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SUMMARY 

#

The overall focus of this dissertation was to develop, test, and apply 

computational methods integrated with experimental data for peptide and protein 

structure determination.  

Chapter I outlines the need for novel structural biological methods that can lead to 

the characterization of peptides and membrane proteins. The prolactin releasing peptide, 

or PrRP, and the PrRP receptor, as well as ghrelin and the ghrelin receptor, are briefly 

introduced as examples of biomedically relevant systems for which no experimental 

structures are available. The first chapter also provides an overview of computational 

structural biology, including comparative modeling, de novo folding, and overcoming the 

obstacles of effective model scoring and conformational sampling. Portions of the chapter 

concerning comparative modeling and energy evaluation were taken from a Nature 

Protocols publication entitled, "Small-molecule ligand docking into comparative models 

with Rosetta," which was written by Steven Combs*, Samuel DeLuca*, Stephanie 

DeLuca*, Gordon Lemmon*, David Nannemann*, Elizabeth Nguyen*, Jordan Willis*, 

Jonathan Sheehan, and Jens Meiler. Authors with an (*) after the last name contributed 

equally to the publication and are considered equally contributing authors. The author of 

this dissertation contributed significantly to the development, documentation, revision, 

and dissemination of the reported protocol. 

Chapter II is based on the publication, "The activity of the prolactin releasing 

peptide correlates with its helicity," by Stephanie DeLuca, David Rathmann, Annette 

Beck-Sickinger, and Jens Meiler. The author of this dissertation and Daniel Rathmann 

contributed equally to the work reported therein. The author of this dissertation 
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conducted all modeling and analysis needed to interpret the experimental information. 

The text was written in a collaborative effort, such that the first two authors listed shared 

first authorship. 

Chapter III concerns the characterization of ghrelin structure and dynamics in a 

lipid vesicle environment. Ghrelin, like PrRP, is a peptide hormone that is involved in 

obesity and metabolic disease. Therefore, its three-dimensional structure is of special 

interest in the field of drug discovery. The manuscript entitled, "Integrating solid-state 

NMR and computational modeling to investigate the structure and dynamics of 

membrane-associated ghrelin" by Gerrit Vortmeier, Stephanie DeLuca, Constance 

Chollet, Holger A. Scheidt, Annette Beck-Sickinger, Jens Meiler, and Daniel Huster, 

describes the joint-effort work of both the Meiler and Huster laboratories, at Vanderbilt 

University and Leipzig University, respectively. The author of this dissertation performed 

all modeling of ghrelin using chemical shifts from solid-state NMR spectroscopy, which 

was conducted by the Huster laboratory. In addition, she contributed significantly to data 

interpretation, writing, and editing of the manuscript text and is therefore considered to 

be co-first author with Gerrit Vortmeier. 

RosettaEPR is introduced and described in detail in Chapter IV. It is a 

computational tool for protein structure determination that employs the Rosetta de novo 

folding algorithm with an EPR distance knowledge-based potential. The content of 

Chapter IV is based on the publication, "RosettaEPR:  An integrated tool for protein 

structure determination from sparse EPR data" by Stephanie Hirst, Nathan Alexander, 

Hassane Mchaourab, and Jens Meiler. The author of this dissertation was solely 
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responsible for the implementation, testing, reporting, and submission of the manuscript 

for publication. 

In Chapter V, RosettaTMH, a novel membrane protein de novo folding algorithm 

in the Rosetta software suite is introduced. RosettaTMH assembles membrane protein 

topologies via the translation or rotation of entire transmembrane helices at a time. In 

later stages of folding, peptide fragments are inserted into the de novo folded protein 

backbone, much in the same way that soluble proteins are generated with the traditional 

Rosetta method. The author of this dissertation was solely responsible for the 

implementation, benchmarking, and description of RosettaTMH and the work associated 

therewith. The content of Chapter V is based on a manuscript submitted to PLoS ONE 

entitled, "RosettaTMH:  Membrane protein structure elucidation by combining EPR 

distance restraints with assembly of transmembrane helices" by Stephanie DeLuca, 

Samuel DeLuca, and Jens Meiler. 

Chapter VI concludes the main text of this dissertation. The author of this 

dissertation, including the concluding chapter, summarizes the work described in detail in 

Chapters II through V, as well as the implications of the results of that work. The author 

proposes future experiments and outlines the overall goals, motivation, and contributions 

of the herein reported research. 

Appendix A is based on the publication entitled, "Ligand-mimicking receptor 

variant discloses binding and activation mode of prolactin releasing peptide" by Daniel 

Rathmann, Diane Lindner, Stephanie DeLuca, Kristian Kaufmann, Jens Meiler and 

Annette Beck-Sickinger. The structural basis of activation of the prolactin releasing 

peptide receptor by the binding of its endogenous peptide hormone, PrRP, was presented. 
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The binding model was generated by taking an iterative approach to computational 

modeling, hypothesis generation, and experimental validation. The author of this 

dissertation performed the majority of the modeling using the experimental data provided 

by collaborators in the Beck-Sickinger laboratory at Leipzig University. She also 

contributed significantly to the manuscript text, thus earning her a co-first authorship on 

the publication, along with Daniel Rathmann and Diane Lindner. 

Appendices B, C, D, E, and F comprise the protocol captures for the scientific 

work reported in Chapters II, III, IV, V, and Appendix A, respectively. The author of this 

dissertation developed, used, and documented all protocols in this dissertation's appendix.

 

#  



#
1#

CHAPTER I 

 

INTRODUCTION 
 

Parts of this chapter were published in (Combs*, DeLuca, S.L.*, DeLuca, S.H.*, 

Lemmon*, Nannemann*, Nguyen*, Willis*, Sheehan, and Meiler, 2013). *These authors 

contributed equally.  

 

Structural biology as a valuable approach to biomedical research 

With the completion of the Human Genome Project in 2001, the field of structural 

biology has played an increasingly prevalent role in advancing our understanding of the 

molecular basis of disease. In 2004, there were fewer than 30,000 depositions in the 

Protein Data Bank (PDB) (1). In contrast, today, there are more than 100,000 publicly 

available three-dimensional (3D) structures, and these numbers continue to grow at 

exponential rates. There were over 5,600 structures deposited in the PDB within the first 

seven months of 2014 alone (www.pdb.org). 

Why is the scientific community so interested in knowing what proteins look like? 

One of the main driving forces is the role that protein structure determination has played 

in drug discovery (2, 3). The structure-function relationship of proteins lies at the core of 

our understanding of biological processes and the basis of disease. If we can "see" a 

protein's 3D structure, we might be able to develop better drugs and therapeutics that 

target it. Indeed, numerous experimentally determined structures, such as that for HIV-1 

protease (4-6), neuroamidase (for influenza) (7, 8), and epidermal growth factor receptor 

(9), have been used for drug lead design and optimization. Furthermore, by structurally 
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characterizing proteins and their interactions with other molecules (e.g., small molecules, 

peptides, other proteins, etc.), we can enhance our exploration of larger scale 

mechanisms, such as intra-cell signaling and cell-to-cell communication.  

 

Membrane proteins play a major role in human disease  

Proteins can be divided into two main groups. Soluble proteins exist in their 

native state in solution, such as in the cytosol of a cell. On the other hand, integral 

membrane proteins, hereafter referred to as membrane proteins (MPs), reside in lipid 

bilayers found in the permeable membranes of cells and organelles. MPs are involved in 

a plethora of physiological functions, including maintaining the proper electrochemical 

balance across cell membranes (10), transporting molecules into and out of the cell (11), 

and facilitating extra- and intra-cellar communication (12, 13). Their malfunction has 

been implicated in a myriad of diseases, including schizophrenia (14), depression (15-

17), diabetes (18-20), cystic fibrosis (21), and cancer (22). It is therefore not surprising 

that MPs make up about one-third of all proteins encoded in the human genome and are 

the biological targets of over half of drugs and therapeutics. 

 

G-protein coupled receptors are a major class of membrane proteins 

G-protein coupled receptors, or GPCRs, comprise one of the biggest MP families. 

There are over 800 GPCRs in the human proteome, which are found all over the body, 

including the brain, heart, and ovaries. Approximately 30% of drugs are designed to 

interact with this important group of proteins (23-26). All GPCRs have seven 

transmembrane helices (TMHs) connected by alternating extra- and intra-cellular loops 
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(ECLs and ICLs, respectively). Upon interaction with a ligand, the receptors are said to 

be "activated," at which point they are bound by G-proteins at the C-terminal helical 

"tail." This then leads to a signal transduction cascade inside the cell. Activation is 

associated with a conformational change in the receptor, which allows for the 

transmission of extracellular signals to the intracellular space (27). 

GPCRs can be divided into five classes based on their sequence homology. These 

classes include class A (rhodopsin-like), B (secretin-like), C (metabotropic glutamate-

like), D (fungal mating pheromone), E (cAMP), and F (frizzled/smoothened) (23, 27). 

Class A GPCRs constitute the largest class and bind small-molecule ligands, peptides, 

and even photons. The two example GPCRs discussed in this chapter, the prolactin 

releasing peptide receptor and the growth hormone secretagogue receptor, belong to class 

A.  

 

The prolactin releasing peptide receptor plays an important role in biological processes 

The prolactin releasing peptide receptor (PrRPR), also known as GPR10 or Hgr3, 

was first discovered to be the receptor of the prolactin releasing peptide (PrRP) via 

reverse pharmacology techniques. This involved screening several tissue extracts against 

the then "orphan" GPCR and testing for cell signaling. While PrRPR mRNA was found 

in the spinal cord, adrenal gland, and femur, it was most abundant in the anterior lobe of 

the brain’s pituitary, which is located below the hypothalamus (28). Even though PrRPR 

appears to be related to prolactin release, it has other biological functions as well. For 

example, PrRPR-knockout mice exhibited increased body weight and fat mass compared 

to wildtype (wt) mice after 11 and 15 weeks (29). Along with the increased body weight 
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and obesity, the knockout mice had decreased glucose tolerance and increased leptin, 

cholesterol, LDL, and HDL. Interestingly, food intake was actually decreased in female 

knockout mice. In addition, the Otsuka-Long-Evans-Tokushima Fatty (OLETF) rat strain, 

which serves as a rodent model of type II diabetes, encodes a mutant form of GPR10, in 

which the amino terminus is truncated. Binding of isotopically labeled PrRP was not 

detected in the reticular thalamus of OLETF rats compared to controls, indicating that the 

receptor mutation may play a role in the diabetes-like phenotype (20). 

 

Prolactin releasing peptide--the endogenous agonist of the PrRPR 

PrRP was originally isolated from bovine hypothalamus (28), but its mRNA has 

since been found in other tissues. In rats, PrRP mRNA was detected in the pituitary, the 

medulla oblongata, and the hypothalamus (30, 31). In humans, it was found in the 

medulla oblongata and the pancreas (31). Interestingly, PrRP is also able to activate RF- 

and FF-amide receptors, such as the human NPFF2 receptor (32). As the endogenous 

agonist of the PrRPR, it is not unexpected that circulating PrRP levels are also associated 

with energy and body weight homeostasis and metabolic diseases, such as obesity and 

diabetes. For example, reduced PrRP mRNA levels are found in fasted male rats and 

obese Zucker rats (33). Further, injection of PrRP into the central nervous system of 

PrRPR-knockout mice resulted in decreased food intake, and repeated administration of 

the peptide appeared to cause increased energy expenditure, as measured by core body 

temperature and oxygen consumption (29). 

PrRP is a member of the RF-amide peptide family, the members of which are so-

named for their arginine-phenylalanine C-terminal residues. There are two isoforms of 
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PrRP, PrRP20 and PrRP31, which have 20 and 31 residues, respectively. Both isoforms 

bind to the PrRPR with a potency of less than 10 nM. The seven C-terminal residues of 

PrRP, PrRP14-20 (PrRP25-31), were also able to stimulate the receptor but exhibited 

reduced binding (30). Later, structure-activity relationship (SAR) studies indicated that 

the 13 C-terminal residues are able to agonize the PrRPR. The authors found that 

amidation of the C-terminus is required for activity and that mutation of R19 / R30 and F20 

/ F31 was not well-tolerated (34). 

Nuclear magnetic resonance (NMR) structural studies of PrRP revealed a stable 

helical conformation with a flexible N-terminus (35), but the Cartesian coordinates of the 

resulting structural ensemble was not made publicly available. Another study also 

published an image of the peptide structure but no experimental details or coordinates 

(36). Therefore, in order to study the structure of PrRP and its interaction with the 

PrRPR, the published chemical shifts (CSs) and nuclear Overhauser effect distances 

(NOEs) were used to generate an ensemble of models that agreed with the experimental 

data (Figure 1). Taken together with circular dichroism (CD) spectroscopic studies and 

receptor activity data collected using several PrRP mutants, it was found that the ability 

of PrRP to activate the PrRPR depends on its helical propensity (37) (Chapter II). The 

models were computationally docked into a comparative model of the PrRPR to provide, 

in addition to a large set of pharmacological data, a structural biological perspective of 

the binding mode of PrRP to PrRPR. Substitution of D6.59 (Ballesteros-Weinstein 

numbering (38)) on the PrRPR to arginine resulted in a constitutively active receptor. 

While the mutant receptor exhibited little to no activity when wt PrRP20 was added to 

expressing cells, activity was recovered with D19PrRP20, indicating that residue 19 on 



#
6#

PrRP20 and residue 6.59 on the PrRPR form an electrostatic interaction. Further, double-

cycle mutagenesis experiments pointed to a second interaction partner on the receptor, 

E5.26 (19) (Figure 1, Appendix B). 

 
Figure 1:  Dual binding mode of PrRP to the PrRP receptor 
The 13 C-terminal residues (8-20) of PrRP (green), de novo folded using RosettaNMR (37) 
(Chapter II) docked into the PrRP receptor binding site (lavender) (39) (Appendix B). D6.59 and 
E5.26 on the PrRP receptor and R19 on PrRP are shown as sticks and labeled accordingly. Receptor 
helices are rendered as ribbons. 

 

The ghrelin receptor is implicated in variety of diseases and physiological functions 

 The growth hormone secretagogue receptor 1a (GHSR1a), also known as the 

ghrelin receptor, is another GPCR. It is primarily located in the hypothalamus (40, 41), 

but lower expression levels have also been observed in the thyroid and adrenal glands, 

the myocardium, and the spleen (42, 43). This receptor was first found to be activated by 

the synthetic growth hormone releasing peptide, which stimulates growth hormone 

secretion from the pituitary gland (44). Since then, it has been found to be involved in 

appetite regulation, energy expenditure, and reward-driven behaviors (45, 46), such as 
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alcohol intake in mice (47). Synthetic agonists of the receptor may be useful in improving 

learning and exploratory behavior (48), and ghrelin receptor antagonists reversed ghrelin-

induced increase in food intake (49). GHSR1a exhibits an inherently high basal level of 

activity (50, 51). Interestingly, upon ligand binding, the ghrelin receptor can induce cell 

signaling via multiple pathways, which indicates that it may be capable of functionally 

biased signaling (52). Given the broad range of functions in which this receptor is 

implicated, it is important for the biomedical research community to understand its 

mechanism(s) of activation in the context of its structure and dynamics. 

 

Ghrelin is a unique peptide hormone that activates the ghrelin receptor 

In 1999, the peptide hormone, ghrelin, was discovered to be an endogenous ligand 

of GHSR1a. Several studies have demonstrated ghrelin's importance in regulating 

appetite. For example, increased levels of ghrelin in blood plasma were measured in 

human subjects shortly before mealtime, which then decreased afterwards (53). However, 

in general (i.e., not before meals), obese individuals exhibited decreased amounts of 

ghrelin in their plasma relative to lean individuals (54). In addition to its orexigenic 

effects, administration of ghrelin has been shown to lead to improved memory retention 

(55, 56). 

Ghrelin, like PrRP, is a short peptide, having a primary sequence of 28 amino 

acids. It is the only known peptide hormone that has a lipid modification. Even though 

desacylated ghrelin is more prominent in the bloodstream, Ser3 of the peptide must be 

acylated in order to activate GHSR1a (41, 57). While the original discovery of ghrelin 

pointed to an octanoyl group on Ser3 (41), fatty acids of different lengths can also be 
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added via ghrelin O-acyltransferase (58-60). In addition to the acylation at Ser3, a peptide 

core consisting of residues 1 to 4 is able to activate GHSR1a in vitro (57). 

The structure of ghrelin remains under debate. NMR and CD spectroscopy of both 

ghrelin and desacyl ghrelin indicate that both peptides are highly unstructured in aqueous 

solution (61). More recent studies unsurprisingly indicate that the peptide becomes 

increasingly helical with the addition of trifluorethanol (TFE) (62). This helical model is 

supported by molecular dynamics (MD) simulations performed in a membrane/water 

environment (63), and low-resolution 1H NMR studies in cells support a helical 

secondary structure (64). New structural and dynamical information from solid-state 

NMR (ssNMR) also point to a highly mobile structure, in which a semi-helical peptide is 

bound to the membrane of lipid vesicles (Chapter III). 

 

Membrane protein and peptide structure elucidation by computational methods  

Membrane proteins pose a special challenge for traditional structural biological methods  

Despite their clear biological significance, including the two specific examples 

given above, MPs make up less than 2% of all proteins of known structure. This statistic 

points to a number of technical and methodological difficulties encountered in protein 

over-expression, purification, and structural elucidation. For example, complications 

often include low expression levels, protein aggregation, instability, and insolubility. 

Unlike soluble proteins, MPs must be reconstituted into membrane mimetics that do not 

perturb their native conformations. This often involves extensive screening of appropriate 

conditions (65). Further, once enough protein can be obtained for structural 

characterization, optimal conditions for obtaining diffracting crystals (for X-ray 



#
9#

crystallography) or assignable spectra (for NMR) must be established. Additional protein 

engineering, such as site-directed mutagenesis (66), T4-lysozyme (67, 68) fusion, or 

antibody binding (66), may be required in order for a MP to crystallize, which may or 

may not significantly disturb the protein's native conformation. 

A number of technological advances have been made in recent years to address 

the numerous challenges associated with MP structural biology. Among these are 

automated liquid handling and high throughput crystallization for X-ray crystallography 

(69) and methyl-TROSY methods, site-specific labeling, and the use of paramagnetic 

relaxation enhancements for solution NMR (70-72). Other structural biological 

techniques, such as electron paramagnetic resonance (EPR) (73-77), and ssNMR 

spectroscopy (78-81) have also been shown to be useful, but unlike X-ray crystallography 

and solution NMR, these methods do not currently allow for 3D structure elucidation. As 

a result, despite the improvements in technology, much of which has stemmed from 

structural genomics initiatives, MP structures are sorely underrepresented (82) (Figure 2). 

Computational methods for MP structure prediction have also been progressing at a slow 

but steady pace. The two main MP structure prediction approaches are comparative 

modeling and de novo, or ab initio, folding. However, even with an increasing number of 

template structures for comparative modeling and more sophisticated approaches to de 

novo folding, the use of experimental data in order to limit the conformational search 

space is often required (see below). 
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Figure 2:  Human integral membrane proteins 
Pfam (83) families and PDB structures. a) Mapping human MPs to Pfam families. Three 
thousand, three hundred and five (3,305) polytopic α-MPs were extracted from the 20,247 
sequences part of the SwissProt Homo sapiens proteome (UniProt release February 22, 2012) 
using PolyPhobius (84). Assignment of proteins to Pfam families was done as described in (82) 
using the transmembrane assignment of PolyPhobius. Three thousand and sixty-three (3,063) 
MPs can be mapped to a Pfam family (orange); 242 MPs fall outside of the current Pfam 
collection of families (red). b) Human MP Pfam families covered by structure. Human MP Pfam 
families with no structural representative (green) and with at least one structural representative 
(blue: representative is a human protein; light blue: representative is not a human protein) (82). 

 

Small peptides are highly flexible, making structure determination difficult 

 Similarly to MPs, the structure elucidation of small (< 50 amino acids) peptides 

also appears to be challenging. An advanced search of the PDB for molecules in the 

"peptide" class according to the Structural Classification of Proteins (SCOP) (85) having 

sequence homology of less than 90% and fewer than 50 residues returned fewer than 700 

hits, which is less than 1% of all depositions. 

Small peptides are often highly flexible and unstructured, which makes them 

difficult to crystallize. Furthermore, due to their lack of stable secondary structure, NMR 

peak assignment can become cumbersome, if not impossible. Even when chemical shifts 

(CSs) can be assigned, the population of peptide conformations can be highly 

heterogeneous. As a result, structural characterization of peptides is often limited to low-
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resolution techniques, such as CD, fluorescence, and fourier transform infrared (FTIR) 

spectroscopy (86). These methods allow for the study of peptide secondary structure and 

conformations. MD simulations of peptides have also been performed in order to observe 

them on an atomic level, but these simulations are often not long enough to capture 

secondary structure transitions or larger-scale conformational changes (87-90). 

 

Computational modeling can serve as an alternative approach to protein structure 

determination 

There are two main means of computational protein structure prediction: 

comparative modeling, which is often referred to as homology modeling, and de novo, or 

ab initio (i.e., from the primary sequence) folding. These two approaches are 

methodologically distinct from one another, but they can both be used for generating 3D-

models of proteins relatively quickly. Further, they can both be paired with experimental 

information to produce models that are consistent with empirical data. 

 

Comparative modeling relies on the availability of structures of related proteins  

Comparative modeling refers to the elucidation of the tertiary fold of a protein, 

guided by the known structure of another, often homologous, protein. The unknown 

structure is commonly called the “target,” while the protein of known structure, upon 

which the primary sequence of the target is threaded, is termed the “template.” The 

known template structure reduces the conformational search space by providing a protein 

backbone scaffold; areas where the template and target sequences diverge significantly 

are typically remodeled and refined via the loop building application. Although the 
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application is known as “loop building,” a “loop” is defined here as any area where the 

backbone is to be rebuilt de novo, which most often occurs in flexible regions but can 

also include secondary structural elements (SSEs). Comparative models have played a 

major role in aiding experimental design and the interpretation of experimental results. 

They can be employed to help predict structure-function relationships (91), predict 

binding pockets for ligands during structure-based drug design (92), and aid in the 

determination of target residues for site-directed mutagenesis (93, 94). 

Modeller (95) is one of the most popular comparative modeling tools. 

Comparative modeling with Modeller is highly automated and, as with Rosetta, works 

best for cases in which the sequence identity between the target sequence and the 

template structure is 30% or greater. It works by optimizing the comparative model’s 

satisfaction of spatial restraints derived from one or multiple templates. Comparative 

modeling in Rosetta (96, 97) is a multiple-step process that requires more input from the 

user; specifically, user-defined alignment and loop definitions are taken into account 

throughout the process. These definitions can be provided to Modeller but are not 

necessary for the program to generate a model. 

Sometimes, homologous, experimentally determined structures cannot be 

identified for use as templates, in which case homology modeling is not applicable. 

However, as structure is better conserved evolutionarily than sequence, proteins with low 

sequence identity can have similar folds. In this case, 3D-fold recognition meta-servers, 

such as Phyre (98) can be used. Phyre constructs a “fold library” via three steps: 1) 

combining a library of proteins of known structure from the SCOP database (85) with 

new entries from the PDB, 2) scanning the sequences against a non-redundant sequence 
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database, and 3) constructing a sequence profile from the previous step. When a query 

sequence is submitted to the server, Phyre produces a sequence profile of the query with 

potential homologs by running PSI-BLAST, generates a consensus secondary structure 

prediction of the query after running a plethora of secondary structure prediction 

methods, and performs a profile-profile alignment of the results from PSI-BLAST and 

secondary structure prediction by scanning these inputs against the fold library. The 

resulting alignments are scored and ranked (99). Once a suitable template has been 

identified, a sequence alignment should be performed between the target and template 

sequences. 

 

De novo folding with Rosetta 

When only the primary sequence of a protein is known, de novo folding can 

sometimes be used to predict the protein’s tertiary structure. This method of protein 

structure determination is usually only considered when a suitable template structure for 

comparative modeling cannot be found or if the protein has a potentially novel fold. The 

Rosetta software suite is one of the most commonly used programs for de novo folding 

(100-103). However, to date, Rosetta has been shown to successfully fold only small, 

soluble proteins (fewer than 150 amino acids) and performs best if the proteins are 

mainly composed of SSEs (α-helices and β-strands) (104). Helical MPs between 51-145 

residues were predicted within 4Å of the native structure (105). Accurate prediction of 

larger and/or more complex proteins can be achieved with the addition of experimental 

data, such as NMR CSs and distance data (106-108). Further, only sequences of very 

small proteins (up to 80 residues) have been predicted to atomic-detail accuracy in the 
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absence of experimental restraints (109-111). Therefore, whenever an experimental 

structure of a related protein is available, comparative modeling is the method of choice. 

 

Other de novo folding methods are also available 

While Rosetta was one of the earliest tools for de novo protein structure 

prediction, there are numerous other promising software tools as well, but most are 

primarily applicable to soluble proteins. The Zhang lab's QUARK (112), for example, 

was one of the top performers in the template-free modeling category in the most recent 

Critical Assessment of protein Structure Prediction (CASP), which is held biannually 

(113). QUARK, like Rosetta, combines fragment-based assembly with knowledge-based 

potentials. QUARK samples conformational space of protein folds via replica exchange 

Monte Carlo simulations, where the initial structure for each simulation is constructed by 

randomly connecting the peptide fragments, which can range from 1-20 residues. EVFold 

leverages the co-evolution of pairs of residues to generate initial 3D geometries of 

proteins before refining the models using simulated annealing molecular dynamics 

(SAMD) (114). The BioChemical Library de novo folding protocol, called BCL::Fold, 

was able to accurately predict topologies for 61 of 66 test proteins ranging in size from 83 

to 293 amino acids via the movement of idealized SSEs in the presence of knowledge-

based potentials (115, 116). 

 

There are relatively few de novo folding methods for membrane proteins 

Compared to the numerous soluble protein de novo folding tools available, there 

are relatively few MP-specific methods. RosettaMembrane, which was introduced in 
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2006, was initially tested on 12 helical MPs and was able to predict between 51 and 145 

residues with an root mean square deviation (RMSD) of less than 4Å relative to the 

crystal structure (105). In 2009, an alternative version of RosettaMembrane was shown to 

be able to fold 9 of 12 MPs that were 190 to 300 residues in length with approximately 

the same level of accuracy (117). A MP-specific version of EVFold has been reported to 

fold MPs of up to 14 helices with impressive accuracy by employing the same concepts 

as the original EVFold (118). FILM3 employs fragment-based assembly, in which 

secondary structure prediction is used to select fragments, in combination with a scoring 

function that takes only correlated mutational information of the protein into account. 

This method achieved an RMSD of 5.7Å over an MP of 514 residues in length (119). 

 

De novo folding tools for peptides are also limited  

There are a number of tools for folding peptides de novo (120-124). Two of the 

best-performing methods are PEP-FOLD (120) and Rosetta FlexPepDock (121). 

However, PEP-FOLD can only fold peptides that are between 9 and 23 amino acids, and 

FlexPepDock is designed to fold peptides in the presence of the peptide binding site of a 

soluble protein receptor. MD simulations can be used to predict the 3D structures of 

peptides as well, but these tend to be computationally expensive and require non-

equilibrium sampling strategies, such as Monte Carlo, replica exchange, or parallel 

replica dynamics (90, 125, 126). 

 

 

 



#
16#

The protein structure prediction sampling and scoring problems 

The two main types of energy functions:  physics-based and knowledge-based 

In order to predict the structures of proteins computationally, computational 

structural biologists must address two main challenges when developing or improving 

prediction methods. These are often referred to as the scoring and sampling problems. 

During modeling, protein conformations are often evaluated via one or more energy, or 

scoring, terms. The set of scoring terms used during model assessment is called the 

scoring function, energy function, or force field. Broadly speaking, energy functions 

come in two primary categories: physics-based and knowledge-based. As implied by the 

name, physics-based scoring functions, or potentials, employ physical principles in their 

treatment of protein conformations. These are most often based on Newtonian's laws of 

motion, in which, for example, chemical bonds are treated as springs. The use of 

Newtonian mechanics-based force fields is commonly, but not always, used in MD 

simulations. 

Knowledge-based potentials (KBPs) make the assumption that, in terms of protein 

structure, naturally occurring phenomena, such as torsion angles, hydrogen bonding 

propensities, etc., are common because they are energetically and biologically favorable. 

These potentials are generally derived by collecting statistics on proteins of known 

structure (e.g., from the PDB) and correlating statistical propensities with energies via the 

Boltzmann relationship. One advantage of KBPs is that they require relatively little 

computational power to generate. However, they are inherently limited in their accuracy 

because they are developed from available protein structures, which can be problematic 

for the evaluation of conformations of MPs and peptides. 



#
17#

The RosettaMembrane energy function 

The energy function in Rosetta is derived empirically through analysis of 

observed geometries of a subset of proteins in the PDB. The measurements include, but 

are not limited to: radius of gyration, packing density, distance/angle between hydrogen 

bonds, and distance between two polar atoms. The measurements are converted into an 

energy function through Bayesian statistics (102, 127). The scoring function in Rosetta 

can be separated into two main categories: centroid-based scoring and all-atom scoring. 

The former is used for de novo structure prediction and initial rounds of loop building 

(102, 128, 129). The side-chains are represented as “super-atoms,” or “centroids,” which 

limit the degrees of freedom to be sampled while preserving some of the chemical and 

physical properties of the side-chain. When de novo folding MPs in Rosetta, MP-specific 

scoring terms are used (105). These scoring terms are similar in nature to those used for 

soluble protein folding, but they were derived while taking the RosettaMembrane implicit 

membrane environment account. This membrane environment is divided into 5 main 

sections: 1) inner hydrophobic, 2) outer hydrophobic, 3) interface, 4) polar, and 5) water. 

During folding of MPs, each amino acid's position in the membrane is determined and its 

contribution to the overall energy of the model computed accordingly. 

The RosettaMembrane all-atom scoring function represents side-chains in atomic 

detail (130). Like the centroid-based scoring function, the all-atom scoring function is 

comprised of weighted individual terms that are summed to create a total energy for a 

protein. Most of the scoring terms are derived from statistics generated over proteins of 

known structure. The MP full-atom energy function assesses van der Waals attractive / 

repulsive forces based on the Lennard-Jones 6-12 potential. It also includes scoring terms 
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that evaluate backbone torsion angles, inter-residue pairing propensities, and solvation 

based on the Laaridis-Karplus model (131). There is also an orientation-dependent 

hydrogen bonding term (132). The solvation and hydrogen bonding terms were modified 

in order to account for the implicit membrane environment. While the atomic-level 

RosettaMembrane energy function is important for applications, such as small-molecule 

ligand docking, peptide docking, and comparative modeling, it is not employed during de 

novo folding and will therefore not be discussed in further detail. The development and 

implementation of the scoring function is reported in (130). 

 

Means of limiting protein conformational sampling during de novo folding 

Overcoming the sampling problem is an ever-present goal in the development of 

protein structure prediction methods. While approximations of conformational energies 

using Newtonian physics or KBPs can speed up simulations, sampling complex 

topologies, such as those seen in transporters and GPCRs, often requires the 

implementation of more clever folding algorithms. For example, Rosetta estimates local 

interactions via the use of 3- and 9-amino acid fragments generated from a database of 

proteins of known structure (100, 102). While this allows for efficient sampling for small 

proteins, such as ubiquitin, it is insufficient for folding large proteins with complex folds. 

To address this weakness, BCL::Fold can fold proteins with higher contact order by 

moving entire SSEs (115). EVFold (114, 118, 133) and FILM3 (119) confine the 

conformational search space by generating distance restraints based on co-evolutionary 

information. In the case of RosettaMembrane (105, 117), the implicit membrane 

environment itself imposes an additional constraint due to the fact that it favors the 
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placement of hydrophobic residues in the membrane core and requires helices, which 

alternate N- to C-terminus, to lie relatively orthogonal to the membrane plane.  

 

Combining computational methods with experimental data can further reduce 

conformational search space 

Incorporation of experimental data into structure prediction and analysis has also 

been shown to improve the quality of the final model or ensemble of models (106-108, 

134-137). This is because, in addition to other sampling enhancements, such as fragment 

insertion, experimental restraints can further narrow down the conformational search 

space (Figure 3). Numerous types of experimental data have been incorporated into such 

protocols, including electron density from X-ray crystallography (138) and electron 

microscopy, NMR distance and orientation data (137, 139), EPR distance data (134, 

135), crosslinking restraints (140), small angle X-ray scattering data (141), and deuterium 

exchange mass spectrometry data (142). While these types of information are more often 

applied to de novo protein structure elucidation, they can also be of some utility in the 

building of loops (19), reorientation of domains during comparative modeling, or 

identification of residues involved in ligand binding. 
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Figure 3:  Rosetta approach to limiting conformational sampling 
If all of a protein's conformational space is represented by the gray background, Rosetta enhances 
its sampling of that space by incorporating local sequence bias (blue), evaluating non-local 
interactions based on KBPs (green), and taking experimental data into account (purple). Ideally, 
the native structure or ensemble of structures (star) will be found at the intersection of all three 
approximations. 
 

Protein structure determination by combining NMR and computational methods 

 Protein structure determination using NMR spectroscopy requires that 

computational methods be used to generate an ensemble of models that represents protein 

conformations consistent with restraints derived from the NMR data. The quality of an 

ensemble of models determined by NMR is often reported as RMSD, which is, in this 

case, a measure of precision. That is, the "tightness" of a structural ensemble will have a 

lower RMSD than a "looser" one. Traditionally, the restraints employed during the 

structure calculations are derived from inter-proton distance information arising from 

NOEs, as well as dihedral angle restrictions based on secondary structure definitions 

predicted from the CS values of the individual residues (143). It should be noted that 

other NMR experimental information, such as that resulting from residual dipolar 
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couplings (RDCs) and paramagnetic relaxation enhancements (PREs) can be used as 

well. Typically, the quality of the conformational ensemble is directly related to the 

richness of the NMR dataset. It is often difficult to fully assign NMR CSs, which makes 

the acquisition of such datasets difficult. This is especially the case for intrinsically 

disordered, or unordered, proteins (IDPs and IUPs, respectively), which the protein or 

peptide undergoes conformational changes and dynamics on timescales for which NMR 

is ill-suited. In these cases, additional information, such as from homologs of the protein 

for which 3D structures are available, can be used to generate an ensemble using sparse 

NMR data. Further, "bootstrapping" methods, in which ambiguous NMR structural 

restraints are used for modeling in an iterative fashion, can also be helpful (107, 108, 136, 

144).  

 

Protein structure determination by combining EPR and computational methods 

The applicability of site-directed spin labeling (SDSL) EPR spectroscopy 

combined with X-ray crystallographic information has been demonstrated in the 

characterization of potassium ion channels (145, 146) and ABC transporters (74, 147). 

The secondary structural environment (148), burial state (149, 150), and position in the 

membrane of the spin label can be probed by measuring collision frequencies with 

NiEDDA (Ni(II) ethylenediaminediacetic acid) and molecular oxygen (O2) (151). Global 

geometric restraints can be derived from distances between two spin labels 5-80Å apart. 

EPR distance measurements have been used extensively in studies of protein dynamics 

(152, 153). This structural biological technique requires relatively low amounts of protein 
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due to its sensitivity and is not restricted by protein size or native environment (154), 

making it an appealing tool for studying MP structure and conformational changes. 

The combination of SDSL-EPR and computational modeling is steadily becoming 

a popular method of protein structure elucidation. In 1995, an automated method for 

modeling the 7 TMHs of GPCRs was presented. In addition to other experimental and 

sequence information, SDSL-EPR data provided information concerning labeled 

residues’ orientation relative to the inside or outside of the 7-helix bundle (155). The 

structure of α-synuclein was built and refined using SAMD restrained by EPR-

determined immersion depths and distances. It was found that α-synuclein forms an 

extended, curved α-helical structure that is over 90 amino acids in length (156). In 

another study, EPR-computational modeling hybrid methods were used to propose a 

novel closed conformation of MscS that includes the previously unresolved NH2-

terminus. The authors proposed that the MscS closed state is in a different and more 

compact conformation than the one trapped in the crystal structure (157).  

EPR distances have a rather large uncertainty when translated into distances 

between Cαs or Cβs unless the conformation of the spin label is known at every site. To 

solve this problem, Alexander, et al. presented a low-resolution spin-label model in 

which spin label distances are converted into distance ranges between Cβs by using a 

“motion-on-a-cone” model. This approach was tested on T4-lysozyme and αA-crystallin 

with Rosetta, the results for which yielded 1.0Å and 2.6Å full-atom models, respectively 

(134). In a related approach, the restraint-driven Cartesian transformations (ReDCaT) 

method for calculating conformational changes in MPs employs a distance deviation 

factor, ∂, to define a range between the restraints’ upper and lower limits. After using this 
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method for modeling, analysis of the structural basis of activation gating in the K+ 

channel, KcsA, revealed a mechanism consistent with a scissoring-type motion of the 

TM2 segments (158). The aforementioned structural study of MscS also modeled spin 

labels using ReDCaT (157). More recently, RosettaEPR was introduced, in which an 

EPR distance KBP was derived based on the cone model and used to fold T4-lysozyme to 

atomic detail (135). EPR data from double electron-electron resonance (DEER) 

experiments were also used to guide the modeling of conformational changes seen upon 

GPCR activation (159, 160). Although a spin label rotamer library based on the crystal 

structure of T4-lysozyme labeled with methanethiosulfonate (MTS) has been developed 

(161), methods for modeling EPR spin labels in atomic detail are also desired. Sale, et al. 

described a method for enhancing the utility of dipolar EPR distances as constraints in 

modeling protein structures by explicit incorporation of the spin labels and showed that 

accounting for the probe conformation and tether length increased accuracy of distance 

measures 2-fold (162). Simulated scaling, which couples the random walk of a potential 

scaling parameter and MD in the framework of a Monte Carlo, proved to be an efficient 

means of mapping the MTS spin label to atomic detail in spin-labeled T4-lysozyme 

(163). Additionally, spin label rotamer libraries have been developed (164). 

 

Membrane protein and peptide structure determination made possible by computational-

experimental hybrid technologies 

Computational modeling and experimental data from NMR and EPR 

spectroscopy has the potential to provide much insight into MP structure and function. 

While computational methods alone cannot currently sample conformational space 
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sufficiently enough to reliably predict MP structures, and flexible peptides and complex 

MPs continue to evade structure determination by more traditional methods, when taken 

together, these diverse methods have shown to be synergistic. The work presented in the 

following chapters describe a few examples of how the coupling of computational 

biology with experimental data can enable scientists to learn about the structural basis of 

protein function and presents a new method for MP structure prediction that can be used 

in conjunction with experimental data. 

 
#  
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CHAPTER II 

 

THE ACTIVITY OF PROLACTIN RELEASING PEPTIDE CORRELATES 
WITH ITS HELICITY 

 
 

This work is based on publication (DeLuca*, Rathmann*, Beck-Sickinger, and 

Meiler, 2013). *These authors contributed equally. 

 

Summary 

The prolactin releasing peptide (PrRP) is involved in regulating food intake and 

body weight homeostasis, but molecular details on the activation of the PrRP receptor 

remain unclear. C-terminal segments of PrRP with 20 (PrRP20) and 13 (PrRP8-20) 

amino acids, respectively, have been suggested to be fully active. The data presented 

herein indicate this is true for the wildtype receptor only; a 5-10-fold loss of activity was 

found for PrRP8-20 compared to PrRP20 at two extracellular loop mutants of the 

receptor. To gain insight into the secondary structure of PrRP, we used CD spectroscopy 

performed in TFE and SDS. Additionally, previously reported NMR data, combined with 

RosettaNMR, were employed to determine the structure of amidated PrRP20. The 

structural ensemble agrees with the spectroscopic data for the full-length peptide, which 

exists in an equilibrium between α- and 310-helix. We demonstrate that PrRP8-20’s 

reduced propensity to form an α-helix correlates with its reduced biological activity on 

mutant receptors. Further, distinct amino acid replacements in PrRP significantly 

decrease affinity and activity but have no influence on the secondary structure of the 
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peptide. We conclude that formation of a primarily α-helical C-terminal region of PrRP is 

critical for receptor activation. 

 

Introduction 

The prolactin releasing peptide, or PrRP, is a member of the RF-amide peptide 

family and is mainly expressed in the medulla oblongata, brainstem, and hypothalamus 

(30, 31, 165). It is the endogenous agonist of the PrRP receptor (also known as GPR10 or 

hGR3) and interacts with nanomolar binding affinities (28). Furthermore, it has some 

affinity for other RF-amide and FF-amide receptors, such as the hNPFF2 receptor (32). 

These receptors are integral membrane proteins that belong to the large family of G-

protein coupled receptors, or GPCRs, which constitute about one-third of all major drug 

targets (25). While the original function of PrRP was proposed to be the stimulation of 

prolactin secretion (28, 166), it is now generally accepted that this is not the primary 

function of the peptide. Increasing evidence indicates that PrRP plays a significant role in 

food intake and body weight homeostasis (167). Indeed, intracerebroventricular 

administration of PrRP with leptin in rats resulted in body weight gain (33). In addition, 

both PrRP- and PrRP receptor-deficient mice were shown to develop late-onset obesity 

(29). 

PrRP exists in two isoforms: PrRP20 and PrRP31, which consist of 20 and 31 

residues, respectively. The C-terminal residues of both isoforms are identical, and both 

isoforms are biologically equipotent in the activation of the PrRP receptor. It has been 

demonstrated that PrRP can be shortened to PrRP8-20 without any loss of activity at the 



#
27#

wildtype (wt) receptor and that these thirteen C-terminal residues are the minimum 

number of amino acids essential for full activation of the PrRP receptor (34).  

Little is known about the mode of binding and activation of the PrRP receptor by 

PrRP, especially on a structural level. This is likely due to the lack of functional 

antagonists of the PrRP receptor and difficulties in structure determination of GPCRs. 

Here, we investigate the importance of the peptide’s secondary structure for receptor 

activation. Nuclear magnetic resonance (NMR) spectroscopy had previously been used to 

determine the structure of PrRP20 in micelles (35). A second study reported an image of 

a PrRP20 structural model without revealing experimental details, such as solvent 

conditions or a list of NMR restraints (36). Neither study made the models publicly 

available. However, D’Ursi et al. provided a list of sparse chemical shifts and nuclear 

Overhauser effect distance restraints (NOEs) (35). We employed RosettaNMR (104, 106, 

168) to generate an ensemble of peptide conformations that is consistent with newly 

obtained circular dichroism (CD) spectroscopy data and this set of NMR restraints. 

Further, we identified receptor mutants for which PrRP8-20 displays a significant loss in 

activation compared to PrRP20. By comparing the activation ability of four PrRP analogs 

on two receptor mutants, we can distinguish direct effects on ligand-receptor interaction 

and indirect effects that result from alteration of peptide helicity. This combined 

computational-experimental approach allows us to understand the interaction of PrRP and 

its receptor on a molecular level. 
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Materials and methods 

Structure determination using RosettaNMR 

Details of the RosettaNMR protocol have been described elsewhere (104, 106, 

137, 168). Briefly, torsion angle restraints were derived from 13 Hα chemical shift values 

using TALOS (169) (Table 1). Further, 28 distance restraints obtained from NOEs 

between backbone hydrogen atoms were used and were classified as either “strong” 

(proton-proton distance ≤ 3Å) or “weak” (proton-proton distance ≤ 5Å) (Table 2). A 

library of overlapping 3- and 9-amino acid peptides spanning residues 8-20 of PrRP20 

were generated from coordinates found in the PDB. During folding, an additional 10 

NOEs resulting from resonances between side-chain protons--again, classified as 

“strong” (≤ 3Å) or “weak” (≤ 5Å)–were included as distance restraints (Table 2).  

Ten thousand backbone-only structural models were generated using 

RosettaNMR’s de novo folding algorithm(100, 102). From these original models, the 

10% most energetically favorable models (according to the RosettaNMR scoring 

function) were refined to atomic detail, including the addition of the functionally 

obligatory C-terminal amide functional group. The RosettaNMR energy function includes 

solvation, electrostatic interactions, van der Waals attraction/repulsion, and hydrogen 

bonding, all of which were included in the assessment of overall structural quality(100, 

170). The 20 conformations that fulfill the distance restraints with deviations smaller than 

1Å and have the lowest RosettaNMR energies constitute a conformational ensemble that 

is consistent with the published NMR data and is physically plausible according to the 

RosettaNMR energy function.  
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Table 1:  Chemical shifts (35) used to generate 3- and 9-amino acid fragments 

Residue)
Δ)in)Hα)
Chemical)
Shifta)

W8# 4.34#
Y9# 4.03#
A10# 4.14#
S11# 4.31#
R12# 4.18#
G13# 3.86#
I14# 4.12#
R15# 4.65#
P16# 4.46#
V17# 4.14#
G18# 3.94#
R19# 4.05#
F20# 4.60#

a For G13 and G18, took the first value reported for the Hα chemical shift 
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Table 2:  NOEs (35) used to generate 3- and 9-amino acid fragments and to de novo fold and 
refine PrRP models 

Residue)Pair) NOE)Type) NOE)Strengtha)
W8_Y9# HN_HN# weak#b#
Y9_A10# HN_HN# weak#
A10_S11# HN_HN# weak#
S11_R12# HN_HN# weak#
G13_I14# HN_HN# weak#
I14_R15# HN_HN# weak#
V17_G18# HN_HN# strong#
G18_R19# HN_HN# strong#
W8_Y9# Hα_HN# weak#
Y9_A10# Hα_HN# weak#
A10_S11# Hα_HN# weak#
S11_R12# Hα_HN# weak#
R12_G13# Hα_HN# weak#
G13_I14# Hα_HN# weak#
I14_R15# Hα_HN# weak#
P16_V17# Hα_HN# weak#
V17_G18# Hα_HN# strong#
G18_R19# Hα_HN# weak#
R19_F20# Hα_HN# strong#
W8DY9) HβDHN)c) weak)
Y9DA10) HβDHN) weak)
S11DR12) HβDHN) weak)
R12DG13) HβDHN) weak)
I14DR15) HβDHN) strong)
P16DV17) HβDHN) weak)
V17DG18) HβDHN) weak)
R19DF20) HβDHN) strong)
Y9_S11# HN_HN# weak#
A10_R12# HN_HN# weak#
S11_G13# HN_HN# weak#
Y9_S11# Hα_HN# weak#
A10_R12# Hα_HN# weak#
S11_G13# Hα_HN# weak#
P16_G18# Hα_HN# weak#
I14_V17# Hα_HN# weak#
P16_R19# Hα_HN# weak#
R12DR15) HαD)Hβ) weak)
I14DV17) HαD)Hβ) weak)

a NOEs were classified as either “weak” (proton-proton distance ≤ 5Å) or “strong” (proton-proton 
distance ≤ 3Å); b Color key:  white=d(i,i+1); light gray=d(i,i+2); dark gray=d(i,i+3); c Bolded text 
indicates that the NOE occurred between side-chain protons and was only used during folding 
(not fragment generation). 
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Peptide synthesis 

PrRP20, PrRP14-20, PrRP8-20, PrRP4-20, A15PrRP20, A19PrRP20, and 

A20PrRP20 were synthesized by automated multiple solid-phase peptide synthesis on the 

multiple peptide synthesizer Syro II (MultiSynTech GmbH, Witten, Germany) using the 

orthogonal Fmoc/tBu strategy.59 Rink amide resin (30 mg, resin loading 0.6 mmol·g-1), 

obtained from Iris Biotech GmbH (Marktredwitz, Germany), was used to produce the C-

terminally amidated peptides. Nα-Fmoc (N-(9-fluorenyl)methoxycarbonyl)-protected 

amino acids were purchased from Iris Biotech GmbH (Marktredwitz, Germany). The 

protected amino acids (10eq) were dissolved in 0.5 M tert-butyl alcohol in 

dimethylformamide and activated in situ by diisopropylcarbodiimide (DIC) (10eq). 

Removal of protection groups and final cleavage of the peptide from the resin was 

accomplished simultaneously using a cleavage cocktail consisting of either trifluoroacetic 

acid (TFA)/thioanisole/1,2-ethanedithiol (90:7:3 v/v/v) for tryptophan-containing 

peptides or TFA/thioanisole/p-thiocresol (90:5:5 v/v/v) within 3 hours.  

Peptide purification was achieved by preparative reversed-phase HPLC (Vydac 

RP18-column, 22 × 250 mm, 10 µm/300Å, Grace, Deerfield, IL, USA or Phenomenex 

Jupiter 10 U Proteo column, 250 × 21.20 mm, 90Å, Aschaffenburg, Germany) using 

0.08% TFA in either acetonitrile or methanol (MeOH) and 0.1% TFA in water as the 

eluting system to yield homogenous peptides of > 90% purity. The peptides were 

characterized by mass spectrometry using matrix-assisted laser desorption ionization 

time-of-flight (MALDI-TOF) mass spectrometry on an Ultraflex III MALDI-TOF/TOF 

mass spectrometer (Bruker Daltonics, Bremen, Germany). Analytical reversed-phase 

HPLC was performed on a Vydac RP18-column (4.6 × 250 mm; 5 µm/300 Å; Grace, 
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Deerfield, IL, USA) by using two different linear gradient systems of 0.1% (v/v) TFA in 

water and 0.08% (v/v) TFA in either acetonitrile (ACN) or methanol. Analytical data are 

summarized in Table 3. 

Table 3:  Analytics of PrRP20 used for structural and biological investigations 

Peptide Sequence 
Mass [M+H]+ HPLC 

Calc. Exp. ACN 
[%] 

MeOH 
[%] Purity [%] 

PrRP20 TPDINPAWYASRGIRPVGRF-NH2 2272.6 2273.7 40.3a 65.5 b >99 
PrRP4-20 INPAWYASRGIRPVGRF-NH2 1959.3 1960.4 40.5 a 66.9 b >99 
PrRP8-20 WYASRGIRPVGRF-NH2 1562.9 1563.9 38.3 a 61.6b >92 
PrRP14-20 IRPVGRF-NH2 842.5 843.5 33.8 a 52.6 b >96 
A15PrRP20 TPDINPAWYASRGIAPVGRF-NH2 2186.1 2187.2 42.9 a 71.7 b >96 
A19PrRP20 TPDINPAWYASRGIRPVGAF-NH2 2187.5 2188.4 41.6a 70.8c >99 
A20PrRP20 TPDINPAWYASRGIRPVGRA-NH2 2196.5 2196.2 37.7a 61.6b >99 

a 10% to 60% ACN (0.08% TFA) in water (0.1% TFA) over 30 min. b 20% to 100% MeOH 
(0.08% TFA) in water (0.1% TFA) over 40 min. c 30% to 100% MeOH (0.08% TFA) in water 
(0.1% TFA) over 30 min. 
 

Cloning of the RF-amide peptide receptors in eukaryotic expression vectors 

To obtain genomic DNA from SMS-KAN cells, approximately 1 million cells 

were digested overnight at 55°C with 500 µL lysis buffer (1 M NaCl, 20% SDS, 0,5 M 

EDTA, 1 M Tris, pH 8.5) containing 50 µg proteinase K (Promega, Mannheim, 

Germany). Genomic DNA was extracted using phenol/chloroform and precipitated from 

the aqueous phase with isopropanol, washed with ethanol, and then dissolved in water. 

The coding sequence of the human PrRP receptor was obtained by PCR amplification 

from the genomic DNA of SMS-KAN cells. Cloning of cDNA into the eukaryotic 

expression vector pEYFP-N1 (Clontech, Heidelberg, Germany) C-terminally fused to 

EYFP was performed, using the XhoI and BamHI site to result in the constructs phPrRP 

receptor_EYFP-N1. Mutations were introduced with the QuikChange™ site-directed 
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mutagenesis method (Stratagene). The residues are numbered according to the system of 

Ballesteros and Weinstein (38). The correctness of all constructs was confirmed by 

sequencing of the entire coding sequence.  

 

Cell culture 

Cell culture material was supplied by PAA Laboratories GmbH (Pasching, 

Austria). COS-7 cells (African green monkey, kidney) were cultured in Dulbecco’s 

Modified Eagle’s Medium containing 10% (v/v) heat-inactivated fetal calf serum (FCS), 

100 units/mL penicillin and 100 µg/mL streptomycin. SMS-KAN cells (human 

neuroblastoma cells) were maintained in nutrient mixture Ham’s F12/Dulbecco’s 

modified Eagle medium (1:1) with 15% (v/v) FCS, 4 mM glutamine, 0.2 mM non 

essential amino acids, 10 units/mL penicillin, and 10 µg/mL streptomycin. Cells were 

grown as monolayers at 37°C in a humidified atmosphere of 5% CO2 and 95% air. 

 

Signal transduction assay 

For signal transduction (inositol phosphate accumulation) assays, COS-7 cells 

were seeded into 24-well (1.0 × 105 cells/well) or 48-well plates (6.0 × 104 cells/well) 

and transiently transfected with 0.4 µg plasmid DNA using 1.2 µL metafectene (Biontex 

Laboratories GmbH, Martinsried/Planegg, Germany). Incubation with 2 µCi/mL 

[3H]myo-inositol (GE Healthcare Europe GmbH, Braunschweig, Germany) in DMEM 

supplemented with 10% (v/v) FCS was performed one day after transfection and 16 h 

before stimulation. Labeled cells were washed once and stimulated with increasing 

concentrations of each peptide for 1 h at 37°C in DMEM containing 10 mM LiCl (Sigma-
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Aldrich, Taufkirchen, Germany) as described previously (171, 172). Receptor stimulation 

and IP accumulation were stopped by aspiration of medium, and cell lysis was performed 

with 0.1 M NaOH (24-well plate: 150 µL/well; 48-well plate: 100 µL/well) for 5 minutes. 

After neutralizing with 0.2 M (24-well plate: 50 µL/well) or 0.13 M (48-well plate: 50 

µL/well) formic acid, IP dilution buffer (5.0 mM Na-borate + 0.5 mM Na-EDTA; 24-

well plate: 1 mL/well; 48-well plate: 750 µL/well) was added to each well. 

Intracellular IP levels were determined by anion-exchange chromatography on 

Bio-Rad AG 1-X8 resin either by manual pipetting or using an automated pipetting robot 

system (USK-UTZ GmbH, Limbach-Oberfrohna, Germany). Radioactivity was measured 

by a scintillation counter (Win Spectral 1414 Liquid Scintillations Counter Wallac) (173, 

174). Data were analyzed with GraphPad Prism 3.0 program (GraphPad Software, San 

Diego, USA) and EC50-values were obtained from concentration response curves. The 

EC50-determinations were performed in duplicate and signal transduction assays were 

repeated at least twice independently.  

 

Radioligand binding studies  

For radioligand binding studies, 1.5 × 106 COS-7 cell were seeded into 25 cm2 

flasks. At 60-70% confluency, cells were transiently transfected using 4 µg vector DNA 

and 15 µL of Metafectene™ (Biontex Laboratories GmbH, Martinsried/Planegg, 

Germany). Approximately 24 hours after transfection, binding assays were performed on 

intact cells using N[propionyl3H]hPrRP20. Binding was determined with 1 nM 

N[propionyl3H]hPrRP20 in the absence (total binding) or in the presence (non-specific 

binding) of 1 µM unlabeled hPrRP20, respectively, as described previously(172, 175). 
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N[propionyl3H]hPrRP20 was obtained by selective labeling as described previously and 

resulted in a KD-value of 0.58 nM (176). Specific binding of each PrRP receptor mutant 

was compared to specific binding of the PrRP wt receptor. IC50-values and KD-values 

were calculated with GraphPad Prism 3.0 (GraphPad Software, San Diego, USA), fitted 

to a one-site competition or a one-site binding model, respectively. Each experiment was 

performed in triplicate. 

 

CD spectroscopy 

CD measurements of 40 µM peptide solutions buffered with 10 mM phosphate 

buffer at pH 5.5 or 7 were performed in the far ultraviolet region from 250 to 190 nm 

using a Jasco J-715 spectropolarimeter. Additionally, CD spectra of 10 mM phosphate 

buffered peptide solutions were measured in either 25% TFE or 100 mM SDS-containing 

solutions. Cuvettes with 2 mm path length (quartz cuvette; Hellma, Jena, Germany), as 

well as the following parameters, were used: 50 nm·min-1 scanning speed, 4 s response, 

0.2 nm step resolution, 2 nm bandwidth, temperature of 22°C. Peptide concentration was 

determined from the aromatic spectrum determined in aqueous solution and calculated 

using the molar extinction coefficient of the peptides at 280 nm (6990 M-1 cm-1). For 

PrRP14-20, the pure lyophilized peptide was weighed and diluted to 40 µM, considering 

that the final peptide mass results from the salt with TFA as counterion for both arginine 

residues. Spectra were measured in a constant nitrogen stream of 15 L·min-1. The final 

spectra were averaged from 6 to 9 baseline-corrected scans without any smoothing. The 

raw CD signal [mdeg] was converted to mean residue ellipticity, [Θ], by [Θ] = 

[Θ]observed(MRW/l·c·10), where MRW is the mean residue weight (molecular mass divided 
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by number of peptide bonds), l is path length [cm] and c is the concentration of peptide in 

mg/mL. Graphs were processed using GraphPad Prism 3.0 program (GraphPad Software, 

San Diego, USA), Microsoft Excel 2011™, as well as with the Jasco-715 

spectropolarimeter-related Jasco software. 

#

Results 

Previous NMR studies of C-terminally amidated PrRP20 reveal a helical C-terminal 

region. 

RosettaNMR (106, 136, 168) was employed to construct a model of C-terminally 

amidated PrRP from 38 previously reported inter-proton distances (NOEs) and 13 Hα 

chemical shifts, which were collected at pH 5.5 in 100 mM sodium dodecyl sulfate, or 

SDS (Table 1 and Table 2) (35). These NMR data were obtained for PrRP20. We chose 

to construct structural models for residues 8-20 of PrRP20 because the structural 

restraints cover mainly these residues, implying that residues 1-7 are conformationally 

flexible. However, because only a partial dataset was available, the herein discussed 

peptide model ensemble serves only as a starting point for further structural 

characterization of the PrRP/PrRP receptor interaction. The generated models were 

further confirmed with CD spectroscopy (see Structural investigations of PrRP by CD 

spectroscopy studies indicate a decreased helical propensity for PrRP8-20). 

 The NOEs and chemical shifts occurring within residues 8-20 are indicative of a 

combination of α- and 310-helical secondary structure. The presence of αN(i,i+2) NOEs is 

often associated with i(i+3) hydrogen bonding characteristic of 310-helices. Further, the 

ratio of αβ(I,i+3) to αN(i,i+3) NOEs, as well as the lack of αN(i,i+4) NOEs, support the 
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idea that the peptide exists in an equilibrium of α- and 310-helix in SDS micelles (177-

179) (see D’Ursi et al. for original figures). An ensemble of twenty low-energy models of 

the PrRP20 residues 8-20 consistent with the NMR data obtained for the full-length 

peptide was generated and deposited in the Protein Model Database (180) (Figure 4 

PMID: 0078404). 

#
Figure 4:  The conformational ensemble of PrRP8-20 generated using RosettaNMR 
A) The primary sequence of PrRP8-20. The three arginines are in bold. B) The twenty lowest-
energy models resulting from full-atom refinement that had a RosettaNMR restraint score ≤ 1.0 
Rosetta Energy Unit (REU). Briefly, ten thousand models were de novo folded in the presence of 
38 distance restraints. Energetically favorable models that satisfied the NMR data were then 
refined to atomic detail using the same 38 restraints. Notice that all three arginine residues are on 
one side of the amphipathic helix. 

