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CHAPTER I  

 

LESSONS FROM GENETICALLY ALTERED MESENCHYMAL STEM CELLS 
(MSCs); CANDIDATES FOR IMPROVED MSC-DIRECTED MYOCARDIAL 

REPAIR 

 

Introduction 

The regenerative and reparative potential of Mesenchymal Stem Cells 

(MSCs) make them attractive candidates for numerous cell-directed therapies. 

The variant degree of tissue repair by transplanted MSCs has been assessed in 

several published reports. There are many gaps in the knowledge of MSC 

biology and the underlying reasons for their disparate effectiveness in tissue 

repair. This chapter examines successful pre-clinical models of MSC-directed 

repair, particularly of myocardial repair, in an attempt to shed light into the events 

dictating MSC therapeutic efficacy. The reparative advantage of genetically 

altered MSCs will be described. This overview will elucidate possible molecular 

mechanisms that can influence MSC engraftment, differentiation, self-renewal, 

and ultimately increase wound repair. 

 

Mesenchymal Stem Cell Characterization 

 MSCs are a heterogeneous population of fibroblastoid cells isolated by 

their ability to form adherent colonies following low density tissue culture plating 

conditions [1-3]. There are variable methodologies for the initial isolation of the 

MSCs[1, 4]. Physical dissociation of the starting tissue may or may not be 
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followed by immuno-depletion of unwanted cells to attain a starting population 

[5]. Once isolated, MSCs can be expanded in vitro in serum-containing media to 

attain a characteristic spindle-like shape [4]. Although bone marrow (BM)-derived 

MSCs will be the focus of this review, reviews concerning MSCs isolated from 

adipose tissue [6] umbilical cord blood [7, 8] and fetal tissues [9] are available.  

Regardless of the source, MSCs retain the pluripotent ability to differentiate into 

distinct mesenchymal lineages, particularly the adipogenic, chondrogenic and 

osteogenic [10, 11].  

  Table 1 contains a short list of cell surface markers that characterize the 

antigenic phenotype of murine BM-derived MSCs; their categories and the 

appropriate references are included. To separate the MSCs from any 

hematopoietic contaminants of the BM, most investigators have agreed that 

murine MSCs must not express the protein tyrosine phosphatase CD45 (CD45-) 

or markers of hematopoietic lineages such as B-cells or T-cells (Lin-). MSCs 

must also express the Stem Cell Antigen 1 (Sca1+) as well as the cell adhesion 

molecule, HCAM (CD44+).  

A large amount of data is available which characterizes human MSCs [11, 

12]. The minimal criteria to define human MSCs have been established by the 

Mesenchymal and Tissue Stem Cell Committee of the International Society for 

Cellular Therapy. Human MSCs must express CD105, CD73 and CD90, and lack 

expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR 

surface molecules [13].  
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Table 1 – Antigenic Phenotype of Murine MSCs 

 Identity Expression References 
Adhesion 
Molecule 

CD44, CD106 
CD9, CD54, CD62P, CD138 

CD31 
CD62L 
CD29 
CD48 

+ 
+ 
- 
- 
+ 
- 

[1, 3, 14-16] 
[14, 16] 

[1, 2, 14, 15] 
[14] 

[1, 3, 15] 
[1, 15] 

Hematopoietic 
Marker 

CD90 
CD90, CD11b, CD34, 

CD45 
Lineage (CD4, CD5, CD8, 

B220, Mac-1, Gr-1) 

- 
- 
- 
- 

[14, 15] 
[1, 15, 16] 

[1, 2, 14-16] 
[2, 17] 

 
Growth factor 

receptor 
CD105, CD117, CD126, Flk-1 

CD117, CD135 
+ 
- 

[14] 
[1, 15] 

Other CD81 
SCA-1 

Nucleostemin 
Oct-4 

+ 
+ 
+ 
- 

[1, 15] 
[1-3, 14-16] 

[15] 
[15] 

  

Abbreviation: Cluster of Differentiation (CD) 

 

 

The above description of the isolation, epitope identification and 

expansion of MSCs points to the fact that there is variability in the definition of 

MSCs. Variations in the biological activities of these cells are present between 

isolates and passages [18-20]. The consensus reached to define human MSCs is 

addressing this point; however, no such consensus exists for the murine MSC 

field. Moreover, the description of the nature of MSCs has relied on the in vitro 

characterization of these cells due to the lack of a definitive antigen in vivo.  
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Do MSCs Exist in vivo? 

A large body of evidence has emerged which document the presence of 

stem cells within the neural crest of the vertebrate embryo. In vitro analysis of a 

subset of these stem cells has demonstrated that they have mesenchymal 

properties. These studies suggest the identification of the source of MSCs in the 

developing embryo and several reviews on these are available [21, 22]. Signaling 

cascades involved in the in vivo generation of these neural crest mesenchymal 

progenitor cells have been identified [23, 24].   

In the adult, a hypothesis which equates MSCs to pericytes or vascular-

associated mesenchymal cells has been proposed [25-27]. The work of Simmons 

et al. demonstrated that bone marrow-derived cells isolated by virtue of their 

STRO-1 positivity had MSC qualities [25]. This work has since been validated, 

demonstrating the in vitro differentiation capabilities of this fibroblastoid 

population [25, 28]. The STRO-1+ cells were localized to blood vessel walls of 

human bone marrow sections, strengthening the perivascular hypothesis [29]. 

Pericytes were detected in several human tissues (all known sources of MSCs) 

and when isolated gave rise to MSCs in vitro [27]. Interestingly, these pericytes 

expressed several known MSC markers in their native in vivo state [27]. Although 

proof of endogenous MSCs or MSC-like pericytes has been documented, their 

role in tissue repair is not understood. Among other things, it is still unclear 

whether these tissue resident cells migrate to sites of injury or solely secrete 

factors that contribute to wound healing [30]. 

 



5 
 

Main Clinical Applications 

The National Library of Health provides information about ongoing clinical 

trials at http://clinicaltrials.gov [31]. Currently, there are 73 clinical trials in which 

bone marrow-derived MSCs are to be administered as therapy for a variety of 

human conditions. Table 2 contains a list of these conditions, the number of trials 

engaged in the particular disease, and the method of administration of MSCs.  

 

http://clinicaltrials.gov/�
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Table 2 –MSCs as Therapy, Current Clinical Trials and their Method of 
Administration (Clinicaltrials.gov) 

Condition Number 
of Trials Administration 

Graft Versus Host Disease 14 Intravenous (I.V.) 
Myocardial Infarction 10 Intramyocardial, Transedocardial 

Injection, I.V. 
Organ Transplant/Rejection 6 I.V. 
Articular Cartilage Defects 5 Surgical Implantation, Intraarticular 

Injection 
Multiple Sclerosis 3 I.V., Intra-thecal Injection 
Cirrhosis 3 I.V., Intra-arterial 
Crohn’s Disease 3 I.V. 
Ventricular Dysfunction 2 Intramyocardial, Transedocardial 

Injection 
Degenerative Disk Disease 2 Surgical Implantation 
Type I Diabetes 2 I.V. 
Type II Diabetes 2 Intramuscular Injection, I.V. 
Systemic Lupus 
Erythematosus 

2 I.V. 

Bone Neoplasms 1 Surgical Implantation 
Cronic Obstructive Pulmonary 
Disease 

1 I.V. 

Parkinson’s Disease 1 Implanted into Striatum 
Primary Sjogren’s Syndrome 1 I.V. 
Ischemic Stroke 1 I.V. 
Systemic Sclerosis 1 I.V. 
Critical Limb Ischemia 1 Intramuscular Injection 
Osteonecrosis of Femoral 
Head 

1 I.V. 

Multiple System Atrophy 1 Intra-arterial 
Tibial Fracture 1 Surgical Implantation 
Amyotrophic Lateral Sclerosis 1 Intramuscular Injection 
Tibia or Femur Pseudo-
arthritis 

1 Surgical Implantation 

Adult Periodontitis 1 Surgical Implantation 
Non-malignant Red Blood 
Cell Disorders 

1 I.V. 

Neuroblastoma 1 I.V. 
Osteodysplasia 1 I.V. 
Epidermolysis Bullosa 1 I.V. 
Osteogenesis Imperfecta 1 I.V. 
TOTAL 73 
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Homing to Sites of Injury 

The data included in Table 1 clearly demonstrate that the primary form of 

MSC transplantation, in 20 out of 30 conditions (67%), is intravenous. This form 

of administration takes advantage of the homing capacity of MSCs. Clinicians are 

relying on the ability of MSCs to travel through the vasculature and localize within 

injured tissue [32-34].  

 The effectiveness of homing ability varies between published pre-clinical 

reports. One explanation for this was delineated by Rombouts et al. by 

demonstrating that GFP-tagged murine MSCs lose their homing abilities in a 

syngeneic mouse model following prolonged in vitro expansion [14]. Recently, 

several groups have shown that regulation of the CXC Chemokine Receptor 4 

(CXCR4) and its ligand, Stromal-Derived Factor 1-alpha (SDF1-α), play an 

important role in the motility of human and rodent MSCs [35, 36]. Shi et al. 

demonstrated that incubation of MSCs in medium containing five cytokines (Flt-3 

ligand, SCF, IL-6, HGF and IL-3) resulted in up-regulation of both cell surface and 

intracellular CXCR4 [35]. Tail vein injection of cytokine-cultured, and thus 

CXCR4-expressing, MSCs into sub-lethally irradiated NOD/SCID mice increased 

the homing to the bone marrow by seven fold; albeit an increase in detection 

from 0.03% to 0.2% of the injected cells only 24 hours post-transplant [35]. This 

indicates that even in optimized conditions the efficacy of targeting is far less 

than 1%. The in vitro culture conditions in which the MSCs are expanded have 

an effect on the expression of CXCR4; 1-day exposure to hypoxia (1% oxygen 

tension) was sufficient to increase CXCR4 and CX3CR1 mRNA and protein 
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levels enough to positively impact MSC migration and engraftment in a xenograft 

chick embryo model; this, however, was only an increase in engraftment from 

0.3% to 0.9% [37]. 

 There are other ligands and receptors involved in MSC migration besides 

the SDF1-α and CXCR4 axis. Hepatocyte Growth Factor (HGF) and its receptor 

c-met increase the migration ability of MSCs in vitro [38] and have been 

implicated in the recruitment of MSCs to the site of injury [39]. Human MSCs 

express the N-formyl peptide receptor (FPR) suggesting they are able to migrate 

to inflammatory sites where N-formylated peptides are present in the same way 

immune cells home to injury [40]. 

 Migrating to the site of injury is only part of the challenge MSCs face for 

clinical application. MSCs must be able to traverse the 3-dimensional connective 

tissue. Type I collagen is the dominant extracellular matrix molecule found in 

mammalian tissues [41] and so MSCs must be capable of proteolytic degradation 

of this component to invade and extravasate into the tissue. The membrane-

tethered 1 matrix metalloproteinase (MT1-MMP) has been recently shown to be 

involved in human MSC trafficking, in vitro and in vivo [42]. MSCs were able to 

traverse type I collagen matrices 2-D and 3-D in vitro systems, and this activity 

was blocked completely by siRNA silencing of MT1-MMP. The chick 

chorioallantoic membrane (CAM) was used to confirm these results in vivo. 

Within 2 days of their placing on top of the membrane, hMSCs invaded the CAM 

surface and were detected in the underlying stroma; MT1-MMP silencing 

abrogated their invasive capabilities [42].   
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 Understanding the genes/proteins involved in MSC homing, and their 

ability to remodel the collagenous extracellular matrix, will ultimately help 

increase their therapeutic efficiency. The CXCR4/SDF1-α signaling components 

seem to be important in the recruitment of MSCs. MT1-MMP seems involved in 

the degradation and penetration of type I collagen tissue barriers. Further work is 

needed to elucidate the regulation of the ‘homing’ signature necessary for 

improved migration, invasion and extravasation of MSCs into targeted tissues. 

 

Immuno-modulatory Properties 

 Further observation of Table 2 provides an interesting find. Fourty four 

percent (32/73) of the current clinical trials are utilizing MSCs for their immuno-

modulatory properties. In conditions like graft versus host disease (GVHD), 

Crohn’s Disease, Primary Sjogren’s Syndrome, Organ Transplantation/Rejection, 

Systematic Sclerosis, Type I Diabetes, Systemic Lupus Erythematosus, Multiple 

Sclerosis, Neuroblastoma, and Non-malignant Red Blood Cell disorders, MSCs 

are being transplanted as treatment by themselves or as adjunct therapy.  

 The biology behind the effects of MSCs on the immune system is mostly 

unknown; however, a few experimental models have elucidated some of the key 

molecular players involved in the anti-inflammatory role of MSCs. One of these 

models is a rat renal transplantation model where MSCs injections increased 

overall survival of the recipient animals due, in part, to a decrease in interleukin-

1α (IL-1), tumor necrosis factor α (TNF-α), and transforming growth factor (TGF)-

β1[43]. The authors of this work remind us that there are still unknowns as they 
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note that adjunct Cyclosporine A (a powerful immunosuppressant, non-steroidal) 

treatment further increases the survival of the rats and further diminishes the 

levels of the inflammatory cytokines [44]. 

 Other models have shown a similar effect of MSCs on the down-regulation 

of the immune function. Such is a rodent model of interstitial lung disease, where 

bleomycin (a cytotoxic glycopeptide antibiotic)[45] treatment induces pulmonary 

fibrosis and concomitant inflammation[46]. Following induction of the disease, 

Ortiz et al. treated the mice with MSCs and demonstrated a decrease in the 

levels of two important pro-inflammatory cytokines: TNF α and IL-1α[15]. This 

group demonstrated the anti-inflammatory capacity of MSCs in this setting due to 

the expression of interleukin-1 receptor antagonist (IL-1RN). These results were 

confirmed by in vitro assays in which MSC-conditioned media decreased the 

proliferation of an IL-1 responsive T-cell population[15]. 

  Studies using an experimental autoimmune encephalomyelitis model 

demonstrated that MSCs were able to suppress T-cell activation in vitro and in 

vivo, and this effect was partially reversible by the addition of IL-2[16]. In this 

case, the authors suggest that the limited expression of MHC class II molecules 

as well as lack of co-stimulatory molecules, such as CD80, CD86, and CD40, on 

MSCs may be the reason behind the T-cell inactivation. A more detailed study on 

secreted factors in MSC conditioned media demonstrated that neither IL-10, 

TGF-β1, nor prostaglandin E2 (PGE2) were responsible for the T-cell 

inhibition[47]. 
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 The roles of MSCs in immune suppression have been partially described 

and the molecular mechanism behind this capacity remains elusive. Further 

studies on the effects of IL-1RN on T-cells might give insight into how MSCs 

inhibit inflammation and prevent T-cell activation. 

 

Myocardial Infarction (MI) Therapy 

 The second most common application for MSCs in the clinic is  treatment 

for ventricular dysfunction and myocardial repair [31]. Although ten current trials 

are underway utilizing MSCs in the setting of MI very little clinical data have been 

gathered. A private company, Osiris Therapeutics recently published clinical 

results demonstrating that MSC transplantation proved a safe therapy with 

increased benefits (increased left ventricular ejection fraction and reversed 

remodeling) compared to the placebo-treated group [48]. Although these data are 

exciting, it is important to note that this study had a relatively small sample size 

(n=53), a follow-up time of only 6 months, and is the first to show an overall 

statistical improvement in heart function in all MSC-treated patients (global 

symptom score p=0.027). Because the available clinical data are scarce, many 

investigators are trying to dissect the necessary events, and the molecular 

mechanism that drive them, for MSCs to positively affect the heart following MI. 
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Possible Mechanisms of MSC-Mediated Repair 

 Figure 1 shows the possible results of the transplanted cells within the site 

of injury. Regardless of whether the mechanism of repair reflects their 

differentiation (direct contribution) or paracrine effects, the MSCs must be able to 

successfully reach the wound, survive and expand within it. This section will 

focus on the molecular mechanisms thought to be involved in these events by 

looking at the effects of genetically altered MSCs in pre-clinical models of 

myocardial repair. 

