling (black line represents fit of untreated cell histogram, gray line 

represents fit of trastuzumab treated cells) of the redox ratio on a cell-by-cell basis reveals two 

distinct populations of MDA-MB-361 cells for the redox ratio, with 70% and 30% of cells in the 

majority and minority populations, respectively, for both control and treated cells.  There is a 

significant decrease (P<0.05) in the mean of the minority population of treated cells (but not in the 

majority population), suggesting trastuzumab response in a sub-population of cells. ** P <0.001, 

* P <0.05.  n = 18 images for control and treated for all cell lines. 

 

 The effect of trastuzumab on cellular metabolism was investigated in three HER2-

overexpressing cell lines:  BT474 cells which are responsive to trastuzumab, MDA-MB-361 cells 

which partially respond to trastuzumab, and HR6 cells, which were derived from a BT474 

xenograft that acquired resistance to trastuzumab in vivo (28). The redox ratio (P<0.05), NADH 

m (P<0.05), and FAD m (P<0.001) of BT474 cells decreased upon trastuzumab treatment for 24 
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hours (Fig. 4.4a-c).  Lifetime component analysis demonstrated significant increases in the 

portions of free NADH (1) and bound FAD (1) of BT474 cells treated with trastuzumab 

(Appendix A Fig. A.5). Similarly, the redox ratio of the MDA-MB-361 cells decreased (P<0.05) 

with trastuzumab treatment (Fig. 4.4a). The high resolution OMI enabled analysis of cellular 

heterogeneity in response to trastuzumab (Fig. 4.4d, Appendix A Fig. A.6). Distribution modeling 

of cellular redox ratios of MDA-MB-361 cells revealed two sub-populations characterized by 

differing redox ratios (Fig. 4.4d).  The mean redox ratio of the first population, representing 70% 

of cells, showed no change (1.34 to 1.31) upon trastuzumab treatment (P=0.07), suggesting that 

trastuzumab did not affect metabolic processes in the majority of MDA-MB-361 cells.   However, 

30% of the cells responded to trastuzumab with a mean redox ratio that decreased from 1.89 to 

1.65 (P<0.001).   

HR6 cells are a trastuzumab-resistant BT474-derived sub-line that retains HER2 

overexpression. Previous studies have shown maintenance of HER2 overexpression and PI3K/Akt 

signaling in trastuzumab-treated HR6 cells (28). Consistent with this observation, the redox ratio 

remained unchanged upon treatment with trastuzumab, as was FAD m.  NADH m decreased in 

HR6 cells upon treatment with the antibody (P<0.05; Fig. 4.4a-c).   An increased portion of free 

NADH (1) contributed to the decreased NADH m observed in the HR6 cells (Appendix A Fig. 

A.5).   
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4.4.4 In Vivo Xenografts  

 

Figure 4.5 BT474 Xenograft OMI and FDG-PET. (a) BT474 tumors treated with trastuzumab 

(10 mg/kg, 2 x weekly) decrease in size (mean +/- SE) compared to control IgG treated tumors. 

Trastuzumab vs. control at each time point. (b) Ki67 staining demonstrates reduced proliferation 

in trastuzumab-treated tumors. (c) Cleaved caspase 3 staining demonstrates increased apoptosis in 

trastuzumab-treated tumors at day 5. (d) Representative FDG-PET image (T=tumor).  (e) FDG 

uptake increases in control tumors at day 12 compared to control tumors at day 2.  No significant 

difference in FDG uptake between trastuzumab-treated and control tumors is observed.  n = 10. (f) 

Representative OMI images. Scale bar is 50 m.  (g) Decreased redox ratio, (h) NADH m, and (i) 

FAD m are observed in trastuzumab-treated tumors at 2 days post trastuzumab-treatment. * 

P<0.05, ** P<0.01; *** P < 0.001; n = 6 tumors. 

 

To verify the OMI response observed in cultured cells, we performed OMI on HER2-

overexpressing xenografts and compared these findings with tumor size, IHC, and FDG-PET 

measurements.  Established BT474 xenografts treated with control IgG continued to grow 

throughout the course of the experiment while the trastuzumab-treated tumors decreased in size 

(Fig. 4.5a).  IHC staining confirmed lower rates of proliferation and higher rates of apoptosis in 

the trastuzumab-treated group (Fig. 4.5b,c). A representative FDG-PET image displays the 

location of the tumors in the mammary fat near the hind limbs and demonstrates increased FDG-

uptake in the tumors compared to the surrounding tissue (Fig. 4.5d).  FDG-uptake increased in the 

control mice between days 2 and 12 post-treatment; however, no difference was observed between 



79 

 

control and trastuzumab treated tumors at any time point (day 2, 5, or 12 post-treatment; Fig. 4.5e).  

OMI imaging of an identical cohort of tumors allowed cellular-level visualization of metabolism 

(Fig. 4.5f) and resolved metabolic differences in the redox ratio (Fig. 4.5g), NADH m (Fig. 4.5h, 

Appendix A Fig. A.7a-c), and FAD m (Fig. 4.5i, Appendix A Fig. A.7) between control and 

trastuzumab-responding tumors as early as 2 days after the first dose of trastuzumab.    

 

Figure 4.6 HR6 Xenograft OMI and FDG-PET. (a) HR6 tumor size (mean +/- SE)  treated with 

trastuzumab (10 mg/kg, 2 x weekly) compared to control IgG treated tumors. (b) Ki67 staining of 

HR6 control IgG and trastuzumab-treated tumors. (c) Cleaved Caspase 3 staining of HR6 control 

IgG and trastuzumab-treated tumors. (d) Representative FDG-PET image (T=tumor).  (e) FDG 

uptake increases in control tumors at day 12 compared to control tumors at day 2, * P<0.05.  No 

significant difference in FDG uptake between trastuzumab-treated and control tumors is observed 

at any time.  n = 10. (f) Representative OMI images, scale bar is 50 m..  (g) Redox ratio, (h) 

NADH m, and (i) FAD m of control and trastuzumab-treated tumors. * P<0.05; n = 6 tumors. 

Tumor size measurements of the HR6 xenografts showed similar growth of both control 

and trastuzumab-treated HR6 tumors (Fig. 4.6a).  IHC confirmed that the trastuzumab-treated HR6 

tumors retain proliferative capabilities and express similar rates of apoptosis compared to control 

treated tumors (Fig. 4.6b,c). A representative FDG-PET image of the HR6 tumors shows increased 

FDG-uptake by the tumor compared to the surrounding tissue (Fig. 4.6d).  No change in FDG-

PET was observed between control and trastuzumab-treated tumors at any time point; however, 
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the FDG-uptake was increased in the control mice at 12 days compared to 2 days (Fig. 4.6e).   No 

difference was observed in the redox ratio between control and treated HR6 tumors at any time 

point (Fig. 4.6f,g).  NADH m decreased in the HR6 treated tumors relative to controls at 2 days 

post treatment, but was similar to controls at days 5 and 14 (Fig. 4.6h, Appendix A Fig. A.8).  No 

change in FAD m was observed at any time point (Fig. 4.6i, Appendix A Fig. A.8). 

 

Figure 4.7 MDA-MB-231 Xenograft OMI. (a) Representative images of the optical redox ratio 

(first row), NADH m (second row), and FAD m (third row) of control and trastuzumab-treated 

(10 μg/kg; 48 hours) MDA-MB-361 mouse xenograft tumors.  Scale bar is 50 μm. (b) Redox ratio, 

(c) NADH m and (d) FAD m  mean +/- SE for control and trastuzumab-treated tumors evaluated 

on a per-image basis. (e) Redox ratio, (f) NADH m and (g) FAD m  distribution density modeling 

of single-cell analysis in control and trastuzumab-treated tumors.  (e-g)  Distribution density 

modeling reveals two distinct populations of trastuzumab-treated cells for the redox ratio (e, 

maroon line) and FAD m (g, maroon line) measurements, indicating heterogeneous cellular 

metabolic response to treatment.  All control populations (e-g; blue lines) and the trastuzumab-

treated NADH m population (f, maroon line) are uni-modal. (h) The increased coefficient of 

variation in the redox ratio and FAD m of the trastuzumab treated xenografts indicates increased 

intra-cellular variation in metabolism. * P <0.05 

 

The redox ratio (P<0.05), NADH m (P<0.05), and FAD m (P<0.05) decreased in 

trastuzumab-treated MDA-MB-361 xenografts as compared to IgG-treated controls (Fig. 4.7a-d; 
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Appendix A Fig. A.9) 2 days after treatment.  Modeling of the optical redox ratio and FAD m 

values on a cell-by-cell basis (inter-cell variability) identified two sup-populations of tumor cells 

in trastuzumab-treated animals, while an uni-modal cellular distribution was identified for NADH 

m (Fig. 4.7e-g).  High resolution analysis revealed that intra-cellular variability in redox ratios and 

FAD m increased (P<0.05) in trastuzumab-treated samples (Fig. 4.7h). These results fully 

characterize OMI and demonstrate its potential for monitoring early drug response in cell culture 

and mouse xenografts on a single-cell level. 

4.5 Discussion 

OMI is advantageous for live cell and animal imaging due to several features, including 

direct and dynamic assessment of cellular metabolism in vivo, cellular and sub-cellular resolution 

imaging capabilities, rapid acquisition, low-cost, use of intrinsic signals (no contrast agents, no 

radioactivity), and high sensitivity to metabolic changes.  Our results have significant implications 

for rapid assessment of drug action in pre-clinical models, which would greatly accelerate drug 

development studies.  

These results are the first to correlate OMI with a standard assay of metabolic behavior. 

While the optical redox ratio is inferred from theory as the relative rates of glycolysis and oxidative 

phosphorylation within cells, we confirm a strong positive correlation (r = 0.89, P=0.03) with a 

standard measure of cellular glycolytic levels (Fig. 4.3). In contrast, NADH m and FAD m are not 

correlated with the glycolytic index (Appendix A Table A.2).  The proportion of free NADH (1) 

has been interpreted as an analog to the optical redox ratio (27); however, we did not find a 

correlation between the optical redox ratio and NADH 1 (Appendix A Table A.2). Given the 

physical nature of these fluorescence lifetime measurements, which are sensitive to protein-

binding, relative fractions of free and bound components, and proximity to quenchers, it is not 
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surprising that they are sensitive to more cellular processes than just glycolysis. For example, 

changes in the distribution of NADH and FAD enzyme binding sites associated with preferred 

metabolic pathways in breast cancer sub-types may be responsible for the changes in protein-

bound lifetimes between cell lines (36). The changes in the lifetimes of the free components of 

NADH and FAD may reflect changes in dynamic quenching (22). Taken together, the data (Fig. 

4.3, Appendix A Table A.2) indicate that the redox ratio, NADH and FAD lifetimes provide 

independent measures of cellular metabolism and the molecular microenvironment. The varied 

dynamics of these endpoints due to HER2 inhibition suggest that all three OMI endpoints provide 

added value when measured together.  

We used these tools to differentiate breast cancer cells by sub-type, defined by ER and/or 

HER2 expression or absence (Fig. 4.3).  OMI is sensitive to metabolic behaviors caused by ER 

and HER2 (Fig. 4.3), known oncogenic drivers of glycolytic metabolism in breast cancer cells (3, 

8, 37, 38).  ER regulates gene expression of glucose transporter proteins and proteins involved in 

oxidative phosphorylation and the citric acid cycle such as isocitrate dehydrogenase which actively 

reduces NAD+ to NADH (37, 39-41).  HER2 mediates metabolism through signaling of the 

PI3K/Akt/mTOR pathway which directs transcription of glycolytic enzymes (2, 3).  When 

combined, the redox ratio and NADH lifetime fully separate the distinct sub-types of breast cancer 

(Fig. 4.3d), indicating that the complementary measures of the redox ratio and fluorescence 

lifetime allow robust characterization of cellular metabolism and molecular microenvironments 

associated with breast cancer sub-types.   

We further show that the OMI endpoints optical redox ratio, NADH m, and FAD m, reflect 

impaired metabolic activity in trastuzumab-responsive BT474 cells (Fig. 4.4) in vitro, suggesting 

a large metabolic response of HER2-amplified cells to trastuzumab. Only one of the OMI 
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endpoints, NADH m, decreased in the trastuzumab-resistant HR6 cells (Fig. 4.4).  While HR6 

cells maintain HER2-overexpression and PTEN and P-Akt protein levels in the presence of 

trastuzumab, blockage of HER2 with trastuzumab may affect internal signaling (28).  Due to its 

highly sensitive nature, NADH m may be reporting such minute metabolism differences.   

A subset of variables also resolved metabolic changes induced by trastuzumab in poorly 

responsive HER2-amplified cells (MDA-MB-361) in vitro (Fig. 4.4).   Behavioral heterogeneity 

inherent to the MDA-MB-361 cell line suggests that 25% of the overall population would be 

growth inhibited by trastuzumab in vitro (42).   Our data detected a 30% sub-population within 

MDA-MB-361 cells that responded to trastuzumab through decreased redox ratios (Fig. 4.4d), 

suggesting correlative evidence that high resolution optical imaging is capable of detecting 

responders and non-responders at the single cell level in the context of a heterogeneous tumor cell 

population with a mixed response. The complementary metabolic information gained from the 

OMI endpoints allowed identification of a large metabolic response to trastuzumab (BT474) but 

also resolved negative (HR6) and partial (MDA-MB-361) responses, demonstrating high 

sensitivity and resolution of OMI.    

Finally, we measured the in vivo metabolic response to trastuzumab in HER2-

overexpressing mouse xenografts. Trastuzumab-induced metabolic repression in BT474 and 

MDA-MB-361 tumors was detected by 48hrs post-treatment (Fig. 4.5, 4.7).   The redox ratio and 

FAD m did not change in trastuzumab-resistant HR6 tumors treated with the antibody (Fig. 4.6).  

However, NADH m decreased in trastuzumab-treated HR6 tumors compared to controls at 48hrs 

(Fig. 4.6), which was consistent with the in vitro results (Fig. 4.4).  Modeling of the inter-cellular 

variation of MDA-MB-361 xenograft tumors identified two sub-populations in response to 

trastuzumab for the optical redox ratio and FAD m (Fig. 4.7), suggesting in vivo cell-to-cell 
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heterogeneity. This heterogeneous in vivo response is consistent with the in vitro results (in Fig. 

4.4).  We attempted to include only tumor cells in our image analysis, by evaluation of the cell 

morphology with respect to histology, but acknowledge that non-tumor cell populations could have 

been included in this analysis.  We speculate the greater intra-cellular variation of both the redox 

ratio and FAD m  observed in the MDA-MB-361 tumors treated with trastuzumab (Fig. 4.7h) is 

due to heterogeneous responses of individual mitochondria (43).  Elucidation of this possibility 

will require additional research. 

The tumor size measurements and IHC analysis of cellular proliferation and apoptosis were 

consistent with an antitumor effect of trastuzumab against BT474 tumors and a lack of an effect 

against HR6 tumors (Fig. 4.5, 4.6). Tumor size measurements first identified a difference in control 

versus trastuzumab-treated BT474 tumor size at 8 days after treatment was initiated (Fig. 4.5a), 6 

days later than the first significant change in OMI endpoints between control and trastuzumab-

treated tumors (day 2, Fig. 4.5g).  While Ki67 staining of BT474 tumors identified reduced 

proliferation in BT474 tumors treated with trastuzumab at 2 and 5 days post-treatment, OMI is 

advantageous over IHC as a measure of tumor response because OMI provides a dynamic measure 

of cellular metabolism and can be performed in vivo and over time within the same animal. While 

in vivo OMI data is presented here, OMI endpoints remain robust measures of metabolism in 

freshly excised tissues (21) allowing implementation of this metabolic imaging technique in 

situations when in vivo measurements are not feasible.   

FDG-PET has also been explored as a potential tool for assessing response to therapeutic 

agents.  Consistent with a prior study (7), in this study, FDG-PET failed to identify a metabolic 

difference between control and trastuzumab-treated BT474 tumors (Fig. 4.5).  FDG uptake did 

increase over time as the control tumors continued to grow.  Unlike OMI, PET cannot resolve 
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cellular sub-populations of differing response that are critical for investigating drug resistance 

mechanisms (7, 13-17, 44).  Furthermore, PET requires large upfront and continued costs due to 

radiolabeled tracers, while OMI can be implemented in low-cost, wide-field or confocal 

microscopes without the need for external dyes (45-47).  In addition, OMI allows for fast, accurate, 

dynamic in vivo monitoring of early therapeutic response, potentially reducing time and animals 

required for drug development.  Our studies have focused on breast cancer and HER2 inhibition, 

but the methods developed are also applicable to the array of diseases that are treated with 

metabolism-modulating drugs (48-50).    

The results of this study validate OMI as a powerful tool for quantifying cellular 

metabolism, which is an active area of investigation across multiple diseases. As we demonstrate 

using human breast cancer cells and xenografts, optical metabolic measurements are sensitive to 

distinct tumor cell sub-types.  Additionally, we present significant findings suggesting that OMI 

can be used as an early indicator of metabolic response to treatment with a targeted therapy, both 

in cell culture and in vivo.  These results represent the culmination of multiple imaging 

technologies, analysis tools, and their validation with standard assays and FDG-PET.  The results 

in breast cancer cells and xenografts provide the first direct measurements relating cellular 

metabolism, HER2 expression, HER2 inhibition, and resistance to HER2 inhibitors in live cells 

and tissues.  Additionally, these methodologies are potentially broadly applicable outside the 

cancer and imaging communities, including those in drug development and metabolism research 

across multiple diseases.  While we see OMI as an immediately powerful tool in preclinical 

models, it also may directly impact patient care as an adjunct to current practice, either on freshly 

excised tissue (21) or through in vivo endoscopes adapted for fluorescence imaging.  
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CHAPTER 5 

Ex Vivo Optical Metabolic Measurements from Cultured Tissue  

Reflect in Vivo Tissue Status 

Walsh AJ, Poole KM, Duvall CL, Skala, MC.  “Ex vivo optical metabolic measurements from 

culture tissue reflect in vivo tissue status.”  J Biomed Optics. 2012;17(11):116015. 

 

5.1 Abstract 

Optical measurements of metabolism are ideally acquired in vivo; however, intravital 

measurements are often impractical. Accurate ex vivo assessments would greatly broaden the 

applicability of optical measurements of metabolism.  In this study, we investigate the use of live 

tissue culture experiments to serve as a surrogate for in vivo metabolic measurements.  To validate 

this approach, NADH and FAD fluorescence intensity and lifetime images were acquired with a 

two-photon microscope from  hamster cheek pouch epithelia in vivo, from biopsies maintained in 

live tissue culture up to 48 hours, and from flash frozen and thawed biopsies.  We found that the 

optical redox ratio (fluorescence intensity of NADH / FAD) of the cultured biopsy was statistically 

identical to the in vivo measurement until 24h, while the redox ratio of the frozen-thawed samples 

decreased by 15% (p<0.01).  The NADH mean fluorescence lifetime (m) remained unchanged 

(p>0.05) during the first 8h of tissue culture, while the NADH m of frozen-thawed samples 

increased by 13% (p<0.001).  Cellular morphology did not significantly change between in vivo, 

cultured, and frozen-thawed tissues (p>0.05).  All results were consistent across multiple depth 

layers in this stratified squamous epithelial tissue.  Histological markers for proliferation and 

apoptosis also confirm the viability of tissues maintained in culture.  This study suggests that short-

term ex vivo tissue culture may be more appropriate than frozen-thawed tissue for optical metabolic 

and morphologic measurements that approximate in vivo status. 
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5.2 Introduction 

Optical imaging is a powerful tool for monitoring the metabolic status of cells and tissues 

due to the auto-fluorescence properties of the metabolic co-enzymes NADH and FAD.  NADH is 

the principal electron acceptor in glycolysis and electron donor in oxidative phosphorylation while 

FAD is the primary electron acceptor in oxidative phosphorylation.  The optical "redox ratio" 

(fluorescence intensity of NADH divided by that of FAD) is widely used to monitor cellular 

metabolism in cells, ex vivo tissues, and in vivo tissues in order to diagnose disease (1, 2) , monitor 

cellular differentiation (3), and characterize other metabolic perturbations (4, 5).   

Recently, the fluorescence lifetimes of NADH and FAD have also been evaluated as optical 

metabolic biomarkers (2, 6-10).  The fluorescence lifetime is the time a fluorophore remains in the 

excited state before returning to the ground state and emitting a fluorescent photon.  Fluorescence 

lifetimes are self-referenced and more robust than fluorescence intensity measurements in regard 

to inter-system and intra-system variability (7).  Additionally, fluorescence lifetimes are sensitive 

to changes in pH, temperature, and proximity to quenchers (7, 11).  Often, the fluorescence lifetime 

decay curves for NADH and FAD are each fit to a two-component exponential decay (2, 6, 12).  

The two lifetime components represent the two most probable configurations of NADH and FAD, 

which are free in solution or bound to a protein (12, 13).  The short lifetimes and long lifetimes of 

NADH represent the free and protein-bound components, respectively.  Conversely, the short and 

long lifetimes of FAD represent the protein-bound and free components, respectively.  For these 

reasons, the fluorescence lifetimes of NADH and FAD are robust reporters for metabolic 

differences between tissues.  Auto-fluorescence lifetime imaging has been used for monitoring 

pre-cancers and cancers in oral cancer models and breast cancer models (2, 6, 10, 14-18).  
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Ideally, optical metabolic measurements should be performed in vivo.  Thus, these 

techniques have been predominantly used in easily accessible tissues, such as the skin and oral 

cancer models (2, 8, 19, 20).  The growing development of endoscopes capable of confocal 

fluorescence microscopy is enabling measurements of previously inaccessible tissue (21, 22).  Yet, 

fluorescence endoscopes are still somewhat specialized, cumbersome, and represent a significant 

technical and regulatory burden for feasibility studies, especially in tissue sites that are difficult to 

access (i.e. outside of the gastrointestinal tract).  As a result, many feasibility studies in this field 

are performed on fixed tissue slides, immortalized cell lines, or excised tissue (6, 15, 23), which 

may not accurately represent the metabolic state of live, intact tissue.  Furthermore, the use of 

optical metabolic techniques would be greatly expanded by the development of an effective tissue 

handling protocol that allowed for ex vivo tissue interrogation that accurately reflects the in vivo 

metabolic state.  However, the effect of ex vivo sample preparation on optical metabolic 

measurements has not been explored.   

The goal of this study is to investigate live tissue culture as an alternative sample 

preparation for optical metabolic imaging when in vivo measurements are not feasible.  Current 

protocols to represent in vivo metabolic activity in excised tissue require flash-freezing of the tissue 

(4), however such a procedure requires tissue submersion in liquid nitrogen and may induce 

changes in sensitive fluorescence lifetime endpoints.  Live tissue culture may address these 

limitations.  Live tissue culture maintains the tissue in tissue culture media that provides oxygen, 

glucose, and other necessary nutrients.  Furthermore, chilled tissue media has been used in 

previous optical studies (23, 24) because it contains more dissolved oxygen than media maintained 

at body temperature.  However, this chilled media procedure for maintaining tissue culture has not 

been rigorously compared to in vivo metabolic measurements.   
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We hypothesized that, for a discrete period of time following harvest, excised tissue 

maintained in chilled tissue culture media will provide metabolic measurements that are 

representative of the in vivo metabolic state.  To test this hypothesis, the NADH and FAD 

fluorescence intensity and lifetime, as well as cellular morphology, of the cheek pouch epithelium 

of 16 Golden Syrian hamsters were measured in vivo, ex vivo from biopsies maintained in live 

culture over 48 hours, and ex vivo from flash frozen and thawed tissue biopsies.  Both high and 

low time resolution protocols were followed to investigate both short-term and long-term changes 

in the cellular metabolism of the cultured biopsies.   For the high resolution protocol, optical 

metabolic measurements were obtained every 30 minutes for 4 hours from a single epithelial depth.  

For the low resolution protocol, images of two different epithelial depths were acquired at 4, 8, 12, 

24, and 48 hours.   

5.3 Materials and Methods 

5.3.1 Hamster Protocol 

For this study, sixteen male Golden Syrian hamsters were evaluated (103 ± 5 g).  This study 

was approved by the Vanderbilt University Animal Care and Use Committee and meets the 

National Institutes of Health guidelines for animal welfare.  Hamsters were anesthetized with a 

mixture of 200 mg/kg ketamine and 5 mg/kg xylazine with an intraperitoneal injection.  The 

mucosa of the cheek pouch was exposed and secured against a coverslip for imaging.  All images 

were acquired from the stratum spinosum or basal epithelial layers at depths of approximately 20 

µm or 30 µm, respectively.  In vivo measurements of the cheek pouch were obtained from the 

cheek epithelium.  Then, two 6 mm biopsies of the cheek pouch were acquired immediately after 

the in vivo measurements from the same region that was imaged in vivo.  For 10 hamsters, one 

biopsy per hamster was flash-frozen in liquid nitrogen (frozen-thawed sample).  This sample was 
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placed immediately in a -80°C freezer.  The second 6 mm biopsy (live tissue culture sample) was 

immediately placed in a glass-bottom petri dish with chilled (3° C), sterile tissue culture media 

(DMEM without phenol red, GIBCO).  The stratum spinosum layer of the epithelium was 

immediately measured and sequentially measured every 30 minutes for 4 hours after the time of 

the biopsy from the live tissue culture sample.  For this high time-resolution protocol, a single 

tissue layer was interrogated to allow for comparisons between time-points and to minimize tissue 

warming at room temperature during imaging.  This high time-resolution, short time-frame 

protocol was chosen to investigate acute changes in the metabolism of the tissue immediately after 

excision.  For the remaining six hamsters, after in vivo imaging, two biopsies were obtained and 

both were placed in chilled tissue media for the long-term (low time-resolution) imaging studies.  

This low time-resolution, long time-frame protocol investigates the maximum duration over which 

optical metabolic measurements in live culture correspond with in vivo measurements.  One of the 

biopsies was imaged after 4, 8, 12, 24, and 48 hours at two different depths corresponding to the 

spinous and basal regions.  The second biopsy was fixed in formalin for histological analysis after 

4, 8, 12, 24, or 48 hours in live culture.  Each measurement in live tissue culture over this time 

course was conducted within 5 minutes at room temperature (22°C), and the sample was 

refrigerated (3°C) between measurements.   Prior to measurement of the frozen biopsy, the 

specimen was thawed in chilled tissue culture media for 15-20 minutes (25).  Each animal was 

sacrificed after both biopsies had been obtained. 

5.3.2 Imaging Instrumentation 

All data were acquired using a custom built, commercial two-photon imaging system (Prairie 

Technologies, Middleton, WI) within the Biophotonics Laboratory at Vanderbilt University.  A 

titanium sapphire laser (Coherent Inc., Santa Clara, CA) provided the excitation source.  The 
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excitation and emission light were coupled through an inverted microscope (TiE; Nikon, Melville, 

NY) with either a 40X water-immersion objective (1.15 NA) or a 40X oil-immersion objective 

(1.3 NA).  For NADH excitation and FAD excitation, the laser was tuned to 750 nm and 890 nm, 

respectively.  The average power incident on the sample was ~7.5-7.8 mW for NADH excitation 

and ~8.4-

images.  NADH and FAD images were acquired sequentially.  A 400-480 nm bandpass filter 

isolated NADH emission onto the PMT detector.  A dichroic mirror directed wavelengths greater 

than 500 nm onto a 500—600 nm bandpass filter, thus removing collagen second harmonic 

generation (SHG) signals from the FAD image.  Fluorescence lifetime images were acquired with 

time-correlated single photon counting electronics (SPC-150, Becker and Hickl, Germany) and a 

GaAsP PMT (Hamamatsu, Japan).  Isolation of NADH and FAD collection for this system was 

confirmed by treating cells with cyanide (26) and observing an increase in NADH fluorescence 

intensity and a decrease in FAD fluorescence intensity (data not shown). 

The instrument response function was measured by imaging the SHG signal of urea crystals 

with excitation at 900 nm.  The instrument system response has a full width at half-maximum of 

260 ps.  This measured system response was used in the lifetime fit model.  The fluorescence 

lifetime of a standard, Fluoresbrite YG microspheres (20 µm, Polysciences Inc.), was measured 

daily.  Fit to a single decay curve, the fluorescence lifetime of the microspheres has a value of 

2.14± 0.05 ns (n=14), which is consistent with previous studies (2, 6, 10, 27).   

5.3.3 Fluorescence Lifetime Imaging 

For the in vivo measurement, the hamster was placed face down with the cheek pouch 

mucosa in contact with a cover slip and exposed to the objective.  The epithelium of the cheek 

pouch was identified and imaged at a depth of ~20 µm.  This depth was imaged across all samples 
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(in vivo, ex vivo, and frozen tissues), as determined by stage translation distance from the surface 

of the tissue and by visual inspection of cell size.  The six hamsters imaged for the longer live 

culture time course were also interrogated at a depth of ~30 µm, corresponding to the basal 

epithelium. One NADH lifetime measurement was acquired over an integration time of 60s.  

Sequentially, an FAD lifetime image was acquired, also for 60s, at the same location.  Imaging 

parameters such as laser power, PMT voltage, pixel integration time, and lifetime collection time 

were maintained across all animals and measurements including the ex vivo and frozen samples.  

Photon count rates (~5 x 105 photons/s) were maintained throughout all imaging sessions, ensuring 

that photobleaching did not occur.  In addition, it was assured that no quantifiable change in 

fluorescence intensity was observed between sequential images of the same location, further 

confirming that photobleaching did not occur. 

5.3.4 Quantification of Cellular Morphology 

In order to monitor any change in cellular morphology in the live tissue culture, cell size 

and nuclear-cytoplasmic ratio (NCR) were computed from the high resolution NADH fluorescence 

images.  A region of well-defined cells was identified within each image and the total number of 

cells in the region of interest (ROI) was counted.  The average cell cross sectional area was 

determined by dividing the total number of pixels within the ROI (consisting of nuclear and 

cytoplasmic pixels) by 2.  

Next, each image was thresholded to assign pixels within the nucleus to 0 and pixels within the 

cytoplasm to 1 for quantification of the number of nuclear pixels and cytoplasmic pixels.  The 

NCR was calculated by dividing the number of nuclear pixels by cytoplasmic pixels.  This analysis 

was done in ImageJ (NIH, http://rsbweb.nih.gov/ij/). 

 

http://rsbweb.nih.gov/ij/
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5.3.5 Quantification of the Optical Redox Ratio 

Fluorescence intensity images were constructed from the fluorescence lifetime images by 

integrating over time, summing all photons for each pixel.  Any regions of non-cellular structures, 

such as wrinkles within the tissue, were excluded from analysis.  Additionally, a threshold was 

applied to isolate fluorescence from the cytoplasm and exclude nuclear fluorescence.  The redox 

ratio was computed for each pixel by dividing the NADH fluorescence intensity by the FAD 

fluorescence intensity.  The mean redox ratio for the image was computed by averaging the redox 

ratios from all cells, excluding the nuclear region.  For each hamster, the cultured biopsy and frozen 

biopsy redox ratio measurements were normalized to the matched in vivo measurement to account 

for inter-animal and system variation.  This analysis was done in Matlab (Natick, MA).  

5.3.6 Quantification of the Fluorescence Lifetime  

A commercial software program, SPCImage (Becker and Hickl, Germany), was utilized to 

analyze the fluorescence decay data.  In SPCImage, the measured system response of the second 

harmonic generation of urea crystals was de-convolved from the data.  The resulting decay curve 

was then fit to the following model: 

𝐼(𝑡) = 𝛼1𝑒𝑥𝑝
−𝑡/𝜏1 + 𝛼2𝑒𝑥𝑝

−𝑡/𝜏2 + 𝐶 

where I(t) is the fluorescence intensity at time t after the excitation pulse, 1 and 2 are the 

fractional contributions of the first and second emitting species (i.e. 1 + 2 = 1), 1 and 2 are the 

fluorescence lifetimes of the first and second emitting species, and C accounts for background 

light.  Within the SPCImage software, after a threshold was set to isolate cytoplasmic fluorescence, 

the fluorescence decay for each pixel was evaluated.  Then, matrices of 1, 2, 1, and 2 were 

exported for further analysis.  The mean 1, 2, 1, and 2 for each image were averaged across all 
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pixels in Matlab (Natick, MA).  Additionally, the mean fluorescence lifetime (m) was computed 

as a weighted average of 1 and 2. 

𝜏𝑚 = 𝛼1𝜏1 + 𝛼2𝜏2 

5.3.7 Statistical Analysis 

A Wilcoxon rank sum test was used to test for differences between the in vivo mean values 

of the redox ratio, NADH and FAD1, 2, m, and 1/2 ratio and each cultured biopsy time point.  

Likewise, a Wilcoxon rank sum test was used to test for significance between optical 

measurements from in vivo and frozen-thawed tissue.  For all tests, an α level < 0.05 indicates 

significance. 

5.3.8 Histological Analysis 

Hamster cheek pouch biopsies were collected and placed in chilled tissue media and 

refrigerated for 4, 8, 12, 24, or 48 hours.  The biopsy was placed in buffered formalin, paraffin 

embedded, sliced, and stained for Ki67 (a marker of proliferation) and cleaved caspase-3 (a marker 

of apoptotic cells).  Traditional H&E staining was also performed to help visualize the epithelial 

layer.  Ki67 and cleaved caspase-3 staining protocols were verified in positive control samples of 

the mouse small intestine and mouse thymus, respectively (data not shown). 

