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CHAPTER  I 

 

INTRODUCTION 

 

Survival of all living organisms in the environment requires the ability to sense 

and respond to countless, ever-changing types of stimuli. Ca2+ directly or 

indirectly supports all essential biological processes involved in the adaptation of 

cells to changes in both their internal and external environment. The increases in 

cytosolic Ca2+ necessary to trigger physiological processes result from Ca2+ 

mobilization by a plethora of Ca2+ cycling proteins at the plasma membrane or 

intracellular stores. This thesis explores biochemical mechanisms underlying 

regulation of Ca2+ entry through L-type voltage-activated channels by 

Ca2+/Calmodulin-dependent kinase II (CaMKII) in neurons and cardiomyocytes.  

  

1.1 COMMON ROLES OF CA2+ 

This section discusses selected roles of Ca2+ in the birth, life and death of cells 

and organisms.  

 

Developmental roles of Ca2+: The subject has been more extensively reviewed 

elsewhere (for example in [1]). Briefly, in mammals, Ca2+ triggers fertilization [2, 

3], influences cell body polarity and pattern formation in the zygote, plays a role 

in the proliferation and differentiation of cells into specific types to form tissues 

and organs. For example, Ca2+ regulates the migration and branching of 
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neurons, and thereby controls the formation of the initial connections within the 

complex circuitry in the developing brain. The initiation of apoptosis, or controlled 

death of cells, is important for sculpting, maintaining and renewing the 

architecture of multicellular organisms and critically dependent on the magnitude 

and location of Ca2+ changes[2, 4]. Thus, Ca2+ is critical for normal development 

of organisms.  

 

Muscle Contraction: Activation of voltage-gated Ca2+ channels (VGCC) by 

membrane depolarization stimulates skeletal muscle contraction[5, 6]. 

Interestingly, the initiation of Ca2+ release from the sarcoplasmic reticulum (SR) 

by VGCCs, but not entry of extracellular Ca2+, appears be required for skeletal 

muscle contraction. Ca2+ binds to troponin C, stimulating the ATP hydrolysis that 

powers the movements of myosin and actin during muscle contraction. Cardiac 

muscle contraction is initiated when extracellular Ca2+ enters cardiomyocytes, 

primarily through voltage-gated Ca2+ channels[7, 8], and induces Ca2+ release 

from the SR. The resulting spatiotemporal changes in Ca2+ concentration drive 

acute processes such as the strength and frequency of heart contraction and 

long-term events such as gene expression[5, 7]. Regulation of Ca2+ influx via 

VGCCs is therefore a central mechanism for controlling heart function. 

 

Neuronal communication: Ca2+ is important in regulation of neuronal excitability, 

transmission of nerve impulses and activation neuronal process that underlie 

learning and memory[2, 9]. Ca2+ channels at the membranes of neurons can 
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determine not only spontaneous neuronal activity but also their responses to 

stimulation. In addition, Ca2+ is a trigger for neurotransmitter release that is 

essential for transmission of impulses at chemical synapses.  The efficacy of 

synaptic transmission can be altered, in a Ca2+-dependent manner, by certain 

intensities and patterns of stimulation. Enhancements and reductions of synaptic 

transmission efficacy are the hallmarks of long-term potentiation (LTP) and long-

term depression (LTD) respectively, though other forms of potentiation and 

depression also exist. These changes in electrical transmission, along with 

structural changes in neurons, are commonly referred to as plasticity and are 

thought to underlie learning and memory. The effects of Ca2+ on 

neurotransmission can be mediated by changes in a plethora of processes, 

including the synthesis and release of neurotransmitters, the abundance or 

modification of synaptic proteins, and changes in neuronal cytoskeleton. Some of 

the functions of Ca2+ at neuronal synapses are also important in nonneuronal 

cells. For example, Ca2+ controls secretion of glutamate by photoreceptors, 

secretion of epinephrine by adrenal chromaffin cells or release of insulin by β 

cells of the pancreas [4, 10-12].   

 

Pathophysiological roles of Ca2+:  In general, a moderate level of Ca2+ is required 

for survival. But extremes of Ca2+ concentration trigger apoptosis.  For example, 

elevated Ca2+ influx is known to induce cell death, while depletion of Ca2+ from 

the ER or its accumulation in the mitochondria can also induce proapoptotic 

stress signals. Another form of cell death, necrosis, is less controlled and may be 
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induced by disintegration of cells by Ca2+-activated calpains. Some of the 

diseases commonly linked to abherrant Ca2+ signaling include cardiac 

arrhythmia, congestive heart failure, muscular dystrophy [5], Parkinson’s 

Disease[13, 14], epilepsy[15], Alzheimer’s Disease[16], ischemic damage[15], 

and Timothy Syndrome[17]. Abnormal signaling of cell proliferation and growth 

by Ca2+ has been implicated in some forms of cancer[2]. It is therefore critical 

that Ca2+ concentrations are precisely controlled to enable normal bodily 

functions to occur with minimal risk of injury or death. 

 

1.2 GENERAL ASPECTS CA2+ HOMEOSTASIS   

The well-orchestrated changes in Ca2+ required for physiological signaling rely on 

separation of intracellular and extracellular pools of Ca2+, and tight control and 

compartmentalization of Ca2+ in cells[7, 9]. Cells have evolved tools or Ca2+ 

cycling proteins to confine Ca2+ in the extracellular space and in intracellular 

stores, and to allow controlled Ca2+ influx in response to stimuli (Figure 1). The 

influxes are mostly brief (~1 sec) and localized; rarely is global cellular Ca2+ 

elevated for extended periods. 
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Figure 1. General aspects of cellular Ca2+ homeostasis. 
 
At resting conditions, Ca2+ is kept in the extracellular space and in intracellular 
stores by Ca2+-impermeable membranes and various pumps.  Stimulation of cells 
activates ligand or voltage-gated receptors and channels localized in the plasma 
membrane or in the membranes of intracellular stores. The resulting increases in 
cytosolic Ca2+ uniquely signal a variety of biochemical and physiological changes 
in the cell, and ultimately affect the organism.  In order to prevent cellular 
damage, excessive Ca2+ entry is prevented by feedback inhibition of receptors 
and channels, active pumping of Ca2+ into extracellular space and intracellular 
stores, and by Ca2+ buffering proteins. 
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 Maintenance of Basal Ca2+: Basal Ca2+ levels are kept low (~100 nM) as Ca2+ is 

continuously pumped out of the cytosol into the extracellular space by a plasma 

membrane Ca2+ ATPase (PMCA) and sodium Ca2+ exchanger located at the  

plasma membrane (Figure 1). Ca2+ is also returned into the ER by the Sarco-

Endoplasmic Reticulum Ca2+ ATPase(SERCA) and into mitochondria by a 

Sodium/Ca2+ exchanger. The function of these proteins is regulated by prevailing 

concentrations of Ca2+ in the cytosol and inside the Ca2+ stores.  Fast-acting 

Ca2+-buffering proteins such as parvalbumin and calbindin also contribute to the 

maintenance of low cytosolic Ca2+ levels[1].  

 

Generation of Ca2+ Signals: When cells are stimulated, for example by synaptic 

activity, Ca2+ levels increase, by up to a thousand-fold, in the immediate vicinity 

of the channels[18]. The electromotive force for the rapid increase in cytosolic 

Ca2+ is a ten thousand-fold gradient of Ca2+ concentration across the plasma 

membrane. Ca2+-levels in the ER and mitochondria are also several orders of 

magnitude higher than those in the cytosol.  Ca2+ enters into cells due to 

activation of receptors and channels located both at the cell surface and on 

membranes of intracellular storage organelles such as the ER and mitochondria. 

G-protein coupled receptors (GPCRs) such as mGluR1 and bradykin receptors 

stimulate phospholipase C (PLC) β resulting in production of inositol (1,4,5) 

triphosphate (IP3). The resulting activation of IP3 receptors on the ER membrane 

stimulates Ca2+ flux into the cytosol. IP3 production can also be stimulated via 

activation PLCδ and PLCε by receptor tyrosine kinases and the Ras pathway. 
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Another well-known route of Ca2+ entry from the ER is the ryanodine receptor 

(RYR). RYR is endogenously activated by cyclic ADP ribose, but its activation by 

Ca2+ is better known due to the Ca2+-induced Ca2+ release phenomenon[19].  

 

Even though Ca2+ from intracellular stores controls important cellular processes, 

cells do not make Ca2+; Ca2+ must initially enter from the extracellular space. 

Voltage-gated Ca2+ channels (VGCCs) located at the plasma membrane are the 

main portals of extracellular entry in many cell types[20]. Indeed, so prominent is 

their role that VGCC activation can reduce Ca2+ concentrations in the restricted 

extracellular space surrounding neurons in intact nervous tissue by a substantial 

0.5 mM (~30%)[21] . However, the cytosolic Ca2+ concentration changes are 

transient because most of the Ca2+ that enters into the cytosol is rapidly bound 

by buffer proteins or pumped out of the cell or into intracellular stores.   

 

The mechanisms that elevate and attenuate cellular Ca2+ not only reduce the risk 

of excitotoxic damage but also form the basis for generation of oscillatory Ca2+ 

signals. The oscillations are ideal for encoding a large number of signals in terms 

of amplitude, duration, frequency and location of Ca2+ changes[1].   

  

1.3 VGCC STRUCTURE, CLASSIFICATION AND FUNCTION 

VGGCs are perhaps the best studied routes of extracellar Ca2+ entry and their 

presence defines excitable cells [20]. They were initially identified by Lux,  
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Figure 2. Generalized Structure and Diverse Functions of Voltage-Gated 
Calcium Channels. 
 
 (A). VGCCs are classified according to homology of α1 subunits. The high-voltage 
activated (HVA) Ca2+ channels exhibit long-lasting (L-type) and intermediate-
lasting (P/Q, N and R-type) currents. The low voltage-activated (LVA) Ca2+ 
channel family carries transient (T-type) currents. α1 subunit isoforms are 
differentially expressed and perform multiple roles in various tissues.   
 
(B). The α1 subunit of HVA Ca2+ channels consists of four transmembrane 
domains (large cylinders), each containing 6 transmembrane helices and 
connecting loops, which have been omitted for simplicity. The δ subunit contains a 
single transmembrane domain and is linked by a disulfide bond to an extracellular 
α2 subunit. The β subunit contains SH3 and GK domains and three variable 
regions. A hydrophobic pocket in the GK domain binds to the I-II linker of α1; an 
SH3-containing region of β2a also binds the CB/IQ domain of Cav1.2α1. 
Phosphorylations of α1 and auxiliary subunits modulate VGCC function.  
 
(C). Depicted here are the evolutionary relationships 9 of 18 differentially 
expressed β subunit gene products.  

A B 

C 
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Carbone and Feldman as channels carrying two types of Ca2+ currents in 

mammalian sensory neurons. The authors classified the VGCCs into high-voltage 

activated (HVA) and low voltage-activated (LVA) Ca2+ channels according to their 

biophysical properties (Figure 2 A, also see [22]). Later, purification and molecular 

cloning of skeletal muscle HVA Ca2+ channels revealed that VGCCs are 

multimeric protein complexes consisting of a variety of α1 subunits that form the 

Ca2+-selective pore and auxiliary subunits (Figure 2B and 2C) [23, 24].The 

auxiliary subunits of VGCCs (β and α2-δ) associate with and regulate trafficking, 

surface expression and activity of α1 subunits. 

 

VGCC Structure 

Structure of the α1 subunit. VGCCs contain an α1 subunit that consists of four 

transmembrane domains (I through IV) with N and C-terminal tails (Figure 2B). 

Within each of the domains lie six α-helices (S1 through S6) that traverse the 

membrane and are linked by connecting loops. The four domains assemble to 

form a Ca2+ permeable pore. Membrane associated P-loops between S5 and S6  

helices form the external pore lining, and contain determinants for Ca2+ 

selectivity. Helix 4 of each domain contains two positively charged amino acids 

thought to sense voltage for channel opening. The intracellular connecting loops 

and the long, alternately spliced N and C-terminal tails contain important 

regulatory sites. As will be discussed below, these include phosphorylation sites 

and binding sites for calmodulin, VGCC β subunits or other regulatory proteins. 

Even though the current understanding of VGCC structure is based on studies of 
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HVA Ca2+ channels structure, LVA Ca2+ channels share many of the features. 

 

Structure of the β subunit: The α1 subunits of VGCCs associate with cytosolic β 

subunits (Figure 2B and 2C). Four genes encode the β subunits, each with 

splice variants that differentially regulate channel activity and subcellular 

localization[25-27]. Crystal structures and homology mapping revealed that β 

subunits contain SH3 and guanylate kinase (GK) domains, similar to Membrane 

Associated Guanylate Kinase (MAGUK) family of scaffolding proteins[25, 27, 28]. 

The GK domain interacts with an 18-amino acid-long Alpha Interacting Domain 

(AID) in the I-II linker of α1 subunits. β subunits lacking the GK domain can still 

associate with and regulate VGCC, implying that the β subunits can interact with 

multiple sites on the α1.  Indeed N-terminal domains on β2a subunits can bind to 

the Ca2+/CaM-binding CB/IQ domain at the C-terminus of α1 in a manner 

dynamically regulated by Ca2+/CaM[29]. The reported crystal structures of β 

subunits lack the N and C-terminal domains presumably because they are not 

well structured. Thus, the role of the N and C-terminal domains of the β subunit in 

structural assembly and regulation of the VGCCs remains less clear. 

 

Structure of the α2-δ and γ subunits: The α2-δ is a combination of an ~180 kD 

extracellular, α2 subunit linked with two disulfide bonds to a ~50 kD 

transmembrane δ subunit (Figure 2B). Both proteins originate from a single 

polypeptide that is subsequently cleaved into two proteins that remain 

associated. The γ subunit is made of 4 transmembrane helices. The precise sites 
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of interaction of α1 and α2-δ or γ subunits have not been determined. 

 

VGCC Classification and Functions 

VGCCs were originally classified into L, N, P/Q, R and T types based on their 

biophysical features and pharmacology but were recently reclassified based on 

homology of the α1 subunits into Cav1, Cav2 and Cav3  subfamilies(Figure 2A) 

[22].  

 

Cav1 (L-type) Ca2+ Channels 

Voltage-activated L-type Ca2+ channels (LTCCs) generate Ca2+ signals for 

multiple physiological processes, including muscle contraction, 

neurotransmission, neuronal plasticity, dendritic arborization, gene expression 

and secretion[30]. The Cav1 subfamily of VGCCs form channels with long-lasting 

currents, and are sensitive to a class of clinically important, antihypertensive and 

antianginal drugs known as dihydropyridines. Dihydropyridine blockers such as 

nimodipine and (+)-Isradipine modify gating of LTCCs and also inhibit the 

channels in an activity-dependent manner. On the hand, other dihydropyridines 

such as BayK8644 activate LTCC by promoting an enhanced open state of the 

channel, known as mode 2 gating.  LTCC are also selectively blocked by the 

phenylakylamine class of drugs, such as verapimil.  

 

Cav1.1 LTCCs were the first VGCCs isolated from rabbit skeletal muscle. They 

form the predominant Ca2+ channels found in the Transverse (T-tubules) of the 
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skeletal myocytes and regulate excitation-contraction coupling. Point mutations in 

Cav1.1 are associated with hypokalemic periodic paralysis, malignant 

hyperthermia susceptibility and musclular dysgenesis in mice.  

  

Cav1.2 LTCCs were initially cloned and isolated from rabbit heart and are now 

known to be expressed widely in the smooth muscle of blood vessels, intestines, 

lung and uterus. They are also found in many types of neurons and in endocrine 

cells of the pituitary and pancreas. Cav1.2 LTCCs exhibit a predominantly 

somatodendritic localization in neurons but are also found in spines [31-34]. Their 

well known functions include triggering of excitation-contraction coupling in heart 

and smooth muscle, excitation-transcription coupling in heart and neurons, action 

potential propagation in the sinoatrial (SA) and arterioventricular (AV) node, 

synaptic plasticity and hormone (e.g insulin) secretion[30]. Cav1.2 is also 

required for normal embryonic development and its knock out leads to death 

before embryonic day 14.5[35]. Cav1.2 is the main target of many cardiovascular 

dihydropyridines and may mediate the antidepressive effects of high doses of 

dihydropyridines[30]. Mutations of Cav1.2 are associated with Timothy 

syndrome, a disorder characterized by severe cardiac arrhythmias and mental 

disability, among other symptoms[17]. 

 

Cav1.3 LTCCs are HVA Ca2+ channels activated at relatively lower 

depolarizations than Cav1.2 [36]. In the brain, ~10% of LTCCs are composed of 

Cav1.3 [37], which are broadly present in medium spiny neurons, pituitary 
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neurons, pineal gland neurons, hippocampal neurons and other cell types[30]. 

Like their Cav1.2 counterparts, Cav1.3 LTCCs are primarily localized at proximal 

dendrites and cell bodies, even though they have also been detected in dendritic 

spines[30, 38].  Cav1.3 LTCCs are also expressed in sensory cells 

(photoreceptors, cochlear hair cells) and endocrine cells (pancreatic β cells, 

adrenal chromaffin cells)[30]. Outside the neuroendocrine system, they are 

expressed at low density in smooth muscle and the heart, primarily in the atrial 

muscle, the SA node and atrioventricular AV node. Functionally, Cav1.3 channels 

mediate neurotransmitter release in sensory cells, control cardiac rhythm, mood, 

behavior and hormone secretion[30].  The importance of Cav1.3 LTCC functions 

is underscored by their contribution to parkinsonism[39, 40] and the association 

of their mutations with congenital deafness, as well as SA and AV node 

dysfunction[41].  

 

Cav1.4s are relatively less studied and are found in the retina (in photoreceptors 

and bipolar cells) where they control neurotransmitter release. They are also 

present in the spinal cord and in cells that are not traditionally considered 

excitable such as lymphoid cells of the immune system [30]. 

 

Cav2 (N, P/Q, and R-type) Ca2+ Channels 

N, P/Q and R-type Ca2+ currents were initially identified as a non-L-type neuronal 

component of high voltage activated Ca2+ currents that was not blocked by 
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dihydropyridines [22, 30]. Cav2.1 (P/Q-type) channels exhibit two types of 

currents. The P-type current was originally identified as the dihydropyridine 

insensitive, slowly inactivating component of HVA Ca2+ channel current in 

cerebellar Purkinje cells. A faster inactivating current was also identified in 

cerebellar granule cells and named Q-type channels. P/Q channels are broadly 

distributed in neurons (presynaptic terminals, dendrites and cell bodies), heart, 

pancreas and pituitary. They are most known for stimulation of neurotransmitter 

release in the central nervous system (CNS) and at neuromuscular junctions, 

and triggering excitation-secretion coupling in pancreatic β cells. Cav2.2 (N-type) 

channels are highly expressed in the presynaptic termini, dendrites and cell 

bodies of neurons but are also present in other tissues such as adrenal glands. 

They function in neurotransmitter release in central and sympathetic synapses, in 

sympathetic regulation of circulatory system[22, 30]. Cav2.3 R-type channels 

carry the residual neuronal currents that are resistant to block of L, P/Q and N-

type channels. They are widely distributed in neurons (cell bodies, dendrites and 

some presynaptic terminals), heart, testes and the pituitary glands.  They control 

neurotransmitter release, repetitive neuronal firing, post-tetanic potentiation and 

neurosecretion[22, 30].  

 

Cav 3 (T-type) Ca2+ Channels 

Cav3 (T-type) VGCCs were identified as channels underlying a transient current 

that activated at low voltages (~-50mV). Molecular cloning of Cav3 revealed three 

conserved, alternatively spliced, genes of Cav3 channels Cav3.1, 3.2 and 3.3 with 
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largely overlapping expression in the peripheral tissues including heart, kidney, 

smooth muscle, sperm and many endocrine organs. Unlike the channels in the 

HVA Ca2+ channel family, there is little evidence that Cav3s (LVA Ca2+ channel 

family) are stably associated with auxiliary subunits[22, 30, 42]. The ability of 

Cav3 channels to open transiently at low potentials may enable them to 

contribute to Ca2+ entry at or near resting membrane potentials.  The resulting 

low-threshold Ca2+ spikes can in turn trigger Na+ action potentials important in 

synchronized activity in the thalamus. Indeed Cav3s are thought to be essential 

for neuronal burst firing, which in turn correlates with pathological Ca2+ waves 

generated in seizures. Cav3.2 mutations have been identified in certain human 

absence seizures and have also been implicated in generation of spontaneous 

sinoatrial node rhythm. Thus Cav3 channels are drug targets for epilepsy, chronic 

pain and sleep disorders [22, 30, 42]. 

 

The expression and function of β subunits 

 Even though the α1 subunits are the major determinants of VGCC classification 

(Figure 2B) and function, the identity of their auxilliary subunits can markedly 

alter their properties. Each of the β subunit genes generates protein variants that 

are differentially expressed and regulate channel activity and subcellular 

localization[25-27]. In the heart, β2 is the predominant isoform but β1, β3 and β4 

are also present[26, 43]. In the adult brain β3 and β4 show stronger overall 

staining than β1 and β2, and together comprise about ~70% of total the β 

subunits in adult forebrain [25, 44-46]. In addition to their differential tissue 
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localization, the β subunits also exhibit differences in subcellular localization. 

Variants of β1 and β2 localize to the membrane via N-terminal acidic residues and 

palmitoylation sites respectively. β3 and β4 are largely cytosolic but β4 also 

localizes to the nucleus to regulate gene expression[47, 48].  

 

The differential expression and subcellular localization of α1 subunits and β 

subunits likely yields a set of VGCCs diverse in their composition.  Within the 

VGCC complex, α1-β pairing is likely to be controlled by relative subunit 

concentrations, affinities, number of binding sites on α1, and subcellular 

localization of β (and α1 subunits)[25]. While there is no evidence of exclusive 

pairing of α1 and β subunit isoforms, a majority of N-type and P/Q-type channels 

have been reported to be in β3 and β4 immunoprecipitates[25]. Regardless of 

their identity, the β subunits enhance functional expression of VGCCs, an effect 

attributed to their regulation of VGCC surface expression, open probability or 

voltage-dependence of activation. All β subunit isoforms shift the activation of 

VGCCs towards negative potentials but some biophysical properties of the 

channels are differentially modulated by β subunit isoforms (see Regulation of 

VGCCs in the following section). 

 

1.4 REGULATION OF VGCCS 

There are multiple levels of VGCC regulation. The first level of control of VGCC 

activity is through variation of the intrinsic composition of the channels, which 

arguably is the limiting determinant of the maximal and minimal Ca2+ that enter 
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through channel. The combination of diverse α1 and auxiliary subunit variants 

allows for immense complexity and variability of intrinsic VGCC function. A 

second level of VGCC control involves extrinsic factors that combine with the 

intrinsic regulatory mechanisms to increase or reduce Ca2+ entry via VGCCs. The 

ability of α1 and β subunits to recruit additional regulatory proteins is particularly 

important for diversifying the set of extrinsic mechanisms that impinge on the 

channel. 

 

Regulation of VGCCs by Voltage 

Voltage-dependent Inactivation and Facilitation: Membrane depolarization 

induces a progressive transition of activated VGCCs to non-conducting 

states[49-51]. This voltage-dependent inactivation (VDI) response to stimulation 

may be important in restricting Ca2+ entry to prevent cellular Ca2+ overload. 

Impairment of VDI can lead to the deleterious consequences of abherrant Ca2+ 

entry. For example, a Cav1.2α1 mutation that leads to reduced VDI, and thereby 

enhanced Ca2+ entry into cells results in arrhythmia, deficits in learning and other 

problems in Timothy Syndrome[17, 52].  In contrast to VDI, VGCC currents are 

enhanced when cells are stimulated with a train of repetitive depolarizations or 

single strong depolarizations[53, 54].  Typically, these changes in voltage drive 

VGCCs from normal gating patterns to longer or more frequent openings, a 

process known as voltage-dependent facilitation (VDF). VDI and VDF are 

thought to occur to all VGCCs even though they have been most extensively 

studied in Cav1.2, 2.1 and Cav2.2 channels.  
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Mechanism of VDI and VDF: The precise molecular mechanisms for both VDI 

and VDF are unclear [23]. VDI requires the α1 C-terminus, IS6 (the helix 6 of 

domain I, which lines the pore of the channel ( see section on VGCC structure) 

and the AID but the N-terminus and other domains have also been 

implicated[55]. The C-terminus of Cav2.1 contains a CaM binding domain that 

increases both the extent and rate of VDI [23].  In Cav2.2 channels VDI has been 

proposed to involve disinhibition of G-protein block [23].  The β subunits 

differentially decrease VDI: the β2a, β2e and β4 variants reduce VDI more 

markedly than β1 and β3. The molecular basis for the differential modulation of 

VDI by β subunits is not clear. However, localization of the β subunits to the α1 at 

the surface appears to be an important factor as mutation of the palmitoylation 

sites on β2a severely impairs its effect on VDI. Furthermore, β subunit interaction 

with the IS6-AID domain of the α1 subunit are also important in VDI. Like VDI, 

VDF is also linked to conformational changes involving the IS6, AID domains and 

the β subunit, but to my knowledge the β isoform dependence of VDF has not 

been studied[56]. Finally, phosphorylation is another mechanism of modulating 

voltage-dependent LTCC regulation but its role is described in a later section. 

 

Regulation of VGCCs by Ca2+ 

CDI and CDF: Ca2+ ions regulate their own entry into cells by complex and poorly 

understood mechanisms[57, 58]. Increases in intracellular Ca2+ during 

depolarization enhance VGCC transition to less conducting states; this 

phenomenon is known as Ca2+-dependent inactivation (CDI). The relative 
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importance of CDI and the VDI discussed in the previous section remains 

unclear, but CDI is thought to be faster and therefore more important in 

determining VGCC inactivation during depolarization[23]. CDI has been shown in 

the major VGCCs, including Cav1.2, 2.1, 2.2 and 2.3 channels[57, 58]. CDI of 

LTCCs is thought to be induced by Ca2+ entry through the channel from the 

extracellular space and Ca2+ release from the SR. The two sources of Ca2+ 

appear to differentially affect CDI: extracellular Ca2+ entry is linked to a slower 

component of CDI while Ca2+ from the ER is linked to a faster component[23]. 