 

 

 

 

 

Cardiogenic Differentiation of MSCs within Infarcted Myocardium 

As early as 1999, researchers noticed that MSCs could be differentiated in 

vitro (by 5-azacytidine treatment) into beating, MEF-2A and MEF-2D expressing 

cardiomyocytes [49]. More recent work has demonstrated that these cells 

express functional adrenergic and muscarinic (ß1, ß2, M1, and M2) receptors after 

5-azacytidine treatment in vitro [50]. Instead of using this potentially toxic inhibitor 

of DNA methylation to derive cardiomyocytes from MSCs, Behfar et al. 

Transplanted Mesenchymal Stem Cells 

Differentiation   Paracrine Effects 

Figure 1. Possible Effects of MSCs on Injured Tissue 
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developed a “cardiogenic cocktail” [51]. This mix of trophic factors include TGF-

β1, Bone morphogenetic protein 2 (BMP2), IGF1, Fibroblast growth factor 4 

(FGF4), Interleukin-6, Leukemia inhibitory factor (LIF), α-Thrombin, Vascular 

endothelial growth factor A (VEGF-A), TNF-α, and Retinoic acid. The cocktail 

was able to drive the nuclear expression of cardiac Nkx2.5 and MEF-2C 

providing insight into the molecular mechanisms and signaling pathways that 

govern MSC cardiogenic differentiation [51]. This in vitro phenomenon suggested 

MSCs could be a novel therapy used to regenerate damaged cardiac tissue and 

it prompted investigators to look for the in vivo differentiation of MSCs into 

cardiomyocytes following their administration.  

 GFP-tagged Lin- c-kit+ MSCs injected into the peri-infarct area following 

coronary artery ligation were fully incorporated into the myocardium and seemed 

to give rise to new, regenerated tissue after only 9 days [17]. These results seem 

unique as several studies of this nature revealed that the level of in vivo 

cardiogenic differentiation of MSCs is very low [34, 52] or completely lacking [53]. 

Instead of MSC-derived regeneration of the heart, researchers have shown a 

fusion event of MSCs with injured cardiomyocytes [54]. 

Despite the low levels of direct contribution of the MSCs to the 

myocardium, MSCs have a positive effect in the function and remodeling of 

injured myocardium [55, 56], albeit to varying degrees. It is widely accepted that 

the most probable effect of the MSCs in the site of injury is to supply the wound 

with soluble factors that enhance the repair process. 
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Secreted Factors Involved in Cardiac Reperfusion by MSCs 

An ischemic environment is a direct consequence of coronary artery 

occlusion [57]. The severity of the occlusion may lead to myocardial death and 

necrosis [58]. Neovascularization nourishes the wounded tissue with the 

necessary nutrients and oxygen supply to prevent further tissue damage and 

increase repair [59]. Several reports have demonstrated that MSCs induce VEGF 

expression, and therefore, neovascularization in ischemic myocardium [60-62]. In 

vitro analysis of MSC-conditioned media (MSC-CM) demonstrated that MSCs 

themselves secrete a variety of angiogenic factors, among them VEGF and 

Placental growth factor (PlGF); and that these are up-regulated in response to 

hypoxic culture conditions [63]. Together, these studies suggest that MSCs may 

play a role on the reperfusion of the infarcted myocardium. 

Matsumo et al. reported that the adenoviral overexpression of VEGF by 

MSCs (VEGF-MSCs) increases capillary density (approximately 2-fold) in the 

VEGF-MSC-treated hearts 28 days post MI. In this study, the MSCs were 

followed by beta-galactosidase expression and the number of dual alpha smooth 

muscle actin and LacZ positive cells was increased approximately 4-fold in the 

treatment group. These authors suggest that the trans-differentiation of MSCs to 

endothelial progeny led to a significant increase in cardiac function and a 

significant decrease in infarct size in the VEGF-MSC-treated group [64]. 

Erythropoietin (Epo) is involved in neovascularization of damaged tissue 

[65, 66] and thus increased vascular density was observed in the infarcted hearts 

treated with Epo-overexpressing-MSCs [53]. Without data to indicate endothelial 
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trans-differentiation of MSCs, the authors conclude the MSCs were accessory to 

the newly formed blood vessels. The secretion of trophic factors, especially Epo, 

was what ultimately improved cardiac function post MI. 

 

Increased Myocardial Survival in Response to the MSC Secretome 

The MSC-secreted factors seem to have more than just pro-angiogenic 

effects; MSC treatment reduces the apoptotic index within the peri-infarct area 

[67, 68]. In vitro, cultured cardiomyocytes have improved survival in hypoxic 

conditions when treated with MSC-CM [55] or in co-culture experiments [68-70]. 

An important pro-survival factor, Akt, has been shown to be expressed by MSCs 

in response to hypoxia [68]. Overexpression of Akt in MSCs (Akt-MSCs) 

increased their survival compared to control but importantly, injection of their 

MSC-CM to the myocardium following MI had a significantly positive effect on the 

apoptotic index of the cardiomyocytes [71]. 

Microarray analysis performed on the CM obtained from Akt-MSCs 

documented the presence of sFRP2 [71]. Both rat cardiomyocytes in vitro, as 

well as infarcted mice cardiomyocytes in vivo, had decreased apoptosis when 

treated with CM from the Akt-MSCs. The pro-survival effect on the 

cardiomyocytes was due to sFRP2 since CM from “Akt-MSCs minus sFRP2” 

(knocked down sFRP2 expression by siRNA in Akt-MSCs) did not have the same 

pro-survival effect in either setting. The decrease in cardiomyocyte apoptosis 

post-MI due to Akt-MSC-CM led to decreased infarct size [71]. It is important to 
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note that the authors looked at infarct size 72 hours post treatment and that they 

did not assess any functional cardiac parameters. 

When Heme-oxygenase 1 (HO1) was overexpresseed by MSCs (HO1-

MSCs), similar effects as the ones described above were observed [72]. This 

group saw significant decrease in the in vitro apoptotic index of the HO1-MSCs 

compared to the control-MSCs. In vivo, HO1-MSC-treated infarcted hearts had 

increased capillary density but this was attributed to the increase of VEGF by the 

HO1-MSCs. Transgene expression led to a significant decrease in the apoptotic 

index of cardiomyocytes in the treatment hearts. HO1-MSC treatment following 

MI led to a smaller infarct size, decreased ventricular remodeling and increased 

cardiac function 28 days post-MI. There was no mention of engraftment or 

differentiation by the MSCs in this report. The authors conclude that the most 

important role of the transgene was its anti-apoptotic and anti-oxidant effects on 

the cardiomyocytes [72]. 

 

Enhancing MSC Survival in the Wound 

Retroviral expression of the pro-survival gene Akt-1 decreased the 

apoptotic index of MSCs in vitro. [73] The authors transplanted the Akt-MSCs, or 

GFP-MSCs as a control, directly onto the rat myocardium following MI. Although 

the transgene expression decreased the apoptosis of the MSCs in vivo, this 

analysis was performed 24 hours after the injection. No long-term effect on MSC 

survival was established. The degree of the incorporation of the MSCs into the 

tissue was not discussed despite observation of MSC-derived cardiomyocytes. 
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Improved cardiac function due to Akt-MSC treatment was determined at 2 weeks 

post-MI, albeit using an ex-vivo Langendorff model [73]. 

 Jiang et al. tested the in vivo efficacy of MSCs transduced with a retroviral 

vector to express both Akt and Ang-1 [52]. The animals in this study underwent 

permanent coronary occlusion and were treated with an intramyocardial injection 

of MSCs. Although the authors claim transgene expression afforded the MSC 

with increased engraftment, these data were not presented in their publication. 

Expression of Akt and Ang-1 by MSCs increased blood vessel density within the 

peri-infarct area and led to a statistical increase in heart function (fractional 

shortening and ejection fraction) compared to the control media treatment group. 

Retroviral overexpression of Epo by MSCs increased the survival both in 

vitro and in vivo in a murine subcutaneous implantation model of Matrigel-

embedded MSCs [53]. Although assessment of the Epo-MSC- and control-MSC-

treated hearts 7 and 14 days post MI did not demonstrate an increase in MSC 

engraftment or in the MSC-derived cardiac progeny, there was improved cardiac 

function related with Epo-MSC treatment. 

 

Improving MSC Self-renewal   

 Whether MSCs work by direct regeneration or through paracrine 

modulation, MSCs are unable to have a significant effect on the repair process 

unless a critical mass is attained within the wound (i.e. enhanced engraftment). 

The levels of engraftment of MSCs in pre-clinical models of myocardial repair are 

low [34, 35, 37]. Few clinical data on the engraftment of MSCs are available that 
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address long term engraftment. In one example, fewer than 1% donor cells were 

detected four to six weeks post-infusion on osteogenesis imperfecta patients 

[74]. Recently, our group demonstrated that retroviral overexpression of sFRP2 

by MSCs (sFRP2-MSCs) increased the in vitro proliferation [75] and survival of 

MSCs by modulation of both the BMP and Wnt signaling cascades [76]. This 

phenomenon provided the MSCs with a survival advantage also observed in 

vivo. Although sFRP2-MSCs showed long-term engraftment within infarcted 

myocardium approximately 2.5-fold greater than a GFP-MSC control 30 days 

post-MI [75], the observed degree of engraftment was still modest. The amount 

of engraftment observed was much greater in another model of tissue repair [75] 

suggesting engraftment also depends on the wound context. Achieving a critical 

mass of MSCs by improving their survival and self-renewal capacity should 

increase their numbers in the damaged tissue.  

  

Conclusion 

This chapter described the mechanisms by which MSCs are thought to 

increase repair by looking closely at their effects on myocardial repair. The 

involvement of several genes on the ability of the MSCs to home to the site of 

injury, engraft within the myocardium, give rise to new myocytes/fuse with 

existing cells and/or increase the vascular content within the wound were 

discussed. These genes and their documented effects are depicted in Figure 2; 

the overall division is that of autocrine effects (affecting the MSCs themselves) or 

paracrine effects (affecting the wounded/infracted tissue). Although much more 
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work needs to be done to fully understand MSC biology and their reparative 

capacities, the goal remains to find a gene or set of genes that could have both 

autocrine and paracrine effects so as to increase MSC-directed repair.  

The next chapters will include an in-depth discussion of the activity of 

sFRP2 on MSC-directed wound and myocardial repair. The molecular 

mechanism of this protein will be presented and its effects on MSC biology 

assessed. Ultimately, this compilation aims to demonstrate that sFRP2 enhances 

the reparative potential of MSCs. 

 

Figure 2. Lessons from Genetically Altered MSCs 
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CHAPTER II  

 

THE WNT MODULATOR SFRP2 ENHANCES MESENCHYMAL STEM CELL 
ENGRAFTMENT, GRANULATION TISSUE FORMATION AND MYOCARDIAL 

REPAIR 
 

Introduction 

Cell-based therapies, using MSCs for organ regeneration, are being 

pursued for cardiac disease, orthopedic injuries and biomaterial fabrication. The 

molecular pathways that regulate MSC-mediated regeneration or enhance their 

therapeutic efficacy are, as stated in the previous chapter, poorly understood. We 

compared MSCs isolated from MRL/MpJ mice, known to demonstrate enhanced 

regenerative capacity, to those from C57BL/6 wild-type (WT) mice. Compared 

with WT-MSCs, MRL-MSCs demonstrated increased proliferation, in vivo 

engraftment, experimental granulation tissue reconstitution, and tissue 

vascularity in a murine model of repair stimulation. The MRL-MSCs also reduced 

infarct size and improved function in a murine myocardial infarct model compared 

with WT-MSCs. Genomic and functional analysis indicated a down regulation of 

the canonical Wnt pathway in MRL-MSCs characterized by significant up-

regulation of sFRPs. Specific knockdown of sFRP2 by shRNA in MRL-MSCs 

decreased their proliferation and their engraftment in and the vascular density of 

MRL-MSC-generated experimental granulation tissue. These results led us to 

generate WT-MSCs overexpressing sFRP2 (sFRP2-MSCs) by retroviral 

transduction. sFRP2-MSCs maintained their ability for multilineage differentiation 

in vitro and, when implanted in vivo, recapitulated the MRL phenotype. Peri-
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infarct intramyocardial injection of sFRP2-MSCs resulted in enhanced 

engraftment, vascular density, reduced infarct size, and increased cardiac 

function after myocardial injury in mice. These findings implicate sFRP2 as a key 

molecule for the biogenesis of a superior regenerative phenotype in MSCs. 

 

MRL/MpJ “Superhealer” Mouse 

To better understand the role of stem cells in regenerative biology, we 

studied the “superhealer” MRL/MpJ mouse, generated by interbreeding 4 

different strains [77]. This strain was found to be capable of completely closing 2 

mm surgical ear holes within 30 days whereas control (Bl/6) mice leave residual, 

open holes [78]. Upon right ventricular cryoinjury, this “superhealer” 

demonstrated regeneration of the wound with scarless myocardium, whereas the 

control mice demonstrated acellular scars [79]. Using a BM sex-mismatched 

transplant model, the authors showed that MRL hearts had 3-fold greater BM-

derived cells in the myocardium than uninjured animals or injured WT mice [79]. 

More recently, the group showed that myocardial regeneration in this model 

could be recapitulated in WT (C57BL/6) mice after BM engraftment with 

hematopoietic cells derived from MRL/MpJ fetal liver [80]. This led us to 

hypothesize that BM-derived cells from the MRL strain may exhibit an enhanced 

regenerative phenotype. Our findings show enhanced efficacy of BM-derived 

MRL-MSCs and demonstrate that this phenotype is due to the activity of the Wnt 

signaling modulator, sFRP2.  
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Canonical Wnt/β-catenin Signaling 

Wnt/β-catenin signaling is necessary for the commitment/differentiation of 

mesenchymal cells to osteocytes, chondrocytes and adipocytes [81-84]. 

Consistent with this, the Wnt inhibitor, Dkk1, promotes human MSC self-renewal 

[85]. sFRP family of proteins bind directly to Wnts to prevent receptor binding and 

activation of Wnt signaling [86]. Our study shows that sFRP2 directly modulates 

MSC proliferation and engraftment and that increased sFRP2 expression in 

MSCs is associated with enhanced therapeutic efficacy of MSC therapy in wound 

granulation tissue formation and in repair of infarcted myocardium.  

 

Isolation and Characterization of Two Populations of MSCs 

Murine MSCs were isolated from both MRL/MpJ (MRL, n = 2 independent 

lines) and Bl/6 (WT) strain (an additional Bl/6 MSC isolate was purchased from 

Tulane Center for Gene Therapy). The MSCs were characterized by 

immunofluorescent staining and confirmed to be CD45−, CD11b− (data not 

shown). These MSCs were positive for the cell surface antigens SCA1+ and 

CD44+ as analyzed by flow cytometry (Figure 3A). To confirm MSC phenotype [1, 

10], each line was shown to be capable of differentiation along 3 principal 

lineages: osteoblast, adipocyte, and chondrocyte (Figure 3B and 3C). Studies 

were performed with at least 2 different MSC lines of each phenotype and the 

data combined.  
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Figure 3. Isolation and Characterization of Two Populations of MSCs 

(a) Isolated MSCs were shown to express MSC markers, including CD44 and 
Sca1 (dark line), by FACS. Cells stained with isotype antibodies are shown in 
dotted gray line.  
(b) MSC multipotency was confirmed by positive differentiation into adipocytes, 
osteocytes and chondrocytes. MSCs maintained in control media where 
differentiation was not induced also are shown.  
(c) Graphical representation of quantified sulfated proteoglycans in differentiated 
cells. Fold change over non-differentiated MSCs, normalized to DNA content.  
(d) Photomicrograph of β-gluc histochemical analysis of PBS, WT- and MRL-
MSC-loaded sponge cryosection showing abundant engraftment of MSCs within 
granulation tissue (β-gluc positive, red) and adjacent β-gluc negative host tissue. 
SP, sponge matrix. 
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MRL-MSCs Engrafted Extensively and Induced Vigorous, Well-Vascularized 
Granulation Tissue 

To compare the effect of the different MSCs in promoting both the quantity 

and quality of granulation tissue deposition, we used the polyvinyl alcohol (PVA) 

sponge model of repair stimulation. This model is widely used to study 

granulation tissue deposition resembling healing by secondary intention [87, 88]. 