5.4 Results  

Optical redox ratio values and NADH and FAD fluorescence lifetime values were acquired 

from the cheek pouch epithelium of sixteen hamsters in vivo, from a cultured biopsy, and from a 

frozen-thawed biopsy.  Fig. 5.1 shows representative images of the normalized redox ratio, mean 

NADH lifetime, and mean FAD lifetime from the spinosum and basal layers of the epithelium in 

vivo, cultured tissue at 4, 12, 24, and 48 hours post excision, and frozen-thawed tissue for the 

normal hamster epithelium.  The redox ratio of the in vivo tissue appears to be similar to the 

cultured biopsy at 4 hours and less than the cultured biopsy at 24 hours.  The frozen-thawed tissue 
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appears to have a lower redox ratio than the in vivo tissue (Fig. 5.1).  For the mean lifetimes of 

both NADH and FAD, the cultured tissue appears to have a similar lifetime to the in vivo tissue 

after 4 hours; however, the frozen tissue shows an increased mean NADH lifetime relative to in 

vivo values (Fig. 5.1).  No significant changes in cellular morphology are observed in the cultured 

or frozen tissue relative to the in vivo tissue measurements.   

 

Figure 5.1. Representative OMI images of live cultured tissues. Representative redox ratio (first 

row), NADH m (second row), and FAD m (third row) images from in vivo  hamster epithelium at 

the basal (first column) and spinosum (second column) regions, tissue maintained in live culture 

4, 12, 24, and 48 hours after excision (third-sixth columns), and frozen-thawed tissue (last column).  

Each image is 100x100 μm. m is the mean lifetime (1*α1 + 2*α2). 

 

To compare deviations from the in vivo optical redox ratio in the cultured and frozen-

thawed tissue samples, the optical redox ratio was normalized to the in vivo measurement.  The 

variance in the redox ratio among in vivo measurements from the same hamster is 0.053, 

corresponding to a coefficient of variation (COV) of 8%.  Fig. 5.2 shows the normalized redox  

ratio of the in vivo tissue, cultured tissue over 4h, and frozen-thawed tissue.  No significant changes 

(p > 0.05) in the redox ratio are observed at any time point for the 4 hours the cultured biopsy was 

imaged (Fig. 5.2A).  The mean redox ratio of the cultured biopsy up to 4 hours after excision is 

within 8% of the in vivo value.  The redox ratio of the frozen-thawed sample, however, is 85% of 

the in vivo tissue measurement and this difference is significant (p < 0.01).   
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Figure 5.2. Redox ratio of live cultured tissues and frozen thawed tissues. A.  The redox ratio 

value of frozen-thawed (F) hamster epithelium is significantly reduced from the in vivo (IV) value, 

while live tissue culture maintains redox ratio values similar to in vivo measures over the 4 hours 

of live culture measurement (mean ± SE of n=10 measurements). B.  The redox ratios of the 

spinosum and basal epithelial layers of the live-culture biopsies over 48 hours (mean ± SE of n=6).   

Asterisk denotes significant difference between in vivo and the indicated measurement (* p < 0.05; 

** p < 0.01). 

 

The metabolic activity of the stratified squamous epithelium is known to change with 

depth, with the most metabolically active cells occupying the basal layer of the epithelium (28).  

Therefore, an analysis of the metabolic change in multiple epithelial layers was evaluated over 

time.  The redox ratio of the basal region is greater than that of the spinosum region at all time-

points (p < 0.05, Fig. 5.2B).  No significant change in the redox ratio is observed with time in live 

culture until 24 hours, when the redox ratio of both the spinosum and basal cells increases (p < 

0.05, Fig. 5.2B).  By 48 hours, the redox ratio in both regions decreases (p < 0.05, Fig. 5.2B). 

 

Table 5.1.  Mean (SE) for in vivo measurements of NADH and FAD lifetime components 

(n=10). m is the mean lifetime (1*α1 + 2*α2). 
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Quantitative parameters (mean ± SE) of NADH and FAD fluorescence lifetimes (m, 1, 2, 

and 1/2) for the in vivo images are presented in Table 5.1.   The mean lifetime (m) is a weighted 

average of the short (1) and long lifetime (2) components.   Changes in hamster epithelium NADH 

fluorescence lifetime components relative to the in vivo values are shown in Fig. 5.3A.  Over the 

first four hours, all of the mean NADH m values from the live cultured biopsy are within 2.5% of 

the in vivo value (p > 0.05), while the frozen-thawed NADH m is +13% of the in vivo value which 

is a statistically significant difference (p < 0.001; Fig. 5.3A).  Similarly, for NADH 1, all cultured 

biopsy measurements from the first four hours are within 2% of the in vivo value (p > 0.05) while 

the frozen-thawed 1 is +7% (p < 0.01; Fig. 5.3A).  For NADH 2, the cultured biopsy values are 

within 1% of the in vivo NADH 2 value (p > 0.05) and the frozen-thawed mean 2 is +2% (p < 

0.05; Fig. 5.3A).  The four hour cultured biopsy NADH 1/2 measurements are within 10% of 

the in vivo 1/2 ratio (p > 0.05) while the frozen-thawed biopsy mean 1/2 is 81% of the in 

vivo value (p < 0.05; Fig. 5.3A).   

 
Figure 5.3. NADH and FAD lifetimes of live cultured and frozen thawed tissues.  Changes 

(mean ± SE of n=10 measurements) relative to in vivo (IV) values of NADH (A) and FAD (B) m 

(diamond), 1 (square), 2 (triangle), and 1/2 (cross) observed in tissues maintained in live culture 

for 4 hours, and in frozen-thawed (F) tissues. m is mean lifetime (1*1 + 2*2).  Asterisk denotes 

significant difference between in vivo and indicated measurement (* p < 0.05; ** p < 0.01; *** p 

< 0.001). 
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Similar trends are observed in the FAD lifetime values (Fig. 5.3B).  Over the first 4 hours, 

the mean FAD m of the cultured biopsy increases slightly but stays within 8% of the in vivo FAD 

m
 (p > 0.05; Fig. 5.3B).  The frozen-thawed FAD m is 9.5% greater than the in vivo FAD m (p < 

0.05, Fig. 5.3B).  Changes in FAD 1 are within 6% for the cultured biopsy measurement and 

frozen-thawed samples (p > 0.05; Fig. 5.3B).  Likewise, the FAD 2 values for the cultured and 

frozen-thawed samples vary less than 4% from the in vivo FAD 2 (p > 0.05; Fig. 5.3B).  While no 

significant difference is observed in the FAD 1/2 ratio between the four hour cultured biopsy 

and the in vivo FAD 1/2 (p-value > 0.05), the frozen-thawed measurement is 83% of the in vivo 

FAD 1/2 ratio (p < 0.05; Fig. 5.3B). 

 

Figure 5.4.  Relative NADH lifetime changes over 48hr. Changes (mean ± SE of n=6 

measurements) relative to in vivo (IV) values of NADH m (A), 1 (B), 2 (C), and 1/2 (D) 

observed from both the spinosum (diamond) and basal (square) epithelial layers of tissues 

maintained in live culture for 48 hours.   m is mean lifetime (1*1 + 2*2).  Asterisk denotes 

significant difference between in vivo and indicated measurement (* p < 0.05; ** p < 0.01). 
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When the cultured biopsy is assessed past four hours, significant changes in the NADH 

fluorescence lifetime components are observed (Fig. 5.4).  Both the spinosum and basal layers 

follow the same trends.  By 12 hours, NADH m significantly decreases by 10% and remains 

significantly lower than the in vivo value out to 48h in both the spinosum and basal layers (p < 

0.05, Fig. 5.4A).  Again, at 12 hours after excision, NADH 1 and 2 significantly decrease in both 

tissue layers (p < 0.05, Fig. 5.4B,C).  NADH 1/2 is increased from the in vivo measurement at 

12, 24, and 48 hours post excision (p < 0.05, Fig. 5.4D).   

 

Figure 5.5.  Relative FAD lifetime changes over 48hr. Changes (mean ± SE of n=6 

measurements) relative to in vivo (IV) values of FAD m (A), 1 (B), 2 (C), and 1/2 (D) observed 

from both the spinosum (diamond) and basal (square) epithelial layers of tissues maintained in live 

culture for 48 hours.  m is mean lifetime (1*1 + 2*2).  Asterisk denotes significant difference 

between in vivo and indicated measurement (* p < 0.05, ** p < 0.01). 
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Changes in the FAD lifetime of the spinosum layer are observed in the cultured biopsy at 

48 hours, when the FAD m is significantly increased over the in vivo value (p < 0.01, Fig. 5.5A).  

Both FAD 1 (p < 0.01) and 2 (p < 0.01) of the spinosum also increase at 48 hours (Fig. 5.5B,C).  

FAD 1/2 decreased at 48 hours in both the spinosum (p < 0.05) and basal cells (p < 0.05, Fig. 

5.5D). 

 

Figure 5.6. Cell morphology of fresh cultured and frozen-thawed tissues. Cellular 

morphology, as measured by cell cross-sectional area (A, B) and nuclear-to-cytoplasmic ratio (C, 

D) remains unchanged (p>0.05) from in vivo (IV) values within both the spinosum and basal 

epithelial layers of tissues maintained in live culture over 48 hours and in frozen-thawed (F) tissues 

(mean ± SE of n=10 [n=6 for B,D] measurements of a minimum of 20 cells per image). 

 

Cellular morphology is maintained across the tissues regardless of preservation method 

(Fig. 5.6).  No significant change (p > 0.05) is measured in the average cellular cross sectional area 

between the in vivo tissue, cultured biopsy, and frozen biopsy (Fig. 5.6A, B).  Likewise, the NCR 

remains unchanged (p > 0.05) among the in vivo tissue, cultured biopsy, and frozen biopsy (Fig. 

5.6C,D).   
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Figure 5.7.  Representative histology of the hamster epithelium.  H&E staining demonstrates 

an intact epithelium (first row).  Nuclear Ki67 staining (brown) of the basal cells suggests cellular 

proliferation at each time point (middle row).  An absence of staining by anti-cleaved caspase-3 

suggests no apoptosis (third row).   Images were acquired using a 40X air objective. 

 

 

Histological analysis further confirms that the live tissue culture method maintains tissue 

viability.  Hematoxylin and eosin stains reveal similar structure in the epithelial layer of the tissue 

at 4, 12, 24, and 48 hours post excision (Fig. 5.7).  Positive staining with antibodies against Ki67 

reveals proliferating cells in the basal layer at all time points (Fig. 5.7).  Furthermore, no apoptotic 

cells are observed in cleaved-caspase 3 stains of the epithelium at any time point (Fig. 5.7).  

Together, the histological analysis suggests that the cells of the hamster epithelium remain alive 

in tissue culture for 48 hours post-excision. 

5.5 Discussion 

The goal of this study is to determine whether optical metabolic imaging of ex vivo tissues 

maintained in live culture reflects in vivo measurements.  Optical endpoints include the optical 

redox ratio, NADH fluorescence lifetimes, and FAD fluorescence lifetimes, which are measured 
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from in vivo tissue, a biopsy maintained in chilled tissue media, and a flash-frozen and thawed 

biopsy.  Minimal changes, within 10% for the redox ratio and within 8% for the lifetime values, 

were observed between the in vivo hamster epithelium and the cultured tissue through 8 hours 

post-excision.  However, statistically significant changes were observed in the frozen-thawed 

tissue.  These results suggest that optical metabolism measurements from cultured tissue within 8 

hours post excision represent the in vivo metabolic state of the tissue, especially when compared 

to frozen-thawed tissue.   

 Live tissue culture is used in many applications, including optical metabolic imaging and 

biochemical metabolic studies, to maintain viability of excised tissue (23, 29-31).  However, the 

temporal impact of ex vivo culture on the metabolic state of tissues has not been quantitatively 

assessed previously.  Often, studies use the tissue for several days (30) rather than the few hours 

investigated here.  Cell viability studies have shown that for epithelial tissue, less than 2% cell 

death occurs over the first 5 days (30).  However, no previous studies have confirmed that this live 

tissue culture approach provides optical metabolic measurements that are consistent with in vivo 

values, as we have shown in the current study.  This live tissue culture approach is particularly 

attractive for optical imaging because these methods interrogate superficial layers of tissue (~200 

m for two-photon microscopy, depending on tissue type), so that oxygen and nutrients can diffuse 

into the tissue and maintain viability (32, 33).  These superficial interrogation volumes also avoid 

the necrotic and hypoxic cores that are found in some live tissue culture preparations (34).  

The optical redox ratio has been previously used to quantify metabolic differences among 

normal tissue, pre-cancerous tissue, and cancerous tumors (1, 2, 26, 35, 36).  In the current study, 

two epithelial depth layers were interrogated because stratified squamous epithelial tissues are 

known to have a gradient of cellular metabolic activity, with the basal cells being most active and 
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the superficial cells being least active (2, 28).  As shown in Fig. 5.2B, the redox ratio of the basal 

region is greater (p<0.05) than the spinous region in vivo and at every time point during the live 

culture experiment, as expected.  Additionally, Fig. 5.2A suggests that the optical redox ratio of 

frozen-thawed tissue does not completely describe the in vivo metabolic state.  While the optical 

redox ratio is significantly reduced in frozen-thawed samples (p < 0.01), no significant difference 

is observed in the cultured tissue until 24 hours after biopsy (Fig. 5.2B).  The change in redox ratio 

in the frozen-thawed tissue is due to both a decrease in the NADH fluorescence intensity and an 

increase in FAD fluorescence intensity (data not shown), which is consistent with decreased 

NADH fluorescence intensity observed between fresh and frozen-thawed hamster and cervical 

tissues (25, 31).  The NADH and FAD fluorescence intensities did not change significantly in the 

live tissue culture over 4 hours (p > 0.05).   

The mean NADH lifetime of the hamster cheek epithelium is 1.149 ns (Table 5.1), which 

is consistent with previously reported NADH lifetime values (2, 6, 10, 37, 38).  The mean NADH 

fluorescence lifetime is the averaged effect of the free and protein-bound lifetime components (2, 

11).  While only minimal changes are observed in the NADH lifetime components of the cultured 

tissue until 12 hours post-biopsy, the frozen-thawed tissue has an increased m, 1, and 2 and a 

decreased 1/2 ratio (Fig. 5.3, 5.4).  These results indicate that the fluorescence lifetimes of both 

the bound and free NADH are increased in the frozen-thawed tissue and that a greater portion of 

NADH exists in the bound conformation.  Cells undergoing stress, such as apoptosis, have also 

shown increased mean NADH fluorescence lifetimes and increased proportions of bound NADH, 

suggesting that the freeze-thaw process exerts more stress than the live culture technique (37).  

Likewise, the observed FAD mean lifetime of 0.829 ns (Table 5.1) is similar to reported 

FAD lifetime measurements (2, 39).  For the FAD lifetime components, the frozen-thawed tissue 
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has an increased m and a decreased 1/2 (Fig. 5.3).  The decreased 1/2 ratio indicates an 

increase in the relative amount of free (long-lifetime) FAD.  This shift in relative amounts of the 

free and bound lifetime contributions explains the increased FAD m.  No significant change is 

observed in the FAD 1 and 2, so the FAD fluorescence lifetime may be less sensitive to the 

cellular stress involved in the freeze-thaw process than the NADH fluorescence lifetime. 

Consistent cellular morphology across the in vivo, cultured, and frozen-thawed tissue 

indicates maintenance of tissue structure.  The average cell cross sectional areas observed in the 

hamster epithelial spinosum and basal layers are 530 m2 and 200 m2, respectively (Fig. 5.6A, 

B), which is consistent with published cell cross sectional areas of hamster epithelium (40).  

Likewise, the observed NCR of the spinosum and basal layers of 0.2 and 0.4, respectively, (Fig. 

5.6C,D) is consistent with previous reports (40, 41).  The current study is also consistent with 

previous studies reporting that cell size and NCR do not change in frozen-thawed cells/tissues or 

in live tissue culture relative to in vivo values (41, 42). 

While the optical metabolic measurements varied from the in vivo values after 8 hours in 

live culture, cellular morphology and histological analysis revealed no changes in cellular 

morphology, proliferation, or cell death over the 48h time-course (Fig. 5.6, 5.7).  Therefore, optical 

metabolic imaging endpoints may be more sensitive to sub-cellular molecular changes than the 

histological or morphological analyses.  Previous studies of the live tissue culture method have 

used histology to verify cell viability (30, 33); however, our results suggest that molecular 

metabolic changes occur before changes in cellular proliferation or cell death.  Thus, optical 

metabolic imaging may be a more sensitive endpoint than histology for detecting changes in cell 

status.   
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To validate live tissue culture as an effective protocol for maintaining in vivo metabolic 

characteristics in excised tissue, the optical redox ratio, NADH fluorescence lifetime, and FAD 

fluorescence lifetime were quantified from hamster cheek epithelia in vivo, in live cultured 

biopsies followed for 48 hours, and in frozen-thawed samples.  The live tissue culture approach 

resulted in no significant change in any optical endpoint relative to in vivo measures until 12 hours, 

when a decreased NADH m was observed.  Several significant differences, including a reduced 

redox ratio, increased NADH m, and increased FAD m were observed in the frozen-thawed 

samples.  These results indicate that the live tissue culture method represents the in vivo state more 

accurately than the frozen-thawed procedure.  Therefore, when in vivo optical measurements are 

not feasible, excised tissue may be maintained in chilled tissue media up to 12 hours for close 

representation of in vivo metabolic states. 

5.6 Acknowledgments 

Funding sources include the NCI SPORE in Breast Cancer (P50 CA098131) and Vanderbilt 

University Provost Graduate Fellowship. 

5.7 References 

1. Ostrander JH, McMahon CM, Lem S, Millon SR, Brown JQ, Seewaldt VL, Ramanujam N. 

Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. 

Cancer Res. 2010;70(11):4759-66. 

2. Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, 

Ramanujam N. In vivo multiphoton microscopy of NADH and FAD redox states, 

fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad 

Sci U S A. 2007;104(49):19494-9. 

3. Rice WL, Kaplan DL, Georgakoudi I. Two-photon microscopy for non-invasive, quantitative 

monitoring of stem cell differentiation. PLoS One. 2010;5(4):e10075. 

4. Chance B, Schoener B, Oshino R, Itshak F, Nakase Y. Oxidation-reduction ratio studies of 

mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol 

Chem. 1979;254(11):4764-71. 



111 

 

5. Georgakoudi I, Quinn KP. Optical imaging using endogenous contrast to assess metabolic 

state. Annu Rev Biomed Eng. 2012;14:351-67. 

6. Bird DK, Yan L, Vrotsos KM, Eliceiri KW, Vaughan EM, Keely PJ, White JG, Ramanujam 

N. Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime 

imaging of the coenzyme NADH. Cancer Res. 2005;65(19):8766-73. 

7. Suhling K, French PM, Phillips D. Time-resolved fluorescence microscopy. Photochem 

Photobiol Sci. 2005;4(1):13-22. 

8. Galletly NP, McGinty J, Dunsby C, Teixeira F, Requejo-Isidro J, Munro I, Elson DS, Neil 

MA, Chu AC, French PM, Stamp GW. Fluorescence lifetime imaging distinguishes basal 

cell carcinoma from surrounding uninvolved skin. The British journal of dermatology. 

2008;159(1):152-61. 

9. Patalay R, Talbot C, Alexandrov Y, Munro I, Neil MA, Konig K, French PM, Chu A, Stamp 

GW, Dunsby C. Quantification of cellular autofluorescence of human skin using multiphoton 

tomography and fluorescence lifetime imaging in two spectral detection channels. 

Biomedical optics express. 2011;2(12):3295-308. 

10. Skala MC, Riching KM, Bird DK, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, Keely 

PJ, Ramanujam N. In vivo multiphoton fluorescence lifetime imaging of protein-bound and 

free nicotinamide adenine dinucleotide in normal and precancerous epithelia. Journal of 

biomedical optics. 2007;12(2):024014. 

11. Lakowicz J. Principles of fluorescence spectroscopy. New York: Plenum Publishers; 1999. 

12. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML. Fluorescence Lifetime Imaging of 

Free and Protein-Bound Nadh. Proc Natl Acad Sci U S A. 1992;89(4):1271-5. 

13. Tanaka F, Tamai N, Yamazaki I. Picosecond-resolved fluorescence spectra of D-amino-acid 

oxidase. A new fluorescent species of the coenzyme. Biochemistry. 1989;28(10):4259-62. 

14. Provenzano PP, Eliceiri KW, Keely PJ. Multiphoton microscopy and fluorescence lifetime 

imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin 

Exp Metastasis. 2009;26(4):357-70. 

15. Conklin MW, Provenzano PP, Eliceiri KW, Sullivan R, Keely PJ. Fluorescence lifetime 

imaging of endogenous fluorophores in histopathology sections reveals differences between 

normal and tumor epithelium in carcinoma in situ of the breast. Cell Biochem Biophys. 

2009;53(3):145-57. 

16. Tadrous PJ, Siegel J, French PM, Shousha S, Lalani el N, Stamp GW. Fluorescence lifetime 

imaging of unstained tissues: early results in human breast cancer. The Journal of pathology. 

2003;199(3):309-17. 

17. Jo JA, Applegate BE, Park J, Shrestha S, Pande P, Gimenez-Conti IB, Brandon JL. In Vivo 

Simultaneous Morphological and Biochemical Optical Imaging of Oral Epithelial Cancer. 

Ieee Transactions on Biomedical Engineering. 2010;57(10):2596-9. 



112 

 

18. Chen HM, Chiang CP, You C, Hsiao TC, Wang CY. Time-resolved autofluorescence 

spectroscopy for classifying normal and premalignant oral tissues. Lasers in Surgery and 

Medicine. 2005;37(1):37-45. 

19. De Beule PA, Dunsby C, Galletly NP, Stamp GW, Chu AC, Anand U, Anand P, Benham 

CD, Naylor A, French PM. A hyperspectral fluorescence lifetime probe for skin cancer 

diagnosis. The Review of scientific instruments. 2007;78(12):123101. 

20. Hanson KM, Behne MJ, Barry NP, Mauro TM, Gratton E, Clegg RM. Two-photon 

fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys J. 

2002;83(3):1682-90. 

21. Mizeret J, Wagnieres G, Stepinac T, Van Den Bergh H. Endoscopic tissue characterization 

by frequency-domain fluorescence lifetime imaging (FD-FLIM). Lasers Med Sci. 

1997;12(3):209-17. 

22. Requejo-Isidro J, McGinty J, Munro I, Elson DS, Galletly NP, Lever MJ, Neil MA, Stamp 

GW, French PM, Kellett PA, Hares JD, Dymoke-Bradshaw AK. High-speed wide-field time-

gated endoscopic fluorescence-lifetime imaging. Optics letters. 2004;29(19):2249-51. 

23. Drezek R, Brookner C, Pavlova I, Boiko I, Malpica A, Lotan R, Follen M, Richards-Kortum 

R. Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue 

biochemistry with dysplasia. Photochem Photobiol. 2001;73(6):636-41. 

24. Pavlova I, Sokolov K, Drezek R, Malpica A, Follen M, Richards-Kortum R. 

Microanatomical and biochemical origins of normal and precancerous cervical 

autofluorescence using laser-scanning fluorescence confocal microscopy. Photochem 

Photobiol. 2003;77(5):550-5. 

25. Palmer GM, Marshek CL, Vrotsos KM, Ramanujam N. Optimal methods for fluorescence 

and diffuse reflectance measurements of tissue biopsy samples. Lasers Surg Med. 

2002;30(3):191-200. 

26. Huang S, Heikal AA, Webb WW. Two-photon fluorescence spectroscopy and microscopy 

of NAD(P)H and flavoprotein. Biophys J. 2002;82(5):2811-25. 

27. Schonle A, Glatz M, Hell SW. Four-dimensional multiphoton microscopy with time-

correlated single-photon counting. Appl Opt. 2000;39(34):6306-11. 

28. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 

New York: Garland Science; 2002 2002. 

29. Krebs HA. Body size and tissue respiration. Biochimica Et Biophysica Acta. 1950;4(1-

3):249-69. 

30. Trowell OA. The culture of mature organs in a synthetic medium. Experimental Cell 

Research. 1959;16(1):118-47. 



113 

 

31. Brookner CK, Follen M, Boiko I, Galvan J, Thomsen S, Malpica A, Suzuki S, Lotan R, 

Richards-Kortum R. Autofluorescence patterns in short-term cultures of normal cervical 

tissue. Photochem Photobiol. 2000;71(6):730-6. 

32. So PT, Dong CY, Masters BR, Berland KM. Two-photon excitation fluorescence 

microscopy. Annu Rev Biomed Eng. 2000;2:399-429. 

33. Verwer RW, Hermens WT, Dijkhuizen P, ter Brake O, Baker RE, Salehi A, Sluiter AA, Kok 

MJ, Muller LJ, Verhaagen J, Swaab DF. Cells in human postmortem brain tissue slices 

remain alive for several weeks in culture. FASEB J. 2002;16(1):54-60. 

34. Evans SM, Hahn S, Pook DR, Jenkins WT, Chalian AA, Zhang P, Stevens C, Weber R, 

Weinstein G, Benjamin I, Mirza N, Morgan M, Rubin S, McKenna WG, Lord EM, Koch CJ. 

Detection of hypoxia in human squamous cell carcinoma by EF5 binding. Cancer Res. 

2000;60(7):2018-24. 

35. Xu HN, Nioka S, Glickson JD, Chance B, Li LZ. Quantitative mitochondrial redox imaging 

of breast cancer metastatic potential. Journal of biomedical optics. 2010;15(3):036010. 

36. Zhang Z, Li H, Liu Q, Zhou L, Zhang M, Luo Q, Glickson J, Chance B, Zheng G. Metabolic 

imaging of tumors using intrinsic and extrinsic fluorescent markers. Biosens Bioelectron. 

2004;20(3):643-50. 

37. Wang HW, Gukassyan V, Chen CT, Wei YH, Guo HW, Yu JS, Kao FJ. Differentiation of 

apoptosis from necrosis by dynamic changes of reduced nicotinamide adenine dinucleotide 

fluorescence lifetime in live cells. Journal of biomedical optics. 2008;13(5):054011. 

38. Wakita M, Nishimura G, Tamura M. Some characteristics of the fluorescence lifetime of 

reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat 

liver in situ. J Biochem. 1995;118(6):1151-60. 

39. Nakashima N, Yoshihara K, Tanaka F, Yagi K. Picosecond fluorescence lifetime of the 

coenzyme of D-amino acid oxidase. J Biol Chem. 1980;255(11):5261-3. 

40. Eveson JW, MacDonald DG. Quantitative histological changes during early experimental 

carcinogenesis in the hamster cheek pouch. The British journal of dermatology. 

1978;98(6):639-44. 

41. White FH, Gohari K. Cellular and nuclear volumetric alterations during differentiation of 

normal hamster cheek pouch epithelium. Arch Dermatol Res. 1982;273(3-4):307-18. 

42. Hauschka TS, Mitchell JT, Niederpruem DJ. A reliable frozen tissue bank: viability and 

stability of 82 neoplastic and normal cell types after prolonged storage at -78 degrees C. 

Cancer Res. 1959;19(6, Part 1):643-53. 



114 

 

CHAPTER 6 

Quantitative Optical Imaging of Primary Tumor Organoid Metabolism  

Predicts Drug Response in Breast Cancer 

Walsh AJ, Cook RS, Sanders ME, Arteaga CL, Skala MC, "Quantitative optical imaging of 

primary tumor organoid metabolism predicts drug response in breast cancer" Cancer Research, 

2014; 74(18): 5184-94. 

 

6.1 Abstract 
 

There is a need for technologies that predict the efficacy of cancer treatment in individual 

patients. We demonstrate that optical metabolic imaging of organoids derived from primary tumors 

can predict therapeutic response of xenografts and measure anti-tumor drug responses in human-

tumor derived organoids. Optical metabolic imaging quantifies the fluorescence intensity and 

lifetime of NADH and FAD, co-enzymes of metabolism. As early as 24 hours after treatment with 

clinically relevant anti-cancer drugs, the optical metabolic imaging index of responsive organoids 

decreased (p<0.001) and was further reduced when effective therapies were combined (p<5x10-6), 

with no change in drug-resistant organoids.  Drug response in xenograft-derived organoids was 

validated with tumor growth measurements in vivo and stains for proliferation and apoptosis. 

Heterogeneous cellular responses to drug treatment were also resolved in organoids. Optical 

metabolic imaging shows potential as a high-throughput screen to test the efficacy of a panel of 

drugs to select optimal drug combinations. 

6.2 Introduction 

With the ever-increasing number of drugs approved to treat cancers, selection of the 

optimal treatment regimen for an individual patient is challenging. Physicians weigh the potential 

benefits of the drugs against the side-effects to the patient.  Currently, drug regimens for breast 

cancer are chosen based on tumor expression of several proteins, including estrogen receptor (ER), 
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progesterone receptor (PR), and high levels of human epidermal growth factor receptor 2 (HER2), 

assessed in the diagnostic biopsy, and drug effectiveness is determined after weeks of treatment 

from tumor size measurements. A personalized medicine approach would identify the optimal 

treatment regimen for an individual patient and reduce morbidity from overtreatment. 

Current methods to assess therapy response include tumor size, measured by 

mammography, MRI, or ultrasound.  These methods evaluate the regimen that the patient received.  

Molecular changes induced by anti-tumor drugs precede changes in tumor size and may provide 

proximal endpoints of drug response.  Cellular metabolism may provide biomarkers of early 

treatment response, because oncogenic drivers typically affect metabolic signaling (1, 2).  Indeed 

FDG-PET has been explored as a predictor of response but lacks the resolution and sensitivity to 

accurately predict therapy response on a cellular level (3, 4).   

Optical metabolic imaging (OMI) provides unique sensitivity to detect metabolic changes 

that occur with cellular transformation (5-10) and upon treatment with anti-cancer drugs (11). OMI 

utilizes the intrinsic fluorescence properties of NADH and FAD, co-enzymes of metabolic 

reactions.  OMI endpoints include the optical redox ratio (the fluorescence intensity of NADH 

divided by the fluorescence intensity of FAD), the NADH and FAD fluorescence lifetimes, and 

the "OMI index" (a linear combination of these three endpoints).  The optical redox ratio provides 

a dynamic readout of cellular metabolism (12), with increased redox ratio (NADH/FAD) (8) 

observed in malignant cells exhibiting the Warburg effect (increased glycolysis despite the 

presence of oxygen (13)).  Fluorescence lifetime values report differences in fluorophore 

conformation, binding, and microenvironment, such as pH, temperature, and proximity to 

quenchers such as free oxygen (14).  OMI endpoints report early, molecular changes due to anti-

cancer drug treatment (11) and are powerful biomarkers of drug response.  
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Primary tumors can be cultured ex vivo as organoids, which contain the malignant tumor 

cells and the supporting cells from the tumor environment, such as fibroblasts, leukocytes, 

endothelial cells, and hematopoietic cells (15). Interactions between cancer cells and stromal cells 

have been shown to mediate therapeutic resistance in tumors (16). Therefore, organoid cultures 

provide an attractive platform to test cancer cell response to drugs in a relevant, "body-like" 

environment. Furthermore, multiple organoids can be generated from one biopsy, enabling high-

throughput tests of multiple drug combinations with a small amount of tissue. 

OMI of primary tumor organoids enables high-throughput screening of potential drugs and 

drug combinations to identify the most effective treatment for an individual patient.   Here, we 

validate OMI in primary tumor organoid cultures as an accurate, early predictor of in vivo tumor 

drug response in mouse xenografts, and present the feasibility of this approach on primary human 

tissues. The cellular-resolution of this technique also allows for subpopulations of cells to be 

tracked over time with treatment, to identify therapies that affect all cells in a heterogeneous 

population. 

6.3 Materials and Methods 

6.3.1 Mouse xenografts  

This study was approved by the Vanderbilt University Animal Care and Use Committee 

and meets the National Institutes of Health guidelines for animal welfare.  BT474 cells or HR6 

cells (108) in 100µl Matrigel were injected in the inguinal mammary fat pads of female athymic 

nude mice (J:NU; Jackson Laboratories). Tumors grew to ≥200mm3. Tumor-bearing mice were 

treated twice weekly with the following drugs: control human IgG (10 mg/kg, IP; R&D Systems), 

trastuzumab (10 mg/kg, IP; Vanderbilt Pharmacy), paclitaxel (2.5 mg/kg, IP; Vanderbilt 

Pharmacy), XL147 (10 mg/kg, oral gavage; Selleckchem), trastuzumab + XL147, trastuzumab + 
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paclitaxel, trastuzumab + paclitaxel + XL147. Tumor volume was calculated from caliper 

measurements of tumor length (L) and width (W), (L*W2)/2 twice a week. 

6.3.2 Primary human tissue collection  

This study was approved by the Vanderbilt University Institutional Review Board and 

informed consent was obtained from all subjects. A primary tumor biopsy, removed from the 

tumor mass after surgical resection, was provided by an expert breast pathologist (M.E.S.).  The 

tumor was placed immediately in sterile DMEM, transported on ice to the laboratory (~5 minute 

walk), and generated into organoids within 3 hours of tissue resection.  Pathology and receptor 

status of the tissue were obtained from the patient's medical chart.  