#
Secondary structural analysis of PrRP20 models implies a conformational equilibrium. 

The final ensemble of PrRP models was chosen based on the models’ overall 

energy according to the RosettaNMR full-atom soluble protein scoring function (110), as 

well as their agreement with the NMR distance restraints for the full-length peptide 

(Table 4 and Table 5) (35). Define Secondary Structure of Proteins (DSSP)(181, 182) 

analysis indicates that these models are mainly α-helical, especially between residues 10-
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13 and 15-19, with the other residues being coil or bend/turn (Figure 5A). Note the often-

observed non-ideal helical character around residue I14. This is likely due to the inability 

of the nitrogen of P16 to hydrogen bond with the carbonyl oxygen on R12 (distance = 4.98 

± 0.27Å), thus disrupting the hydrogen bond between G13 and V17 (distance = 5.00 ± 

0.26Å) (Figure 5B). The models exhibit ϕ and ψ angles (torsion angles around the N-Cα 

bond and the Cα-C bond, respectively) characteristic of both α- and 310-helix, where α-

helices have an average ϕ angle of −57° and an average ψ angle of −70°. 310-helicies 

typically have average ϕ angles of approximately −49° and average ψ angles of −26° 

(Figure 5C) (183-185). Interestingly, residues 10-13 appear to usually form an α-helical 

turn, but they can also adopt a 310-helical structure (Table 6, Models 10 and 11). 

Furthermore, the DSSP secondary structure analysis reveals that approximately 15% of 

all models de novo folded and refined with RosettaNMR contained both α- and 310-

helical conformation, but the majority of models were primarily α-helical (Figure 6). 

These results match D’Ursi et al.’s NOE data, which support an unambiguously α-helical 

C-terminal region (residues 15-19), whereas the N-terminus of PrRP20 appeared to be in 

a conformational equilibrium, fluctuating between α-helix, 310-helix, and nascent helix or 

coil. It is noteworthy that the new ensemble agrees well with D’Ursi et al. considering the 

sparseness of the available data, which recapitulates RosettaNMR’s sampling efficiency.  
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Table 4:  Statistics for restraints, structural calculations, and structural quality for final 
ensemble of PrRP models 

NMR)distance)restraints)used)during)folding)and)refinement#
Total#restraints# 51#
Chemical#shiftsa# 13#
Distance#restraints# #
Total#NOE# 38#
Intra_residue# # 0#
Inter_residue# 38#
Sequential#(|i−j|#=#1)# 27#
Medium_range#(|i−j|#<#5)# 11#
Long_range#(|i−j|#≥#5)# 0#
) #
Structural)statistics# #
Violations#of#distance#restraints#(Å)b# 0.08#±#0.11#
Deviations#from#idealized#geometry# #
Bond#lengths#(Å)# 0.024#
Bond#angles#(°)# 0.8#
Main#chain#RMSD#to#the#mean#structure#(Å)# 0.83#
Average#main#chain#pairwise#RMSD#(Å)# 1.10#
Ramachandran#plot#statistics#(%)# #
Most#favored#regions# 85.6#
Additionally#allowed#regions## 14.4#

a Chemical shifts were used only during fragment generation and were not used during de novo 
folding and refinement. b For analysis, a violation of a restraint was counted if the inter-proton 
distance was > 5.5Å (weak) or 3.5Å (strong). There are no distance restraint violations greater 
than 0.4Å. 
 
 
 
Table 5:  NMR distance restraints violated by final ensemble of PrRP models 

Residue 
Pair 

NOE 
Type 

NOE 
Strengtha 

Number of 
Models 

Violatingb 
This Restraint 

Average Violation Distance (Å) 

17-18 Hα-HN strong 14 0.06 ± 0.002 
19-20 Hβ-HN strong 6 0.30 ± 0.11  

a During folding and refinement, NOEs were classified as either “weak” (proton-proton distance ≤ 
5Å) or “strong” (proton-proton distance ≤ 3Å). b For analysis, a violation of a restraint was 
counted if the inter-proton distance was > 5.5Å or 3.5Å, respectively). 
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Figure 5:  Evidence of helical secondary structure in the PrRP ensemble of models 
A) WebLogo (http://weblogo.berkeley.edu/) summarizing the consensus secondary structure 
information obtained by DSSP; C=coil, T=turn, H=α-helix. B) Close-up view of backbone 
interactions between residues 12-18. Oxygens are colored in red, nitrogens in blue, and hydrogens 
in white. C) Ramachandran plot of ϕ/ψ angles of the models as computed by DSSP; gray=angles 
obtained for all models generated; black=angles for final ensemble. 
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Table 6:  Secondary structure analysis of PrRP8-20 models by DSSPa analysis 

State) Secondary)
Structure)

#)
Residues)
αDHelix)
(H))

#)
Residues)
310DHelix)

(G))

#)
Residues)
Turn)(T))

#)
Residues)
Bend)(S))

#)
Residues)
Coil)(D))

1# __HHHHSHHHHH_# 9# 0# 0# 1# 3#
2# _HHHHHTHHHHH_# 10# 0# 1# 0# 2#
3# _HHHHHTHHHHH# 10# 0# 1# 0# 1#
4# _HHHHHTHHHHH_# 10# 0# 1# 0# 2#
5# _HHHHHTHHHHH_# 10# 0# 1# 0# 2#
6# _THHHHTHHHHH_# 9# 0# 2# 0# 2#
7# _THHHHTHHHHH_# 9# 0# 2# 0# 2#
8# _THHHHTHHHHH_# 9# 0# 2# 0# 2#
9# _THHHHTHHHHH_# 9# 0# 2# 0# 2#
10# __GGGGTHHHHT_# 4# 4# 2# 0# 3#
11# __GGGGTHHHHT_# 4# 4# 2# 0# 3#
12# _THHHHTHHHHH_# 9# 0# 2# 0# 2#
13# _HHHHHTHHHHH_# 10# 0# 1# 0# 2#
14# __HHHHTHHHH__# 8# 0# 1# 0# 4#
15# __HHHHTHHHH__# 8# 0# 1# 0# 4#
16# __HHHHTHHHH__# 8# 0# 1# 0# 4#
17# __HHHHTHHHH__# 8# 0# 1# 0# 4#
18# _THHHHTHHHHH_# 9# 0# 2# 0# 2#
19# _HHHHTTHHHHH_# 9# 0# 2# 0# 2#
20# _HHHHTTHHHHH_# 9# 0# 2# 0# 2#

a For more information, go to http://swift.cmbi.ru.nl/gv/dssp/. In this case, H=alpha-helix, G=3-
10 helix, S=bend, T=hydrogen-bonded turn, (-)=random coil. 

#

#

#

#
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Figure 6:  Secondary structure of PrRP models generated with RosettaNMR 
DSSP was used to determine the secondary structural make up of all models (left) generated, as 
well as the final ensemble submitted to the Protein Model Database (right). All models contained 
at least 1-2 residues having non-helical character (i.e., unstructured, turn, bend, etc.). 
 

Structural investigations of PrRP by CD spectroscopy indicate a decreased helical 

propensity for PrRP8-20.  

To elucidate the structural and functional requirements for PrRP20 binding and 

receptor activation, a set of PrRP analogs was synthesized and characterized (Table 3). 

Because the C-terminal region of the peptide is presumably responsible for receptor 

binding and activation (28, 30, 34, 36), we focused primarily on N-terminal truncation of 

PrRP20 to PrRP4-20, PrRP8-20, and the shortest reported full agonist, PrRP14-20 (30). 

CD spectra of PrRP20 and PrRP4-20 recorded in aqueous phosphate buffered solution at 

pH 7.0 and 22°C show significantly more intense signal between 200-230 nm in 

comparison to PrRP14-20, which is expected to be flexible and mostly disordered. 

Further, the CD spectrum of PrRP8-20 in phosphate buffer also suggests a primarily 

disordered peptide; the slight maximum at approximately 228 nm suggests the presence 

of some poly-proline II helix conformation as well (186, 187) (Figure 7, left panel). 
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Interestingly, according to the spectra of PrRP20 and PrRP4-20, the peptides may contain 

some ordered secondary structural character, including 310-helix (Table 7); note the deep 

minima at ~205 nm and the shoulder at ~222 nm. This is also supported by the peptides’ 

R222/208 values of 0.46 ± 0.01 and 0.37 ± 0.02, respectively. According to Toniolo et al., 

this ratio is expected to be between 0.15 and 0.40 for 310-helical peptides and ~1.0 for α-

helical peptides (188, 189). 

 

#
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#
Figure 7:  Influence of different solvents on the structure of wildtype and mutant PrRP 
Left panel: Truncation mutants of PrRP20 (PrRP4-20, PrRP8-20, and PrRP14-20). Right panel: 
Single-mutant PrRP20 analogs (A15PrRP20, A19PrRP20, and A20PrRP20). CD spectra are 
represented in mean residue ellipticity, measured in 40 µM peptide in 10 mM phosphate buffered 
solution at pH 7 and 22°C. (A) CD spectra measured without additives, (B) in 100 mM micellar 
SDS solution, and (C) 25% TFE-containing solution. All curves were calculated with the baseline 
corrected for buffer effects. 

A 

B 
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Table 7:  Characterization of CD data 

Peptide)

Condition) Ratio)[R])±)SD)

pH)7,)10)mM)pb) [θ]222)
[θ]208)

PrRP20# aqueous# 0.46#±#0.01#
PrRP4_20# aqueous# 0.37#±#0.02#
PrRP8_20# aqueous# NC#
PrRP14_20# aqueous# NC#
PrRP20# 100#mM#SDS# 0.54#±#0.01#
PrRP4_20# 100#mM#SDS# 0.63#±#0.01#
PrRP8_20# 100#mM#SDS# NC#
PrRP14_20# 100#mM#SDS# 0.40#±#0.05#
PrRP20# 25%#TFE# 0.68#±#0.01#
PrRP4_20# 25%#TFE# 0.65#±#0.01#
PrRP8_20# 25%#TFE# 0.45#±#0.08#
PrRP14_20# 25%#TFE# 0.54#±#0.03#

pb = phosphate buffered; SD = standard deviation; NC = not considered for reasons of missing 
characteristic helical CD spectra. 

 

Next, we investigated the peptide in solvents mimicking the partially apolar 

membrane environment while retaining a certain biocompatibility. We will label the three 

experimental conditions as “aqueous,” “SDS,” and “TFE” throughout the remainder of 

the manuscript. For PrRP20 tested in 100 mM SDS solution, a well-known membrane 

mimicking detergent, we observe a maximum at 195 nm, a minimum at 205 nm, and a 

shoulder around 222 nm (Figure 7B, left panel); the latter two spectral features are 

indicative of a 310-helical component to the conformational ensemble. The characteristic 

minima for solely α-helically structured peptides are at 208 nm and 222 nm (190). 

However, the R222/208 value of 0.54 ± 0.01 is higher than expected for a pure 310-helix. 

We therefore conclude that, in SDS, PrRP20 adopts a partially α-helical conformation, 

with 310-helix and other secondary structural components also being present. Similar 

observations were observed for PrRP4-20 (R222/208 = 0.63 ± 0.01). The CD spectra of 
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PrRP14-20 has 310-helix character, (R222/208 = 0.40 ± 0.05), whereas PrRP8-20 appears to 

remain primarily coil/poly-proline II helix under these conditions (Figure 7B, left panel; 

Table 7).  

Fluorinated alcohols, such as trifluoroethethanol, or TFE, are organic solvents that 

induce environmental constrains; TFE/water mixtures exhibit helix-inducing 

biocompatible conditions. For CD spectroscopy of PrRP20 and PrRP4-20 measured in 

TFE/water, R222/208 values of 0.68 ± 0.01 and 0.65 ± 0.01, respectively, were calculated. 

These values support the assumption that the peptides are primarily α-helical (Table 7). 

Indeed, in TFE/water, the helical content of the full-length peptide increased, with the 

spectrum exhibiting deep minima at 208 nm and 222 nm. These minima are more 

pronounced than those seen in the CD spectra obtained in SDS micelles. In contrast, the 

spectra of PrRP8-20 and PrRP14-20 in TFE are more reminiscent of that of a mixture of 

helices with a strong 310-helix component. Both peptides exhibit a minimum at 

approximately 202 nm and a shoulder at about 220 nm (Figure 7C, left panel). Further, 

the R222/208 values for these peptides were 0.45 ± 0.08 and 0.54 ± 0.03, respectively 

(Table 7). The experiments in TFE were repeated at various pH-values and temperatures 

of 25°, 37°, and 50° for both PrRP20 and PrRP8-20 in order to confirm that the spectra 

were largely independent of these parameters (Figure 8). 

#
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Figure 8:  Structural effects of pH and temperature 
CD spectra were recorded from 190–250 nm with 40 µM PrRP8-20 and PrRP20 in 10 mM 
phosphate buffered solution (Materials and methods), and mean residue ellipticity was calculated. 
(A) Measurement performed at pH 7 and 5.5. (B) PrRP20 was tested at different temperatures and 
showed no change. 
 

Single-substituted PrRP20 analogs do not exhibit different secondary structure from wt 

PrRP20. 

Single alanine mutants of PrRP20 at R15, R19, and F20 positions have been 

previously implicated with peptide activity (30, 34, 36) and were also tested here. Note 

that the highly conserved C-terminal residues, R19 and F20, make PrRP a member of the 

RF-amide peptide family. To study the influence of the conserved RF-amide motif and 

the impact of charged amino acids at the hydrophilic side of the helix on the overall 

peptide structure, we performed CD spectroscopy on A15PrRP20, A19PrRP20, and 

A20PrRP20 compared to wt PrRP20 (Figure 7, right panel; Table 7). Interestingly, all 

tested conditions (aqueous, SDS, TFE) resulted in almost identical CD spectra for 

PrRP20 and all alanine mutants. Although CD spectroscopy is not sensitive to identify 

small, local rearrangements in the peptide, we conclude that the modified single side-

chains at positions 15, 19, and 20 have no impact on the overall secondary structure of 

A B 
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the peptide. Therefore, any loss of activity when interacting with the receptor results from 

a change in the interaction with the receptor rather than a change in structure or dynamics 

of the peptide (see Binding to and activation of the wt PrRP receptor is primarily 

mediated by direct interactions with PrRP). 

#

Binding to and activation of the wt PrRP receptor is primarily mediated by direct 

interactions with PrRP. 

To evaluate the biological relevance of the PrRP20 analogs, binding and signal 

transduction capabilities were investigated in COS-7 cells transiently transfected with the 

PrRP receptor. In a displacement assay with the wt PrRP receptor using 1 nM 

N[propionyl3H]hPrRP20, an IC50-value of 4.1 ± 0.7 nM was obtained, where IC50 is the 

inhibition concentration of the ligand at half maximum biological activity of the receptor. 

A dissociation constant, or KD, value of 0.58 nM was computed using established 

methods(191). The activity of PrRP20 was determined using an IP, or inositol phosphate, 

accumulation assay (see Materials and methods) and resulted in an EC50-value of 2.2 ± 

0.3 nM (Table 8). The EC50 is the effective concentration of the ligand at half maximum 

biological activity. 
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Table 8:  Effects of mutation of PrRP on binding and signaling 

Peptide 
Binding Assay Signal Transduction 

Assay 
IC50 [nM]a x-foldb EC50 [nM]c

 x-foldd 
PrRP20 4.1 ± 0.7 1 2.2 ± 0.3 1 
PrRP4-20 1.2 ± 0.1 0.3 1 ± 0.2 0.5 
PrRP8-20 7 ± 1.8 1.7 2.3 ± 0.5 1 
PrRP14-20 430 ± 16 105 14 ± 2 6 
A15PrRP20 882 ± 376 215 49 ± 12 22 
A19PrRP20 > 10000 > 2440 1198 ± 231 545 
A20PrRP20 870 ± 288 212 20 ± 5 9 

Values are the standard deviation (± SD) of parameters deduced by using GraphPad Prism 3.0 
software. IC50 and EC50 values were obtained from resulting concentration-response curves. All 
signal transduction assays were performed in duplicates and repeated at least twice 
independently. a COS-7 cells were transiently transfected with PrRP receptor. The IC50 value was 
determined by competition assays using N[propionyl3H]hPrRP20. b Ratios with respect to the IC50 
values of wt peptide: IC50 (peptide)/IC50 (PrRP20). c COS-7 cells were transiently transfected with 
wt hPrRP receptor. EC50-values were obtained from IP accumulation assay. d Ratios with respect 
to the EC50 values of wt peptide: EC50 (peptide)/ EC50 (PrRP20). 

 

The radioligand binding assays revealed IC50-values of 1.2 ± 0.1 nM and 7 ± 1.8 

nM for PrRP4-20 and PrRP8-20, respectively. These values are comparable to PrRP20 

(4.1 ± 0.7 nM, The heptapeptide, PrPR14-20, exhibited a 105-fold reduction in binding 

compared to PrRP20. Loss of binding was even more dramatic in the single mutant 

analogs: an IC50-value of 870 ± 288 nM was obtained for A20PrRP20, whereas for 

A19PrRP20, no IC50-value could be determined for concentrations of up to 10 µM of the 

ligand. A15PrRP20 behaved similarly to A20PrRP20, resulting in a 215-fold decrease in 

binding (Table 8). 

In the signal transduction assays with the wt receptor, A19PrRP20 revealed a 545-

fold increase in EC50-values (1198 ± 231 nM) over unmodified PrRP20 (2.2 ± 0.3 nM). 

A20PrRP20 and A15PrRP20 had a lower impact in IP accumulation. The EC50-values were 

only 9- and 22-fold increased compared to the unmodified PrRP20, respectively. Apart 
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from PrRP14-20, which exhibited a 6-fold increased EC50-value of 14 ± 2 nM, the 

truncated analogs, PrRP4-20 and PrRP8-20, showed wildtype-like signaling properties 

(Table 8). 

#

PrRP8-20’s is unable to activate extracellular loop 1 PrRP receptor mutants. 

Next, we investigated the interaction of PrRP8-20 and PrRP20 with different 

receptor mutants. Because extracellular loop 1, referred to as EL1 for the remainder of 

this discussion, of other peptide receptors is known to be important for interactions with 

the ligands (192, 193), we assumed that charged or aromatic amino acids of the EL1 

region may be involved in ligand recognition via hydrophobic, ionic, or π-cationic 

interactions. Therefore, we substituted all such residues between position 2.64 and 2.73 to 

alanine (Table 9). The single-substituted F2.66A, E2.67A, R2.69A, and F2.73A receptor 

mutants behaved like wt PrRP receptor after treatment with PrRP20 in an IP 

accumulation assay. However, Y2.64A and W2.71A PrRP receptor variants resulted in 

significantly increased EC50-values when stimulated with PrRP20 (50 ± 7.5 nM and 593 

± 78 nM, respectively). Stimulation of receptor mutants Y2.64A and W2.71A with PrRP8-

20 revealed a further right-shifted concentration-response curve when compared to 

activation with PrRP20 (Figure 9) and hence elevated EC50-values (434 ± 96 nM and 

2119 ± 390 nM, respectively, Table 9). We hypothesized that changes in structure or 

dynamics of the ligand might cause this difference in receptor activation, as 

mutation/deletion studies of residues 1-7 did not suggest a direct contact point between 

this part of the ligand and the receptor.  
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Table 9:  Signaling properties of PrRP8-20 with respect to PrRP receptor 

Receptor 
Mutants 

PrRP20 PrRP8-20 
EC50  
[nM]a x-foldb EC50 

[nM]a x-foldb 

wt PrRP receptor 2.2 ± 0.3 1 2.3 ± 0.5 1 
Y2.64A 50 ± 7.5 23 434 ± 96 197 
F2.66A 6.2 ± 3.3 3 NT - 
E2.67A 7.2 ± 3.4 3 NT - 
R2.69A 4.2 ± 2.5 2 NT - 
W2.71A 593 ± 78 270 2119 ± 390 963 
F2.73A 4.4 ± 2 2 NT - 

NT = not tested; Values are the standard deviation (± SD) of parameters deduced by using 
GraphPad Prism 3.0 software. EC50 values were obtained from resulting concentration-response 
curves. All signal transduction assays were performed in duplicate and repeated at least twice 
independently. a COS-7 cells were transiently transfected with wt hPrRP receptor. EC50-values 
were obtained from IP accumulation assay. b Ratios with respect to the EC50 values of wt peptide: 
EC50 (peptide)/ EC50 (PrRP20). 
 
 
 

 

Figure 9:  IP accumulation of PrRP and truncated analogs test at PrRP receptor mutants 
COS-7 cells were transiently transfected with DNA coding for the wt, Y2.64A, or W2.71A receptor. 
The signal transduction assay was performed with PrRP20, PrRP8-20, as well as with PrRP14-20 
for wt PrRP receptor. All experiments performed with PrRP8-20 lead to a significantly right 
shifted curve, whereas PrRP8-20 behaves like PrRP20 with respect to wt receptor. 

#
#
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Discussion 

Structure-activity/affinity studies are needed to understand PrRP receptor activation.  

The objective of this study is to better understand the structural determinants of 

PrRP receptor activation, an important milestone towards the development of potent 

small-molecule agonists given the increasing prevalence for the physiological role of 

PrRP20 and its receptor (171). This is a formidable challenge, as structure-activity 

relationship studies of PrRP/PrRP receptor system are rare. Initial investigations of the 

truncated PrRP20 analogs, PrRP4-20 and PrRP8-20, exhibited wildtype-like binding and 

IP accumulation behavior. Further, in our assay system, a reduced affinity of the full 

agonist, PrRP14-20, is in accordance with recent studies (30, 34). We hypothesized that 

the structure and dynamics of PrRP’s interaction with the receptor is altered through the 

truncation, rather than single point mutation, of the peptide. This hypothesis was tested 

through CD and NMR spectroscopic studies that assert the secondary structure of the 

peptide. To mimic the amphipathic environment of the peptide when it is interacting with 

the receptor, the additives SDS and TFE were used (194, 195). 

 

CD and NMR spectroscopic studies support a mainly helical peptide conformation.  

While SDS is an accepted membrane mimic, TFE mainly induces secondary 

structure (196). SDS micelles provide a non-isotropic, apolar environment in which the 

membrane interactions of the biomolecules can be investigated. A molecular dynamics 

study has shown that, in a TFE/water mixture, the organic co-solvent aggregates around 

the peptide, forming a matrix that partly excludes water. This process stabilizes the 

secondary structure, as the formation of proximate interactions is assisted.38 We suggest 
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that, to some extent, both solvents mimic the membrane surface thought to contribute to 

the transition of the peptide from a random coil to a helical conformation that is 

recognized by the receptor (197). Accordingly, we assume that PrRP20 will adopt a 

conformation more similar to the bioactive form when interacting with these solvents. 

According to our CD spectroscopic studies, the single mutant PrPR20 analogs, 

A15PrRP20, A19PrRP20, and A20PrRP20, fully maintained their PrRP20-like α/310-helical 

conformation in SDS and TFE. This is especially remarkable because all of them display 

significantly reduced binding and signaling properties with respect to the wt receptor. It is 

noteworthy that the binding and signaling studies herein are in agreement with recently 

published structure-activity studies that describe the importance of R15, as well as the RF-

amide motif (30, 34). PrRP20 and PrRP4-20, while exhibiting some 310-helical character 

in phosphate buffer, became increasingly α-helical in SDS and TFE. In contrast, PrRP8-

20 appears to be primarily disordered, or nascent helix at most, in SDS. Its 310-helix 

component does increase in TFE, but it is almost undoubtedly not an α-helix, unlike the 

full-length peptide. Our results indicate that the peptide length of PrRP is a significant 

determinant in its ability to form an α-helix. It appears that the N-terminus, which 

exhibits increased flexibility, is nevertheless involved in stabilizing the C-terminal helical 

segment. Even though PrRP8-20 fully activates the wt receptor (Figure 9), it shows little 

α-helical propensity in SDS and TFE when compared to PrRP20.  

Earlier CD studies could not clearly distinguish between 310- and α-helical peptide 

structures, which were investigated using a set of seven peptides ranging in length from 

10 to 21 amino acid residues (198). In contrast, a recent report describes the standard CD 

spectrum of a 310-helial octapeptide (188). Indeed, evidence of this combination of coil 
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and helical secondary structure can be seen in the CD spectra of the PrRP analogs, which 

were collected in SDS micelles or TFE (Figure 7, left panel). The shape of PrRP20 and 

PrRP4-20 in TFE fits to the former described spectrum for an α-helical peptide (188, 

199). In the case of PrRP8-20, the membrane-mimicking SDS micelles are not capable of 

inducing α- or 310-helical conformation, in contrast to the longer peptides. For the analogs 

PrRP8-20 and PrRP14-20, the shape of the curves is altered, having a lower Cotton effect 

and different minima. 

The combination of CD and computational modeling results, as well as analysis 

of the 13 C-terminal residues of PrRP20, imply a structural model for the full-length 

peptide, in which the peptide forms an extended helix. According to a secondary structure 

analysis of the final ensemble with DSSP (181, 182), it appears that, in most low-energy 

RosettaNMR models, 8-9 of the 13 residues tend to be α-helical. The ideal helical 

geometry is broken around residue I14. This is expected due to the lack of ideal α-helix 

hydrogen bonding between R12 and P16, as well as between G13 and V17. In our model, the 

helix bulges and bends in this area. Interestingly, the helical character of the models can 

either consist of all α-helix or a combination of approximately half α-helix and half 310-

helix (Table 6, Models 10 and 11); this matches observations from CD investigations of 

PrRP20 and PrRP4-20, as well as the combination of i(i+2) and i(i+3) NOEs obtained by 

D’Ursi et al. on PrRP20 (Table 2). According to these data, PrRP20 in solution is not 

solely α-helical, nor is it completely random coil.  

The presence of potential 310-helical character in the PrRP20 models may be a 

result of its amphipathic nature and the fact that the NMR data were also collected in 

SDS micelles at high PrRP20 concentration (0.5−15 mM) (35). Indeed, there is evidence 
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that amphipathic helices can assume extended (often 310) helical conformations in certain 

mediums, such as in detergent micelles (200, 201). Remarkably, it has been proposed that 

the R1xxR2xxR3xxR4xxR5xxR6 motif in the Kv1.2- and Kv2.1-chimeric potassium ion 

channel structures form an extended 310-helix, which allows the arginine residues to sit 

on the same side of the helix (202, 203). This is also often observed in our models of 

PrRP, which contains three arginine residues in an R1xxR2xxxR3 motif. Further, the 

conformational equilibrium between nascent, α-, and 310-helix is seen in other systems. 

Another neuropeptide, the galanin-like peptide (GALP) has been shown to be only 

loosely ordered in solution, but in TFE, it forms stable helical structures. Indeed, its CD 

spectrum resembles that of a 310-helix and is similar to our CD spectra obtained for 

PrRP20 in buffer and SDS and PrRP8-20 in TFE (204). The 16 amino acid sequences of 

the C-terminal helices of two bacterial cytochromes were synthesized and characterized 

by CD and NMR spectroscopy. These peptides’ spectra also imply a dynamic equilibrium 

between α- and 310-helix (205). It is possible that this conformational equilibrium is due 

to folding and unfolding of the free (as opposed to receptor-bound) peptide in solution; 

the 310-helix is often considered to be a kinetic intermediate when forming an α-helix 

from coil (184, 206, 207). 

#
Receptor residues Y2.64 and W2.71 may induce ligand helicity and facilitate binding and 

activation.  

To further elucidate the role of N-terminal PrRP20 truncations with respect to 

ligand binding, we chose to study the EL1 of the receptor because this region is known to 

be a prominent agonistic binding region in GPCRs. With respect to receptor activation, 

the alanine scan of selected amino residues within EL1 of the PrRP receptor identified the 
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aromatic residues Y2.64 and W2.71 to be important. Both residues might contribute to a 

hydrophobic cluster, as described for the neurotensin receptor 1, where EL1 is described 

to be stabilized by π-stacking clusters and was proved to be important for agonist binding 

(208). In addition, Y2.64 in particular has already been identified to participate in ligand 

binding in the Y1 receptor (209) and is thought to be part of a formed cluster in the 

binding-site crevice at the aminergic GPCR (210). PrRP20 stimulation resulted in 

increased EC50-values in Y2.64A and W2.71A PrRP receptor mutants. This fits to the 

reported ligand-binding and receptor-activating role of EL1 in GPCRs (192, 193, 211). In 

particular, W2.71 is located in the previously described WxGF-motif (212), which is 

necessary for receptor activation. Activation by a ligand occurs most likely by inducing 

movement of the transmembrane helices. While PrRP20 and PrRP8-20 exhibit identical 

potency for the wt receptor, PrRP8-20 was less potent at theY2.64A or W2.71A PrRP 

receptor. 

Combining these findings, we expect that the receptor assists PrRP in forming its 

bioactive α-helical conformation. This conformation is induced by the wt receptor for 

PrRP20, as well as PrRP8-20, even though its α-helical propensity is reduced due to the 

missing residues 1-7. However, the mutations Y2.64A and W2.71A partially impair the 

helix-inducing capabilities of the receptor. This leads to a reduced activity for both 

peptides PrRP20 and PrRP8-20. The reduced helical propensity of PrRP8-20 results in a 

more dramatic loss of activity for its interaction with the mutant receptors. The results 

obtained from our structure-activity and spectroscopic studies suggest that Y2.64 and W2.71 

provide part of the hydrophobic framework that induces helicity in the ligand.  
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Conclusion 

The C-terminal segment of PrRP20 was shown by NMR and CD spectroscopy to 

adopt a combination of α- and 310-helical conformation in SDS micelles and becomes 

primarily α-helical in TFE. Moreover, the decreased stability of the helical segment 

generated by shorter PrRP20 analogs resulted in reduced biological activity. In contrast, 

single amino acid replacement of crucial residues led to significantly decreased binding 

and activity, while the overall peptide structure was maintained. With respect to future 

structure/activity studies, we disclose that a stable C-terminal α-helix facilitates the 

ligand recognition by its receptor. By making a three-dimensional structure of PrRP 

publicly available, the structure-function studies can now be performed more effectively 

with the ability to look at the structure of the peptide itself. Additionally, the 

identification of the important residues Y2.64 and W2.71 with respect to ligand binding and 

receptor activation offers an initial step, as comprehensive structure/activity studies are 

rare and no antagonist of the PrRP receptor is known. Due to the involvement of PrRP20 

in energy and body weight homeostasis and food intake, it provides a remarkable target 

for future drugs (171). The Cartesian coordinates of the ensemble of structures of the 

PrRP20 C-terminal segment discussed herein has been included in the Supplementary 

Information, as well as deposited in the Protein Model Database (PMID: PM0078404) for 

other researchers to use to further their own studies. 
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CHAPTER III 

 

INTEGRATING SOLID STATE NMR AND COMPUTATIONAL MODELING 
TO INVESTIGATE THE STRUCTURE AND DYNAMICS OF MEMBRANE-

ASSOCIATED GHRELIN 
 

This work is based on the manuscript submitted to PLoS ONE of the same title by 

Gerrit Vortmeier*, Stephanie H. DeLuca*, Sylvia Els-Heind, Constance Chollet, Holger 

A. Scheidt, Annette G. Beck-Sickinger, Jens Meiler, and Daniel Huster. *These authors 

contributed equally. 

 

Summary 

The peptide hormone ghrelin activates the growth hormone secretagogue receptor 

1a (GHS-R1a), also known as the ghrelin receptor. This 28-residue peptide is acylated at 

Ser3 and is the only peptide hormone in the human body that is lipid-modified. Little is 

known about the structure and dynamics of membrane-associated ghrelin. We carried out 

solid-state NMR studies of ghrelin in lipid vesicles, followed by computational modeling 

of the peptide using Rosetta. Spin diffusion experiments of ghrelin indicate that the 

peptide binds to membranes via its lipidated Ser3. Further, Phe4, as well as electrostatics 

involving the peptide’s positively charged residues and lipid polar headgroups, may 

contribute to the binding energy. Other than the lipid anchor, ghrelin is highly flexible 

and mobile in solution. This observation is supported by our model, which is in good 

agreement with experimentally determined chemical shifts. In the final ensemble of 

models, residues 8-17 form an α-helix, while residues 21-23 and 26-27 often adopt a 
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polyproline II helical conformation. These helices appear to assist the peptide in forming 

an amphipathic conformation so that it can bind to the membrane. 

 

Introduction 

Ghrelin, a 28-amino acid peptide hormone, is the endogenous ligand of the 

growth hormone secretagogue receptor 1a (GHS-R1a or GHSR), a G protein-coupled 

receptor (GPCR) (41, 213, 214). In addition to stimulating the release of growth hormone 

from the pituitary (41, 213, 214), it has been implicated in appetite stimulation (215), 

insulin and glucagon secretion levels (216), decreased blood pressure (217), inhibition of 

apoptosis in cardiomyocytes and endothelial cells, and cell proliferation and 

differentiation (218). Further, circulating ghrelin levels have been found to change in 

patients with diseases involving perturbed energy balance, such as obesity (54, 219-222) 

and diabetes (223). See reference (224) for thorough review. Given the current 

prevalence and rapidly increasing rates of obesity and related conditions, it is of 

importance to understand the mechanism of action of ghrelin in order to eventually 

contribute to the understanding of the molecular basis of these diseases. 

Ghrelin carries a fatty acid (FA) modification at position Ser3 and represents the 

only hormone in the human body that is lipid modified. Although the desacylated form of 

ghrelin is the most abundant in the bloodstream, the FA modification proves necessary 

for receptor binding and activation. The initial identification of acylated ghrelin revealed 

an octanoyl group at Ser3 (41), but ghrelin O-acyltransferase can add FA groups of 

varying lengths to the peptide (58-60). Remarkably, the length of the lipid side-chain has 
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a demonstrated effect on the ability of ghrelin to activate GHSR and on levels of 

adiposity in mice (225). 

Bednarek, et al. identified a short N-terminal segment, spanning from Gly1 to 

Phe4, including the octanoylated Ser3, that is able to activate the GHSR in vitro (226), but 

this active core neither displaces ghrelin from its receptor nor stimulates growth hormone 

release in vivo (227). This may be due to the influence of the membrane surface on 

transport and receptor binding. Membrane binding of a ligand is a crucial step for 

membrane-receptor activation. The limitation of ligand diffusion to two dimensions, as 

well as structural pre-orientation and pre-organization of the ligand, may lead to 

enhanced peptide-receptor interaction probability (228). However, more structural and 

dynamic information of the peptide in solution, membrane-bound, and receptor-bound 

states is needed to further examine this so-called “membrane catalysis”. 

Our current understanding of the structure of membrane-bound ghrelin is 

fragmentary at best. Spectroscopic studies from proton nuclear magnetic resonance (1H 

NMR) and circular dichrosim (CD) of ghrelin in solution revealed a highly flexible 

peptide without a distinct structure, regardless of whether or not Ser3 was acylated (61). 

CD experiments conducted in the membrane mimics, sodium dodecyl sulfate (SDS) and 

trifluoroethanol (TFE), showed formation of an α-helix with increasing TFE content (62), 

and molecular dynamics (MD) simulations in water and in 1,2-dihexanoyl-sn-glycero-3-

phosphocholine (DMPC)-lipid bilayer/water systems suggest that this helix extends from 

Pro7 to Gln13 (63). Chemical shift (CS) data from 1H NMR experiments performed in 

phosphate buffered saline and in live cells also indicated a putative α-helix between 

residues Glu8 and Lys20, while the peptide remained seemingly unstructured in water 
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(64). A structure of desacyl-ghrelin solved with CS data from 1H NMR experiments 

performed in a water/hexafluoroacetone (HFA) mixture supports the presence of a stable 

α-helix spanning from Pro7 to Gln14 (229). Furthermore, controversial results were 

published about the membrane binding segment. While simulations propose a C-terminal 

loop that mediates binding, with the octanoyl moiety pointing towards the aqueous phase 

(63), solution NMR experiments suggested that the peptide binds to detergent micelles 

via Phe4 and the lipid-modified Ser3 (230). 

Lipid modifications typically serve as membrane anchors (231, 232). However, a 

short octanoyl chain is only weakly hydrophobic, and the strength of its interaction with 

the membrane has yet to be determined. In order to characterize the structure and 

dynamics of octanoylated ghrelin and how it interacts with the membrane, we employed 

solid-state NMR spectroscopy (ssNMR), which has been demonstrated to be a useful and 

versatile tool for studying membrane-associated proteins and peptides (233-235). We 

show that ghrelin binds to large unilamellar vesicles (LUVs) via its octanoyl chain and 

assumes a highly mobile structure at the membrane surface. 

Previous research indicates that ghrelin is highly flexible, even in the presence of 

membranes, and its secondary structure propensities in LUVs remain unknown. 

Therefore, the CSs obtained from ssNMR were used in combination with the Rosetta 

molecular modeling software (100, 101, 103), which has been widely used for protein 

structure prediction. NMR CSs can be used to enhance Rosetta’s ability to sample native-

like structures (106, 107, 236, 237), with modeling of membrane and membrane-

associated proteins becoming more feasible. Recently, the structure of hepatitis C virus 

protein p7, a small, helical membrane protein, was determined using the 
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RosettaMembrane environment (105, 156) with NMR CS, residual dipolar coupling 

(RDC), and paramagnetic relaxation enhancement (PRE) structural data (238). In 

addition to the extensive ssNMR studies mentioned above, we present a new, detailed 

protocol for elucidating the structural ensemble of membrane-associated ghrelin that is 

consistent with sparse CS data. 

 

Materials and methods 

Materials 

1,2-Dimyristoyl-sn-glycero–3-phosphocholine (DMPC), 1,2-dimyristoyl(d54)-sn-

glycero–3-phosphocholine (DMPC-d54), 1,2-dimyristoyl(d54)-sn-glycero–3-

phosphocholine–1,1,2,2-d4-N,N,N-trimethyl-d9 (DMPC-d67), 1,2-dimyristoyl-sn-glycero–

3-phosphatidylserine (DMPS), 1,2-dimyristoyl(d54)-sn-glycero–3-phosphatidylserine 

(DMPS-d54), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) were purchased from Avanti 

Polar Lipids, Inc. (Alabaster, AL) and used without further purification. 13C/15N Fmoc-

protected amino acids and deuterated octanoic acid were obtained from Euriso-Top 

GmbH, Saarbrücken, Germany. All other materials were purchased from Sigma, 

Deisenhofen, Germany. 

 

Peptide synthesis 

Ghrelin analogs were synthesized automatically on a Wang resin by solid-phase 

peptide synthesis (SPPS) using Fmoc/tBu protection group strategy on a robot system 

(SyroI, MultiSynTech, Bochum, Germany) as described previously.(239) 13C/15N-labeled 
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amino acids were introduced via manual peptide coupling using 5 equiv Fmoc-amino 

acid, 5 equiv DIC and 5 equiv HOBt in DMF. To enable the incorporation of octanoic 

acid or perdeuterated octanoic acid, Ser3 was introduced with the labile Trt side-chain 

protecting group. The ester bond was formed by incubation of 5 equiv octanoic acid, 5 

equiv DMAP, and 5 equiv DCC in NMP with the resin. The final peptides were cleaved 

from the resin in one step, and purification was achieved by preparative HPLC on a 

reversed-phase C18 column (Phenomenex Jupiter 10u Proteo 90 Å: 250 × 21.2 mm; 7.8 

µm; 90 Å). Peptides were analyzed by MALDI-TOF MS (UltraflexII, Bruker, Bremen, 

Germany) and by analytical reversed-phase HPLC on columns VariTide RPC (Varian: 

250 × 4.6 mm; 6 µm; 200 Å) and Phenomenex Jupiter 4u Proteo 300 Å (Phenomenex: 

250 × 4.6 mm; 4 µm; 300 Å)_ENREF_20. The observed masses were in full agreement 

with the calculated masses, and peptide purity ≥ 95% could be obtained, according to the 

analytical RP-HPLC. 

 

Sample preparation 

Aliquots of lipids were co-dissolved in chloroform; the solvent was evaporated, 

and the lipid film was suspended in 10 mM MES buffer (100 mM NaCl, pH 6) to reach a 

final concentration of 20 mM. After freeze-thaw cycles, the suspension was extruded 

across 100 nM polycarbonate membranes to produce LUVs (240). Aliquots of ghrelin 

were added to the LUVs to reach the desired peptide/lipid ratio. Samples were incubated 

for 2 h while shaking it at 190 rpm at 37 °C. Binding to the inner membrane leaflet was 

achieved after performing another five freeze-thaw cycles. The sample was 

ultracentrifuged at ~90.000 g for 8 h. After lyophilization, the precipitate was hydrated to 
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35 WT% water content, mixed with 5 freeze-thaw cycles, and transferred into 4 mm MAS 

rotors with Teflon inserts. 

 

Membrane binding assay 

For membrane binding analysis of ghrelin, 5 µM peptide solutions were 

ultracentrifuged with various amounts of 176 mM sucrose-loaded POPC/POPG vesicles 

(5:1, mol/mol). For each vesicle concentration, 10 µL of a 50 µM peptide solution in H20 

were added to 740 µL of iso-osmolar 1 mM MOPS buffer at pH 7, containing 100 mM 

KCl. Vesicle solutions of various lipid concentrations ranging from 0 mM to 10 mM 

were added to reach a final volume of 1 mL. Each concentration was prepared in 

duplicate, and lipid-only samples were taken to determine background signals. After 

vortexing and 30 min incubation at room temperature, samples were ultracentrifuged 

overnight at ~90.000 g and 4 °C. Immediately after centrifugation, ~900 µL supernatant 

were transferred into Eppendorf tubes. Pellets were resuspended in the remaining solution 

(~100 µL) and diluted by adding 900 µL buffer. 600 µl of both the supernatant and the 

pellet solutions were used to determine peptide concentration using a fluorescamine assay 

(241). The remaining volumes were used to measure the lipid concentration. 

The pH of the samples was elevated to 10 using 5 µL 0.1 M KOH. 250 µL of a 

fluorescamine stock solution in acetone (1 mg/mL) was added to the samples, and the 

fluorescence was measured after ~5 min with excitation at 390 nm and emission at 475 

nm. Background fluorescence determined from the lipid-only samples was subtracted, 

and the percentage of bound peptide was calculated according to the equation: 
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The final lipid concentration was determined by phosphate analysis. 

Approximately 90% of the lipids were in the pellet fraction. Further, half of the lipids are 

not accessible for the peptide because the molecules are on the inside of the vesicles. 

Accordingly, the lipid concentrations were corrected with the factor 0.45 to deliver the 

effective lipid concentration [L]eff (242). 

 

Solid-state NMR Spectroscopy 

2H NMR spectra were acquired using an Avance 750 MHz NMR spectrometer 

(Bruker Biospin, Rheinstetten, Germany) operating at a resonance frequency of 115.0 

MHz for 2H using a quadrupolar-echo pulse sequence, a 90°-pulse length of 2.8 µs, an 

echo time of 60 µs, and a relaxation delay of 0.75 s. Smoothed chain order parameter 

profiles were calculated from the quadrupolar splittings after dePaking, as described in 

reference (243). Standard 31P NMR spectra were acquired on a Bruker DRX300 NMR 

spectrometer operating at a resonance frequency of 121.4 MHz using a standard Hahn 

echo pulse sequence with a 90° pulse length of 10.75 µs, a delay between pulses of 50 µs, 

and a relaxation delay of 2.5 s. The 13C magic angle spinning (MAS) NMR spectra were 

acquired using a Bruker Avance III 600 NMR spectrometer at resonance frequencies of 

600.1 MHz and 150.9 MHz for 1H and 13C, respectively. Typical 1H and 13C 90° pulse 

lengths were 4 and 5 µs, respectively, while the decoupling filed during acquisition was 

~65 kHz using Spinal64. Standard CP (contact time 700 µs), directly excited, and INEPT 

excitation schemes were used. All CSs were referenced to external crystalline glycine at 
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176.46 ppm (equivalent to TMS). Standard 2D HetCor (244) and PDSP (245) spectra 

were acquired, with a total evolution time of 7.1 ms and 1.7 ms in the 1H and 13C indirect 

dimensions, respectively. Constant time DIPSHIFT experiments (246) were carried out at 

a MAS frequency of 4 kHz with FSLG homonuclear decoupling. Dipolar dephasing 

curves were simulated as described in the literature (247). The ratio of the motional 

averaged and full dipolar coupling (248) defined the molecular order parameter, S.  

Spin diffusion experiments from the lipid into ghrelin were carried out using the 

pulse sequence from the literature (249). A T2 filter of 6 ms and spin diffusion times from 

0.01 to 900 ms were used. Peak intensities were corrected for relaxation using measured 

T1 relaxation times. Intensities were normalized to 1 for the longest spin diffusion time of 

900 ms. Spin diffusion build-up curves were simulated as a function of mixing time using 

a one-dimensional lattice model (250). In this model, the magnetization of a given spin 

(Mi) is transferred to the neighboring spins (Mi-1 and Mi+1) according to:  

112 −+ Ω+Ω+Ω−=ΔΔ iiimi MMMtM # # (2)#

The rate of magnetization transfer, 2/ aD=Ω  depends on the spin diffusion 

coefficient, D, and the distance between spins, a. Simulations were carried out using D = 

0.001 nm2/s and a = 2 Å. 

 

Overview of structure determination using Rosetta 

The Rosetta Topology Broker framework (107, 108, 251) was employed to fold 

ghrelin de novo, or from the sequence, in the presence of the implicit RosettaMembrane 

environment (105, 156). The traditional Rosetta fragment-based assembly algorithm for 
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soluble proteins was employed (100, 102). The modeling and analysis protocol is 

summarized in Figure 10, and full details are available in Appendix C. 

 

 

Figure 10:  Flowchart of computational modeling and analysis protocol 
The above flowchart outlines the protocol used to elucidate the structure of ghrelin based on 
ssNMR CS data. 
 

Definition of membrane location in Rosetta 

In order to fold membrane-associated proteins using Rosetta, transmembrane 

helical (TMH) regions must be specified. Therefore, because the modeling objective was 

to fold ghrelin at the membrane interface, a comparative model of GHS-R1a was created 

based on an alignment of nineteen different GHSR sequences and the sequences of 

twenty GPCRs of known structure (Figure 11). This receptor model was only used as a 

proxy to define the membrane location; that is, no interaction between receptor and 

peptide occurs. In the starting conformation for peptide folding, the receptor was placed 

more than 50 Å away from the peptide. During selection of the final ensemble, only 

models having a minimum interatomic receptor-to-peptide distance of 5 Å were analyzed 

and compared to experimental CSs.  

Build comparative model of 
GHS-R1a 

Fold ghrelin in presence of 
membrane environment 

Predict CSs for each model 

Filter for models in proximity to 
membrane 

Determine best CS prediction 
method 

Find ensemble of models that 
best fit experimental data 

Assess final ensemble quality 

Compute models’ secondary 
structure using DSSP 
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Generation of GHSR comparative model to define membrane location in Rosetta 

In order to fold a peptide at the membrane surface, for technical reasons, Rosetta 

requires at least one transmembrane span to define the location of the membrane. We 

decided to construct a comparative model of growth hormone secretagogue receptor 1a 

(GHSR) as we expect to leverage it in future studies. We then used this model to define 

the membrane location but ensured that no interaction between receptor and peptide 

occurs for the present study.  

The comparative model was based on the sequence alignment in Figure 11 and 

generated according to the protocol described previously (19, 252-254). Briefly, GHSR 

amino acid sequences from nineteen species were aligned using ClustalW (19, 252-257), 

resulting in a sequence alignment profile. Next, twenty GPCRs of known structure, 

henceforth referred to as templates, were structurally aligned in Mustang (19, 254, 257-

259), which resulted in a structural alignment profile. Then, a profile-profile alignment 

was performed in ClustalW, and the resulting alignment was manually adjusted to 

minimize gaps in TMH regions and maximize alignment of regions conserved across 

GPCRs (Figure 11).  

The sequence of human GHSR was isolated from the final profile-profile 

alignment and threaded onto the backbone of the bovine rhodopsin structure (PDB: 1U19 

(259-261)). Next, all loops and areas of missing electron density (from alignment gaps) 

were built in for one hundred models using the Rosetta cyclic coordinate descent (CCD) 

loop modeling algorithm (255, 257). The five lowest-energy models that did not contain 

chainbreaks were used as starting models for constructing extracellular loops (ECLs). For 

each starting structure, ECLs 1–3 were constructed for 185–200 models, resulting in a 
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total of approximately 985 complete comparative models. Finally, the lowest energy 

model after building the ECLs was selected to define the membrane in the ghrelin folding 

protocol. 

 

Figure 11:  Sequence alignment of GHSR and GPCRs of known structure 
The sequences of twenty GPCR templates of known structure and nineteen GHSR sequences 
were used manually aligned in Aline (260, 262) 
(http://crystal.scb.uwa.edu.au/charlie/software/aline/) such that gaps in the predicted TMH 
consensus ranges (dark gray helices) were minimized and conserved prolines (white triangles) 
and cysteines (open gray triangles) remained in alignment. 
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Fragment selection of ghrelin in Rosetta 

A complete set of CSs can greatly increase the quality of fragments selected for 

Rosetta de novo structure prediction (106, 263). Fragment selection for de novo folding in 

Rosetta heavily prioritizes peptide fragment conformations that have the same secondary 

structure as that indicated by CS analysis (106, 264, 265). In the case of ghrelin, however, 

the CS dataset is incomplete, i.e. CS assignments are not available for every residue. This 

leads to inconsistencies in fragment selection, where CSs of a few residues can determine 

the secondary structure of the entire fragment. In the present case, the CS data suggest 

that residues 2-5 have β-strand torsion angles. Accordingly, these residues are often 

constructed from fragments that stem from β-hairpins (Figure 12). In result, even though 

the fewer CSs obtained for residues 8-28 are indicative of a random coil region with a 

slight helical tendency, the vast majority of Rosetta models generated from fragments 

selected based on the sparse CS dataset exhibited a β-hairpin fold (data not shown). 

Therefore, we elected to fold with fragments not generated using CS data, thereby 

sampling the complete conformational space reasonable for a peptide of this sequence. 

We then employed CS data to filter, from a large pool of models, an ensemble that agreed 

best with the CS data. This approach has another advantage in the case of highly flexible 

peptides in that the ensemble average CSs, not the CS of a single model, must conform to 

the experimental data.  
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Figure 12:  Secondary structure prediction of ghrelin 
A) Secondary structure prediction for the primary sequence of ghrelin. B) Secondary structure 
composition of 3mer and 9mer amino acid fragments used in de novo folding. These fragments 
were generated based either on the primary sequence of the peptide alone (+CS and –CS). For all 
predictions, α-helices (H) are in green, β-strands (S) are in blue, and random coil (C) are in black.  
 

De novo folding of ghrelin in Rosetta 

During folding in the Topology Broker framework, 3- and 9-amino acid peptide 

fragments were inserted into an extended backbone of the peptide in a Monte Carlo 

fashion. The resulting conformations were scored with the RosettaMembrane (105, 130) 

potentials according to the Metropolis criterion (266). Ten thousand models were 

generated in the presence of the membrane and relaxed within the all-atom membrane 

potential. 
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Prediction of chemical shifts of de novo-folded models 

Predicted CSs for the models generated from de novo folding were obtained by 

running PROSHIFT (253), SPARTA+ (261), SHIFTX (256), and SHIFTX2 (258). When 

running PROSHIFT, the temperature and pH were set to 303 K and 6.0, respectively. 

SPARTA+, SHIFTX, and SHIFTX2 were run using default settings. During CS analysis, 

CSs obtained for Gly1 were disregarded. (See Protocol Capture in Appendix C). 

 

Selection of models that are of low energy and in contact with membrane 

To maintain close contact between Ser3 and the membrane, all 10,000 models 

were filtered so that the Ser3 Cα of the filtered models were within the polar region of the 

RosettaMembrane implicit membrane environment. The remaining pool of 3,692 models 

was screened to filter out those models in which any peptide atoms found within 5 Å of 

any receptor atoms. All 3,692 of these models passed the filter and were further culled by 

keeping only those models whose Rosetta energies were within the top 10% of all 10,000 

model energies, leaving a fully filtered pool of 355 models. This percentage was chosen 

after testing various ensemble sizes (Table 10). 

Table 10:  Ensemble average RMSDs (in ppm) resulting from filtering strategies 

 
Top 10% 

by Rosetta 
Energy 

Top 25% by 
Rosetta Energy 

Top 50% by 
Rosetta Energy 

Top 75% 
by Rosetta 

Energy 
All 

PROSHIFTb 0.385 (22) 0.381 (18) 0.379 (26) 0.378 (26) 0.377 (26) 
SHIFTXc 0.716 (18) 0.713 (28) 0.707 (23) 0.707 (17) 0.709 (13) 

SHIFTX2d 0.722 (29) 0.719 (26) 0.718 (26) 0.702 (26) 0.717 (11) 
SPARTA+e 0.718 (29) 0.717 (20) 0.711 (30) 0.711 (24) 0.718 (12) 

# models in pool 355 856 1,790 2,683 3,692 
a Ensemble size in parentheses 
b References (19, 252-254) 
c References (19, 254-257) 
d References (19, 254, 257-259) 
e References (259-261) 
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Generation of model ensembles in agreement with experimental chemical shifts 

Ensembles of 10-30 models consistent with the experimental CSs were 

constructed from the resulting low-energy pool according to the algorithm summarized in 

Figure 13. PROSHIFT (253) was used to predict CSs for all models. The selection 

algorithm generates a random ensemble of 10 models. It then computes the average CS of 

each Cα, Cβ, CO, and Hα atom for which an experimental CS was determined (excluding 

those for Gly1). After all average CS values are determined, the root mean square 

deviation (RMSD) of the ensemble average-predicted CSs relative to the experimental 

CSs is calculated and reported. In order to avoid the average and RMSD being dominated 

by the larger magnitude of carbon CS values, carbon CSs were scaled down by a factor of 

4. Next, the algorithm randomly chooses to add another model from the bigger pool to 

the ensemble (if not at the specified maximum ensemble size of 30), swap models 

between the ensemble and the pool, or remove a model from the ensemble (if not at the 

minimum ensemble size of 10). The process is repeated for 5,000,000 cycles.  

 

Figure 13:  Outline of model ensemble selection algorithm 
The above flowchart outlines the process by which the agreement with experimental data is 
determined for an ensemble of models selected from a large pool. 
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Structural analysis of final ensemble 

The final ensemble of models was initially evaluated by the Protein Structure 

Validation Software suite (PSVS, http://psvs–1_5-dev.nesg.org/). The secondary 

structure information, including ϕ/ψ torsion angles, was obtained by running Define 

Secondary Structure of Proteins (DSSP (182), http://swift.cmbi.ru.nl/gv/dssp/). In 

addition, the DSSP analysis was modified to take into account polyproline II (PPII) 

helical structure using the same parameters presented by Adzhubei, Sternberg, and 

Makarav (267). Briefly, residues were only assigned PPII structure if they met the 

following conditions: 1) formerly assigned random coil (-) by DSSP, 2) ϕ = –75 ± 29 

degrees, 3) ψ = 145 ± 29 degrees, 3) conditions 1) and 2) were met for two sequential 

residues. 

 

Results 

Ghrelin binds to negatively charged membranes 

First, binding of ghrelin and desacyl-ghrelin to POPC/POPG (5/1, mol/mol) 

membranes was measured using an ultracentrifugation assay. Upon addition of sucrose 

loaded vesicles and ultracentrifugation, bound ghrelin co-precipitates with the liposomes 

and the percentage of bound peptide is measured with a fluorescamine assay, as shown in 

Figure 14. While about ~65% of the octanoylated ghrelin binds to the acidic liposomes 

with a KD value of 100 ± 24 µM, only ~10% desacyl ghrelin is associated to the 

membranes at a lipid concentration of 5 mM without reaching saturation, indicating the 

importance of the octanoyl modification. The KD-derived ΔG value for the binding of 

ghrelin to membrane surfaces is –28.6 kJ/mol. To confirm that the lipid membranes used 
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in this study were in a lamellar liquid crystalline phase state, static 31P NMR spectra were 

recorded. All preparations showed the typical axially symmetric powder pattern, with a 

Δσ = 45 ppm (data not shown).  

 

 

Figure 14:  Binding isotherm of ghrelin and desacyl ghrelin to POPC/POPG membranes 
The amount of bound ghrelin (black squares) and desacyl ghrelin (red circles) as a function of 
lipid concentration is given. The ghrelin binding curve was fitted according to Equation (1). No 
significant membrane binding is observed for desacyl ghrelin.  
 

To understand the dynamics of the membrane lipids and the lipid modification of 

membrane-associated ghrelin, the properties of the lipid chains in four different samples 

were compared: 1) pure DMPC-d54/DMPS, 2) DMPC-d54/DMPS/ghrelin at a 30:1 molar 

lipid-to-peptide molar ratio, 3) DMPC-d54/DMPS/desacyl-ghrelin, and 4) 

DMPC/DMPS/ghrelin-d15, where ghrelin featured a perdeuterated octanoyl-d15 chain at 

Ser3. This combination of samples allowed us to determine the effect of ghrelin on the 

bilayer properties of the host membrane. Typical 2H NMR spectra of the DMPC-d54 and 

the ghrelin-d15 component of the mixtures are shown in Figure 15, panels A and B. The 

NMR spectrum of DMPC shows the typical superposition of Pake dubletts, which is 

typical for the lamellar liquid crystalline phase state of the membrane. A small isotropic 
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peak, as well as the bigger line width, indicate the presence of ghrelin. The 2H NMR 

spectrum of ghrelin with a perdeuterated octanoyl chain also shows the features of a well-

inserted peptide lipid chain, i.e., well dissolved Pake dublets. In addition, an isotropic 

peak that accounts for ~10% of the intensity is shown, indicating that about 10% of the 

octanoyl chain of ghrelin is isotropically mobile, or not inserted into the membrane. 

 

 

Figure 15:  2H NMR spectra and order parameters of DMPC-d54/DMPS membranes 
2H NMR spectra in DMPC-d54/DMPS membranes (5/1, mol/mol) in the presence of ghrelin (A) 
and ghrelin-d15 in DMPC/DMPS membranes (B). C) 2H NMR order parameters of 
DMPC-d54/DMPS (5:1, mol/mol) membranes in the presence or absence of ghrelin (1:30 protein 
to lipid molar ratio) at a temperature of 30°C and a buffer content of 35 wt%.  

#

From the 2H NMR powder spectra of the four samples mentioned above, the 

segmental chain order parameters were determined. Smoothed chain order parameter 

profiles showing the dependence of the order parameter on the position of the carbon 
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segment in the acyl chain are presented in Figure 15C. The segments are numbered 

consecutively starting at the carbonyl group of the lipid or the Cβ of ghrelin’s Ser3. 

Striking differences between the chain order parameters of DMPC-d54 and ghrelin-d15 are 

observed. The ghrelin octanoyl chain shows significantly lower order parameters than the 

host membrane for all carbon positions. In contrast, the order parameters of the host 

membrane are very similar in the absence and presence of both ghrelin and desacyl 

ghrelin. Virtually no differences are observed for DMPC-d54/DMPS in the absence or 

presence of desacyl-ghrelin, confirming that there was no binding of the desacylated 

peptide to the membrane. Slightly higher order parameters are observed for the upper 

eight chain methylenes of the membrane in the presence of ghrelin. Using the mean 

torque model (268), the structural parameters of these lipid chains were calculated. The 

length of the DMPC chains in the mixture in the absence and presence of ghrelin was 

11.1 Å and 11.3 Å, respectively. The length of the octanoyl chain of ghrelin was 4.8 Å. 

 

13C Chemical shifts were collected to study the structure of membrane-bound ghrelin 

Next, the secondary structure of membrane-bound ghrelin was investigated. To 

this end, six peptides with varying labeling scheme were synthesized (Table 11). 13C 

MAS NMR measurements were carried out in DMPC/DMPS (5:1, mol/mol) membranes. 

A comprehensive set of directly excited 13C MAS NMR spectra, CP MAS spectra, and 

INEPT-based techniques were employed to find the most sensitive excitation scheme for 

membrane-bound ghrelin (269); the CP MAS technique with a contact time of 700 µs 

provided the most sensitivity. A typical 13C CP MAS NMR spectrum of a ghrelin peptide 

in membranes is shown in Figure 16A. As membrane-bound peptides often aggregate at 
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high concentrations (248), the dependence of ghrelin CSs on peptide concentration was 

determined; ghrelin/lipid preparations of 1:30, 1:50, and 1:100 molar ratios were used. In 

all cases, there were no observable altered CSs, so a 1:30 ghrelin/lipid preparation was 

used for the remainder of this study. 

