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CHAPTER I 

 

INTRODUCTION 

 

Metallic nanowires have many important technological applications, especially in 

the field of molecular electronics (ME).  In particular gold (Au) nanowires are very 

interesting and promise to play a major role in nanodevices.  This is due to their good 

conductivity, high strength, and ductility.  In addition, Au nanowires have relative ease of 

fabrication, stability at small scales and capability for biomolecular functionalization.1  

Gold nanowires severing as metallic contacts have attracted considerable interest 

recently.2  On the experimental side, advances in experimental techniques make it 

possible to generate atomic-sized molecular break-junctions.3-5  The mechanically 

controllable break junction (MCBJ) technique4,6-8 that mainly focuses on studying the 

quantum size effects on conductance is one of these methods.  In an MCBJ experiment, a 

metallic wire is attached to a flexible substrate that will be bent to stretch and break the 

wire.  Afterwards, the broken wire can be brought repeatedly in and out of contact under 

the gentle control of the distance between two contacts.  On the theoretical side, different 

approaches are performed to investigate the quantum conductance properties9-12, the 

mechanical deformations under tensile strain,9-15 and the break-junction structural 

properties.2,10,11,13,16-18  The molecular dynamics (MD) technique combined with classical 

potentials is one of these approaches.  However, several issues need to be solved to 

guarantee accurate MD study.  Firstly, an accurate potential must be selected to describe 

the interactions between metal molecules.  Various classical potentials such as the glue 

 1



model,19 effective medium theory potential,11 the Sutton-Chen potential,13 the embedded-

atom method (EAM),14 the second-moment approximation of the tight-binding scheme 

(TB-SMA),16 and the Finnis-Sinclair potential,12,20 which are usually constructed for and 

tested on bulk systems or optimized to handle surfaces, have been applied in previous 

literatures without further evaluating their applicability for the very low-coordination 

chains.  In this study, we establish an optimum potential out of three commonly used 

classical potentials for nanostructures (the glue model, the EAM potential and the TB-

SMA potential) with large numbers of low-coordination atoms by the aid of advanced 

density-functional-theory (DFT) calculations.  Secondly, MD simulations must take into 

account that experiments are performed under various conditions.  For example, the 

elongation of nanowires can be done at room temperature or liquid-helium temperature 

under ultrahigh-vacuum or ambient conditions.  Furthermore, the experimentally 

generated nanowires could adopt different crystallographic directions which then produce 

distinct break-junction structures.  Nevertheless, most of the existing theoretical studies 

are based on very specific conditions such as fixed configuration and temperature.  In this 

work, in order to get a more complete picture, a systematic statistical study of various 

experimental situations is used to explore the effects of crystallographic orientation, 

length, elongation rate, temperature as well as initial configuration on the ductile 

elongation properties of nanowires.   

After obtaining the dynamic elongation properties and break-junction structures 

of Au nanowires, additional important issues follow in investigating the gold electrodes 

linked through organic molecules.  Organic molecules bonded between two gold 

electrodes have emerged as prototypical metal-molecule-metal configurations in 
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molecular electronic devices, and their current-voltage (I-V) characteristics have attracted 

considerable interest in both experiments3-5 and theories.21-25  Studying the I-V 

characteristics of single molecules is a key step towards the development of practical 

molecular electronics devices. Theoretical research has been mainly focused on 

reproducing the current-voltage behavior observed in experiments for various types of 

molecular junctions via quantum calculations.  Examples of such calculations are the 

density-functional-theory-based calculations of conductance of benzenedithiol (BDT)/Au 

systems.21-25  These calculations qualitatively reproduced the characteristics of the 

current-voltage curve from experiments, but exhibited large quantitative deviations.  One 

possible reason is the lack of realistic input to ab initio calculations, which were 

performed in a vacuum at 0 K with a jellium model for the electrode.21  In the actual 

experiment, the temperature fluctuations, conformation, degree and nature of bonding, 

and adsorption conditions of the Au-BDT-Au junctions26-30 must impact the measured I-

V characteristics.  Most importantly, many of the experimental I-V measurements in 

metal-molecule-metal junctions have been performed on junctions created through 

mechanical stretching of nanowires in an organic solution. The electronic properties of 

these junctions are dependent on both the stretching process and the environment in 

which the fabrication is performed.  However, the effect of solvent on the elongation 

properties of nanowires has not been previously investigated.  Molecular modeling is a 

natural tool to investigate such questions.  This study is the first theoretical approach to 

investigate the solvent effects on the elongation of the Au Nanowires.  We extend our 

study to involve both a simple Lennard-Jones solvent propane and a much complex 

organic molecule BDT which has the potential to covalently bind to gold nanowire as 
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self-assembled monolayers (SAMs).  For propane, MD simulations are applied to 

understand to what extent the thermal collisions of nonbonded particles will influence the 

mechanical elongation property of Au nanowires.  For BDT, Monte Carlo simulations 

were performed to study the self-assembled structure of BDT molecules on a gold 

nanowire when it is immersed in a bulk BDT liquid followed by MD to obtain detailed 

bonding geometries at the Au-BDT interface for future, more accurate quantum 

mechanical calculations of I-V characteristics.        

The organization of the thesis is as follows: after a brief introduction and 

background description, in chapter III, we present the dynamic elongation of gold 

nanowires in vacuum. An optimum potential which works well for the very low-

coordinated atom chains is identified and applied to statistically investigate the 

elongation of nanowires under various conditions.  In Chapter IV, we extend our study to 

predict the dynamic elongation properties of gold nanowires in the non-polar solvent 

propane.  The ductile elongations are compared with the nanowires elongated in vacuum 

at various temperatures. In Chapter V, a more realistic solution, BDT, is introduced. 

Combining grand canonical Monte Carlo (GCMC) with canonical Monte Carlo (MC) 

simulations, we studied the adsorption configurations of BDT on gold nanowires.  In the 

following Chapter VI, starting from the final adsorption configurations, we investigated 

the dynamic elongations and breakage of gold nanowires in organic solvents at various 

temperatures. Finally, concluding remarks are made and recommendations for future 

works are discussed in Chapter VII.  
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CHAPTER II 

 

BACKGROUND 

 

After the invention of the transistor (1948) and the integrated circuit (1959), the 

microelectronics industry embarked on the remarkable evolution known as Moore’s law, 

according to which the speed of computer chips will double every 18 months.  This is 

achieved by increasing the density of circuit elements in a microprocessor by a factor of 

two every 18 months. Hence, while every 18 months the speed of computer chips 

increases by a factor of two, so does the cost to produce them.  As Si-based device 

dimensions are now under 100-nm in feature size (current feature size is 65 nm; 45 nm 

technology is already in preproduction), approaching the physical limits of this 

technology, molecular electronics (ME) devices are emerging as an alternative practical 

and economic route to continuing miniaturization.  ME entails a significant paradigm 

change for process and device modeling.  The key processing step in Si technology, 

lithography, is likely to be replaced in ME devices by self assembly.  Molecular-scale 

devices offer several advantages over conventional technology, including miniaturization 

that will allow the scaling of component size to the ultimate level of atoms and 

molecules.  Potential benefits include dramatically increased computational speed and 

lower fabrication costs.  However, the path to single-molecule electronic devices, which 

began with the theoretical prediction over 25 years ago that such devices were possible,31 

has been characterized by a significant disconnect between theory and experiment.  For 

example, theory reproduced the qualitative features of the measured current-voltage 
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characteristics for a BDT molecule very successfully,28 but the theoretical value of the 

current is larger than experiment by more than two orders of magnitude.  The origin of 

the discrepancy has not been fully resolved although several factors can be easily 

identified, such as the contact geometry and chemistry.  Theoretical efforts are underway 

aimed at developing the simulation and design tools needed to quantitatively model 

electron transport through organic molecules in the environment in which such molecules 

find themselves in experiments and proposed devices.   

Early in 1970s, Aviram and Ratner proposed that certain organic molecules may 

be used to construct ME devices, by specifically showing (using quantum chemistry 

methods) how a single molecule could act as a rectifier.31  In addition, molecular and 

nanoscale structures have been shown to be capable of other basic electronic functions 

such as negative differential resistance and  acting as a single-electron transistor.27,32-35 

Extensive experimental and theoretical work has been performed in recent years on 

probing such a possibility.  It has been demonstrated that some of the thiolate molecules, 

such as BDT, show promising conducting properties when assembled on gold tips.  

Current-voltage and conductance properties of molecular junctions have been measured 

experimentally by several independent groups.3-5,36 

In the Reed et al.’4 experiment, BDT molecules are self-assembled onto an Au 

wire, creating a SAM as demonstrated in Figure 2.1.  The BDT molecules are covalently 

bonded to the Au surface through an S-Au bond at each end.  The wire is then pulled 

apart until break point, creating two tips on which the SAM persists and equilibrates.  

The two tips are brought together until current (I) flows under an applied voltage (V).  

 6



The electrode separation is adjusted until minimum current flows, which is assumed to be 

associated with a single molecule bridging the gap.  

 7



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Schematic of BDT molecules bonded to gold electrodes. 
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The large discrepancy between the theoretical calculation21 and the Reed et al. 

experiment led to speculation that perhaps the BDT molecules were not chemically 

bonded on both sides of the molecule.  To ensure covalent bonding on both sides of the 

molecule, Cui et al.3 devised the experiment shown schematically in Figure 2.2, in which 

a two-component SAM of alkanethiols (ATs) is bonded to a gold surface on one end; the 

dilute component in the SAM is a dithiol – i.e., has S atoms at each end of the molecule – 

while the other, predominant component has a S group at one end only (i.e., at the end 

bonded to the Au surface).  The SAM is then exposed to a solution of colloidal gold 

particles.  Gold clusters chemically bond to S atoms in the dithiols, while the other 

molecules in the SAM act effectively as insulators.  They then measured statistically 

distinct cases in which a gold-coated AFM tip was in contact with 0, 1, 2, 3 and 4 gold 

clusters (and hence 0-4 AT molecules), and from this infer the inherent conduction of a 

single AT molecule chemically bonded at each end to gold. This measured conductance 

differs from theoretical calculations by only a factor of 6, indicating the importance of the 

quality and nature of the metal-molecule contact.  However, the assumption in Cui et 

al.’s experimental work is that the limit to conductance is the AT molecule; other 

possibilities include the gold cluster being conductance-limiting, and in fact this 

assumption underlies experimental methods to measure the conductance of gold 

clusters.37-39   
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Figure 2.2. Schematic illustration of Cui et al.’s3 experiment. 
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Other ME experiments involve the same principles (self assembly, followed by 

conductance measurement), such as the monolayer protected clusters (MPCs) 

experiments by Cliffel,40 in which ME devices involve self-assembly followed by the 

creation of a mechanism for addressing (ie., accessing electrically)  the individual 

molecules.41-43  

In regard to the self-assembly structure of BDT molecules on Au surface, 

previous MD simulations44,45  have been performed to investigate the packing structure of 

BDT and the bonding of S atoms  onto  Au(111) surface.   These studies developed a 

classical forcefield for the chemical bonding between gold atoms and BDT molecules 

based on ab initio calculations.  It has been shown that the intermolecular BDT-BDT 

interactions play a dominant role in determining the BDT SAMs global packing structure 

and bond-stretching potential is the most dominant part in chemical bonding.  Most 

recently, Zhao et al. 46 reported a Monte Carlo simulation study of self assembly of 

BDT/THF mixtures on Au (111) surface.  The simulation results indicated that BDT 

molecules prefer to anchor to the Au (111) surface with one of the sulfur atoms bonded 

with Au atom and the perpendicularly oriented BDT forms an ordered structure on Au 

(111) surface.  By comparison, the solvent THF molecules form clusters either above the 

BDT monolayer, or occupy the vacancies on the Au (111) surface not covered by BDT 

molecules.  The THF molecules always exhibit amorphous structure on Au surface, while 

the BDT molecules form an ordered array at high coverage. Therefore, it is very 

interesting to investigate the packing structures of BDT molecules on curved Au 

nanowires and study the effect of solvent on the dynamical elongation properties.  
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  In this work, our main goal is to obtain detailed configurations of the Au-BDT 

interface, aiming at providing better input information for further quantum I-V 

calculations.   This study is valuable since the results are helpful in understanding the 

underlying mechanism of the formation of Au-BDT-Au junctions implemented in 

molecular conductance measurements and will provide accurate input configurations for 

quantum mechanical I-V calculations. These calculations will help to resolve the original 

discrepancy between experimental and theoretical studies.  Additionally, classical 

molecular modeling also permits us to interpret and provide useful feedback to 

experimental measurements, device design, and manufacture.   
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CHAPTER III 

 

DYNAMIC ELONGATION OF NANOWIRES IN VACUUM 

 

3.1. Introduction 
 

In addition to the relevance of the break-junction technique for the study of 

molecular electronic devices, pulling a gold wire apart is in itself an interesting physical 

process.  Perhaps the most notable of the interesting features observed are the break-

junction structures, which in certain cases are ultrathin chains with only one atom thick 

and in some other cases, the occurrence of multi-shell structures.  For this reason, the 

formation of Au nanowire break-junctions has been studied extensively with a number of 

experimental techniques, such as scanning tunneling microscopy (STM),47-49 atomic force 

microscopy (AFM),50,51  mechanically controllable break-junction (MCBJ)6,7 and in situ 

high resolution transmission electron microscopy (HRTEM)16,49,52,53.  The conductance 

properties and the real time visualization of dynamical nanowires elongation can be 

obtained from these experimental studies.  Figure 3.1 shows some typical break-junction 

images obtained by various experimental techniques.  On the theoretical side, simulations 

have provided atomic-scale details of the chain formation, particularly on the final stages 

before the gold chains break apart.11,16,54  The elongation process has been modeled using 

classical MD simulation with either empirical potentials [for example, using the glue 

model,55 the effective medium theory (EMT) potential,11 Sutton-Chen potential,13 and the 

EAM potential14] that aim to take into account many-body effects,  or using potentials 

which are calibrated to reproduce features of the band structure through the second 
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moment of density of state [for example, the TB-SMA potential16 and Finnis-Sinclair 

potential12,20]. Approaches that include the electronic structure are also available through  

first principles quantum mechanical calculations.10,18,54,56,57  Whereas such techniques can 

provide parameter-free results, they are inherently limited to systems of small size and to 

a small number of configurations, usually those corresponding to the final stages before 

breakup or the selected parts of the Au tip-neck-tip system.10,56  MD simulations using 

semi-empirical potentials have lesser accuracy but can handle very large systems with 

relatively low computational cost.  However, the semi-empirical potentials used are 

constructed for and tested on bulk systems, where all atoms have full or near-full 

coordination.  In some cases, the potentials are optimized to handle surfaces, but typically 

flat surfaces of a macroscopic crystal.  Thus, potentials calibrated using bulk and infinite-

surface properties may or may not work well for the very low-coordinated atomic chains.   

