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CHAPTER I 

 

INTRODUCTION 

 

This dissertation investigated the composition and function of two distinct 

eukaryotic ribonucleoprotein (RNP) complexes; the ribosome and trans-acting 

proteins associated with internal ribosomal entry sites.  I specifically targeted the 

role these RNPs perform in mRNA translation.  This introduction is broken into 

two parts.  Part I discusses the history of ribosome structure and function.  Part II 

introduces the concept of internal ribosomal entry sites and their trans-acting 

factors.  The end of both sections summarizes the advances that this dissertation 

has contributed to our knowledge of both complexes.   

 

Introduction Part I: Discovery of Ribosome Structure and Function 

 

Protein synthesis and the Central Dogma of Molecular Biology 

 In 1958 Francis Crick described what he called “the central dogma of 

molecular biology” (Crick, 1970; Crick, 1958).  Crick’s dogma dictated that 

proteins are not made directly from genes and that the intermediary between 

DNA and protein is RNA (Crick, 1970; Crick, 1958).  The entire process can be 

summarized by a pathway where DNA gives rise to RNA which in turn gives rise 

to proteins.  The first step in the process by which DNA is generated from RNA is 
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called transcription.  The enzymes primarily responsible for transcription are 

called RNA polymerases along with a number of additional proteins and 

cofactors.   

The second step of Crick’s dogma is the conversion of RNA into protein.  

The process by which RNA is converted to a polypeptide is called translation.  

Although the ribosome represents the most important catalytic component of 

translation, like RNA polymerases in transcription, a number of other proteins 

and cofactors are required for translation.  Both transcription and translation are 

separate processes in the central dogma of molecular biology that require large, 

complex molecular machines (polymerases and ribosomes, respectively) and a 

number of factors.    

This dissertation is principally concerned with the discovery of novel 

proteins that regulate eukaryotic translation.  As such, a brief history of the 

ribosome and its components is appropriate.  The term “ribosome” was first 

coined by R.B. Roberts in 1958.  The ribosome was the name given to the 

molecular machine responsible for decoding mRNA into protein.  Some of the 

first evidence that the ribosome was the molecular assembly responsible for 

translation came from the lab of Nobel Laureate George E. Palade (Palade, 

1955).  Palade and coworkers used electron microscopy to directly observe the 

synthesis of radioactive chymotrypsinogen on the endoplasmic reticulum (ER) 

(Palade, 1955).  The position of the newly synthesized chymotrypsinogen was 

punctate in nature.  More importantly, the newly synthesized protein was 

scattered along the ER at what appeared to be organized centers of protein 
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synthesis.  The centers of protein synthesis observed by Palade and coworkers 

were ribosomes.   

 Once the ribosome was associated with the site of protein synthesis, 

several research groups attempted to understand different aspects of the life of 

ribosomes.  What is the nature of the ribosomal material?  How do ribosomes 

function to make proteins from mRNA?  The landmark experiments that have 

attempted to answer these questions will be described below. 

 

Composition of Ribosomes 

Ribosomes consist of two subunits that have different sedimentation 

coefficients.  In prokaryotes, the 70S ribosome is divided into a large 50S and 

small 30S subunit.  The 30S subunit contains a 16S ribosomal RNA (rRNA) and 

21 core proteins (Dzionara et al., 1970).  The 50S subunit contains 23S and 5S 

rRNAs and 34 proteins.  In eukaryotes, the 80S ribosome is divided into a large 

60S and a small 40S subunit.  The 60S subunit contains 46 proteins and three 

rRNA species (28S, 5.8S, and 5S) (Planta and Mager, 1998).  The 40S subunit 

contains 33 ribosomal proteins associated with a single 18S rRNA (Planta and 

Mager, 1998).  In eukaryotes, the ribosomal RNA genes are transcribed as 

precursor RNAs.  Three of the four rRNAs are transcribed as 35S pre-RNA by 

RNA polymerase I (Kressler et al., 1999).  Following transcription, the 35S pre-

RNA transcript is processed into the 18S, 5.8S, and 28S rRNAs (Kressler et al., 

1999).  The 5S ribosomal RNA is transcribed independently by RNA polymerase 

III (Kressler et al., 1999).   
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Identification of Core Ribosomal Proteins 

Purification of ribosomes is achieved through sucrose gradient 

ultracentrifugation.  Ribosomes, being very dense structures, will localize to the 

highest concentration of a sucrose gradient.  Therefore, density gradient 

ultracentrifugation techniques were used to isolate ribosome particles.   

One of the most important factors in determining if a protein was part of 

the ribosome core was the association of a protein with the ribosomal RNP in a 

high salt buffering environment.  Using this criteria, research groups purified 

ribosomes in the presence of 0.5M NaCl (Dzionara et al., 1970; Kruiswijk and 

Planta, 1974; Warner and Gorenstein, 1978).  Proteins that remained associated 

with the ribosome under these stringent conditions were considered core 

ribosomal proteins. 

 Separation of individual core ribosomal proteins was achieved through 

two-dimensional denaturing gel electrophoresis (Kaltschmidt and Wittmann, 

1970; Kruiswijk and Planta, 1974; Warner and Gorenstein, 1978).  2-D 

electrophoresis separates proteins by their isoelectric point and molecular 

weight.  A majority of the ribosomal subunits are basic proteins with a pI >8.  The 

molecular weight of the individual ribosome proteins ranged from 60kDa to 7kDa 

(Kaltschmidt and Wittmann, 1970).   

 After the ribosomal subunits were separated by 2D-gel electrophoresis, 

individual proteins could be excised from the gels.  Trypsin was used to digest 

proteins from the gel slices, and Edmund degradation was used to sequence the 

 4



polypeptides (Chersi et al., 1968; Morinaga et al., 1976).  Although the 

combination of 2D-electrophoresis and manual sequencing resulted in the 

identification of almost all the core subunits, emerging technologies applied later 

proved that there are additional core ribosome proteins (Link et al., 1999). 

 

Components of the Ribosome Necessary for Translational Activity  

 The research groups of Harry Noller, Masayasu Nomura, and others have 

investigated the components of the prokaryotic ribosome that are necessary for 

mRNA translation (Noller and Chaires, 1972) (Nomura and Lowry, 1967) 

(Nomura and Traub, 1968).  They discovered that partial digestion of the 

ribosomal proteins with proteases failed to completely abolish translational 

activity (Noller et al., 1992).  However, treatment of ribosomes with ribonucleases 

completely abolished peptidyl transferase activity.  These results suggested that 

the catalytic activity responsible for mRNA translation might exist in the rRNA, 

not the ribosomal proteins.  Crystallization of the prokaryotic ribosome would 

later provide evidence that the site of peptidyl transferase activity was void of 

direct contact with ribosomal proteins.  Rather, the structure of the prokaryotic 

70S ribosome showed that only the 23S rRNA was in proximity to the peptidyl 

transferase site (Nissen et al., 2000).  Collectively, the work of Noller and others 

would suggest that peptidyl transferase activity of the ribosome is dependent on 

ribosomal RNA (Nissen et al., 2000; Noller et al., 1992).  Therefore, ribosomal 

proteins appear to be dispensable for the most important catalytic activity of the 

large subunit. 
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Based on the experiments of Nomura and others, the core components of 

the prokaryotic ribosome are believed to function as chaperones of the ribosomal 

RNA (Held et al., 1974; Mizushima and Nomura, 1970). However, the function of 

each individual protein has not been investigated in detail.  Assembly maps of 

the 30S subunit suggest that ribosome formation requires a specific protein-

binding-order for ribosome biogenesis (Held et al., 1974; Mizushima and 

Nomura, 1970).  Ribosome formation is hierarchical supporting an RNA-

chaperone function for ribosomal proteins.  Additionally, these results suggest 

that ribosomal proteins are inter-dependent in their association with the 

ribosome.  Therefore, it is likely that each core ribosome protein mediates the 

association of multiple neighboring proteins with the ribosomal RNA.   

 

Structural Formation of the Ribosome 

 To identify the functional components of the ribosome that catalyze protein 

synthesis, Nomura and colleagues dissociated the ribosome into subparticles 

(40S and 23S).  To dissociate the ribosomal proteins, the particles were 

centrifuged in cesium chloride, a process referred to as the “split reaction” 

(Hosokawa et al., 1966).  Proteins that would dissociate from the core ribosome 

particle after centrifugation through CsCl were referred to as the “split proteins” 

(Hosokawa et al., 1966; Traub et al., 1967; Traub and Nomura, 1968a; Traub 

and Nomura, 1968b).  The subribosomal particles that lost split proteins were not 

able to synthesize polypeptides from mRNAs (Hosokawa et al., 1966).  However, 

reconstitution of sub-ribosomal particles with split protein-containing purifications 
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restored protein synthesis in vitro (Traub and Nomura, 1968a; Traub and 

Nomura, 1968b; Traub et al., 1968).  These results would suggest that the 

ribosome can form an active RNP complex spontaneously in vitro (Hosokawa et 

al., 1966).  Later studies confirmed that individually purified (recombinant) core 

ribosomal proteins would form active ribosomes when reconstituted with rRNA in 

vitro (Culver and Noller, 1999). 

 

Chaperones of Prokaryotic Ribosome Assembly   

 Although the research groups of Noller and Nomura showed that 

prokaryotic ribosomes would spontaneously form active complexes in vitro, more 

recent research suggests that these ribosomes require additional cofactors to 

form.  A search for these cofactors was initiated because the in vitro assembly 

reaction required a heat activation step. In E. coli, normal ribosome assembly 

forms at a constant, lower temperature, suggesting that a cofactor might facilitate 

ribosome assembly in vivo (Nierhaus, 1991).  Recently, the heat-shock protein 

DnaK has been shown to drive ribosome assembly in vitro, bypassing the 

requirement for a shift in reaction temperature (Fatica and Tollervey, 2002).  

Therefore, prokaryotic ribosome assembly is not entirely spontaneous and 

requires either the activity of chaperone proteins or heat energy. 
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Chaperones associated with the eukaryotic core ribosome 

 During translation, the nascent polypeptide emerges from the polypeptide 

exit channel located in the large subunit.  The nascent polypeptides are assumed 

to lack a native structure immediately after synthesis.  Therefore, it has been 

postulated that a number of ribosome-associated chaperone proteins bind to the 

nascent polypeptide during synthesis to achieve proper structure (Albanese et 

al., 2006).  For example, in eukaryotes a complex of proteins called the nascent 

polypeptide associated complex (NAC) includes the HSP70 chaperone Ssb1/2p, 

Zuo1p, and Ssz1p, and it is believed to associate with the ribosome and fold 

nascent polypeptides as they are being synthesized (Huang et al., 2005) (Yan et 

al., 1998).  The precise function of the NAC complex is not completely 

understood.  Two lines of evidence suggest that NAC functions to fold nascent 

polypeptides.  First, NAC proteins form molecular cross-links with nascent 

polypeptides (Albanese et al., 2006) (Pfund et al., 1998).  Second, treatment of 

cells with puromycin, a drug that prematurely terminates polypeptide synthesis at 

the ribosome, reduces the association of the NAC complex with the ribosome 

(Nelson et al., 1992). 

 A second function for the NAC complex has been proposed.  Because 

puromycin treatment of ribosomes only partially dissociates NAC components, it 

is possible that this chaperone-containing complex functions to ensure that the 

core ribosome particle retains a correct conformation.  Additionally, studies from 

Nancy Craig’s lab suggest that Ssb1/2p functions to facilitate the translation 

process and is important in maintaining appropriate ribosome structure (Nelson 
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et al., 1992).  Therefore, it is possible that Ssb1/2p may carry-out two functions: 

1. the folding of nascent polypeptides, and 2. chaperoning the core ribosome 

particle.  The recent discovery of an HSP protein that chaperones the biogenesis 

of nascent ribosomes supports a role for these proteins in maintaining ribosome 

structure or formation (Meyer et al., 2007).  In summary both prokaryotic and 

eukaryotic ribosomes contain HSP70 chaperone proteins, although the precise 

function of these chaperones in protein synthesis is poorly understood. 

 

Similarities and Differences in Prokaryotic and Eukaryotic Ribosome 
Formation 
 
 Cryo-electron microscopy has provided a straightforward understanding of 

the structural differences between eukaryotic and prokaryotic ribosomes (Spahn 

et al., 2004).  Although the eukaryotic 60S and 40S subunits have additional 

rRNA and protein components compared to the prokaryotic 50S and 30S 

subunits, the overall structure and shape of the prokaryotic and eukaryotic 

ribosomes are conserved (Spahn et al., 2004) . As discussed in the proceeding 

section, active prokaryotic ribosomes will form in vitro.  In contrast, attempts 

aimed at reconstituting eukaryotic ribosomes in vitro have failed.  The reasons for 

this failure are currently unknown.  In eukaryotes, ribosome biogenesis begins in 

the nucleolus and is completed in the cytoplasm.  Over 100 different ribosome 

biogenesis factors have been identified that localize to the nucleolus and are 

postulated to function during the assembly of the ribosome (Warner, 2001) 

(Fatica and Tollervey, 2002) (Kressler et al., 1999; Woolford, 2002).   
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Eukaryotic Ribosome Biogenesis 

 A majority of eukaryotic ribosome biogenesis occurs in a subnuclear 

compartment termed the nucleolus (Warner, 2001).  The (28S-25S), 18S, and 

5.8S rRNAs are all transcribed as a single 35S precursor RNA by RNA 

polymerase I, whereas the 5S rRNA is independently transcribed by RNA 

polymerase III (Kressler et al., 1999).  Following transcription of the 35S pre-

rRNA, nucleases process the precursor RNA into 27S, 25S, 20S, and 5.8S 

rRNAs (Fromont-Racine et al., 2003; Granneman and Baserga, 2004; Kressler et 

al., 1999; Warner, 2001).  Cleavage of these precursor rRNAs into mature rRNA 

species is facilitated by a number of small nucleolar RNAs (Fatica and Tollervey, 

2002).  Unlike the large subunit rRNAs (28-25S, 5.8S, and 5S), the small subunit 

rRNA (18S) completes a final step of processing outside the nucleolus (Kressler 

et al., 1999).  The pre-40S particle is shuttled from the nucleolus to the 

cytoplasm.  In the cytoplasm the pre-20S rRNA is processed into mature 18S 

rRNA. 

 Assembly of ribosomal RNAs with ribosomal proteins in the nucleolus is a 

complex and poorly understood process.  A plethora of non-ribosomal nucleolar 

proteins have been identified that are critical for ribosome biogenesis (de la Cruz 

et al., 2005; Dosil and Bustelo, 2004; Harnpicharnchai et al., 2001).  Mutation of 

these ribosome biogenesis factors results in ribosomal RNA processing defects.  

Because of all the cofactors involved in biogenesis, a complete understanding of 

eukaryotic ribosome formation will require decades of research.   
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Ribosome-associated proteins discovered through modern mass 
spectrometry Approaches 
 
 Although several research groups successfully identified a number of core 

ribosome subunits using a combination of 2D-gel electrophoresis and manual 

protein sequencing, it is possible that a subset of the associated proteins may 

have escaped detection.  There are several possible reasons why these proteins 

may have been missed from these early screens.  First, separation of complex 

protein mixtures using 2D-gels has been problematic in the past because 

complex samples often contain proteins with overlapping isoelectric points (pI) 

and similar molecular weights (MW).  2-D gel electrophoresis has a limited 

fractionation range.  As a result, proteins with extreme pI and MW are typically 

absent.  Additionally, the technology used to identify proteins often presented 

technical hurdles.  Because Edmund degradation requires near-homogeneity, 

proteins with overlapping mobilities in 2D gels would have provided confusing 

protein sequences.  Additional problems with 2D analysis include the fragile 

nature of the gels, and various buffering issues.  Collectively, the combination of 

2D-gel electrophoresis and Edmund degradation correctly defined the identity of 

a majority of the ribosomal proteins (Dzionara et al., 1970; Higo et al., 1982; 

Ishiguro, 1976; Kaltschmidt and Wittmann, 1970; Kruiswijk and Planta, 1974; 

Otaka et al., 1982; Zinker and Warner, 1976).  However, common difficulties that 

are encountered when using these techniques most likely left a population of 

ribosome-associated proteins undiscovered. 
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 In the mid-1990s, mass spectrometry approaches were developed that 

aimed to identify the composition of complex protein samples without the use of 

gels (McCormack et al., 1997).  This approach was later developed for analyzing 

complex protein mixtures termed direct-analysis-of-large-protein-complexes 

(DALPC) (Link et al., 1999).  The approach was renamed to multidimensional-

protein-identification-technology (MUDPIT) (Washburn et al., 2001).  The 

approach coupled multidimensional liquid chromatography with tandem mass 

spectrometry to identify proteins in very complex mixtures.  The technique 

provided advantages over previous approaches used to identify components of 

multi-protein complexes.  First, MUDPIT circumvented the need for separation of 

proteins by gels.  Peptides lost during extraction from gel slices could result in 

failure to identify proteins.  In MUDPIT, peptides are directly loaded onto a multi-

dimensional-chromatography column.  Second, MUDPIT identifies proteins in a 

sample that do not stain in gels.  Therefore, the technique reduces the biased 

imposed by manual visualization of protein bands.   

Perhaps the most important advantage of MUDPIT is the multi-

dimensional nature of the chromatography columns used in the technique.  First, 

the peptides are loaded onto a strong-cation-exchange column.  The peptides 

are released with successive increases in salt concentration and transferred to a 

reversed phase column.  Peptides will bind to the reversed phase column based 

on their relative hydrophobicity.  Peptides are dissociated with a gradient of 

increasing acetonitrile concentration.  The multi-dimensional nature of MUDPIT 

chromatography dramatically increases the number of peptides that are detected.  
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This most likely occurs by separating abundant peptides from less abundant 

peptides that are competing for ionization and detection by the mass 

spectrometer.  

The MUDPIT approach successfully identified a number of the known core 

components of the ribosome (Link et al., 1999).  In addition, novel ribosome-

associated proteins were discovered that co-purified with the eukaryotic 

ribosome.  Among Yates and Link’s initial screen, Asc1p/RACK1 associated with 

the ribosome under high salt conditions.  Asc1p was associated with yeast 

ribosome while RACK1 was associated with human ribosomes.  An exceptionally 

high number of unique Asc1p and RACK1 mass spectra were associated with 

ribosomes under high salt conditions.  2-D gel analysis of yeast ribosomal 

proteins showed Asc1p was stoichiometric to other core ribosome components.  

Because Asc1p and RACK1 bound to the ribosome under stringent conditions 

and appeared to be stoichiometric with other core ribosomal proteins, it was 

speculated that these proteins might be core components of the ribosome (Link 

et al., 1999). 

 

ASC1 Gene Structure is Consistent with other Core Ribosome Protein 
Encoding Genes 
 
 If ASC1 encodes a ribosome-associated protein, then the structure of the 

ASC1 gene should contain features that are shared among other ribosomal 

protein encoding genes.  The codon adaptive index (CAI) is a measurement of 

the relative adaptiveness of the codon usage of a gene toward the codon usage 

of highly expressed genes (Jansen et al., 2003; Sharp and Li, 1987).  In yeast, 
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the ribosomal protein coding genes have a CAI ranging from 0.6 to 0.9 with 1.0 

being the highest value (Planta and Mager, 1998).  ASC1 has a CAI of 

0.71(Gerbasi et al., 2004).  Therefore, the codon adaptiveness of ASC1 parallels 

that of other ribosomal protein encoding genes.  Another feature of the ASC1 

gene structure that is consistent with that of ribosomal protein encoding genes is 

the presence of an intron.  Introns occur in only small percentage (<3%) of genes 

in yeast.  However, 66% of the ribosomal genes contain an intron (Planta and 

Mager, 1998).  Therefore, the structure of the ASC1 gene shares similar features 

with other ribosomal protein encoding genes. 

 

Proposed Functional roles of ASC1 in yeast 

 The name ASC1 is an acronym that stands for “absence of growth 

suppression in a cyp1 mutant” (Chantrel et al., 1998).  CYP1 is a yeast 

transcription factor that activates the expression of a number of genes in 

response to hypoxia (Creusot et al., 1988).  Mutant yeast strains with cyp1 alleles 

fail to grow in environments that are oxygen poor (Kwast et al., 1998).  ASC1 

was discovered in a screen for suppressor mutations that would rescue growth in 

a low oxygen environment in a cyp1 mutant yeast background (Chantrel et al., 

1998).  Therefore, it was hypothesized that ASC1 functioned as a repressor of 

CYP1-mediated gene expression. 

 The genetic data suggesting that ASC1 functioned as a repressor of 

Cyp1-mediated gene expression prompted investigation into the function of 

ASC1 as a potential transcriptional repressor. Interestingly, yeast strains with 
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asc1 alleles have elevated levels of mRNAs that are usually expressed during 

amino acid starvation (Hoffmann et al., 1999).  These results strongly suggest 

that ASC1 functions to represses gene expression in yeast.   

 

Structure and Proposed functions of RACK1 in human cells 

 RACK1 was originally identified in a screen for proteins that interact with 

activated Protein Kinase C (Ron et al., 1994).  The primary structure of RACK1 

contains repeats of tryptophan and aspartic acid residues.  As such, RACK1 

belongs to the WD-40 family of proteins.  WD-40 proteins are predicted to form a 

β-propeller structure and have promiscuous binding properties (Smith et al., 

1999; van Nocker and Ludwig, 2003).  Because Asc1p/RACK1 is very abundant 

(330,000 molecules/yeast cell) and has promiscuous binding properties, a high 

level of background protein interactions are predicted (Ghaemmaghami et al., 

2003; Smith et al., 1999).  Many of the reported interactions with Asc1p/RACK1 

may not be physiological.  Two proteins that are consistently reported to interact 

with RACK1 are the protein kinases PKC and SRC (Cox et al., 2003; Lopez-

Bergami et al., 2005; Ron et al., 1994; Ron et al., 1999; Schechtman and 

Mochly-Rosen, 2001).  It is postulated that RACK1 functions as an adapter 

protein to bring these two kinases in proximity to their substrates.  Experiments 

showing RACK1 is associated with the ribosome and binds to these kinases has 

fueled speculation that RACK1 provides a link between signal transduction and 

translation (Ceci et al., 2003; Nilsson et al., 2004).  
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Conserved sequence and structure of Asc1p/RACK1 across eukaryotes 

Yeast Asc1p and Human RACK1 share a 54% sequence identity, strongly 

suggesting that the two proteins are orthologs.  The sequence of the protein 

appears to be conserved across the eukarya, but is absent from prokaryotic 

proteomes suggesting that ASC1 performs a function unique to eukaryotes.  

Asc1p and RACK1 contain multiple WD-repeats.  WD-repeat containing proteins 

are often associated with scaffolding functions.  Many of the WD-repeat 

containing proteins have also been implicated in signal transduction (Dell et al., 

2002; Liu et al., 2001; Slessareva et al., 2006).  However, in yeast many of the 

ribosome biogenesis factors are WD-repeat containing proteins (de la Cruz et al., 

2005; Dosil and Bustelo, 2004; Harnpicharnchai et al., 2001; Iouk et al., 2001; 

Pestov et al., 2001; Saveanu et al., 2003; Schaper et al., 2001).  Therefore, it is 

possible that one of ASC1 and RACK1 functions is to facilitate ribosome 

biogenesis. 

    

A Defined Structural and Functional Role for Asc1p/RACK1 

 The structural and functional relationship of Asc1p with the ribosome 

became the primary focus of this dissertation.  The history of functional and 

biochemical claims made regarding Asc1p and RACK1 are very diverse.  The 

possibility that Asc1p and RACK1 perform all of the reported functions is unlikely.  

This dissertation investigated the structural and functional relationship of Asc1p 

and RACK1 with the ribosome. 
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 RACK1 co-fractionated with ribosomes from all eukaryotic organisms 

tested including: worm, fly, mouse, and human (Gerbasi et al., 2004).  More 

importantly, mammalian RACK1 co-fractionated with ribosomes of yeast that 

lacked the Asc1p protein.  In contrast, mammalian RACK1 was excluded from 

wild-type yeast ribosomes that harbor Asc1p (Gerbasi et al., 2004).  This 

suggested that these two proteins were competing for the same site in the yeast 

ribosome.  Additionally, these data were consistent with RACK1 and Asc1p 

functioning as a core component of the ribosome and not a transient ribosome-

interacting protein.  The conclusion that RACK1 is a core component of the 

ribosome has been validated structurally by two separate studies during the 

course of this dissertation (Manuell et al., 2005; Sengupta et al., 2004).  

 This dissertation discovered multiple functions for Asc1p in translation.  

Ribosomes deficient in Asc1p have higher translational activity in vitro, 

suggesting that ASC1 represses mRNA translation (Gerbasi et al., 2004).  