 
Table 11:  Overview of ghrelin peptide constructs and labeling schemes* 

GHR1:#H2N_#GSS(nDoctanoyl)FL#SPEHQ#RVQQR#KESKK#PPAKL#QPR#_OH# M#=#3398,96#Da#

GHR2:#H2N_#GSS(n_octanoyl)FL#SPEHQ#RVQQR#KESKK#PPAKL#QPR#_OH# M#=#3384,96#Da#

GHR3:#H2N_#GSS(n_octanoyl)FL#SPEHQ#RVQQR#KESKK#PPAKL#QPR#_OH# M#=#3385,96#Da#

GHR4:#H2N_#GSS(n_octanoyl)FL#SPEHQ#RVQQR#KESKK#PPAKL#QPR#_OH# M#=#3388,96#Da#

GHR5:#H2N_#GSS(n_octanoyl)FL#SPEHQ#RVQQR#KESKK#PPAKL#QPR#_OH# M#=#3385,96#Da#

GHR6:#H2N_#GSS(n_octanoyl)FL#SPEHQ#RVQQR#KESKK#PPAKL#QPR#_OH# M#=#3379,96#Da#

##############∑:#H2N_#GSS(nDoctanoyl)FL)SPEHQ#RVQQR#KESKK#PPAKL#QPR#_OH# #
* Several ghrelin peptides were synthesized having 17 of the 28 amino acids that were 13C/15N 
labeled. The peptides were allowed to bind to LUVs having a diameter of 100 nm and a 
composition of 80% DMPC-d67 and 20% DMPS-d54. Experiments were performed with 35 wt% 
of 10 mM MES buffer containing 10 mM NaCl at pH 6. 
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Figure 16:  Ghrelin sequence showing the isotopic labeling scheme of the different molecules 
and ssNMR spectra of membrane-embedded ghrelin 
Labeling scheme is shown in color (see Table 11). A) 13C CP MAS NMR spectrum of ghrelin 
(with Gly1, Leu5, and Ser6 labeled) in DMPC-d67/DMPS-d54 (5:1, mol/mol) membranes at a 
ghrelin concentration of 3.3 mol%. B) 1H-13C MAS HetCor spectrum of the same preparation, all 
at 30°C and a MAS frequency of 7 kHz. 

 

To achieve the full assignments of the ghrelin signals, 1H–13C HetCor and 13C–

13C PDSP experiments were conducted. The basic connectivities within the labeled amino 

acid were determined in PDSP experiments using a mixing time of 50 ms. As membrane-

associated ghrelin is relatively mobile (see below), the PDSP experiments were 

performed at –30°C. The high mobility of ghrelin helped in detecting 1H CSs in 1H–13C 

HetCor experiments, which were well-resolved, even without application of homo-
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nuclear decoupling. Typical peptide signals had a 1H line width of 0.3–0.4 ppm. A 

characteristic 1H-13C HetCor NMR spectrum of membrane-associated ghrelin is shown in 

Figure 16B. A summary of the CS values determined for membrane-bound ghrelin is 

given in Table 12. The difference between 13Cα and 13Cβ values for determination of 

secondary structure are reported in Figure 17. 
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Table 12:  Chemical shifts measured for acylated ghrelin bound to DMPC/DMPS membranes (5/1,mol/mol) using MAS ssNMR 
Residue CO Cα Cβ Cγ Cδ Hα Hβ Hγ Hδ 

Gly1 167.0 ± 0.4 40.9 ± 0.2 ! ! ! ! ! ! !

Ser2 172.1 ± 0.2 55.6 ± 0.5 62.5 ± 0.6 ! ! ! ! ! !

Ser3 ! 53.6 ± 0.1 63.3 ± 0.2 ! ! 4.5± 0.3 ! ! !

Phe4 172.1 ± 0.2 55.8 ± 1.2 37.0 ± 0.8 ! ! ! ! ! !

Leu5 174.8 ± 0.4 51.9 ± 0.2 40.7 ± 0.5 ! ! ! ! ! !

Ser6 169.3 ± 0.5 54.2 ± 0.5 61.2 ± 0.6 ! ! ! ! ! !

Pro7 174.9 ± 1.2 61.2 ± 0.5 30.8 ± 1.7 ! ! ! ! ! !

Glu8 174.1 ± 0.2 54.3 ± 0.9 25.8 ± 0.9 ! ! ! ! ! !

Gln10 177.3± 0.3 55.4 ± 0.4 27.0 ± 0.0  34.4 ± 0.9 ! 4.1± 0.3 ! ! !

Val12 174.1 ± 0.2 60.3 ± 0.9 30.0± 0.3 ! ! ! ! ! !

Gln13 173.4 ± 0.3 53.5 ± 0.2 27.0 ± 0.1 ! ! 4.3± 0.3 2.0± 0.3 ! !

Gln14 173.5± 0.3 53.4 ± 0.1 27.0 ± 0.1 33.7 ± 0.1 ! 4.3± 0.3 2.1± 0.3 2.4± 0.3 !

Ser18 171.8 ± 0.2 55.8 ± 0.1 61.3 ± 0.2 ! ! 4.4± 0.3 3.9± 0.3 ! !

Pro21 177.7± 0.3  59.0 ± 0.1 28.3 ± 0.0 24.8 ± 0.1 48.0± 0.3 4.7± 0.3 ! 2.0± 0.3 3.8± 0.3 

Pro22 173.7 ± 0.2 60.4 ± 0.2 29.4 ± 0.0 24.8± 0.3 47.9± 0.3 4.4± 0.3 ! ! !

Ala23 175.5 ± 0.5 50.5 ± 0.6 17.0± 0.3 ! ! ! ! ! !

Pro27 173.3 ± 0.0 60.8 ± 0.0 29.4 ± 0.1 24.8 ± 0.1 48.1± 0.3 4.4± 0.3 2.0± 0.3 2.0± 0.3 3.8± 0.3 

* Gray cells indicate that these CSs were used in structure determination. 
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Figure 17:  Chemical shift analysis of ghrelin based on MAS ssNMR data 
The 13Cβ−13Cα values for reach residue are plotted. Positive values greater than 1 ppm indicate a 
tendency for α-helical structure, whereas values less than −1 ppm suggest some β-sheet character. 
Amino acids with a CS index close to 0 ppm are considered to have no secondary structure. 
Asterisks indicate that no CSs were available for that residue. 

 

Dipolar couplings were measured to study the dynamics of membrane-bound ghrelin 

Next, the dynamics of membrane-associated ghrelin were studied via dipolar 

coupling measurements (246). From the measurement of 13C–1H dipolar couplings, we 

determined the backbone and side-chain order parameters needed to characterize the 

amplitude of motion for the C-H-bond vectors. A fully rigid C-H-bond exhibits the 

maximal dipolar coupling strength of 22.8 kHz, corresponding to an order parameter of 1. 

An order parameter value of 0 corresponds to fully isotropic motion, which is expressed 

by a vanishing dipolar coupling. Molecular motions with a given amplitude lead to partial 

averaging of the dipolar coupling strength and can be characterized by a specific order 

parameter. The 1H–13C order parameters sample all motions with correlation times 
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shorter than ~10 µs (269). Overall, the order parameters for ghrelin in membranes are 

relatively low--around 0.2 for the backbone--with smaller values obtained for the side-

chains. There are no significant differences in the order parameters for residues 1-12. 

However, the order parameter of Ala23 was significantly lower, indicating a large increase 

in the motional amplitude at the C-terminus (Figure 18). 

 

Figure 18:  1H-13C order parameters of ghrelin bound to DMPC/DMPS membranes 
Order parameters were determined for 3.3 mol% ghrelin bound to DMPC/DMPS membranes 
(5:1, mol/mol) at a temperature of 30°C and a water content of 35 wt%. 
 

Ghrelin interacts with membrane via Ser3 and Phe4
 

Finally, the membrane topology of ghrelin was investigated by measuring spin 

diffusion from the lipid into the peptide (249). Ghrelin samples were prepared in DMPC-

d67/DMPS-d54 membranes in the presence of D2O. Thus, spin diffusion originating from 

the glycerol backbone and the PS headgroup was detected in the ghrelin backbone. 

Typical spin diffusion curves for Ser3, Phe4, Val12, and Ala23 are shown in Figure 19. At a 

mixing time of 0, all peptide magnetization was relaxed due to the T2 filter of 6 ms. 

However, as the mixing time increases, the intensity of the ghrelin signals also increases. 

Qualitatively, magnetization buildup is strongest in Ser3 and Phe4, while a significantly 

decreased magnetization buildup is detected for Val12 and Ala23. This means that Ser3 and 
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Phe4 are in close proximity to the membrane surface, while Val12 and Ala23 have no 

membrane contact because spin diffusion has to migrate longer to reach these sites. 

!

Figure 19:  1H spin diffusion buildup curves of membrane-associated ghrelin 
Spin diffusion spectra were determined for 3.3 mol% membrane-associated ghrelin in DMPC-
d67/DMPS-d54 (5:1, mol/mol) at a D2O content of 35 wt%. Spin diffusion originates from the 
membrane’s glycerol and the PS headgroups. Solid lines represent best-fit simulations using a 
lattice model with a spin diffusion coefficient of D = 0.001 nm2/s and a distance between protons 
of 2 Å. 

 

Magnetization buildup was also simulated using a simple lattice model for spin 

diffusion (250). As the mobilities of the lipids and ghrelin are comparable (see Figure 15 

and Figure 18), a common spin diffusion coefficient of D = 0.001 nm2/s was used for 

spin diffusion within the lipid, from lipid to peptide, and within ghrelin. With these 

simple assumptions, the magnetization buildup could be modeled relatively well using a 

2-Å spacing between neighboring spins. In the lattice model, spin diffusion from the lipid 

reaches the peptide sites in close proximity to the membrane surface, Ser3 and Phe4, in 3 

and 4 steps, respectively. On the other hand, 6 to 8 steps are necessary for the 

magnetization to diffuse to residues Val12 and Ala23. 
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PROSHIFT predicts CS of de novo folded ghrelin with smallest deviation from 

experiment 

In order to construct an ensemble of ghrelin models in agreement with the 

experimental CS data (Table 12), an appropriate method for predicting CSs based on the 

de novo folded models was needed. We tested four CS prediction tools: PROSHIFT 

(253), SHIFTX (256), SHIFTX2 (258), and SPARTA+ (261). PROSHIFT employs an 

artificial neural network (ANN) trained on CS data from the Biological Magnetic 

Resonance Bank (BMRB). SHIFTX operates via a hybrid method, in which empirically 

derived CS hypersurfaces are combined with classical (i.e., Newtonian physics) or semi-

classical equations for parameters, such as ring current, hydrogen bond, and solvent 

effects. SHIFTX2, like SHIFTX, employs structure-based concepts used by SHIFTX, but 

the algorithm also takes sequence homology information into account, as is done by 

SHIFTY (270). SPARTA+ uses an ANN, but, being a newer method, the ANN was 

trained on an approximately two-fold larger protein database than was used for training 

the PROSHIFT ANN. We hypothesized that the fragment-based assembly in Rosetta 

samples the conformational space likely occupied by the biologically active peptide and 

that, therefore, some models within the final ensemble represent conformations that give 

rise to the observed CSs. Accordingly, one can argue that the CS prediction algorithm 

most suitable for this particular application should give the lowest CS-RMSD between 

experimental and predicted CS. Because not all of the CS prediction methods predict 

values for side-chain atoms, including protons, only CO, Cα, Cβ, and Hα CSs were used in 

the determination of the CS-RMSD. 
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After using all four of the aforementioned methods to predict CSs for the 10,000 

Rosetta-generated models, the CS-RMSD (in ppm) of each model to the experimental 

data was computed. The Rosetta score, or energy, was plotted against CS-RMSD, as 

determined by each CS prediction method (Figure 20). Surprisingly, it was found that 

PROSHIFT systematically created lower CS-RMSD values. Manual inspection of one 

selected model that agreed well with predicted CSs from all methods confirmed that more 

accurate CSs were predicted throughout the peptide and not located in one particular 

region (Table 13). 

 

Figure 20:  Assessment of four chemical shift prediction methods 
Score vs. RMSD (in ppm) plot, where the RMSD of each model’s predicted CSs to experimental 
values were computed. The RMSD was computed over each of the experimentally determined 
CSs, excluding the two CSs determined for Gly1. 
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Table 13:  Detailed analysis of low-RMSD model from set of filtered models in top 10% by score 

Res$ Ato
m$ CSexpa,b$ CSPROSHIFT$

|$CSPROSHIFT$–$
CSexp$|c$

CSSPARTA+$
|$CSSPARTA+$–$
CSexp$|$

CSSHIFTX$
|$CSSHIFTX$–$
CSexp$|$

CSSHIFTX2$
|$CSSHIFTX2–$
CSexp$|$

Ser2! CO! 172.1!±!0.2! 173.0! 0.2! 176.5! 1.1! 174.9! 0.7! 176.28! 1.0!
Ser2! Cα! 55.6!±!0.5! 57.0! 0.4! 61.0! 1.4! 58.83! 0.8! 61.08! 1.4!
Ser2! Cβ! 62.5!±!0.6! 62.3! 0.0! 63.0! 0.1! 62.98! 0.1! 63.06! 0.1!
Ser2! Cα! 53.6!±!0.1! 58.4! 1.2! 60.2! 1.7! 60.67! 1.8! 60.48! 1.7!
Ser2! Cβ! 63.3!±!0.2! 61.4! 0.5! 62.6! 0.2! 63.78! 0.1! 62.65! 0.2!
Ser2! Hα! 4.5!±!0.3! 4.2! 0.3! 4.4! 0.1! 4.27! 0.2! 4.33! 0.2!
Phe4! CO! 172.1!±!0.2! 174.5! 0.6! 176.2! 1.0! 175.45! 0.8! 176.27! 1.0!
Phe4! Cα! 55.8!±!1.2! 56.0! 0.1! 58.2! 0.6! 59.48! 0.9! 58.9! 0.8!
Phe4! Cβ! 37.0!±!0.8! 38.0! 0.3! 39.0! 0.5! 38.85! 0.5! 39.36! 0.6!
Leu5! CO! 174.8!±!0.4! 173.9! 0.2! 176.3! 0.4! 175.41! 0.2! 176.17! 0.3!
Leu5! Cα! 51.9!±!0.2! 51.5! 0.1! 53.6! 0.4! 53.3! 0.4! 54.2! 0.6!
Leu5! Cβ! 40.7!±!0.5! 39.8! 0.2! 43.3! 0.7! 43.13! 0.6! 43.52! 0.7!
Ser6! CO! 169.3!±!0.5! 172.2! 0.7! 172.7! 0.8! 172.64! 0.8! 173.32! 1.0!
Ser6! Cα! 54.2!±!0.5! 54.0! 0.1! 54.9! 0.2! 56.51! 0.6! 55.58! 0.3!
Ser6! Cβ! 61.2!±!0.6! 62.8! 0.4! 64.1! 0.7! 63.58! 0.6! 63.85! 0.7!
Pro7! CO! 174.9!±!1.2! 174.3! 0.2! 178.0! 0.8! 177.03! 0.5! 177.79! 0.7!
Pro7! Cα! 61.2!±!0.6! 61.3! 0.0! 62.3! 0.3! 62.01! 0.2! 62.11! 0.2!
Pro7! Cβ! 30.8!±!1.7! 30.9! 0.0! 32.9! 0.5! 33.75! 0.7! 33.42! 0.7!
Glu8! CO! 174.1!±!0.2! 176.0! 0.5! 178.9! 1.2! 178.78! 1.2! 178.75! 1.2!
Glu8! Cα! 54.3!±!0.9! 56.9! 0.7! 60.2! 1.5! 59.66! 1.3! 59.46! 1.3!
Glu8! Cβ! 25.8!±!0.9! 27.4! 0.4! 29.0! 0.8! 29.09! 0.8! 29.23! 0.9!
Gln10! CO! 177.3!±!0.3! 176.2! 0.3! 178.6! 0.3! 178.93! 0.4! 178.73! 0.4!
Gln10! Cα! 55.4!±!0.4! 57.4! 0.5! 59.3! 1.0! 58.88! 0.9! 59.11! 0.9!
Gln10! Cβ! 27.0!±!0.0! 27.0! 0.0! 28.5! 0.4! 28.72! 0.4! 28.58! 0.4!
Gln10! Hα! 4.1!±!0.3! 3.9! 0.2! 3.8! 0.3! 3.93! 0.2! 3.98! 0.2!
Val12! CO! 174.1!±!0.2! 175.5! 0.3! 177.0! 0.7! 177.75! 0.9! 178.15! 1.0!
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Val12! Cα! 60.3!±!0.9! 63.9! 0.9! 65.7! 1.3! 66.1! 1.5! 65.84! 1.4!
Val12! Cβ! 30.0!±!0.3! 28.8! 0.3! 31.5! 0.4! 31.63! 0.4! 31.75! 0.4!
Gln13! CO! 173.5!±!0.3! 175.2! 0.4! 178.7! 1.3! 177.83! 1.1! 176.87! 0.8!
Gln13! Cα! 53.4!±!0.2! 56.3! 0.7! 57.1! 0.9! 58.16! 1.2! 57.74! 1.1!
Gln13! Cβ! 27.0!±!0.1! 27.0! 0.0! 28.7! 0.4! 28.64! 0.4! 28.66! 0.4!
Gln13! Hα! 4.3!±!0.3! 4.1! 0.2! 4.1! 0.2! 4.11! 0.2! 4.14! 0.2!
Gln14! CO! 173.5! 173.9! 0.1! 176.3! 0.7! 176.43! 0.7! 176.36! 0.7!
Gln14! Cα! 53.4!±!0.1! 55.0! 0.4! 56.6! 0.8! 57.55! 1.0! 57.21! 0.9!
Gln14! Cβ! 27.0!±!0.1! 26.5! 0.1! 29.0! 0.5! 29.58! 0.7! 29.14! 0.5!
Gln14! Hα! 4.3! 4.3! 0.0! 4.1! 0.2! 4.07! 0.2! 4.19! 0.1!
Ser18! CO! 171.8!±!0.2! 173.2! 0.4! 174.8! 0.8! 174.27! 0.6! 173.9! 0.5!
Ser18! Cα! 55.8!±!0.1! 56.4! 0.2! 57.9! 0.5! 57.89! 0.5! 58.23! 0.6!
Ser18! Cβ! 61.3!±!0.2! 60.3! 0.3! 64.7! 0.8! 64.13! 0.7! 64.47! 0.8!
Ser18! Hα! 4.4!±!0.3! 4.4! 0.0! 4.5! 0.0! 4.42! 0.0! 4.41! 0.0!
Pro21! CO! 177.7!±!0.3! 173.4! 1.1! 175.1! 0.6! 174.84! 0.7! 175.33! 0.6!
Pro21! Cα! 59.0!±!0.1! 59.1! 0.0! 61.8! 0.7! 61.79! 0.7! 62.32! 0.8!
Pro21! Cβ! 28.3!±!0.0! 29.8! 0.4! 31.5! 0.8! 31.89! 0.9! 30.97! 0.7!
Pro21! Hα! 4.7!±!0.3! 4.6! 0.1! 4.4! 0.3! 4.42! 0.3! 4.6! 0.1!
Pro22! CO! 173.7!±!0.2! 174.3! 0.2! 176.1! 0.6! 176.41! 0.7! 177.46! 0.9!
Pro22! Cα! 60.4!±!0.2! 60.7! 0.1! 62.6! 0.5! 62.68! 0.6! 62.72! 0.6!
Pro22! Cβ! 29.4!±!0.0! 30.9! 0.4! 32.3! 0.7! 31.89! 0.6! 32.19! 0.7!
Pro22! Hα! 4.4!±!0.3! 4.5! 0.1! 4.1! 0.4! 4.21! 0.2! 4.42! 0.0!
Ala23! CO! 175.5!±!0.5! 175.0! 0.1! 177.1! 0.4! 177.18! 0.4! 177.2! 0.4!
Ala23! Cα! 50.5!±!0.6! 50.2! 0.1! 51.4! 0.2! 51.51! 0.3! 51.62! 0.3!
Ala23! Cβ! 17.0!±!0.3! 16.8! 0.0! 20.3! 0.8! 20.15! 0.8! 19.27! 0.6!
Pro27! CO! 173.3!±!0.0! 175.0! 0.4! 176.0! 0.7! 176.67! 0.8! 177.01! 0.9!
Pro27! Cα! 60.8!±!0.0! 61.7! 0.2! 63.1! 0.6! 62.73! 0.5! 63.13! 0.6!
Pro27! Cβ! 29.4!±!0.1! 30.2! 0.2! 32.4! 0.7! 32.32! 0.7! 31.98! 0.6!
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Pro27! Hα! 4.4!±!0.3! 4.4! 0.1! 4.6! 0.1! 4.37! 0.1! 4.4! 0.0!
Average$Deviation$$

(±$S.E.M.)$$ 0.3$±$0.04$ 0.6$±$0.05$ 0.6$±$0.05$ 0.6$±$0.05$

RMSD$ 0.4$ 0.7$ 0.7$ 0.7$
a All values in ppm 
b Experimental and predicted values not scaled. Difference values take scaling into account.  
c All CS differences (in | |) are scaled. Scaling = CScarbon * 0.25 
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 Furthermore, the selection algorithm used to find the ensemble of models with 

the best overall agreement to the experimental CSs resulted in lower average RMSD 

values when the model CSs were predicted by PROSHIFT (Table 10 and Table 12). After 

running the selection algorithm over model pools of various sizes, each with PROSHIFT, 

SHIFTX, SHIFTX2, or SPARTA(+)-predicted CSs, it was determined that, for this 

system, the top 10% of models by total Rosetta score that had Ser3 Cα atoms in proximity 

to the membrane plane struck the best compromise between favorable Rosetta energy and 

agreement with experimental CSs. 

 

The final structural ensemble of ghrelin is highly flexible 

The final ensemble of 22 ghrelin models had a CS-RMSD of 0.4 ppm relative to 

the experimental CSs according to the selection algorithm outlined in Figure 13. 

However, the ensemble is highly flexible and mobile. The backbone RMSD to mean 

structure is 4.0 ± 0.8 Å (Table 14). There was no structural core by which the models 

could be aligned; therefore, the models’ Ser3 Cβ atoms were superimposed for 

visualization (Figure 21). 
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Figure 21:  Structure of ghrelin based on MAS ssNMR chemical shift data 
A) Final ensemble of ghrelin selected from the ensemble selection algorithm discussed in the 
main text. The Ser3 Cα of each model was superimposed on the others. Ser3 is shown as spheres. 
The ensemble was manually placed on the surface of a DMPC lipid bilayer, and the octanoic acid 
(spheres) was manually positioned in proximity to Ser3. B) Model from the final ensemble. 
Residues predicted to be PPII helix (21-23 and 26-27) are colored in orange. Residues predicted 
to be helical according to Figure 12A (4, 8, 10, and 12) are colored in green. Positively charged 
residues (Arg and Lys), Ser3, Phe4, Val12, and Ala23 are displayed as lines. 
 
Table 14:  Statistics for restraints, structural calculations, and structural quality for final 
ensemble of ghrelin models 

NMR distance restraints used during folding and refinement 

Total restraints 55 

Chemical shiftsa 55 

! !

Structural(statistics!

Number of models in ensemble 22!
Deviations from idealized geometry !
Bond lengths (Å) 0.02 

Bond angles (°) 0.7 

Main chain RMSD to the mean structure (Å) 4.0 ± 0.8 

Ensemble average RMSD to chemical shifts (ppm) 0.4 

Ramachandran plot statistics (%) !
Most favored regionsb,c 95.2, 99.5 

Additionally allowed regionsb,c 4.8, 0.5 
a Chemical shifts were used during post-processing only; they were not used during fragment 
generation or de novo folding and refinement 
b As determined by PROCHECK (http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/) 
c As determined by MolProbity (http://molprobity.biochem.duke.edu) 
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Notice that the peptide exhibits an α-helical core but no β-strand character. After 

further inspection of the Ramachandran plot generated for all 10,000 models, as well as 

for the final ensemble, it appears that the final ensemble may exhibit some polyproline II 

helical character, which would be found in the ϕ = −75° / ψ = 150° area (Figure 22). 

Additionally, analysis of the ϕ/ψ angles using the PPII-DSSP method presented by 

Kabsch and Sander (182), residues 21–23 and 26–27 show significant PPII helical 

propensity (Figure 22B). The α-helical core agrees well with the secondary structure 

prediction of ghrelin based on PSIPRED (271), JUFO (104), SAM (272), and Figure 12. 

On the other hand, according to TALOS+ (143), which is based on the experimental CSs, 

the peptide, especially residues 21-23, is expected to be almost completely random coil. 

Ramachandran plots of residues 1-7, 8-12, 13-20, 21-28, and 21-28 indicate that the 

secondary structure of the final ensemble is not completely at odds with the secondary 

structure prediction or experimental CSs (Figure 22A).  
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Figure 22:  Secondary structure analysis of ghrelin 
A) Ramachandran plots of various subsets of residues as labeled at the top of the plots. The 
torsion angles of all models generated in Rosetta (gray) and the final ensemble of models (black) 
are plotted. B) Weblogo (http://weblogo.threeplusone.com) of PPII-DSSP analysis of final 
ensemble of ghrelin models. Color key:  black = random coil (C), blue = bend (S) or turn (T), and 
green = α-, 310-, or PPII helix (H, G, or P, respectively). 

 

Discussion 

Ghrelin interacts with the membrane via a small hydrophobic cluster 

According to our spin diffusion studies, ghrelin interacts with the membrane via 

residues Ser3 and Phe4, whose side-chains and the octanoyl chain insert into the 

membrane (Figure 19); this is also in agreement with solution NMR data performed in 

detergent micelles (230). Due to the deuteration scheme of the membrane, 1H spin 

diffusion can only originate from the glycerol backbone and the polar headgroup, 

suggesting localization of the Phe side-chain in this region. Generally speaking, the 

interface region of the membrane represents the preferred localization for membrane-
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bound lipidated peptides (273, 274). Spin diffusion into residues Val12 and Ala23 is 

significantly slower, implying that these residues have no membrane contact. Due to the 

highly dynamic ghrelin structure at the membrane surface and the fact that the octanoyl 

chain is in equilibrium between an inserted state (~90% of the time) and a desorbed state 

(~10% of the time), spin diffusion from the membrane into the peptide is significantly 

slower than what is observed for membrane proteins with a transmembrane segment 

(249). 

The small hydrophobic cluster of amino acids of octanoylated Ser3, Phe4, and 

Leu5 account for about –13.4 kJ/mol (275, 276) of the energy corresponding to the 

ghrelin-membrane interaction. At the lipid concentrations used in our experiments, this is 

insufficient for a permanent association with the membrane. Using a simple membrane 

partition model (232), this would only account for binding of ~8% of ghrelin. Clearly, a 

second mechanism is required for anchoring ghrelin to the membrane. This second 

mechanism is electrostatic attraction of the positively charged C-terminal two-thirds of 

the ghrelin sequence to the lipid headgroups. Indeed, ghrelin holds an electrostatic charge 

of +5.8 at pH 6, which was used for our studies to prevent the hydrolysis of the octanoyl 

chain. Numerous calculations based on the Gouy Chapman theory have been carried out 

to determine the electrostatic contribution to membrane binding of lipidated peptides 

(277). For instance, pentalysine binds to a slightly negatively charged membrane, as in 

our case, with a Gibbs free energy of approximately –12 kJ/mol (278). Together with the 

hydrophobic contribution from the N-terminus of ghrelin, we estimate a total membrane 

binding energy of ΔΔG0 about –25 kJ/mol, which corresponds to approximately 90% of 
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bound ghrelin. This corresponds relatively well with the value of –28.6 kJ/mol 

determined from the binding measurement.  

 

The octanoyl chain might play a role in a fine-tuned membrane association mechanism 

Given the above observations, why is ghrelin not modified with a longer lipid 

chain, which would provide the peptide much better membrane partitioning properties? 

Clearly, the short octanoyl chain is not optimal for membrane binding. Further, chemical 

biology studies have shown that longer lipid chains and even more bulky groups are 

accepted by the GHSR (226). However, a replacement of the octanoyl chain to Ser6 or 

Ser18 is not tolerated. Further, the lack of the octanoyl chain, as in descyl-ghrelin, poorly 

activates the receptor. This could, however, also be explained by the fact that desacyl-

ghrelin does not bind negatively charged membranes, as shown here and by others (62). 

However, a computer-generated model of the GHSR-ghrelin complex revealed 

hydrophobic contacts between the receptor and Phe4, as well as the octanoyl side-chain 

(279). Apparently, the short ghrelin octanoyl chain is responsible for a fine-tuned 

membrane association mechanism, which catalyzes receptor binding and activation (228). 

Although there is some disagreement about the exact hydrophopic contribution of ghrelin 

to membrane binding, most studies agree that desacyl-ghrelin does not significantly bind 

membranes (62, 230). It is obvious that the ghrelin octanoyl chain has not been optimized 

for the purpose of membrane binding; longer acyl chains or prenyl groups provide much 

more favorable membrane anchors (232). The octanoyl chain is therefore primarily 

needed for receptor activation. 
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Previous studies of membrane-associated ghrelin and related peptides primarily indicate 

α-helical structure 

Earlier 1H studies of acylated and desacylated ghrelin in aqueous solution at low 

pH indicate that both forms of the peptide are highly unstructured in water. Indeed, the 

poor dispersion of CSs, as well as the lack of nuclear Overhauser effects (NOEs) 

typically seen of α-helices and β-sheets support the CD data (61). It is also possible that 

ghrelin experiences structural inter-conversion on a faster timescale than the NMR 

measurements, resulting in no detection of transient secondary structure. A 10-ns MD 

simulation performed in water at constant temperature and neutral pH (preceded by 2 ns 

of simulated annealing MD, or SAMD) provided evidence that ghrelin may sample a 

helix from residues 7 to 13 in both environments. MD studies in DMPC bilayers for 15 

ns, initiated with the energy-minimized final peptide from the previous 10-ns MD 

simulation in water, did not show any significant differences in secondary structure from 

the peptide in aqueous conditions. However, the presence of the membrane appeared to 

reduce ghrelin’s flexibility. Interestingly, the octanoyl side-chain, while initially pointed 

to the lipid bilayer, did not anchor the peptide to the membrane. Instead, during the 

simulation, residues 15–18 served as contact points with the lipid headgroups (63, 280). 

CD spectroscopy of ghrelin and desacyl-ghrelin performed in aqueous solution 

(20 mM Tris buffer) and in 100% TFE at pH 7.4 provide experimental support for the 

MD studies, in that the acylated peptide exhibits 12% helical character in aqueous 

solution and in TFE. Desacyl-ghrelin, on the other hand, showed a significant increase in 

helical character when going from an aqueous environment (23%) to TFE (48%) (281). 
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In contrast to the MD simulations performed by Beevers and Kukol (63), Staes, et 

al. showed via a variety of biochemical assays that, while ghrelin and desacyl-ghrelin 

both electrostatically interact with the membrane, only acylated ghrelin penetrates into 

negatively charged membranes. However, the interaction of ghrelin with membranes was 

not such that it otherwise significantly disturbed the membrane surface. The same authors 

also investigated the secondary structure of ghrelin and desacyl-ghrelin via in silico 

modeling and CD spectroscopy. Similar to previous MD studies (63), an α-helix spanning 

residues Pro7 to Ser18, which was flanked by two loops, for both acylated and desacylated 

ghrelin. The authors’ models were supported by CD data collected in water, 

dodecylphosphocholine (DPC) micelles, SDS micelles, and TFE. For both forms of 

ghrelin, the helicity increased significantly in SDS micelles and TFE (62). A similar trend 

was observed for the prolactin releasing peptide (PrRP), another peptide that plays a role 

in food intake and body weight homeostasis (37). In the case of PrRP, it was 

demonstrated that the peptide likely exists in a conformational equilibrium between α- 

and 310-helix, and the helical propensity of the peptide is essential for its ability to 

activate the PrRP receptor, another GPCR. Another peptide that is involved in the 

regulation of appetite, galanin-like peptide (GALP), also shows nascent helical character, 

which may increase upon binding to galanin receptors (204). More recently, the 

neuropeptide, substance P (SP), was also found to have α-helical character in negatively 

charged SDS micelles and DMPG liposomes. However, in aqueous solution and in sub-

micellar concentrations of SDS and DMPC liposomes, CD spectra indicate the presence 

of polyproline II (PPII) helix (282). 
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Ghrelin exhibits a highly flexible structure containing some polyproline II-, α-, and 310- 

helix 

Based on previous structural studies, structural characterization of related 

peptides, and secondary structure prediction based on the primary sequence (Figure 12), 

it was expected that our current ssNMR studies would point to a dynamic peptide having 

transient α- and/or 310-helical character in conformational equilibrium. Interestingly, 

13Cα−13Cβ CS values indicate helical propensity for residue 4, 8, 10, and 12, but according 

to CS index analysis with TALOS+ (143), only Arg11 exhibits a small amount of helical 

propensity (Figure 12). This is in agreement with the high mobility inferred from the low 

order parameters that have been measured for the peptide (Figure 18).  

The final ensemble of Rosetta-generated models in best agreement with the 

experimental CSs provides a set of three-dimensional (3D) structures that allow for the 

visualization of the information obtained by NMR. As expected from the order 

parameters, we modeled a very loose conformational ensemble (Figure 22A and Table 

14). Interestingly, while Rosetta sampled ϕ/ψ torsion angles expected for all common 

secondary structures (i.e., α-helix and β-sheet), the final ensemble exhibits a strongly 

helical core with what initially appeared to be “random coil” in the N- and C-terminal 

region, in agreement with previous studies (41, 62, 63, 213, 214). However, upon closer 

inspection of the Ramachandran plots and a modified DSSP analysis of these 22 models, 

it is probable that the final ensemble exhibits a small amount of 310-helical character, as 

well as a significant amount of PPII helix, especially for Pro21-Ala23 and Gln26-Pro27 

(Figure 21 and Figure 22). The helical character of ghrelin does appear to allow it to 
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frequently adopt amphipathic conformations, thus allowing the basic residues to interact 

with the membrane’s polar headgroups (Figure 21). 

 

Polyproline II helical conformation in ghrelin may play a biologically significant role 

Pure PPII helix is left-handed, is often characterized as a triangular prism, and has 

a helical pitch of 9.3 Å/turn; it contains ϕ and ψ angles of –75° and 145°, respectively. 

However, other amino acids and combinations of amino acids can form PPII 

helices.(283) Stapley and Creamer state that, in addition to Pro, Gln and positively 

charged residues having an increased probability of existing in PPII helices, Gly and 

aromatic residues show decreased probability (284). Other analyses of proteins of known 

structure agree that Gly and aromatic residues have low propensities to form PPII helices 

and that Pro appears most often, the increased observation of Gln and positively charged 

residues in PPII helices is disputed (285). In addition to being sampled during protein 

folding and unfolding, PPII helical structure has been implicated in amyloid formation 

(286, 287), nucleic acid binding (288), and muscle tissue elasticity (289). Statistical 

analysis of a database of 274 non-homologous protein structures shows that, while only 

2% of residues are found in PPII helices, more than half of all polypeptide chains contain 

PPII helix of at least three residues in length (284). 

To our knowledge, ghrelin is the first membrane-associated peptide to have PPII 

helical character for some residues in the presence of lipid bilayers. We point out that this 

character is likely transient and involves only short stretches of 2-3 residues. However, it 

is possible that, like the aforementioned peptides, ghrelin’s α-helical content increases 

and extends into the ten C-terminal residues when it binds to GHSR. However, the PPII 
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helical character could allow for increased solvent accessibility while simultaneously 

providing for structural flexibility in areas such as flanking α-helices, linker regions, etc. 

Further, PPII helices have been found to be structural motifs involved in protein-protein 

interactions, which may result from their tendency to form amphipathic helices and to 

bind in a rapid and reversible fashion (267, 290). 

 

Reliance of peptide fragment selection on chemical shifts and secondary structure 

prediction 

While CSs can be used to guide fragment selection for de novo folding in Rosetta, 

we ultimately chose to utilize the original fragment selection protocol and filter by CS 

agreement after modeling was completed. Given that CS data for ghrelin is sparse, i.e. 

only for a subset of all residues secondary structure can be determined from the CSs, this 

protocol was chosen to prevent biases from residues with determined CSs on other 

regions of the peptide. In the case of ghrelin, Rosetta selects fragments based on 

agreement of CS for a subset of residues with little or no secondary structure information 

for other residues. When generating fragments for ghrelin, this led to a bias of β-hairpin 

fragments, which was not in agreement with other experimental data that pointed to a 

highly flexible and mobile peptide. We therefore opted to select fragments based on 

predicted secondary structure for all residues and filtered the models based on agreement 

of experimental CS later. Indeed, upon analysis of the secondary structure of fragments 

selected with and without experimental CSs, we see that the fragment selection scheme 

depends heavily on CS data when available, as is described in the literature.(106) On the 



!102!

other hand, when CS data are not included in fragment selection, the secondary structure 

prediction of all residues is critical (Figure 12). 

 

PROSHIFT gives systematically best agreement between experimental and predicted CS 

values 

In order to compare the Rosetta-generated models with the experimentally 

determined CSs, we tested four CS prediction methods: PROSHIFT, SPARTA+, 

SHIFTX, and SHIFTX2. While SPARTA+, SHIFTX, and SHIFTX2 performed similarly, 

PROSHIFT appears to be the best method for prediction of CSs for ghrelin (Figure 20). 

To rule out systematic error and artifacts, one low-energy model that had minimal 

deviations between predicted and experimental CSs was chosen for in-depth analysis 

(Table 13 and Figure 23). This was also carried out on a few randomly selected models 

(data not shown). 
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Figure 23:  In-depth analysis of chemical shiftx for one model 
A) The CSSPARTA+, CSSHIFTX, and CSSHIFTX2 deviations from CSexperimental values (Table 13) are 
plotted against CSPROSHIFT deviations from CSexperimental values. All values are in ppm. B) Structure 
of the model chosen for in-depth analysis. While it was not in the final ensemble of models 
reported in this work, it was within the top 10% by Rosetta energy and the best or second-best 
model with respect to CS-RMSD relative to experimental CSs. 

 

This result was somewhat surprising, given that PROSHIFT is an older method 

than the three to which it was compared. The reason for PROSHIFT’s superior 

performance is not obvious, especially considering that the same 55 (CO, Cα, Cβ, and Hα) 

CSs were used for all analysis. Our explanation for this phenomenon is that PROSHIFT 

might be less biased than other methods in predicting CSs for well-structured proteins 

with large amounts of secondary structure, thereby making it more suitable for prediction 

of CSs for peptides or intrinsically disordered proteins. 
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A combined ssNMR-Rosetta protocol for studying structure and dynamics of flexible 

peptides and proteins 

Due to the lack of regular inter-residue hydrogen bonding characteristic of α-

helices and β-strands, it is likely that PPII helices are often categorized as “random coil” 

by secondary structure analysis software, such as DSSP. Furthermore, while PPII helices 

are difficult to detect directly by NMR (285) there have been attempts using CS data 

(291, 292). More generally, determining the structural ensemble that best represents 

sparse NMR CSs is especially challenging for biomolecules expected to be highly 

flexible and potentially unstructured. In addition to presenting a 3D structural ensemble 

of the biologically active form of ghrelin, we provide a novel, thorough method for 

predicting membrane-associated peptides, as well as for selecting a set of models based 

on ssNMR CSs. As NMR is often used to characterize protein unfolding and intrinsically 

unstructured proteins (IUPs) (289, 292-294), we believe our approach of combing NMR 

with Rosetta and a Monte Carlo ensemble selection algorithm may be useful for future 

studies of other structurally flexible and mobile systems. 

 

Conclusion 

To date, the results on the structure and dynamics of ghrelin have been 

controversial and inconclusive. In order to elucidate the mechanism by which ghrelin 

interacts with the membrane, as well as its 3D structure and its dynamics in the 

membrane environment, CSs and order parameter data were collected via MAS ssNMR. 

The primary sequence of ghrelin was then used to de novo the peptide in Rosetta using 

the RosettaMembrane energy functions. A final ensemble of models was then selected 
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based on the CS data. Unlike other peptides that activate GPCRs and in contrast to 

previous studies of ghrelin, our model of ghrelin is extremely flexible (4-Å RMSD) while 

strongly sampling both α- and PPII helical character. This unique secondary structure 

may allow the peptide to adopt an amphipathic structure, which would allow it to bind 

electrostatically to the membrane. Finally, the protocol employed to fold ghrelin and 

select the final ensemble of models can be used to structurally characterize other flexible 

proteins and peptides for which only sparse CS data are available, including those that act 

in a lipid environment. 

 

Availability 

The protocol capture for comparative modeling, CS prediction, and ensemble 

selection, can be found in Appendix C. The coordinates for the final ensemble will be 

available on a hard drive upon final submission of the dissertation. 
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CHAPTER IV 

 

ROSETTAEPR:  AN INTEGRATED TOOL FOR PROTEIN STRUCTURE 
DETERMINATION FROM SPARSE EPR DATA 

 

This work is based on publication (Hirst, Alexander, Mchaourab, and Meiler, 

2011). 

 

Summary 

Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) is often 

used for the structural characterization of proteins that elude other techniques, such as X-

ray crystallography and nuclear magnetic resonance (NMR). However, high-resolution 

structures are difficult to obtain due to uncertainty in the spin label location and 

sparseness of experimental data. Here, we introduce RosettaEPR, which has been 

designed to improve de novo high-resolution protein structure prediction using sparse 

SDSL-EPR distance data. The “motion-on-a-cone” spin label model is converted into a 

knowledge-based potential, which was implemented as a scoring term in Rosetta. 

RosettaEPR increased the fractions of correctly folded models (RMSDCα < 7.5Å) and 

models accurate at medium resolution (RMSDCα < 3.5Å) by 25%. The correlation of 

score and model quality increased from 0.42 when using no restraints to 0.51 when using 

bounded restraints and again to 0.62 when using RosettaEPR. This allowed for the 

selection of accurate models by score. After full-atom refinement, RosettaEPR yielded a 

1.7Å model of T4-lysozyme, thus indicating that atomic detail models can be achieved by 

combining sparse EPR data with Rosetta. While these results indicate RosettaEPR’s 
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potential utility in high-resolution protein structure prediction, they are based on a single 

example. In order to affirm the method’s general performance, it must be tested on a 

larger and more versatile dataset of proteins. 

 

 Introduction 

Protein modeling with Rosetta can serve as an alternative means of structure elucidation 

The vast majority of proteins in the Protein Data Bank (PDB) have been 

determined by X-ray crystallography or nuclear magnetic resonance (NMR) (1). 

However, a large number of biomedically relevant proteins continue to evade structural 

elucidation by these techniques due to membrane environment (295), high flexibility 

(296), and size (297). Alternative techniques, such as computational structure prediction 

methods, can be employed in order to define the structure of such proteins. The usual 

experimental bottlenecks, such as obtaining highly pure, concentrated samples of protein, 

are thereby avoided. Rosetta routinely folds soluble proteins of less than 150 amino acids 

correctly (298). It is generally among the top performers in the Critical Assessment of 

protein Structure Prediction (CASP) experiments (109, 111, 299-301). In addition, 

Rosetta’s ability to obtain the correct fold of membrane proteins of various sizes and 

topologies has been demonstrated (105, 117, 130). More recently, Das, et al. introduced 

RosettaFold-and-Dock, which allows for the de novo structure prediction of homomeric 

proteins (302). 

Rosetta’s sampling and scoring capabilities for protein folding have been 

reviewed extensively elsewhere (101, 102, 110, 303). Briefly, the Rosetta de novo protein 

structure prediction algorithm is divided into two steps: low-resolution protein folding to 
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obtain the overall topology and high-resolution refinement of the backbone and side-

chains. Metropolis Monte Carlo peptide fragment insertion is driven by a variety of 

knowledge-based potentials to rapidly predict protein folds. In high-resolution 

refinement, the protein backbone φ and ψ angles are perturbed while the overall fold is 

maintained. Side-chain conformations are predicted via a Metropolis Monte Carlo search 

of rotamer space, and all torsional degrees of freedom are subjected to gradient-based 

minimization. 

 

Sparse NMR restraints can be combined with Rosetta to obtain atomic detail structures 

While the algorithm described above performs well in the de novo prediction of 

relatively small, soluble proteins, effectively sampling protein conformational space 

remains the limiting factor in the accurate prediction of more complex proteins. To this 

end, distance and orientational restraints, such as those obtained by NMR, have been 

incorporated into the Rosetta protein folding protocol (106). Chemical shifts are 

converted into backbone torsional angle restraints, which are used in the generation of the 

peptide fragment libraries. Distance restraints from nuclear Overhauser effects (NOEs) 

are also employed in this process. Additionally, distance and orientaitonal restraints 

(NOEs and residual dipolar couplings, or RDCs, respectively) have been incorporated 

into the scoring function and are evaluated during protein folding. Bowers, et al. 

demonstrated that Rosetta, combined with a sparse set of NOEs (approximately one 

restraint per residue) and backbone chemical shifts, can produce models with atomic 

detail accuracy (168). Similarly, a combination of sparse RDCs and chemical shifts was 

used to produce correctly folded models (303). Shen, et al. have made significant 
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progress in improving the robustness and accuracy of CS-Rosetta with incomplete 

chemical shift datasets, obtaining atomic detail models based on much data that would 

otherwise be considered unsuitable for high-resolution structure determination (139, 263, 

264). 

 

SDSL-EPR offers an advantage over traditional structure determination techniques 

Despite such advances, some proteins remain un-amenable to structure 

determination by these methods. Site-directed spin labeling electron paramagnetic 

resonance spectroscopy (SDSL-EPR) allows for structural studies of membrane proteins 

and large macromolecular assemblies in native or native-like environments (74, 146-148, 

304-306). SDSL involves mutating residues of interest to cysteines, which can be reacted 

with a paramagnetic spin label, such as methanethiosulfonate (MTS). A sensitive 

structural probe at a known sequence position is created, forgoing the need to “assign” 

signals in the spectrum as is necessary in NMR spectroscopy. Additionally, resolution of 

SDSL-EPR is not limited by the size of the system. Similar to fluorescence and NMR 

spectroscopy, however, SDSL-EPR generates information concerning both the local 

environment of the spin label and the overall global fold of the protein. SDSL-EPR has 

been used to characterize conformational changes, such as those seen in MsbA (74, 147), 

rhodopsin (307-309), and KcsA (77, 146, 310). More recently, it has been demonstrated 

that the fold of a protein can be determined by structural restraints derived from SDSL-

EPR data alone (134). 
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Atomic detail protein structure determination by SDSL-EPR is difficult and 

computationally demanding 

Challenges in using SDSL-EPR structural data arise from the possible 

perturbation of the system by introduction of the spin label, sparseness of datasets 

resulting from the need to construct a dedicated mutant for every data point collected, and 

uncertainty in the position and dynamics of the spin label relative to the protein 

backbone. In the past, proteins have displayed a surprising robustness with respect to the 

introduction of spin labels (151, 157, 161, 311, 312). Molecular dynamics simulations 

(162) and crystallography (161, 313) have been employed to explicitly model the spin 

label in order to help interpret SDSL-EPR structural data. However, these calculations are 

relatively slow and computationally demanding. In addition, most studies of this nature 

are designed to examine a specific protein and are not easily expanded to other systems. 

For the purpose of protein structure determination, a faster, broadly applicable approach 

to relate the spin label position to the protein backbone is needed. As an exhaustive 

experimental mapping of intra-protein distances is infeasible given time and the labor 

intensiveness of the SDSL-EPR method, a limited dataset that unambiguously defines the 

fold of the protein needs to be defined (314). 

 

RosettaEPR is designed specifically to work with sparse SDSL-EPR data 

In 2008, Alexander et al introduced the implicit “motion-on-a-cone” model, or 

cone model (Figure 26B), which is based on the structure of the MTS spin label (Figure 

26A) (134). This model was used to convert an observed spin label distance, dSL, into an 

“allowed” range for the distance of the Cβ atoms, dCβ ∈ [dSL–12.5Å, dSL+2.5Å] (Figure 
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26C). The authors demonstrate that these distance restraints are sufficient to determine 

the structure of T4-lysozyme to atomic detail accuracy from 25 SDSL-EPR restraints The 

present study introduces RosettaEPR, which replaces the soft interpretation of the 

distance constraints used in the previous study with a knowledge-based restraint potential 

optimized for SDSL-EPR distance data. Alexander, et al. utilized RosettaNMR, with the 

consequence that all dCβ distances falling within the allowed range were considered 

equally favorable during de novo folding. All other distances were disfavored using a 

quadratic penalty function (Figure 24). However, while the distance difference, dSL–dCβ, 

falls within a wide range, values between 0Å and 5Å are more likely than values outside 

this range. We used the cone model, in combination with the PDB, to derive a probability 

function for dSL–dCβ, which was then converted into a scoring function using the 

Boltzmann relation. We demonstrate that treatment of SDSL-EPR distance restraints with 

this scoring function is superior. Following the benchmarking presented in this paper, 

RosettaEPR will be made available to the scientific community. 
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Figure 24:  Comparison of the RosettaEPR knowledge-based potential with the bounded 
potential 
The bounded potential against which restraint violations are scored is defined according to the 
equation reported in the figure, where ub = upper bound, lb = lower bound, sd = standard 
deviation of 1.0, and rswitch = 0.5 
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Figure 25:  Flowchart outlining the currently described protocol 

(

Materials and methods 

The protocol described in the present work is outlined in Figure 25. It is divided 

into two subsections corresponding to the implementation and development of 

RosettaEPR and the prediction of the T4-lysozyme structure to atomic detail. 

 

Conversion of the motion-on-a-cone model into a knowledge-based potential 

The dSL−dCβ histogram (Figure 26D) was generated by placing a cone model-

based simulated spin label at every exposed amino acid position in 3,584 proteins from a 

non-redundant protein database (315). That is, the simulated spin label was placed at 

residue positions that had a neighbor count (316) of less than ten, resulting in over 140 

million measured distances. For every pairwise distance within each protein, the protein’s 

dCβ was subtracted from the simulated dSL and stored in 0.5Å-wide bins. Because the 
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highest frequency of dSL−dCβ values was on the order of 106, a pseudocount of 106 was 

added to the total counts computed so that less commonly observed values are also 

considered. 

The potential (Figure 26E) was calculated by taking the negative logarithm (−ln) 

of the propensity of each dSL−dCβ value, where the propensity is defined as:  

 

 

 

PseudoCount equals 106, and # bins equals 64. The resulting values were 

normalized and shifted such that they were all negative. This relationship is based on the 

Boltzmann relationship, which is used to correlate a population of a species to an 

associated energy. The potential was re-scaled to give a maximum bonus of −1.0 for 

dSL−dCβ values between −12.0 and 12.0 (observed by the cone model) and a 0.0 penalty 

for values outside this range. 

!
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Figure 26:  The "motion-on-a-cone" model 
A) Methanethiosulfonate (MTS) spin label. The Cβ-SL distance is approximately 8.5Å. B) In the 
cone model, the Cβ-SL distance (SLeffective) is assumed to be 6Å, and the cone has an opening 
angle of 90°. The Cα-Cβ-SLeffective angle is restrained to angles 135° ≤ (∠CαCβSLeffective) ≤ 180°. C) 
The cone model is used to calculate dSL–dCβ values. D) The normalized frequency of dSL–dCβ 
values for a database of proteins (black line, right y-axis) compared to experimentally observed 
values for T4-lysozyme and αA-crystallin (open and filled bars, respectively, left y-axis. E) The 
propensity of dSL–dCβ values can be converted into a knowledge-based potential according to the 
Boltzmann relation. The resulting energies were normalized such that the most favored dSL−dCβ 
value correlates with an energy of −1.0 Rosetta Energy Unit (REU), and the least favored dSL−dCβ 
value correlates with a Rosetta energy of 0.0 REU. 

!

Model quality was assessed according to RMSDCα relative to the 2LZM crystal structure 

In order to best assess the ability of RosettaEPR to recover native-like folds, only 

the α-helical core domain of T4-lysozyme (residues 58-164) was modeled, as 

experimental restraints for other regions of this protein were not available. The 

experimentally determined distances used as restraints are reported in Table 15 and are 

mapped onto the T4-lysozyme crystal structure in Figure 27. Models of the protein were 
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generated a) without restraints, b) with restraints using RosettaEPR’s knowledge-based 

potential, and c) with restraints defined by the same boundaries as those used by 

Alexander, et al. Model quality was assessed by computing the RMSDCα relative to the 

X-ray crystal structure of T4-lysozyme (PDBID: 2LZM (317)). Only core residues 70-

155, excluding loops, were considered in computing the RMSDCα (see Table 16).  

Table 15:  T4-lysozyme EPR distance restraints in comparison with the crystal structure 
AA1-AA2a dCβ (Å)b dSL (Å)c σSL (Å)d Reference 

061-135 37.7 47.2 2.2 Borbat, et al., 2002 
065-135 34.3 46.3 2.2 Borbat, et al., 2002 
061-086 34.5 37.5 2.0 Borbat, et al., 2002 
065-086 28.9 37.4 2.7 Borbat, et al., 2002 
080-135 26.7 36.8 1.0 Borbat, et al., 2002 
061-080 28.7 34.0 2.2 Borbat, et al., 2002 
065-080 22.6 26.5 3.8 Borbat, et al., 2002 
119-131 13.2 25.0 5.0 Alexander, et al., 2008 
123-131 14.6 23.0 5.0 Alexander, et al., 2008 
065-076 16.8 21.4 2.8 Borbat, et al., 2002 
116-131 11.1 19.0 10.0 Alexander, et al., 2008 
119-128 10.4 19.0 4.0 Alexander, et al., 2008 
140-151 15.5 18.0 9.0 Alexander, et al., 2008 
089-093 9.8 16.0 3.0 Alexander, et al., 2008 
086-119 10.0 15.0 3.0 Alexander, et al., 2008 
120-131 10.5 14.0 3.0 Alexander, et al., 2008 
127-151 9.6 14.0 2.4 Alexander, et al., 2008 
140-147 10.1 13.0 7.0 Alexander, et al., 2008 
131-150 8.7 5.7 0.4 Alexander, et al., 2008 
127-154 5.9 7.0 3.0 Alexander, et al., 2008 
131-154 9.5 6.5 4.0 Alexander, et al., 2008 
134-151 10.7 7.0 0.8 Alexander, et al., 2008 
131-151 10.4 9.0 8.0 Alexander, et al., 2008 
088-100 8.9 <6.0 3.0 Alexander, et al., 2008 
089-096 8.4 <6.0 3.0 Alexander, et al., 2008 

a Indices of spin labeled amino acids with respect to the crystal structure 
b Cβ distance as reported in the crystal structure 
c Spin label distance as observed by EPR 
d Standard deviation as observed by EPR 
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!
 
Figure 27:  Map of EPR distance restraints on the T4-lysozyme crystal structure 
The 107 C-terminal residues of the T4-lysozyme crystal structure are shown in rainbow with 
inter-residue distances used as restraints in RosettaEPR depicted as black dotted lines. A full list 
of experimentally determined EPR distances used in the benchmarking of RosettaEPR for this 
protein is reported in Table 15. 
 
 
Table 16:  Residues over which RMSDs and rotamer recovery were computed 

RMSD( Rotamer(Recovery(

70,80,!82,90,!93,106,!108,113,!115,123,!
126,134,!137,141,!143,155!

74,75,! 78,! 84,! 87,88,! 91,! 94,104,! 106,!
110,111,! 113,114,! 116,118,! 120,121,!
125,126,! 128,130,! 132,134,! 136,! 138,
139,!145,153,!156!

 

Weight optimization for the knowledge-based SDSL-EPR restraint potential 

To optimize the factor by which the RosettaEPR scoring function should be 

applied, 10,000 models of the α-helical region of T4-lysozyme were constructed for a 

wide variety of weights (Table 17). The fraction of models with RMSDCα values below 

7.5Å was taken as measure for the correct fold. The fraction of models with RMSDCα 

values below 3.5Å was employed to identify candidate models for successful atomic 

detail refinement; models generated with this level of accuracy are considered to be 

“native-like.” The knowledge-based potential was implemented as a spline approximation 

in the Rosetta AtomPairConstraint score. The bounded restraint uses the 
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AtomPairConstraint score as computed according to a bounded quadratic equation 

(Figure 24). 

 

Rosetta was used to de novo fold and refine T4-lysozyme 

Secondary structure prediction of the 107 C-terminal residues of T4-lysozyme 

was performed using Jufo (104), Psipred (271), and Sam (318). Peptide fragments to be 

used in de novo structure prediction were generated as previously described, and 

fragments based on homologous proteins were excluded during folding. Rosetta’s low-

resolution de novo protein folding algorithm was used to generate 10,000 models of T4-

lysozyme guided by experimental restraints (Table 15) (134) weighted to various extents, 

resulting in models containing structural information of the protein backbone only. 

During de novo folding, residues are represented as superatoms, or “centroids” (102). 

After determining that the RosettaEPR knowledge-based potential optimally predicts the 

fold of T4-lysoyzme when multiplied by a factor of 4.0, this weight was used in the 

generation of 500,000 models of the protein.  

The 500,000 models were filtered according to their overall Rosetta energy and 

the extent to which they satisfied the experimental restraints. Only the top 1% of models 

by total score that had a restraint score of at least 85% of the optimum value was included 

in the filtered ensemble. These 1,388 models were then refined to atomic detail, in which 

the centroids were replaced with side-chain rotamers based on a backbone-dependent 

rotamer library (319). During refinement, Rosetta’s full-atom scoring potentials are used 

to guide refinement through an iterative cycle of side-chain repacking and gradient-based 

minimization (110, 320). Each round of refinement yielded ten times the initial number 
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of models. That is, one round of refinement resulted in 13,880 new, refined models. All 

de novo folding and full-atom refinement computations were performed using Rosetta 

trunk revision 34586. 

 

Structure determination with RosettaEPR is computationally feasible 

All models were generated by independent simulations using Vanderbilt 

University’s Center for Structural Biology computing cluster and the university’s 

Advanced Computing Center for Research and Education (ACCRE). Computations were 

performed on a combination of AMD Opteron and Intel Nehalem processor nodes. The 

average time needed to fold one model of the 107 C-terminal residues of T4-lysozyme 

was approximately 240 seconds. The same time is required for a single round of high-

resolution refinement for one model. 

 

Results 

Knowledge-based potential reflects likelihood of model in light of observed SDSL-EPR 

distance 

Cone model-based statistics were collected over a database of non-redundant 

proteins (see Materials and methods) and compared to dSL−dCβ values determined 

experimentally for T4-lysozyme and αA-crystallin (Figure 26D). The set of cone model 

statistics recovers several features of the experimental data, including the range of 

dSL−dCβ values and a shift towards dSL−dCβ values greater than 0Å. The shift towards 

positive dSL−dCβ values indicates that spin labels are more likely to point away from each 



!120!

other. This is expected for soluble proteins, where mutations of surface residues are not 

expected to destabilize the protein.  

For conversion into a knowledge-based potential, the negative logarithm (−ln) of 

the propensity of each dSL−dCβ value was computed such that less frequently seen dSL−dCβ 

values are considered less favorable than one that is more often observed (Figure 26E). In 

result, a restraint that is fulfilled in the most likely area of the distribution improves the 

total score by one point, and a restraint that is violated is not counted towards the total 

score. This knowledge-based potential was then incorporated into Rosetta’s low-

resolution scoring function where it is affiliated with a dedicated weight (see Knowledge-

based potential section below). The current model is an improvement upon the original 

implementation of the cone model, in that a) protein structures, not ellipsoids, were used 

to generate the statistics, and b) the knowledge-based potential considers the likelihood of 

dSL−dCβ values instead of a simple binary classification. 

 

Knowledge-based potential achieves up to 55% correctly folded T4-lysozyme models 

Ten thousand T4-lysozyme models were folded de novo in the presence of the 

same restraints used previously (Table 15 and Figure 27) (134). Restraints were 

incorporated with various weights, and the results were compared to the bounded 

potential used by Alexander, et al. (Table 17). The usage of restraint scoring functions 

results in more native-like folds than when folding with no restraints at all (Figure 28 and 

Table 18). This reaffirms that experimental data increases sampling of more native-like 

structures. RosettaEPR recovers the native topology of the T4-lysozyme α-helical region 

in up to 55% of the models. This compares to 7% if no restraints are used and 42% when 
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using bounded restraints. Furthermore, folding with bounded restraints consistently 

resulted in approximately 1.0-1.5% of all built models having native-like conformations, 

compared to 2.1% when using the EPR knowledge-based potential with an optimal 

weight of 4.0. This improvement is significant, as additional starting structures for high-

resolution refinement increase the chance of successfully obtaining atomic detail models 

(see Ten-fold enrichment of low-RMSD models). Further, conversion to a knowledge-

based potential enabled fine-tuning of the weight of the SDSL-EPR potential for optimal 

performance, while the bounded potential provided constant suboptimal performance 

over wide ranges of the weight.  