These observations suggest that the rate of CDI onset may depend on the 

amplitude of Ca2+ increases as SR release contributes more Ca2+ than LTCC-

mediated influx. Small increases in basal Ca2+ or transient, repeated 

depolarizations activate Ca2+-dependent facilitation (CDF) processes. CDF has 

been observed in Cav1.2, Cav1.3 and Cav2.1 and may play roles in augmenting 

Ca2+ for excitation-contraction coupling, excitation-transcription coupling and for 

controlling neurotransmitter release in central nervous system synapses[23, 47, 

48].  

 

Molecular Mechanisms of CDI and CDF: CDI of Cav1.2 is less sensitive to Ca2+ 

buffering than that of Cav2.1, Cav2.2, Cav2.3, meanwhile the CDF of Cav2.1 is 

relatively insensitive to Ca2+ buffering. These observations suggest the existence 

of distinguishable molecular determinants in the Ca2+ channel subunits.  Most 

work on the molecular determinants of CDI and CDF has been done on Cav1.2 

and Cav2.1. The molecular determinants of CDI and CDF include sequences of 
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the channel α1 subunits, the nature of associated β subunits, direct Ca2+ binding 

and CaM binding to the α1 subunit [55, 57, 58].  

 

CaM is the most extensively studied regulator of CDI and CDF. It is the primary 

Ca2+ sensor for CDI in Cav1.2, 2.1, 2.2 and 2.3 and for CDF in Cav1.2 and 

2.1[23]. Binding of Ca2+/CaM to the C-terminus of Cav1.2α1 modulates LTCCs, 

likely through a two-step process involving an initial binding of Ca2+-free ApoCaM 

(priming) to the channel and a subsequent binding Ca2+ to ApoCaM. The C-

terminus of Cav1.2 contains a consensus ApoCaM (and Ca2+/CaM) binding IQ 

motif (IQXXXRGXXXR, where the first letter is usually an I, L or V) that is critical 

for both CDI and CDF[58].  A Ca2+ binding (CB) domain N-terminal to the IQ 

domain also binds Ca2+/CaM, but with a lower affinity relative to the IQ domain. 

Cav2.1 also contains an IQ-like motif and a CBD domain that has been shown to 

mediate both CDI and CDF. Thus, CaM generally regulates both CDI and CDF. 

 

Coupling of CaM to the Regulatory Machinery: Even though the C-terminal role 

of CaM in CDI and CDF is well demonstrated, it is not clear how CaM binding is 

coupled to the inactivation or facilitation machinery of VGCCs[58]. It has been 

suggested that, like VDI, CDI and CDF involve interaction of the C-terminus, the 

IS6 helix and the AID and the β subunits[55, 57, 58]. However, other parts of the 

channel may still play important roles in Ca2+-dependent regulation. Dick and 

colleagues recently identified a Ca2+/CaM binding sequence at the N-terminus of 

VGCCs that determines whether CDI responds to local or global increases in 
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Ca2+ [59]. Thus, CDI and CDF involve multiple parts of the channel; the various 

parts may exist close to one another in the functional LTCC complex and in 

concert induce CDI or CDF. 

 

Alternative mechanisms of Ca2+-dependent VGCC regulation: The absence of 

CDI in Cav1.4 despite the presence of CaM binding sites raised the possibility 

that CaM binding might not be sufficient for CDI[58] and alternative mechanisms 

may mediate Ca2+ regulation of VGCC. One possibility is that dynamically 

regulated movements of the channels or surrounding macromolecular complexes 

play important roles in modulating the channels. For example, a  Ca2+-dependent 

disruption of the cytoskeleton has been proposed to mediate CDI partly because 

cytoskeletal stabilizers Taxol and Phalloidin reduce CDI[57].  

 

I hope it is clear from the preceeding discussion that α1 subunit-based 

mechanisms have been the primary focus of studies of CDI and CDF. However, 

VGCC β subunits also critically modulate VDI, CDI and CDF through 

mechanisms that are currently unclear [47, 55, 56, 60].  The effects of the β 

subunit on CDF may be linked to a reduction of VDI that then unmasks CDF by 

Ca2+/CaM[23]. Additionally the β subunit may also reveal channel facilitation by 

antagonizing the inhibitory CaM binding to the CB/IQ[29]. Structurally, the role of 

β subunit in CDI or CDF has been linked to its interaction with a rigid IS6-AID[55].  

The requirement of the β subunit for normal CDI and CDF, and its interactions 

with both termini of the α1 and to the IS6-AID emphasizes its importance in 
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structural assembly of the channel for normal regulation. Finally, phosphorylation 

of the α1 and β subunit is also important in Ca2+-dependent regulation of VGCCs. 

 

Regulation of VGCCs by Phosphorylation and Dephosphorylation 

Phosphorylation and dephosphorylation of proteins is an important means of 

modifying their structure, function, localization and other properties. The 

antagonistic regulation of VGCCs by protein kinases and phosphatases appears 

to be a general phenomenon in animals (reviewed in [23, 57]  and [24]). 

 

Regulation of VGCCs by Phosphorylation 

VGCCs are phosphorylated by at least 8 kinases. Regulatory phosphorylations of 

all VGCCs by various kinases are summarized in Table 1. LTCC 

phosphorylations by PKA, PKC and CaMKII have been most extensively 

investigated and are therefore discussed in detail in this chapter. 

 

LTCC  regulation by PKA: In initial studies of VGCC regulation by 

phosphorylation, PKA pathway activation in neuronal cell-types markedly 

decreased CDI (see review in reference[57]). Subsequent studies showed PKA 

potentiates Cav1.1 activity and phosphorylates both the α1 and β subunits in vitro 

and in myotubes (fused skeletal myocytes)[24]. However, the PKA 

phosphorylation sites on Cav1.1 α1 (Ser687, 1757 and 1854) and of β1 (Ser182 

and Thr205) have not been linked to any functional modulation of the channels.  
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Table 1. VGCC Regulation by Phosphorylation. 

A variety of protein kinases regulate VGCCs by phosphorylation of the α1 and β 
subunits ([24] and [38, 61-81]).   Specific phosphorylation sites have been shown 
to increase or decrease VGCC activity. The protein phosphatases responsible for 
dephosphorylating a limited number of sites have been identified. In some cases, 
localization of enzymes to VGCCs is important in regulation of the channels, 
possibly by modulation of phosphorylation.   
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PKA-dependent phosphorylation of Cav1.2 has been more extensively 

investigated than that of Cav1.1. PKA phosphorylates Ser1928 of Cav1.2. The role 

of this phosphorylation on LTCC regulation remains unclear. Phosphorylation of 

Ser478/9 of the β2a subunit by PKA also enhances Cav1.2 currents (reviewed in 

[24]). PKA enhances Cav1.3 LTCC activity through a mechanism involving 

Ser1743 and Ser1964, though it is still not known if PKA directly phosphorylates 

these residues[74]. Interestingly, the identity of the β subunit associated with 

Cav1.3 determines whether PKA utilizes Ser1743 or Ser1964 in regulation of 

Cav1.3[74]. 

 

LTCC regulation by PKC: The activation of PKC by Gq coupled receptors or by 

direct action of phorbol esters, has produced contradictory effects (decreases or 

increases) in LTCC activity. PKC phosphorylates the α1 subunit of Cav1.2 and at 

least one β subunit. The PKC-dependent phosphorylation of Cav1.2α1 subunit at 

Ser27 and Ser31 decreases channel activity. The Cav1.2α1 Ser1928 

phosphorylated by PKA is also a PKC substrate. Cav1.3 α1 phosphorylation by 

PKC at Ser 81 also reduces channel activity. For more detailed review of VGCC 

regulation by PKC, I recommend reading [24].    

 

LTCC regulation by CaMKII: regulation of LTCCs by CaMKII is the main subject of 

this thesis and thus is omitted from this section and covered extensively later (see 

section 1.6) 
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Regulation of VGCCs by dephosphorylation 

Much like role of phosphorylation, the role of dephosphorylation in VGCC 

regulation has been most intensely investigated in LTCCs, particularly in the 

Cav1.2 subtype. Purified protein phosphatases were initially noted to reverse 

LTCC activation by β adrenergic receptors, without affecting basal channel 

activity (reviewed in 23 and 24). This implied the absence of significant basal 

phosphorylation of LTCCs, but several lines of evidence indicate that protein 

phosphatases are active at basal conditions. For example, enhancement of 

dephosphorylation at basal conditions increases in the rate of VGCC inactivation 

in mollusks and phosphatase inhibition reduces rundown of LTCCs. The above 

studies and other details on phosphatase regulation of LTCCs are reviewed in 

[23, 24, 57]. 

 

A note on other mechanisms of LTCC regulation:  While phosphorylation and 

dephosphorylation are important regulatory LTCC processes, LTCCs are also 

regulated by a variety of other proteins and pathways not detailed here (reviewed 

in [24].  These include Ca2+ binding proteins, which modulate neuronal Cav1.2 

independently of Ca2+/CaM[48]. Binding of the Rem and Gem G-proteins also 

modulates LTCC function[82]. Lastly, proteolytic cleavage of the C-terminus of 

Cav1.2 also enhances the activity of the channels, likely by disrupting an 

autoinhibitory mechanism involving the C-terminus of the α1 subunit[83]. 
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1.5 THE IMPORTANCE OF LOCALIZED SIGNALING COMPLEXES IN LTCC 
REGULATION 
 
It has been widely postulated that cells concentrate and juxtapose related 

signaling molecules to promote efficient, specific and finely-tuned signaling 

(reviewed in [84]).   The prototypical β-AR regulation of LTCCs has been shown 

to involve formation of a signalosome containing the receptor, an adenylyl 

cyclase, PKA and at least one A-kinase Anchoring Protein (AKAP) [23, 24, 68, 

85, 86]. In neurons, MAP2B targets PKA to modulate LTCCs. Studies of the PKA 

targeting mechanisms have popularized the view of cellular signaling as a 

combination of descrete and localized events and this view is now broadly 

applied to signaling by multiple enzymes.  For example, PKC can be directly 

anchored at the α1 subunit of Cav1.2 but can also be targeted there by an 

AKAP150[24]. Many LTCC- complexes also contain phosphases to counteract 

the effects of the associated kinases. LTCCs associate and copurify with protein 

phosphatases, and PP2A associates with Cav1.2α1 directly or via AKAP150, 

along with PKA and β-AR[86].  The same AKAP also targets PP2B to neuronal 

LTCCs to reverse localized PKA-mediated upregulation of LTCC function[86]. 

Therefore, both kinases and phosphates are targeted to locally control the 

phosphorylation of VGCCs, and to fine tune Ca2+ signals at the point of entry.   

The paradigm of PKA targeting to LTCCs and β-adrenergic receptors to promote 

fast, efficient and specific modulation of Ca2+ signaling has provided a 

reasonable framework for understanding CaMKII-dependent regulation of LTCCs 

that is the subject of the rest of this thesis. 

 



 27

1.6 CAMKII: STRUCTURE, REGULATION, FUNCTION AND DYNAMIC 
LOCALIZATION 

 
A comprehensive discussion of this subject is beyond the scope of this document 

but those interested are referred to detailed reviews[87, 88]. The discussion 

hereafter is focused on aspects of CaMKII most relevant to this thesis. 

 

CaMKII Structure and Regulation  

CaMKII is a ubiquitously distributed serine-threonine kinase with multiple 

functions[88]. Four alternately spliced gene products of CaMKII have been 

identified in vertebrates (α, β, δ and γ). The four CaMKII isoforms share more 

than 80% amino acid identity, and have similar structure and function. 

Expression of the resulting CaMKII isoforms varies between tissues and during 

development [88, 89].  CaMKIIδ is the main isoform expressed in heart whereas 

the α and β predominate in the brain and together constitute ~1% of total protein 

in forebrain and as much as 2% of protein in the hippocampus. Within the CNS, 

CaMKIIα is expressed in some neuronal subtypes but CaMKIIβ is found in most 

neurons and in glia. The δ and γ isoforms of CaMKII are also present in select 

regions of the brain but their roles are undefined. 

 

Individual CaMKII subunits each contain an N-terminal catalytic domain, an 

adjacent autoinhibitory domain (AID), and a calmodulin binding domain[88, 90]. 

The subunits also contain C-terminal association domains through which the 

subunits form two hexameric rings that stack to form dodecameric holoenzyme 
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Figure 3. Structure and Regulation of CaMKII. 
CaMKII subunits (A) consist of catalytic, autoregulatory, alternately spliced 
variable (V1-4) and association domains. CaMKII subunits oligomerize into 
hexameric rings (B) which stack pair-wise to form a dodecameric holoenzyme 
(C). The catalytic domain, conserved in Ser-Thr kinases, contains nucleotide and 
substrate-binding lobes. The latter is partly occupied by the region surrounding 
Thr286/7 (the autoinhibitory domain, AID) at basal Ca2+ levels (B). Ca2+/Calmodulin 
(Ca2+/CaM) activates each subunit by displacing the AID. Binding of Ca2+/CaM to 
adjacent subunits results in inter-subunit autophophorylation at Thr286/7, which 
enhances CaMKII affinity for Ca2+/CaM and confers Ca2+-independent activity. 
Intra-subunit autophosphorylation at Thr305/6, following dissociation of Ca2+/CaM, 
prevents binding of Ca2+/CaM and other proteins. Adapted from [91]  
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(Figure 3). Under some circumstances holoenzymes of CaMKII can assemble 

via dimerization of catalytic and autoregulatory domains into supramolecular 

structures[88, 90]. 

 

At basal levels of Ca2+, the AID of CaMKII subunit binds the catalytic site and 

inhibits it. The autoinhibition is relieved by displacement of the AID upon 

Ca2+/CaM binding, leading to activation of the kinase.  Coincident binding of 

Ca2+/CaM to adjacent subunits of a CaMKII holoenzyme leads to intersubunit 

autophosphorylation at Thr286 (Thr287 in β, δ and γ), which increases their affinity 

for Ca2+/CaM by more than one thousand-fold and also renders them Ca2+-

independent. Intra-subunit autophoshorylation at Thr305/6 occurs at basal Ca2+ 

levels or following dissociation of Ca2+/CaM, and prevents association/activation 

of the kinase until the two sites are dephosphorylated. The level of Thr286 

autophosphorylaton increases with frequency and duration of Ca2+ oscillations in 

vitro[92]. In neurons, increasing frequency of action potentials enhances CaMKII 

autophosphorylation [93] and Ca2+ spikes generated by different patterns of 

neuronal stimulation induce redistribution of CaMKII[94, 95]. Similarly, increasing 

heart rate or stimulation of cardiomyocytes with hormones stimulates CaMKII 

autophosphorylation and redistribution [96, 97]. These studies raise the 

possibility that CaMKII integrates and encodes Ca2+ dynamics at and around 

Ca2+ channels into molecular states of activation, autophosphorylation and 

localization. These features of CaMKII are ideal for interpreting and storing a 
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molecular memory of prevailing Ca2+ dynamics associated with neuronal activity 

and for regulating cardiac contractility.  

 

CaMKII Function 

CaMKII Substrates: The earliest known substrates of CaMKII include glycogen 

synthase, synapsin, myosin light chain, casein, MAP-2 and tryptophan 

hydroxylase [88, 98]. Over the years a wide range of CaMKII substrates have 

been characterized, many of which contain the mimimal consensus sequence 

Arg-X-X-Ser/Thr [98] or the more restrictive Hyd-X-Arg-NB-Ser/Thr-Hyd [99]. 

Substrates of CaMKII in the heart include ryanodine receptors, IP3 receptors and 

other proteins involved in gene expression and Ca2+ cycling. They are discussed 

in a previous thesis[100] and review[101] and will not be covered here. The focus 

here is on CaMKII substrates in neurons. CaMKII phosphorylates proteins in 

presynaptic termini (such as Cav2.1, 2.2, 2.3 and synapsin) and at least 30 

proteins in the postsynaptic spine are known or putative CaMKII substrates [102, 

103]. The postsynaptic proteins include α-amino-3 hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs), N-methyl-

D-aspartate (NMDA)-type glutamate receptors (NMDARs), LTCCs and RTCCs, 

which control basic neurotransmission or plasticity. The availability of a wide 

range of CaMKII substrates involved in Ca2+ signaling may enable the enzyme to 

control acute and long-term function of cardiomyocytes, neurons and other cell 

types by phosphorylation.   

 



 31

Role of CaMKII in Normal Cardiac Function 

Cardiac excitation-contraction coupling is regulated by actions of CaMKII on 

LTCCs, RYRs and the sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) [104]. 

CaMKII may also influence LTCC-dependent initiation of action potentials at the 

sinoatrial node[105] or their  conduction  at the atrioventricular node[106, 107]. 

Thus, CaMKII can acutely modulate cardiac excitability and contractility, and also 

plays roles in long-term Ca2+ homeostasis and gene expression[104, 107].   

 

Role of CaMKII in heart disease 

Sustained increases in CaMKII expression or activity contribute to long-term 

alterations in Ca2+ homeostasis and abnormal remodeling of the heart (reviewed 

in [101, 107, 108]). Briefly, CaMKII expression or activity is increased in patients 

and animal models of structural heart disease and arrhythmias.  Our lab has 

shown that CaMKII inhibition attenuates arrhythmias and structural damage in 

mouse models of heart disease[109, 110]. Thus, CaMKII inhibition is a viable 

strategy for treatment of certain forms of heart disease.   

 

Role of CaMKII in Normal Neuronal Function and in Disease 

Role in Normal Functions: CaMKII regulates several neuronal processes that 

underlie synaptic transmission, plasticity and spatial learning.  It is required for 

activity-dependent modification of synaptic transmission (LTP and LTD), cellular 

models for learning and memory [111-114]. CaMKII also regulates 

neurotransmitter synthesis and release[115], dendritic morphology[116] and 
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neurite outgrowth[117, 118].  In vitro and cellular studies suggest actions of 

CaMKII are related to its ability to sense and transduce dynamic changes in 

cytosolic Ca2+ into biochemical alterations of key synaptic proteins [92, 93, 96, 

119-122].  For example, CaMKII phosphorylates AMPARs to enhance their 

function in LTP [119, 121] and also regulates Ca2+ influx via the NMDAR[120].   

 

Role in Disease: In the brain, hyperactivation of LTCCs by CaMKII is implicated 

in Timothy Syndrome, the multi-organ human genetic disorder whose symptoms 

include mental disability[17, 52]. Furthermore, LTCC-dependent spine loss in 

striatal medium spiny neurons[40] occurs in parallel with CaMKII overactivation in 

animal models of parkinsonism[123, 124]. Neuropathological conditions such as 

ischemia and excitotoxicity promote CaMKII accumulation at postsynaptic 

densities (PSDs or protein-rich specializations found in over 80% of dendritic 

spines) [125-128].   

 

In mouse models of Angelman’s syndrome, a human disorder characterized by 

mental disability, ataxia and seizures, levels of CaMKII at the PSD are 

reduced[129]. This decrease correlates with increased Thr305/306 

autophosphorylation, which is known to reduce synaptic CaMKII 

association[130]. Mutation of Thr305/6 to Asp mimics phosphorylation at these 

sites, resulting in reduced PSD-associated CaMKII and deficits in spatial 

learning[130]. Conversely, a mutation of Thr305/6 to Ala rescues neurological 

deficits in Angelman’s syndrome [131]. Similar behavioral defects were observed 
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in mice in which local dendritic synthesis of CaMKII was blocked[132]. Thus, 

misregulation of CaMKII expression or localization is associated with neurological 

disease. 

 

1.7 Mechanisms of Subcellular Targeting of CaMKII  

The ability of CaMKII to integrate past neuronal experience with prevailing stimuli 

into activation, autophosphorylation and localization states appears to be 

important for adaptive and maladaptive changes that affect neuronal response to 

future stimuli.  CaMKII migrates to substrates and sites of Ca2+ entry, where its 

actions on receptors and channels may induce changes in synaptic function and 

morphology, and ultimately in physiology.  

 

CaMKII Targeting to postsynaptic sites: Neuronal activity, in vitro or in vivo, 

stimulates rapid Ca2+-dependent, translocation of CaMKII to postsynaptic sites 

and to the PSD [94, 95, 133, 134]. Ca2+ entry following NMDA receptor activation 

and the consequent binding of Ca2+/CaM or autophophorylation of CaMKII is a 

key mechanism of driving CaMKII to the synapse. Stable association of CaMKII 

at the synapse depends on intensity of depolarization and level of glutamate [95], 

implying that CaMKII can sense and respond dynamically to varying Ca2+ signals.  

The levels of CaMKII at the PSD may also depend on its dynamic interactions 

with various CaMKII Associated Proteins (CaMKAPs) at the PSD, which in some 

cases are regulated by Ca2+/CaM or autophosphorylation(reviewed in[135, 136]). 
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Examples of CaMKAPs include Densin-180, α-actinin and subunits of the NMDA 

receptor (NR1, NR2A and NR2B).  

 

CaMKII Targeting to the NMDAR: The mechanism and regulation of CaMKII 

binding to NR2B subunits has been investigated in a few studies. Displacement 

of the CaMKII autoinhibitory domain after Ca2+/CaM binding to CaMKII or 

autophosphorylation at Thr286 exposes the catalytic site and adjacent regions for 

interaction with the cytosolic C-terminal tail of NR2B. The major CaMKII binding 

domain of NR2B (residues 1290-1309) is conserved with the CaMKII 

autoinhibitory domain; phosphorylation of Ser1303 substantially diminishes NR2B 

binding to CaMKII in vitro, similar to the block of AID binding by Thr286/7 

autophosphorylation. These findings suggest interaction of CaMKII with NR2B-

containing NMDARs is dynamically regulated by Ca2+/CaM binding and 

autophosphorylation following synaptic activity. Indeed, Thr286-

autophosphorylation is required for CaMKII-dependent regulation of NR2B-

containing NMDARs[120]. Disruption of CaMKII association with the NR2B 

subunit of NMDARs interferes with LTP in cultured neurons[137] and 

overexpression of the NR2B C-terminus containing a CaMKII binding region 

impairs learning in whole animals[138]. Thus NMDAR signaling appears to be 

critically modulated by both downstream and feedback actions of CaMKII near 

the channel.  
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1.8 DYNAMIC CAMKII TARGETING TO REGULATE LTCCS  

LTCCs are the primary means of Ca2+ entry into cardiomyocytes and control both 

acute cardiac functions such as contraction but also long-term remodeling and 

gene expression. They also coexist with NMDARs in neuronal dendritic spines 

where they function in parallel with NMDARs to control Ca2+ entry, neuronal 

plasticity and gene expression. Like NMDARs, downstream LTCC signaling is 

modulated by CaMKII. Furthermore, Cav1.2 channels have been recognized as 

potential CaMKII regulatory targets since their identification as CaMKII substrates 

nearly 22 years ago[139]. CaMKII inhibition impairs voltage-dependent facilitation 

of Cav1.2 in heterologous cells [63, 140] and Ca2+-dependent facilitation in both 

heterologous systems and cardiomyocytes(Figure 4)[141, 142]. CaMKII also 

potentiates Cav1.2 following Gq-coupled receptor activation in 

cardiomyocytes[97] and Cav1.3 following insulin growth factor receptor activation 

in a neuronal cell line[38]. Therefore, under normal conditions, LTCC facilitation 

may augment cellular Ca2+ signals necessary for adaptive physiological 

responses such as fight or flight.  

 

Excessive LTCC activity, Ca2+ entry and CaMKII activation are associated with 

cardiac arrhythmias and other forms of heart disease[17, 52, 107].  LTCCs are 

themselves important therapeutic targets[143]. The Timothy Syndrome 

mentioned earlier is associated with a novel mutation of the Cav1.2α1 subunit that 

facilitates LTCC activity, because the G406R mutation creates a CaMKII 

consensus phosphorylation site at S409 in Cav1.2 α1 [61].  
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Like NMDARs, LTCC modulation by Ca2+/CaMKII-dependent feedback 

mechanisms appears to involve localized actions of CaMKII. Drawing on relevant 

parallels from CaMKII-dependent NMDAR regulation, this thesis examines the 

mechanism of CaMKII targeting to modulate LTCCs in neurons and 

cardiomyocytes.  

 

Importance of CaMKII-targeting in LTCC regulation 

LTCC facilitation by membrane depolarization or Ca2+ has been proposed to 

require CaMKII actions near the channel[140, 141, 144]. In support of this notion, 

the open probability of LTCCs in membrane patches—typically smaller than 1 µm 

in diameter[145]— that are excised from rabbit cardiomyocytes is  enhanced by 

activation of endogenous CaMKII within the patches[144]. Cytoskeletal disruption 

prior to excision of the patches specifically inhibits CaMKII-dependent, but not 

PKA-dependent regulation of cardiac LTCCs[144]. These findings suggested that 

CaMKII actions on LTCCs are dependent on scaffolding in the vicinity of the 

channels and are consistent with the localized nature of  CaMKII-dependent 

LTCC facilitation revealed by chelation of Ca2+ microdomains with 
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Figure 4. Common CaMKII-dependent forms of LTCC facilitation. 
(A) Ica at two successive pulses P1 and P2. The first pulse results in an increased 
Ica peak and prolonged decay of ICa following the second pulse, a process known 
as facilitation. Nifedipine (N), a selective L-type Ca2+-channel blocker blocks the 
currents. A peptide that inhibits CaMKII activation blocks facilitation and other 
CaM-dependent processes. Adapted from [63, 140] 
 
(B) Repetitive depolarization protocols (0.5 Hz) revealed normal facilitation in 
cardiomyocytes transduced with control (●) or FLAG-β2a(wt) (■) lentivirus, but not 
in cells transduced with FLAG-β2a(T498A) lentivirus (▲). Representative current 
traces are shown above with horizontal and vertical scale bars representing 50 
ms and 2 pA/pF, respectively. Adapted from [79]. 
 
(C)Thr498 in the β2a subunit mediates regulation of recombinant LTCCs. 
Cartoons at the top show LTCCs containing Cav1.2α1(α1c) and β2a(wt), Cav1.2α1 
alone, or Cav1.2α1 and β2a(T498A) expressed in tsA201 cells. Representative 
sweeps of single channel activity are shown after incubation of cytosolic faces of 
excised membrane patches without or with constitutively active CaMKII or PKA. 
The bar graph shows cumulative open probabilities (Po) for channels under each 
condition. Adapted from [79]. 
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BAPTA[140].  Additional studies showed that LTCCs and CaMKII closely coexist 

within microdomains at the plasma membrane such as neuronal dendritic 

spines[33, 34, 38] and cardiomyocyte Z-lines[79, 97, 146]. The close proximity of 

CaMKII and LTCC is also reflected in their physical association and 

coimmunoprecipitation from heart [63, 147].   