MSC engraftment (persistence in tissue), vascularity, and organization of the 

resultant granulation tissue were compared among sponges implanted into the 

same animal and across multiple animals. When implanted into mice genetically 

deficient for β-glucuronidase (β-gluc), both WT- and MRL-loaded sponges gave 

rise to abundant granulation tissue compared with sponges loaded with vehicle 

(PBS) (Figure 4A–C). This enabled us to distinguish β-gluc-positive MSC-derived 

tissue (i.e., assess engraftment) from β-gluc-negative host tissue. Sponges 

injected with MRL-MSCs had significantly greater amount of granulation tissue 

over a given cross-sectional area than those loaded with WT-MSCs (Figure 4A-

C). Granulation tissues observed in sponges treated with MRL-MSCs (Figure 4C 

and 4F) and WT-MSCs (Figure 4B and 4E) appeared highly organized with 

abundant collagen deposition. By contrast, sponges treated with PBS (Figure 4D) 

demonstrated loose, disorganized tissue architecture with markedly reduced 

collagen deposition. The majority of the granulation tissue in MSC-loaded 

sponges (Figure 3D) showed substantial engraftment with implanted MSCs as 

evidenced by the extensive, red (β-gluc-positive) histochemical staining whereas 

the PBS-loaded sponges (negative control) contained only β-gluc-negative host 

cells.  
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Figure 4. MRL-MSCs Generated More Advanced Wound Granulation Tissue 

(A) Graph of granulation tissue area in representative histological sponge 
sections as a percentage of total sponge area. One-way ANOVA with Bonferroni 
correction was used to compare data between WT vs. MRL or PBS, n = 4 in each 
group.  
Representative low power Trichrome images show decreased granulation tissue 
in WT- (B) vs. MRL- (C) MSC-loaded sponges.  
(D–F) High power Trichrome images show that MSC-loaded sponges (E and F) 
were more organized, highly cellular and with abundant type I collagen (blue) as 
compared with PBS control (D).  
(G–I) Representative immunostained sections using anti-PECAM-1 to designate 
vascular density from PBS-loaded (G), WT (H), or MRL (I) MSC-derived sponge 
granulation tissue. SP, sponge matrix, arrows point at positive stain, *, P < 0.05. 
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Biochemical measurement for β-gluc enzyme activity (a quantitative 

measure of MSC engraftment) showed greater than 3-fold increased engraftment 

of MRL-MSCs compared with WT-MSCs (Figure 5A). Furthermore, the 

granulation tissue derived from MRL-MSCs was comparatively more 

vascularized than that from WT-MSCs as determined by greater density of 

PECAM-1 immunopositive vascular structures (Figure 4H, 4I and 5B). The 

observed increased engraftment with MRL-MSCs is consistent (in part) with 

greater than 2-fold increased in vitro proliferation of MRL-MSCs over WT-MSCs 

(Figure 5C). However, the number of cells (affected by proliferation rate) does 

not correlate directly with engraftment, suggesting that these are distinct 

mechanisms [89].  
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Figure 5. MRL-MSCs Showed Higher Engraftment and Vascularity 

(A) β-gluc-specific activity (MSC marker) normalized to total cellular DNA content 
of paired WT- and MRL-MSC sponge granulation tissue samples were calculated 
and the average of the fold change for n = 7 animals were graphed to represent 
engrafted MSCs.  
(B) Vascular density graphed as percentage of immunopositive PECAM-1 
area/total tissue area in histological sections from granulation tissue. Data 
represents averages of multiple 40X fields from unpaired samples (n = 6).  
(C) In vitro proliferation of WT- and MRL-MSCs using BrdU ELISA; n = 5 
experiments performed in triplicate.  
(D) Basal normalized luciferase activity; n = 2 experiments performed in 
duplicate. Unpaired Student's t test was used. 

 

  



28 
 

MRL-MSCs Displayed a Down-Regulation of Wnt Target Genes and 
Increased Expression of sFRPs 

To determine the molecular basis for the enhanced repair properties of 

MRL-MSCs, we compared their gene expression to WT-MSCs. Several inhibitors 

of the β-catenin/Wnt (canonical) signaling pathway belonging to the sFRP family 

were significantly enriched in MRL-MSCs (Figure 6A).  

An evaluation of target genes that are known to be transcriptionally up-

regulated by the canonical Wnt pathway (and hence should be decreased in 

MRL-MSCs) uncovered 3 genes, Cyclin D1 [90], Sox2 [91] and Axin2 [92], that 

had >4-fold reduced expression in MRL-MSCs (Figure 6A and Table 3).  
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Figure 6. MRL-MSCs Demonstrated a Down-regulation of Canonical Wnt 
Pathway by Up-regulation of sFRPs 

(A

(

) Expression of known Wnt pathway genes (rows) in MSCs isolated from WT 
and MRL mice in duplicate experiments, from low (green) to high (red). Gene 
tree (to the left of the rows) corresponds to the degree of similarity of the pattern 
of expression for genes.  
B) In vitro proliferation of murine and human MSCs relative to basal levels (e.g., 

media alone) in the presence of LiCl (10 mM) or various recombinant Wnt 
pathway factors: 50 ng/ml Wnt3a, 100 ng/ml sFRP2, 100 ng/ml sFRP3, 2 μg/ml 
sFRP4, or 100 ng/ml Dkk1. The data shown are the fold change relative to media 
alone within each given cell type. Data are from at least 3 experiments performed 
in triplicate. Unpaired Student's t test with Bonferroni's correction was used. *, P

 

 
< 0.05. 
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Interestingly, the microarray data showed increased Wnt4 transcripts in 

MRL-MSCs. Wnt4 is involved in regulating mesenchymal to epithelial 

transformation in the kidney and whose activity is thought to be regulated by 

sFRP2; in other reports Wnt4 induces sFRP2 expression [93]. Quantitative real-

time RT-PCR confirmed the gene expression differences for a subset of these 

genes (Table 3). sFRP2 and sFRP4 transcripts were up-regulated in MRL-MSCs 

by >250- and 30-fold, respectively. The aforementioned canonical target genes 

were significantly down-regulated in MRL-MSCs between 5- and 12-fold, 

consistent with the genomic profile (Table 3).  

 

 

Table 3. Wnt Pathway Inhibitors are Up-regulated and Wnt Downstream 
Targets are Down-regulated in MRL-MSCs 

Gene Name Fold Change p n 
Wnt Pathway Inhibitors    
Secreted frizzled-related sequence protein 2 
(Sfrp2) 

251.8 ± 346 ≤ 0.05 9 

Secreted frizzled-related sequence protein 4 
(Sfrp4) 

31.61 ± 34.97 ≤ 0.05 6 

Dickkopf homolog 1 (Dkk1) None Detected  N/A 
Wnt Pathway Activators    
Axin 2 0.1998 ± 0.1364 < 0.01 7 
High mobility group box protein (Sox2) 0.0785 ± 0.0410 < 0.01 6 
Cyclin D1 0.2119 ± 0.1316 < 0.01 8 
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This gene expression signature would predict a reduction in canonical Wnt 

signaling in MRL-MSCs. An optimized version of the TOPFlash reporter was 

used to compare constitutive β-catenin-mediated transcriptional activation in 

MRL- and WT-MSCs [94] (Figure 5D). Consistent with our prediction, MRL-MSCs 

exhibited a significant reduction in TOPFlash/FOPFlash ratio under basal 

conditions. We next assessed if murine and human MSC proliferation was 

modulated by Wnt signaling (Figure 6B). Wnt pathway activation through either 

addition of LiCl or recombinant murine Wnt3a decreased proliferation for both 

murine (WT and MRL) and human MSCs; the small decrease of human MSC 

proliferation with Wnt3a treatment was not statistically significant, possibly 

reflecting species-specific differences in Wnt/Frizzled receptors. Dkk1, 

surprisingly, did not affect murine MSCs but showed a statistically significant 

increase with human MSC proliferation in vitro, consistent with previous studies 

[85, 95]. Although sFRP4 increased WT-MSC proliferation, only sFRP2 mediated 

a consistent and notable increase in proliferation in both murine and human MSC 

lines. To underscore the significance of the Wnt pathway in engraftment of MRL-

MSCs in vivo, we injected LiCl every other day directly into WT- or MRL-MSC 

preloaded sponges. As anticipated, LiCl-mediated activation of canonical Wnt 

signaling significantly reduced MRL-MSC engraftment to levels comparable with 

WT-MSCs (Figure 7A and 7B).  
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Figure 7. Effects of Wnt Signaling Activation on MSCs - in vivo LiCl 
Treatment 

(a) Representative low power Trichrome images show decreased granulation 
tissue in MRL-MSC-loaded sponges treated with Lithium Chloride (LiCl) vs. PBS 
control. Note that LiCl (Wnt activation) promoted in vivo differentiation of MSCs 
into cartilage.  
(b) Graphical representation of β-glucuronidase activity as a marker of MSC 
engraftment in the presence or absence of LiCl treatment. Two-tailed, unpaired 
student’s t test was performed to compare the effects of LiCl on the levels of 
engraftment. Asterisk designates statistical significance of P < 0.05. NS, no 
statistical difference. 

 

 

MSCs Differentially Expressed Wnt Constituents 

To investigate the contribution of secreted Wnt pathway members on the 

regulation of β-catenin in MSCs in vivo, we generated stably-transduced WT-

MSC lines overexpressing Wnt3a, Dkk1 or sFRP2. Co-expression of GFP with 

each cDNA enabled FACS enrichment of vector-transduced MSCs (>90%; data 

not shown; Table 4).  
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Table 4. Transduction Characterizations 

Transduct No. of 
Transductions 

Average Transduction 
Efficiency, % 

Standard Deviation, 
% 

GFP 4 50.64 ± 24.03 
Dkk1 2 85.5 ±14.14 
sFRP2 4 48.12 ± 9.61 
Wnt3a 6 26.15 ± 8.95 
 

 

Control transducts were generated that expressed GFP alone (GFP-

MSC). Fold increase of sFRP2 protein expression in transduced WT cells 

(sFRP2-MSCs) assessed by immunoblot was comparable to the fold increase 

observed between GFP-MSCs and MRL-MSCs (Figure 8A). Wnt3a expression 

was verified by immunofluorescent staining of sorted (GFP-positive) cells as it 

was difficult to obtain sufficient numbers of cells for an immunoblot (Figure 9A); 

overexpression of Wnt3a in MSCs (Wnt3a-MSCs) abrogated their proliferation in 

culture (Figure 8B).  
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Figure 8. sFRP2 Promotes MSC Proliferation, Engraftment and Vascular 
Density of Stem Cell Generated Granulation Tissue 

(A) sFRP2-MSCs were sorted for GFP expression and analyzed by immunoblot 
for specific protein expression. WT-MSCs transduced with vector containing GFP 
alone (GFP-MSC) were also sorted in parallel. MRL-MSCs transduced with 
lentiviral control construct (Control shRNA) and MRL-MSCs with shRNA 
knockdown of sFRP2 (MRL-kd-sFRP2, clone 75B) were selected by puromycin 
resistance and analyzed by immunoblot for specific protein expression.  
(B) Cell proliferation assay of GFP-MSCs, MSCs expressing specific Wnt 
pathway components, Control shRNA, and MRL-kd-sFRP2 (clone 75B) n ≥ 3 
independent experiments.  
(C) β-gluc specific activity normalized to total cellular DNA content of paired 
GFP-MSCs and sFRP2-MSC loaded granulation tissue and MRL-kd-sFRP2 
paired to Control shRNA loaded sponges. n = 5 sponges of each condition.  
(D) Vascular density of granulation tissue derived from sFRP2-MSCs compared 
with control MSCs and MRL-kd-sFRP2 MSCs compared with Control shRNA 
graphed as percentage of immunopositive PECAM-1 area/total tissue area in 40× 
fields. One-way ANOVA with Bonferroni correction was used to compare the 
proliferation data. Paired Student's t test was used for comparisons of 
engraftment and vascularity data. *, P ≤ 0.05. 
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MSC transducts expressing Dkk1 (Dkk1-MSCs), sFRP2 or GFP retained 

the capacity for tril-ineage differentiation (Figure 9B and 9C) and express CD44 

and SCA1 by FACS (data not shown). Regulation of canonical Wnt signaling 

activity of conditioned media from each MSC transduct line was assessed in HEK 

293 cells stably transfected with TOPFlash Wnt reporter system. Recombinant 

protein was used as a positive control. As expected, conditioned media from 

Wnt3a-MSC resulted in increased luciferase activity over conditioned media from 

vector-transfected MSCs (GFP-MSC), whereas conditioned media from Dkk1- or 

sFRP2-MSCs resulted in comparatively reduced β-catenin-mediated 

transcriptional activity (Figure 9D).  

Wnt signaling in sFRP2-MSCs was decreased compared with GFP-MSCs 

as assessed by luciferase activity after transfection with TOP/FOPFlash reporter 

constructs (Figure 9E).  
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Figure 9. Characterization of MSCs Transduced With Wnt Constituents 

(a) GFP-sorted WT (Bl/6)-derived MSCs transduced with Wnt3a IRES GFP 
(Wnt3a-MSCs) and vector control (GFP-MSCs), were assessed by 
immunofluorescence to confirm GFP/Wnt3a co-expression.  
(b) Multipotency of MSC transducts was confirmed by positive differentiation into 
adipocytes, osteocytes and chondrocytes.  
(c) Graphical representation of sulfated glycosaminoglycans as measurement of 
chondrogenic differentiation. Fold change over non-differentiated transduced MSCs, 
normalized to DNA content.  
(d) Luciferase activity in HEK cells stably transfected with TOPFlash reporter after 
treatment with conditioned media from designated MSC transducts or GFP-MSC, as 
baseline. 50ng/ml Wnt3a, 100 ng/ml Dkk1, or sFRP2 recombinant proteins were 
used as positive controls. The results were the average of the fold change from 3 
independent experiments performed in duplicate.  
(e) Basal normalized luciferase activity as a measurement of canonical Wnt signaling 
in transduced MSCs. The effect of sFRP2 was assessed by transfecting sFRP2-
MSCs and GFP-MSCs with TOP/FOPFlash reporter constructs. 
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sFRP2 Enhanced MSC-Mediated Wound Repair 

As discussed, Wnt3a expression abolished MSC proliferation and these 

cells died after 4–6 weeks in culture. By contrast, overexpression of sFRP2 

resulted in >3-fold increase in proliferation as compared with GFP-MSC (Figure 

8B). Overexpression of Dkk1 did not alter the proliferation rate over GFP-MSCs 

(Figure 10A and 10B). These effects are consistent with our observation using 

recombinant proteins (Figure 6B).  

 

 

 

Figure 10. Wnt Inhibition of Murine MSCs through Dkk1 Does Not Promote 
MSC Proliferation and Engraftment 

(a) WT-MSCs were retrovirally transduced to express Dkk1 linked to an IRES 
GFP (Dkk1-MSCs). Transduced cells were sorted for GFP expression and 
analyzed by immunoblot for specific protein expression. Dkk-1 levels in 
conditioned media from transduced cells were 1.29±0.11µg/ml and undetectable 
in GFP-MSCs. WT-MSCs transduced with vector containing GFP alone (GFP-
MSC) were also sorted in parallel.  
(b) Cell proliferation assay.  
(c) β-gluc specific activity normalized to total cellular DNA content of paired GFP-
MSC or Dkk1-MSC-loaded granulation tissue. One way ANOVA with Bonferroni 
correction was used to compare data between GFP-MSC and Dkk1-MSC. 
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Moreover, further testing of Dkk1-MSC transducts failed to show changes 

in murine MSC engraftment or MSC-derived sponge granulation tissue (Figure 

10C) over GFP-MSCs, suggesting that murine MSCs, unlike human MSCs, failed 

to respond to Dkk1-mediated Wnt inhibition.  