 
Table 17:  Benchmarking results of T4-lysozyme using no restraints, 25 restraints scored 
according to the RosettaEPR knowledge-based potential, and 25 bounded restraints 

Weight % Models with 
RMSDCα < 3.5Å 

% Models with 
RMSDCα < 7.5Å 

% Models with 
RMSDCα < 3.5Å 

% Models with 
RMSDCα < 7.5Å 

0 0.03 7.17   
     

RosettaEPR Bounded 
1 0.73 21.98 0.89 37.56 
2 1.41 31.07 1.18 40.95 
3 2.01 37.20 1.58 41.84 
4 2.05 42.08 1.62 41.09 
5 1.83 45.65 1.43 40.44 
6 1.60 47.29 1.40 39.50 
7 1.35 49.60 1.40 38.42 
8 1.31 51.21 1.62 38.01 
9 0.87 50.89 1.59 37.42 

10 1.02 52.70 1.57 37.22 
20 0.51 54.89 1.44 34.02 
30 0.46 53.28 1.22 32.77 
40 0.25 49.74 1.27 32.16 
50 0.17 47.43 1.12 32.27 
60 0.07 43.86 1.01 31.07 
70 0.03 43.95 1.29 31.67 
80 0.02 43.07 1.34 31.05 
90 0.01 40.92 1.39 31.22 

100 0.01 41.11 1.12 30.62 
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Figure 28:  Comparison of the RosettaEPR knowledge-based potential to the bounded 
potential 
T4-lysozyme was folded de novo in Rosetta guided by 25 experimental restraints. Restraint 
violations were scored according to either a bounded potential or the EPR knowledge-based 
potential. The RMSDCα distributions of the resulting models when folded with optimally 
weighted restraint energies are compared to folding without restraints. 

!
Table 18:  Summary of benchmarking results of T4-lysozyme using no restraints, 25 
restraints scored according to the optimally weighted RosettaEPR knowledge-based 
potential, and 25 bounded restraints with a weight of 4.0a 

Restraint Type % Models with 
RMSDCα < 3.5Å 

% Models with 
RMSDCα < 7.5Å Enrichmentb 

none 0.03 7.17 --c 
knowledge-based 

potential (weight = 4.0) 2.05 42.08 7.0 

bounded restraints 
(weight = 4.0) 1.62 41.09 5.3 

a Results for all tested weights reported in Table 17 
b Enrichment = (fraction of low-RMSD models in filtered ensemble) ÷ (fraction of low-RMSD 
models of all models generated); filtered ensemble = within the top 1% of models by total score, 
the top 35% of models according to restraint score 
c Enrichment could not be computed as with the other data sets due to lack of restraint score 
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Knowledge-based function improves correlation of score and model quality  

The correlation of the scoring function with model quality is key to selection of 

native-like models when the structure is not known. The correlation coefficient improves 

from 0.42 in the absence of restraints to 0.51 when using the bounded function and 

further to 0.62 when using RosettaEPR (Figure 29). To quantify the value of the score for 

filtering native-like models, the enrichment for each optimized scenario was also 

computed (see Table 18). For the knowledge-based potential weighted by a factor of 4.0, 

the benchmark resulted in an enrichment of 7.0. The same analysis was performed on the 

models folded with the equally weighted bounded restraint potential, resulting in an 

enrichment of 5.3. The ensemble of models generated with no restraints contained only 

three native-like models, all of which were among the 10% best-scoring models, but this 

method was unable to produce enough native-like models to justify any high-resolution 

refinement. 

 

Figure 29:  Correlation between total Rosetta energy and RMSDCα of de novo folded models 
Score vs. RMSDCα for 10,000 models de novo folded A) with no restraints, B) with 25 bounded 
restraints, and C) with 25 restraints guided by the RosettaEPR knowledge-based potential 
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Ten-fold enrichment of low-RMSD models through knowledge-based SDSL-EPR score 

for high-resolution refinement 

500,000 models of T4-lysozyme were de novo folded in Rosetta guided by 25 

EPR distance restraints (weight equals 4.0). From the 1% best-scoring models, models 

achieving at least 85% of the optimal knowledge-based restraint score were selected for 

high-resolution refinement. The enrichment of native-like models in the filtered pool was 

10.6, while the enrichment of correctly folded models was 2.3, where enrichment was 

defined as the fraction of native-like or correctly folded models in the filtered pool 

divided by the fraction of native-like or correctly folded models in the entire ensemble. 

Filtering decreases the number of models considered for high-resolution refinement to a 

more manageable ensemble and enriches the fraction of low-RMSD models such that 

more native-like folds are refined to full-atom detail. 

 

High-resolution refinement of T4-lysozyme yields structural model that is accurate at 

atomic detail  

The resulting 1,388 models of T4-lysozyme were refined to high-resolution using 

Rosetta’s full-atom potentials, which include knowledge-based van der Waals attraction, 

repulsion, hydrogen bonding, solvation, and electrostatic terms (110). Each input model 

was refined ten times without experimental restraints, resulting in 13,880 models. Ideally, 

low-RMSD models would be considered energetically favored according to Rosetta’s 

scoring function. Therefore, the models were then filtered such that only the top 10% by 

total score were carried on to the next round of refinement. This process was repeated 

through eight iterations, at which point the score of the refined models converged. The 
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total score of each model was plotted against its RMSDCα (Figure 30A). The correlation 

between energetically favorable and low-RMSD models improves after each round of 

refinement until it converges after the eighth iteration. The lowest energy model 

produced with this strategy had an RMSDCα of 1.76Å relative to the native (Figure 31), 

and the lowest RMSDCα observed was 1.73Å. The previously reported model was 

determined to have an RMSDCα of 1.66Å. 

 

!
Figure 30:  Correlation between Rosetta energy and RMSDCα of refined models 
A) Score vs. RMSDCα plot of T4-lysozyme models for eight cycles of full-atom refinement. Each 
cycle of refinement resulted in ten times the number of input models. After each cycle, the refined 
models were filtered by total Rosetta energy, and the top 10% were refined again. Color key: 
refined crystal structure – black; round 1 = sky blue; round 2 = bright blue; round 3 = dark blue; 
round 4 = light green; round 5 = dark green; round 6 = yellow; round 7 = orange; round 8 = red. 
B) Percent of incorrectly predicted side-chains of core residues (see Table 16) as a function of 
total Rosetta score. The same coloring scheme in Panel A was used. 
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!
Figure 31:  Atomic detail model of T4-lysozyme de novo folded with RosettaEPR 
A) Superimposition of the lowest-scoring model of T4-lysozyme (rainbow) with the 2LZM 
crystal structure (gray). The RMSDCα for the lowest-scoring model to the native is 1.76Å. Side-
chains are displayed as sticks. B) Residues 86-104. C) Residues 126-154 

!
The ability of Rosetta to recover native-like side-chain conformations was tested 

by comparing side-chain rotamer agreement of refined models of T4-lysozyme with the 

X-ray crystal structure. A rotamer of a given amino acid residue is defined by its χ1-4 

angles. Side-chain conformations are classified by assigning them to the closest rotamer 

in terms of χ1-4 angle deviation (319, 321). The total Rosetta energy is plotted as a 

function of the percentage of incorrectly predicted side-chain rotamers (Figure 30). In 

general, the Rosetta energy correlates well with rotamer agreement, with the percent of 

correct rotamers predicted increasing after each round of refinement. 

 

Discussion 

The RosettaEPR knowledge-based potential proves to be superior to the bounded 

potential during de novo folding 

We have demonstrated the advantages of using a knowledge-based potential to 

convert EPR distance data into structural restraints. The potential is derived from the 

cone model (134) and has been shown to perform better than a simple bounded potential. 

A B C 



!127!

From a conceptual standpoint alone, the energetic bonus correlates with the likelihood of 

observing dSL−dCβ values. As a result, the knowledge-based potential inherently uses the 

structural information from SDSL-EPR data more completely compared to the bounded 

scoring function used by Alexander, et al. Furthermore, the knowledge-based potential, 

in combination with Rosetta’s low-resolution scoring function and de novo folding 

algorithm, proves more robust in obtaining low-RMSD models of T4-lysozyme, from 

which atomic detail structures can be generated through full-atom refinement.  

 

The correlation between score and RMSD improves through multiple rounds of 

refinements 

The Rosetta full-atom scoring function allows the most native-like model to be 

identified unambiguously by its overall score, if model accuracy is better than 2.0Å. This 

model should have the lowest overall Rosetta energy and therefore exhibit not only the 

correct topology, but also native-like side-chain and backbone conformations. Similarly, 

less favorable conformations should have higher computed energies; these models will 

also have higher computed RMSDs relative to the native structure. One therefore expects 

to observe an energy “funnel” after several rounds of full-atom refinement, where both 

the score and RMSD of the models converge to the native structure. The overall scores of 

the predicted models of T4-lysozyme are plotted against their RMSDCα relative to the 

crystal structure in Figure 30. The correlation improves after each round of filtering and 

refinement, resulting in several atomic detail models with Rosetta energies comparable to 

the 2LZM crystal structure, which was refined using the same potentials as the predicted 

models. 
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RosettaEPR will be developed continuously as more data become available 

Although a larger benchmarking set would be ideal, there are a limited number of 

systems for which both experimentally determined three-dimensional structures and EPR 

data can be obtained. However, the resulting atomic detail models of T4-lysozyme 

generally satisfy the experimental EPR data, and benchmarking will be expanded to more 

diverse systems as more data become available. In the mean time, a larger benchmark on 

a variety of proteins of known structure using simulated data will be performed to assess 

the general performance of the method. The current work serves as a proof of principle. It 

will be interesting to test whether the similar results will be obtained for other proteins. It 

has already been shown that NMR restraints greatly aid Rosetta’s ability to recover 

native-like models (106, 136, 168, 303, 322), a method which is widely applicable to 

other biological systems, including the fumarate sensor DcuS (137) and a chordin-like 

cysteine-rich (CR) repeat from procollagen IIA (323). It is believed that the same will be 

true with RosettaEPR after further testing and refinement. 

!

Sparse SDSL-EPR distance data alone are not able to yield atomic detail models 

SDSL-EPR affords several advantages over other structure determination 

techniques, such as X-ray crystallography and NMR. No crystallization is required, there 

are few size constraints, proteins, and membrane proteins in particular, can be studied in 

a native-like environment, and there is no need to assign resonance signals. Thereby, 

SDSL-EPR overcomes some experimental limitations in the high-resolution structure 

determination of proteins that are large, highly flexible, or natively reside in lipid 

bilayers.  
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However, while quantitative in nature, the structural information obtained by 

SDSL-EPR is limited due to the flexibility of the spin label, which adds large 

uncertainties to the distances determined. Introduction of spin labels into proteins 

requires removal of native cysteine residues without affecting the protein structure and 

assumes that the spin label does not perturb the structure. Datasets obtained by SDSL-

EPR remain sparse due to the requirement to create a dedicated double-mutant for each 

distance to be measured. Therefore, SDSL-EPR a) will be applied to systems where 

crystallography and NMR spectroscopy are not applicable and b) will be combined with 

crystallography and other techniques to study structural dynamics of proteins. 

The current work and the results presented by Alexander, et al. (134) provide the 

first indication that sparse (approximately 0.25 restraints per residue) SDSL-EPR 

distance data can be combined with Rosetta for de novo protein structure elucidation with 

atomic detail accuracy. While RosettaEPR can be applied to soluble proteins, it is 

expected that the need and applicability of RosettaEPR will be highest for the structure 

determination of membrane proteins, the majority of which continue to evade more 

traditional techniques. A benchmark of RosettaEPR involving more proteins and 

membrane proteins in particular will be executed as suitable datasets become available 

 

RosettaEPR will be accessible to the scientific community 

Other researchers will have access to RosettaEPR via software licenses granted by 

the RosettaCommons (www.rosettacommons.org). These licenses are free for academic 

and non-profit institutions. To encourage usage of RosettaEPR, web tutorials will be 

made available. 



!130!

Conclusion 

RosettaEPR is the first tool designed to generate high-resolution protein structures 

from sparse EPR data. It can also be used in combination with an optimized restraint-

selecting algorithm (314) to assist experimentalists in determining protein structures to 

high-resolution. In the future, RosettaEPR will be modified such that it can be used to 

effectively determine the structures of membrane proteins, an EPR accessibility 

knowledge-based potential will be implemented, and high-resolution modeling of the 

MTS spin label will be included. The ultimate goal of this research is to optimize the 

structural information that can be achieved through EPR spectroscopy. RosettaEPR will 

enable the high-resolution structure elucidation of a plethora of proteins for which 

structures have, until now, not yet been determined. 
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CHAPTER V 

 

ROSETTATMH:  MEMBRANE PROTEIN STRUCTURE ELUCIDATION BY 
COMBINING EPR DISTANCE RESTRAINTS WITH ASSEMBLY OF 

TRANSMEMBRANE HELICES 
 

This work is based on the manuscript submitted to PLoS ONE of the same title by 

Stephanie DeLuca, Samuel DeLuca, Andrew Leaver-Fay, and Jens Meiler 

 

Summary 

Membrane proteins make up approximately one third of all proteins, and they 

play key roles in a plethora of physiological processes. Even though significant advances 

have been made in structure determination methods, such as X-ray crystallography, 

nuclear magnetic resonance spectroscopy, and cryo-electron microscopy, integral 

membrane proteins make up less than 2% of experimentally determined structures. 

Furthermore, few computational methods for de novo folding of integral membrane 

proteins have been presented. One potential alternative means of structure elucidation is 

to combine computational methods with experimental EPR data. In 2011, Hirst and 

others introduced RosettaEPR; the authors showed that this approach could be 

successfully applied to soluble proteins. In this work, we present RosettaTMH, a novel 

algorithm for structure prediction of helical membrane proteins. A benchmark set of 34 

proteins, in which the proteins ranged in size from 91 to 565 residues, was used to 

compare RosettaTMH to Rosetta’s two existing membrane protein folding protocols:  the 

published RosettaMembrane folding protocol (“MembraneAbinitio”) and folding from an 

extended chain (“ExtendedChain”). In the absence of EPR restraints, RosettaTMH folds 
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more models having the correct topology than MembraneAbinitio in 8 cases, whereas it 

performs better in 9 cases in comparison with ExtendedChain. When EPR distance 

restraints are used, RosettaTMH+EPR outperforms MembraneAbinitio for 30 proteins 

and ExtendedChain+EPR for 14 proteins. RosettaTMH+EPR is capable of achieving 

native-like topologies for the majority of proteins tested, including receptors and 

transporters. For example, a model of rhodopsin of 4.9Å RMSD100SSE accuracy to the 

crystal structure was achieved, and a model of 6.7Å accuracy was obtained for the 565-

residue Na+/galactose transporter, vSGLT. The addition of RosettaTMH and 

RosettaTMH+EPR to the Rosetta family of de novo folding methods broadens the scope 

of helical membrane proteins that can be accurately modeled with this software suite. 

 

Introduction 

Approximately one-third of all proteins are integral membrane proteins (MPs) 

(324), and, due to their prevalence in a wide variety of biological functions, MPs 

comprise more than half of all drug targets (25, 26, 325). However, of the > 100,000 

proteins with experimentally determined three-dimensional (3D) structures in the Protein 

Data Bank (PDB) (1), only about 2,000 are MPs (295). Further, according to Stephen 

White’s database of MPs of known structure (http://blanco.biomol.uci.edu/mpstruc/), 

fewer than 500 unique MP structures have been determined. This disparity between the 

importance of MPs and the available 3D structures reflects the technical difficulties 

associated with MP structure determination by X-ray crystallography and nuclear 

magnetic resonance (NMR) spectroscopy. To study MPs in their biologically relevant 

native conformation(s), a membrane mimic must be present during the experiment. While 
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X-ray crystallographers have developed techniques to obtain diffracting crystals, such as 

the use of femto-second crystallography (326, 327), robotics (328), and antibodies (66, 

329, 330), MP crystallization remains a bottleneck. Line broadening due to slow 

tumbling times of large MPs embedded in membrane mimics and decreased sensitivity 

due to the presence of additional nuclei are often limiting factors for solution NMR 

spectroscopy. Cryo-probes, increasingly powerful NMR magnets, selective labeling, and 

the development of solid-state NMR techniques (331) are continuously pushing the MP 

NMR field forward, but challenges remain here as well (72, 332-334). 

 

EPR spectroscopy can serve as an alternative means of membrane protein structural 

characterization 

Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) 

spectroscopy may serve as another means of MP structure determination because it has a 

number of advantages compared to more traditional methods. For example, proteins can 

be studied in their native environment, such as in lipid bicelles or vesicles, and no 

crystallization is required. Further, it does not require large amounts of protein, which is 

important in the case of MPs that are often difficult to express and purify. EPR is also an 

extremely sensitive technique because it measures the resonance of two unpaired 

electrons, so the signal-to-noise ratio is largely uninterrupted, unlike in NMR 

spectroscopy (148, 154, 311, 335, 336). 

However, EPR is not without its disadvantages. Like NMR spectroscopy, 

structure determination is indirect in that the spectroscopic data are first converted to 

structural restraints (134, 135). Also, for distance measurements, SDSL requires the 
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removal of all endogenous cysteines in the protein and the mutation of the residues of 

interest into cysteines. As a result, in contrast to NMR spectroscopy, only one inter-

residue distance can be measured per experiment. This results in low throughput and 

sparse datasets. In addition, the spin label itself introduces uncertainty, as the distance 

between the paramagnetic spin labels, which are at the tips of long and flexible side-

chains, is measured. This distance then needs to be converted into a structural restraint 

based on MP backbone coordinates (134, 135).  

 

There is a need for novel de novo membrane protein structure prediction tools 

In order to aid in MP structure determination, several computational methods 

have been developed. These methods can be divided into two categories:  template-based, 

or comparative modeling, and de novo folding. Template-based methods, such has 

Modeller (95, 337), Rosetta (96), SWISS-MODEL (338), and I-TASSER (339), are 

commonly used when the structure of a homologous protein exists. Template-based 

modeling methods are so named because they require a structural template onto which a 

target sequence can be threaded. For the sequence in question, a template structure, 

whether it is a sequence homolog or a structure exhibiting the same expected topology, 

must first be identified. Next, often after performing one or more sequence alignments, 

the target sequence is threaded onto the 3D coordinates of the template structure, thus 

replacing the sequence of the template with that of the target (252). 

In the case of MPs, it is often difficult to identify a suitable template structure. As 

mentioned previously, there are a limited number unique MP structures available in the 

PDB. Additionally, even though templates having a similar fold may exist, it is possible 
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that the sequence homology between the target and the template is too low to be 

confidently detected. For example, of the more than 20 experimentally determined 

structures of G-protein coupled receptors (GPCRs), the majority are of class A, or class 1 

(http://gpcr.scripps.edu/index.html) (23), even though there are probably 5 or 6 GPCR 

classes (13). Similarly, while there are some structures of transporters, such as LeuT 

(340), vSGLT (341), BetP (342), and GadC (343), MPs having the LeuT fold perform a 

large variety of functions and diverge in sequence significantly and can belong to a 

number of different protein superfamilies (344). While comparative modeling based on 

an evolutionarily distant template can be useful for hypothesis generation, especially 

when combined with experimental methods in an iterative fashion (254), de novo 

structure prediction of MPs is needed when no structural template is available. 

Additionally, de novo folding methods allow for an unbiased exploration of the 

conformational space, which is one disadvantage of using template-based methods. 

 Even though significant advances are being made in the structure determination 

of GPCRs, progress appears slower for other MP folds. The MP structural biology 

community is still striving for the structure determination of biomedically significant 

proteins, such as hERG, hSERT, the NPY receptor, etc. 

(http://blanco.biomol.uci.edu/mpstruc) It is possible, or perhaps even likely, that these 

structures will be determined in the future, but in the mean time, the need for advances in 

computational methods for MP structure prediction persists. 

Compared to template-based MP modeling methods, there are only a handful of 

tools for de novo folding of MPs. RosettaMembrane was introduced in 2006 (105) and 

was later expanded to include full-atom scoring potentials (130), but its capabilities were 
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limited to MPs of fewer than 150 amino acids. The addition of limited restraints derived 

from sequence conservation allowed for accurate modeling of larger proteins (117), but 

this method could only account for one restraint at a time. Furthermore, the utility of 

RosettaMembrane in its current state is limited. For technical reasons that originate in the 

RosettaMembrane code base, it is not possible to de novo fold MPs with multiple 

restraints, such as those obtained from NMR and EPR.  

Other methods to predict membrane protein structure, such as FILM3, exhibited 

mild success for predicting large MPs, but they rely on correlated mutational information 

to score MP models. Of 71 MP sequences, FILM3 was able to correctly predict 100% of 

inter-helix contacts for 17 proteins. Upon, comparison with two-dimensional slices of the 

experimental structures, 9 predicted structures had the correct topology (119). 

EVfold_membrane is also a promising method for MP structure determination but again 

relies on information from evolutionary covariation (118). On the other hand, BCL::MP-

Fold does not depend on mutational information. It reduces the conformational search 

space by assembling secondary structure elements (SSEs) combined with knowledge-

based potentials (KBPs) to assess model quality (345). The disadvantage of BCL-

generated models is the lack of inter-helix loop regions and, because they are comprised 

of idealized α-helices, it under-predicts secondary structural features often present in 

MPs, such as helical kinks. 
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RosettaTMH allows for folding of membrane proteins, both with and without 

experimental restraints 

To address the limitations of previously reported MP de novo folding methods, 

we have developed RosettaTMH, which, like BCL::MP-Fold, assembles MP topologies 

via rigid body perturbations of transmembrane helices (TMHs). Further, 3- and 9-amino 

acid fragment insertions, as used in the traditional Rosetta de novo folding algorithm 

(100), are used to more thoroughly sample helical orientations and introduce bends and 

kinks. Throughout the de novo folding process, RosettaMembrane’s MP-specific scoring 

functions are used (105, 130). However, in contrast to previously published 

RosettaMembrane folding protocols, RosettaTMH can be combined with multiple 

experimental restraints, such as inter-residue distance information from EPR. This 

additional feature allows for improved sampling of native-like topologies that are in 

agreement with empirical information. 

In this work, RosettaTMH was benchmarked on 34 MPs of known structure. It 

was compared to the original RosettaMembrane folding algorithm, “MembraneAbinitio” 

(105) and the traditional fragment assembly-only method used for folding soluble 

proteins in Rosetta, “ExtendedChain” (100) (but using the RosettaMembrane scoring 

function). In order to assess the performance of combining RosettaTMH with 

experimentally obtained structural data, EPR distance restraints were simulated for all 

MPs in the benchmark set. The purpose of the benchmark was to determine if these 

restraints increase the sampling of native-like MP folds. The simulated distance restraints 

were generated using the BioChemical Library (BCL, 

http://bclcommons.vueinnovations.com/bclcommons) and the restraint-picking algorithm 
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introduced by Kazmier, et al. (314). We show that, by implementing the ability to fold 

MPs with structural restraints, native-like folds can be obtained for 33 MPs in the 

benchmark set. 

 

Materials and methods 

Setup of RosettaTMH parameterization and benchmarking datasets 

Thirty-four α-helical MPs and MP subunits of known structure were chosen to 

test the RosettaTMH folding algorithm (Table 19). Nine of these proteins (in italics in 

(Table 19) were used for the initial testing and parameter optimization of the 

RosettaTMH protocol. The benchmarking set exhibits a wide range of sizes and 

topological complexity. The number of EPR distance restraints simulated was computed 

as: 

# restraints = 0.2* #aaTMH , 

where #restraints refers to the number of simulated EPR restraints generated, and #aaTMH 

refers to the amino acids in TMHs defined in the experimental structures. This number of 

restraints was chosen because it is on the order of the maximal number of distance 

restraints that have been obtained for several MPs (145-147, 346). Further, it is a good 

compromise between prediction accuracy and plausibility. The input files used (i.e., 

fragments, secondary structure prediction, span, lipophilicity, and native PDB files) were 

the same or based on those employed for benchmarking of BCL::MP-Fold (345). 
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Table 19:  Proteins used for benchmarking 

PDB( Protein(Name( Domain( #(
Res( #(TMH(

Absolute(
Contact(
Order(

#(
Restraints(

Small(MPs(

3SYO!
subunit!of!G!protein,gated!
inward!rectifier!K+!channel!

GIRK2!(Kir3.2)!
76–197! 122! 2! 14.4! 12!

2BG9! subdomain!of!nicotinic!
acetylcholine!receptor! A:!211–301! 91! 3! 6.9! 16!

1J4N! subdomain!of!aquaporin!
water!channel,!AQP1! 4–119! 116! 3! 15.2! 17!

2KSF! subdomain!of!histidine!
kinase!receptor,!KdpD! 396–502! 107! 4! 11.9! 13!

1PY6a! subdomain!of!
bacteriorhodopsin! 77–199! 123! 4! 13.3! 20!

2PNO! human!leukotriene!C4!
synthase! A:!2–131! 130! 4! 13.6! 22!

2BL2! subdomain!of!V,type!Na,
ATPase! 12–156! 145! 4! 20.7! 25!
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Medium(MPs(

2K73! disulfide!bond!formation!
protein,!DsbB! 1–164! 164! 4! 15.5! 19!

2ZW3! subdomain!of!connexin!26!
gap!junction!channel! A:!2–217! 216! 4! 25.7! 24!

1IWG! subdomain!of!multidrug!
efflux!transporter,!AcrB! 336–498! 163! 5! 17.4! 26!

1RHZ! subdomain!of!protein,
conducting!channel,!SecYE! A:!23–188! 166! 5! 19.8! 21!

2YVX! subdomain!of!magnesium!
transporter,!MgtE! A:!284–471! 188! 5! 20.6! 26!

1OCC! subdomain!of!cytochrome!C!
oxidase,!aa3! C:!71–261! 191! 5! 24.1! 29!

4A2N! isoprenylcysteine!carboxyl!
methyltransferase! 1–192! 192! 5! 22.4! 24!
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1KPL! subdomain!of!H+/Cl,!!!
exchange!transporter,!CIC! 31–233! 203! 5! 23.4! 31!

2BS2! subdomain!of!
quinol:fumarate!reductase! C:!21–237! 217! 5! 17.5! 29!

3P5N! S!component!of!the!ECF,
type!riboflavin!transporter! 10–188! 179! 6! 17.9! 22!

2IC8! rhomboid!peptidase,!GlpG!
(E.!coli)! 91–272! 182! 6! 17.9! 23!

1PV6! subdomain!of!lactose!
permease!transporter! 1–190! 189! 6! 28.3! 33!

2NR9! rhomboid!peptidase,!GlpG!
(H.!influenzae)! 4–195! 192! 6! 17.6! 24!

Large(MPs(

1OKCb! mitochondrial!ADP/ATP!
carrier! 2–293! 292! 6! 25.8! 34!

3B60! subdomain!of!lipid!flippase,!
MsbA! A:!10–328! 319! 6! 25.7! 52!
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2KSY! sensory!rhodopsin!II! 1–223! 223! 7! 20.1! 37!

1PY6! bacteriorhodopsin!(full!
length)! 5–231! 227! 7! 25.2! 36!

3KCU! formate!channel,!FocA! 29–280! 252! 7! 29.7! 33!

1FX8!
!

glycerol!facilitator!channel,!
GlpF! 6–259! 254! 7! 28.6! 38!

1U19! rhodopsin! 33–310! 278! 7! 25.0! 41!

3KJ6! methylated!β2!adrenergic!
receptor! A:!35–346! 311! 7! 39.5! 31!

Very(large(MPs(

3HD6! human!Rh!C!glycoprotein,!
RhCG! 6–448! 403! 12! 43.6! 59!

3GIA!
amino!acid,!polyamine,!and!
organocation!transporter,!

ApcT!
3–435! 433! 12! 62.5! 64!
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3O0R! nitric!oxide!reductase!
subunit!B! B:!10–458! 449! 12! 30.6! 69!

3HFX! carnitine!transporter,!CalT! 12–504! 493! 12! 68.0! 63!

2XUT! peptide!transporter,!PepT1!
and!PepT2! A:!13–500! 488! 14! 42.8! 71!

2XQ2!
K294A!mutant!of!

Na+/galactose!transporter,!
VSGLT!

A:!9–573! 565! 15! 71.8! 79!

a Referred to as 1PY7 in this chapter; b Italicized PDB IDs indicate that this protein was used in 
RosettaTMH parameter optimization.  
 

Modification of BCL::MP-Fold benchmark models for comparison with Rosetta 

In order to compare the performance of BCL::MP-Fold with Rosetta, Rosetta loop 

definition files based on the models resulting from the BCL::MP-Fold benchmark for the 

34 proteins in Table 19 were generated using the BCL 

(http://www.meilerlab.org/index.php/bclcommons/show/b_apps_id/1). Next, the model 

PDB files were converted to be compatible with the Rosetta cyclic coordinate descent 

(CCD) loop modeling application, according to the protocol outlined by Combs, et al. 

(252). The resulting PDB files were then used as input for fragment-based loop building 

in Rosetta. Only one output model was generated per input. That is, for 1,000 models that 
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were input for a given protein, only 1,000 models with loops were constructed. This 

procedure allowed for the calculation of RMSD100SSE (Cα RMSD100 (347) in predicted 

native SSEs) over the same residues as that computed over Rosetta-built models. 

 

Loop building on RosettaTMH-generated models 

Because RosettaTMH makes cuts in the protein fold tree in order to perform rigid 

body sampling (see The RosettaTMH de novo folding algorithm), the TMHs needed to be 

reconnected with loops. Therefore, the models built using RosettaTMH with and without 

restraints were subjected to Rosetta fragment-based loop building, as described in the 

previous section. 

 

Modification of Rosetta radius of gyration score for folding membrane proteins 

In addition to implementing the ability to fold MPs with multiple experimental 

restraints, a modified version of the Rosetta radius of gyration (RG) scoring term was 

introduced to help keep the TMHs from drifting too far away in 3D space, as well as to 

prevent the TMHs from collapsing into the membrane. Generally, the RG of a protein is 

directly proportional to the extent to which it is “spread out” in Cartesian space (348). 

The existing RG scoring term in Rosetta is computed over all residues in the protein 

(100). For MPs, the new RG scoring term takes only the TMH centers of mass (CoMs) 

into account and is computed over only those residues’ coordinates in the membrane, or 

X-Y, plane. In result, the scoring term, which is an energetic penalty, will disfavor 

conformational changes that cause the TMH CoMs to move, either laterally or along the 

membrane normal, far away from one another. 
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Weight optimization of Rosetta default radius of gyration score 

Preliminary testing data indicated that the default weight for the Rosetta RG score 

was sub-optimal for folding MPs. Therefore, multiple weighting factors, ranging from 0.0 

to 10.0 in increments of 0.25 (as well as 0.01), were tested. For each simulation, 1,000 

models of the 9 MPs italicized in Table 19 were folded using the RosettaTMH and 

ExtendedChain protocols, as both protocols have not yet been optimized. 

 

Determination of sampling efficiency for de novo folding 

 In order to measure sampling efficiency, or how many models need to be 

constructed for reliable benchmarking, 5,000 models based on the 1FX8, 1U19, and 

3O0R primary sequences were folded with the MembraneAbinitio folding algorithm, 

with RosettaTMH with and without simulated EPR distance restraints (weightKBP = 20.0, 

weightquadratic = 1.0), and from an ExtendedChain with and without simulated EPR 

distance restraints (weightKBP = 50.0, weightquadratic = 20.0). After this was completed, the 

average RMSD100SSE and standard deviation of a randomly selected subset of the 5,000 

models were computed. 

 

Simulation of EPR distance restraints using the BCL 

For the benchmark in this chapter, 10 sets of EPR distance restraints were 

generated for each protein. This was done to avoid bias resulting from using any single 

restraint set. The restraint selection algorithm developed by Kazmier, et al. (314) was 

used employed. The algorithm optimizes the information content of the restraint set by 

maximizing the sequence separation between spin labeling sites. At the same time, the 
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algorithm finds restraint sets that link all pairs of SSEs in the protein. In order to convert 

the resulting restraint sets to EPR-like distance restraints for testing during de novo 

folding, the Euclidian distances between the specified residues were determined from the 

MP experimental structures. Next, a spin label uncertainty was added to each distance, 

based on the cone model-based spin label statistics generated for the RosettaEPR KBP 

(135). These statistics were generated by placing a pseudo-spin label in the form of a 

right-angle cone (based on methanethiosulfonate, or MTS) on exposed residue pairs in a 

database of over 3,500 proteins. The frequency of observed values for the calculated 

difference between spin label distance and Cβ distance (dSL–dCβ) were collected in a 

histogram, which was shown to match relatively well to experimentally determined dSL–

dCβ values for T4-lysozyme and αA-crystallin. This histogram of spin label statistics 

quantifies the expected uncertainty associated with EPR distances measured on proteins 

spin labeled with MTS. 

 

Optimization of EPR distance restraint scoring term weighting 

The EPR distances for the residue pairs were simulated as described in the 

previous section. Preliminary benchmarking indicated that the EPR score used for the 

folding of T4-lysozyme (135) was insufficient to improve MP model quality of large 

MPs, such as rhodopsin. Instead, it was determined that a two-component scoring term 

was needed. 

 The modified EPR restraint potential for folding MPs consists of an energetic 

bonus derived from the aforementioned cone model statistics. Indeed, this energetic 

bonus is the same KBP used in the de novo folding of T4-lysozyme by Hirst, et al. (135). 
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However, in addition to the KBP energetic bonus, the EPR restraint score contains an 

energetic penalty characterized by the equation: 

f (x) =
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where x is the currently measured distance within the model, lb is the restraint lower 

bound, ub is the restraint upper bound, sd is the restraint standard deviation, and rswitch 

is set to 0.5. This quadratic penalty is similar to that used for nuclear Overhauser effect 

(NOE)-derived distance restraints in NMR structure calculations. The EPR scoring 

potential is designed such that the quadratic penalty is enforced if, during folding, the 

simulated model’s dSL–dCβ value for a given residue pair is greater than –12.0Å and less 

than 12.0Å.  

The weight of each EPR scoring term component was optimized separately. One 

thousand models of each protein were folded using RosettaTMH for each EPR restraint 

weighting scheme. For each protein under each of 49 weighting schemes, the percentage 

of models having RMSD100SSE < 8Å was computed, and the average of these values 

across the 9 proteins used for optimization are reported in Table 20. In addition, the 

enrichment was computed based on the models obtained from each weight scheme (Table 

21). Enrichment was computed as: 

enrichment = TP
TP + FP

* P + N
P

, 



!148!

where the (P+N) / P ratio = 10, limiting the maximum obtainable enrichment to 10.0. 

The models were sorted according to Rosetta score. Models that fell within the top 10% 

by score were counted as “positive,” (P), and all models whose scores fell into the bottom 

90% by score were counted as “negative” (N). The positives were then sorted by 

RMSD100SSE relative to the native structures, and those models that fell within the top 

10% by RMSD100SSE were labeled “true positives” (TPs). All other low-scoring models 

were considered “false positives” (FPs).  

During EPR restraint weight optimization, the default Rosetta RG score weighted 

at 4.25 was used (see Weight optimization of Rosetta default radius of gyration score). 

Further, each restraint is scored independently, and the sum of individual restraint scores 

constitutes the total raw restraint score. The total restraint score was multiplied by a 

normalization factor that is equal to: 

weightcst = log(# cst)
# cst

*#aa , 

where weightcst is the weight by which the entire restraint score is multiplied before it is 

added to the total Rosetta score, or energy, #cst is equal to the number of simulated EPR 

restraints used, and #aa is the number of residues in the protein. Because the total 

restraint score is the sum of individual restraint scores, the weighted restraint score can be 

represented by: 

cst _ scoreweighted = average(cst _ scoreraw)* log(# cst)*#aa . 

 

The RosettaTMH de novo folding algorithm 

The RosettaTMH MP folding algorithm differs significantly from both the 

Rosetta folding algorithm for soluble proteins, “ExtendedChain” (100), as well as the 



!149!

published RosettaMembrane folding protocols (105, 117). It allows for enhanced 

sampling of MP topologies by treating TMHs as rigid bodies. Each helix can be rotated 

or translated, or transformed, as an independent entity. In order to implement this new 

algorithm in Rosetta folding, the model’s fold tree was modified. The fold tree of a model 

is a directed acyclic graph--a data structure that represents the connectivity of the model 

in internal coordinate space. This connectivity is distinct from chemical connectivity and 

thus enables Rosetta to rapidly move large sections of the protein without disturbing 

other parts (138). In the case of a helical MP, a radial, or star, fold tree is used, in which 

the CoM of each helix is connected to a central node (Figure 32). 

 

!
Figure 32:  Generation of membrane protein fold tree in RosettaTMH 
This schematic outlines how RosettaTMH generates a radial fold tree for a 5-helix membrane 
protein. In preparation for generating the fold tree, the primary sequence of the protein is read in 
and used to create an idealized α-helix. RosettaTMH utilizes user-defined TMH definitions to 
divide the idealized helix and insert each individual TMH into the implicit membrane. It then 
calculates each helix’s center of mass (CoM). The CoMs connect the helices to a central root 
residue (open circle) in internal coordinate space.  
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Before de novo folding begins, each helix is inserted into the implicit 

RosettaMembrane environment (105). The CoM of each helix is set at the membrane 

center, and the helices are aligned along the membrane normal such that each helix is 

antiparallel to its sequential neighbors. The helices are arranged in a hexagonal grid and 

are initially separated from each other by 15Å. This grid point separation value was 

chosen after briefly testing distances of 5Å, 10Å, and 20Å and was selected based on the 

qualitative observation that, when TMHs were placed 5-10Å apart, they were more likely 

to “clash” into each other in sterically hindered conformations. On the other hand, a 

distance of 20Å caused the TMHs to never “see” each other during the first stage of de 

novo folding, making scoring by the Rosetta energy function difficult. The starting 

topology of the model is randomized; that is, the arrangement of helices in the hexagonal 

grid is different for each starting model (Figure 33). 

 

Figure 33:  Initial placement of transmembrane helices before de novo folding 
Schematic outlining initialization of protein model conformation before sampling. In this case, a 
5-helix MP is inserted in the RosettaMembrane implicit membrane such that the TMHs run 
antiparallel to one another and aligned along the membrane normal. A hexagonal grid is 
computed, such that the vertices are aligned along the membrane center plane and are 15Å away 
from one another and from the origin. Then, for each grid point, a TMH is chosen randomly, and 
the helix is transformed to that grid point such that its CoM is aligned with the origin. The 
hexagonal grid can be expanded as needed, depending on the number of TMHs in the protein. 

Setup for rigid body sampling
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Stages of de novo folding with RosettaTMH 

The pre-processing and de novo folding stages of RosettaTMH are summarized in 

Figure 34. Folding begins after the initialization of the model. The first stage of de novo 

folding consists entirely of rigid body transformations performed in a Monte Carlo 

Metropolis (MCM) fashion (266). For each MCM move, the helix is allowed to either 

rotate by up to 0.1° about any axis or translate up to 0.5Å in any direction from its current 

position. These values were selected based on preliminary testing and qualitative 

observation of the resulting models. The conformation resulting from each transformation 

is scored according to the RosettaMembrane centroid-based scoring function and, if 

specified, the MP-specific RG score (see Modification of Rosetta radius of gyration score 

for folding MPs). Stage 1 of folding consists of 2,000 MCM moves, and the RG and 

RosettaMembrane-specific “density” term and are turned on (105). These scoring terms 

aid in improving the compactness of the model. After the first stage, the model undergoes 

9- and 3-amino acid fragment insertions using a protocol analogous to the one used for 

soluble proteins (100). Briefly, in Stage 2, 2,000 MCM cycles are performed, during 

which 9mer fragments are inserted onto the helical protein backbone. The density scoring 

term is turned off, and residue pairing, membrane environment, and membrane-specific 

penalties are added (105). The density term is re-introduced in Stage 3, which consists of 

10 inner cycles; during these inner cycles, the scoring function can be alternated if 

desired. However, for MPs, the scoring function is the same for each of two inner cycle 

sub-stages. Each sub-stage consists of 2,000 MCM cycles for inserting 9mer fragments, 

resulting in a total of 20,000 fragment insertions. Finally, the density term is up-weighted 
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in Stage 4, and 4,000 MCM cycles of 3mer fragment insertions are performed (see 

Appendix E). 

 
Figure 34:  Outline of stages for RosettaTMH de novo folding 
Benchmarking of RosettaTMH in the absence and presence of simulated EPR restraints 

The generation of input files for this benchmark, except for the simulated 

restraints, is described in Weiner, et al. ‘s work on BCL::MP-Fold (345). Briefly, the 

primary sequence of each protein listed in Table 19 was used to generate 3- and 9-amino 

acid fragment files required for de novo folding in Rosetta. The Rosetta spanfiles 

containing the TMH definitions were obtained by using predictions from OCTOPUS 

(349). Rosetta lipophilicity files were also generated for each protein using the LIPS 

algorithm (350). One thousand models were folded from the primary sequence, using 

TMH information and the RosettaMembrane centroid-based scoring function (105). 

When multiple EPR restraint sets were used, the number of total models generated per 

restraint set was equal to the total number of models generated divided by the number of 

different restraint sets (i.e., 10 sets of 100 models for each protein). All computations 
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were performed on the Vanderbilt University Advanced Computing Cluster for Research 

and Education (ACCRE) using Rosetta revision numbers d592380 and d7b5a70 for 

RosettaTMH parameter optimization and benchmarking, respectively. The source code is 

available in the Rosetta3 master branch, which is available to developers in the 

RosettaCommons via https://github.com/RosettaCommons. The complete protocol 

capture for this work is described in Appendix E. 

 

Results 

Modified radius of gyration score does not significantly affect folding with RosettaTMH 

Development of MP de novo folding methods often has a distinct advantage in 

that the membrane environment imposes a spatial constraint on the orientation of the 

protein. One way to leverage this constraint is to modify MP-specific scoring terms. In 

the case of RosettaTMH, an MP-specific RG scoring term (“new RG”) was tested. This 

RG scoring term computes the RG over X- and Y- Cartesian coordinate values, 

disregarding the Z-coordinates that indicate vertical position of the MP in the membrane 

bilayer. The objective of this scoring term is to compress the model in the X/Y plane but 

not, or less drastically, along the Z-axis. This is different than the Rosetta default RG 

scoring term, which computes the RG over all three Cartesian dimensions. However, 

after testing this new RG score on the 9 MPs italicized in Table 19, it was found that the 

modified RG score did not affect overall performance for de novo folding with 

RosettaTMH (Figure 35). Therefore, the default Rosetta RG score was used for all further 

simulations in this chapter. 
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!
Figure 35:  Comparison of RosettaTMH de novo folding with the original and modified 
radius of gyration scores 
The mean RMSD100SSE (± S.E.M) of the top 10% of total models built for 9 MPs is plotted as a 
function of the factor by which the RG score is weighted (beyond the default Rosetta weight of 
0.3). 
 

Weight optimization for default radius of gyration score  

Preliminary testing of de novo folding of MPs with RosettaTMH indicated that 

the weight of the Rosetta default RG score needed optimization. For each of 42 RG 

weighting factors ranging from 0.0 to 10.0, 1,000 models of the 9 proteins italicized in 

Table 1 were folded using RosettaTMH. The average enrichment and standard error of 

the mean (S.E.M.) were computed for each folding simulation (Figure 36). Based on 

these results, a weighting factor of 4.25 was used for the benchmarking of RosettaTMH. 
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It should be noted that, by default, the RG score is already multiplied by 0.3, thus 

resulting in an overall RG score weight of 1.275. 

 

Figure 36:  Optimization of the default Rosetta radius of gyration score weighting factor for 
de novo folding with RosettaTMH 
The average enrichment (± S.E.M) obtained for folding 9 MPs with RosettaTMH is plotted as a 
function of RG weighting factor. The blue box indicates the optimum value for that folding 
method. Further benchmarking was performed with an RG weight of 4.25 for all folding 
protocols. 
 

The sampling efficiency of Rosetta de novo folding methods is similar 

To test how quickly de novo folding results of Rosetta for MPs converge, i.e., 

sampling efficiency, 5,000 models of 3 large MPs were folded using MembraneAbinitio, 

ExtendedChain, and RosettaTMH protocols. The latter two methods were also tested in 

the presence of simulated EPR restraints (“ExtendedChain+EPR” and 

“RosettaTMH+EPR,” respectively). Then, randomized subsets of varying sizes were 

A B
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selected, and the average RMSD100SSE and standard deviation was computed for that 

fraction of models. The standard deviation was then plotted as a function of fraction of 

total models built (Figure 37). Interestingly, all five folding methods’ results appear to 

converge at around 3,750 – 5,000 models.  
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!
Figure 37:  Sampling efficiency of various Rosetta de novo folding methods for three membrane proteins 
Ratio between the mean standard deviation of RMSD100SSE (SDRMSD) of a subset of 5,000 models and the mean SDRMSD of all 5,000 models is 
plotted as a function of the fraction of total models built. 
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Optimal EPR restraint potential weighs both knowledge-based potential and quadratic 

penalty equally 

De novo folding of soluble proteins with EPR restraints in Rosetta had been 

optimized previously (134, 135). However, it was found that, for MPs, a quadratic 

penalty was needed in addition to the EPR KBP energetic bonus to sufficiently improve 

conformational sampling of native-like folds. After rigorous weight optimization of this 

hybrid scoring term, it was determined that, for folding with RosettaTMH, the optimal 

weight scheme for the EPR distance restraint score was to multiply the EPR KBP by a 

factor of 1.0 and multiply the quadratic penalty by a factor of 1.0. This was based on the 

observation that, of the weights tested, the mean percentage of models with RMSD100SSE 

< 8Å across 9 proteins was highest with this weighting scheme (Table 20). The 

enrichment for folding with this set of weights was 2.93 (Table 21). Interestingly, the 

enrichment for de novo folding with EPR restraints was generally lower than folding with 

no restraints. By definition, this is because the number of false positives, or low-scoring, 

high-RMSD models, was higher when folding with simulated restraints. This is perhaps 

due to the higher promiscuity of the EPR restraints, which are broader than distance 

restraints resulting from NMR NOEs. Therefore, models that fulfill the simulated 

restraints and are lower-scoring do not necessarily have native-like topologies. 
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Table 20:  Percentage of correctly folded models obtained for folding nine membrane 
proteins with RosettaTMH using a variety of restraint score weighting schemes 

!

Percent'of'Models'RMSD100SSE'<'8Å'

Quadratic'Penalty'
0! 1! 10! 20! 30! 40! 50!

EPR'KBP'

0! 0.02! 1.00! 0.91! 0.89! 0.81! 0.82! 0.78!
1! 1.56! 4.03! 3.74! 3.26! 3.48! 3.41! 3.51!
10! 1.58! 5.24! 4.21! 4.03! 4.28! 4.01! 4.03!
20! 1.54! 4.53! 4.03! 3.84! 3.96! 3.67! 3.64!
30! 1.63! 4.34! 4.02! 3.94! 3.99! 3.98! 3.72!
40! 1.30! 4.28! 3.99! 3.81! 3.82! 3.60! 3.57!
50! 1.33! 4.07! 3.73! 3.50! 3.79! 3.72! 3.66!

 
 
Table 21:  Enrichment obtained for folding nine membrane proteins with RosettaTMH 
using a variety of restraint score weighting schemes 

!
!

Enrichment'
Quadratic'Penalty'

0! 1! 10! 20! 30! 40! 50!

EPR'KBP'

0! 3.16! 2.41! 2.54! 2.51! 2.47! 2.28! 2.44!
1! 3.40! 2.93! 2.58! 2.66! 2.71! 2.64! 2.54!
10! 3.06! 1.99! 2.09! 2.01! 1.99! 2.23! 2.12!
20! 2.87! 1.76! 2.00! 1.70! 1.93! 1.78! 1.89!
30! 2.54! 1.54! 1.84! 1.90! 1.60! 1.70! 1.83!
40! 3.12! 1.67! 1.69! 1.78! 1.82! 1.90! 1.73!
50! 2.73! 1.78! 1.64! 1.71! 1.57! 1.66! 1.86!

 

The data in Table 22 and Table 23 compares the enrichment and quality of models 

generated by MembraneAbinitio (105), ExtendedChain (100), ExtendedChain+EPR, 

RosettaTMH, and RosettaTMH+EPR. We also compare the various Rosetta MP folding 

methods to BCL::MP-Fold, another MP de novo folding method that forms 3D protein 

conformations via assembly of SSEs (345). There are no significant or apparent trends in 

the enrichment data, other than that enrichments for datasets generated with RosettaTMH 

are often higher for small- to medium-sized MPs. The addition of EPR restraints results 



!
160!

in a general decrease in enrichment for all but the largest MPs, which was unexpected 

(Table 22). 

Table 22:  Enrichment obtained for folding thirty-four membrane proteins with and 
without simulated EPR distance restraints* 

PDB'
Folding'Method'

MembraneAbinitio' ExtendedChain' +EPR' RosettaTMH' +EPR' BCL'
3SYO! 1.2! 1.0! 0.8!±!0.9! 3.2! 2.1!±!1.3! 1.5!
2BG9! 1.5! 0.7! 2.5!±!1.4! 4.1! 2.9!±!1.0! 2.2!
1J4N! 1.6! 1.1! 2.1!±!1.5! 0.0! 3.0!±!1.1! 0.4!
2KSF! 1.0! 0.9! 1.0!±!1.5! 3.2! 2.4!±!2.0! 1.5!
1PY7! 2.9! 2.7! 4.1!±!2.1! 4.0! 3.1!±!1.4! 1.8!
2PNO! 1.0! 2.3! 1.7!±!0.9! 3.7! 2.1!±!1.2! 0.8!
2BL2! 3.5! 3.2! 3.9!±!1.7! 4.3! 2.6!±!1.7! 1.1!

2K73! 1.5! 1.6! 1.4!±!1.2! 3.1! 2.3!±!1.7! 1.5!
2ZW3! 2.4! 1.3! 1.5!±!0.7! 3.1! 1.8!±!0.9! 0.5!
1IWG! 1.9! 1.0! 2.4!±!0.7! 2.9! 1.8!±!1.5! 0.6!
1RHZ! 1.9! 1.7! 2.2!±!0.9! 2.9! 2.3!±!0.9! 0.9!
2YVX! 2.3! 0.4! 1.3!±!0.8! 2.5! 2.0!±!1.1! 0.7!
1OCC! 2.5! 2.5! 1.8!±!1.4! 3.8! 2.1!±!1.1! 1.1!
4A2N! 3.1! 1.1! 1.2!±!1.1! 3.5! 2.7!±!1.5! 0.7!
1KPL! 1.7! 2.3! 1.3!±!0.9! 1.8! 1.3!±!1.2! 0.6!
2BS2! 1.9! 2.9! 2.3!±!1.1! 3.6! 2.0!±!1.4! 1.5!
3P5N! 2.8! 2.6! 3.0!±!1.9! 3.4! 2.3!±!1.2! 1.5!
2IC8! 1.8! 1.6! 1.6!±!1.5! 2.3! 2.0!±!1.2! 1.3!
1PV6! 1.4! 2.5! 2.8!±!0.8! 3.0! 2.3!±!1.6! 1.2!
2NR9! 2.6! 0.6! 1.5!±!1.0! 2.6! 2.0!±!1.1! 1.5!

1OKC! 3.4! 4.0! 2.2!±!0.9! 2.6! 2.9!±!1.3! 0.7!
3B60! 2.0! 3.5! 4.1!±!1.0! 2.3! 2.2!±!1.1! 0.0!
2KSY! 1.0! 0.9! 1.0!±!1.5! 3.2! 2.4!±!2.0! 1.5!
1PY6! 1.3! 3.1! 3.5!±!1.4! 3.3! 2.9!±!1.0! 1.4!
3KCU! 1.4! 1.1! 1.1!±!0.9! 2.2! 1.4!±!1.2! 0.5!
1FX8! 2.5! 4.9! 2.4!±!1.3! 2.9! 1.7!±!0.9! 0.9!
1U19! 5.2! 3.3! 1.9!±!1.7! 2.7! 1.9!±!1.1! 1.4!
3KJ6! 1.2! 0.6! 0.8!±!0.6! 2.3! 1.3!±!0.9! 1.0!

3HD6! 2.0! 5.7! 4.4!±!0.5! 1.9! 1.8!±!1.1! 0.4!
3GIA! 2.7! 4.2! 2.3!±!1.2! 1.6! 1.5!±!1.1! 0.0!
3O0R! 2.2! 4.9! 3.2!±!1.2! 1.7! 2.3!±!1.1! 0.1!
3HFX! 3.5! 1.9! 2.1!±!0.9! 1.2! 1.8!±!1.4! 0.4!
2XUT! 2.4! 1.1! 1.3!±!1.2! 1.6! 2.1!±!1.3! 0.0!
2XQ2! 2.7! 1.1! 1.3!±!1.4! 0.8! 1.1!±!0.9! 0.1!

Mean!! 2.2! 2.2! 2.1!±!1.2! 2.7! 2.1!±!1.3! 0.9!
std.!dev.! 0.9! 1.3! 1.0!±!0.4! 1.0! 0.5!±!0.3! 0.6!

* Enrichment values with standard deviations were obtained from de novo folding 1,000 models 
with 10 different EPR distance restraint sets. 
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Addition of EPR restraints significantly improves sampling for RosettaTMH and 

ExtendedChain 

In order to assess the overall sampling capability of each folding protocol, the 

average RMSD100SSE of the top 10% of models by RMSD100SSE (µ10%RMSD) was 

computed relative to the experimental, or native, structure. Additionally, we computed 

the percentage of models having an RMSD100SSE < 8Å, which serves as a cutoff for 

determining if models have the correct topology. We also report the best RMSD100SSE 

(BestRMSD) obtained for each method and the mean RMSD100SSE of the five lowest-

scoring models (µ5modelscore). As was observed with T4-lysozyme (135), the addition of 

EPR restraints increases the likelihood of obtaining the correct MP fold for both 

RosettaTMH and ExtendedChain. When looking at the percentage of models with 

RMSD100SSE < 8Å, for 12 of 34 proteins, RosettaTMH performs worse than 

ExtendedChain, while RosettaTMH+EPR performs better than ExtendedChain+EPR. 

Several of these proteins consist of over 200 residues, indicating RosettaTMH’s ability to 

fold large MPs in the presence of restraints. Further, when compared to other Rosetta MP 

folding methods, RosettaTMH+EPR obtains the highest percentage of correctly folded 

models for 4 of the 13 medium-sized proteins, 5 of the 8 large proteins, and 5 of the 6 

very large proteins. However, BCL::MP-Fold out-performs all Rosetta methods for the 

vast majority of benchmark cases – a fact that requires further research outside the scope 

of the present work (Table 23). 
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Table 23:  Overall performance of de novo folding membrane proteins with Rosetta and BCL::MP-Fold 

PDB$ Metric$
Folding$Method$

MembraneAbinitio$ ExtendedChain$ +EPR$ RosettaTMH$ +EPR$ BCL$

3SYO!

μ5modelscorea! 11.6! 8.0! 7.7! 6.3! 5.2! 4.0!
BestRMSDb! 6.9! 2.5! 2.0! 2.9! 2.3! 1.6!
μ10%RMSDc! 9.5! 4.9! 3.5! 5.1! 3.4! 3.0!
%!<!8Åd! 0.4! 43.5! 74.6! 30.4! 71.3! 100.0!

2BG9!

μ5modelscore! 8.7! 10.4! 7.2! 8.3! 7.3! 6.4!
BestRMSD! 4.2! 4.1! 3.9! 5.5! 2.9! 2.7!
μ10%RMSD! 5.8! 5.3! 5.6! 8.4! 5.1! 3.6!
%!<!8Å! 28.1! 22.1! 40.0! 3.0! 32.7! 50.7!

1J4N!

μ5modelscore! 10.0! 8.2! 7.6! 11.2! 10.0! 9.2!
BestRMSD! 4.9! 4.8! 3.1! 6.6! 5.7! 4.6!
μ10%RMSD! 7.0! 6.1! 4.5! 8.9! 7.9! 6.0!
%!<!8Å! 12.3! 28.8! 44.7! 1.4! 4.4! 32.3!

2KSF!

μ5modelscore! 8.5! 9.2! 10.0! 8.8! 9.6! 6.6!
BestRMSD! 5.6! 4.8! 4.0! 5.5! 3.9! 3.2!
μ10%RMSD! 6.9! 6.4! 5.8! 9.1! 5.9! 4.2!
%!<!8Å! 18.8! 27.0! 28.8! 1.3! 20.6! 41.3!

1PY6*!

μ5modelscore! 4.5! 7.3! 2.3! 9.6! 6.6! 8.0!
BestRMSD! 2.5! 1.9! 1.9! 6.0! 2.9! 3.8!
μ10%RMSD! 3.9! 3.5! 2.6! 9.4! 5.0! 4.8!
%!<!8Å! 63.7! 70.7! 57.9! 0.9! 31.0! 57.4!

2PNO!

μ5modelscore! 7.9! 8.1! 7.9! 10.4! 7.8! 59.6!
BestRMSD! 4.1! 3.3! 2.8! 7.2! 4.4! 4.5!
μ10%RMSD! 6.0! 5.7! 4.1! 10.1! 6.0! 7.2!
%!<!8Å! 29.0! 26.0! 56.6! 0.5! 23.3! 13.6!

2BL2!
μ5modelscore! 6.7! 3.9! 5.4! 9.9! 7.3! 38.7!
BestRMSD! 2.3! 2.3! 2.5! 6.7! 3.4! 3.0!
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μ10%RMSD! 3.6! 3.4! 3.7! 9.8! 5.0! 4.0!
%!<!8Å! 70.1! 54.8! 70.9! 1.0! 53.8! 79.9!

2K73!

μ5modelscore! 10.1! 6.9! 5.7! 10.6! 5.9! 31.4!
BestRMSD! 6.4! 3.1! 2.8! 6.3! 3.1! 2.8!
μ10%RMSD! 8.7! 4.5! 4.2! 9.0! 4.9! 3.8!
%!<!8Å! 1.1! 43.5! 55.2! 1.6! 48.3! 72.3!

2ZW3!

μ5modelscore! 11.8! 12.1! 9.7! 10.5! 7.7! 48.3!
BestRMSD! 10.1! 5.2! 5.2! 5.7! 3.7! 3.1!
μ10%RMSD! 11.9! 8.3! 6.8! 8.8! 5.4! 4.5!
%!<!8Å! 0.0! 2.7! 16.4! 1.8! 30.2! 73.2!

1IWG!

μ5modelscore! 8.1! 10.4! 8.4! 11.5! 7.2! 8.6!
BestRMSD! 5.8! 5.0! 4.8! 7.6! 4.2! 4.2!
μ10%RMSD! 7.3! 11.2! 5.8! 10.0! 5.9! 5.9!
%!<!8Å! 12.2! 9.0! 42.6! 0.3! 27.0! 41.9!

1RHZ!

μ5modelscore! 9.8! 9.4! 8.2! 11.9! 7.7! 9.4!
BestRMSD! 7.1! 5.2! 3.9! 7.5! 5.4! 4.9!
μ10%RMSD! 8.8! 7.1! 5.2! 10.1! 7.0! 7.2!
%!<!8Å! 0.7! 11.9! 44.4! 0.2! 12.9! 12.6!

2YVX!

μ5modelscore! 8.9! 14.3! 8.1! 11.3! 6.6! 9.4!
BestRMSD! 6.7! 6.0! 4.1! 7.5! 3.8! 5.8!
μ10%RMSD! 7.9! 8.2! 5.6! 10.4! 6.6! 7.3!
%!<!8Å! 4.8! 3.5! 35.8! 0.1! 17.6! 13.3!

1OCC!