 

Role of the α1 subunit in CaMKII-dependent facilitation  

LTCCs were identified as a CaMKII substrates nearly two decades ago[139] but 

only recently have specific sites been linked to function. CaMKII phosphorylates 

Ser 1512 and Ser1570 at the C-terminus of the α1 subunit to induce VDF[63]. 

CaMKII also phosphorylates Ser439 in the Timothy syndrome Cav1.2α1 mutant, 

to increase channel activity under basal conditions[61].  Similarly, CaMKII-

dependent phosphorylation at Thr1604 of Cav1.2 slows the rundown of Ca2+ 

currents in cardiomyocytes[70].  CaMKII potentiates Cav1.3 LTCCs via CaMKII 

phosphorylation at Ser1486 in the Cav1.3α1 EF hand[38].   

 

 Direct binding to and/or phosphorylation of the α1 subunit by CaMKII supports 

Ca2+ and voltage-dependent facilitation of LTCCs induced by multiple paradigms 

in heterologous cells coexpressing β1 or β2 subunits[61, 63, 147].  Recent studies 

showed that CaMKII binds to multiple sites on the Cav1.2α1 subunits and 

coimmunoprecipitates with the α1 subunit[63, 147]. Mutation of one of these 

CaMKII binding sites on the α1 subunit abolishes LTCC facilitation in frog 

oocytes[147]. However, multiple factors confound this proposed  
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Figure 5. A model for β subunit-dependent facilitation of LTCCs by CaMKII 
before the findings in this thesis. 
Arrows indicate binding. Multiple interactions with α1 subunit target β subunits 
(dashed arrows) to LTCCs.  Activated CaMKII binds α1 at multiple domains (solid 
arrows).  Increased local CaMKII concentrations enhances phosphorylation of α1 
at S1517 or S1575 (or S439 in the Timothy Syndrome mutant) and β2a at T498, 
resulting in LTCC facilitation.  My studies test if the β2a subunit is responsible for 
targeting CaMKII to LTCC complexes (?), investigate the role of β2a in 
modulating phosphorylation of the α1 and β subunit subunit, and begin to 
investigate the dynamic assembly of these complexes.   
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α1-dependent mechanism. First, the α1 subunit was mutated within the C-terminal 

IQ domain[58] , which could interfere with CaM binding. Secondly, while mutation 

of the (TVGKFY) domain disrupts CaMKII binding to a purified C-terminal 

fragment of Cav1.2α1, it does not affect CaMKII binding to full-length α1 [147]. 

Thirdly, the relevance of the LTCC regulation in oocytes to cardiomyocytes or 

neurons is unclear. Our lab has focused on the role of the β subunit in LTCC 

regulation by CaMKII. 

 

Role of β subunits in CaMKII-dependent LTCC regulation 

LTCC β subunits contain structural features that enable MAGUK family of 

scaffolding proteins to cluster proteins into signaling units and to link them to the 

cytoskeleton and intracellular signaling pathways.  A role of the β subunits in 

LTCC facilitation has also been demonstrated (Figure 4) [29, 56, 79, 148, 149]. 

CaMKII efficiently phosphorylates all four LTCC β subunit isoforms and 

phosphorylation of Thr498 of the β2a is critical for CaMKII-dependent facilitation 

of single LTCC opening and LTCC facilitation in cardiomyocytes (Figure 4B and 

4C) [79, 150].  In addition to phosphorylating the β subunits of LTCCs, CaMKII 

appears to associate with them. Endogenous CaMKII and β subunits are 

localized along z lines of cardiomyocytes and CaMKII punctae colocalize with 

exogenous β2a at cardiomyocyte tubules[79]. Interestingly, we note that amino 

acids 485-505 of β2a (containing the Thr498 phosphorylation site) are very similar 

to the CaMKII autoinhibitory domain and the CaMKII binding domain of NR2B, 

suggesting that CaMKII may actually bind the LTCC β subunit (Figure 6).  
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Notably, phosphorylation sites in the autoregulatory domain (T286/7) and in 

NR2B (Ser1303) are conserved with T498 in β1b and β2a but not in β3 and β4, 

suggesting the interaction is isoform selective and dynamically regulated (Figure 

6)

 

  

 

 

 

 

 
Figure 6. Similarity between NR2B, CaMKII regulatory domain and the 
region surrounding Thr498 site in β2a. 
Top.Schematic structure of β2a. Amino acids 485-505 of β2a contain a CaMKII 
binding motif that is conserved in NR2B and CaMKII isoforms. Phosphorylation 
sites are indicated by the arrowhead. Residues conserved in all (black) or in 
some (grey) of these domains are highlighted.  Bottom. The amino acid 
sequence of the putative CaMKII binding domain in β2a is aligned with similar 
sequences from other β isoforms: identical residues are shown in gray boxes.
 

1.9 HYPOTHESIS 

Based on the above background information, I hypothesized that β 

subunits of LTCCs differentially and dynamically target CaMKII to modulate 

the phosphorylation of LTCC subunits.   
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1.10 SPECIFIC AIMS 

AIM 1 (Chapter 2) addresses the molecular mechanisms of dynamic assembly 

and regulation of binary LTCC β-CaMKII complexes. The specific aims are to: 

a. Test CaMKII interaction with β2a and explore the molecular basis for the 

interaction in vitro.  

b. Determine the effect of phosphorylating Thr498 of β2a on its interaction 

with CaMKII.  

c. Examine the regulation β2a-CaMKII association by Thr498 

phosphorylation in heterologous cells.  

AIM 2 (Chapter 3) determines if the β-CaMKII interactions in AIM 1 enable 

targeting of CaMKII to phosphorylate LTCC subunits.  The specific aims are to: 

a. Test if the LTCCα1, β and CaMKII are associated in brain.  

b. Determine the role of β subunits in targeting CaMKII to LTCCs in vitro. 

c. Determine the role of β2a in targeting of CaMKII to LTCCs in HEK cells.  

d. Determine the effect of CaMKII binding on LTCC phosphorylation.  

 

In Chapter 4, the general implications of the findings in my studies are discussed 

and summarized.  
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CHAPTER II 

 

THE MOLECULAR BASIS AND DYNAMIC REGULATION OF CAMKII 
INTERACTION WITH β2A 

 
 

2.1 CHAPTER SUMMARY 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylates the β2a 

subunit of voltage-gated Ca2+ channels at Thr498 to facilitate cardiac L-type Ca2+ 

channels. CaMKII colocalizes with β2a in cardiomyocytes and a domain in β2a that 

contains Thr498 exhibits an amino acid sequence similarity to the CaMKII 

autoinhibitory domain and to a CaMKII binding domain in the NMDA receptor 

NR2B subunit. Here I show that activated/Thr286-autophosphorylated CaMKII 

binds LTCC β2a with a high affinity (~89nM) comparable that of NR2B subunits 

and associates with the LTCC β2a in HEK293 cells. I also explored the selectivity 

of the binding of CaMKII to Ca2+ channel β subunit isoforms. 

Activated/autophosphorylated CaMKII binds to β1b and β2a with a similar apparent 

affinity but does not bind to β3 or β4. Residues surrounding Thr498 in β2a are 

highly conserved in β1b but are different in β3 and β4. Mutagenesis of Leu493 to 

Ala substantially reduces CaMKII binding in vitro and in intact cells but does not 

interfere with β2a phosphorylation at Thr498. Site-directed mutagenesis of this 

domain in β2a showed that Thr498 phosphorylation promotes dissociation of 

CaMKII-β2a complexes in vitro and reduces interactions of CaMKII with β2a in 

cells. Prephosphorylation of β1b and β2a by CaMKII substantially reduces the 

binding of autophosphorylated CaMKII. In combination, these data show that 
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phosphorylation dynamically regulates the interactions of specific isoforms of the 

Ca2+ channel β subunits with CaMKII. 

 

2.2 MATERIALS AND METHODS 

Generation of Plasmid Constructs 

The open reading frames of the rat β1b, β2a, β3 and β4 (Accession Numbers 

X61394, M80545.1, M88751 and L02315 respectively), generous gifts from Dr. 

Timothy Kamp and Dr. Ed Perez-Reyes, were amplified by PCR and ligated into 

pGEX-4T1 (Amersham Pharmacia Biotech)  by Dr. Rong Zang and Yunji Wu. 

The β2a subunit was also subcloned into pFLAG-CMV-2 (Sigma-Aldrich), pIRES 

(Clontech), and pLenti (Invitrogen). Murine CaMKIIα and rat CaMKIIδ coding 

sequences were inserted into pcDNA3. The cDNAs encoding β2a were mutated 

by Dr. Chad E. Grueter essentially as described in the QuikChange kit 

(Stratagene). The pcDNA plasmid encoding a constitutively active T287D 

mutation of myc-CaMKIIδ2 was a generous gift from Dr. E. Olson (UTSW, 

Dallas). 

 

GST Fusion Protein Expression and Purification  

GST fusion proteins were expressed and purified as described in [79].  Protein 

concentrations were determined by Bradford assay (BioRad) using bovine serum 

albumin as the standard and were confirmed by resolving proteins on SDS-

polyacrylamide gels followed by Coomassie-Blue staining. 
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CaMKII Purification and Autophosphorylation 

 Recombinant rat CaMKIIδ2 or mouse CaMKIIα purified from baculovirus infected 

Sf9 insect cells were autophosphorylated at Thr287 or Thr286, respectively, 

using ATP or [γ-32P]ATP, essentially as described previously [151].   

 

CaMKII Plate Binding Assays 

GST fusion proteins in 0.2 mL of plate-binding buffer (50 mM Tris-HCl, pH 7.5, 

200 mM NaCl, 0.1 mM EDTA, 5 mM 2-mercaptoethanol, 0.1% (v/v) Tween-20, 5 

mg/mL bovine serum albumin) were incubated for 18−24 h at 4 °C in glutathione-

coated wells. After 3 washes with buffer, wells were incubated at 4 °C with the 

indicated concentrations of 32P-labeled, Thr286/7 autophosphorylated CaMKIIα 

or CaMKIIδ2 (0.2 mL) for 2 h and then washed (8 times, 0.2 mL of ice-cold 

buffer). The bound kinase was quantified using a scintillation counter. To monitor 

dissociation of preformed CaMKII-β2a complexes, GST-β2a (wild-type or T498A:  

≈5 pmol) was immobilized in glutathione-coated multi-well plates (Pierce, 

Rockford, IL) and then incubated for 2 h at 4 °C with [32P-T286]CaMKIIα (0.25 

μM) in binding buffer. Wells were rinsed 8 times in binding buffer, and 

immobilized complexes were then incubated with 50 mM Tris-HCl, pH 7.5, 0.1 M 

NaCl, 0.25 mg/mL bovine serum albumin, 0.1% Triton X-100, 1 mM dithiothreitol, 

10 mM magnesium acetate, with or without 0.5 mM ATP. Soluble/dissociated 

CaMKII was removed from the wells at the indicated times and quantified by 

scintillation counting. 
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CaMKII Gel Overlays  

GST fusion proteins (50 pmol) were resolved by SDS-polyacrylamide gel 

electrophoresis and transferred to nitrocellulose. Approximately equal protein 

loading was confirmed by staining membranes using Ponceau-S. Membranes 

were blocked and then incubated for 2 h at 4 °C with 32P-labeled, Thr286/7 

autophosphorylated CaMKIIα or CaMKIIδ2 (100 nM), essentially as described 

previously [152]. After washing, bound CaMKII was quantified using a 

phosphoimager. 

 

CaMKII Phosphorylation of GST-β Subunits  

Purified GST-β subunits (or GST alone as a blank) were incubated at  30°C in 50 

mM HEPES, pH 7.5, 10 mM magnesium acetate, 1 mg/mLbovine serum albumin, 

1 mM dithiothreitol, 0.4 mM [γ-32P]ATP (≈500 cpm/pmol) or 0.4 mM ATP 

containing purified CaMKII. After 20 minutes phoshorylation was stopped by 

denaturing the proteins in SDS-PAGE loading buffer. 

 

Immunoblotting  

Samples were resolved on Tris-glycine SDS-polyacrylamide gels and transferred 

to nitrocellulose membranes by wet transfer in 10 mM CAPs, pH 7.5 and 10% 

methanol at 4oC.  Membranes were blocked in 5% (w/v) milk in TTBS (50 mM 

Tris-HCl, pH 7.5, 0.2 M NaCl, 0.1% (v/v) Tween-20) and then incubated with 

primary antibodies overnight at 4°C. After being washed 6 times for >5 min each, 

membranes were incubated for 1 h at room temperature with horseradish 
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peroxidase conjugated secondary antibody. The washed membranes were 

developed using enhanced chemiluminescence. 

 

Co-immunoprecipitations from HEK293 Cells  

Experiments were performed as described in [79].  Briefly, HEK293FT cells were 

transfected with FLAG-β2a (wild-type, T498A, T498E, or L493A), CaMKIIα (or 

myc-CaMKIIδ2(T287D), and/or the FLAG vector alone. Cell lysates were 

immunoprecipitated with anti-FLAG-coated agarose beads (40 μL, Sigma) and 

then immunoblotted. 

 

Statistics  

Data were expressed as mean ± SEM. Paired comparisons were performed 

using the Student's t test. Multiple group comparisons were performed using one-

way or two-way ANOVA with Bonferoni post-hoc testing, unless otherwise noted. 

The null hypothesis was rejected if p < 0.05. 
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2.3 RESULTS 

Activated CaMKII binds LTCC β2a with high affinity 

As a first step toward determining whether LTCC β subunits play a role in CaMKII 

phosphorylation-mediated facilitation of cardiac LTCCs, I performed CaMKII 

overlay and glutathione agarose CaMKII cosedimentation assays with a 

glutathione S-transferase (GST) fusion protein containing the entire sequence of 

the rat β2a subunit (GST-β2a[wt]). A GST-NR2B (1260-1339S1303A) protein that 

binds activated CaMKII (see Introduction) was used as a positive control.  The 

major neuronal and cardiac isoforms of CaMKII (CaMKIIα and CaMKIIδ 

respectively) associated with GST-β2a(wt) (Figure 7A and 7B). Binding required 

prior activation of CaMKII by Ca2+/CaM binding in the presence of nucleotide or 

autophosphorylation in the regulatory domain (Thr287 in CaMKIIδ or Thr286 in 

CaMKIIα, Figure 7B and 7C). In a glutathione-plate binding assay, GST-β2a(wt) 

bound activated CaMKIIδ with an apparent Kd  90 nM (Figure 7D), more than an 

order of magnitude lower than estimated levels of CaMKII in heart[146, 152]. 

Because of the apparent similarity of CaMKIIα and δ isoforms in binding to the 

LTCC β2a, and due to our initial focus on cardiac LTCCs, I did several of the 

initial binding studies in this chapter using the CaMKIIδ2 isoform. The CaMKII 

isoform used in each experiment is specified in the figure legend.  
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Figure 7. Binding of activated CaMKII to β2a 
(A) Thr286 autophosphorylated CaMKIIα binding to GST-β2a(wt) and GST-NR2B 
using a CaMKII overlay assay. n =1 using CaMKIIα and >3 using CaMKIIδ2 (data 
not shown) 
 
(B) Thr287 autophosphorylation-dependent binding of CaMKIIδ2 to GST-β2a(wt) 
and GST-NR2B using a cosedimentation assay. The input, soluble, and bound 
fractions were analyzed by immunoblotting for CaMKII. Similar results were 
obtained with CaMKIIα. n>3 
 
(C) Ca2+/CaM-dependent Binding of β2a to CaMKIIα using a glutathione agarose 
cosedimentation assay. First two lanes: GST or GST-β2a was incubated with 
Thr286-autophosphorylated CaMKIIα. Remaining lanes: GST or GST-β2a was 
incubated with non-phosphorylated CaMKII in the presence or absence of Ca2+, 
Mg2+ and ADP as indicated. Bound proteins were separated by SDS and 
transferred to nitrocellulose and stained with Ponceau-S. The data is 
representative of at least 2 experiments. Data shown is from an experiment 
performed by Dr. AJ. Robison. 
 
(D) CaMKIIδ2 binds β2a (●) and NR2B (○) with similar affinity in a glutathione 
plate binding assay. The inset table reports equilibrium binding parameters 
(apparent KD and Bmax). Data is displayed as mean ± SEM, n = 3. 
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Figure 8. CaMKII coimmunoprecipitates with FLAG-β2a. 
HEK293 cells were transiently transfected to express CaMKIIα with either FLAG-
β2a(wt) or FLAG-β2a(T498A). Control cells were mock transfected or expressed 
CaMKII alone. Cell lysates were immunoprecipitated by using anti-FLAG agarose 
beads, and aliquots of inputs, supernatants (super), and immune pellets were 
immunoblotted for CaMKII (top) and FLAG proteins (bottom). Experiment 
performed by Dr. Chad E. Grueter. 
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Coimmunoprecipitation of CaMKII and β2a from HEK cells  

To investigate whether CaMKII associates with β2a subunits in intact cells, 

CaMKII was coexpressed with FLAG-tagged β2a proteins in HEK293 cells. 

Immunoprecipitations using FLAG antibodies resulted in the coprecipitation of 

CaMKII from cell lysates containing FLAG-β2a(wt), but not from lysates that did 

not contain FLAG proteins (Figure 8). Taken together, these findings identify  

the β2a subunit as a bona fide CaMKII binding protein and suggest that β2a is a 

CaMKII-associated protein (CaMKAP) in situ. 

 

Mapping the CaMKII binding domain on  LTCC β2a 

In order to identify the relationship of the CaMKII binding site to conserved 

domains in the β2a subunit, we screened a library of GST-fusion proteins 

containing various fragments of β2a by using gel overlay assays. CaMKII bound 

to all fragments that contained residues 410–505 of β2a, but not to fragments that 

lacked this region (Figure 9A). The structure of SH3/GK domains reveals 

insights into the mechanism for constitutive association of the α1 and β subunits 

(see Introduction), but the domain containing residues 410–505 was not 

resolved in these structures. Inspection of the primary amino acid sequence of 

the CaMKII binding domain revealed that residues 486–500 are homologous to a 

portion of the CaMKII autoregulatory domain (residues 274–289 in CaMKIIα) and 

to a well-established CaMKII binding domain (residues 1298–1305) in the NR2B 

subunit of the NMDA receptor (Figure 9B and Figure 6) [153-155]. 
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Figure 9. Mapping the CaMKII binding domain on β2a 
 (A) Mapping the CaMKIIδ2 binding domain to amino acids 410–505 using gel 
overlay assays. 
 
(B) β2a domain map. SH3- and GK-homology domains are indicated in gray, and 
the CaMKII binding domain is indicated in black. Partial amino acid sequences of 
β2a, CaMKIIα, CaMKIIδ, and NR2B are aligned below with sequence identities in 
grey boxes. 
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The binding parameters for CaMKII interaction with GST-β2a(wt) were very similar 

to those for CaMKII interaction with GST-NR2B(1260–1339) (Figures 7D). 

 

Selective interactions of CaMKII with VGCC β subunits in vitro. 
 
Thr498 of the β2a variant lies within a CaMKII-binding domain that is C-terminal to 

the SH3 and GK domains (Figure 9). Alignment of the amino acid sequence of 

the domain surrounding Thr498 in β2a with other β subunit isoforms revealed 

variable conservation (Figure 10A). A CaMKII consensus phosphorylation motif 

LXRXXS/T is present in both β2a and β1b, and there is additional amino acid 

sequence similarity outside this motif, but key residues from this motif are 

missing in β3 and β4. On the basis of these alignments, we hypothesized that 

CaMKII would bind to β1b in a similar manner to its interaction with β2a but not to 

β3 or β4.  

 

To test this hypothesis, I determined the binding of nonautophosphorylated and 

Thr287-autophosphorylated CaMKIIδ to GST-tagged β subunit isoforms. 

Autophosphorylated CaMKII bound to GST-β1b and GST-β2a but not to GST-β3 

and GST-β4 in glutathione agarose co-sedimentation assays but there was no 

significant binding of non-phosphorylated CaMKII to any GST-β subunit isoforms 

(Figure 10B). To quantify CaMKII binding to β isoforms, I immobilized GST-β 

proteins in glutathione-coated 96-well plates and then incubated them with 

various concentrations of purified 32P-autophosphorylated CaMKII. The binding of 

CaMKII to GST-β1b was indistinguishable from the binding to GST-β2a, but 
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binding to GST-β3 and GST-β4 was <1% of the binding to GST-β2a (Figure 10C). 

Binding of Thr286-autophosphorylated CaMKII to both GST-β1b and GST-β2a was 

concentration-dependent and saturable (Figure 10D). GST-β1b exhibited a 

significantly higher apparent affinity for CaMKII than did GST-β2a (apparent Kd 

values of 35 ± 12 and 120 ± 21 nM CaMKII subunit, respectively, n = 4, p < 0.01). 

GST-β3 and GST-β4 failed to bind significant amounts of the kinase even at a 

concentration of 1200 nM CaMKII subunit (data not shown). Thus, CaMKII does 

not appear to bind significantly to the β3 and β4 isoforms but interacts with the β1b 

isoform with an ≈3-fold higher affinity than with β2a following activation by 

Thr286/7 autophosphorylation. 

 

Interaction of β subunits with CaMKII is modulated by phosphorylation in 
vitro. 
 
Thr498 and several additional serine and threonine residues lie within the 

CaMKII binding domain of β2a, suggesting that the interaction with CaMKII may 

be modulated by phosphorylation. Therefore, GST-β isoforms were preincubated 

with activated CaMKII in the presence or absence of ATP and then separated 

from reaction components by SDS-PAGE. The electrophoretic mobility of each 

GST-β isoform was reduced following preincubation with ATP and CaMKII 

(Figure 11A:  protein stain), consistent with the relatively high phosphorylation 

stoichiometry (6-12 mol/mol) under these conditions[79, 150]. An overlay assay 

was then used to assess the binding of 32P-autophosphorylated CaMKII. Non-  



 55

 

 

Figure 10. Differential CaMKII binding to VGCC β subunit isoforms.  
(A) Schematic domain structure of the β2a subunit showing SH3 and guanylate 
kinase-like (GK) domains, with the C-terminal CaMKII-binding domain containing 
the Thr498 phosphorylation site (indicated by the “P”). The amino acid sequence 
of the CaMKII binding domain in β2a is aligned with similar sequences from other 
β isoforms and the CaMKIIδ autoregulatory domain (surrounding Thr287):  
identical residues are shown in gray boxes.  
 
(B) CaMKIIα binding to GST-β isoforms in a glutathione-agarose 
cosedimentation assay. GST-β subunit isoforms or GST alone (50 pmol) and 
either nonphosphorylated or Thr286 autophosphorylated CaMKIIα (100 pmol 
subunit) were incubated with glutathione agarose. Aliquots of the supernatant 
(sups) and the beads were analyzed by immunoblotting as indicated.   
 
(C) GST-β subunit isoforms were immobilized in glutathione-coated multi-well 
plates (100 pmol/well) and incubated with 32P-labeled Thr287 
autophosphorylated CaMKIIδ2 (50 nM subunit). 
 
(D) Concentration-dependent binding of Thr287 autophosphorylated CaMKIIδ2 to 
GST-β2a (○) and GST-β1b (●) in glutathione-coated multi-well plates. Both panels 
B and C plot binding as mean ± SEM from four observations (β2a and β1b) or the 
mean of two observations (β3 and β4) 
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Figure 11. Effect of phosphorylation on CaMKII binding to β isoforms. 
(A). Prephosphorylation of GST-β2a and GST-β1b inhibits CaMKII binding. GST-β 
isoforms were preincubated with activated CaMKIIδ2 in the presence or absence 
of ATP, as indicated. Reactions were resolved by SDS-PAGE and transferred to 
a nitrocellulose membrane for overlay with 32P-labeled Thr287 
autophosphorylated CaMKIIδ2. The top panel shows a protein stain of the 
membrane prior to overlay and a representative autoradiograph to detect bound 
CaMKII is shown below.  
 
(B). Binding was quantified using a phosphoimager and normalized to the 
binding detected using non-phosphorylated GST-β2a:  the mean ± SEM from 
three experiments is plotted. Data were analyzed by 2-way ANOVA:  *:  p < 0.001 
vs binding to non-phosphorylated GST-β2a and #:  p < 0.05 vs binding to the 
corresponding non-phosphorylated protein. These experiments were performed 
in collaboration with Dr. Chad Grueter. 

ATP

ATP
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phosphorylated GST-β1b and GST-β2a proteins bound substantial, and 

comparable, amounts of CaMKII (Figure 11A and B). Pre-phosphorylation 

significantly reduced CaMKII binding to both proteins by 70−80% (Figure 11A 

and B). No significant interactions were seen between CaMKII and either GST-β3 

or GST-β4, whether or not these protein were pre-phosphorylated. In 

combination, these data suggest that phosphorylation of the β subunit by CaMKII 

modulates the binding of CaMKII to the β1b and β2a isoforms. 

 

Mechanism of CaMKII Binding to β2a 

I began to explore the mechanism for a dynamically regulated CaMKII binding to 

β2a by assessing the effect of mutating residues within the CaMKII binding 

domain of β2a on the interaction with CaMKII. Mutation of Thr498 to Ala or Glu 

prevented or mimicked phosphorylation at this site, respectively. In addition, 

residues homologous to Leu493 at the p-5 position relative to Thr498 in β2a and 

β1b are conserved in other high affinity CaMKII phosphorylation sites that form 

stable complexes with the CaMKII catalytic domain prior to phosphorylation (e.g., 

Ser1303 in NR2B and Thr286/7 in CaMKIIα/δ). However, hydrophobic residues 

at the p-5 position are not conserved in β3 or β4 and are not generally considered 

to be part of the minimal consensus phosphorylation site. Therefore, we also 

mutated Leu493 to Ala. Binding of 32P-autophosphorylated CaMKIIα to GST-β2a 

in a CaMKII overlay was unaffected by T498A mutation but reduced by ~75% by 

a T498E mutation (Figure 12A and B). Similarly binding of CaMKII to GST-β2a in 

glutathione coated multi-well plates was unaffected by the T498A mutation, 
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Figure 12. Identification of amino acids essential for CaMKII binding to β2a 
and regulation of CaMKII binding to β2a by Thr498 phosphorylation . 
(A) GST-β2a proteins were immobilized on nitrocellulose membranes and then 
overlayed with 32P-labeled Thr287-autophosphorylated CaMKIIδ2 (200 nM 
subunit).   
 