Additionally, yeast strains with asc1-mutations have elevated levels of specific 

proteins in vivo when grown at 30°C, suggesting that Asc1p functions to repress 

the translation of mRNAs (Gerbasi et al., 2004).   

 Proteomic analysis showed that Asc1p-deficient ribosomes were enriched 

in chaperone proteins relative to wild-type ribosomes.  From these results, a 

hypothesis that Asc1p stabilizes the structure of the ribosome was developed.  

Polysome profiling and pulse-chase analysis showed that Asc1p facilitates the 

structure of nascent ribosomes at elevated temperatures.  Therefore, this 

dissertation demonstrates that Asc1p is a structural component of the ribosome 
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that represses mRNA translation when cells are grown under standard laboratory 

conditions (30°C) and facilitates nascent ribosome formation at elevated 

temperatures. 

 

asc1-deficient yeast recover from growth at the non-permissive 
temperature by increasing their ribosome population 
 
 asc1∆ null yeast fail to grow at elevated temperatures.  An asc1∆ null 

yeast strain recovered from growth at elevated temperatures.  asc1-deficient 

yeast have a diminished population of ribosomes after growth at 39°C for 16 

hours in comparison to wild-type.  Shifting the yeast to fresh media at 30°C after 

long-term incubation at the non-permissive temperature (NPT) stimulated 

translational initiation immediately.  However, the complete restoration of the 

ribosome pool was not achieved until 4-20 hours of growth at 30°C.  Importantly, 

asc1-deificent yeast exhibited a severe growth-lag at 30°C after a period of 

growth at 39°C.  Therefore, this dissertation demonstrates that a proliferation lag 

in asc1-deficient yeast is associated with a reduced ribosome pool, but not 

repressed translational initiation per se.  

 

Introduction Part II:  Eukaryotic Translational Initiation Mechanisms 

 In prokaryotes, the small ribosomal subunit is recruited directly to mRNAs 

via a sequence in the leader region of the message (Shine and Dalgarno, 1975).  

However, the mechanism of eukaryotic translational initiation is much different.  

The combined work of Nahum Sonenberg, Marilyn Kozak, and Tatyana Pestova 

developed the scanning model of eukaryotic translational initiation (Kozak, 
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1980a; Pestova et al., 1998; Sonenberg et al., 1979a; Sonenberg et al., 1979b).  

In this model, ribosomes bind to a structure at the very 5’-end of the mRNA and 

scan the 5’UTR (Kozak, 1978; Kozak, 1980a; Kozak, 1980b).  Once ribosomes 

reach an AUG start codon, the large subunit joins the small subunit and 

translational initiation begins (Kozak and Shatkin, 1976). 

 In order for the scanning model to be correct, a molecular structure would 

have to be present on mRNAs to recruit the ribosome.  This unique structure on 

mRNAs was the 7-methyl-guanosine cap (Furuichi et al., 1975a; Furuichi et al., 

1975b; Furuichi et al., 1976).  These modified bases were found at the distal 5’-

end of messages (Furuichi et al., 1975a; Furuichi et al., 1975b; Furuichi et al., 

1976; Shatkin, 1976).  After the discovery of the cap structure, it was assumed by 

Sonenberg and colleagues that an RNP complex might specifically recognize the 

modified base structure.  Using 7-methyl-guanosine affinity chromatography, 

Sonenberg and colleagues were able to capture a specific protein complex 

bound to the cap (Sonenberg et al., 1979a).  This complex was the eIF4F 

complex (Gingras et al., 1999).  The complex consisted primarily of three 

proteins: eIF4E, eIF4G, and eIF4A (Shatkin, 1985). 

 Dissection of eIF4F showed that eIF4E was the protein that bound directly 

to the cap structure (Sonenberg et al., 1979b).  eIF4A is a stoichiometric 

component of the complex that contains RNA-helicase activity (Gingras et al., 

1999).  eIF4G is a large scaffolding protein with  multiple functions (Gingras et 

al., 1999).  eIF4G tethers the small subunit to the cap structure through 

interactions with the ribosome-bound initiation factor eIF3.  Therefore, the cap 
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binding complex eIF4F and its individual protein components scaffold interactions 

with the small ribosomal subunit and the mRNA. 

 Evidence for the scanning mechanism was generated first by Kozak and 

colleagues, and later by Pestova and others (Kozak, 1980a; Kozak, 1980b; 

Kozak and Shatkin, 1978; Pestova et al., 1998).  Kozak found that the first AUG 

(start codon) was usually the first amino acid translated into the growing 

polypeptide chain (Kozak, 1980a).  However, if the AUG codon was placed in 

different locations along the 5’UTR, the start site of translation would be affected 

(Kozak, 1980a).  Additionally, if the 5’UTR of a given mRNA contained a small 

upstream open reading frame, translational initiation would often terminate before 

reaching the start codon (Kozak, 1980a).  This result suggested that the 

ribosome scanned the 5’UTR to search for an AUG codon.  If the ribosome finds 

a stop codon in the 5’UTR, the ribosome falls off the message and initiation fails.  

 Although Kozak’s experiments supported the scanning mechanism of 

translational initiation, they did not provide direct evidence that the ribosome 

would localize to a particular AUG codon.  To test the scanning model further, 

Pestova used a “toeprinting” technique to capture the position of the ribosome on 

the 5’UTR (Pestova et al., 1998).  Toeprinting is an in vitro technique that defines 

the position of the ribosome on a given mRNA under a specific set of conditions.  

The ribosome was positioned directly on top of the start codon in a reconstituted 

in vitro translation system (Pestova et al., 1998). 
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Cap-independent Translation Initiation in Eukaryotes 

 The picornaviruses are small viruses that contain an RNA genome.  These 

viruses are completely dependent on the host cell machinery (including host 

ribosomes) to translate their mRNAs into protein.  Although the scanning model 

made sense for cellular mRNAs, the model failed to describe all of the 

mechanistic details of picornaviral mRNA translation.  For example, picornaviral 

mRNAs do not contain a 7-methyl-guanosine-cap structure.  Therefore, the 

eIF4F complex would not be bound to these viral mRNAs.  How do these viral 

mRNAs translate into protein if they are lacking a cap structure to recruit the 

ribosome?  Sonenberg and colleagues reasoned that there must be a structure in 

the 5’UTR of picornaviral mRNAs that is responsible for recruiting the ribosome 

(Jang et al., 1989; Pelletier and Sonenberg, 1988).  The 5’UTR of poliovirus was 

shown to initiate cap-independent mRNA translation in HeLa cells (Pelletier and 

Sonenberg, 1988).  Pelletier and Sonenberg referred to these cap-independent 

5’UTRs as ribosomal landing pads, which were later renamed to Internal 

Ribosomal Entry Sites (IRESs).  After the discovery of the first IRES, it was 

shown that a cellular mRNA also contained an IRES (Yang and Sarnow, 1997).  

The discovery of additional cellular IRESs would follow (Pyronnet et al., 2000; 

Qin and Sarnow, 2004; Stoneley and Willis, 2004).   

 After the first IRES was discovered, it was hypothesized that a number of 

IRES-trans-acting factors (ITAFs) might bind the IRES RNA to facilitate cap-

independent translation (Stoneley and Willis, 2004).  The first ITAF discovered 
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was the LA protein (Meerovitch et al., 1989).  LA binds to the poliovirus IRES and 

enhances cap-independent translation (Meerovitch et al., 1993).   

 Using RNA affinity chromatography, research groups have discovered 

additional ITAFs (Blyn et al., 1996; Hunt et al., 1999).  Proteins that function as 

viral ITAFs often function as cellular ITAFs (Blyn et al., 1997; Evans et al., 2003; 

Gamarnik and Andino, 2000; Hunt and Jackson, 1999; Pickering et al., 2004).  

This common family of ITAFs includes: PCBP2, UNR, PTB, and others.  Because 

viral and cellular IRESs share few sequence or structural similarities, it is likely 

that several additional ITAFs exist that have remained undiscovered. 

   

ITAFs Function in Collaboration 

 After some of the first ITAFs were characterized, the research groups of 

Jackson and Willis performed screens to discover additional ITAFs (Hunt et al., 

1999; Mitchell et al., 2001).  Both groups found that a complex of ITAFs bind to 

viral and cellular IRESs.  Additionally, these larger ITAF assemblies have been 

shown to have additive or synergistic stimulation of cap-independent translation.  

Therefore, it is unlikely that ITAFs act alone in stimulating the translation of IRES-

containing mRNAs. 

 

Proposed Mechanisms for IRESs and ITAFs in mRNA Translation 

 During IRES-mediated translation, the ribosome (and associated proteins) 

must localize to the IRES RNA.  In order for the ribosome to be recruited to this 

RNP complex, there must be an affinity of the ribosome for either the IRES RNA, 
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the proteins complexed with IRES RNA, or the IRES-ITAF RNP combination.  

Structural analysis of the cricket-paralysis-virus-IRES (CPV-IRES) suggests that 

the viral RNA can recruit the ribosome without the assistance of other proteins 

(Spahn et al., 2004).  Unfortunately, the CPV-IRES exhibits mechanisms of 

translational initiation that are different from all mRNAs studied thus far (Pestova 

and Hellen, 2003; Wilson et al., 2000).  Therefore, structural analysis of the CPV-

IRES-RNA interaction with the ribosome may only provide a single exceptional 

example of an IRES-RNA initiation mechanism but is probably inadequate to 

derive a general model of IRES-mediated translational initiation. 

 A second model for IRES-mediated translational initiation has developed.  

In this model, ITAFs bind to IRES RNA and function to mold the RNA into an 

active structure (Mitchell et al., 2003).  Once the IRES RNA has achieved an 

appropriate secondary structure, it attracts the ribosome and translational 

initiation begins.  Experimental support for this model exists through cross-linking 

studies (Mitchell et al., 2003).  Through these cross-linking studies, it was shown 

that ITAFs will modify the secondary structure of IRES RNA (Mitchell et al., 

2003).  Therefore, it is possible that ITAFs function to remodel the IRES RNA into 

a structural form that attracts the ribosome.   

   

The Ornithine Decarboxylase (ODC) IRES 

The ODC enzyme is a critical enzyme in polyamine biosynthesis, 

catalyzing the synthesis of putrescine from ornithine.  The functional role of 

polyamines in the cell is not yet well understood.  However, because polyamines 
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are small cationic molecules, they are expected to bind negatively charged 

molecules (DNA, RNA, and some proteins).  Therefore, the effects of polyamines 

on cell metabolism are most likely pleiotropic.  ODC is mutated and/or over-

expressed in several forms of cancer (LaMuraglia et al., 1986; Martinez et al., 

2003; O'Brien et al., 1997).  Inhibitors of ODC suppress DNA synthesis and the 

growth of tumors (Fillingame et al., 1975; Tutton and Barkla, 1986).  Therefore, 

there is a positive correlation between enhanced ODC activity and cell 

proliferation.  For this reason, the development of ODC inhibitors is of 

considerable pharmacological interest. 

The effects of ODC on cell cycle maturation has led several research 

groups to investigate the possibility that ODC might be synthesized at specific 

points in the cell cycle (Pyronnet et al., 2000; Pyronnet et al., 2005; Pyronnet and 

Sonenberg, 2001).  Interestingly, ODC is highly expressed during the G2/M 

transition, a time when a majority of protein synthesis is repressed (Pyronnet et 

al., 2000).  The research groups of Pyronnet and Sonenberg showed that the 

ODC 5’UTR contained an IRES that was translated through the G2/M phase of 

the cell cycle (Pyronnet et al., 2000).  Later, it was shown that IRESs in general 

translate through the G2/M boundary, while cap-dependent translation is stalled 

(Qin and Sarnow, 2004). 

 

 

 

 

 24



Discovery of ODC ITAFs 

Using site-directed mutagenesis, Sonenberg and Pyronnet discovered an 

element in the 5’UTR of ODC that was necessary for IRES activity (Pyronnet et 

al., 2000).  They postulated that some set of ITAFs might bind to and stimulate 

the activity of the ODC IRES (Pyronnet et al., 2005).  In this dissertation, I utilized 

RNA-affinity chromatography combined with mass spectrometry to identify RNA-

binding proteins that bind the wild-type, but not the mutant ODC IRES RNA first 

described by Pyronnet and Sonenberg (Pyronnet et al., 2000). 

RNA affinity combined with mass spectrometry analysis identified clear 

differences in the proteins that bind to either the wild-type or mutant ODC IRES 

RNA.  Specifically, multiple peptides were detected corresponding to the protein 

sequences of ZNF9 and PCBP2.  PCBP2 and ZNF9 bound to the ODC IRES in 

independent biochemical tests; validating the interaction with the ODC IRES 

RNA.  Additionally, PCPB2 and ZNF9 activate the translation of the ODC IRES 

suggesting that these two proteins function as ITAFs of the ODC IRES. 

Proposed functional roles for ZNF9 are diverse (Chen et al., 2003; Crosio 

et al., 2000; Rajavashisth et al., 1989).  Defining a functional role for ZNF9 is of 

medical interest because the ZNF9 gene is mutated in patients with type-2 

myotonic dystrophy.  Specifically, ZNF9 accumulates CCTG expansions in intron 

1 (Liquori et al., 2001).  Similarly, patients with type-1 myotonic dystrophy 

accumulate CTG expansions in the non-coding region of a separate gene 

(Carango et al., 1993).  The similarities in the expansion sequences of type-I and 

type-II myotonic dystrophy have led to an RNA-toxicity hypothesis (Cho and 

 25



Tapscott, 2007; Kuyumcu-Martinez and Cooper, 2006).  In this hypothesis, 

CCTG and CTG repeats sequester RNPs that are essential for cell survival.  

Experimental evidence supporting these models is provided through animal 

models (Kanadia et al., 2003; Kanadia et al., 2006). 

The discovery that ZNF9 complexes with the ODC IRES RNP and 

enhances ODC IRES activity suggests that the wild-type protein functions as an 

ITAF.  Disruptions in ZNF9 protein production due to the CCTG expansion in 

intron 1 could disrupt the natural function of the gene by inhibiting ZNF9 mRNA 

splicing.  Therefore, it is possible that mutations in ZNF9 disrupt cellular IRES 

activity.  Disruptions in ZNF9 structure and function may contribute to the 

pathogenesis of type-2 myotonic dystrophy through interference of IRES-

dependent translational initiation. 

The results described above established that ZNF9 and PCBP2 function 

as ITAFs of the ODC IRES.  The success of these experiments suggest that 

RNP discovery is now a feasible task.  In moving forward to new projects, these 

experiments provide a valuable protocol for discovering proteins that complex 

with specific RNA sequences.  Therefore, experiments performed in this portion 

of the dissertation may enhance the speed at which future RNP complexes are 

discovered and characterized.  
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CHAPTER II 

YEAST ASC1P AND MAMMALIAN RACK1 ARE FUNCTIONALLY 

ORTHOLOGOUS CORE 40S RIBOSOMAL PROTEINS THAT REPRESS 

GENE EXPRESSION 

 

The following chapter was published in Molecular and Cellular Biology 

24(18):8276-87 Sept. 2004.  All experiments were performed by Vincent Gerbasi 

with the exception of the 2D-Difference-in-gel-electrophoresis (2D-DIGE) 

experiments shown in Figure 1-5.  2-D DIGE experiments were performed by 

David Freedman and Salisha Hill.  Connie Weaver prepared some of the critical 

reagents required for some of the experiments. 

 

Abstract 

Translation of mRNA into protein is a fundamental step in eukaryotic gene 

expression requiring the large (60S) and small (40S) ribosome subunits and 

associated proteins.  Using modern proteomic approaches, we previously 

identified a novel 40S-associated protein named Asc1p in budding yeast and 

RACK1 in mammals.  The goals of this study were to establish Asc1p/RACK1 as 

a core, conserved, eukaryotic ribosomal protein and to determine the role of 

Asc1p/RACK1 in translational control.  We provide biochemical, evolutionary, 

genetic, and functional evidence showing that Asc1p/RACK1 is indeed a 

conserved, core component of the eukaryotic ribosome.  We also show that 

purified Asc1p-deficient ribosomes have increased translational activity 
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compared to wild-type yeast ribosomes.  Further, we demonstrate that asc1∆ null 

strains have increased levels of specific proteins in vivo, and that this molecular 

phenotype is complemented by either Asc1p or RACK1.  Our data suggest that 

one of Asc1p/RACK1’s functions is to repress gene expression. 

 

Introduction 

The eukaryotic 80S ribosome consisting of small (40S) and large (60S) 

subunits is the catalytic and regulatory macromolecular complex responsible for 

the decoding of mRNA into polypeptides.   Together, the small and large 

ribosomal subunits contain the 18S, 28S (25S in yeast), 5.8S, and 5S rRNAs 

along with a large number of proteins.  The structure and function of the 

ribosome has been extensively studied for decades, and a 15 Å cyro-electron 

microscopic map of the yeast ribosome is available (Spahn et al., 2001). While 

the catalytic activity of the ribosome’s 28S rRNA in peptide bond formation is well 

established, the function and regulatory activity of the ribosomal proteins is still 

largely unknown (Doudna and Rath, 2002).   

Advanced mass spectrometry analysis has facilitated the identification of 

novel ribosomal proteins.  In a proteomic screen of Saccharomyces cerevisiae 

40S, 60S, and 80S components, we identified a novel component of the 40S and 

80S subunits, Asc1p (ASC1, YMR116C, CPC2, BEL1), which remains 

associated with the small subunit in the presence of 1M KCl (Link, 1999).  Under 

these stringent conditions, transient translation factors and ribosome biogenesis 

factors present under lower salt concentrations are shed from the 40S.  In these 
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experiments, Asc1p was present at equimolar concentration to the other 

ribosomal proteins (Link, 1999).  Using established criteria for defining ribosomal 

proteins, Asc1p can be classified as a novel, core, 40S ribosomal component 

(Kruiswijk and Planta, 1974).  We also demonstrated that RACK1 (Receptor for 

Activated C Kinase), a protein with 52% sequence identity to Asc1p, is localized 

to the 40S, 80S, and polysomes in human cells (Link, 1999).  These observations 

have been confirmed by several other studies (Angenstein et al., 2002; Ceci et 

al., 2003; Chantrel et al., 1998; Inada et al., 2002; Shor et al., 2003). 

RACK1 was originally identified as a protein with sequence similarity to 

the guanine nucleotide-binding protein β subunit and other proteins containing 

Trp-Asp (WD) repeat domains (Guillemot et al., 1989).  RACK1 was later shown 

to associate both in vitro and in vivo with activated PKC βII (Hoffmann et al., 

1999) and is hypothesized to function as an anchoring protein that localizes 

activated PKC to the insoluble cell fraction.   A plethora of independent studies 

have attempted to define the molecular function of RACK1.  Yeast 2-hybrid and 

co-immunoprecipitation methods show RACK1 interacting with a large number of 

cellular proteins with roles in signal transduction (Chang et al., 1998; Cox et al., 

2003; Dell et al., 2002; Gallina et al., 2001; Geijsen et al., 1999; Hennig et al., 

2001; Hermanto et al., 2002; Kiely et al., 2002; Koehler and Moran, 2001; Kubota 

et al., 2002; Liliental and Chang, 1998; McCahill et al., 2002; Mourton et al., 

2001; Ozaki et al., 2003; Reinhardt and Wolff, 2000; Rigas et al., 2003; 

Tcherkasowa et al., 2002; Yarwood et al., 1999).  Because of its apparent ability 
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to interact with a number of signaling molecules, RACK1 is perceived to play a 

crucial role in a multitude of biological processes. 

Consistent with our previous results showing association of Asc1p/RACK1 

with the ribosome, more recent studies have implicated ASC1 and RACK1 in 

translational control.  General translational inhibition occurs upon amino acid 

starvation when the eIF2α kinase Gcn2p is activated (Dever et al., 1992).   Yeast 

deficient in Gcn2p fail to initiate the amino-acid starvation response.  An asc1 

mutation has been shown to restore the amino-acid-starvation response in a 

gcn2∆ strain (Hoffmann et al., 1999).  Further, Schizosaccharomyces pombe 

cpc2∆ (asc1∆) null mutants appear to have a subset of genes that are 

transcriptionally and translationally repressed relative to wild type (Shor et al., 

2003).  The cpc2∆(asc1∆) null strains were also sensitive to puromycin, a drug 

that causes premature termination of translation, suggesting that translational 

fidelity has been reduced (Shor et al., 2003).  Moreover, in mammalian COS 

cells, transient over-expression of RACK1 stimulated translation in vivo (Ceci et 

al., 2003). 

In this study we provide biochemical, evolutionary, genetic, and functional 

data showing that Asc1p/RACK1 is a core 40S ribosomal protein in eukaryotes.  

Further, our results suggest that Asc1p and RACK1 function to repress gene 

expression.  This novel expression phenotype provides insight into a potential 

regulatory mechanism in eukaryotic gene expression. 
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Materials and Methods 

 

Plasmids and Yeast Strains 

Strain construction, genetic manipulations, and yeast media preparation 

were carried out by standard methods (Sherman et al., 1986).  To construct 

plasmid pASC1, a 2.13 kb BamHI and XbaI yeast genomic fragment from lambda 

clone λPM5992 (ATCC70652) containing the entire ASC1 locus was cloned into 

the BamHI-XbaI sites of pRS416 (Christianson et al., 1992; Olson et al., 1986; 

Riles et al., 1993).  Plasmid pME1867 (renamed pRACK1 in these studies) 

containing the rat cDNA for RACK1 expressed under the control of the ASC1 

promoter and terminator sequences in a pRS316 vector backbone, was a gift 

from Gerhard Braus (Hoffmann et al., 1999).  To construct plasmid pET100-

ASC1, the PCR primers A-ASC1: (CACCATGGCATCTAACGAAGTTTTAG), B-

ASC1: (TTAAGTTCCAAGCCTTAACCATTTTGTCGTTACCGGC), C-ASC1: 

(ACAAAATGGTTAAGGCTTGGAACTTAAACCAATTCC), and D-ASC1: 

(TTAGTTAGCAGTCATAACTTGCC) were used in a crossover PCR reaction to 

amplify an intronless ASC1 DNA fragment encoding the complete Asc1p protein 

(Chantrel et al., 1998).  The intronless ASC1 fragment was cloned into the 

pET100/D-TOPO bacterial expression vector (Invitrogen) to create plasmid 

pET100-ASC1 encoding an N-terminally-tagged 6xHis::ASC1 fusion protein 

expressed from a T7 promoter.  To construct plasmid p426-GPD::6xHis-ASC1, a 

Klenow treated 1.1 kb NdeI-SacI fragment from plasmid pET100-ASC1 
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containing the 6xHis-ASC1 fusion was cloned into the SmaI site of p426GPD 

(Mumberg et al., 1995).  All constructs were confirmed by DNA sequencing.   

The yeast strains used were: BY4743  MATa/MATα his3∆1/his3∆1 

leu2∆0/leu2∆0 met15∆0/MET15 LYS2/lys2∆0 ura3∆0/ura3∆0 (Winzeler et al., 

1999), YDM36556  MATa/MATα his3∆1/his3∆1 leu2∆0/leu2∆0 met15∆0/MET15 

LYS2/lys2∆0 ura3∆0/ura3∆0 ∆asc1::KanR/∆asc1::KanR (Winzeler et al., 1999), 

AL150  YDM36556 + pRS416, AL156  YDM36556 + pASC1, AL141 YDM36556 

+ pRACK1, AL190  BY4743 + pRS316, AL191 BY4743 + pASC1, AL140  

BY4743 + pRACK1, AL143 YDM36556 + (p426-GPD::6xHis-ASC1), AL146 

YDM36556 + (pYES-DEST52), AL103 MATa his7 ura3-52, AL030 MATa his7 

ura3-52 asc1∆ (Link, 1999),   AL185 YDM36556 + p180 (5’UTR GCN4 lacZ 

reporter plasmid) (Hinnebusch, 1985),  AL183  BY4743+ p180.  Strains 

containing chromosomal deletions of asc1 were confirmed by PCR of yeast 

genomic DNA, PCR of yeast cDNA, and absence of Asc1p by 2D-gel 

electrophoresis.  