A comparison using the same protocol for different approaches would be valuable.  In 

this respect, first-principles methods are ideal for evaluating the semi-empirical 

potentials, with the aim of establishing an optimal simulation approach for nanostructures 

with large numbers of low-coordination atoms.  In this work, we combine MD simulation 

with DFT calculations to evaluate the quality of typical empirical or semi-empirical 

potentials widely used in the MD simulation community.  Three different forcefields, the 

glue model,55 the EAM,58 and the TB-SMA59 have been used in the MD simulations.  We 

found that the TB-SMA potential is the most suitable one to describe the elongation 

properties of gold nanowire.  Our calculations further illustrate that the TB-SMA 

potential can correctly predict the breaking force (1.5 N) of monatomic chains in the final 

stage of breakup, as observed in experimental measurement.10 
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To date, there are many reports on the break-junction structure.  On the one hand, 

Coura et al.16 and Rodrigues et al.52 have reported the formation of monatomic chain with 

2~4 atoms prior to fracture using the high resolution transmission electron microscopy 

(HRTEM) technique.  Performing the scanning tunneling microscope (STM) technique at 

temperature 4.2 K, Rubio-Bollinger and coworkers10 have predicted the formation of ~ 4-

atom-long single atom chains.  This result has been verified by MD simulations2,11,13,16 

using the TB-SMA, the effective medium theory potential and the Sutton-Chen potential. 

This single-atom thickness configuration has been proven by first principles calculations 

as well.10,57  On the other hand, the formation of three-atom-thick chain with the zigzag, 

helical structure has also been observed by the aid of HRTEM method under the ultra-

high vacuum ambient.60  This multi-shell structure has also been confirmed by MD 

simulations61,62 using the EAM potential.  Additionally, first principle calculations63 have 

shown that the gold nanowires form spinning zigzag shape under tension.   In this work, 

we show that break-junctions adopt different structures under various conditions.  The 

nanowires tend to form long monatomic chains when low temperature is combined with 

high elongation rate.  However, helical, zigzag-type long chains more often appear for a 

high-aspect- ratio nanowires at low elongation rate and room temperature.  
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Figure 3.1. Typical experimental break-junction images. (a) break-junction structure 
obtained by Ohnishi et al.’s STM experiment;49 (b) break-junction structure obtained by 
Rodrigues et al.’s HRTEM experiment;53  (c) HRTEM images of gold nanowire 
formation for different crystallographic orientations by Coura et al.16  
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3.2. Simulation Details 

 

3.2.1. Forcefields 

In this work, we focus on three semi-empirical forcefields: the glue model 

proposed by Ercolessi et al.,55  the EAM58,61 originally developed by Daw and Baskes, 

and the TB-SMA developed by Cleri and Rosato.59  Though all of these three potentials 

include many-body effects, which are very important for metallic bonding in transition 

metal systems, their derivations are quite different.  The glue model is a purely empirical 

potential whose parameters are fitted to important thermal and surface properties of the 

system of interest.55   The EAM potential is a semi-empirical potential that allows for 

electron density variations depending on the local bonding environment.  The TB-SMA 

potential includes the long-range band-structure effect, and is an approximation to the 

quantum tight-binding (TB) potential.59 

 

3.2.1.1. Glue Model 

 In the glue model, the total energy of a system is written in the form: 
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where the first term on the right side presents the standard pair potential while the second 

term accounts for the many body effects.  Here  is the coordination of atom i, which 

contributes from superposition of the neighboring atoms:  

in
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where )(rρ  is a short-ranged monotonically decreasing function of distance.  ( )rφ , ( )nU  

and ( )rρ  are polynomial functions constructed empirically by fitting several physical 

quantities including thermal and surface properties such as T = 0 K lattice parameter, the 

cohesive energy, the bulk modulus and the surface energy.55   

 

3.2.1.2. EAM Potential 

 The EAM potential utilized in this paper is a modification by Foiles of the 

potentials originally developed by Voter and Chen.64,65 The original Voter-Chen 

potentials were fit to cohesive energy, equilibrium lattice constant, bulk modulus, cubic 

elastic constants and the unrelaxed vacancy formation energy, bond length and bond 

strength of the diatomic molecule.  The Foiles potential utilizes the same functional forms 

as the Voter-Chen potential with parameters modified to yield a more accurate estimate 

of the intrinsic stacking fault energy.  For an experimentally measured intrinsic stacking 

fault energy of 32 mJ/m2 for gold,65 the Voter-Chen potential predicts a value of 9.74 

mJ/m2, while the Foiles potential predicts a more accurate value of 31 mJ/m2.  A full 

listing of the physical properties and fitting parameters that characterize both the Voter-

Chen and Foiles potential as well as a discussion on the importance of accurately 

modeling stacking fault energies in nanowire modeling can be found in Park and 

Zimmerman.61 

 For the EAM, the total energy U for a system of atoms can be written as: 
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where the summations extend over the total number of atoms N in the system,  is the 

embedding function, 

iF

iρ  is the electron density at atom i, ijφ is a pair interaction  function 

and  is the distance between atoms i and j.   ijR

 

3.2.1.3. TB-SMA Potential 

      In the framework of the TB-SMA, the cohesive energy Ec of the system is made up of 

a short-range repulsive pair potential and an effective band term.   
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where the first term is the repulsive pair potential described by a sum of Born-Mayer ion-

ion repulsion, and  represents the distance between atom i and j and  is the first-

neighbors distance in the lattice.  The second term is the band energy, which is 

proportional to the square root of second moment. The parameter B is an effective 

hopping integral and q describes its dependence on the relative interatomic distance.  The 

free parameters  and  are fitted to the experimental values of cohesive energy, 

lattice parameter, elastic constants of the corresponding real system at T = 0 K.  Values of 

the TB-SMA parameters are taken from the literature

ijr 0r

qpBA ,,, 0r

59 and list in Table 3.1.   
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Table 3.1.  Parameters of the TB-SMA potential for Au. 
 

Material                 A(eV)                         B(eV)                         p                         q   

Au                          0.2061                        1.790                          10.229               4.036  
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3.2.2. Simulation Methodology 

We have performed MD simulations for the elongation of Au nanowires under 

various initial configurations. A few layers at both ends of the nanowires are kept rigid 

and the atoms between these two blocks are dynamic during the MD runs.  Before 

pulling, the system is allowed to relax for 120 ps.  Elongation of the wire is realized by 

displacing the top rigid layers along the z direction in a small increment, while keeping 

the other end fixed until the whole system is fully relaxed. The equations of motion are 

integrated via the velocity Verlet algorithm and the temperature is controlled by Nosé –

Hoover thermostat66-68 correspondingly to elongation in an inert solvent.  We do not 

apply periodic boundary conditions in our simulations. 

 

3.3. Evaluation of Semi-empirical Forcefields  

 We evaluate three typical semi-empirical forcefields by comparing both the static 

structural relaxation properties and dynamic elongation behavior of a 256-atom gold 

cluster with results from DFT calculations. Moreover, we demonstrate that the TB-SMA 

potential can properly predict the single bond strength of gold monatomic chain before its 

breakage. 

 

3.3.1. Static Structure Relaxation 

We first study the static structure relaxation of a 256-atom gold cluster from an 

initially unrelaxed configuration, corresponding to the bulk crystal, as shown in Figure 

3.2(a). The DFT calculations for the 256-atom small Au nanowire use a local-density 

approximation (LDA) exchange-correlation functional,69 ultrasoft pseudopotentials,70 and 
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a plane-wave basis as implemented in the VASP code.71  We use Γ point sampling and an 

energy cutoff of 180 eV, unless stated otherwise.  LDA functional is known to describe 

accurately72,73 both bulk and surface properties of Au.  The “energy drops”, defined as the 

energy differences between the relaxed and unrelaxed configurations at T= 0.01 K, are 

summarized in Table 3.2.  We see that the TB-SMA energy drop has almost the same 

value as that given by the DFT calculation.  In comparison, both the glue model and the 

EAM potential yield energy drops that are noticeably larger.  In particular, the energy 

drop given by the glue model is almost eight times that of the DFT result.  This over-

relaxation by the glue and EAM potentials can be also seen in Figures 3.2(d) and 3.2(e), 

respectively, where we show the relaxed configurations prior to pulling.  In contrast, 

Figure 3.2(b) and 3.2(c) show that both the DFT and the TB-SMA potentials give almost 

the same relaxed atomic configurations. 
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Table 3.2. The energies drops ∆E (kcal/mol) from the DFT energy calculation and the 

other three forcefields predictions. (∆E=Ecrystal-Erelaxed) 

 

 DFT TB-SMA Glue EAM 

∆E 185.93 186.91 1369.28 705.44 
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Figure 3.2. Representative snapshots for the elongation process for small Au (001) 
system at 0.01 K: (a) initially unrelaxed bulk structure; (b) DFT relaxed configurations 
prior to pulling, the intermediate stage (1590 ps) and the final break junction (2390 ps) 
along TB-SMA trajectory; (c) the TB-SMA configurations prior to pulling, the 
intermediate stage (1590 ps), and the final break junction (2390 ps); (d) the glue model 
configurations prior to pulling, the intermediate stage (1590 ps), and the final break 
junction (2208 ps) and (e) the EAM configurations prior to pulling, the intermediate stage 
(1590 ps) and the final break junction (3570 ps). 
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3.3.2. Dynamic Elongation Behavior 
 

We now explore the elongation behavior of gold nanowires by MD simulation 

method.  The nanowires consist of 16 layers of Au atoms, for a total of 256 atoms. 

Elongation of the wire is realized by displacing the top rigid layers along the z direction 

in increments of 0.1 Å, while keeping the other end fixed. For every 0.1 Å increment the 

whole system is allowed to relax for 5000 time steps with a time step of 2 fs, 

corresponding to an elongation velocity of 1.0 m/s.  The three semi-empirical potentials 

generate three different elongation-energy paths.  Along these three different atomic-

configuration trajectories, DFT total energy calculations are performed.  The relative 

elongation-energy differences between the DFT results and the corresponding results 

predicted by the different potentials are shown in Figure 3.3(a).  Figure 3.3(b) enlarges 

part of Figure 3.3(a) to clearly show the energy differences between the TB-SMA and the 

DFT results. In these Figures, the total energies of the initial unrelaxed configuration (the 

bulk crystal, Ecrystal) given either by the DFT or semi-empirical potentials are taken as the 

initial reference points.  Evidently, the minimum elongation-energy difference curve 

between the MD and the DFT calculations corresponds to that given by the TB-SMA 

potential.  The relative elongation-energy differences between the DFT and the other two 

MD simulation results given by the glue and EAM, as clearly shown in the figure, are 

dramatic.  This is particularly true for the glue model.   
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Figure 3.3. (a) The relative elongation-energy differences between the results given by 
the semi-empirical potentials and by the DFT calculations for the small Au (001) system 
at 0.01 K.  This relative elongation-energy difference is defined as ∆E=[E(t)-Ecrystal]classical 
-[E(t)-Ecrystal]DFT. (b) The enlarged diagram for the results along the TB-SMA trajectory.  
Along the TB-SMA trajectory, the complete DFT energy relaxation calculation (energy 
cutoff = 180 ev) gives a relatively lower energy difference (solid line), as compared with 
the total DFT energy calculation with an even higher energy cutoff of 240 ev (dotted 
line).  DFT energy calculation with an energy cutoff of 180 ev yields almost the same 
result as that of 240 ev cutoff, thus demonstrating the convergence of the DFT results 
relative to the energy cutoff of the basis set. 
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The initial, intermediate, and final break-junction atomic configurations given by 

the three semi-empirical potentials are shown in Figure 3.2 (c) – 3.2 (e).  The total 

elongation at T = 0.01 K before breakup are 24.9, 22.0, and 35.7 Å, respectively, for the 

TB-SMA, the glue model, and the EAM potentials.  Obviously, the EAM gives a much 

longer ductile elongation.  The longer ductile elongation is even more noticeable at room 

temperature as shown in Figure 3.4 in which both the glue and EAM potentials generate 

much longer and thicker chains.  The striking differences with the TB-SMA results are 

not surprising in view of the earlier comparisons.  As far as we are aware, the effect of 

temperature on the mechanical behavior of gold nanowire has not been reported in 

experiments. 