μ5modelscore! 9.8! 10.1! 9.1! 9.1! 6.9! 7.4!
BestRMSD! 5.9! 7.0! 5.9! 7.8! 4.1! 4.5!
μ10%RMSD! 9.1! 8.8! 7.9! 10.0! 5.4! 6.2!
%!<!8Å! 0.8! 1.2! 5.0! 0.3! 45.9! 49.0!

4A2N!
μ5modelscore! 9.9! 14.0! 8.7! 9.6! 8.0! 8.7!
BestRMSD! 6.4! 5.6! 3.8! 6.4! 4.5! 3.8!
μ10%RMSD! 8.2! 7.8! 5.5! 9.3! 6.7! 5.6!
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%!<!8Å! 3.4! 5.0! 32.2! 1.3! 10.9! 29.2!

1KPL!

μ5modelscore! 13.3! 13.8! 13.8! 13.9! 11.5! 145.4!
BestRMSD! 10.3! 9.9! 6.9! 11.2! 7.3! 9.9!
μ10%RMSD! 13.0! 12.5! 9.0! 13.0! 9.8! 11.3!
%!<!8Å! 0.0! 0.0! 1.0! 0.0! 0.1! 0.0!

2BS2!

μ5modelscore! 9.9! 9.0! 8.1! 10.6! 9.1! 8.1!
BestRMSD! 6.0! 6.3! 5.1! 6.4! 4.1! 4.9!
μ10%RMSD! 8.8! 9.0! 6.7! 10.2! 6.1! 6.4!
%!<!8Å! 1.5! 1.0! 15.1! 0.1! 26.9! 31.4!

3P5N!

μ5modelscore! 9.0! 9.4! 7.3! 12.0! 9.1! 114.9!
BestRMSD! 5.5! 5.1! 3.8! 7.5! 4.6! 4.5!
μ10%RMSD! 8.3! 7.4! 5.4! 10.0! 7.0! 6.5!
%!<!8Å! 2.0! 7.1! 36.6! 0.1! 16.3! 23.6!

2IC8!

μ5modelscore! 10.1! 9.3! 9.7! 10.1! 8.3! 9.6!
BestRMSD! 5.2! 4.9! 3.5! 7.8! 5.0! 5.1!
μ10%RMSD! 7.9! 7.3! 5.6! 10.2! 6.8! 6.8!
%!<!8Å! 3.6! 8.0! 30.0! 0.1! 13.0! 16.7!

1PV6!

μ5modelscore! 10.5! 9.9! 8.0! 11.7! 7.8! 9.3!
BestRMSD! 5.7! 6.9! 4.2! 7.5! 4.2! 5.7!
μ10%RMSD! 8.2! 8.6! 6.3! 10.7! 5.9! 7.3!
%!<!8Å! 3.5! 1.5! 20.6! 0.1! 23.8! 10.5!

2NR9!

μ5modelscore! 9.6! 9.6! 9.0! 11.3! 9.1! 8.6!
BestRMSD! 6.1! 5.6! 3.7! 8.3! 5.3! 5.1!
μ10%RMSD! 8.3! 7.8! 5.6! 10.2! 7.1! 6.8!
%!<!8Å! 2.5! 4.5! 27.8! 0.0! 10.9! 16.7!

1OKC!

μ5modelscore! 13.1! 10.5! 10.6! 12.0! 9.2! 78.9!
BestRMSD! 9.0! 8.4! 6.9! 8.0! 5.1! 5.7!
μ10%RMSD! 11.6! 12.1! 8.6! 10.7! 7.3! 7.8!
%!<!8Å! 0.0! 0.0! 2.1! 0.1! 9.5! 5.9!
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3B60!

μ5modelscore! 9.4! 9.4! 4.3! 11.0! 8.6! 74.4!
BestRMSD! 5.5! 6.0! 3.2! 7.8! 4.8! 9.2!
μ10%RMSD! 8.3! 8.3! 4.7! 10.2! 6.3! 11.1!
%!<!8Å! 2.2! 3.2! 48.0! 0.1! 30.7! 0.0!

2KSY!

μ5modelscore! 7.7! 10.0! 8.4! 11.7! 6.6! 8.2!
BestRMSD! 4.3! 3.6! 3.9! 8.2! 4.2! 5.1!
μ10%RMSD! 6.0! 6.2! 5.3! 10.9! 5.8! 6.7!
%!<!8Å! 27.9! 17.8! 33.4! 0.0! 28.6! 17.7!

1PY6!

μ5modelscore! 8.4! 7.1! 5.8! 12.3! 7.7! 8.4!
BestRMSD! 4.6! 4.0! 4.2! 8.3! 4.1! 4.7!
μ10%RMSD! 6.3! 6.6! 5.9! 10.6! 5.8! 6.2!
%!<!8Å! 29.3! 16.5! 23.9! 0.0! 32.7! 24.4!

3KCU!

μ5modelscore! 10.0! 11.7! 10.9! 12.2! 11.1! 100.7!
BestRMSD! 6.8! 6.8! 4.7! 8.8! 5.9! 6.5!
μ10%RMSD! 8.9! 9.2! 7.6! 11.1! 7.6! 8.5!
%!<!8Å! 0.4! 0.7! 6.1! 0.0! 6.6! 1.0!

1FX8!

μ5modelscore! 11.3! 11.5! 11.6! 11.5! 9.3! 210.4!
BestRMSD! 7.7! 7.0! 6.2! 9.6! 6.7! 7.2!
μ10%RMSD! 10.1! 11.2! 8.8! 10.9! 8.8! 8.3!
%!<!8Å! 0.1! 0.1! 1.2! 0.0! 0.7! 1.9!

1U19!

μ5modelscore! 11.9! 15.8! 10.8! 12.1! 8.3! 8.5!
BestRMSD! 9.7! 12.7! 7.3! 8.3! 4.9! 5.3!
μ10%RMSD! 12.5! 15.0! 9.2! 10.7! 6.6! 7.0!
%!<!8Å! 0.0! 0.0! 0.5! 0.0! 16.8! 14.2!

3KJ6!

μ5modelscore! 15.1! 13.0! 10.1! 10.8! 8.6! 152.6!
BestRMSD! 12.4! 7.5! 5.1! 6.2! 3.6! 4.4!
μ10%RMSD! 13.7! 10.3! 7.2! 9.6! 6.4! 5.9!
%!<!8Å! 0.0! 0.1! 10.8! 0.6! 20.0! 43.9!

3HD6! μ5modelscore! 10.6! 16.5! 11.1! 19.2! 10.8! 10.2!
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BestRMSD! 6.8! 13.1! 8.3! 9.7! 7.2! 7.0!
μ10%RMSD! 9.6! 19.4! 10.9! 12.2! 9.4! 8.5!
%!<!8Å! 0.1! 0.0! 0.1! 0.0! 0.6! 1.6!

3GIA!

μ5modelscore! 14.0! 25.9! 13.5! 15.0! 14.0! 122.3!
BestRMSD! 11.6! 20.4! 8.0! 11.2! 8.8! 9.1!
μ10%RMSD! 14.0! 24.4! 10.2! 13.2! 10.5! 10.8!
%!<!8Å! 0.0! 0.0! 0.2! 0.0! 0.0! 0.0!

3O0R!

μ5modelscore! 10.2! 24.1! 9.9! 14.5! 9.5! 51.3!
BestRMSD! 6.5! 20.2! 6.0! 10.3! 6.2! 6.9!
μ10%RMSD! 8.6! 24.6! 9.2! 12.3! 7.6! 8.7!
%!<!8Å! 2.2! 0.0! 1.3! 0.0! 6.8! 1.6!

3HFX!

μ5modelscore! 13.2! 24.7! 12.2! 15.1! 9.9! 77.8!
BestRMSD! 10.0! 15.2! 7.0! 8.4! 5.7! 6.0!
μ10%RMSD! 12.8! 20.5! 9.1! 10.1! 7.9! 8.0!
%!<!8Å! 0.0! 0.0! 0.8! 0.0! 4.4! 4.2!

2XUT!

μ5modelscore! 14.5! 48.2! 12.8! 16.1! 9.5! 75.1!
BestRMSD! 12.5! 22.6! 8.3! 12.1! 6.5! 7.4!
μ10%RMSD! 13.6! 29.4! 11.4! 13.6! 8.5! 9.4!
%!<!8Å! 0.0! 0.0! 0.1! 0.0! 2.7! 0.3!

2XQ2!
!

μ5modelscore! 17.2! 52.3! 13.1! 17.5! 11.5! 103.7!
BestRMSD! 13.8! 31.7! 9.8! 12.1! 6.7! 8.2!
μ10%RMSD! 15.6! 39.5! 11.5! 13.6! 8.6! 10.3!
%!<!8Å! 0.0! 0.0! 0.1! 0.0! 1.8! 0.0!

Mean!
±!std.!
dev.!

μ5modelscore! 10.4!±!2.6! 13.9!±!10.6! 9.0!±!2.6! 11.8!±!2.6! 8.6!±!1.8! 48.1!±!46.0!
BestRMSD! 7.0!±!2.8! 8.2!±!6.8! 4.9!±!2.0! 7.9!±!2.0! 4.9!±!1.4! 5.3!±!2.0!
μ10%RMSD! 9.1!±!2.9! 11.2!±!8.2! 6.7!±!2.4! 10.4!±!1.7! 6.8!±!1.5! 6.9!±!2.2!
%!<!8Å! 9.4!±!17.6! 12.1!±!18.0! 25.4!±!22.5! 1.3!±!5.3! 20.1!±!16.6! 26.0!±!26.8!

a µ5modelscore = mean RMSD100SSE to native structure of the top five models by score; b BestRMSD
 = RMSD100SSE of the best model by 

RMSD100SSE compared to the native structure; c µ10%RMSD = mean of the top 10% of models by RMSD100SSE compared to the native structure; d 
% < 8Å = percentage of total models folded having an RMSD100SSE < 8Å 
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De novo folding with RosettaTMH improves sampling over other methods for large 

proteins 

 For ease of visualization, a representative set of 7 proteins was chosen from the 

34-protein benchmark set for further RMSD100SSE analysis. For each protein and for 

each folding method, the RMSD100SSE values were sorted from lowest to highest, and 

the top 5% of models by RMSD100SSE were selected. Next, RMSD100SSE vs. 

RMSD100SSE plots comparing RosettaTMH and RosettaTMH+EPR with the other 

Rosetta and BCL MP folding methods were generated. This analysis clarifies a few key 

conclusions concerning RosettaTMH. First, RosettaTMH+EPR samples lower-RMSD 

conformations for larger MPs when compared to RosettaTMH, MembraneAbinito, and 

ExtendedChain. Also, when comparing RosettaTMH with MembraneAbinito and 

ExtendedChain, the latter two methods are more suitable for structure prediction when 

the proteins are small- to medium-sized. Finally, RosettaTMH performance is 

comparable to MembraneAbinitio and ExtendedChain for 2K73 and 1FX8, respectively 

(Figure 38). 



 

! 168!

!
Figure 38:  Sampling performance for de novo folding with RosettaTMH compared to other 
folding methods 
For each panel, the RMSD100SSE of the top 5% of models by score were selected for 7 proteins. 
A) MembraneAvinitio vs. RosettaTMH. B) Folding from an extended chain vs. RosettaTMH. C) 
RosettaTMH with EPR restraints vs. RosettaTMH (without EPR restraints). D) BCL::MP-Fold 
vs. RosettaTMH. E) MembraneAbinitio vs. RosettaTMH with EPR restraints. F) Folding from an 
extended chain with EPR restraints vs. RosettaTMH with EPR restraints. 
 
 

Addition of EPR restraints primarily responsible for improvement seen in RosettaTMH 

folding 

The MembraneAbinitio folding algorithm was first benchmarked on a dataset of 

relatively small proteins and performed best with small helical bundles (105). However, it 

was found that MPs having more complex topologies posed a much more difficult 

challenge, which RosettaTMH could possibly address. Indeed, 6 of the 34 proteins tested 

in this benchmark set show improved quality when using RosettaTMH over folding with 

MembraneAbinitio or ExtendedChain. Further, the addition of the EPR distance restraint 
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potential improves sampling of native-like folds significantly. This appears to be 

primarily due to the influence of the EPR restraints, as folding with ExtendedChain+EPR 

also increases sampling efficiency to include the correct fold. In order to test this 

hypothesis, rhodopsin (PDB ID: 1U19 (260)) was selected for an in-depth analysis of the 

relationship between the number of EPR restraints and overall conformational sampling 

ability.  

Rhodopsin was folded using all of the Rosetta methods listed in Table 22. 

However, for RosettaTMH+EPR and ExtendedChain+EPR, multiple sets of models were 

generated based on whether 0, 10, 20, 40, 80, or 160 simulated EPR distance restraints 

were used. Unlike in the 34-protein benchmark, only one EPR restraint set for each 

scenario was generated, and 1,000 models were folded for each case. Box-and-whisker 

plots of the resulting RMSD100SSE distributions are displayed in Figure 39. When no 

restraints are used, MembraneAbinitio and folding from an extended chain perform 

similarly, while RosettaTMH generally appears to generate lower-RMSD models. When 

using 10 restraints, RosettaTMH+EPR and ExtendedChain+EPR exhibit similar median 

RMSD100SSE values, but RosettaTMH+EPR samples a wider range of conformations. 

However, when 20 or more restraints are used, RosettaTMH+EPR is consistently better 

in sampling the correct fold. As expected, the number of outliers correlates inversely with 

the number of restraints (Figure 39). 
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!
Figure 39:  Sampling performance of RosettaTMH with various EPR restraint set sizes for 
folding rhodopsin 
Box-and-whisker plot indicating the breadth of model accuracy obtained for folding rhodopsin 
with RosettaTMH with 10, 20, 40, 80 and 160 simulated EPR distance restraints. The thick line 
indicates the median RMSD100SSE obtained, while the boxes indicate the interquartile range. The 
highest and lowest RMSD100SSE values, excluding outliers, are indicated by the “whiskers,” and 
outliers are shown as open circles. 

 

Detailed analysis of individual de novo folding stages indicate rigid body sampling not 

necessary 

In addition to studying the overall performance of RosettaTMH with and without 

EPR restraints, the ability of the protocol to sample MP topologies during each stage of 

folding (see Figure 34) was also analyzed. As with the above experiment, rhodopsin was 

chosen as an example protein, and, when indicated that EPR restraints were employed, 

only one set of 41 optimally weighted restraints was used. For each folding method, 

1,000 individual trajectories were run, and the conformations before folding began and 

after each stage of folding were output. Then, similar to in Figure 39, the RMSD100SSE 

distributions for each folding stage were plotted. The single, high-scoring conformations 
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observed at folding initiation, or Stage 0, are all an extended chain, which is how both the 

default Rosetta folding algorithm, and MembraneAbinitio, begin. Accordingly, for 

MembraneAbinitio and ExtendedChain model quality significantly improves from 

initiation to Stage 1 and then from Stage 1 to Stage 2. In contrast, RosettaTMH-generated 

model accuracy decreases during Stage 1 of folding. That is, the rigid body sampling 

causes the quality of rhodopsin models to decrease. The RMSD100SSE values do not 

improve significantly for Stages 2-4 when no restraints are used. When EPR restraints are 

used, the models’ accuracy improves from Stage 1 to Stage 2 but does not change 

significantly thereafter. This was also observed for ExtendedChain+EPR (Figure 40). 

!
Figure 40:  Sampling performance of various Rosetta methods during each stage of de novo 
folding using rhodopsin as an example 
Box-and-whisker plot indicating the breadth of model accuracy obtained during each stage of 
folding with MembraneAbinitio, folding from an extended chain with and without EPR restraints, 
and folding with RosettaTMH with and without restraints. The thick line indicates the median 
RMSD100SSE obtained, while the boxes indicate the interquartile range. The highest and lowest 
RMSD100SSE values, excluding outliers, are indicated by the “whiskers,” and outliers are shown 
as open circles. 
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RosettaTMH-generated models exhibit large inter-helical distances 

RosettaTMH assembles MP folds by breaking up the proteins into individual 

TMHs and allowing these helices to move as rigid bodies. Therefore, the resulting 

arrangements could feature distances between subsequent SSEs that cannot be connected 

by a loop. In order to determine the extent to which this is true, a representative set of 7 

proteins chosen from the 34-protein benchmark was selected, and the Euclidian distance 

between subsequent SSEs was measured for 1,000 models generated with RosettaTMH in 

the presence and absence of restraints. The log10 of the Euclidian distance was plotted as 

a function of log10 of the number of amino acids in the loop (Figure 41). The distance-

loop length relationship for the 7 native proteins, as well as the maximum Euclidian 

distance possible ( 3.8*(loop_ length −1) ), were also determined and plotted. According 

to the information in Figure 41, it appears that, especially for shorter loops, RosettaTMH 

often places TMHs too far away in 3D space. Similarly, RosettaTMH fails to reflect the 

dependence of Euclidean distance from loop length accurately. Indeed, for all proteins, 

excluding 3HFX, the inter-helix distances of the vast majority of models generated can 

theoretically be spanned by a loop, but only a small percentage—if any--exhibits native-

like inter-helix distances (Table 24). 
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!
Figure 41:  Analysis of inter-SSE distances for RosettaTMH-folded models 
The log10 of the inter-SSE Euclidian distance (i.e., loop distance) as a function of the log10 of the 
number of residues in the loop is plotted for a representative set of membrane proteins. The long-
dashed line indicates the maximum Euclidian distance possible for n residues, and the short-
dashed line indicates the Euclidian distances for n residues found in the proteins’ native 
structures. 
 
 
Table 24:  Percentage of models having loops that can or are likely to be closeable 

PDB$

%$Models$with$Loop$
Distance$<$Maximum$

Possible$

%$Models$with$Loop$
Distance$<$Native$

+$EPR$
Restraints$

–$EPR$
Restraints$

+$EPR$
Restraints$

–$EPR$
Restraints$

1FX8! 91.1! 76.4! 0.2! 0.0!
1U19! 99.8! 80.7! 0.0! 0.0!
2BG9! 99.3! 96.7! 11.2! 2.4!
2K73! 97.7! 76.0! 4.4! 0.2!
3B60! 79.2! 62.5! 0.0! 0.0!
3HFX! 42.6! 26.7! 0.0! 0.0!
3O0R! 76.9! 41.9! 0.0! 0.0!

 

Discussion 

EPR restraints significantly assist in obtain models with the correct topology 

The results in Table 23, Figure 38, Figure 39, and Figure 40 indicate that, for 

large and very large MPs, the conformational search space of MP structures must be 
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limited in order to obtain de novo-folded models with native-like folds. The 

MembraneAbinitio protocol attempts to accomplish this by folding MPs “from the inside 

out.” That is, a helix in the middle of the protein sequence is inserted into the implicit 

membrane environment first. Next, either helices N- or C-terminal to the initially inserted 

helix are folded into the membrane via fragment-based assembly, beginning with the 

helix adjacent to the starting helix. Then, the helices on the other side (in terms of 

sequence) are folded in the same manner (105).  

While MembraneAbinitio is able to generate models with RMSD100SSE < 8Å for 

over half of the 34 proteins tested, the majority of these success cases have fewer than 

200 residues and 7 TMHs. Indeed, for 12 proteins, the MembraneAbinitio protocol 

performs better than RosettaTMH and folding from an extended chain when EPR 

restraints are not used. However, when EPR restraints were used, the additional restraints 

result in more models having the correct fold (Table 23). This is important because 

MembraneAbinitio, unlike RosettaTMH, cannot take EPR restraints into account. 

Therefore, for MPs of more than 4 TMHs and 145 residues, it is advantageous to include 

structural restraints, such as those available from NMR, EPR, etc. If one does employ 

such restraints, the traditional folding method, ExtendedChain, appears to be better suited 

for medium-sized MPs, whereas RosettaTMH may be the best method for de novo 

folding larger MPs, such as GPCRs, channels, and transporters. 

Optimization of RosettaTMH folding protocol may lead to further improvement 

Even though Rosetta is now capable of folding MPs that have the correct fold and 

is sometimes able to recover intra-helical features, these models are not yet accurate 

enough to be used as input for full-atom refinement using the RosettaMembrane all-atom 
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scoring functions (130). Typically, models of approximately 2.0Å RMSD100SSE relative 

to the native structure are required in order to successfully obtain atomic detail 

information (134, 135).  

Based on the information in Figure 40, one obvious next step in protocol 

optimization would be to forego the rigid body sampling in Stage 1 of RosettaTMH 

folding. It is expected that the initial set of rigid body transformations results in less 

viable MP conformations (e.g., helix out of the membrane, lying too orthogonal to the 

membrane normal, or too far apart in 3D space). The fragment insertions in Stages 2-4 

are then not able to recover the correct fold. This is supported by the lowest-RMSD 

models displayed in Figure 42, which show that there is a general lack of inter-helical 

packing and native-like placement that is not remedied by fragment insertions. Not 

surprisingly, the addition of EPR restraints assists in improving packing and even in the 

recovery of helical features (Figure 42). 
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!
Figure 42:  Most accurate model resulting from RosettaTMH folding for six proteins 
The most accurate models obtained from folding with RosettaTMH without EPR restraints (left 
model) and with EPR restraints (right model) are colored in rainbow. The native structures are 
colored in gray. The RMSD100SSE of the model compared to native is reported in angstroms. 
 

Implementation of loop closure filter and knowledge-based potential for de novo folding 

with RosettaTMH could improve inter-helix packing 

In order to create a radial fold tree for each model, the original simple fold tree 

must be “cut” to maintain the data structure’s acyclic nature. For folding with 

RosettaTMH, these cutpoints are chosen within the MP loops (Figure 32). However, now 

that the TMHs can move independently from one another, another external force must be 

applied to keep the helices in relatively close proximity, as the helices appear to drift 

apart and not exhibit native-like packing (Figure 41 and Figure 42). One possible means 
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of doing this is to implement and optimize a loophash filter, which would ensure that 

helices that would normally be connected by a loop remain close enough in Cartesian 

space such that the inter-helical loop can be successfully rebuilt at a later stage. 

The loophash filter is based on work recently published by Tyka, Jung, and Baker 

(351). In the protocol introduced by the authors, the loophash algorithm allows for 

extremely fast rebuilding of protein segments by rapidly determining if a loop of a given 

sequence length can span the distance defined by two endpoints. A hash lookup table is 

generated for a loop of a given sequence length, and the hashes in the table refer to 

specific protein segments found in a database of non-homologous proteins of known 

structure. In addition to the loophash, or loop closure, filter, the implementation of a loop 

distance KBP, such as that used by BCL::Fold (352, 353) could also be useful. While the 

loop closure filter would assist in ruling out models where helices could not theoretically 

be connected, and the loop distance KBP would provide an energetic incentive to place 

TMHs in more native-like conformations. 

 

Increased sampling may be needed in order to better observe RosettaTMH’s performance 

Even though the RosettaTMH folding protocol remains under development, it 

appears to be a much more rapid means of folding MPs than MembraneAbinitio and 

fragment-based assembly alone ( 

Figure 43). This is probably a result of the lack of fragment insertions, and thus 

recalculation of torsion angles, during the first stage of folding. However, this decreased 

amount of fragment insertion may be the cause of the generation of lower-quality models. 

In any case, the significant speedup in model production allows for the generation of 
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many more models. This increased sampling speed will likely prove beneficial for 

obtaining higher quality models from RosettaTMH for large MPs. 

 

Figure 43:  Average time required for de novo folding 
The mean time in minutes (± std. dev.) required to de novo fold 1,000 models for 34 MPs with 
different Rosetta folding methods. When the use of EPR restraints is indicated (+EPR), the EPR 
KBP bonus weight = 1.0, and the quadratic penalty weight = 1.0. 

 

 

Conclusion 

RosettaTMH is a novel de novo folding protocol that assembles MP topologies 

from the rigid body movements of TMHs, followed by peptide fragment insertions. This 

approach, along with the significantly decreased time required to fold models, allows for 

increased sampling of conformational space. In addition, complicated topologies can be 

sampled more efficiently, which is important for the structure prediction of more 

complex proteins, such as GPCRs, transporters, and channels. Finally, RosettaTMH, 

unlike MembraneAbinitio, allows for the folding of MPs with experimental restraints. 

Further, while the new folding protocol alone improves sampling, the addition of 

experimental restraints may be necessary to obtain native-like topologies, which is 

especially important for determination of proteins for which there is no structure. 
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Availability 

The RosettaTMH source code is available in the Rosetta3 master branch, which is 

available to developers in the RosettaCommons via https://github.com/RosettaCommons. 

Protocol captures used for generating the data in this paper are available in Appendix E. 
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CHAPTER VI 

!
CONCLUSION 

!
Summary of this work 

In an effort to understand the structural basis of disease, as well as aid in the 

development of novel drugs and therapeutics, structural biologists have worked tirelessly 

to determine the three-dimensional (3D) conformations and dynamics of 

biomacromolecules. This is evidenced by the explosion of structures deposited in the 

PDB (1, 317). However, the structural characterization of membrane proteins, referred to 

as MPs in this dissertation, has proven to be especially challenging. It is therefore not 

surprising that atomic-detail information about this important class of proteins is limited 

compared to that for soluble proteins (110, 354, 355). While a number of technological 

and methodological advances have made MP structure determination more feasible than 

ever before, the vast majority of MPs, including members of the ever-prominent GPCR 

superfamily, continue to elude both experimental and computational structural biologists.  

The primary purpose of this body of work was to implement, test, and apply 

methods that combine the power of both experiment and computation. This hybrid 

approach has allowed, and will allow, for the elucidation of protein structures, including 

transporters, peptide GPCRs, and their ligands. The concept of computational modeling 

in the presence of experimental restraints was applied, via the Rosetta molecular 

modeling suite, to the structural determination of the prolactin releasing peptide, or PrRP 

(Chapter II) (37, 135), and ghrelin (Chapter III) (Vortmeier, DeLuca, et al., submitted), 

both of which are endogenous agonists of GPCRs. In these cases, the experimental 
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restraints were derived from NMR spectroscopic data. However, with the introduction of 

RosettaEPR (Chapter IV) (107, 108, 135, 251), it was shown that even the relatively 

broad distance information from EPR spectroscopy can be used to enhance the 

conformational search space of the Rosetta protein folding algorithm. Finally, 

RosettaEPR was combined with a novel MP de novo folding algorithm, RosettaTMH, 

which further improves sampling of native-like topologies for large MPs (Chapter V) 

(S.H. DeLuca, S.D. DeLuca, A. Leaver-Fay, and Meiler, submitted). Other versions of 

RosettaMembrane folding protocols have been reported previously (105, 115, 117, 345), 

but neither method could be combined with EPR or NMR experimental data to the extent 

that is enabled by RosettaTMH.  

!
Improving our understanding of the structural basis of PrRP receptor activation by PrRP 

The prolactin releasing peptide, or PrRP, is a peptide hormone that activates the 

prolactin releasing peptide receptor, which is a GPCR that is primarily located in the 

pituitary (28, 105). PrRP, and to some extent, its receptor, are implicated in regulating 

body weight homeostasis, metabolism, and energy expenditure (29-31, 33, 135). Even 

though two groups had reported structural ensembles of PrRP based on NMR data (1, 35, 

36, 356), no coordinates of the models were made publicly available, hindering further 

exploration of this biologically significant interaction.  

In order to overcome the obstacle of the lack of structural data, RosettaNMR 

(106, 167, 168, 354, 355) was used to de novo fold PrRP using NMR chemical shifts 

(CSs) and NOE distances reported in the literature (35, 37, 357). More specifically, the 

13 C-terminal residues of PrRP (PrRP8-20) were folded using 3- and 9-amino acid 
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fragments that were generated using the 13 available CSs and the inter-proton distances 

resulting from backbone hydrogen NOEs. These fragments were assembled according to 

the Rosetta protein folding algorithm (100, 102, 135, 358, 359), during which 

conformations agreeing with all 38 backbone and side-chain NOE distances were 

energetically favored. The models were assessed according to the Rosetta soluble protein 

energy function during both folding and full-atom refinement (100, 105, 110, 117, 360-

364).  

After filtering for conformations with both low global energies and maximal 

satisfaction of the NMR distance restraints, an ensemble of 20 models having a backbone 

root mean square deviation (RMSD) of 0.83Å was obtained. As was expected based on 

the work by D'Ursi, et al. and Danho, et al. (28, 35, 36, 365), the final ensemble revealed 

an amphipathic helical structure, in which all three arginine side-chains were arranged on 

one side of the helix. Furthermore, Rosetta appeared to sample both α- and 310-helical 

conformations, indicating that the peptide exists in a dynamic equilibrium between the 

two. This hypothesis was supported by CD spectroscopic data collected in SDS and TFE, 

which were provided by the Beck-Sickinger laboratory at Leipzig University. 

Importantly, the final ensemble of PrRP models was deposited in the Protein Model 

Database (29-31, 33, 180, 366) (PM ID:  0078404). The models were also used in further 

computational modeling guided by structural restraints derived from receptor activation 

data. The peptide ensemble was docked into a comparative model of the PrRP receptor, 

and the combination of modeling and experimental data allowed for the elucidation of a 

dual-binding mode of PrRP to the PrRP receptor (19, 367-370) (Appendix A). 
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In addition to the determination and deposition of the 3D structure, PrRP and 

various analogs thereof were tested for their ability to activate the wildtype and selected 

point mutants of the PrRP receptor. Specifically, [R15A]PrRP20, [R19A]PrRP20, 

[F20A]PrRP20, as well as PrRP4-20, PrRP8-20, PrRP14-20, and full length PrRP20 were 

tested and their secondary structure analyzed by CD spectroscopy in water, 100 mM SDS 

micelles, and 25% TFE solution. While the PrRP point mutants' EC50 values were 

markedly decreased compared to wildtype, their CD spectra were practically identical in 

all three solvent conditions. PrRP4-20 and PrRP8-20 also activated the wildtype receptor 

to a similar extend as PrRP20, but the helicity of the two shorter truncation mutants was 

reduced.  

Further, when signal transduction assays of [Y2.64A]PrRPR and [W2.71A]PrRPR 

were performed with PrRP20 and PrRP8-20, it was found that PrRP8-20 exhibited 

significantly decreased agonism on the receptor mutants compared to full-length PrRP20 

(197-fold and 963-fold higher EC50 over PrRP20 for [Y2.64A]PrRPR and [W2.71A]PrRPR, 

respectively). This is in stark contrast to PrRP20's EC50 values, which were 23-fold and 

270-fold higher for [Y2.64A]PrRPR and [W2.71A]PrRPR, respectively. These results 

ndicate that the reduced helical character of PrRP8-20, while not affecting the truncated 

peptide's ability to activate the wildtype receptor, severely impaired activation for certain 

receptor mutants. The authors of the publication proposed that the two conserved receptor 

residues, Y2.64 and W2.71, assist PrRP in forming a more α-helical conformation upon 

binding to the receptor, which then allows for its activation. Even though PrRP8-20 

exhibits a decreased propensity to form an α-helix, it could also activate the wildtype 

receptor. However, when Y2.64 and W2.71 were no longer available to help PrRP8-20 
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adopt a helical binding conformation, the truncated peptide could not stimulate the 

receptor (37, 371) (Chapter II).  

 

Elucidation of ghrelin structure, dynamics, and interaction with the membrane 

Ghrelin is also a peptide hormone; it is synthesized in the gut and activates the 

GHSR1a, or ghrelin receptor, which is primarily located in the hypothalamus (40-42, 

372-376). Ghrelin, which is 28 residues in length, has an origenic effect, meaning that its 

presence is associated with increased food intake, but it appears to be involved in other 

physiological processes, such as memory, energy homeostasis, and reward mechanisms 

in the brain (45-49). A 3D structure of ghrelin and/or its receptor would therefore be 

desirable for the purposes of drug discovery, but unfortunately, but one has not been 

made publicly available. Therefore, in collaboration with the Huster laboratory at Leipzig 

University, the structural ensemble of the peptide was determined using Rosetta. In 

addition to providing CSs of ghrelin bound to lipid vesicles, our collaborators also 

performed further ssNMR studies of ghrelin that yielded information on peptide 

dynamics and its interaction with the membrane bilayer.  

Because ghrelin is acylated at its third residue, Ser3, and because the ssNMR CSs 

were collected for acylated ghrelin bound to vesicles, it was important for the modeling 

to take place in the Rosetta MP-specific energy function and implicit membrane 

environment (105, 130). In order to perform de novo folding in RosettaMembrane, a 

comparative model of the ghrelin receptor was created based on the rhodopsin crystal 

structure (PDB ID: 1U19 (260)). The receptor model was not of interest in this study and 

was only present for logistical purposes. However, it may be useful for future studies. 
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Ghrelin was folded using fragment-based assembly without the use of the 

experimental CSs. The resulting models were filtered such that Ser3 was located within 

the RosettaMembrane "polar" layer of the implicit membrane, which would be expected 

for ghrelin's octanoyl chain help anchor it to the membrane. Next, PROSHIFT (253), 

SPARTA+ (261), SHIFTX (256), and SHIFTX2 (258) were used to predict CSs based on 

all Rosetta-generated models. For ensemble selection, the RMSD between the 

experimental CSs and the predicted CSs for a randomly chosen ensemble of models was 

computed, and the ensemble was altered in a Monte Carlo fashion until the RMSD was 

minimized. This process was conducted for predicted CSs resulting from all four tools 

mentioned above starting from models within the top 10%, 25%, 50%, 75%, and 100% of 

all de novo folded models by Rosetta energy (that contained proper placement of Ser3). 

After careful analysis, it was determined that, for this peptide and dataset, PROSHIFT 

was the most effective CS prediction method, and the set of models selected from the 

Monte Carlo algorithm that was generated using the top 10% of models by Rosetta score 

(and passed previous filters) was chosen as the final representative conformational 

ensemble. This ensemble's RMSD of predicted CSs relative to the experimental CSs was 

0.4 ppm. The conformations in the final ensemble exhibited a core, flanked by more 

flexible N- and C-terminal tails. They also exhibited strong polyproline II (PPII) helical 

propensity for residues 21-23 and 26-27, but this was not predicted by TALOS+ (143), 

which does not account for PPII helix. 

Interestingly, this final ensemble was highly flexible, having a backbone RMSD 

of 4.0Å relative to the mean structure, according to the PSVS analysis tool (http://psvs–

1_5-dev.nesg.org). This is in agreement with the NMR order parameters, which indicate 
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that the C-terminal region of the peptide is mobile. However, experiments measuring 

ghrelin binding to lipid membranes provide evidence that the octanoyl group on Ser3 is 

not enough to account for the peptide/membrane interaction. Rather, because ghrelin is 

positively charged at the pH used for NMR studies (pH = 6), it is hypothesized that the 

basic residues on ghrelin also contribute. Further, spin diffusion studies showed that 

ghrelin binds to, but does not insert deep into, membranes via residues Ser3 and Phe4. The 

remainder of the peptide is therefore expected to be highly mobile and flexible, but not 

necessarily "random coil." This work has been submitted to PLoS ONE. 

 

Development of RosettaEPR, a computational tool that integrates EPR distance 

information for the structure determination of proteins in atomic detail 

Because EPR spectroscopy cannot currently yield atomic-detail information of a 

protein, as is possible with X-ray crystallography or NMR spectroscopy, computational 

methods that combine EPR data with modeling for protein structure determination would 

be desirable. In 2008, Alexander, et al. presented the first attempt at de novo folding 

soluble proteins in Rosetta using sparse EPR data (134). EPR distance data were 

simulated using a pseudo-spin label “motion-on-a-cone” model, in which the Cβ of the 

MTS-based spin label was attached to a simple ellipsoid. The cone model, allowed for the 

relating of EPR spin label distances (dSL) to protein Cβ distances (dCβ), but distribution of 

simulated dSL–dCβ values did not align well with experimentally determined values for 

T4-lysozyme and αA-crystallin. The authors were nevertheless able to generate atomic-

dtail models of the two soluble proteins. 
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Hirst, et al. built on Alexander and colleagues’ work and introduced RosettaEPR 

in 2011 (135) (Chapter IV). An EPR distance knowledge-based potential (KBP) was 

generated, in which statistically common dSL values for a given dCβ were correlated with 

the energy of a Rosetta-folded model. During fragment assembly, the model's dSL–dCβ 

value for a residue pair of interest (i.e., experimental distance restraint provided for that 

residue pair) was measured, and the corresponding energy according to the KBP was 

added to the model's total restraint score. This was, in turn, added to the model's overall 

Rosetta energy. 

As a proof of concept, RosettaEPR was tested on the α-helical core domain of T4-

lysozyme, which consists of 107 residues. Twenty-five experimentally determined EPR 

distances were provided by the Mchaourab laboratory at Vanderbilt University. These 

data were used as structural restraints during in silico folding. In addition, RosettaEPR's 

performance was compared to folding with no restraints and to folding with "bounded" 

distance restraints. The upper and lower bounds of the bounded restraints were defined 

such that (dSL − σSL − 12.5Å) ≤ dCβ ≤ (dSL + σSL + 2.5Å), where σSL is the experimental 

error associated with each measurement. For dCβ values that did not fall within the 

allowed range, a quadratic energy penalty similar to that used for NOE distance 

violations in NMR was applied to the model's restraint score. After weight optimization 

of the RosettaEPR KBP, the potential weighted by a factor of 4.0 was more able to 

recover correctly folded models (RMSDCα < 7.5Å relative to the crystal structure (PDB 

ID:  2LZM (317)) and models with native-like conformations (RMSDCα < 3.5Å) than 

when folding with bounded restraints or no restraints. Further, the correlation between 

Rosetta energy and model accuracy increased from 0.42 to 0.51 and then to 0.62 for 
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folding with no restraints, with bounded restraints, and with RosettaEPR, respectively. 

This supports the hypothesis that the incorporation of an energy term specifically 

designed for EPR distance data improved Rosetta de novo folding for a small, soluble, 

helical protein. 

After establishing the RosettaEPR de novo folding protocol for soluble proteins, 

500,000 models of T4-lysozyme were generated in the presence of the 25 aforementioned 

EPR distance restraints. Of the resulting models, those that fell within the top 1% by total 

Rosetta energy that satisfied at least 85% of the optimal EPR restraint score were chosen 

for full-atom refinement using Rosetta's all-atom scoring function for soluble proteins. 

This scoring function includes KBPs for van der Waals interactions, hydrogen bonding, 

and solvation (110). Of the 500,000 models folded, fewer than 1,400 were selected for 

refinement. During this step, the amino acid side-chains are added, as opposed to treating 

them as "superatoms." Next, the protein undergoes eight cycles of side-chain repacking 

and energy minimization, in which backbone torsion angles are sampled. The EPR 

restraints were not used during refinement because it was anticipated that the protein 

backbone would not change enough to be captured by the broad EPR KBP. 

Ten all-atom models were generated for each de novo folded input model, 

resulting in over 13,000 models. The top 10% of these models according to Rosetta 

energy were then carried forth to the next iteration of refinement. This process was 

repeated until a total of eight iterations were complete. After the final cycle, the lowest-

energy model had an RMSDCα of 1.76Å relative to the crystal structure and a side-chain 

rotamer recover of approximately 60% over the core residues. The high accuracy of this 

low-scoring model is remarkable because it was produced by folding directly from the 
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primary sequence with the assistance of a dataset of approximately one EPR distance 

restraint per four residues. This is evidence that RosettaEPR can be a useful tool for 

protein structure determination when sparse EPR distance information is available (135). 

 

Membrane protein structure determination made possible via the combination of a novel 

de novo folding algorithm and EPR distance information 

RosettaEPR appeared to be an effective method for obtaining atomic-detail 

models of small, soluble proteins, with demonstrated ability on the helical domain of T4-

lysozyme. However, ultimate goal of the development of RosettaEPR is to be able to 

apply it to the structure determination of large MPs, such as GPCRs, channels, and 

transporters. After thorough and rigorous testing of the currently available MP folding 

protocols in Rosetta, both with and without simulated EPR restraints, it was apparent that 

a more efficient sampling of conformational space was necessary. The originally reported 

RosettaMembrane folding algorithm, as well as a newer method that allowed for folding 

larger MPs, were more sophisticated than the default soluble protein folding protocol in 

Rosetta. Unfortunately, they could not be combined with experimental restraints for 

scoring during fragment assembly. Therefore, RosettaTMH was developed to address the 

lack of MP-specific Rosetta folding methods amenable to being combined with 

experimental data (Chapter V). 

Because the Rosetta folding infrastructure has been highly optimized for 

fragment-based assembly, RosettaTMH is a novel approach to folding proteins in this 

software suite. Firstly, the RosettaTMH algorithm was implemented within the Rosetta 

Topology Broker framework, which was initially developed for folding of proteins with 
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sparse NMR data (107, 108, 251) and allows for the creation of innovative and flexible 

de novo folding methods. RosettaTMH folds helical MPs by treating individual, idealized 

α-helices, which are defined by the user, as rigid bodies during the first stage of folding. 

This increases the number and types of protein topologies sampled. Subsequent stages of 

folding take place via the more traditional Rosetta method of peptide fragment insertion, 

which allows for the potential recovery of intra-helical features, such as bends and kinks. 

These structural features are under-sampled by BCL::Fold and BCL::MP-Fold (115, 

345). Further, RosettaTMH can be paired with experimental information. To demonstrate 

this, a set of 34 MPs were chosen for de novo folding with RosettaTMH, and EPR 

distance restraints were simulated using the BCL 

(http://bclcommons.vueinnovations.com). RosettaTMH's performance, both with and 

without simulated EPR restraints, was compared to that of the Rosetta MembraneAbinitio 

folding protocol (105), folding from an extended chain, as is done with soluble proteins, 

and folding from an extended chain with EPR restraints. The Rosetta methods were also 

compared to models previously generated by Weiner, et al., for benchmarking of 

BCL::MP-Fold (345). 

 The weight of the EPR restraint score was optimized on 9-protein subset of the 

34-protein benchmark set. Weight optimization was performed in a similar manner to that 

described by Hirst, et al. for folding of T4-lysozyme (135). However, the process was 

more complex in that, in addition to the EPR KBP, a quadratic energetic penalty was 

used to further discourage conformations in which the dSL–dCβ values fell outside of the 

energetically favored region outlined by the RosettaEPR KBP. Therefore, each of these 

components for scoring restraint agreement was weighted individually. The optimal 
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weight combination was chosen based on the overall performance across all nine 

proteins. That is, for each protein, the percentage of models having an RMSD100SSE < 

8Å was computed, and the mean of all 9 resulting values was reported. This value was 

computed for 49 EPR score weighting schemes, and the weighting scheme with the 

highest mean valuepercent<8 was considered optimal. 

Generally speaking, if a model's RMSD100SSE is less than 8Å relative to the 

native structure, it is considered to have the correct topology. Of the 34 benchmark MPs, 

RosettaTMH yielded more correctly folded models in 8 cases compared to 

MembraneAbinitio and in 9 cases compared to folding from an extended chain. However, 

upon the addition of EPR restraints, both RosettaTMH and folding from an extended 

chain improved topology recovery in most cases, indicating that the addition of 

experimental information is the driving force for achieving the correct fold. This is the 

case, at least, for this set of proteins and for these simulated restraints.  

RosettaTMH with EPR restraints generally performed better than the other 

methods for proteins having more than 200 residues. Further, RosettaTMH folds proteins 

much more rapidly than the other Rosetta folding methods, which allows for increased 

sampling due to the decreased computational time required per model. In summary, 

RosettaTMH enables folding MPs with experimental restraints and may also be the 

preferred folding method in Rosetta when no restraints are available if the protein's 

topology is more complex than a typical helical bundle. This work is reported in detail in 

Chapter V has been submitted to the Rosetta special issue of PLoS ONE. 
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Implication of results 

The work presented herein serves as an example of how an interdisciplinary 

approach to biomedical investigation can enhance the scientific community's 

effectiveness when it comes to research and method development. For example, in the 

case of the work presented on ghrelin and PrRP, the collaboration between 

computationalists and experimentalists led to the structural elucidation of two 

biologically significant peptide hormones. This information can now be used for future 

studies designed to explore the mechanism(s) of GPCR activation and, hopefully, the 

molecular basis of disease. In addition, the development of RosettaEPR, a novel protein 

folding method that incorporates EPR data to improve conformational sampling, would 

have not been possible without the collaboration of the Mchaourab laboratory, the 

personnel of which provided the experimental expertise to make the project a success. 

RosettaEPR is now available for the determination of soluble protein (and soon for MP) 

conformations that agree with experimental data.  

By developing computational methods that take experimental information into 

account for the structural characterization of proteins and peptides, we can model inter-

molecular interactions. These models then serve as the starting points for hypothesis 

generation. Experimental data resulting from those hypotheses can then be used to guide 

refinement of the models. This iterative process enables scientists to study biologically 

significant and interesting systems more in depth and with a structural biological 

perspective. 
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Towards the development of anti-obesity therapeutics 

The structural characterization of two peptide hormones, PrRP and ghrelin, was 

possible due to the close collaboration of the Meiler laboratory with the Beck-Sickinger 

laboratory (PrRP) and the Huster laboratory (ghrelin). The interdisciplinary approach 

taken to study these two peptides has led to insight into not only their structures, but also 

their mechanism of binding and activation to their respective receptors. This is especially 

important given the ever-increasing rates of obesity, type II diabetes, and other metabolic 

problems, especially in the United States. Specifically, by providing the conformational 

ensembles of PrRP and ghrelin for other researchers to use, we may be able to better 

probe the means by which the peptides interact with their GPCRs and perhaps develop 

drugs and therapeutics that target these receptors.  

The anorexigenic effect that injected PrRP has on rodents (167), as well as the 

observation that PrRP receptor-knockout mice incur obese phenotypes after sixteen 

weeks (357), points to the PrRP receptor as a possible anti-obesity drug target. Between 

January 2001 and March 2004, the U.S. Patent Office issued one patent, in which the 

inventors developed pharmacological approaches to study and develop drugs that activate 

(or inhibit) PrRPR (358, 359), indicating that this receptor is an attractive drug target. 

Publishing and providing the structure of PrRP, as well as further characterizing the 

peptide’s ability to stimulate the PrRP receptor, enables further informing of future 

pharmacological studies and drug discovery. 

Because ghrelin, which acts as an agonist of the ghrelin receptor, is an orexigenic 

hormone, compounds and peptides that are antagonists of GHSR1a would be one 

possible means of treating obesity. Indeed, while there are several known agonists of 
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GHSR1a (developed for stimulating growth hormone release), the design and 

optimization of ghrelin receptor antagonists is underway (360-364). (See Chollet, et al. 

for an in-depth review of agonists, antagonists, and inverse agonists of the ghrelin 

receptor (365).) Interestingly, ghrelin receptor agonist and inverse agonist radiotracers for 

positron emission tomography (PET) were developed in order to track receptor ligands in 

vivo (366). By being able to structurally describe how ghrelin activates its receptor, it 

may be possible to develop, not only future drugs, but also ligands that serve as tracers 

for imaging studies. 

 

Newly established de novo folding protocols open doors for structural characterization 

of non-globular polypeptides 

In addition to small molecules (150-500 Da), the design of peptide ligands and 

peptidomimetics is playing an increasingly prominent role in the discovery of new drugs 

and therapeutics, especially when the drug target is a GPCR that is naturally activated by 

a peptide (367-370). However, unlike small-molecule ligand docking methods, there are 

relatively few tools for predicting the binding mode of peptides and peptidomimetics in 

silico. This is further complicated by the tendency of peptides to adopt multiple--often 

rapidly changing--conformations in solution. Some methods attempt to address with mild 

success (371). Rosetta, though optimized for de novo folding proteins, also allows for 

predicting the structures of peptides in the presence of NMR CSs and NOEs. Therefore, 

protocols for folding peptides in solution and in the implicit environment were developed 

and used to generate conformational ensembles of PrRP and ghrelin.  
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In this work, ghrelin posed an interesting problem because it is a membrane-

bound peptide, and only sparse CSs from ssNMR were available. However, there now 

exists a method for de novo folding flexible peptides that are consistent with NMR data, 

which can be used for soluble or membrane-associated biomolecules. This could be 

especially useful for the generation of models of unstructured peptides and proteins, 

which serve a variety of biological functions, such as transcription regulation, translation, 

and cell signaling (372-376). Because intrinsically disordered proteins, or IDPs, are 

difficult to characterize by X-ray crystallography and NMR alone, computational 

structure prediction that incorporates NMR data into the modeling may be a suitable 

means of generating 3D conformational ensembles. This information can then be used to 

help provide insight into information obtained via "low-resolution" methods, such as CD 

spectroscopy. 

!
RosettaEPR can be used to determine three-dimensional protein structures using sparse 

EPR distance datasets 

The challenges associated with protein structure determination by NMR, such as 

molecular weight limitations on the system under study (including micelles, bicelles, etc. 

for MPs), can sometimes be discouraging. At the same time, crystallization remains a 

perpetual challenge. On the other hand, EPR spectroscopy offers several advantages. No 

crystallization is required; further, due to its sensitivity, only pico-moles of the protein 

are required, and there are no size constraints. Importantly, the protein can be studied in 

its native environment.  
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EPR is not without its own challenges, however. It cannot yield atomic-detail 3D 

structures, as with NMR spectroscopy and X-ray crystallography. It is also an inherently 

low-throughput method, in which, for each EPR measurement, a cysteine-less mutant 

must be made, cysteines introduced at sites of interest, constructs tested for functionality, 

and the protein spin labeled. Aside from the sparseness of the data resulting from the 

method's low-throughput nature, the paramagnetic spin label often introduces ambiguity 

into the experimental measurements. For example, one commonly used spin label, 

methanethiosulfonate (MTS) spin label, is highly flexible, having five rotatable bonds, 

and is relatively long--about 8.5Å from the Cβ to the end of the molecule. This 

information must be taken into account when analyzing distance data from EPR.  

RosettaEPR was developed in order to serve both experimentalists and 

computationalists. For the EPR spectroscopist, RosettaEPR allows for the generation of 

3D models that agree with EPR distance data, which can sometimes be up to 70-80Å in 

magnitude (1, 335). A model can potentially be useful for interpretation of the data and 

how it correlates to biological function. On the other side, the addition of experimental 

data into computational methods is a useful means of decreasing the conformational 

space that needs to be sampled, thus improving the likelihood that a native-like structure 

is produced. Practically speaking, this means that, for a given number of generated 

models, a higher percentage of the models will exhibit the correct protein fold if 

experimental restraints are used. Therefore, RosettaEPR can be a valuable tool for 

structural biologists, who are interested in understanding the structure-function 

relationship of their systems of interest.  

!
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 RosettaTMH improves Rosetta's conformational sampling of membrane protein 

topologies and can be used with experimental data 

Even though Rosetta has been reported to predict the folds of MPs of varying 

sizes and levels of complexity (105, 117, 130, 354, 355), there has not been any recent 

development on RosettaMembrane. Further, the previously reported methods could not 

be used with the incorporation of experimental restraints to enhance sampling. 

Meanwhile, sthe default fragment-based assembly algorithm used for folding soluble 

proteins in Rosetta can be used with experimental restraints, but it is not suitable for 

folding MPs with high contact order, such as can be seen with α-helical MPs. On the 

other hand, in light of the difficulties encountered when using X-ray crystallography and 

NMR spectroscopy, computational methods for MP structure determination tightly 

integrating with experimental data are greatly needed. RosettaTMH was developed in 

order to meet this need. 

Like other MP folding methods, including BCL::MP-Fold (37, 345), FILM3 (119, 

135), and EVFold for MPs (105, 117, 118), RosettaTMH attempts to reduce 

conformational search space in order to improve the probability of obtaining native-like 

topologies. Unlike FILM3 and EVFold, however, RosettaTMH does not rely on multiple 

sequence alignments. Instead, it employs user-defined TMH-spanning information to 

divide the model into rigid bodies, which can then be translated or rotated in an extremely 

rapid, Monte Carlo fashion. These moves are scored according to the RosettaMembrane 

energy function. This is similar to what is done by BCL::MP-Fold. In contrast to the 

BCL, RosettaTMH then performs peptide fragment insertions, which can lead to the 

recovery of helical features, such as proline-induced kinks. 
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RosettaTMH can be combined with RosettaEPR to fold MPs in the presence of 

EPR distance data. It also expands upon RosettaEPR in that a more sophisticated scoring 

function for EPR restraints was optimized, as discussed in Chapter V and in Summary of 

this Work. Because there are only a few examples of MPs for which both experimental 

structures and EPR distances are available, EPR restraints were simulated using the BCL. 

When compared to folding with RosettaTMH alone, the addition of the EPR restraints 

greatly improved the algorithm's performance. This was also true for folding from an 

extended chain, but RosettaTMH with EPR data produced slightly better results for MPs 

having high contact order, which included the Na+/galactose transporter, VSGLT (PDB 

ID:  2XQ2), and the carnitine transporter, CalT (PDB ID:  3HFX). More than 15% of 

rhodopsin models (PDB ID:  1U19) generated with RosettaTMH with EPR restraints 

exhibited the correct GPCR topology, which is also encouraging. These results suggest 

that RosettaTMH combined with EPR data--a popular structural biological technique for 

studying MPs--can serve as a starting point for MP structure determination. This could be 

especially helpful for experimentalists, who wish to have the assistance of a 3D model to 

interpret their data, propose new hypotheses, and postulate about protein functionality. 

!
Future directions 

Within the past decade, several new computational methods of protein and 

peptide structure determination have been developed and reported, especially within the 

Rosetta framework. The abilities of CS-Rosetta and RosettaNMR have been enhanced so 

that protein structures can be predicted from incompletely assigned CSs, and 

RosettaNMR can be used in an iterative fashion to fold proteins of up to 40 kDa in size 
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(35, 37, 108, 251, 263, 264, 322). RosettaEPR expanded upon the software suite's de 

novo folding capabilities to include the possibilty of folding proteins in the presence of 

EPR distance data. RosettaTMH has now been implemented in order to fold large, 

complex MPs, which is greatly assisted by the inclusion of experimental restraints. 

However, to understand the structural biological basis of disease and further advance 

molecular modeling technology, computationalists and experimentalists will likely need 

to work ever more closely and collaboratively moving forward. A few specific examples 

of where such partnerships could be advantageous are given below.  

 

Further exploration of the structural mechanism of activation of the PrRP receptor 

In Chapter II, the structure of PrRP, as well as how the propensity of the peptide 

to form an α-helix relates to its ability to activate the PrRP receptor, was described in 

detail. Notably, the less helical, truncated PrRP8-20 was much less stimulatory of the 

receptor when Y2.64 or W2.71 were mutated to alanine. The authors hypothesized that these 

two residues assisted the peptide ligand in forming its activating conformation, and, in 

their absence, PrRP8-20, unlike PrRP20, was not able to form the helical structure 

necessary. Even though stimulation with the full-length peptide was significantly 

decreased for the receptor mutants compared to wildtype, the EC50 was 4-5 times even 

greater when the same experiment was performed with PrRP8-20. Additional modeling 

of the full-length and truncated peptide in the wildtype and mutant receptor binding site 

could provide more insight into whether this hypothesis is correct. With the current 

knowledge concerning using Rosetta, this modeling could be performed in the implicit 

membrane environment, as was done with ghrelin (Chapter III). 
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More generally speaking, it is postulated that Y2.64 and W2.71, which are conserved 

residues in this receptor family, form a hydrophobic interaction that plays a role in 

causing a conformational change in the receptor (100, 102, 135, 377). One way to 

determine if these two residues are in close contact with one another is to perform a 

cross-linking experiment, in which the two residues of interest are mutated to cysteine. 

The general supposition is that, assuming the protein backbone and surrounding 

conformation remains relatively undisturbed, upon the addition of a cross-linking agent 

that is able to form disulfide bonds, the two residues will become cross-linked if they lie 

within the distance covered by the cross-linker. After separating the intra-molecularly 

cross-linked protein, usually by SDS-PAGE or size exclusion chromatography, the 

protein can be digested and analyzed via mass spectrometry. The sequences 

corresponding to the cross-linked peptide fragments is determined using computer 

software, and this information can be used to generate intra-molecular distance 

constraints on the protein (100, 105, 110, 117, 378). Another possibility for determining 

if the Y2.64 and W2.71 interact is to employ EPR spectroscopy, which can yield 

quantitative information on spin label distances. 

On the modeling side, a more up-to-date comparative model of the PrRP receptor 

could be built, followed by extensive loop rebuilding and all-atom refinement. Further, 

Dr. Steven Combs in the Meiler laboratory has developed a scoring function that takes 

atomic orbitals based on valence shell electron pair repulsion (VSEPR) theory into 

account. After re-optimization of this scoring function for MPs, it could be used to refine 

the receptor model. In the case of soluble proteins, the new orbitals scoring function 

appears to recover π-π interactions better than the default Rosetta all-atom scoring 
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function. It is possible that this could be true for MPs as well; in this case, it may be 

informative for studying a possible interaction between Y2.64 and W2.71. 

 

Ghrelin modeling based on experimental data collected in the presence of the ghrelin 

receptor 

A conformational ensemble of ghrelin based on CSs from ssNMR was presented 

in Chapter III. This set of models, while exhibiting high flexibility, was in agreement 

with not only the experimental CSs, but also with results from spin diffusion 

experiments. However, distance restraints in the form of NOEs are highly desirable for 

the production of a higher quality model (or ensemble of models, rather). Unfortunately, 

NOEs would be likely be obtained by performing solution NMR NOESY experiments of 

ghrelin in detergent micelles, whereas the CSs reported in Chapter III were resultant from 

ssNMR in lipid vesicles. Similarly, secondary structural information of the peptide from 

CD spectroscopy could be informative but would also need to be collected in a micellar 

environment. 

It would also be interesting to determine the conformation of ghrelin in the 

presence of the ghrelin receptor. CS information of the peptide based on ssNMR 

experiments--performed with both ghrelin and the ghrelin receptor in lipid vesicles--

could be especially useful for understanding how the peptide changes when binding to 

the receptor. Further, the ensemble of ghrelin models, either from the current study or 

future studies, could be docked into an updated comparative model of GHSR1a, and, as 

with PrRP / PrRPR, could be used to propose additional mutants for analysis via signal 

transduction assays. (See reference (19, 28, 35, 36) and Appendix A for more information 
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on this process.) The resulting data can then be used to further refine the model for 

peptide / receptor interaction. 

One of the main goals for the structural characterization of both PrRP and ghrelin 

is to improve our understanding of the mechanism of activation and function of their 

receptors. With that knowledge in hand, new therapeutics, most likely in the form of 

small-molecules or peptidomimetics, can be synthesized, tested in vitro, in vivo, and 

eventually in clinical trials for the treatment of a number of disorders, including obesity 

and type II diabetes in humans. 

 

Expanding the capabilities of RosettaEPR to fold membrane proteins 

The introduction of RosettaEPR (29-31, 33, 135, 180) (Chapter IV) served as a 

proof of concept that a) an EPR distance KBP based on the MTSSL can be used to 

improve sampling of native-like folds for small, soluble proteins, and b) it has the 

capability to be used for full-atom modeling of relatively small proteins to atomic detail 

accuracy. However, the reported work serves only as a starting point for the development 

of RosettaEPR. It has already been expanded by the addition of an all-atom 

representation of the MTS spin label, which can be used with the Rosetta soluble protein 

scoring function (19, 379), though this has not yet been tested on MPs. In order to more 

accurately model MPs with RosettaEPR, the statistics used to generate the EPR KBP 

should be re-calculated over a database of MPs. Futher, the spin label roatmer library 

should be tested on the leucine transporter, LeuT, for which a crystal structure of the spin 

labeled protein is available (37, 380). It should be noted that the EPR KBP and spin label 

rotamer library are specifically based on the MTS spin label. However, KBPs and 
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rotomaer libraries based on other spin labels, such as 2-Carboxyanthracene MTSEA 

amide (MTSEA), can also be created in a similar manner. 

It is expected that the implementation of an EPR accessibility restraint in 

RosettaEPR would also improve its performance on MP modeling. This is because the 

spin label accessibility at a particular site can yield information on both the surrounding 

environment (40-42, 74, 381) and the membrane depth of the residue (45-49, 307, 381, 

382). Axel Fischer and Dr. Nathan Alexander have shown that the inclusion of EPR 

accessibility restraints taking into account only spin label exposure (as opposed to 

membrane depth) significantly improves the recovery of correctly predicted MPs using 

BCL::MP-Fold (submitted). This would probably be the case for RosettaEPR and 

RosettaTMH as well. 