 

Polysome Analysis  

Yeast cell extracts were prepared essentially as described (Mikulits et al., 

2000).  Briefly, yeast strains were grown in SC-URA media to an O.D. 600 of 0.6, 

and 5 mL of cells were lysed with 0.5 mm glass beads in 250 µL of lysis buffer 

(10 mM Tris-HCl, pH 8.0, 140 mM NaCl, 1.5 mM MgCl2, 0.5% NP40 and 200 

U/mL RNASIN (Promega).  Extracts were centrifuged in a microcentrifuge for 1 

min. at 20,000 X g.  Supernatants were supplemented with 250 µL of 2X 
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translation stop buffer (20 mM DTT, 665 µg/mL heparin, 150 µg/mL 

cyclohexamide) and 1 tablet of mini-Complete protease inhibitor (Roche) per 5 

mL of buffer.  The supplemented extracts were centrifuged for 5 min. at 20,000 X 

g.  Supernatants (200µl) were gently layered on top of a 15-40% sucrose 

gradient cast in 10 mM Tris-HCl, pH 7.5, 140 mM NaCl, 1.5 mM MgCl2, 10 mM 

DTT, 100 µg/mL cyclohexamide, and 0.5 mg/ml heparin.  Gradients were 

centrifuged in a Beckman table-top ultracentrifuge (TlS 55) for 75 min at 50,000 

rpm.  Fractions were collected from the top of the gradients and partitioned for 

RNA isolation, Western blotting, or DALPC.  RNA was isolated from sucrose 

gradient fractions and yeast strains, with TRI-reagent LS (MRC) according to the 

manufacturer’s protocol.  RNA from gradient fractions was loaded onto non-

denaturing 1% agarose gels cast in 1X TAE and stained with ethidium bromide.   

 

Western Analysis and DALPC 

Western analysis was performed on polysome profile fractions from S. 

cerevisiae cells, human HEK293 cells, mouse NT2 cells, and in vitro translation 

extracts from S. cerevisiae strains.  Sucrose gradient fractions or in vitro 

translation extracts were mixed with Laemmeli buffer, heated for 5 min. at 100°C, 

loaded onto NuPAGE 10% Bis-Tris gels, and separated using 1X MOPS SDS 

running buffer (Invitrogen).  For Western analysis, NuPAGE gels were 

transferred to nitrocellulose membranes and blocked overnight in Tris-buffered 

saline containing 0.1% Tween (TBST) and 10% non-fat dry milk.  Western blots 

were probed with either affinity-purified rabbit polyclonal antibodies to Asc1p 
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generated against full-length recombinant 6xHis-tagged Asc1p (Bethyl 

Laboratories, Montgomery, Texas), mouse RACK1 monoclonal antibodies (BD 

Biosciences), Aip1p polyclonal antibodies kindly provided by David Amberg 

(Rodal et al., 1999) or Rpl3p monoclonal antibodies kindly provided by Jonathan 

Warner (Vilardell and Warner, 1997).  Western blots were washed three times in 

TBST and then incubated with the appropriate HRP-tagged secondary antibody 

(Promega).  Blots were developed with ECL Plus reagent (Amersham-

Pharmacia).  Asc1p antibody specificity was confirmed by Western blotting of 

Asc1p positive control antigen and whole-cell lysates from wild-type and asc1∆ 

null yeast strains (data not shown).   The mass spectrometry approach termed 

Direct Analysis of Large Protein Complexes (DALPC) experiments on Drosophila 

melanogaster embryos and C. elegans strain N2 pooled ribosomal and non-

ribosomal fractions were performed essentially as described previously (Link, 

1999; Sanders et al., 2002).   

 

Genetic Complementation of yeast asc1∆ strains 

Yeast strains were grown in either SC-URA or SC+URA to an O.D. 600 of 

0.6.  Cells were counted with a hemocytometer, adjusted to equal concentration, 

and serially diluted (10 fold).  Five µL of each 10-fold serial dilution (108-105) was 

spotted onto SC-URA plates.  Plates were incubated at 30 and 37˚C for 72 hrs 

and photographed. 
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In vitro translation assays 

To prepare translation extracts, 2 L of yeast were grown in YPD to an O.D. 

600 of 2.  Cells were washed five times in ribosome buffer lacking protease 

inhibitors (30 mM HEPES pH 7.4, 100 mM potassium acetate, 2 mM magnesium 

acetate, 2 mM fresh DTT, and 8.5% mannitol).  After washing, 8 g of cells (wet 

weight) were lysed in 15 mL of ribosome buffer containing mini-Complete 

protease inhibitor (Roche) with 48 g of 0.5 mm glass beads.  Cells were lysed in 

50 mL sterile falcon tubes by rigorous rocking in 6 inch arcs for 1 min intervals (5 

times) with 1 min intervals on ice between each rocking.  Extracts were cleared 

by centrifugation 2X at 20,000 X g for 10 minutes.  Five mL of extract was loaded 

onto a 75 mL bed-volume Sepharose G-25 column.  The sample was fractioned 

with an isocratic buffer (ribosome buffer + protease inhibitors) flowing at 0.5 

ml/min.  The flow-through fractions (0.5 mL) with an O.D. 260 > 90 were pooled 

and used for the in vitro translation assays (Asano et al., 2002). 

T3 lucpA plasmid originally created by Peter Sarnow’s lab (Iizuka et al., 

1994) was kindly provided by Alan Sachs.  T3 lucpA was purified with a Qiagen 

mini-prep and linearized with BamHI.  The linearized plasmid was purified using 

a Qiaquick PCR clean-up kit (Qiagen).  Capped luciferase mRNAs were 

synthesized with the Amplicap T3 high yield message maker kit (Epicentre) using 

the purified, linearized, T3 lucpA DNA as template.  The capped luciferase 

mRNAs were purified prior to in vitro translation with RNAEASY spin columns 

(Qiagen).  Uncapped luciferase mRNA was purchased from Promega.  Total 

yeast RNA from wild-type yeast strain BY4743 grown to an O.D. 600 of 1.0 was 
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isolated with TRI-REAGENT(MRC).  Following isolation of total RNA, polyA-

mRNAs were isolated with an Oligotex mRNA isolation kit (Qiagen).  In vitro 

translation assays were conducted as described previously (Tarun and Sachs, 

1995). 

 

Assay for B-galactosidase activity 

The p180 plasmid containing the 5’UTR of GCN4 cloned in front of the lacZ gene 

was transformed into yeast strains BY4743 and YDM36556 (Hinnebusch, 1985).  

Strains were grown in SC-URA to an O.D. 600 of 0.6.  Cells were then pelleted by 

centrifugation at 9,000 X g for 5 min.  Cells were lysed by bead-beating in 1X 

lysis buffer provided by the manufacturer (Promega).  After lysis, extracts were 

centrifuged at 20,000 X g for 2 min.  Following centrifugation, supernatants were 

assayed for β-galactosidase activity using the manufacturer’s protocol (Promega) 

and measured for absorbance at O.D. 420 and O.D. 280.  Relative β-galactosidase 

activity was standardized by dividing the β-gal activity (absorbance at O.D. 420) by 

the respective absorbance at O.D. 280 for each individual sample. 

   

Isolation of recombinant Asc1p 

One liter of E. coli strain BL21 containing plasmid pET100-ASC1 was 

grown to an O.D. 600 of 0.6 in LB medium.  Protein expression was induced with 

IPTG at 37°C for 1 h.  Cells were harvested and lysed by sonication, and the 

recombinant protein was purified according to the PROBOND kit native 

purification instructions (Invitrogen).  To prepare Asc1p protein for in vitro 
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translation reactions, recombinant Asc1p protein was dialyzed exhaustively 

against ribosome buffer containing protease inhibitors. 

 

Two-dimensional difference gel electrophoresis (2D DIGE) analysis 

One liter of each strain of yeast was grown in SC-URA to an O.D. 600 of 

0.6.  Cells were harvested and lysed by bead-beating in lysis buffer (10 mM Tris-

HCl, pH 8.0, 140 mM NaCl, 1.5 mM MgCl2, 0.5% NP40 and 200 U/mL RNASIN 

(Promega)).  After lysis, extracts were centrifuged at 20,000 X g for 10 min.  

Extracts were then partitioned for protein and mRNA analysis. Samples 

designated for 2D analysis were digested with RNAseA and DNAse and 

centrifuged again at 20,000 X g for 10 min prior to protein extraction.  Three 

independent samples for each strain were prepared and analyzed. 

2D-DIGE analysis using a mixed-sample internal standard was carried out 

essentially as described previously (Alban et al., 2003; Friedman et al., 2004).  

Triplicate protein samples for each strain were individually labeled with either 

Cy3 or Cy5. To control for bias in the fluorescent dyes, we reversed the Cy3 and 

Cy5 dyes used to label the whole cell extracts in one of each of the experimental 

replicates from the 4 strains being compared.  The Cy2-labeled mixed-sample 

internal standard was comprised of an equal portion of all 12 extracts used in the 

experiment.  The Cy2 standard was used to normalize protein abundances 

across different gels and to control for gel-to-gel variation (Alban et al., 2003; 
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Friedman et al., 2004).  An equal amount of Cy3-labeled sample, Cy5-labeled 

sample, and Cy2-internal control were mixed together and run on individual 2D 

gels.  Triplicate Cy2/3/5 samples were then loaded onto a total of six 24 cm pH 4-

7 immobilized pH gradient strips (Amersham Biosciences) and subjected to 2D 

gel electrophoresis using the IPGphor and DALT-twelve systems per the 

manufacturer’s protocols (Amersham Biosciences).   

2D-DIGE gels were scanned with a Typhoon 9410 variable mode imager 

using the recommended mutually-exclusive emission and excitation wavelengths 

for each Cy dye (Amersham Biosciences).  2D-DIGE analysis was performed 

using DeCyder version 5.0 software (Amersham Biosciences), which employs a 

triple co-detection algorithm to generate the same protein spot-feature boundary 

for individual Cy2, Cy3, and Cy5 signals.  The Cy3/Cy2:Cy5/Cy2 ratios were then 

calculated and compared among the six DIGE gels, allowing for the application of 

Student’s t-test statistical analyses to triplicate samples from all strains despite 

being separated on different DIGE gels (Alban et al., 2003; Friedman et al., 

2004).   

In our analysis of in vivo protein levels, we consider 2D gel features to be 

a protein only if the spot was confirmed with both Cy labels and was present on 

every gel.  Only proteins with ≥1.5 fold differences in abundance were 

considered significant.  Differences in protein levels between wild-type and asc1∆ 

null samples were considered statistically significant only if the difference fell 

within the 95% confidence interval as determined by the Student’s t-test.  
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Identification of 2D DIGE proteins 

A SyproRuby (Molecular Probes) post-stain image (similarly acquired with 

a Typhoon 9410) was used to ensure accurate robotic protein excision for 

subsequent trypsin in-gel digestion using the ProSpot spot-handling workstation 

(Amersham Biosciences). Protein identifications were made using matrix-

assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-

TOF MS) and TOF/TOF tandem mass spectrometry using a Voyager 4700 

MALDI-TOF/TOF mass spectrometer (Applied Biosystems). Protein 

identifications were based on the acquired mass spectral data combined with 

database interrogation using the MASCOT algorithm (Matrix Science).  

 

Multiplex RT-PCR and real-time quantitative RT-PCR   

Lysate-matched RNA extracts from the 2D DIGE protocol were analyzed 

for levels of mRNA transcripts encoding identified proteins.  The extracts were 

treated with molecular biology grade DNAse (Invitrogen) prior to reverse 

transcription.  RNA was reverse-transcribed using oligo dT priming (Perkin-

Elmer) and Superscript II (Invitrogen).  Specific PCR primers were designed to 

the cDNA transcripts of interest with dsGENE software (Accelrys).  Triplex PCR 

was performed using previously described protocols (Gerbasi et al., 2003). 

Primer pairs used for RT-PCR were TDH3 (GAPDH) (5’ 

TCTTCCATCTTCGATGCTGCCG and 5’ AGCCTTGGCAACGTGTTCAACC), 
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APE2: (5’ ACCAAAGGAAACCCAGGATGCG and 5’ 

AGCAGCTTTTTCAACGTCTGCG), AIP1: (5’ CGTCCTTGTGAGCATTCAACGC 

and 5’ TCTTCGCGCAAAACCCTCGTAC), DKA1: (5’ 

AAGCACGGCATTCTGGAGGATG and 5’ TCTTGGGGAACGTACGCATTCG), 

ENO2: (5’ TAGAGCCGCTGCTGCTGAAAAG and 5’ 

TTGGAGCAACACCACCTTCGTC) TPS1: (5’ TACAGGTTGCAGTGCCAAGTCG 

and 5’ ATTGTGCGGCACCTGTGAACTC), ALD3: (5’ 

AAAGCTGCCAGGGCTGCTTTTG and 5’ TATTGAACTTGTCGACCGCCCC), 

CTT1: (5’ ACACCAGACACTGCAAGAGACC and 5’ 

TACGCGTTCATACTAGCCCACG).  PCR samples were taken at cycles 17, 20, 

23, 26 and 30.  PCR products were run on 6% polyacrylamide gels cast in 0.5X 

TBE, and stained with ethidium bromide. 

For real-time RT-PCR, cDNA samples were prepared as described above.  

cDNAs were amplified in an IQ SYBR green supermix using the manufacturer’s 

recommended protocol (BioRad).  Samples were analyzed in a Biorad iCycler 

with the following temperature cycle: 95°C for 10 seconds, 64°C for 1minute.  

PCR samples were cycled 32X.  To quantitate relative mRNA levels between 

yeast strains, mRNA levels were divided by the calculated TDH3 (GAPDH) 

mRNA levels for each strain as a standard.  For all cDNAs amplified, a step-wise 

melting curve protocol of 0.5°C was performed after PCR to confirm the presence 

of a single PCR product. 
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Results 

 

Mammalian RACK1 and S. cerevisiae Asc1p are orthologous ribosomal 
proteins 
 

In a past study we showed that Asc1p localizes to the 40S and 80S 

subunits in S. cerevisiae and RACK1 localizes to the 40S and polysomes in 

human HELA cells (Link, 1999).  Sequence similarity and ribosome localization 

suggested that the two proteins are orthologous.  To further examine if RACK1 

and Asc1p are biochemically orthologous ribosomal proteins, we performed a 

series of competitive and non-competitive polysome profiling experiments in S. 

cerevisiae.   
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Figure 1-1.  

 

 

 

 

 

 

 

 

 

 

Figure 1-1.  Polysome profiles show Asc1p and RACK1 are biochemically orthologous ribosomal proteins. 
(A) Polysome profile shows yeast Asc1p localizes to the polysome fractions and is absent in the non-ribosomal fractions.  
Cell lysate from yeast wild-type strain AL190 was fractionated by sucrose gradient centrifugation and fractions were 
collected.  An aliquot of each fraction was analyzed by agarose gel electrophoresis to identify fractions with 25S and 18S 
ribosomal RNAs.  Western analysis of the fractions using anti-Asc1p antibodies shows Asc1p is in the ribosome fractions 
(1-8) and is absent from the non-ribosomal fractions (9-12).  (B) Polysome profile showing RACK1 expressed in a yeast 
asc1∆ null strain localizes to the ribosomal fractions and is absent in the non-ribosomal fractions.  Cell lysate from yeast 
strain AL141 was fractionated by sucrose gradient centrifugation and analyzed as described in (A) except anti-RACK1 
antibody was used for the Western analysis.  (C) Polysome profile showing exclusion of RACK1 from ribosomal fractions 
in a wild-type yeast strain.  Cell lysate from yeast strain AL140 was fractionated by sucrose gradient centrifugation and 
analyzed as described in (A) except Western analysis used anti-RACK1 and anti-Asc1p antibodies in separate Western 
blots. (D) Polysome profile of an asc1∆ null strain complemented by expression of ASC1.  Cell lysate from yeast strain 
AL156 was fractionated by sucrose gradient centrifugation and analyzed as described in (A). 
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Results from polysome profiling showed that in wild-type S. cerevisiae, 

Asc1p localized to ribosomal fractions, but was absent from non-ribosomal 

fractions (Fig. 1-1A).  We reasoned that if RACK1 and Asc1p are orthologs, then 

in the absence of Asc1p, RACK1 should localize to ribosomes in yeast.   When 

we expressed rat RACK1 (99% identical to human RACK1) in an asc1∆ null 

yeast strain, we found that RACK1 localizes to ribosomal fractions in a polysome 

profile but was absent from non-ribosomal fractions (Fig. 1-1B).  This result 

indicated that RACK1 associated with the yeast ribosome similar to Asc1p and 

therefore might perform similar functions within the ribosome.  Interestingly, when 

we expressed RACK1 in a wild-type yeast background we found that Asc1p was 

still included in ribosomal fractions but RACK1 was excluded (Fig. 1-1C).  

Because these results suggest that Asc1p and RACK1 compete for the same 

ribosomal position, we refer to this phenomenon as species-competitive-protein-

exclusion (compare Figures 1-1B and C).  
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Figure 1-2.  Polysome profiling of RACK1 protein shows polysomal localization in four eukaryotic species. 
(A) Mouse polysome profile shows RACK1 localizes to the polysome fractions and is absent in the non-ribosomal 
fractions.    A cell lysate from mouse NT2 cells was fractionated by sucrose gradient centrifugation and fractions were 
collected.  An aliquot of each fraction was analyzed by agarose gel electrophoresis to show fractions with 28S and 18S 
ribosomal RNAs.  Western analysis of the fractions using anti-RACK1 antibodies shows the distribution of RACK1.  (B) 
Human polysome profile shows RACK1 localizes to the polysome fractions and is absent in the non-ribosomal fractions.  
A cell lysate from human HEK293 cells was fractionated by sucrose gradient centrifugation and analyzed as described in 
2(A).  (C) DALPC analysis of fruit fly polysome profile shows RACK1 localizes to the polysome fractions and is absent in 
the non-ribosomal fractions.    Each fraction was analyzed by SDS-PAGE to visualize the amount of protein in each 
fraction.  Polysome and non-ribosomal fractions were separately pooled, digested with trypsin, and proteins identified by 
the DALPC-mass spectrometry approach (Link, 1999; Sanders et al., 2002; Yik et al., 2003).  The Drosophila 28S and 
18S rRNA typically co-migrate as a doublet (Ishikawa, 1977).  (D)  DALPC analysis of nematode polysome profile shows 
ASC1/RACK1 localizes to the polysome fractions and is absent in the non-ribosomal fractions.  A lysate from wild-type 
worms was fractionated by sucrose gradient centrifugation and fractions were collected.   An aliquot of each fraction was 
analyzed by agarose gel electrophoresis to identify fractions with 28S and 18S ribosomal RNAs.  Protein samples were 
analyzed as described in panel (C).  
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Localization of RACK1 to ribosomes is evolutionarily conserved in 
eukaryotes 
 

Since the polysome profiling experiments suggested that Asc1p and 

RACK1 were biochemically orthologous ribosomal proteins, we wanted to 

investigate whether RACK1 is a conserved eukaryotic ribosomal protein.  

Alignment of yeast Asc1p with four putative orthologs from different species, C. 

elegans (NP_501859), D. melanogaster (NP_477269), M. musculus (BAA06185) 

and H. sapiens (NP_006089), revealed a high sequence similarity between the 

different proteins.  To test if localization of these Asc1p/RACK1 orthologs is 

conserved among eukaryotic species, we performed polysome profiling on 

extracts from mouse, human, fly, and nematode (Fig. 1-2 A-D respectively).  By 

Western analysis, a RACK1 monoclonal antibody recognized a major and minor 

band in the ribosomal fractions of M. musculus, and H. sapiens.  In both 

organisms, the RACK1 antibody failed to detect a protein in the non-ribosomal 

fractions.  Because the RACK1 antibody poorly recognized a cognate fly and 

worm protein, we analyzed D. melanogaster  and C. elegans polysomes and 

non-ribosomal fractions by the mass spectrometry approach termed Direct 

Analysis of Large Protein Complexes (DALPC) (Link, 1999; Sanders et al., 2002; 

Yik et al., 2003) (Fig. 1-2 C-D).   DALPC identified RACK1 peptides in the 

polysomal but not the non-ribosomal fractions for both D. melanogaster and C. 

elegans.  Together our data show that in the four eukaryotes tested, 

ASC1/RACK1 were found in the ribosomal fractions and were absent from the 

non-ribosomal fractions.  Collectively, these results suggest that both the 
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sequences and localization of ASC1/RACK1 to ribosomal fractions are 

conserved in eukaryotes. 
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6.  asc1∆ + pRACK1 (AL141)

Figure 1-3.

 

 

Figure 1-3.  ASC1 and RACK1 genetically complement the temperature-sensitive growth defect in a yeast asc1∆ null 
strain. 
The indicated yeast strains were grown to logarithmic phase in liquid media, spotted in a dilution series onto SC-Ura 
plates, and grown at two different temperatures for 72 hours and then photographed.  Strains 1-3 are wild-type controls.  
Strains 4-6 are experiments performed in the asc1∆ null background.  The genotypes of the strains are described in 
“Materials and Methods”.  
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S. cerevisiae ASC1 and mammalian RACK1 are genetically orthologous 

Because polysome profiling experiments in yeast and higher eukaryotes 

indicated that Asc1p and RACK1 were biochemically conserved orthologous 

ribosomal proteins, we wanted to test to see if ASC1 and RACK1 are genetically 

orthologous genes.   We found an asc1∆ null yeast strain had a temperature-

sensitive growth defect (Fig. 1-3, line 4).  Using a plate dilution assay, we tested 

whether CEN plasmids expressing ASC1 (pASC1) or RACK1 (pRACK1) at the 

endogenous level of ASC1 could complement the temperature-sensitive 

phenotype in an asc1∆ null strain.  Complementation in the asc1∆ null strain was 

complete for ASC1 and partial for RACK1 (Fig. 1-3, line 5 and 6).  These results 

are in excellent agreement with a previous study (Hoffmann et al., 1999).  

Polysome profile analysis of the yeast asc1∆ null + pASC1 complementing strain 

demonstrated that ASC1 expression is restored and the complementing Asc1p 

protein localized to the ribosomes (Fig. 1-1D).  These data indicate that yeast 

ASC1 and RACK1 are genetically orthologous.  

 48



Figure 1-4.
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Figure 1-4. Translational activity in asc1∆ extracts is up-regulated.  

(A) In vitro translation of capped and polyadenylated luciferase reporter mRNA with extracts that were prepared from wild-
type BY4743 and the isogenic asc1∆ null strain YDM36556.  Translational activity was determined by measuring 
luminescence (relative light units) after 30 min of incubation at 26°C. Error bars indicate the standard deviation.  (B) In 
vitro translation of capped and polyadenylated luciferase reporter mRNA with extracts that were prepared from wild-type 
AL103 and the isogenic asc1∆ null strain AL030.  (C) In vitro translation of uncapped and polyadenylated luciferase 
reporter mRNA with extracts that were prepared from wild-type BY4743 and the isogenic asc1∆ null strain YDM36556.  
(D) In vitro translation of polyA-enriched mRNAs with extracts that were prepared from wild-type BY4743 and the isogenic 
asc1∆ null strain YDM36556.  The extracts were incubated with whole wild-type yeast mRNA and 35S methionine.  
Translational activity was determined by measuring the counts per min (CPM) after 30 min of incubation at 26°C.  (E) In 
vivo analysis of GCN4 translation.  Wild-type BY4743 and asc1∆ null YDM36556 strains were transformed with a 5’UTR 
GCN4 lacZ reporter plasmid (p180) (Hinnebusch, 1985).  Cells were grown in SC-URA to an O.D. 600 of 0.6 and assayed 
for Β-galactosidase activity as described in materials and methods.  (F) In vitro translation of capped and polyadenylated 
luciferase reporter mRNA in the presence of an increasing concentration of recombinant Asc1p protein.  Protein extracts 
were prepared from wild-type BY4743 and the isogenic asc1∆ null strain YDM36556.  The extracts were incubated with 
luciferase mRNA and the indicated amounts of recombinant Asc1p protein.   Translational activity was determined by 
measuring luminescence (relative light units) after 30 min of incubation at 26°C.  (G) Western analysis of in vitro extracts 
using anti-Asc1p and anti-Rpl3p antibodies.  As a loading control for the in vitro translation assay, Asc1p and Rpl3p levels 
were measured.  Poly-His-tagged recombinant Asc1p migrates more slowly than endogenous Asc1p.  Rpl3p levels 
suggest that 60S subunit levels were similar between wild-type and asc1∆ translation extracts. 
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Asc1p deficient ribosomes have increased translational activity in vitro 

Because our data indicated that RACK1 and Asc1p are conserved 

eukaryotic ribosomal proteins and earlier studies had implicated Asc1p in the 

amino-acid starvation response, we wanted to determine the role of 

Asc1p/RACK1 in translation.  To evaluate the activity of Asc1p in translation, we 

performed in vitro translation assays using extracts from wild-type and asc1∆ null 

yeast strains (Tarun and Sachs, 1995).  In three independent experiments 

translating a capped and polyadenylated luciferase reporter mRNA, the asc1∆ 

null strain ribosomes had a 3-10 fold higher translational activity compared to 

wild-type ribosomes (Fig. 1-4A and F).  To show that the increased translational 

activity was not strain dependent, in vitro translation assays were performed 

using extracts from genetically independent wild-type and asc1∆ null strains 

(Link, 1999).  Similar to the earlier strains, the second asc1∆ null strain had a 

higher in vitro translational activity compared to an isogenic wild-type strain (Fig. 

1-4B). 