To assess the role of the Wnt inhibitor sFRP2 in promoting both the 

quantity and quality of MSC-generated granulation tissue, we loaded PVA 

sponges with sFRP2- or GFP-MSCs before implantation into β-gluc-deficient 

mice. β-gluc enzyme activity in granulation tissue was significantly increased (>3-

fold) in sFRP2-MSC-loaded sponges compared with GFP-MSC-loaded controls 

(Figure 8C). Furthermore, examination of vascular density using PECAM-1 

immunostaining showed that granulation tissue generated from sFRP2-MSCs 

was more densely vascularized than GFP-MSCs (Figure 8D). To examine if 

sFRP2-MSCs directly contributed to the microvasculature of granulation tissue, 

we performed co-localization by confocal microscopy using anti-GFP (to identify 

MSCs) and anti-PECAM-1. MSC-derived vascular structures were evident within 

the MSC-derived granulation tissue (Figure 11A) suggesting that MSCs 

underwent trans-differentiaion into the endothelial lineage to contribute to repair 

tissue vasculature.  
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Figure 11. MSC-Mediated Cardiac Therapy 

(a) Representative Z plane shows high degree of co-localization of microvascular 
endothelial cells (anti-PECAM, green) and the sFRP2-MSC marker, GFP (red). 
Fluorescent images were acquired by confocal fluorescent microscopy with 60x 
lens. DAPI staining of the same slide shows the location of the nuclei.  
(b) Representative Masson trichrome-stained sections of hearts from mice 30 
days after receiving PBS, GFP-MSC, MRL-MSC or sFRP2-MSC after coronary 
vessel ligation. MRL and sFRP2-MSC treated hearts had smaller infarcts with 
less collagen deposition (blue staining in trichrome) and more muscle (increased 
red staining).  
(c) Engraftment of sFRP2- and GFP-MSCs was assessed by immunostaining 
with anti-GFP (brown). sFRP2-MSC showed increased engraftment in both 
models, however, there was significantly higher engraftment within sponge 
granulation tissues than in healed myocardial scar.  
(d) Representative immunostained sections of myocardial scar using anti-
PECAM-1 to designate vascular density among experimental cohorts. 
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Proliferation and Enhanced Engraftment of MRL-MSCs Are Mediated by 
sFRP2. 
 

We sought to determine is sFRP2 inhibition could abrogate the MRL-MSC 

phenotype. Knockdown of sFRP2 mRNA transcripts with 3 independent shRNAs 

were assessed by real-time RT-PCR (Table 5). MRL-kd-MSCs (derived using 

shRNA clone 75B) were expanded and further tested by immunoblot and showed 

a ≈70% reduction in sFRP2 protein as compared with MRL -MSCs stably 

transduced with control shRNA (Figure 8A). Specific sFRP2 knockdown also 

decreased proliferation by 2-fold over control shRNA-MSCs (Figure 8B). 

Furthermore, MRL-kd-MSCs showed >5-fold decrease in MSC engraftment in 

experimental granulation tissue (Figure 8C). Importantly, the experimental 

granulation tissue generated by MRL-kd-sFRP2 were also 3-fold less densely 

vascularized, as assessed by PECAM-1 staining, when compared with control 

shRNA MRL-MSCs-loaded sponges (Figure 8D).  

 

Table 5. MRL-kd-MSCs Transduction Characterizations 

Clone Fold Change p 
Control A 1 N/A 
Control B 1 N/A 
75B 0.08 ± 0.03 = 0.048 
76B 0.57 ± 0.20 = 0.117 
77C 0.035 ± 0.02 = 0.059 
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sFRP2 Facilitated MSC Engraftment and Cardiac Remodeling/Repair 

We then assessed whether sFRP2 overexpression could improve MSC-

mediated myocardial regeneration by injecting sFRP2-MSCs, GFP-MSCs, MRL-

MSCs, or vehicle PBS into the peri-infarct area of the left ventricle after coronary 

artery ligation. Ventricular remodeling and cardiac function were analyzed by 

echocardiography at 7 and 30 days post MI (Table 6). The top four rows in Table 

6 represent the mean and standard error mean (± SEM) values for each 

treatment at day 7 and day 30. The mean ± SEM percentage difference (Δ%) 

values are in the bottom three rows. One-way ANOVA with Newman–Keuls 

multiple comparison test was used to compare the Δ% values for each 

echocardiographic parameter. [*, P < 0.05 PBS vs. sFRP2-MSC; †, P < 0.05 

GFP-MSC vs. sFRP2-MSC; ‡, P < 0.05 GFP-MSC vs. MRL-MSC; §, P < 0.05 

PBS vs. MRL-MSC. PBS n = 7, GFP-MSC n = 6, MRL-MSC n = 5, sFRP2-MSC 

n = 7.] 
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Table 6. sFRP2 Aids in Remodeling and Improves Function of Injured 

Hearts 

 

 

Left ventricle (LV) internal dimension diastolic (LVIDD) and LV internal 

dimension systolic (LVIDS) reflect remodeling of the infarcted ventricle. At 30 

days post MI, both dimensional parameters were smaller in the MRL-MSC and 

sFRP2-MSC recipients, suggesting a role for sFRP2 in chamber remodeling. The 

percentage difference in LVIDS between day 7 and day 30 was significantly 

reduced in animals receiving sFRP2-MSCs (Figure 12A). When compared with 

the GFP-MSC, recipients of both the MRL-MSC and sFRP2-MSC showed 

improved ventricular remodeling. To determine whether sFRP2 improved cardiac 

function, the percentage differences in ejection fraction (EF) and fractional 

shortening (FS) (Figure 12B) between 7 and 30 days after treatment were 

analyzed (Table 6). The MRL recipients showed an increase in both ΔEF (2.17%) 

and ΔFS (3.18%) when compared with WT-MSC (−7.28% and −10.28%, 
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respectively) and PBS-injected (−9.89% and −13.17%, respectively) controls. In 

contrast, sFRP2-MSC cohorts exhibited significant functional improvement 30 

days post infarct (ΔEF 6.24% and ΔFS 13.82%). These results together indicate 

sFRP2 overexpression has a significant positive effect on cardiac function.  

 

 

Figure 12. sFRP2 Aids in Remodeling and Improves Function of Injured 
Hearts 

Fractional shortening (A) and LVIDS (B) determined by echocardiography are 
plotted as percentage difference (Δ%) values (mean +/- SEM) between 7 and 30 
days after infarct to reflect therapy-mediated impact on remodeling or function. 
Increased Δ% in FS measured in sFRP2-MSC-treated hearts compared with 
GFP-MSC-treated hearts demonstrates enhanced cardiac function.  
(C) Infarct size was significantly attenuated in hearts injected with sFRP2-MSCs 
compared with control GFP-MSCs. One-way ANOVA and Newman–Keuls 
multiple comparison test: †P < 0.05 vs. PBS and GFP-MSC; ‡P < 0.05 vs. GFP-
MSC.  
(D) Engraftment of transplanted MSCs within myocardial sections 30 days after 
MI, immunohistochemistry for GFP.  
(E) PECAM-1-positive structures reflecting microvessel density within scar tissue 
were quantified. *, P < 0.05 using One-way ANOVA with Newman–Keuls post 
test. (Representative photomicrographs of infarct histology are shown in Figure 
11) 
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Mean percentage of LV area infarcted in PBS-treated control animals was 

26 ± 10% (Figure 12C and 11B). Injection of GFP-MSCs had a modest protective 

effect, limiting the extent of the infarction to 14% of LV (p = NS) (Figure 12C). In 

contrast, injection of MRL-MSCs significantly limited infarct size to 6.0% of the LV 

(P < 0.05 vs. PBS). Notably, injection of sFRP2-MSCs limited infarct size even 

more dramatically to 3.4% (P < 0.05 vs. PBS and the GFP-MSC group). 

Compared with the PBS group, we observed a relative reduction in infarct size of 

12% in the GFP-MSC group and 23% in the sFRP2-MSC group.  

Myocardial engraftment of MSCs was assessed by counting GFP-positive 

cells. Whereas significant engraftment was evident grossly within granulation 

tissue of sponge implants (Figure 4G and 11C), the numbers of MSCs within the 

myocardium 30 days after injection were comparatively fewer (Figure 11C). 

However, the sFRP2-MSCs resulted in a significant increase in the number of 

engrafted MSCs compared with controls (Figure 12D). We examined the 

myocardial scar region for co-localization of GFP-MSCs with endothelial (anti-

PECAM-1) or cardiomyocyte (anti-α-actinin) specific marker and did not observe 

any (data not shown). Vascular density of the scarred region was assessed by 

immunohistochemistry for PECAM-1 and showed a statistically significant 

increase with sFRP2-MSCs compared with GFP-MSCs (Figure 12E and 11D). 
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Discussion 

Although MSCs are a promising source of cell therapy for heart and 

wound regeneration, little is known about the molecular pathways that modulate 

MSC-mediated regeneration and repair [89, 96]. Furthermore, the extent to which 

repair and regeneration mediated by MSCs relies on their engraftment and direct 

contribution versus serving as effectors to alter the stem cell microenvironment is 

not understood [96]. The distinct soft tissue repair models used in this study 

provided different in vivo contexts to study MSC-driven therapy. The sponge soft 

tissue repair model also permitted clear demarcation and evaluation of 

angiogenesis, organization, and contribution of MSC-derived granulation tissue. 

The isolation and characterization of 2 strain specific populations of MSCs with 

differing in vivo regenerative properties led us to identify sFRP2 as a key 

molecule that mediates self-propagation of both human and mouse MSCs in vitro 

and whose overexpression enhanced MSC-mediated angiogenesis and 

therapeutic potency.  

A role for Wnt signaling in modulating MSC biology was suggested by 

molecular profiling of the MSC populations isolated from the regenerative 

MRL/MpJ mice, as compared with the MSCs isolated from WT (Bl/6) strain. 

Together, our data suggest that Wnt signaling inhibition correlated with the 

superior properties exhibited by MRL-MSCs; these included enhanced 

proliferation and the ability to mediate more abundant, better organized and 

vascularized granulation tissue in implanted PVA sponges. Consistent with our 

findings, several lines of evidence from published reports [81-83] support a role 
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for Wnt inhibition in regulating mesenchymal stem cell self-renewal and 

expansion. Importantly, Wnt/β-catenin activation has been shown to be 

necessary for the commitment/differentiation of mesenchymal cells to osteocytes, 

chondrocytes, myoblasts, and adipocytes [81-83]. Additionally, Dkk1, an inhibitor 

of the canonical Wnt pathway, increased human MSC proliferation and promoted 

entry into the cell cycle in vitro [85]. Consistent with these studies, our findings 

support a role for canonical Wnt activation in MSC lineage commitment and, 

conversely, Wnt inhibition in self-renewal.  

Recently, Liu et al. [97] reported that accelerated aging and associated 

depletion and dysfunction in stem cells in various tissues and organs is 

associated with increased Wnt activity. Expression of klotho, a secreted protein 

that binds and sequesters Wnt and leads to suppression of Wnt activity, and its 

absence in mice leads to early onset age-related changes [97]. Another study 

found that activation of Wnt signaling promoted tissue specific stem cell aging 

and increased tissue fibrosis [98]. Both studies mentioned above broadly support 

our hypothesis and link Wnt inhibition to stem cell maintenance and function.  

We identified an effect of sFRP2, an inhibitor of Wnt signaling, on MSC 

self-propagation by comparing MSCs from mouse strains with markedly different 

healing properties. Whereas canonical Wnt activation, either through addition of 

exogenous activators or by induced overexpression of Wnt3a, dramatically 

inhibited baseline MSC proliferation, addition of sFRP2 resulted in significantly 

increased proliferation of both mouse and human MSCs. This increase was 

much greater than that seen with other sFRPs tested and recombinant Dkk1, 



47 
 

which caused a statistically significant increase in human MSC proliferation. 

Dkk1 inhibits Wnt signaling by binding to LRP5 and LRP6 and blocking their 

interaction with Wnt and Frizzled [99]. Kremen 1 and 2 are transmembrane Dkk1 

receptors that synergize with Dkk1 to inhibit Wnt signaling [99]. Kremen 

transcripts were undetected in murine MSCs through microarray analysis (data 

not shown). This observation may explain the lack of response of murine, but not 

human, MSCs to Dkk1. Interestingly, despite the very high level of endogenous 

sFRP2 in MRL-MSCs, addition of increasing amounts of recombinant sFRP2 

continued to increase proliferation, suggesting significant residual Wnt activity 

and/or non-canonical roles of sFRP2. Moreover, specific knockdown of sFRP2 in 

MRL-MSCs resulted in abrogation of the comparatively enhanced wound tissue 

reconstitution phenotype observed in MRL-MSCs.  

MSCs genetically modified to overexpress sFRP2 or Dkk1 were used to 

investigate the effect of these factors in MSC-mediated tissue repair. Importantly, 

increased constitutive expression of either Wnt pathway molecule did not abolish 

expression of mouse MSC surface markers, such as CD44 or SCA1, or the 

capacity for multilineage differentiation, albeit our experiments did not address 

whether these factors affected differentiation kinetics. sFRP2-MSCs replicated 

the MRL-MSC phenotype of enhanced engraftment in situ, increased 

angiogenesis, and in the setting of acute myocardial injury, resulted in 

significantly reduced infarct size. Consistent with the histological data, there was 

enhanced residual myocardial function and attenuation of adverse cardiac 

remodeling 30 days post MI. Although the numbers of sFRP2-MSCs remaining 
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30 days post infarction (engraftment) were greater than GFP-MSCs, the overall 

number of implanted MSCs remaining in the myocardium was considerably lower 

than those comprising the granulation tissue formed in the sponge model (Figure 

11). This finding would suggest that type of injury and the stem cell 

microenvironment may influence the underlying mechanisms of repair, i.e., direct 

contribution vs. paracrine effects. The data also suggest that the injury 

environment may dramatically affect implanted stem cell survival and persistence 

in vivo. The molecular signals that impact the degree of MSC engraftment are not 

known.  

sFRP2 was first isolated from a BM-derived stromal cell line and was 

proposed to serve as an inhibitor of Wnt signaling by binding and sequestering 

the Drosophila Wnt homologue, Wingless [100]. Subsequent studies have shown 

inhibition of Wnt signaling by direct binding to and sequestering of Wnt3a [101]. 

sFRP2 has been shown to protect against UV- or TNF-induced apoptosis in a 

canine cancer cell line [86]. Recently sFRP2 was found to be a key factor 

secreted by genetically engineered MSCs overexpressing Akt [71]. This last 

study showed that much of the MSC-mediated improvement in myocardial 

function resulting from Akt-MSC therapy could be attributed to a downstream 

increase in sFRP2. Moreover, sFRP2 was shown to directly prevent 

cardiomyocyte death, and thereby, serve as a stem cell-derived paracrine factor 

to influence cardiomyocyte survival and repair [71]. The enhanced myocardial 

repair observed in our study can be attributed, at least in part, to this mechanism. 

Our study also demonstrated that sFRP2 caused a robust increase in MSC 
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therapy-induced angiogenesis. sFRP1 and 4 overexpression in endothelium 

have recently been shown to increase neovascularization in hind limb ischemia 

by regulation of Wnt and Rac1 signaling [102]. We do not know, however, 

whether sFRP2 works in a similar manner via direct paracrine effects on 

endothelial cells, indirectly via up-regulation of other angiogenic factors, or via 

MSC propagation. Notably, a variety of key pro-angiogenic genes are up-

regulated in sFRP2-MSCs compared with GFP-MSCs as determined by gene 

expression profiling (Table 7). Finally, our findings also demonstrate that, in 

addition to potential paracrine function on target tissues, sFRP2 serves an 

autocrine and/or cell-intrinsic role in MSCs to mediate self-propagation and 

engraftment. MSCs appear to be multipotential effector cells whose own 

preservation and growth in vivo, such as those mediated by sFRP2, may lead to 

enhanced regenerative efficacy.  
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Table 7. sFRP2-MSCs Express Several Angiogenic Factors 
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Conclusion 

The mechanism by which sFRP2 modulates MSC proliferation and tissue 

engraftment will be assessed in the following chapter. sFRP2, but not other 

sFRPs tested, uniquely enhanced robust proliferation. Understanding the 

molecular regulation of MSCs by sFRP2 would have important implications for 

improving cell-based therapies using MSCs for wound and myocardial repair.  