(B) Quantitation of the binding in A. Data are mean +/- SEM of 3 experiments 
 
(C) Purified GST-β2a proteins (wild-type or with the indicated point mutations) or 
GST alone were immobilized in a glutathione-coated 96-well plate (100 
pmol/well) and then incubated with 32P-labeled Thr287-autophosphorylated 
CaMKIIδ2 (100 nM subunit). After washing, bound CaMKII was quantified by 
scintillation counting. The data indicate the mean ± SEM (n = 3 experiments) 
 
(D) Prephosphorylation of β2a at Thr498 inhibits the association of CaMKII. Wild-
type and mutated GST-β2a proteins were preincubated with activated CaMKIIδ2 in 
the presence or absence of ATP. Samples were resolved by SDS-PAGE and 
transferred to nitrocellulose membranes to detect total protein loaded (top) and to 
probe with [32P]CaMKIIδ2 by overlay assay and autoradiography (bottom). This 
experiment was performed by Dr. Chad Grueter.   
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whereas the T498E and L493A mutations significantly reduced CaMKII binding 

by >90% (Figure 12C). These data demonstrate using multiple assays that the  

region surrounding Thr498 is critical for stable binding of Thr286-

autophosphorylated CaMKII to the full-length β2a isoform. 

 

Phosphorylation of β2a at Thr498 Disrupts CaMKII Binding  

To closely examine the mechanism by which phosphorylation of β2a by CaMKII 

interferes with binding of activated CaMKII, we pre-phosphorylated wild-type and 

mutated β2a proteins and analyzed CaMKII binding using overlay assays. As 

determined in the glutathione plate-binding assay, WT and Thr498Ala-β2a bound 

comparable amounts of activated CaMKII. Pre-phosphorylation of Thr498Ala-β2a 

had no significant effect on binding of activated CaMKII, whereas pre-

phosphorylation of wild-type β2a significantly reduced binding by ≈80% in these 

assays (Figure 12D). As observed previously, the Thr498Glu mutation reduced 

CaMKII binding by ≈80%; phosphorylation by CaMKII had no significant 

additional effect on binding to T498E-β2a. Interestingly, the Leu493Ala mutation 

significantly reduced binding by ≈90% in these assays, and pre-phosphorylation 

by CaMKII resulted in an additional significant decrease in binding (Figure 12D). 

Taken together, these data suggest that pre-phosphorylation of β2a at Thr498 

substantially reduces its association with CaMKII. 
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CaMKII Interaction with β2a is Regulated in Cells  

I first determined whether Thr498 in β2a is phosphorylated in intact cells. Lysates 

of HEK293 cells expressing FLAG-β2a (wild-type or mutated) with a constitutively 

active CaMKIIδ2 (T287D) mutant were immunoprecipitated using FLAG 

antibodies. Blotting the immune complexes with FLAG antibodies revealed a 

relatively consistent expression and immunoprecipitation of the β2a proteins. The  

phospho-Thr286 CaMKIIα antibodies detected the β2a wild-type and L493A 

mutant but not the T498A- or T498E-β2a proteins (Figure 13A). These data show 

that Thr498 can be phosphorylated to a similar extent in wild-type β2a and L493A-

β2a in intact cells by constitutively active CaMKIIδ2.To investigate the regulation 

of CaMKII interaction with β2a in intact cells by modification of Thr498 and the 

surrounding domain, lysates of HEK293 cells expressing constitutively active 

myc-tagged CaMKIIδ2 without or with FLAG-tagged β2a subunits (wild-type or 

mutated) were immunoprecipitated using FLAG antibodies. CaMKII was readily 

detected in immune complexes containing FLAG-tagged wild-type β2a or T498A-

β2a but could not be detected in immune complexes formed by T498E-β2a or 

L493A-β2a (Figure 13B). These findings demonstrate that the domain 

surrounding Thr498 is critical for the association of CaMKII with β2a in cells and 

suggest that phosphorylation at Thr498 diminishes CaMKII binding to β2a in cells.  

 

Effect of Thr498 phosphorylation on CaMKII dissociation from β2a 

I also investigated the role of Thr498 phosphorylation in the context of preformed 

CaMKII-β2a complexes. Complexes of autonomously active Thr286  
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Figure 13. CaMKII interaction with β2a is regulated by Thr498 
phosphorylation in situ. 
MYC-tagged CaMKIIδ2 (T287D) was co-expressed with or without FLAG-tagged 
wild-type or mutated β2a proteins in HEK293 cells. Aliquots of the cell lysates 
(inputs), FLAG immune supernatants (super), and FLAG immune complexes 
(pellets) were immunoblotted.  
 
(A) Probing FLAG immune complexes using antibodies raised to phospho-
Thr286 in CaMKIIα showed that wild-type and L493A β2a are partially 
phosphorylated at Thr498 in intact cells.  
 
(B) Probing FLAG immune complexes using CaMKIIδ antibodies revealed that 
CaMKII was associated with wild-type and T498A β2a but could not be detected 
in the T498E and L493A β2a immune complexes. The data are representative of 
>4 experiments. 
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autophosphorylated CaMKII bound to GST-β2a (wild-type) were isolated in 

glutathione-coated multi-well plates and then incubated with or without the 

addition of ATP. The addition of ATP to these complexes induced 

phosphorylation at Thr498 and several other sites, as reflected by 

immunoblotting with phospho-Thr286 CaMKII antibodies and by a substantial 

reduction in the electrophoretic mobility of GST-β2a (Figure 14A). In the absence 

of ATP, CaMKII complexes with wild-type β2a were remarkably stable (<5% 

dissociation over a 2 h incubation), but the addition of ATP induced dissociation 

of ≈50% of bound CaMKII. The T498A mutation of β2a had little effect on the 

stability of complexes with CaMKII in the absence of ATP but substantially 

reduced the rate and extent (by ≈20% in 2 h) of dissociation following addition of 

ATP as compared to wild-type β2a (Figure 14B and C). The ATP-induced 

dissociation of CaMKII from preformed complexes with T498A-β2a suggests that 

phosphorylation at other residues in β2a and/or CaMKII may have a modest effect 

on the stability of these complexes, at least in vitro. In combination, these data 

suggest that phosphorylation of β2a at Thr498 enhances the dissociation of 

CaMKII from preformed complexes with β2a in vitro. 
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Figure 14. Phosphorylation of β2a at Thr498 enhances dissociation of the 
CaMKII-β2a complex. 
 (A) A preassembled complex of GST-β2a (WT or T498A) and 32P-T286 CaMKIIα 
was incubated with or without 0.5 mM ATP. Aliquots of resin were removed at the 
indicated times and cosedimented proteins were analyzed by western blotting for 
GST and phospho-T498.  
 
(B and C)Complexes of GST-β2a (wild-type or T498A) and [32P-T286]CaMKIIα in 
glutathione-coated multi-well plates were incubated with or without ATP in a 
dissociation buffer (see Materials and Methods). At the indicated times, 
dissociated [32P-T286]CaMKIIα was removed from the wells (B) or bound CaMKII 
(C) was quantified by scintillation counting. Data points represent mean ± SEM (n 
= 3) (n = 2 for β2a T498A in the absence of ATP):  error bars lie within symbols of 
some data points. 
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2.4 DISCUSSION 

A diverse family of VGCCs regulates Ca2+ entry into excitable and non-excitable 

cells. The α1 subunits confer core biophysical and pharmacological behavior of 

each type of VGCC. However, a cytosolic loop between the first and the second 

major transmembrane domains in the α1 subunit is generally thought to 

constitutively interact with a β subunit. Alternative splicing of mRNAs from four 

mammalian genes generates >20 distinct β subunit proteins that have divergent 

roles in modulating the trafficking and biophysical properties of VGCCs[25, 156].  

The β subunits share highly conserved SH3 and GK domains that form a 

compact structure, with a hydrophobic groove in the GK domain that interacts 

with the α1 subunit[28]. However, some β subunits lack substantial parts of the 

SH3 and GK domains, yet still modulate LTCCs[25].  These observations support 

recent findings, showing that additional SH3-GK independent modulatory 

interactions between the α1 and the β subunits are important for regulating VGCC 

activity [29, 157]. The variable domains presumably account for the unique 

effects of β subunit variants on the properties of α1 subunits. 

 

Most studies have focused on the roles of protein interactions and post-

translational modifications of the α1 subunit in modulating VGCCs. However, the 

importance of β subunits in regulating VGCCs has received increasing attention. 

Initial studies suggested that PKA phosphorylation of the β2 subunit plays a role 

in facilitating LTCCs [77] although the importance of this modification in native 

cells has recently been questioned[65]. In addition, β subunits have been shown 
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to serve as scaffolding proteins that bind REM GTPases to inhibit VGCCs[82] 

and AHNAKs to link VGCCs to the actin cytoskeleton[158] . Our recent work 

showed that CaMKII colocalizes with β2a in adult cardiomyocytes. Moreover, 

phosphorylation of β2a at Thr498 is required for Ca2+- and CaMKII-dependent 

facilitation of LTCCs in cardiomyocytes[79].  While β subunit variants have 

unique direct effects on the biophysical properties and trafficking of LTCCs, the β 

isoform selectivity of regulation by CaMKII and other modulators is poorly 

understood. 

 

The β subunit variants tested here associate with multiple VGCC α1 subunits 

(reviewed in [25]). Thus, the current results showing that activated/Thr286 

autophosphorylated CaMKII forms stable complexes with β1b and β2a, but not 

with β3 or β4, lead to a hypothesis that the association of CaMKII with VGCC 

complexes will depend on the identity of the associated β subunit. The β1b and 

β2a subunits contain an LXRXXS/T motif similar to sequences surrounding 

phosphorylation sites in NR2B and the CaMKII autoinhibitory domain that also 

form stable complexes with the CaMKII catalytic domain. Mutation of Leu493 to 

Ala within the CaMKII binding motif reduced CaMKII binding to β2a by >90% but 

surprisingly had little effect on the initial rate of phosphorylation at Thr498 or on 

the overall phosphorylation stoichiometry at multiple sites when measured in 

vitro[150]. The lack of conservation of this motif accounts for the failure to detect 

binding to β3 or β4. 

 



 66

Despite the apparent binding selectivity, CaMKII phosphorylates all four β subunit 

variants tested here with comparable relative rates and overall extent[150].  The 

high maximal phosphorylation stoichiometries[150] suggest that CaMKII 

efficiently phosphorylates several sites in each β isoform in vitro. Indeed, we 

previously identified six CaMKII phosphorylation sites in β2a [79], and it will be 

important to identify phosphorylation sites in other β isoforms and to determine 

their impact on the properties of VGCCs. Data presented here show that 

phosphorylation at Thr498 in β2a negatively regulates CaMKII binding both in 

vitro and in situ with a possible small effect of phosphorylation at other sites. 

Presumably, the conserved LXRXXS/T motif in β1b is responsible for the 

regulated binding of CaMKII to this variant. Thus, interactions of CaMKII with β2 

and/or β1 variants are regulated by phosphorylation, likely playing an important 

role in modulating CaMKII targeting to LTCCs and/or other VGCCs. 

 

Interestingly, β subunits are not generally thought to be important in the 

regulation of T-type VGCCs. However, recent studies show that CaMKII directly 

interacts with and phosphorylates the II−III linker of the CaV3.2 α1 subunit, 

shifting the current−voltage activation curve [75, 76]. In addition, recent data 

suggest that CaMKII may also interact with multiple cytoplasmic domains in 

CaV1.2α1 [147].  Thus, association of CaMKII with VGCC α1 subunits may be an 

additional important feature allowing localized Ca2+ concentrations to feedback 

and regulate Ca2+ influx. 
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Phosphorylation of multiple sites in the CaV1.2 α1 subunit by CaMKII appears to 

play a distinct role in voltage- and calcium-dependent modulation in heterologous 

cells [61, 63]. In addition, interactions of CaMKII with multiple intracellular 

domains of the CaV1.2 α1 subunit have been implicated in LTCC facilitation[147]. 

In contrast, phosphorylation at Thr498 in β2a is required for CaMKII to increase 

channel open probability at the single channel level and to facilitate whole cell 

Ca2+ currents in adult cardiomyocytes[79].  The present observations that 

phosphorylation at Thr498 appears to be relatively independent of the stable 

binding of CaMKII to β2a (Figures 12D and 13A), and also inhibits CaMKII 

binding (Figures 11, 12 and 13), provide insights that may reconcile these 

seemingly disparate observations. Interestingly, phosphorylation of β2a in 

preformed complexes promoted the slow dissociation of CaMKII (Figure 14). 

CaMKII dissociation might be required to allow protein phosphatases to act on 

the phospho-Thr498 site to reset channels to their basal state. Presumably, such 

a mechanism would be most relevant if Thr498 phosphorylation directly 

modulates LTCC properties, as suggested by the importance of Thr498 in 

CaMKII-mediated increases in LTCC open probability and LTCC current 

facilitation in adult cardiomyocytes[79].  Second, CaMKII may serve a structural 

role to dynamically assemble complexes containing additional, as yet 

unidentified, proteins associated with LTCCs. Thus, Thr498 phosphorylation in 

β2a may promote reorganization of these protein complexes to enable facilitation. 

Structural roles for CaMKII have been postulated in neuronal postsynaptic 

densities[151].  Previous studies showed that disruption of the actin- or tubulin-
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based cytoskeleton essentially abrogated CaMKII-dependent facilitation of 

cardiac LTCCs without affecting PKA-dependent facilitation, suggesting an 

important role for higher orders of molecular organization close to LTCCs in 

mediating the effects of CaMKII[144].  A final possibility is that dissociation from 

β2a induced by Thr498 phosphorylation is important in allowing activated CaMKII 

to phosphorylate nearby regulatory sites in the α1 or β subunits and/or other 

associated proteins. In other words, stable binding of activated CaMKII to β2a 

may limit access of phosphorylation sites in other proteins to the CaMKII active 

site. Consistent with this hypothesis, dissociation of CaMKII from β2a is 

substantially reduced by T498A mutation, perhaps explaining why CaMKII 

phosphorylates this mutant to a lower final stoichiometry than T498E-β2 and 

L493A-β2, which have much weaker interactions with CaMKII (Figures 12 and 

13). Further studies will be needed to clarify the mechanism of CaMKII actions at 

VGCC complexes and, perhaps, to identify new CaMKII targets. 

 

 In summary, findings reported here and in other recent work (see Introduction) 

suggest that feedback regulation of Ca2+ influx via VGCCs is precisely controlled 

in specific subcellular microdomains by multiple mechanisms that allow CaMKII 

and other Ca2+-dependent signaling proteins to associate with channel subunits. 

The precise nature of the feedback regulation by CaMKII seems likely to depend 

on the identity of the β subunit associated with the complex. The regulated 

interaction of activated CaMKII with β1 and β2 variants seems likely to be 

important, although phosphorylation of β3 and β4 may also play a role in some 
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cases. Our findings are in line with recent studies, suggesting that subcellular 

targeting of CaMKII via its interactions with CaMKAPs modulates the specificity 

of its downstream actions[159, 160]. These complex biochemical mechanisms for 

feedback regulation of Ca2+ influx via VGCCs presumably provide great flexibility 

for modulating a variety of downstream signaling events such as cardiac 

excitation−contraction and excitation−transcription coupling and neuronal 

synaptic plasticity. Moreover, alterations in the association of β subunits with 

VGCCs might disrupt feedback regulation and downstream signaling in heart 

failure and other diseases [161].   
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CHAPTER III 

 

CAMKII ASSOCIATES WITH L-TYPE CALCIUM CHANNELS VIA SELECTED 
β SUBUNITS TO ENHANCE REGULATORY PHOSPHORYLATION 

 

3.1 CHAPTER SUMMARY  

Calcium/calmodulin-dependent kinase II (CaMKII) facilitates L-type Calcium 

Channel (LTCC) activity during normal cellular responses to stimuli but may also 

exacerbate LTCC-dependent pathophysiology.  Facilitation of LTCCs by CaMKII 

requires the β2a subunit of the channel and CaMKII binds to β1b or β2a subunits of 

LTCCs, but not the β3 or β4 subunits (Chapter 2 and [150])  In this chapter I 

began to address the molecular mechanism of the β subunit-dependent LTCC 

facilitation by determining if the interactions of CaMKII and β1b or β2a localize 

CaMKII to the α1 subunit of LTCC.   I show that CaMKII reliably 

coimmunoprecipitates with LTCCs containing CaV1.2 α1 and β1 or β2 subunits, 

but not β4 from forebrain extracts.  In addition, CaMKII can be tethered to the I/II 

linker of CaV1.2α1 and CaV1.3α1 subunits in vitro by β1 and β2a subunits but not 

by β3 subunits.  Moreover, CaMKII binding to the β2a subunit is required for 

efficient targeting of CaMKIIα to the full-length CaV1.2 α1 subunit in transfected 

HEK293 cells. The β2a-dependent anchoring of CaMKII to LTCCs in vitro is 

regulated by phosphorylation of β2a at Thr498, a site critical for CaMKII-

dependent regulation of LTCCs. Even though CaMKII binds to the β2a subunit of 

LTCC and phosphorylation of β2a at Thr498 is required for LTCC facilitation (see 

Introduction and Chapter 2), the relationship between LTCC binding and 
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Thr498 phosphorylation remains unknown. In this chapter, I show that mutation 

of the β2a subunit to disrupt CaMKII binding impairs the regulatory 

phosphorylation of β2a at Thr498 without altering overall phosphorylation of 

Cav1.2α1 and β subunits. These findings provide a biochemical explanation for 

LTCC facilitation by CaMKII. 

 
3.2 MATERIALS AND METHODS 

Generation of plasmid constructs 

A pLenti6-V5-D-Topo (Invitrogen, Carlsbad, CA) construct containing the rabbit 

cardiac CaV1.2 α1 open reading frame (Accession Number X15539) with a 

surface HA-epitope between amino acids F709 and D710 of domain II S5-H5 

extracellular loop (hereafter called HA-Cav1.2α1) was a generous gift of Dr. 

William Thiel[162].  The pCDNA6 construct encoding Cav1.3 was kindly provided 

by Dr. Diane Lipscombe. The I/II linker was amplified from the parent construct 

and inserted into a pGEX 4T-1 vector (Amersham Pharmacia Biotech, Uppsala, 

Sweden). The pGEX 4T-1 encoding the Cav1.2 AID was a generous gift of Dr. 

Rong Zhang.  The β subunits were amplified by PCR and ligated into, pRSET A 

(Invitrogen), pHA-CMV5 (Clonetech), pFLAG-CMV2 (Sigma-Aldrich, St. Louis, 

MI) and pLenti6-V5-D-Topo. The pEGFP (Clonetech, Mount View, CA) construct 

encoding murine CaMKII with an N-terminal EGFP tag was made by Dr. Stefan 

Strack. The mCherry-tagged murine CaMKII constructs was made by 

Christopher Arnette. The pcDNA3 plasmid encoding a constitutively active 

T287D mutation of MYC-CaMKIIδ2 was a gift from Dr. E. Olson. Dr. Gerald 

Zamponi provided the rat EGFP-Cav1.2α1 construct. Site-directed mutagenesis 

were performed essentially as described in the QuikChange kit (Stratagene, La 

Jolla, CA ). 
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Preparation of forebrain samples 

The following procedure for preparation of Triton X-100 soluble fractions from rat 

or mouse brains was modified from Davare et al [163].  All the procedures were 

performed at 4oC.  One to two forebrains from seven to eight week old Sprague-

Dawley rats (Pel-Freeze Biologicals, Rogers, Arkansas) or from 12 to 14-week 

old male C57B6J mice (Jackson Labs, West Grove, Pennsylvania)  were 

pulverized under liquid nitrogen. The frozen powder  was homogenized in Teflon-

glass Potter-Elvehjem tissue grinders (Kontes, Vineland, NJ) in 5 to 10 ml of 

Solubilization Buffer (10 mM Tris-HCl, pH 7.5, 1% Triton X-100 (v/v), 20 mM 

EDTA, 10 mM EGTA, 100 µM PMSF, 500 µM benzamidine, 0.25 µM microcystin 

LR, 20 mM sodium β-glycerophosphate, 50 mM sodium fluoride, and protease 

inhibitor cocktail (Sigma, Catalog # P2714)). The homogenates were sonicated 

for one minute and centrifuged at 3600 x g (4000 rpm) for five minutes in a 

Beckman J-6B centrifuge using a JS-4.2 rotor to sediment cell/tissue debris and 

nuclei. Supernatants were removed and then centrifuged for 30 minutes at 

250,000 x g in a Beckman L80K ultracentrifuge using a Ti70.1 rotor. The Triton-

soluble supernatant was used as the input for immunoprecipitations, and the 

Triton-insoluble fraction was resuspended in solubilization buffer supplemented 

with 1% deoxycholate and centrifuged for 30 minutes at 250,000 x g. To prepare 

membrane enriched fractions for Figure 15C, the pulverized brains were 

resuspended in Membrane Buffer (300 mM sucrose, 75 mM NaCl, 20 mM EDTA, 

10 mM EGTA, 100 µM PMSF, 500 µM benzamidine, 0.25 µM microcystin LR, 20 

mM sodium β-glycerophosphate, 50 mM sodium fluoride, and protease inhibitor 

cocktail).  Extracts were made and centrifuged as described above: supernatants 

were considered to be the cytosolic fraction, and the membrane enriched pellets 

were resolubilized in the Solubilization Buffer to make the membrane-enriched 

fraction.   
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Immunoprecipitations from forebrain 

1 to 1.5 ml of Triton-soluble fraction of rat or mouse forebrains was precleared for 

1 hour with protein-G Sepharose (GE Healthcare Bio-Sciences AB, Uppsala, 

Sweden) and then incubated with 10 µg of either mouse (Jackson), rabbit or 

goat[164] control antibodies, rabbit anti-Cav1.2α1 (AbCaM , Cambridge, MA), 

mouse monoclonal LTCC β subunit antibodies (Neuromab, Davis Ca), or an 

affinity purified goat antibody that recognizes all CaMKII isoforms[152]. The 

control, rabbit anti-Cav1.2α1 and the goat anti-CaMKII antibodies consisted of a 

mixture of IgG isotypes but the β1 and β2 antibodies consisted of IgG2a isotype. 

After 1 hour, 10 µl of Protein-G agarose was added and the incubation continued 

for ~2 hours (or overnight for IPs from rat brain) at 4oC. The resin was rinsed 

three times in 1 ml of solubilization buffer and bound proteins were analyzed by 

SDS-PAGE and western blotting with mouse antibodies to CaMKIIα (Affinity 

Bioreagents, Golden, Colorado) or LTCC subunits (α1, β1, and β4: NeuroMab). A 

rabbit polyclonal β2 antibody (a gift from Dr. Marlene Hosey) was used for the β2 

blot in Figure 16A and 16B.  

 

Western Blotting 

All samples were first separated in Tris-Glycine SDS-PAGE gels and then 

transferred to nitrocellulose membranes as described in Chapter 2. Membranes 

were blocked in 5% (w/v) milk in TTBS (50 mM Tris-HCl, pH 7.5; 150 mM NaCl, 

0.1% (v/v) Triton-X-100), and then incubated with primary antibodies for 2 hours 

or overnight at 4ºC. After washing 3 times for ~5 minutes each, membranes were 

incubated for 30 to 60 minutes at room temperature with alkaline-phosphatase or 

horseradish peroxidase-conjugated secondary antibody. Membranes were 

washed at least four times each for ~10 minutes and developed colorimetrically 
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using BCIP/NBT or by enhanced chemiluminescence (Perkin-Elmer, Shelton, 

CT) respectively.   

 

GST and His6-tagged fusion protein expression and purification 

Glutathione S-transferase (GST) and hexahistidine (His)-tagged fusion proteins 

were expressed in BL21-DE3 Gold Escherichia coli bacteria and purified using 

glutathione-agarose (Sigma, St Louis, MI) or His-Select Nickel Affinity Gel 

(Sigma), according to the manufacturers’ protocol. Protein concentrations were 

determined by Bradford Assay (BioRad, Hercules, CA) or BCA assay (Pierce, 

Rockford, IL) using bovine serum albumin as a standard and validated by 

resolving proteins in SDS-PAGE gels and Coomassie-Blue staining. 

 

CaMKII purification and autophosphorylation  

Recombinant mouse CaMKIIα purified from baculovirus-infected Sf9 insect cells 

was autophosphorylated at Thr286 using ATP or [γ-32P]ATP, essentially as 

described previously[152].  Briefly, CaMKII (1 µM subunit) was incubated on ice 

with 50 mM Tris, pH 7.5, 10 mM magnesium acetate, 1.5 mM CaCl2, 20 µM 

calmodulin, 40 µM ATP, 1 mM  DTT for 1.5 minutes and the reaction was 

stopped using 15 mM EDTA. For 32P Thr286 autophosphorylation, CaMKII (5 µM 

subunit) was incubated on ice with 50 mM Tris, pH 7.5, 2 mM magnesium 

acetate, 1.5 mM CaCl2, 20 µM calmodulin, [γ-32P]ATP (20 µM, 40,000 cmp/pmol 

final) and 2 mM DTT. 5 µL of 100 mM ATP was added after 1 minute, and the 

reaction was continued for an additional minute before it was stopped with 10 

mM EDTA. The radioactive CaMKII was desalted on a Sephadex G-50 column 

and used in the plate binding assay. 
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Glutathione-agarose cosedimentation assay 

Thr286-autophosphorylated CaMKIIα  was incubated with GST- I/II linker (or 

GST-AID) with or without His6-tagged β2a for one hour at 4oC in GST Pull-down 

Binding Buffer(50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Triton X-100; 0.4 

mL total volume). Glutathione-agarose (10 µL packed resin) was added, and the 

incubation was continued for one hour. Resin was collected by gentle 

centrifugation (1 min at 1000 rpm) and washed three times in binding buffer. 