To test that the asc1∆ null increased translational activity phenotype was 

independent of the reporter molecule, we translated uncapped luciferase, capped 

luciferase, wild-type polyA mRNAs, and a GCN4 5’UTR-lacZ reporter.  We found 

that translational activity is elevated in the asc1∆ null strain compared to the wild-

type strain (Fig. 1-4A through F).   

In an attempt to modulate the higher translational activity of the ribosomes 

lacking Asc1p, we added recombinant Asc1p protein to our in vitro extracts.  

Expression of the recombinant protein in asc1∆ null strains complemented the 
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temperature-sensitive growth defect.  However, addition of exogenous Asc1p 

protein to the in vitro translation extracts failed to repress translational activity 

(Fig. 1-4F). 

Since the recombinant protein failed to restore translational activity to wild-

type levels, we sought to determine if our recombinant protein was added at wild-

type stoichiometric levels.  Western analysis of in vitro translation extracts 

showed the levels of exogenous Asc1p equal to or above that found in wild-type 

ribosome preparations (Fig. 1-4G).  When relative levels of Rpl3p protein were 

compared between extracts, the amounts of ribosomes appeared to be similar 

(Fig. 1-4G).  These data suggest that equal amounts of ribosomes were present 

in each extract for translation.  Collectively, these data show that ribosomes 

lacking Asc1p have increased (derepressed) translation activity, suggesting that 

Asc1p acts as a translational repressor. 
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Figure 1-5. In vivo changes of protein levels in asc1∆ null strains.   

(A) Up-regulated proteins in the asc1∆ null strain are complemented by either Asc1p or RACK1.  Graphs of standardized 
protein abundance in wild-type (1), asc1∆ null (2), asc1∆ null + pASC1 (3) , and asc1∆ null + pRACK1 (4) complemented 
strains are shown.  Representative 2D-gel images are shown as a reference for protein levels for each strain and show an 
arrow pointing to the Cy3 or Cy5-labeled protein identified.  For the graphs, each dot indicates the standardized protein 
abundance of a specific protein for a given strain in a single independent experiment.  Each dot is calculated by dividing 
the Cy3 or Cy5 density by the Cy2 density (internal standard) for the respective protein position.  Numbers on the graphs 
indicate the fold difference in average standardized abundance between the asc1∆ null and wild-type strain.  A (+) marks 
the average standardized abundance for a given strain and is representative of 3 independent experiments.  The black 
line connects the average standardized protein abundance with one another.  (B) The down-regulated protein in the 
asc1∆ null strain is not complemented by either Asc1p or RACK1.  The graph shows standardized protein abundances in 
wild-type (1), asc1∆ null (2), asc1∆ null + pASC1 (3), and asc1∆ null + pRACK1 (4) complemented strains.  A description 
of the graphs and 2D-gel images are similar to those in (A).  

 52



 

Asc1p or RACK1 functionally complement increased protein levels in 
asc1∆ null strains  

Because the in vitro data above suggested that Asc1p functions as a 

translational repressor, we sought to analyze in vivo changes in protein levels 

between wild-type, asc1∆ null, asc1∆ null + pASC1, and asc1∆ null + pRACK1 

complemented strains.  We employed 2D-difference gel electrophoresis (2D-

DIGE) to quantify any changes in the in vivo proteins levels for a large population 

of proteins (Alban et al., 2003; Friedman et al., 2004).  In the 2D-DIGE 

experiments, whole cell lysates were prepared from three independent cultures 

for each of the four strains described above (e.g. 12 independent samples).  The 

lysates were labeled prior to electrophoresis with the spectrally resolvable 

fluorescent dyes Cy3 or Cy5.  To normalize for protein abundance differences 

across multiple 2D gels, a mixed internal standard pool containing equal amounts 

of each experimental sample was labeled with a Cy2 fluorescent dye.  The 

pooled standard represented the average of all samples being compared.  

Independent Cy2, Cy3, and Cy5 samples were mixed and resolved on the same 

2D gels. As a consequence, each gel contained an image with a highly similar 

spot pattern, simplifying and improving the confidence of inter-gel spot matching 

and quantification (Alban et al., 2003).  To control for bias in the fluorescent dyes, 

we reversed the Cy3 and Cy5 dyes used to label the whole cell extracts in one of 

the experimental triplicates from the 4 strains being compared.   
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In our analysis of in vivo protein levels, we interpreted a 2D gel feature as 

a protein only if the spot was confirmed with both Cy3 and Cy5 labels and was 

present on every gel.  The total number of proteins analyzed (approximately 

1500) included multiple isoforms of some individual proteins.  Only proteins with 

≥1.5 fold differences in abundance were considered significant and included in 

our analysis.  In addition, differences in protein levels between wild-type and 

asc1∆ null samples were considered statistically significant only if the difference 

fell within the 95% confidence interval as determined by the Student’s T-test.   

2D-DIGE analysis indicated that among ~1500 yeast proteins detected, 27 

proteins are ≥1.5 fold more abundant in the asc1∆ null strain relative to wild-type 

(p<0.05) (Fig. 1-5A). Among these 27 elevated proteins, the differences in 

abundance between the wild-type and asc1∆ null strain ranged from 1.5 to 4.44 

fold.  Six of the seven up-regulated had sufficient material for unambiguous 

identification by mass spectrometry (Figure 1-5A).  For AIP1 up-regulated in the 

asc1∆ null strain, we performed Western analysis using the same extracts used 

for the 2D-DIGE experiments.   The relative abundance of Aip1p from the four 

strains was consistent with results from the 2D-DIGE experiments.  Only 3 of 

1500 proteins demonstrated a statistically significant (p<0.05) down-regulation in 

the asc1∆ null in comparison to wild-type (Fig. 1-5B).  One of the three proteins 

had sufficient material for identification by mass spectrometry (Figure 1-5B).  

Both the asc1∆ null + pASC1 and asc1∆ null + pRACK1 strains restored elevated 

proteins back to wild-type levels for 24 of 27 of the up-regulated proteins (Fig. 1-

5A).  In contrast, levels of the three down-regulated proteins were not 
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complemented by the asc1∆ null + pASC1 or the asc1∆ null + pRACK1 strains 

(Fig. 1-5B).  These results are consistent with our in vitro experiments suggesting 

a repressive role for Asc1p in translation.  Additionally, these data provide further 

evidence that Asc1p and RACK1 are functionally orthologous ribosomal proteins. 

To discern between transcriptional and post-transcriptional regulation of 

gene expression for the seven identified proteins, we compared 2D-DIGE protein 

abundance data with mRNA levels from the four strains.   The mRNA levels 

encoding six up-regulated (AIP1p, ALD3p, APE2p, CTT1p, DKA1p, and TPS1p) 

and one down-regulated (ENO2p) protein were measured in wild-type, asc1∆ 

null, and complemented strains using multiplex RT-PCR and real-time RT-PCR.  

By triplex RT-PCR we observed no apparent difference in transcript levels for 

any of the seven genes analyzed (Fig. 1-6A).  By real-time quantitative PCR, the 

average differences in levels of AIP1, ALD3, APE2, CTT1, DKA1, and TPS1  

transcript abundance were variable but not statistically significant in the asc1∆ 

null strain relative to wild-type and complemented strains (p<0.05) (Fig. 1-6B).  

However, ENO2 transcript levels were down-regulated in the asc1∆ null strain 

relative to wild-type (p<0.05) (Fig. 1-6A).  Collectively these results support a 

negative role for Asc1p/RACK1 in gene expression. 
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Figure 1-6.  Analyzing mRNA transcript levels in asc1∆ null, asc1∆ null +pASC1, asc1∆ null + pRACK1 and wild-type 
strains.  
(A) Triplex RT-PCR of mRNA transcripts in asc1∆ null, asc1∆ null +pASC1, asc1∆ null + pRACK1 and wild-type strains 
used for 2D-DIGE analysis.  As a negative control, asc1∆ null RNA was amplified with no reverse-transcriptase. AIP1, 
ALD3, APE2, CTT1, DKA1, ENO2, and TPS1 mRNA transcript abundances were measured by triplex semi-quantitative 
RT-PCR using total RNA prepared from 2D-DIGE experiments.  cDNA transcripts were co-amplified with TDH3 (GAPDH) 
as a standard. One of three independent samples is shown here.  PCR cycles 17, 20, 23, 26, and 30 are shown in order 
from left to right for each sample.  (B) Quantifying mRNA levels in asc1∆ null strains.  The graph shows the quantified 
mRNA levels for the seven genes from four different strains in (A).  Transcript levels for all seven proteins identified by 
MALDI-TOF were quantified by real-time PCR of cDNA transcripts.  As a standard, mRNA transcript levels for each gene 
were divided by TDH3 (GAPDH) transcript levels in each sample.  Error bars indicate the standard deviation of the mean.  
P-values for each gene were determined through a student’s T-test between the calculated wild-type and asc1∆ null 
transcript levels. 
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Discussion 

 

RACK1/ Asc1p is the 33rd ribosomal protein of the small (40S) eukaryotic 
subunit 
 

In the classical experiments of Kruiswijk and Planta, proteins are 

considered “core” ribosomal components if they remain associated in the 

presence of 0.5M KCl (Kruiswijk and Planta, 1974).  Asc1p fulfills this 

requirement by associating with the ribosome in the presence of 1M KCl (Link, 

1999).  The localization of Asc1p/RACK1 to the 40S, 80S, and polysomal 

fractions has been observed by several independent studies (Angenstein et al., 

2002; Ceci et al., 2003; Chantrel et al., 1998; Inada et al., 2002; Link, 1999; Shor 

et al., 2003).  Here we have demonstrated the localization of Asc1p and RACK1 

to polysomes in five different eukaryotic species.  Further, we demonstrate that 

yeast Asc1p and mammalian RACK1 compete for localization to the yeast 

ribosome.  Moreover, we show that RACK1 functionally complements the 

phenotype of an asc1∆ null mutant.  These data, taken together with other 

studies, strongly suggest that Asc1p and RACK1 are orthologous core ribosomal 

proteins.  Consequently, we propose a more appropriate name for yeast ASC1 is 

RPS33, the 33rd ribosomal protein in the S. cerevisiae 40S small subunit. By 

corollary, RACK1 should be classified as a mammalian 40S core ribosomal 

protein. 

ASC1 has several other features that are common to S. cerevisiae 

ribosomal genes.  Although only a small percentage of S. cerevisiae genes 

contain an intron, 66% of the yeast ribosomal genes contain an intron.    Two 
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previous studies have shown that ASC1 contains an intron (Chantrel et al., 1998; 

Hoffmann et al., 1999).    The codon adaptation index (CAI) is a measurement of 

the relative adaptiveness of the codon usage of a gene towards the codon usage 

of highly expressed genes (Jansen et al., 2003; Sharp and Li, 1987)).  CAI 

values range from 0 to 1, with higher values indicating a higher proportion of the 

most abundant codons.  The average CAI for all yeast genes is 0.18 while the 

average CAI for ribosomal genes is 0.71.  ASC1 has a CAI of 0.77 suggesting it 

is highly expressed.  Several studies have measured the transcriptional 

expression of ASC1 and found it to be expressed at levels equivalent to 

ribosomal genes (Velculescu et al., 1997; Wodicka et al., 1997).  A recent study 

measured the abundances of a large number of yeast proteins (Ghaemmaghami 

et al., 2003).  The estimated abundances for ribosomal proteins ranged from 

4.5E+03 to 6.02E+05 molecules per log-phase cell with average of 7.0E+04 

molecules per cell.  Asc1p was found to be present at approximately 3.33E+05 

molecules per log-phase cell which is in the same range as other ribosomal 

proteins (Ghaemmaghami et al., 2003).  These results agreed with an earlier 

study showing Asc1p is an abundant yeast protein that is highly enriched in 

ribosomal fractions (Garrels et al., 1997).  In ribosome fractions, Asc1p is present 

at equimolar concentration to the other ribosomal proteins (Link, 1999).  All of 

these reports indicate ASC1 is a highly expressed yeast gene with characteristics 

similar to other ribosomal genes. 
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ASC1/RACK1 exerts a repressive effect on specific protein synthesis 

    We found that absence of yeast Asc1p resulted in elevated translational 

activity. However, this molecular phenotype could not be complemented in vitro 

by adding recombinant Asc1p.  While it is possible the recombinant Asc1p fusion 

protein is not folded properly or is lacking critical modified residues, the fusion 

protein does complement an asc1∆ null strain.  Failure of a core eukaryotic 

ribosomal protein to complement when added exogenously is not surprising 

since eukaryotic ribosome assembly is thought to occur as a stepwise process in 

the nucleolus (Fromont-Racine et al., 2003; Tschochner and Hurt, 2003).  In 

contrast, translational initiation factors can be added exogenously to restore 

activity to wild-type levels in in vitro translation assays (Choi et al., 1998; Tarun et 

al., 1997). 

To identify the molecular function of ASC1 and RACK1 in vivo, we 

employed a quantitative, global proteomic analysis of WT, asc1∆ null, yeast 

pASC1, and mammalian pRACK1 complemented strains.  We reasoned that if 

Asc1p and RACK1 function as repressive, ribosomal proteins, we might observe 

a global up-regulation of protein levels in asc1∆ null strains.  Further, this up-

regulation should be complemented by expression of yeast pASC1 or 

mammalian pRACK1 in an asc1∆ null background.  Indeed, we found that asc1∆ 

null strains have elevated levels of some proteins, and this molecular phenotype 

can be complemented by either yeast pASC1 or mammalian pRACK1.  The 

changes in protein levels appear to be independent of mRNA levels and 

therefore likely occur through a post-transcriptional mechanism.   
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The in vitro translation assays using various mRNA templates suggest that 

translation activity is globally increased for ribosomes lacking Asc1p.  However, 

in vivo assessment of protein levels in asc1∆ null strains shows that only a 

specific population of proteins (27 of 1500) are significantly up-regulated.  

Although in vitro translation assays suggested a 2-10-fold increase in 

translational activity for the asc1∆ null strain ribosomes, in vivo post-

transcriptional analysis indicated that specific protein levels were up-regulated 

between 1.5 and 4.44 fold (compare Figures 1-4 and 1-5).  The in vitro 

translation assays are by nature an artificial environment for translating mRNAs.  

Therefore, a 1:1 correlation with the in vivo results should not be expected.   

Despite the observed discrepancy between in vitro and in vivo results, both 

assays suggest a general trend of increased translational activity for the asc1∆ 

null strain.  Taking the results of both assays into consideration, we propose that 

Asc1p functions as a translational repressor.   

Recent reports suggest that Asc1p/RACK1 function to stimulate eukaryotic 

translation (Ceci et al., 2003; Shor et al., 2003).  We speculate that these 

observations arise from indirect phenomena, initiated by the translational up-

regulation of regulatory proteins.  For example, in this study we observe a 

reduction of ENO2 protein and mRNA levels in the asc1∆ null strain (Fig. 1-6 A 

and B).  It is conceivable that this reduction in transcript levels arises from the 

translational up-regulation of a transcriptional repressor.   

A previous study observed an increase in specific mRNA levels in asc1∆ 

null strains relative to wild-type strains (Hoffmann et al., 1999).  Interestingly, 
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these up-regulated mRNAs in asc1∆ null strains are regulated by the 

transcription factor Gcn4p (Hoffmann et al., 1999).  However, in the same study 

asc1∆ null strains did not show a translational up-regulation of GCN4.  Here we 

observe an up-regulation of GCN4 translational activity relative to wild-type 

(Figure 1-4E).  Because a multiplicity of co-activators contributes to GCN4-

mediated transcription, it is possible that specific mRNAs are elevated in asc1∆ 

null strains through the translational up-regulation of specific GCN4 co-activators 

(Kanadia et al., 2003).  Our results support a model where Asc1p and RACK1 

are core components of the 40S ribosomal subunit that modulate the translation 

of mRNAs.  Because our results show that average mRNA levels are often 

higher, but not statistically different in asc1∆ null strains, it is possible that Asc1p 

and RACK1 play an indirect role in transcriptional repression.   

A number of proteins have been reported to interact with RACK1 in 

mammalian systems.  Although we have not addressed this question, we 

observe RACK1 in ribosomal fractions when analyzing mammalian species.  It is 

possible that RACK1 dissociates from the ribosome to perform other functions.  

Precedent for such phenomena has recently been reported for the ribosomal 

protein L13A (Mazumder et al., 2003).  Several studies have reported an 

association of RACK1 with the BII isoform of PKC (BII PKC) (Hoffmann et al., 

1999; Stebbins and Mochly-Rosen, 2001).  Interactions of RACK1 with signal 

transduction proteins may direct ribosomes to specific cellular locations where 

localized translation of proteins is required.   Further experiments will be required 

to test these different models. 
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CHAPTER III 
 
 

ASC1 FACILITATES YEAST RIBOSOME BIOGENESIS AT ELEVATED 

TEMPERATURES 

 

 Chapter 3 is a manuscript in preparation.  All experiments performed in 

this chapter were performed by Vincent Gerbasi. 

 
Summary 

  

Asc1p and Rack1 are orthologous components of the yeast and human 

40S ribosomal subunit (respectively).  Cryo-EM studies show the mRNA exit 

channel of the 40S ribosome is lacking significant electron density in Rack1 

deficient ribosomes.  To dissect the function of Asc1p in protein synthesis, we 

compared the protein composition of wild-type and asc1∆ null yeast strains.   

Asc1p-deficient ribosomes have a marked increase in their association with the 

ribosome-associated chaperone Ssb1/2p.  Based on this observation, we 

reasoned that Asc1p-deficient ribosomes might be unstable.  Shifting an asc1∆ 

null strain to elevated growth temperatures resulted in a strong growth inhibition 

and a rapid reduction in total ribosome levels.  Experiments testing the stability of 

Asc1p-deficient ribosomes suggest that ASC1 facilitates nascent ribosome 

formation (biogenesis) at elevated temperatures.  Yeast deficient in ASC1 

recovered from growth at elevated temperatures.  Recovery was associated with 

increasing the ribosome density (density of ribosomes per cell), but not the ability 

to stimulate translational initiation per se.  These studies strongly suggest that 
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ASC1 is involved in ribosome assembly and that ribosome density is a critical 

checkpoint for cell proliferation. 

 

Introduction 

The precise function of core ribosomal proteins remains obscure.  Studies 

of prokaryotic ribosomes suggest that core ribosomal proteins are not entirely 

necessary for aspects of protein synthesis (Nissen et al., 2000; Noller et al., 

1992).  For example, high-resolution structures of the prokaryotic ribosome have 

confirmed that the active site of peptide bond formation is tightly wrapped in 

ribosomal RNA but is quite far (>18 angstrom) from any of the ribosomal proteins 

(Nissen et al., 2000).     

Systematic gene disruption has shown that many of the ribosomal proteins 

orchestrate different steps in ribosome biogenesis (Ferreira-Cerca et al., 2005; 

Jakovljevic et al., 2004; Leger-Silvestre et al., 2004).   Ribosomal proteins (RP) 

are necessary for different steps of ribosome maturation including ribosomal 

RNA processing in the nucleolus, late maturation of ribosomal RNA in the 

cytoplasm, and transport of ribosomes to the cytoplasm (Ferreira-Cerca et al., 

2005; Jakovljevic et al., 2004; Leger-Silvestre et al., 2004).  Although these 

studies revealed roles of several RP in biogenesis, the functional roles for other 

ribosome components will be obtained from focused studies on individual 

proteins. 

Our understanding of ribosome protein function in mammalian systems is 

not as well developed.  However, conditional deletion of RPS6 in mice combined 
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with fasting results in a dramatic loss of free 40S subunits and a subtle reduction 

of 80S subunits and polyribosomes in the liver (Volarevic et al., 2000).  The 

combination of fasting and RPS6 depletion was associated with reduced liver cell 

proliferation (Volarevic et al., 2000).  In agreement with these data, yeast cells 

suppress ribosome synthesis and cell proliferation during starvation (Kief and 

Warner, 1981). Therefore, there is an established link between ribosome 

synthesis, cell proliferation, and nutrient deprivation.   

Ribosomes deficient in Asc1p have an abnormal structure and are missing 

electron density at the mRNA exit channel of the 40S subunit (Nilsson et al., 

2004; Sengupta et al., 2004).  Yeast asc1∆ null strains are viable but have a 

temperature sensitive phenotype (Gerbasi et al., 2004).  The asc1∆ null strains 

provide an opportunity to study the functional consequences of this altered 

ribosome structure and the overall contribution of the gene to cell proliferation.       

In this study, we performed a proteomic comparison of wild-type and 

Asc1p-deficient yeast ribosomes.  Surprisingly, ribosomes deficient in Asc1p are 

enriched in the chaperone protein Ssb1/2.  This prompted us to investigate the 

stability of Asc1p-deficient ribosomes relative to wild-type.  Asc1p-deficient 

ribosomes formed at 30°C in vivo are stable at elevated temperatures.  However, 

an asc1∆ null strain showed a ribosome biogenesis defect at elevated 

temperatures.  These data strongly suggest that Asc1 is involved in chaperoning 

ribosome biogenesis.  The temperature-sensitive phenotype of an asc1∆ null 

strain is reversible.  However, an asc1∆ null strain exhibits a severe growth-lag 

after shifting from the non-permissive to the permissive temperature.  This growth 
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lag is associated with a diminished ribosome pool.  While translation initiated 

immediately after shifting asc1∆ null cells from the non-permissive to the 

permissive temperature, recovery of the ribosome population was delayed.  

These data strongly suggest that translational initiation alone is insufficient to 

drive cell proliferation but that proliferation requires an adequate density of 

ribosomes to proceed.    

Results 

 

Proteomic analysis of Asc1p-deficient core ribosome particles 

Cryo-electron microscopy has shown that yeast ribosomes lacking Asc1p 

are missing electron density at the 40S mRNA exit channel.  Despite this 

structural disruption in the small subunit, asc1∆ null strains have normal growth 

rates under permissive conditions (Gerbasi et al., 2004).  Unexpectedly, the null 

strains have elevated levels of a subset of proteins (Gerbasi et al., 2004). 

To improve our understanding of Asc1p function in the ribosome, we 

performed a proteomic comparison of wild-type and Asc1p-deficient ribosomes 

using semi-quantitative mass spectrometry (Link et al., 1999) (Washburn et al., 

2001).  Total cellular ribosomes were purified over discontinuous gradients in 

200mM salt from a wild-type or cognate asc1∆ null strain grown to semi-

logarithmic phase at 30°C.  Mass spectra corresponding to ribosomal proteins 

from the wild-type and the asc1∆ null strains were obtained using MUDPIT (Link 

et al., 1999; Washburn et al., 2001). The mass spectrometry data were 

processed and analyzed using our bioinformatic graphical comparative analysis 
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software tools (BIGCAT) (Fleischer et al., 2006).  To estimate the relative 

abundance of each protein from the mass spectrometry data, we used a 

normalized label-free method of quantification (Fleischer et al., 2006; Powell et 

al., 2004).  A protein abundance factor (PAF) was calculated for each identified 

protein to quantify its relative amount in the samples.   
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Figure 2-1: Asc1p-deficient ribosomes are enriched with chaperones 

(A) Wild-type (+) or asc1∆ null (-) yeast core ribosome particles were isolated in duplicate as described in Materials and 
Methods.  Core ribosome particles were then subjected to MUDPIT analysis (Link et al., 1999; Washburn et al., 2001).  
Results acquired from each MUDPIT sample was then analyzed using BIGCAT software (McAfee et al., 2006).  The heat 
map shows proteins that have the highest PAF values in the Asc1p-deficient ribosomes that were not detected in the wild-
type samples.  Red indicates a protein with a high protein abundance factor (PAF) score (an estimate of the relative 
abundance of each protein in a given sample), yellow indicates proteins with an intermediate PAF score, and black 
indicates the protein was not detected (PAF=0).  Ssb1/2p scored the highest PAF among proteins unique to the Asc1p-
deficient ribosomes.  (B) Core ribosome particles were isolated in duplicate from wild-type, asc1∆, or asc1∆ + pASC1.  
Ribosome samples were subjected to SDS-PAGE and immunoblotting for Ssb1/2p, Asc1p, or Rpl3p levels.     
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Interestingly, ribosomal particles deficient in Asc1p lacked only a few sub-

stoichiometric interactions.  Comparison of proteins detected between the wild-

type and asc1∆ null strain ribosomes suggested that mutant ribosomes were 

deficient in Asc1p, but not other core components of the ribosome.  In contrast, 

the Asc1p-deficient ribosomes were enriched in the ribosome-associated 

chaperone protein Ssb1/2p (average PAF value of 3.30) (Figure 2-1A).  