6.3.3 Organoid generation and culture  

Breast tumors (xenografts and primary) were washed three times with PBS.  Tumors were 

mechanically dissociated into 100-300 m macro-suspensions in 0.5 ml PMEC media 

(DMEM:F12 + EGF (10 ng/ml) + hydrocortisone (5 g/ml) + insulin (5 g/ml) + 1% penicillin: 

streptomycin) by cutting the tissues with a scalpel or by spinning in a C-tube (Miltenyi Biotec). 

Macro-suspension solutions were combined with Matrigel in a 1:2 ratio, and 100 l of the solution 

was placed on cover slips.  The gels solidified at room temperature for 30 minutes and then for 1 

hour in the incubator.  The gels were over-lain with PMEC media supplemented with drugs.  The 

following in vitro drug dosages were used to replicate in vivo doses (17-19): control (control 

human IgG + DMSO), trastuzumab (25 g/ml), paclitaxel (0.5 M), XL147 (25 nM), tamoxifen 

(2 M), fulvestrant (1 µM), and A4 (10 µg/ml, Takis, Inc.). 

6.3.4 Fluorescence lifetime instrumentation  

Fluorescence lifetime imaging was performed on a custom built multi-photon microscope 

(Prairie Technologies), as described previously (11, 20).  Excitation and emission light were 
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coupled through a 40X oil immersion objective (1.3 NA) within an inverted microscope (Nikon, 

TiE).  A titanium:sapphire laser (Coherent Inc.) was tuned to 750 nm for NADH excitation 

(average power 7.5-7.9 mW) and 890 nm for FAD excitation (average power 8.4-6 mW).  

Bandpass filters, 440/80 nm for NADH and 550/100 nm for FAD, isolated emission light. A pixel 

dwell time of 4.8 s was used to acquire 256x256 pixel images.  Each fluorescence lifetime image 

was collected using time correlated single photon counting electronics (SPC-150, Becker and 

Hickl) and a GaAsP PMT (H7422P-40, Hamamatsu).  Photon count rates were maintained above 

5x105 for the entire 60s image acquisition time, ensuring no photobleaching occurred.  The 

instrument response full width at half maximum was 260 ps as measured from the second harmonic 

generation of a urea crystal. Daily fluorescence lifetime validation was confirmed by imaging of a 

fluorescent bead (Polysciences Inc).  The measured lifetime of the bead (2.1 ± 0.06 ns) concurs 

with published values (10, 20, 21). 

6.3.5 Organoid imaging   

Fluorescence lifetime images of organoids were acquired at 24, 48, and 72 hours post-drug 

treatment.  Organoids were grown in 35-mm glass-bottom petri dishes (MatTek Corp) and imaged 

directly through the coverslip on the bottom of the petri dish. Six representative organoids from 

each treatment group were imaged.  The 6 organoids imaged contained collectively approximately 

60-300 cells per treatment group for statistical and subpopulation analyses.    First, an NADH 

image was acquired and a subsequent FAD image was acquired of the exact same field of view.   

6.3.6 Immunofluorescence   

A previously reported protocol (22) was adapted for immunofluorescent staining of 

organoids. Briefly, gels were washed with PBS and fixed with 2 ml 4% paraformaldehyde in PBS.  

Gels were washed with PBS, and then 0.15M glycine in PBS was added for 10 minutes.  Gels were 
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washed in PBS, and then added to 0.02% Triton X-100 in PBS.   Gels were washed with PBS then 

overlain with 1% fatty acid-free BSA, 1% donkey serum in PBS.  The next day, the solution was 

removed and 100 l of antibody solution (diluted antibody in PBS with 1% donkey serum) was 

added to each gel.  The gels were incubated for 30 minutes at room temperature, washed in PBS 3 

times, and then incubated in 100 l of secondary antibody solution for 30 minutes at room 

temperature.  The gels were washed in PBS 3 times, washed in water 2 times, and then mounted 

to slides using 30 l of ProLong Antifade Solution (Molecular Probes).   

The primary antibodies used were anti-cleaved caspase 3 (Life Technologies) and anti-

Ki67 (Life Technologies).  Both were diluted at 1:100. A goat anti-rabbit IgG FITC secondary 

antibody was used (Life Technologies).  FITC fluorescence was obtained by excitation at 980 nm 

on the multiphoton microscope described above, and a minimum of 6 organoids were imaged.  

Positive staining of cleaved caspase 3 and Ki67 was confirmed by staining mouse thymus and 

mouse small intestine, respectively.  Immunofluorescence images were quantified by manual 

counting of the total number of cells and the number of positively stained cells in each field of 

view.  Immunofluorescence results were presented as percentage of positively stained cells, 

quantified from six organoids, approximately 200 cells. 

6.3.7 Generation of OMI endpoint images   

Photon counts for 9 surrounding pixels were binned (SPCImage).  Fluorescence lifetime 

components were extracted from the photon decay curves by deconvolving the measured system 

response and fitting the decay to a two component model, CtI
tt


 21 /

2

/
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  , 

where I(t) is the fluorescence intensity at time t after the laser pulse, 1 and2 are the fractional 

contributions of the short and long lifetime components, (i.e. 1 +2 = 1), 1 and2 are the 

fluorescence lifetimes of the short and long lifetime components, and C accounts for background 
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light.  A two-component decay was used to represent the lifetimes of the free and bound 

configurations of NADH and FAD (10, 23, 24) and yielded the lowest Chi2 values (0.99-1.1), 

indicative of optimal fit.  Matrices of the lifetime components were exported as ascii files for 

further processing in Matlab. 

6.3.8 Automated image analysis software  

To streamline cellular-level processing of organoid images, an automated image analysis 

routine, as previously described (25), was used in Cell Profiler in Matlab.  Briefly, a customized 

threshold code identified pixels belonging to nuclear regions that were brighter than background 

but not as bright as cell cytoplasms.  These nuclear pixels were smoothed and the resulting round 

objects between 6 and 25 pixels in diameter were segmented and saved as the nuclei within the 

image.  , Cells were identified by propagating out from the nuclei.  An Otsu Global threshold was 

used to improve propagation and prevent propagation into background pixels.  Cell cytoplasms 

were defined as the cells minus the nuclei.  Cytoplasm values were measured from each OMI 

image (redox ratio, NADH m, NADH 1, NADH 2, NADH 1, FAD m, FAD 1, FAD 2 , FAD 

1).   

6.3.9 Computation of OMI index  

The redox ratio, NADH m, and FAD m were norm-centered across cell values from all 

treatment groups within a sample, resulting in unit-less parameters with a mean of 1.  The OMI 

index is the linear combination of the norm-centered redox ratio, NADH m, and FAD m with the 

coefficients (1, 1, -1), respectively, computed for each cell. . The three endpoints, redox ratio, 

NADH m, and FAD m are independent variables (11) and are thus weighted equally. The signs 

of the coefficients were chosen to maximize difference between control and drug-responding cells.   
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6.3.10 Subpopulation analysis   

Subpopulation analysis was performed by generating histograms of all cell values within a 

group as previously reported (11).  Each histogram was fit to a 1, 2, and 3 component Gaussian 

curves.  The lowest Akaike information criterion (AIC) signified the best fitting probability density 

function for the histogram (26). Probability density functions were normalized to have an area 

under the curve equal to 1. 

6.3.11 Statistical tests   

Differences in OMI endpoints between treatment groups were tested using a student's t-test 

with a Bonferroni correction.  An  significance level less than 0.05 was used for all statistical 

tests.   

6.4 Results 

6.4.1 Response of BT474 organoids to a panel of anti-cancer drugs 

Validation of an organoid-OMI screen for drug response was first tested in two isogenic 

HER2-amplified breast cancer xenografts. BT474 xenografts are sensitive to the HER2 antibody 

trastuzumab, while HR6 xenografts, derived as a sub-line of BT474, are trastuzumab-resistant. 

The following single drugs and drug combinations were tested: paclitaxel (P, chemotherapy), 

trastuzumab (H, anti-HER2 antibody), XL147 [X, phosphatidylinositol-3 kinase (PI3K) small 

molecule inhibitor] (27), H+P, H+X, and H+P+X. Paclitaxel and trastuzumab are standard-of-care 

drugs, and XL147 is in clinical trials and preclinical studies support combination therapy of XL147 

with trastuzumab for patients who have developed a resistance to trastuzumab (27, 28). 

Representative redox ratio, NADH m, and FAD m images of BT474 xenograft-derived 

organoids demonstrate mixed multicellular morphology and highlight the sub-cellular resolution 

of this technique (Fig. 6.1A-F).  A longitudinal study of tumor growth demonstrated that the 
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BT474 xenografts responded to each treatment arm (Fig. 6.1G), with significant reduction in tumor 

volume, as determined from caliper measurements, on day 7 for all treatment groups except 

trastuzumab, which had significant reduction on day 11 (Fig. 6.1H).   

 

 

Figure 6.1. OMI of organoids derived from trastuzumab-responsive xenografts.  A. Redox 

ratio image of a control BT474 (ER+/HER2+) organoid at 72hr. Scale bar is 100 m.  B. NADH 

m image of a control BT474 organoid at 72hr. C. FAD m image of a control BT474 organoid at 

72hr.  D. Redox ratio image of a trastuzumab (anti-HER2) plus paclitaxel (chemotherapy) plus 

XL147 (anti-PI3K) (H+P+X) treated BT474 organoid at 72hr. E. NADH m image of a 

trastuzumab plus paclitaxel plus XL147 (H+P+X) treated BT474 organoid at 72hr. F. FAD m 

image of a trastuzumab plus paclitaxel plus XL147 (H+P+X) treated BT474 organoid at 72hr. G. 

Tumor growth response of BT474 tumors grown in athymic nude mice and treated with single and 

combination treatments.  H. Table of earliest detectable (p<0.05) reduction in tumor size for 

control vs. treated mice.  I. OMI index decreases in BT474 organoids treated with single and 

combination therapies at 24 hr.  J. OMI index of BT474 organoids treated for 72hr.  Red bars 

denote p<0.05 for treated organoids vs. control.  K.  Population density modeling of the mean OMI 

index per cell in control, paclitaxel, trastuzumab, and H+P+X treated organoids at 24 hr.  L.  

Population density modeling of the OMI index for control, paclitaxel, trastuzumab, and H+P+X 

BT474 organoids treated for 72hr.   M.  Immunofluorescence staining of cleaved caspase 3 in 

control and treated BT474 organoids at 72hr.  N.  Immunofluorescence staining of Ki67 in control 

and treated BT474 organoids at 72hr.  *p<0.05. 
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A composite endpoint, the OMI index, was computed as a linear combination of the mean-

normalized optical redox ratio, NADH m, and FAD m for each cell.  After 24 hr of treatment, the 

OMI index was significantly reduced in all treated BT474 organoids, compared to the control 

(p<0.05, Fig. 6.1I).  By 72 hr, the OMI index decreased further in all treatment groups (p<5x10-7, 

Fig. 6.41J).  The redox ratio, NADH m, and FAD m values showed similar trends (Appendix B, 

Fig. B.1).  Changes in short and long lifetime values and in the portion of free NADH or FAD 

contributed to the changes in m (Appendix B Table B.1).   

The high resolution capabilities of OMI allowed single cell analysis and population 

modeling for quantification of cellular subpopulations with varying OMI indices.  Visual 

inspection of cell morphology suggested that the majority of cells are tumor epithelial cells; 

stromal cells with obvious morphological differences were eliminated from the analysis.  

Population density modeling of cellular distributions of the OMI index revealed two populations 

with high and low OMI index values in all of the BT474 treated organoids at 24 hr (Fig. 6.1K, 

Appendix B Fig. B.2).  By 72 hr, the XL147, H+P, H+X, and H+P+X treated organoids have a 

single population with narrower peaks (Fig. 6.1L, Appendix B Fig. B.2). The trastuzumab treated 

organoids have two populations at 72 hr, both lower than the mean OMI index of the control 

organoids (Fig. 1L).  Immunofluorescent staining of cleaved caspase-3 and Ki67 of BT474 

organoids treated for 72 hr confirmed increased apoptosis and decreased proliferation in drug 

treated organoids, with the greatest increases in cell death with combined treatments (Fig. 6.1M-

N). 
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6.4.2 Response of HR6 organoids to a panel of anti-cancer drugs 

 

 
 

Figure 6.2. OMI of organoids derived from trastuzumab-resistant xenografts.    A. Redox 

ratio image of a control HR6 (ER+/HER2+) organoid at 72hr. Scale bar is 100 m.  B. NADH m 

image of a control HR6 organoid at 72hr. C. FAD m image of a control HR6 organoid at 72hr.  D. 

Redox ratio image of a trastuzumab (anti-HER2) plus paclitaxel (chemotherapy) plus XL147 (anti-

PI3K) (H+P+X) treated HR6 organoid at 72hr. E. NADHm image of an H+P+X treated HR6 

organoid at 72hr. F. FAD m image of an H+P+X treated HR6 organoid at 72hr. G. Tumor growth 

response of HR6 tumors grown in athymic nude mice and treated with single and combination 

treatments.  H. Table of earliest detectable (p<0.05) reduction in tumor size for control vs. treated 

mice. * Denotes tumors that initially shrank and then grew.  NS, not significant. I. OMI index 

initially decreases in HR6 organoids treated with paclitaxel, XL147, and combination therapies at 

24 hr.  J. OMI index of HR6 organoids treated for 72hr.  Red bars indicate significant reductions 

in OMI index, p<0.05, for treated organoids vs. control.  Blue bars indicate significant increases 

in OMI index, p<0.05, for treated organoids vs. control.  K.  Population density modeling of the 

mean OMI index per cell in control, paclitaxel, trastuzumab, and H+P+X organoids at 24 hr.  L.  

Population density modeling of the OMI index for HR6 control, paclitaxel, trastuzumab, and 

H+P+X organoids treated for 72 hr.   M.  Immunofluorescence staining of cleaved caspase 3 in 

control and treated HR6 organoids at 72hr.  N.  Immunofluorescence staining of Ki67 in control 

and treated HR6 organoids at 72hr. * p<0.05 
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Next, the OMI-organoid screen was tested on trastuzumab-resistant HR6 xenografts (29).  

Representative images show HR6 organoid morphology and spatial distributions of OMI 

endpoints (Fig. 6.2A-F).  These HER2 overexpressing tumors had continued growth with 

trastuzumab treatment (Fig. 6.2G).  Treatment with paclitaxel and XL147 initially caused HR6 

tumor regression (p<0.05 on day 10 for XL147 and on day 14 for paclitaxel) but then resumed 

growth (Fig. 6.2G-H). Mice treated with the H+P, H+X, and H+P+X combination therapies 

exhibited sustained HR6 tumor reduction (Fig. 6.2G-H).    

After 24 hr of treatment, significant reductions in the OMI index were detected in HR6 

organoids treated with paclitaxel, XL147, H+P, H+X, and H+P+X (p<0.05, Fig. 6.2I).  At 72 hr, 

the OMI index of the paclitaxel and XL147 treated organoids was significantly greater than that 

of the control organoids (p<0.05, Fig. 6.2J), consistent with the recovery of HR6 tumor growth 

after prolonged therapy (Fig. 6.2G).  The organoids treated with drug combinations (H+P, H+X, 

H+P+X) continued to have significantly lower OMI index values (p<10-6) at 72 hr, compared to 

untreated controls. Individual OMI endpoints showed similar trends (Appendix B Fig. B.3, 

Appendix B Table B.2).   Subpopulation analysis revealed two subpopulations in the OMI index 

for all treated groups except for trastuzumab at 24 hr (Fig. 6.2K, Appendix B Fig. B.4). By 72 hr, 

the paclitaxel and XL147 treated organoids had a single population (Fig. 6.2L, Appendix B Fig. 

B.4). Immunofluorescent staining of cleaved caspase 3 of organoids treated for 72 hr revealed 

increased cell death in HR6 organoids treated with H+P, H+X and H+P+X (p<0.05, Fig. 6.2M). 

The percentage of Ki67 positive cells at 72 hr decreased with paclitaxel, H+P, H+X, and H+P+X 

treatment (p<0.005, Fig. 6.2N). 
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6.4.3. OMI endpoints identify breast cancer subtypes 

 

 

Figure 6.3.  Representative redox ratio, NADH m, and FAD m images of organoids derived 

from primary, human breast tumors.  Redox ratio (NADH/FAD; first row), NADH m (second 

row), and FAD m (third row) images of organoids generated from primary human breast tissue 

obtained from resection surgeries.  TBNC = Triple negative breast cancer.  Scale bar is 100 m. 

 

We tested these methods on primary breast cancer biopsies obtained from surgical 

resection.  Tumors were obtained fresh from de-identified mastectomy specimens not required for 

further diagnostic purposes, and dissociated into organoids within 1-3 hr post-resection. Cancer 

drugs were added and organoids were imaged with OMI.  Representative redox ratio, NADH m, 

and FAD m images (Fig. 6.3) demonstrate the varying morphology of organoids derived from 

ER+, HER2+ and triple negative breast cancers.   

When quantified, the OMI endpoints differed between cancer subtypes.  In immortalized 

cell lines, the redox ratio was elevated in ER+/HER2- cells and was greatest in HER2+/ER- cells 

(p<5x10-5, Fig. 6.4A).  Similarly, NADH m was increased in immortalized ER+/HER2- and 
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HER2+/ER- breast cancer cells as compared to triple negative breast cancer (TNBC) cells 

(p<5x10-8, Fig. 6.4B).  FAD m was greatest in ER+/HER2- cells (p<0.05, Fig. 6.4C).  Overall, the 

OMI index was lowest in TNBC and greatest in HER2+/ER- cells (p<5x10-8, Fig. 6.4D), 

suggesting that HER2 and ER expression influence cellular metabolism. 

 

Figure 6.4. OMI endpoints differ among breast cancer subtypes.  A.  Redox ratio 

(NADH/FAD) of TNBC cells (MDA-MB-231), ER+ (HER2-negative) cells (MCF7), and HER2+ 

(ER-negative) cells (SKBr3, BT474, MDA-MB-361).  B.  NADH m of TNBC, ER+, and HER2+ 

immortalized cell lines.  C.  FAD m of TNBC, ER+, and HER2+ immortalized cell lines.  D.  OMI 

index increases in ER+ and HER2+ immortalized cell lines.  E.  Redox ratio (NADH/FAD) of 

organoids derived from triple negative, ER+ (HER2-negative), and HER2+ (ER-negative) primary 

human tumors. F.  NADH m of organoids derived from triple negative, ER+, and HER2+ primary 

human tumors. G.  FAD m of organoids derived from triple negative, ER+, and HER2+ primary 

human tumors.  H.  OMI index of organoids derived from triple negative, ER+, and HER2+ 

primary human tumors. * p<0.05 

Similar trends were observed for the OMI endpoints in organoids derived from primary 

breast tumor specimens cultured under basal conditions. The redox ratio was increased in 

organoids from ER+/HER2- tumors and was greatest in HER2+/ER- organoids (p<5x10-12, Fig. 

6.4E, Appendix B Table B.3).  Likewise, NADH m increased with ER and HER2 expression 

(p<5x10-8, Fig. 6.4F).  FAD m was increased in ER+ organoids and reduced in HER2+ organoids 
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(p<0.05, Fig. 6.4G).  The OMI index was lowest for TNBC, and greatest for HER2+ organoids 

(p<5x10-3, Fig. 6.4H).   

6.4.4 Organoid response of ER+ primary human tumors 

 

 
Figure 6.5. OMI index measures drug response and heterogeneous populations in ER+ 

primary tumor derived organoids.  A.  OMI index of organoids derived from an ER+ (HER2-

negative) primary human tumor decreases with paclitaxel (chemotherapy), tamoxifen (ER 

antagonist), XL147 (anti-PI3K) and combined therapies at 72hr.  Light gray bars indicate 

significant (p<0.05) reductions in OMI index with treatment, versus control organoids.  B.  

Quantification of immunofluorescence staining of cleaved caspase 3 for organoids derived from 

the same tumor sample as in (A) and treated for 72hr.  C.  Population density modeling of the 

control, H+X, and H+P+T+X treated organoids presented in (A).  D.  OMI index is reduced with 

paclitaxel, tamoxifen, and combined treatments in organoids derived from a different ER+ patient 

at 72hr.  E.  Population density modeling of the control, tamoxifen, and H+P+T treated organoids 

presented in (D).  F.  OMI index is reduced in organoids from a third ER+ patient treated with 

tamoxifen, XL147, H+X, and H+P+T+X at 24hr.  G.  Population density modeling of the control, 

XL147, and H+P+T+X treated organoids presented in F.  H.  Organoids derived from a fourth ER+ 

patient have significant reductions in OMI index when treated with XL147 and combination 

therapies at 72hr.  I.  Population density modeling of the control, tamoxifen, and H+P+X treated 

organoids in (H) reveals multiple populations with tamoxifen treatment.  * p<0.05. 
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Organoids were generated from four ER positive (HER2-negative) primary human tumors 

and treated with the chemotherapeutic drug paclitaxel, the selective ER modulator tamoxifen, the 

HER2 antibody trastuzumab and the pan-PI3K inhibitor XL147.  Organoids derived from the first 

ER+ tumor had significantly reduced OMI index values upon treatment with paclitaxel, tamoxifen, 

XL147, H+X, H+P+T, H+P+X and H+P+T+X for 72 hr (p<5x10-5, Fig. 6.5A). 

Immunofluorescence of cleaved caspase-3 showed increased cell death in parallel organoids 

treated for 72 hr with paclitaxel, tamoxifen, XL147,  H+X, H+P+T, H+P+X, and H+P+T+X (Fig. 

6.5B). Subpopulation analysis revealed less variability (narrower histogram peaks) within 

responsive treatment groups compared to the cells of control and trastuzumab-treated organoids 

(Fig. 6.5C, Appendix B Fig. B.5).   Corresponding OMI endpoints showed similar trends 

(Appendix B Fig. B.6, Appendix B Table B.4).  

Organoids derived from a second ER+ tumor responded similarly. The OMI index 

decreased upon treatment with paclitaxel, tamoxifen, H+P, P+T and H+P+T at 72 hr (p<5x10-5, 

Fig. 6.5D). Subpopulation analysis revealed a single population of control cells that shifted to 

lower OMI indexes with paclitaxel, tamoxifen, H+P, P+T, and H+P+T treatments (Fig. 6.5E, 

Appendix B Fig. B.7).  Corresponding OMI endpoints showed similar trends (Appendix B Fig. 

B.8, Appendix B Table B.5). 

The third and fourth ER+ clinical samples yielded organoids with variable responses to 

treatment. Organoids derived from the third patient had significant reductions in OMI index after 

24 hr treatment with tamoxifen, XL147, H+X, and H+P+T+X treatments (p<0.005, Fig. 6.5F). 

Subpopulation analysis revealed two populations with high and low OMI index values for the H+P 

and paclitaxel-treated organoids (Fig. 6.5G; Appendix B Fig. B.9). Two populations, both with 
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mean OMI index values less than that of the control organoids, were apparent in the organoids 

treated with XL147 and with H+P+T+X (Fig. 6.5G, Appendix B Fig. B.9).  Organoids from the 

fourth ER+ patient had reduced OMI indices following treatment with XL147, H+P, H+X, 

H+P+X, H+P+T and H+P+T+X for 72 hr (p<0.01, Fig. 6.5H).  Subpopulation analysis of cells 

from these organoids revealed single populations with shifted mean OMI indices for all treatments 

except tamoxifen, H+P, and H+X, which had two populations (Fig. 6.5I, Appendix B Fig. B.10). 

Corresponding OMI endpoints showed similar trends (Appendix B Fig. B.11-12, Appendix B 

Tables B.6-7).  

6.4.5 Organoid Response of HER+ and TNBC primary human tumors 

 
Figure 6.6. OMI index detects response of HER2+ organoids to trastuzumab and resolves no 

response in TNBC.   A.  Organoids derived from a HER2+(ER-negative) clinical tumor have 

reduced OMI indices with trastuzumab (anti-HER2) and A4 (anti-ErbB3) treatment, and no change 

with fulvestrant treatment (ER antagonist) at 24hr.  Light gray bars signify significant reductions 

in OMI index due to drug treatment compared to control organoids (*p<0.05).  (B).  Population 

density modeling of the organoids derived from a HER2+ tumor reveals single populations.  C.  

Organoids derived from a TNBC tumor have no significant changes (p>0.3) in OMI index with 

treatment of targeted therapies, tamoxifen (ER antagonist) and trastuzumab at 48hr.  D.  Population 

density modeling reveals single populations within the TNBC organoids. 
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OMI was also performed on organoids derived from HER2+ (ER negative) and TNBC 

specimens. Organoids derived from the HER2+ primary tumor were treated with the ER down-

regulator fulvestrant, the HER2 antibody trastuzumab, and the anti-ErbB3 antibody A4 (30). The 

OMI index was significantly decreased in the organoids treated for 24 hr with trastuzumab and A4 

(p<0.005, Fig. 6.6A).  Subpopulation analysis revealed shifts in the mean OMI index values with 

these treatments within a single population of cells (Fig. 6.6B).  Organoids derived from the TNBC 

specimen were treated with tamoxifen, the HER2 antibody trastuzumab, and the combination of 

trastuzumab plus tamoxifen (H+T).  No significant changes were observed with these treatments 

in TNBC organoids after 24 hr (p>0.3, Fig. 6.6C).  Subpopulation analysis revealed a single 

population of cells from TNBC organoids (Fig. 6.6D). Corresponding OMI endpoints showed 

similar trends (Appendix B Fig. B.7-8, Appendix B Tables B.8-9).  

6.5 Discussion 

 Primary tumor organoids are an attractive platform for drug screening because they are 

grown from intact biopsies, thus maintaining the tumor cells within the same tumor 

microenvironment (15). OMI is sensitive to early metabolic changes, achieves high resolution to 

allow analysis of tumor cell heterogeneity, and uses endogenous contrast in living cells for 

repeated measurements and longitudinal studies (11). The OMI index is a holistic reporter of 

cellular metabolism because the redox ratio and NADH and FAD lifetimes are independent 

measurements (11).  The mean lifetime captures not only changes in free-to-bound protein ratios 

but also preferred protein binding and relative concentrations of NADH to NADPH (31).  Cancer 

drugs have been shown to down-regulate certain metabolism enzymes; for example, trastuzumab 

down-regulates lactate dehydrogenase in breast cancer and paclitaxel resistant cells have been 

shown to have more lactate dehydrogenase expression and activity (32). The OMI index captures 
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these drug-induced changes in metabolism enzyme activity.  Organoids remain viable with stable 

OMI endpoints in controlled culture conditions (33), thus making them an attractive system to 

evaluate tumor response to drugs. We used OMI to assess the response of primary breast tumor 

organoids to a panel of clinically relevant anti-cancer agents used singly or in combination.  Early 

OMI-measured response in organoids (24-72 hr post-treatment) corroborated with standard tumor 

growth curves in xenografts, and the feasibility of this approach was confirmed in organoids 

derived from primary human breast tumors. 

 The OMI index was first evaluated as a reporter of tumor response in organoids derived 

from BT474 (ER+/HER2+) xenografts. Significant reductions in OMI index upon treatment with 

paclitaxel, trastuzumab, XL147 and combinations thereof, at both 24 and 72 hr, correlated with 

reduction of tumor growth (Fig. 6.1). Biochemically, cellular rates of glycolysis, and NADH and 

FAD protein-binding decrease with drug treatment in responsive cells (32), resulting in decreased 

redox ratios and NADH τm, and increased FAD τm in agreement with the decreased OMI index 

observed in drug-treated BT474 organoids. Significant reductions in tumor growth occurred 7-11 

days post-treatment initiation whereas the OMI index detected response at 24-72 hr post-treatment. 

Cellular analysis revealed an initial heterogeneous response among cells within organoids treated 

with paclitaxel and H+P at 24 hr, which, by 72 hr, became a uniform response. The heterogeneity 

of trastuzumab treated BT474 organoids persisted over 72 hr, suggesting an intrinsic subpopulation 

more susceptible to acquire drug resistance. This heterogeneity was not seen in the combination 

treatments, suggesting the combination treatments trump this drug resistance-prone subpopulation.  

OMI measured response corroborated with increased cell death and decreased proliferation due to 

single and combination drug treated organoids, measured with destructive post-mortem 

techniques.  The XL147-treated BT474 organoids have a much lower OMI index at 72 hr, but only 
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a modest increase in cleaved caspase 3 activity. The same decrease was not observed in the HR6 

cells that have alternative metabolism pathways activated due to their acquired resistance to 

trastuzumab.  The OMI index detects changes in cellular metabolism that predict drug efficacy, 

but do not necessarily correlate with IHC. 

 In the current standard of care, patients with innate drug resistance are not identified a 

priori. We tested the capabilities of OMI to predict drug resistance using trastuzumab-resistant 

HR6 (ER+/HER2+) tumors (29).  XL147 is a novel PI3K inhibitor under investigation for 

combined therapy with trastuzumab to improve response of resistant tumors (27). Significant 

reductions in the OMI index of HR6 organoids treated for 72 hr identified drug combinations 

(H+X, H+P, and H+P+X) that induced a sustained reduction in tumor growth in vivo (Fig. 6.2). 

The reduction in tumor growth upon treatment with H+X was consistent with previous reports of 

greater anti-tumor effects of the combination over trastuzumab and XL147 alone (27).   

Subpopulation analysis revealed multiple responses within the HR6 organoids after treatment with 

single drugs and combinations, suggesting increased heterogeneity compared to the parental 

BT474 organoids.  

The OMI index of paclitaxel and XL147 treated HR6-organoids initially decreased at 24 

hr, and then increased at 72 hr, mirroring the tumor growth in mice after prolonged therapy, and 

indicating that the adaptations that allow HR6 cells to survive trastuzumab treatment also affect 

response to additional drugs. This relapse of HR6 tumors treated with paclitaxel and XL147 was 

not apparent until 2-3 weeks of drug treatment; yet, the OMI index identified a resistant population 

within both paclitaxel and XL147 treated organoids at 24 hours and showed a selection of this 

population by 72hr.  Subpopulation analysis of the paclitaxel and XL147 treated HR6 organoids 

revealed heterogeneous responses at 24 hr, suggesting that OMI is capable of early detection of 
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resistant cells within a heterogeneous tumor. These results indicate that OMI of primary tumor 

organoids is able to identify heterogeneous responses within tumors on a cellular level, and 

potentially guide therapy selection early for maximal response. The ability to detect innate 

resistance at a cellular level prior to treatment may provide leads for identification of drugs that 

target such refractory subpopulations before they are selected by the primary therapy. 

 We next examined the feasibility of this approach utilizing fresh tumor biopsies obtained 

from primary tumor surgical resections. OMI measurements in vivo and corresponding 

measurements from freshly excised tissues within 8 hr of surgery are statistically identical (20), 

providing ample time for specimen acquisition and transport to the laboratory. The morphology of 

organoids differed among patients and within breast cancer subtypes (Fig. 6.3), demonstrating a 

greater heterogeneity within primary tumors compared to xenografts.   

 Previously published studies report differences in OMI endpoints due to the presence or 

absence of ER and HER2 (8, 11, 34). Both ER and HER2 signaling pathways can influence 

metabolism: ER by inducing increased glucose transport (1), and HER2 through activation of PI3K 

(2), among other signal transducers. We compared OMI endpoints from immortalized cells and 

human tissue-derived organoids of three subtypes of breast cancer: ER+, HER2-overexpressing, 

and triple negative breast cancer (TNBC). The OMI index of immortalized cell lines increased 

with ER expression and was highest in HER2 overexpressing cells (consistent with prior studies 

(11)), and these trends were replicated in organoids derived from primary human tumors.  Notably, 

NADH m was significantly increased (p<0.05) in the HER2+ organoids compared to ER+ 

organoids, but this trend was not observed in the immortalized cell lines. This difference could be 

due to molecular changes induced by the immortalization process, media components, primary 

tumor heterogeneity, and/or the heterogeneity within a primary breast tumor.  Regardless, the 
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results shown (Fig. 6.4) suggest breast cancer subtypes, ER+, HER2+ and TNBC, have different 

OMI profiles.   

 Organoids derived from human breast tumors were treated with a panel of breast cancer 

drugs (Fig. 6.5-6). Differences in the drug response of these organoids suggest heterogeneity 

across ER+/HER- tumors. Organoids from one of the four ER+ tumors did not exhibit reduced 

OMI indices after treatment with tamoxifen.  Organoids derived from two of the four ER+ samples 

did not have reduced OMI indices after paclitaxel treatment. These variable responses are 

consistent with variable responses seen with these drugs in the clinic (35-38).  None of the 

organoids had reduced OMI indices with trastuzumab, which is expected because the organoids 

were derived from HER2 negative tumors. Generally, the OMI index was reduced further upon 

treatment with drug combinations, supporting the use of drug combinations clinically.  