The comparably small differences between the DFT and the TB-SMA results 

suggest that the TB-SMA potential favors the formation of low energy break-junction 

structures, whereas the glue model and the EAM potential yield relatively higher energy 

structures.  This indicates that the glue and the EAM models are not suitable for low-

coordinated systems such as ultrathin Au chains, though all three semi-empirical 

potentials are calibrated to the bulk properties.  The formation of monatomic chain 

structures found by the TB-SMA simulations, which is inherently a quantum 

phenomenon, has been observed in several experimental studies.16,49,53  The ability of the 

TB-SMA potential to simulate the experimentally observed monatomic chain structure is 

probably due to the underlying electronic band structure and relatively longer range  

cutoff,59 which is likely to be an essential feature in describing the dynamical formation 

of thin wires, particularly in the last stage of the formation of monatomic chains. 
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Figure 3.4. The snapshots of the break-junction structures for small Au (001) system at 
298 K given by the three forcefields. (a) the TB-SMA result (2300 ps); (b) the glue model 
results (7080 ps), and (c) the EAM result (10320 ps).  
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3.3.3. Comparison in Elongation Dynamic Mechanisms between the TB-SMA Simulation 
and DFT Calculation  
 
 It should be noted that there are limits on the range of validity of the TB-SMA.  

For example, the TB-SMA does not predict planar structures for very small gold 

clusters74,75  in which the coordination numbers of all the Au atoms are extremely small.  

For the system sizes of this work, however, the validity of the TB-SMA in the generation 

of monatomic gold chains is confirmed through higher-level DFT calculations. We 

further our investigation to clearly visualize the atomistic aspects of nanowire elongation 

process.  By using a small Au (001) system with a total of 256 gold atoms at 0.01 K and 

allow the system to relax for 60,000 time steps prior to pulling, we get monatomic chains 

with 5 gold atoms suspended between two tips using the TB-SMA potential.  Now we 

allow for full atomic relaxation within DFT for the selected TB-SMA configurations as 

shown in Figures 3.5.  

The relaxation in general shows that the TB-SMA images are very similar to the 

DFT local energy minima, giving support for the choice of the TB-SMA classical 

potential as the tool of preference for elongation studies.  There are, however, several 

noticeable differences between the two (TB-SMA and DFT) relaxed sets of images.  

Although the complexity of intermediate structures makes it difficult to describe these 

differences in great detail, the main features we found are as follows.  For both TB-SMA 

and DFT, the initial cylinder (elongation ∆z = 0 Å) contracts without disruption of the 

original FCC bonding network.  The contraction is larger for DFT-LDA compared to the 

TB-SMA potential, and it is largest in the mid-region of the cylinder.  These features are 

found also in the next two (∆z = 3.9 and 7.9 Å) intermediate images, albeit the 

differences in relaxation are more significant and can’t be described simply as unequal 
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degrees of contraction.  In the fourth image (∆z = 11.9 Å), there are three rings with 4 Au 

atoms each in the neck.  

DFT-LDA relaxes the disordered TB-SMA configuration so that the planes of all 

three rings are almost parallel to each other, and the middle ring is almost at 45 degrees to 

the other two.  In the fifth image (∆z = 15.9 Å), the mid-region of the neck consists of 

three pairs of Au atoms approximately in the xy plane.  The TB-SMA potential places the 

central pair perpendicular to the other two, whereas LDA-DFT relaxes it so that all pairs 

are pointing in almost the same direction which is close to the (1-10) axis.  In the sixth 

image (∆z = 19.9 Å), the centre of the neck is one-atom thick with two Au atoms in 

sequence supported by a pair of atoms on either side. LDA-DFT relaxation does not 

affect a strong change in the structure, only changes in bond lengths and angles that favor 

overall higher coordination.  The same is true for the seventh image (∆z = 23.9 Å) which 

has a one-atom thick, five-atom long Au wire formed between the two tips.  Finally, in 

the eighth image (∆z = 25.9 Å), the monatomic-chain is broken and the bottom tip 

exhibits an asperity in the form of two Au atoms protruding out of a semi- conical base.  

DFT-LDA changes partially the protruding character, leaving only one Au atom on top of 

a more symmetrical cone. 
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Figure 3.5. Snapshots of atomic configurations from MD (TB-SMA potential)(left) and 
DFT (right) studies for Au (001) at 0.01 K. (a) ∆z = 0Å; (b) ∆z = 3.9Å;(c) ∆z = 7.9Å; 
(d) ∆z = 11.9Å; (e) ∆z = 15.9Å; (f) ∆z = 19.9Å; (g) ∆z = 23.9Å; (h) ∆z = 25.9Å. 
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3.3.4. Mechanical Responses of Elongation of Au Nanowires 

In order to further verify that the TB-SMA potential can properly predict the force 

needed to break a gold monatomic chain, we have performed MD simulations for the 

elongation of Au nanowires along [001] direction for a relatively larger system; the Au 

nanowire has 32 layers of gold containing 3254 atoms as shown in Figure 3.6 (a). (The 

notched wire in this case is to aid the breakup at the central part of the wire).  Figure 3.7 

shows the sawtooth variation of the tensile force applied along the monatomic chain 

direction versus the elongation length.  In the stages with a linearly growing tensile force 

the nanowire is elastically stretched with accumulation of elastic energy, while at the 

force jumps, abrupt atomic rearrangement occurs and the accumulated strain energy is 

released.  Some of the force jumps correspond to the incorporation of an extra gold atom 

into the bridging atomic chain while other jumps originate from atomic rearrangements 

occurring in the region close to the chain.  The tensile force is recorded after each 

relaxation is completed. The numbers (1) to (5) in Figure 3.7 mark the occurrence of 1 to 

5 monatomic atoms in the break junction.  We find that the incorporation of new atoms in 

the break junction corresponds to the large jumps of tensile force in our simulation.   Just 

before the breakup, the calculated tensile force is around 1.5 nN, which is in good 

agreement with the STM experimental result (1.5±0.3 nN).10   
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Figure 3.6.  Initial configurations of Au nanowires for MD simulations. The diameters of 
the thinnest parts are 18.6Å and the diameters of the rigid layers are 40.8 Å.(a) Au (001), 
32 layers, 3254 gold atoms; (b) Au (110), 32 layers, 2290 gold atoms; (c) Au (111), 33 
layers, 3916 gold atoms.  
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Figure 3.7. The variations of the tensile force as a function of the elongation length 
predicted by the TB-SMA potential, starting at the formation of monatomic chains. The 
atomic system corresponds to the large Au (001) system at 0.01 K.  The numbers (1) to 
(5) mark the occurrence of 1 to 5 monatomic atoms in the break junction. 

 34



It is clear that the TB-SMA potential is the optimum potential out of the three 

commonly used classical potentials.  Next, we concentrate our study on investigating the 

dynamic elongation properties of gold nanowires under various conditions using the TB-

SMA potential.  The results from glue model or the EAM potential are presented for 

comparison only. 

 

3.4. Structural Evolution of Au Nanowires under Stretching   

 A systematic study of the effects of crystallographic orientation, length, 

elongation rate, temperature as well as initial configuration on the ductile elongation 

properties of nanowires take into account a variety of experimental conditions. 

 

3.4.1. Large System Study 

 

3.4.1.1. Effect of Crystallographic Orientation and Temperature 

We study the elongation configurations for the large system with gold atoms 

oriented along (001), (110), and (111) directions (see Figure 3.6) at two temperatures, 

0.01 K and 298 K.   Starting from the same crystallographic orientation to elongate the 

initial unrelaxed nanowires, the TB-SMA potential and the glue model lead to different 

rupture structures.    For the TB-SMA potential, the formation of monatomic chains range 

from two to five atoms in the middle of the contact has been observed.  The numbers of 

monatomic atoms in the break junctions depend on the crystallographic orientation as 

well as temperature as shown in Figure 3.8 and are given in Table 3.3.  By comparison, 

the rupture structures for the glue model are independent of the crystallographic 
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orientations. At lower temperature, there is always one gold atom on the upper and two 

gold atoms on the lower side in the break-junction.  At higher temperature, the rod-like 

rupture structures are observed typically containing 2 to 3 gold atoms in the cross 

sections.    
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Figure 3.8. Snapshots of break junction structures for (a) Au (001), (b) Au (110) and (c) 
Au (111) at temperatures 0.01 K (left) and 298 K (right) for glue model and TB-SMA 
potential. 
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Table 3.3. The numbers of monatomic atoms in the break junctions for Au (001), Au 

(110) and Au (111) at temperatures 0.01 K and 298 K. 

   

0.01 K 298 K Temp.  

 

  
Au (001) Au (110) Au (111) Au (001) Au (110) Au (111)

TB-SMA 5 0 2 0 2 0 
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The formation of monatomic chain structures has been observed in several 

experimental studies.16,49,52  The consistency of the TB-SMA results with experimental 

observations verified that the TB-SMA potential has the ability to realistically describe 

the experimentally generated nanowire break junctions.  With regard to temperature 

effects, Table 3.4 lists the ductile elongation as function of temperature for various 

crystallographic orientations and forcefields.  The ductile elongation here means the 

length increment of the nanowires in z direction upon break compared to the original 

length with an asterisk (*) on the upper right corner indicating the occurrence of 

monatomic chains.  It is noted that at lower temperature 0.01 K, the values of the ductile 

elongation are in the narrow range from 22.4 Å to 25.6 Å regardless of the forcefields 

applied except for Au (110), which breaks much earlier at ductile elongation value of 

14.4 Å using the TB-SMA potential.  At the elevated temperature 298 K, for the TB-

SMA potential, the difference between the values of the ductile elongation at various 

temperatures can be ignored for crystals oriented along (001) and (111) directions.  The 

only difference is the value of ductile elongation for Au (110), which is 21.2 Å at 298 K, 

~7 Å higher than that of at 0.01 K.  The situation is quite different for the glue model.  At 

298 K, the values of ductile elongation show high ductility, ranging from 1.37 to 1.95 

times higher than those of at 0.01 K.  The necks become very long before the fracture 

eventually occurs.  Additionally, before breakage, the necks are composed of more than 

ten layers of gold atoms in clusters of three to four atoms in the cross section, persisting 

over 1.5 ns.  
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Table 3.4. The ductile elongation as function of temperature for Au (001), Au (110) and 
Au (111) nanowires.  
 

0.01 K 298 K     Temp.   

 

 Forcefields  
Au (001) Au (110) Au (111) Au (001) Au (110) Au (111)

Glue Model 23.6 Å 25.6Å 22.8 Å 46Å 40.6Å 31.2Å 

TB-SMA 24 Å * 14.4Å 22.4 Å * 21.2Å 21.2Å * 21.2Å 

* Monatomic chains occurred 
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3.4.1.2. Effect of Initial Configuration 

The absence of a published statistical analysis of the occurrence of monatomic 

chains led us to perform such a study, since the results can provide a way to predict 

break-junction structures.  Thirty simulations were initialized with thirty different 

configurations, which were then elongated to produce gold nanowires break junctions.  

Figure 3.9 provides the statistics on the distribution of the numbers of monatomic atoms 

in the final break-junction structures just prior to rupture using the TB-SMA potential.  

At the lower temperature 0.01 K, Au (110) and Au (111) appear to be deterministic (i.e., 

all simulations led to the same result):  no monatomic chains were found for Au (110), 

while two-atom-long monatomic chain structures arise for Au (111) for all studied initial 

conditions.  The numbers of monatomic atoms for Au (001) vary from zero to five with 

43% of cases showing the monatomic chain structures of five atoms in length.   When the 

temperature is elevated to 298 K, the numbers of the monatomic atoms in the break-

junction exhibit wide distributions.  For Au (110), compared to no monatomic chain 

structures occurring at 0.01 K, one atom suspended between two gold tips is found in 

30% of cases and two monatomic atom structures are found in 43% of cases.  For Au 

(111), two-atom-long monatomic chain structures are found in about half of the cases, 

while another 40% of cases exhibit single-atom monatomic chain structure.  For Au  

(001), the numbers of monatomic atoms vary from zero to four with one, two or four 

suspended Au atoms accounting for 37%, 10% and 3% of cases respectively.  

 The rupture structures are dependent on initial configurations.  It appears that the 

(001) wires can produce monatomic chains because that there is a stacking fault 

formation on the side of the conical base.  This may account for the orientation 
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dependence of the formation of monatomic chains.  Moreover, at lower temperature, 

monatomic chains show a rather narrow distribution at break junction structures.  At 

higher temperature, monatomic chains are distributed more broadly due to the thermal 

fluctuations.   
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Figure 3.9.  The numbers of monatomic atoms distribution for different crystallographic 
orientations at two temperatures.   
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3.4.2. Small System Study 

The interesting results of the statistical studies using large system encourage us to 

further our studies on investigating the effect of geometry, rate and temperature on the 

elongation properties of the nanowires.  In this study, we give attention to the crystal 

which orientate along [001] direction only.  The target nanowires vary in length (z 

direction).  The shorter nanowires include 16 layers of gold atoms, for a total of 256 

atoms (Figure 3.10 (a)); the longer nanowires include 28 layers of gold atoms, for a total 

of 448 atoms (Figure 3.10 (b)).  Two layers at both ends are kept rigid.  The atoms 

between these two blocks are dynamic.  Elongation of the wire is realized by displacing 

the top rigid layers along the z direction in increments of 0.1 Å, while keeping the other 

end fixed. For every 0.1 Å increment the whole system is allowed to be relaxed for 5000, 

50000 or 100000 time steps with a time step of 2 fs, corresponding to an elongation rate 

of 1.0, 0.1 and 0.05 m/s.  All of the results shown below are based on statistical studies.  

In each case 30 independent MD runs are performed to obtain the average ductile 

elongations and the break-junction structures.  

 

44 



                                                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                     

 

 
 
 
 
 
 
 
 
                                                 (a)                                   (b) 
 

Figure 3.10.  Initial configurations of Au (001) nanowire.  (a) 256-atom gold nanowire  
(b) 448-atom gold nanowire.  
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3.4.2.1. Effect of Length and Temperature 

Keeping the dimension in x and y directions unchanged, we vary the nanowires’ 

length from 30.6 Å (shorter nanowire) to 55.1 Å (longer nanowire) which corresponds to 

the increase of aspect ratio from 2.1 to 3.9.  We investigate the effect of length and 

temperature on the ductile elongations at fixed elongation rate 1.0 m/s.  Table 3.5 

summaries the average ductile elongations at temperature 0.01 K, 300 K and 500 K 

respectively.  It is found that the ductile elongations vary with temperatures for both 

nanowires, but with different trends.  In order to explain the observed phenomena, we 

look into the probabilities on the formation of monatomic chains in the break junctions at 

three temperatures as shown in Figure 3.11 (for shorter nanowires) and Figure 3.12 (for 

longer nanowires).   