Additionally, Asc1p-deficient ribosomes were enriched in RPB10 and the 

undefined yeast gene product YBR230C.  Both of these proteins contained PAF 

scores that were considerably lower than Ssb1/2p.  Because the PAF value 

indicates the confidence of a given protein identification, we chose not to pursue 

these additional interactions further.  To test if Ssb1/2p enrichment in Asc1p-

deficient ribosomes was due to the absence of Asc1p, we analyzed Ssb1/2p 

levels from wild-type, asc1∆, and asc1∆+ pASC1 (complemented) yeast strains 

by isolating ribosomes and performing immunoblot analysis.  Densitometry of the 

immunoblots showed that Asc1p-deficient ribosomes contained an 80% increase 

of Ssb1/2p protein relative to wild-type (Figure 2-1B).  Further, Ssb1/2p 

ribosomal protein levels were complemented when ASC1 was expressed from a 

low-copy plasmid in the asc1∆ null yeast.  Therefore, alteration in 40S structure 

induced by a loss of Asc1p is associated with increased levels of Ssb1/2p in the 

ribosome.  

 

 

 69



asc1-deficient yeast rapidly lose ribosomes and polyribosomes at elevated 
temperatures 
 

A subset of HSP70-like chaperone proteins are ribosome-associated and 

parallel the expression profiles of core ribosomal proteins when yeast cells are 

subjected to stressful conditions (Albanese et al., 2006).  These chaperones 

linked to protein synthesis (CLIPS) include Ssb1/2p (Albanese et al., 2006).  

Previous studies have shown that Ssb1/2 binds to the ribosome in a 

conformation-dependent manner and maintains ribosome structure through an 

unknown mechanism (Nelson et al., 1992; Pfund et al., 1998).   
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Figure 2-2: asc1-deficient yeast grow slowly and lose ribosomes at the non-permissive temperature 

(A) Wild-type, asc1∆, or asc1∆ + pASC1 yeast were grown in SC-URA at 30°C.  Cells were then transferred to either 
30°C or 39°C for 2 h.  Cells isolated at the indicated temperatures were then subjected to polysome profiling analysis as 
described in materials and methods.  An equivalent number of O.D. 260 units were loaded onto each sucrose gradient. 
(B) Wild-type, asc1∆, or asc1∆ + pASC1 were analyzed for growth at 30°C or 39° C using a plate dilution assay.  Growth 
of asc1∆ yeast was strongly inhibited at 39°C.  This phenotype was complemented by expression of ASC1 on a low-copy 
plasmid. 
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Asc1p-deficient ribosomes were enriched in Ssb1/2p.  Because Ssb1/2p 

has been implicated in stabilizing ribosome structure, we reasoned that this 

chaperone enrichment might be due to reduced ribosome stability in the asc1∆ 

null mutant.  To test this hypothesis, we analyzed the level and activity of 

ribosomes in wild-type, asc1∆, and asc1∆ +pASC1 strains.  Ribosome levels and 

activity were accessed by polyribosome profiling.  Our results show that an 

asc1∆ null strain contains normal levels of ribosomes and polyribosomes at 30°C 

(Figure 2-2A).  However, shifting asc1∆ yeast to 39°C resulted in a severely 

diminished ribosome and polyribosome population.  Polyribosome levels were 

reduced in a similar proportion to monosome (80S peak) levels, consistent with a 

defect in ribosome biogenesis (Ferreira-Cerca et al., 2005).  The abnormal 

polysome profile of the asc1∆ yeast at the non-permissive temperature was 

complemented by expressing ASC1 on a low-copy plasmid (Figure 2-2A).  We 

found that growth of asc1∆ null yeast at 39°C was severely impaired (Figure 2-

2B).  Negative control strains that are temperature sensitive but have no reported 

function in mRNA translation or ribosome biogenesis failed to grow at 39°C, but 

did not lose ribosomes when grown at the non-permissive temperature (Audhya 

et al., 2000).  Collectively, these data show that asc1∆ null yeast have reduced 

cell proliferation and a severely diminished ribosome population when grown at 

39°C. 
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Figure 2-3: Correlation between temperature, ribosome loss, and degree of growth inhibition in asc1-deficient 
yeast 

 (A) Wild-type, asc1∆, or asc1∆ + pASC1 yeast were grown as described in Figure 2-2.  Yeast were then shifted for 2 h to 
36°C, 38°C, or 39°C and subjected to polysome profiling analysis.  (B) Wild-type,  asc1∆, or asc1∆ + pASC1 yeast were 
grown at either 30°C, 33°C, 36°C, 37°C, 38°C or 39°C in a plate dilution assay for 48 h. 
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Association between growth temperature, ribosome loss, and cell 
proliferation in asc1-deficient yeast 

The severity of ribosome loss and growth suppression was assessed over 

a gradient of temperatures in wild-type, asc1∆ null, and a complemented asc1∆ 

null yeast strains.  The extent of ribosome and polyribosome depletion in asc1∆ 

null yeast correlated with the temperature at which the yeast were grown (Figure 

2-3A).  As before, expressing ASC1 on a low-copy plasmid in the asc1∆ null 

yeast complemented the observed reduction in ribosomes and polyribosomes 

(Figure 2-3A).  Additionally, we observed a correlation between the extent of 

growth suppression and growth temperature in the asc1∆ null yeast (Figure 2-

3B).  These data establish an association between growth temperature, extent of 

ribosome loss, and proliferation rate in asc1∆ null yeast. 
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Figure 2-4: Asc1p is critical for nascent ribosome stability at the non-permissive temperature 

(A) Ribosomal proteins from wild-type, asc1∆, or asc1∆ + pASC1 yeast complemented with ASC1 on a low-copy plasmid 
(asc1∆ + pASC1) were radiolabeled with a mixture of 35S-methionine and 35S-cysteine at 30°C or 39°C for 4 hours.  
Ribosomal particles were isolated from the radiolabeled cells and subjected to SDS-PAGE and radiography. (B) 
Ribosomal proteins from strains described in (A) were radiolabeled in media containing 35S-methionine and 35S-cysteine 
at 30°C.  The cell labeling was quenched with 50mM cold cysteine and methionine and cells were shifted to either 30°C or 
39°C for four hours.  Core ribosome particles were isolated and analyzed as described in (A).  (C) Yeast strains described 
in (A) were radiolabeled at 30°C for 4 hours.  Core ribosome particles were isolated from cell lysates that were incubated 
in vitro for 2 hours at either 30°C or 39°C.  

 

 

 

 

 

 

 

 

 

 75



A role for ASC1 in ribosome biogenesis 
The asc1∆ null yeast strain showed a temperature-sensitive reduction in 

the density of ribosomes per cell.  The ribosome and polyribosome population 

was severely diminished within 2 hours of growth at the non-permissive 

temperature.  This rapid reduction in the ribosome population led us to question 

the fate of these Asc1p-deficient ribosomes at the non-permissive temperature.  

To analyze the synthesis and stability of Asc1p-deficient ribosomes, we isolated 

ribosomal particles from cells radiolabeled with 35S-methionine and cysteine 

(Figure 2-4A).  The asc1∆ null strain exhibited a severe reduction in radiolabeled 

core ribosomal proteins at the non-permissive temperature compared to the wild-

type and complemented asc1∆ null strain (Figure 2-4A).  The data suggested 

that ASC1 functioned during ribosome synthesis and/or stability at elevated 

growth temperatures. That Asc1p-deficient ribosomes were not detected in this 

assay suggests that these mutant yeast either fail to synthesize ribosomal 

proteins, or fail to form the ribosome complex at the non-permissive temperature. 

To distinguish between a ribosome stability or biogenesis role for ASC1 at 

non-permissive temperatures, we analyzed ribosome stability using pulse-chase.  

Wild-type, asc1∆ null, and complemented asc1∆ null yeast strains were pulse 

labeled with 35-S methionine and cysteine at 30°C, treated with excess cold 

methionine and cysteine, and shifted to either 30°C or 39°C for 4 hours.  

Ribosomes from asc1∆ null yeast grown at 30°C were stable at 39°C (Figure 2-

4B).  Additionally, in vitro analysis of ribosome stability at 30 or 39°C revealed no 

difference between wild-type and complemented strains (Figure 2-4C).  
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Therefore, our results support a model where ASC1 stabilizes nascent but not 

mature ribosomes at elevated temperatures. 
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Figure 2-5: A growth lag in recovering asc1-deficient yeast is associated with reduced ribosome density, not repressed 
translational initiation 

(A) Wild-type, asc1∆, or asc1∆ + pASC1 yeast were grown for 16 h at 39°C.  Cells were then shifted to fresh media at 
30°C and grown for either 0, 2, 4, or 20 h.  Cells isolated at the indicated time points were subjected to polysome profiling 
analysis as described in Figures 2-2 and 2-3.  (B) Wild-type (Grey boxes) or asc1∆ (Black diamonds) yeast expressing a 
GCN4-reporter construct were grown for 16 h at 39°C.  Following growth at the non-permissive temperature, yeast were 
shifted to 30°C for 0, 2, or 4 h.  Cells recovering at the indicated time points were assayed for B-gal activity as described 
in materials and methods. (C) Wild-type, asc1∆, or asc1∆ + pASC1 yeast were grown in SC-URA for 16 h at 39°C.  Cells 
were then diluted onto a plate and analyzed for growth after either 24 or 48 h at 30°C.    
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asc1∆ null yeast recover from the non-permissive temperature by 
replenishing the ribosome pool 
 
 After 16 hours of growth at 39°C, asc1∆ null yeast had a severely 

diminished pool of ribosomes relative to wild-type or complemented strains 

(Figure 2-5A).  All the yeast strains tested exhibited fewer polysomes after 

growth for 16 hours at 39°C (Figure 2-5A).  We presume that this loss of 

polysomes is due to nutrient depletion (Ashe et al., 2000; Hinnebusch, 2005).  

Two hours after shifting the cells to fresh media at 30°C, wild-type, asc1∆ null, 

and complemented yeast re-formed polysomes (Figure 2-5A).  Although asc1∆ 

null yeast formed polysomes after 2 hours of growth at the permissive 

temperature, the total ribosome population was still considerably lower than wild-

type or complemented strains at this time point (Figure 2-5A).  After four hours of 

recovery, the asc1∆ null yeast exhibited a mild increase in the ribosome pool 

(Figure 2-5A).  At twenty hours of recovery, asc1∆ null yeast exhibited a 

ribosome pool that was indistinguishable from wild-type and complemented 

strains (Figure 2-5A). 

 That asc1∆ null yeast formed polysomes within two hours of recovery at 

the permissive temperature suggested that the yeast were able to reinitiate 

mRNA translation immediately after growth at the non-permissive temperature.  

In yeast, translation of the transcription factor GCN4 is most active when general 

translational initiation is repressed following nutrient starvation (Hinnebusch, 

2005).  Conversely, yeast growing in a nutrient-rich environment suppress GCN4 

mRNA translation and actively initiate the translation of a majority of mRNA 

 79



transcripts (Hinnebusch, 2005).  Therefore, GCN4 translational activity is an 

effective inverse indicator of overall translational initiation (Holmes et al., 2004).  

We used a GCN4 reporter assay as an additional test of initiation competency in 

yeast recovering from long-term growth at the non-permissive temperature.  

Wild-type and asc1∆ null yeast harboring a GCN4 reporter were grown at 39°C 

for 16 hours.  After growth at the non-permissive temperature, cells were shifted 

to fresh media at 30°C and assayed for GCN4 activity at several time points.  

Consistent with our previous observations, asc1-deficient yeast contained a 20% 

increase in GCN4 reporter activity relative to wild-type at the 0-time-point 

(Gerbasi et al., 2004). Both wild-type yeast and asc1∆ null strains gradually 

repressed GCN4 reporter activity during recovery at the permissive temperature 

(Figure 2-5B).  These data strongly suggest that asc1∆ null yeast recovering 

from the non-permissive temperature are competent to initiate mRNA translation.  

Additionally, these data suggest that initiation of mRNA translation in recovering 

asc1∆ null yeast precedes expansion of the ribosome population. 

 Polysome profiling and reporter assays suggested  that asc1∆ null yeast 

recovering from growth at the non-permissive temperature were able to initiate 

mRNA translation immediately, but required long-term growth at the permissive 

temperature to completely replenish the ribosome population.  Because asc1∆ 

null yeast exhibited a significant lag in recovering the ribosome population, we 

tested the ability of asc1∆ null yeast to proliferate after shifting from the non-

permissive to the permissive temperature using a plate-dilution assay.  The 

asc1∆ null yeast strain had a significant growth lag during recovery compared to 
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wild-type and complemented strains (Figure 2-5C).  However, the asc1∆ null 

yeast strain reached a level of growth that was near that of the wild-type and 

asc1∆ null complemented strain after 48 hours (Figure 2-5C). Taken together, 

these results show that the growth lag of asc1∆ null yeast is associated with a 

diminished ribosome pool, but not suppressed translational initiation per se. 
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Discussion 

 

Enrichment of Chaperones in Asc1p-deficient Ribosomes 

The function of many ribosomal proteins remains unknown.  Here we used 

mass spectrometry to analyze the composition of a eukaryotic ribosome that was 

missing a single core component of the 40S.  We find that loss of Asc1p 

enhances the association of the CLIPS chaperone Ssb1/2p with the ribosome.  It 

has been established that Ssb1/2p binds to the ribosome in a conformation-

dependent manner (Pfund et al., 1998).  It is tempting to speculate that the 

abnormal structure of 40S ribosomes in an asc1∆ null strain triggers binding of 

this chaperone.  Recently, a role for one of the HSP70 chaperones in ribosome 

biogenesis has been shown (Meyer et al., 2007).  Therefore, it is possible that 

chaperone-like proteins facilitate critical steps in ribosome biogenesis and/or 

stability.  

 

ASC1 is critical for ribosome biogenesis at elevated temperatures 

 Asc1p has been confirmed as a core component of the 40S subunit by 

several independent studies (Gerbasi et al., 2004; Manuell et al., 2005; Sengupta 

et al., 2004).  Here we show that loss of ASC1 disrupts the biogenesis of 

ribosomes at the non-permissive temperature. In vivo and in vitro analysis of 

ribosome stability showed that Asc1p-deficient ribosomes formed at the 

permissive temperature will retain their structure at the non-permissive 
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temperature.  However, asc1-deficient yeast failed to label ribosomal proteins at 

the non-permissive temperature, suggesting that ASC1 functions during the 

synthesis of nascent ribosomes (biogenesis), but does not effect the stability of 

mature ribosomes.  The precise mechanistic step at which ASC1 orchestrates 

ribosome biogenesis is currently unknown.  However, our results suggest that 

ASC1 facilitates a temperature-sensitive step of the ribosome biogenesis 

sequence.  It is possible that a sub-set of ribosomal proteins may have evolved 

to play functional roles in stabilizing ribosome structure after or during exposure 

to stresses such as heat-shock.  This may help to explain why yeast that do not 

express some 40S subunit proteins fail to present a growth defect under optimal 

growth conditions (Ferreira-Cerca et al., 2005). 

 
Do nascent ribosomes constitute a major portion of ribosomes detected in 
a polyribosome profile? 
 
 In the polysome profiling experiments performed in Figures 2-2 and 2-3, 

an asc1∆ null strain exhibited a loss of the total ribosome pool within two hours at 

the non-permissive temperature.  That asc1∆ null yeast contain stable, mature 

ribosomes, but fail to form nascent ribosomes at the non-permissive temperature, 

suggests that much of the total ribosome population might consist of nascent 

ribosomes. 

 There is a small pool of ribosomes that remain in asc1∆ null yeast after 

growth for 16 hours at the non-permissive temperature.  Why does this small 

pool of ribosomes persist?  Two possibilities are either loss of nascent ribosome 
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synthesis in asc1∆ null yeast may be incomplete or mature Asc1p-deficient 

ribosomes may be able to persist long-term (>16 hours).  If mature ribosomes 

constitute a small population of the total ribosome pool in asc1-deficient yeast 

grown at the non-permissive temperature, it is conceivable there is a high rate of 

ribosome turnover.  It is tempting to speculate that there are distinct populations 

of ribosomes; one group that persists long-term, and another that is turned-over 

rapidly or sequestered in a cellular compartment.  The process of ribosome 

degradation/recycling is poorly understood.  However, core components of the 

ribosome are heavily ubiquitinated (Spence et al., 2000).  Perhaps ubiquitination, 

or a combination of post-translational modifications decides the fate of the 

nascent or mature ribosome pool.    

 

Growth behavior of asc1∆ null yeast establishes an association between 
ribosome density and cell proliferation 
 
 The asc1∆ null yeast strain grown for 16 hours at 39°C exhibits a severely 

diminished ribosome and polyribosome pool.  Interestingly, asc1∆ null yeast form 

polyribosomes and suppress GCN4 mRNA translation within two hours of 

introduction to fresh media at 30°C.  However, at the two-hour recovery-time-

point, the asc1∆ null yeast did not appear to significantly increase the total 

ribosome pool.  This suggests that the limited remaining pool of yeast ribosomes 

in asc1∆ null yeast are able to initiate mRNA translation immediately, but are not 

able to rapidly replenish the ribosome population.  The ribosome pool of asc1∆ 

null yeast appeared to be growing after four hours of recovery from the non-

 84



permissive temperature.  However, asc1∆ null yeast recovering from growth at 

the non-permissive temperature did not completely replenish the ribosome pool 

until four to twenty hours of growth at the permissive temperature.  Because 

asc1∆ null yeast exhibited a severe growth lag that was associated with a 

reduced ribosome pool, but not suppressed translational initiation, these studies 

support a link between cell proliferation and ribosome density that is independent 

of translational initiation.   

 

Implications for mammalian cells 

 Activation of various signaling pathways in mammalian cells leads to 

stimulation of the TOR kinase.  TOR activity is associated with increased 

translation of 5′ terminal oligopyrimidine tract (TOP) containing mRNAs (Raught 

et al., 2001).  TOP-containing mRNAs code for core ribosomal proteins, 

ribosome biogenesis factors, and other proteins with functional roles in 

translation (Raught et al., 2001).  Suppression of TOR activity with rapamycin 

inhibits cell proliferation by mechanisms that are not completely understood.  

These studies and others establish a strong association between ribosome 

density and the capacity for cells to proliferate (Guertin et al., 2006; Jorgensen et 

al., 2004; Rudra and Warner, 2004; Rudra et al., 2005; Volarevic et al., 2000).  

Taken together, stimulation of cell proliferation by TOR activity might manifest 

through increasing the ribosome pool (Guertin et al., 2006).  The success of 

rapamycin as a therapeutic compound suggests that direct pharmacological 
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inhibition of ribosome biogenesis might function as an effective inhibitor of cell 

proliferation.  
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Experimental Procedures 

 

Yeast Strains and other Reagents 

Construction of strains AL190 (BY4743 with pRS316), AL150 (YDM36556 with 

pRS416), and AL156 (YDM36556 with pASC1) has been described previously 

(Gerbasi et al., 2004). Temperature sensitive strains used as negative controls; 

AAY102 (stt4-ts) and AAY104 (pik1-ts) were described in a previous publication 

(Todd Graham source)(Audhya et al., 2000).  Antibodies against Rpl3p and 

Ssb1/2p were kindly provided by Jonathan Warner and Elizabeth Craig 

(respectively).  Construction of plasmid pASC1 is described in a previous 

publication (Gerbasi et al., 2004). 

 

Core Ribosome Preparation 

Cells were pelleted by centrifugation at 3,000 rpm for 15 min.  Cell pellets were 

washed in 25mL of water and re-centrifuged.  Cell pellets were resuspended in 

standard buffer (10mM Tris pH 7.4, 5mM 2-mercapto ethanol, 50mM Ammonium 

Chloride, and 5mM Magnesium Acetate) at 25% W/V.  Cells were lysed by bead 

beating.  Cell extracts were centrifuged for 30 min at 20,000x g.  Supernatants 

were subjected to ultracentrifugation for 2h at 45,000 rpm in an SA-600 rotor at 

4oC.  Following centrifugation, supernatants were discarded and ribosome pellets 

were suspended in 6mL of wash buffer (10mM Tris pH 7.4, 5mM 2-mercapto 

ethanol, 166mM ammonium chloride, and 33mM magnesium acetate).  

 87



Suspended ribosome pellets were centrifuged through 6mL discontinuous 

sucrose gradients (5% and 20% sucrose suspended in wash buffer) for 18 h at 

20,000 rpm in an SW-41 rotor.  Ribosome pellets were suspended in 100mM 

ammonium bicarbonate for mass spectrometry or SDS-PAGE analysis.                    

 
Polysome Profiling 

Polysome profiling was performed as described previously (Fleischer et al., 

2006). 

 

Mass Spectrometry Analysis of Core Ribosome particles 

Core ribosome particles were reduced, alkylated, and trypsinized in 100mM 

ammonium bicarbonate at pH 8.0 as described previously (Sanders et al., 2002).  

The tryptic peptide fragments were desalted using a C-18 reversed-phase salt 

trap (Michrom).  After desalting, the tryptic peptides were subjected to reverse-

phase microcapillary LC-ESI-MS/MS using a LTQ mass spectrometer (Thermo 

Electron, Inc) to acquire tandem mass spectra of the eluted proteins (Link et al., 

1999; Washburn et al., 2001).  Acquired tandem spectra were identified using 

SEQUEST and the Saccharomyces cerevisiae database (Updates as of May 

2006).  Data was processed and organized using the BIGCAT software analysis 

suite (McAfee et al., 2006).  Cluster figures of identified proteins were generated 

using the BIGCAT cluster option (McAfee et al., 2006).        
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GCN4 Reporter Assays 

Construction of yeast strains (AL185 (YDM36556 plus p180 [GCN4 5' 

untranslated region -lacZ reporter plasmid) and AL183 (BY4743 with p180) were 

described previously (Gerbasi et al., 2004).  Yeast were grown for 16 h at 39°C in 

SC-URA media.  Following growth for 16 h, the yeast strains were shifted to new 

media at 30°C for 0, 2, or 4 h.  GCN4 reporter activity was assayed as described 

previously (Gerbasi et al., 2004). 

 

Yeast Proliferation Assays 

Yeast dilution assays were performed as described previously (Gerbasi et al., 

2004). 

 

35-S Methionine/Cysteine Labeling 

50mL of yeast cells were grown to an O.D.600 of 0.6.  Cells were harvested by 

centrifugation and suspended in 1mL of SC-URA containing 300uCi of 35-S 

cysteine and methionine (ICN).  Cells were labeled for 4 h at either 30 or 39°C.  

For pulse-chase analysis, cells were treated with 50mM cold methionine and 

cysteine prior to incubation at either 30°C or 39°C for an additional 4 h.  For in 

vitro analysis of ribosome stability, cells were labeled for 4 h at 30°C in SC-URA 

media containing 300uCi of 35-S cysteine and methionine (ICN).  After labeling 

of total cellular proteins, cells were lysed by bead-beating in standard buffer (see 

ribosome preparation).  Cell extracts were incubated at either 30°C or 39°C for 2 
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h prior to centrifugation of core ribosome particles as described in the core 

ribosome preparation protocol. 
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CHAPTER IV 
 
THE MYOTONIC DYSTROPHY TYPE-2 PROTEIN ZNF9 IS PART OF AN ITAF 

COMPLEX THAT PROMOTES CAP-INDEPENDENT TRANSLATION 
 

 All experiments performed in this chapter of the dissertation were 

performed by Vince Gerbasi.  The manuscript has been accepted for publication 

in Molecular and Cellular Proteomics. 

 
Summary 

 
The 5’ untranslated region (5’UTR) of the ornithine decarboxylase (ODC) mRNA 

contains an internal ribosomal entry site (IRES).  Mutational analysis of the ODC 

IRES has led to the identification of sequences necessary for cap-independent 

translation of the ODC mRNA.  To discover novel IRES-trans-acting-factors 

(ITAFs), we performed a proteomic screen for proteins that regulate ODC 

translation using the wild-type ODC mRNA and a mutant version with an inactive 

IRES.  We identified two RNA-binding proteins that associate with the wild-type 

ODC IRES, but not the mutant IRES.  One of these RNA-binding proteins, 

PCBP2, is an established activator of viral and cellular IRESs.  The second 

protein, ZNF9 (myotonic dystrophy type-2 protein), has not previously been 

shown to bind IRES-like elements.  Using a series of biochemical assays, we 

validated the interaction of these proteins with ODC mRNA.  Interestingly, ZNF9 

and PCBP2 biochemically associate with each other and appear to function as 

part of a larger holo-ITAF / RNP complex.  Our functional studies show that 

PCBP2 and ZNF9 stimulate translation of the ODC IRES.  Importantly, these 
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results may provide insight into the normal role of ZNF9 and why ZNF9 mutations 

cause myotonic dystrophy. 