Subpopulation analysis revealed cells within organoid treatment groups that exhibit 

different OMI indices after treatment, suggesting that subpopulations of cells with different drug 

sensitivities preexist and develop within primary tumors. Some of these cells may represent the 

cancer stem-like population with increased renewal capacity, metastatic potential, and drug 

resistance (39). The populations of organoids derived from human tumors have more variability 

(broader population curves) than those derived from xenografts, reflecting an inherent greater 

heterogeneity within primary tumors. This corroborates previous reports (40) of greater intra-

tumoral heterogeneity in primary tumors than in xenografts derived from clonal cell lines. Thus, 

OMI imaging allows identification of heterogeneous cellular response to drug treatment in a 

dynamic population, which potentially enables drug selection to maximize therapeutic efficacy. 

Organoids derived from HER2+/ER- and TNBC primary tumors have OMI responses 

consistent with their clinical characteristics: reduced OMI index with trastuzumab treatment and 



136 

 

no change with fulvestrant (ER antagonist) treatment in the HER2+/ER- organoids (41), and no 

OMI index reductions after treatment with  trastuzumab or tamoxifen in the TNBC organoids (42, 

43) (Fig. 6.6a,c).  HER3 is an emerging target for breast cancer (30, 44) and the anti-HER3 

antibody A4 reduced the OMI index of HER2+/ER- organoids. 

 The results of this study support the validity of OMI for monitoring organoid response to 

anti-cancer drugs.  We demonstrate high selectivity of the OMI index to directly measure drug 

response of organoids derived from breast cancer xenografts to single anti-cancer drugs and their 

combinations, and validated OMI measured response with gold standard tumor growth in two 

xenograft models.  We have shown that the OMI index measured in primary tumor organoids 

resolves response and non-response within 72 hours, compared to the 3 weeks required to resolve 

this response with tumor size measurements.  Further, we extend this approach and generate drug 

response information from organoids derived from three subtypes of primary human tumors, 

TNBC, ER+, and HER2+.  The high resolution of OMI allows subpopulation analysis for 

identification of heterogeneous tumor response to drugs in dynamic tumor cell populations.  

Altogether, these results suggest that OMI of primary tumor organoids may be a powerful test to 

predict the action of anti-cancer drugs and tailor treatment decisions accordingly. 
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CHAPTER 7 

Conclusions and Future Directions 

7.1 Summary and Conclusions 

 The primary goal of this dissertation is to characterize and develop optical metabolic imaging 

endpoints as biomarkers for drug response in breast cancer.  Clinically, therapy selection remains 

difficult due to the large number of patients that present de novo and acquired drug resistance.  

Currently, there are no technologies to predict which patients will not respond to traditional therapies.  

While optical techniques, such as diffuse optical tomography, have been used to monitor therapy 

response (1-4), optical metabolic imaging is more sensitive to early drug-induced changes and 

achieves higher spatial resolution, which allows analysis of tumor heterogeneity.  Furthermore, while 

similar optical metabolic imaging techniques have been used for optical diagnosis (5, 6), this is the 

first application of these technologies for dynamic imaging of drug response.   

 The objective of Chapter 2 is to provide relevant background information and a framework 

for the work reported in the rest of the Dissertation.  Chapter 2 contains a discussion on the current 

standard of care and therapy treatment regimens for breast cancer patients.  Furthermore, cellular 

metabolism is defined and motivated as a source of contrast for drug efficacy.  Chapter 2 concludes 

with an introduction to fluorescence lifetime imaging which is utilized in optical metabolic imaging 

and a brief introduction to organoid culture which enables clinical translation of optical metabolic 

imaging.   

 The primary objective of Chapter 3 is to develop an analysis method to evaluate and quantify 

cellular heterogeneity within optical metabolic imaging data sets.  Solid tumors are highly 

heterogeneous and heterogeneity contributes to tumor aggression, invasion, metastases, and therapy 

resistance (7-11).  Therefore, single-cell resolution and tumor heterogeneity analysis is important for 
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a drug-response monitoring technology.  Chapter 3 develops and characterizes optical metabolic 

imaging subpopulation analysis (OMI-SPA). OMI-SPA uses mixed Gaussian distributions to model 

cellular populations to identify the number and parameters of cellular subpopulations.  This chapter 

presents the theoretical limitations of SPA and demonstrates utility in co-cultures of two breast cancer 

cell lines.  The main conclusions of this work are that OMI-SPA can identify cancer cell 

subpopulations based on OMI endpoints.  Furthermore, this work quantified the relationships between 

sample size, standard deviation, and mean separation distance for SPA to robustly characterize two 

populations with minimal error.  These results are presented graphically, and may act as a look up 

table for future experiments when the means and standard deviations of populations are unknown or 

estimated.  Chapter 3 addresses the first Aim, “characterize subpopulation analysis of OMI data to 

quantify heterogeneous cell populations.” 

 Chapter 4 addresses Aim 2 outlined in Chapter 1, “determine the sensitivity of OMI to breast 

cancer subtypes and therapeutic response in vitro and validate OMI measures of response in human 

breast cancer xenografts in vivo.”  In this chapter, an in vitro experiment was performed to 

determine the basal and post-therapy metabolism, as measured by OMI, in a panel of breast cancers 

with varying receptor expressions.  In addition, an in vivo xenograft experiment was performed on 

three different xenografts to determine the sensitivity of OMI endpoints to drug-induced changes 

in metabolism.  These studies demonstrated that OMI is highly sensitive to drug-induced 

metabolism changes, with significant reductions in all endpoints as early as 24 hr post-treatment 

in cells and 48hr in xenografts.  To our knowledge, this is the earliest detected response to 

trastuzumab in vivo.  Furthermore, OMI endpoints of trastuzumab-resistant cells and tumors were 

not significantly affected by trastuzumab treatment, proving specificity of OMI.  Additionally, 

OMI-measured response was directly compared with a clinically used technology FDG-PET.  FDG 
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uptake did not significantly change with trastuzumab treatment in either responsive or resistant 

tumors over the entire time course, highlighting the advantages of OMI.  Finally, Chapter 4 also 

demonstrates the application of advanced imaging analysis protocols which are able to identify 

heterogeneous cell populations in cell cultures and tumors imaged in vivo.   The main conclusion 

of Chapter 4 is that OMI is highly sensitive to drug-induced changes in cellular metabolism in 

responding cells and in vivo tumors. 

 Chapter 5 addresses Aim 3, “characterize OMI endpoints in excised tissues.”  Due to 

challenges and limitations with clinical in vivo OMI imaging of deep tissue sites such as the breast, 

OMI was performed on in vivo hamster cheek pouch tissue and compared with OMI of freshly 

excised, live cultured tissues, and frozen biopsy samples.  The results of this study demonstrate 

that OMI endpoints remain unchanged up to 8 hours post excision in live culture conditions.  

Frozen tissue samples however, expressed differences up to 15% compared to in vivo.  These 

results demonstrate that meaningful OMI data can be obtained from freshly excised, live cultured 

samples.  This study defined the time-window for OMI measurements on excised tissues and 

characterizes the metabolic changes that occur in frozen-thawed tissues.   

 The main goal of Chapter 6 was to validate that OMI-measured drug response in organoids 

correlated with in vivo drug response in xenograft models and prove feasibility of an organoid-

OMI screen for clinical use.  This chapter addressed Aim 4, “validate organoid-OMI measured 

tumor response with in vivo OMI in human breast cancer xenografts and compare organoid-OMI 

measured tumor response with measures of response in human breast cancers.”  To expedite 

clinical utility of OMI measured drug response, an OMI-organoid drug screen was developed and 

validated.  Organoids are 3D cultures of primary tumor sections and contain all the cells and 

microenvironment of the original tumor, including malignant cells, fibroblasts, leukocytes, and 
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endothelial cells (12).  Organoids are an attractive platform for an OMI-based drug screen because 

they recapitulate in vivo tumor environments and cell signaling networks which have been shown 

to mediate drug resistance (13).  Furthermore, organoids are inexpensive and easy to image.  

The work in Chapter 6 is the first to demonstrate that OMI-measured organoid drug 

response agrees with in vivo drug response, as measured by changes in tumor size.  Furthermore, 

the drug response of organoids over 72 hours predicted for drug response of in vivo tumors treated 

for three weeks.  Heterogeneity analysis revealed subpopulations with different OMI profiles 

following drug response and these subpopulations could be tracked over the 72-hr time course.  

Additionally, Chapter 6 defines the OMI index, a combination of the redox ratio, NADH mean 

lifetime, and FAD mean lifetime, as a composite variable which enables direct correlation between 

cellular metabolism and drug response.  Finally, Chapter 6 proved feasibility of an organoid-OMI 

approach to measuring drug response in 6 clinical samples.  Altogether, this Chapter validates the 

organoid-OMI drug screen approach in two xenograft models and demonstrates feasibility in 

human breast tumors. 

This dissertation characterizes OMI for monitoring and predicting drug response.  OMI is 

an attractive platform because it is high-resolution, non-invasive, uses non-ionizing radiation, and 

is highly sensitive to changes in cellular metabolism.  When combined with image processing 

techniques and cellular-level analysis, OMI is capable of resolving cellular heterogeneity, which 

is increasing important for identifying cancer stem cells and non-responding subpopulations.  

Furthermore, this dissertation has defined time windows for robust OMI measurements of excised 

tissues and developed an organoid-drug screen for universality and clinical application of OMI. 
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7.2 Future Directions 

Test Organoid-OMI Screen in Immune-Competent Mice 

 Chapter 6 validated OMI-measured drug response of organoids with in vivo tumor growth 

curves of two xenograft mouse models, one responsive to trastuzumab and one resistant to 

trastuzumab.  These experiments demonstrated corroboration between organoid-OMI detected 

response and in vivo response.  However, xenograft tumors must be grown in immune-

compromised mice and these models of breast cancer and tumor response may not fully 

recapitulate clinical disease and response (14).  Many drugs, including trastuzumab, modulate 

immune function and the full effects may not be well represented in xenograft studies.  Genetically 

engineered mouse models of breast cancer are grown in immune-competent mice and may reveal 

interactions between tumor, drugs, and the immune system.  Future experiments in immune-

competent mice are warranted to ensure an organoid-OMI screen retains its prognostic capability. 

Validate Organoid-OMI Screen in Clinical Neoadjuvant Study 

 Validation of the organoid-OMI screen in patients is challenging due to the long follow-up 

time, variety of treatments, and lack of robust clinical measures of response.  However, the 

neoadjuvant therapy setting in breast cancer provides an opportunity to test organoid-OMI 

predicted response with actual patient outcomes.  Neoadjuvant therapy is systemic chemotherapy 

or targeted therapy given to a cancer patient before surgical removal of the primary tumor.  

Neoadjuvant therapy is used to improve surgical outcomes, obtain information on tumor response, 

and obtain long-term disease-free survival (15).  Studies have shown that patients that achieve 

pathological response to neoadjuvant chemotherapy have better survival (16).  Response to 

neoadjuvant therapy is determined pathologically at the time of surgical resection of the primary 

tumor.  Therefore, the neoadjuvant setting provides a window for validating organoid-OMI drug 
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response.  In this study, pre-treatment tissue would be obtained by core needle biopsy prior to 

chemotherapy.  Organoids would be generated from the tissue and treated with the same drug 

cocktail received by the patient.  Organoid-OMI drug response would be compared with 

pathological response determined at the time of surgery.   

Investigate Biochemical Source of OMI Contrast 

 OMI probes the fluorescence intensities and lifetimes of NADH and FAD.  Assuming 

constant imaging parameters and sample optical properties, changes in the fluorescence intensity 

of NADH and FAD are most likely due to changes in the concentration of the fluorophore (17).  

However, the physiological source of changes in the fluorescence lifetime of NADH and FAD are 

less defined.  NADH and FAD can exist in free and bound states and changes in the mean lifetime 

may be due to changes in the proportion of free and bound fluorophore which would manifest as 

changes in 1 and 2.  Changes in the bound lifetime may be due to different conformations of the 

fluorophore and binding to different enzyme complexes.  Future experiments in solutions and cell 

culture will elucidate the physiological basis for significant changes in fluorescence lifetimes of 

NADH and FAD. 

Investigate Organoid-OMI Screen for Additional Diseases  

 Abnormal cellular metabolism is a hallmark of many additional cancers and diseases.  An 

organoid-OMI screen has the potential to guide therapy selection for additional diseases, and not 

be limited to breast cancer.  Future studies will explore the validity and usefulness of OMI 

technology for additional diseases and cancers. 

Automate Imaging Acquisition and Increase Speed for High Throughput Measurements 

 For widespread clinical adoption of an organoid-OMI screen, OMI needs to be faster, less 

expensive, and automated.  Recent advances in time correlated single photon counting electronics 
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and computing power have allowed faster FLIM.  For clinical use, OMI should be incorporated 

into an automated plate reader which could automatically identify and image organoids.  A 

sophisticated system would include an environmental chamber.  Furthermore, with faster FLIM 

capabilities, image stacks throughout the organoid could be imaged to improve sampling.   

Optimize Organoid Growth Conditions 

 The organoid generation and growth protocol could be optimized.  The organoid generation 

protocol presented in Chapter 6 uses mechanical dissociation to generate organoids and the 

organoids grow in matrigel.  Additional protocols could be tested, such as addition of extracellular 

matrix degredation enzymes, collagenases, to optimize organoid generation (18).  Furthermore, 

organoids could be grown in a variety of gels.  While matrigel facilitates organoid growth, gel 

mechanical properties could be controlled by growing organoids on collagen gels.  Organoid 

growth on gels of varying stiffness could be investigated as well as organoid invasion (18, 19).   

7.3 Contribution to the Field and Societal Impact 

Innovation in Biophotonics 

 The studies in this dissertation have led to several innovations within the field of 

biophotonics.  First, these studies are the first to characterize OMI endpoints in regards to other 

measures of cellular metabolism.  In Chapter 4, OMI endpoints, the redox ratio, NADH mean 

lifetime, and FAD mean lifetime, are robustly compared with measurements of glucose-uptake 

and lactate secretion by cells, and FDG-PET in xenograft tumors.  This characterization of OMI 

endpoints provides insights on the physiological source of contract.   

Additionally, this work is the first to develop OMI for monitoring anti-cancer therapy.  

Outside of these studies, no OMI endpoint has been exploited for predicting the outcome of any 

therapy in animal models or clinical settings.  Traditionally, the field of biophotonics has largely 



148 

 

focused its efforts on diagnostics, such as optical biopsy, and breast cancer margin assessment (20-

23).  This work presents a novel application of optical technologies, using OMI endpoints as 

measures of drug response.  While diffuse optical tomography has also been used to detect 

response (2-4), diffuse optical tomography is low resolution and limited to the treatment received 

by the patient.  The novelty of the research presented in this dissertation is the combined organoid-

OMI screen which shifts from a focus of measuring response and reacting to non-response to being 

able to directly test all drugs and drug combinations to guide initial therapy decisions.  In vivo 

functional imaging methods are inherently low-throughput, because they are limited to assessing 

only the drugs that the patient has already received.  The combination of functional measures 

(OMI) of live tumors (organoids) in a high-throughput screening format is completely 

unprecedented in the research literature. The organoid-OMI approach also provides a potentially 

powerful system to test an individual’s response to multiple treatment schemes, rather than infer a 

possible response from biomarkers.   This combination of optical imaging of metabolism, organoid 

drug screens, and single cell analysis is highly innovative and opens up additional research 

avenues. 

The fluorescence lifetimes of NADH and FAD are significantly under-studied, with only a 

handful of labs around the world that investigate any of these endpoints alone in any context.  The 

work in this dissertation has characterized the fluorescence lifetimes of NADH and FAD in vivo, 

in live cultured, freshly excised tissues, frozen tissues, and organoids.  Traditionally, metabolism 

endpoints are thought to significantly change upon removal from the body and thus metabolic 

imaging studies have been limited to in vivo studies.  However, the results of Chapter 5 suggest 

that optical metabolic endpoints, particularly the fluorescence lifetime of NADH and FAD remain 
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stable up to 8 hr post removal.  These findings enable optical metabolic imaging in an array of 

experiments and situations when in vivo imaging is not practical. 

Additionally, this dissertation presents novel image analysis techniques that are applicable 

and translatable to microscopy research, and not limited to optical metabolic imaging data.  An 

automated image segmentation algorithm was developed in CellProfiler to segment 

autofluorescence images of clumped cells and organoids into cells, nuclei, and cytoplasms 

(Appendix D).  To our knowledge, this is the first published code for segmentation of clumped 

cells in auto-fluorescence images.  Additionally, image analysis techniques were developed to 

analyze images and data sets on a single cell level to quantify cellular heterogeneity and identify 

cell subpopulations (Chapter 3).  Both of these techniques can be used in future optical metabolic 

imaging studies and applied to additional microscopy techniques and applications. 

Contributions to Cancer Biology 

Cancer cells are known to exhibit abnormal cellular metabolism (24). Furthermore, 

oncogenic signaling often regulates cellular metabolism processes.  For example, in breast cancer, 

the estrogen receptor regulates gene expression of glucose transporter proteins and proteins 

involved in oxidative phosphorylation and the citric acid cycle (25-27).  Additionally, HER2 

mediates metabolism through signaling of the PI3K pathway (28, 29).  Therefore, oncogenic 

inhibition by anti-cancer drugs may affect cellular metabolism and as demonstrated in this 

dissertation, cellular metabolism provides a robust indicator of drug response.  This dissertation 

contributes research and evidence on the relationships between metabolism, cancer, and drug 

response.   

Furthermore, cellular metabolism is difficult to quantify.  Cellular metabolism can be 

investigated by measuring quantities of fuel sources, metabolic products, flux of metabolic 
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enzymes, or by imaging methods such as histology, diffuse optical tomography or FDG-PET; 

however, each of these methods is sensitive to only a small subset of the cellular metabolism 

process.  Fluorescence imaging of NADH and FAD provides a global measure of cellular 

metabolism because the source of contrast, NADH and FAD, are coenzymes used throughout 

metabolism.  The studies and experiments reported in this dissertation fully characterize NADH 

and FAD fluorescence and fluorescence lifetimes as biomarkers of cellular metabolism for use in 

future studies of cancer biology. 

There is a growing body of evidence that interactions between cancer cells and surrounding 

cells in the tumor microenvironment may mediate resistance to cancer drugs (30).  Therefore, 

organoid cultures provide an attractive platform for drug response studies because organoids retain 

the malignant tumor cells and the native tumor microenvironment.  To date, primary tumor 

organoid cultures are understudied and underutilized.  Chapter 6 and Appendix E present novel 

methods for the generation and culture of primary xenograft and human tumor-derived organoids.  

This work is innovative and applicable for future organoid studies.  Furthermore, the work in 

Appendix E demonstrates feasibility of growth of organoids from frozen-thawed tissues. This will 

enable broad adoption of organoid techniques, even where fresh tissues are not available. 

Bridging the Gap Between Preclinical and Clinical Research 

 Currently, the costs to develop a new drug are astronomical and many new drugs that show 

potential in preclinical experiments fail to show efficacy in expensive clinical trials (31).  More 

relevant disease models are needed to bridge the gap between preclinical and clinical research.  In 

oncology, preclinical models include immortalized cell lines, human xenografts grown in mice 

from immortalized cell lines, and genetically engineered mouse cancers.  Recently, patient-derived 

xenograft models have also been proposed as a relevant cancer model (32, 33), however, patient 
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derived xenografts are expensive, difficult to grow, and require lengthy growth periods and 

multiple passages.  Primary tumor-derived organoids present an attractive platform for preclinical 

studies and may help bridge the gap between preclinical and clinical studies.  Organoid generation 

and culture is inexpensive, fast, and highly reproducible with nearly 100% of tumors able to grow 

organoids.  Organoids contain all the innate cells of the tumor and maintain tumor-stroma 

interactions.  Therefore, organoids may better represent cancer physiology than immortalized cells 

or 2D culture.  For these reasons, organoids may provide a missing link for preclinical trials. 

Potential Impact on Preclinical Drug Trials 

Development of OMI to measure therapeutic response would have a revolutionary effect 

on pre-clinical studies of drug development and efficacy.  Currently, the gold standard of drug 

efficacy is tumor regression or growth.  Early identification of responding tumors requires IHC 

staining of drug targets, apoptotic cells, and proliferating cells.  IHC can only be performed on 

excised tissue and thus, requires the sacrifice of cohorts of mice at each time point in a longitudinal 

study.  Long-term drug efficacy trials can require hundreds of mice to obtain the statistical power 

for conclusive results.  OMI can be performed in vivo, through a coverslip, or window chamber 

(34).  In such manner, OMI data from the same animal and tumor can be acquired over time, 

reducing the need for parallel cohorts.  This reduction in animal burden would reduce the cost and 

greatly accelerate preclinical studies. 
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Figure 7.1 Clinical impact of OMI-organoid drug screen. The potential impact 

of the live tumor (organoid) and optical metabolic imaging (OMI) system on breast 

cancer care.  A small breast tumor biopsy is broken up and grown in multiple 

organoid macro-suspensions.  Each organoid is treated with a different drug or drug 

combination, and subsequently imaged with OMI.  Changes in cellular metabolism 

are used to assess the efficacy of each drug and drug combination.  The 

individually-tailored optimal treatment regimen is then applied to the patient, 

increasing the chances of remission-free survival. 

 

Implications of an Organoid-OMI Drug Screen for Breast Cancer Care 

Development of a live-culture tissue technique combined with OMI will enable a high-

throughput screen of potential drugs and drug combinations to identify the most effective treatment 

for each breast cancer patient.  In such a system, a tumor sample is removed via a routine biopsy, 

organoids are generated from the tissue biopsy and treated with potential drugs and drug 

combinations, OMI is performed to measure metabolic response of the organoids, and the ideal 

drug or drug combination is identified and administered to the patient (Fig. 7.1). This technology 

will revolutionize patient care by predicting response to multiple treatment regimens, rather than 

reacting to a prescribed treatment.  Optimal matching of a patient to a drug regimen will result in 

earlier effective treatment for the ~300,000 breast cancer patients diagnosed each year, resulting 

in increased survival.  Also, this screen will save patients from the emotional, temporal, and 
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financial cost of ineffective therapies and spare patients the increased toxicities of exposure to 

ineffective drugs.  
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APPENDIX A 

Supplementary Figures and Tables for Chapter 4 

 

Figure A.1: NADH (a-c) and FAD (d-f) fluorescence lifetime components in MCF10A cells before and 

after exposure to 4 mM NaCN. NADH 1 and 2 correspond to the free and protein-bound components of 

the lifetime, respectively.  FAD 1 and 2 correspond to the protein-bound and free components of the 

lifetime, respectively. 1 corresponds to the relative contribution of 1 to the overall decay, such that 

1+2=1.** P <0.001, * P <0.05 

 

Table A.1: Breast cancer cell lines and receptor expression. Eight cell lines were investigated in this 

study, with ER and HER2 status provided.  The last three columns provide the number of images (in vitro) 

or tumors (in vivo) collected to compile the results in Fig. 2-6. 
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Figure A.2: Relationship between redox ratio and cell proliferation. (a) Redox ratio results normalized 

to % mitotic cells. The optical redox ratio increases with ER (MCF7, green) and HER2 (MDA-MB-361, 

BT474, and SKBr3, blue) expression relative to non-malignant (MCF10A, black) cells.  The redox ratio is 

also increased in HER2+ cells relative to triple negative (MDA-MB-231, red) and ER+ cells, and in ER+ 

cells relative to triple negative cells.  Unless indicated with a line, stars (*) indicate statistically significant 

differences with the MCF10A (non-malignant) cells and bullets (•) indicate statistically significant 

differences with the HER2+ cells grouped together.   ** P<0.001 , •• P<0.001, • P<0.05. (b) Percentage of 

mitotic cells measured for each cell line.   

 

Figure A.3: Fluoresccence lifetime components for a panel of breast cancer cells. NADH (a-c) and 

FAD (d-f) lifetime components (1, short lifetime; 2, long lifetime; and 1, relative contribution of the short 

lifetime) for a non-malignant (MCF10A, black), a triple-negative breast cancer (MDA-MB-361; red), an 

ER+ (MCF7, green), and three HER2+ (MDA-MB-361, BT474, and SKBr3; blue) cell lines. Stars (*) 

indicate statistically significant differences with the MCF10A (non-malignant) cells and bullets (•) indicate 

statistically significant differences with the HER2+ cells grouped together.   ** P <0.001 , •• P < 0.001, • 

P <0.05 

a 
b 
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Figure A.4: Scatterplots of OMI endpoints. (a) A scatterplot of FAD m versus redox ratio/proliferation 

provides visual separation of the different molecular sub-types of breast cancer [non-malignant (NM), 

ER+, HER2+, and triple negative (TNBC)]. (b) A scatterplot of FAD m versus NADH m provides visual 

separation of the different molecular sub-types of breast cancer [non-malignant (NM), ER+, HER2+, and 

triple negative (TNBC)].  

 

Table A.2:  Spearman’s rank correlation coefficients (P-value) for comparisons of metabolic 

measures.  NADH and FAD m are computed from 1, 2, and 1 (m = 1*α1 + 2*α2). Shaded boxes 

highlight significant (P<0.05) correlations. 

 

  

a b 
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Figure A.5:  Fluorescence lifetime components for in vitro trastuzumab experiment. NADH (a-c) and 

FAD (d-f) lifetime components (1, short lifetime; 2, long lifetime; and 1, relative contribution of the short 

lifetime) for trastuzumab perturbation of BT474, MDA-MB-361, and HR6 cells. ** P <0.001; * P <0.05 
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Figure A.6: Distribution density modeling of OMI endpoints for in vitro trastuzumab experiment.  (a, 

c) Distribution density modeling reveals one population of cells in BT474 (a) and HR6 (c) in control (blue) 

and trastuzumab (red) treated cultures. (b) Distribution density modeling reveals two distinct populations 

of MDA-MB-361 cells for the redox ratio with a significant decrease in the mean of the minority peak (30% 

of cells) with trastuzumab treatment, suggesting trastuzumab response in a sub-population of cells. (d-i) 

Distribution density modeling of cellular NADH m (d-f) and FAD m (g-i) reveals one population of cells 

for control (blue) and trastuzumab (red) treated BT474 (d,g), MDA-MB-361 (e,h) and HR6 (f, i) cells. m 

is the mean lifetime (1*α1 + 2*α2).  * P<0.05 
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Figure A.7 Fluorescence lifetime components for BT474 xenografts. NADH (a-c) and FAD (d-f) 

lifetime components (1, short lifetime; 2, long lifetime; and 1, relative contribution of the short lifetime) 

for control IgG-treated and trastuzumab-treated (10 μg/kg, 2x weekly) BT474 xenografts, measured at 2, 

5, and 14 days after treatment was initiated. *P<0.05 

 

 

Figure A.8 Fluorescence lifetime components for HR6 xenografts. NADH (a-c) and FAD (d-f) lifetime 

components (1, short lifetime; 2, long lifetime; and 1, relative contribution of the short lifetime) for 

control IgG-treated and trastuzumab-treated (10 μg/kg, 2x weekly) HR6 xenografts, measured at 2, 5, and 

14 days after treatment was initiated.  
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Figure A.9 Fluorescence lifetime components for MDA-MB-231 xenografts.   NADH (a-c) and FAD 

(d-f) lifetime components (1, short lifetime; 2, long lifetime; and 1, relative contribution of the short 

lifetime) for control IgG-treated and trastuzumab-treated (10 μg/kg, 48 hours) MDA-MB-361 xenografts, 

measured 48h after treatment. * P <0.05 
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APPENDIX B 

Supplementary Figures and Tables for Chapter 6 

 

Figure B.1: OMI endpoints of organoids derived from a trastuzumab-responsive xenograft 

tumor. A. Redox ratio of BT474 xenograft-derived organoids treated with paclitaxel (P), 

trastuzumab (H), XL147 (X), and the combined drug treatments H+P, H+X, H+P+X at 24 (blue), 

48 (red), and 72hr (green).  B. NADH m  of BT474 xenograft-derived drug treated organoids at 

24 (blue), 48 (red), and 72hr (green).  C. FAD m  of BT474 xenograft-derived drug treated 

organoids at 24 (blue), 48 (red), and 72hr (green).  D. OMI index (composite endpoint of weighted 

redox ratio, NADH m, and FAD m) of BT474 xenograft-derived drug treated organoids at 24 

(blue), 48 (red), and 72hr (green).  *p<0.05, for treated vs. control within a time point. 
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Table B.1: NADH and FAD lifetime component values of BT474-xenograft derived 

organoids (mean, standard deviation) from a two-component exponential fit of the fluorescence 

decay, ( CtI
tt


 21 /

2

/

1 expexp)(
  ). Boxes shaded pink represent a significant decrease in 

mean value vs. control.  Boxes shaded blue represent a significant increase in mean value vs. 

control. NADH 1/1 is attributed to free NADH, NADH 2/2 is attributed to bound NADH. FAD 

1/1 is attributed to bound FAD, FAD 2/2  is attributed to free FAD.  
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Figure B.2: Population modeling identifies heterogeneous drug responses of BT474 cells.  

A.  Population density modeling of the mean OMI index per cell in control and treated BT474 

organoids at 24 hr.  B.  Population density modeling of the OMI index for BT474 organoids 

treated for 72hr.  

 

Figure B.3: OMI endpoints of organoids derived from a trastuzumab-resistant xenograft 

tumor. A. Redox ratio of HR6 xenograft-derived organoids treated with paclitaxel (P), 

trastuzumab (H), XL147 (X), and the combined drug treatments H+P, H+X, H+P+X at 24 (blue), 

48 (red), and 72hr (green).  B. NADH m  of HR6 xenograft-derived drug treated organoids at 24 

(blue), 48 (red), and 72hr (green).  C. FAD m  of HR6 xenograft-derived drug treated organoids 

at 24 (blue), 48 (red), and 72hr (green).  D. OMI index (composite endpoint of weighted redox 

ratio, NADH m, and FAD m) of HR6 xenograft-derived drug treated organoids at 24 (blue), 48 

(red), and 72hr (green).  *p<0.05, for treated vs. control within a time point. 

A B 
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Table B.2: NADH and FAD lifetime component values of HR6-xenograft derived organoids 

(mean, standard deviation) from a two-component exponential fit of the fluorescence decay, (

CtI
tt


 21 /

2

/

1 expexp)(
  ). Boxes shaded pink represent a significant decrease in mean 

value vs. control.  Boxes shaded blue represent a significant increase in mean value vs. control. 

NADH 1/1 is attributed to free NADH, NADH 2/2 is attributed to bound NADH. FAD 1/1 

is attributed to bound FAD, FAD 2/2  is attributed to free FAD.  
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Figure B.4: Population modeling identifies heterogeneous drug responses of HR6 cells.  A.  

Population density modeling of the mean OMI index per cell in control and treated HR6 organoids 

at 24 hr.  B.  Population density modeling of the OMI index for HR6 organoids treated for 72hr.  

 

 

 

Table B.3: Grade, proliferation rate, estrogen receptor expression, progesterone receptor 

expression, and HER2 receptor expression of the patient samples.   

Sample Grade 

Proliferative 

rate 

ER 

intensity 

(% cells) 

PR 

intensity 

(% cells) 

Her2 

FISH 

Her2:Cep17 

ratio Figures 

1  high high 3+ (95) 3+ (95) 

Not 

Amp 1.7 

Fig. 5A-C,  

Sup. Fig. 3 

2 

Inter-

mediate Intermediate 3+ (90) 3+ (90) 

Not 

Amp 1.4 

Fig. 5D,E 

Sup. Fig. 4 

3 high high 3+ (95) 3+ (99) 

Not 

Amp 1 

Fig. 5F,G 

Sup. Fig. 5 

4 high Intermediate 3+ (95) 3+ (70) 

Not 

Amp 1.1 

Fig. 5H,I 

Sup. Fig. 6 

5 high high 0 (0) 0 (0) Amp 7.95 

Fig. 6A,B 

Sup. Fig. 7 

6 high high 2+ (3) 2+(3) 

Not 

Amp 0.9 

Fig. 6C,D 

Sup. Fig. 8 

A B 
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Figure B.5: Population modeling identifies heterogeneous drug responses of organoids from 

patient sample #1 (ER+/HER2-).  Population density modeling of the mean OMI index per cell 

in control and treated organoids derived from patient sample #1 (ER+/HER2+) at 72 hr.  

 
Figure B.6: OMI endpoints of organoids derived from a ER+ primary tumor. A. Redox ratio 

of organoids derived from an ER+ primary tumor treated with paclitaxel (P), tamoxifen (T), 

trastuzumab (H), XL147 (X), and the combined drug treatments H+X, H+P+X, H+P+T, and 

H+P+T+X at 24 (blue), 48 (red), and 72hr (green).  B. NADH m of organoids derived from an 

ER+ primary tumor at 24 (blue), 48 (red), and 72hr (green).  C. FAD m of  organoids derived from 

an ER+ primary tumor at 24 (blue), 48 (red), and 72hr (green).  D. OMI index (composite endpoint 

of weighted redox ratio, NADH m, and FAD m) of organoids derived from an ER+ primary tumor 

at 24 (blue), 48 (red), and 72hr (green).  *p<0.05, for treated vs. control within a time point. 
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Table B.4: NADH and FAD lifetime component values of organoids derived from an ER+ 

primary tumor (mean, standard deviation). Boxes shaded pink represent a significant decrease in 

mean value vs. control.  Boxes shaded blue represent a significant increase in mean value vs. 

control. NADH 1/1 is attributed to free NADH, NADH 2/2 is attributed to bound NADH. FAD 

1/1 is attributed to bound FAD, FAD 2/2  is attributed to free FAD.  
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Figure B.7: Population modeling identifies heterogeneous drug responses of organoids from 

patient sample #2 (ER+/HER2-).  Population density modeling of the mean OMI index per cell 

in control and treated organoids derived from patient sample #2 (ER+/HER2+) at 72 hr.  