The variations in temperature not only affect the ductile elongations, but also 

influence the stability of the nanowires.  Figure 3.13 and 3.14 plot the center of mass of 

Au atoms in three directions x, y and z for the shorter wire and the longer wire at 

temperature 0.01 K and 300 K during the first 200 ps, respectively.  It is obvious that the 

Au atoms only vibrate around their original positions at low temperature.  However, at 

room temperature, the center of mass shows much more variations due to the thermal 

fluctuations.  Moreover, the shorter the dimensions are, the severer the variation in center 

of mass.    
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Table 3.5.   The average ductile elongations (Å) as a function of temperature for pulling 
nanowires in vacuum at elongation rate 1.0 m/s.  The shorter nanowires include 16 layers 
of total 256 gold atoms; The longer nanowires include 28 layers of total 448 gold atoms. 
  

                                       shorter wires                                   longer wires 

0.01 K                               18.8±2.1                                           30.7±12.0 

300 K                                18.3±4.1                                           21.3±7.4 

500 K                                15.8±3.1                                           12.8±3.2 
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Based on the statistical data in Table 3.5, we observe the following phenomena:   

i) For low aspect ratio nanowires, the ductile elongations are similar at 

temperature 0.01 K and 300 K.  In comparison, the average ductile elongations for the 

high aspect ratio nanowires decrease from 30.7 Å to 21.3 Å as the temperature increase 

from 0.01 K to 300 K.  It is clearly illustrated in Figure 3.11 and 3.12 that the 

probabilities on the formation of long monatomic chains (over 2 atoms in length) increase 

from 13 % for shorter nanowires to 43 % for longer nanowires at 0.01 K.  Meanwhile, the 

longest monatomic chain is 6 atoms in length for shorter nanowires.  By comparison, for 

longer nanowires, the monatomic chains can be as long as 13 atoms in the break 

junctions.  The high possibility on the formation of longer monatomic chain structures for 

high aspect ratio nanowires is related to the percentage of the atoms in the dynamic zone.  

The increase in the length of the nanowires makes more gold atoms incorporated in the 

process of forming monatomic chains.  As for the shorter nanowire, 25% of the gold 

atoms (4 layers out of 16) have been restrained in the rigid layers.  In comparison, only 

14% of the gold atoms (4 layers out of 28) have been constrained in the rigid layers for 

the longer nanowires.  Obviously, the more gold atoms involved in the dynamic zone, the 

higher the probability to form longer monatomic chains. This finding helps us explain the 

noteworthy high average ductile elongations for high aspect ratio nanowires at 0.01 K 

because normally the greater the number of the monatomic atoms in the break junctions, 

the longer the ductile elongations will be.     
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Figure 3.11. The probabilities of formation monatomic chains in the break junctions for 
256-atom nanowires at elongation rate of 1.0 m/s.  
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Figure 3.12. The probabilities of formation monatomic chains in the break junctions for 
448-atom nanowires at elongation rate of 1.0 m/s.  
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Figure 3.13. The center of mass of Au atoms in x, y and z directions for the 16layers and 
28 layers nanowires equilibrium during the first 200 ps at 0.01 K. 
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Figure 3.14. The center of mass of Au atoms in x, y and z directions for the 16 layers and 
28 layers nanowires equilibrium during the first 200 ps at 300 K. 
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ii) When we further increase the temperature to 500 K, the average ductile 

elongations decrease considerably for nanowires in both lengths.   From the figures, we 

find that no matter what lengths of the nanowires, the chances for the formation of longer 

monatomic chains decrease as the increase of the temperatures.  At 300 K and 500 K, 

there is no single case of monatomic chains over two atoms long.  Moreover, the chances 

for no monatomic chains formation increase further at 500 K.  The formation of longer 

monatomic chains is very sensitive to the structural properties of the nanowires.  Only 

very stable structures along the elongation path make more atoms in the monatomic chain 

possible.  The increase in the temperature destroys such stable structures due to the strong 

thermal fluctuations, which induces the disappearance of the longer monatomic chains.  

As a consequence, the shorter monatomic atoms in the break junctions count as one of the 

reasons for the reduced ductile elongations at high temperatures.  The other reason is that 

the formation of the neck can initiate as early as in the initial relaxation stage prior to 

pulling at temperature 500 K.  The distortions of the configurations make the fracture of 

the nanowires much easier (a typical initial configuration is shown in Figure 3.15 (a)).   
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                                (a)                                                                   (b) 

 

Figure 3.15. The necking formation prior to pulling at 500 K (a) and the formation of 
multishell break-junction structure at 300 K (b).   
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3.4.2.2. Effect of Elongation Rate 

 In order to identify if the elongation rate has effect on the ductile elongations, we 

decrease the rate from 1.0 m/s to 0.1 m/s and 0.05 m/s.  Table 3.6 (for shorter nanowires) 

and Table 3.7 (for longer nanowires) list the ductile elongations at elongation rates 0.1 

m/s and 0.05 m/s respectively at three temperatures.  We find the following trends: 

i) Unlike the case of elongation of nanowires at 1.0 m/s, the average ductile 

elongations at 300 K are slightly higher than those at 0.01 K for both shorter and longer 

nanowires.  By pulling the nanowires slower at 0.01 K, we notice that the longer 

monatomic chain structure completely disappears.  For the shorter nanowires, there is no 

monatomic chain over two atoms long formed. The longest chain structure becomes 2 

instead of the 6 found previously when elongating nanowires at rate 1.0 m/s.  As for the 

longer nanowires, only one 9-atom-long monatomic chain structure appears.  The 

probability on the formation of long monatomic chains more than two atoms long at 0.01 

K decreases from 43% to 3% as a result of lowering the elongation rates only.  One of the 

possible reasons for the disappearance the long monatomic chain structures at lower 

elongation rates could be due to the greater relaxation time allowed for the gold atoms.  

The adequate relaxation of the atoms generate fewer defects in the nanowires, which in 

turn results in the formation of more brittle like, shorter chain structures in the break 

junctions.  Therefore, the reduction in the numbers and possibilities of the formation of 

monatomic chains definitely accounts for the decreased average ductile elongations at 

0.01 K.  From the point view of 300 K situation, we find the formation of the helical, 

zigzag type chains (see Figure 3.15 (b)) in the break junctions as the elongation rate is 

lowered, especially for high aspect ratio nanowires.  This type of break-junction structure 
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has been observed previously in MD simulations61,62 to generate quite long ductile 

elongations.  In our simulation, for example, 27% of the 448-atom nanowires elongated at 

rate 0.05 m/s form long zigzag long chain with ductile elongations over 35 Å.  In 

summary, the comparably longer ductile elongations at 300 K not only contribute to the 

formation of shorter monatomic chain structures at 0.01 K but also to the formation of 

longer zigzag type chain structures at 300 K.     
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Table 3.6.   The average ductile elongations (Å) as a function of temperature for pulling 
the shorter nanowires in vacuum at elongation rate 0.1m/s and 0.05 m/s. 
 

                                             0.1 m/s                                           0.05 m/s 

0.01 K                                15.1±0.4                                          15.3±0.0  

300 K                                 16.1±6.9                                          16.7±3.5 

500 K                                   7.8±1.2                                            6.2±0.9  
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Table 3.7.   The average ductile elongations (Å) as a function of temperature for pulling 
the longer nanowires in vacuum at elongation rate 0.1m/s and 0.05 m/s. 
 

                                      0.1 m/s                                                0.05 m/s 

0.01 K                           19.9±4.2                                               18.8±4.7      

300 K                            22.9±7.4                                               24.3±9.3 

500 K                              4.8±1.4                                                 3.2±1.5  

 

 

  

 

 

 

 58



 

 

 

 

 

 

Elongation rate (m/s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

D
uc

til
e 

el
on

ga
tio

ns
 ( 

Å
)

0

10

20

30

40
256_0.01K 
256_300K 
256_500K 
448_0.01K 
448_300K 
448_500K 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.16. The ductile elongations as a function of elongation rate for various wire sizes 
at three temperatures. 
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ii) Figure 3.16 plots the ductile elongations as a function of elongation rate for 

both sizes of nanowires at three different temperatures.  This figure provides us with a 

complete picture of the elongation rate dependent behavior.  In most cases, the ductile 

elongations increase with increasing elongation rate, mainly originating from the 

formation of longer monatomic structures at high elongation rate. Some exceptions apply 

to the cases described before when longer zigzag-type chain formed (e.g. 448-atom 

nanowires elongated at rate 0.05 m/s), which bring in the higher ductile elongations at 

300 K and at low elongation rate.  Furthermore, the ductile elongations at 500 K turn out 

to be very small compared with the cases at 0.01 K and 300 K for both nanowires, 

particularly for the high aspect ratio nanowires.                       

 

3.5. Conclusions 

 Firstly, we have performed MD simulations combined with DFT energy 

calculations to investigate the mechanical elongation behavior of finite gold nanowires.  

The DFT energy calculations verify that among the three typical semi-empirical 

potentials (i.e., the glue model, the EAM and the TB-SMA potentials), the TB-SMA 

potential is the most suitable forcefield to describe the structural and mechanical 

properties of gold nanowires during elongation.  Using the TB-SMA potential, we find 

that elongation of gold nanowires leads to the formation of monatomic chains, as 

observed by many experiments and the TB-SMA potential can correctly predict the 

breakup force.  

Secondly, MD simulations have been conducted to study the impact of the 

crystallographic orientation, length, rate, and temperature on the ductile elongation 
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properties of nanowires with either large system or small system.  For the small system 

study, we perform all our simulations using statistical approaches (i.e., multiple 

realizations of the simulations).  The results show that a combination of low temperature 

with high elongation rate is necessary to form monatomic chains with more than two 

atoms in length.  Furthermore, increasing the length of the nanowires assists the 

formation of longer monatomic chains in the break junctions at 0.01 K.  In contrast, high 

temperature or low elongation rate diminish the probability of the formation of the long 

monatomic chain structures.  Moreover, a combination of high temperature (300 K) with 

low elongation rate makes the formation of the helical, zigzag-type break-junction 

structures feasible.  
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CHAPTER IV 

 

DYNAMIC ELONGATION OF NANOWIRES IN PROPANE 

 

4.1. Introduction 
 

Theoretical studies on the dynamic elongation process of the nanowires have 

typically been conducted in vacuum.  There are extensive simulation studies devoted to 

the investigation of the quantized conductance properties by DFT calculations, 76-79 but 

usually the impact of the local environment, such as solvent effects, on the formation of 

the junctions is neglected.  Csonka et al.76 investigated the interaction of physically 

adsorbed molecular hydrogen with a breaking gold nanowire.  Li et al.77 demonstrated 

that the weak adsorption of organic molecules (2, 2'- bipyridine or adenine) on a copper 

nanowire resulted in changes in conductance.  Most of the experimental conductance 

measurements of metal-molecule-metal junctions were performed in solvent and the 

junctions were fabricated through mechanical stretching of the nanowire.4,48 Therefore, it 

is desirable to study the solvent effects on the elongation properties of nanowires in order 

to understand better the electronic properties of the molecular conjunctions. In this 

chapter we attempt to simulate the elongation of gold nanowires in a simple solvent 

through large-scale molecular simulations.   

We investigate the dynamic elongation behavior of Au nanowire immersed in a 

simple nonpolar solvent, propane (C3H8). The purpose of this study is to understand to 

what extent the thermal collisions of nonbonded particles will influence the mechanical 

elongation property of Au nanowires. Propane is a three-carbon alkane with critical 
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pressure and temperature of 42.5 bar and 370 K, respectively. We performed MD 

simulations at temperatures of 300 K, 400 K and 500 K, respectively. The results 

revealed that when the temperature is well below the melting point of gold nanowires, 

there is essentially no effect of propane solvent on the elongation behavior of Au 

nanowires.  

 

4.2. Simulation Details 

 

4.2.1. Forcefields 

In this study, the interactions between gold atoms were calculated by the TB-

SMA59 potential, as described in Chapter III.  We approximate this short chain molecule 

by a spherical Lennard-Jones (LJ) particle. Interactions between solvent molecules and 

between gold atoms and propane molecules are described by the 12-6 LJ potential, i.e., 

for a pair of interacting sites i and j, the pair potential is given by 
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The cross interaction potential parameters εij and σij are calculated from Lorentz-Berthelot 

combining rules if interacting sites i and j are different species. The LJ parameters for 

gold atoms are derived from the universal forcefield (UFF).80 The UFF developed by 

Rappe et al.80 has been parameterized for the full periodic table.  The set of fundamental 

parameters is based only on the element, its hybridization, and connectivity.  In this 

forcefield, the potential energy for a molecule is written as a superposition of various 
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two-body, three-body, and four-body interactions. The LJ parameters for propane are 

calculated according to the corresponding state theory81 so that the LJ fluid has the same 

critical temperature and pressure/density as propane. All the LJ parameters used in this 

work are summarized in Table 4.1. 
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Table 4.1.   Lennard-Jones parameters for Au and propane. 