Bound proteins were resolved by SDS-PAGE gel electrophoresis, transferred to 

nitrocellulose membranes and detected by Ponceau-S staining. Membranes 

were scanned and then the levels of all proteins were quantified by densitometry 

using ImageJ (NIH). 

 

CaMKII plate binding assays 

GST or GST-I/II proteins (100 pmol) were diluted into 0.2 ml of plate-assay buffer 

(50 mM Tris-HCl pH 7.5, 200 mM NaCl, 0.1 mM EDTA, 5 mM 2-

mercaptoethanol, 0.1% (v/v) Tween-20, 5 mg/mL bovine serum albumin) and 

immobilized in glutathione-coated wells for 18-24 hours at 4oC. [32P-T286]CaMKII 

(100 pmol) was premixed with buffer (no His-β2a) or 36-100 pmol of His-β 

proteins. The mixture was added to the rinsed glutathione-coated wells. After a 2-

hour incubation, unbound kinase and His-β were rinsed and bound [32P-T286] 

CaMKII was quantified by scintillation counting. In some cases, contents of the 

wells were eluted into SDS-PAGE loading buffer and analyzed by 

electrophoresis, western blotting and autoradiography. 
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Immunoprecipitations from HEK293 cells  

HEK293 cells were cotransfected with DNA encoding HA-Cav1.2α1, FLAG-β2a 

(WT, T498A, T498E or L493A) and EGFP-CaMKIIα or MYC-CaMKIIδ2 (T287D), 

as indicated.  In some cases CaMKII activation was enhanced by treating the 

cells for 5-minutes with 10 µM A23187.  HA-Cav1.2α1 was immunoprecipitated 

from Triton-soluble cell extracts using 10 µg of anti-HA antibodies (Vanderbilt 

Monoclonal Antibody Core) or with 20 µl of anti-HA coated beads (Roche, 

Indianapolis, IN). Immunocomplexes were analyzed by western blotting for HA, 

FLAG, EGFP or MYC.  

 

LTCC subunit phosphorylation in cells 

In order to assess total phosphorylation of LTCC subunits, HEK293 cells (≈1 X 

106 cells per well in a 6 well plate) were transfected with cDNAs for CaMKIIα 

(untagged or EGFP tagged, WT or T287D) or MYC-CaMKIIδ isoforms (WT or 

T287D) and β2a (WT or L493A), with or without HA-Cav1.2α1. After  48 hours, 

intracellular phosphate pools were depleted by rinsing the cells once in 

phosphate-free DMEM (GIBCO) and then incubating in the same medium for 1 

hour. The cells were then radioactively labeled with 0.42 mCi per well of 32P-

orthophosphate (PerkinElmer, Boston, MA) diluted in phosphate-free DMEM.  

After incubating for 4 hours at 37°C, radioactive medium was removed and the 

cells were rinsed twice in ice-cold PBS.  The HA-Cav1.2α1 or FLAG subunit was 

immunoprecipitated from cell lysates and analyzed by SDS-PAGE. TOTAL 32P-

phosphorylation of LTCC subunits was detected by autoradiography, and total 

protein levels of each subunit were determined by western blotting with 

antibodies to the HA and FLAG epitopes.  ImageJ was used to quantify β2a 32P-

phosphorylation and protein levels, which were each corrected for background 
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determined by similarly quantifying signals in control immune complexes isolated 

from cells lacking β2a.  Total 32P-phosphorylation of β2a was then normalized to 

total β2a protein levels in the LTCC immune complex.  

 

For specific assessment of Thr498 phosphorylation in FLAG-β2a, HA-Cav1.2α1 

immune complexes were western blotted with anti-phospho-Thr286 CaMKII 

(Promega, Madison, WI) which we previously showed also recognizes the 

phosphorylated Thr498 residue in β2a [150].  Immunoblots were quantitatively 

analyzed using ImageJ.  Signal intensities for phospho-Thr498 and FLAG-β2a 

were each corrected for backgrounds (estimated from control complexes isolated 

from cells lacking β2a), and phospho-Thr498 signals were then normalized to β2a 

signals in each LTCC immune complex.  
 

Phosphorylation of β2a with CaMKII  

His-β2a (WT or T498A) was incubated at 37oC for 20 minutes with CaMKII in 

phosphorylation buffer (50 mM HEPES, pH 7.5, 10 mM magnesium acetate, 1 

mg/ml bovine serum albumin, 0.5 mM CaCl2, 1 µM CaM, 1 mM dithiothreitol, 0.4 

mM [γ32P]ATP (≈ 1000 cpm/pmol) or 0.4 mM ATP. The reaction was stopped by 

adding excess EDTA. Thr498 phosphorylation was verified using a Phospho-

Thr286 CaMKII antibody that also detects phospho-Thr498 in β2a [150].   

 

CaMKII dissociation 

In order to monitor dissociation of CaMKII-LTCC complexes, GST-Cav1.2α1I/II 

(WT or W470A: ≈10 pmol) was immobilized in glutathione-coated wells (Pierce, 

Rockford, IL). The wells were incubated for two hours at 4°C with [32P-
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T286]CaMKII (0.25 µM) and His6-β2a(WT or T498A) in binding buffer (50 mM Tris-

HCl pH 7.5 containing 150 mM NaCl, 0.25 mg/ml bovine serum albumin, 0.1% 

Triton X-100, 1 mM dithiothreitol, and 1 mM EDTA). The wells were then rinsed 8 

times in binding buffer and CaMKII dissociation was initiated by addition of 

dissociation buffer (50 mM Tris-HCl pH 7.5, 0.1 M NaCl, 0.25 mg/ml bovine 

serum albumin, 0.1% Triton X-100, 1 mM dithiothreitol, 10 mM magnesium 

acetate) with or without 0.5 mM ATP. Soluble dissociated CaMKII was removed 

from the wells at the indicated times and quantified by scintillation counting. 

CaMKII that remained bound in the wells was also quantified similarly. 

 

Statistics 

Statistical analyses were performed with t-tests or analyses of variance (ANOVA) 

and post-hoc tests using Prism (Graphpad). P values less than 0.05 were 

considered significant.  
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3.3 RESULTS 

Validation of antibodies against Cav1.2α1 and β subunits. 

I tested the specificity of commercially available mouse monoclonal antibodies to 

the Cav1.2α1 by immunobloting heterologously-expressed HA-Cav1.2α1. A blot 

with an antibody against the HA-tag detected expression of Cav1.2α1 in HEK293 

cells (Figure 15A). The expressed HA-Cav1.2α1 was efficiently detected by the 

antibody against Cav1.2α1.  I also tested the specificity of commercially available 

mouse monoclonal antibodies raised against β1, β2 and β4 subunits by 

immunobloting bacterially-expressed GST fusion proteins containing the full 

length amino acid sequences of all four β subunit isoforms (Figure 15B ). The 

specificity of the β1 and β4 antibodies was also verified using subcellular fractions 

of mouse brain and extracts of HEK293 cells transfected to express recombinant 

β1 or β4 (Figure 15C). Each antibody specifically detected the respective isoform, 

albeit with different sensitivity, either as GST fusion proteins or recombinant 

proteins expressed in HEK293 cells. Moreover, the β1 and β4 antibodies 

recognized a closely migrating series of bands that were enriched in brain 

particulate/membrane fractions with appropriate apparent molecular weights to 

represent a mixture of splice variants and/or post-translationally modified forms 

of the respective β subunit. The mouse anti-β2 antibody was omitted from the 

further verification because it only weakly detected β2a (Figure 15B). Instead, the 

limited amount of rabbit β2a antibody (from Dr. Marlene Hosey) was used 

because it strongly detected purified GST-β2a, FLAG-β2a expressed in HEK  
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Figure 15. Specificity of α1 and β subunit antibodies. 
 (A) Testing of Cav1.2α1 subunit antibody. HEK293 cells transfected with 0, 1.25, 
2.5 or 5 µg of HA-Cav1.2α1 DNA were blotted with antibodies against HA (1:2000) 
or the Cav1.2α1 from NeuroMab (1:2000).   
 
(B) Purified GST-β1b, β2a, β3 and β4 (0.1-10 pmol, as indicated) were 
immunoblotted with NeuroMab antibodies to the β1, β2, or β4 subunit isoforms. 
The top image shows Ponceau-S staining of GST-β proteins.  
 
(C) Subcellular fractions of mouse forebrain and lysates of HEK cells expressing 
Flag-β1, HA-β4 or no β were western blotted using the β1 (left) or β4 (right) subunit 
antibodies (1:1000): Triton-insoluble fraction (TIF), Triton-soluble fraction (TSF), 
deoxycholate-soluble fraction (DSF), membrane enriched fraction (MEF) or 
cytosolic fraction (CF).  Top panels show Ponceau-S stained membranes of total 
protein loaded.  
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cells and a band at the expected molecular weight of native cardiac or brain β2 

(data not shown). 

 
 Association of CaMKII with forebrain LTCC complexes containing β1 or β2 
subunits 

LTCC α1 subunits and a heterogenous mixture of β subunits are expressed in the 

brain. In order to determine whether CaMKII associates with LTCCs in forebrain, 

Cav1.2α1 immunoprecipitates from rat forebrain Triton-soluble extracts were 

probed with anti-phospho-Thr286 CaMKII or rabbit anti-β2 antibodies. Bands that 

corresponded to phospho Thr286-CaMKII and phospho Thr498-β2a were detected 

in the complexes, along with total β2a (Figure 16A).  (The same phospho-Thr 

antibody detects both CaMKII and β2a phosphorylation, and is described in more 

detail later in this chapter). These preliminary findings were validated using a 

reverse coimmunoprecipitation where CaMKII immune complexes isolated from 

forebrain extracts were immunoblotted for LTCC subunits.  CaMKII was 

substantially depleted from the supernatant, with a corresponding enrichment in 

the immune complexes. Control IgGs failed to deplete CaMKII from the 

supernatant: the weak detection of CaMKII in control IgG complexes, despite 

extensive washing, likely reflects the abundance of CaMKIIα in forebrain.  Thus, 

CaMKII was substantially and specifically enriched in CaMKII complexes.  

Notably, the CaV1.2α1 subunit was readily detected in CaMKII complexes, but not 

in control samples (Figure 16B and C).  Initial experiments using limited 

available quantities of a rabbit antibody to the β2 subunit (see Experimental 

Procedures) and a mouse β1 subunit antibody demonstrated that rat CaMKII 

complexes also contained β1 and β2 subunit variants (Figure 16B).  CaMKIIα and 

LTCC subunits were present in the same fractions from mouse forebrain and 

were coimmunoprecipitated using CaMKII antibodies. (Figure 16C and A3). If 
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Figure 16. CaMKII association with LTCC subunits in brain. 
Triton-soluble extracts of rat (A, B) or mouse (C-E) forebrains were 
immunoprecipitated using antibodies raised against Cav1.2 (A), CaMKII (CKII, 
B,C), β1 (D) or β4 (E).  The immune complexes were western blotted for calcium 
channel subunits (1:1000) and anti-CaMKII (1:2000). These data are 
representative of 1 (A), 2 (B) or more than 4 (C-E) experiments.  



 83

LTCCα1-β-CaMKII complexes exist in brain, it should be possible to isolate them 

not only using Cav1.2α1 and CaMKII but also using the β subunit. The mouse β1 

and β4 subunit antibodies were then used to immunoprecipitate calcium channel 

complexes from a Triton-soluble fraction of mouse brain.  Western blots 

demonstrated that the appropriate β subunit isoform was specifically enriched in 

each immune complex (Figure 16D and E).  The Cav1.2α1 subunit was 

substantially enriched in both immune complexes, though somewhat more so in 

β4 complexes than in β1 complexes. In contrast, CaMKIIα was specifically 

detected in β1 immune complexes (Figure 16D) but not in β4 immune complexes 

(Figure 16E).  

 
The β subunits differentially tether CaMKII to LTCC α1 subunits 

I then investigated the role of direct interactions between the Cav1.2 α1 and β 

subunits and/or CaMKII in the assembly of the CaMKII-LTCC complex.  I 

previously showed that Thr287-autophosphorylated CaMKIIδ directly interacts 

with the β1b and β2a subunits with similar affinities (Kd ≈100 nM CaMKII subunit), 

but not with β3 or β4 subunits (Chapter 2 and [150]). The GK domains in β 

subunits bind to I/II linkers of VGCC α1 subunits with high but variable (Kd ≈ 5-60 

nM) affinities [25, 60, 165, 166].  In addition, CaMKII was previously shown to 

interact directly with multiple intracellular domains of the CaV1.2 α1 subunit in 

vitro, including the I/II linker, although affinities of these interactions were not 

determined[147].  As a first step toward dissecting roles of these interactions in 

assembly of CaMKII-LTCC complexes, we investigated the binding of Thr286 

autophosphorylated CaMKIIα to the GST-tagged I-II linker domain of the CaV1.2 

α1 subunit (GST-I/II) in the absence or presence of purified hexahistidine (His)-
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tagged β1b, β2a and β3 subunits (we were unable to purify His-tagged β4).  There 

was no detectable direct interaction of CaMKIIα with GST-I/II, but addition of His-

β1b or His-β2a, but not His-β3, allowed for the immobilization of CaMKII by GST-I/II 

(Figure 17A and C). Even though the affinity of β1 for CaMKII is nearly three-fold 

higher than of β2, His-β1b immobilized less CaMKII than His-β2 under these 

conditions, possibly due to the weaker binding of His-β1 to GST-I/II (Figure 17B). 

Notably, in this series of experiments His-β3 bound to the I/II linker at least as 

well as His-β2a, but was completely ineffective in immobilizing CaMKIIα on the I/II 

linker (Figure 17B). Additional GST-cosedimentation analyses confirmed that 

there was no significant difference in binding of His-β2a and -β3 subunits to the I/II 

linker (Figure 17D, His-β3 binding was 85±15% of His-β2a binding: mean±sem, 

n=3. p=0.43). Thus, CaMKII can be tethered to the I/II linker of CaV1.2 α1 

subunits by specific β subunit isoforms in vitro. 

 

The β1b and β2a subunit differentially target CaMKII to recombinant full-
length α1 

In Figure 17 I observed that the β1b and β2a subunits differentially associated with 

the Cav1.2α1 I/II linker domain. Since the I/II linker is the primary interaction 

domain of Cav1.2α1 and β subunits, a deficit in binding to the I/II linker might 

translate into a deficit in binding to the full-length channel. I therefore compared 

association of FLAG-β1b and FLAG-β2a with HA- Cav1.2α1 in HEK cells. Much 

less FLAG-β1b coimmunoprecipited with HA-Cav1.2α1 than did FLAG-β2a.  
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Figure 17. β subunits selectively anchor CaMKII to the α1 I/II linker in vitro. 
GST-I/II (100 pmol) immobilized in glutathione-coated wells was incubated with a 
mixture of  [32P-T286]CaMKIIα (100 pmol) and either His-β1,  His-β2 or His-β3 (36 
pmol) in the presence of EDTA to prevent protein phosphorylation.  
 
(A) Bound proteins were eluted with SDS and analyzed by western blotting with 
anti-GST or anti-His antibodies, and by autoradiography. (Top: blots are 
representative of 3 experiments. Bottom: autoradiograph of samples from one of 
the three experiments quantified in C)   
 
(B) The amounts of bound His-β subunits were quantified and normalized to the 
amounts of immobilized GST-I/II and of His-β in the input: binding of β2a was set 
to 1.0. A one-sample t-test was used to compare the binding of β subunits to a 
theoretical value of 1.0.  (n = 3 for β1b and β2a, n = 2 for β3 binding) 
 
(C) Bound [32P-T286]CaMKIIα  also was quantified by scintillation counting and 
normalized to the amount of bound His-β: CaMKII binding in the presence of β2a 
was set to 1.0.  The mean±sem of 3 experiments (2 in the case of β3) is plotted in 
B/C.  Binding of CaMKII was analyzed by ANOVA followed by Newman-Keuls 
multiple comparisons test.  
 
(D) 100 pmol of GST or GST-I/II linker was incubated with His-β2a or His-β3  and 
binding of the β subunits to the I/II linker in a glutathione-agose pull down assay 
was quantified. (n =3) 
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Figure 18. The β1b and β2a subunit differentially target CaMKII to full-length 
LTCCα1 subunits in heterologous cells. 
HEK293 cells we transfected with DNA encoding EGFP-CaMKIIα, HA-Cav1.2 α1 
and FLAG-β1b or FLAG-β2a as indicated. Triton-soluble fractions (Inputs) and anti-
HA immune complexes (pellets) were western blotted for HA, FLAG, or EGFP.  
These data are representative of 4 similar experiments. 
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In parallel, much less CaMKII was associated with HA-Cav1.2α1 in the presence 

of FLAG-β1b (Figure 18).  Thus β1b targets less CaMKII to Cav1.2α1 than β2a does 

despite the higher apparent affinity of β1b for autophosphorylated CaMKII in 

vitro(Figure 10D). 

 
Mechanism of β2a-dependent tethering of CaMKIIα to the I/II linker 

Since the β2a subunit most strongly tethers CaMKII to the CaV1.2 α1, and is 

essential for CaMKII-dependent regulation of cardiac LTCCs, I used β2a to 

explore the mechanism of β2a-dependent tethering of CaMKIIα to CaV1.2 α1 

subunits.  First, I examined the possibility that direct interactions of activated 

CaMKIIα with parts of the I/II linker domain other than the minimal 18-amino acid 

AID that is sufficient for binding to β subunits[25, 60] may be required for stable 

CaMKII tethering to the I/II linker. I performed experiments using a GST fusion 

protein containing the AID and failed to detect direct interactions of activated 

CaMKIIα with GST-AID but His-β2a was able to tether activated CaMKII to GST-

AID (Figure 19A and C). This implies the core AID of the α1 subunit is sufficient 

for β subunit-dependent anchoring of CaMKII to the subunit.  

 

 Mutation of Trp470 to Ala in the I/II linker severely compromises the binding of β 

subunits[60, 165, 166], and the W470A mutation essentially abrogated the 

interactions of both His-β2a and activated CaMKII with GST-I/II (Figure 20A).  

The high affinity direct binding of activated CaMKIIα to β2a is disrupted by Leu493 

to Ala mutation[150]: the L493A mutation significantly reduced β2a-dependent 

cosedimentation of activated CaMKIIα with GST-AID by about 70% (Figure 19A 

and C) and with GST-I/II by about 60% (Figure 20A and C). Notably, disruption  
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Figure 19. β2a anchors CaMKII to the α1 AID in vitro. 
(A) Thr286-autophosphorylated CaMKIIα (100 pmol) was incubated with GST-
AID with or without His-tagged β2a (WT or L493A).  Complexes isolated using 
glutathione agarose were western blotted as indicated.  
 
(B) Quantitative comparison of β2a(WT) and β2a(L493A) binding to GST-AID.  
 
(C) Quantitative comparison of CaMKII binding to GST-AID under different 
conditions. The mean±sem from 4 experiments is plotted in panels B/C. Data 
were compared by one-way ANOVA followed by Newman-Keuls multiple 
comparisons test. 
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of CaMKII binding with the L493A mutation had no detectable effect on the 

amount of β2a that co-sedimented with GST-I/II (Fig. 20B) or with GST-AID 

(Figure 19B).  

 

I then used a more quantitative glutathione-coated multi-well plate  

binding assay (see Methods) to further explore the mechanisms underlying His-

β2a-dependent tethering of activated 32P-labeled CaMKII to GST-I/II.  Consistent 

with cosedimentation assays, activated CaMKII efficiently bound to GST-I/II in 

the presence of His-β2a, and the omission His-β2a reduced binding by over 100-

fold (Figure 20D).The His-β2a-dependent binding of CaMKII to GST-I/II also was 

significantly compromised by L493A mutation of His-β2a (≈ 50% reduction in 

binding).  Moreover, a His-β2a(410-505) protein which lacks the SH3 and GK 

domains and cannot bind to the AID (data not shown), but contains the CaMKII-

binding domain[150], failed to support the tethering of activated CaMKII to GST-

I/II (Figure 20D).  The I/II linker of rabbit Cav1.2α1 is highly conserved with that of 

rat Cav1.3α1 but not identical (however, the 18-amino acid AID of Cav1.2 and 

1.3α1 are identical). The His-β2a also tethered CaMKII to the GST-I/II linker of 

Cav1.3α1 (Figure 20D). Taken together, these findings show that β2a subunit can 

serve as an adaptor protein to tether CaMKII to the I/II linker domain of the 

Cav1.2 and Cav1.3 α1 subunits.  

 

In the binary CaMKII-β2a interactions in chapter 2, the Leu493A mutation 

reduced CaMKII binding by over 90% (Figure 11C, 12C and 13C) but the same 

mutation reduced CaMKII binding by only ~50-70% in the ternary complex. Thus  

β subunit binding to the I/II linker appeared to enhance the binding of CaMKII to 

the β subunit. I therefore tested if CaMKII binding may similarly enhance the 

binding of the β subunit for the I/II linker.  CaMKIIα binding to His-β2a did not  
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Figure 20. Molecular determinants of CaMKII anchoring to the α1 I/II linker. 
 (A) Thr286-autophosphorylated CaMKIIα (100 pmol) was incubated with GST-I/II 
(WT or W470A) (100 pmol) with and without His-tagged β2a (WT or L493A) (100 
pmol). Complexes were isolated on glutathione agarose and the bound (pellets) 
and unbound (sups) proteins were detected by Ponceau-S staining.  
 
 (B) Quantification (mean±sem, n=3) of β2a(WT) and β2a(L493A) binding to GST-
I/II.  
 
(C) Quantification (mean±sem, n=3) of CaMKIIα binding to GST-I/II: data were 
analyzed by one-way ANOVA followed by Newman-Keuls multiple comparisons 
test.  
 
(D) GST or GST-Cav1.2α1I/II (100 pmol) were immobilized in glutathione-coated 
wells and incubated with a mixture of [32P-T286]CaMKIIα (100 pmol) and either 
His-β2a (WT or L493A) or His-β2a(410-505) (100 pmol) in the presence of EDTA.  
Bound [32P-T286]CaMKII was quantified by scintillation counting. Data 
(mean±sem, n=3) were analyzed by two-way ANOVA with Bonferroni posttest. 
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Figure 21. CaMKII binding does not affect β subunit binding to the α1 I/II 
linker. 
His-tagged β2a or  β3 (100 pmol)  was incubated with GST-I/II linker with 
nophosphorylated or Thr286-autophosphorylated CaMKIIα (100 pmol) was 
incubated with GST-I/II  (100 pmol). Complexes were isolated on glutathione 
agarose and the bound (pellets) and total proteins were detected by Ponceau-S 
staining and western blotting. Blot representative of three similar experiments  
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affect the interaction of His-β2a with the I/II linker (Figure 21). Notably, these data 

are also consistent with the equivalent association of His-β2a WT and His-β2a 

(L493A) with the I/II linker (Figure 20). 

 

The β2a subunit enhances CaMKII association with full-length CaV1.2 α1 

Next, I tested whether the β2a subunit also functions as an adapter protein to 

tether CaMKII to full-length Cav1.2α1 subunits.  Although previous co-

immunoprecipitation studies showed that CaMKII associates with LTCC 

complexes in the presence of β2 subunits[63, 147], the role of the β subunit in 

formation of this complex was not explored.  Therefore, I transfected HEK293 

cells to express EGFP-CaMKII in the absence or presence of HA-Cav1.2α1 

subunits and WT or L493A mutated FLAG-β2a.  The cells were pretreated with 

A23187 Ca2+ ionophore to boost CaMKII activation because under basal 

conditions CaMKII was only weakly detected in LTCC complexes (Figures 8, 

18A and A4). After the pretreatment, LTCC complexes were isolated by 

immunoprecipitation using anti-HA antibodies and immunoblotted for all three 

proteins. In some cases, HA-Cav1.2α1 subunits could not be detected in cell 

extracts due to the relatively low expression levels, but were readily detected in 

HA-immune complexes. As expected due to the known roles of β subunits in 

modulating surface expression and trafficking of VGCC α1 subunits, co-

expression of β2a enhanced the levels of α1 subunit expression.  WT and L493A 

mutated FLAG-β2a proteins were expressed at similar levels and induced a 

similar increase in α1 subunit expression (Figure 22, A4, and A5). (Note: HA-

immune complexes from HEK293 cells that were not transfected to express 

FLAG-β2a contained a weak, non-specific FLAG-immunoreactive protein of about 

70 kDa.) Total expression levels of CaMKII were similar in all transfections.  

However, CaMKIIα were only reliably detected in anti-HA immune complexes 
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Figure 22. The β2a subunit targets CaMKIIα to LTCCα1 subunits in 
heterologous cells. 
HEK293 cells co-expressing EGFP-CaMKIIα, HA-Cav1.2 α1 and/or FLAG-β2a 
(WT or L493A) as indicated were treated with A23187. Triton-soluble fractions 
(Inputs) and Cav1.2α1 immune complexes (pellets) were western blotted for HA, 
FLAG, or EGFP.  These data are representative of at least 3 independent 
experiments. 
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isolated from cells expressing WT FLAG-β2a (Figure 22). Much lower levels of 

CaMKIIα were detected in anti-HA immune complexes isolated from cells 

expressing L493A-mutated FLAG-β2a or from cells that did not express FLAG-β2a 

(Figure 22).  Similar results were obtained using activated CaMKIIδ isoform 

(Figure A5). These data demonstrate that high affinity interaction with the β2a 

subunit is necessary for its efficient assembly of CaMKII with the LTCC complex. 