  

Figure B.8: OMI endpoints of  organoids derived from a second ER+ primary tumor.  A. 

Redox ratio of organoids derived from a second ER+ primary tumor treated with paclitaxel (P), 

tamoxifen (T), trastuzumab (H), and the combined drug treatments H+P, H+T, P+T, and H+P+T 

at 24 (blue), 48 (red), and 72hr (green).  B. NADH m  at 24 (blue), 48 (red), and 72hr (green).  C. 

FAD m at 24 (blue), 48 (red), and 72hr (green).  D. OMI index (composite endpoint of weighted 

redox ratio, NADH m, and FAD m)  at 24 (blue), 48 (red), and 72hr (green).  *p<0.05, for treated 

vs. control within a time point. 
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Table B.5: NADH and FAD lifetime component values of organoids derived from a second 

ER+ primary tumor (mean, standard deviation). Boxes shaded pink represent a significant 

decrease in mean value vs. control.  Boxes shaded blue represent a significant increase in mean 

value vs. control. NADH 1/1 is attributed to free NADH, NADH 2/2 is attributed to bound 

NADH. FAD 1/1 is attributed to bound FAD, FAD 2/2  is attributed to free FAD.  
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Figure B.9: Population modeling identifies heterogeneous drug responses of organoids from 

patient sample #3 (ER+/HER2-).  Population density modeling of the mean OMI index per cell 

in control and treated organoids derived from patient sample #3 (ER+/HER2+) at 24 hr.  

 

Figure B.10: Population modeling identifies heterogeneous drug responses of organoids from 

patient sample #4 (ER+/HER2-).  Population density modeling of the mean OMI index per cell 

in control and treated organoids derived from patient sample #4 (ER+/HER2+) at 72 hr.  
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Figure B.11: OMI endpoints of  organoids derived from a third ER+ primary tumor. A. 

Redox ratio of organoids derived from a third ER+ primary tumor treated with paclitaxel (P), 

tamoxifen (T), trastuzumab (H), XL147 (X) and the combined drug treatments H+P, H+X, and 

H+P+T+X at 24hr.  B. NADH m  of these organoids at 24hr.  C. FAD m of these organoids at 

24hr.  D. OMI index (composite endpoint of weighted redox ratio, NADH m, and FAD m)  at 

24hr.  *p<0.05, for treated vs. control. 

Table B.6: NADH and FAD lifetime component values of organoids derived from a third 

ER+ primary tumor (mean, standard deviation). Boxes shaded pink represent a significant 

decrease in mean value vs. control.  Boxes shaded blue represent a significant increase in mean 

value vs. control. NADH 1/1 is attributed to free NADH, NADH 2/2 is attributed to bound 

NADH. FAD 1/1 is attributed to bound FAD, FAD 2/2  is attributed to free FAD.  
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Figure B.12: OMI endpoints of organoids derived from a fourth ER+ primary tumor. A. 

Redox ratio of organoids derived from a fourth ER+ primary tumor treated with paclitaxel (P), 

tamoxifen (T), trastuzumab (H), XL147 (X) and the combined drug treatments H+P, H+X, 

H+P+X, H+P+T, and H+P+T+X at 24 (blue), 48 (red), and 72hr (green).  B. NADH m of these 

organoids at 24 (blue), 48 (red), and 72hr (green).  C. FAD m at 24 (blue), 48 (red), and 72hr 

(green).  D. OMI index (composite endpoint of weighted redox ratio, NADH m, and FAD m) at 

24 (blue), 48 (red), and 72hr (green).  *p<0.05, for treated vs. control within a time point. 
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Table B.7: NADH and FAD lifetime component values of organoids derived from a fourth 

ER+ primary tumor (mean, standard deviation). Boxes shaded pink represent a significant 

decrease in mean value vs. control.  Boxes shaded blue represent a significant increase in mean 

value vs. control. NADH 1/1 is attributed to free NADH, NADH 2/2 is attributed to bound 

NADH. FAD 1/1 is attributed to bound FAD, FAD 2/2  is attributed to free FAD.  
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Figure B.13: OMI endpoints of organoids derived from a HER2+ primary tumor.  A. Redox 

ratio of organoids derived from a HER2+ primary tumor treated with fulvestrant, trastuzumab, and 

A4 at 24hr.  B. NADH m  of these organoids at 24hr.  C. FAD m at 24hr.  D. OMI index (composite 

endpoint of weighted redox ratio, NADH m, and FAD m)  at 24hr.  *p<0.05, for treated vs. 

control. 

Table B.8: NADH and FAD lifetime component values of organoids derived from a HER2+ 

primary tumor (mean, standard deviation). Boxes shaded pink represent a significant decrease in 

mean value vs. control.  Boxes shaded blue represent a significant increase in mean value vs. 

control. NADH 1/1 is attributed to free NADH, NADH 2/2 is attributed to bound NADH. FAD 

1/1 is attributed to bound FAD, FAD 2/2  is attributed to free FAD.  
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Figure B.14: OMI endpoints of organoids derived from a TNBC primary tumor. A. Redox 

ratio of organoids derived from a TNBC primary tumor treated with tamoxifen (T), trastuzumab 

(H), and the combined treatment, H+T at 48hr.  B. NADH m  of these organoids at 48hr.  C. FAD 

m at 48hr.  D. OMI index (composite endpoint of weighted redox ratio, NADH m, and FAD m)  

at 48hr.  *p<0.05, for treated vs. control. 

Table B.9: NADH and FAD lifetime component values of organoids derived from a TNBC 

primary tumor (mean, standard deviation). Boxes shaded pink represent a significant decrease in 

mean value vs. control.  Boxes shaded blue represent a significant increase in mean value vs. 

control. NADH 1/1 is attributed to free NADH, NADH 2/2 is attributed to bound NADH. FAD 

1/1 is attributed to bound FAD, FAD 2/2  is attributed to free FAD. 
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APPENDIX C 

Optical Imaging of Metabolism in HER2 Overexpressing Breast Cancer Cells 

Walsh AJ, Cook RS, Rexer B, Arteaga CL, Skala MC. “Optical imaging of metabolism in HER2 

overexpressing breast cancer cells.” Biomed Opt Express. 2012;3(1):75-85.  

 

C.1 Abstract 

The optical redox ratio (fluorescence intensity of NADH divided by that of FAD), was 

acquired for a panel of breast cancer cell lines to investigate how overexpression of human 

epidermal growth factor receptor 2 (HER2)  affects tumor cell metabolism, and how tumor 

metabolism may be altered in response to clinically used HER2-targeted therapies.  Confocal 

fluorescence microscopy was used to acquire NADH and FAD auto-fluorescent images.  The 

optical redox ratio was highest in cells overexpressing HER2 and lowest in triple negative breast 

cancer (TNBC) cells, which lack HER2, progesterone receptor, and estrogen receptor (ER).  The 

redox ratio in ER-positive/HER2-negative cells was higher than what was seen in TNBC cells, but 

lower than that in HER2 overexpressing cells. Importantly, inhibition of HER2 using trastuzumab 

significantly reduced the redox ratio in HER2 overexpressing cells. Furthermore, the combinatorial 

inhibition of HER2 and ER decreased the redox ratio in ER+/HER2+ breast cancer cells to a 

greater extent than inhibition of either receptor alone. Interestingly, trastuzumab had little impact 

upon the redox ratio in a cell line selected for acquired resistance to trastuzumab. Taken together, 

these data indicate that the optical redox ratio measures changes in tumor metabolism that reflect 

the oncogenic effects of HER2 activity within the cell, as well as the response of the cell to 

therapeutic inhibition of HER2. Therefore, optical redox imaging holds the promise of measuring 

response and resistance to receptor-targeted breast cancer therapies in real time, which could 

potentially impact clinical decisions and improve patient outcome. 
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C.2 Introduction  

The course of breast cancer treatment increasingly relies on the molecular phenotype of the 

tumor.  For example, breast cancers that overexpress the estrogen receptor (ER) are often treated 

with ER-antagonists (e.g., tamoxifen, fulvestrant), while those that overexpress human epidermal 

growth factor receptor 2 (HER2) are often treated with HER2-inhibitors (e.g., trastuzumab, 

lapatinib).  HER2 overexpressing tumors display aggressive cancer progression (1) and account 

for approximately 25% of all breast cancer patients.   Treatment with trastuzumab (a monoclonal 

antibody which binds HER2) and lapatinib (a dual tyrosine kinase inhibitor that binds both HER2 

and the epidermal growth factor receptor) has been shown to prolong survival in patients with 

HER2 overexpressing breast cancers (2-4).  Due to the importance of choosing the correct 

treatment for breast cancer patients, breast tumors are routinely screened for expression of ER and 

HER2.  Currently, ER and HER2 expression are determined by immunohistochemistry (IHC) and 

fluorescence in situ hybridization (FISH).   

Unfortunately, approximately one-third of breast tumors that overexpress HER2 do not 

respond to trastuzumab and lapatinib therapy (4).  Similarly, only 57% of patients with ER-positive 

breast cancers respond to tamoxifen therapy (5).  However, there are reasons to remain optimistic, 

as novel therapeutics are in development to overcome clinical resistance to these therapeutic 

inhibitors (6).  Early identification of those cancers that respond to targeted therapies versus those 

that are resistant will expedite clinical decisions regarding the course of treatment and will improve 

the clinical outcomes of breast cancer patients.  

Methods currently under development to determine tumor response to therapy include 

positron emission tomography (PET), x-ray computed tomography (CT) and magnetic resonance 
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imaging (MRI) (7-9). Evidence that tumor response to targeted inhibitors can be visualized was 

demonstrated with the use of fluoro-deoxyglocose (FDG)-PET, which is capable of detecting 

focused areas of high glucose uptake that are often seen in solid tumors. A preliminary clinical 

study of lapatinib-treated breast cancers showed changes in tumor metabolism after 1 month of 

lapatinib treatment (10).   Yet, these currently available technologies provide only low resolution 

images, are non-portable, and usually require the use of contrast agents. Given the high cost of 

these procedures, it is unlikely that these will be adopted as standard of care, underscoring the need 

for more efficient, accurate, and cost-effective methods of identifying receptor expression and 

therapeutic response.   

Cellular metabolism is a potentially powerful biomarker for tumor analysis. Unlike normal 

cells that rely on oxidative phosphorylation to generate ATP, or that use glycolysis under anaerobic 

conditions, cancer cells often generate ATP through aerobic glycolysis (11).  Interestingly, 

signaling through the HER2 and ER pathways in breast cancer cells is thought to promote aerobic 

glycolysis. ER increases glucose transport and glycolysis (12, 13).  Similarly, HER2 activated 

pathways may increase glucose transport into the cell and glycolysis (14, 15). HER2 signaling 

activates phosphatidyl inositol 3-kinase (PI3K) a major driver of aerobic glycolysis (16-19).  In 

mouse models of HER2 overexpressing breast cancer, trastuzumab and lapatinib inhibited PI3K 

activity and decreased glucose uptake as measured by FDG-PET imaging (20).   Conversely, breast 

tumor cells exhibiting resistance to HER2 inhibitors display aberrantly increased PI3K activity 

and active hypoxia signaling despite the presence of adequate oxygen(18). These studies suggest 

that differences in aerobic glycolysis may reflect not only oncogene-driven metabolic 

characteristics of the tumor cell, but also the effect of therapeutic inhibitors on tumor metabolism, 
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and could therefore be used to distinguish tumors that are responsive to therapeutic inhibitors from 

those that are resistant.  

During oxidative phosphorylation, NADH is oxidized to NAD+ and FAD is reduced to 

FADH2.  However, the process of glycolysis causes NAD+ to be reduced to NADH.  Therefore, 

the ratio of NADH to FAD is a measurement of the balance between glycolysis (seen in tumor 

cells) and oxidative phosphorylation (seen in untransformed cells). NADH and FAD can be 

measured in situ using autofluorescence optical imaging techniques. The optical redox ratio 

(NADH fluorescence intensity divided by FAD fluorescence intensity) is a proven method of 

probing cellular metabolism and has been used to differentiate cancerous from non-cancerous 

tissues in a variety of models including oral  and breast cancer (21-27).  Ostrander et al. showed 

the optical redox ratio is also sensitive to ER expression in breast cancer cell cultures, and that 

treatment with tamoxifen decreased the optical redox ratio of tamoxifen-sensitive cells, but not 

tamoxifen-resistant cells (27).   

The purpose of this study was to determine the effect of HER2 overexpression on the 

metabolism of breast cancer cells as measured by the optical redox ratio.  The hypothesis that 

HER2 overexpression influences cellular redox ratios independently of ER expression was tested.  

Additionally, the impact of HER2 inhibition on the redox ratio in HER2 overexpressing breast 

cancer cells was measured. Finally, we determined if therapeutic resistance to HER2 inhibitors 

reflected on redox ratio measurements as a failure to reduce redox ratios in response to HER2 

inhibition.  HER2 overexpression was found to increase the redox ratio, independently of ER 

expression.   While HER2 inhibition decreased the optical redox ratios in HER2 overexpressing 

cells, the HER2 inhibitor, trastuzumab, had no impact on redox ratios in trastuzumab resistant 

cells, despite continued overexpression of HER2.   
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C.3 Materials and methods 

C.3.1 Cell culture 

MCF10A cells were cultured in Mammary Epithelial Cell Growth Medium (MEGM, 

Lonza, Walkersville, MD) excluding the gentamycin-amphotericin B mix and supplemented with 

100 ng/ml cholera toxin and 1% penicillin:streptomycin.  The BT474, MDA-MB-231, MCF7, and 

SKBr3 cells were grown in DMEM (Invitrogen, Carlsbad, CA), supplemented with 10% fetal 

bovine serum and 1% penicillin:streptomycin, hereafter referred to as DMEM+.  The resistant cell 

lines were grown in the DMEM+ at levels of the corresponding drug to maintain resistance.  The 

lapatinib resistant cells were grown at 1 µM lapatinib (LC Laboratories, Woburn, MA) 

concentration and the trastuzumab resistant cells were grown at 25 µg/ml.   

For imaging, all cell lines were plated at a density of 1x105 cells per 35 mm plate, 48 hours 

prior to imaging.  Glass bottom dishes (MatTek Corporation, Ashland, MA) were used to allow 

live cell imaging on an inverted, confocal microscope.  The trastuzumab and lapatinib resistant 

cell redox ratio was determined from cells grown in trastuzumab and lapatinib supplemented 

media.  For the drug perturbation experiments, the responsive BT474 cells were fed the drug 

supplemented media 24 hours prior to imaging.  For the trastuzumab perturbation of the 

trastuzumab resistant cells, the cells were fed the DMEM+ media for the first 24 hours after plating 

and the DMEM+ with trastuzumab for the second 24 hours.  Drug concentrations of the media 

were selected to mimic therapeutic drug dosage in patients, 25 µg/ml for trastuzumab (VUMC 

Pharmacy, Nashville, TN) and 2 µM for tamoxifen (Sigma-Aldrich, St. Louis, MO) (20, 28).  

For the cyanide experiment to verify measurement of the redox ratio, MCF10A cells were 

plated at 1 x 105 cells per plate, 48 hours prior to imaging.  Cells were imaged before the addition 

of cyanide.  After 3 images from a plate were acquired, the cell media was exchanged for growth 
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media supplemented with 4 mM NaCN (Sigma-Aldrich, St. Louis, MO).  The cells were given one 

minute to react with the cyanide; then, three different places of each plate were imaged.   

Proliferation rates of MCF10A, MCF7, and BT474 cells were determined by antibody 

labeling of cells grown on parallel imaging plates.  Mitotic cells were first marked using a 

Phospho-Histone H3 (Ser10) antibody (Cell Signaling Technology, Danvers, MA).  Then, labeling 

of the primary antibody with Alexa Fluor 488 goat anti-rabbit IgG antibody (Invitrogen, Carlsbad, 

CA) allowed counting by flow cytometry of the highly fluorescent mitotic cells and the less-

fluorescent unlabeled cells.  The percentage of proliferating cells was determined by dividing the 

number of highly fluorescent cells into the total number of cells counted.   

C.3.2 Verification of ER and HER2 expression  

Cells were homogenized in ice-cold lysis buffer [50 mM Tris pH 7.4, 100 mM NaF, 120 

mM NaCl, 0.5% NP-40, 100 µM Na3VO4, 1X protease inhibitor cocktail (Roche)], sonicated for 

10 s at 4ºC, 13,000 x g for 5 min. Protein concentration was determined using the BCA assay 

(Pierce). Proteins were separated by SDS-PAGE and transferred to nitrocellulose membranes. 

Membranes were blocked in 3% gelatin in TBS-T [Tris-buffered saline, 0.1% Tween-20) for 1 h, 

incubated in primary antibody in 3% gelatin for 2 h at room temperature, washed with TBS-T, 

incubated in HRP-conjugated anti-rabbit or anti-mouse IgG, washed with TBS-T, and then 

developed using ECL substrate (Pierce). The following primary antibodies were used: ErbB2 

(HER2) (Neomarkers, InVitrogen; 1:2000); ER-alpha (Santa Criz Biotechnologies; 1:1000); beta 

actin (Sigma-Aldrich; 1:5000). 

C.3.3 Confocal imaging 

Images were acquired using an Olympus FV-1000 Inverted Confocal Microscope with a 

40X/1.3 NA oil-immersion objective.   Confocal microscopy was chosen over widefield 
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fluorescence to reduce background noise for ease of NADH and FAD auto-fluorescence 

measurement.  Additionally, the redox ratio is sensitive to measurement volumes and confocal 

microscopy ensures that the NADH and FAD signals can be co-registered to the same volume.  

For NADH fluorescence, the cells were excited at 405 nm and 410-510 nm emission was collected.  

FAD was excited at 488 nm and 500-600 nm emission was collected.  The two images were 

acquired simultaneously, with NADH and FAD acquired sequentially for each pixel.  A pixel dwell 

time of 2 µs was used.    Each line was averaged 4 times to reduce noise.  A single 1024x1024 

pixel image required 39.0 s to acquire.  To ensure the cells were not photobleaching, two images 

of the same field of view were acquired consecutively with no significant change in average pixel 

intensity.  Settings for the gain, offset, and pinhole were maintained across all imaging sessions.  

To account for daily variations in laser power or instrumentation instability, the images were 

normalized to MCF10A cell measurements acquired during each imaging session.  Each plate was 

imaged at 3 different, non-overlapping locations.   

C.3.4 Image analysis 

The optical redox ratio, NADH fluorescence intensity divided by FAD fluorescence 

intensity, was computed for each cell in the image using ImageJ software (NIH).  The fluorescence 

signal of non-cellular regions, or background signal, was removed to ensure the fluorescence 

comparisons were made only for the cells.  NADH and FAD used for cellular metabolism are 

contained within the cytoplasm and mitochondria, and the fluorescence signal from the nucleus is 

not involved in cellular metabolism.  Therefore, the fluorescence signal from the nucleus was also 

removed to ensure isolation of metabolic NADH and FAD and eliminate the possibility of nuclear 

size as a confounding factor.     Next, a NADH/FAD per pixel image was computed and the redox 

ratio for each cell in the image was determined.  The average redox ratio value from all cells in 
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each image was computed and normalized to the corresponding session's MCF10A measurement.  

Standard error was computed from the mean redox ratio value across all images from each cell 

line.  A rank sum test was used for all statistical comparisons.   

C.4 Results 

The optical redox ratio of a panel of human breast-derived cell lines with varying 

expression of ER and HER2 were studied (Table C.1, Fig. C.1).  MCF10A, a non-cancerous breast 

cell line with negligible or low expression of ER and HER2 was used as a control for each analysis. 

Table C.1:  Breast cancer cell lines with corresponding ER and HER2 expression. 

Cell line Cancerous ER status HER2 

overexpression 

n 

MCF-10A Non-

cancerous 

- / low - / low 30 

MDA-MB-231 Cancer Negative Negative 15 

MCF-7 Cancer Positive Negative 15 

BT-474 Cancer Positive Positive 15 

SKBr3 Cancer Negative Positive 15 

HR6 

(Trastuzumab  

Resistant BT-474) 

Cancer Positive Positive 15 

BT-LR (Lapatinib 

Resistant BT-474) 

Cancer Positive Positive 15 

 

 
Figure C.1: Receptor expression of breast cancer cell lines. Western blot analysis demonstrates 

overexpression of HER2 in the SKBR3 and BT474 cells and expression of ER in the MCF7 and 

BT474 cells. 
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Figure C.2. Cyanide validation experiment. Addition of CN to MCF10A cells (n = 6) 

results in an increase in redox ratio and NADH fluorescence and a decrease in FAD 

fluorescence.  Bar height represents mean and error bars represent SE. 

 

To verify the use of optical imaging to measure the redox ratio, cyanide was used to disrupt 

the electron transport chain, thus preventing the conversion of NADH to NAD+ (29).  As 

predicted, MCF10A cells treated with cyanide exhibited increased NADH fluorescence (p < 0.01, 

Fig. C.2) and decreased FAD fluorescence (p < 0.05; Fig. C.2). Therefore, the redox ratio was 

increased in cyanide-treated MCF10A cells as compared to untreated cells (p < 0.005, Fig. C.2).  

These results confirm that our optical imaging methods accurately reflect the balance between 

glycolysis and oxidative phosphorylation, and can be used to assess the metabolic state of tumor 

cells.  
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Figure C.3. Representative confocal images. Representative NADH, FAD, and redox ratio 

images for MCF10A, MDA-231, MCF7, BT474 and SKBr3 cells.  Optical redox ratio increases 

with ER and HER2 expression. 
 

 

 

 

 
Figure C.4. Redox ratio of breast cancer cells. Quantitative representation (mean +/- 

SE) of the redox ratio values for the MCF10A (n=30), MDA-MB-231 (n=15), MCF7 

(n=15), BT474 (n=15), and SKBr3 cells (n=15).  Redox ratio is elevated in cells 

overexpressing HER2. 

 

We used optical imaging to capture NADH and FAD fluorescence in five breast derived 

cell lines (Fig. C.3): MCF10A (untransformed breast epithelial cells), MDA-MB-231 (ER-

/HER2), MCF-7 (ER+/HER2-), SKBR3 (ER-/HER2+), and BT474 (ER+/HER2+). The 
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fluorescence intensities were used to calculate the redox ratio per cell for each cell line (Fig. C.4).  

While ER-/HER2- MDA-MB-231 cells displayed a redox ratio that was similar to what was seen 

in untransformed MCF10A cells, redox ratios were elevated in all other breast cancer cell lines (p 

< 0.005).  ER+/HER2- breast cancer cell lines displayed elevated redox ratios (p<0.005), but not 

to the extent seen in HER2+ breast cancer cell lines (p<0.001).   

 
Figure  C.5.  Redox ratio divided by proliferation rate mean +/- SE for 

MCF10A (n=30), MCF7 (n = 15) and BT474 (n = 15) cells.   

 

Controlling for differences in rates of proliferation among the MCF10A, MCF7, and 

BT474 cells did not reduce the significance of the redox ratio results shown in Fig. 4.  In fact, 

controlling for proliferation (redox ratio divided by proliferation rate for each cell line) increases 

the differences between these three cell lines (Fig. C.5). 
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Figure C.6. Redox ratio following tamoxifen and trastuzumab treatment. (A) 

The redox ratio (mean +/-SE) of responsive BT474 cells is different from the 

trastuzumab  (HR6) and lapatinib (BT-LR) resistant cells (n=15), and there was no 

change in the redox ratio of trastuzumab-resistant HR6 cells with trastuzumab-

treatment.  (B) The redox ratio of responsive BT474 cells decreased with tamoxifen 

(2 µM), trastuzumab (25 µg/ml), and tamoxifen + trastuzumab treatment (n=15). 

 

The redox ratio of both the trastuzumab resistant cell line, HR6, and the lapatinib resistant 

cell line, BT-LR, was lower than the redox ratio for the responsive parental BT474 cells (Fig. 

C.6A). The HR6 cells are BT474-derived cells that continue to grow in the presence of trastuzumab 

(30).  Likewise, the BT-LR cells are BT474-derived cells that were selected in culture with 

increasing concentrations of lapatinib (31). To investigate the contributions of the ER and HER2 

signaling pathways to the redox ratio, BT474 cells (ER+/HER2+) were exposed to the ER 

antagonist tamoxifen and the anti-HER2 monoclonal antibody trastuzumab, (Fig. C.6B).  

Trastuzumab significantly decreased the redox ratio in ER+/HER2+ breast cancer cells (p<0.001; 

Fig. C.6B). Similarly, tamoxifen resulted in a decrease in redox ratio in the same cells (p<0.001, 

Fig. C.6B).  The combination of tamoxifen with trastuzumab decreased the redox ratio in  BT474 

cells (ER+/HER2+) to a greater extent than single agent tamoxifen (p<0.001) or trastuzumab 
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(p<0.001; Fig. C.6B).  Interestingly, treatment of HR6 cells with trastuzumab did not cause any 

alterations in the redox ratio (Fig. C.6A).  It is difficult to fully eliminate the influence of lapatinib 

on the BT-LR cells; and therefore, outside the scope of this paper to robustly perform a comparison 

of pre- and post- lapatinib treatment in these cells.   

C.5 Discussion 

The selective use of aerobic glycolysis over oxidative phosphorylation by cancer cells has 

been known for over a century. We and others have shown that this characteristic of cancer cells 

can be monitored in situ using optical imaging to measure the redox ratio, or the ratio of glycolysis 

to oxidative metabolism. Furthermore, we show that “driver” oncogenes in breast cancer cells also 

drive aerobic glycolysis in these cells. Specifically, HER2 activity was required for maximal 

aerobic glycolysis in breast cells overexpressing HER2, while ER signaling was required for 

aerobic glycolysis in ER+ breast cancer cells. These results demonstrate the effect of the HER2 

and ER signaling pathways on cancer cell metabolism, as measured by the optical redox ratio.  

These data support the conclusion that optical imaging of redox ratios can be used to measure the 

tumor cell response to therapeutic inhibitors in situ. Finally, using HER2 overexpressing breast 

cancer cells with acquired resistance to HER2 inhibitors, we demonstrated that loss of oncogene 

dependence was reflected in the optical redox ratio measurement, such that HER2 inhibitors failed 

to decrease the redox ratio in a resistant cell line. Therefore, these findings could be applied to 

future studies using optical imaging of breast cells and tumors to predict their response to HER2 

inhibitors, a development that would significantly inform clinical decisions regarding therapeutic 

strategies used to treat patients with HER2-positive breast cancers. 

While this is the first study to correlate HER2 overexpression and activity to the redox 

ratio, a previous study similarly determined that ER+ breast cells exhibited a higher optical redox 
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ratio than ER-negative cells (27).  The previous study differs from the results presented herein 

because the previous study suggested that MCF7 cells (ER+/HER2-) exhibited a similar redox 

ratio to BT474 cells (ER+/HER2+). However, our results suggest that BT474 cells have 

significantly higher redox ratios than MCF7 cells. Several experimental factors could explain the 

differing results, including different excitation wavelengths for NADH, differing emission filters, 

and different growth media.  Ostrander et al. used media supplemented with 5% FBS versus 10% 

used in our studies, which may have increased cellular proliferation in our experiments versus 

those described earlier, thus affecting tumor cell metabolism (32).   However, when controlling 

for cell proliferation, the difference in the redox ratio between MCF7 and BT474 cells increased 

in the current study (Fig. C.5).  Different emission filters capture different areas of the NADH and 

FAD emission curves, affecting absolute fluorescence intensity which may change the redox ratio.  

The results of the cyanide experiment ensure measurement of NADH and FAD fluorescence for 

this study (Fig C.2). 

The results show that redox ratios in triple-negative MDA-MB-231 cells were similar to 

what was seen in MCF10A cells, which was less than the redox ratio seen in HER2+ or ER+ breast 

cancer cells.   Triple-negative breast cancers (TNBC) lack HER2, ER, and PR, so they are difficult 

to target and no molecular targeted therapies exist for these breast cancers.   Several FDG-PET 

studies in TNBC, ER+, and HER2+ tumors report high variability in the glucose uptake of triple 

negative cells (33, 34).  Note that FDG-PET imaging illuminates different aspects of cellular 

metabolism (glucose uptake) than the optical redox ratio (relative concentrations of NADH and 

FAD, end products of metabolism).  However, these previous reports indicate that the metabolism 

of TNBC is complex and heterogeneous, so a full characterization of this tumor subtype will likely 

require a more concentrated study.      
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The highest redox ratios were measured in breast cancer cell lines with HER2 

overexpression.  The higher redox ratio of HER2 overexpressing cells suggests that the HER2 

pathway may affect cellular metabolism.  Indeed, studies have found increased concentrations of 

glucose transporters and glycolytic enzymes present in HER2 overexpressing cells versus cells 

with low expression of HER2 (14, 15). 

We found that HER2 inhibition with trastuzumab decreased the redox ratio of HER2 

overexpressing breast cancer cells (p< 0.001, Fig. C.6B).  This is consistent with several studies 

reporting reduced glucose uptake, decreased lactate secretion, and decreased glycolysis, in 

responsive HER2 overexpressing breast cancer cells treated with trastuzumab (35, 36).  Treatment 

with both trastuzumab and tamoxifen decreased the redox ratio of responsive BT474 cells to levels 

seen in the non-cancerous MCF10A cell line (Fig. C.6B).  These results suggest that both ER and 

HER2 signaling affects tumor cell metabolism in breast cancer cells.  Mechanistic studies of 

receptor expression support this result.  Cells expressing ER overexpress glucose transporters and 

have higher reported rates of glycolysis (12, 13).  Similarly, HER2 overexpression is linked with 

increased glucose transport into cells and increased glycolysis (14, 15). 

Innate and acquired resistance to HER2 inhibitors limits their current clinical success. 

Nearly all HER2-amplified breast cancers treated with trastuzumab or lapatinib will ultimately 

develop resistance to these targeted inhibitors. We examined trastuzumab-resistant cells, 

demonstrating that trastuzumab failed to reduce the redox ratio in the resistant cells (Fig. C.6A). 

These results are the first of its kind, but are consistent with an FDG-PET study of trastuzumab 

responsive and non-responsive breast cancer xenographs, demonstrating that HER2 inhibitors 

failed to reduce FDG uptake in those tumors whose growth was unaffected by trastuzumab (37).  

Interestingly, the redox ratio of the trastuzumab and lapatinib resistant cells are different from the 
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pre-treatment redox ratio value of responsive BT474 cells, p<0.001 (Fig. C.6A).  These results 

open up the possibility of screening HER2-inhibitor resistance with the optical redox ratio. 

Future in vivo studies are needed to verify the influence of ER and HER2 expression on 

cellular metabolism.  Increasing research is elucidating the importance of metabolism in cancer 

cells and its relationship with drug resistance.  Here, upon treatment with receptor targeted 

therapies, the change in metabolism of resistant cells is shown to be negligible, while the 

metabolism of responsive cells is significant.  Additionally, basal redox ratios are different in 

resistant versus responsive cells.  Therefore, cellular redox ratios may prove an invaluable tool for 

research and clinical identification of receptor expression, tumor resistance to targeted therapies, 

and for monitoring treatment efficacy. 

C.6 Acknowledgments 

Experiments were performed in part through the use of the VUMC Cell Imaging Shared 

Resource (supported by NIH grants CA68485, DK20593, DK58404, HD15052, DK59637 and 

EY08126). Flow Cytometry experiments were performed in the VUMC Flow Cytometry Shared 

Resource.  The VUMC Flow Cytometry Shared Resource is supported by the Vanderbilt Ingram 

Cancer Center (P30 CA68485) and the Vanderbilt Digestive Disease Research Center 

(DK058404).  Many thanks to Madison Olive and Matthew Sundermann for help with cell culture.    

Funding sources:  Vanderbilt University Breast Cancer SPORE Developmental Project Award; 

Provost Graduate Fellowship. 

C.7 References 

1. Ross JS, Fletcher JA. The HER-2/neu oncogene in breast cancer: prognostic factor, 

predictive factor, and target for therapy. Stem Cells. 1998;16(6):413-28. 

2. Burris HA, 3rd, Hurwitz HI, Dees EC, Dowlati A, Blackwell KL, O'Neil B, Marcom PK, 

Ellis MJ, Overmoyer B, Jones SF, Harris JL, Smith DA, Koch KM, Stead A, Mangum S, 

Spector NL. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib 

(GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine 



194 

 

kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol. 

2005;23(23):5305-13. 

3. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni 

L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, 

Andersson M, Inbar M, Lichinitser M, Lang I, Nitz U, Iwata H, Thomssen C, Lohrisch C, 

Suter TM, Ruschoff J, Suto T, Greatorex V, Ward C, Straehle C, McFadden E, Dolci MS, 

Gelber RD. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. The 

New England journal of medicine. 2005;353(16):1659-72. 

4. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, 

Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M. Efficacy and safety 

of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic 

breast cancer. Journal of Clinical Oncology. 2002;20(3):719-26. 