  



52 
 

CHAPTER III 

 

SFRP2 SUPPRESSION OF BMP AND WNT SIGNALING MEDIATES MSC 
SELF-RENEWAL PROMOTING ENGRAFTMENT AND MYOCARDIAL REPAIR 
 

Introduction 

Transplantation of MSCs is a promising therapy for ischemic injury; 

however, inadequate survival of implanted cells in host tissue is a substantial 

impediment in the progress of cellular therapy. sFRP2 has recently been 

highlighted as a key mediator of MSC-driven myocardial and wound repair. 

Notably, sFRP2 mediates significant enhancement of MSC engraftment in vivo.  

We hypothesized that sFRP2 improves MSC engraftment by modulating self-

renewal through increasing stem cell survival and by inhibiting differentiation.  In 

previous studies, delineated in the previous chapter, we demonstrated that 

sFRP2-expressing MSCs exhibited an increased proliferation rate.  In the current 

chapter, we show that sFRP2 also decreased MSC apoptosis and inhibited both 

osteogenic and chondrogenic lineage commitment. sFRP2 activity occurred 

through the inhibition of both Wnt and BMP signaling pathways. sFRP2-mediated 

inhibition of BMP signaling, as assessed by levels of phosphorylated SMADS 1, 

5 and 8 (pSMAD 1/5/8), was independent of its effects on the Wnt pathway. We 

further hypothesized that sFRP2 inhibition of MSC lineage commitment may 

reduce heterotopic osteogenic differentiation within the injured myocardium, a 

reported adverse side effect.  Indeed, we found that sFRP2-MSC-treated hearts 

and wound tissue had less ectopic calcification. This work provides important 
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new insight into the mechanisms by which sFRP2 increases MSC self-renewal 

leading to superior tissue engraftment and enhanced wound healing.  

 

Self-renewal Capacity of MSCs 

 Self-renewal is an intrinsic property of stem cells that allows them to give 

rise to non-differentiated daughter cells by proliferating, preventing apoptosis, 

and avoid lineage commitment [56, 103]. This process is important for the 

maintenance of a stem cell pool that, in the case of MSCs, can exert a more 

robust effect within the context of a wound. Although several cytokines, growth 

factors, adhesion molecules, and extracellular matrix components have been 

identified as cues that signal MSCs to differentiate, the molecular signals that 

modulate MSC self-renewal remain unknown[56]. Data from the hematopoietic 

stem cell (HSC) field have documented the involvement of Wnt, Notch and BMP 

signaling cascades in self-renewal; these pathways are implicated in the 

expansion of undifferentiated HSCs that upon transplantation into lethally 

irradiated mice successfully reconstitute the cleared bone marrow[104-106]. 

Although no data are available to demonstrate the role of these pathways in MSC 

self-renewal, the Wnt and BMP cascades are involved in MSC lineage 

commitment. Canonical Wnt signaling directs osteogenic differentiation of MSCs 

by stimulating the expression of osteocalcin[107], this pathway is also involved in 

early chondrogenesis[108]. The BMP pathway also modulates osteogenic 

differentiation of MSCs by controlling osteocalcin[109], and BMP2 induces 

chondrocyte fate determination[110]. The Wnt cascade is involved in other 
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cellular processes besides differentiation; canonical Wnt signaling inhibition, 

through the activity of Dkk-1, increases human MSC proliferation without overt 

differentiation[111]. The mechanisms by which MSCs modulate these signaling 

events during growth and/or lineage commitment remain unknown. The data 

herein, describes the ability of sFRP2 to promote MSC self-renewal by inhibition 

of both the Wnt and BMP pathways.  

 sFRP2 has recently been implicated by our group and others as a 

mediator of MSC-driven myocardial and wound repair; however, the mechanisms 

are unclear. sFRP2-mediated regeneration can be attributed, at least in part, to 

its paracrine role in mediating myocardial survival by inhibiting apoptosis[71]. 

However, there are compelling data that sFRP2 has direct effects on MSCs 

themselves. Overexpression of sFRP2 by MSCs results in increased MSC 

proliferation and long-term engraftment in vivo[75].  

  

Documented and Suspected Roles of sFRP2 

The members of the secreted frizzled-related protein (sFRPs) family 

contain a region with high homology to the cysteine-rich domain (CRD) of the 

Wnt-pathway frizzled receptors[100]. sFRPs bind Wnt glycoproteins through the 

CRD, preventing them from reaching their cognate receptors[112]. The five 

mammalian members, sFRP1-5, have been associated with several 

developmental and disease processes [113, 114]. Their documented effect thus 

far has been that of Wnt inhibition [112]. 
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 Here, we demonstrate that sFRP2 plays dual and important roles in 

increasing MSC self-renewal by inhibiting both the Wnt and BMP pathways. We 

show that sFRP2 confers apoptotic resistance to MSCs in parallel to Wnt 

pathway inhibition. sFRP2 affects the rate of MSC multilineage differentiation; 

processes directed by Wnt and BMP signaling. This article is the first to 

demonstrate that sFRP2 directly inhibits BMP signaling in MSCs. The data 

contained within describes the mechanisms by which sFRP2 enhances MSC 

self-renewal to promote MSC-mediated wound healing. 

 

sFRP2 Increases MSC Engraftment and Inhibits Canonical Wnt Signaling to 
Protect MSCs from Undergoing Apoptosis 
 

sFRP2 has been identified as a key factor responsible for the biogenesis 

of a superior MSC phenotype[71, 75]. We traced the ability of MSCs to remain 

within PVA sponges two weeks following implantation in the ventral 

subcutaneous space of β-gluc-/- mice. The activity of β-glucuronidase within the 

extracted sponges served as a surrogate marker for the MSCs. As seen in Figure 

13A, sFRP2-overexpressing MSCs have statistically significant increased 

engraftment within granulation tissue. In this figure, each mouse corresponds to 

one line, a clear trend in the increase of enzyme activity in the sFRP2-MSC-

loaded sponges is observed. Overall, sFRP2-overexpression resulted in an 

approximate 2-fold increase in engraftment. In a previous study, we showed a 

similar (2- to 3-fold) increase in engraftment in an in vivo model of myocardial 

infarction and wound repair[75]. To understand the cellular basis of the enhanced 

engraftment, we assessed if this effect was due, in part, to decreased apoptosis. 
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We determined basal levels of activated Caspase 3 by indirect 

immunofluorescence (IF) of MSCs stably overexpressing sFRP2 (sFRP2-MSCs) 

vs. those stably transduced with empty vector (GFP-MSCs). Approximately 47 + 

18 percent of GFP-MSCs were undergoing apoptosis under high-confluency in 

vitro conditions, whereas only 8.5 + 4.3 (p=0.002) percent of sFRP2-MSCs were 

positive for this effector caspase (Figure 13B).  
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Figure 13. sFRP2 Enhances Engraftment and Protects MSCs from 
Undergoing Apoptosis by Inhibiting Canonical Wnt Signaling 

(A) Levels of β-gluc enzyme activity, normalized to DNA content, are higher 
within sFRP2-MSC-loaded PVA sponges. Data show the enzymatic activity 
within the different sponges implanted in the same mouse. *, p = 0.041, Mann 
Whitney U-Test, n = 11.  
(B) Basal levels of activated caspase 3 positivity in sFRP2-MSCs are reduced as 
compared with GFP-MSCs, as determined by IF. *, p = 0.002, Mann Whitney U-
Test, n = 10.  
(C) Quantification of flow cytometry analysis for annexin V in GFP-MSCs and 
sFRP2-MSCs grown in 2% serum, serum-starved, or hypoxic conditions. n = 9; 
one-way ANOVA with Bonferroni's multiple comparison test.  
(D) Representative Western blot analysis of cytoplasmic lysates of GFP-MSCs 
treated with sFRP2 (100 ng/ml), Wnt3a (50 ng/ml), or pyrvinium (100 nm). N/T, 
no treatment, n = 3. sFRP2 inhibits canonical Wnt signaling and concomitantly 
reduces apoptosis. 
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To detect apoptosis by an independent method, we assessed Annexin V 

levels on MSCs grown under 2% serum, 0% serum, or low oxygen conditions, by 

flow cytometry. The level of apoptosis was increased to ~7% when MSCs were 

grown in no serum as compared to low serum (~2.5%).  Hypoxia (5% O2) further 

doubled the level of apoptosis. An overall two-fold decrease in Annexin V positive 

cells was observed in sFRP2-MSCs regardless of the in vitro conditions. 

Statistical significance was only achieved when the cells were exposed to 

hypoxia (Figure 13C). 

 To determine if the ability of sFRP2 to protect MSCs from undergoing 

apoptosis was, in part, due to its Wnt inhibitory activity, we grew GFP-MSCs and 

sFRP2-MSCs under hypoxic conditions. GFP-MSCs were treated with 

recombinant sFRP2, Wnt3a, or the small molecule Wnt inhibitor Pyrvinium. 

Pyrvinium causes inhibition of Axin degradation and promotes degradation of 

both β-catenin and Pygopus thereby leading to functional inhibition of the 

canonical Wnt cascade[115]. Western blot analysis of the cytoplasmic extracts of 

these cells revealed that sFRP2-MSCs had decreased Wnt activity, as observed 

by the levels of β-catenin, when compared to GFP-MSCs. As seen in Figure 13D, 

a decrease in Wnt signaling correlated with a decrease in activated Caspase 3 

levels; sFRP2-MSCs had approximately 44% lower levels of the cleaved 

Caspase 3 fragment. 
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sFRP2 Inhibits Chondrogenic and Osteogenic Differentiation of MSCs in-
vitro 
 

Control of the balance between stem cell self-renewal and subsequent 

differentiation is crucial to the therapeutic efficacy of MSCs.  To enhance their 

engraftment within wounds, MSCs must promote their survival and delay 

differentiation. We assessed the effect of sFRP2 overexpression on the in vitro 

multilineage commitment by two different methods. First, we performed 

quantitative real-time PCR (qRT-PCR) analysis of peroxisome proliferator-

activated receptor gamma (PPAR-γ), Collagen XI and Osteocalcin as specific 

markers of the adipogenic, chondrogenic and osteogenic lineages, respectively. 

The transcript levels were normalized to 18S content. Second, quantification of 

biochemical markers for adipogenic, chondrogenic and osteogenic differentiation 

was also carried out: Oil Red-O, dimethyl methylene blue (sulphated 

glycosamino glycans) and Alizarin Red, respectively. Figure 14A depicts the 

changes in the transcript levels of the different lineage markers, and the 

quantification of the stains is seen in Figure 14B. sFRP2-MSCs had no difference 

in the levels of PPAR-γ or Oil Red-O stain compared to GFP-MSCs. On the other 

hand, sFRP2 had an inhibitory effect on the chondrogenic and osteogenic 

differentiation. Decreased chondrogenesis was seen in the lower levels of  
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Figure 14. sFRP2 Decreases the Chondrogenic and Osteogenic Differentiation 
of MSCs, Not on Adipogenesis 

(A) Relative transcript levels of PPAR-γ (adipogenic marker, n = 3), collagen XI 
(chondrogenic marker, n = 4), and osteocalcin (osteogenic marker, n = 5) increase in 
relation to time in GFP-MSCs and sFRP2-MSCs under differentiating conditions. 
There is no effect of sFRP2 in the adipogenic potential of the MSCs. There is 
decreased chondrogenic and osteogenic commitment of sFRP2-MSCs compared 
with GFP-MSCs as observed by the lower levels of collagen XI and osteocalcin. ns, 
not statistically significant, *, p ≤ 0.05.  
(B) Quantification of Oil Red-O stain demonstrates no difference in the oil droplet 
formation between GFP-MSCs and sFRP2-MSCs. The amount of sulfated 
glycosaminoglycans quantified by the use of dimethyl methylene blue dye in sFRP2-
MSCs is lower compared with GFP-MSCs. There is decreased extracellular 
calcification (as quantified by the Alizarin Red stain) in sFRP2-MSCs, compared with 
GFP-MSCs. *, p ≤ 0.05, n = 4.  
(C) Relative transcript levels of Runx2, a transcription factor that controls osteocalcin 
expression, is not changed in non-differentiated MSCs. During osteogenic 
differentiation, Runx2 levels are greater in GFP-MSCs. *, p ≤ 0.05, n = 4.  
(D) Model figure depicting that canonical Wnt and BMP signaling cascades are 
involved in the regulation of Runx2 in MSCs. 
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Collagen XI and sulphated glycosamino glycans observed in sFRP2-

MSCs. The decreased osteogenic differentiation of sFRP2-MSCs was observed 

in the statistical reduction of osteocalcin transcript levels and the amount of 

calcified matrix (as determined by Alizarin Red staining) compared to GFP-

MSCs.  

We confirmed the involvement of Wnt and BMP signaling in MSC lineage 

commitment in vitro and in vivo (Figure 15A, 15B and 15C). The addition of 

recombinant Wnt3a or BMP2 was not sufficient to increase the in vitro osteogenic 

or chondrogenic differentiation of sFRP2-MSCs (Figure 15D), thus sFRP2 could 

decrease differentiation by inhibiting either pathway. 
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Figure 15. BMP and Wnt Signaling are Involved in MSC Lineage 
Commitment in vitro and in vivo; sFRP2 Inhibits this Effect 

(A) Exogenous recombinant BMP2 (100 ng/ml) and Wnt3a (50 ng/ml) increase 
the levels of collagen XI transcripts in MSCs in vitro.  
(B) Addition of BMP2 (100 ng/ml) and Wnt3a (50 ng/ml) increase the osteocalcin 
transcript levels of MSCs in vitro. n=6 cohorts per treatment group per lineage.  
(C) Representative images of Alizarin Red stained PVA sponges that were 
treated with 30 μg/kg/day of BMP2 admixed with growth factor reduced matrigel 
or matrigel alone. BMP2 treatment increased extracellular calcification as 
observed by the bright red nodules. sp=sponge (20X); n=4. Wnt activation by 
LiCl increases osteogenic differentiation of MSCs within PVA sponges. The 
levels of alkaline phosphatase activity (normalized to DNA content) in LiCl-
treated sponges is higher compared to PBS-treated controls.  
(D) The increase in collagen XI and osteocalcin transcript levels is not observed 
in the sFRP2-MSC cohort after addition of BMP2 (100 ng/ml) or Wnt3a (50 
ng/ml) to the differentiating conditions. *p≤ 0.05, Two -tailed, paired student’s T-
test; ns=not significant; n=3; N/T=no treatment. 
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To further determine the effect of sFRP2 on the decreased osteogenic 

differentiation of MSCs, we quantified the levels of Runx2 transcription factor by 

qRT-PCR. This transcription factor is essential for bone formation; its deletion 

completely oblates ossification[116]. Bone specific activation of the osteocalcin 

promoter is regulated by Runx2[117]. Wnt signaling, as well as BMP signaling, 

are involved in osteogenic lineage commitment in part, by regulating the 

expression of Runx2[107, 118]. Although there was no difference in the baseline 

levels of Runx2 transcripts in, Runx2 levels were decreased in sFRP2-MSCs 

undergoing osteogenic differentiation (Figure 14C). We came up with a working 

model seen in Figure 14D where we hypothesize that sFRP2 could be regulating 

Runx2 expression by inhibiting either the Wnt or the BMP pathways. This model 

prompted us to determine if sFRP2 plays a role in BMP signaling.    