 

                                       ε (kcal/mol)                                         σ (Å) 

Au /Au                              0.039                                                 2.934 
 
propane / propane             0.553                                                 4.66 
 
Au / propane                     0.147                                                 3.797 
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4.2.2. Simulation Methodology 

We have performed MD simulations for the elongation of an Au nanowire along 

the [001] direction both in vacuum and in solvent at various temperatures.  The nanowire 

includes 16 gold layers with each layer containing 16 Au atoms, so the total number of 

gold atoms is 256 (see Figure 4.1 (a)).  Two layers at both ends are kept fixed.  The atoms 

between these two blocks are dynamic. Similar to the simulation method description in 

Chapter III, elongation of the nanowire is realized by moving the top rigid layers along 

the z direction in increments of 0.1 Å, followed by 5000 time steps for relaxation, with a 

time step of 2 fs. This corresponds to an elongation rate of 1.0 m/s. We found that this 

relaxation time is sufficient for a quasi-static stretching of gold nanowires either in 

vacuum or in propane solvent. The equations of motion are integrated via the velocity 

Verlet algorithm and the temperature is controlled by the Nosé–Hoover thermostat on the 

dynamic Au atoms only.66-68 Periodic boundary conditions (PBC) are applied in three 

dimensions. However, in simulating the elongation of nanowire in vacuum, adding or 

removing PBC has no effect on the simulation results, as long as the simulation box 

lengths are sufficiently large. Figure 4.1 (b) shows the equilibrium structure of 1298 

propane molecules surrounding a gold nanowire.  Unlike the slightly relaxed structure of 

256-Au nanowire at T = 0.01 K,82 the relaxed crystal structures of 256-Au wire in 

vacuum and in solvent at 300 K show significant reconstructions, accompanied by the 

formation of dislocations (see Fig. 4.1). For the simulation of 256-Au wire in propane 

solvent, we initially performed the constant temperature and constant pressure (NPT 

ensemble) MD run for pure propane (containing 1372 propane molecules) under its 

critical pressure (42.5 bar) but at 300 K, which is below its critical temperature (370 K). 
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The final equilibrium volume of simulation box is 6.1 × 2.6 × 13 nm3, corresponding to a 

density of 0.47 g/cm3. This value is consistent with other MD simulation and 

experimental results.83  The 256-Au wire was then put into the center of simulation box. 

All the overlapped propane molecules were removed from the simulation box. This 

treatment will slightly change the system pressure; however, we will show later that the 

effect of pressure variation upon the elongation process is negligible compared with that 

due to temperature variations.  
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                               (a)                                                        (b) 
 
 

Figure 4.1.  Initial configurations of 256-Au (001) nanowire in vacuum and in solvent.  
(a) 256-atom gold nanowire relaxed 20 ps at 300 K ; (b) 256-atom relaxed nanowire in 
propane solvent. The dimension of the solvent box is 6.1 x 2.6 x 13 nm3. 
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4.3. Effect of Propane Solvent on the Ductile Elongation of Nanowires at Various 
Temperatures   
 

We investigate the effect of propane solvent on the elongation properties of the 

256-atom Au (001) nanowires at different temperatures by comparing the average ductile 

elongations in the two cases.  Figure 4.2 shows two snapshots of the elongated nanowires 

in vacuum and in propane solvent before breakup at 300 K.  In this specific case, it is 

seen that the break junctions in vacuum and in solvent occur at different locations. Since 

the break-junction phenomenon is largely stochastic in nature, we therefore performed 

thirty independent MD runs of elongation in vacuum and another thirty runs in propane 

solvent for comparison. Table 4.2 summaries the calculated average ductile elongations, 

together with the standard deviations at different temperatures. It is interesting to note 

that, for the gold nanowires elongated both in vacuum and in propane solvent, the ductile 

elongations decrease with increasing temperature. Moreover, the average ductile 

elongations of gold nanowires in vacuum and in solvent are almost the same at 

temperatures of 300 K and 400 K. It should be noted that at 400 K, the corresponding 

pressure of liquid propane is increased to 500 bar.83 It seems that this one order of 

magnitude increase in pressure has virtually no impact on the elongation of the nanowire. 

However, the solvent effect becomes significant only at temperature of 500 K (the 

corresponding pressure is ~1000 bar).83 The average ductile elongation of Au nanowire in 

propane solvent is 12.35± 2.82 Å, less than that of gold nanowire in vacuum (15.83±3.07 

Å).   
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                   (a)                                                                                 (b) 
 

Figure 4.2.  Break-junction configurations of 256-Au (001) nanowire in vacuum and in 
solvent.  (a) 256-atom gold nanowire elongated in vacuum at 300 K; (b) 256-atom gold 
nanowire elongated in solvent at 300 K. 
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Table 4.2.  The variations of the ductile elongations as a function of temperature for Au 
(001) nanowires in vacuum and in solvent. 
 

                                  nanowires in vacuum (Å)            nanowires in solvent (Å) 

300 K                            18.3±4.1                                      18.8±4.4 
 
400 K                            16.2±4.2                                      16.5±3.5 
  
500 K                            15.8±3.1                                      12.4±2.8 
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It is valuable to investigate further why the solvent has an effect only at relatively 

high temperature (500 K). To understand this phenomenon, we plot the caloric curve, the 

variation of the total energy of the 256-Au nanowire versus temperature, and the 

diffusion coefficient of gold atoms as a function of temperature, as shown in Figure 4.3. 

Evidently, there is a linear increase regime for the total energy of gold wire and the 

diffusion constant of gold atoms at relatively low temperature, corresponding to a crystal 

structure of the Au cluster. The abrupt jumps in both quantities around 550K signify that 

the melting point (Tm) of the gold cluster is around this value, consistent with several 

previous studies.84-86 This melting point of a finite gold cluster is much lower than the 

bulk value. These calculation results indicate that the solvent effect on the elongation of 

Au nanowire becomes significant only when the temperature approaches the melting 

point. 
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Figure 4.3.  The caloric curve and the diffusion coefficient as a function of temperature 
for nanowire in vacuum. 
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4.4. Conclusions 

The MD simulation studies explored the solvent effects on the elongation 

properties of gold nanowires. A simple Lennard-Jones spherical model for propane has 

been used to represent the solvent molecules in order to test the influence of the thermal 

collisions of nonbonded particles on the mechanical elongation property of Au 

nanowires.  Propane does not form chemical bonds with Au atoms.  

Simulation results demonstrated that the solvent effect is minimal if the 

temperature is below the melting point of gold nanowire.  However, when the 

temperature approaches the melting point, the average ductile elongation of Au nanowire 

in propane solvent is 22 percent less than that of gold nanowire in vacuum. 
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CHAPTER V 

 

SELF-ASSEMBLY OF BENZENEDITHIOL ON NANOWIRES 

 

5.1. Introduction 
 

In the pioneering work by Reed et al.4 on the single-molecule current-voltage (as 

well as conductance) measurements, the gold wire was pulled apart in tetrahydrofuran 

(THF) solvent containing BDT molecules. The self-assembly of BDT on Au wire is the 

key component in establishing a metal-molecule-metal junction. As noted in chapter II, 

self-assembled molecular electronic systems composed of many single-molecule devices 

are the most promising path to future computers with ultra-dense, ultra-fast, molecular-

sized components, and as the likely candidate to continue Moore’s law beyond silicon 

technology.  However, there exist formidable barriers to their practical implementation.  

Experiments in molecular electronics are both difficult and very expensive, and have 

frequently been the subject of large lab-to-lab discrepancies.  A comprehensive 

theoretical framework is thus needed, especially for the prediction of electron transport in 

single molecules in their real environment (i.e., in a single-molecule experiment or at a 

system level in a working device). Significant theoretical issues must be resolved to make 

such modeling capability a reality.  Many experimental measurements have shown that 

the microscopic contact geometry at BDT-Au interface has dramatic influence on the 

conductance.87,88 Therefore, it is valuable to obtain the local bonding structures of BDTs 

on Au nanowires at specific temperatures via classical molecular simulations. In this 

 75



chapter, we present GCMC simulation results of the structure of BDT molecules 

adsorbed on Au nanowires. 

 

5.2. Simulation Details 

 

5.2.1. Forcefields 

To simulate the adsorption of BDT molecules on gold nanowires, BDT molecules 

are modeled as rigid molecules.  The potential model for BDT molecules employed are 

based on the universal forcefield (UFF)80 plus Mulliken partial charges derived from 

recent ab initio calculations.45  The non-bonded interactions between gold atoms and 

BDT molecules are modeled by Lennard-Jones pair potentials from UFF.  The chemical 

bonding between the sulfur atom in BDT and Au atoms are modeled by Morse potential.  

The 3-D Ewald summation technique (EW3DC) is used to compute the electrostatic 

energies.  The potential parameters are listed below in detail. 
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Figure 5.1. (a) The rigid bulk BDT molecular configuration used in the simulation. (b) 
Side view of (a). 
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5.2.1.1. Bulk BDT Potential Model 

The BDT molecules in the bulk as shown in Figure 5.1 are modeled by an all-

atom explicit potential based on the universal forcefield (UFF).80  The potential for bulk 

BDT consists of two types of nonbonded interactions (nonbonded interactions occur 

between atoms in different molecules and between atoms in the same molecules that are 

more than three atoms apart in the molecule), the Lennard-Jones type dispersion energy 

and electrostatic energy.  The Lennard-Jones energy between a pair of interacting sites i 

and j that are in different molecules is given by 
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The cross interaction potential parameters εij and σij are calculated from Lorentz-Berthelot 

combining rules if interacting sites i and j are different species as indicated in equation 

(5-2) and (5-3). 

jiij εεε =                                                                                                                (5-2) 

( jiij σσσ +=
2
1 )                                                                                                            (5-3) 

The Lennard-Jones parameters in Eq. (5-1) for each interacting site on BDT are 

converted from corresponding UFF parameters, while the partial charges on each atom of 

a bulk BDT molecule are derived from recent quantum mechanical calculations.45  The 

molecular configuration and potential parameters for the bulk BDT are summarized in 

Table 5.1.  
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Table 5.1. Molecular configuration and potential parameters for the bulk BDT model. 

 

Bond lengths (Å)    

 C-C (benzene ring) 1.379  

 C-H 1.085  

 C-S 1.800  

 S-H 1.429  

Bond angles    

 C1-C2-C3  120°  

 C1-C2-H9  120°  

 C2-C1-S7  120°  

 C1-S7-H13 92.1°  

Lennard-Jones Parameters  ε(kcal/mol) σ(Å) 

 C 0.105 3.431 

 H 0.044 2.571 

 S 0.274 3.595 

Partial charges   q(e)  

 C1, C4 -0.49  

 C2, C3, C5, C6 -0.06  

 S 0.06  

 H9, H10, H11, H12 0.20  

 H13, H14 0.15  
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Table 5.2. Partial charges for potential of adsorbed BDT molecules. 
 

Partial charges q (e) (S8 q (e) (S7 q (e) (S8 & S7 

C1 -0.49 -0.33 -0.34 

C2,C6 -0.06 -0.10 -0.06 

C4 -0.33 -0.49 -0.34 

C3,C5 -0.10 -0.06 -0.06 

S7 0.06 0.13 0.06 

S8 0.13 0.06 0.06 

H9, H10, H11, 0.20 0.20 0.20 

H13 0.15 0.00 0.00 

H14 0.00 0.15 0.00 

Au 0.00 0.00 0.00 
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5.2.1.2. Au-BDT Potential Model  

When a BDT molecule adsorbs on an Au nanowire, one or two of the sulfur atoms 

form chemical bonding with Au atoms, accompanied by the dissociation of the H atom 

from the originally bonded sulfur atom. The ab initio calculations indicate that the 

structure of the BDT is largely unchanged, but significant charge transfer occurs during 

the Au-S bonding process.45 Therefore, for the partial charges calculation, we select the 

redistributed partial charges on the bonded BDT from the average of ab initio results of 

three DFT functional for the bridge bonding configuration.45  Table 5.2 summarizes the 

partial charges for the bonded BDT model.  

For the chemical bonding between the S atom in BDT and the bonded Au atoms 

in the nanowires, we chose the pairwise-additive Morse potential to describe the Au-S 

interaction.  The Morse type potentials have been used previously to approximate the 

chemical adsorption of BDT on a Au surface.89,90   Here, the Morse potential takes the 

form:  

 
[ ] [ ]{ 2)(exp)(exp −−−−−=−

eee
SAu

Morse rrrrDU αα }.                                         (5-4) 

 
In Eq. (5-4), r is the distance between the center of S atom and the Au atom which bonds 

to this S atom;  De, re, and α are empirical parameters.  The Morse potential parameters 

have been further refined recently based on the calibrations for different BDT-nAu 

complexes.91  It has been shown that the Au bridge site is the most stable adsorption site 

for S-Au chemical bonding.92,93  Thus, we model the bonded interaction between the 

bonded S atom and the nearest two Au atoms by a strong Morse potential in the case of 

the nearest distance between this S atom and one of the bonded Au atoms is less or equal 
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to cutoff distance of 3 Å . The related parameters are listed in Table 5.3, which are the 

averages of those derived from three different DFT functionals for the BDT-3Au bridge 

bonding cluster.91  
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Table 5.3. Potential parameters for the Morse Au-S bonding. 

 

                     De (kcal/mol)                     re (Å)                      α (1/Å) 

                        28.7                                  2.44                          1.67  
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5.2.2. Simulation Methodology 

We study the equilibrium adsorption structure of BDT molecules on a gold 

nanowire that is completely immersed in BDT solution. GCMC method has been applied 

to acquire the equilibrium adsorption coverage of BDT on Au (001) nanowires.  

Canonical (NVT ensemble) Monte Carlo simulation runs are followed to further 

equilibrate the structures and to collect the bonding structures of the adsorbed phase from 

GCMC for analysis. A detailed description of GCMC (µVT ensemble) and canonical 

(NVT) MC simulation approach can be found elsewhere.46  An appropriate µ value to 

make the BDT density approaches its bulk value is achieved by inserting BDT molecules 

to a simulation box with specific size.  We find that in this dense liquid phase the bulk 

BDT density is quite independent on the BDT chemical potential µ set in the range of -

120 to 120.  Obviously, this is largely due to the predominant role of the total internal 

potential energy over the chemical potential µ for very dense liquids. In our study, µ  is 

set at -5.  