5. Chang J, Powles TJ, Allred DC, Ashley SE, Makris A, Gregory RK, Osborne CK, Dowsett 

M. Prediction of clinical outcome from primary tamoxifen by expression of biologic markers 

in breast cancer patients. Clin Cancer Res. 2000;6(2):616-21. 

6. Esteva FJ, Yu DH, Hung MC, Hortobagyi GN. Molecular predictors of response to 

trastuzumab and lapatinib in breast cancer. Nat Rev Clin Oncol. 2010;7(2):98-107. 

7. Jacobs MA, Ouwerkerk R, Wolff AC, Gabrielson E, Warzecha H, Jeter S, Bluemke DA, 

Wahl R, Stearns V. Monitoring of neoadjuvant chemotherapy using multiparametric, (23)Na 

sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer. 

Breast cancer research and treatment. 2011;128(1):119-26. 

8. Mankoff DA, Dunnwald LD, L. K., Doot RK, Specht JM, Gralow JR, Ellis GK, Livingston 

RB, Linden HM, Gadi VK, Kurland BF, Schubert EK, Muzi M. PET Tumor Metabolism in 

Locally Advanced Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy: Value 

of Static versus Kinetic Measures of Fluorodeoxyglucose Uptake. Clinical Cancer Research. 

2011;17(8):2400-9. 

9. Li SP, Makris A, Beresford MJ, Taylor NJ, Ah-See MLW, Stirling JJ, d'Arcy JA, Collins 

DJ, Kozarski R, Padhani AR. Use of Dynamic Contrast-enhanced MR Imaging to Predict 

Survival in Patients with Primary Breast Cancer Undergoing Neoadjuvant Chemotherapy. 

Radiology. 2011;260(1):68-78. 

10. Minami H, Kawada K, Murakami K, Sato T, Kojima Y, Ebi H, Mukai H, Tahara M, 

Shimokata K. Prospective study of positron emission tomography for evaluation of the 

activity of lapatinib, a dual inhibitor of the ErbB1 and ErbB2 tyrosine kinases, in patients 

with advanced tumors. Japanese Journal of Clinical Oncology. 2007;37(1):44-8. 

11. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-14. 

12. Furman E, Rushkin E, Margalit R, Bendel P, Degani H. Tamoxifen induced changes in 

MCF7 human breast cancer: in vitro and in vivo studies using nuclear magnetic resonance 

spectroscopy and imaging. J Steroid Biochem Mol Biol. 1992;43(1-3):189-95. 



195 

 

13. Cheng CM, Cohen M, Wang J, Bondy CA. Estrogen augments glucose transporter and IGF1 

expression in primate cerebral cortex. FASEB J. 2001;15(6):907-15. 

14. Suarez E, Bach D, Cadefau J, Palacin M, Zorzano A, Guma A. A novel role of neuregulin in 

skeletal muscle. Neuregulin stimulates glucose uptake, glucose transporter translocation, and 

transporter expression in muscle cells. J Biol Chem. 2001;276(21):18257-64. 

15. Zhang D, Tai LK, Wong LL, Chiu LL, Sethi SK, Koay ES. Proteomic study reveals that 

proteins involved in metabolic and detoxification pathways are highly expressed in HER-

2/neu-positive breast cancer. Mol Cell Proteomics. 2005;4(11):1686-96. 

16. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as 

regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606-19. 

17. Wang L, Zhang Q, Zhang J, Sun S, Guo H, Jia Z, Wang B, Shao Z, Wang Z, Hu X. PI3K 

pathway activation results in low efficacy of both trastuzumab and lapatinib. BMC Cancer. 

2011;11(1):248. 

18. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, 

Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de 

Vijver MJ, Bernards R. A functional genetic approach identifies the PI3K pathway as a major 

determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12(4):395-402. 

19. Cooper C, Liu GY, Niu YL, Santos S, Murphy LC, Watson PH. Intermittent hypoxia induces 

proteasome-dependent down-regulation of estrogen receptor alpha in human breast 

carcinoma. Clin Cancer Res. 2004;10(24):8720-7. 

20. Miller TW, Forbes JT, Shah C, Wyatt SK, Manning HC, Olivares MG, Sanchez V, Dugger 

TC, de Matos Granja N, Narasanna A, Cook RS, Kennedy JP, Lindsley CW, Arteaga CL. 

Inhibition of mammalian target of rapamycin is required for optimal antitumor effect of 

HER2 inhibitors against HER2-overexpressing cancer cells. Clin Cancer Res. 

2009;15(23):7266-76. 

21. Drezek R, Brookner C, Pavlova I, Boiko I, Malpica A, Lotan R, Follen M, Richards-Kortum 

R. Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue 

biochemistry with dysplasia. Photochem Photobiol. 2001;73(6):636-41. 

22. Chance B, Schoener B, Oshino R, Itshak F, Nakase Y. Oxidation-reduction ratio studies of 

mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol 

Chem. 1979;254(11):4764-71. 

23. Gulledge CJ, Dewhirst MW. Tumor oxygenation: a matter of supply and demand. Anticancer 

Res. 1996;16(2):741-9. 

24. Kirkpatrick ND, Zou C, Brewer MA, Brands WR, Drezek RA, Utzinger U. Endogenous 

fluorescence spectroscopy of cell suspensions for chemopreventive drug monitoring. 

Photochem Photobiol. 2005;81(1):125-34. 



196 

 

25. Mujat C, Greiner C, Baldwin A, Levitt JM, Tian F, Stucenski LA, Hunter M, Kim YL, 

Backman V, Feld M, Munger K, Georgakoudi I. Endogenous optical biomarkers of normal 

and human papillomavirus immortalized epithelial cells. Int J Cancer. 2008;122(2):363-71. 

26. Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, 

Ramanujam N. In vivo multiphoton microscopy of NADH and FAD redox states, 

fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad 

Sci U S A. 2007;104(49):19494-9. 

27. Ostrander JH, McMahon CM, Lem S, Millon SR, Brown JQ, Seewaldt VL, Ramanujam N. 

Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. 

Cancer Res. 2010;70(11):4759-66. 

28. Xia W, Bacus S, Hegde P, Husain I, Strum J, Liu L, Paulazzo G, Lyass L, Trusk P, Hill J, 

Harris J, Spector NL. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase 

inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci 

U S A. 2006;103(20):7795-800. 

29. Eng J, Lynch RM, Balaban RS. Nicotinamide adenine dinucleotide fluorescence 

spectroscopy and imaging of isolated cardiac myocytes. Biophys J. 1989;55(4):621-30. 

30. Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA, Arteaga CL. 

Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress 

epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB 

receptor network. Clin Cancer Res. 2007;13(16):4909-19. 

31. Rexer BN, Ham AJ, Rinehart C, Hill S, de Matos Granja-Ingram N, Gonzalez-Angulo AM, 

Mills GB, Dave B, Chang JC, Liebler DC, Arteaga CL. Phosphoproteomic mass 

spectrometry profiling links Src family kinases to escape from HER2 tyrosine kinase 

inhibition. Oncogene. 2011;30(40):4163-74. 

32. Griffith.Jb. Role of Serum, Insulin and Amino-Acid Concentration in Contact Inhibition of 

Growth of Human Cells in Culture. Experimental Cell Research. 1972;75(1):47-&. 

33. Specht JM, Kurland BF, Montgomery SK, Dunnwald LK, Doot RK, Gralow JR, Ellis GK, 

Linden HM, Livingston RB, Allison KH, Schubert EK, Mankoff DA. Tumor Metabolism 

and Blood Flow as Assessed by Positron Emission Tomography Varies by Tumor Subtype 

in Locally Advanced Breast Cancer. Clinical Cancer Research. 2010;16(10):2803-10. 

34. Basu S, Chen W, Tchou J, Mavi A, Cermik T, Czerniecki B, Schnall M, Alavi A. Comparison 

of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-

negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron 

emission tomography imaging parameters: a potentially useful method for disease 

characterization. Cancer. 2008;112(5):995-1000. 

35. Tan M, Zhao YH, Liu H, Liu ZX, Ding Y, LeDoux SP, Wilson GL, Voellmy R, Lin YF, Lin 

WS, Nahta R, Liu BL, Fodstad O, Chen JQ, Wu Y, Price JE. Overcoming Trastuzumab 

Resistance in Breast Cancer by Targeting Dysregulated Glucose Metabolism. Cancer Res. 

2011;71(13):4585-97. 



197 

 

36. Smith TAD, Cheyne RW, Trembleau L, McLaughlin A. Changes in 2-fluoro-2-deoxy-D-

glucose incorporation, hexokinase activity and lactate production by breast cancer cells 

responding to treatment with the anti-HER-2 antibody trastuzumab. Nuclear Medicine and 

Biology. 2011;38(3):339-46. 

37. Reilly RM, McLarty K, Fasih A, Scollard DA, Done SJ, Vines DC, Green DE, Costantini 

DL. (18)F-FDG Small-Animal PET/CT Differentiates Trastuzumab-Responsive from 

Unresponsive Human Breast Cancer Xenografts in Athymic Mice. Journal of Nuclear 

Medicine. 2009;50(11):1848-56. 

 



198 

 

APPENDIX D 

An Automated Image Processing Routine for Segmentation of Cell Cytoplasms in High-

Resolution Autofluorescence Images 

Walsh AJ, Skala MC. “An automated image processing routine for segmentation of cell 

cytoplasms in high-resolution autofluorescence images.” SPIE Proceedings. 2014; 8948.  

 

D.1 Abstract 

The heterogeneity of genotypes and phenotypes within cancers is correlated with disease 

progression and drug-resistant cellular sub-populations.  Therefore, robust techniques capable of 

probing majority and minority cell populations are important both for cancer diagnostics and 

therapy monitoring.  Herein, we present a modified CellProfiler routine to isolate cytoplasmic 

fluorescence signal on a single cell level from high resolution auto-fluorescence microscopic 

images.   

D.2 Introduction 

Solid tumors contain many cell types including the malignant cancer cells, immune cells, 

endothelial cells, and fibroblasts.  Depending on the tumor, the majority of the tumor mass may be 

immune and stromal cells.    Furthermore, within the malignant cell population, cells contain 

different genes and express different phenotypes, most likely arising due to the mutagenic nature 

of cancer (1, 2).  A stem-cell-like population of cells, capable of establishing phenotypically 

diverse xenografts, may exist in solid cancers and tumor heterogeneity is thought to contribute to 

tumor resistance (3).  Drugs selectively kill only portions of a tumor and the remaining resistant 

cells are able to proliferate and grow in the presence of the drug.  Therefore, studies of tumor 

physiology and drug treatment should be performed at high resolution to ensure data is from the 

correct malignant cells.  Further, cellular-level analysis may elucidate patterns and differences 

within cell types otherwise masked by the phenotype of the majority of cells. 
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Optical microscopy techniques, particularly fluorescence imaging of NADH and FAD, are 

high resolution, are non-invasive, and yield quantitative endpoints.  The optical redox ratio, the 

fluorescence intensity of NADH divided by the fluorescence intensity of FAD, provides a dynamic 

read-out of cellular metabolism and is often elevated in malignant cells (4, 5), breast cancer cells 

overexpressing the estrogen receptor, and breast cancer cells expressing human epidermal growth 

factor receptor 2 (HER2) (6, 7).  Further, the optical redox ratio detects drug-induced changes in 

cellular metabolism and may be an early reporter of drug efficacy (6).  Within a breast cancer 

xenograft containing both cells responsive and resistant to the HER2 inhibitor trastuzumab, in vivo 

fluorescence imaging and subsequent single cell analysis revealed a heterogeneous population of 

cells characterized by two populations, one with a lower redox ratio (responding to the drug) and 

one with a higher redox ratio (no effect by the drug) (6).   

These papers highlight the relevance of fluorescence imaging for mapping tumor 

metabolism and the potential information that can be obtained from single-cell analysis.  However, 

manual segmentation of cells and nuclei is time-consuming and not practical for large data sets, 

high-throughput experiments, or clinical translation.  Therefore, we have developed a 

computational routine for automated image segmentation.  The program presented here identifies 

and segments the cells, nuclei, and cytoplasms of a high-resolution auto-fluorescence image.   

D.3 Methods 

The automated image analysis code was created using standard and customized modules 

within Cell Profiler (Fig. D.1) and Matlab (http://www.cellprofiler.org/).  The steps of the code 

are outlined in Table D.1.  First, the images are loaded.  Next, the original images are rescaled to 

have pixel values between 0 and 1.  Then, a customized threshold code identifies pixels belonging 

to nuclear regions that are brighter than background but not as bright as cell cytoplasms (see Table 
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D.1 for custom code).  Next, several image processing steps remove the background and define 

cell edges to improve the automated nucleus and cell identification routines.  Finally, the resulting 

round objects between 6 and 25 pixels (6.12-25.5 m) in diameter in the nucleus image are 

segmented and saved as the primary objects within the image.  Secondary objects, or cells, are 

identified by propagating out from the nuclei.  An Otsu Global threshold is used to improve 

propagation.  Cell cytoplasms are defined as the secondary objects (cells) minus the primary 

objects (nuclei).  The final modules measure the pixel intensity values from the original images.   

 

 

Figure D.1.  CellProfiler graphical user interface. 
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Table D.1. Steps of CellProfiler pipeline. 

Pipeline Purpose Notes 

Load Images Load images Changes to code must be made to load .txt or .asc image files 

Rescale Intensity Rescale 

fluorescence image 

to have pixel values 

between 0 and 1 

Necessary for several image processing commands 

Apply Threshold Create an image 

with just the nuclei 

pixels using a 

multithreshold 

technique to 

determine pixel 

values of 

background, nuclei, 

and cytoplasm 

Code added to ApplyThreshold.m: 

if HighThreshold == 0 & LowThreshold ==0; 

        pix = OrigImage( : ); 

        Options = statset('MaxIter',400); 

        obj = gmdistribution.fit(pix,4,'Options',Options); 

        [mu,ind] = sort(obj.mu); 

    LowThreshold = mu(3)-sqrt(obj.Sigma(ind(3))); 

    HighThreshold = mu(3); 

end 

** A four-component fit modeled this data best, with two peaks for 

background pixels, 1 for nuclei, and 1 for cytoplasm.  The number of 

modes in the pixel distribution fit 

(gmdistribution.fit(pix,4,'Options',Options) and the Low and High 

threshold values should be optimized for a given data set. 

Smooth Keeping 

Edges 

Apply Threshold 

Image Math 

Create a mask to 

isolate the cells and 

remove the 

background 

 

Find Edges 

Invert Intensity 

Image Math 

Image Math 

Finds edges of the 

cells/cell clump and 

creates a mask 

These steps set a hard edge boundary to prevent propagation of the 

secondary objects into the background and remove artifacts from 

nuclei image at cell boundaries. 

Smooth or 

Enhance 

Smooths the result 

of the nuclei 

thresholding  

Eliminates noise pixels 

Identify Primary 

Automatic 

Identify nuclei  

Identify 

Secondary 

Identify cell 

boundaries 

Cells are found by propagating out from the primary objects (nuclei).  

This works best if the image has some pre-processing, removal of 

background and edge definition.   

Identify Tertiary 

Subregion 

Identify cytoplasms Subtracts nuclei from cells 

Measure Object 

Intensity 

Measure and report 

statistical 

information for the 

identified regions 

 

 

 

http://obj.mu/
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D.4 Results 

The results of the image segmentation code are presented here for a representative image 

of an organoid grown from a breast cancer xenograft.  The original image is an NADH fluorescence 

image, characterized by bright cytoplasms and dark nuclei and background.  Figure D.2 shows the 

rescaled image (Fig. D.2A) and the result of the customized thresholding code to isolate the nuclei 

(Fig. D.2B). 

 

 

Figure D.2. Result of threshold. A. Original image rescaled to have all pixel values between 0 

and 1.  B. Result of thresholding code, nuclei remain, background and cytoplasms removed. 

 

 

Figure D.3. Image processing steps. A. Smoothed image allows masking of cell clumps.  B. 

Zeros (black) and ones (white) cell clump mask. C.  Resulting image of the product of the nuclei 

image and cell clump mask (Fig. shown in B).    D.  Resulting image of the product of the original 

image and cell clump mask (Fig. shown in B).   
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 The next steps include image processing to improve the automated routines that identify 

the nuclei and cells.  The background pixels are set to 0 by smoothing the cell clumps (Fig.D.3A), 

generating a cell clump mask (Fig. D.3B), and multiplying the original and nuclei images by the 

mask (Fig. D.3C-D).  Likewise, the edges of the cell clump are found using an edge detect routine 

(Fig. D.4A), a mask is created (Fig. D.4B), and these edges are subtracted from the nuclei image 

and the cell image (Fig. D.4C-D).   The removal of the edges from the nuclei image removes 

artifacts in the nuclei image at the edges of the cell clump. 

 

Figure D.4. Edge detect.  A. Edge detect to identify the edges of the cell clumps or regions of 

interest.  B. Zeros (black) and ones (white) edges mask. C.  Resulting image of the product of the 

nuclei image and edge mask (Fig. shown in B).    D.  Resulting image of the product of the original 

image and edge mask (Fig. shown in B).   

 

 After the image processing steps, the CellProfiler modules are used to find the primary 

objects (nuclei), secondary objects (cells), and tertiary objects (cytoplasms) are used to segment 

out the cell components.  First, the nuclei are identified from the post-processed nuclei image (Fig. 

D.5A).  Objects within the set diameter size are outlined in green and nuclei that exceed the size 

(25 pixels) or are too small (less than 6 pixels, in diameter) are excluded from analysis and 

identified in red.  From the primary objects identified in Fig. D.5A, the secondary objects, or cells, 
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are identified by propagating outward until a boundary is reached (as identified from a Otsu Global 

threshold) or another propagating boundary is met (Fig. D.5B).  The tertiary objects are the 

secondary minus the primary (Fig. D.5C).  An overlap of the cytoplasm outlines and the original 

image is shown in Fig. D.6. 

 

Figure D.5.  Segmented nuclei and cells. A. Primary objects (nuclei) outlined in green, objects 

with diameters outside the target range (6-25 pixels) are outlined in red.  B. Outlines of secondary 

objects. C.  Tertiary objects.   

 

   

 

Figure D.6. Cytoplasm outlines. Image of tertiary object (cytoplasms) outlines overlain on the 

original image. 

 

D.5 Discussion 

Segmentation of autofluorescence images of tissues and highly confluent cell cultures is 

challenging due to the clumping nature of cells.  This paper presents a novel method which utilizes 

a multi-level threshold to identify cell nuclei, which are typically brighter than the background and 
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darker than the cytoplasms, and propagates out from the nuclei to identify the cells.  Cell 

cytoplasms are then the cells minus the nuclei.   

This method has been used on NADH autofluorescence images of confluent cell cultures, 

organoid cultures, and tissues imaged in vivo.  Thresholding parameters are optimized for a data 

set to ensure optimal segmentation of nuclei.  Typical processing times for a single image are 

approximately 20 seconds, which is a 10-20 fold improvement over manual segmentation.  The 

segmentation code performs admirably and error with respect to manual segmentation is less than 

10%.   However, the program does have a few limitations including an inability to identify cells 

without a nuclei, increased error around the edges of the cell clumps, and thresholding problems 

in images with non-uniform illumination.  

Due to the heterogeneity of cancers and the contributions of minority populations to tumor 

drug resistance, it is important to study not only the characteristics of the majority of cells but also 

analyze single cells and sub-populations of cells.  The automated image segmentation code 

presented above demonstrates one method of isolating cells, nuclei, and cytoplasms from high-

resolution NADH auto-fluorescence images. 
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APPENDIX E 

Autofluorescence Imaging of Drug Response in Organoids Generated from Frozen 

Primary Tumor Tissues 

E.1 Abstract 

Primary tumor organoids grown in three-dimensional culture provide a robust platform for 

studying tumor progression, invasion, and drug response.  However, organoid generation protocols 

require fresh tissue, which limits the application of organoid-based experiments and drug-response 

studies to medical centers with co-localized operating rooms and research facilities.  The purpose 

of this study is to investigate tissue-freezing methods that will preserve tissues for organoid 

generation.  We tested two freezing protocols, flash-freezing in liquid nitrogen and slow-freezing 

of bulk tissue samples in DMSO-supplemented media, on primary breast cancer xenografts.  

Additionally, organoids were derived from flash frozen human breast cancer biopsies, to evaluate 

the use of banked tissue.  Our results demonstrate that organoids can be grown from flash-frozen 

or slow, DMSO frozen tissues and these organoids have similar morphologies and rates of 

proliferation and apoptosis as organoids derived from fresh tissues.  Furthermore, while the 

freezing process affects the basal metabolic rate of the cells, optical metabolic imaging can be used 

to detect drug response of organoids derived from frozen-thawed tissues.  These results validate 

the two freezing methods, which can be performed at the site of tissue extraction and do not require 

specialized tissue culture equipment, for tissue preservation and subsequent organoid generation. 

E.2 Introduction 

Primary three-dimensional organoid culture of tumors is an attractive platform for studies of 

malignant tissues.  Organoids contain all components of the original tissue.  When derived from 

tumor samples, organoids contain malignant epithelial cells, endothelial cells, leukocytes, and 

fibroblasts. Three-dimensional organoid cultures recapitulate in vitro tissue structural 
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organization, functional differentiation, chemical and mechanical signals, and therefore, may be 

more physiologically relevant than 2D cultures of primary or immortalized cells (1-3).   

Traditionally, cancer models are limited to immortalized cell lines, xenograft models, or murine 

models of cancer.  While these models are readily accessible and allow studies of cancer 

progression and drug testing, the models often fail to fully represent human cancers and therefore 

many drugs fail in initial stages of clinical trials (2, 4, 5).  Organoid culture of primary human 

tumors may help overcome these limitations of traditional cancer models. 

Organoid culture of primary tumor tissues enables dynamic studies of cancer development (3), 

invasion (6-8), and drug response (9).  Optical imaging, particularly multi-photon fluorescence 

imaging, is well suited to study organoids due to the spatial scale, depth of imaging, and functional 

fluorescence endpoints.  Recently, we have shown that optical metabolic imaging (OMI) of 

organoids generated from primary breast tumors provides a dynamic and powerful assessment of 

drug response for both individualized patient treatment planning and exploratory studies of novel 

anti-cancer drugs (9).  OMI utilizes both the fluorescence intensity and lifetime of the metabolic 

co-enzymes, NAD(P)H and FAD, to detect early metabolic shifts in response to anti-cancer 

therapy.  These metabolic shifts, detected non-invasively, correlate well with drug-induced 

inhibition of proliferation and induction of apoptosis within the organoids, as well as with in vivo 

drug response (9).  Due to its non-destructive nature and endogenous source of contrast, OMI is 

attractive for longitudinal studies of dynamic changes in cellular metabolism.  

To date, all studies of primary organoids have been performed on organoids generated from fresh 

tissues (6, 9, 10).  However, fresh primary human tissues are not always available, and limit 

organoid-based therapeutics and research to sites with co-localized operating rooms and cell 

culture facilities.  Optimizing organoid generation protocols to use preserved tissues will allow 
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research on banked tissues and enable transport of tissue from the hospital to research or testing 

facilities. Tissue is often preserved for biomedical research either as formalin-fixed paraffin 

embedded samples or flash frozen in liquid nitrogen.  Preservation of cells in cell culture utilizes 

DMSO supplemented media and a slow-freezing procedure.  This study investigates these two 

tissue freezing techniques for subsequent organoid generation.   The use of frozen tissues will 

greatly enhance the applications and clinical use of organoid-based drug screens and research.   

This study tests the hypothesis that organoids can be grown from frozen/thawed tissues and that 

organoids derived from frozen-thawed tissues will have the same drug response as organoids 

grown from fresh tissues.  To test this hypothesis, organoids were generated from primary fresh 

tumor tissue, flash frozen and thawed tumor tissue, and tissue placed in tissue culture media + 5% 

DMSO and slowly frozen (an alternative tissue banking method).  Organoid viability was assessed 

by immunofluorescence (IF) assessment of proliferation and apoptosis proteins, Ki67 and cleaved 

caspase 3, respectively.  Organoid drug response was assessed with OMI and IF.  Both freezing 

protocols were performed on two xenograft models of HER2-overexpressing breast cancers, 

BT474 and HR6 tumors, to compare the two freezing techniques for optimal organoid viability 

and drug response. The flash-frozen experiments were additionally performed on two primary 

human breast cancer biopsies to evaluate the use of frozen tissues in tissue banks. 

E.3 Methods 

 

E.3.1 Mouse Xenografts   

This study was approved by the Vanderbilt University Animal Care and Use Committee 

and meets the NIH guidelines for animal welfare.  BT474 or HR6 cells (108) in 100 l Matrigel 

were injected in the inguinal mammary fad pads of two female athymic nude mice (J:NU; The 

Jackson Laboratory).  BT474 and HR6 tumors are both estrogen receptor positive and HER2 
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overexpressing.  The HR6 tumors were extracted from a BT474 tumor that developed acquired 

resistance to the drug trastuzumab in a murine model (11).  The HR6 cells and tumors used herein 

retain HER2 overexpression but lack response to trastuzuamb (9, 11), thus the BT474 and HR6 

tumors represent trastuzumab responsive and trastuzumab-resistant tumors, respectively.   When 

tumors were ~500 mm3, mice were humanly sacrificed and the tumors removed.  Each tumor was 

cut into three approximately equal sections, ~150mm3.  One section was processed immediately 

into organoids, one section was flash frozen, and one section was slowly frozen in DMSO 

supplemented media. 

E.3.2 Clinical Breast Cancer Samples  

This study was approved by the Vanderbilt University Institutional Review Board and 

informed consent was obtained from all subjects.  Two primary tumor biopsies from separate 

patients were provided by an expert breast pathologist (ME Sanders).  Tumor biopsies were 

obtained from the tumor mass following surgical excision.  The tumor biopsies were placed in 

sterile DMEM and transported on ice to the laboratory (~5 minute walk).  The tumor biopsies were 

cut into two approximately equal sections, ~200mm2.  One section was processed into organoids 

immediately, and the second section was flash frozen. 

E.3.3 Freezing Protocols 

For flash freezing in liquid nitrogen, samples were placed in a histology cassette and 

submerged in liquid nitrogen for 30 seconds.  Then, the cassette was removed, wrapped in foil, 

and stored in a -80°C freezer.  For the slow freezing method, samples were placed in a cryotube 

with 950 l tissue culture media and 50 l DMSO.  Samples were slowly frozen by placement in 

a Styrofoam container in a -80°C freezer.  Samples were stored at -80°C until use.  All samples 

were stored at -80°C for 6-12 months. 
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E.3.4 Organoid Generation 

Frozen samples were thawed in PBS at room temperature for ten minutes.  All samples 

were washed three times with sterile PBS.  Tissue samples were placed in 0.5 ml primary 

mammary epithelial cell (PMEC) media [DMEM:F12 + EGF (10 ng/ml) + hydrocortisone (5 

g/ml) + insulin (5 g/ml) + 1% penicillin:streptomycin] and mechanically dissociated into 

macrosuspensions of tissue approximately 50-300 m in diameter by mechanical cutting of the 

tissue with a scalpel and surgical scissors.  Matrigel was added to the macrosuspension solutions 

in a 2:1 ratio and 100 l of the matrigel/macrosuspension solution was placed on coverslips.  The 

gels solidified at room temperature for 30 minutes and then in the incubator for 1 hour.  Then, gels 

were overlain with PMEC media.   

 Organoids generated from fresh tissues were treated immediately.  BT474 and HR6 

organoids were treated with the following drugs and combination: control (human control IgG + 

DMSO), trastuzumab (25 g/ml), paclitaxel (25 nmol/L), XL147 (25 nmol/ml), and trastuzumab 

+ paclitaxel + XL147.  The organoids derived from the clinical biopsies were treated with control 

(human control IgG + DMSO), trastuzumab (25 g/ml), paclitaxel (25 nmol/L), tamoxifen (2 

mol/ml), and trastuzumab + paclitaxel + tamoxifen.  Organoids derived from frozen tissues were 

grown for a recovery period of 3 or 7 days (media replaced every 2-3 days) and then treated with 

the same drugs and combination as the fresh-tissue derived organoids.   

E.3.5 Optical Metabolic Imaging  

Fluorescence lifetime imaging was performed on a multiphoton microscope (Bruker) 

modified for fluorescence lifetime imaging, as previously described (9, 12, 13).  Briefly, a 

titanium-sapphire laser, tuned to 750 nm for NAD(P)H excitation and tuned to 890 nm for FAD 

excitation, provides the excitation light.  A 40X objective (1.3 NA) couples excitation and emission 



212 

 

light.  Customized filter sets isolate NAD(P)H emission between 400-480nm and FAD emission 

between 500-600nm.  A GaAS PMT (H7422P-40; Hamamatsu) detects emitted photons and time 

correlated single photon counting electronics (SPC-150; Becker and Hickl) enable fluorescence 

lifetime imaging. Images, 256x256 pixels, were collected for 60s with a pixel dwell time of 4.8 

s.  Photon count rates were maintained above 5 x 105 to ensure adequate photon counts for 

lifetime fits and no photobleaching occurred.  The instrument response full width at half maximum 

was 260 picoseconds as measured from the second harmonic generation of a urea crystal.  Daily 

fluorescence lifetime validation was confirmed by imaging a fluorescent bead (Polysciences Inc.).  

The measured lifetime of the bead (2.1 ± 0.04 nanoseconds) agrees with published values (9, 12, 

14, 15). 

 NAD(P)H and FAD fluorescence lifetime images of the organoids were acquired at 24, 48, 

and 72 hours after drug treatment.  For each organoid, the NAD(P)H image was acquired first and 

followed immediately by the FAD image.  Organoids were imaged through glass coverslips on the 

inverted microscope.  One image from each of six representative organoids were collected per 

group (6 organoids/group; n=30-300 cells/group), at an imaging depth through the center of the 

organoid.   

 Fluorescence lifetime images were analyzed as described previously (9, 12, 16).  Briefly, 

fluorescence lifetime decay curves were deconvolved from the measured instrument response 

function and fit to a two component model, 𝐼(𝑡) =  𝛼1 exp (−
𝑡

𝜏1
) + 𝛼2 exp (−

𝑡

𝜏2
) + 𝐶, where I(t) 

is the fluorescence intensity at time t after the laser pulse,  and 2 are the fractional contributions 

of the short and long lifetime components, (i.e.  + 2 = 1),  and 2
 are the fluorescence lifetimes 

of the short and long lifetime components, and C accounts for background light (SPCImage).  A 

two component model was used to fit the lifetime decays of NAD(P)H and FAD because 
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NAD(P)H and FAD exist physiologically in both free and protein-bound forms (17, 18).  The free 

and protein-bound forms have different lifetimes depending on fluorescence quenching (19).  

NAD(P)H self-quenches in the free state and thus has a short lifetime associated with free 

NAD(P)H and a long lifetime with bound NAD(P)H (17, 19).  FAD is quenched when bound and 

has a short bound lifetime and long free lifetime (18).  The mean lifetime,   is calculated as a 

weighted average of  and 2, m + 2*. 

 Using an automated cell segmentation routine in CellProfiler, the images were segmented 

into cells, nuclei, and cytoplasms (16).   The following endpoints were extracted from the 

fluorescence lifetime data sets for both the NAD(P)H and FAD image for each cell: fluorescence 

intensity, mean fluorescence lifetime,  and 2.  A redox ratio image was computed by 

dividing the NAD(P)H intensity by the FAD intensity at every pixel in the image.  The average 

redox ratio for each cell was also extracted.  As determined previously, the optical redox ratio, 

NAD(P)H mean lifetime, and FAD mean lifetime are independent measures of cellular metabolism 

(12) and a combination index, the optical metabolic imaging index, provides a robust endpoint for 

evaluating drug response (9).  The OMI index was calculated for each cell as follows, 

𝑂𝑀𝐼 𝐼𝑛𝑑𝑒𝑥 =
𝑅𝑅𝑖

⟨𝑅𝑅⟩
+

𝑁𝐴𝐷𝐻𝜏𝑚𝑖

⟨𝑁𝐴𝐷𝐻𝜏𝑚⟩
−

𝐹𝐴𝐷𝜏𝑚𝑖

⟨𝐹𝐴𝐷𝜏𝑚⟩
  (9). 

E.3.6 Immunofluorescence 

Immunofluorescence labeling of cleaved caspase 3 and Ki67 was performed as previously 

described (9, 20).  Briefly, gels were fixed with 2 mL of a 4% paraformaldehyde solution and 

neutralized with a 0.15 mol/L glycine solution.  A 0.02% Triton X-100 solution was used to 

permeabolize cellular membranes.  Gels soaked in a blocking solution (1% fatty acid-free BSA, 

1% donkey serum) over night at room temperature.  The next day, gels were incubated for 30 

minutes at room temperature with 100 l of the primary antibody solution: either anti-cleaved 
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caspase 3 (Life Technologies) or anti-Ki67 (Life Technologies) diluted 1:100 in a 1% donkey 

serum PBS solution.  Gels were washed 3X with PBS and 100 l of the secondary antibody 

solution (goat anti-rabbit IgG FITC probe diluted 1:100 in a 1% donkey serum PBS solution) was 

added to each gel.  Gels were washed 3X with PBS and 2X in water then mounted on slides with 

30 l of ProLong Antifade Solution (Molecular Probes).  Positive staining was confirmed in mouse 

small intestine for Ki67 and mouse thymus for cleaved caspase 3.  Immunofluorescence results 

are presented as the percentage of positively stained cells from 6 organoids imaged at 40X (1.3 

NA).   