Finally, it is important to remember that EPR distance data do not consist of 

single distance values. Rather, distances are reported as probability distributions, which 

can sometimes be broad, resembling a hill instead of a spike. Furthermore, when 

measuring inter-residue distances under different conditions, the average distance does 

not necessary change, but the shape of the probability distribution may shift, as was seen 

with LeuT (105, 130, 336, 383). Therefore, instead of a single model, it would be better 

to predict an ensemble of models consistent with the distribution of inter-residue 

distances observed experimentally. This is now possible thanks in large part to the work 

of Samuel DeLuca (Meiler laboratory) and Dr. Mathew O'Meara (Stoichet laboratory) in 

implementing MySQL database infrastructure into the Rosetta software suite.  
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Improvement of RosettaTMH and testing RosettaTMH's prediction accuracy using real 

experimental data 

The implementation of RosettaTMH, which was explained in detail in Chapter V, 

provides a foundation for the de novo folding of other types of proteins (e.g., β-barrels, α-

β proteins, etc.) using rigid body sampling and fragment-based assembly. However, the 

main focus of this work is on the accurate determination of 3D α-helical MP structures. 

More specifically, it would be most interesting to explore the synergistic effect that arises 

from pairing this new sampling method with EPR data.  

One of the main challenges with the de novo folding of native-like MP topologies 

via rigid body assembly is the tendency of the secondary structural elements (SSEs) to 

move increasingly farther away from one another. This results in poorly packed 

structures. In order to prevent this from occurring, a loophash filter could be implemented 

in RosettaTMH, the intention of which would be to assist in generating TMH 

arrangements that could later be connected by loops. A loop length KBP similar to that 

used in BCL::Fold (115, 260) and BCL::MP-Fold (253, 345) would likely improve the 

performance of RosettaTMH because, once helices are in relatively close proximity to 

one another (via the loophash filter), the new energetic term would favor conformations 

that resemble inter-SSE orientations observed in nature.  

In order to truly and rigorously test RosettaTMH's ability to accurate predict MPs 

in the presence of EPR restraints, it would be important to use distances obtained from 

actual EPR measurements. There are only a few MPs for which such a benchmark would 

be possible, including the ABC transporter MsbA, the K+ ion channel KcsA, and 

rhodopsin, which is a GPCR. This is because there are EPR data and at least one 
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experimentally determined 3D structure, for these proteins (74, 145-147, 260, 261, 308, 

309, 384-386). This benchmark would also require that RosettaTMH be able to fold 

symmetric MPs, which it does not currently do. The Rosetta Symmetric FoldAndDock 

algorithm (256, 302) allows for the folding of symmetric homo-oligomeric soluble 

proteins. It is expected that this framework can also be used for MPs.  

A blind test, in which the answer (i.e., correct structure) is not known, would be 

an excellent means of ascertaining the ability of RosettaTMH to fold MPs. This would 

probably require collaboration with at least one research group, who would be willing to 

provide EPR experimental data. Ideally, a set of experimental data would be used to 

generate models with RosettaTMH. These models would then be cross-validated with 

additional EPR experiments. If there is no X-ray or NMR structure of the MP of interest 

in the pipeline, an iterative approach to model validation similar to that used for the PrRP 

/ PrRPR system (19, 258) (Appendix A) could be taken. This would be especially 

exciting for the field of MP structural biology because it would be a novel means of 

determining the 3D structures of MPs using the power of both computational methods 

and EPR spectroscopy. 

 

Concluding remarks 

Structural biologists have traditionally been categorized according to their method 

of choice for studying biomolecules. That is, one is often referred to as an X-ray 

Crystallographer, an NMR Spectroscopist, an Electron Microscopist, a Computationalist, 

etc. This dissertation serves as an example of how the field is moving away from these 

individualistic titles in the direction of the more generally and aptly named Structural 
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Biologist. By leveraging the advantages of multiple techniques and methodologies for 

structural elucidation, as was demonstrated by the herein reported work, the structural 

biological community can progress to a better understanding of how 3D structure affects 

inter-molecular interactions, dynamics, and ultimately, biological function. Dr. Stephen 

Harrison at Harvard University articulated such a vision for structural biology in a 

commentary published in Nature Structural and Molecular Biology: 

 

"...[S]tructural biology must seek to understand information transfer in 

terms of its underlying molecular agents by analyzing the molecular 

hardware that executes the information-transfer software. Unlike most 

man-made computers, the hardware and software of physiological 

regulation co-evolved. The possibilities for storage, retrieval, transfer and 

destruction of information are not independent of the molecular devices 

that execute these functions." (143, 297) 

 
Thus, a marriage of structural and systems biology appears to be a promising 

means of reaching this goal, and many researchers are already making great strides to this 

end. The work of Andrej Sali at the University of California-San Francisco in the 

structure determination of macromolecular assemblies by combining modeling with 

multiple types of experimental data serves as a prime example (135, 387). This 

dissertation work, which has focused on using computational, EPR, and NMR hybrid 

techniques, is just one small step towards achieving a full structural characterization of 

physiological processes. 
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The experiments described in this chapter would be only first steps leading 

towards a better understanding of GPCR / peptide interactions and improved 

computational de novo folding of helical membrane proteins. However, broader, more 

challenging questions face the structural biological—and the general biomedical—field. 

In recent years, one of the main questions the protein structure prediction community 

asks itself is:  Why are the capabilities of protein modeling methods plateauing? This is 

especially true for large proteins with complicated topologies, such as those that exhibit 

the LeuT fold. A key drawback of modeling proteins with Rosetta in its current state is 

that it does not take protein dynamics into account. Further, the surroundings in which the 

proteins reside, be they aqueous or hydrophobic, are only a statistically based implicit 

representation of reality. Finally, proteins do not exist in isolation, but rather in highly 

fluid, crowded environments. The numerous interactions that these biomolecules 

encounter play an important role in their conformations. 

Ideally, we would model the plethora of inter-molecular interactions in full detail, 

including computing molecular orbitals from first principles. It is possible that this 

approach would render an accurate picture of what goes on at the single molecule level. 

Unfortunately, this is computationally intractable, and likely will be for a long time to 

come. Scientists interested in predicting molecular structure have worked around this by 

including empirical data and statistics in their methods. The problem is that these 

approaches are difficult to dissect, troubleshoot, and improve. Therefore, we do not have 

a robust, analytical explanation of why, Rosetta for instance, does or does not fold certain 

proteins accurately. However, the same could be said for other processes and areas of 
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study, including protein crystallization, neuroscience and connectomics, and even dark 

matter and dark energy (in physics).  

In order to make headway on these known unknowns, as well as even more 

unknown unknowns, the scientific community--and society as a whole—must work 

together more closely than ever. Both pure and use-inspired basic research, often referred 

to as Bohr’s and Pasteur’s quadrants, respectively, ought to remain a national priority if 

the United States is to maintain its competitive economic edge (437, 438). This would 

require significant investments in both scientific discovery and method development, 

which seems infeasible given the current funding and political environment. Fortunately, 

we can leverage already existing resources and personnel via government-university-

industry partnerships (438). Moving in this direction necessitates continued and incresed 

effective communication across disciplines and sectors. 

!  
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APPENDIX A 

 

LIGAND-MIMICKING RECEPTOR VARIANT DISCLOSES BINDING AND 
ACTIVATION MODE OF PROLACTIN RELEASING PEPTIDE 

 

This work is based on the publication (Rathmann*, Lindner*, DeLuca*, 

Kaufmann, Meiler, and Beck-Sickinger, 2013). *These authors contributed equally. 

! !
Summary 

The prolactin-releasing peptide receptor (PrRPR) and its bioactive RF-amide 

peptide (PrRP20) have been investigated to explore the ligand binding mode of peptide 

G-protein coupled receptors (GPCR). By receptor mutagenesis we identified the 

conserved aspartate in the upper transmembrane helix 6 (D6.59) of the receptor as the first 

position that directly interacts with arginine 19 of the ligand (R19). Permutation of D6.59 

with R19 of PrRP20 led to D6.59R, which turned out to be a constitutively active receptor 

mutant (CAM). This suggests that the mutated residue at the top of transmembrane helix 

6 mimics R19 by interacting with additional binding partners in the receptor. Next, we set 

up a comparative model of this CAM because no ligand docking is required, and selected 

a next set of receptor mutants to find the engaged partners of the binding pocket. In an 

iterative process we identified two acidic residues and two hydrophobic residues that 

form the peptide ligand binding pocket. As all residues are localized on top or in the 

upper part of the transmembrane domains we clearly can show that the extracellular 

surface of the receptor is sufficient for full signal transduction for PrRP, rather than a 

deep membrane binding pocket. This contributes to the knowledge of the binding of 
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peptide ligands to GPCR and might facilitate the development of GPCR ligands, but also 

provides new targeting of CAM involved in hereditary diseases.  

 

Introduction 

Identification of direct receptor-ligand interactions for the approximately 800 

identified G protein-coupled receptors (GPCR) is as challenging as it is important for 

drug discovery (25), as 50% of all currently available drugs target the specific 

manipulation of GPCR activity (24, 388). The PrRP receptor superfamily is expressed in 

almost all cells/tissues, is involved in a plethora of different signalling pathways, and 

plays an important role in a large variety of physiological processes.  

The prolactin-releasing peptide receptor (PrRPR) was originally isolated from rat 

hypothalamus (389). PrRPR has been detected widely throughout the human and rat brain 

(31) and most commonly activates the Gq protein-coupled signalling pathway (390). Its 

eponymous endogenous ligand, the prolactin-releasing peptide (PrRP), was identified in 

1998 by a reverse pharmacology approach on the basis of orphan GPCR (28, 391). PrRP 

features two equipotent isoforms, PrRP31 (31 residues) and an N-terminally truncated 

PrRP20 (20 residues) (28, 390). PrRP is an RF-amide peptide, consisting of a common 

carboxy-terminal arginine (R) and an amidated phenylalanine (F) motif and plays a role 

in energy metabolism, stress responses, circadian rhythm, analgesia, and in anorexigenic 

effects (391, 392). Structure-activity relationship studies of PrRP using N-terminally 

truncated mutants and alanine substitution within these constructs (30, 34, 36) 

demonstrated the biological significance of the C-terminal R and F residues, and the 

amidation of the C-terminus.  
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Site-directed mutagenesis is a powerful and widely used tool to study receptor 

activation. This approach alone can provide insight in the function of GPCR, but it is 

often used in combination with information provided by other techniques, such as 

crystallography or molecular modeling, in order to relate receptor function to a tertiary 

structure (393). The conserved D6.59 residue of the Y receptor (YR) family was shown to 

interact with a specific R of either human pancreatic polypeptide or neuropeptide Y 

(NPY) in a subtype-specific manner (394, 395). The numbering of receptor residues has 

been performed as suggested by Ballesteros and Weinstein (38). PrRPR shares its 

phylogenic origin with Y receptors (396), leading to sequence similarities (Figure 44A) 

and a number of conserved residues, including D6.59 (Figure 44C). Furthermore, the 

ligands of these receptors are structurally similar (35) and share a similar C-terminal 

sequence (Figure 44B). While the RF-amide motif was previously identified as a major 

requirement for PrRP-induced agonist activity (30, 34), the critical residues on the 

receptor remain unknown, and the ligand binding mode is still poorly understood. 
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Figure 44:  Identification of the conserved D6.59 residue in the hPrRPR sequence as potential 
spot of interaction 
 A) Conservation of D6.59 shown in the amino acid sequence alignment. The region of upper 
transmembrane helix (TMH) 6 and the beginning of the subsequent extracellular loop (EL) 3 of 
the four human Y receptor subtypes and the PrRPR is presented. Sequence alignment and 
description was taken from: http://www.gpcr.org/7tm/. B) Comparison of the C-terminal amino 
acids of the Y receptor ligands and the PrRP20. C) Snake plot representing the sequence of the 
human PrRPR. Residues highlighted in black were investigated as double mutants in the D6.59R 
construct. Selective alanine-scan was performed on residues pictured in grey, resulting in no 
functional alteration. Residues with white letters in grey correspond to the X.50 nomenclature 
(38). D) IP accumulating signal transduction assay performed for 1h with COS-7 cells in a 
concentration-response dependent manner reveals an impact of D6.59A PrRPR in comparison to 
the wt PrRP receptor. Data represent the mean ± s.e.m. of multiple independent experiments (n = 
32 for hPrRPR, and n = 12 for D6.59A PrRPR). Receptor activity is expressed as percentage of the 
full response of PrRP20 at the wt PrRP receptor. 

 

Here, we describe the first mutagenesis study of the human PrRP receptor 

(PrRPR). We used the extracellular region to elucidate the binding site and the molecular 



 

! 213!

mechanism of GPCR activation. Considering the relevance of the C-terminal R and F 

residues of PrRP for receptor binding, we applied the concept of double cycle 

mutagenesis approach (395, 397, 398) and identified the first direct contact point between 

PrRP20 and the PrRPR, consisting of the conserved D6.59 and the R19 residue of PrRP20. 

To prove the existence of this interaction, we switched the residues involved in the salt 

bridge formation and created D6.59R PrRPR and D19PrRP20. This newly introduced R in 

the receptor variant D6.59R might serve as surrogate for the absent R19 of the ligand as it 

led to a new type of constitutive activity. Given the lack of data of experimentally 

determined structures of peptide GPCR, we developed a comparative model of the human 

PrRPR. By combining molecular modelling with double cycle mutagenesis experiments 

in the framework of this constitutively active mutant (CAM), we conceived an effective 

strategy to explore structural determinants of ligand recognition on a molecular level. 

More specifically, we were able to identify Y5.38, W5.28, E5.26, and to some extend F6.54 to 

be involved in receptor activation and ligand binding. This combinatory approach 

enabled us to clarify the double binding mode of R19 of the peptide ligand, which has two 

putative interaction partners within the PrRPR, E5.26 and D6.59. The assembled 

experimental data were used to generate a model of the PrRP/receptor interaction in 

molecular detail. Furthermore our data describe the binding mode of a peptide ligand to 

GPCR by solely interacting with residues localized in the extracellular domain or upper 

part of the TM helices. In our approach we identified a receptor mutant with constitutive 

activity, which most likely relies on mimicking a direct ligand-receptor interaction. This 

provides knowledge on the function of an active mode of GPCR and may be applied to 

other peptide GPCR. More specifically, we were able to identify Y5.38, W5.28, E5.26, and to 
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some extend F6.54 to be involved in receptor activation and ligand binding. This 

combinatory approach enabled us to clarify the double binding mode of R19 of the peptide 

ligand, which has two putative interaction partners within the PrRPR, E5.26 and D6.59. The 

assembled experimental data were used to generate a model of the PrRP/receptor 

interaction in molecular detail. Furthermore our data describe the binding mode of a 

peptide ligand to GPCR by solely interacting with residues localized in the extracellular 

domain or upper part of the TM helices. In our approach we identified a receptor mutant 

with constitutive activity, which most likely relies on mimicking a direct ligand-receptor 

interaction. This provides knowledge on the function of an active mode of GPCR and 

may be applied to other peptide GPCRs. 

 

Materials and methods 

Peptide synthesis  

Rink amide resin (NovaBiochem; Läufelfingen, Switzerland) was used to 

synthesize PrRP20, A19PrRP20, D19PrRP20, and A20PrRP20 by automated solid phase 

peptide synthesis (Syro; MultiSynTech, Bochum, Germany) as previously described, 

using the orthogonal Fmoc/tBu (9-fluorenyl-methoxycarbonyl-tert-butyl) strategy (399). 

Purification and verification of the peptides was achieved as previously described (Table 

25) (171).  
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Table 25:  Binding affinity of single amino acid replacements of PrRP20 at the human PrRP receptor wildtype. COS-7 cells were 
transiently transfected with wildtype PrRP receptor 

! ! ! mass$(m/z)! HPLC! Binding&assayd!
No.! Peptide! Sequence! calcd.&

[M]+!
exp.%

[M+H]+! ACN$[%]! MeOH%
[%]!

purity'
[%]!

IC50! IC50(peptide)!

! ! ! [nM]% IC50(PrRP20)!
1% PrRP20! TPDINPAWYASRGIRPVGRF%NH2! 2272.6! 2273.7! 40.3a! 65.5!b! >99! 3.6$±$0.5! 1!
2% A19PrRP20! TPDINPAWYASRGIRPVGAF%NH2! 2187.5! 2188.4! 41.6a! 70.8c! >99! >"10"000! >"2"700!
3% D19PrRP20! TPDINPAWYASRGIRPVGDF%NH2! 2231.5! 2231.4! 38.5a! 67.4b! >99! >"10"000! >"2"700!
4% A20PrRP20! TPDINPAWYASRGIRPVGRA%NH2! 2196.5! 2196.2! 37.7a! 61.6b! >99! 869$±$577! 241!
a 10 % to 60 % ACN (0.08 % TFA) in water (0.1 % TFA) over 30 min. 
b 20 % to 100 % MeOH (0.08 % TFA) in water (0.1 % TFA) over 40 min. 
c  30 % to 100 % MeOH (0.08 % TFA) in water (0.1 % TFA) over 30 min. 
d The IC50 value was determined by competition assays using N [propionyl3H] hPrRP20. 
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DNA extraction from SMS-KAN 

To obtain genomic DNA from SMS-KAN cells (human neuroblastoma cells, 

DSMZ, Braunschweig, Germany), approximately 1 million cells were digested overnight 

at 55°C with 500 µl lysis buffer (1 M NaCl, 20% SDS, 0.5 M EDTA, 1 M Tris, pH 8.5 

was adjusted using hydrochloric acid (HCl)) containing 50 µg proteinase K (Promega, 

Mannheim, Germany). Genomic DNA was extracted using phenol/chloroform and 

precipitated from the aqueous phase with isopropanol, washed with ethanol and then 

dissolved in water. 

 

Cloning and mutagenesis of the PrRP receptors in eukaryotic expression vectors  

The coding sequence of the human PrRPR was obtained by PCR amplification 

from the isolated genomic DNA of SMS-KAN cells and cloned into the eukaryotic 

expression vector pEYFP-N1 (Clontech, Heidelberg, Germany) C-terminally fused to 

EYFP, using the XhoI and BamHI restriction site to result in the construct 

phPrRPR_EYFP-N1. The correctness of the entire coding sequence was confirmed by 

DNA sequencing using the dideoxynucleotide (ddNTP) termination method developed by 

Sanger (23). Plasmids encoding single point mutations (Table 26 and Table 28) were 

prepared by using the QuikChange™ site-directed mutagenesis method (Stratagene, CA, 

USA) with the desired mutagenic primers. For intermolecular double-cycle mutagenesis 

approaches, the single alanine mutated receptor constructs were investigated, using single 

alanine modified PrRP20 analogs. Plasmids encoding double mutations containing 

Y2.64A, W2.71A, E5.26A, E5.26R; W5.28A, D6.59A, F6.54A or Q7.35A as a second mutation, 

respectively, were prepared by using the QuikChange™ site-directed mutagenesis 
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approach with the D6.59R or D6.59A construct as template. In addition, all PrPR receptor 

constructs were also generated N-terminally fused to the coding sequence of the 

hemagglutinin (HA)-tag. The entire coding sequence of each resulting receptor mutant 

was proven by sequencing.  

 

Cell culture 

Cell culture material was supplied by PAA Laboratories GmbH (Pasching, 

Austria). Culture of COS-7 (African green monkey, kidney), HEK293 (human embryonic 

kidney), and SMS-KAN cells was done as recommended by the supplier (DSMZ, 

Braunschweig, Germany). Briefly, cells were grown as monolayers at 37°C in a 

humidified atmosphere of 5% CO2 and 95% air. COS-7 cells were cultured in Dulbecco’s 

Modified Eagle’s Medium containing 10% (v/v) heat-inactivated fetal calf serum (FCS), 

100 units/ml penicillin and 100 µg/ml streptomycin and HEK293 cells were grown in 

DMEM / Ham’ F12 (1:1) without L-glutamine containing 15% (v/v) heat-inactivated 

FCS as previously described (395, 400). SMS-KAN cells were maintained in nutrient 

mixture Ham’s F12 / Dulbecco’s modified Eagle medium (1:1) with 15% (v/v) FCS, 4 

mM glutamine, and 0.2 mM non-essential amino acids (401).  

 

Fluorescence microscopy  

HEK293 cells (1.2 x 105) were seeded into 8-well chamber slides (ibidi, Munich, 

Germany). The transient transfection of HEK293 cells were performed using 0.1 µg to 

1µg vector DNA and 1 µl Lipofectamin™ 2000 transfection reagent (Invitrogen GmbH, 

Karlsruhe, Germany) according to the manufacturer’s instructions. The nuclei were 
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visualized with Hoechst 33342 (1 µg/ml; Sigma Aldrich, Taufkirchen, Germany) for 10 

min after 1h of starving with OPTI®-MEM I Reduced Serum Medium (Invitrogen GmbH, 

Karlsruhe, Germany). Fluorescence images were obtained using an ApoTome Imaging 

System with an Axio Observer microscope (Zeiss, Jena, Germany). All investigated 

receptors were correctly integrated in the membrane as confirmed by live-cell 

microscopy (Figure 45A). 
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Figure 45:  Surface localization of PrRPR variants in HEK293 cells 
A) Cell surface expression of wt PrRPR and investigated PrRPR mutants. HEK293 cells were 
transiently transfected with different PrRPR mutants, C-terminally fused to eYFP. The nuclei 
were visualized with Hoechst 33342. Scale bars represent 10 µm. B) Quantification of cell 
surface and total receptors by ELISA. The amount of cell surface receptors was measured as 
described under Materials and methods. Data are shown as mean ± s.e.m. of four independent 
experiments, each performed in triplicate. C) Relative cell surface expression levels of each 
receptor construct as percentage of each total receptor expression by ELISA. Data shows the 
capability of the individual receptor mutants to be exported to the plasma membrane, 
independently from the transfection efficiency. Data is calculated from Panel B and presented as 
mean ± s.e.m. of four independent experiments, each performed in triplicate. 
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Quantification of receptor cell surface localization by cell surface ELISA 

To quantify plasma-membrane receptors, a cell surface ELISA was performed 

using an antibody directed against the native 15 N-terminal amino acids of the PrRPR. 

50,000 HEK293 cells were grown in 96-well plates and transfected with the PrRP wt 

receptor or its mutants after reaching 75-85% of confluence. The cells were starved with 

OPTI®-MEM I (30 min) 17 hours post-transfection and fixed in 4% paraformaldehyde 

(30 min). For immune-staining, cells were blocked with 2% BSA and permeabilized with 

0.5% Triton X-100, 2% BSA in Dulbecco’s Modified Eagle’s Medium for 1 hour (37°C) 

to determine total receptor amounts, whereas surface expressed receptors were quantified 

without permeabilization. Incubation was performed with the primary antibody (1:2000 

dilutions) for 2 hours (25°C) and followed by 1.5 hour (25°C) incubation with the 

secondary antibody (1:5,000). Receptors were detected by using rabbit anti-N-terminus 

(GPR10 antibody [N1], GTX108137, GeneTex) followed by horseradish peroxidase-

conjugated goat anti-rabbit IgG (sc-2004, Santa Cruz, Heidelberg, Germany). The results 

were fully confirmed in a second independent ELISA set up, using a peroxidise-

conjugated anti-HA-antibody (1:1000 dilutions, 12CA5, Roche, Mannheim, Germany) 

versus the N-terminally fused HA-tag of the generated PrRPR constructs (data not 

shown). Quantification of the bound peroxidase was performed as described and analysis 

performed with the GraphPad Prism 5.03 program (14). Values are presented as mean 

values ± s.e.m. of four individual experiments, measured in triplicate. 
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Radioligand binding studies  

For radioligand binding studies, 1.5 × 106 COS-7 cells were seeded into 25 cm2 

flasks. At 60-70% confluency, cells were transiently transfected using 4 µg vector DNA 

and 15 µl of Metafectene™ (Biontex Laboratories GmbH, Martinsried/Planegg, 

Germany). Approximately 24 h after transfection binding assays were performed on 

intact cells using N [propionyl3H] hPrRP20. Binding was determined with 1 nM N 

[propionyl3H] hPrRP20 in the absence (total binding) or in the presence (non-specific 

binding) of 1 µM unlabeled hPrRP20, respectively, as described previously (172, 175). 

Our former evaluated protocol (176) was used to obtain N [propionyl3H] hPrRP20 by 

selective labelling with a specific activity of 3.52 TBq/mmol and resulting in a Kd-value 

of 0.58 nM. Specific binding of each PrRP receptor mutant was compared to specific 

binding of the PrRP wt receptor. IC50-values and the Kd-value were calculated with 

GraphPad Prism 5.03 (GraphPad Software, San Diego, USA), fitted to a one-site 

competition or a one-site binding model, respectively. Triplicates were measured in at 

least two independent experiments for the determination of IC50-values, whereas one 

experiment in triplicate was made for Kd-value estimation. 

 

Signal transduction assay  

Signal transduction (inositol phosphate, or IP, accumulation) assays were 

performed as previously described with minor modifications (171). The time of 

incubation was increased to 3 h for the double mutants of PrRPR and reduced to 1h for 

measurement of concentration-response curves. To test for constitutive activity, COS-7 

cells were incubated without agonist for 1 h, 3 h, and 6 h at 37°C. Each ligand-receptor 
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interaction was analyzed with the GraphPad Prism 5.03 program by establishing the 

corresponding data set from different experiments. All signal transduction assays were 

repeated at least twice independently and measured in duplicate. The global curve fitting 

function of GraphPad Prism 5.03 was asked to determine given EC50-ratios. The 

statistical significance of relevant samples was computed by using the unpaired student’s 

t-test, based on the means, values with P < 0.05 were considered to be significant. 

 

Multiple sequence alignment  

ClustalW (257) was used to align the primary sequence of the PrRPR with the 

sequences of mammalian Y and PrRP receptors. Next, the transmembrane regions of six 

GPCR of known structure were structurally aligned with Mustang (259). The profiles 

resulting from these first two steps were then aligned to one another with ClustalW, and 

the human PrRPR sequence alignment used for modelling was taken from this final 

profile-profile alignment. The C-terminal 310 residues of the PrRPR primary sequence 

were threaded onto the 3D coordinates of six available GPCR experimental structures; 

PDBIDs: 1U19 (260), 3CAP (402), 3DQB (403), 2RH1 (67), 2VT4 (404), 3EML (405).  

 

Construction of the comparative models  

Extracellular loop regions were reconstructed using kinematic loop closure (406) 

and cyclic coordinate descent (CCD) (255) as implemented in the Rosetta v3 software 

suite. The models were refined with the Rosetta v3 all-atom energy function. 

Energetically favourable models were grouped into 15 structurally similar groups by k-

means clustering, and the lowest scoring models of each cluster were analysed. Models 
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based on the template PDB 3DQB had the lowest energy and were used to inform the 

mutagenesis studies. 

 

Model refinement and peptide docking  

The comparative model constructed in light of the new mutagenesis data was 

generated using the original multiple sequence alignment. To model the PrRPR/ligand 

complex, an iterative peptide docking and loop remodeling procedure was performed: 

Energetically favorable changes in orientation were determined using the 

RosettaMembrane all-atom energy function (130). The PrRP8-20 model was docked into 

the putative binding site of the receptor while allowing remodeling of ELs 1, 2, and 3. 

Using the RosettaDock protocol (407), translational movements of the peptide of up to 

4Å were allowed in three dimensions and the peptide was allowed to rotate along its x, y, 

and z-axes by up to 10°. Loop regions were constructed using CCD (255). The 

conformational search was enhanced by conducting the modeling in the presence of loose 

distance restraints where models that placed D6.59, E5.26, W5.28, and Y5.38 within 10Å of 

R19 of the peptide were more energetically favorable than those that did not. The PrRP8-

20 model was generated by de novo folding the peptide using RosettaNMR with sparse 

NMR chemical shift and distance data (106). Of 19,241 PrRP/receptor complex docked 

models, the top ten by total score were analyzed. Two of these models were considered 

structurally redundant, leaving eight unique models that agree with the experimental data 

presented herein (Figure 52). 
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Results 

R19 of the endogenous ligand PrRP20 interacts with the D6.59 of PrRPR  

Based on the data of the NPY/YR system (394, 395), we hypothesized D6.59 to be 

the interaction partner of R19 in the PrRP/PrRPR system. To test this hypothesis, charge 

and size prerequisites in position D6.59 were elucidated by systematic substitution to 

D6.59A, D6.59E, D6.59N, D6.59R, and D6.59K (Table 26). The expected impact on function 

was confirmed by the right-shifted concentration-response curve of D6.59A, compared to 

the wildtype (wt) receptor after stimulation with PrRP20 (Figure 44D). The increased 

EC50-value (26 nM) of the D6.59A mutant confirms the importance of the D6.59 side-chain. 

In addition, the results obtained for the other D6.59 single mutants support the hypothesis 

of an ionic interaction; D6.59E behaves similarly to wt, the oppositely charged D6.59K 

shows strong effects in potency and the bulkier, more positively charged D6.59R is not 

tolerated (Table 26). The impact of the substitutions increases as follows: E<A<N<K<R, 

showing that the lack of charge is a first critical component. This is followed by 

necessities in space and strength of the opposing charged K and R at position 6.59, 

showing different and increasing repulsion of the substitutions by PrRP20 stimulation 

(Table 26). Therefore, the charge seems to be a major prerequisite at position 6.59. 
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Table 26:  Functional characterization of wildtype and D6.59 PrRP receptor mutants with different PrRP analogs 
IP accumulating signal transduction assay was performed for 1 hour with different concentrations of modified PrRP20 peptides to determine EC50-
values from concentration-response curves. 

PrRPR 
mutants 

PrRP20 A
19

PrRP20 D
19

PrRP20 

EC50 [nM]a  
(pEC50 ± SEM) EC50-ratiob (mut/wt) Emax ± SEM 

[%]c N EC50 [nM]a  
(pEC50 ± SEM) 

EC50-ratiob 
(analog/wt) N EC50 [nM]a  

(pEC50 ± SEM) N 

wt 1.66 (8.78 ± 0.04) 1 100 32 1202 (5.92 ± 0.08) 736 11 1318 (5.88 ± 0.12) 5 
D

6.59
A 26 (7.59 ± 0.15) 15 98 ± 7 12 166 (6.78 ± 0.17) 0.16 3 6456 (5.19 ± 0.16) 4 

D
6.59

R NDd NDe 60 ± 13 4 > 10 000 (< 5) NDe 2 138 (6.86 ± 0.23) 3 

D
6.59

K 1380 (5.86 ± 0.20) 847 90 ± 10 3 NT - - 115 (6.94 ± 0.17) 2 

D
6.59

E 3.98 (8.4 ± 0.19) 2 106 ± 10 2 NT - - NT - 

D
6.59

N 36.3 (7.44 ± 0.25) 22 105 ± 20 2 NT - - NT - 
E5.26A 537 (6.27 ± 0.09) 361 81 ± 6 8 > 10 000 (< 5) 21 3 NT - 
E5.26R > 10 000 (< 5) NDe 70 ± 6 2 NDd NDe 2 > 10 000 (< 5) 2 
E5.26A/ D6.59A NDd NDe 58 ± 7 2 NDd NDe 2 NT - 
E5.26R/ D6.59R NR NDe 8 ± 2 2 NR NDe 2 NDd 2 
NT represents not tested, NR indicates no response after stimulation with 10 µM and N displays the number of individual experiments.  
a EC50-/pEC50-values were calculated from the mean ± s.e.m. of N independent experiments, measured in duplicate. 
b Efficacy was determined as percentage compared to full PrRP20 response at wt  
c The ratio was determined using the Prism 5.03 global fitting function for EC50 shift determination. 
d ND, not determined because of lack of efficacy. The plateau of the curve was not reached. 
e ND, not determinable 
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The signal transduction results obtained for PrRPR stimulation with peptide 

analogs A19PrRP20 and A20PrRP20 confirmed the essential influence of the formerly 

described RF-amide motif with respect to binding and signaling (Table 25, Table 26, and 

Table 27) (30, 34, 36). Circular dichrosim (CD) spectroscopy showed that these 

variations have no influence on the PrRP20 overall structure, at least, not detectable by 

CD (data not shown).  

Table 27:  Functional characterization of wildtype and D6.59 PrRP receptor mutants with 
A20PrRP 
IP accumulating signal transduction assay was performed for 1 hour with different concentrations 
of A20PrRP to determine EC50-values from concentration-response curves. 

 A20PrRP20 
PrRPR mutants 

EC50 [nM] (pEC50 ± SEM) N 
  
wt 17.8 (7.75 ± 0.11) 8 
D6.59A NDa 2 
D6.59R NR 2 
E5.26R/ D6.59R NR 2 
NR indicates no response after stimulation with 10 µM, and N displays the number of individual 
experiments. 
a ND, not determined because of lack of efficacy. The plateau of the curve was not reached.  

Double cycle mutagenesis suggests additional receptor region “X” critical for peptide 

binding.  

The concentration-response curve of the D6.59A receptor with PrRP20 reveals a 

15-fold elevated EC50-value (Figure 46A and Table 26), whereas the wt receptor 

stimulated with A19PrRP20 results in a 736-fold elevated EC50-value (Figure 46B and 

Table 26). This finding suggests that R19 has one or more additional interaction partner, 

“X,” which explains the increased importance of R19 for receptor activity. Stimulation of 

the D6.59A receptor with A19PrRP20 resulted in a 0.16-fold elevated EC50-value, 

compared to PrRP20 stimulation. This non-additive effect of the double cycle 
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mutagenesis experiment implies that the effects of the individual replacements are not 

independent of each other. Among more complicated mechanisms, such as indirect 

interactions of the two residues, the effect may also be due to a direct interaction between 

D6.59 of PrRPR and R19 of PrRP20 (Figure 46C and Table 26).  

 

 
Figure 46:  Functional characterization of PrRP receptor mutant D6.59A with PrRP20 and 
the modified ligand A19PrRP20 
Schemes represent the postulated mode of ligand binding. Due to the different relevance of D6.59 
and the R19, a second contact point for R19 can be assumed. Complementary mutagenesis 
approach was used in combination with the signal transduction assay on cells, expressing the wt 
PrRPR or the D6.59A mutant in order to observe concentration-response curves. Data represent the 
mean ± s.e.m. of multiple independent experiments (n = 32 for hPrRPR with PrRP20, n = 12 for 
D6.59A PrRPR with PrRP20, n = 11 for hPrRPR with A19PrRP20, and n = 3 for D6.59A PrRPR 
with A19PrRP20). Receptor activity is expressed as percentage of full PrRP20 response at the wt 
PrRP receptor. A) Modification of receptor side: D6.59A PrRPR in comparison with wt receptor 
was stimulated with PrRP20. B) Exploring the ligand side: both PrRP20 and A19PrRP20 were 
investigated using wt PrRPR. C) Complementary approach: A19PrRP20 stimulation of wt and 
mutant receptor resulted almost matching concentration-response curves, indicating an interaction 
between D6.59 of the receptor and R19 of the ligand. 
 

Reciprocal mutagenesis leads to a constitutive active receptor mutant 

To confirm the direct interaction between R19 and D6.59, the corresponding 

residues were swapped (Figure 47A). The herein performed reciprocal mutagenesis 
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approach assumes that a lost interaction between two residues induced by single mutation 

to the counter amino acid can partly be recovered by a second mutation that establishes 

the interaction in a reverse manner. We used this method to verify the salt bridge between 

D6.59 and R19 in the PrRP/PrRPR system by using the single peptide D19PrRP20 and the 

D6.59R receptor mutant (Figure 47C). The single peptide mutant D19PrRP20 shows a 

similar effect as A19PrRP20, with an increased EC50-value of 1318 nM (Table 26) 

without impact on the efficacy (Figure 47B). We conclude that all peptide-receptor 

interactions that involve position R19 have been disrupted (Figure 46B and Figure 47B). 

In the reverse experiment, PrRP20 barely stimulated the D6.59R receptor mutant with no 

determinable EC50-value (Figure 47C). In comparison to both single mutant experiments, 

the activation of the D6.59R but also D6.59K mutant with D19PrRP20 revealed a gain of 

function (EC50-values: D6.59R = 138 nM and D6.59K = 115 nM, Table 26, Figure 47C, and 

Figure 48C), confirming the direct interaction of R19 and D6.59. At the same time, the 

experiment provides further evidence in support of a second interaction site “X” for 

D6.59R, as the EC50-value is still elevated by a factor of 84 compared to the wt interaction. 
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Figure 47:  Reciprocal mutagenesis of the PrRPR 
A) This scheme displays the assumed wt situation with the direct interaction of ligand R19PrRP20 
and receptor D6.59PrRPR, as well as the second unknown interaction of the R19 to the receptor. B) 
The stimulation of wt receptor by D19PrRP20 and the corresponding concentration-response 
curves of the signal transduction assay. C) Reciprocal mutagenesis scheme is shown with related 
concentration-response curves. Interestingly, D6.59R mutant is partially basally active and can be 
activated by D19PrRP20. The latter is due to the established D-R interaction. IP accumulation 
presented in Panels B and C represent the mean ± s.e.m. of multiple independent experiments (n 
= 32 for hPrRPR with PrRP20, n = 5 for D6.59R PrRPR with PrRP20, n = 4 for hPrRPR with 
D19PrRP20, and n = 3 for D6.59R PrRPR with D19PrRP20). Receptor activity is expressed as 
percentage of full PrRP20 response at the wt PrRP receptor. 
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Figure 48:  Investigation of the constitutive activity of D6.59R PrRPR mutant 
A) Test of influence of transfection upon constitutive activity of wt PrRPR and D6.59 constructs. 
The IP accumulation of differently transient transfected COS-7 cells expressing the various 
PrRPR mutants was measured without any agonist after three hours [given as x-fold over eYFP 
expressing cells]. [Each bar represents the mean ± s.e.m. of two different experiments; at least in 
triplicates; * P < 0.05; ** P < 0.01; *** P < 0.001] B) Constitutive activity of wt PrRPR and D6.59 
mutant was investigated in a time-dependent manner. The IP accumulation of COS-7 cells 
expressing the different PrRPR variants was measured without any agonist after different time 
periods [given as x-fold over eYFP expressing cells]. C) Concentration-response curves of D6.59 
PrRP receptor munats. Data represent the mean ± s.e.m. of multiple independent experiments (n = 
5 for hPrRPR, n = 4 for D6.59A PrRPR, n = 3 for D6.59R PrRPR, and n = 2 for D6.59K PrRPR). 
Receptor activity is expressed as percentage of full PrRP20 response at the wt PrRP receptor. D) 
Scheme of assumed explanation for the agonist-independent activity of the D6.59R receptor 
mutant: We postulate that the D6.59R is a CAM because D6.59R mimics R19 of PrRP20 by intra-
molecular interaction with a receptor region “X,” inducing a partially active receptor 
conformation. 
 

A novel possibility to identify the missing interaction site “X” arose because the 

D6.59R receptor mutant presented a strongly increased basal activity, which is indicated 

by curves with higher initial IP accumulation (Figure 47C and Figure 48C). In contrast, 

D6.59A and D6.59K reveal solely slight elevated basal activity. This can be explained by 

more loosened constraints at this position and thus making it more susceptible for 

induced basal activity, whereas for D6.59K the spatial and more charged prerequisites are 

missing. The observed effect of constitutive activity is independent of transient 
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transfection, which is a critical component. Different amounts of transfected DNA 

resulted in essentially similar cellular responses (Figure 46A). Finally, the constitutive 

activity of the D6.59R receptor mutant was confirmed by an increased time-dependent IP-

accumulation compared to wt (Figure 46B; 1h, 3h = P < 0.05; 6h = P < 0.01). All 

investigated receptors were correctly integrated in the membrane as confirmed by live-

cell microscopy (Figure 44A) and revealed similar cell surface levels as determined by 

surface ELISA (Figure 44B and Figure 44C). 

 

Identification of “X” by modelling-guided double mutant analysis.  

We hypothesize that D6.59R PrRPR is a CAM caused by the interaction of D6.59R 

with residue “X.” D6.59R mimics R19 of PrRP20, inducing a partially active receptor 

conformation (Figure 48D). We further hypothesize that D6.59R/XX.XA double mutants 

will lose constitutive activity and most importantly, retain activation by D19PrRP20. In 

order to determine likely positions for “X,” a comparative model of the PrRPR was 

constructed using the Rosetta molecular modeling software suite. Details of the modeling 

protocol are given in the Materials and methods. According to the lowest-energy model 

based on the semi-active opsin structure (PDBID: 3DQB (33)). E5.26, W5.28, Y5.38, F6.54, 

and Q7.35 were found proximal to D6.59 and were proposed to be potential interaction 

partners for D6.59R (Figure 49A) or for R19PrRP20 when testing the wt receptor. The 

more distant residues, Y2.64 and W2.71, were chosen for control experiments. 
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Figure 49:  Molecular model of the PrRPR based on 3DQB and resulting double mutations 
based on the D6.59R PrRPR construct 
A) Residues in proximity to the extracellular side are shown in purple. These were investigated in 
double mutational analysis with D6.59R PrRPR. The D6.59 on top of TMH4 is colored in blue, and 
the suggested inward movement of the extracellular helical part of TMH6 is indicated by an 
orange dart. (B) A new approach to identify the missing interaction site, “X,” arose by insertion 
of a second alanine substitution of assumed interacting residues to the D6.59R PrRPR. The second 
mutation is expected to diminish the basal activity but retain the capability to be activated by 
D19PrRP20. IP accumulation assay of COS-7 cells transfected with eYFP as control and the 
following constructs of PrRPR: wt, D6.59R, Y2.64A/D6.59R, W2.71A/D6.59R, E5.26A/D6.59R, 
W5.28A/D6.59R, Y5.38A/D6.59R, F6.54A/D6.59R, Q7.35A/D6.59R, respectively. Incubation was performed 
for three hours without ligand, PrRP20 or D19PrRP20, and results are presented in IP 
accumulation as percentage of full PrRP20 response at the wt PrRP receptor. [Each bar represents 
the mean ± s.e.m. of at least duplicates of four different experiments; ** P < 0.01; *** P < 
0.001]. 
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With guidance from the receptor modeling data (Figure 49A), we generated and 

tested the double mutants Y2.64A/D6.59R, W2.71A/D6.59R, E5.26A/D6.59R, W5.28A/D6.59R 

Y5.38A/D6.59R, F6.54A/D6.59R, and Q7.35A/D6.59R of PrRPR. Interestingly, E5.26A/D6.59R, 

W5.28A/D6.59R, and Y5.38A/D6.59R receptor mutants completely lost their constitutive 

activity in a ligand-independent signal transduction assay (Figure 49B). The IP 

accumulation after three hours of these unstimulated receptors dropped to a PrRPR wt 

level. The F6.54A/D6.59R dropped as well but remained partially constitutively active 

(Figure 49B). These effects could be due to disruption of the hypothesized interaction to 

the R6.59 residue or to decisive structural alterations, resulting in generally non-functional 

mutants. The latter situation was excluded after activation of these constructs using 10 

µM D19PrRP20 as an agonist (Figure 49B; P<0.01). In concentration-response 

experiments the EC50-values were determined to be higher than 100 µM (Figure 50A). 

The fact that D19PrRP20, not wt PrRP20, was able to activate these constructs re-

emphasizes the direct interaction of D19 with D6.59R.  
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Figure 50:  Functional characterization of PrRPR mutants with impact on receptor 
activation and ligand binding 
A) COS-7 cells transfected with wt PrRPR or E5.26A/D6.59R, W5.28A/D6.59R, Y5.38A/D6.59R, 
F6.54A/D6.59R receptor mutants, were stimulated for three hours with different D19PrRP20 
concentrations using a signal transduction assay. Data represent the mean ± s.e.m. of 5 (PrRPR), 
3 (E5.26A/D6.59R, W5.28A/D6.59R, Y5.38A/D6.59R) or 2 (F6.54A/D6.59R) independent experiments, 
measured in duplicate. B) COS-7 cells transfected with wt (n = 32) and E5.26A (n = 8), W5.28A (n 
= 7), Y5.38A (n = 5), D6.59A (n = 12), and F6.54A (n =3) PrRPR mutants, respectively, were 
investigated in signal transduction assay, and data are presented in concentration-response curves 
as percentage of full PrRP20 response at wt PrRP receptor. Stimulation was performed for 1 hour. 
The height of the curves correlates with the efficacy of the mutants. Potency is given by the 
degree of shift to the right and its resulting EC50 value. C) COS-7 cells transfected with the 
mentioned constructs in Panel B were incubated for one hour in a signal transduction assay with 1 
x 10-5M (mutants) or 1 x 10-7M (wt) PrRP20, and without stimulus. Results are expressed as 
percentage of IP accumulation compared to the PrRPR, with lowest mean of value being 0% and 
highest 100%. [bars represent the mean ± s.e.m of duplicates of at least 3 different experiments; * 
P < 0.05; *** P < 0.001]. 
 

Other double mutants, such as Y2.64A/D6.59R or Q7.35A/D6.59R, showed slightly 

reduced constitutive activity but seem to be trapped in that state, as no further 

activation/stimulation was achieved. W2.71A/D6.59R appears to have structural restrictions 

because no significant receptor activation could be observed. From the plethora of 

residues in the upper TMHs and ELs of PrRPR, which may interact with D6.59R the initial 

comparative models and mutational studies clearly suggested seven residues to 

potentially interact with D6.59R. Of these seven potential interaction sites, we hypothesize 

E5.26, W5.28, Y5.38, and F6.54 to be engaged in D6.59R-induced basal activity. Therefore, we 

postulate the latter residues to be involved in ligand binding and/or receptor activation. 

The combination of mutagenesis and comparative modelling enabled us to extract three 
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residues of relevance from the plethora of residues in the upper transmembrane helices 

(TMHs) and extracellular loops (ELs) of the PrRPR. 

 

Confirmation of binding and activation site using single mutants.  

To clarify the exact impact of the identified positions E5.26, W5.28, Y5.38, and F6.54, 

single alanine mutants at these positions were generated. Signal transduction studies of 

the single alanine mutants E5.26A (331-fold over wt), W5.28A (580-fold over wt), Y5.38A 

(61-fold over wt), and F6.54A (15-fold over wt) confirm the impact of residues E5.26, 

W5.28, Y5.38, and F6.54 on ligand binding (Table 28 and Figure 50B). Their distribution in 

EL2 and TMH5 suggests that this region plays a significant role in ligand binding. 

Therefore, EL2 and TMH5 were studied systematically to identify additional interaction 

sites that might have been missed due to inaccuracies of the comparative model. All 

charged (R, K, E, D) and aromatic (W, F, Y) residues between positions 4.65 and 5.40 

were substituted to alanine (Table 28). None of the tested mutants resulted in 

significantly increased EC50-values (Table 28 and Figure 50B). This demonstrates that 

the model-guided intramolecular mutagenesis experiment, at least in this setting, was 

more effective than alanine scanning in selecting the critical interaction partners.  
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Table 28:  Signal transduction of the selected alanine of PrRP receptor mutants from 
extracellular loop 2 and top TMH5 
IP accumulating signal transduction assay was performed for 1 hour with different concentrations 
of modified PrRP20 peptides to determine EC50-values from concentration-response curves.  

PrRPR mutant Emax ± SEM 
[%] a P b pEC50 ± SEMc EC50 

[nM]c 
EC50-ratio 
(mut/wt)d 

N 
 

Wt 100 - 8.78 ± 0.04 1.66 1 32 
Y4.65A 63 ± 22 ns 8.03 ± 0.32 9.3 6 2 
E4.68A 93 ± 8 ns 8.19 ± 0.19 6.4 4 3 
K4.70A 111 ± 35 ns 8.41 ± 0.41 3.9 2 2 
D4.73A 146 ± 41 ns 8.75 ± 0.49 1.78 1 2 
R4.75A 87 ± 15 ns 8.32 ± 0.37 4.8 3 3 
E5.25A 124 ± 10 ns 7.99 ± 0.13 10 6 3 
E5.26A 81 ± 5 0.0094 6.26 ± 0.10 549 331 8 
F5.27A 122 ± 50 ns 8.14 ± 0.49 7.2 4 2 
W5.28A 48 ± 5 < 0.0001 6.02 ± 0.14 954 580 7 
E5.32A 114 ± 11 ns 8.62 ± 0.14 2.4 1 2 
R5.33A 115 ± 15 ns 8.57 ± 0.20 2.7 2 2 
R5.35A 81 ± 4 0.0122 8.35 ± 0.32 4.5 3 2 
Y5.38A 46 ± 6 < 0.0001 6.99 ± 0.14 102 61 5 
W5.40A 101 ± 38 ns 8.78 ± 0.49 1.7 1 2 
D6.59A 97 ± 6 ns 7.59 ± 0.15 26 15 12 
F6.54A 101 ± 3 ns 7.61 ± 0.10 25 15 3 
N represents the number of independent experiments. 
a Efficacy was determined as percentage compared to full PrRP20 response at wt.  
b Significance P was estimated using the unpaired t-test (ns represents no significantly different 
means with P ≥ 0.05). 
c EC50-/pEC50-values were calculated from the mean ± s.e.m. of N independent experiments, 
measured in duplicate. 
d The ratio was determined using the Prism 5.03 function of dose-response EC50 shift 
determination by global fitting. 

 

To verify the obtained results of potency of the PrRP wt receptor and its mutants, 

the cellular expression levels in the plasma membrane were investigated, because 

recently a constitutive internalization of the PrRP receptor has been reported (408). 

Binding studies of transiently transfected COS-7 cells revealed a sufficient number of 

surface wt receptors per cell (~95,000), calculated from the obtained Bmax-value (445 
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Bq), the specific activity (3.52 x 1015 Bq/mol) and cell number (6.6 x 105). All PrRP 

receptor constructs with impact on potency were shown to be surface exposed and 

quantified by surface ELISA (Figure 44). The deviation from the wt PrRPR surface 

expression levels (wt = 39.6 ± 1.1%) varies from 16.3% (W5.28A) to 59.6% 

(F6.54A/D6.59A).  

However, these differences, basically resulting from transient transfection, reveal 

minor effects in the IP accumulation signaling assay set up, as the receptor mutant F6.54A 

(20.9 ± 3.7%) shows reduced total surface expression levels (Figure 44B) but full wt like 

efficacy (Figure 49B/C). Additionally, all PrRPR mutants are properly exported to the 

cell surface in comparable amounts as the wt receptor (39.6%, Figure 44C). Therefore, 

the herein obtained results of potency of agonists at their receptor constructs do not result 

from altered expression or export levels.  

A reduced efficacy was observed in the concentration-response dependent signal 

transduction assay for W5.28A and Y5.38A (P<0.001) and – with decreased impact – also 

for E5.26A (P<0.0094, Figure 50C and Table 28). In summary, our findings support a 

binding mechanism in which E5.26, in addition to D6.59, directly engage R19 of PrRP20 

through ionic interactions. F6.54 might contribute to the overall global conformation of the 

binding pocket and positioning of TMH 6, as its single mutation is less invasive but still 

is in distance for direct ligand interactions. We further suggest that W5.28 and Y5.38 are 

possibly in direct contact with the ligand and are indeed critical for receptor activation 

and the transmission of an external signal into the cell. 
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Exploration of second interaction partner and dual binding mode at R19.  

We generated the E5.26A/D6.59A double mutant of the receptor, which lacks both 

putative binding partners to the R19. In addition, the reciprocal PrRPR mutants, 

E5.26R/D6.59R and E5.26R, were generated to test the interaction by swapping the putative 

binding residues. The E5.26A and the E5.26A/D6.59A receptor mutants were investigated in 

a double cycle mutagenesis study, where they were stimulated with A19PrRP20 and wt 

PrRP20 (Table 26 and Figure 51A). The E5.26A mutant stimulated with A19PrRP20 

resulted in a strongly increased EC50-value higher than 10 µM, 21-fold shifted compared 

to PrRP20 stimulation (537 nM). The enhanced EC50-value can be explained by the 

disruption of the second R19 interaction to receptor residue D6.59. Indeed, this effect 

agrees with a similar impact of the D6.59A mutation (15-fold shifted; Table 26), which 

also diminished the direct interaction to the R19 of the ligand to a similar extent (Figure 

46A and Figure 51A). Furthermore, the stimulation of the E5.26A/D6.59A receptor mutant 

with either PrPR20 or A19PrRP20 resulted in matching curves. As no additional loss in 

potency was observed compared to the E5.26A mutant tested with A19PrRP20 (Figure 

51B), the experiment provides evidence that E5.26 is involved in binding to R19.  
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Figure 51:  Stimulation analysis of E5.26 mutants reveals a preferential activation of R 
mutants by the reciprocal ligand D19PrRP20 
Functional investigation of PrRPR mutants E5.26A, E5.26R, and E5.26A/D6.59A with the ligands 
PrRP20, A19PrRP20, or D19PrRP20. The signal transduction assay was performed in COS-7 cells 
expressing the wt PrRPR or E5.26A, E5.26R, or E5.26A/D6.59A mutants to observe concentration-
response curves. Results of two independent experiments, each performed in duplicate, are 
presented as mean ± s.e.m of duplicates. A) E5.26A PrRPR was stimulated with both PrRP20 and 
A19PrRP20 and demonstrated an equipotent loss in potency compared to the D6.59A PrRPR 
mutation (Figure!46A). Additionally, this panel highlights the direct interaction between R19 and 
D6.59. B) Stimulation with of the E5.26A/D6.59A receptor with A19PrRP20 or PrRP20 revealed no 
further loss in potency and a slightly decreased efficacy compared to the E5.26A PrRPR. This 
indicates that E5.26 might be the second binding partner of R19. C) Functional characterization of 
the reciprocal E5.26R PrRPR mutant using R19-modified PrRP20 analogues. D) The scheme shows 
the assumed interplay of attraction and repulsion for the reciprocal interaction of the ligands 
R19PrRP20 and D19PrRP20 with the E5.26R PrRP receptor mutant from Panel C. E) IP 
accumulation assay of COS-7 cells transfected with eYFP as control and the following constructs 
of PrRPR: wt, E5.26A, E5.26A/D6.59A, E5.26R, E5.26R/D6.59R, D6.59R, respectively. Incubation was 
performed for one hour using 100 µM of PrRP20, D19PrRP20, A19PrRP20, and without ligand. 
[Each bar represents the mean ± s.e.m. of at least duplicates of 2 different experiments; *** P < 
0.001].  
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Next, the capability of receptor mutants E5.26A, E5.26A/D6.59A, E5.26R, E5.26R/ 

D6.59R, D6.59A, and wt PrRPR to transmit signalling was tested (Figure 51E). Importantly, 

the reciprocal receptor mutants E5.26R and E5.26R/D6.59R were significantly and best 

activated by D19PrRP20 (both: P<0.001). In fact, E5.26R/D6.59R was solely activated by 

D19PrRP20. Finally, the E5.26R mutant was stimulated with PrRP20, A19PrRP20, and 

D19PrRP20 in a concentration-response experiment (Figure 51C). This receptor mutant 

behaved similarly, when stimulated by PrRP20 and D19PrRP20 (both: EC50-value >10 

µM). Along with the experiments testing D19PrRP20 stimulation of wt PrRPR, we 

demonstrate an approximately equal repulsive effect of R19 to E5.26R or D19 to D6.59 

(Figure 51D). This strengthens our hypothesis of a dual binding mode of R19 to E5.26 and 

D6.59.  

 

Comparative model of PrRP/receptor complex provides structural information on mode 

of binding.  

The R19/E5.26 and R19/D6.59 contacts as restraints, a de novo-folded model of 

PrRP8-20 based on reported NMR data (35) was docked into an ensemble of comparative 

models of the PrRPR. The conformation of the EL regions was constructed 

simultaneously with ligand docking to accurately capture conformational changes 

induced by the peptide. Details of the modeling procedures are given in the Materials and 

methods and Appendix C. The lowest-energy Rosetta model features salt bridges between 

D6.59, E5.26, and R19. W5.28 and Y5.38 form π-stacking interactions that may be indicative of 

a “toggle-switch” mechanism (Figure 52A) (409). F6.54 appears to further apart from R19 

but might contribute to the positioning of TMH 6 via intra-molecular interactions and is 
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in distance for π-stacking interactions with the F20 of PrRP20. Additional interactions 

between peptide and receptor hold the peptide in an optimal binding conformation deeply 

buried in the upper TMH segments and supported by the ELs from above. 

 
Figure 52:  Comparative model of PrRPR docked to the thirteen C-terminal residues of 
PrRP20 
A) Selected comparative model generated by Rosetta in the presence of the PrRP ligand to 
support experimental data. The figure displays an ensemble of low-energy PrRP/receptor models 
generated in Rosetta, that agrees well with experimental data. Residue D6.59 is colored in blue, the 
peptide is presented in yellow, and residues in vicinity to PrRP are in purple. B) The eight non-
redundant low-energy comparative models of the PrRP/receptor complex. These eight models 
were generated in the presence of structural constraints derived from the mutagenesis data 
described (see main text) and are considered energetically favorable according to the Rosetta v3 
all-atom scoring function. The peptide is highlighted in yellow, D6.59 of the receptor in blue, EL1 
of the receptor in green, and EL2 of the receptor in magenta.  
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Discussion 

We have evolved a strategy to interrogate detailed molecular mechanisms of 

GPCR activation by combining reciprocal, double cycle, and intramolecular double 

mutagenesis with computational modelling. We apply this technique effectively to 

PrRPR and its CAM, D6.59R PrRPR, identifying distinct receptor residues involved in 

activation and/or ligand binding.  

This is the first comprehensive mutational study of the extracellular and 

transmembrane regions of the PrRPR. The double cycle mutagenic approach suggests the 

interaction (direct or indirect) between residues D6.59 and R19 and provides a first anchor 

point for receptor/ligand investigations. Interacting residues can be characterized by 

reciprocal mutagenesis, as shown before in an intramolecular study with the 

D2.61R/R7.39D swap in the gastrin-releasing peptide receptor (410) or the D6.44/N7.49 

residues of the thyrotropin (TSH) receptor (411). By applying this method to the 

PrRP/PrRPR system, the salt bridge of D6.59 to R19 was verified, and more importantly, 

by generating the D6.59R receptor, we identified the first CAM of the PrRPR. Up to now, 

numerous CAM were generated and investigated in a plethora of previous studies, 

emphasizing the increasing importance of CAMs. For example, CAM of the human 

angiotensin II type 1 receptor with N3.35Gly (412), the ß1B (413)/ ß 2-adrenergic receptor 

(414, 415), the cannabinoid receptor 1 (416), muscarinic m1 (417) and m5 receptors 

(418), among others, have been found. Interestingly, more than sixty naturally occurring 

CAM GPCR are known so far (419) and are often related to human disorders (420). 

Consequently, GPCR activated in an agonist-independent manner are of emerging 

importance for drug development(388). 
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CAM more readily undergo transition between active and inactive conformations 

due to removed conformational constraints of the inactive form (421). Because D6.59R in 

PrRPR is located at the top of TMH6, we hypothesize that this helix is involved in 

receptor activation via an inward movement of the upper helical region (Figure 48D). 

Similarly to the PrRPR D6.59R CAM, mutant-induced receptor activity was observed in 

the S6.58Y/T6.59P double mutant of m5 muscarinic receptors (422). These data indicate that 

the top of TMH6 is directly involved in the switch between the active and the inactive 

state of several GPCR and that the interaction with the ligand stabilizes the receptor in 

this active conformation – a notion that supports the “global toggle switch model” (377, 

423). This model suggests that activation results from an inward movement of the 

extracellular ends of TMHs 6 and 7 toward TMH3, concomitant with a movement of the 

intracellular part of the TMHs in the opposite direction, which enables signaling via G-

protein coupling. PrRPR represents an excellent model system to further investigate this 

hypothesis and gain insights to receptor activating mechanisms.  