In this chapter, a small Au (001) nanowire (consisting of 256 gold atoms) and a 

relatively large Au (001) nanowire (consisting of 3254 gold atoms) are initially allowed 

to relax for at least 200 ps prior to GCMC insertion of BDT molecules. The initial 

molecular configuration of Au nanowire surrounded by 26 (small)/18 (large) nonbonded 

BDT molecules is shown in Figure 5.2.  These BDT molecules are arranged in an FCC 

lattice in the specific simulation box.  The nearest distance between the adsorbate 

molecules and the Au atom on the nanowire is greater than 2.5 re to avoid initial direct 

interactions between BDT and Au through chemical bonding potential. GCMC involves 

creation and deletion of BDT molecules for a given chemical potential, as well as 
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translation and rotation of rigid BDT molecules according to a set of given 

probabilities.46 Because of the size and polarity of the BDT molecules, conventional 

GCMC simulations are very inefficient for inserting and deleting molecules.  Therefore, 

we implement the orientationally biased GCMC94 to improve the efficiency of the 

calculation.  Each attempted insertion or deletion of a molecule utilized information from 

15 random orientations.  

Both GCMC and NVT MC simulations are carried out at 298 K.  The simulation 

box lengths in three dimensions are 3.5 x 3.0 x 3.3 nm for small nanowire and 6.0 x 6.0 x 

6.5 nm for larger nanowire, with periodic boundary conditions applied in all three 

directions. During the GCMC runs, BDT molecules are allowed to interact with the Au 

atoms through either Lennard-Jones or Morse potential, depending on the distance 

between the S atoms in BDT and the Au atoms on nanowire.  If neither of the S atoms in 

a BDT molecule is within the Morse interaction distance (< 3.0 Å) to the Au atoms, the 

energy between each atom of the BDT and Au atoms is calculated by Lennard-Jones 

interaction.  The electrostatic energy involving the BDT molecule is calculated from the 

partial charges for bulk BDTs.  As soon as one of the S atoms of a BDT molecule is less 

than 3 Å, from the nearest Au atoms, the BDT molecules are identified as bonded 

molecules.  The Morse potential is in effect between the S atom in the BDT and the two 

nearest Au atoms on the nanowire accompanied by the turning off the Lennard-Jones 

interaction between them.  In the case of two S atoms in the same BDT molecules are 

both less than 3 Å to their nearest Au atoms, the two S atoms in BDT molecule are 

bonded to four nearest Au atoms through Morse potential.  During a GCMC simulation, 

desorption process of BDT molecules form Au nanowire occurs with equal probability as 
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adsorption processed after the system reaches equilibrium.  The energy calculation of a 

desorbing BDT molecule can be easily performed by reversing the above scheme. 

   After a prolonged GCMC run (over ten million moves), a densely packed BDT 

structure adsorbed on Au nanowire is obtained. The equilibrated absorbed configuration 

from GCMC was input as the starting point of NVT simulations.  The further NVT 

equilibration typically included five million translation and rotation moves chosen 

randomly with equal probability.  Additional five million NVT moves followed for 

collecting the structural data.  The maximum values of translation and rotation of 

molecules were adjusted during the equilibration to achieve acceptance ratios for these 

moves of about 0.4.  The cutoff of pairwise Lennard-Jones interaction between the 

interacting sites of BDT and Au atoms was 15 Å, without any long-range correction 

applied.   
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                          (a)                                                              (b) 

 

Figure 5.2.  Initial configurations. (a) 256-atom Au nanowire surrounded by 26 BDT 
molecules; (b) 3254-atom Au nanowire surrounded by 18 BDT molecules. 
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5.3. Adsorption Structure of Benzenedithiol on Gold Nanowires  

Figure 5.3 and Figure 5.4 show the final adsorption configurations of BDTs on 

“small” and “large” gold nanowires.  For the 256-atom small nanowire, the final 

adsorption structure is obtained after 10 million GCMC moves followed by equilibration 

of another 10 million NVT MC moves at 298 K. The total number of BDT molecules in 

the simulation box is 142, corresponding to a density of 0.99 g/cm3, which is slightly 

lower than the BDT bulk value at 298 K (1.2 g/cm3).  The total number of chemically 

bonded BDT molecules on Au nanowire is 80.  For the 3254-atom larger nanowire, the 

final adsorption structure is obtained after 30 million GCMC moves followed by 

equilibration of another 10 million NVT MC moves at 298 K.  The total number of BDT 

molecules in the simulation box is 824, corresponding to a density of 1.04 g/cm3. In this 

case, the total number of chemically bonded BDT molecules on Au nanowire is 314.   In 

Figure 5.5, the distribution of bonded BDTs and sulfurs on Au nanowire is clearly 

demonstrated. 
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                                (a)                                                                    (b) 
 

Figure 5.3. Final adsorption configurations of BDTs on 256-atom Au (001) nanowire. 
The dimension of the box is 3.5 x 3 x 3.3 nm3. (a) side view; (b) top view.   
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                       (a)                                                                  (b) 

 
Figure 5.4. Final adsorption configurations of BDTs on 3254-atom Au (001) nanowire. 
The dimension of the box is 6 x 6 x 6.5 nm3. (a) side view; (b) top view.   

 90



 

 

 

 

 

 

                                                                  

                                                               

 

 
 
 
 
 
 
 
                               (a)                                                      (b) 

 

Figure 5.5.  The adsorption configurations after removing non-bonded BDT molecules. 
(a) the bonded BDTs on Au nanowire; (b) the bonded sulfur (cyan) on the Au nanowires.  
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To investigate the local bonding geometries, we plot S-Au and S-S distance 

distributions in Figures 5.6 and 5.7 respectively for the 3254-atom nanowire. Figure 5.6 

clearly shows the first S-Au distance distribution peak occurs at 2.5 Å, which 

corresponds to the S-Au on-bridge bonding.  The second S-Au peak at 3.2 Å corresponds 

to the nonbonded gold atoms, which are second nearest to the S atom. Closer examination 

reveals that these nonbonded gold atoms corresponding to the second peak are all surface 

atoms. Interestingly, Figure 5.7 shows that the first S-S peak occurs at about 4.2 Å. This 

S-S distance is less than the 5.0 Å, the distance between sulfur head groups commonly 

observed for benzenethiol (BD)95 or other alkanethiol molecules96-98 adsorbed on Au 

(111) surface. This is most likely due to the curved surface of gold nanowire which 

favors the formation of more condensed BDT packing structure. 
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Figure 5.6.  The histogram of the bonded sulfur and all of the Au atoms in the nanowire. 
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Figure 5.7.  The histogram of the bonded sulfurs in the nanowire. 
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The local bonding structure shown in Figure 5.6 and 5.7 include all the bonded 

Au atoms, whether the Au atoms are on surface or in the bulk of the nanowire.  In order 

to investigate to what extent the sulfur atoms are bonded on surface Au atoms, we use a 

special technique to identify the surface Au atoms.  Initially, a set of ghost atoms 

surround the nanowires, then the ghost atoms approach the nanowires little by little until 

the potential between the ghost atom and Au atom approaches zero. The atomic 

interaction between the ghost Au atom and Au atoms is represented by a simple LJ pair 

potential from the Universal Forcefield (UFF)80 as: 
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The whole process of finding the surface atoms is shown in Figure 5.8. For the 

3254-atom Au nanowire, the number of surface Au atoms equal to 966.  In another 

words, the surface atoms occupy about 30% of all the Au atoms. Therefore, it is valuable 

to construct the local bonding structure of the S-Au distance distribution which includes 

only the surface Au atoms as shown using the dashed line in Figure 5.9.  The solid line in 

Figure 5.9 represents the S-Au distance distribution which includes all of the Au atoms as 

before for comparison.  It is clear that the peaks occur almost at the same positions under 

these two conditions, indicating the majority of the bonded BDT molecules are bonded 

on the 966 surface Au atoms. 
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Figure 5.8.  The process of identifying surface Au atoms (in red color). 
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Figure 5.9.  The histogram of the bonded sulfur and Au atoms in the nanowire (dashed 
line: surface Au atoms only; solid line: all Au atoms). 
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 Another interesting phenomenon observed is that more than one BDT molecules 

are bonded to Au-Au pairs (through bridge sites) with an Au atom in common. This is 

especially obvious for the 256-atom Au nanowire.  Table 5.4 shows the probability of the 

shared Au atoms being bonded by single or multiple BDT molecules. Two BDT 

molecules share the same bonded Au atom is the most popular event.  For the small wire, 

one Au atom can be shared at most by four BDT molecules.  In contrast, there are at most 

two BDT molecules share the same Au atom for larger wire.  In addition, the probability 

of sharing the same Au atom decreases from 21.1% for small wire to 9.5% for large wire.  

In Figure 5.10a we show a typical configuration of BDT molecules sharing the same 

bonded Au atom with the bonded S-Au distance around 2.6 Å.  Figure 5.10b shows that 

the shared Au atom locates in the corner of the Au small nanowire. The curvature 

structure of the small nanowire and the high chance for Au atoms to be on the corner are 

the main reasons for Au atoms to be shared by more than one BDT molecules.     
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Table 5.4. The probability of Au atom shared by more than one BDT molecules. 
 

 2 356-atom-wire 254-atom-wire 

u bonded by one BDT molecule 8.9% 0.5% 

u bonded by two BDT molecules 8.0% .5% 

u bonded by three BDT mo .3% .0% 

u bonded by four BDT mo .8% .0% 

A 7 9

A 1 9

A lecules 2 0

A lecules 0 0
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             (a)                                                              (b) 
 

Figure 5.10.  A schematic of four BDT molecules bonded to Au pairs. (a) one of the Au 
atoms (in red) shared by all three BDT molecules; (b) the shared Au atom locates on the 
corner of the nanowire. 
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5.4. Conclusions 
 

In this chapter we relate molecular simulations of the self-assembly of BDT 

molecules on Au nanowires. The forcefield parameters developed recently for the BDT-

Au chemical bonding have been implemented in GCMC simulations. We have 

successfully obtained the adsorption configurations of BDT molecules on both small Au 

(001) nanowire and larger Au (001) nanowire with the BDT density in the simulation box 

approaches to the bulk density. The local bonding geometry of BDT-Au obtained is 

consistent with previous results that S binds most favorably on the bridge sites of the Au 

surface with the distance of bonded S and Au located around 2.5 Å. We find that the 

packing density of bonded BDT on the surface of Au nanowire is larger than that of BT 

molecules on Au (111) surface, evidently due to the curved surface of the gold wire.  

Furthermore, an Au atom can be bonded by multiple BDT molecules and this 

phenomenon is more apparent for the smaller, higher curvature nanowire.    
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CHAPTER VI 

 

DYNAMIC ELONGATION OF NANOWIRES IN BENZENEDITHIOL 

 

6.1. Introduction 

The understanding of molecule-metal contact effects on electron transport through 

molecular junctions is an important step toward building a functional device based on 

single molecules.  The transport property of the combined Au-BDT-Au electrode system 

has been intensively investigated because BDT is a typical and simple π-conjugated 

molecule.99  Several theoretical studies have produced the qualitative feature of the 

measured current-voltage characteristics for BDT molecule sandwiched between two 

gold electrodes.  However, a significant discrepancy in I-V values between these quantum 

calculations and experimental measurements persists.  It has been shown that the absolute 

magnitude of the current is an extremely sensitive function of the contact geometry and 

chemistry in the metal-molecule interface.  In addition, temperature (hot electrons and 

vibrational coupling) or local disorder in the Au metal near the contacts arising from the 

breaking of the gold wire can alter the value of the current.21  The microscopic contact 

geometry at the BDT-Au interface is one of the critical factors that have dramatic 

influence on the conductance. For example, the conductance is dependent on whether the 

molecule is properly bonded to both electrodes, what the binding site of the thiol group 

on the gold electrode is, and how the molecule orients itself with respect to the gold 

electrode.88  The DFT calculations by Ponte et al.100 show three possible low energy Au-

BDT-Au configurations.  Two BDT molecules can each bond to one side of the metal and 

 102



transfer electrons through the overlap of electronic clouds.  The stable thiol group binding 

sites are either on bridge or on hollow.  Moreover, the BDT molecules can be laid almost 

flat on the surface or they can be almost perpendicular to the metal surface.  However, for 

these three stable interface structures, the conductances are 0.04G0, 0.64G0 and 0.51G0, 

respectively, where represents the fundamental conductance value. The 

difference in conductance caused by variation in contact geometry is thus as large as one 

order of magnitude.  Another DFT calculation done by Nara et al.

heG /2 2
0 =

93 shows the 

conductance varying  from 0.004 G0 to 0.04 G0 to 0.078 G0 simply by altering the thiol 

group binding sites from on top, on bridge to on hollow sites, respectively. On the 

experimental side, applying mechanically controllable break junction technique, Tsutsui 

et al.101 detected low (~ 0.01 G0) and high conductance (~ 0.1 G0) regimes for BDT 

molecules bonded on Au wires. They attributed the two distinct conductance states to the 

Au-S bonding configurations changing from top-top to top-hollow (or the hollow-hollow) 

sites. This tenfold (0.1 G0 / 0.01 G0) increase in the BDT conductance is consistence with 

Nara et al.’93 theoretical calculation (0.04 G0 / 0.004 G0) when the bridging 

configurations transformed from top-top to hollow-hollow sites. Similarly, using STM-

break junction setup for single alkanedithiols, Li et al.102 also recorded the occurrence of 

low and high conductance regimes. Therefore, it is valuable to seek insights into the local 

bonding structures of BDTs on Au nanowires via classical molecular simulations to 

identify the detailed Au-BDT-Au configurations since in quantum mechanical I-V 

calculations, the geometry of the stable metal-molecule-metal interface has to be 

determined at the initial setup.  DFT calculations are typically done on optimized 

geometries at 0 K, which are clearly subject to, possible change at ambient conditions in a 
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complex environment. Our simulation results can be used as an accurate input to quantum 

calculations that will help to resolve the original discrepancy between experimental and 

theoretical studies.  Additionally, classical molecular modeling also helps to interpret, 

and to give useful feedback to, the experimental measurements, device design, and 

manufacture.   