 

sFRP2 Inhibits Phosphorylation of Nuclear SMAD 1/5/8 in a Wnt-
independent Manner  
 

Data from the chick, Xenopus and zebrafish homologues of sFRP2 

indicate that this protein could inhibit the BMP pathway [119]. BMPs mediate 

their signals through phosphorylation of specific receptor-associated Smads, 

which then complex with other Smads, translocate to the nucleus and affect gene 

transcription. We explored whether, under basal conditions, sFRP2 

overexpression altered the transcript levels of BMP2, known to play a role in both 

osteogenic and chondrogenic commitment [109, 110]. Baseline relative transcript 

levels of BMP2 were similar in both groups (Figure 16A). We explored if BMP 

downstream targets were differentially regulated in sFRP2-MSCs compared to 
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GFP-MSCs and found a significant decrease in the transcript levels of both ID-2 

and ID-3 transcript levels (Figure 16B). To further explore if sFRP2 altered basal 

BMP signaling we utilized a BMP-responsive luciferase reporter construct driven 

by the ID-1 gene [120]. GFP-MSCs and sFRP2-MSCs were co-transfected with 

the ID-1 reporter construct as well as a β-gal expression vector employed to 

ensure equal transfection efficiency. The addition of recombinant sFRP2 to GFP-

MSCs led to a decrease in luciferase production. Moreover, sFRP2-MSCs had 

significantly reduced levels of luciferase activity (Figure 16C), suggesting a role 

for sFRP2 in BMP signaling inhibition, an effect that has not been previously 

documented for this mammalian protein. Recombinant BMP2 treatment 

increases the luciferase signal in both cell types (data not shown). To assess 

BMP signaling by an independent method, we quantified the number of nuclei 

positive for pSMAD1/5/8 by IF. sFRP2-MSCs had a statistically significant, 

seven-fold decrease in the percentage pSMAD positive nuclei under basal 

conditions (Figure 16D). Figure 16E shows representative images of a series of 

IF studies where GFP-MSCs were serum starved prior to treatment with 

recombinant BMP2 for one hour and subsequent treatment for 30 minutes with 

either recombinant sFRP2, sFRP3, Pyrvinium, or the BMP inhibitor 

Dorsomorphin. Dorsomorphin has been shown to selectively inhibit BMP type 1 

receptors, and subsequent pSMAD1/5/8 signaling, presumably by blocking the 

ALK2, ALK3, and ALK6 receptor kinase function[121].  Only Dorsomorphin and 

sFRP2 statistically decreased the percentage of pSMAD positive nuclei. Wnt 

inhibition through the activity of either Pyrvinium or sFRP3 did not affect the 
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nuclear localization of pSMAD1/5/8. The quantification of these experiments is 

seen in Figure 16F.  The capacity of sFRP2 to inhibit nuclear pSMAD1/5/8 was 

concentration dependent (data not shown).  Our data showed that while BMP2 

transcript levels were similar in sFRP2-MSCs, BMP signaling was significantly 

down-regulated relative to GFP-MSCs. 
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Figure 16. sFRP2 Inhibits Phosphorylation of Nuclear SMAD 1/5/8 in a Wnt-
Independent Manner and Causes Functional Inhibition of BMP Signaling 

(A) No changes in the relative transcript levels of BMP2 in serum-starved GFP-
MSCs and sFRP2-MSCs. n = 4.  
(B) Significant decrease in the relative transcript levels of BMP downstream 
target genes ID-2 and ID-3 in serum-starved sFRP2-MSCs compared with GFP-
MSCs. n = 3, *, p < 0.01.  
(C) Involvement of sFRP2 in BMP signaling demonstrated through transcriptional 
inhibition of BMP-driven luciferase reporter. sFRP2-MSCs had lower basal BMP 
activity. Addition of recombinant sFRP2 reduced luciferase activity in GFP-MSCs. 
n = 4, *, p < 0.0001.  
(D) sFRP2-MSCs exhibit decreased basal phosphorylation of nuclear SMAD1/5/8 
as determined by indirect immunofluorescent analysis. Average percentage of 
positive nuclei per high power field is shown, at least 4 fields counted in three 
independent experiments. *, p = 0.006.  
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Figure 16 -- Continued 
(E) Representative photomicrographs demonstrating modulation of BMP pathway 
in MSCs in the presence of BMP2 (50 ng/ml), alone or with combination 
treatments: pyrvinium (100 nm), dorsomorphin (5 μm), sFRP2 (100 ng/ml), or 
sFRP3 (100 ng/ml). pSMAD 1/5/8 in red, DAPI in blue.  
(F) data (n = 5 independent experiments) quantifying the average percentage of 
MSCs containing nuclear pSMAD 1/5/8 were graphed and show that only 
dorsomorphin and recombinant sFRP2 reduced BMP2-induced activation of 
nuclear pSMAD in MSCs. Mean ± 95%, confidence interval; *, p < 0.0001. 
 

 

Inhibition of Phosphorylated SMAD 1/5/8 Accumulation is Not a BMP-Wnt 
Crosstalk Event 
 

Although a novel BMP-inhibitory role of sFRP2 was suggested by the 

above studies, it was important to determine if it was due to a translational 

crosstalk between Wnt and BMP. We performed immunoblot analysis to 

determine the time course of phosphorylation of Smads1/5/8. Serum-starved 

MSCs were treated with recombinant BMP2 for one hour prior to treatment with 

either sFRP2 or sFRP3. The addition of sFRP2, but not sFRP3, decreased 

pSMAD1/5/8 levels by 43 ± 17% within 30 minutes of treatment (Figure 17A). 

sFRP2-mediated BMP pathway inhibition did not require new protein synthesis 

as addition of protein synthesis inhibitor, cycloheximide, did not abrogate 

sFRP2’s effects. We examined whether Pyrvinium could affect the levels of 

pSMAD1/5/8; whereas Dorsomorphin significantly reduced BMP2-induced 

phosphorylation of Smads1/5/8 by 62 ± 14%, there was no significant diminution 

by Pyrvinium (Figure 17B). The ability of sFRP2 to inhibit pSMAD accumulation 

was not affected in the presence of Pyrvinium (Figure 18). Together, these data 
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support a concept that sFRP2 directly modulates the BMP signaling pathway 

independent of its effect on the Wnt pathway. 

 

 

 

Figure 17. Wnt Independent Inhibition of Phosphorylated SMAD 1/5/8 
Accumulation 

(A) Time course of sFRP2-induced SMAD1/5/8 phosphorylation in mouse MSCs. 
MSCs were serum-starved for 24 h and stimulated with recombinant BMP2 (50 
ng/ml) for 1 h prior to addition of recombinant sFRP2 (100 ng/ml) or sFRP3 (100 
ng/ml) for 15 or 30 min. sFRP2-mediated BMP-signaling inhibition was unaltered 
by the addition of protein synthesis inhibitor, cycloheximide (10 μm). 
Representative Western blot analysis and the quantification of the relative 
pSMAD1/5/8 protein abundance in cell lysates normalized to β-actin; n = 3.  
(B) Serum-starved MSCs were pretreated with BMP2 (50 ng/ml) for 1 h before 
addition of designated treatments: sFRP2 (100 ng/ml), sFRP3 (100 ng/ml), 
pyrvinium (100 nm), or dorsomorphin (5 μm). Only sFRP2 and dorsomorphin 
decreased BMP-induced pSMAD levels. sFRP3 and a Wnt inhibitor did not alter 
BMP signaling. Representative Western blot analysis and the quantification of 
the relative pSMAD1/5/8 protein abundance in total cell lysates normalized to β-
actin; n = 3. 
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Figure 18. BMP Signaling is Decreased by sFRP2 Even in the Presence of a 
Wnt Inhibitor 

BMP2 treatment (50 ng/ml) increases pSMAD 1/5/8 levels dramatically in 
GFPMSCs. This increase is not as dramatic in sFRP2-MSCs and is not rescued 
by the Wnt inhibitor, pyrvinium. N/T=no treatment. 
 

 

sFRP2-MSCs Demonstrate Decreased Osteogenic Differentiation in vivo  

We have demonstrated that sFRP2-MSCs have a significant (2- to 3-fold) 

increase in engraftment compared to GFP-MSCs in two separate in vivo models 

of wound repair[75]. Using the PVA sponge model of granulation tissue 

formation, we examined whether the increase in engraftment correlated with a 

decrease in differentiated progeny by visualizing matrix calcification within MSC-

loaded sponges. Figure 19A shows representative images of sections of GFP- 

and sFRP2-MSC-loaded PVA sponges stained for Von Kossa (as an indicator of 

calcified matrix) and clearly demonstrate the decreased osteogenic differentiation 

of sFRP2-MSCs. Von-Kossa positive areas were quantified with morphometric 

analysis and the data are shown in Figure 19B. The inhibition of osteogenic 
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differentiation observed in vitro translates to an in vivo setting. These data 

indicate that increased engraftment was due to the maintenance of un-

differentiated MSCs, further demonstrating the effects of sFRP2 on self-renewal.  

 

sFRP2 Expression Reduces Ectopic Calcification of MSC Treated Hearts  

A serious reported complication of MSC-mediated myocardial therapy 

following injury is ectopic calcification and/or ossification[122]. Based on our data 

which showed that sFRP2 decreases osteogenic differentiation in vitro as well as 

in vivo within PVA sponges, we predicted that sFRP2 may ameliorate this 

complication of MSC therapy. In a previous study we demonstrated that in the 

setting of myocardial infarcts induced through coronary artery ligation, sFRP2-

MSCs reduced infarct size, prevented adverse remodeling and improved 

cardiovascular function.  sFRP2-MSC treated hearts contained a higher density 

of blood vessels and greater numbers of MSCs at 30 days post infarct and cell 

therapy[75]. We examined histological sections stained with Von Kossa to detect 

calcifications within both GFP- and sFRP2-MSC treated hearts (Figure 19C). Von 

Kossa-positive calcified matrix within the left-ventricular scar tissue was found in 

almost 70% of GFP-MSC treated (4/6) hearts but only in 14% of sFRP2-MSC 

treated hearts (1/7) (Figure 19D). These data suggest that sFRP2 not only drives 

more effective MSC-mediated repair but may reduce the frequency by which 

MSC-mediated therapy may induce ectopic myocardial calcifications. 
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Figure 19. Overexpression of sFRP2 Causes Decreased Ectopic 
Calcification within Infarcted Myocardium 

(A) sFRP2-MSCs, which have higher levels of engraftment within PVA-sponges, 
have decreased osteogenic differentiation in vivo. Representative images of 
calcified matrix within granulation tissue of MSC-loaded PVA sponges. Black 
arrows point to Von Kossa-positive areas (40X).  
(B) Quantification of the total percentage Von Kossa-positive areas within the 
granulation tissue in PVA sponges shows a decrease in the amount of calcified 
matrix within the sFRP2-loaded sponges. Wilcoxon sum ranks test; *, p = 0.0012, 
GFP-MSC n = 6, sFRP2-MSC n = 7.  
 (C) Representative images of GFP- and sFRP2-MSC-treated hearts of 
NOD/SCID mice stained for Von Kossa to visualize ectopic calcification. Black 
arrows point to calcified matrix. L, lumen (10X).  
(D) Histological score of the amount and the quality of Von Kossa-positive 
staining within MSC-treated hearts. sFRP2-MSC-treated hearts, which 
demonstrated statistically improved cardiac function, have statistically decreased 
ectopic calcification within the infarcted myocardium. Mann-Whitney U-Test, 
GFP-MSC n = 6, sFRP2-MSC n = 7. 
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Discussion 

MSCs are utilized in a variety of preclinical models to ameliorate wound 

healing. Enhanced cardiac tissue repair mediated by MSCs, in concert with 

clinical studies suggesting that their clinical use is feasible and safe, have 

spurred a number of clinical trials using bone marrow-derived MSCs as 

regenerative cell therapy. At least 14 trials are currently ongoing using MSCs to 

treat myocardial disease (clinicaltrials.gov)[31]. However, our understanding on 

how MSCs mediate cardiac and soft tissue repair, including aspects that regulate 

MSC self renewal, remains incomplete.   

 sFRP2 has been identified as a factor mediating myocardial repair and 

wound granulation tissue formation by MSCs[71, 75]. Although sFRP2 has been 

postulated to function as a paracrine modulator of cardiomyocyte apoptosis[123], 

we have provided compelling data that sFRP2 is an important autocrine factor for 

MSCs themselves. sFRP2 overexpression directly up-regulated MSC 

proliferation in vitro and enhanced their long-term engraftment in mouse models 

of myocardial injury and wound granulation tissue. In these studies we sought to 

better clarify how sFRP2 was coordinating repair by MSCs at the cellular level. 

Our studies showed that sFRP2 is an important modulator of MSC self-renewal. 

In addition to its published role to enhance proliferation[75], we report that it also 

inhibits both MSC apoptosis and their differentiation along osteogenic and 

chondrogenic lineages.   

 Our previous study showed that sFRP2 resulted in a dose-dependent 

increase in human and murine MSC proliferation in vitro. Conversely, addition of 
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recombinant Wnt3a (or its overexpression in MSCs) resulted in a decreased 

proliferation rate.  Dkk1, an inhibitor of canonical Wnt signaling, has been 

demonstrated to increase human MSC proliferation and entry into the cell cycle 

in vitro[111]. Taken together with our findings that sFRP2 was able to decrease 

functional canonical Wnt signaling in MSCs[75], these data suggested that 

sFRP2 increased proliferation through inhibition of canonical Wnt signaling.  

The sFRP family has also been termed the secreted apoptosis-related 

proteins, or SARPs, and as their name suggests has been documented to play 

important roles in the cytoprotection of distinct cells[124]. Herein we 

demonstrated that sFRP2 served to protect MSCs from apoptosis under basal 

and hypoxic conditions. This pro-survival effect was likely to be mediated by 

sFRP2 inhibition of canonical Wnt signaling as sFRP2 decreased both β-catenin 

and cleaved Caspase 3 levels. The anti-apoptotic action of sFRP2 in MSCs 

closely mirrors its recently reported paracrine anti-apoptotic effects on 

cardiomyocytes through direct binding of Wnt3a and inhibition of Wnt3a induced 

activation of Caspase activities[123]. 

 MSCs are capable of differentiating into multiple connective tissue 

lineages, in particular bone, cartilage and fat. Differentiation of MSCs along these 

lineages occurs at very low levels spontaneously but is accelerated by specific 

differentiation-inducing culture conditions. By testing for biochemical and genetic 

markers characteristic of adipose, cartilage and osteogenic lineages, we showed 

that sFRP2 inhibited differentiation of MSCs along both cartilage and osteogenic 

lineages in vitro. We further demonstrated a sFRP2-dependent decrease in 
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transcript levels of Runx2, a transcription factor necessary for osteogenic 

commitment. Wnt and BMP pathways regulate Runx2 transcript levels, and BMP 

is a known critical regulator of both osteogenic and chondrogenic differentiation 

of MSCs, we evaluated the effect of sFRP2 on the BMP pathway. Our data 

provided evidence that sFRP2 inhibited BMP signaling: sFRP2 inhibited nuclear 

levels of BMP effectors, pSMAD1/5/8, as well as BMP-signaling-dependent Id-1 

driven reporter gene. Inhibition of pSMAD1/5/8 occurred within 30 minutes, 

independently of protein synthesis, and was not affected by the addition of the 

Wnt inhibitor, Pyrvinium. These data suggested that sFRP2 inhibition of BMP 

signaling did not result from crosstalk between the Wnt/BMP pathways and 

occurred independently of its effect on Wnt inhibition. Moreover, BMP signaling 

inhibition occurred both with the addition of recombinant sFRP2 as well as in 

cells overexpressing sFRP2, suggesting that sFRP2 inhibited BMP in a non-self 

autonomous manner.   

The mechanism by which sFRP2 directly inhibits BMP signaling in 

mammalian cells is not known and, until this report, only clues as to its 

involvement in BMP signaling were available. For example, the non-mammalian 

homologue of sFRPs, Sizzled (Szl), establishes dorsal-ventral patterning in the 

Drosophila melanogaster, Xenopus, and zebrafish by regulating gradients of 

BMPs in the developing embryos [119]. The vertebrate dorsal center secretes 

BMP antagonists, among which Chordin is known to sequester BMP ligands to 

prevent receptor binding [125]. Szl inhibits BMP signaling by inhibiting the activity 

of Xolloid-related (Xlr), the metalloproteinase that degrades Chordin. In this 
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developmental process the effect of Szl on Xlr allows sequestration of BMPs by 

Chordin[126] and ultimately BMP pathway inhibition. In a cell-free in vitro system, 

mouse sFRP2 interacted with Xenopus Xlr to prevent the degradation of 

Xenopus Chordin[127]. Another recent report suggests sFRP2 may play a role in 

BMP inhibition in the developing embryo; unilateral electroporation of murine 

BMP and sFRP2 into the chick neural tube blocked the induction of BMP 

downstream targets[128]. This study did not address whether the observed BMP 

inhibition was an indirect or a direct effect of sFRP2.  