 
CaMKIIα binding to β2a does not affect overall phosphorylation of Cav1.2α1 
and β2a subunit   
 

LTCCs are regulated by several kinases that phosphorylate multiple sites in both 

the α1 and β subunits[24]. More specifically, CaMKII-dependent regulation of 

LTCCs has been linked to phosphorylation of the CaV1.2 α1 subunit at Ser1512 

and Ser1570[63] and of the β2a subunit at Thr498, although several additional 

sites of unknown function in β2a can be phosphorylated by CaMKII[79]. In order 

to test the hypothesis that CaMKII binding to β2a modulates LTCC subunit 

phosphorylation, HA-CaV1.2 α1, EGFP-CaMKII and/or FLAG-β2a (WT or L493A) 

were co-expressed in HEK293 cells.  After labeling cells with 32P-orthophosphate 

(see Methods), LTCC complexes were immunoprecipitated from cell extracts for 

analysis by SDS-PAGE followed by autoradiography to detect 32P-

phosphorylated proteins. The 32P-labeling of CaV1.2α1 in the absence of β2a and 

EGFP-CaMKII indicated that endogenous kinases significantly phosphorylate 

CaV1.2α1 subunits under basal incubation conditions (Figure 23).  Co-expression 

of EGFP-CaMKII had no consistent effect on 32P-phosphorylation of CaV1.2α1 in 

the absence or presence of β2a (WT or L493A). Moreover, the 32P-

phosphorylation of β2a within LTCC complexes was not significantly altered by 

expression of EGFP-CaMKII or by the L493A mutation (Figure 24).  However, 

we confirmed that EGFP-CaMKII associated with LTCC complexes containing  
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Figure 23. CaMKII binding to the β2a subunit does not affect total 
phosphorylation of the α1 subunits. 
(A)HEK293 cells co-expressing HA-Cav1.2 α1, EGFP-CaMKIIα and FLAG-β2a 
(WT or L493A) were labeled with 32P-phosphate (see Methods).  Anti-HA 
immune complexes were analyzed by SDS-PAGE and autoradiography to detect 
phosphorylation of Cav1.2 α1. Antibody dilutions: Anti-HA (1:2000), Anti-FLAG 
(1:5000) 
 
(B)The 32P labeling of Cav1.2α1 subunits in A was quantified from four 
independent experiments plotted. The mean+/- SEM is plotted. 
 
(C) Anti-HA immune complexes from one of the experiments in A were probed 
for FLAG and CaMKII. Antibody dilutions: Anti-HA (1:2000), Anti-FLAG (1:5000), 
Anti-CaMKII (1:2000) 
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Figure 24. CaMKII binding to the β2a subunit does not affect total 
phosphorylation of the β subunits. 
(A) HEK293 cells co-expressing HA-Cav1.2 α1, EGFP-CaMKIIα and FLAG-β2a 
(WT or L493A) were labeled with 32P-phosphate (see Methods).  Anti-HA 
immune complexes were analyzed by SDS-PAGE and autoradiography to detect 
phosphorylation of β2a subunits. Antibody dilutions: Anti-HA (1:2000), Anti-FLAG 
(1:5000), Anti-CaMKII (1:2000) 
 
(B) Phosphate incorporation into β2a in 4 independent experiments was 
quantified and normalized to wild-type β2a phosphorylation in the absence of 
EGFP-CaMKIIα: the mean±sem is plotted.  
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WT β2a subunits (Figure 23C).  Thus, total 32P-phosphorylation of Cav1.2α1 and 

β2a subunits in LTCC complexes did not appear to be affected by CaMKII 

association via β2a under basal conditions. CaMKIIα binding to β2a selectively 

enhances phosphorylation of β2a at Thr498. 

 

Total 32P-phosphorylation of proteins in 32P-orthophosphate labeling experiments 

can report the phosphorylation of multiple sites in a target protein. However, β2a 

can be phosphorylated at multiple serine and threonine residues by other 

kinases, such as PKA (at Ser 458,478,479) [78] and PKG (at Ser 496) [62]. 

Therefore, we reasoned that changes in phosphorylation at a limited number of 

sites due to L493A mutation may be obscured by 32P-phosphorylation at other 

sites in β2a.  We previously showed that the critical regulatory phosphorylation of 

β2a at Thr498 can be detected using a phospho-Thr286 CaMKIIα antibody (due 

to the similarity of surrounding amino acid sequences) and that L493A mutation 

does not affect recognition of phospho-Thr498 in β2a [150]. 

 

Therefore, I used the anti-phospho-Thr286 CaMKIIα antibody to specifically 

examine Thr498 phosphorylation in β2a within LTCC complexes 

immunoprecipitated from transfected HEK293 cells. I took a number of steps to 

verify that the anti-phospho-Thr286 CaMKIIα antibody specifically detected 

Thr498 phosphorylation but not the co-migrating EGFP-CaMKII. First, I verified 

that under our experimental conditions (expression levels, protein loading and 

chemiluminescence exposure levels) the antibody did not reveal Thr286 

autophosphorylation of EGFP-CaMKII in inputs, even when CaMKII was   
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Figure 25. Validation and Specificity of P-T286 CaMKII antibody. 
HEK293 cells co-expressing EGFP-CaMKIIα, HA-Cav1.2 α1 and/or FLAG-β2a (WT 
or T498A) were incubated with or without A23187 (10 µM) and 
immunoprecipitated using anti-HA antibodies. The immune complexes were 
analyzed by western blotting as indicated. Antibody dilutions: Anti-HA (1:2000), 
Anti-FLAG (1:5000), Anti-GFP (1:2000), Anti-phopho-Thr286 CaMKII (1:2000) 
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activated by Ca2+ ionophore (For example Figure 25 and 28).  Secondly, the 

robust phospho-Thr286 antibody signal detected in lysates and LTCC complexes 

containing WT β2a subunits was eliminated by mutation of Thr498 in β2a to Ala 

(Figures 13A, 25 and A11). Moreover, a similar robust phosphorylation of WT 

β2a was detected when EGFP-CaMKIIα was replaced by untagged CaMKIIα or 

myc-CaMKIIδ which resolve clearly from FLAG-β2a (Figures 13A, 27, A11 and 

A12), and in non-transfected cells (Figure A9).  Thus, I specifically detected 

Thr498 phosphorylation of β2a in the LTCC complex under these conditions, and 

not Thr286 phosphorylation of co-precipitating EGFP-CaMKIIα.   

 

I then examined the importance of binding of CaMKIIα to β2a in Thr498 

phosphorylation. Mutation of Leu493 to Ala to interfere with CaMKII targeting to 

LTCC complexes almost abolished total phosphorylation of β2a at Thr498 (Figure 

26A) and abrogated Thr498 phosphorylation within LTCC complexes (Figure 

26B). To determine if the effect of CaMKII binding on β2a was independent of the 

α1 subunit I omitted the Cav1.2α1 cDNA from the cotransfections. In the binary 

β2a-EGFP-CaMKIIα context, the effect of binding on Thr498 phosphorylation in 

total lysates and in β2a-CaMKII complexes was similar to that in the ternary 

context (Figure A10). To rule out any artifacts on the phosphorylation of Thr498 

due to the EGFP-tag, I showed that phosphorylation of β2a coexpressed with 

untagged CaMKII was also reduced by the L493A mutation (Figure 27).  
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Figure 26.  CaMKIIα binding enhances β2a phosphorylation at Thr498 in 
Ternary LTCC complexes. 
Lysates of HEK293 cells co-expressing EGFP-CaMKIIα, HA-Cav1.2 α1 and/or 
FLAG-β2a (WT or L493A), as indicated, were immunoprecipitated using  anti-HA 
antibodies. The total lysates (A) and immune complexes (B) were analyzed by 
western blotting as indicated. Phosphorylation of wild-type and mutated FLAG-
β2a proteins at Thr498 was quantified.  Phosphorylation of FLAG- β2a(L493A) was 
normalized to that of wild-type β2a and the mean±sem (n=3) is plotted: a one 
sample t-test was used for statistical comparison. Anti-HA (1:2000), Anti-FLAG 
(1:5000), Anti-GFP (1:2000), Anti-phopho-Thr286 CaMKII (1:2000)  
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Figure 27. Binding of untagged CaMKIIα enhances β2a phosphorylation at 
Thr498 in ternary LTCC complexes. 
Lysates of HEK293 cells co-expressing untagged CaMKIIα, HA-Cav1.2 α1 and/or 
FLAG-β2a (WT or L493A), as indicated, were immunoprecipitated using  anti-HA 
antibodies. The total lysates and immune complexes were analyzed by western 
blotting as indicated.  
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Since CaMKII activation increases the efficiency of phosphorylation and 

enhances binding to β2a, I tested if stimulation of Ca2+ entry to activate CaMKII 

may overcome the loss of Thr498 phosphorylation due to the L493A mutation.  

The Ca2+ ionophore A23187 did not alter the effect of Leu493 Ala mutation on 

Thr498 phosphorylation (Figure 28A). Notably, constitutively active EGFP-

CaMKIIα (T286D), was unable to reverse the loss of β2a Thr498 phosphorylation 

due to loss of CaMKII binding (Figure 28B). Collectively, these data show that 

CaMKII binding to β2a is required for efficient phosphorylation of a key regulatory 

site (Thr498) in β2a without affecting overall phosphorylation of multiple sites in 

the CaV1.2 α1 or β2a subunits. 
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Figure 28. Activation of Ca2+ entry or CaMKII does not affect the 
enhancement  β2a phosphorylation at Thr498 by CaMKII binding. 
 (A) Lysates of HEK293 cells co-expressing EGFP-CaMKIIα, HA-Cav1.2 α1 
and/or FLAG-β2a (WT, T498A or L493A), as indicated. Following a 5-minute 
treatment with 10µM A23187, the cells were lysed and the extracts analyzed by 
western blotting for Thr498 phosphorylation.  This blot of representative of  3 
similar experiments.  
 
(B) Lysates of HEK293 cells co-expressing EGFP-CaMKIIα (T286D), HA-Cav1.2 
α1 and/or FLAG-β2a (WT or L493A), as indicated. The cells were lysed and the 
extracts and anti-HA immunoprecipitates analyzed by western blotting for Thr498 
phosphorylation. 
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3.4 DISCUSSION  

LTCC facilitation by CaMKII can be important for physiological augmentation of 

cellular Ca2+ signals in response to hormones or growth factors [38, 97].  

Similarly, hyper-activation of CaV1.2 LTCCs by CaMKII is implicated in Timothy 

Syndrome, a multi-organ human genetic disorder whose symptoms include 

mental retardation and cardiac disease[17, 52, 61, 162]. Furthermore, the loss of 

dendritic spines from striatal medium spiny neurons following dopamine depletion 

in animal models of parkinsonism results from excessive CaV1.3 LTCC activation 

[40] in parallel with CaMKII over-activation[123]. Thus, understanding 

mechanistic interactions between CaMKII and LTCCs promises to provide 

insights into physiological and pathological processes in multiple tissues. 

 

CaMKII targeting to neuronal LTCCs by the β subunits 

Subcellular compartmentalization is emerging as a key feature of Ca2+ 

signaling[18].  Colocalization and functional studies suggest that a proportion of 

CaMKII and LTCCs exist in the same subcellular compartments[33, 34, 38, 79, 

97, 146] and CaMKII association with the LTCC complex appears to be essential 

for facilitation of the channels[63, 140, 144, 147] (see Introduction).  Even 

though the molecular basis for CaMKII association with LTCCs and the role of 

this association in LTCC regulation is poorly understood, it is widely recognized 

that the β subunits are important in organizing signaling complexes at the 

channel[25, 27, 47]. 

 

Multiple forms of β subunit and CaMKII-dependent LTCC facilitation have been 

observed in heterologous cells[63, 140] or reconstituted in isolated membrane 
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patches[79, 144]. This implies that core elements for CaMKII regulation of CaV1.2 

LTCCs in cardiomyocytes are intrinsic to the channel and must exist in neurons.  

CaMKII was previously shown to co-immunoprecipitate with cardiac CaV1.2 

LTCC complexes.  The present findings are the first to show that CaMKII 

associates with CaV1.2 LTCCs in forebrain.  

 

Based on our studies, β subunit identity appears to control association of CaMKII 

with LTCCs in forebrain. Although CaV1.2α1 subunits were similarly enriched in 

both β1 and β4 subunit immune complexes, CaMKII was only detected in the β1 

subunit complex (Figure 16).  Our biochemical studies suggest that CaMKII will 

also associate with neuronal LTCCs containing the β1 or β2 subunits, but not 

associate with those containing the β3 or β4 subunit (Figures 16, 17 and 21).  

This selective association with CaV1.2 LTCCs containing the β1 and β2 subunit 

variants appears to be due to differential scaffolding/adaptor protein functions of 

the β subunits.  The GK domain of the β subunits interacts with the AID of the α1 

subunit, creating a stable scaffold for the C-terminal domain conserved in βb or 

β2a, but not in β3 or β4, to anchor CaMKII. The number and stability of CaMKII-

LTCC complexes may be influenced by additional interactions, including 

membrane association of β1 or the β2 subunits via N-terminal lipid modifications 

(reviewed in [25, 167]), additional interactions of β subunits with N- and C-

terminal domains of the Cav1.2α1 subunit[29, 157, 168, 169] and CaMKII 

interaction with other Cav1.2α1 binding partners such as α-actinin[151, 170]. 

These additional factors may contribute to the weak targeting of β1b and CaMKII 

to the Cav1.2α1 subunits in our HEK293 studies(Figure 18). However, the GK-

AID interaction appears to be fundamental for creation of a stable scaffold that 

specifically targets CaMKII to LTCCs containing the βb or β2a subunit. 
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Association of β subunits with LTCCs in brain  

Differential functions of β subunit isoforms in controlling the activity and 

membrane expression of VGCCs are widely accepted[25, 27, 47]. These 

differences are emphasized by the embryonic lethality of global knockout of β1 

and β2 subunit genes in mice [171, 172], whereas animals lacking the β3 and β4 

subunits are viable[173, 174]. Relative expression levels of the β subunit variants 

are thought to play a major role in determining the specificity of β subunit 

association with LTCC α1 subunits [25, 45, 46, 175, 176]. In contrast to the 

predominant expression of LTCC β2 isoforms in cardiomyocytes, a mixture of β 

isoforms are differentially expressed in a complex, developmentally-regulated 

and cell-specific manner in the brain. The CaMKII-binding β1 and β2 subunits are 

expressed mainly in hippocampus, striatum, cerebellum and photoreceptors[44-

46, 177] and predominate during early postnatal development in rodents[25, 45].  

However, by adulthood, the β3 and β4 subunit variants together comprise about 

70% of total β subunits in forebrain[44-46]. Thus, CaMKII association with 

neuronal CaV1.2 LTCCs may be more prevalent during postnatal development 

and only in certain brain regions or cell types.  

 

CaMKII anchoring and LTCC regulation 

It is increasingly apparent that subcellular targeting of CaMKII via protein-protein 

interactions promotes the phosphorylation of specific substrate targets in intact 

cells[159, 160].  We previously reported that CaMKII-dependent facilitation of 

CaV1.2 LTCCs requires the phosphorylation of β2a subunits at Thr498, and 

showed that CaMKII binds with high affinity (Kd ≈ 100 nM CaMKII subunit) to the 

β1b and β2a subunits, but not the β3 or β4 subunits.  However, the relationship(s) 

between protein-protein interactions, phosphorylation and facilitation was not 

investigated.  The primarily β-subunit-dependent association of CaMKII with 
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LTCCs may facilitate CaMKII interaction with additional domains on the α1 

subunit[147], and may enhance CaMKII phosphorylation of functionally relevant 

sites, such as Ser1512 or Ser1570 in the α1 subunit[63] or Thr498 in the β2a 

subunit[79]. It may initially seem surprising that total phosphorylation of LTCC 

subunits was not affected by co-expression of EGFP-CaMKII or by L493A 

mutation of β2a, even on the significant background of substantial LTCC subunit 

phosphorylation by endogenous kinases (Figures  23 and 24).  However, it is 

important to note that these experiments were performed under basal cell 

incubation conditions in which CaMKII is only partially active.  The partially active 

CaMKII may be highly selective for the preferred Thr498 site in β2a in comparison 

to other sites that can be phosphorylated in vitro by fully activated kinase[79]. 

Indeed, we directly demonstrated that CaMKII binding facilitates Thr498 

phosphorylation in β2a subunits within LTCC complexes isolated by 

immunoprecipitation. Even though contributions of other kinases such as PKC 

and PKA to the phosphorylation at Thr498 cannot be entirely ruled out, our data 

strongly suggest that CaMKII is responsible for the changes in Thr498 

phosphorylation.  First, the enhancement of Thr498 phosphorylation by CaMKII 

co-transfection in a subset of experiments (For example, Figure A10) indicates 

direct Thr498 phosphorylation by CaMKII. Second, the dependence of Thr498 

phosphorylation on CaMKII binding is only robust when exogenous CaMKII is co-

transfected with LTCCs (compare Figures 26 and A9). Since phosphorylation of 

β2a at Thr498 phosphorylation promotes CaMKII-dependent LTCC facilitation the 

present findings provide a biochemical basis for the recently LTCC facilitation 

that required CaMKII binding[178].   

 

My data in intact cells contrast somewhat what previous observations by Dr. 

Chad Grueter in this lab. He did not detect a significant effect of the L493A 
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mutation on Thr498 phosphorylation in vitro.  Perhaps in a well mixed, in vitro 

system, where CaMKII can readily access the β2a, stable association of the 

proteins is not essential for efficient Thr498 phosphorylation. On the other hand, 

in the cytoplasm of intact cells, protein movements may be more restricted, and 

thus necessitate stable CaMKII/LTCC colocalization for efficient Thr498 

phosphorylation.  However, it is also possible that in intact cells CaMKIIα 

phosphorylates Thr498 with similar efficiency in β2a (WT) and β2a (L493A) but 

cellular phosphatases more efficiently dephosphorylate phospho-Thr498 in the 

β2a (L493A) than in WT protein because binding of CaMKII to the WT protein 

protects phospho-Thr498. The in vitro assays had no phosphatases to create such 

a difference in Thr498 phosphorylation in the two proteins. Thus, within cells the 

relative localization of LTCCs, CaMKII and phosphatases may critically control 

access to Thr498 and LTCC facilitation.  

 

Overall, these studies have demonstrated the importance of β subunits in 

selective targeting of CaMKII to phosphorylate a regulatory site of LTCCs, 

providing a biochemical explanation for regulation of LTCCs and perhaps of other 

VGCCs by CaMKII.  
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CHAPTER IV 

 

OVERALL DISCUSSION AND FUTURE STUDIES 

 

This thesis explored the molecular mechanism of LTCC regulation by CaMKII 

and revealed a strong, regulated, binary interaction of CaMKII and β subunits 

that allows dynamic tethering of CaMKII to enhance regulatory phosphorylation 

of the channel. Here I summarize this mechanism and address additional 

outstanding questions that are important for a more complete understanding of 

LTCC regulation and function in cardiomyocytes and neurons. 

 

4.1 MECHANISM OF LTCC REGULATION BY CAMKII 

Data emerging over the last four years suggest that mechanisms underlying 

CaMKII modulation of LTCCs are complex and involve both the α1 and β subunits 

of LTCCs (Figure 29). Binding and phosphorylation of the α1 subunit has been 

implicated in enhancement of LTCC currents (See Introduction). While most 

studies of the mechanism of CaMKII regulation have targeted the α1 subunit, our 

group examined the role of the β subunit in the CaMKII-dependent regulation of 

LTCCs. We showed that phosphorylation at Thr498 in β2a is required for CaMKII 

to increase channel open probability at the single channel level and to facilitate 

whole cell Ca2+ currents in adult cardiomyocytes[79].  My thesis has extended 

these original observations by showing that β1b and β2a subunits of LTCC 

dynamically associate with the CaMKII (Chapter 2). The binary β subunit/CaMKII 
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interaction is important for normal targeting of CaMKII to Cav1.2α1 subunits (and 

to Cav1.3α1 I/II linker), and for regulatory phosphorylation of β2a at Thr498 in 

LTCC complexes (Chapter 3). Thus, my studies provide insights to reconcile the 

various mechanisms of LTCC regulation by CaMKII and establish a molecular 

basis for understanding β subunit regulation of LTCC function in heart, brain and 

perhaps other tissues. 

 

Model for CaMKII dependent LTCC regulation: My findings are consistent with 

the following basic model of LTCC regulation by CaMKIl (Figure 29). At resting 

conditions, cytosolic Ca2+ is low, CaMKII is weakly activated and phosphorylation 

of β2a at Thr498 is weak, resulting in basal LTCCs activity. Ca2+ entry and 

CaMKII activation enhances binding of CaMKII to the LTCC β subunit, induces 

rapid Thr498 phosphorylation by the bound CaMKII holoenzyme, which in turn 

initiates CaMKII dissociation. The facilitation mechanism may then be turned off 

by dephosphorylation of β2a and CaMKII to reset the channel to basal state.  It is 

yet unclear which of these steps—binding, Thr498 phosphorylation or 

dissociation—triggers the transition of the channel to facilitated states. Some of 

the lack of clarity exists because of two key observations we have made. First, 

the open probability of LTCCs containing the β2a(Thr498Glu) mutant (which 

mimics T498 phosphorylation and prevents CaMKII association with LTCC, 

Figures 12, 13, A13 and A14) is indistinguishable from the WT[179], suggest 

that Thr498 phosphorylation is insufficient for facilitation of LTCC currents. 

However, it goes without saying that mutation of Thr498 to Glu may not fully 
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mimic phosphorylation of the residue. Secondly, LTCCs containing 

β2a(Thr498Ala) mutant (which bind CaMKII, Figures 12, 13, A12, A13 and A14)  

are not facilitated by CaMKII, implying that CaMKII binding is insufficient for 

facilitation.  These Thr498Glu and Thr498Ala phenotypes suggest that facilitation 

may actually depend on precise coordination of the binding and phosphorylation 

events. If so, Thr498 phosphorylation may then be a bifunctional switch to control 

facilitation: it may couple CaMKII binding to β2a to phosphorylation of sites on the 

α1 subunit known to be essential for facilitation (see Introduction) but eventually 

discontinue CaMKII signaling by dissociating the active CaMKII or preventing 

rebinding of CaMKII to the channel. The true picture of LTCC facilitation is likely 

to be even more complicated, particularly if one takes into account the multiple 

alternative interpretations of events downstream of Thr498 phosphorylation, such 

as kinase disinhibition, phosphorylation of other sites on β2a and structural 

rearrangements of the channel complex (see discussion of Chapter 2). 

 

The structural mechanism of LTCC regulation by CaMKII mentioned in Chapter 

2 raises the fundamental questions of how CaMKII binding, dissociation or LTCC 

phosphorylation alters channel activity.  An extensive theory on the structural 

basis of LTCC regulation by CaMKII is premature but I want to discuss the 

subject briefly, drawing on insights from a few prior studies.  The IS6-AID domain 

of the α1 subunit (see Introduction) forms a rigid structure that connects  and 

properly orients the β subunit to the pore in the α1 subunit[55, 180]. This rigid 
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Figure 29. A model for β2a-dependent regulation of LTCCs by CaMKII 
Solid arrows indicate CaMKII binding and dashed arrows indicate β  subunit 
binding. Multiple interactions (1) with α1 subunit target β subunits to LTCCs .   
Activated CaMKII binds β2a (2) to form a ternary complex (CaMKII-β2a-α1)  and 
the resulting inhibition of bound CaMKII (3) stabilizes the kinase at the channel.  
The increased local CaMKII concentrations may enhance CaMKII binding to α1 
(4) and/or phosphorylation of β2a at Thr498, of  α1 at S1517 or S1575 (or S439 in 
the Timothy Syndrome mutant) (5), resulting in LTCC facilitation.   
Phosphorylation of β2a at T498 releases CaMKII (6) to further increase 
phosphorylation of the α1 subunit and thus promote CaMKII-dependent LTCC 
facilitation, or simply exposes Thr 498 to allow phosphatases to terminate 
CaMKII actions. 
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structure of the IS6-AID is essential for normal coupling of β subunit/CaM-

dependent processes to the channel pore during voltage or Ca2+-dependent 

regulation and could be altered by CaMKII binding. The β subunit also links the 

IS6-AID and the channel pore to the C-terminal tail of the α1 subunit, which 

contains both the CB/IQ region involved in CaM-dependent regulation and an 

autoinhibitory region[29, 83, 157, 181].  Thus, the β subunit is a central structural 

coordinator of LTCC during regulation and a potential locus for structural effects 

of CaMKII. The association of a bulky CaMKII  (~200 Ǻ diameter) [90, 182] with 

the cytosolic face of the LTCC complex and pore (~115Ǻ combined diameter) 

[90, 182] may perturb the link between the β subunit, the α1 C-terminus, the AID 

and the pore.  In this way, CaMKII binding can potentially inhibit the opening and 

closing of the LTCC pore. Thr498 phosphorylation may be required to ‘free’ the 

channel pore from such steric hindrance by destabilizing the LTCC-CaMKII 

complex. Of course, it is also possible that CaMKII binding primes the channel so 

that Thr498 phosphorylation can more efficiently switch it to facilitated states.  

However, the effect of β subunit phosphorylation at Thr498 on LTCC opening 

may not be purely structural and direct. The phosphorylation may dissociate 

CaMKII to enhance phosphorylation of other sites on the α1 and β to in a way that 

perturbs coordination of LTCC domains by β subunits. For example, Thr498 

phosphorylation may allow preassociated CaMKII to phosphorylate the 

aforementioned IS6-AID (for example Ser439 in the TS mutant) to alter coupling 

of the β subunit to the channel pore, resulting in suppression of LTCC 

inactivation in TS mutants[162]. In summary, even though the structural basis of 
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CaMKII/β-dependent LTCC regulation is still unknown, my thesis research has 

provided useful insights to help guide future mechanistic and structural studies. 

 

4.2 OUTSTANDING QUESTIONS AND FUTURE DIRECTIONS 

Despite the insights provided by my studies, several key questions related to the 

importance and dynamics of CaMKII/β-dependent LTCC regulation remain 

unresolved. In this section I address some of these questions. 

 

a. What is the functional relevance of β subunit-dependent CaMKII 
targeting to LTCCs? 
 
At a biophysical level, CaMKII targeting to LTCCs by the β subunit enhances 

open probability of single LTCCs and increases whole-cell LTCC currents in 

cardiomyocytes[178]. The CaMKII binding-dependent Thr498 phosphorylation 

reported herein appears to be an intermediate step in the β2a-dependent LTCC 

regulation.  It will be important to compliment the biophysical studies of LTCCs 

with studies that examine binding and phosphorylation of specific sites on the α1 

previously known to be involved in CaMKII-dependent regulation. Overall, the 

biophysical findings and my biochemical data are consistent with a role of β 

subunit-dependent targeting in the tightly controlled changes in Ca2+ are essential 

for many normal processes in cardiomyocytes and neurons (see Introduction).  