E.3.7 Quantification of Cell Morphology 

Cellular morphology was assessed from the NAD(P)H fluorescence lifetime image, 

integrated over time to yield an intensity image.  Average cell size and nuclear-to-cytoplasm ratio 

(NCR) were extracted from the CellProfiler segmentation routine outputs. Average nucleus 

diameter was determined by manually measuring the longest axis through the center of each cell 

in ImageJ. 

E.3.8 Statistical Analysis 

A student’s t-test with a Bonferoni correction for multiple comparisons was used to assess 

differences in immunofluorescence results, morphology, and fluorescence lifetime endpoints 

between fresh and frozen control organoids.  Time course drug response OMI data was analyzed 

with multiple t-tests with a Bonferoni correction for multiple comparisons between control and 

drug treated organoids at each time point.  For all statistical comparisons, an alpha level of 0.05 

was used for significance. The number of cells per group varied between 30 and 300.   

 

 



215 

 

E.4 Results 

 
Figure E.1 Viability of organoids derived from frozen-thawed xenograft tumors. (A) 

Representative NAD(P)H m and FAD m images of BT474 organoids derived from fresh (I), flash-

frozen (II), and DMSO frozen tissues (III). (B)  Ki67 and (C) cleaved caspase 3 staining of control 

organoids derived from fresh, flash-frozen and DMSO frozen BT474 tumors.   (D) Representative 

NAD(P)H m and FAD m images of HR6 organoids derived from fresh (I), flash-frozen (II), and 

DMSO frozen tissues (III).  (E)  Ki67 and (F) cleaved caspase 3 staining of control organoids 

derived from fresh, flash-frozen and DMSO frozen HR6 tumors.  d3/d7 represents organoids 

grown for 3 or 7 days after generation. 

E.4.1 Viability of Organoids Derived from Frozen-thawed Xenograft Samples 

 Organoids were successfully grown from fresh, flash-frozen, and DMSO frozen samples 

of BT474 xenograft tumors (Fig. E.1 A-C).  The organoids generated from flash-frozen and DMSO 

frozen BT474 tissue samples had similar expression of Ki67 and cleaved caspase 3, markers of 

proliferation and apoptosis, respectively, as compared to organoids derived from a fresh BT474 

tumor sample (Fig. E.1B, C).  Likewise, the organoids generated from flash-frozen and DMSO 

frozen HR6 tumor samples grew (Fig. E.1D) and had similar percentages of Ki67 and cleaved 

caspase 3 positively stained cells as compared to organoids generated from fresh HR6 tissue (Fig. 

E.1E, F). 
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Figure E.2 Morphology of organoids derived from frozen/thawed xenograft tumors.  (A) Cell 

area, (B) nucleus diameter, and (C) nucleus to cytoplasm ratio for BT474 organoids derived from 

fresh and frozen/thawed tissues.  (D) Number of cells per organoid for BT474 organoids derived 

from fresh and frozen/thawed tissues. (E) Cell area, (F) nucleus diameter, and (G) nucleus to 

cytoplasm ratio for HR6 organoids derived from fresh and frozen/thawed tissues.  (H) Number of 

cells per organoid for HR6 organoids derived from fresh and frozen/thawed tissues. d3/d7 

represents organoids grown for 3 or 7 days after generation. * p<0.05; ** p<0.01, *** p<0.001, 

**** p<0.0001, versus Fresh except where indicated. 

 

E.4.2 Morphology of Organoids Derived from Frozen-thawed Xenograft Samples 

 Next, cellular morphology was quantified and compared between organoids generated 

from fresh and frozen tissues.  No change in cell area, nucleus diameter, or nucleus to cytoplasm 

ratio (NCR) was detected for the cells within organoids generated from frozen-thawed BT474 

tumor samples compared to organoids generated from fresh BT474 tumor samples (Fig. E.2A-C).  

However, there was a significant reduction in the number of cells within each organoid for the 

organoids generated from flash-frozen BT474 tumors compared to organoids generated from fresh 

tissues (Fig. E.2 D).  This reduction was significant for organoids grown for both 3 and 7 days 
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(Fig. E.2D).  A significant reduction in number of cells within each organoid was not observed for 

organoids generated from BT474 DMSO frozen tissues (Fig. E.2D).   

 In contrast to the BT474 results, the cells grown from frozen HR6 tumor samples showed 

morphological differences compared to cells grown from fresh tumor samples.  The cell area of 

HR6 cells was significantly reduced for cells within organoids generated from flash-frozen 

sections grown for 3 or 7 days, and in organoids generated from DMSO frozen tissue grown for 3 

days (Fig. E.2E).  Likewise, the nucleus diameter was significantly reduced for cells within 

organoids generated from flash-frozen tissue (Fig. E.2F).  The NCR of HR6 cells did not 

significantly change due to either freezing method or growing time (Fig. E.2G).  Also, no 

significant change in the number of HR6 cells within each organoid was detected for either 

freezing protocol or length of growing time (Fig. E.2H). 
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Figure E.3 Drug Response of BT474 Organoids Generated from Frozen Tissues (A) 

NAD(P)H m and (B) FAD m measured from BT474 organoids derived from fresh or frozen 

tissues grown for 7 days. * p<0.05 vs. Fresh, except where indicated.  (C) Drug response of BT474 

organoids derived from fresh tissue at 24, 48, and 72hr.  (D)  Drug response of BT474 organoids 

derived from flash-frozen tissues grown for 7 days and treated for 24, 48, and 72hr.  (E) Drug 

response of BT474 organoids derived from DMSO frozen tissues grown for 7 days and treated for 

24, 48, and 72hr.  (F) Cleaved caspase 3 staining of 72 hr drug-treated organoids derived from 

fresh and DMSO frozen (grown for 7 days) tissues.  (G) Ki67 staining of 72 hr drug-treated 

organoids derived from fresh and DMSO frozen (grown for 7 days) tissues.  * p<0.05; ** p<0.01, 

*** p<0.001, **** p<0.0001 versus control. 

 

E.4.3 Drug Response of BT474 Organoids Generated from Frozen Tissues 

 OMI endpoints were evaluated for metabolism differences between organoids grown from 

fresh tissues and organoids grown from frozen/thawed tissues.  For the BT474 tumors, NAD(P)H 

m was significantly decreased in cells from organoids generated with both freezing methods on 

day 7 (Fig. E.3A).  However, FAD m showed no significant differences between organoid 

generated from fresh and frozen BT474 tumors (Fig. E.3B).  The 72-hour time course for drug 

response of BT474 organoids generated from fresh tissues showed a significant reduction in the 
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OMI index with paclitaxel (P), trastuzumab (H), XL147 (X), and the combination, H+P+X at 24hr, 

48hr, and 72hr of drug treatment (Fig. E.3C).  For the BT474 organoids derived from flash-frozen 

tissues grown for 7 days prior to drug treatment, the OMI index was significantly reduced with 

only the combination treatment, H+P+X, at 24 and 48 hr of drug exposure (Fig. E.3D).  By 72 hr, 

trastuzumab, XL147, and H+P+X induced significant reductions in the OMI index (Fig. E.3D).  

Organoids derived from the BT474 tumor sample slowly frozen in DMSO supplemented media, 

showed response to anti-cancer drugs (Fig. E.3E).  By 72hr, paclitaxel, trastuzumab, XL147, and 

H+P+X treated organoids all had significant reductions in OMI index (Fig. E.3E).  

Immunofluorescence staining of Ki67 and cleaved caspase 3 of organoids derived from fresh and 

DMSO frozen BT474 tumors treated for 72hr with anti-cancer drugs, revealed increased cleaved 

caspase 3 expression in organoids treated with paclitaxel, trastuzumab, XL147, and H+P+X (Fig. 

E.3F).  Likewise, reduced expression of Ki67 was observed in organoids treated with all anti-

cancer therapies (Fig. E.3G). 
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Figure E.4 Drug Response of HR6 Organoids Generated from Frozen Tissues  (A) NAD(P)H 

m and (B) FAD m measured from HR6 organoids derived from fresh or frozen tissues grown for 

7 days. * p<0.05 vs. Fresh.    (C) Drug response of HR6 organoids derived from fresh tissue at 24, 

48, and 72hr.  (D)  Drug response of HR6 organoids derived from flash-frozen tissues grown for 

7 days and treated for 24, 48, and 72hr.  (E) Drug response of HR6 organoids derived from DMSO 

frozen tissues grown for 7 days and treated for 24, 48, and 72hr.  (F) Cleaved caspase 3 staining 

of 72 hr drug-treated organoids derived from fresh and DMSO frozen (grown for 7 days) tissues.  

(G) Ki67 staining of 72hr drug-treated organoids derived from fresh and DMSO frozen (grown for 

7 days) tissues.  * p<0.05; ** p<0.01, *** p<0.001, **** p<0.0001, versus control. 

 

E.4.4 Drug Response of HR6 Organoids Generated from Frozen Tissues 

 The effect of freezing HR6 tumors before generating organoids was also evaluated with 

OMI of organoid drug response.  No change in NAD(P)H m was observed between organoids 

generated from fresh HR6 tumors and flash frozen or DMSO frozen tumors on day 7 after organoid 

generation (Fig. E.4A).  A slight increase in FADm was observed in organoids generated from 

flash-frozen HR6 tumors compared to organoids generated from fresh HR6 tumors (p<0.05, Fig. 
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E.4B); however, no significant change in FADm was observed in the organoids generated from 

DMSO frozen HR6 tissue (p>0.05, Fig. E.4B).    

Organoids generated from fresh HR6 tumors have a significantly reduced OMI index at 24 

hr due to paclitaxel, trastuzumab, and H+P+X treatment (Fig. E.4C).  By 48 and 72hr, only H+P+X 

induces a significant reduction in the OMI index (Fig. E.4C).  For the HR6 organoids derived from 

flash-frozen HR6 tumors, at 24hr, both XL147 and H+P+X induce significant reductions in the 

OMI index (Fig. E.4D).  By 48 and 72hr, only the H+P+X treated organoids have a significant 

reduction in OMI index (Fig. E.4D).  Likewise, HR6 organoids derived from the DMSO frozen 

tumor showed significant reductions in OMI index with paclitaxel, trastuzumab, XL147, and 

H+P+X treatment at 24hr (Fig. E.4E).  By 48hr and 72hr, only the H+P+X treatment induced a 

significant reduction in the OMI index (Fig. E.4E).  At 72hr, the paclitaxel and XL147 treated HR6 

organoids induced a significant increase (p<0.05) in the OMI index in both organoids generated 

from fresh (Fig. E.4C) and DMSO frozen tumors (Fig. E.4E), but this increase was not detected in 

the organoids derived from flash-frozen tumors (Fig. E.4D).  Immunofluorescence staining of 

cleaved caspase 3 and Ki67 of organoids derived from fresh and DMSO frozen tumors treated for 

72hr revealed an increased proportion of cells stained cleaved caspase 3 positive and a reduced 

proportion of cells stained Ki67 positive in H+P+X treated HR6 organoids (Fig. E.4F, G). 
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Figure E.5 Viability of Organoids Derived from Frozen-thawed Human Breast Cancer 

Biopsies  (A) Representative NAD(P)H m and FAD m images of organoids derived from fresh 

(I) and flash frozen/thawed (II) Patient Sample 1. (B) Cleaved caspase 3 staining, (C) Ki67 

staining, (D) cell area, and (E) number of cells per organoid for organoids derived from fresh and 

flash-frozen/thawed Patient Sample 1.   (F) Representative NAD(P)H m and FAD m images of 

organoids derived from fresh (I) and flash frozen/thawed (II) Patient Sample 2.  (G) Cleaved 

caspase 3 staining, (H) Ki67 staining, (I) cell area, and (J) number of cells per organoid for 

organoids derived from fresh and flash-frozen/thawed Patient Sample 2. * p<0.05; *** p<0.001, 

versus Fresh, except as indicated. d3/d7 represents organoids grown for 3 or 7 days after 

generation. 

 

E.4.5 Viability of Organoids Derived from Frozen-thawed Human Breast Cancer Biopsies 

 To test whether organoids could be grown from flash frozen primary human breast tumors, 

two primary human breast cancer biopsies were acquired and cut into two pieces, one for fresh 

organoid generation and one which was flash-frozen, stored at -80°C for months (mimicking 

current tissue banking procedures), and then thawed and generated into organoids. For Patient 

1,organoids grew from both the fresh primary human tumor sample (Fig. E.5AI) and from the 

flash-frozen/thawed sample (Fig. E.5AII).  Immunofluorescence staining revealed similar 
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percentages of cleaved caspase 3 positive and Ki67 positive cells between organoids generated 

from fresh tumor and organoids generated from flash-frozen tumor (Fig. E.5B, C).  No differences 

were observed in Ki67 and cleaved caspase 3 staining between organoids generated from flash-

frozen tumor grown for 3 or 7 days (Fig. E.5B, C).  Likewise, there were no differences in the 

morphology of the cells, cell size, nucleus diameter or NCR ratio, between organoids generated 

from fresh tumor and organoids derived from the flash-frozen tumor (Fig. E.5D, and Fig. E.6).  

However, there was a significant reduction in the number of cells per organoid that were grown 3 

days after generating organoids from the flash-frozen and thawed tumor from Patient 1 compared 

to organoids generated from fresh tumor from the same patient (Fig. E.5E).  No significant 

difference in number of cells within each organoid was detected for the organoids derived from 

flash-frozen tumor grown for 7 days versus organoids derived from fresh tumor from the same 

patient (Fig. 5E).   

 

Figure E.6 Morphology of Organoids Derived from Frozen-thawed Human Breast Cancer 

Biopsies  (A) Nucleus diameter and (B) nuclear to cytoplasm ratio (NCR) for organoids derived 

from fresh and flash-frozen sections of Patient Sample 1. (C) Nucleus diameter and (D) nuclear to 

cytoplasm ratio (NCR) for organoids derived from fresh and flash-frozen sections of Patient 

Sample 2. d3/d7 represents organoids grown for 3 or 7 days after generation. 

 

Likewise, organoids from Patient Sample 2 grew robustly from fresh and flash-frozen 

tissues (Fig. E.5F, G-H).  No significant changes were observed in the percentage of cells that 

stained cleaved caspase positive or Ki67 positive between organoids derived from fresh tumor and 
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organoids derived from flash-frozen tumor grown for 3 or 7 days (Fig. E.5G, H).  Likewise, no 

significant differences in cell morphology (cell area, nucleus diameter, or NCR) were detected 

between organoids derived from fresh tumor versus organoids derived from flash-frozen tumor for 

Patient 2 (Fig. E.5I, and Fig. E.6).  Additionally, the number of cells within each organoid 

remained unchanged in organoids derived from flash-frozen tumor verses organoids derived from 

fresh tumor for Patient 2 (Fig. E.5J). 

 
Figure E.7 Drug Response of Organoids Generated from Flash-Frozen Human Breast 

Cancer Biopsies (A) NAD(P)H m and (B) FAD m measured from Patient Sample 1 organoids 

derived from fresh or frozen tissues (grown for 7 days).  * p<0.05, versus Fresh.  (C) Drug response 

of Patient Sample 1 organoids derived from fresh tissue at 24, 48, and 72hr.  (D)  Drug response 

of Patient Sample 1 organoids derived from flash-frozen tissues grown for 7 days and treated for 

24, 48, and 72hr.  (E) NAD(P)H m and (F) FAD m measured from Patient Sample 2 organoids 

derived from fresh or frozen tissues.  * p<0.05, versus Fresh.  (G) Drug response of Patient Sample 

2 organoids derived from fresh tissue at 24, 48, and 72hr.  (H)  Drug response of Patient Sample 2 

organoids derived from flash-frozen tissues grown for 7 days and treated for 24, 48, and 72hr.  * 

p<0.05; ** p<0.01, *** p<0.001, **** p<0.0001, versus control. 
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E.4.6 Drug Response of Organoids Generated from Flash-Frozen Human Breast Cancer Biopsies 

As with the xenograft tumors, OMI measurements of drug response were compared between 

organoids derived from fresh and flash-frozen patient tumor (frozen preparation was allowed to 

grow for 3 or 7 days before imaging and treatment).  Both samples were derived from estrogen 

receptor positive, HER2 negative tumors and the subsequent organoids were treated with  the 

clinically relevant drugs, paclitaxel (P), trastuzumab (H), tamoxifen (T), and the combination, 

H+P+T.  For Patient Sample 1, no difference in NAD(P)H m was detected between the organoids 

generated from fresh tumor and flash-frozen tumor grown for 7 days (Fig. E.7A).  However, a 

significant increase in FAD m was detected between organoids generated from fresh versus flash-

frozen tumor from Patient 1 (p<0.05, Fig. E.7B).  The OMI index was significantly decreased with 

H+P+T after 72 hr of treatment in organoids derived from fresh tumor from Patient 1 (Fig. E.7C).  

None of the treatments induced a significant reduction in the OMI index for the organoids 

generated from flash-frozen tumor, grown for 3 (Table E.1) or 7 days (Fig. E.7D).   

Finally, organoids derived from Patient Sample 2 showed significant response to the anti-

cancer drugs.  First, NAD(P)H m was significantly reduced in the organoids derived from the 

flash-frozen tumor compared to the organoids derived from fresh tumor (Fig. E.7E), but the FAD 

m showed no significant difference (Fig. E.7F).  The OMI index was significantly reduced in 

organoids derived from fresh tumor due to all drug treatments at 24hr, tamoxifen and H+P+T at 

48hr, and paclitaxel, tamoxifen, and H+P+T at 72 hr (Fig. E.7G).  Likewise, the paclitaxel, 

tamoxifen, and H+P+T treated organoids derived from the flash-frozen tumor showed significant 

reductions in OMI index at 72 hr (Fig. E.7H), while only the combination treatment, H+P+T, 

induced reductions in the OMI index at 24 and 48hr.  Altogether, these results suggest that viable 

organoids can be grown from frozen tumors and the cells remain sensitive to anti-cancer drugs. 
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Table E.1  Drug induced changes in OMI index at 72hr drug treatment for different organoid 

generation protocols. 

 

E.4.7 Comparison of Freezing Methods 

 OMI measured drug response was compared between fresh-tissue generated organoids and 

organoids generated from frozen-thawed tissues.  Both freezing methods, flash frozen and slow, 

DMSO frozen were compared for optimal drug response outcomes, as were the recovery times, 3 

or 7 days, between organoid generation and drug treatment.  The response of organoids grown for 

7 days and treated for 72 hr better reflected the response of fresh-tissue generated organoids with 

only 4/24 (16%) inconsistences versus 7/24 (30%) inconsistencies for organoids grown for 3 days 

before treatment (Table E.1). The response of the organoids derived from DMSO frozen tissues 

resembled that of the organoids derived from fresh tissues after 72hr of drug treatment with fewer 

inconsistencies than flash-frozen preparations, 3/16 (19%) vs. 9/32 (28%)  (Table E.1).   
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E.5 Discussion 

 Primary cells grown in 3D culture as organoids provide a robust and relevant model for 

investigations of cancer progression, drug development, and individualized treatment planning in 

the clinic.  Typically, organoids are generated by mechanical dissociation of fresh, primary tissue 

into small pieces that are embedded and grown in collagen or extracellular matrix gels.  Organoid 

culture of primary cells more accurately preserves cell-cell interactions and recapitulates the in 

vivo environment than 2D culture of single cell lines (1, 2, 10, 21).  However, current organoid 

generation protocols require fresh tissue (9, 22), which limits the use of primary human tumor 

organoids to labs in close proximity to hospitals, and also limits the applicability of organoid-based 

individualized drug screens to hospitals with expertise in organoid generation.  In order to ensure 

widespread use of primary tumor organoids for research and clinical treatment planning, tissue 

preservation methods must be assessed and alternative organoid generation protocols developed. 

This study tested two methods of tissue preservation by freezing, which would maintain cancer 

tissue for subsequent organoid generation and drug response studies.  Both flash-freezing tissue in 

liquid nitrogen and slow freezing in media supplemented with 5% DMSO were tested, because 

flash freezing is the current method for tissue banking yet slow freezing in DMSO is known to 

preserve tissue viability (23).  Four samples were used, two HER2 overexpressing xenografts and 

two estrogen receptor positive human breast cancer samples.   For all samples, organoids were 

generated from a piece of the fresh tissue and compared with organoids generated from a portion 

of the same tumor that was frozen and thawed. 

 Organoids grew from all fresh and frozen tissue samples, for both the xenograft tissues 

(Fig 1) and the human biopsies (Fig. E.5).  However, for two of the samples frozen by flash 

freezing in liquid nitrogen, the BT474 xenograft and one of the patient samples, there was a 
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significant decrease in the number of cells per organoid, suggesting that some cells do not survive 

the freeze/thawing process as well as others.  However, for the cells that did survive the freeze/thaw 

process, no significant differences in cellular expression of proliferation or apoptosis proteins were 

(Fig. E.1B, C, E, F; Fig. E.5B, C, G, H), suggesting the organoids generated from frozen/thawed 

tissues are viable and proliferate similarly to the organoids generated from fresh tissues.  

Furthermore, no significant differences in cellular morphology were quantified for the cells 

generated from frozen/thawed BT474 tissues or from the frozen/thawed patient samples (Fig. 

E.2A-C, E-G; Fig. E.5A, E, B, I).  The HR6 cells did show significant reductions in cell area and 

nucleus diameter (Fig. E.2E, F), which may reflect that either smaller HR6 cells were more suited 

to survive the freeze/thaw protocols or that the freeze/thaw process induces changes within the 

HR6 cells which reduced the cell size.  Prior studies of frozen/thawed cells have demonstrated that 

cells exposed to flash freezing methods have reduced volumes upon thawing compared to non-

frozen control cells and these morphological differences are reduced in slow-frozen cells (23).  

 
Figure E.8 Fluorescence lifetime components of organoids derived from frozen/thawed 

tissue. (A) NAD(P)H 1, (B) NAD(P)H 2, and (C) NAD(P)H 1 for organoids derived from fresh 

tissues and organoids derived from frozen tissues and grown for 7 days. (D) FAD 1, (E) FAD 2, 

and (F) FAD 1 for organoids derived from fresh tissues and organoids derived from frozen tissues 

and grown for 7 days. * p<0.05 vs. Fresh 
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 The fluorescence lifetime results indicate that the freeze/thaw protocols induce significant 

biochemical changes within the cells.  In 2/4 samples (BT474 Fig. E.3A; Patient 2 Fig. E.7E), the 

mean NAD(P)H lifetime decreased in organoids derived from frozen/thawed tissue compared to 

organoids derived from fresh tissues.  Likewise, in 2/4 samples (HR6 Fig. E.4B, Patient 1 Fig. 

E.7B) the mean FAD lifetime increased in organoids derived from frozen/thawed tissue compared 

to organoids derived from fresh tissue.  The changes in the free lifetime components (1 for 

NAD(P)H and 2 for FAD, Fig. E.8) suggest morphological changes to NAD(P)H and FAD, and 

changes in the microenvironment surrounding NAD(P)H and FAD (17-19).  The changes in bound 

protein fluorescence lifetimes (2 for NAD(P)H and 1 for FAD, Fig. E.8) may be indicative of 

morphological changes in the enzyme-substrate conformations, changes in preferred protein 

binding, or differences in the microenvironment of surrounding NAD(P)H and FAD enzyme 

structures (17, 19).  A previous study of in vivo, freshly excised tissue, and frozen hamster cheek 

pouch tissues also identified an increased FAD m in frozen tissues (13).   A cryopreservation study 

has previously identified freezing-induced inactivation of metabolic enzymes, such as lactate 

dehydrogenase, and suggest some intracellular molecules may have protective properties (24), 

further indicating changes in metabolism coenzyme environment after tissue freezing.   

The OMI index is a robust, dynamic endpoint of cellular metabolism and has been shown 

to accurately measure early drug response in anti-cancer drug-treated cells, tumors imaged in vivo, 

and organoids (9, 12).  We used the OMI index to test the drug-response of organoids generated 

from frozen/thawed tissues, and compared this response with that of fresh organoids.  OMI detects 

drug-induced changes in cellular metabolism and the frozen/thawed organoids had significant 

differences in basal metabolism endpoints compared with fresh organoids, so all comparisons were 

between DMSO/IgG control and drug-treated organoids within each sample, preparation protocol, 
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and time point.  The OMI index is computed per group per time point and normalizes data to the 

means of the data set.  As demonstrated previously (9), significant reductions in the OMI index 

between control and drug treated organoids indicate response. Drug induced increases in apoptosis 

and decreases in proliferation verify that a decrease in the OMI index of organoids tumors 

correlates with drug response (Fig. E.3, 4). 

 The OMI index indicated similar drug response for organoids derived from frozen/thawed 

tissues compared to the drug response from organoids derived from fresh tissues.  However, the 

frozen/thawed tissues were less sensitive to anti-cancer drugs.  Drugs induced a smaller change in 

OMI index of organoids derived from frozen/thawed tissues (Fig. E.3C-E, Fig. E.4C-E, Fig. E.7 

G-H) suggesting the dynamic range of the OMI index was dampened in the organoids generated 

from frozen/thawed tissue.  The dynamic range of the drug-induced metabolism changes may be 

reduced due to damage induced by the freezing protocols on the metabolic coenzymes, enzymes, 

and substrates (24).  Furthermore, the cells that survive the freezing protocols may be more 

resistant to anti-cancer drugs.  As indicated by 5 drug treatments that failed to induce the expected 

response by 72hr of treatment in OMI index (Table E.1) in organoids generated from flash frozen 

tissues, this freezing protocol may select for more resistant cells.  The mutations and phenotypic 

differences that enable cells to evade drug treatment may enable the cells to survive the flash-

frozen protocol.   
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Figure E.9 Mean NAD(P)H and FAD fluorescence lifetimes of organoids derived from 

frozen/thawed tissue.   NAD(P)H m of (A) BT474, (B) HR6, (C) Patient Sample 1, and (D) 

Patient Sample 2 organoids grown from fresh and frozen tissue. FAD m of (E) BT474, (F) HR6, 

(G) Patient Sample 1, and (H) Patient Sample 2 organoids grown from fresh and frozen tissue. 

d3/d7 represents organoids grown for 3 or 7 days after generation.  * p<0.05 vs. Fresh; ns = not 

significant 

 In order to investigate whether cells required a recovery growth period following 

freeze/thaw protocols, all experiments were repeated on organoids grown for 3 or 7 days.  No 

significant differences were observed in cellular morphology, rates of proliferation or apoptosis, 

NAD(P)H m, or FAD m values of control organoids for any sample between the organoids 

generated from flash frozen tissue grown for 3 versus 7 days (Fig. E.1, 2, 5, and Fig. E.9).  This 

observation held for organoids generated from DMSO frozen tissues as well, and suggests the 

effects of the freezing processes on cellular metabolism persist for at least a week of growth.  A 

slight, but significant, increase in the number of cells per organoid was observed on day 7 versus 

day 3 in the organoids derived from the flash-frozen BT747 tumor and Patient Sample 1 (Fig. 
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E.2D, Fig. E.5F). OMI drug response studies of organoids grown for either 3 or 7 days from 

frozen/thawed tissues yielded similar results; however, additional response (12.5% fewer 

inconsistencies) was detected in organoids grown for 7 days (Table E.1), suggesting a longer 

recovery time yields better response data.  The lack of response observed in organoids grown for 

only 3 days and then treated with anti-cancer drugs may suggest inherent selectivity of non-

responsive cells which are more suited to surviving the freeze/thaw process, or that the freeze/thaw 

process induces a survival response within the cells which enable them to also survive the cancer 

drugs.  

 The xenograft studies investigated the differences in organoids grown from flash-frozen 

tissues and slow, DMSO frozen tissues.  No significant differences were observed in cell 

proliferation, apoptosis, or morphology between organoids derived from tissues frozen by either 

method (Fig. E.1, 2).  A significantly greater number of cells per organoid were grown from the 

BT474 DMSO frozen tissues than the flash frozen tissues (Fig. E.2D). However, this was not 

observed in the HR6 tumors.  The mean NAD(P)H lifetime of BT474 organoids derived from 

DMSO frozen tissue and the mean FAD lifetime of HR6 organoids derived from DMSO frozen 

tissue were closer to the values of organoids derived from fresh tissue than organoids derived from 

flash frozen tissue, suggesting that slow, DMSO freezing of tissues may yield organoids with 

metabolic behaviors more similar to the metabolic behaviors of organoids derived from fresh 

tissues than flash-frozen tissues.   Furthermore, OMI-measured drug response revealed more 

consistent OMI drug response behavior of the organoids derived from DMSO frozen tissues then 

organoids derived from flash frozen tissues (Table E.1).  

 Recent studies have demonstrated the wealth of knowledge that can be gained from primary 

tumor organoid research (2, 9, 10, 22).  Furthermore, as we have demonstrated, OMI drug response 
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studies of organoids reflect in vivo drug response (9).  However, organoid generation protocols 

require immediate processing of fresh tissue into organoids.  This limits the application of 

organoid-based experiments and drug-response studies to medical centers with both operating 

rooms and research facilities.  The purpose of this study was to investigate tissue-freezing methods 

that would enable preservation of tissues for subsequent organoid generation.  This opens up the 

applicability of clinical organoid drug screens and organoid research by enabling shipment of 

tissues to centralized testing sites and research labs.  Primary tissue samples are routinely flash 

frozen for storage in tissue banks.  Therefore, this study evaluated flash-frozen primary human 

breast cancer samples, to determine if organoids could be grown from these samples. Furthermore, 

this study compared the viability and drug response of organoids derived from flash frozen tissue 

to organoids derived from DMSO freezing protocols, which is the standard method of cell 

preservation used in cell culture.  Our results show that organoids can be grown from flash-frozen 

or slow, DMSO frozen tissues and these organoids have similar morphologies and rates of 

proliferation and apoptosis as organoids derived from fresh tissues.  Furthermore, while the 

freezing process effects the basal metabolic rate of the cells, OMI can be used to detect drug 

response of organoids derived from frozen-thawed tissues.  Altogether these results suggest that 

when possible, slow freezing bulk tissues in DMSO supplemented media induces fewer changes 

in organoid cellular metabolism and yields drug-response more similar to that of organoids derived 

from fresh tissues. However, viable organoids can be grown from flash-frozen tissues and present 

an alternative tissue source if fresh or DMSO frozen tissues are not available, as in current tissue 

banks. 
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APPENDIX F 

Collagen Density and Alignment in Responsive and Resistant  

Trastuzumab-Treated Breast Cancer Xenografts  

Walsh AJ, Cook RS, Lee JH, Arteaga CL, Skala MC, "Collagen density and alignment of 

responsive and resistant trastuzumab-treated breast cancer xenografts" Journal of Biomedical 

Optics, 2015; 20(2):026004. 

 

F.1 Abstract 

Tumor collagen characteristics influence tumor malignancy, invasion, and metastasis.   

This study investigates the effects of trastuzumab (Tz) on the collagen of Tz-responsive (BT474), 

and Tz-resistant (HR6) breast cancer xenografts.  Collagen content was assessed by in vivo second 

harmonic generation (SHG) imaging and histological trichrome staining of tumor sections.  

Collagen SHG imaging of control BT474 and HR6 tumors demonstrated increased collagen 

density after 14 days of treatment (p<0.05). Trichrome staining revealed decreased collagen in Tz-

treated BT474 and HR6 tumors at 2, 5 and 14 days of treatment, suggesting that Tz affects the 

tumor microenvironment independent of epithelial cell response.  Additionally, collagen alignment 

analysis revealed significantly less aligned collagen in the Tz-treated BT474 tumors at day 14 

compared with control BT474 tumors.  There was no correlation between SHG endpoints (collagen 

density and alignment) and trichrome staining (p>0.05), consistent with the physically distinctive 

nature of these measurements. There was also no correlation between tumor size and collagen 

endpoints (p>0.05). These results identify changes within the collagen compartment of the tumor 

microenvironment following Tz treatment that are independent from tumor cell response to Tz, 

and demonstrate that intravital collagen SHG imaging is capable of measuring dynamic changes 

in tumor microenvironment following treatment that complement trichrome staining. 

 



238 

 

F.2 Introduction 

Collagen is an important protein within the extracellular matrix (ECM) of normal and 

malignant tissues.  In normal breast tissue, increased collagen is associated with increased risk of 

developing breast cancer and increased disease aggressiveness (1).  Recent studies of intra-tumoral 

collagen demonstrate that collagen fiber alignment and density associate with aggressive disease 

and increased invasion (1-3).  Furthermore, a high density of interconnected collagen fibers within 

the extracellular matrix of tumors can block the diffusion of drugs into the tumor (4). These studies 

highlight the importance of collagen within the tumor microenvironment (TME), particularly with 

respect to tumor invasion and drug response. They also demonstrate a need for studies that monitor 

dynamic changes in collagen during breast tumor progression, and elucidate how intra-tumoral 

collagen may change in response to anti-cancer treatments.  