 In this paper we show direct, Wnt-independent inhibition of BMP signaling 

molecules, accomplished not only by overexpression of sFRP2 by MSCs, but by 

the addition of recombinant mouse sFRP2 to the extracellular space. This 

biochemical inhibition led to functional inhibition of BMP signaling observed by a 

decrease in both chondrogenic and osteogenic lineage commitment of MSCs. 

Compiling our data with the information available about sFRP2 and its non-

mammalian homologues, we speculate that the effects of sFRP2 as a BMP 

inhibitor are carried out in the extracellular space. Our results support the 

following model (Figure 20): Increased expression of sFRP2 in MSCs inhibits 

both canonical Wnt and BMP signaling. The resulting cellular effects of sFRP2 on 

proliferation, apoptosis and differentiation impact MSC self renewal and 

ultimately engraftment within the wound. 
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Figure 20. Model of the Proposed Mechanism of Action of sFRP2 in MSC 
Biology 

In the context of a wound, sFRP2 expression by MSCs inhibits Wnt and BMP 
signaling leading to a decreased senescence (increased proliferation), 
differentiation, and apoptosis. Inhibition of Wnt and BMP signaling by sFRP2 
thereby increases MSC self-renewal and increases their tissue engraftment. 
 

 

Recent reports have highlighted the potential complication of spontaneous 

in situ osteogenic differentiation of MSCs following cardiac cell therapy. We 

assessed heterotopic calcification in two, independent in vivo models following 

MSC cell therapy. Our data showed that in the setting of myocardial infarction 

and within experimental granulation tissue generated in PVA sponges, sFRP2-

expressing MSCs demonstrated significantly fewer foci of ectopic calcification 

than GFP-MSCs.  These data suggest that sFRP2-mediated inhibition of 

differentiation may reduce the risk of heterotopic cartilage and/or bone tissues 

observed with MSC therapy. 

 Despite direct injection of large numbers of cells into tissues, preclinical 

studies show poor engraftment with only small numbers or no MSCs remaining 
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after 30 days. Hence, a better understanding of the molecular players, such as 

sFRP2, that favorably modulate MSC self-propagation, engraftment, and 

differentiation may alter the overall efficacy of MSC cardiac and wound therapy. 
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CHAPTER IV 

 

CONNECTIVE TISSUE GROWTH FACTOR HAS A PHYSIOLOGIC ROLE IN 

EARLY WOUND REPAIR 

 

Introduction 

Mesenchymal stem cells (MSCs) produce factors that regulate their 

growth and differentiation, and also have a positive paracrine effect on their local 

microenvironment. The molecules within the MSC secretome may suppress the 

local immune system, enhance angiogenesis, inhibit apoptosis or decrease scar 

formation. Understanding the key paracrine factors secreted by MSCs would give 

us insight into molecular regulators of repair. Work by our group and others have 

found that secreted Frizzled-Related Protein 2 (sFRP2) is a key mediator of 

MSC-directed wound repair. Expression of sFRP2 by MSCs (sFRP2-MSCs) 

induces an enhanced reparative phenotype compared to vector control-

expressing MSCs (GFP-MSCs). We hypothesized that sFRP2 increased MSC-

directed wound repair by regulating their secretome. In this work, we performed 

proteomic analysis on the conditioned media (CM) from sFRP2-MSCs and GFP-

MSCs through liquid chromatography tandem mass spectrometry (LC-MS/MS). 

Raw peptides were transformed into confident protein identifications with the use 

of IDPicker software. Gene ontologies revealed an increase in several stem cell 

regulatory groups in the sFRP2-MSC CM. Connective tissue growth factor 
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(CTGF) was identified and confirmed to be up-regulated in the sFRP2-MSC 

cohort.  

The polyvinyl alcohol (PVA) sponge model of granulation tissue formation 

became a tool that allowed us to assess the effects of CTGF in wound repair. 

The temporal regulation of CTGF post sponge implantation demonstrated a role 

for this molecule in early tissue repair. Significantly decreased collagen transcript 

levels were observed when recombinant CTGF was administered to empty 

sponges for six days following sponge implantation. The granulation tissue 

deposited in the sponges with prolonged CTGF addition was statistically more 

proliferative and collagenous. These results not only provide direct evidence of a 

non-pathological role for CTGF in wound repair, but also demonstrate CTGF is 

an enhancer of early wound tissue.  Ultimately, these data shed light into the 

paracrine effect of MSCs.  

 

MSC Paracrine Effects 

 MSCs produce a wide array of cytokines, chemokines, adhesion 

molecules and other bioactive factors that help regulate their growth and 

differentiation. These factors also have a paracrine effect on the 

microenvironment by suppressing the local immune system, enhancing 

angiogenesis, inhibiting apoptosis, and decreasing scar formation[129, 130]. 

 Our group has demonstrated that sFRP2-MSCs deposit better granulation 

tissue in the PVA sponge model, compared to GFP-MSCs[75]. Treatment of 

sFRP2-MSCs increased functional parameters and decreased pathological 
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cardiac remodeling in a murine model of myocardial infarction[75]. Other groups 

have demonstrated that sFRP2 by itself can reduce fibrosis and improve cardiac 

function[131]. However, we wanted to determine what other secreted factors 

were playing a positive role in MSC-directed wound repair. 

 Proteomic profiling is a tool used to identify key factors not only involved in 

MSC biology, but also in the repair process[132-134]. Tandem mass 

spectroscopy (MS/MS) allows for the interrogation of a large pool of unknown 

peptides and liquid chromatography (LC) is utilized to separate them prior to MS 

analysis[135, 136]. IDPicker is a bioinformatics software which not just employs 

decoy database searches to compute the false discovery rate of raw 

identifications but combines multiple scores to increases confident identifications 

of proteins from the tryptic peptides. Thus it does not require any statistical 

distribution inference or machine learning[137]. 

 

Connective Tissue Growth Factor 

 CTGF is a secreted protein belonging to the CCN family of immediate-

early genes[138].  This family is rich in cysteine residues and its members are 

characterized by containing four domains involved in growth factor binding, 

dimerization, heparin and proteoglycan binding and integrin recognition[139]. 

Although these domains hint at the biological function of CTGF, its role in wound 

repair is mostly unknown. Because CTGF is present in a wide variety of fibrotic 

conditions of the skin, kidney, liver, lung and others[140-142], it is thought to be a 
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pro-fibrotic molecule.  The results presented herein demonstrate a non-

pathological role for CTGF in early wound healing.  

  

Results 

 

Proteomic Analysis of MSC Conditioned Media Reveals Important Gene 
Ontology Changes 
 
 Many groups have speculated that the positive effects of MSCs on wound 

repair rely on their ability to produce soluble factors that enhance the repair 

process (reviewed in [129]). Previous work from our lab employed two MSC 

populations to assess in vivo repair.  MSCs were transduced with an empty 

retroviral vector (GFP-MSCs) or with the same vector containing sFRP2 (sFRP2-

MSCs). sFRP2-MSCs had increased reparative ability in both wound repair 

models[75, 76]. To determine which secreted proteins would enhance the 

reparative ability of the sFRP2-MSCs the conditioned media (CM) of three 

independent GFP-MSC and sFRP2-MSC isolates were obtained after growth in 

serum-free media for 48 hours. TCA precipitated protein pellets from the CM 

were trypsin digested. Strong cation exchange chromatography was used to 

separate the peptide mixture into fractions, which were then individually analyzed 

by reverse phase LC-MS-MS, the large data sets were handled with IDPicker. 

The cellular compartment localization of the positively identified proteins was 

retrieved using uniProtKB (http://www.uniprot.org/) and used as a filter for further 

analysis; only proteins found in the extracellular space were retained. The gene 

ontology (GO) information of the over-represented proteins in the sFRP2-MSC 
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CM revealed an interesting trend towards cellular growth (7%), differentiation 

(15%), protein homeostasis (22%), growth factors/signaling (24%) and adhesion 

(32%) as seen in Figure 21A. The complete list of sFRP2-MSC over-represented 

secreted proteins and their GO information can be found in the Table 8.  

 

 

 
Figure 21. Proteomic Analysis Reveals CTGF Up-Regulation in sFRP2-
MSCs 
 
A. Gene ontology (GO) classification of IDPicker positively identified secreted 
proteins. UniProtKB was used to search for GO and cellular compartment 
information. 
B. Quantitative real-time PCR analysis revealed a 14.3 ± 1.3 increase in CTGF 
transcript levels in sFRP2-MSCs compared to GFP-MSCs; normalized to 18S 
content, n=3. 
C. Representative blot demonstrating increased CTGF protein in the TCA-
precipitated conditioned media of sFRP2-MSCs. The average intensity increase 
of the ~37 kDa band is 2.57 ± 0.8 as determined by Image J analysis, n=3. 
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 Table 8. List of sFRP2-MSC Over-represented Secreted Proteins 

 

 

Protein ID Coverage
Total 
Hits

Fold 
Change

Protein FAM20A precursor IPI:IPI00229820.1 11 9 2
Cartilage-associated protein precursor IPI:IPI00111370.1 14 22 1.75
Bone morphogenetic protein 1 IPI:IPI00469541.1 41 224 1.093458
Glia-derived nexin precursor IPI:IPI00115065.1 53 382 1.134078
Dystroglycan precursor IPI:IPI00122273.1 31 59 1.034483
Olfactomedin-like protein 3 precursor IPI:IPI00308658.3 36 53 1.038462

Fibronectin type-III domain-containing protein 
C4orf31 homolog precursor IPI:IPI00330474.3 32 31 2.1
Coiled-coil domain-containing protein 80 
precursor IPI:IPI00473455.1 29 63 1.625
Mama protein IPI:IPI00119809.1 42 131 1.183333
Cystatin-C precursor IPI:IPI00123744.1 67 205 1.5625
milk fat globule-EGF factor 8 protein isoform 1 IPI:IPI00788387.1 45 131 1.258621
Calsyntenin-1 precursor IPI:IPI00470000.2 26 79 1.257143
Follistatin-related protein 1 precursor IPI:IPI00124707.1 63 257 1.089431
Isoform 1 of SPARC-related modular calcium-
binding protein 2 precursor IPI:IPI00378169.1 19 28 1.333333
Thrombospondin 1 IPI:IPI00118413.2 48 352 1.095238
Isoform 1 of Periostin precursor IPI:IPI00338018.1 71 807 1.152
Isoform 2 of Tenascin precursor IPI:IPI00420656.3 32 229 1.081818
Glypican-1 precursor IPI:IPI00137336.1 51 83 1.128205
Mesothelin precursor IPI:IPI00121279.1 31 82 1.157895

Calreticulin precursor IPI:IPI00123639.1 77 245 1.168142
Urokinase-type plasminogen activator precursor IPI:IPI00129102.1 49 59 1.458333
Metalloproteinase inhibitor 2 precursor IPI:IPI00113863.1 65 139 1.106061

Lysyl oxidase homolog 1 precursor IPI:IPI00380136.3 37 57 1.28
Sulfated glycoprotein 1 precursor IPI:IPI00321190.1 69 687 1.107362
Isoform 1 of Sulfhydryl oxidase 1 precursor IPI:IPI00223231.2 49 357 1.087719
Fructose-bisphosphate aldolase A IPI:IPI00221402.7 70 196 1.020619
Isoform 1 of Polypeptide N-
acetylgalactosaminyltransferase 2 IPI:IPI00420710.1 24 24 2
gamma-glutamyl hydrolase IPI:IPI00828662.1 43 56 1.545455
Procollagen C-endopeptidase enhancer 1 
precursor IPI:IPI00120176.1 57 567 1.139623
Isoform 1 of Plasma glutamate 
carboxypeptidase precursor IPI:IPI00126050.3 37 58 1.148148
Glutamate dehydrogenase 1, mitochondrial 
precursor IPI:IPI00114209.1 27 25 1.083333

Inhibin beta A chain precursor IPI:IPI00112347.1 31 32 2.555556
Connective tissue growth factor precursor IPI:IPI00322594.3 19 16 4.333333
Plasminogen activator inhibitor 1 precursor IPI:IPI00131547.1 55 178 1.311688
EGF-containing fibulin-like extracellular matrix 
protein 2 precursor IPI:IPI00126055.1 37 72 1.4
Calumenin precursor IPI:IPI00135186.1 65 147 1.19403
EGF-containing fibulin-like extracellular matrix 
protein 1 precursor IPI:IPI00223457.1 36 55 1.894737
Annexin A2 IPI:IPI00468203.3 62 181 1.154762
Isoform Long of Beta-1,4-galactosyltransferase IPI:IPI00131464.1 43 90 1.045455
Transcobalamin-2 precursor IPI:IPI00136556.1 47 106 1.163265
Isoform Alpha of Stromal cell-derived factor 1 
precursor IPI:IPI00108061.3 40 22 1.444444

growth factor/ 
signaling           

protein 
homeostasis              

cell growth         

differentiation 

cell adhesion / 
heparin 
binding           
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Connective Tissue Growth Factor is Upregulated in sFRP2-MSCs 

Connective tissue growth factor (CTGF) had the highest presence within 

the sFRP2-MSC group, compared to the GFP-MSC group; it was identified 4.33 

fold higher in the sFRP2-MSC group (Table 8). Although the coverage for this 

protein was only 19% with 16 total hits, the presence of this protein within the 

sFRP2-MSC CM was striking. CTGF fell within the growth factor GO 

classification and proved an interesting candidate to further validate since its 

presence has been well documented in wounds [143, 144].  

The regulation of CTGF was confirmed by quantitative real-time PCR 

(qRT-PCR) analysis of three different sFRP2-MSC isolates compared to their 

GFP-MSC counterparts. Δ/Δ CT analysis of the results demonstrated that 

sFRP2-MSCs have higher transcript levels of CTGF. There was a 14.3 ± 1.3 fold 

increase of CTGF transcripts in the sFRP2-MSC cohort (Figure 21B). This 

difference in CTGF mRNA levels was also observed at the protein level. As seen 

in Figure 21C, immunoblotting TCA-precipitated sFRP2-MSC CM revealed an 

overall 2.57 ± 0.8 fold increase in CTGF compared to GFP-MSC CM. These 

differences in regulation could be explained in different ways. First, the protein 

analysis was performed on the secreted fraction (CM) and therefore the protein 

contained within the cell (i.e. newly synthesized, golgi-bound) was not visualized. 

Second, because CTGF can bind extracellular matrix proteins it might not be in 

soluble form within the CM. Regardless, the trend was confirmed and CTGF was 

up-regulated in sFRP2-MSCs. 
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CTGF is Involved in the Early Stages of the Wound Repair Process 
 
 A sustained increase in CTGF within a wound is usually equated to 

pathological conditions [140-142].  However, we observed increased CTGF in the 

sFRP2-MSC cohorts which were deemed to improve wound repair. To assess 

the role of CTGF in wound repair, we used the poly-vinyl alcohol (PVA) sponge 

model of granulation tissue formation [75, 87, 88]. Prior to implantation, the PVA 

sponges were soak-loaded with either GFP-MSCs (n=18), sFRP2-MSCs (n=18) 

or saline control (n=9). The sponges were implanted subcutaneously into 

NOD/SCID mice. Three animals were sacrificed seven days post-implantation, 

three more after 15 days and the last cohort 28 days post-surgery. RNA was 

isolated from each sample and qRT-PCR analysis was performed to assess the 

levels of CTGF transcripts. As seen in Figure 22A, CTGF transcript levels were 

the highest at the earliest time-point examined (day 7). The CTGF transcript 

levels steadily decreased with time. Interestingly, confocal images of 

immunofluorescently labeled sponge sections demonstrated a steady increase in 

CTGF protein levels (red) that spiked at day 15 and quickly diminished by day 28 

(Figure 22B). Together, these data suggest CTGF is important in early wound 

repair processes. 
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Figure 22. CTGF is Involved in Early Stages of Granulation Tissue 
Formation  
 
A. The transcript levels of CTGF within GFP-MSC loaded sponges decrease with 
time as assessed by qRT-PCR; normalized to 18S content, n=6 sponges per 
time point. 
B. Panel of representative confocal images demonstrating CTGF protein levels 
spike by day 15 and then decrease by day 28 in PVA sponges. Blue = nuclei, red 
= CTGF, white asterisk = sponge. 