 

Introduction 

Most eukaryotic translation initiation involves the interaction of the 43S 

preinitiation complex (comprised of the 40S ribosomal subunit plus initiation 

factors, Met-tRNAi, and GTP) with the 7-methyl-guanosine cap complex at the 

5’end of the mRNA (Sachs et al., 1997).  During such cap-dependent translation 

initiation, the 43S preinitiation complex is recruited to the 5’-cap structure and 

scans the 5’ untranslated region (UTR). Recognition of the AUG start codon is 

followed by joining of the 40S-Met-tRNAi complex to the 60S large ribosomal 

subunit to form the 80S initiation complex.  In contrast, translation mediated by 

an internal ribosomal entry site (IRES) does not require the 5’-cap structure.  

Instead, translation initiates at internal sites in the mRNA (Chen and Sarnow, 

1995; Jang et al., 1989; Pelletier and Sonenberg, 1988).   

IRESs are cis-acting RNA sequences found in the 5’ region of a subset of 

eukaryotic mRNAs.  Originally discovered in viral mRNAs, IRESs were later 

found in cellular transcripts (McCormack et al., 1997).  It is postulated that 3-5% 

of all human mRNAs are translated in a cap-independent manner (Johannes et 

al., 1999; Qin and Sarnow, 2004).  Some translational initiation factors used in 

cap-dependent initiation also stimulate translation of some, but not all, IRES-

containing transcripts.  There are examples of IRES-containing mRNAs that 

appear to recruit ribosomes directly, independent of the classical initiation factors 
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(Hellen and Sarnow, 2001; Ji et al., 2004; Wilson et al., 2000).  Each IRES may 

employ a unique mechanism of translational initiation. 

Evidence from studies of both viral and cellular IRESs has led to several 

hypotheses as to how and why IRESs initiate translation of their cognate 

mRNAs.  First, IRESs may be an efficient alternative to cap-dependent 

translation initiation; an observation supported by multiple studies (Johannes et 

al., 1999; Johannes and Sarnow, 1998; Pyronnet et al., 2000; Qin and Sarnow, 

2004).  Second, specific RNA binding proteins may be dedicated to facilitating 

IRES-mediated translation initiation.  This model has gained favor through the 

discovery that viral and cellular IRESs share a common set of RNA-binding 

proteins that stimulate their translation (Blyn et al., 1996; Blyn et al., 1997; Evans 

et al., 2003; Hunt et al., 1999; Mitchell et al., 2001; Walter et al., 1999).  Finally, 

there is evidence that a subset of IRESs can recruit ribosomes directly through a 

complex RNA secondary structure (Pestova and Hellen, 2003; Wilson et al., 

2000). 

The sequences and structures of viral and cellular IRESs vary widely 

although they often contain pyrimidine-rich sequences.  The conserved 

pyrimidine tract is found proximal to the start codon (Sachs et al., 1997).  

Mutagenesis of pyrimidines proximal to the start codon or in other locations 

throughout an IRES reduces activity and results in the disruption of specific 

protein-RNA interactions (Mitchell et al., 2005; Pyronnet et al., 2000).  Thus, 

these pyrimidine-rich sequences in IRESs are necessary for complete IRES 

activity and recruitment of trans-acting factors. 
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The IRES trans-acting-factor PTB binds pyrimidine-rich sequences in viral 

and cellular IRESs (Mitchell et al., 2001; Mitchell et al., 2005; Singh et al., 1995).  

It functions with UNR, another ITAF, to enhance the activity of viral and cellular 

IRESs (Hunt et al., 1999; Mitchell et al., 2001).  In addition, several other RNA-

binding proteins have been shown to bind and enhance the activity of IRESs 

(Pickering et al., 2004).  However, the high sequence variability between IRESs 

suggests that there is a wide array of ITAFs, many of which are unknown. 

Pancreatic tumor cells alternatively splice the 5’UTR of ODC to generate 

an IRES that is translated in a cap-independent and cell-cycle dependent manner 

(Pyronnet et al., 2000; Pyronnet et al., 2005; Pyronnet et al., 1996).  Pyrimidine 

tracts in the ODC 5’ UTR that are necessary for IRES activity have been 

identified by site-directed mutagenesis (Pyronnet et al., 2000).  Mutations that 

disrupt either RNA secondary structure or interactions with trans-acting factors 

compromise IRES activity.  As such, we chose the ODC IRES as the target in our 

search for novel proteins that modulate cellular IRES activity. 

 To identify potential proteins that associate with the ODC IRES, we 

utilized a proteomic approach (Link, 1999).  Using RNA-affinity capture and mass 

spectrometry, we found that two nucleic acid-binding proteins, PCBP2 and ZNF9, 

associate with the wild-type ODC IRES.  Mutations in the IRES sequence that 

compromise ODC IRES function reduce binding to these two proteins.  PCBP2 is 

a known IRES-binding protein that enhances cap-independent translation (Blyn 

et al., 1996; Blyn et al., 1997; Evans et al., 2003; Gamarnik and Andino, 2000; 

Walter et al., 1999).  The function of ZNF9 is unknown, although its non-coding 
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region is mutated in patients with type-2 myotonic dystrophy (Liquori et al., 2001).  

Our results suggest that one function of ZNF9 is to enhance cap-independent 

translation.   

 

Experimental Procedures 

 

Reagents 

3’-biotinylated RNAs used for affinity capture reactions were purchased from 

Dharmacon.  The wild-type ODC RNA sequence was: 5’-

UUUCUGUCUUAUUGUUUC-3’(Pyronnet et al., 2000).  The mutant ODC RNA 

sequence was: 5’-AAACUGUCUUAUUGAAAC-3’ (Pyronnet et al., 2000).  RAJI 

human B-cell lymphocytes were grown in RPMI 1640, 10% FCS, 1% PS, at 37°C 

and 5% CO2.  Human 293T cells were grown in DMEM, 10% FBS, and 1% PS at 

37°C and 5% CO2.  Antibodies raised against PCBP2 were kindly provided by 

Raul Andino.  α-V5 antibodies were purchased from Invitrogen.  α-PKC and α-

actin antibodies were purchased from Santa Cruz Biotechnology Inc. To clone 

the ZNF9 cDNA, total RNA was isolated from human RAJI B-cells.  cDNA was 

generated using Superscript II (Invitrogen) primed with oligo dT.  The ZNF9 

cDNA was amplified using the primers: 5’-GGCAAGGACCCTCAAAATAAAC-3’ 

(forward) and 5’-TGTAGCCTCAATTGTGCATTC (reverse).  The 620 bp RT-PCR 

product was cloned in-frame into the pcDNA3.1/V5-His-TOPO plasmid to create 

the plasmid pcDNA-ZNF9-V5 expressing a ZNF9-V5 fusion.  The plasmid 
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pcDNA3.1/V5-His-TOPO/lacZ expressing a lacZ-V5 fusion was obtained from 

Invitrogen. 

 

RNA affinity chromatography 

To generate the RNA affinity-chromatography resin, 100 µL of streptavidin-

agarose beads (Pierce) were incubated with 30 nmol of wild-type or mutant 3’-

biotinylated RNA in binding buffer (12 mM HEPES in diethylpyrocarbonate-

treated water pH8.0, 15 mM KCl, 15 mM dithiothreitol, 5 mM MgCl2, 10% 

glycerol, with 1 mini-Complete protease inhibitor (Roche)/50 mL binding buffer) 

at 4˚C for 30 min with gentle mixing.  Following incubation of biotinylated RNA 

with the steptavidin beads, the chromatography resin was washed with binding 

buffer (200x bead volumes) to remove excess biotinylated RNA.  To generate 

cell extracts, 109 cells were suspended in 3 mL binding buffer and lysed in 2 mL 

tubes with 0.5 mm glass beads using a bead-beater (Biospec, Inc).  The 

supernatant was removed from the glass beads into sterile microcentrifuge tubes 

and centrifuged at 20,000x g for 15 min.  The cleared supernatant was incubated 

with the agarose-coupled RNA affinity resin for 30 min at 4˚C with gentle mixing.  

After incubation, the chromatography resin was washed with binding buffer (200x 

bead volumes) to remove non-specific proteins.  Proteins were eluted from the 

RNA affinity resin with 1 mL washes of increasing salt concentration (150 mM, 

250 mM, 350 mM, and 600 mM NaCl) in binding buffer.  Each salt wash was then 

subjected to a 10% TCA precipitation.  Protein pellets were suspended in 100 
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mM ammonium bicarbonate prior to SDS-PAGE, trypsinization, and mass 

spectrometry analysis. 

 Experiments utilizing a competitive, non-biotinylated RNA were performed 

essentially as described above with the exception that a wild-type RNA affinity 

column was incubated with cell extract then washed twice with 30 nmols of non-

biotinylated ODC RNA suspended in 1 mL of binding buffer.  Proteins that 

remained associated with the resin were eluted with 4 separate salt washes (150 

mM, 250 mM, 350 mM, and 600 mM NaCl) and prepared for mass spectrometry 

analysis as described below. 

 

Mass spectrometry analysis of RNA binding proteins 

Eluted proteins from the RNA affinity-capture experiments were reduced, 

alkylated, and trypsinized in 100 mM ammonium bicarbonate as described 

previously (Sanders et al., 2002).  The tryptic peptide fragments were desalted 

using a C-18 reverse-phase salt trap (Michrom) and were subjected to reverse-

phase (RP) microcapillary LC-ESI-MS/MS.  A fritless, microcapillary column (100 

µm i.d.) was packed with 10 cm of 5 µm C18 reverse-phase material (Synergi 4u 

Hydro RP80a, Phenomenex).  The trypsin-digested peptides were loaded onto 

the RP column equilibrated in buffer A (0.1% formic acid and 5% acetonitrile).  

The column was placed in-line with an LTQ linear ion trap mass spectrometer 

(Thermo Electron, Inc).  Peptides were eluted using a 60 min linear gradient from 

0 to 60% buffer B (0.1% formic acid, 80% acetonitrile) at a flow rate of 0.3 µl/min.  
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During the gradient, the eluted ions were analyzed by one full precursor MS scan 

(400-2000 m/z) followed by five MS/MS scans of the five most abundant ions 

detected in the precursor MS scan while operating under dynamic exclusion.  

The program extractms2 was used to generate the ASCII peak list and identify 

+1 or multiply charged precursor ions from the native mass spectrometry data 

file.  Tandem spectra were searched with no protease specificity using 

SEQUEST-PVM (Sadygov et al., 2002) against the Refseq human protein 

database (released May 2005) containing 28,818 entries.  For multiply charged 

precursor ions (z  ≥ +2), an independent search was performed on both the +2 

and +3 mass of the parent ion.  Data were processed and organized using the 

BIGCAT software analysis suite (Fleischer et al., 2006).  A weighted scoring 

matrix was used to select the most likely charge state of multiply charged 

precursor ions (Fleischer et al., 2006; Link, 1999).  From the database search, 

fully tryptic peptide sequences with Sequest cross-correlation scores ≥ 1.5 for +1 

ions, ≥ 2 for +2 ions, and ≥ 2 for +3 ions were considered significant and used to 

create the list of identified proteins.  To estimate the relative abundance of a 

protein from the mass spectrometry data, a protein abundance factor (PAF) was 

calculated for each identified protein (Fleischer et al., 2006; Powell et al., 2004).  

To calculate PAF values, the total number of non-redundant spectra that 

correlated significantly with each cognate protein was normalized to the 

molecular weight of the protein (x104) (Fleischer et al., 2006; Powell et al., 2004). 
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Mass spectrometry analysis of trypsinized proteins from SDS-PAGE gels  

Protein bands corresponding to the predicted molecular weights of PCBP2 and 

ZNF9 were excised from silver-stained gels and sliced into 1 mM cubes.  The gel 

pieces were dehydrated in acetonitrile and then rehydrated in 100 mM 

ammonium bicarbonate.  After rehydration, the samples were brought to a 1:1 

equal volume of ammonium bicarbonate and acetonitrile.  Gel pieces were 

lyophilized to dryness.  The samples were suspended in digestion buffer (50 mM 

ammonium bicarbonate, 0.5 mM CaCl2, and 0.0125 µg/µl trypsin).  The gel 

pieces remained in digestion buffer for 45 min on ice.  Following incubation, 20 µl 

of additional digestion buffer without trypsin was added, and the gel pieces were 

incubated for 18 h at 37°C.  Trypsinized peptides were extracted three times from 

the gel pieces with 50 µl washes of 25 mM ammonium bicarbonate and 

acetonitrile (1:1).  The pooled supernatants were frozen and lyophilized.  The 

dried peptides were resuspended in 10 µl of 0.1% formic acid and subjected to 

the LC-ESI-MS/MS analysis described above. 

 

Sucrose gradient analysis of ZNF9 

Sucrose gradient analysis was performed as described previously (Link et al., 

2005). 
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Reporter assays and RNA-interference 

To analyze the activity of the bicistronic reporter (Pyronnet et al., 2000), 293T 

cells were transfected with either 10 µg of the bicistronic reporter plus 10 µg 

pcDNA-ZNF9-V5 or 10µg of the bicistronic reporter plus 10 µg of pcDNA3.1/V5-

His-TOPO/lacZ.  Each transfection cocktail contained 60 µL of Lipofectamine 

2000 (Invitrogen).  All reporter assays were performed in triplicate.  All 

transfections were performed in Optimem minimal medium as recommended by 

the manufacturer (Invitrogen).  After 4 h of transfection, the Optimem medium 

was replaced with full medium containing serum.  Cells were harvested 48 h after 

transfection and assayed for luciferase and chloramphenicol-acetyl-transferase 

(CAT) activity (Nordeen et al., 1987).  Reporter assays employing RNA-

interference were similar to the assays described above.  On day 1, 293T cells 

were simultaneously transfected with 10 µg of the bicistronic reporter and 400 nM 

siRNAs specific for either laminA/C (Elbashir et al., 2001), ZNF9 (5’-

GCUAUUCUUGUGGAGAAUU-3’), PCBP2 (5’-

GCAUUCCACAAUCCAUCAUUU-3’), or a combination of ZNF9 and PCBP2 

siRNAs using 60 µL of lipofectamine 2000.  All siRNAs used in this study were 

purchased from Dharmacon Inc.  siRNAs for PCBP2 targeted both isoforms 

detected in our mass spectrometry analysis.  On day 2, 293T cells were re-

transfected with 400 nM of the same siRNAs except that 60 µL of oligofectamine 

per transfection was used instead of the lipofectamine 2000.  Twenty-four h after 

the second transfection, the cells were harvested and assayed for luciferase and 

CAT activity.  Experiments were performed in triplicate.  A Student’s two-tailed t-
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test was performed to test the statistical significance of the difference between 

the experimental and control results. 

 

Electrophoretic mobility shift assays 

EMSAs were performed essentially as described previously (Rychlik et al., 2003).  

We used oligoribonucleotides corresponding to the wild-type ODC IRES RNA 

sequence (5’-UUUCUGUCUUAUUGUUUC-3’) and the mutant sequence 

(5’AAACUGUCUUAUUGAAAC3’).  Briefly, 50 pmol of an oligonucleotide was 

end-labeled with 50 pmol of γ-ATP using T4 polynucleotide kinase.  Two pmol of 

the radiolabeled oligonucleotide was incubated with 10 µg of human cell extract 

in the presence of binding buffer (20 mM HEPES (pH 7.9), 2 mM MgCl2, 10% 

glycerol, 50 mM KCl, and 1 mM EDTA) at room temperature for 30 min.  

Supershifting experiments used either α-PCBP2 or control antibodies at 1 µg of 

polyclonal antibody per EMSA reaction.  Following formation of RNP complexes, 

the EMSA reactions were electrophoresed on 6% native polyacrylamide gels at 

145 V for 3 h.  The gels were dried and exposed to autoradiographic film to 

visualize RNP complexes. 

 

Immunoprecipitation-RT-PCR 

293T cells were transfected with 5 µg of the bicistronic ODC IRES reporter or 5 

µg of the reporter plus 5 µg of pcDNA-ZNF9-V5 using Lipofectamine 2000 

(Invitrogen).  Following transfection, cell extracts were prepared and 
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immunoprecipitated with either 10 µg of α-V5 antibody, 10 µg of α-PCBP2 

antibody, or 10 µg of pre-immune serum as a negative control in the presence of 

50 µL of protein G beads (Pierce).  Immunoprecipitations (IPs) were performed at 

4˚C for 30 min prior to washing with 100x bead volumes of 12 mM HEPES pH 

8.0, 15 mM KCl, 0.25 mM dithiothreitol, 5 mM MgCl2, 0.1 mM PMSF,  40 U of 

RNasin, and 10% glycerol. The IPs were subjected to RNA extraction and RT-

PCR of mRNA.  RNA extraction and cDNA synthesis were performed as 

described previously (Gerbasi et al., 2004).  The sequences of the primers used 

to amplify the ODC IRES cDNA product were: 5’-TGAGGCATTTCAGTCAGTTG-

3’ (forward) and 5’-GGATGAGCATTCATCAGGC-3’ (reverse).  The sequences of 

the primers used to amplify the GAPDH product were: 5’-

GGAGAAGGGTGTTAAGGTGG-3’ (forward) and 5’-

GATCTCATGGTTGTCCACG-3’ (reverse).  The sequences of the primers used 

to amplify the RPL32 product were: 5’-CCTTGTGAAGCCCAAGATC-3’ (forward) 

and 5’-AATGTTGGGCATCAAGATCTG-3’ (reverse).  PCR was performed as 

described previously (Gerbasi et al., 2004).  Samples were taken after 24 PCR 

cycles, electrophoresed on 6% native polyacrylamide gels, and stained with 

ethidium bromide. 

 

Co-Immunoprecipitation analysis of PCBP2 and ZNF9-V5 

2.5 X 108 293T cells were transfected with plasmid pcDNA-ZNF9-V5 or no 

plasmid (negative control) using lipofectamine 2000 (Invitrogen).  Cells from 

either the ZNF9 or control transfections were lysed by bead-beating with 0.5 mm 
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glass beads in 1 mL of lysis buffer (12 mM HEPES in diethylpyrocarbonate-

treated water pH 8.0, 15 mM KCl, 15 mM dithiothreitol, 5 mM MgCl2, 10% 

glycerol, plus 1 Complete EDTA-free protease inhibitor (Roche)/50 mL).  The 

supernatant from the cell extract was then removed from the glass beads into 

sterile microfuge tubes and centrifuged at 20,000x g for 15 min.  Supernatants 

were transferred to new microfuge tubes and incubated with 10 µg of α-PCBP2 

antibody and 50 µL protein G beads.  The immunoprecipitations were then 

incubated with gentle agitation overnight at 4ºC.  The precipitations were then 

washed with 100x column volumes of lysis buffer.  The beads were then 

suspended in 50 µL of 2x Laemmli buffer, boiled for 2 min, subjected to SDS-

PAGE, immunoblotted, and probed with α-V5 antibodies.  Ten microliters of each 

extract was assayed for actin levels by immunoblotting to quantitate protein 

levels prior to immunoprecipitation of the samples. 

   

RT-PCR of cells transfected with siRNAs 

293T cells were transfected with siRNAs using previously described protocols 

(Elbashir et al., 2001).  Individual samples of 293T cells were transfected with 

siRNAs specific to either lamin A/C, PCBP2, or ZNF9.  Following transfection, 

RNA was extracted using TRI-REAGENT (MRC) as described by the 

manufacturer.  cDNA products coding for GAPDH, PCBP2, or ZNF9 were 

amplified by RT-PCR as described previously (Gerbasi et al., 2004) and 

analyzed at cycle 24 by native gel electrophoresis and ethidium bromide staining.  

The sequences of the primers used to amplify the PCBP2 product were: 5’-
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GCCTGCAGTTTTTGGCTTTC (forward) and 5’-

TCACAAAGAAAAAGCTCCAGT-3’ (reverse).  The sequences of the primers 

used to amplify the ZNF9 product were: 5’-GGCAAGGACCCTCAAAATAAAC-3’ 

(forward) and 5’-TGTAGCCTCAATTGTGCATTC (reverse).  The primers used to 

amplify the GAPDH product were: 5’-GGAGAAGGGTGTTAAGGTGG-3’ 

(forward) and 5’-GATCTCATGGTTGTCCACG-3’ (reverse). 

 

Results 

 

The sequence of the ODC IRES is important for formation of RNPs and 
stimulation of translation 
  

Mutation of a pyrimidine (PY) tract in the 5’UTR of the ODC mRNA has 

been shown to inhibit IRES activity (Pyronnet et al., 2000).  We refer to this 18-

base sequence in the ODC 5’UTR as the IRES regulatory element (RE).  To 

analyze the effects on secondary structure caused by these mutations in the RE, 

we compared the wild-type and PY-mutated ODC IRES structures using an RNA 

folding algorithm (Brodskii et al., 1995; Brodsky et al., 1993).  Although minor 

structural differences were predicted, the pyrimidine tract mutations are not 

expected to result in a complete restructuring of the ODC IRES.  Because 

mutations in the pyrimidine tract are predicted to have only a minor effect on the 

structure of the ODC IRES RNA, we hypothesized that these mutations might 

directly disrupt protein-RNA interactions.   
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Figure 3-1
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Figure 3-1: Wild-type, not mutant form, of the ODC IRES forms RNPs in vitro 

Oligonucleotides containing sequence from either wild-type (WT) ODC IRES RNA or mutant (Mut) ODC IRES RNA were 
end-labeled with γ-ATP, incubated with extract from either RAJI lymphocytic B-cells or 293T cells, and electrophoresed on 
native polyacrylamide gels in an EMSA assay.  Arrows point to RNP complex(s) that formed between the radiolabeled 
oligonucleotides and proteins in the RAJI and 293T cell lysates.  The mutant ODC IRES has been shown to have 
repressed translational activity compared to the wild-type IRES (Pyronnet et al., 2000). 

 

 105



To test this hypothesis, we performed electrophoretic mobility shift assays 

(EMSAs) with human cell extracts and radiolabeled RNAs containing the wild-

type or PY-mutant RE (Pyronnet et al., 2000).  Interestingly, we found that the 

wild-type, but not the PY-mutant RE, formed RNP complexes in an EMSA 

(Figure 3-1).  We conclude that an RNA-binding protein or a group of RNA-

binding proteins associates with the ODC IRES RE and that this association 

requires the wild-type pyrimidine tract. 
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gure 3-2: Schematic of proteomic screen for proteins associated with ODC wild-type (active) and a mutant IRES 
epressed) element 

Two separate RNA affinity chromatography samples were generated.  In the top sample, the wild-type form of the ODC 

sed in a control reaction.  After isolation of proteins from the wild-type and mutant IRES affinity 
capture reactions, proteins were trypsinized, desalted, and analyzed by microcapillary LC-MS/MS mass spectrometry.  
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software suite (McAfee et al., 2006).  
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The ODC IRES recruits specific RNA-binding proteins. 

iated by the IRES 

(Pyron  

 

tant 

Since this ODC PY mutation reduced translation med

net et al., 2000) and reduced the ability of the RE to recruit RNA-binding

proteins, we hypothesized that these RNA-binding proteins represent ITAFs that

bind to and stimulate the ODC IRES.  Using RNA affinity capture combined with 

LC-MS/MS mass spectrometry, we designed a proteomic screen to identify 

proteins from human cells that bind to the wild-type IRES RE, but not the mu

(Figure 3-2). 
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Figure 3-3
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Figure 3-3: Proteomic identification of proteins associated with the ODC IRES RNA (A) Proteins bound to either the 
wild-type (WT) IRES or mutant (M) IRES RNA affinity capture reactions were eluted with 150, 250, 350, and 600 mM 
NaCl.  Five µg of total protein from each salt fractionation was subjected to SDS-PAGE and detected by silver staining.  
The arrows point to gel bands that were in-gel digested and shown to contain spectra corresponding to PCBP2 and ZNF9, 
respectively (B)  The heat map shows the ten most abundant proteins associated with the wild-type RNA affinity column 
that were not detected from the mutant RNA affinity column.  Ten µg of protein from each salt fractionation in (A) was 
trypsinized, desalted, and analyzed by LC-MS/MS.  The acquired tandem mass spectra were searched against a human 
protein database using the Sequest algorithm.  Proteins identified from the wild-type (left side) and mutant (right side) 
RNA affinity capture reactions were displayed using BIGCAT’s Clusterer visualization application (McAfee et al., 2006).  
Red indicates a protein with a high protein abundance factor (PAF) score (an estimate of the relative abundance of each 
protein in a given sample), yellow indicates proteins with an intermediate PAF score, and black indicates the protein was 
not detected (PAF=0).  (C) The heat map shows that ZNF9 and PCBP2 were competed away from the wild-type affinity 
column with excess competitor oligonucleotide.  Human cellular proteins were bound to two separate RNA affinity 
columns that contained the wild-type ODC IRES RNA sequence.  One of the affinity columns was treated with wash buffer 
while the second column was treated with 60 nmol (a 2-fold excess to column) of non-biotinylated, (competitor) 
oligonucleotide identical in sequence to the wild-type ODC IRES RNA.  Proteins bound to both columns were eluted with 
150, 250, 350, and 600mM NaCl.  Each protein fraction was analyzed as described in (B) to generate the heat maps of 
ZNF9 and PCBP2. 
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Affinity columns containing either the wild-type or mutant IRES RE RNA 

were used to capture proteins, and the proteins were then eluted with increasing 

concentrations of salt.  We fractionated and detected the eluted proteins using 

SDS-PAGE and silver staining (Figure 3-3A).  The gel revealed several proteins 

that were present in both the wild-type and mutant eluates.  In contrast, the 

mutant IRES RE failed to form any RNP complexes in our EMSA analysis.  We 

speculate that many of the proteins present in both the wild-type and mutant 

affinity eluates bind to the streptavidin resin non-specifically.  Additionally, the 

buffering environment is more stringent in the EMSA analysis compared to the 

affinity purification.  Thus the EMSA analysis reveals only high-affinity 

interactions.  Of particular interest were several additional proteins that were 

eluted from the wild-type affinity column but were absent from the mutant 

column.  We pursued these candidate proteins that bind to the wild-type IRES 

RE, but not the mutant.  