 

6.2. Simulation Details 

 

6.2.1. Forcefields 

 

6.2.1.1. Universal Forcefield80 for the BDT Organic Molecules 
 
 For the simulation of the elongation and breakage of gold nanowire in organic 

solvents, the BDTs are modeled as nonrigid molecule.  The potential energy is expressed 

as a sum of valence or bonded interactions and nonbonded interactions: 

 
elvdwR EEEEEEE +++++= ωφθ                                                                                  (6-1) 

 
 
The bonded interactions consist of bond stretching ( ), bond angle bending ( ), 

dihedral angle torsion ( ), and inversion ( ).  The nonbonded interactions consist of 

van der Waals ( ) and electrostatic ( ) terms. 

RE θE

φE ωE

vdwE elE

 For two atomic species I  and  J  bonded together, the harmonic potential is used 

to describe the bond vibration (bond stretching): 
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where  is the equilibrium bond length and  is the bond stretching force constant. IJr IJk

 For two atoms I and K bonded to atom J  in a general nonlinear case, the bond 

angle bending energy will take the form (bond angle bending): 

 

( 2
0

0
2 coscos

sin2
θθ

θθ −= IJKkE )                                                                           (6-3) 

 
where 0θ   is the equilibrium angle and  is the angle bending force constant. IJKk

 For two bonds IJ  and  KL  connected to a central bond JK, the torsion energy  

is given by (dihedral angle torsion): 

θE

 

[ φφφφ nnVE coscos1
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1

0−= ]                                                                                        (6-4) 

 
where  is the rotational barrier, n is the periodicity of the potential and φV 0φ  is the 

equilibrium angle. 

 When atom I is bonded exactly to three other atom J, K, and L, the inversion 

energy is (torsion): 

 
( IJKLIJKLkE )ωω cos1−=                                                                                        (6-5) 

 

where is the force constant and IJKLk IJKLω  is the angle between IL axis and IJK plane. 

Table 6.1 lists all of the force constants and equilibrium values. 
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Table 6.1. Potential parameters in UFF. 
 

 

   
 
 

 
  C-C-C 120 

bond stretching rij  (Å) kIJ (kcal/mol·Å2)  
C-C 1.379 925.83 
C-R 1.085 708.61 
C-S 1.800 588.45 
S-H 1.429 438.3 
angle bending θ0 (o) kIJK (kcal/mol· rad2) 

222.72 
C-C-H 120 114.23 
C-C-S 120 201.01 
C-S-H 92.1 102.16 
torsion 0φ (o) 

φV
2
1  (kcal/mol) 

X-C-C-X 180 (0) 13.474 
X-C-S-X 90 3.9528 
inversion 0ω (o) kIJKL (kcal/mol) 
 0 6 
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For atoms in the same BDT molecule but separated by more than two neighboring 

atoms (the 1-2 and 1-3 interaction exclusions) or for atoms in different BDT molecules 

and all of the nonbonded Au atoms, the van der Waals interactions are included in the 

forcefield.  A Lennard- Jones 12-6 –type expression is used: 
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DIJ is the well depth in kcal/mol and xIJ is the van der Waals bond length in Å 

corresponding to the point of minimum energy.  For different atomic species interactions, 

the general xIJ and DIJ parameters are obtained from the homonuclear parameters using 

the geometric mean combination rule.   Table 6.2 summarizes all of the LJ 12-6 potential 

parameters for C, H, S, and Au species. 

The partial charges from Mulliken population analysis in ab initio calculations23 

are assigned to individual atoms in BDT molecules. 
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Table 6.2.  Atomic Mass and Lennard-Jones 12-6-type parameters in UFF. 
 

atom type Mass (amu) DIJ (kcal/mol) xIJ (Å) 
C 12.0000 0.1050 3.851 
H 1.0000 0.044 2.886 
S 32.0000 0.274 4.035 
Au 197.0000 0.039 3.293 
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6.2.1.2. Au-BDT Bonding Potential 
 

For the chemical bonding between the S atom in BDT and the bonded Au atoms 

in the nanowires, we applied the pairwise-additive Morse potential to describe the Au-S 

interaction as described in chapter V, section 5.2.1.2.  Due to the strong Morse potential, 

we exclude the bond stretching, bond angle bending and bond torsion between the 

bonded sulfur atom and other particles in this specific BDT molecule where the bonded 

sulfur belongs to.  

 

6.2.2. Simulation Methodology 
 

We performed MD simulations for the elongation of an Au nanowire along the 

[001] direction in BDT solution at room temperature.  The final equilibrium adsorption 

structures from GCMC (Figure 5.3 and Figure 5.4) are used as the starting configurations 

for the MD elongation process.  This is because elongation of nanowire has been done 

through mechanical controllable break junction experiment in BDT solutions in Reed et 

al. experiment.  Elongation of nanowire is realized by moving the top rigid layers along 

the z direction in increments of 0.1 Å, followed by 1000 time steps relaxations, with a 

time step of 2 fs. This corresponds to an elongation rate of 5.0 m/s. Periodic boundary 

conditions (PBC) are applied in three dimensions. The simulation box lengths in z 

direction increased along with the elongation process.  Due to the high stiffness of the 

benzene ring and strong valence bonding of the BDT molecules, a much smaller time 

step is needed for the fast variation with large magnitude of intramolecular forces than for 

the slow variations of intermolecular forces.  Moreover, within the intramolecular forces, 

the H atoms are 1 order of magnitude lower in mass than other particles which causes 
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them to have much higher vibration frequencies than others.  Therefore, a multiple-time-

scale method is appropriate to integrate the equations of motion.  In our study, we applied 

the double reversible reference system propagator algorithm (RESPA) based on the 

original work of Tuckerman et al.68 and the extended system Nosé-Hoover dynamics67,103 

for the NVT ensemble. The conserved quantity (pseudo-Hamiltonian) of the system is:      

 

( ) kinNose
yx

yx VVVNkT
Q

p
V

m
p

m
ppppyxH ++=++++=′ ∑∑ ηη η

η 3
222

,,,,,
222

                (6-7) 

 
where x and y are the positions of the BDT particles and Au atoms, respectively,  px and 

py are the momenta of the BDT particles and Au atoms, respectively, η  and  are the 

extended thermostat and conjugated momentum., k is the Boltzmann constant, and T is 

the temperature. In equation 6-7, variable V is the potential energy of the molecular 

system. Tuckerman et al.

ηp

68 showed that any integrators derived from Trotter factorization 

of the Liouville operator iL are reversible.  They then constructed a general double-

RESPA scheme for the systems with short-long-range force separations and disparate 

mass problems.  Here we extended their double-RESPA scheme in order to fit our Au-

BDT interaction system, which involves a further decomposition of the propagator for the 

particle H within the reference system and separation the positions and momenta between 

BDT particles and Au atoms. The numerical procedure for the proposed double RESPA 

is in detail as follows:   

The Liouville operator corresponds to the pseudo-Hamiltonian (equation 6-7) is 

given by:  
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where riL  is the reference system operator and  is the remaining operator.   is 

defined as: 

1iL riL

 

( )
x

xF
x

xiL sr ∂
∂

+
∂
∂

= &                                                                                                      (6-9) 

 
where   is the short-range intramolecular interactions between BDT molecules. ( )xFs

Supposed that ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0,0,0,0,0,00 ηη pppyx yxΓ=Γ  is the initial state of the 

molecular system.  The state of the system at time  is given by: t

 
( ) ( )0Γ=Γ tiLet                                                (6-10) 

 
For a small time step , the propagator  can be factored using the Trotter theorem 

as: 

t∆ tiLe ∆

 
                                                                                       (6-11) 2/2/ 11 tiLtiLtiLtiL eeee r ∆∆∆∆ =

 
The middle propagator in equation 6-11 involves the calculation of short-range forces 

that have fast varying characteristics with large magnitudes.  This will need a smaller 

time step ntt /∆=δ  to integrate the equations of motion in the reference system for n 

times.  Because of the large difference in mass between H atoms and C, S atoms, in order 

to avoid the drift in total energy, we decompose the propagator for light particles within 

the reference system as: 
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hrlrr iLiLiL +=                                                                                                               (6-12) 
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where l and h label fast and slow degrees of freedom. So the middle propagator can be 

written as: 

 
( ) ( )[ ]ntiLtiLtiLtil lrhlrr eeee 2/2/ δδδ=∆                                                             (6-15) ( )tnt δ=∆

 
In the above equation, a second decomposition is employed in the propagator ( )2/tiLlre δ , 

yielding: 

 
( ) ( ) ( )[ ] ( )[ ] 2/2/2/2/ mdtiLtiLmdtiLtiLtiLtiL lrhrlrlrhrlr eeeeee δδδδ =      ( )mdtt =δ                  (6-16) 

 
Where 

 
( ) ( ) ( ) ( ) ( ) llsllslr phlFdtlldtphlFdtdtiL eeee ∂∂∂∂∂∂= /,2///,2/ &

                                                   (6-17) 

 
( ) ( ) hhshhshr pFthhtpFttiL eeee ∂∂∂∂∂∂= /2///2/ δδδδ &

                                                              (6-18) 

 
The total gain of this double-RESPA scheme is mn.  

The first and third propagators in equation 6-11 can be further decomposed to: 2/1 tiLe ∆
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4/2/4/2/1 tiLtiLtiLtiL xyx eeee ∆∆∆∆ =                                                                                 (6-19)   

                                      
Consider the initial state of the molecular system 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0,0,0,0,0,0,0,00 ηη ppppyxx yxhxlhl=Γ   and the new state 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }tpttptptptytxtxt yxhxlhl ∆∆∆∆∆∆∆∆=∆Γ ηη ,,,,,,,   at time , where xt∆ l, 

xh are the coordinates of the light and heavy particles in BDT, y is the coordinate of Au 

atom, pxl, pxh and py are the corresponding conjugated momenta, and η and pη are the 

thermostat coordinate and momentum. The third propagator in equation 6-19 

propagates the phase variables to: 

4/tiLxe ∆

 
( ) ( )00 0 lll xxx =→                                                                                                       (6-20) 

 
( ) ( )00 0 hhh xxx =→                                                                                                      (6-21) 
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where ( ) ( ) ( )( 0,00 hlll xxFF = )  is the initial long-range force and 

 is the initial thermostat force.  The middle propagator 

in equation 6-19 propagates the coordinates and momenta of Au atoms and 

generates a velocity Verlet algorithm. 

( ) ( ) NkTmpF 3/00 2 −= ∑η

2/tiLye ∆
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Followed by the propagating of the first propagator in equation 6-19 as:   
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The middle propagator in equation 6-11 can be further decomposed according to equation 

6-12 ~ 6-18, which propagator only the coordinates and monmenta of all of the BDT 

particles in the reference system:   
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                                   integrate m/2 time step dt   (6-30) 
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                                    integrate one time step δt   (6-31) 
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                                  integrate m/2 time step dt   (6-32) 

 
where ( )dtmt =δ . Then repeat the integration processes 6-30 ~ 6-32 n times to . t∆

Now the coordinates of all of the light and heavy particles in BDT have been 

propagated to , but their momenta ( ) ( ){ txtx hl ∆∆ , } { }xhxl pp ,  and coordinates and momenta 

of Au atoms need to be propagated by the long-range forces from the current state to the 

final stage. 
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The thermostat coordinate η and pη are finally propagated to: 
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6.3. Results 

 

6.3.1. Equilibration 
 

In order to check the validity of our deduced double-RESPA scheme, we plot the 

variations in the energy terms in equation 6-7 during the first 20 ps relaxation of BDT 

molecules on both 256-atom-Au (001) nanowire and 3254-atom-Au (001) nanowire at 

room temperature in Figure 6.1 and Figure 6.2, respectively. The initial configurations of 

BDT molecules adsorbed on Au (001) nanowire come from GCMC final adsorption 

structures (Figure 5.3 and Figure 5.4).  The time step in the outer-loop is fst 2=∆ . In 

implementing the double-RESPA scheme as shown above, the numbers of inner and 

inner-inner loops are n = 5 and m = 4, so the gain is 20 which means the timestep is 20 

times smaller in the inner-inner loop.  The smallest time step is 0.1 fs for the H-atom 

motion.  The mass of the thermostat Q is chosen according to the equation τNkTQ 3= , 

where τ is some characteristic time in the system.  We notice that the equilibrium process 

is not sensitive to the chosen Q value.  Therefore, we arbitrarily choose fs500=τ  in this 

study.  Figure 6.1 and 6.2 clearly show that the system approaches equilibrium in 

approximately 2 ps. The total quantity H' remains constant except for a small fluctuation 

in the first few time steps.  Therefore, the modified double-RESPA scheme works well 

for our Au-BDT system.   
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Figure 6.1. Equilibration of BDT molecules on 256-atom Au (001) nanowire during the 
first 20 ps MD runs. 
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Figure 6.2. Equilibration of BDT molecules on 3254-atom Au (001) nanowire during the 
first 20 ps MD runs.  
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6.3.2. Au-BDT Bonding Geometry  

The Au-BDT bonding geometry is one of the critical parameters in determining 

the adsorption structures, and thus ultimately has a significant effect on the electronic 

properties of metal-molecule-metal junctions. Here we plot the probability distributions 

of the angles between the C atom (the one which to the bonded S atom), the bonded S 

atom, and one of the two nearest Au atoms, in Figure 6.3 and Figure 6.4 respectively. The 

statistical averages are obtained over the second 20 ps run right after 20 ps initial 

equilibration.  It is seen that there is only one dominant peak for each case, which is 112 

degree and 117 degree, respectively.  The angles reflect the orientation information of 

bonded BDT on Au nanowires, which has not been investigated before.  Previously, the 

adsorption and bonding of BDT molecules has mainly focused on flat Au surfaces or 

clusters.  Tanibayashi et al.99 obtained stable structure of single BDT between two Au 

(111) surfaces within the framework of density-functional-theory.  They found that the 

bridge site is the most stable binding site with the angle between the axis along S-C6H4-

SH and the normal of the Au (111) surface about 62 degree.   From surface-enhanced 

infrared adsorption spectroscopy, Wan et al.95 observed that the phenyl ring plane of 

benzenethiol molecule tilted about 30o from the Au (111) surface normal.   