  

In cardiomyocytes, the LTCC complex is a preferred entry point for the Ca2+ that 

triggers release of Ca2+ through ryanodine receptors to control multiple aspects of 

Ca2+ signaling (such as LTCC facilitation) and homeostasis[183].  Cardiomyocyte 



 115

LTCC facilitation by CaMKII augments cellular Ca2+ signals in response to 

hormones[38, 97] or repeated depolarizations[79]. Cardiomyocyte Ca2+ 

augmentation is a hallmark of LTCC-dependent EC-coupling, which is known to 

be regulated by CaMKII-binding β1 and β2 isoforms[171, 172]. Animals lacking 

the β2 subunit of LTCCs exhibit multiple abnormalities including impaired 

excitation-contraction coupling in cardiomyocytes, and ultimately die prenatally 

due to inability of their hearts to develop[172]. In isolated myocytes excitation-

contraction coupling is dependent on CaMKII binding to β2a [178].  Even though 

the β2 isoform predominates in cardiomyocytes, other β isoforms are also 

present[26, 43] and may play analogous roles, especially the β1b, which binds 

CaMKII and regulates excitation contraction-coupling. Thus, the β1, β2 and 

CaMKII all share control of excitation-contraction coupling, which is consistent 

with their involvement in a common LTCC regulation pathway. 

 

Even though CaMKII-dependent LTCC facilitation has not been reported in 

neurons, for various reasons the mechanisms that underlie CaMKII-dependent 

cardiac LTCC facilitation appear to be preserved in neurons.  First, multiple types 

of CaMKII-dependent LTCC facilitation have been observed in heterologous 

cells[63, 140] or reconstituted in isolated membrane patches[79, 144], implying 

that core elements of the process are intrinsic to the channel and exist in multiple 

cell types. Secondly, Ca2+ release from intracellular stores through ryanodine 

receptors is essential for the CaMKII-dependent LTCC facilitation in 

cardiomyocytes[184] and in neurons LTCCs are also functionally coupled to 



 116

ryanodine receptors of intracellular Ca2+ stores[185]. Thus, the mechanisms that 

underlie CaMKII-dependent cardiac LTCC facilitation may also contribute to 

LTCC facilitation in neurons, and may provide the Ca2+ influx for key neuronal 

processes such as presynaptic potentiation following repeated stimulation of 

presynaptic terminals in the brainstem[186, 187] and cerebellum[188]. The 

presynaptic potentiation is consistent with the presence of local Ca2+-dependent 

feedback mechanisms that physiologically augment Ca2+ entry to regulate 

neurotransmitter release[48]. Furthermore, a functional link between closely 

positioned CaMKII and LTCCs  triggers excitation-transcription coupling in 

neurons[189] which may be associated with enhanced phosphorylation of the 

channel’s α1 and β subunits (see Introduction).   

 

In contrast to myocytes, a heterogeneous mixture of the β subunits is expressed 

in neurons, suggesting that CaMKII-dependent LTCC regulation varies from 

neuron to neuron. For example, CaMKII is likely to regulate LTCCs in neurons 

expressing predominantly the β1 or β2 but not in neurons expressing mainly the 

β3 or β4 isoform because binding and phosphorylation of the conserved Thr498 

would be impaired in β3 or β4. Thus, future experiments to determine LTCC 

facilitation by CaMKII in neurons may require careful consideration of the identity 

of the β subunit in the neuronal subtype. Indirect insights into LTCC regulation in 

neurons by β subunits have come from manipulations of VGCC β subunit 

expression in LTCC-dependent neuronal processes. For example, by genetically 

deleting the β2 subunits, three groups have implicated β2 in regulating 
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neurotransmission at photoreceptor ribbon synapses, in transmission and 

exocytosis by inner hair cells and in hearing[190, 191]. Furthermore, β2 -

containing synapses of hippocampal neurons maintain a higher probability of 

release than β4 containing synapses, which is reminiscent of enhanced basal 

VGCC tone[192]. Given the presynaptic roles of CaMKII (see Introduction), 

differential presynaptic CaMKII targeting by the β isoforms may alter LTCC or 

VGCC function in neurons. 

  

Deletions of the β subunits that do not bind CaMKII, i.e β3 and β4, resulted in a 

variety of deficits that are distinct from effects of β2 deletions. Loss of β4 due to a 

spontaneous mutation is not lethal but produces an epileptic, ataxic neurological 

phenotype[25], suggesting that β4 is important in controlling excitability in some 

important neuronal circuits.  β3 knockout animals show resistance to pain 

sensation[173]. These phenotypes are consistent with the existence unique roles 

of CaMKII targeting in physiological functions.  Whether the functional 

distinctions between β2 subunits and β3 or β4 are due to differences in CaMKII-

targeting to LTCCs or other VGCCs is an interesting question that remains to be 

adressed. 

 

In addition to highlighting β subunit isoform differences, my preliminary studies 

have also raised the potentially important CaMKII isoform-dependent differences 

in LTCC regulation in various tissues. In contrast to CaMKIIα, cotransfection of 

the CaMKIIδ isoforms (WT or constitutively active) resulted in Thr498 

phosphorylation that was virtually independent of β2a binding (Figure 13, A11 
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and A12). The distinct effects of CaMKIIα and CaMKIIδ isoforms may reflect 

differences in their activation state and strength of interaction with the β subunit 

or other proteins, and will best be analyzed by comparing their binding to, and 

phosphorylation of LTCCs side-by-side. HEK293 cells also appear to express a 

low level of at least one endogenous CaMKII isoform of unknown identity[193, 

194].  In cells that were not transfected with CaMKII, mutation of β2a to disrupt 

binding of CaMKII reduced phosphorylation of β2a at Thr498 by 60% in total 

lysates but had no effect on Thr498 phosphorylation in immunoprecipitated LTCC 

complexes (Figure A9). These results suggest binding of the endogenous 

CaMKII isoform in HEK293 cells to LTCC is neither required nor sufficient to alter 

phosphorylation of Th498 within LTCC complexes, and only mildly modulates 

phosphorylation of total β2a at Thr498. These findings contrast starkly with the 

findings in cells overexpressing CaMKIIα (Figures 26 and 27) where binding 

robustly increased Thr498 phosphorylation. The effects of endogenous kinase 

resembled those of δ isoforms of CaMKII, suggesting HEK cells may 

endogenously express the CaMKIIδ. Nevertheless, I have not demonstrated in 

these studies that endogenous Thr498 phosphorylation is due to actions of 

CaMKII but not other kinases. 
 

b. Is there a role of the β subunit in pathophysiological regulation of LTCCs 

by CaMKII? 

CaMKII/LTCC-dependent pathophysiology. There is growing evidence supporting 

mutual reinforcement of LTCC and CaMKII activity in a positive feedback 

loop[24, 34, 147, 189]  in both cardiomyocytes and neurons.  The vicious cycle of 

LTCC facilitation and CaMKII activation may lead to cardiac (e.g Timothy 

Syndrome) and neurological pathologies (e.g Parkinson’s Disease) linked to 
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excessive LTCC activity, Ca2+ entry, and CaMKII activation[17, 40, 52, 61, 123, 

183, 195] (see Introduction and Chapter 3).  The LTCC α1, β/CaMKII complex 

provides a suitable mechanism to set up the perpetual Ca2+ overload needed to 

cause disease.   

 

Pathological role of β/CaMKII-dependent facilitation in heart: Multiple reports 

suggest that the mechanisms that enable the β subunit of LTCC to facilitate the 

channels in normal circumstances may be engaged in disease. Elevated levels of 

β2a have been detected in failing human hearts[196] and may contribute to 

channel hyperactivity and arrhythmia-generating electrical abnormalities and cell-

death[197-199]. Furthermore, overexpression of exogenous β2a in adult 

cardiomyocytes increases LTCC currents, and induces overload of SR Ca2+, and 

cell-death[149, 178]. The cell-death occurs via a CaMKII-dependent pathway that 

requires CaMKII binding to the β subunit and Thr498 phosphorylation[178]. As 

CaMKII levels and activity are also elevated in failing mouse hearts[109, 110], 

the β2a-CaMKII pathway seems to be an important in the pathogenesis of heart. 

My studies support and complement these findings by providing the biochemical 

link between CaMKII binding and Thr498 phosphorylation in LTCC complexes.   

 

Pathological role of β/CaMKII-dependent facilitation in the brain. The role 

β/CaMKII-dependent LTCC regulation in neurological disease has not been 

explored but multiple studies provide some initial insights. Four key properties of 

LTCCs—their expression density[200], phosphorylation[201], open 
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probability[200]and whole-cell currents[202, 203]. The aging-related pathology in 

brain bares the cellular, biochemical and elephysiological hallmarks of the 

β/CaMKII-dependent LTCC regulation in myocytes (see Introduction) and may 

therefore also be a major contributing factor in diseases associated with aging. 

Indeed, the enhancement of LTCC function in neurons is associated, at least in 

some cases, with neuropathology such as reduced survival of the hippocampal 

neurons[204], age-related learning deficits[202, 203] and loss of dendritic spines 

in experimental Parkinsons Disease model animals[40]. It will be interesting to 

determine if β1 and β2 subunits alter CaMKII-dependent phosphorylation and 

regulation of LTCCs in the Parkinson’s Disease models.  

 

Targeting CaMKII-LTCC interaction for therapy: CaMKII and β subunits have 

individually been explored as molecular therapeutic targets for cardiac disease 

but their interaction has not been reported as a potential drug target. Inhibition of 

CaMKII is effective in reducing arrhythmia-inducing early-afterdepolarizations in 

cardiomyocytes[162, 178] and in mitigating structural damage to heart following 

myocardial infarctions[110]. Similarly, structural damage to the heart is 

attenuated by gene therapy that utilizes in vivo knockdown of endogenous 

β2a[205] and fragments of β2a reduce Ca2+ overload[206, 207]. These 

manipulations of the β subunit have focused on the modulation of α1 expression 

by β2a, which may produce undesirable side effects associated with a lack of the 

normal number of functional channels at plasma membranes. Since LTCC-

dependent cardiomyocyte dysfunction can be blocked by preventing 
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phosphorylation of β2a at Th498 or by disruption of CaMKII binding to β2a [178], 

interfering with CaMKII binding to or phosphorylation of β2a is an attractive option 

for therapeutic intervention. In practice, β subunits that lack the C-terminal 

CaMKII binding domain could be introduced into cells to mitigate the deleterious 

effects of CaMKII binding. Alternatively, peptides that selectively interfere with 

CaMKII binding to β2a but not its activity or normal functions could be introduced 

into ailing cells. Such approaches would be aided by a precisely defined 

mechanism and information on dynamics of CaMKII binding and phosphorylation 

of Thr498. My biochemical studies provide a good starting point for obtaining 

such information but new methods of studying binding and phosphorylation of β 

subunits in vitro and in cells will be essential.  

 

c. How fast do LTCC-CaMKII complexes assemble and dissociate?  

LTCC regulation occurs on the milliseconds to seconds timescale and underlies 

the long-term dynamic control of many processes including the strength and rate 

of heart contraction, neurotransmission and neuronal plasticity. As indicated in 

the model in Figure 29, one could envisage that CaMKII binds to β2a and then 

phosphorylates Thr498, creating a timed feedback switch to dissociate CaMKII 

and terminate its facilitation of LTCCs. I began addressing the dynamic 

regulation of CaMKII-LTCC complexes by monitoring their dissociation in vitro 

(Figures 16 and A15). However, these binding studies, like other CaMKII 

binding studies in this thesis, rely on slow conventional approaches (e.g., plate 

assays, overlays, cosedimentation assays) that provide little information about 
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association and dissociation rates, or true equilibrium interactions. Thus, 

development of assays that monitor CaMKII-β2a interactions on a shorter 

timescale in real time is likely to provide fresh insight into their physiological 

relevance and regulation.  

 

Dynamic assembly and regulation of LTCC-CaMKII complexes in vitro: 

Fluorescence anisotropy is a common in-solution assay used to determine 

association and dissociation rates and equilibrium binding constants in vitro[208]. 

Anisotropy measurements may provide important new information about 

association/dissociation rates, binding affinities, and Ca2+ concentration 

dependence that will provide far greater insight into likely cellular dynamics of 

these complexes. Thus application of fluorescence anisotropy may reveal more 

precise answers to questions such as:  is the Ca2+ sensitivity appropriate for 

complex formation at the local Ca2+ concentrations that are thought to be 

generated in the vicinity of the LTCC complex?  Does Thr286/7 

autophosphorylation enhance the Ca2+ sensitivity so that complexes are more 

likely to form under physiological conditions?  Even greater temporal-sensitivity 

would be achieved using a stopped-flow system with more rapid mixing of 

reagents.   

 

Dynamic regulation of LTCC-CaMKII complexes in cells: My preliminary studies 

show that CaMKII colocalizes with LTCCs in a manner dependent on activation 

of Ca2+ entry, suggesting the colocalization is a dynamically regulated  process 
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(Figures A6, A7 and A8). However, these colocalization studies provide a 

"snap-shot" of steady-state CaMKII and LTCC localization in fixed cells.  An 

alternative method would involve expressing wild-type or mutant Flag-β2a and 

fixing the cells at various times after enhancing Ca2+ entry via LTCCs using 

various concentrations of BayK8644 or inhibiting Ca2+ entry by replacing 

extracellular Ca2+ with Ba2+. To ultimately monitor dynamics of CaMKII 

association with LTCCs in living cells (HEK293, neurons or cardiomyocytes) in 

real time,  the relevant proteins can be tagged with complementary fluorescent 

proteins that can be imaged simultaneously (e.g., RFP and GFP) by confocal 

microscopy and/or used for fluorescence resonance energy transfer (FRET) 

(e.g., CFP and YFP). My biochemical experiments facilitate the design and 

interpretation of these future studies by providing mutant proteins with well-

defined changes in their protein-protein interactions.   

 

The spatial resolutions of CaMKII-LTCC interactions may be further improved by 

combining FRET with Total internal reflection fluorescence (TIRF) microscopy. 

TIRF microscopy is a useful tool to monitor changes in protein-protein 

interactions within 200 nm of the plasma membrane. In TIRF microscopy, the 

exciting light beam is directed at an angle such that it undergoes total internal 

reflection at the boundary between the cover slide glass medium and aqueous 

cell medium. A resultant evanescent wave that rapidly dissipates within (100-200 

nm) excites the flourophores within its radius.  Thus, TIRF microscopy offers a 

powerful technique to monitor dynamic interactions of proteins at the plasma 
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membrane. A combination of TIRF microscopy and FRET could also be used to 

monitor precise spatiotemporal dynamics of interactions following Ca2+ entry. 

 

These approaches will not only reveal the dynamic regulation of CaMKII 

interactions with LTCC subunits but can also provide useful information about the 

impact of the proteins associated with LTCCs or its vicinity on assembly of the 

channels with CaMKII. Some of these are structural proteins such as α-actinin, 

PDZ proteins such as NIL-16 and SHANK, CaBP1 which bind the α1 subunit and 

AHNAK that binds the β subunit[24, 209]. Others are signaling proteins such as 

CaM, PP1, PP2A, which associate with LTCC and are able to modulate the 

activity of CaMKII and the phosphorylation of the LTCC subunits[24, 87]. There 

are even channels such as the NMDAR, that are not directly associated with 

LTCCs, but coexist in dendritic spines and modulate LTCC activity[24]. The 

NMDARs may control CaMKII activity at LTCCs by competing for CaMKII binding 

to the β subunits or by trapping CaMKII in an activated state[153]. The combined 

effect of all these auxiliary proteins may modulate the extent of Thr498 

phosphophorylation and therefore fine-tune LTCC facilitation.  

 

 

d. Are β subunits important in regulation of non-LTCC channels? 

The β subunit isoforms associate with most VGCC α1 subunit variants.  

Interestingly, CaMKII facilitates CaV1.3 LTCCs by phosphorylating the α1 subunit 

at Ser1486[38] and antagonizes the inactivation of Cav2.1 P/Q type VGCCs by 

binding within the α1 C-terminal tail[210].  It will be important to investigate 
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whether β subunits also play a role in these CaMKII-dependent effects.  Unlike 

Cav1.3 and 2.1, CaV3.2 channels are not generally thought to associate with β 

subunits. Yet CaMKII enhances the activity of Cav3.2 T-type VGCCs, apparently 

via direct interaction of CaMKII with the II/III linker domain[75]. Thus, binding of 

CaMKII to the VGCC complex appears to be a common feature for CaMKII-

dependent feedback regulation of these channels.  The β1 or β2 subunits may 

have a preeminent function in some cases, but in other cases direct interactions 

with the α1 subunit may play an important role.   Moreover, it will be interesting to 

investigate whether association of CaMKII with LTCCs via selected β subunit 

variants plays a role in CaMKII-dependent cross talk between LTCCs and R-type 

channels in dendritic spines[33, 34] and/or in CaMKII activation to mediate 

downstream signaling to the nucleus[189].   
  

3.3 THESIS SUMMARY 

The findings reported here and in other recent papers suggest that feedback 

regulation of Ca2+ influx via VGCCs is precisely controlled in specific subcellular 

microdomains by multiple mechanisms that allow CaMKII and other Ca2+-

dependent signaling proteins to associate with channel subunits. The precise 

nature of the feedback regulation by CaMKII seems likely to depend on the 

identity of the β subunit associated with the complex. The regulated interaction of 

activated CaMKII with β1 and β2 variants, and phosphorylation of the subunits at 

Th498 seem likely to be important for LTCC facilitation, although phosphorylation 

of β3 and β4 may also play a role in some cases. Our findings are in line with 

recent studies, suggesting that subcellular targeting of CaMKII via its interactions 

with CaMKAPs modulates the specificity of its downstream actions. These 
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complex biochemical mechanisms for feedback regulation of Ca2+ influx via 

VGCCs presumably provide great flexibility for modulating a variety of 

downstream signaling events such as cardiac excitation−contraction and 

excitation−transcription coupling and neuronal synaptic plasticity. Moreover, 

alterations in the association of β subunits with VGCCs might disrupt feedback 

regulation and downstream signaling in heart failure and other diseases. 
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APPENDIX 

 

CaMKII catalytic site-binding peptides impair binding of β2a 

The conservation of CaMKII binding domains of β2a, NR2B and CaMKII-

autoregulatory domain (Figure 9B) suggested that they interact with CaMKII by a 

similar mechanism. I began to narrow down the molecular mechanism of these 

interactions by investigating the effects of synthetic peptides based on NR2B and 

CaMKII autoregulatory domain on CaMKII binding to β2a.  As a positive control, I 

showed that His-β2a(410-505) protein inhibited CaMKII binding to β2a (Figure A1, 

Top panel) in a concentration-dependent manner. A 20-amino acid NR2B 

peptide (NR2B1290-1309) also inhibited the β2a-CaMKII interaction, but with a 

weaker potency than the His-β2a (410-505). The NR2B peptide inhibition was 

specific because it was reduced when an NR2B control peptide (1290-

1309R1300Q), which is mutated to disrupt CaMKII binding to NR2B[155], was 

used(A1, Top panel).  Autocamtide-2 (AC-2), a 14-amino acid peptide substrate 

modeled on the sequence surrounding the T286/7 autophosphorylation site of 

CaMKII[211], inhibited CaMKII binding to GST-β2a as potently as the NR2B 

peptide, but also less potently than the His-β2a (410-505). The differences in the 

potency of CaMKII binding inhibition by the peptides (NR2B peptide and the AC-

2) and the 95-amino acid His-β2a(410-505) protein may arise from unique binding 

and folding modes conferred by the extra amino acids in the β2a protein.  In 

contrast to the NR2B peptide and AC-2, the 14-amino acid syntide-2 peptide  
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Figure A1. Effect of CaMKII catalytic site binding peptides and proteins on 
CaMKII binding to β2a. 
The indicated concentrations of peptides or proteins and [32P-T287]CaMKIIδ (500 
nM) were premixed for 1 hr. CaMKIIδ binding to 5 pmol of immobilized full-length 
GST-β2a (top) or , GST-β2a (410-505, middle) or GST-NR2B (1260-1339, bottom) 
in glutathione-coated wells was determined. This set of experiments was 
performed once. 
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derived from a phosphorylation site in glycogen synthase binds the CaMKII 

catalytic site by a mechanism that is distinct from that of AC-2 [212] and thus did 

not inhibit CaMKII binding to β2a (Figure A1, Top panel). These observations 

suggest that conserved residues surrounding Thr498 in β2a, Thr286 in CaMKII 

and Ser1303 in NR2B make molecular contacts with a shared set of residues 

within the CaMKII catalytic domain. 

 

 If the 410-505 region is indeed responsible for CaMKII binding to β2a (Figures 9, 

12 and 13), the NR2B and AC-2 inhibition of CaMKII binding to the full-length 

subunit should be recapitulated using only the 410-505 domain. As predicted, the 

inhibition of CaMKII binding to the full-length β2a by NR2B and AC-2 was 

indistiguishable from the inhibition of binding to GST- β2a (410-505) (Figure A1, 

middle panel). I also performed reciprocal competition assay to confirm that 

CaMKII binding to the GST-NR2B (1260-1339) was in return inhibited by His-

β2a(410-505) (Figure A1, bottom panel). This assay was performed in parallel 

with other peptides, which all inhibited CaMKII binding to NR2B more potently 

than binding to β2a, for reasons that are not clear. Based on these preliminary 

competition studies, NR2B and β2a appear to bind CaMKII via a similar 

mechanism. However, conservation of residues around Ser1303 of NR2B, 

Thr286 of CaMKII or Thr498 of β2a  is not a strict requirement for binding of 

CaMKII[147, 193]. Thus, binding of proteins and peptides to CaMKII catalytic 

domain via unconserved residues may still prevent β2a/NR2B to CaMKII. To test 

this possibility, I used a CaMKII inhibitory peptide  
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derived from CaMKIIN, a 79-amino acid protein that binds activated CaMKII and 

potently inhibits its activity[213, 214]. The CaMKIIN peptide inhibited CaMKII 

binding to GST-NR2B and GST-β2a, and did so more potently than did the NR2B 

peptide, AC-2 or His-β2a(410-505)(Figure A1). There are two possible 

interpretations of this observation: either the unconserved residues in CaMKIIN 

interact with the same sites on CaMKII (i.e, by a similar mechanism) as the 

conserved residues in NR2B and β2a or they engage different amino acids on 

CaMKII (i.e, bind by a different mechanism) but are still able to physically or 

sterically block CaMKII-access to other binding partners.  

 

Cav β2a inhibits CaMKII activity 

The competition studies in the previous section indicated that β2a, like NR2B and 

CaMKIIN, binds the catalytic site of CaMKII, and therefore suggested that β2a 

would inhibit CaMKII. Indeed, β2a inhibited CaMKII activity toward syntide-2, the 

model peptide substrate, which is consistent with β2a binding at or close to the 

active site of CaMKII (Figure A2). GST-NR2B inhibited CaMKII activity more 

potently and completely than did GST-β2a. Even though this interesting 

observation needs to be replicated to make any meaningful comments, it 

suggests NR2B binds tighter to CaMKII than β2a under these conditions. 

However, earlier studies showed that NR2B and β2a bind CaMKII with a similar 

apparent affinity (Figure 7). The discrepancy of the inhibition assay may result 

from multiple reasons, including differences in phosphorylation and outright 

experimental error. Furthermore, the in-solution nature of these studies could  



 148

 

 

 

 

 

 

 

 

 

 

 

Figure A2. Inhibition of CaMKII activity by β2a 
Ca2+/CaM-dependent activity of CaMKIIα (20 nM) was assayed with syntide-2 
substrate (20 µM) in the presence of increasing concentrations of GST, GST-
NR2B [1260-1339] or GST-β2a[1-604]. Both proteins except GST potently 
inhibited CaMKII activity. This experiment was performed by Dr. Alfred J. 
Robison (The author of this thesis failed to locate the original record of this 
interesting experiment but it is likely that the NR2B and GST- β2a were wild type 
proteins, not their  respective S1303A and Thr498A mutants). . 



 149

reveal different affinities compared to the affinities determined in assays using 

immobilized proteins. Fluorescence anisotropy (see chapter 4) studies may 

resolve the potential differences in CaMKII-NR2B/β2a affinities determined in the 

inhibition and binding assays. 

 

Association of LTCCs and CaMKII in Brain Fractions 

LTCC subunits exhibit differential subcellular localization, which may influence 

their association with CaMKII (see Introduction). To explore the association of 

CaMKII and LTCCs in various cellular compartments, I immunoprecipiated 

CaMKII from cytosolic, membrane enriched, Triton-soluble and deoxycholate-

soluble (presumably particulate) fractions of mouse forebrain. The Cav1.2α1 was 

present in all but the cytosolic fraction, and particularly enriched in membrane 

fractions. Unlike Cav1.2α1, the β1 and β4 subunits were detected in the cytosolic 

fraction, likely because they are soluble Cav subunits. Relative to the cytosolic 

fraction, the β subunits was enriched in other brain fractions, in parallel with 

Cav1.2α1 and CaMKII (Figure A3). Complexes of the Cav1.2α1 and β1 subunits 

and CaMKII were also present in CaMKII immunoprecipitates from the non-

cytosolic fractions. There was virtually no β4 staining in the CaMKII 

immuniprecipates, except for a weak band in CaMKII complexes isolated from 

membrane-enriched fractions. Additional experiments are needed to verify the 

specificity of the β4 band. In combination, these data demonstrate that CaMKIIα 

is present in the same brain fractions as LTCC subunits and is associated with a 

subset of LTCCs containing β1 subunits. 
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Figure A3. CaMKII association with LTCC subunits in brain fractions. 
CaMKII immune complexes isolated from subcellular fractions of mouse forebrain 
were western blotted using the Cav1.2α1, β1 or β4 subunit antibodies: Triton-
soluble fraction (TSF), deoxycholate-soluble fraction (DSF), membrane enriched 
fraction (MEF) or cytosolic fraction (CF).  The bottom panel shows Ponceau-S 
stained membranes of total protein loaded. n = 1 
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The β2a subunit enhances CaMKII association with full-length CaV1.2 α1 

Although we showed CaMKII Co-IPs with β2a under basal conditions (Grueter 

2006), we did not test if under these conditions the β2a subunit also targets 

CaMKII to full-length Cav1.2α1 subunits. I therefore transfected HEK293 cells to 

express EGFP-CaMKII in the absence or presence of HA-Cav1.2α1 subunits and 

WT or L493A mutated FLAG-β2a. Unlike the previously described studies where 

transfected cells were pre-treated with Ca2+ ionophore to boost CaMKII activation 

(Figure 22 ), in these studies cells were not pre-treated.  The HA-Cav1.2α1 

immune complexes were western blotted for HA, FLAG and CaMKII.  HA-

Cav1.2α1 subunits were readily detected in HA-immune complexes and co-

expression of β2a (WT or L493A) enhanced the levels of α1 subunit expression 

(Figure A4). CaMKIIα was weakly detected in immune complexes isolated from 

cells expressing only the Cav1.2α1 but the detection was enhanced following co-

expression of FLAG-β2a WT subunit. The L493A mutation virtually reversed the 

β2a-dependent enhancement of CaMKII in LTCC complexes without affecting the 

amount of α1 the subunit.  Thus, the β subunits target CaMKII to the full-length 

Cav1.2α1 under these basal conditions.   