To directly identify proteins that were associated with both the wild-type 

and mutant IRES RE, we performed LC-MS/MS mass spectrometry on both sets 

of chromatography elutions (Link, 1999).  The mass spectrometry data were 

processed and analyzed using our bioinformatic graphical comparative analysis 

software tools (BIGCAT) (Fleischer et al., 2006)  The mass spectrometry analysis 

identified 219 individual human proteins.  

To estimate the relative abundance of each protein from the mass 

spectrometry data, we used a normalized label-free method of quantification 

(Fleischer et al., 2006; Powell et al., 2004).  A protein abundance factor (PAF) 
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was calculated for each identified protein to quantify its relative amount in the 

samples.  PAF values in our samples ranged from 0 to 4.64.  A PAF value of 

zero indicated that the protein was not identified in the sample.   

We were specifically interested in those proteins that eluted preferentially 

from the wild-type RNA-affinity column (Figure 3-3B).  The proteins ZNF9 and 

PCBP2 scored the highest PAF values among those proteins that bound to the 

wild-type IRES RE but not to the mutant.  From the LC-MS/MS analysis, multiple, 

independent peptides (n ≥3) were identified for both ZNF9 and PCBP2, strongly 

supporting these identifications.  Although two protein isoforms of PCBP2 are 

predicted from alternative splicing of the cognate gene (Leffers et al., 1995), our 

LC-MS/MS analysis could not distinguish between the isoforms.  Among all the 

proteins that associated with the wild-type but not the mutant IRES, ZNF9 had 

the highest PAF value (0.899 in the wild-type samples and 0 in the mutant 

samples).  PCBP2 had PAF values of 0.523 in the wild-type samples and 0 in the 

mutant samples. 

The LC MS-MS identifications of ZNF9 and PCBP2 are supported by the 

PAGE analysis of the same affinity purifications.  Figure 3-3A shows silver-

stained bands corresponding to the predicted mobilities of PCBP2 and ZNF9 in 

the proteins eluted from the wild-type IRES RE but not the mutant.  In-gel 

digestion and LC-MS/MS analysis of these gel regions confirmed the bands as 

PCBP2 and ZNF9 respectively.   

We next tested whether the ZNF9 and PCBP2 proteins could be 

competed away from the ODC IRES RE.  A two-fold molar excess of non-
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biotinylated wild-type ODC IRES RE RNA released a number of RNA-binding 

proteins from the wild-type RE affinity column.  Importantly, both ZNF9 and 

PCBP2 were successfully competed away from the affinity column by the non-

biotinylated oligonucleotide (Figure 3-3C).  Therefore, both ZNF9 and PCBP2 

were bound to the ODC wild-type IRES RE RNA.  
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Figure 3-4: Biochemical analysis of interactions with the ODC IRES and binding proteins 

(A) Radiolabeled oligonucleotide probes containing the wild-type ODC IRES RNA sequence were incubated with either 
depC-treated water (probe alone), human RAJI lymphocyte lysate, RAJI lysate and α-PKC antibodies, or RAJI lysate and 
α-PCBP2 antibodies.  EMSA analysis was performed on all the reactions.  Arrows point to the RNPs formed between 
RAJI lysate proteins and the oligonucleotide probe.  Arrows pointing to RNP1 indicate the primary RNP formed between 
RAJI extracts and wild-type ODC IRES RNA.  Arrows pointing to RNP2 indicate a second minor RNP that had a slower 
electrophoretic mobility (supershift) and specifically formed when α-PCBP2 antibodies were added to the EMSA reaction. 
(B) 293T cells were transfected with the ODC bicistronic reporter (lanes1 and 3), or the bicistronic reporter and pcDNA-
ZNF9-V5 (lane 2).  Cell extracts were immunoprecipitated with either pre-immune (lane 1), α-V5 (lane 2), or α-PCBP2 
(lane 3) antibodies and analyzed for the presence of ODC IRES reporter, GAPDH, and RPL32 mRNAs by RT-PCR.  (C) 
Ten-percent of the total extract mRNA in (B) was analyzed for the presence of ODC IRES reporter, GAPDH, and RPL32 
mRNAs by RT-PCR.   
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PCBP2 and ZNF9 bind the ODC IRES.  

We next used independent methods to validate the interactions of ZNF9 

and PCBP2 with the ODC IRES RE.  We used extracts from a human B-cell line 

for RNA EMSAs.  Again, we found that the radiolabeled ODC IRES RE formed 

RNP complexes.  Addition of α-PCBP2 polyclonal antibodies resulted in 

disruption of the primary RNP, and formation of a slightly larger supershifted 

RNP (Figure 3-4A).  Only a fraction of the IRES-protein complexes were 

supershifted.  We speculate that the α-PCBP2 antibodies mostly disrupt the 

interaction between the IRES RE and PCBP2.  Similar results have been 

observed in other studies when antibodies were added to EMSA reactions 

(Lassar et al., 1991).  Because the reduced electrophoretic mobility of the 

supershifted RNP was relatively small, we speculate that antibodies raised 

against PCBP2 are disrupting other interactions within the RNP.  In a control 

reaction, an α-Protein Kinase C antibody did not produce a supershifted RNP 

(Figure 3-4A).  These data, together with our proteomic analysis of ODC IRES 

binding proteins, support our conclusion that PCBP2 is a bonafide ODC IRES 

binding protein.   

Because we failed to detect supershifted RNP complexes in EMSA 

experiments using ZNF9-V5 and α-V5 antibody (data not shown), we used 

immunoprecipitations and RT-PCR to validate biochemical interactions between 

ZNF9 or PCBP2 and the ODC IRES.  First, ZNF9-V5 was immunoprecipitated 

from 293T cells expressing a bicistronic reporter mRNA containing the entire 

ODC IRES (5’UTR) (Pyronnet et al., 1996).  RNA was extracted from the 
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precipitates, and the samples were analyzed by RT-PCR for the presence of the 

ODC IRES and mRNAs for GAPDH and RPL32 (controls).  GAPDH is a highly 

abundant mRNA that is translated in a cap-dependent fashion, and the RPL32 

mRNA contains a 5’ terminal oligopyrimidine tract (TOP) (46).  We identified the 

ODC IRES in the samples immunoprecipitated with an α-V5 antibody (Figure 3-

4B).  Using the α-PCBP2 antibodies, we found the ODC mRNA also co-

immunoprecipitated with PCBP2 (Figure 3-4B).  RT-PCR did not detect GAPDH 

and RPL32 in the precipitated samples (Figure 3-4B).  Specificity of the 

interactions was demonstrated by the absence of the ODC IRES RT-PCR 

product in extracts immunoprecipitated using nonspecific polyclonal antibodies 

(Figure 3-4B).  A loading control showed that all samples contained similar levels 

of the ODC IRES reporter, GAPDH, and RPL32 mRNAs prior to 

immunoprecipitation (Figure 3-4C).  In combination, these experiments confirm 

that ZNF9 and PCBP2 specifically bind the ODC IRES. 
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250

50
75

150
100

25
37

20 ZNF9-V5

Actin

1 2
B.A.

ZNF9-V5

RNP
80S

polysomes

 

Figure 3-5: ZNF9 associates with ribosome-containing portions of a sucrose gradient and co-purifies with the 
ITAF PCBP2 

(A) 293T cells were transfected with plasmids pcDNA-ZNF9-V5.  Transfected cell extracts were fractionated over 7-47% 
sucrose gradients as previously described (Link et al., 2005).  The UV-trace from the sucrose gradient shows the position 
of free ribonucleoproteins (RNP), 80S (monosomes), and polysomes (polyribosomes).  Twelve fractions from the sucrose 
gradient were subjected to SDS-PAGE, immunoblotted, and probed for the V5 epitope (ZNF9).  (B) 293T cells were either 
mock transfected with either no plasmid (lane 1), or transfected with plasmid pcDNA-ZNF9-V5 (lane 2).  Extracts from 
both samples were immunoprecipitated with α-PCBP2 antibodies.  Following immunoprecipitation, both samples were 
subjected to SDS-PAGE, immunoblotted, and probed with an antibody against the V5 epitope.  Immunoreactivity above 
the 50KDa marker represents non-specific background proteins detected in both samples.  As a loading control, extracts 
from both samples were probed for actin levels by immunoblotting prior to immunoprecipitation. 
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ZNF9 copurifies with the ITAF PCBP2 and partially co-localizes with the 
ribosomal density 
 

PCBP2 has previously been shown to bind to and regulate the activity of 

cellular and viral IRESs (Blyn et al., 1996; Blyn et al., 1997; Evans et al., 2003; 

Gamarnik and Andino, 1997).  Our results suggested that PCBP2 as well as 

ZNF9 are part of an ITAF complex that binds to the ODC IRES.  We 

hypothesized that if ZNF9 is a cellular IRES-associated protein and functions in 

cap-independent translation, then ZNF9 should associate with mRNAs that are 

actively being translated.  To test this model, we used sucrose gradient 

ultracentrifugation to separate particles containing the different ribosomal 

subunits and performed immunoblot analysis to identify ZNF9.  Fractions from 

cells transfected with pcDNA-ZNF9-V5 were analyzed.  We found that the ZNF9 

protein partially co-localizes with the ribosome-and polysome-containing portion 

of the sucrose density gradient (Figure 3-5A).  These data suggest that ZNF9 

associates with both actively translating and ribosome-free mRNAs. 

We also tested whether PCBP2 and ZNF9 copurify biochemically.  By co-

immunoprecipitation analysis, we found that PCBP2 and ZNF9 are biochemically 

associated (Figure 3-5B).  Because PCBP2 is often associated with larger ITAF 

assemblies, we hypothesize that ZNF9 might also function as a novel component 

of ITAF complexes. 
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Figure 3-6
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Figure 3-6: ZNF9 and PCBP2 enhance the translation of the ODC IRES 

(A) Experiments utilized this bicistronic reporter construct for experimental results shown in (B) and (C) (Pyronnet et al., 
2000).  (B) 293T cells were co-transfected with a plasmid expressing the bicistronic reporter and either pcDNA3.1/V5-His-
TOPO/lacZ or pcDNA-ZNF9-V5 expression plasmids.  Following transfection, cells were lysed and assayed separately for 
luciferase and chloramphenicol-acetyl-transferase (CAT) activity.  The white bars indicate CAT (cap-dependent) activity 
for cells that were co-transfected with the bicistronic reporter and either pcDNA3.1/V5-His-TOPO/lacZ (negative control) 
or pcDNA-ZNF9-V5.  The black bars show the detected luciferase activity of cells transfected with the indicate regiment.  
Values on the y-axis indicate the fold difference in activity between cells transfected with pcDNA3.1/V5-His-TOPO/lacZ 
and cells transfected with pcDNA-ZNF9-V5.  The activity of CAT and Luciferase for samples transfected with 
pcDNA3.1/V5-His-TOPO/lacZ was set to one.  Error bars indicate the standard deviation.  (C) RT-PCR showing the 
effectiveness of PCBP2 and ZNF9 siRNAs repressing expression of the endogenous mRNA levels.  293T cells were 
transfected with either lamin A/C, ZNF9, or PCBP2 siRNAs.  Following transfection, RNA was isolated from cells with TRI-
REAGENT, and RT-PCR was performed on each individual sample to amplify either GAPDH, ZNF9, or PCBP2 products. 
(D) 293T cells were co-transfected with the bicistronic reporter and lamin A/C, ZNF9, PCBP2, or PCBP2 and ZNF9 
siRNAs combined.  After co-transfection, cells were lysed and assayed separately for luciferase and CAT activity.  IRES 
activity is calculated as a ratio of luciferase to CAT activity.  The graph shows the % ODC IRES activity in each sample 
relative to samples transfected with lamin A/C control siRNAs.  Error bars indicate the standard deviation.   
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The function of PCBP2 and ZNF9 in ODC IRES translation 

ITAF proteins that bind to viral and cellular IRESs also enhance IRES 

activity (Blyn et al., 1997; Gamarnik and Andino, 1997; Gamarnik and Andino, 

2000; Holcik and Korneluk, 2000; Hunt et al., 1999; Mitchell et al., 2001; Mitchell 

et al., 2005; Walter et al., 1999).  Our data strongly suggested that PCBP2 and 

ZNF9 function as ITAFs of the ODC IRES.  To test this hypothesis, we used a 

bicistronic reporter driven by the wild-type ODC IRES (Pyronnet et al., 2000) to 

determine whether ZNF9 plays a role in translation mediated by the ODC IRES 

(Figure 3-6).  We overexpressed ZNF9 in 293T cells using plasmid pcDNA-

ZNF9-V5 and found that overexpression of ZNF9 enhanced the activity of the 

ODC IRES 3-fold in comparison to controls (p value=0.013) (Figure 3-6B).   

In a second set of experiments, we analyzed the function of endogenous 

ZNF9 and PCBP2 in the translation of the ODC IRES by transfecting cells with 

siRNAs targeting PCBP2 and ZNF9.  In control experiments to test the 

effectiveness of the siRNAs, we found that siRNAs directed against PCBP2 and 

ZNF9 were effective at specifically reducing the PCBP2 and ZNF9 transcript 

levels (Figure 3-6C).  These siRNAs also reduced expression of the ODC IRES 

reporter by 30% in comparison to control siRNAs (p value=0.043 for ZNF9 

siRNAs and p value=0.020 for PCBP2 siRNAs) (Figure 3-6D).  To determine 

whether PCBP2 and ZNF9 had an additive effect on ODC IRES activity, we 

transfected cells with a combination of both PCBP2 and ZNF9 siRNAs.  The 

combination of PCBP2 and ZNF9 siRNAs reduced ODC IRES activity 

approximately 75% (p value= 0.001) (Figure 3-6D).  Collectively, these data 
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suggest that PCBP2 and ZNF9 function as enhancers of the ODC IRES.  These 

results provide evidence that ZNF9 functions as a novel component of a cellular 

ITAF complex. 

 

Discussion 

Previous studies of the ODC 5’UTR have led to the identification of an 

RNA element that is necessary for IRES activity (Pyronnet et al., 2000; Pyronnet 

et al., 2005).  We performed a proteomic screen for proteins that bind to this 

regulatory element.  We found that two nucleic acid-binding proteins PCBP2 and 

ZNF9 bind to this region of the ODC IRES.  Additionally, we found that both 

PCBP2 and ZNF9 enhance the activity of the ODC IRES.  Our results suggest 

that PCBP2 and ZNF9 function as IRES trans-acting factors.  Importantly, these 

data show that the myotonic dystrophy type-2 protein ZNF9 can function as an 

IRES trans-acting factor. 

 

Proteins that associate with the ODC IRES 

The purpose of our proteomic screen was to identify proteins that 

specifically bind to the wild-type ODC IRES sequence element, but not a mutant 

IRES sequence.  While PCBP2 and ZNF9 specifically bind the active form of the 

IRES RNA element, our mass spectrometry approach also identified proteins that 

are associated with both wild-type and mutant IRES sequences.  Many of the 

apparently non-specific cellular proteins were detected from both affinity 
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columns.  These proteins likely represent background binding to the streptavidin 

beads.  Some of the proteins from both the wild-type and mutant RNA affinity 

columns are previously described RNA-binding proteins that may be involved in 

ITAF activity.  Two of the proteins UNR and PTB have been shown to be ITAFs 

(Hunt et al., 1999; Mitchell et al., 2001).  Therefore, it is possible that additional 

ITAFs interact with the ODC IRES element independently of the PY-tract by 

binding to the RNA sequence that is shared by both the wild-type and mutant 

ODC IRES (Pyronnet et al., 2000).  We speculate that a combination of proteins 

including PCBP2, ZNF9, PTB, and UNR might function as a holo-ITAF complex 

to stimulate ODC IRES activity.  Similar models of multiprotein ITAF complexes 

that assemble on IRESs have been described in other studies (Evans et al., 

2003; Hunt et al., 1999; Mitchell et al., 2001). 

  

PCBP2 and ZNF9 function as ODC ITAFs 

Our proteomic screen revealed that PCBP2 and ZNF9 bind to the active 

form of the ODC IRES RE but not an inactive form.  Because we were able to 

detect an interaction of ZNF9 with the ODC IRES by mass spectrometry and IP-

RT-PCR approaches but not by EMSA, we speculate that ZNF9 might partially 

associate with the ODC IRES through protein-protein interactions.  Because we 

observe co-immunoprecipitation between PCBP2 and ZNF9, it is possible that 

ZNF9 binds the ODC IRES through interactions with PCBP2.   

To dissect the function of these two proteins in the translation of the ODC 

IRES, we utilized both overexpression and RNA-interference approaches.  
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Overexpression of ZNF9 in 293T cells enhanced the activity of the ODC IRES.  

Disruption of endogenous levels of ZNF9 and PCBP2 by RNA-interference also 

supported a role for these two proteins in enhancing the activity of the ODC 

IRES.  Because the dual RNA-interference of PCBP2 and ZNF9 had an additive, 

but not a synergistic affect on ODC IRES activity, it is possible that ZNF9 and 

PCBP2 play redundant roles in ODC IRES translation.  In contrast, the 

observation that PCBP2 and ZNF9 interact biochemically, and bind to and 

enhance the activity of the ODC IRES suggests that these two proteins function 

as part of a cellular ITAF complex. 

   

Potential role of ZNF9 as an ITAF in type-2 myotonic dystrophy 

Myotonic dystrophy is the most common adult form of muscular dystrophy.  

The disease effects approximately 1 in every 8,000 individuals (Cho and 

Tapscott, 2006).  There are two types of myotonic dystrophy.  Patients afflicted 

with either type 1 or 2 muscular dystrophy express symptoms that include 

myotonia, muscle weakness, cataracts, testicular atrophy, and defects in cardiac 

conduction (Cho and Tapscott, 2006).  Both type 1 and type 2 myotonic 

dystrophy present strikingly similar symptoms in adults.  However, type 1 

myotonic dystrophy presents a congenital form, whereas type 2 does not.  Type 

1 myotonic dystrophy results from CTG expansions in the 3’UTR of DMPK, a 

gene that encodes a serine/threonine kinase (Brook et al., 1992).  Type 2 

myotonic dystrophy, is caused by tetranucleotide (CCTG) repeat expansions in 

the first intron of the ZNF9 gene (Liquori et al., 2001).  
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 It is possible that these mutations in the ZNF9 gene cause changes in 

translation of mRNA’s containing IRESs.  However, the favored model of the 

CCTG expansions in type 2 myotonic dystrophy is that the long CCUG repeats in 

the ZNF9 RNA sequester essential cellular ribonucleoproteins (Kanadia et al., 

2003; Kanadia et al., 2006).  Sequestration of these RNPs is believed to disrupt 

an essential cellular process, such as RNA processing, leading to the disease 

symptoms. 

We show that ZNF9 functions as an ITAF.  Because it is possible that 

ZNF9 activates many unidentified cellular IRESs, disruption of ZNF9 function 

through genetic mutations should result in an abnormal profile of cellular 

proteins.  Modifying specific cellular protein levels through a gain or loss of ZNF9 

function might contribute to the pathogenesis of type 2 myotonic dystrophy.  

Identification of such changes in protein levels will lead to a better understanding 

of the targets of ZNF9 action. 

 

Acknowledgements 

 

We would like to thank Nahum Sonenberg and Raul Andino for sharing reagents.  

We would like to thank Jill McAfee, Dexter Duncan, and Jennifer Jennings for 

technical assistance.  We would also like to thank Tracey Fleischer and Elizabeth 

Link for editorial assistance.  This project was supported by NIH grant GM64779.  

V.R.G. was supported by NIH training grant T32 CA009385 and GM64779.  A.J.L 

 123



was supported by NIH grants GM64779, HL68744, ES11993, and CA098131.  In 

addition, A.J.L. was funded in part with Federal funds from the National Institute 

of Allergy and Infectious Diseases, National Institutes of Health, Department of 

Health and Human Services, under Contract No. HHSN266200400079C/N01-AI-

40079. 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 
 

 124



 

 

CHAPTER V 

 
SUMMARY AND CONCLUSIONS 

 
 This dissertation investigated several distinct and novel biological 

phenomena.  The significance of each of these topics in biology will be discussed 

below.  Additionally, I will discuss future lines of inquiry that other scientists may 

pursue based on this work.  The discussion and summary section is broken into 

two parts.  One part discusses the novel core ribosomal protein Asc1p.  The 

second part discusses the discovery of internal ribosomal entry site trans-acting 

factors.   

 

Part I:  RACK1/Asc1p: a new subunit of the eukaryotic 40S 

Link and Yates found that RACK1 was strongly associated with the 

ribosome and might actually be a core component of the 40S (Link et al., 1999).  

However, the association of RACK1 with the ribosome did not necessarily dictate 

that RACK1 was a core subunit of the ribosome.  With Dr. Link’s guidance, I 

performed an extensive series of molecular biology experiments and eventually 

concluded that RACK1 and Asc1p are indeed part of the core of the eukaryotic 

40S.  Later, Joachim Frank’s structural biology group used cryo-electron-

microscopy to confirm that Asc1p constituted a portion of the 40S mRNA exit 

channel (Sengupta et al., 2004).  Therefore, our studies and those of Joachim 

Frank’s group leave little doubt that RACK1/Asc1p is a core component of the 
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ribosome (Gerbasi et al., 2004; Sengupta et al., 2004).  It should also be noted 

that the National Center for Biotechnology Information considers the function of 

RACK1 to be ribosomal in nature.  Likewise, the Saccharomyces Genome 

Database lists Asc1p as a core component of the 40S subunit. 

Cryo-EM analysis of bacterial, yeast, and human ribosomes has shown 

the differences and similarities in small subunit structure throughout evolution 

(Spahn et al., 2004).  The most striking difference between the eukaryotic and 

prokaryotic small subunits is a large density near the mRNA exit channel.  

Because ribosomes deficient in Asc1p/RACK1 are lacking a majority of this 

density that is specific to the eukaryotic ribosome, Asc1p most likely evolved to 

perform a function that is specific to eukaryotes.  Below, I will discuss the 

proposed functions of ASC1 based on work performed in this dissertation.  

 

The Role of RACK1 in Protein Synthesis 

Many of the genes that encode ribosomal proteins are duplicated in 

eukaryotic genomes.  Therefore, disruption of ribosomal gene function using 

homologous recombination often has no effect on translation.  Yeast contains a 

single copy of the ASC1 gene.  I analyzed the function of Asc1p in translation 

using a yeast strain that had been disrupted by homologous recombination.  

Disruption of ASC1 did not kill the yeast or result in a slow growth phenotype at 

30°C (Gerbasi et al., 2004; Giaever et al., 2002).  Disruption of genes performing 

critical functions in translational initiation is usually lethal in yeast (Giaever et al., 

2002).  This result would suggest that the Asc1p protein was not involved in 
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enhancing the process of translation.  Instead, this growth phenotype suggested 

that ASC1 was either not necessary for translation, effected the translation of 

only a small subset of genes, or was functioning as a suppressor of translation. 

To dissect the function of ASC1 in the translation process, I performed in 

vitro translation assays.  To my surprise, I found that the Asc1p deficient 

ribosomes had higher translational activity (Gerbasi et al., 2004).  As an 

additional assay to test the function of ASC1 in vivo, we analyzed yeast protein 

levels using 2D-difference in gel electrophoresis (2D-DIGE) (Gerbasi et al., 

2004).  The results of our 2D-DIGE analysis showed that asc1-deficient yeast 

had elevated protein levels relative to wild-type (Gerbasi et al., 2004).  

Additionally, complementation of the asc1-deficient yeast with ASC1 on a low-

copy yeast expression plasmid restored protein levels back to the wild-type state.  

Finally, complementation of the asc1-deficient yeast with mammalian RACK1 

also restored protein levels back to the wild-type state.  Collectively, the in vitro 

and in vivo experiments strongly suggested that RACK1 was a core ribosomal 

subunit that played a role in repressing the translation of a subset of mRNAs 

(Gerbasi et al., 2004). 