 Breast cancers are divided into three clinical subtypes: estrogen receptor (ER) positive, 

human epidermal growth factor receptor 2 (HER2) positive, and triple negative breast cancer 

(TNBC, lacking expression of ER, HER2, and progesterone receptor, or PR).  HER2 is 

overexpressed in approximately 20% of breast cancers, correlating with poor clinical outcome and 

increased tumor malignancy (5).  Fortunately, several drugs are approved for direct targeting of 

HER2, including trastuzumab (a monoclonal antibody) and lapatinib (a tyrosine kinase inhibitor). 

HER2 inhibitors increase the survival of patients when used alone and in combination with 

standard chemotherapies (6-9).  Unfortunately, many patients do not initially respond to HER2 

inhibitors, or develop acquired resistance to these targeted agents (9).   

 Trastuzumab (Tz) specifically binds to the extracellular domain of HER2 and prevents 

activation of the intracellular HER2 tyrosine kinase.  Tz has other mechanisms of action, including 

blockade of HER2 dimerization, increased HER2 endocytosis and degradation, and induction of 

antibody-dependent cellular cytotoxicity (ADCC) (10, 11). Tz induces cytostatic effects by 
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arresting the cell cycle in the G1 phase and inhibits signaling involved in cell survival (12, 13).  

Additionally, Tz has been shown to inhibit angiogenesis and reduce the expression of growth 

factors such as VEGF and TGF-.  However, additional changes that occur in the TME, 

particularly changes in collagen content and organization, following Tz treatment are poorly 

understood. 

 Images of collagen within the TME can be obtained from second harmonic generation 

(SHG) microscopy.  SHG is a non-linear optical phenomenon in which two photons of the same 

wavelength are combined through a material to yield one photon with twice the energy (one-half 

the wavelength) of the incident photon.  Collagen SHG imaging probes the fibrillar collagen 

content of tissues and generates photon intensity images of collagen fibers within the tissue,  which 

can be analyzed to assess collagen density and alignment (14-18).  Collagen fibers, such as type I, 

II, III, V, and XI, exhibit a strong SHG signal.   In particular, increased amounts of collagen types 

I, III, and V have been found within breast cancers (19, 20).  SHG imaging of breast cancer samples 

has revealed distinct collagen alignment configurations that correlate with increased tumor 

aggressiveness and invasion (1-3, 21).  SHG images can be assessed for collagen density and 

relative alignment of collagen fibers. Additionally, tumor collagen can be assessed by trichrome 

staining of histological slides.  Trichrome stains all types of collagen non-discriminately and 

provides information complementary to that quantified from SHG images of fibrillar collagen. In 

contrast to trichrome stains, SHG microscopy can be performed in vivo.   

 Few studies have characterized changes in the TME following chemotherapy or targeted 

therapy.  Therefore, this study investigates changes in collagen content of HER2+ tumors 

following treatment with Tz.  Two isogenic HER2+ breast cancer cell lines, one Tz-responsive 

(BT474) and the other selected for Tz resistance (HR6), were established as xenografts in athymic 
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mice. Tumor-bearing mice treated with Tz or with a control IgG were used to assess collagen 

content from SHG images in vivo at three time points (2, 5, and 14 days of treatment) and in 

histological trichrome-stained tumor sections harvested at days 2, 5, and 14. These studies tested 

the hypothesis that Tz treatment affects collagen in the TME, independent of the effect of Tz on 

the tumor cells themselves.   

F.3   Materials and Methods 

F.3.1 Xenograft Model 

 This study was approved by the Vanderbilt University Animal Care and Use Committee 

and meets the NIH guidelines for animal welfare.  A total of 36 mice were used. BT474 (108; 

ATCC) and HR6 cells (108; (22)) in 100 L Matrigel (Corning) were injected in the inguinal 

mammary fat pads of 6 week old female athymic nude mice (J:NU; Jackson Laboratories).  Each 

mouse was injected in two locations, on the right and left of the lower portion of the mammary fat 

pad and two tumors grew in all mice except three, which only had one tumor (tumor take rate of 

96%).   BT474 and HR6 cells are ER+/HER2+ isogenic cell lines.  The HR6 cell line was derived 

from a BT474 tumor that developed resistance to Tz treatment (22). These two cell lines were 

chosen because both overexpress HER2, the target protein of Tz, but only the BT474 tumors shrink 

in response to Tz treatment.  Tumors were allowed to grow to approximately 150 mm3
; then the 

mice were randomized into control or trastuzumab treatment groups, with nine mice in each group. 

Tumor-bearing mice were treated intraperitoneal with control human immunoglobulin, 10 mg/kg 

(IgG; R&D Systems) or Tz, 10 mg/kg (Genentech), twice weekly for two weeks (on days 0, 3, 7, 

and 10).  This dose of Tz was chosen to mimic the therapeutic dose in patients (23).    To minimize 

tumor variance, age-matched mice were used, a single batch of cells for each tumor type was 
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generated and injected, the same number of cells per tumor was injected, and treatment was 

initiated when the tumors were approximately the same size (~150 mm3). 

 For intravital imaging, the mice were anesthetized with isofluorane and the skin overlaying 

the tumor was removed.  The tumor was covered with a coverslip and the mouse was positioned 

on the microscope stage.  Three locations of each tumor were imaged.  Each tumor type (BT474, 

HR6) and group (control, Tz) at each time point (2, 5, and 14 days of treatment) consisted of 3 

mice (6 tumors).  One mouse from the control and Tz-treated BT474 groups on day 2 and the Tz-

treated HR6 day 2 group only grew 1 tumor and therefore, those groups consisted of 5 tumors.   

Mice were humanly euthanized after imaging while under anesthesia.  Tumors were collected post-

mortem for tissue fixation.  The time points (2, 5, and 14 days) were chosen based on previous 

studies of these mouse tumors, which found metabolic and vascular changes within 2 and 5 days, 

respectively of Tz treatment, and significant changes in tumor volume within 14 days of Tz 

treatment (24, 25). 

F.3.2 Collagen SHG Imaging 

 Collagen SHG imaging was performed on a custom built, commercial multiphoton 

microscope (Bruker).  A 40X oil-immersion objective (1.3 NA) coupled the illumination and 

emission light through an inverted microscope (TiE, Nikon).  A titanium:sapphire laser (Coherent 

Inc.) tuned to 890 nm, with an average power of 8.4 to 8.6 mW, provided the illumination light.  

The incident light was attenuated by a Pockel cell to vary the power of the illumination light which 

results in an elliptically polarized beam.  A PMT (Hamamatsu) detected the emitted photons 

through a 450/35 nm notch filter.  A pixel dwell time of 4.8 s was used to collect 256x256 pixel 

images.  Single frame images for three different locations for each tumor were acquired. Each 

image frame was averaged 8 times to reduce noise.  Sequential images were separated laterally by 
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at least one field of view, 270 m.  Images were acquired of tumor tissue approximately 20-60 m 

in depth into the tumor. 

F.3.3 Collagen SHG Image Analysis 

 Collagen alignment was quantified from the SHG images using the curvelet-based 

alignment analysis software, CurveAlign (http://loci.wisc.edu/software/).  CurveAlign uses a fast 

discrete curvelet transform to find the location and edges of collagen fibers and returns orientation 

data and descriptive statistics.  For our images, collagen alignment was assessed relative to the 

horizontal plane of the image.  An alignment coefficient of 1 indicates parallel fibers while 0 

indicates perpendicular fibers. Collagen density was quantified by image thresholding.  The 

histogram of pixel intensities for most images was bimodal, with one mode representing the 

background pixels and one mode representing the collagen fibers.  Each pixel was assigned a value 

of 0 or 1, depending on if the intensity value of that pixel was above (value = 1) or below (value 

= 0) the optimal threshold value computed for the image using Otsu’s method (Matlab).  Collagen 

density was quantified as the sum of the thresholded image, which represents the portion of 

collagen positive pixels.  The collagen alignment and density outputs from the three fields of view 

interrogated for each tumor were averaged for a single collagen profile of each tumor.  

F.3.4 Trichrome Staining and Analysis 

 Tumors were collected and placed in buffered formalin, paraffin embedded, sliced, and 

stained with trichrome.  Trichrome stains multiple cellular structures including collagen, cell 

cytoplasms, and cell nuclei.  All types of collagen are stained with trichrome, and the resulting 

sections can be qualitatively analyzed. Collagen staining was quantified from 3 tumors per group 

by expert (RSC) analysis of intra- and extra- tumoral collagen content.  Tumor collagen content 

was scored based on presence and intensity of staining, with an increased score indicative of 

http://loci.wisc.edu/software/
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increased collagen staining.  The trichrome score represents the sum of four measures, selected 

between 0-2 for each field of view analyzed: intra dense strands, intra diffuse strands, extra dense 

strands, and extra diffuse strands.  

F.3.5 Statistics 

 Independence of observations between tumors was confirmed using logistic regression.  

Differences in collagen alignment, density, and trichrome staining were assessed between control 

and Tz-treated tumors within each time point and within control or Tz-treated tumors over time 

using non-parametric rank sum tests. We used an alpha significance level of 0.05.  Correlation 

analysis was performed using Spearman’s Rank Correlation Coefficient.  

F.4   Results 

 

Figure F.1. Collagen SHG images and representative trichrome images. (a) Original collagen 

SHG image.  (b) Overlay image of identified collagen fiber angles (green arrows).  (c) Collagen 

density is obtained from a thresholded image. (d-f) Representative trichrome images obtained at 

400X to demonstrate a low (d; score of 2), medium (e; score of 5), and high (f, score of 8) score.   

Scale bars are 100 m.  
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 The collagen content of Tz-responsive (BT474) and Tz-resistant (HR6) tumors was 

examined by in vivo collagen SHG imaging and trichrome staining over a 14 day time course of 

control-IgG or Tz treatment.  BT474 tumors respond to Tz with increased cell death and decreased 

tumor volume, while Tz does not induce cell death or decrease growth in HR6 tumors (22, 24, 25).  

Collagen SHG images were analyzed using CurveAlign to extract relative fiber alignment and 

density of collagen positive pixels (Fig. F.1).  Figure F.1c shows the thresholded intensity mask 

image of collagen density, where all collagen positive pixels have a value of 1 and all negative 

pixels have a value of 0.  Trichrome stained tumor sections were scored from 0-8 based on the 

presence and intensity of the intra- and extra-tumor collagen.  Representative images of trichrome 

stained tumor sections demonstrate trichrome scoring heterogeneity (Fig. F.1d-f). 

 

Figure F.2. Collagen changes in BT474 tumors treated with trastuzumab. (a) Representative 

collagen SHG images from BT474 tumors.  Scale bar is 100 m. (b) Collagen density of SHG 

images for control and Tz-treated BT474 tumors.  (c)  Coefficient of alignment of SHG images for 

control and Tz-treated BT474 tumors.  (d) Trichrome staining score for control and Tz-treated 

BT474 tumors.  † (p<0.05) vs. day 2. * (p<0.05) vs. control. 
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 Collagen analysis revealed significant differences as a result of tumor growth and treatment 

with Tz in BT474 xenografts.  Representative collagen SHG images demonstrate the typical size, 

density, and alignment of collagen fibers within control and Tz-treated BT474 tumors over the 

time course (Fig. F.2a).   Collagen density was obtained from collagen SHG images as the portion 

of collagen positive pixels.  Control BT474 tumors initially had a collagen density of 0.38 on day 

2, which significantly (p<0.05) increased to 0.47 on day 5 and was maintained at 0.49 on day 14 

(Fig. F.2b).  No significant differences in collagen density were detected between control and Tz-

treated BT474 tumors.  Likewise, no differences in collagen alignment were detected in BT474 

tumors treated with Tz for 2 or 5 days.  On day 14, however, there was a significant reduction in 

the collagen alignment of Tz-treated BT474 tumors compared with control BT474 tumors (p<0.05; 

Fig. F.2c).  The intra-tumor variance for the density of the BT474 tumors was 0.002 while the 

inter-group variance was 0.004, suggesting greater differences between tumors within a time point 

and treatment group, than within individual tumors.  The intra-tumor variance for the coefficient 

of alignment of collagen fibers within BT474 tumors was 0.008 while the inter-group variance was 

0.02 (p<0.05), again indicating greater heterogeneity between individual tumors rather than within 

a tumor.  

Trichrome staining of collagen revealed significant differences in collagen between control 

and Tz-treated BT474 tumors.  A trichrome staining score was assigned to each histology section 

based on visual analysis of the intra- and extra- tumoral collagen, both dense and diffuse.  An 

increased score indicates increased collagen content.  Significant reductions in collagen trichrome 

scores were detected on 2, 5, and 14 days (p<0.05) of treatment in the BT474 tumors (Fig. F.2d). 
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Figure F.3. Collagen changes in HR6 tumors treated with trastuzumab.  (a) Representative 

collagen SHG images from HR6 tumors, scale bar is 100 m.  (b) Collagen density of SHG images 

for control and Tz-treated HR6 tumors.  (c)  Coefficient of alignment of SHG images for control 

and Tz-treated HR6 tumors. (d) Trichrome staining score for control and Tz-treated HR6 tumors.  

† (p<0.05) vs. day 2. * (p<0.05) vs. control. 

 

Representative collagen SHG images from control and Tz-treated HR6 tumors are shown 

in Fig. 3a.  Control HR6 tumors showed an increase in collagen density over time, from 0.38 on 

day 2 to 0.55 on day 14 (p<0.05; Fig. F.3b), similar to the increase in collagen density observed in 

the control BT474 tumors over time (Fig. F.2b).  Tz resulted in stable collagen SHG density in 

both the BT474 and HR6 tumors across all time points (Fig. F.2b, F.3b).  No significant differences 

in collagen density between the Tz-responsive and Tz-resistant tumors (within control and Tz-

treated groups) were observed at any time point (p>0.05).  The intra-tumor variance for the 

collagen density of the HR6 tumors was less than the variance between HR6 tumor groups (0.003 

and 0.007, respectively; p<0.05).  Likewise, the intra-tumor variance for the collagen coefficient 
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of alignment of the HR6 tumors was less than the variance between HR6 tumor groups (0.01 and 

0.02, respectively; p<0.05). Tz failed to induce a decreased collagen alignment in HR6 tumors 

over time or between control and trastuzumab-treated tumors (Fig. F.3c). A significant reduction 

in collagen alignment (p<0.05) was detected in control HR6 tumors compared with control BT474 

tumors on days 5 and 14.  A significant reduction in the trichrome score was detected in Tz-treated 

HR6 tumors compared to control tumors at every time point (Fig. F.3d). 

Correlation analysis was performed between collagen endpoints from control BT474 and 

HR6 tumors using matched tumor data to investigate relationships between SHG imaging 

endpoints and trichrome scores.  Neither the collagen density nor the coefficient of alignment 

determined from SHG images (Fig. F.4a) correlated with trichrome score.  Furthermore, none of 

the endpoints, trichrome score, SHG density, or SHG coefficient of alignment, correlated with 

tumor volume (Fig. F.4b-d).   The SHG density did not correlate with the coefficient of alignment 

(Fig. F.4e).  However, a significant correlation was detected between SHG density and the age of 

the tumor (Fig. F.4f).  
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Figure F.4. Correlations between SHG endpoints and trichrome. (a) Correlation between 

trichrome score and SHG density.  (b) Correlation between trichrome score and tumor volume.  

(c) Correlation between SHG density and tumor volume.  (d) Correlation between SHG coefficient 

of alignment and tumor volume.  (e) Correlation between SHG density and SHG coefficient of 

alignment.  (f)  Correlation between SHG density and age of tumor.  r is Spearman’s correlation 

coefficient.  ns = not significant.  Tumor volume measurements were obtained from paraffin 

embedded tumors which results in tissue shrinkage. 

 

F.5   Discussion 

 

 Tz is a HER2-targeted antibody prescribed clinically for treatment of breast cancers that 

overexpress HER2.  While many studies have characterized the effects of Tz on the tumor 

epithelium, few studies have investigated the effects of Tz on the tumor microenvironment.  This 

study investigated the effects of Tz on breast tumor collagen in both Tz-responsive and Tz-resistant 

tumors.   

 Representative collagen SHG images demonstrate the typical size, alignment, and density 

of collagen fibers within the tumors over time and with treatment (Figs. F.1a, F.2a, F.3a).  These 

images were acquired from a microscope system designed for multiphoton fluorescence imaging 

and fluorescence lifetime imaging.  The only modifications necessary to image collagen SHG was 
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the addition of a narrow emission filter at one-half the wavelength of the incident near infrared 

light. Collagen SHG imaging is sensitive to the polarization of the incident light.  The incident 

light in our experimental set-up is attenuated by a Pockel cell to vary the power of the illumination 

light, which results in an elliptically polarized beam.  Therefore, we should capture collagen fibers 

at all angles, but the intensity of the fibers may be direction-dependent due to the polarization of 

the incident beam.  In order to account for this bias in intensity with fiber orientation, we applied 

an intensity threshold to our images for further analysis so that our endpoints are independent of 

absolute pixel intensity. Collagen SHG images were analyzed to extract collagen density and 

relative fiber alignment (Figs. F.2b-c, F.3b-c).  

 Analysis of the collagen SHG images revealed a statistically significant increase in the 

density of collagen in control BT474 and HR6 tumors over time (Figs. F.2b, F.3b).  Correlation 

analysis (Fig. F.4) does not show a correlation between larger tumors and collagen density.  

However, there is a significant correlation between SHG density and tumor age.  These results 

suggest increased fibrillar collagen within aging tumors, which is consistent with previous reports 

of increased collagen content in malignant and progressing tumors (1).  Upon treatment with Tz, 

the BT474 tumors shrink over 14 days (25), and the collagen density within these tumors showed 

no significant change over the time course (Fig. F.2b). This suggests that Tz decreases the amount 

of fibrillar collagen in parallel with decreases in tumor volume in responsive tumors, thus 

maintaining constant collagen density over time.   

 The relative alignment of collagen fibers is associated with tumor invasion and progression, 

with radially aligned fibers characteristic of aggressive disease (1-3).  To assess collagen fiber 

alignment, a coefficient of alignment was determined for each image using CurveAlign.  Images 

with perfectly parallel fibers would have an alignment coefficient of 1 while images with 
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perpendicular fibers, a value of 0.  The Tz-treated BT474 tumors showed a significant decrease in 

coefficient of collagen alignment compared to control BT474 tumors on day 14 (Fig. F.2c), 

suggesting less aggressive characteristics upon treatment with the therapeutic antibody.  No change 

in collagen alignment was detected in the HR6 tumors treated with Tz, suggesting no significant 

effect of Tz on the collagen fiber alignment of these non-responding tumors.  A significant 

reduction in collagen alignment was detected in control HR6 tumors compared with control BT474 

tumors on days 5 and 14.  This may be due to differences in the characteristics and behavior of 

these two tumors.  The HR6 tumors grow at a faster rate than the BT474 tumors which may 

influence microenvironment composition (25).  HR6 cells also express higher levels of EGFR and 

P-EGRF compared to the BT474 cells (22), which may influence tumor behavior and 

microenvironment composition (26, 27).   

 Histological analysis of collagen stained with trichrome dye revealed significant reductions 

in collagen content in BT474 tumors treated with trastuzumab at all time-points (Fig. F.2d).  The 

trichrome staining score is a sum four measures, diffuse and dense collagen both intra and extra 

tumoral, and all four individually show similar trends.  Trichrome stains all forms of collagen, 

including fibrillar collagen.  Tumors contain multiple types of collagen, including type I, II, III, 

and IV.  Collage type IV is particularly important within tumors because it composes the basal 

membrane and is involved in tumor invasion (28, 29).   

The HR6 SHG and trichrome results suggest that Tz may have direct effects on the tumor 

microenvironment.  The Tz-treated HR6 tumors did not show an increase in SHG density over the 

14 day study, consistent with the Tz-treated BT474 tumors and contrary to the control HR6 and 

BT474 tumors (Fig. F.2b, F.3b).  Furthermore, the trichrome scores revealed significantly reduced 

scores at all time points for the Tz-treated HR6 tumors compared to the control HR6 tumors (Fig. 
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F.3d).  Few studies have investigated the effects of Tz treatment on non-responsive tumor cells 

and tumor microenvironment.  In a study of a novel glaucoma surgical intervention, Tz was tested 

as an anti-scar agent (30), revealing that Tz suppressed fibroblast proliferation and reduced tissue 

levels of TGF-, FGF-, and PDGF (30). This and the HR6 results suggest that Tz may affect the 

collagen content of tumors by directly modifying fibroblasts behavior or by modulating paracrine 

growth factors secreted by tumor cells.  Furthermore, our previous studies of Tz effects on the 

tumor vasculature of BT474 and HR6 tumors revealed significant decreases in vessel oxygen 

saturation with 5 days of Tz-treatment in both tumor models (24).   Our studies and these previous 

results suggest that Tz treatment may affect the tumor microenvironment independent of its effects 

on the tumor cells. 

 The correlation analysis (Fig. F.4) indicates that the SHG endpoints, collagen density and 

coefficient of alignment, do not correlate with the trichrome staining score or with each other.  

These results agree with findings of Strupler et al, who directly compared sequential slides of 

collagen SHG and trichrome strain and reported that trichrome is less specific at identifying 

fibrillar collagen and difficult to score and compare with SHG (31).  This suggests that SHG 

density, SHG coefficient of alignment, and trichrome score are different measurements.  The 

inconsistencies between trichrome staining and SHG may be due to the source of contrast.  

Trichrome stains all collagen, including fibrillar and non-fibrrillar collagen as well as other 

components of the extracellular matrix, while only certain fibrillar collagen strands will exhibit 

SHG (31).  Tumors can have increased content of non-fibrillar collagens, in particular, collagen 

IV (28, 29), which does not exhibit SHG (31). Additionally, discrepancies between SHG density 

and trichrome staining may be due to sampling error in either the SHG measurements or trichrome 

imaging, both of which are limited to a small fields of view and are thus only probing a small 
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portion of the tumor.  Imaging additional trichrome stained histological slices of the tumor or 

obtaining 3D stacks of SHG images may provide increased representation of the tumor and more 

accurate measurements. 

 The results of this study highlight several changes in the collagen content and organization 

of the tumor microenvironment both in growing tumors and with Tz-treatment.  However, there 

may be confounding factors that influence the composition of the tumor microenvironment and 

the effectiveness of Tz.  The tumor extracellular matrix can affect drug diffusion (18, 32, 33) and 

extracellular proteins such as laminin can co-localize with HER2 and limit the efficacy of Tz (34).  

Therefore, the initial composition of the tumor extracellular matrix may influence Tz treatment.  

Furthermore, variability in tumor growth rates may cause variable vascular instability, which may 

affect the tumor microenvironment, collagen measurements, and Tz-delivery and effectiveness 

(35).   In this study, variability across tumors was controlled by the use of a single batch of cells 

to initiate tumors, the use of age-matched mice, injection of the same number of cells per tumor, 

and the use of mouse weight to determine Tz dose.  However, some variability occurred between 

tumors within groups due to experimental error and biological variance.  This inherent variability 

may mask some effects of Tz on the tumor microenvironment and may limit the effectiveness of 

Tz inhibition of HER2. 

 In conclusion, these studies suggest that Tz treatment may affect the tumor 

microenvironment independent of its effects on the tumor cells. We have also demonstrated that 

collagen SHG and histological trichrome staining analysis of collagen provide complementary 

endpoints of tumor collagen content and morphology.  Collagen SHG imaging can be performed 

in vivo through window chambers for longitudinal studies (24, 36) while trichrome staining is 

inherently post-mortem, potentially limiting the number of time points and increasing animal 
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burden and expense.  Trichrome staining revealed decreased collagen content in both Tz-

responsive and non-responsive tumors treated with Tz. Furthermore, collagen SHG imaging 

revealed similar trends in collagen density in both Tz-responsive and non-responsive tumors 

treated with Tz, suggesting consistent effects of Tz on the tumor microenvironment irrespective of 

Tz-induced tumor size reduction. However, there was a decrease in the alignment of collagen fibers 

of Tz-treated responsive tumors only after 14 days of treatment.  These results highlight the 

changes occurring within the collagen compartment of the tumor microenvironment following 

systemic Tz treatment. 

F.6 Acknowledgements 

This work was supported by funding sources that include the NCI SPORE in Breast Cancer 

(P50 CA098131), ASLMS Student Research Grant (AJW), NSF Graduate Research Fellowship 

(DGE-0909667; AJW), DOD Breast Cancer Research Program (DOD-BC121998), NIH (NCI R01 

CA185747), and Mary Kay Foundation (067-14). 

F.7 References 

1. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely 

PJ. Collagen density promotes mammary tumor initiation and progression. BMC Med. 

2008;6:11. 

2. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen 

reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 

2006;4(1):38. 

3. Provenzano PP, Eliceiri KW, Keely PJ. Multiphoton microscopy and fluorescence lifetime 

imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin 

Exp Metastasis. 2009;26(4):357-70. 

4. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 

2010;7(11):653-64. 

5. Ross JS, Fletcher JA. The HER-2/neu oncogene in breast cancer: prognostic factor, 

predictive factor, and target for therapy. Stem Cells. 1998;16(6):413-28. 



254 

 

6. Burris HA, 3rd, Hurwitz HI, Dees EC, Dowlati A, Blackwell KL, O'Neil B, Marcom PK, 

Ellis MJ, Overmoyer B, Jones SF, Harris JL, Smith DA, Koch KM, Stead A, Mangum S, 

Spector NL. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib 

(GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine 

kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol. 

2005;23(23):5305-13. 

7. Storniolo AM, Pegram MD, Overmoyer B, Silverman P, Peacock NW, Jones SF, Loftiss J, 

Arya N, Koch KM, Paul E, Pandite L, Fleming RA, Lebowitz PF, Ho PT, Burris HA, 3rd. 

Phase I dose escalation and pharmacokinetic study of lapatinib in combination with 

trastuzumab in patients with advanced ErbB2-positive breast cancer. Journal of clinical 

oncology : official journal of the American Society of Clinical Oncology. 2008;26(20):3317-

23. 

8. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni 

L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, 

Andersson M, Inbar M, Lichinitser M, Lang I, Nitz U, Iwata H, Thomssen C, Lohrisch C, 

Suter TM, Ruschoff J, Suto T, Greatorex V, Ward C, Straehle C, McFadden E, Dolci MS, 

Gelber RD. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. The 

New England journal of medicine. 2005;353(16):1659-72. 

9. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, 

Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M. Efficacy and safety 

of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic 

breast cancer. Journal of Clinical Oncology. 2002;20(3):719-26. 

10. Valabrega G, Montemurro F, Aglietta M. Trastuzumab: mechanism of action, resistance and 

future perspectives in HER2-overexpressing breast cancer. Annals of oncology : official 

journal of the European Society for Medical Oncology / ESMO. 2007;18(6):977-84. 

11. Hudis CA. Trastuzumab--mechanism of action and use in clinical practice. The New England 

journal of medicine. 2007;357(1):39-51. 

12. Mayfield S, Vaughn JP, Kute TE. DNA strand breaks and cell cycle perturbation in herceptin 

treated breast cancer cell lines. Breast cancer research and treatment. 2001;70(2):123-9. 

13. Cuello M, Ettenberg SA, Clark AS, Keane MM, Posner RH, Nau MM, Dennis PA, Lipkowitz 

S. Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor 

necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian 

cancer cell lines that overexpress erbB-2. Cancer Res. 2001;61(12):4892-900. 

14. Chen XY, Nadiarynkh O, Plotnikov S, Campagnola PJ. Second harmonic generation 

microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc. 

2012;7(4):654-69. 

15. Campagnola PJ, Millard AC, Terasaki M, Hoppe PE, Malone CJ, Mohler WA. Three-

dimensional high-resolution second-harmonic generation imaging of endogenous structural 

proteins in biological tissues. Biophys J. 2002;82(1 Pt 1):493-508. 



255 

 

16. Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW. Live tissue 

intrinsic emission microscopy using multiphoton-excited native fluorescence and second 

harmonic generation. Proc Natl Acad Sci U S A. 2003;100(12):7075-80. 

17. Cox G, Kable E, Jones A, Fraser IK, Manconi F, Gorrell MD. 3-dimensional imaging of 

collagen using second harmonic generation. J Struct Biol. 2003;141(1):53-62. 

18. Brown E, McKee T, diTomaso E, Pluen A, Seed B, Boucher Y, Jain RK. Dynamic imaging 

of collagen and its modulation in tumors in vivo using second-harmonic generation. Nature 

medicine. 2003;9(6):796-800. 

19. Kauppila S, Stenback F, Risteli J, Jukkola A, Risteli L. Aberrant type I and type III collagen 

gene expression in human breast cancer in vivo. Journal of Pathology. 1998;186(3):262-8. 

20. Barsky SH, Rao CN, Grotendorst GR, Liotta LA. Increased Content of Type-V Collagen in 

Desmoplasia of Human-Breast Carcinoma. Am J Pathol. 1982;108(3):276-83. 

21. Provenzano PP, Rueden CT, Trier SM, Yan L, Ponik SM, Inman DR, Keely PJ, Eliceiri KW. 

Nonlinear optical imaging and spectral-lifetime computational analysis of endogenous and 

exogenous fluorophores in breast cancer. Journal of biomedical optics. 2008;13(3):031220. 

22. Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA, Arteaga CL. 

Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress 

epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB 

receptor network. Clin Cancer Res. 2007;13(16):4909-19. 

23. Gee MS, Upadhyay R, Bergquist H, Alencar H, Reynolds F, Maricevich M, Weissleder R, 

Josephson L, Mahmood U. Human breast cancer tumor models: molecular imaging of drug 

susceptibility and dosing during HER2/neu-targeted therapy. Radiology. 2008;248(3):925-

35. 

24. McCormack DR, Walsh AJ, Sit W, Arteaga CL, Chen J, Cook RS, Skala MC. In vivo 

hyperspectral imaging of microvessel response to trastuzumab treatment in breast cancer 

xenografts. Biomedical optics express. 2014;5(7):2247-61. 

25. Walsh AJ, Cook RS, Manning HC, Hicks DJ, Lafontant A, Arteaga CL, Skala MC. Optical 

metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in 

breast cancer. Cancer Res. 2013;73(20):6164-74. 

26. Laato M, Kahari VM, Niinikoski J, Vuorio E. Epidermal growth factor increases collagen 

production in granulation tissue by stimulation of fibroblast proliferation and not by 

activation of procollagen genes. The Biochemical journal. 1987;247(2):385-8. 

27. Buckley A, Davidson JM, Kamerath CD, Wolt TB, Woodward SC. Sustained release of 

epidermal growth factor accelerates wound repair. Proc Natl Acad Sci U S A. 

1985;82(21):7340-4. 



256 

 

28. Ioachim E, Charchanti A, Briasoulis E, Karavasilis V, Tsanou H, Arvanitis DL, Agnantis 

NJ, Pavlidis N. Immunohistochemical expression of extracellular matrix components 

tenascin, fibronectin, collagen type IV and laminin in breast cancer: their prognostic value 

and role in tumour invasion and progression. European journal of cancer. 2002;38(18):2362-

70. 

29. Kim JP, Chen JD, Wilke MS, Schall TJ, Woodley DT. Human Keratinocyte Migration on 

Type-Iv Collagen - Roles of Heparin-Binding Site and Alpha-2-Beta-1 Integrin. Lab Invest. 

1994;71(3):401-8. 

30. Turgut B, Eren K, Akin MM, Bilir Can N, Demir T. Impact of trastuzumab on wound healing 

in experimental glaucoma surgery. Clinical & experimental ophthalmology. 2014. 

31. Strupler M, Pena AM, Hernest M, Tharaux PL, Martin JL, Beaurepaire E, Schanne-Klein 

MC. Second harmonic imaging and scoring of collagen in fibrotic tissues. Optics express. 

2007;15(7):4054-65. 

32. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of extracellular matrix 

assembly in interstitial transport in solid tumors. Cancer Res. 2000;60(9):2497-503. 

33. Davies Cde L, Berk DA, Pluen A, Jain RK. Comparison of IgG diffusion and extracellular 

matrix composition in rhabdomyosarcomas grown in mice versus in vitro as spheroids 

reveals the role of host stromal cells. British journal of cancer. 2002;86(10):1639-44. 

34. Beyer I, Li Z, Persson J, Liu Y, van Rensburg R, Yumul R, Zhang XB, Hung MC, Lieber A. 

Controlled extracellular matrix degradation in breast cancer tumors improves therapy by 

trastuzumab. Molecular therapy : the journal of the American Society of Gene Therapy. 

2011;19(3):479-89. 

35. Less JR, Skalak TC, Sevick EM, Jain RK. Microvascular architecture in a mammary 

carcinoma: branching patterns and vessel dimensions. Cancer Res. 1991;51(1):265-73. 

36. Shan SQ, Sorg B, Dewhirst MW. A novel rodent mammary window of orthotopic breast 

cancer for intravital microscopy. Microvasc Res. 2003;65(2):109-17. 

 


	Title Page Electronic Submission
	Table of Contents
	Chapter 1
	Chapter 2
	Chapter 3 - Heterogeneity Paper
	Chapter 4 - In vivo paper
	Chapter 5 - Tissue paper
	Chapter 6 - Organoid paper
	Chapter 7
	Appendix A - Supplemental for Chapter 4
	Appendix B - Supplemental for Chaper 6
	Appendix 3 - BOE cell paper
	Appendix 4 - Cell Profiler Paper
	Appendix E - Fresh vs. Frozen Organoids
	Appendix 6 - Collagen Paper