 Understanding the bonding geometry is important since it can dramatically affect 

the electron transport properties.  Haiss et al.104 showed that the electrical conductance is 

sensitive with regard to the tilt angle of the organic molecules.  Moreover, they 

demonstrated that contact geometry and thermal fluctuations can be systematically 

controlled, through precise control of the nanoelectrode gap spacing, allowing molecules 

to be tilted or stretched, and by engineering the intrinsic rigidity of the molecules.    
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Figure 6.3. The statistical average of the probability distribution of the angle between C, 
bonded S, and the nearest bonded Au atom from the second 20 ps MD runs. 
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Figure 6.4. The statistical average of the probability distribution of the angle between C, 
bonded S, and the second nearest bonded Au atom from the second 20 ps MD runs. 
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6.3.3. Effect of BDT on the Ductile Elongation of Nanowires at Room Temperature   

 It is interesting to make a comparison between the ductile elongation properties of 

the 256-atom Au (001) nanowires in vacuum and in BDTs at room temperature. Starting 

from the final adsorption configuration from GCMC (see Figure 5.3), the gold nanowires 

are allowed to elongate until the occurrence of break-junctions in the presence of BDTs.  

Figure 6.5 shows two snapshots of the elongated nanowires in vacuum and in BDTs right 

before breakage at 300 K.  Under this special case, the nanowire broke slowly in the 

presence of BDT molecules.  However, keeping in mind the stochastic in nature of the 

break-junctions, we perform thirty independent MD runs of elongation nanowires in 

BDTs.  The results then compare with those of nanowires elongated in vacuum.  Table 

6.3 summaries the calculated average ductile elongations, together with the standard 

deviations.   
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                             (a)                                                        (b) 

 

Figure 6.5.  Break-junction configurations of 256-Au (001) nanowire in vacuum and in 
solvent.  (a) 256-atom gold nanowire elongated in vacuum at 300 K; (b) 256-atom gold 
nanowire elongated in BDT at 300 K. 
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Table 6.3.  The variations of the ductile elongations for 256-atom Au (001) nanowires in 
vacuum and in BDT. 
 

                                  nanowires in vacuum (Å)            nanowires in BDT (Å) 

300 K                            21.3 ± 6.4                                      26.5 ± 7.6 

 
 

 125



Firstly, for the nanowires elongated in vacuum, the elongation rate applied in this 

chapter is 5.0 m/s.  Though the rate is at least 5 times higher than the previous studies, the 

relaxation process is still sufficient to simulate a quasi-static tension of gold nanowires. 

However, we notice that the ductile elongations are dependent on the elongation rate.  To 

get a more complete picture of the effect of nanowire elongation on rate in vacuum, we 

plot the ductile elongations as a function of elongation rates as shown in Figure 6.6.   It is 

obvious that the ductile elongations increase with increasing elongation rates except for 

the lower elongation rates 0.05 m/s and 0.1 m/s which have similar ductile elongations.  

In addition to the variation of ductile elongations with elongation rate, the standard 

deviations also differ.  For example, the nanowires break over a wider ductile elongations 

range (from 13.1 Å to 40.9 Å) at the highest elongation rate 5.0 m/s.  In comparison, the 

nanowires break in a narrower range (from 11.7 Å to 24 Å) at the lowest elongation rate 

0.05 m/s.  

Furthermore, the higher chances of the occurrence of longer monatomic chains in 

the break-junctions at higher elongation rate also account for the longer ductile 

elongations.  Figure 6.7 shows the plot of the probabilities of occurrence of monatomic 

chains in the break-junctions versus the elongation rate.  As the elongation rate increases, 

the probability of longer monatomic chains increases.  For example, with elongation rate 

0.05 m/s, 63% of the nanowires break up with brittle structures with no monatomic 

chains in the break-junctions and the longest monatomic chains is two atoms long.  

However, when the elongation rate increases to 5 m/s, monatomic chains occur in all 

thirty simulations and the longest chain length is 7.      
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Figure 6.6. The ductile elongations as a function of elongation rate for 256-atom 
nanowire elongated in vacuum at room temperature. 
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Figure 6.7. The probabilities of formation monatomic chains in the break junctions for 
256-atom nanowires elongated in vacuum at room temperature at various elongation rates.  
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 For nanowires elongated in the presence of organic molecules, it is found that the 

propane has no significant effect on the ductile elongation at room temperature as 

described in Chapter IV.  However, when nanowires elongate in the presence of BDT 

molecules, the average ductile elongation increases 24 percent compared with that in 

vacuum even at room temperature.  The nanowires stretched much longer before the 

occurrence of break-junctions because BDT molecules have the potential to chemically 

bond to Au atoms. The Morse potential takes effect between the bonded sulfur and Au 

atoms, which plays the role of reducing the tendency of Au atoms to be stretched apart.   

 
  
6.3.4. Effect of BDT Density on the Ductile Elongation of Nanowires    
 

After full absorption of BDT molecules (i.e., when the adsorbed BDT layers has 

come to equilibrium) on the 256-atom Au nanowire, the BDT density in the fluid 

surrounding the nanowire is about  1.0 g/cm3, which is slightly lower than the BDT bulk 

value at 298 K (1.2 g/cm3).  However, during the process of elongating the nanowire, the 

box size in z direction keeps increasing.  For the thirty MD runs, the nanowire can be 

elongated to as long as 45.4 Å until breakage.  Therefore, the BDT density drops to 0.44 

g/cm3, less than half of the bulk BDT density.  In order to simulate the experimental 

generated break-junctions to the maximum extent approaching their fabrication 

environment, we propose a method to combine GCMC and MD techniques to keep the 

BDT density at bulk density during the entire elongation process.  Initially, GCMC is 

performed to obtain the equilibrium adsorption structure, which then input to the MD for 

elongating the nanowire a small distance in z direction (∆z) of 5 Å.  We ignore the 

variation in BDT density caused by the 5.05 x 10-21 cm3 increase in box size.   After the 5 
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Å elongation has been fully relaxed in MD, the configuration is used as the starting point 

to run the GCMC again.  BDT molecules are expected to be inserted into the simulation 

box to keep the BDT density approaches the bulk density.   

Table 6.4 lists the calculated BDT density in the simulation box after each 5 Å 

elongation.  It is obvious that the BDT density remains at the bulk value for the entire 

elongation process, thus describing Reed et al.’4 experiment very realistically.  It is found 

that the increase in the number of BDT molecules (both nonbonded and bonded) after 

each GCMC runs is about 25, of which only a small percent belongs to bonded BDTs as 

shown in Figure 6.8.  

We repeat the same GCMC-MD pattern for each 5 Å elongation. Figure 6.9 

shows snapshots after each GCMC runs, which represents nanowires elongated in the 

presence of bulk BDT molecules.   In the case of pure MD elongation without any 

intermediate GCMC steps, the metal-molecule-metal structure is generated at ductile 

elongation of 21.2 Å.  However, the insertion of the BDT molecules, particularly the 

bonded BDT molecules, increases the ductile elongation remarkably.  During the 

elongation process, the nanowire itself forms brittle long chain structure with two to four 

Au atoms in the cross sections lasting over 0.3 ns.  The nanowire breaks at ductile 

elongation of 42.5 Å which is two times longer than that pure MD elongation. The 

surrounding BDT molecules, especially those bonded to the bridge sites of the Au 

nanowires, is the key factor in reducing the probability of breakage of the Au nanowires.  
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Table 6.4.  The BDT density after each 5 Å increase in box length in z direction. 
 

 

 
increase in z length (Å) BDT density (g/cm3) 

5 1.07 

10 1.08 

15 1.10 

20 1.11 

25 1.11 

30 1.15 

35 1.14 

40 1.13 
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Figure 6.8. The variation in the number of nonbonded and bonded BDTs in the 
simulation box during the entire elongation process.  
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              (d)                                             (e)                                             (f) 
 
 
 
                                                
 
 
 
 
 
 
 
 
 
 
 
                (g)                                           (h)                                             (i) 
 

Figure 6.9. The snapshots of a 256-atom nanowire elongated in bulk BDT environment at 
room temperature. (a) ∆z = 5Å; (b) ∆z = 10Å; (c) ∆z = 15Å; (d) ∆z = 20Å;  (e) ∆z = 25Å; 
(f) ∆z = 30Å; (g) ∆z = 35Å; (h) ∆z = 40Å; (i) ∆z = 42.5Å. 
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6.4. Conclusions 

Combining GCMC with MD techniques, we further explore the dynamic 

elongations of gold nanowires in the presence of BDT molecules. Unlike propane, BDT 

molecules do form chemical bonds with Au atoms. Simulation results demonstrate that 

the existence of BDT molecules significantly increase the ductile elongations compared 

with those obtained in vacuum even if the temperature is well below the melting point of 

gold nanowire.  In addition, the ductile elongation increases notably in the presence of 

bulk BDT molecules which are attributed to the bonded BDT molecules. 
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CHAPTER VII 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1. Conclusions 

We present in this research the mechanical elongation behavior of gold nanowires 

in vacuum and in solvents.  Firstly, for the elongation of nanowires in vacuum, we 

identify a suitable forcefield in describing the interaction between Au atoms for the 

system size in our research.   By comparing the static and dynamic relaxation energy 

between DFT total energy calculations and those of semi-empirical forcefields, it has 

been verified that among the three widely used semi-empirical potentials (i.e., the glue 

model, the EAM and the TB-SMA potentials), the TB-SMA potential is the most 

appropriate forcefield in describing the structural and mechanical properties of gold 

nanowires during elongation.  Furthermore, the visualization of the snapshots along the 

elongation path shows that the TB-SMA images are very similar to those of the DFT 

local energy minima.  Moreover, the TB-SMA potential has the ability to generate 

monatomic chains in the break-junctions and predict the 1.5 N breakup forces, as 

observed by many experiments.  

Secondly, applying the TB-SMA potential, MD simulations have been conducted 

to study the impact of the crystallographic orientation, length, elongation rate, and 

temperature on the ductile elongations of nanowires in the vacuum environment.  Due to 

the statistical nature of the elongation process, all of our results are based on thirty 

independent MD runs of the small system studied.  The results show that a combination 
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of low temperature with high elongation rate is necessary to form monatomic chains with 

more than two atoms in length.  In contrast, high temperature or low elongation rates 

diminish the probability of the formation of long monatomic chain structures.  

Furthermore, increasing the length of the nanowires assists the formation of longer 

monatomic chains in the break junctions at low temperature 0.01 K.  An interesting 

phenomenon we observe is the formation of the helical, zigzag-type break-junction 

structures when high temperature (300 K) is combined with low elongation rate. 

Therefore, the TB-SMA has the capability to successfully produce two typical 

experimentally observed break-junction structures – the monatomic chain and the zigzag, 

helical structures.      

Next, MD simulations have been performed to study the influence of the thermal 

collisions of nonbonded particles on the dynamic elongation properties of nanowires 

when they are elongated in a simple Lennard-Jones solvent - propane.  Simulation results 

demonstrate that the solvent effect is minimal if the temperature is below the melting 

point of gold nanowire. However, as long as the temperature approaches the melting 

point, the average ductile elongation of Au nanowire in propane solvent is lower than that 

of Au nanowire in vacuum. 

The next step is to investigate the self-assembly of BDT molecules on Au 

nanowires by GCMC simulation. The local bonding geometry of BDT-Au obtained in 

this work is consistent with previous results that S binds most favorably on the bridge 

sites of the Au surface.  In addition, we find that the packing density of bonded BDT on 

the surface of Au nanowire is larger than that of BT molecules on Au (111) surface, 

evidently due to the curved surface of gold wire. 
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For the last step, MD simulations and canonical Monte Carlo simulations are 

performed to study, for the first time, the elongation dynamics and structure of metal-

molecule-metal in the presences BDT molecules which have the potential to form 

chemical bonds with Au atoms.  Simulation results demonstrate that the presences of 

BDT molecules has significant effect on ductile elongation compared with those obtained 

in vacuum even at room temperature.  In addition, the ductile elongation increases 

considerably in the presence of bulk BDT molecules, mainly due to the bonded BDTs 

constrain the elongation of Au atoms.  

 

7.2. Recommendations 
 

In this study, we have developed a technique to combine MD with GCMC 

simulations to study the dynamic elongations of nanowires in a covalently bonding BDT 

solution.  In the future work, we could apply molecular dynamics simulation in grand 

canonical ensemble (GCMD)105 technique as proposed by Eslami et al. to our Au-BDT 

system.  The GCMD method outlined in their work is capable of performing simulations 

in the grand canonical ensemble over the whole density range which is especially 

appropriate to our dense BDT adsorption structures.  By performing GCMD technique, 

the data transfer between MD and GCMC simulations is eliminated.   However, a parallel 

GCMD code would be necessary due to the large number of molecules involved.   

After the GCMD code works efficiently, we could further explore the effects of 

crystallographic orientation, length, elongation rate, as well as temperature on the ductile 

elongations of nanowires in a statistical approach as we have done for nanowires 

elongated in the vacuum environment. 
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