Previous work on the TSH receptors showed the effects of spatially distant double 

mutants on constitutive activity (424, 425). However, we focus on the investigation of the 

molecular vicinity surrounding D6.59, as we suggest that specific inter-residue interactions 

of the generated CAM occur. To take advantage of the D6.59R CAM to elucidate the 

mechanism of ligand binding and PrRPR activation, we established an effective 

combination of intramolecular double and inter-molecular reciprocal mutagenic 

approaches to study PrRPR activation by wt PrRP20, A19PrRP20, and D19PrRP20. With 

guidance from the PrRPR comparative model, seven possible interacting residues were 

considered (Figure 49A), and the double mutants E5.26A/D6.59R, W5.28A/D6.59R, 
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Y5.38A/D6.59R, and F6.54A/D6.59R revealed an involvement of these residues in receptor 

activation. Importantly, these receptor mutants were significantly activated by D19PrRP20 

but not by wt PrRP20 (Figure 49B), proving that the receptor mutants were not miss-

folded and that D19 on the ligand is still able to interact with D6.59R. CAM are thought to 

mimic, at least partially, the active conformation of the wt receptor and to spontaneously 

adopt a structure able to activate G-proteins (426). Therefore, we hypothesize that in 

D19PrRP20, residue D19 takes over the role of the destroyed intra-molecular interaction of 

the double mutants, reactivating the “silenced” CAM. The conformation of a basally 

silenced GPCR might impair its intrinsic capacity for signaling compared to the wt 

receptor. Notably, further mutations within EL2/TMH5 had no considerable impact on 

receptor potency, in contrast to all three positions identified via intramolecular 

interactions (Table 28). This demonstrates the precision and usefulness of the modeling-

guided double mutational approach to identify interacting residues in close proximity to 

the ligand.  

In contrast, the W2.71A/D6.59R control turned out to be deficient in signaling. This 

is expected and in agreement with the high conservation of W2.70/W2.71 in most peptide 

GPCR, e.g. in the NPY receptor system (14). Furthermore, W2.71 is located in the 

structurally relevant WxGF-motif, which is suggested to be a key component in the 

activation mechanism in many GPCR in the rhodopsin family (427). Recent 

investigations on TMH2 of the CAM N3.35G hAT1 suggested TMH2 to pivot, bringing 

the top of TMH2 closer to the binding pocket (428). Our results obtained for the 

conserved Y2.64 on top of TMH2 do not support such a spatial approach to D6.59 and thus 
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to the binding pocket. This reflects the divergence of GPCR activation and accentuates 

that the detailed mode of activation is not a common mechanism. 

The results obtained from studies of the E5.26A mutation lead to the conclusion 

that this residue is predominantly responsible for ligand binding. Our initial double cycle 

mutagenic experiments at D6.59 support a more complex double binding role for R19 of 

PrRP20, which appears to be in contact with two sites on PrRPR. Accordingly, we 

suggest E5.26 to be the second binding partner for peptide residue R19 (Figure 51D). The 

extensive mutagenic studies of residue E5.26 strongly indicate the participation in binding 

to R19 and the constitutive activity of D6.59R supports the hypothesis of a second R-

specific interaction site in PrRPR that can be satisfied by the D6.59R but not the D6.59K 

mutant. A similar dual binding mode for arginine was recently reported for gonadotropin-

releasing hormone (GnRH) receptor (212). This has been supported by other studies, 

where substitution of R19 to lysine, citruline (Cit), α-amino-4-guanidino-butyric acid 

(Agb), or α-amino-3-guanidino-propionic acid (Agp) on the peptide lead to reduced 

binding affinities (36). Interestingly, the tight ensemble of models that is in agreement 

with the experimental data presented herein exhibits variability in ELs 1 and 2 while still 

maintaining the contacts between D6.59 and E5.26 with R19. Given this structural variability 

in our models, we emphasize that the presented approach is an iterative process, where 

initial models can be used to guide experimental design, and the resulting data allow for 

model refinement. The current PrRP/receptor model can only be considered valid in the 

light of the functional data. However, it provides insight into possible structural 

mechanisms of peptide/receptor interactions and receptor activation. 
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W5.28A and Y5.38A also showed lowered ligand potency, but both mutants 

revealed a strongly decreased ability to transmit signals compared to the wt receptor 

(Table 28). This effect may result from intramolecular structural alteration due to the lack 

of aromaticity at the Y5.38A site. Mutational studies reported for the nearby Y5.39 residue 

in both cannabinoid receptors (CB1 and CB2) revealed that the aromaticity at this position 

is crucial (429). The PrRP/receptor model places W5.28 in close proximity to Y5.38 (Figure 

52A). In this model, the residues form stacking interactions, but this remains to be proven 

experimentally. We speculate that, due to the effects observed for potency and efficacy, 

W5.28 and Y5.38 are related to receptor activation. In contrast, F6.54A mutant reveals full wt 

efficacy accompanied with reduced potency. From the docked modeling data, we 

speculate that this residue contributes to the correct conformation of the binding pocket 

and might interact with the F20 of the PrPR20. 

Evolutionary and structural studies revealed that the PrRPR belongs to the family 

of RF-amide peptide receptors, consisting of five discovered groups: the neuropeptide FF 

(NPFF) group, the prolactin-releasing peptide (PrRP) group, the gonadotropin-inhibitory 

hormone (GnIH) group, the kisspeptin group, and the 26RFa group (430-432). However, 

further phylogenic investigations revealed that the PrPRR shares an ancient receptor with 

the NPY receptors (396). The human PrRPR possesses high sequence identity with the 

human NPY2R, particularly in the upper and middle regions of TMH 4, TMH 5, and 

TMH 6. It is suggested that the PrRPR family began co-evolving with ancestral PrRP/C-

RF-amide peptide with a redundant NPY binding receptor (396). This explains the 

importance of the conserved D6.59 residue and in turn, might have been responsible for the 

development of a double binding mode for R19 in the PrRPR/PrRP system. It could be 
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speculated that other RF-amide receptors evolved similar binding modes for the crucial 

arginine within the RF-amide motif, especially for the closely related 26RF-amide 

receptor. In contrast, for the well investigated Y-receptor family, a double binding mode 

was not identified, neither for R33 at Y2/Y5R nor for R35 at Y1/Y4R (394, 395). However, 

the second interaction might occur via the second arginine 33 or 35, respectively.  

Regarding medical and physiological implications, the expression of CAM can 

entail oncogenic effects, such as tumor formation in nude mice (433). A variety of 

diseases are known to be triggered by elevated basal activity, including autosomal 

dominant hypocalcaemia (434) and ovarian hyperstimulation syndrome (435). Our 

findings provide insight into the harmful potential of CAM and demonstrate the need for 

applicable drugs that are able to diminish mutation-induced receptor activity. We are 

confident that our technique is a promising tool to investigate residues relevant for ligand 

binding and receptor activation because a CAM is used as a template. Our approach 

paves the way for obtaining specific structure/function information on a molecular level, 

which is of indispensible value, as no crystal structure for a peptide GPCR currently 

exists. This method will hopefully contribute to the elucidation of the structural 

mechanisms of harmful CAM and help to develop and increase the number of inverse-

agonist drugs that target these receptors. 

 

Acknowledgement 

The authors thank Kristin Löbner and Christina Dammann for their technical 

assistance in peptide synthesis, Janet Schwesinger for sequencing, and Regina Reppich-

Sacher for recording mass spectra. They would also like to thank members of the 



 

!
!

248!

ROSETTACOMMONS, Elizabeth Dong, David Nannemann, Steven Combs, and Anette 

Kaiser for their assistance and insight provided concerning the molecular modelling. 

! !



 

!
!

249!

APPENDIX B 

 

PROTOCOL CAPTURE FOR CHAPTER II: 
THE ACTIVITY OF PROLACTIN RELEASING PEPTIDE CORRELATES 

WITH ITS HELICITY 

!

This appendix contains the protocol capture for the modeling work published in 

(DeLuca*, Rathmann*, Beck-Sickinger, and Meiler, 2013), some of which is found in the 

manuscript’s Supplemental Information. *These authors contributed equally. 

 

Computational details 

All models were generated by independent simulations using Vanderbilt 

University’s Center for Structural Biology computing cluster and the university’s 

Advanced Computing Center for Research and Education (ACCRE). Computations were 

performed on a combination of AMD Opteron and Intel Nehalem processor nodes. The 

time required to fold one model of the 13 C-terminal residues of PrRP20 was less than 10 

seconds. The time required for a single round of high-resolution refinement of one model 

was less than 1 minute. All modeling was performed using Rosetta trunk revision 36905. 

 

Input files 

Before any modeling was performed, truncated peptide to residues 8 to 20 and 

renumbered 1-13. 

FASTA file 
>PrRP8&20)Sequence)
WYASRGIRPVGRF)
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Chemical shift file for fragment generation (must end in .chsft) 

#)AA)Res)))))))C)))))))))CA)))))))))CB))))))HA))))))))))N)))))))))
))W))))1)9999.00))))9999.00))))9999.00))))4.34))))9999.00)
))Y))))2)9999.00))))9999.00))))9999.00))))4.03))))9999.00)
))A))))3)9999.00))))9999.00))))9999.00))))4.14))))9999.00)
))S))))4)9999.00))))9999.00))))9999.00))))4.31))))9999.00)
))R))))5)9999.00))))9999.00))))9999.00))))4.18))))9999.00)
))G))))6)9999.00))))9999.00))))9999.00))))3.86))))9999.00)
))I))))7)9999.00))))9999.00))))9999.00))))4.12))))9999.00)
))R))))8)9999.00))))9999.00))))9999.00))))4.65))))9999.00)
))P))))9)9999.00))))9999.00))))9999.00))))4.46))))9999.00)
))V)))10)9999.00))))9999.00))))9999.00))))4.14))))9999.00)
))G)))11)9999.00))))9999.00))))9999.00))))3.94))))9999.00)
))R)))12)9999.00))))9999.00))))9999.00))))4.05))))9999.00)
))F)))13)9999.00))))9999.00))))9999.00))))4.60))))9999.00)
 

Constraints file for fragment generation with NOEs (must end in .cst) 

#)(NOTE:))No)side&chain)protons)were)taken)into)account))
NMR_v3.0)
data)set)used)in)DUrsi)et)al)PrRP820)strict)NOE)definitions)
38)
))))))1))H))))))2))H)))))))))5.00)))))))0.00)))))medium)
))))))2))H))))))3))H)))))))))5.00)))))))0.00)))))medium)
))))))3))H))))))4))H)))))))))5.00)))))))0.00)))))medium)
))))))4))H))))))5))H)))))))))5.00)))))))0.00)))))medium)
))))))6))H))))))7))H)))))))))5.00)))))))0.00)))))medium)
))))))7))H))))))8))H)))))))))5.00)))))))0.00)))))medium)
)))))10))H)))))11))H)))))))))3.00)))))))0.00)))))strong)
)))))11))H)))))12))H)))))))))3.00)))))))0.00)))))strong)
))))))1))HA)))))2))H)))))))))5.00)))))))0.00)))))medium)
))))))2))HA)))))3))H)))))))))5.00)))))))0.00)))))medium)
))))))3))HA)))))4))H)))))))))5.00)))))))0.00)))))medium)
))))))4))HA)))))5))H)))))))))5.00)))))))0.00)))))medium)
))))))5))HA)))))6))H)))))))))5.00)))))))0.00)))))medium)
))))))6))#HA))))7))H)))))))))5.00)))))))0.00)))))medium)
))))))7))HA)))))8))H)))))))))5.00)))))))0.00)))))medium)
))))))9))HA))))10))H)))))))))5.00)))))))0.00)))))medium)
)))))10))HA))))11))H)))))))))3.00)))))))0.00)))))strong)
)))))11))#HA)))12))H)))))))))5.00)))))))0.00)))))medium)
)))))12))HA))))13))H)))))))))3.00)))))))0.00)))))strong)
))))))1))#HB))))2))H)))))))))5.00)))))))0.00)))))medium)
))))))2))#HB))))3))H)))))))))5.00)))))))0.00)))))medium)
))))))4))#HB))))5))H)))))))))5.00)))))))0.00)))))medium)
))))))5))#HB))))6))H)))))))))5.00)))))))0.00)))))medium)
))))))7))HB)))))8))H)))))))))3.00)))))))0.00)))))strong)
))))))9))#HB)))10))H)))))))))5.00)))))))0.00)))))medium)
)))))10))HB))))11))H)))))))))5.00)))))))0.00)))))medium)
)))))12))#HB)))13))H)))))))))3.00)))))))0.00)))))strong)
))))))2))H))))))4))H)))))))))5.00)))))))0.00)))))weak)
))))))3))H))))))5))H)))))))))5.00)))))))0.00)))))weak)
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))))))4))H))))))6))H)))))))))5.00)))))))0.00)))))weak)
))))))2))HA)))))4))H)))))))))5.00)))))))0.00)))))weak)
))))))3))HA)))))5))H)))))))))5.00)))))))0.00)))))weak)
))))))4))HA)))))6))H)))))))))5.00)))))))0.00)))))weak)
))))))9))HA))))11))H)))))))))5.00)))))))0.00)))))weak)
))))))7))HA))))10))H)))))))))5.00)))))))0.00)))))weak)
))))))9))HA))))12))H)))))))))5.00)))))))0.00)))))weak)
))))))5))HA)))))8))#HB)))))))5.00)))))))0.00)))))weak)
))))))7))HA))))10))HB))))))))5.00)))))))0.00)))))weak)
)

Constraint file for folding 

#) (NOTE:) For) de# novo# folding,) side&chains) are) not) taken) into) account.)
Therefore,)any)distance)restraints)between)side&chain)protons)were)changed)to)
CB)and)the)upper)bound)(ub))was)increased)from)5Å)to)7Å)for)weak)restraints)
and)from)3Å)to)5Å)for)strong)restraints.))
#)type)))atom1))res1)atom2))res2)))function))))))lb))))))ub)))))sd))comment)comment)
AtomPair)))))H)))))1)))))H)))))2))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))))H)))))2)))))H)))))3))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))))H)))))3)))))H)))))4))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))))H)))))4)))))H)))))5))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))))H)))))6)))))H)))))7))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))))H)))))7)))))H)))))8))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))))H))))10)))))H))))11))))BOUNDED))))0.00))))3.00))))1.0))))NOE))))strong)
AtomPair)))))H))))11)))))H))))12))))BOUNDED))))0.00))))3.00))))1.0))))NOE))))strong)
AtomPair))))HA)))))1)))))H)))))2))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA)))))2)))))H)))))3))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA)))))3)))))H)))))4))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA)))))4)))))H)))))5))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA)))))5)))))H)))))6))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))1HA)))))6)))))H)))))7))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA)))))7)))))H)))))8))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA)))))9)))))H))))10))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA))))10)))))H))))11))))BOUNDED))))0.00))))3.00))))1.0))))NOE))))strong)
AtomPair)))1HA))))11)))))H))))12))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA))))12)))))H))))13))))BOUNDED))))0.00))))3.00))))1.0))))NOE))))strong)
AtomPair))))CB)))))1)))))H)))))2))))BOUNDED))))0.00))))7.00))))1.0))))NOE))))medium)
AtomPair))))CB)))))2)))))H)))))3))))BOUNDED))))0.00))))7.00))))1.0))))NOE))))medium)
AtomPair))))CB)))))4)))))H)))))5))))BOUNDED))))0.00))))7.00))))1.0))))NOE))))medium)
AtomPair))))CB)))))5)))))H)))))6))))BOUNDED))))0.00))))7.00))))1.0))))NOE))))medium)
AtomPair))))CB)))))7)))))H)))))8))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))strong)
AtomPair))))CB)))))9)))))H))))10))))BOUNDED))))0.00))))7.00))))1.0))))NOE))))medium)
AtomPair))))CB))))10)))))H))))11))))BOUNDED))))0.00))))7.00))))1.0))))NOE))))medium)
AtomPair))))CB))))12)))))H))))13))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))strong)
AtomPair)))))H)))))2)))))H)))))4))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair)))))H)))))3)))))H)))))5))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair)))))H)))))4)))))H)))))6))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))2)))))H)))))4))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))3)))))H)))))5))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))4)))))H)))))6))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))9)))))H))))11))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))7)))))H))))10))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))9)))))H))))12))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))5))))CB)))))8))))BOUNDED))))0.00))))7.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))7))))CB))))10))))BOUNDED))))0.00))))7.00))))1.0))))NOE))))weak)
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Constraint file for full-atom refinement 

#) (NOTE:) For) full&atom) refinement,) side&chains) are) taken) into) account.))
Therefore,) any) distance) restraints) between) side&chain) protons) were) not)
altered,)and)the)upper)bound)(ub))was)5Å)for)weak)restraints)and)3Å)for)strong)
restraints.))
#)type)))atom1))res1)atom2))res2)))function))))))lb))))))ub)))))sd))comment)comment)
AtomPair))))1H)))))1)))))H)))))2))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))))H)))))2)))))H)))))3))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))))H)))))3)))))H)))))4))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))))H)))))4)))))H)))))5))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))))H)))))6)))))H)))))7))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))))H)))))7)))))H)))))8))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))))H))))10)))))H))))11))))BOUNDED))))0.00))))3.00))))1.0))))NOE))))strong)
AtomPair)))))H))))11)))))H))))12))))BOUNDED))))0.00))))3.00))))1.0))))NOE))))strong)
AtomPair))))HA)))))1)))))H)))))2))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA)))))2)))))H)))))3))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA)))))3)))))H)))))4))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA)))))4)))))H)))))5))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA)))))5)))))H)))))6))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))1HA)))))6)))))H)))))7))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA)))))7)))))H)))))8))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA)))))9)))))H))))10))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA))))10)))))H))))11))))BOUNDED))))0.00))))3.00))))1.0))))NOE))))strong)
AtomPair)))1HA))))11)))))H))))12))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HA))))12)))))H))))13))))BOUNDED))))0.00))))3.00))))1.0))))NOE))))strong)
AtomPair)))1HB)))))1)))))H)))))2))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))1HB)))))2)))))H)))))3))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))1HB)))))4)))))H)))))5))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))1HB)))))5)))))H)))))6))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HB)))))7)))))H)))))8))))BOUNDED))))0.00))))3.00))))1.0))))NOE))))strong)
AtomPair)))1HB)))))9)))))H))))10))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair))))HB))))10)))))H))))11))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))medium)
AtomPair)))1HB))))12)))))H))))13))))BOUNDED))))0.00))))3.00))))1.0))))NOE))))strong)
AtomPair)))))H)))))2)))))H)))))4))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair)))))H)))))3)))))H)))))5))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair)))))H)))))4)))))H)))))6))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))2)))))H)))))4))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))3)))))H)))))5))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))4)))))H)))))6))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))9)))))H))))11))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))7)))))H))))10))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))9)))))H))))12))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))5)))1HB)))))8))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
AtomPair))))HA)))))7))))HB))))10))))BOUNDED))))0.00))))5.00))))1.0))))NOE))))weak)
 

De novo folding options file 

&abinitio)
))))))))&increase_cycles)2.5)
))))))))&rg_reweight)0.0)
&fold_cst))
))))))))&force_minimize)
&constraints)
))))))))&cst_file)PrRP8&20.cst)
))))))))&cst_weight)1.0)
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))))))))&viol)
))))))))&viol_level)101)
&residues)
))))))))&patch_selectors)CENTROID_HA)
&in)
))))))))&path)
))))))))))))))))&database)./rosetta_database)
))))))))&file)
))))))))))))))))&frag3)aa3mers.txt)
))))))))))))))))&frag9)aa9mers.txt)
))))))))))))))))&fasta)PrRP8&20.fasta)
&out)
))))))))&nstruct)10000)
))))))))&prefix)PrRP_)
))))))))&output)
))))))))&sf)PrRP_fold.sc)
))))))))&file)
))))))))))))))))&silent)PrRP.out)
))))))))))))))))&silent_struct_type)binary)
&overwrite)
 

Full-atom refinement options file 

&relax)
))))))))&sequence)
&constraints)
))))))))&cst_fa_file)PrRP_fa.cst)
))))))))&cst_fa_weight)1)
))))))))&viol)
))))))))&viol_level)101)
&in)
))))))))&path)
))))))))))))))))&database)rosetta_database)
))))))))&file)
))))))))))))))))&l)pdb_list.txt)
))))))))))))))))&fullatom)
) ) ) &residue_type_set)centroid)
&out)
))))))))&output)
))))))))&nstruct)10)
))))))))&file)
))))))))))))))))&silent)PrRP_fa.out)
))))))))))))))))&silent_struct_type)binary)
))))))))))))))))&scorefile)PrRP_fa.fasc)
))))))))))))))))&fullatom)
&residues)
))))))))&patch_selectors)CTERM_AMIDATION)
&overwrite)
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Command lines 

Fragment generation 

rosetta/rosetta_fragments/make_fragments.pl)&id)PrRP_)&nosam)PrRP_.fasta)>&)
make_fragments.log)&)

 

De novo folding 

rosetta/rosetta_source/bin/AbinitioRelax.default.linuxgccrelease)–database)
rosetta/rosetta_database)@fold.options)

 

Full-atom refinement 

mpiexec)rosetta/rosetta_sourse/bin/relax.default.linuxgccrelease)
@refinement.options)

) )
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APPENDIX C 

 

PROTOCOL CAPTURE FOR CHAPTER III: 
INTEGRATING SOLID STATE NMR AND COMPUTATIONAL MODELING 
TO INVESTIGATE THE STRUCTURE AND DYNAMICS OF MEMBRANE-

ASSOCIATED GHRELIN 
 

This appendix contains the protocol capture for the modeling work in the 

manuscript submitted to PLoS ONE of the same title by (Vortmeier*, DeLuca*, Cholet, 

Scheidt, Beck-Sickinger, Meiler, and Huster.) *These authors contributed equally. 

Further details are also available in Chapter III, and more detailed information on 

comparative modeling in Rosetta can be found in reference (252). 

 

Computational details 

All models were generated by independent simulations using Vanderbilt 

University’s Center for Structural Biology computing cluster and the university’s 

Advanced Computing Center for Research and Education (ACCRE). Computations were 

performed on a combination of AMD Opteron and Intel Nehalem processor nodes. All 

Rosetta-related protocols were conducted using Rosetta version 3.4. 

!
Comparative modeling 

FASTA file of GHSR1a 

>gi|38455410|ref|NP_940799.1|)growth)hormone)secretagogue)receptor))
MWNATPSEEPGFNLTLADLDWDASPGNDSLGDELLQLFPAPLLAGVTATCVALFVVGIAGNLLTMLVVSR)
FRELRTTTNLYLSSMAFSDLLIFLCMPLDLVRLWQYRPWNFGDLLCKLFQFVSESCTYATVLTITALSVE)
RYFAICFPLRAKVVVTKGRVKLVIFVIWAVAFCSAGPIFVLVGVEHENGTDPWDTNECRPTEFAVRSGLL)
TVMVWVSSIFFFLPVFCLTVLYSLIGRKLWRRRRGDAVVGASLRDQNHKQTVKMLAVVVFAFILCWLPFH)
VGRYLFSKSFEPGSLEIAQISQYCNLVSFVLFYLSAAINPILYNIMSKKYRVAVFRLLGFEPFSQRKLST)
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LKDESSRAWTESSINT)
Transmembrane span prediction 

#)Used)HMMTOP,)TMHMM,)JUFO9D,)and)OCTOPUS)servers.)Also)ran)Meiler)lab’s)
YUFOPM)(Jeff)Mendenhall):)
yufopm)GHSR1.fasta 

 

Threading of GHSR1a sequence on template structure 

#)See)Chapter)III)for)sequence)alignment)information.)
/sb/meiler/scripts/sequence_util/thread_pdb_from_alignment.py)&&template)
$TEMPLATE_NAME_FROM_ALIGNMENT)&&target)$TARGET_NAME_FROM_ALIGNMENT)&&chain)A)&
&align_format)clustal)
)
 

Preparation for making fragments 

make_fragments.pl)–id)GHSR1)–nofrags)GHSR1.fasta)

)

Generating fragments with Rosetta fragment picker 

&in:file:fasta))))))))))GHSR1.fasta)
&in:path:database)))))))rosetta&3.4/rosetta_database)
&in:file:vall)))))rosetta&3.4/rosetta_tools/fragment_tools/vall.jul19.2011.gz)
&frags:n_candidates)))))1000)
&frags:n_frags))))))))))200)
&frags:frag_sizes)))))))3)9)
&out:file:frag_prefix)))GHSR1_)
&frags:scoring:config)))GHSR1.cfg)
&in:file:checkpoint)))))GHSR1.checkpoint)
&frags:write_ca_coordinates)
&frags:describe_fragments)GHSR1_score)
&frags:ss_pred)GHSR1.psipred_ss2)psipred)GHSR1.jufo_ss)jufo)GHSR1.rdb)sam)
 
 
Generation of lipophilicity file 

rosetta_source/src/apps/public/membrane_abinitio/run_lips.pl)<fasta)file>)
<span)file>)<path)to)blastpgp>)<path)to)nr)database>)<path)to)alignblast.pl)
script>)
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GHSR1 disulfide definition 

116) 198)
GHSR1 spanfile 

TM)region)consensus)for)Homo)sapiens)GHSR1a)
7)366)
antiparallel)
n2c)
))43))))66))))43))))66)
))80)))100))))80)))100)
)120)))140)))120)))140)
)162)))181)))162)))181)
)212)))233)))212)))233)
)263)))282)))263)))282)
)304)))325)))304)))325)
 

Fill in density by building loops 

#options)file)
&database)/blue/meilerlab/apps/rosetta/rosetta&3.4/rosetta_database)
&loops:timer)#output)time)spent)in)seconds)for)each)loop)modeling)job)
&loops:fa_input)#input)structures)are)in)full)atom)format)
&in:fix_disulf)GHSR1.disulfide)#read)disulfide)connectivity)information)
&in:file:spanfile)GHSR1.span)
&in:file:lipofile)GHSR1.lips4)
&loops:relax)fastrelax)#does)a)minimization)of)the)structure)in)the)torsion)
space)
&loops:extended)true)#force)phi&psi)angles)to)be)set)to)180)degrees)
independent)of)loop)input)file)(recommended)for)production)runs))
&loops:frag_sizes)9)3)1)
&loops:frag_files)GHSR1.200.9mers)GHSR1.200.3mers)none)
&loops:remodel)quick_ccd)
&loops:refine)refine_kic)
&out:file:silent_struct_type)binary)#output)file)type)
&membrane:no_interpolate_Mpair)#)membrane)scoring)specification)
&membrane:Menv_penalties)#)turn)on)membrane)penalty)scores)
&score:weights)membrane_highres_Menv_smooth.wts)
)
#)command)line)
rosetta&3.4/rosetta_source/bin/loopmodel.default.linuxgccrelease)&database)
rosetta&3.4/rosetta_database)@fill_gaps.options)&s)GHSR1_on_"$TEMPLATE".pdb)&
loops:input_pdb)GHSR1_on_"$TEMPLATE".pdb)&loops:loop_file)
GHSR1_on_"$TEMPLATE"_init.loops)&out:file:silent)
GHSR1_on_"$TEMPLATE"_fillgaps.out)&out:file:scorefile)
GHSR1_on_"$TEMPLATE"_fillgaps.sc)&nstruct)25)
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Filter for building ECLs 

Filtered out models based on template 1U19 so that only took models with no 

chainbreaks within the top 10 by total score. 

Rebuilding extracellular loops 

#Options)file)
&database)rosetta&3.4/rosetta_database)
&loops:timer)#output)time)spent)in)seconds)for)each)loop)modeling)job)
&loops:fa_input)#input)structures)are)in)full)atom)format)
&in:fix_disulf)GHSR1.disulfide)#read)disulfide)connectivity)information)
&in:file:spanfile)GHSR1.span)
&in:file:lipofile)GHSR1.lips4)
&in:detect_disulf)true)#NEW)
&loops:relax)fastrelax)#does)a)minimization)of)the)structure)in)the)torsion)
space)
&loops:extended)true)#force)phi&psi)angles)to)be)set)to)180)degrees)
independent)of)loop)input)file)(recommended)for)production)runs))
&loops:frag_sizes)9)3)1)
&loops:frag_files)GHSR1.200.9mers)GHSR1.200.3mers)none)
&loops:ccd_closure)
&loops:remodel)quick_ccd)
&loops:refine)refine_kic)
&ex1)
&ex2))
&relax:membrane)#set)up)membrane)environment)for)relax)
&relax:fast)
&out:file:silent_struct_type)binary)#output)file)type)
&out:file:fullatom)#output)file)will)be)fullatom)
&membrane:no_interpolate_Mpair)#)membrane)scoring)specification)
&membrane:Menv_penalties)#)turn)on)membrane)penalty)scores)
&score:weights)membrane_highres_Menv_smooth.wts)
)
#Command)
rosetta&3.4/rosetta_source/bin/loopmodel.default.linuxgccrelease)&database))
rosetta&3.4/rosetta_database)@rebuild_ecl.options)&s)
GHSR1_on_"$TEMPLATE"_"$RANK".pdb)&loops:input_pdb)
GHSR1_on_"$TEMPLATE"_"$RANK".pdb)&loops:loop_file)GHSR1_on_"$TEMPLATE".loops)&
out:file:silent)GHSR1_on_"$TEMPLATE"_0"$RANK"_rebuild_ecl.out)&
out:file:scorefile)GHSR1_on_"$TEMPLATE"_0"$RANK"_rebuild_ecl.sc)&nstruct)20)
 

Selecting final model 

The final model was selected by choosing the lowest scoring model overall. 
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Folding of ghrelin in the Rosetta membrane environment 

FASTA file 

>GHSRg_renumber)
APLLAGVTATCVALFVVGIAGNLLTMLVVSRFRELRTTTNLYLSSMAFSDLLIFLCMPLDLVRLWQYRPWNFGDLLCK
LFQFVSESCTYATVLTITALSVERYFAICFPLRAKVVVTKGRVKLVIFVIWAVAFCSAGPIFVLVGVEHENGTDPWDT
NECRPTEFAVRSGLLTVMVWVSSIFFFLPVFCLTVLYSLIGRKLWRRRRGDAVVGASLRDQNHKQTVKMLAVVVFAFI
LCWLPFHVGRYLFSKSFEPGSLEIAQISQYCNLVSFVLFYLSAAINPILYNIMSKKYRVAVFRLLGFGSSFLSPEHQR
VQQRKESKKPPAKLQPR)
 

Making fragments 

 See above section on making fragments for the receptor. 

Spanfile 

TM)region)consensus)for)Homo)sapiens)GHSR1)with)ghrelin)
7)329)
antiparallel)
n2c)
)))4))))27)))))4))))27)
))41))))61))))41))))61)
))81)))101))))81)))101)
)123)))142)))123)))142)
)173)))194)))173)))194)
)224)))243)))224)))243)
)265)))286)))265)))286)
 

Lipophilicity file 

 Generated as before but with the spanfile directly above. 

 

Rigid file (for Topology Broker) 

RIGID)1)301)
 

Topology broker setup file 

CLAIMER)MembraneTopologyClaimer)
END_CLAIMER)
CLAIMER)RigidChunkClaimer)
NO_USE_INPUT_POSE)
PDB)receptor.pdb)
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REGION_FILE))GHSRg.rigid)
END_CLAIMER)
 

Options file for de novo folding 

&in)
) &file)
) ) &native)receptor.pdb)
) ) &fasta)GHSRg.fasta)
) ) &frag3)GHSRg.200.3mers)
) ) &frag9)GHSRg.200.9mers)
) ) &spanfile)GHSRg.span)
) ) &lipofile)GHSRg.lips4)
&residues)
) &patch_selectors)CENTROID_HA)
&broker)
) &setup)GHSRg.tpb)
&run)
) &protocol)broker)
&score)
) &find_neighbors_3dgrid)
) &weights)membrane_highres_Menv_smooth)
&membrane)
) &no_interpolate_Mpair)
) &Menv_penalties)
&abinitio)
) &membrane)
) &rg_reweight)0.00)
) &stage2_patch)score_membrane_s2.wts_patch)
) &stage3a_patch)score_membrane_s3a.wts_patch)
) &stage3b_patch)score_membrane_s3b.wts_patch)
) &stage4_patch)score_membrane_s4.wts_patch)
&relax)
) &membrane)
) &fast)
&ex1)
&ex2)
&out)
) &output)
) &file)
) ) &fullatom)
) ) &silent_struct_type)binary)
&overwrite)
 

De novo command line 

rosetta&3.4/rosetta_source/bin/minirosetta.static.linuxgccrelease)&database)
rosetta&3.4/rosetta_database/)@fold_GHSRg.flags)&out::nstruct)${NSTRUCT})&
out:file:silent)GHSRg.out)&out:file:scorefile)output/GHSRg.sc)
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Analysis and ensemble selection 

Filter by proximity to membrane 

#XML)file)

<dock_design>)
))))<SCOREFXNS>)#defines)non&standard)score)functions)
))))</SCOREFXNS>)
))))<FILTERS>)
))))))))<MembraneDepth)name="membrane_depth")residue=304)depth_lb=48)
depth_ub=60/>)###)this)covers)polar)region.)Membrane)is)0&60)(inner)to)outer))
))))</FILTERS>)
))))<MOVERS>)
))))</MOVERS>)
))))<PROTOCOLS>)
))))))))<Add)filter_name=membrane_depth/>)
))))</PROTOCOLS>)
</dock_design>#

#command)

Rosetta/main/source/bin/rosetta_scripts.mpi.linuxgccrelease)&database)
Rosetta/main/database/)&in:file:l)pdb.ls)&parser:protocol)test.xml)&
out:file:score_only)&in:file:spanfile)GHSRg.span)&in:file:lipofile)GHSRg.lips4)
&membrane:no_interpolate_Mpair)&membrane:Menv_penalties)&out:file:scorefile)
MembraneDepth.sc)&out:no_nstruct_label)>&)MembraneDepth.log)&)
)

Run PROSHIFT and format for further analysis 

proshift.exe)${pdb})${pdb}.pro)303)6)
)
grep)SHIFT)${pro})|)grep)&v)PROSHIFT)>)${pro}.cs)
 

Run SPARTA+ and format for further analysis 

sparta/SPARTA+/sparta+)&in)input.pdb)&ref)GHSRg.tab)&out)outfile.out)&outS)
outfile.outstruct)&outCS)outfile.outcs)&offset)
)
tail)&n55)outfile.outcs)>)outfile.outcs.tmp)
)
cat)outfile.outcs.tmp)|)awk)'{print("SHIFT))))"NR"\t"$3"\t"$2")
A\t"$1"\t"$6"\tppm)+&)"$9")ppm")}')>)final.sparta.cs.out)
Run SHIFTX 

shiftx/./shiftx)1)${pdb})${pdb}.shiftx)>&)${pdb}_shiftx.log)
head)&n30)${pdb}.shiftx)|)tail)&n28)>)${pdb}.shiftx.tmp)
ls)*.shiftx.tmp)>)shiftx.ls)
./shiftx_to_proshift.py)&i)shiftx.ls)&&suffix)cs)–shiftx)
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Run SHIFTX2 

python)shiftx2&v107&linux/shiftx2.py)&i)${pdb})&f)TABULAR)&p)6)&t)303)>&)
${pdb}_shiftx2.log)
head)&n30)${pdb}.cs)|)tail)&n28)>)${pdb}.cs.shiftx2)
ls)*.shiftx2)>)shiftx2.ls)
./shiftx_to_proshift.py)&i)shiftx2.ls)&&suffix)cs)&&shiftx2)
 

Compare predicted chemical shifts to experimental chemical shifts 

#)list)all)predicted)chemical)shift)files)(one)method)at)a)time))
ls)*.cs)>)cs.ls)
awk)'{system("/home/hirstsj/scripts/compare_cs.py)&&exp_cs)GHSRg.tab.sd)&&
pred_cs)")$1)")&&outfile)")$1)".out)&&summary)&&no_sd)&&carbon_scale_factor)
0.25")}')cs.ls)
)
ls)*.cs.out.summary)>>)all_outputs.ls)
)
foreach)file)(`cat)all_outputs.ls`))

grep)&H)&v)MaxDiff)${file})|)awk)
'{split($1,a,":");print(a[1]"\t"a[2]"\t"$2"\t"$3"\t"$4"\t"$5"\t"$6"\t"$7"\t"$8
"\t"$9"\t"$10"\t"$11"\t"$12"\t"$13"\t"$14"\t"$15"\t"$16)}')|)awk)
'{split($1,a,".");print(a[1]"\t"$2"\t"$3"\t"$4"\t"$5"\t"$6"\t"$7"\t"$8"\t"$9"\
t"$10"\t"$11"\t"$12"\t"$13"\t"$14"\t"$15"\t"$16)}')>>)all_outputs.txt)
end)
)
echo)"PDB)))#yes))))#no)AvgDiff)sdDiff))MaxDiff)MaxRes#)MaxResn)MaxAtom)
MaxExpCS))))MaxExpLB))))MaxExpUB))))MaxProCS))))MaxProLB))))MaxProUB))))RMSD")
>)GHSRg_compare_cs.out)
)
cat)all_outputs.txt)>>)GHSRg_compare_cs.out)
 

Input experimental chemical shifts 

#))))1)G))))C))167.040) 0.4)
#))))1)G)))CA)))40.900) 0.2)
))))2)S))))C))172.100) 0.2)
))))2)S)))CA)))55.600) 0.5)
))))2)S)))CB)))62.500) 0.6)
))))3)S)))CA)))53.580) 0.10)
))))3)S)))CB)))63.270) 0.21)
))))3)S)))HA))))4.488) 9999)
))))4)F))))C))172.100) 0.2)
))))4)F)))CA)))55.800) 1.2)
))))4)F)))CB)))37.000) 0.8)
))))5)L))))C))174.800) 0.4)
))))5)L)))CA)))51.900) 0.2)
))))5)L)))CB)))40.700) 0.5)
))))6)S))))C))169.300) 0.5)
))))6)S)))CA)))54.250) 0.5)
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))))6)S)))CB)))61.250) 0.6)
))))7)P))))C))174.900) 1.2)
))))7)P)))CA)))61.250) 0.5)
))))7)P)))CB)))30.800) 1.7)
))))8)E))))C))174.100) 0.2)
))))8)E)))CA)))54.300) 0.9)
))))8)E)))CB)))25.800) 0.9)
)))10)Q))))C))177.300) 9999)
)))10)Q)))CA)))55.420) 0.35)
)))10)Q)))CB)))27.010) 0.02)
)))10)Q)))HA))))4.130) 9999)
)))12)V))))C))174.100) 0.2)
)))12)V)))CA)))60.300) 0.9)
)))12)V)))CB)))30.000) 9999)
)))13)Q))))C))173.350) 0.26)
)))13)Q)))CA)))53.530) 0.18)
)))13)Q)))CB)))26.950) 0.12)
)))13)Q)))HA))))4.310) 9999)
)))14)Q))))C))173.500) 9999)
)))14)Q)))CA)))53.440) 0.14)
)))14)Q)))CB)))26.950) 0.05)
)))14)Q)))HA))))4.296) 9999)
)))18)S))))C))171.760) 0.16)
)))18)S)))CA)))55.800) 0.1)
)))18)S)))CB)))61.300) 0.2)
)))18)S)))HA))))4.440) 9999)
)))21)P))))C))177.700) 9999)
)))21)P)))CA)))58.980) 0.09)
)))21)P)))CB)))28.320) 0.04)
)))21)P)))HA))))4.720) 9999)
)))22)P))))C))173.670) 0.18)
)))22)P)))CA)))60.430) 0.25)
)))22)P)))CB)))29.410) 0.03)
)))22)P)))HA))))4.440) 9999)
)))23)A))))C))175.500) 0.5)
)))23)A)))CA)))50.500) 0.6)
)))23)A)))CB)))17.000) 9999)
)))27)P))))C))173.320) 0.03)
)))27)P)))CA)))60.770) 0.021)
)))27)P)))CB)))29.420) 0.14)
)))27)P)))HA))))4.430) 9999)
 

Run ensemble selection script 

./find_best_ensemble.py)&&ncycles)5000000)&&min_ensemble_size)10)&&
max_ensemble_size)30)&&outfile)outfile.out)
/directory/to/predicted/cs/in/proshift/format/ending/in/*.cs)
 

Run DSSP and compute phi/psi angles for models 

./run_dssp.py)&i)pdb.ls)&&all)all.out)
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Find polyproline II helix residues 

Ls)*.dssp)>)dssp.ls)
foreach)file)()`cat)dssp.ls`)))

awk)'{if(($3>=&104.0)&&)$3<=&46.0))&&)($4>=116.0)&&)$4<=174.0))&&)
($2=="&"))print}')${file})>)${file}.pp2)
end)
)
) )
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APPENDIX D 

 

PROTOCOL CAPTURE FOR CHAPTER IV: 
ROSETTAEPR: AN INTEGRATED TOOL FOR PROTEIN STRUCTURE 

DETERMINATION FROM SPARSE EPR DATA 
 

This appendix contains the protocol capture for the modeling work published in 

(Hirst, Alexander, Mcaourab, and Meiler, 2011), some of which is found in the 

manuscript’s Supplemental Information. Further details are also available in the main text 

(Chapter IV). 

 

Computational details 

All Rosetta-related protocols were conducted using Rosetta version 3 revision 

number 34586. All models were generated by independent simulations using Vanderbilt 

University’s Center for Structural Biology computing cluster and the university’s 

Advanced Computing Center for Research and Education (ACCRE). Computations were 

performed on a combination of AMD Opteron and Intel Nehalem processor nodes. 

  

Input files 

FASTA file 

>)2LZM)Sequence)
ITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRCALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAK
SRWYNQTPNRAKRVITTFRTGTWDAYKNL)
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Constraints file used in de novo folding with RosettaEPR 

AtomPair))))))))CB))))))32))))))CB))))))36))))))SPLINE))EPR_DISTANCE))))16.0))))4.0)))))0.5)
AtomPair))))))))CB))))))59))))))CB))))))74))))))SPLINE))EPR_DISTANCE))))19.0))))4.0)))))0.5)
AtomPair))))))))CB))))))62))))))CB))))))71))))))SPLINE))EPR_DISTANCE))))19.0))))4.0)))))0.5)
AtomPair))))))))CB))))))62))))))CB))))))74))))))SPLINE))EPR_DISTANCE))))25.0))))4.0)))))0.5)
AtomPair))))))))CB))))))63))))))CB))))))74))))))SPLINE))EPR_DISTANCE))))14.0))))4.0)))))0.5)
AtomPair))))))))CB))))))66))))))CB))))))74))))))SPLINE))EPR_DISTANCE))))23.0))))4.0)))))0.5)
AtomPair))))))))CB))))))83))))))CB))))))90))))))SPLINE))EPR_DISTANCE))))13.0))))4.0)))))0.5)
AtomPair))))))))CB))))))83))))))CB))))))94))))))SPLINE))EPR_DISTANCE))))18.0))))4.0)))))0.5)
AtomPair))))))))CB))))))8)))))))CB))))))19))))))SPLINE))EPR_DISTANCE))))21.4))))4.0)))))0.5)
AtomPair))))))))CB))))))8)))))))CB))))))78))))))SPLINE))EPR_DISTANCE))))46.3))))4.0)))))0.5)
AtomPair))))))))CB))))))4)))))))CB))))))78))))))SPLINE))EPR_DISTANCE))))47.2))))4.0)))))0.5)
AtomPair))))))))CB))))))8)))))))CB))))))29))))))SPLINE))EPR_DISTANCE))))37.4))))4.0)))))0.5)
AtomPair))))))))CB))))))4)))))))CB))))))29))))))SPLINE))EPR_DISTANCE))))37.5))))4.0)))))0.5)
AtomPair))))))))CB))))))4)))))))CB))))))23))))))SPLINE))EPR_DISTANCE))))34.0))))4.0)))))0.5)
AtomPair))))))))CB))))))8)))))))CB))))))23))))))SPLINE))EPR_DISTANCE))))26.5))))4.0)))))0.5)
AtomPair))))))))CB))))))23))))))CB))))))78))))))SPLINE))EPR_DISTANCE))))36.8))))4.0)))))0.5)
AtomPair))))))))CB))))))31))))))CB))))))43))))))SPLINE))EPR_DISTANCE))))6.0)))))4.0)))))0.5)
AtomPair))))))))CB))))))32))))))CB))))))39))))))SPLINE))EPR_DISTANCE))))6.0)))))4.0)))))0.5)
AtomPair))))))))CB))))))29))))))CB))))))62))))))SPLINE))EPR_DISTANCE))))15.0))))4.0)))))0.5)
AtomPair))))))))CB))))))70))))))CB))))))94))))))SPLINE))EPR_DISTANCE))))14.0))))4.0)))))0.5)
AtomPair))))))))CB))))))70))))))CB))))))97))))))SPLINE))EPR_DISTANCE))))13.0))))4.0)))))0.5)
AtomPair))))))))CB))))))74))))))CB))))))93))))))SPLINE))EPR_DISTANCE))))13.0))))4.0)))))0.5)
AtomPair))))))))CB))))))74))))))CB))))))94))))))SPLINE))EPR_DISTANCE))))9.0)))))4.0)))))0.5)
AtomPair))))))))CB))))))74))))))CB))))))97))))))SPLINE))EPR_DISTANCE))))10.0))))4.0)))))0.5)
AtomPair))))))))CB))))))77))))))CB))))))94))))))SPLINE))EPR_DISTANCE))))9.0)))))4.0)))))0.5)
)

Constraints file used in de novo folding with bounded restraints 

AtomPair))))))))CB))))))32))))))CB))))))36))))))BOUNDED)0.5)))))21.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))59))))))CB))))))74))))))BOUNDED)0.0)))))31.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))62))))))CB))))))71))))))BOUNDED)2.5)))))25.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))62))))))CB))))))74))))))BOUNDED)7.5)))))32.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))63))))))CB))))))74))))))BOUNDED)0.0)))))19.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))66))))))CB))))))74))))))BOUNDED)5.5)))))30.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))83))))))CB))))))90))))))BOUNDED)0.0)))))22.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))83))))))CB))))))94))))))BOUNDED)0.0)))))29.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))8)))))))CB))))))19))))))BOUNDED)6.1)))))26.7))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))8)))))))CB))))))78))))))BOUNDED)31.6))))51))))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))4)))))))CB))))))78))))))BOUNDED)32.5))))51.9))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))8)))))))CB))))))29))))))BOUNDED)22.2))))42.6))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))4)))))))CB))))))29))))))BOUNDED)23))))))42))))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))4)))))))CB))))))23))))))BOUNDED)19.3))))38.7))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))8)))))))CB))))))23))))))BOUNDED)10.2))))32.8))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))23))))))CB))))))78))))))BOUNDED)23.3))))40.3))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))31))))))CB))))))43))))))BOUNDED)0.0)))))11.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))32))))))CB))))))39))))))BOUNDED)0.0)))))11.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))29))))))CB))))))62))))))BOUNDED)0.0)))))20.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))70))))))CB))))))94))))))BOUNDED)0.0)))))18.9))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))70))))))CB))))))97))))))BOUNDED)0.0)))))21.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))74))))))CB))))))93))))))BOUNDED)0.0)))))21.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))74))))))CB))))))94))))))BOUNDED)0.0)))))19.5))))1.0)))))NOE)))));dist)
AtomPair))))))))CB))))))74))))))CB))))))97))))))BOUNDED)0.0)))))18.5))))1.0)))))NOE)))));dist)
AtomPair########CB######77######CB######94######BOUNDED#0.0#####17.5####1.0#####NOE#####;dist)
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De novo folding options file 

10,000 T4-lysozyme models with 25 EPR distance restraints scored according to 

the RosettaEPR knowledge-based potential 

&abinitio::increase_cycles)2.5)
&fold_cst::force_minimize)
&constraints::cst_file)./2LZM_dist_w4.cst)
&constraints::cst_weight)1.0)
&constraints::epr_distance)
&constraints::viol)
&constraints::viol_level)101)
&frags::scoring)
&frags::picking::selecting_rule)BestTotalScoreSelector)
&in::path::database)minirosetta_database_r34586)
&in::file::native)./2LZM_.pdb)
&in::file::fasta)./2LZM_.fasta))
&in::file:frag3)./aa2LZM_03_05.200_v1_3)
&in::file::frag9)./aa2LZM_09_05.200_v1_3)
&out::output)
&out::prefix)2LZM_)
&out::file::silent)./2LZM_.out)
&out::file::silent_struct_type)binary)
&out::file::scorefile)./2LZM_.sc)
&out::nstructs)10000)
&out::show_accessed_options)

!
Full-atom refinement options file 

One T4-lysozyme de novo folded model with no distance restraints, resulting in 

ten new models complete with amino acid side-chains 

&relax::sequence)
&in::path::database)./minirsetta_database_r34586)
&in::file::native)./2LZM_.pdb)
&in::file::fullatom)
&corrections::correct)
&out::output)
&out::prefix)2LZM_fa_)
&out::file::silent)./2LZM_fa.out)
&out::file::silent_struct_type)binary)
&out::file::scorefile)./2LZM_fa.fsc)
&out::nstructs)10)
&out::show_accessed_options)
!
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Command lines 

Fragment generation 

make_fragments.pl)&id)2LZM_)&nohoms)2LZM_.fasta)

 

De novo folding 

/bin/AbinitioRelax.linuxgccrelease)@2LZM_w4_folding.options)
 

Full-atom refinement 

/bin/relax.linuxgccrelease)@2LZM_rlx.options)
 

RMSD histogram distribution 

perl)Smbins_RMSD_dist_from_score.pl)<file)with)rmsds>)<rmsd)col.)#>)
) )
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APPENDIX E 

 

PROTOCOL CAPTURE FOR CHAPTER V: 
ROSETTATMH:  MEMBRANE PROTEIN STRUCTURE ELUCIDATION BY 

COMBINING EPR DISTANCE RESTRAINTS WITH ASSEMBLY OF 
TRANSMEMBRANE HELICES 

 

This appendix contains the protocol capture for the modeling performed for the 

Chapter V, which is based on the manuscript submitted to PLoS ONE of the same title by 

Stephanie DeLuca, Sam DeLuca, Andrew Leaver-Fay, and Jens Meiler 

!
Preparation for folding 

Parameter optimization / testing PDBs 

1FX8A,)1KPLA,)1PY6A,)1U19A,)3B60A,)3GIAA,)3HD6A,)3HFXA,)3O0RB)
 

Benchmark set 

1FX8A,1IWGA,1J4NA,1KPLA,1OCCC,1OKCA,1PV6A,1PY6A,1PY7A,1RHZA,1U19A,2BG9A,2BL2A,
2BS2A,2IC8A,2K73A,2KSFA,2KSYA,2NR9A,2PNOA,2XQ2A,2XUTA,2YVXA,2ZW3A,3B60A,3GIAA,
3HD6A,3HFXA,3KCUA,3KJ6A,3O0RB,3P5NA,3SYOA,4A2NB)
 