 

The β2a subunit enhances association of CaMKIIδ with full-length CaV1.2 α1 

Several experiments in Chapter 2 used CaMKIIδ to test CaMKII binding to β2a in 

binary complexes.  To determine if β2a enhances the assembly of CaMKIIδ 

isoform with LTCC complexes, LTCC subunits were transfected with MYC-

CaMKIIδ2(T287D). The constitutively active mutant was used to enhance 

CaMKII- β2a  interaction (please read the main document, especially Chapter 2, 

first!).  CaMKIIδ2(T287D) was detected in anti-HA immune complexes isolated 

from cells expressing WT FLAG-β2a (Figure A5) but not in anti-HA immune 

complexes isolated from cells expressing L493A-mutated FLAG-β2a or from cells 
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Figure A4. The β2a subunit targets CaMKIIα to Cav1.2 α1 subunits in 
heterologous cells. 
HEK293 cells were transfected to co-express EGFP-CaMKIIα, HA-Cav1.2 α1 
and/or FLAG-β2a (WT or L493A) as indicated. Triton-soluble fractions (Inputs) 
and Cav1.2α1 immune complexes (pellets) were western blotted for HA, FLAG, 
or EGFP.  These data are representative of at least 3 similar experiments. 
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Figure A5.  The β2a subunit targets CaMKIIδ2(T287D) to Cav1.2 α1 subunits 
in intact HEK293 cells. 
HEK293 cells co-expressing MYC-CaMKIIδ2(T287D), HA-Cav1.2 α1 and/or 
FLAG-β2a (WT or L493A) as indicated. Triton-soluble fractions (Inputs), 
supernates and anti-HA immune complexes (pellets) were western blotted for 
HA, FLAG, or MYC.  These data are representative of 2 independent 
experiments. 
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that did not express FLAG-β2a.  These data demonstrate that the high affinity 

CaMKII interaction with the β2a subunit promotes efficient assembly of multiple 

isoforms of CaMKII with LTCCs. 

 
The β2a subunit enhances CaMKII colocalization with recombinant full-
length α1 
 
Even though immunoprecipitations are useful to show physical association of 

proteins, they are not useful for localizing protein complexes in intact cells. 

Furthermore, they may misrepresent the true nature of protein complexes, for 

example due to artifacts introduced by protein dilution during lysis and wash 

procedures. Thus, I analyzed the colocalization of CaMKIIα and Cav1.2α1 in 

intact cells (see supplemental methods at the end of this section). The 

intensity correlation analysis (ICA) method of quantifying colocalization was first 

validated by showing that EGFP-CaMKIIα but not EGFP colocalized with HA-

Cav1.2 after Ca2+ ionophore treatment (Figure A6). The ICA method was then 

used to assess the colocalization of mCherry-CaMKIIα and EGFP-LTCC 

complexes coexpressed without the β subunit, with HA-β2a  or HA-β4 following 

ionophore treatment. All three proteins formed fluorescent puncta, though 

CaMKII and Cav1.2α1 puncta were not as prominent as the β subunit puncta. The 

HA-β4 protein was also present in the nucleus, which is consistent with its 

previously reported nuclear localization[47, 215].  In the absence of HA-β2a the 

ICQ of EGFP and mCherry was high, which is consistent with the β2a-

independent association of Cav1.2α1 and CaMKIIα under these conditions in Co-

IPs (Figure 22). The HA-β2a enhanced colocalization of mCherry-CaMKIIα with 
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EGFP-Cav1.2α1 by ~40% but the β4 isoform that does not bind CaMKII (Figure 

10 and 11) did not (Figure A7).  Thus, under conditions that activate CaMKII, the 

β2a but not the β4 subunits enhanced CaMKII association of Cav1.2 in intact cells. 

Unactivated CaMKII does not bind the β subunit (Figure 7 and 10) and thus is 

not tethered to the I/II linker (Figure 21), suggesting that CaMKII and LTCCs 

should not colocalize under basal conditions, without Ca2+ ionophore treatment. 

Omission of Ca2+ ionophore prevented the enhancement of mCherry-CaMKIIα 

colocalization with EGFP-Cav1.2α1 by HA-β2a(Figure A8). However, the lack of 

β2a-dependent increase in CaMKII-LTCC colocalization under basal conditions 

appears to contradict the coimmunoprecipitation studies in Figure A4 where 

CaMKII is targeted, albeit weakly, to Cav1.2α1 by the β2a under basal conditions. 

The discrepancy may be due to differences in the sensitivity of 

immunofluorescence and western blotting to CaMKII. Some suggested followup 

studies include the use of β2a (L493A), Cav1.2α1 (W470A), which should interfere 

with CaMKII targeting (please see main document) or varying ratios of Cav1.2α1, 

β2a and CaMKII to get optimal ICQ changes. 
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Figure A6. Validation of ICA method of Colocalization Analysis. 
To validate the method HEK293 cells plated in 12-well plates were transfected to 
coexpress HA-CaV1.2α1 (5 µg DNA per well) and FLAG-β2a (2 µg DNA per well) 
with EGFP or EGFP-CaMKII (1 µg DNA per well). They were then fixed, 
permeabilized, stained for HA and imaged by confocal microscopy. The ICQs 
were generated as described by Li et al and compared using a student’s t-test 
(*p< 0.05, n = 3 cells). 
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Figure A7 Differential targeting of CaMKII to full-length Cav1.2α1 subunit in 
by β2a and β4 in intact cells. 
 (A) HEK293 cells were transfected to coexpress EGFP-CaV1.2α1 (5 µg DNA per 
well) and mCherry-CaMKIIα(1 µg DNA per well) with HA-β2a or HA-β4 (2 µg DNA 
per well). After 36 hours they were treated with 10 µM A23187 for 5 minutes, 
fixed, permeabilized, stained for HA and imaged by confocal microscopy.  
 
(B) Intensity correlation quotients (ICQ) of the images were generated as 
described at the end of the Appendix Chapter. Average ICQs of 5 to 10 cells 
were calculated from multiple independent experiments (indicated on the bars) 
and statistical comparison of data were performed with one-way ANOVA followed 
by Newman Kewl’s Multiple Comparison Test.  
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Figure A8. Activity-dependent targeting of CaMKII to full-length Cav1.2α1 
subunit in intact cells. 
HEK293 cells were transfected to coexpress EGFP-CaV1.2α1(5 µg DNA per well)  
and mCherry-CaMKIIα(1 µg DNA per well) with HA-β2a or HA-β4 (2 µg DNA per 
well, images not shown). After 36 hours, they were treated with DMSO or 10 µM 
A23187 for 5 minutes, fixed, permeabilized, stained for HA and imaged by 
confocal microscopy. Intensity correlation quotients (ICQ) of the images were 
generated as described in at the end of this chapter. Statistical comparisons 
were performed as in Figure A7.  
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Cav β2a subunit phosphorylation in binary β2a-CaMKII complexes. 

In Chapter 3, I explored the role of CaMKII binding in overall phosphorylation of 

Cav1.2 subunits and in specific phosphorylation of the β2a subunit at Thr498 in 

LTCC complexes. However, these studies focused on the ternary α1-β-CaMKII 

complexes, and did not establish if CaMKII binding controlled β2a phosphorylation 

independently of the α1 subunit.  In a subset of the metabolic labeling studies in 

Chapter 3, I immunoprecipitated residual FLAG-β2a from the supernatants of 

lysates that had previously been subjected to CaV1.2α1 immunoprecipitation. The 

enriched β2a protein was visible by Ponceau-S stain but there was no 

comparable staining of α1, suggesting the enriched β2a pool is unlikely to be 

bound to α1 (Figure A9A).  32P incorporation into the apparently non-LTCC 

associated β2a was unaffected by the L493A mutation. In additional studies, I 

determined that Thr498-specific phosphorylation of β2a was also enhanced in 

lysates of cells cotransfected with only FLAG-β2a and CaMKII and in binary FLAG 

immune complexes (Figure A9B). These preliminary studies imply that 

modulation of Thr498 phosphorylation is dependent on the CaMKII-β2a 

interaction and qualitatively independent of any interaction of CaMKII with the 

associated α1. (Chapter 3 discusses this subject more exhaustively) 

 
Loss of CaMKII binding to β2a does not alter phosphorylation of β2a at 
Thr498 within LTCC complexes in the presence of only endogenous CaMKII 
 
 Since HEK cells appear to express a low level of at least one endogenous 

CaMKII isoform[193, 194], I also examined the effect of CaMKII binding on β2a 

phosphorylation at Th498 in the presence of only endogenous CaMKII. Mutation 

of β2a to disrupt binding of CaMKII reduced phosphorylation of β2a at Thr498 by 

60% in total lysates but had no effect on Thr498 phosphorylation in 
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Figure A9. Phosphorylation of β2a in binary complexes with CaMKII. 
(A) HEK293 cells co-expressing HA-Cav1.2 α1, EGFP-CaMKIIα and FLAG-β2a 
(WT or L493A) were labeled with 32P-phosphate (see Methods). β2a was 
immunoprecipitated from supernates following the HA-Cav1.2α1 
immunoprecipitation: Representative Ponceau-S stain of FLAG-β2a showing 
enrichment of β2a but not α1 (α1 normally migrates at the ~200 kDa as indicated), 
and 32P-phosphorylation. n = 4 
 
(B) Lysates of HEK293 cells co-expressing EGFP-CaMKIIα and FLAG-β2a (WT 
or L493A), as indicated, were immunoprecipitated using anti-FLAG beads. The 
immune complexes were analyzed by western blotting as indicated. n=2 
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Figure A10. Binding of endogenous CaMKII enhances β2a phosphorylation 
at Thr498.  
Lysates of HEK293 cells co-expressing HA-Cav1.2 α1 and FLAG-β2a (WT or 
L493A), as indicated, were immunoprecipitated using anti-HA beads. Total 
lysates (A) and immune complexes (B) were analyzed by western blotting as 
indicated. Phosphorylation of wild-type and mutated FLAG-β2a proteins at Thr498 
was quantified.  Phosphorylation of FLAG- β2a(L493A) was normalized to that of 
wild-type β2a and the mean±sem (n=3) is plotted: a one sample t-test was used 
for statistical comparison 
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immunoprecipitated LTCC complexes (Figure A10). These results suggest 

binding of the endogenous CaMKII isoform in HEK to LTCC is neither required 

nor sufficient to alter phosphorylation of Th498 within LTCC complexes, but is 

important in phosphorylating free β2a at Thr498.  

 

The effect of CaMKIIδ binding to β2a on Thr498 phosphorylation  

A variety of CaMKII isoforms are expressed in different tissues. The CaMKIIδ 

isoforms predominate in the heart and have been shown to facilitate LTCCs. I 

previously showed that the phosphorylation β2a at Thr498 was unaffected by co-

transfection CaMKIIδ2 (Figure 15A), which contrasts with the effects of CaMKIIα 

binding and suggests effects of CaMKII isoform identity. To investigate in more 

detail the potential isoform selectivity in the effect of CaMKII-binding on Thr498 

phosphorylation, I cotransfected HEK cells with MYC-CaMKIIδ2 and FLAG-

β2a(WT or L493A) with or without the α1 subunits. I first analyzed Thr498 

phosphorylation in cells doubly transfected with MYC-CaMKIIδ and FLAG-β2a. 

Mutation of Leu493 to Ala in β2a reduced Thr498 phosphorylation in HEK293 total 

lysates containing MYC-CaMKIIδ2 WT (Figure A11) but this effect was less 

severe than that in the presence of CaMKIIα (Figure 26, 27 and A9). Binding of 

MYC-CaMKIIδ2 did not appear to alter Thr498 phosphorylation within 

immunoprecipitated FLAG-β2a-CaMKII binary complexes. Thus, isoform identity 

appears to control the effect of CaMKII binding on phosphorylation. 

 
I also compared Thr498 phosphorylation in the presence of CaMKIIδ2 to that in 

presence CaMKIIδ3. The CaMKIIδ2 variant is primarily cytosolic but the CaMKIIδ3 

splice variant contains a nuclear localization sequence that can target CaMKIIIδ3 

to the nucleus[216]. Despite this difference, I observed little  
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Figure A11. Effect of CaMKIIδ isoform binding on β2a phosphorylation at 
Thr498 in Binary Complexes. 
Lysates of HEK293 cells co-expressing FLAG-β2a (WT or L493A) and MYC-
CaMKIIδ2 or δ3 isoforms (WT or T287D) were immunoprecipitated using anti-HA 
beads. The immune complexes were analyzed by western blotting. A and B are 
replicate experiments. 
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difference between the two CaMKIIδ isoforms with regards to the extent of 

Thr498 phosphorylation or the effect of binding (Figure A11). Even though this 

would imply that the differential localization of CaMKII isoforms does not control 

Thr498 phosphorylation, it is possible that under my conditions the δ isoforms of 

CaMKII did not localize differentially within the cell.  The actual localization of the 

isoforms was not determined in my studies.   

 

Activation of CaMKIIα did not alter the effect of Leu493 mutation on Thr498 

phosphorylation (Figure 28). I also tested if CaMKIIδ activation by mimicking 

Thr287 autophosphorylation (by T287D mutation) prevented the reduction in 

Thr498 phosphosphorylation by Leu493Ala mutation. MYC-CaMKIIδ2 (T287D) or 

MYC-CaMKIIδ3(T287D) both resulted in increased overall phosphorylation of β2a, 

as evidenced by a reduction in electrophoretic mobility of the immunoprecipitated 

FLAG-β2a (Figure A11). When normalized to the total amount of β2a, 

phosphorylation of Thr498 did not appear to be enhanced by the 

CaMKIIδ(T287D) mutants as compared to WT CaMKIIδ. Even though these 

experiments are preliminary and the results inconsistent, the use of CaMKIIδ 

instead of CaMKIIα virtually overcame the Thr498 phosphorylation deficit caused 

by Leu493 Ala mutation (Figure A11), which confirmed my previous published 

observations (Figure 15A).  

 

In addition to the above studes of binary β2a-CaMKIIδ complexes, I also explored 

Thr498 phosphorylation in ternary α1-β2a-CaMKIIδ complexes. I cotransfected 

HEK293 cells with Cav1.2α1, MYC-CaMKIIδ2 (T287D) or MYC-CaMKIIδ3(T287D)  

and FLAG-β2a (WT or L493A). CaMKII binding appeared to reduce Thr498 

phosphorylation in total lysates or ternary LTCC complexes (Figure A12). 

However, it is important to note the differences in Cav1.2α1 subunit expression.  
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Thus, my studies with the CaMKIIδ isoforms implicate additional, isoform-

dependent factors in controlling the effect of CaMKII binding on Thr498 

phosphorylation. Whether the differences between CaMKIIα and CaMKIIδ 

isoforms are due to differences in their expression or activation remains 

inconclusive. 

 

Overall, multiple factors would be predicted to determine the extent to which 

CaMKII binding affects Thr498 phosphorylation within β2a in intact cells, including 

the activity, subcellular localization and isoform of CaMKII. Of these, the identity 

of the CaMKII isoform affected the binding-dependent changes in Thr498 

phosphorylation in my preliminary studies. The various factors remain to be more 

precisely defined.
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Figure A12. Effect of CaMKIIδ isoform binding on β2a phosphorylation at 
Thr498 in Ternary Complexes. 
Lysates of HEK293 cells co-expressing HA-Cav1.2α1, FLAG-β2a (WT or L493A) 
and MYC-CaMKIIδB or δC isoforms (WT or T287D) were immunoprecipitated 
using anti-HA beads. The immune complexes were analyzed by western blotting. 
A and B are replicate experiments 
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Thr498 phosphorylation inhibits anchoring of CaMKII to Cav1.2α1 by β2a 

Phosphorylation of the β2a subunit at Thr498 is critical for CaMKII-dependent 

facilitation of LTCCs in cardiomyocytes [79].  In addition, Thr498 phosphorylation 

interferes with CaMKII binding to the β2a subunit in vitro (Chapter 2).  I therefore, 

investigated whether phosphorylation of β2a modulated CaMKII tethering to 

CaV1.2α1 subunits.  In initial experiments, wild-type and Thr498Ala mutated His-

β2a subunits were phosphorylated with CaMKII.  Immunoblotting using a 

phospho-specific antibody confirmed that Thr498 was phosphorylated in the wild 

type β2a, but not in the T498A mutant (Figure A13A).  The phosphorylated β2a 

proteins were also used to tether CaMKII to the α1 I/II linker in a glutathione-

agarose cosedimentation assay.  Prephosphorylation reduced CaMKII tethering 

by wild type but not T498A β subunit (Figure A13B).  Next, I explored if 

phosphorylation of β2a in cells alters targeting of CaMKII to the full-length 

channel. 

 

Mimicking of β2a Thr498 phosphorylation impairs targeting of CaMKII to full-
length CaV1.2 α1  
 
The β2a subunit is phosphorylated at Thr498 in transfected cells. Because of the 

difficulty in controlling the level of phosphorylation of β2a and CaMKII in cells, I 

explored the role of Thr498 in controlling CaMKII targeting to CaV1.2 α1 subunits 

by using mutated β2a subunits.  HEK293 cells were transfected to co-express 

CaMKIIα or CaMKIIδ2(T287D) and HA-CaV1.2 α1 subunit with β2a subunits 

mutated to either prevent (Thr498Ala) or mimic (Thr498Glu) the effects of Thr498 
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Figure A13. Anchoring of CaMKII to the α1 by the β subunit is regulated by 
phosphorylation at Thr498. 
His-β2a (WT or T498A) was incubated at 37oC for 20 minutes with CaMKII, 
Ca2+/CaM, in the presence (+) or in the absence (-)  of ATP. The reaction was 
stopped by adding excess EDTA.  
 
(A) T498 phosphorylation was demonstrated using an antibody that detects 
phospho-T498.  
 
(B) Thr286-autophosphorylated CaMKIIα (50 pmol) was incubated with GST-
Cav1.2α1 I/II linker (WT) with and without His-tagged β2a (WT or T498A). CaMKII 
cosediments with GST-Cav1.2 I/II linker only in the presence His-β2a. 
Phosphorylation of β2a at Thr498 reduces CaMKII anchoring by the β subunit. 
(n=3)  
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Figure A14 . Targeting of CaMKII to full-length α1 subunit is regulated by 
Thr498 phosphorylation. 
(A) HA-Cav1.2 was cotransfected into HEK293 cells with EGFP-CaMKIIα and  
Flag-β2a (WT, T498A or T498E). Cav1.2α1 was then immunoprecipitated from cell 
lysates using an antibody against the HA tag. Immunocomplexes were analysed 
by western blotting for HA, FLAG, CaMKII. n =1 
 
(B) myc-CaMKIIδ2(T287D) targeting by β2a (WT) and β2a (T498E) to α1 was 
compared as in (A). n = 1 
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phosphorylation. LTCC complexes were isolated by immunoprecipitation using 

antibodies to the HA-tag and then probed for the presence of β2a and CaMKII.  

As repeatedly observed and mentioned through out this document (please see 

Introduction, Chapter 3, Chapter 4, Figure 22, Figure A4, Figure A7, Figure 

A8), there is some weak β subunit-independent association of CaMKIIα and 

Cav1.2α1. In contrast, CaMKIIδ does not appear to exhibit such β subunit-

independent association with Cav1.2α1 (Figure A5).  However, the reader should 

resist the temptation of meaningless speculation on this difference till CaMKIIα 

and CaMKIIδ targeting are compared in parallel experiments using the same 

antibody to probe for CaMKII. Compared to WT and T498A, the T498E mutation 

severely diminished CaMKII targeting to the α1 by the β subunit (Figure A14). 

Based on these observations, it can be inferred that phosphorylation of Thr498 

prevents CaMKII association with the LTCC complex. Furthermore, β2a 

phosphorylation in preformed LTCC-CaMKII complexes is likely to dissociate 

CaMKII. 

 

Time course of β2a phosphorylation in LTCC complexes 

As LTCC facilitation in cardiomyocytes occurs on a time scale of milliseconds to 

minutes, a process underlying facilitation such as phosphorylation would be 

expected to kick in before or during the timescale of facilitation.  I therefore 

determined the time course of β2a phosphorylation by associated CaMKII within 

the preformed complex on glutathione agarose beads.  Addition of ATP to the 

complex resulted in a rapid reduction of the electrophoretic mobility of β2a(WT) 
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within the first minute, consistent with the known multi-site phosphorylation, but 

the electrophoretic mobility of β2a(T498A) was essentially unaltered even after a 

20 minute incubation (Figure A15A). Notably, the GST-I/II linker band was not 

shifted on these gels, suggesting that it is not phosphorylated under these 

conditions.  These observations are consistent with previous findings [150] that 

Thr498 to Ala mutation prevents phosphorylation at Thr498 and additional sites 

in β2a. Thus phosphorylation of Thr498 within LTCC complexes is rapid, 

consistent with a role in facilitation.  
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Figure A15. Phosphorylation of Thr498 dissociates CaMKII from LTCC 
complex. 
 (A) A preassembled complex of GST-I/II linker, His-β2a (WT or T498A) and 32P-
labelled CaMKIIα was incubated with or without 0.5mM ATP. Aliquots of resin 
were removed at the indicated times and cosedimented proteins were analyzed 
by western blotting for His and GST.  
 
(B and C) GST-α1, β2a and CaMKII complexes were preassembled in 
glutathione-coated wells and dissociation was initiated by addition of buffer or 
ATP. Aliquots of buffer were removed at the indicated times and CaMKII in the 
buffer (B) or remaining in wells (C) was quantified by scintillation counting. (n = 3, 
in some cases the error bars are smaller than the symbols). 
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Thr498 phosphorylation dissociates CaMKII from LTCC complexes in vitro 

The effect of β2a phosphorylation on CaMKII binding to GST-I/II was assessed 

using glutathione-coated plate binding assays, in which 32P-labeled 

autophosphorylated CaMKII was tethered to the GST-I/II linker via either β2a(WT) 

or β2a(T498A).  In the absence of added ATP, the tethering of CaMKII to GST-I/II 

by either form of β2a was remarkably stable over a 2-hour time course. Addition of 

ATP to β2a(WT) complexes resulted in time-dependent release of ≈50% of bound 

kinase over the 120 min time course, as assessed by the appearance soluble 

radioactivity (Figure A15 B) or a reduction in radioactivity remaining bound in 

wells (Figure A15C).  Only ≈25% of the bound kinase was released after 15 

minutes, even though the immobilized β2a subunit appears to be maximally 

phosphorylated at this time (Figure A15A).  Notably, addition of ATP induced 

only a slow dissociation of CaMKII from β2a(T498A) complexes, with no 

significant dissociation after 15 minutes and only ≈25% dissociation after 2 hours.  

These data suggest that phosphorylation of β2a at Thr498 plays a key role in 

destabilizing the tethering of CaMKII to the I/II linker domain of the CaV1.2α1 

subunit. However, it appears that phosphorylation of β2a at other sites or 

nucleotide binding also contribute to the dissociation of CaMKII. However, 

CaMKII dissociation in vitro occurs on a much slower time-scale than facilitation. 

It will be interesting to determine how dissociation correlates with recovery from 

facilitation. 
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Supplemental immunocytochemical methods 

Immunocytochemistry: HEK293 cells were plated on poly-D-lysine-coated 18 mm 

coverslips (Fisher Scientific, Warrington PA) and transfected to coexpress EGFP-

CaV1.2α1 and mCherry-CaMKIIα with HA-β2a or HA-β4. After 36 hours, A23187 

(10 µM) was added and the cells were incubated for 5 minutes at 37oC to boost 

CaMKII activation. The cells were fixed in 4% paraformaldehyde, 4% sucrose in 

phosphate buffered saline (PBS) for 20 minutes at 37oC and permeabilized at 

room temperature for 5 minutes with 0.1% Triton-X 100 diluted in PBS. After a 1-

hour blocking with 10% Donkey serum, the cells were incubated overnight with 

anti-HA (Covance, Berkeley, CA) and the following day with Alexa-Fluo 647 

(Molecular Probes, Eugene, OR) secondary antibody. After rinsing, the 

coverslips were mounted onto slides (Fisher Scientific, Pittsburgh, PA) using 

Aqua Polymount solution (Polysciences, Warrington, PA). They were then 

imaged using a Zeiss LSM 510 inverted confocal laser scanning microscope with 

a Plan-Apochromat 63X oil immersion objective (NA 1.4) available at the Cell 

Imaging Shared Resource Core at Vanderbilt. The excitation 

wavelength/emission filter combinations used were: 488 nm / 505-550 nm for 

EGFP; 543 nm/ 560-615 nm for mCherry and 633 nm/long-pass 650 nm for 

Alexa-Fluor 647.  

 

Intensity correlation analysis (ICA): ICA is a method that compares pixel 

intensities in two images and derives a numerical Intensity Correlation Quotient 

(ICQ) that determines colocalization (ICQ >0)  random assortment (ICQ =0) or 
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segregation (ICQ<0) of the pixels[217]. To validate the method, HEK293 cells 

were transfected to coexpress HA-CaV1.2α1 and Flag-β2a with EGFP or EGFP-

CaMKII. They were then fixed, permeabilized, stained for HA and imaged by 

confocal microscopy. The ICQs were generated as described in reference 

[217](Figure A6). 

 