 

Possible mechanisms of Asc1p mediated translational repression 

Disruption of ASC1 from yeast cells resulted in an up-regulation of protein 

levels for a subset of proteins.  This was a surprising result because disruption of 

a core ribosomal subunit would be expected to modify the natural structure of the 

ribosome and possibly inhibit translational activity. 
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 Translational control of core ribosomal subunits in prokaryotes is achieved 

through an auto-regulatory mechanism (Baughman and Nomura, 1983; 

Baughman and Nomura, 1984).  When the synthesis of ribosomal proteins 

exceeds the synthesis of ribosomal RNA, core ribosomal subunits do not 

associate with the ribosome.  As a mechanism to ensure that subunits are not 

synthesized in the absence of ribosomal RNA, free ribosomal proteins will 

repress the translation of their cognate mRNAs (Baughman and Nomura, 1983; 

Baughman and Nomura, 1984).  Therefore, free ribosomal proteins can function 

as a repressor to inhibit the translation of their own mRNAs.  Because core 

ribosomal proteins bind to specific RNA sequences and structures on the 

ribosomal RNA, it is possible that free core ribosome subunits might bind to other 

mRNAs that resemble ribosomal RNA sequences and structures.  Therefore, it is 

possible that core ribosomal proteins function as trans-acting factors to repress 

the translation of mRNAs that do not code for ribosomal proteins. 

 In response to long term interferon gamma treatment, core subunits of the 

human ribosome dissociate and function as translational repressors (Mazumder 

et al., 2003; Sampath et al., 2004).  Specifically, the ribosomal protein RPL13 

has been shown to dissociate from the 60S subunit upon IFNγ treatment of cells 

(Mazumder et al., 2003).  When RPL13 dissociates, it forms a new multi-protein 

component RNP complex (Sampath et al., 2004).  This RNP complex is referred 

to as the interferon gamma inducible translational repressor complex (GAIT) 

(Sampath et al., 2003).  The GAIT complex binds to RNA elements that exist in 

the 3’UTR of specific mRNAs.  Examples of these mRNAs include the copper-
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binding protein ceruloplasmin and the growth factor VEGF.  Therefore, in both 

prokaryotes and higher eukaryotes there are examples of core ribosomal 

proteins functioning as repressors of translational activity. 

 Our studies suggested that ASC1 played a repressive role in the 

translation of a specific subset of mRNAs.  Our 2D-DIGE data suggested that 

ASC1 suppressed the translation of a subset of mRNAs, and not the entire set of 

mRNAs expressed by the cell.  This form of translational repression is consistent 

with past examples (Mazumder et al., 2003; Sampath et al., 2004).  All examples 

of core ribosomal proteins functioning as repressors of mRNA translation require 

that the protein dissociate from the ribosome.  Therefore, it is possible that Asc1p 

achieves translational repression by dissociating from the core 40S subunit.  In 

this model, once Asc1p dissociates from the 40S it would have to bind to mRNAs 

and repress their translation. 

 It is conceivable that a ribosomal protein could function as a scaffold for 

proteins that repress translation.  This may be the case for Asc1p because yeast 

that are null for asc1 fail to recruit the translational regulatory protein Scp160 to 

ribosomes (Baum et al., 2004).  Although this is just one example of a protein 

that is recruited to the 40S through Asc1p, it is possible that other unidentified 

proteins utilize Asc1p to associate with the ribosome.  Therefore, it is possible 

that Asc1p functions as a scaffold for additional translational regulatory proteins. 
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Future Experiments to Discriminate Between Models of ASC1-mediated 
Translational Repression 
 
 When we perform sucrose gradient ultracentrifugation experiments, we 

find that Asc1p is exclusively associated with the ribosomal density.  Therefore, if 

Asc1p is functioning as a translational repressor that is free of the ribosome, a 

relatively minor portion of the cellular Asc1p exists in the free-state.  In order to 

discover mRNAs that associate with this small population of ribosome-free 

Asc1p, it will be necessary to concentrate free Asc1p from sucrose gradients.  

Immunoprecipitation of ribosome-free Asc1p followed by microarray analysis 

would potentially identify mRNAs associated with ribosome-free Asc1p.  Follow-

up experiments performed in vitro and in vivo should be designed to test the 

ability of Asc1p to repress the translation of the candidate target mRNAs. 

 If Asc1p is not functioning as a translational repressor in the ribosome-free 

state, it is possible that Asc1p is functions as a scaffolding protein for 

translational repressors as described above.  To test this model, a comparative 

mass spectrometry based approach would be most useful.  Specifically, the 

ribosome-associated proteins of asc1-deficient yeast should be analyzed using 

MUDPIT technology.  As a comparative control, the ribosome-associated 

proteins of wild-type yeast should also be analyzed.  Comparing the ribosome-

associated proteins of wild-type and asc1-deficient yeast will result in the 

identification of any potential proteins that require the presence of Asc1p to 

associate with the 40S.  Therefore, these proposed experiments are likely to 

provide further insight into the function of ASC1 in translational repression. 
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Ssb1/2p and HSP70 chaperones in ribosome biogenesis and stability 

 Proteomic analysis of Asc1p-deficient ribosomes revealed an enrichment 

of the HSP70 chaperone protein Ssb1/2p.  Ssb1/2p is one of a family of 

chaperone proteins that are referred to as chaperones linked to proteins 

synthesis (CLIPS) (Albanese et al., 2006).  The function of CLIPS proteins are 

poorly understood.  However, the common feature of CLIPS is their shared 

biochemical association with the ribosome (Albanese et al., 2006).  There are 

two predominant theories to explain their association with the ribosome.  First, 

that nascent polypeptides emerge from ribosomes dictates that chaperones must 

associate with the ribosome to fold these recently synthesized proteins.  As such, 

it is postulated that CLIPS bind to the ribosome to fold nascent polypeptides.  

This function for CLIPS is supported experimentally because puromycin, a drug 

that prematurely terminates polypeptide chain elongation partially dissociates 

CLIPS from ribosomes (Nelson et al., 1992; Pfund et al., 1998). 

As a second possibility, CLIPS might function to stabilize the structure of 

the ribosome (Nelson et al., 1992; Pfund et al., 1998; Woolford, 2002).  Indeed, 

chaperones bind to multi-protein complexes to stabilize interactions between 

proteins and block the formation of non-productive interactions (Bukau and 

Horwich, 1998).  Therefore, CLIPS chaperones, which include Ssb1/2p, most 

likely function to stabilize ribosome structure, fold nascent polypeptides, or both.  

The function of Ssb1/2p in chaperoning ribosome structure is supported 

experimentally because yeast deficient in SSB1/2 have disrupted polyribosomes 
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(Nelson et al., 1992).  Additionally, another member of the HSP chaperone family 

chaperones yeast ribosome biogenesis (Meyer et al., 2007). 

Discoveries made in this dissertation showed that Asc1p-deficient 

ribosomes are enriched in Ssb1/2p relative to wild-type or complemented 

ribosomes.  Because Asc1p-deficient ribosomes represent an abundant, non-

native multi-protein complex, it is possible that Ssb1/2p blocks unproductive 

interactions with this mutant 40S (Bukau and Horwich, 1998).  Past studies have 

shown that Ssb1/2p binds to the ribosome in a conformation-dependent manner 

(Pfund et al., 1998).  Therefore, results shown in this dissertation and elsewhere 

suggest that Ssb1/2p might function to stabilize ribosome structure. 

  

ASC1 function in ribosome biogenesis 

 Proteomic analysis of Asc1p-deficient ribosomes revealed an enrichment 

of the HSP70 chaperone protein Ssb1/2p.  The discovery that Asc1p-deficient 

ribosomes were enriched in Ssb1/2p led to the hypothesis that these mutant 

ribosomes might be unstable.  Indeed, shifting asc1-deficient yeast to elevated 

growth temperatures disrupted ribosomes.  Additional experiments showed that 

elevated temperatures disrupted nascent ribosome structure, but not pre-existing 

ribosomes.  Therefore, ASC1 facilitates ribosome biogenesis. 

Eukaryotic ribosome biogenesis is a compartmentalized, multi-step 

process.  The process requires over 100 different non-ribosomal proteins 

referred to as ribosome biogenesis trans-acting factors (Kressler et al., 1999; 

Warner, 2001; Woolford, 2002).  Additionally, most of the core 40S ribosomal 
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proteins, with the exception of RPS22 and RPS29, have roles in yeast ribosome 

biogenesis(Ferreira-Cerca et al., 2005).  Because ASC1 facilitates ribosome 

biogenesis at elevated temperatures, Asc1p may have evolved to chaperone 

ribosome formation through stressful conditions. 

 

Potential Mechanistic Roles of ASC1 in Ribosome Biogenesis 

Asc1p could facilitate nascent ribosome structure through several different 

mechanisms.  Because asc1-deficient yeast lose nascent ribosomes at elevated 

temperatures, it is possible that ASC1 evolved as part of the heat-shock 

response.  During heat shock, Asc1p might function either directly or indirectly to 

chaperone ribosome formation at elevated temperatures.  Because Asc1p lacks 

heat-shock-protein-related functional domains, it is unlikely that Asc1p performs 

an HSP-chaperone related function.  Instead, the WD-repeat domains shared by 

Asc1p with other proteins have been primarily implicated in scaffolding protein-

protein interactions.  Therefore, it is possible that Asc1p scaffolds the association 

of chaperone-like protein(s) to the ribosome during biogenesis.  Loss of this 

Asc1p-chaperone interaction may lead to the inability to repair ribosomes at 

elevated temperatures. 

During eukaryotic ribosome biogenesis, a majority of ribosomal RNA 

processing occurs in the nucleolus (Kressler et al., 1999; Warner, 2001).  

However, the 18S rRNA (which is incorporated into the 40S subunit) is partially 

processed in the cytoplasm (Kressler et al., 1999; Warner, 2001).  Specifically, 

the small subunit transports a 20S rRNA species from the nucleolus to the 
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cytoplasm where the 20S is subsequently cleaved into an 18S mature rRNA 

(Jakovljevic et al., 2004).  Several mutants have been isolated that fail to convert 

the 20S into 18S rRNA (Ferreira-Cerca et al., 2005; Jakovljevic et al., 2004).  

These mutants often fail to export the developing 40S subunit from the nucleolus 

to the cytoplasm for completion of small subunit biogenesis (Ferreira-Cerca et al., 

2005).  Therefore, 40S transport out of the nucleolus is a critical step in the 

biogenesis of small subunits.  It is possible that part of the ribosome-export 

sequence requires the chaperoning or scaffolding function of Asc1p at elevated 

temperatures. 

 

Proposed Experiments to Identify the Mechanistic Role of ASC1 in 
Ribosome Biogenesis 
 

        Ribosome biogenesis requires the step-wise processing of a single 

35S precursor ribosomal RNA (Kressler et al., 1999).  This ribosomal RNA is 

processed into 33S, 32S, 27S, 25.5S, 25S, 20S, and 5.8S rRNAs in the 

nucleolus (Warner, 2001).  Because the ribosomal RNAs represent some of the 

most abundant RNA species in the cell, it is possible to isolate the precursor 

rRNA species.  Radio-labeled uracil incorporates into ribosomal RNA during 

synthesis.  Therefore, pulse-chase analysis of ribosomal RNA with uracil reveals 

the multiple ribosomal RNA precursors (de la Cruz et al., 2005; Ferreira-Cerca et 

al., 2005; Iouk et al., 2001; Jakovljevic et al., 2004).  In ribosome biogenesis 

mutants, the processing of ribosomal RNA precursors is often stalled.  If ASC1 

functions in ribosome biogenesis then it is possible that asc1-deficient yeast fail 

to perform one or more steps of ribosomal RNA processing.  A pulse-chase 
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analysis of ribosomal RNA processing at either 30 or 39°C might reveal that 

asc1-deficient yeast fail to generate the appropriate terminal or precursor rRNA 

species. 

If asc1-deficient yeast fail to process ribosomal RNA at the 20S-to-18S 

transition, ASC1 is likely involved in one of two ribosome biogenesis steps.  

Because 20S rRNA processing occurs in the cytoplasm, a 20S-to18S processing 

defect might indicate that ASC1 plays a critical role in transporting the developing 

40S from the nucleolus to the cytoplasm.  If this model is correct, then asc1-

deficient yeast should accumulate 40S subunits in the nucleolus.  However, if 

asc1-deficient yeast exhibit a defect in 20S-to-18S processing, but do not 

demonstrate a defect in 40S transport from the nucleolus, then it is likely that 

ASC1 is critical for a stage of ribosome biogenesis that occurs in the cytoplasm.       

 

Growth Behavior of ribosome-depleted asc1-deficient yeast suggest a role 
for ribosomes in cell proliferation 
 
 Because ribosomes are believed to be essential for survival, few studies 

have been able to gain an understanding of ribosome function.  Of course, 

ribosomes have been caught-in-the-act of mRNA translation .  However, the 

overall contribution of ribosomes to cellular homeostasis has remained elusive.  

Conflicting reports suggest that ribosomal proteins either slow or enhance 

processes that require cell proliferation (Amsterdam et al., 2004; Volarevic et al., 

2000). 

 Yeast deficient in asc1 exhibit a severely reduced ribosome population 

after growth at 39°C for 16 hours.  At this point in the growth cycle, both wild-type 
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and mutant yeast contain reduced polyribosomes, suggesting that translational 

initiation is repressed.  Introduction of the yeast to fresh media at 30°C results in 

the formation of polyribosomes immediately.  However, asc1-deificent yeast 

exhibit a diminished pool of total ribosomes relative to wild-type that lasts 4-20 

hours after introduction to the fresh media.  These results show that asc1-

deficient yeast are competent to initiate mRNA translation immediately, but 

replenish the ribosome pool at a latter time-point.  Interestingly, a yeast strain 

with an asc1∆ background exhibits a lag in proliferation when recovering from 

growth at the NPT.  Taken together, these results strongly suggest that the 

growth lag of asc1-deficient yeast is associated with a reduced ribosome density, 

but not repressed translational initiation.  Therefore, this work further illustrates 

an association between ribosome density (per cell) and cell proliferation.   

 
Link between ribosome biogenesis, cell proliferation, and Rapamycin 
treatment 
 
 The pharmacological compound Rapamycin (also known as Sirolimus), 

has many clinical applications (Shapiro et al., 2000; Stallone et al., 2005a; 

Stallone et al., 2005b).  Rapamycin inhibits cell proliferation through mechanisms 

that are not entirely understood.  The drug suppress the synthesis of proteins 

that encode components of the ribosome and ribosome biogenesis factors 

(Guertin et al., 2006; Tang et al., 2001).  Therefore Rapamycin suppresses both 

cell proliferation and the synthesis of ribosomes.  The studies described in this 

dissertation establish an association between ribosome density and cell 

proliferation.  Taken together, work presented in this dissertation and elsewhere 
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suggests that Rapamycin might inhibit the potential for cells to proliferate by 

blocking ribosome biogenesis (Guertin et al., 2006; Tang et al., 2001; Volarevic 

et al., 2000).  

 

Other Possible Functions for ASC1 in Ribosome Function/Translation 

 The introduction of this dissertation outlines the differences between 

prokaryotic and eukaryotic mRNA translation and ribosome structure.  Because 

eukaryotic small subunits have evolved large structural features that are absent 

from their prokaryotic counterparts, these new structures may be responsible for 

orchestrating aspects of translational initiation that are unique to eukaryotes 

(Spahn et al., 2004).  That Asc1p is a large, recently evolved portion of the small 

subunit suggests that it may function during eukaryotic translational initiation.  In 

support of this possibility, Dr. Leos Valasek has found that Asc1p is the only 40S 

protein that has an interaction with NIP1; a component of the eIF3 complex 

(personal communication, unpublished data).  Because eIF3 forms a complex 

with eIF4F (the mRNA cap-binding complex), it is possible that Asc1p docks eIF3 

on the ribosome.  Therefore, ASC1 may have a critical function in scaffolding 

interactions of the ribosome with the 5’end of mRNAs to initiate translation.  

However, there are several reasons why the results presented in this dissertation 

conflict with this possibility.  First, asc1-deficient yeast do not exhibit a growth 

phenotype at 30°C.  In sharp contrast, deletion of any eIF3 subunit, including 

NIP1, is lethal (Giaever et al., 2002).  Conditional mutants of eIF3 also have 

strong defects in translational initiation (Jivotovskaya et al., 2006; Nielsen et al., 
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2004).  Therefore, if Asc1p is critical for docking eIF3 to the ribosome, then one 

would expect asc1-deficient yeast to exhibit a severe growth defect at 30°C. 

 Consistent with ASC1 performing an important role in translation, asc1-

deficient yeast fail to grow at 39°C.  This defect is principally due to the failure of 

asc1-deficient yeast to form nascent ribosomes at the 39°C.  Yeast deficient in 

ASC1 appear to lose polyribosomes in proportion to monosomes at 39°C.  Loss 

of polyribosomes, but not monosomes is an indicator of suppressed translational 

initiation.  Because asc1-deficient yeast appear to have an equivalent loss of all 

ribosome species at the non-permissive temperature, it is unlikely that ASC1 

functions to stimulate translational initiation.  Rather, this result suggests that 

ASC1 is critical for ribosome biogenesis.  

 

Part I Conclusion: Asc1p is part of the ribosome core and facilitates 
ribosome biogenesis 
 
 This dissertation provides some of the principal evidence that Asc1p and 

RACK1 are core components of the eukaryotic 40S ribosome.  In addition, this 

dissertation shows that yeast deficient in asc1 have elevated levels of specific 

proteins at 30°C.  These proteins levels are elevated through a post-

transcriptional mechanism, consistent with a role for Asc1p in the post-

transcriptional repression of protein expression.  When the growth temperature of 

asc1-deficient yeast is shifted to 39°C, the nascent ribosome population is 

diminished, suggesting that ASC1 functions during ribosome biogenesis at 

elevated temperatures.  Therefore, these studies establish Asc1p as a novel core 

component of the 40S subunit that functions to repress the expression of a 
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subset of mRNAs at 30°C, and facilitates the biogenesis of the ribosome at 

elevated temperatures.  Future studies outlined above will define the precise 

mechanistic contribution of ASC1 to translational repression and ribosome 

biogenesis.  

    

Part II: Discovery of novel IRES RNP complexes 

 In the last portion of my dissertation research I wanted to pursue my own 

discovery-driven proteomic analysis.  To this end, I chose to develop a protocol 

that would allow one to use RNA affinity chromatography combined with 

proteomic approaches to identify proteins that would bind to specific RNA 

sequences.  As my model RNA, I used the ornithine decarboxylase Internal 

Ribosomal Entry Site (Pyronnet et al., 2000; Pyronnet et al., 2005).  The ODC 

IRES had been mutated previously by Nahum Sonenberg’s group (Pyronnet et 

al., 2000; Pyronnet et al., 2005).  Mutagenesis of pyrimidine tracts in the 5’UTR 

of ODC resulted in a marked loss of IRES activity.  Therefore, comparing 

proteins that would bind to the wild-type IRES RNA, but not the mutant IRES 

RNA, might lead to the discovery of IRES trans-acting-factors. 

 Mutation of the ODC IRES identified a regulatory element (RE) in the 

5’UTR.  This RE was 18 bases in length.  I reasoned that this RNA could be 

coupled to chromatography beads in order to capture proteins that would bind 

the wild-type (active form) of the IRES.  I also reasoned that a similar RNA 

affinity column containing the mutant (inactive form) of the ODC IRES RE might 

fail to form protein-RNA interactions that form on the wild-type affinity column. 
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 Mass spectrometry analysis of the wild-type and mutant RNA-binding 

proteins showed that two proteins were abundantly and specifically associated 

with the wild-type IRES RNA.  These two proteins were ZNF9 and PCBP2.  

Although ZNF9 was a protein with no official ascribed function, PCBP2 had been 

shown to function as an ITAF in several studies.  Importantly, ZNF9 is mutated in 

patients with type-2 myotonic dystrophy (Liquori et al., 2001). 

 Additional biochemical experiments suggested that ZNF9 and PCBP2 

were bona fide ODC IRES binding proteins.  Further, loss-of-function and over-

expression analyses suggested that PCBP2 and ZNF9 function to stimulate the 

cap-independent translation of the ODC IRES.  Interestingly, ZNF9 and PCBP2 

co-purified, and might function as part of a larger ITAF assembly. 

 

Possible models of ZNF9-mutation-induced pathogenesis 

 Our proteomic screen and detailed molecular analysis suggests that the 

ZNF9 protein functions as an ITAF.  If we apply a simplistic model of heritable 

disease to the ZNF9 gene, it is possible that mutations in ZNF9 disrupt cap-

independent mRNA translation in type-2 myotonic dystrophy.  Importantly, mice 

that are heterozygous mutants of ZNF9 share many of the human symptoms of 

myotonic dystrophy including: myotonic discharges, heart conduction 

abnormalities, and cataracts (Chen et al., 2007).  Therefore, haploinsuffiency of 

ZNF9 in mice causes phenotypes that are consistent with myotonic dystrophy in 

humans.   
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The nature of the ZNF9 mutation has led to some disease models that 

ignore the natural function of the gene in the etiology of the disease.  ZNF9 

harbors tandem CCTG expansions in intron 1 of patients with type-2 myotonic 

dystrophy.  Similarly, patients with type-1 myotonic dystrophy harbor tandem 

CTG expansions in a non-coding region of the DMPK gene (Brook et al., 1992; 

Carango et al., 1993).  DMPK encodes a serine/threonine protein kinase 

whereas ZNF9 is expected to encode a nucleic acid binding protein (Liquori et 

al., 2001).  Therefore, the genes that cause both forms of myotonic dystrophy 

harbor similar mutations in genes that are predicted to have divergent functions.  

From this observation, it is postulated that CTG-like expansions cause a gain-of-

function phenotype in individuals with these mutations (Kanadia et al., 2003; 

Kanadia et al., 2006).  Specifically, if these tandem CTG repeats are transcribed 

into CUG repeats, it is conceivable that CUG-RNA-binding proteins might be 

sequestered by these non-translated sequences.  If this is the case, it would 

explain why the expansion mutations CTG and CCTG occur in genes with 

divergent functions but have the same outcome; the development of myotonic 

dystrophy like symptoms. 

This dissertation describes a protocol that successfully couples RNA-

affinity chromatography to LC-MS/MS mass spectrometry analysis.  The RNA-

toxicity model in myotonic dystrophy postulates that CUG-binding proteins are 

sequestered in the nuclei of patients with the disease.  Subsequent loss of CUG-

binding protein function might disrupt essential cellular processes such as RNA 

splicing and export.  If this model is correct, then a common group of proteins 
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should bind to tandem repeats of either CUG or CCUG.  The proteomic approach 

used in this dissertation to discover IRES-binding proteins can be applied to the 

discovery of proteins that bind to both CUG and CCUG sequences.  Additionally, 

this approach can be used to identify proteins that uniquely bind to either CUG or 

CCUG repeats.  After the shared and unique CUG or CCUG-binding proteins are 

identified, mice that are null for individual CUG-binding proteins can be tested for 

their ability to recapitulate the disease.  Because there are additional forms of 

myotonic dystrophy for which the effected genes are not known, this approach 

may pinpoint the etiology of these other type(s) of dystrophy.      

 

Future Studies of ODC IRES-binding Proteins 

 During my screen of ODC IRES RNA-binding proteins, I found proteins 

that were specifically associated with the wild-type RNA, but not the mutant 

(inactive) IRES RNA.  A number of the proteins that bound to both the wild-type 

and mutant (inactive) IRES RNA are established ITAFs.  For example, poly-

pyrimidine tract binding protein (PTB) and upstream of N-ras (UNR) were 

associated with both wild-type and mutant RNAs.  Therefore, a number of the 

proteins identified in our screen bind to the wild-type and inactive ODC IRES and 

are established ITAFs.  I put forward the possibility that these proteins might also 

function as ITAFs of the ODC IRES.  Additionally, it is possible that these 

proteins function as part of a larger holo-ITAF complex with PCBP2 and ZNF9 to 

stimulate the cap-independent translation of the ODC IRES. 
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Part II: Conclusion: ZNF9 and PCBP2 are ITAFs that stimulate the ODC 
IRES 
 
 The combination of RNA affinity chromatography and mass spectrometry 

defined proteins that specially bind an active wild-type ODC IRES but not a 

mutant form of the IRES.  These proteins, PCBP2 and ZNF9 associate 

biochemically and function as ITAFs.  That ZNF9 is mutated in patients with type-

2 myotonic dystrophy raises the intriguing possibility that IRES-dependent mRNA 

translation is disrupted in the disease.  In consideration of these discoveries, 

future studies will pursue this possibility. 
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