FASTA files 

1FX8A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
TLKGQCIAEFLGTGLLIFFGVGCVAALKVAGASFGQWEISVIWGLGVAMA)
IYLTAGVSGAHLNPAVTIALWLFACFDKRKVIPFIVSQVAGAFCAAALVY)
GLYYNLFFDFEQTHHIVRGSVESVDLAGTFSTYPNPHINFVQAFAVEMVI)
TAILMGLILALTDDGNGVPRGPLAPLLIGLLIAVIGASMGPLTGFAMNPA)
RDFGPKVFAWLAGWGNVAFTGGRDIPYFLVPLFGPIVGAIVGAFAYRKLI)
GRHL)
)
1IWGA)
>)1IWGA)
SIHEVVKTLVEAIILVFLVMYLFLQNFRATLIPTIAVPVVLLGTFAVLAAFGFSINTLTMFGMVLAIGLLVDDAIVVV
ENVERVMAEEGLPPKEATRKSMGQIQGALVGIAMVLSAVFVPMAFFGGSTGAIYRQFSITIVSAMALSVLVALILTPA
LCATMLK)
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1J4NA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
EFKKKLFWRAVVAEFLAMILFIFISIGSALGFHYPIKSNQTTGAVQDNVK)
VSLAFGLSIATLAQSVGHISGAHLNPAVTLGLLLSCQISVLRAIMYIIAQ)
CVGAIVATAILSGITS)
)
1KPLA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
TPLAILFMAAVVGTLTGLVGVAFEKAVSWVQNMRIGALVQVADHAFLLWP)
LAFILSALLAMVGYFLVRKFAPEAGGSGIPEIEGALEELRPVRWWRVLPV)
KFIGGMGTLGAGMVLGREGPTVQIGGNLGRMVLDVFRMRSAEARHTLLAT)
GAAAGLSAAFNAPLAGILFIIEEMRPQFRYNLISIKAVFTGVIMSSIVFR)
IFN)
)
1OCCC)
>BCL):C|PDBID|CHAIN|SEQUENCE)
HTPAVQKGLRYGMILFIISEVLFFTGFFWAFYHSSLAPTPELGGCWPPTG)
IHPLNPLEVPLLNTSVLLASGVSITWAHHSLMEGDRKHMLQALFITITLG)
VYFTLLQASEYYEAPFTISDGVYGSTFFVATGFHGLHVIIGSTFLIVCFF)
RQLKFHFTSNHHFGFEAGAWYWHFVDVVWLFLYVSIYWWGS)
)
1OKCA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
DQALSFLKDFLAGGVAAAISKTAVAPIERVKLLLQVQHASKQISAEKQYK)
GIIDCVVRIPKEQGFLSFWRGNLANVIRYFPTQALNFAFKDKYKQIFLGG)
VDRHKQFWRYFAGNLASGGAAGATSLCFVYPLDFARTRLAADVGKGAAQR)
EFTGLGNCITKIFKSDGLRGLYQGFNVSVQGIIIYRAAYFGVYDTAKGML)
PDPKNVHIIVSWMIAQTVTAVAGLVSYPFDTVRRRMMMQSGRKGADIMYT)
GTVDCWRKIAKDEGPKAFFKGAWSNVLRGMGGAFVLVLYDEI)
)
1PV6A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
MYYLKNTNFWMFGLFFFFYFFIMGAYFPFFPIWLHDINHISKSDTGIIFA)
AISLFSLLFQPLFGLLSDKLGLRKYLLWIITGMLVMFAPFFIFIFGPLLQ)
YNILVGSIVGGIYLGFCFNAGAPAVEAFIEKVSRRSNFEFGRARMFGCVG)
WALGASIVGIMFTINNQFVFWLGSGCALILAVLLFFAKT)
)
1PY6A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
TGRPEWIWLALGTALMGLGTLYFLVKGMGVSDPDAKKFYAITTLVPAIAF)
TMYLSMLLGYGLTMVPFGGEQNPIYWARYADWLFTTPLLLLDLALLVDAD)
QGTILALVGADGIMIGTGLVGALTKVYSYRFVWWAISTAAMLYILYVLFF)
GFTSKAESMRPEVASTFKVLRNVTVVLWSAYPVVWLIGSEGAGIVPLNIE)
TLLFMVLDVSAKVGFGLILLRSRAIFG)
)
1PY7A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
PIYWARYADWLFTTPLLLLDLALLVDADQGTILALVGADGIMIGTGLVGA)
LTKVYSYRFVWWAISTAAMLYILYVLFFGFTSKAESMRPEVASTFKVLRN)
VTVVLWSAYPVVWLIGSEGAGIV)
)
1RHZA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
FKEKLKWTGIVLVLYFIMGCIDVYTAGAQIPAIFEFWQTITASRIGTLIT)
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LGIGPIVTAGIIMQLLVGSGIIQMDLSIPENRALFQGCQKLLSIIMCFVE)
AVLFVGAGAFGILTPLLAFLVIIQIAFGSIILIYLDEIVSKYGIGSGIGL)
FIAAGVSQTIFVGALG)
)
1U19A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
EPWQFSMLAAYMFLLIMLGFPINFLTLYVTVQHKKLRTPLNYILLNLAVA)
DLFMVFGGFTTTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLA)
IERYVVVCKPMSNFRFGENHAIMGVAFTWVMALACAAPPLVGWSRYIPEG)
MQCSCGIDYYTPHEETNNESFVIYMFVVHFIIPLIVIFFCYGQLVFTVKE)
AAAQQQESATTQKAEKEVTRMVIIMVIAFLICWLPYAGVAFYIFTHQGSD)
FGPIFMTIPAFFAKTSAVYNPVIYIMMN)
)
2BG9A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
PLYFVVNVIIPCLLFSFLTVLVFYLPTDSGEKMTLSISVLLSLTVFLLVI)
VELIPSTSSAVPLIGKYMLFTMIFVISSIIVTVVVINTHHR)
)
2BL2A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
MVFAVLAMATATIFSGIGSAKGVGMTGEAAAALTTSQPEKFGQALILQLL)
PGTQGLYGFVIAFLIFINLGSDMSVVQGLNFLGASLPIAFTGLFSGIAQG)
KVAAAGIQILAKKPEHATKGIIFAAMVETYAILGFVISFLLVLNA)
)
2BS2A)
>BCL):C|PDBID|CHAIN|SEQUENCE)
RMPAKLDWWQSATGLFLGLFMIGHMFFVSTILLGDNVMLWVTKKFELDFI)
FEGGKPIVVSFLAAFVFAVFIAHAFLAMRKFPINYRQYLTFKTHKDLMRH)
GDTTLWWIQAMTGFAMFFLGSVHLYIMMTQPQTIGPVSSSFRMVSEWMWP)
LYLVLLFAVELHGSVGLYRLAVKWGWFDGETPDKTRANLKKLKTLMSAFL)
IVLGLLTFGAYVKKGLE)
)
2IC8A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
ERAGPVTWVMMIACVVVFIAMQILGDQEVMLWLAWPFDPTLKFEFWRYFT)
HALMHFSLMHILFNLLWWWYLGGAVEKRLGSGKLIVITLISALLSGYVQQ)
KFSGPWFGGLSGVVYALMGYVWLRGERDPQSGIYLQRGLIIFALIWIVAG)
WFDLFGMSMANGAHIAGLAVGLAMAFVDSLNA)
)
2K73A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
MLRFLNQASQGRGAWLLMAFTALALELTALWFQHVMLLKPCVLSIYERAA)
LFGVLGAALIGAIAPKTPLRYVAMVIWLYSAFRGVQLTYEHTMLQLYPSP)
FATSDFMVRFPEWLPLDKWVPQVFVASGDCAERQWDFLGLEMPQWLLGIF)
IAYLIVAVLVVISQ)
)
2KSFA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
MVQIQGSVVAAALSAVITLIAMQWLMAFDAANLVMLYLLGVVVVALFYGR)
WPSVVATVINVVSFDLFFIAPRGTLAVSDVQYLLTFAVMLTVGLVIGNLT)
AGVRYQA)
)
2KSYA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
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MVGLTTLFWLGAIGMLVGTLAFAWAGRDAGSGERRYYVTLVGISGIAAVA)
YAVMALGVGWVPVAERTVFVPRYIDWILTTPLIVYFLGLLAGLDSREFGI)
VITLNTVVMLAGFAGAMVPGIERYALFGMGAVAFIGLVYYLVGPMTESAS)
QRSSGIKSLYVRLRNLTVVLWAIYPFIWLLGPPGVALLTPTVDVALIVYL)
DLVTKVGFGFIALDAAATLRAEH)
)
2NR9A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
FLAQQGKITLILTALCVLIYIAQQLGFEDDIMYLMHYPAYEEQDSEVWRY)
ISHTLVHLSNLHILFNLSWFFIFGGMIERTFGSVKLLMLYVVASAITGYV)
QNYVSGPAFFGLSGVVYAVLGYVFIRDKLNHHLFDLPEGFFTMLLVGIAL)
GFISPLFGVEMGNAAHISGLIVGLIWGFIDSKLRKNSLELVP)
)
2PNOA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
KDEVALLAAVTLLGVLLQAYFSLQVISARRAFRVSPPLTTGPPEFERVYR)
AQVNCSEYFPLFLATLWVAGIFFHEGAAALCGLVYLFARLRYFQGYARSA)
QLRLAPLYASARALWLLVALAALGLLAHFL)
)
2XQ2A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
SFIDIMVFAIYVAIIIGVGLWVSRDKKGTQKSTEDYFLAGKSLPWWAVGA)
SLIAANISAEQFIGMSGSGYSIGLAIASYEWMSAITLIIVGKYFLPIFIE)
KGIYTIPEFVEKRFNKKLKTILAVFWISLYIFVNLTSVLYLGGLALETIL)
GIPLMYSILGLALFALVYSIYGGLSAVVWTDVIQVFFLVLGGFMTTYMAV)
SFIGGTDGWFAGVSKMVDAAPGHFEMILDQSNPQYMNLPGIAVLIGGLWV)
ANLYYWGFNQYIIQRTLAAKSVSEAQKGIVFAAFLALIVPFLVVLPGIAA)
YVITSDPQLMASLGDIAATNLPSAANADKAYPWLTQFLPVGVKGVVFAAL)
AAAIVSSLASMLNSTATIFTMDIYKEYISPDSGDHKLVNVGRTAAVVALI)
IAALIAPMLGGIGQCFQYIQEYTGLVSPGILAVFLLGLFWKKTTSKGAII)
GVVASIPFALFLKFMPLSMPFMDQMLYTLLFTMVVIAFTSLSTSINDDDP)
KGISVTSSMFVTDRSFNIAAYGIMIVLAVLYTLFWVNADAEITLIIFGVM)
AGVIGTILLISYGIK)
)
2XUTA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
QIPYIIASEACERFSFYGMRNILTPFLMTALLLSIPEELRGAVAKDVFHS)
FVIGVYFFPLLGGWIADRFFGKYNTILWLSLIYCVGHAFLAIFEHSVQGF)
YTGLFLIALGSGGIKPLVSSFMGDQFDQSNKSLAQKAFDMFYFTINFGSF)
FASLSMPLLLKNFGAAVAFGIPGVLMFVATVFFWLGRKRYIHMPPEPKDP)
HGFLPVIRSALLTKVEGKGNIGLVLALIGGVSAAYALVNIPTLGIVAGLC)
CAMVLVMGFVGAGASLQLERARKSHPDAAVDGVRSVLRILVLFALVTPFW)
SLFDQKASTWILQANDMVKPQWFEPAMMQALNPLLVMLLIPFNNFVLYPA)
IERMGVKLTALRKMGAGIAITGLSWIVVGTIQLMMDGGSALSIFWQILPY)
ALLTFGEVLVSATGLEFAYSQAPKAMKGTIMSFWTLSVTVGNLWVLLANV)
SVKSPTVTEQIVQTGMSVTAFQMFFFAGFAILAAIVFA)
)
2YVXA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
HKLGAVDVPDLVYSEAGPVALWLARVRWLVILILTGMVTSSILQGFESVL)
EAVTALAFYVPVLLGTGGNTGNQSATLIIRALATRDLDLRDWRRVFLKEM)
GVGLLLGLTLSFLLVGKVYWDGHPLLLPVVGVSLVLIVFFANLVGAMLPF)
LLRRLGVDPALVSNPLVATLSDVTGLLIYLSVARLLLE)
)
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2ZW3A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
DWGTLQTILGGVNKHSTSIGKIWLTVLFIFRIMILVVAAKEVWGDEQADF)
VCNTLQPGCKNVCYDHYFPISHIRLWALQLIFVSTPALLVAMHVAYRRHE)
KKRKFIKGEIKSEFKDIEEIKTQKVRIEGSLWWTYTSSIFFRVIFEAAFM)
YVFYVMYDGFSMQRLVKCNAWPCPNTVDCFVSRPTEKTVFTVFMIAVSGI)
CILLNVTELCYLLIRY)
)
3B60A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
WQTFRRLWPTIAPFKAGLIVAGIALILNAASDTFMLSLLKPLLDDGFGKT)
DRSVLLWMPLVVIGLMILRGITSYISSYCISWVSGKVVMTMRRRLFGHMM)
GMPVAFFDKQSTGTLLSRITYDSEQVASSSSGALITVVREGASIIGLFIM)
MFYYSWQLSIILVVLAPIVSIAIRVVSKRFRSISKNMQNTMGQVTTSAEQ)
MLKGHKEVLIFGGQEVETKRFDKVSNKMRLQGMKMVSASSISDPIIQLIA)
SLALAFVLYAASFPSVMDSLTAGTITVVFSSMIALMRPLKSLTNVNAQFQ)
RGMAACQTLFAILDSEQEK)
)
3GIAA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
LKNKKLSLWEAVSMAVGVMIGASIFSIFGVGAKIAGRNLPETFILSGIYA)
LLVAYSYTKLGAKIVSNAGPIAFIHKAIGDNIITGALSILLWMSYVISIA)
LFAKGFAGYFLPLINAPINTFNIAITEIGIVAFFTALNFFGSKAVGRAEF)
FIVLVKLLILGLFIFAGLITIHPSYVIPDLAPSAVSGMIFASAIFFLSYM)
GFGVITNASEHIENPKKNVPRAIFISILIVMFVYVGVAISAIGNLPIDEL)
IKASENALAVAAKPFLGNLGFLLISIGALFSISSAMNATIYGGANVAYSL)
AKDGELPEFFERKVWFKSTEGLYITSALGVLFALLFNMEGVASITSAVFM)
VIYLFVILSHYILIDEVGGRKEIVIFSFIVVLGVFLLLLYYQWITNRFVF)
YGIIATFIGVLIFEIIYRKVTKRTFSNNMYVKS)
)
3HD6A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
SAWNTNLRWRLPLTCLLLQVIMVILFGVFVRYDFENEFYYRYPSFQDVHV)
MVFVGFGFLMTFLQRYGFSAVGFNFLLAAFGIQWALLMQGWFHFLQDRYI)
VVGVENLINADFCVASVCVAFGAVLGKVSPIQLLIMTFFQVTLFAVNEFI)
LLNLLKVKDAGGSMTIHTFGAYFGLTVTRILYRRNLEQSKERQNSVYQSD)
LFAMIGTLFLWMYWPSFNSAISYHGDSQHRAAINTYCSLAACVLTSVAIS)
SALHKKGKLDMVHIQNATLAGGVAVGTAAEMMLMPYGALIIGFVCGIIST)
LGFVYLTPFLESRLHIQDTCGINNLHGIPGIIGGIVGAVTAASDWTARTQ)
GKFQIYGLLVTLAMALMGGIIVGLILRLPFWGQPSDENCFEDAVYWEMPE)
GNS)
)
3HFXA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
PKVFFPPLIIVGILCWLTVRDLDAANVVINAVFSYVTNVWGWAFEWYMVV)
MLFGWFWLVFGPYAKKRLGNEPPEFSTASWIFMMFASCTSAAVLFWGSIE)
IYYYISTPPFGLEPNSTGAKELGLAYSLFHWGPLPWATYSFLSVAFAYFF)
FVRKMEVIRPSSTLVPLVGEKHAKGLFGTIVDNFYLVALIFAMGTSLGLA)
TPLVTECMQWLFGIPHTLQLDAIIITCWIILNAICVACGLQKGVRIASDV)
RSYLSFLMLGWVFIVSGASFIMNYFTDSVGMLLMYLPRMLFYTDPIAKGG)
FPQGWTVFYWAWWVIYAIQMSIFLARISRGRTVRELCFGMVLGLTASTWI)
LWTVLGSNTLLLIDKNIINIPNLIEQYGVARAIIETWAALPLSTATMWGF)
FILCFIATVTLVNACSYTLAMSTCREVRDGEEPPLLVRIGWSILVGIIGI)
VLLALGGLKPIQTAIIAGGCPLFFVNIMVTLSFIKDAKQNWKD)
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)
3KCUA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
KHPLKTFYLAITAGVFISIAFVFYITATTGTGTMPFGMAKLVGGICFSLG)
LILCVVCGADLFTSTVLIVVAKASGRITWGQLAKNWLNVYFGNLVGALLF)
VLLMWLSGEYMTANGQWGLNVLQTADHKVHHTFIEAVCLGILANLMVCLA)
VWMSYSGRSLMDKAFIMVLPVAMFVASGFEHSIANMFMIPMGIVIRDFAS)
PEFWTAVGSAPENFSHLTVMNFITDNLIPVTIGNIIGGGLLVGLTYWVIY)
LR)
)
3KJ6A)
>BCL):A|PDBID|CHAIN|SEQUENCE)
GMGIVMSLIVLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGL)
AVVPFGAAHILMKMWTFGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFA)
ITSPFKYQSLLTKNKARVIILMVWIVSGLTSFLPIQMHWYRATHQEAINC)
YAEETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQLQKID)
KSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTL)
CWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRI)
AFQELLCLRRS)
)
3O0RB)
>BCL):B|PDBID|CHAIN|SEQUENCE)
FASQAVAKPYFVFALILFVGQILFGLIMGLQYVVGDFLFPAIPFNVARMV)
HTNLLIVWLLFGFMGAAYYLVPEESDCELYSPKLAWILFWVFAAAGVLTI)
LGYLLVPYAGLARLTGNELWPTMGREFLEQPTISKAGIVIVALGFLFNVG)
MTVLRGRKTAISMVLMTGLIGLALLFLFSFYNPENLTRDKFYWWWVVHLW)
VEGVWELIMGAILAFVLVKITGVDREVIEKWLYVIIAMALISGIIGTGHH)
YFWIGVPGYWLWLGSVFSALEPLPFFAMVLFAFNTINRRRRDYPNRAVAL)
WAMGTTVMAFLGAGVWGFMHTLAPVNYYTHGTQLTAAHGHMAFYGAYAMI)
VMTIISYAMPRLRGIGEAMDNRSQVLEMWGFWLMTVAMVFITLFLSAAGV)
LQVWLQRMPADGAAMTFMATQDQLAIFYWLREGAGVVFLIGLVAYLLSF)
)
3P5NA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
QQNKRLITISMLSAIAFVLTFIKFPIPFLPPYLTLDFSDVPSLLATFTFG)
PVAGIIVALVKNLLNYLFSMGDPVGPFANFLAGASFLLTAYAIYKNKRST)
KSLITGLIIATIVMTIVLSILNYFVLLPLYGMIFNLADIANNLKVIIVSG)
IIPFNIIKGIVISIVFILLYRRLANFLKR)
)
3SYOA)
>BCL):A|PDBID|CHAIN|SEQUENCE)
YRYLTDIFTTLVDLKWRFNLLIFVMVYTVTWLFFGMIWWLIAYIRGDMDH)
IEDPSWTPCVTNLNGFVSAFLFSIETETTIGYGYRVITDKCPEGIILLLI)
QSVLGSIVNAFMVGCMFVKISQ)
)
4A2NB)
>BCL):B|PDBID|CHAIN|SEQUENCE)
MNENLWKICFIVMFIIWVFVRKVYGTRAMKNKSKKKVRPNFEKSLVFLNF)
IGMVFLPLTAVFSSYLDSFNINLPDSIRLFALIVTFLNIGLFTKIHKDLG)
NNWSAILEIKDGHKLVKEGIYKNIRHPMYAHLWLWVITQGIILSNWVVLI)
FGIVAWAILYFIRVPKEEELLIEEFGDEYIEYMGKTGRLFPK)
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Fragment files 

 The fragment files and secondary structure prediction files are the same ones used 

for the modeling published in reference (345). Information on how this input was 

generated can be found in the publication’s Supplemental Information. 

#)Example)using)1U19.)Was)repeated)for)all)nine)proteins)in)benchmark)set)
rosetta&3.4/rosetta_tools/fragment_tools/make_fragments.pl)&id)1U19A)&
psipredfile)1U19A.psipred_ss2)–jufofile)1U19A.jufo)&nosam)&verbose)1U19A.fasta)
&nohoms)&nojufo)–nopsipred)

!
Generation of spanfiles and lipophilicity files 

The spanfiles and lipophilicity files are the same ones used for the modeling 

published in reference (345). Information on how this input was generated can be found 

in the publication’s Supplemental Information. Span file generated using Rosetta version 

3.4 octopus2span.pl script and the SPOCTOPUS prediction as input. Lipophilicty files 

generated using run_lips.pl script. 

#)running)octopus2span.pl)
/rosetta&3.4/rosetta_source/src/apps/public/membrane_abinitio/octopus2span.pl)
<OCTOPUS)topology)file>)>)spanfile)
)
#)Example)spanfile)
TM)region)prediction)for)1U19A.octo_topo)predicted)using)OCTOPUS)
7)278)
antiparallel)
n2c)
)))7))))27)))))7))))27)
))43))))63))))43))))63)
))82)))102))))82)))102)
)120)))140)))120)))140)
)171)))191)))171)))191)
)221)))241)))221)))241)
)255)))275)))255)))275)
)
#)running)run_lips.pl)
/rosetta&3.4/rosetta_source/src/apps/public/membrane_abinitio/run_lips.pl)
1U19A.fasta)1U19A.span)/dir/blastpgp)/dir/alignblast.pl)

!
 



 

!
!

276!

Generation of Topology Broker “rigid” files for computing RMSD100SSE 

Taken from secondary structure element definitions from DSSP and are similar to 

that used for evaluation of models in reference (345). 

#)example)rigid)file)for)1U19)
RIGID) 2) 32)
RIGID) 39) 57)
RIGID) 59) 68)
RIGID) 74) 107)
RIGID) 118) 136)
RIGID) 168) 178)
RIGID) 181) 193)
RIGID) 210) 245)
RIGID) 253) 262)
RIGID) 269) 276)

)

Residues over which RMSD100SSE was computed 

All native PDBs were renumbered starting at residue 1, as are all models folded 

with Rosetta. This is what the following lists of residues assume. 

#)1FX8A)
RIGID) 2) 29)
RIGID) 36) 58)
RIGID) 64) 73)
RIGID) 78) 114)
RIGID) 121) 130)
RIGID) 140) 162)
RIGID) 173) 192)
RIGID) 199) 212)
RIGID) 227) 253)
)
#)1IWGA)
RIGID) 2) 23)
RIGID) 31) 51)
RIGID) 57) 85)
RIGID) 93) 122)
RIGID) 129) 160)
#)1J4NA)
RIGID) 2) 31)
RIGID) 48) 70)
RIGID) 76) 85)
RIGID) 90) 115)
#)1KPLA)
RIGID) 2) 40)
RIGID) 48) 70)
RIGID) 79) 87)
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RIGID) 97) 111)
RIGID) 117) 136)
RIGID) 141) 160)
RIGID) 163) 174)
RIGID) 185) 202)
)
#)1OCCA)
RIGID) 3) 36)
RIGID) 59) 83)
RIGID) 86) 113)
RIGID) 122) 154)
RIGID) 163) 189)
)
#)1OKCA)
RIGID) 3) 36)
RIGID) 72) 98)
RIGID) 107) 141)
RIGID) 175) 198)
RIGID) 208) 239)
RIGID) 272) 290)
)
#)1PV6A)
RIGID) 7) 38)
RIGID) 42) 70)
RIGID) 74) 101)
RIGID) 104) 136)
RIGID) 140) 164)
RIGID) 166) 186)
)
#)1PY6A)
RIGID) 5) 29)
RIGID) 33) 58)
RIGID) 76) 97)
RIGID) 101) 123)
RIGID) 127) 158)
RIGID) 161) 187)
RIGID) 197) 221)
)
#)1PY7A)
RIGID) 4) 25)
RIGID) 29) 51)
RIGID) 55) 86)
RIGID) 89) 115)
)
#)1RHZA)
RIGID) 2) 20)
RIGID) 53) 67)
RIGID) 79) 107)
RIGID) 115) 141)
RIGID) 147) 165)
)
#)1U19A)
RIGID) 2) 32)
RIGID) 39) 68)
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RIGID) 75) 108)
RIGID) 118) 140)
RIGID) 168) 193)
RIGID) 210) 245)
RIGID) 253) 277)
)
#)2BG9A)
RIGID) 2) 28)
RIGID) 33) 60)
RIGID) 65) 90)
)
#)2BL2A)
RIGID) 2) 36)
RIGID) 41) 68)
RIGID) 75) 112)
RIGID) 117) 144)
)
#)2BS2A)
RIGID) 2) 33)
RIGID) 56) 80)
RIGID) 101) 129)
RIGID) 148) 174)
RIGID) 182) 216)
)
#)2IC8A)
RIGID) 5) 24)
RIGID) 58) 79)
RIGID) 81) 103)
RIGID) 111) 127)
RIGID) 137) 152)
RIGID) 161) 180)
)
#)2K73A)
RIGID) 12) 36)
RIGID) 42) 63)
RIGID) 68) 96)
RIGID) 142) 163)
)
#)2KSFA)
RIGID) 7) 25)
RIGID) 35) 48)
RIGID) 55) 66)
RIGID) 80) 103)
)
#)2KSYA)
RIGID) 3) 28)
RIGID) 33) 56)
RIGID) 70) 91)
RIGID) 95) 117)
RIGID) 122) 152)
RIGID) 154) 180)
RIGID) 190) 222)
)
)
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#)2NR9A)
RIGID) 7) 24)
RIGID) 60) 81)
RIGID) 83) 105)
RIGID) 112) 129)
RIGID) 140) 151)
RIGID) 163) 189)
)
#)2PNOA)
RIGID) 5) 32)
RIGID) 43) 73)
RIGID) 75) 98)
RIGID) 101) 129)
)
#)2XQ2A)
RIGID) 2) 21)
RIGID) 45) 72)
RIGID) 74) 101)
RIGID) 116) 150)
RIGID) 154) 172)
RIGID) 178) 204)
RIGID) 247) 267)
RIGID) 272) 305)
RIGID) 340) 378)
RIGID) 384) 409)
RIGID) 415) 439)
RIGID) 445) 464)
RIGID) 471) 493)
RIGID) 514) 536)
RIGID) 538) 564)
)
#)2XUTA)
RIGID) 3) 29)
RIGID) 39) 69)
RIGID) 73) 92)
RIGID) 97) 125)
RIGID) 132) 162)
RIGID) 165) 187)
RIGID) 217) 240)
RIGID) 246) 270)
RIGID) 283) 316)
RIGID) 326) 345)
RIGID) 361) 388)
RIGID) 397) 421)
RIGID) 430) 451)
RIGID) 468) 487)
)
#)2YVXA)
RIGID) 18) 45)
RIGID) 61) 84)
RIGID) 92) 121)
RIGID) 127) 155)
RIGID) 164) 182)
)
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#)2ZW3A)
RIGID) 22) 47)
RIGID) 72) 105)
RIGID) 125) 155)
RIGID) 184) 215)
)
#)3B60A)
RIGID) 15) 45)
RIGID) 52) 101)
RIGID) 112) 154)
RIGID) 156) 204)
RIGID) 214) 262)
RIGID) 274) 314)
)
#)3GIAA)
RIGID) 8) 35)
RIGID) 38) 63)
RIGID) 82) 114)
RIGID) 120) 140)
RIGID) 142) 170)
RIGID) 182) 208)
RIGID) 215) 244)
RIGID) 268) 303)
RIGID) 319) 335)
RIGID) 338) 362)
RIGID) 371) 395)
RIGID) 397) 421)
)
#)3HD6A)
RIGID) 9) 29)
RIGID) 37) 62)
RIGID) 67) 92)
RIGID) 104) 124)
RIGID) 130) 155)
RIGID) 163) 181)
RIGID) 197) 219)
RIGID) 225) 253)
RIGID) 261) 281)
RIGID) 285) 314)
RIGID) 322) 342)
RIGID) 345) 377)
)
#)3HFXA)
RIGID) 4) 20)
RIGID) 41) 60)
RIGID) 77) 106)
RIGID) 117) 149)
RIGID) 176) 209)
RIGID) 218) 237)
RIGID) 244) 266)
RIGID) 301) 327)
RIGID) 333) 364)
RIGID) 395) 422)
RIGID) 436) 455)
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RIGID) 458) 490)
)
#)3KCUA)
RIGID) 3) 28)
RIGID) 36) 57)
RIGID) 79) 107)
RIGID) 133) 156)
RIGID) 160) 177)
RIGID) 182) 198)
RIGID) 219) 250)
#)3KJ6A)
RIGID) 2) 24)
RIGID) 33) 56)
RIGID) 75) 102)
RIGID) 113) 129)
RIGID) 174) 197)
RIGID) 233) 252)
RIGID) 274) 292)
)
#)3O0RB)
RIGID) 2) 33)
RIGID) 44) 75)
RIGID) 82) 105)
RIGID) 132) 154)
RIGID) 160) 180)
RIGID) 186) 221)
RIGID) 225) 250)
RIGID) 258) 285)
RIGID) 296) 321)
RIGID) 333) 362)
RIGID) 371) 408)
RIGID) 417) 448)
)
#)3P5NA)
RIGID) 2) 21)
RIGID) 51) 69)
RIGID) 75) 95)
RIGID) 100) 122)
RIGID) 145) 175)
)
#)3SYOA)
RIGID) 16) 45)
RIGID) 92) 121)
)
#)4A2NB)
RIGID) 3) 30)
RIGID) 39) 62)
RIGID) 75) 99)
RIGID) 127) 143)
RIGID) 146) 175)

!
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Topology Broker setup files 

#)Using)1U19)as)an)example)
#)extended)chain)
CLAIMER)MembraneTopologyClaimer)
END_CLAIMER)
)
#)extended)chain)+)EPR)
CLAIMER)MembraneTopologyClaimer)
END_CLAIMER)
CLAIMER)ConstraintClaimer)
FILE)1U19A.cst)
END_CLAIMER)
)
#)RosettaTMH)
CLAIMER)MembraneTopologyClaimer)
END_CLAIMER)
CLAIMER)TMHTopologySamplerClaimer)
END_CLAIMER)
)
#)RosettaTMH)+)EPR))
CLAIMER)MembraneTopologyClaimer)
END_CLAIMER)
CLAIMER)TMHTopologySamplerClaimer)
END_CLAIMER)
CLAIMER)ConstraintClaimer)
FILE)1U19A.cst)
END_CLAIMER)

!
Simulating EPR distance restraints 

#)convert)Rosetta)native)PDB)file)to)BCL)format)
foreach)pdb)()`cat)pdb.ls`)))
))))))))sed)&i)'/CEN/d')${pdb}.pdb)
))))))))bcl.exe)protein:PDBConvert)${pdb}.pdb)&bcl_pdb)&output_prefix)${pdb}_)
>&)${pdb}_bcl.log)
end)
)
#)mutate.wts)
bcl::storage::Table<double>))))add_all)add_single)filter_aa_type_excl)
filter_sse_size)remove_single)))))))swap)distance_range_0)filter_exposure_0)
weights) 0) 1) 0) 0) 1) 1) 0) 0))
)
#)score.wts)
bcl::storage::Table<double>)data_density)aa_type_excl))))seq_sep)
data_set_size)sse_connection)))sse_size)))sse_term))))bipolar)sse_center)
triangulation_0)distance_range_0)exposure_0)
weights) 0) 0) 1) 1) 1) 0) 0) 0) 0) 0
) 10000) 10000)
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)
#)SSE)pool)for)1U19)
bcl::assemble::SSEPool)
HELIX))))1)))1)PRO)A))))2))GLN)A)))32))1))))))))))))))))))))))))))))))))))31)
HELIX))))2)))2)PRO)A)))39))HIS)A)))68))1))))))))))))))))))))))))))))))))))30)
HELIX))))3)))3)GLY)A)))74))VAL)A))107))1))))))))))))))))))))))))))))))))))34)
HELIX))))4)))4)GLU)A))118))LEU)A))140))1))))))))))))))))))))))))))))))))))23)
HELIX))))5)))5)ASN)A))168))GLN)A))193))1))))))))))))))))))))))))))))))))))26)
HELIX))))6)))6)THR)A))210))THR)A))245))1))))))))))))))))))))))))))))))))))36)
HELIX))))7)))7)PRO)A))253))MET)A))276))1))))))))))))))))))))))))))))))))))24)
END)
)
#)command)line)for)restraint)picking)
bcl.exe)restraint:OptimizeDataSetPairwise)&fasta)1U19A.fasta)&
pool_min_sse_lengths)3)0)&pool)1U19A_native.pool)&distance_min_max)10)50)&
nc_limit)10)&ensembles)pdb.ls)&mc_number_iterations)10000)10000)&prefix)1U19A)
&nmodels)10)&read_scores_optimization)score.wts)&read_mutates_optimization)
mutate.wts)&read_mutates_start)mutate.wts)&message_level)Standard)&
pymol_output)&data_set_size_range)10)40)&data_set_size_fraction_of_sse_resis)
0.2))
)
#)adding)spin)label)uncertainty)
bcl.exe)SimulateDistanceRestraints)&pdb)1U19A_bcl_format.pdb)&
simulate_distance_restraints)&output_file)1U19A_sim_epr.cst)&
add_distance_uncertainty)sl&cb_distances.histograms)&restraint_list)1U19A.data)
0)1)5)6)&random_seed)&write_rosetta_mini_restraints))
 

Restraint file format 

#)weighting)EPR)KBP)by)10.0)and)quadratic)penalty)by)1.0)
#)if)have)Gly)in)AtomPair,)replace)CB)with)1HA)or)2HA)
AtomPair)CB)67)CB)255)SCALARWEIGHTEDFUNC)1.0)SPLINE)EPR_DISTANCE) 28.9577)1.0)0.5)
AtomPair)CB)67)CB)255)SCALARWEIGHTEDFUNC)1.0)BOUNDED)16.9577)40.9577)1.0)NOE);dist)
 

Building loops on BCL and RosettaTMH files  

##Loops#file#format#–#residues#defined#in#loops#are#all#residues#not#covered#
by#spanfile#
#)EXAMPLE:))1FX8A))
LOOP) 1) 6)
LOOP) 26) 37)
LOOP) 57) 82)
LOOP) 102) 141)
LOOP) 161) 172)
LOOP) 192) 229)
LOOP) 249) 254)
)
#)convert)BCL)files)to)Rosetta)files)and)make)loops)files)for)Rosetta)loop)
building)
cd)1J4NA/pdbs)
foreach)pdb)(`cat)pdb.ls`))
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))))))))bcl.exe)protein:PDBConvert)${pdb}.pdb)&loop_file_rosetta)CCD)&
write_zero_coordinates)&bcl_pdb)Split)&output_prefix)../loops/${pdb})>&)
${pdb}_loops.log)
end)
 
##Build#loops#in#Rosetta#with#options#file#(see#fill_gaps.options)#–#from#
Rosetta#silent#file#
Rosetta/main/source/bin/loopmodel.mpi.linuxgccrelease)&database)
Rosetta/main/database/)@${DIR}/flags/fill_gaps.options)&in:file:silent)
${DIR}/${PDB}/test.out))&in:file:tags)${TAG000})&out:file:silent)
${DIR}/${PDB}/test_loops.out)&out:no_nstruct_label)&out:file:scorefile)
${DIR}/${PDB}/test_loops.sc)
#
##Build#loops#in#Rosetta#with#options#file#(see#fill_gaps.options)#–#from#a#
PDB#file#
Rosetta/main/source/bin/loopmodel.mpi.linuxgccrelease)&database)
Rosetta/main/database/)@${DIR}/flags/fill_gaps.options)&in:file:silent)
${DIR}/${PDB}/test.pdb)&out:pdb_gz)–out:prefix)test_)&out:no_nstruct_label)&
out:file:scorefile)${DIR}/${PDB}/test_loops.sc)
)

Restraint weights for folding in Rosetta 

pdb) weight_new)
1FX8A) 10.5596)
1IWGA) 8.8708)
1J4NA) 8.3960)
1KPLA) 9.7660)
1OCCA) 9.6317)
1OKCA) 13.1527)
1PV6A) 8.6969)
1PY6A) 9.8134)
1PY7A) 8.0013)
1RHZA) 10.4518)
1U19A) 10.9355)
2BG9A) 6.8484)
2BL2A) 8.1081)
2BS2A) 10.9428)
2IC8A) 10.7754)
2K73A) 11.0377)
2KSFA) 9.1686)
2KSYA) 9.4516)
2NR9A) 11.0417)
2PNOA) 7.9325)
2XQ2A) 13.5716)
2XUTA) 12.7241)
2YVXA) 10.2313)
2ZW3A) 12.4219)
3B60A) 10.5270)
3GIAA) 12.2199)
3HD6A) 12.0958)
3HFXA) 14.0806)
3KCUA) 11.5959)
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3KJ6A) 14.9617)
3O0RB) 11.9658)
3P5NA) 10.9224)
3SYOA) 10.9717)
4A2NB) 11.0417)
 

Options files for de novo folding 

#)MembraneAbinitio)
&in)
) &file)
) ) &native)${PDB}.pdb)
) ) &fasta)${PDB}.fasta)
) ) &frag3)aa${PDB}03_05.200_v1_3)
) ) &frag9)aa${PDB}09_05.200_v1_3)
) ) &spanfile)${PDB}.span)
) ) &lipofile)${PDB}.lips4)
&residues)
) &patch_selectors)CENTROID_HA)
&score)
) &find_neighbors_3dgrid)
#) &use_membrane_rg))####)use)this)flag)if)using)MP&specific)RG)score)
&membrane)
) &no_interpolate_Mpair)
) &Menv_penalties)
&abinitio)
) &membrane)
) &explicit_pdb_debug)#)if)want)to)output)at)stages)0&4)
) &rg_reweight)${RG_WEIGHT})
) &stage2_patch)score_membrane_s2.wts_patch)
) &stage3a_patch)score_membrane_s3a.wts_patch)
) &stage3b_patch)score_membrane_s3b.wts_patch)
) &stage4_patch)score_membrane_s4.wts_patch)
&evaluation)
) &gdtmm)
) &rmsd)NATIVE)_tm_sse)${PDB}_tm_sse_052814.txt)
&out)
) &output)
) &file)
) ) &output_virtual)
) ) &silent_struct_type)binary)
&overwrite)
)
#)extended)chain)(and)extended)chain)+)EPR)when)CST_WEIGHT)≠)0.0))
&in)
) &file)
) ) &native)${PDB}.pdb)
) ) &fasta)${PDB}.fasta)
) ) &frag3)aa${PDB}03_05.200_v1_3)
) ) &frag9)aa${PDB}09_05.200_v1_3)
) ) &spanfile)${PDB}.span)
) ) &lipofile)${PDB}.lips4)
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&residues)
) &patch_selectors)CENTROID_HA)
&broker)
) &setup)${CSTFILE}.tpb)####)will)follow)format)of)broker)setup)file)above)
&run)
) &protocol)broker)
&score)
) &find_neighbors_3dgrid)
#) &use_membrane_rg)####)use)this)flag)if)using)MP&specific)RG)score)
&membrane)
) &no_interpolate_Mpair)
) &Menv_penalties)
&abinitio)
) &membrane)
) &explicit_pdb_debug)#)if)want)to)output)at)stages)0&4)
) &rg_reweight)${RG_WEIGHT})
) &stage2_patch)score_membrane_s2.wts_patch)
) &stage3a_patch)score_membrane_s3a.wts_patch)
) &stage3b_patch)score_membrane_s3b.wts_patch)
) &stage4_patch)score_membrane_s4.wts_patch)
&constraints)
) &cst_file)${CSTFILE})
) &cst_weight)${CST_WEIGHT})
) &epr_distance)
&fold_cst)
) &force_minimize)
) &seq_sep_stages)1.0)1.0)1.2)
&evaluation)
) &gdtmm)

&rmsd)NATIVE)_tm_sse)${PDB}_tm_sse_052814.txt)
&out)
) &output)
) &file)
) ) &output_virtual)
) ) &silent_struct_type)binary)
&overwrite)
)
#)RosettaTMH)(and)RosettaTMH)+)EPR)when)cst_weight)!=)0.0))
&in)
) &file)
) ) &native)${PDB}.pdb)
) ) &fasta)${PDB}.fasta)
) ) &frag3)aa${PDB}03_05.200_v1_3)
) ) &frag9)aa${PDB}09_05.200_v1_3)
) ) &spanfile)${PDB}.span)
) ) &lipofile)${PDB}.lips4)
&residues)
) &patch_selectors)CENTROID_HA)
&broker)
) &setup)${CSTFILE}.tpb)
) &large_frag_mover_stage1_weight)0.0)
) &small_frag_mover_stage1_weight)0.0)
) &rb_mover_stage1_weight)5.0)
&run)
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) &protocol)broker)
&score)
) &find_neighbors_3dgrid)
#) &use_membrane_rg)####)use)this)flag)if)using)MP&specific)RG)score)
&membrane)
) &fixed_membrane)
) &no_interpolate_Mpair)
) &Menv_penalties)
&abinitio)
) &membrane)
) &explicit_pdb_debug)#)if)want)to)output)at)stages)0&4)
) &rg_reweight)${RG_WEIGHT})
) &stage2_patch)score_membrane_s2.wts_patch)
) &stage3a_patch)score_membrane_s3a.wts_patch)
) &stage3b_patch)score_membrane_s3b.wts_patch)
) &stage4_patch)score_membrane_s4.wts_patch)
&constraints)
) &cst_file)${CSTFILE})
) &cst_weight)${CST_WEIGHT})
) &epr_distance)
&fold_cst)
) &force_minimize)
) &seq_sep_stages)1.0)1.0)1.2)
&rigid)
) &rotation)0.1)
) &translation)0.5)
&evaluation)
) &gdtmm)

&rmsd)NATIVE)_tm_sse)${PDB}_tm_sse_052814.txt)
&out)
) &output)
) &file)
) ) &output_virtual)
) ) &silent_struct_type)binary)
&overwrite)
 

##loop#building#onto#BCL#and#RosettaTMH#models#
Vin#
# Vfile#
# # Vnative#${DIR}/${PDB}/${PDB}.pdb#
# # Vspanfile#${DIR}/${PDB}/${PDB}.span#
# # Vlipofile#${DIR}/${PDB}/${PDB}.lips4#
# # Vresidue_type_set#centroid#
Vchemical#
# Vpatch_selectors#CENTROID_HA#
Vscore#
# Vfind_neighbors_3dgrid#
Vevaluation#
# Vrmsd#NATIVE#_tm_sse#${DIR}/${PDB}/${PDB}_tm_sse_052814.txt#
Vmembrane#
# Vno_interpolate_Mpair#
# VMenv_penalties#
Vloops#
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# Vloop_file#${DIR}/${PDB}/${PDB}.loops#
# Vfrag_sizes#9#3#1#
# Vfrag_files#${DIR}/${PDB}/aa${PDB}09_05.200_v1_3#
${DIR}/${PDB}/aa${PDB}03_05.200_v1_3#none#
# Vremodel#quick_ccd#
# Vcen_weights#score_membrane#
# Vcen_patch#${DIR}/score_membrane_s4.wts_patch#
Vout#
# Voutput#
# Vno_nstruct_label#
# Vnstruct#1#
# Vfile#
# # Vsilent_struct_type#binary###only#if#outputting#silent#files,#not#
pdb#or#pdb_gz#files#
# # Vresidue_type_set#centroid#
Voverwrite#
 

Score patches 

#)score_membrane_s2.wts_patch)
pair)=)0.0)
Mpair)=)1.0)
env)=)0.0)
Menv)=)2.019)
cbeta)=)0.0)
Mcbeta)=)0.0)
Menv_non_helix)=)2.019)
Menv_termini)=)2.019)
Menv_tm_proj)=)2.019)
Mlipo)=)1.0)
)
#)score_membrane_s3a.wts_patch)
pair)=)0.0)
Mpair)=)1.0)
env)=)0.0)
Menv)=)2.019)
cbeta)=)0.0)
Mcbeta)=)0.5)
Menv_non_helix)=)2.019)
Menv_termini)=)2.019)
Menv_tm_proj)=)2.019)
Mlipo)=)1.0)
)
#)score_membrane_s3b.wts_patch)
pair)=)0.0)
Mpair)=)1.0)
env)=)0.0)
Menv)=)2.019)
cbeta)=)0.0)
Mcbeta)=)0.5)
Menv_non_helix)=)2.019)
Menv_termini)=)2.019)
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Menv_tm_proj)=)2.019)
Mlipo)=)1.0)
)
#)score_membrane_s4.wts_patch)
pair)=)0.0)
Mpair)=)1.0)
env)=)0.0)
Menv)=)2.019)
cbeta)=)0.0)
Mcbeta)=)2.5)
Menv_non_helix)=)2.019)
Menv_termini)=)2.019)
Menv_tm_proj)=)2.019)
Mlipo)=)1.0)
 

Command lines for folding 

MembraneAbinitio 

Rosetta/main/rosetta_source/bin/membrane_abinitio2.static.linuxgccrelease)&
database)/Rosetta/main/rosetta_database/)@${FLAGS})&out::nstruct)${NSTRUCT})&
out:file:silent)${OUTFILE})&out:sf)${OUTFILE}.sc)
 

Extended chain (and Extended chain + EPR if CST_WEIGHT ≠ 0.0) 

/Rosetta/main/rosetta_source/bin/minirosetta.mpi.linuxgccrelease)&database)
/Rosetta/main/rosetta_database/)@${FLAGS})&out::nstruct)${NSTRUCT})&
out:file:silent)${OUTFILE})&out:file:scorefile)${OUTFILE}.sc)
 

RosettaTMH (and RosettaTMH + EPR if CST_WEIGHT != 0.0) 

/Rosetta/main/rosetta_source/bin/minirosetta.mpi.linuxgccrelease)&database)
/Rosetta/main/rosetta_database/)@${FLAGS})&out::nstruct)${NSTRUCT})&
out:file:silent)${OUTFILE})&out:file:scorefile)${OUTFILE}.sc)

 

Weighting schemes tested 

RG score weights tested 

Both default and MP-specific RG scores were weighted by 0.0, 0.01, 0.25, 0.50, 

0.75, 1.00, 1.25, 1.50, 1.75, and 2.00 when testing effect of MP-specific RG score. 
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EPR restraint weights tested 

! ! ! ! Quadratic!Penalty!

EPR!KBP!

! 0.0! 1.0! 10.0! 20.0! 30.0! 40.0! 50.0!
0.0! ✓! ✓! ✓! ✓! ✓! ✓! ✓!
1.0! ✓! ✓! ✓! ✓! ✓! ✓! ✓!
10.0! ✓! ✓! ✓! ✓! ✓! ✓! ✓!
20.0! ✓! ✓! ✓! ✓! ✓! ✓! ✓!
30.0! ✓! ✓! ✓! ✓! ✓! ✓! ✓!
40.0! ✓! ✓! ✓! ✓! ✓! ✓! ✓!
50.0! ✓! ✓! ✓! ✓! ✓! ✓! ✓!

 

Analysis of results 

BCL models analysis 

#)score)BCL)pdbs)for)comparison)with)Rosetta)models)(after)loop)building))
bcl.exe)protein:Score)&pdblist)bcl_pdb.ls)&native)2K73A_bcl.pdb)&
score_table_write)2K73A_bcl_scores_071014.tbl.tmp)&weight_set))refinement.tbl)
&membrane)20)10)2.5)&tm_helices)2K73A_native.pool)&pool)2K73A_native.pool)&
sspred)JUFO9D)OCTOPUS)&sequence_data)./)2K73)>&)score.log)
)
##Computing#RMSD100SSE#in#the#BCL#
bcl.exe)protein:Compare)&reference_pdb)2K73A_bcl.pdb)&pdb_list)bcl_pdb.ls)&
quality)RMSD)&atoms)CA)&specify_residues)2K73A_bcl_res.ls)>&)
2K73A_bcl_rmsd100_062114.log)
)
#2K73A_bcl_res.ls)format)
'A')12)
'A')13)
'A')14)
'A')15)
'A')16)
'A')17)...)for)all)residues)for)which)to)compute)RMSD)
)

#)Refinement.tbl)(for)BCL)scoring))
bcl::storage::Table<double>)))))aaclash)aadist))aaneigh)aaneigh_ent)))))loop))))
loop_closure_gradient)))rgyr))))sseclash))))))))ssepack_fr))))))strand_fr)
co_score))))))))ss_OCTOPUS))))))ss_OCTOPUS_ent))ss_OCTOPUS_env))ss_JUFO9D)))))))
ss_JUFO9D_ent)))ss_JUFO9D_env)))ssealign))))))))mp_helix_topology)
weights)500)))))0.35))))50))))))50.0))))10.0))))50000)))5.0)))))500)))))8.0)))))
20))))))0.5)))))20.0))))))))))))20.0))))20))))))5.0)))))5.0)))))5.0)))))))8)))))))
500)
)
#)example)native)pool)file)–)based)on)DSSP)for)the)PDB)file)–)see)
*rms_tm_sse_052814.txt)examples)above.))These)are)the)same)residue)definitions)
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bcl::assemble::SSEPool)
HELIX))))1)))1)LEU)A))))2))VAL)A)))29))1))))))))))))))))))))))))))))))))))28)
HELIX))))2)))2)GLN)A)))36))SER)A)))58))1))))))))))))))))))))))))))))))))))23)
HELIX))))3)))3)PRO)A)))64))PHE)A)))73))1))))))))))))))))))))))))))))))))))10)
HELIX))))4)))4)LYS)A)))78))HIS)A))114))1))))))))))))))))))))))))))))))))))37)
HELIX))))5)))5)VAL)A))121))PHE)A))130))1))))))))))))))))))))))))))))))))))10)
HELIX))))6)))6)PHE)A))140))THR)A))162))1))))))))))))))))))))))))))))))))))23)
HELIX))))7)))7)LEU)A))173))LEU)A))192))1))))))))))))))))))))))))))))))))))20)
HELIX))))8)))8)PRO)A))199))ALA)A))212))1))))))))))))))))))))))))))))))))))14)
HELIX))))9)))9)TYR)A))227))HIS)A))253))1))))))))))))))))))))))))))))))))))27)
END)
 

Generation of RMSD100SSE histograms 

#)format)for)files)for)input)into)rmsd_to_rmsd100.py)
#)doesn’t)matter)how)many)fields)are)between)field)1)and)description,)but)
“SCORE:”)must)be)first,)and)“description”)last,)also)total)score)is)“score”)
SCORE:)score) rms_tm_sse) file) description)
SCORE:)103.718) 14.536)1FX8A_s01_b001_0000)S_0001)
SCORE:)51427.301) 17.6354) 1FX8A_s01_b001_0000)S_0002)
SCORE:)51299.817) 15.8242) 1FX8A_s01_b001_0000)S_0003)
SCORE:)52004.468) 18.2978) 1FX8A_s01_b001_0000)S_0004)
SCORE:)51368.199) 14.9345) 1FX8A_s01_b001_0000)S_0005)
SCORE:)297.978) 14.0197) 1FX8A_s01_b001_0000)S_0006)
SCORE:)51497.388) 15.4662) 1FX8A_s01_b001_0000)S_0007)
SCORE:)180.629) 13.0461) 1FX8A_s01_b001_0000)S_0008)
SCORE:)516.341) 16.3426) 1FX8A_s01_b001_0000)S_0009)
)
#)convert)Rosetta&computed)RMSD)values)to)RMSD100)
./rmsd_to_rmsd100.py)&&membrane)&&silent=${file})&n)${nres})&&
outfile=${file}.rmsdSSE100)&&rms_tag=tm_sse)
))))
#)Generate)histograms)and)summary)
perl)~/scripts/Smbins_RMSD_dist_from_score.pl)${file}.rmsdSSE100)5)|)awk)
'{print($2"\t"$4)}')|)head)&n21)>)${file}.rmsdSSE100.txt)
 

Calculating enrichment 

Usage:)compute_overall_performance.py)[options]))#)parses)file)as)field)0)=)
pdb)and)field)4)=)weight)&)1FX8A_tmh_s01_b001_0009_scores_rms_tm_sse_072214.sc)
Options:)
))&h,)&&help))))))))))))show)this)help)message)and)exit)
))&&filelist=FILELIST)))filelist)
))&&metric=METRIC)))))))header)of)column)wanting)to)average)
))&&score_fraction=SCORE_FRACTION)
))))))))))))))))))))))))what)fraction)of)models)do)you)consider)for)TP)etc)
))&&quality_fraction=QUALITY_FRACTION)
))))))))))))))))))))))))what)fraction)of)models)do)you)consider)for)TP)etc)
))&&p_ratio=RATIO)))))))(p+n)/p.)this)sets)your)max)enrichment)
))&&enrichment_output=ENRICHMENT_OUTPUT)
))))))))))))))))))))))))file)to)output)enrichment)values)for)each)pdb)and)
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))))))))))))))))))))))))weight)
))&&outfile=OUTFILE)))))outfile)
)
./compute_overall_performance.py)–&filelist)list)–&metric)rms_tm_sse)–&
score_fraction)0.1)–&quality_fraction)0.1)&–p_ratio)10)–&enrichment_output)
test.enrch)–&outfile)test.out)
)

Calculate loops fulfillment 

USAGE:))<pdb_filename>)<restraint_filename>)<#)restraints>)
#)restraint)min)is)0.00)restraint)max)=)3.8)*)(nres&1))
restraint)file)format:)<chain>)<atom>)<res>)<atom>)<res>)<min>)<max>)
 

Calculating contact order 

 Downloaded script from Baker laboratory website  

(http://depts.washington.edu/bakerpg/contact_order/) 

#)options:))&c)=)cutoff,)default)is)6;)&a)=)absolute)contact)order)
./contactOrder.pl)–c)8)–a)1U19A.pdb)
! )
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APPENDIX F 

 

PROTOCOL CAPTURE FOR APPENDIX A: 
LIGAND-MIMICKING RECEPTOR VARIANT DISCLOSES BINDING AND 

ACTIVATION MODE OF PROLACTIN RELEASING PEPTIDE 
 

This appendix contains the protocol capture for the modeling work published in 

(Rathmann*, Lindner*, DeLuca*, Kaufmann, Meiler, and Beck-Sickinger, 2012), some 

of which is found in the manuscript’s Supplemental Information. *These authors 

contributed equally. Further details are also available in Appendix A, and more detailed 

information on comparative modeling in Rosetta can be found in reference (252). 

 

Computational details 

All models were generated by independent simulations using Vanderbilt 

University’s Center for Structural Biology computing cluster and the university’s 

Advanced Computing Center for Research and Education (ACCRE). Computations were 

performed on a combination of AMD Opteron and Intel Nehalem processor nodes. All 

Rosetta-related protocols were conducted using Rosetta version 3.4. 

 

Input files 

FASTA file for making fragments for loop building 

>)PrRPR)residues)58&347)
QLKGLIVLLYSVVVVVGLVGNCLLVLVIARVRRLHNVTNFLIGNLALSDVLMCTACVPLTLAYAFEPRGW)
VFGGGLCHLVFFLQPVTVYVSVFTLTTIAVDRYVVLVHPLRRRISLRLSAYAVLAIWALSAVLALPAAVH)
TYHVELKPHDVRLCEEFWGSQERQRQLYAWGLLLVTYLLPLLVILLSYVRVSVKLRNRVVPGCVTQSQAD)
WDRARRRRTFCLLVVVVVVFAVCWLPLHVFNLLRDLDPHAIDPYAFGLVQLLCHWLAMSSACYNPFIYAW)
LHDSFREELRKLLV)
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Spanfile required for RosettaMembrane 

TM)region)prediction)for)PrRPR_112210.octopus)predicted)using)OCTOPUS)
7)294)
antiparallel)
n2c)
)))4))))24)))))4))))24)
))40))))60))))40))))60)
))79))))99))))79))))99)
)119)))139)))119)))139)
)169)))189)))169)))189)
)220)))240)))220)))240)
)257)))277)))257)))277)
 

Disulfide file (defines disulfide bond that want to maintain) 

#)bridge)between)C134)(in)TM3)close)to)ECL))C211)(ECL2))
77)154)
 

XML file for docking 

The XML file gives the parser, or RosettaScripts, instructions for how to run the 

protocol. The protocol we used for this study is as follows:  

1. Import constraints D6.59-R19, E5.26-R19, W5.28-R19, Y5.38-R19 (last 
three have 50% confidence)  

2. Docking perturbation (4Å translation, 10 degree rotation) 
3. Fast relax with only 1 iteration  

4. Filter D6.59-R19 with 100% confidence  
5. Rebuild EL2  
6. Rebuild EL3  
7. Rebuild EL1  
8. Full fast relax  
9. Filter by disulfide linkage with 100% confidence (residues 134 and 211)  

10. Filter by D6.59-R19 
)
#)XML)file)
<dock_design> 

<SCOREFXNS>)#defines)non&standard)score)functions,)weight)
ROSETTAMEMBRANE)scores)by)10x))

<mem_cen_cst)weights=score_membrane>))
<Reweight)scoretype=atom_pair_constraint)weight=10/>))

</mem_cen_cst>)
<mem_fa_cst) weights=membrane_highres_Menv_smooth>)

<Reweight)scoretype=atom_pair_constraint)weight=10/>)
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</mem_fa_cst>)
</SCOREFXNS> 
<FILTERS>)

<DisulfideFilter)name=disulfide)targets=77,154)confidence=1.0/>)
<ResidueDistance)name=D659_R19)res1_res_num=245)res2_res_num=306)

distance=10.0)confidence=1.0/>))
</FILTERS> 
<TASKOPERATIONS>)

<InitializeFromCommandline)name=ifcl/>)
<RestrictToRepacking)name=rtrp/>)

</TASKOPERATIONS> 
<MOVERS>)
<Docking)name=dock)score_low=mem_cen_cst)score_high=mem_fa_cst)

fullatom=1)local_refine=1)optimize_fold_tree=1)conserve_foldtree=0)design=0)
task_operations=ifcl/>))

<LoopRemodel)name=loop3)loop_start_res_num=246)loop_end_res_num=258)
hurry=0)protocol=ccd)perturb_score=mem_cen_cst)refine_score=mem_fa_cst)
perturb=1)refine=1)design=0)/>)

<LoopRemodel)name=loop2)loop_start_res_num=139)loop_end_res_num=169)
hurry=0)protocol=ccd)perturb_score=mem_cen_cst)refine_score=mem_fa_cst)
perturb=1)refine=1)design=0)/> 

<LoopRemodel)name=loop1)loop_start_res_num=65)loop_end_res_num=74)
hurry=0)protocol=ccd)perturb_score=mem_cen_cst)refine_score=mem_fa_cst)
perturb=1)refine=1)design=0)/>)

<FastRelax)name=fastrlx_all)repeats=1)scorefxn=mem_fa_cst)/>)
<FastRelax)name=fastrlx_r1)repeats=1)scorefxn=mem_fa_cst)/>)
<PackRotamersMover)name=repack)scorefxn=mem_fa_cst)

task_operations=rtrp/>)
<ConstraintSetMover)name=fa_cst)cst_file=dock_fa.cst)/>))
<ConstraintSetMover)name=lowres_cst)cst_file=dock.cst)/>)
</MOVERS> 
<APPLY_TO_POSE>)
</APPLY_TO_POSE> 
<PROTOCOLS>)

<Add)mover_name=fa_cst/>)
<Add)mover_name=lowres_cst/>)
<Add)mover_name=dock/>)
<Add)mover_name=fastrlx_r1/>)
<Add)filter_name=D659_R19/>)
<Add)mover_name=loop2/>)
<Add)mover_name=loop3/>)
<Add)mover_name=loop1/>)
<Add)mover_name=fastrlx_all/>)
<Add)filter_name=disulfide/>)
<Add)filter_name=D659_R19/> 

</PROTOCOLS> 
</dock_design> 
 

Constraints file for docking 

AtomPair)CB)306)CB)245)BOUNDED)0.00)10.0)1.0)NOE)loose)
AtomPair)CB)306)CB)156)BOUNDED)0.00)10.0)1.0)NOE)loose)
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AtomPair)CB)306)CB)158)BOUNDED)0.00)10.0)1.0)NOE)loose)
AtomPair)CB)306)CB)168)BOUNDED)0.00)10.0)1.0)NOE)loose)
Constraints file for full-atom refinement 

AtomPair)CB)306)CB)245)BOUNDED)0.00)10.0)1.0)NOE)loose)
AtomPair)CB)306)CB)156)BOUNDED)0.00)10.0)1.0)NOE)loose)
AtomPair)CB)306)CB)158)BOUNDED)0.00)10.0)1.0)NOE)loose)
AtomPair)CB)306)CB)168)BOUNDED)0.00)10.0)1.0)NOE)loose)
 

Options file for relaxing threaded models 

&relax)
) &membrane)
#) &default_repeats)
#) &fastrelax_repeats)2)
&in)
) &path)
) ) &database)/blue/meilerlab/home/hirstsj/mini/minirosetta_database)
) &file)
) ) &l)
/blue/meilerlab/home/hirstsj/GPCRs/PrRPR/PrRPm_rlx_initial_1.ls)
) ) &spanfile)
/blue/meilerlab/home/hirstsj/GPCRs/PrRPR/PrRPR_112210.span)
) ) &fullatom)
&score)
) &weights)
/blue/meilerlab/home/hirstsj/mini/minirosetta_database/scoring/weights/membran
e_highres_Menv_smooth.wts)
&membrane)
) &normal_cycles)100))
) &normal_mag)15))
) &center_mag)2))
&out)
) &output)
) &nstruct)1000)
) &file)
) ) &silent)
/blue/meilerlab/home/hirstsj/GPCRs/PrRPR/mutate_templates/rlx_models/PrRPR_rlx
_112310_1.out)
) ) &silent_struct_type)binary)
) ) &scorefile)
/blue/meilerlab/home/hirstsj/GPCRs/PrRPR/mutate_templates/PrRPR_rlx_112310_1.f
asc)
) ) &fullatom)
&overwrite)
 

Options file for building loops into threaded model 

##Build)Initial)Loops)with)Fragments)
&loops)
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) &timer)#output)time)spent)in)seconds)for)each)loop)modeling)job)
) &fast)#reduce)the)number)of)cycles)used)during)loop)building.)remove)for)
production)runs.)
) &frag_sizes)9)3)1)#This)option)is)paired)with)the)option)&
loops:frag_files&)indicates)fragment)sizes)
) &frag_files)
/blue/meilerlab/home/hirstsj/GPCRs/PrRPR/aaPrRPm09_05.200_v1_3)
/blue/meilerlab/home/hirstsj/GPCRs/PrRPR/aaPrRPm03_05.200_v1_3)none))))
) &fa_input)#input)structures)are)in)full)atom)format)
#) &input_pdb)mutate_templates/PrRPR_3EML_renumber.pdb)
#) &loop_file)build_initial.loops)#loop)definition)file)
) &relax)fastrelax)
) &build_initial)#build)missing)density)
) &ccd_closure)
) &random_loop)
) &remodel)quick_ccd)
&packing)#rotamer)library)flags)
) &ex1aro)
) &ex1)
) &ex2)
) &repack_only)
&in)
) &path)
) ) &database)/blue/meilerlab/home/hirstsj/mini/minirosetta_database/)
) &fix_disulf)/blue/meilerlab/home/hirstsj/GPCRs/PrRPR/PrRPm_disulf.txt)
#read)disulfide)connectivity)information)
) &file)
) ) &fullatom)
) ) &psipred_ss2)
/blue/meilerlab/home/hirstsj/GPCRs/PrRPR/PrRPm.psipred_ss2)
) ) &spanfile)
/blue/meilerlab/home/hirstsj/GPCRs/PrRPR/PrRPR_112210.span)
&out)
#) &prefix)PrRPm_3EML_initial_112310_)
) &output)
) &pdb)
) &overwrite)
) &nstruct)100)#recommended)1000)
) &file)
) ) &fullatom)
#) ) &silent)PrRPm_initial_112310.out)
) ) &silent_struct_type)binary)
&max_inner_cycles)30)
&outer_cycles)1)
&membrane)
) &normal_cycles)100)
) &normal_mag)15)
) &center_mag)2)
&score)
) &weights)
/blue/meilerlab/home/hirstsj/mini/minirosetta_database/scoring/weights/membran
e_highres_Menv_smooth.wts)
&overwrite)
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Options file for peptide docking and loop building 

#)This)file)contains)2)chains)(A)and)B))with)chain)B)being)the)peptide.)The)
receptor)and)peptide)were)renumbered)starting)from)1))
&s)input.pdb))
&nstruct)500)#)number)of)models)to)build)
&out:output) #)output)files))
&out:file:fullatom) #)output)in)full)atom)detail))
&out:silentoutput_file.out)#)structure)is)stored)in)internal)coordinates)
instead)of)Cartesian)coordinates))
&out:silent_struct_type)binary) #)binary)silent)output)is)more)compressed)and)
extracted)more)robustly))
&out:scorefile)scores.fasc)#)output)a)scorefile,)which)doesn’t)store)
coordinates,)only)scores))
&jd2:ntrials)5) #)use)the)new)job)distributor))
&parser:protocol)parser_protocol.xml) #)The)protocol)we)use)is)actually)run)
by)RosettaScripts,)aka)the)parser))
&docking:dock_pert)4)10) #)during)docking)perturbation,)allow)for)4Å)
translation)and)10)degree)rotation))
&residues:patch_selectors)CTERM_AMIDATION) #)use)this)option)if)you)want)to)
amidate)the)C&terminus)of)the)peptide))
&max_inner_cycles)30))
&outer_cycles)1))
#)ROSETTAMEMBRANE)options))
&membrane:normal_cycles)100)#)number)of)cycles)to)search)for)membrane)normal))
&membrane:normal_mag)15) #)options)for)the)angle)allowance)of)normal)and)
center)search))
&membrane:center_mag)2))
&in:file:psipred_ss2)secondary_structure.psipred_ss2)#)secondary)structure)
prediction)input)in)psipred)format))
&in:file:spanfile)tmh.span)#)membrane)spanning)regions)of)receptor)predicted)by)
OCTOPUS)and)in)spanfile)format))
&in:file:fix_disulf)disulf.txt) #)file)containing)residue)pairs)between)which)
there)is)a)disulfide)bond)#)loop)building)options))
&loops:timer))
&loops:fast) #)reduce)number)of)loop)building)trials,)or)cycles))
&loops:frag_sizes)9)3)1) #)fragment)sizes)used)for)CCD)loop)building,)but)not)
using)1mers))
&loops:frag_files)aaTest_09_05.200_v1_3)aaTest_03_05.200_v1_3)none))
&loops:fa_input) #)fullatom)input))
&loops:relaxfastrelax) #)do)a)“fast”)relax,)which)consists)of)iterative)
rounds)of)side&chain)repacking)and)all)atom)minimization)
&loops:remodel)quick_ccd)
&packing:ex1)#)include)extra)rotamers)for)side&chain)repacking))
&packing:ex2))
&packing:repack_only))
&packing:linmem_ig)10)
&overwrite) #)overwrite)existing)output)files)having)the)same)name)
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Command lines 

Fragment generation for loop building 

make_fragments.pl)–id)<fasta_id>)input.fasta)

 

Threading for comparative modeling 

#)Example)of)template)is)2VT4.))Other)templates)used)were)2RH1,)3CAP,)1U19,)
3DQB,)and)3EML.)
awk)&v)loop_file_prefix=PrRPR_2VT4)&v)generate_loop_file="top")&v)templatepdb=)
2vt4A.pdb)&v)pdb_chain=A)&v)
blc_alignmentfile=NPY_RFamide_classA_profile_profile.blc)&v)tempseq=18)&v)
alignseq=11)&f)/sb/meiler/scripts/kaufmann_awk/awk_library.txt)&f)
/blue/meilerlab/apps/scripts/create_template_from_blc.awk)&f)
/sb/meiler/scripts/kaufmann_awk/aa_transform.txt)>)PrRPR_2VT4.pdb)
 

Peptide docking and loop building 

mpiexec)/bin/rosetta_scripts.mpistatic.linuxgccrelease)&database)
rosetta_database/)@dock_PrRP.options)&s)$START_PDB)&out:file:silent)$OUTFILE)&
out:file:scorefile)$SCOREFILE)

 

Analysis and selection of models 

Computing distance matrix for clustering using BCL 

bcl.exe)Quality)&quality)RMSD)&atom_list)CA)&pdb_list)pdb.ls)&aaclass)AACaCb)

Clustering with the BCL (436) 

#)Had)tried)clustering)at)3,)3.5,)4,)and)5A)cutoffs)and)decided)on)3.7A)

/bcl.exe)Cluster)&distance_input_file)filter_distRMSD.txt)&input_format)
TableLowerTriangle)&output_format)Rows)Centers)&output_file)cluster_cutoff3&
7.txt)&linkage)Average)&distance_definition)less)&output_pymol)1000)25)100)
10000)10)dendogram.py)&remove_nodes_below_size)100)&
remove_internally_similar_nodes)4)&pymol_label_output_string)&
pymol_scale_node_with_size+

Find the geometric centers of the leaf clusters 

awk)'{if($14==1)print}')Centers.txt)|)sort)&nrk10)>)leaves_centers.txt)
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Find if top scoring models in leaf clusters 

foreach)pdb)()`cat)top10_by_score.ls`)))
grep)$pdb)cluster_co3.7.Rows.txt)|)grep)"Leaf):)1")

end)
)
! )
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