 

 
Early Exposure to CTGF Prevents Fibrosis, Prolonged CTGF Enhances a 
Proliferative, Collagenous Granulation Tissue 
 
 The previous results suggested that the effects of CTGF could be 

observed in the absence of the MSCs within the PVA sponges. Therefore we 

designed an experiment where the levels of CTGF were changed by direct 

injection of the recombinant protein (rCTGF). To determine the effect of the 

timing of CTGF availability the cohorts received rCTGF injections (1 

µg/day/sponge in 10 µl) every other day for six days, 15 days or 28 days. The 

saline controls endured the same regimen. For each cohort there were three 

* 

* * * 

* 

* 

* 

* 
* 

* 
* 



87 
 

animals which totaled six sponges per treatment group, all the animals were 

sacrificed after 28 days. 

 The amount of granulation tissue within sponge sections from each cohort 

was determined. No differences were found in the amount of granulation tissue 

deposited in the sponges treated with rCTGF for six days (left panel Figure 23A). 

The sponges which received rCTGF for 28 days had more granulation tissue 

when compared to the saline control (right panel Figure 23A). Trichrome Blue 

staining of the sections allowed us to visualize the differences in the quality of the 

granulation tissue. As expected there was more collagen deposition in the 

sponges treated with rCTGF for 28 days compared to saline control. However, 

there seemed to be less collagen deposition in the sponges that were treated 

with rCTGF for six days. 

To determine if indeed the timing of rCTGF administration was affecting 

fibrosis, we performed qRT-PCR analysis looking at the levels of mouse 

Collagen 1a2 (Figure 23B). Compared to the saline control, collagen levels 

decrease if rCTGF was added at the early stages of the wound repair process 

(blue and red bars, up to day 15). However, if rCTGF administration was 

prolonged for 28 days (green bars), the collagen levels increased.  

To determine if the reason between the disparate amounts of granulation 

tissue following 28 days of rCTGF was due to more than increased collagen 

deposition, the sections were stained with Ki67 to assess the proliferation within 

the tissue. Figure 23C shows that rCTGF for 28 days significantly increased the 

proliferation of the granulation tissue. Together, these results correlate with the 
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idea that prolonged exposure to CTGF promotes an activated fibroblast 

population [145, 146].  
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Figure 23. Addition of Recombinant CTGF to PVA Sponges Enhances a 
Proliferative, Collagenous Granulation Tissue 
A. Representative 40X images of Trichrome Blue-stained granulation tissue after 
six or 28 days of rCTGF (1 µg/day/sponge) or saline injections. Black = sponge, 
blue= collagen, red = granulation tissue. 
B. Quantitative real-time PCR analysis of mouse Collagen1a2 demonstrates that 
CTGF exposure for the initial stages (days 0-15) of wound repair yields 
decreased collagen deposition, normalized to 18S content, whereas prolonged 
exposure increases collagen transcript levels. n=6 sponges per cohort. * p<0.001 
Two way ANOVA with Bonferroni post test. 
C. rCTGF (1 µg/day/sponge) increases the proliferative index of the granulation 
tissue as quantified by the threshold values of Ki67 positive areas in 20X 
representative images of PVA sponges. ANOVA * p = 0.0392 vs. saline. 

A. 

 
B. C. 
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Dose Dependent Response to Endogenous CTGF, Increased Collagen 
Content within Early Wounds of CTGF+/- Mice 
 
 The previous results suggested that CTGF did not affect the wound repair 

process negatively at the early stages. Its up-regulation during the initial repair 

process implied CTGF could have a physiological role in healing. To confirm this, 

we wanted to test the wound repair capabilities of animals lacking CTGF. This 

was not possible since CTGF null animals die shortly after birth because of 

respiratory failure [147, 148]. Instead, we used animals containing only one copy 

of CTGF (CTGF+/-, HET) which reach adulthood without apparent phenotype 

[148].   

 Full-thickness excisional wounds were created with a biopsy punch [149] 

onto the backs of WT and HET animals. Animals were sacrificed after 10 and 14 

days following surgical intervention. The wound repair capabilities of the mice 

were assessed with the use of a histopathological scoring system. The collagen 

content, granulation tissue, and vascularization within the wounds were blindly 

graded. As seen in Figure 24A, although there were no differences in the amount 

of granulation tissue, the amount of collagen found in the wounds of the HET 

mice was greater than that in the WT mice. This data correlate with the results 

observed whereas increased CTGF exposure during early wound processes had 

decreased collagen content (Figure 23B). Albeit not statistically significant, there 

was an apparent decrease in vascular content within the wounds of the HET 

animals. There were no differences in the ability to repair the wounds at the late 

time point (day 14, Figure 24B) suggesting a role for CTGF in early wound repair.  
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Figure 24. Dose Dependent Response to Endogenous CTGF, Increased 
Collagen Content within Early Wounds of CTGF+/- Mice 
Histopathological scores assessing collagen content, amount of granulation 
tissue, and vascularity within sections of excisional wounds from CTGF+/+ mice 
(WT) versus CTGF+/- (HET) mice 10 days (A.) and 14 days (B.) after injury. 
Increased collagen content within 10 day old wounds of HET mice was observed. 
n≥6 wounds per cohort; paired t-test * p=0.0062, n.s.= not significant. 
 
 

 

  

A. B. 
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Discussion 

 Proteomic analysis of CM from two MSC populations found CTGF to be 

increased in the group which previously had been shown to improve wound 

repair [75]. However, most of the literature discusses the regulation of CTGF in 

fibrotic conditions. The levels of TGF-β have been shown to precede CTGF 

induction during normal wound repair, suggesting CTGF is downstream of TGF-β 

signaling [143, 150]. Although addition of CTGF alone can induce collagen 

deposition, several reports have determined that the fibrotic effects of CTGF are 

more robust if TGF-β is present in the system [146, 151, 152]. Indeed, 

administration of a CTGF neutralizing antibody following TGF-β induced fibrosis 

ameliorates the fibrotic condition in mice [153].  

 The results do not contradict the published results but rather demonstrate 

the importance of timing on the role of CTGF in wound repair. The first clue to 

point in this direction came by realizing the regulation of CTGF by MSCs in vitro; 

the levels of CTGF decrease with increased passage (data not shown). The PVA 

model of granulation tissue formation was a useful tool which showed the 

induction of CTGF transcripts spiking seven days post implantation and the 

protein levels following at 15 days. Importantly, the endogenous CTGF 

production was very low by 28 days.  

 The same wound repair model was utilized to demonstrate that high levels 

of recombinant CTGF at early time points has no deleterious effect on the wound 

process. Strikingly, early CTGF addition decreased the collagen production in the 

wounds. As expected, sustained CTGF administration led to increased 
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granulation tissue deposition. The granulation tissue derived from continuous 

rCTGF addition was highly proliferative and collagenous. The differences in the 

effect of rCTGF could also be explained by differences in the levels of TGF-β 

during the different stages of granulation tissue formation, an important cascade 

we aim to look at. We speculate that fibroblast activation is only achieved after a 

certain threshold of CTGF is reached [154].  

 The use of CTGF+/- animals confirmed a role for endogenous CTGF in 

early wound repair processes. Analysis of the wounds 10 days following injury 

determined a change in only one parameter, which correlated with the earlier 

results. It will be interesting to assess the wound repair capabilities of the HET 

versus WT CTGF animals at an even earlier time point as it is clear that the 

differences in repair diminish with time.  

 These data suggest that the regulation of CTGF in the wound repair 

process is critical to avoid a pathological, fibrotic condition. The kinetics of tissue 

repair include three major phases: the inflammatory, the proliferative, and the 

remodeling/maturation [155]. Our data suggest the physiological expression of 

CTGF during the proliferative phase. A similar regulation in the levels of CTGF 

after injury has been documented elsewhere [143]. If CTGF levels persist during 

the remodeling phase of wound repair, then fibrosis ensues [140-142]. 

 Previous studies have demonstrated a positive role of CTGF in the wound 

repair process. Recombinant human CTGF (10–100 ng /cm2) was added to non-

human primate burn wounds for 19 days following wounding. Two weeks after 

CTGF administration, the wound tissue generated orderly healing fibers at the 
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burn site, accompanied by an increased proliferative response. Compared to the 

control group, the CTGF treated group had a significantly smaller wound area 

[156].  

Recently, CTGF was added to MSC cultures in vitro causing a loss of 

expression of MSC markers, a decrease in MSC tri-lineage differentiation and an 

increase in collagen deposition. In vivo administration of CTGF favored 

fibrogenesis rather than ectopic mineralization in rodent connective tissue 

healing [145]. These results are interesting since they demonstrate a positive role 

for CTGF in MSC-directed wound repair. 

The presence of CTGF in pathological settings has been widely 

documented thus dissuading investigations on the precise biological function of 

this molecule. More work on the events affected by CTGF during early wound 

repair is necessary to fully explore the apparent bimodal activity of this molecule. 

Ultimately, understanding the physiologic effects of CTGF can lead to its 

management in the clinic. 
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CHAPTER V 

 

DISCUSSION AND FUTURE WORK 

 

Conclusions 

MSCs remain an intriguing entity. The work contained within this 

dissertation shed some light on mechanisms dictating MSC biology; however, the 

light was dim in the grand scheme. It is exciting to think that one day MSCs may 

be utilized in the clinic to successfully treat a variety of conditions. Understanding 

the events which dictate their efficacy is of great importance. Many unknowns in 

this field remain as such. 

 The work contained in this dissertation demonstrated that MSCs isolated 

from two different mice strains had differing levels of granulation tissue formation 

and myocardial repair. Microarray analysis pointed to sFRP2 as the key molecule 

responsible for these observed results. Indeed, sFRP2 overexpression increased 

the reparative ability of MSCs. Most importantly, sFRP2 facilitated MSC 

engraftment and cardiac remodeling and repair in a mouse model of acute MI 

[75]. 

 Sequence homology between sFRP2 and sFRP1 is relatively high 

(approximately 70%); yet overexpression of sFRP1 in MSCs (sFRP1-MSCs) was 

not sufficient to enhance MSC-directed wound repair (Figure 25). Proliferation 

studies demonstrated sFRP1-MSCs did not have increased turn-over in vitro 

(Figure 25B). Assessment of the effects of sFRP1-MSCs in the PVA model of 
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granulation tissue formation demonstrated no enhancement in the reparative 

potential of MSCs due to overexpression of sFRP1 (Figure 25C and 25D). These 

results further demonstrated the unique nature of sFRP2 and highlighted the 

importance of the data presented in this dissertation. 
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Figure 25. sFRP1 Does Not Enhance MSC Reparative Potential 

A. sFRP1 is overexpressed in MSCs as confirmed by Western blot analysis. 
B. Proliferation of MSCs is not enhanced by sFRP1 as assessed with a BrdU 
incorporation ELISA. 
C. Morphometric analysis revealed that sFRP1-MSCs do not deposit more 
granulation tissue in the PVA sponge model. 
D. Engraftment of sFRP1-MSCs is not increased in vivo in the PVA sponge 
model as assessed by β-gluc activity. ns= not significant. 
 

 

 The mechanism of action of sFRP2 remains elusive. Is the molecule 

acting on the wounded microenvironment or on the MSCs? Data from other labs 

suggest that sFRP2 mediates myocardial survival following injury by inhibiting 
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Wnt signaling [71, 123]. He et al. demonstrated that fibrosis is decreased by 

sFRP2 by inhibiting pro-collagen maturation through the inhibition of BMP1 

proteinase activity [131]. This last claim, however, is disputed by conflicting 

evidence whereby sFRP2-null mice have decreased fibrosis post-MI [157]. An 

issue of dosage sensitivity and timing is brought up by these contradictory 

results. He et al. demonstrated that high doses of sFRP2 inhibit, yet low doses 

enhance, BMP1 activity. Both published results demonstrate that the levels of 

sFRP2 dramatically increase immediately after MI (days 1-3) and then diminish 

to homeostatic levels. At the early time points post-MI, sFRP2 exerts its anti-

apoptotic role. Deletion of sFRP2 could enhance apoptosis. At later time points 

post-MI, once sFRP2 levels decrease, it would mostly increase BMP1 activity. In 

accordance, the decreased fibrosis of the sFRP2-null mice is only significant 

during late stages of the wound repair process (two weeks post-MI). Together, 

these data call to mind the importance of dosage and timing in understanding the 

role of sFRP2. 

 Our work focused on the effect of sFRP2 on the MSCs themselves. To 

address this point we thought about the possible outcomes for the MSCs within a 

wound: senescence, apoptosis, differentiation or self-renewal. Addition of 

recombinant sFRP2 to both murine and human MSCs increased proliferation by 

approximately two-fold. Consistent with these results, overexpression of sFRP2 

enhanced the in vitro proliferation of MSCs approximately three-fold [75]. The 

increase in proliferation meant that sFRP2 decreased the possibility of the MSCs 

to enter into a senescent state. 
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 The ability of the MSCs to survive within the wound is critical to their 

reparative capabilities. Thus, we assessed the levels of apoptosis following 

serum starvation and hypoxic culture conditions. sFRP2-MSCs had decreased 

Annexin V positive cells and lower cleaved Caspase 3 levels compared to the 

GFP-MSC control. These insults were significant since serum starvation and 

hypoxia are hallmarks of a wound [158]. We assessed whether the effect on 

apoptosis involved canonical Wnt signaling since sFRP2 had been implicated in 

the inhibition of this cascade [100, 159]. sFRP2 decreased Wnt signaling in 

MSCs, as assessed by immuno-blotting for β-catenin as well as functional 

inhibition of TOP/FOP flash luciferase reporter system [75, 76]. This inhibition 

correlated with decreased in vitro apoptosis observed.  

 Molecular and biochemical assays of differentiation studies revealed 

decreased chondrogenic and osteogenic lineage commitment for sFRP2-MSCs 

compared to GFP-MSC control [76]. Multiple mechanisms, including Wnt and 

BMP signaling, direct MSC lineage commitment [82, 110, 160, 161]. Our next 

aim was to determine if the observed decrease in differentiation was due, in part, 

to direct BMP inhibition by sFRP2. Utilizing a luciferase reporter construct for 

BMP signaling, we demonstrated that sFRP2 functionally inhibited ID-1 promoter 

activity. Immunofluorescent analysis of the signaling molecules involved in 

canonical BMP signaling, phosphorylated SMADS 1, 5 and 8 (pSMAD 1/5/8), 

showed decreased nuclear staining when the cells were treated with sFRP2. 

These studies were confirmed with immunoblotting for pSMAD 1/5/8 and taken 
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together demonstrated direct and specific inhibition of BMP signaling by sFRP2 

[76]. 

 Importantly, the decreased in vitro differentiation potential of sFRP2-MSCs 

was translated to decreased ectopic calcification within MSC-treated infarcted 

hearts. The sFRP2-MSCs remained undifferentiated at higher numbers in this 

setting [75, 76]. This increase in engraftment translated to an increase in cardiac 

function post-MSC treatment [75].  

 The positive effect on myocardial repair of the sFRP2-MSCs is probably 

due to an increase in levels of favorable wound-repair factors. Our efforts were 

focused on identifying such trophic factors. The secretome of sFRP2-MSCs was 

compared to that of the GFP-MSCs, and Connective Tissue Growth Factor 

(CTGF) was detected. Although tangential to the bulk of our work, studies on 

CTGF revealed that it has a physiologic role in early wound repair.  

 The majority of the publications concerning CTGF correlate its expression 

with pro-fibrotic conditions; however, its temporal regulation following injury 

suggested it may have a physiologic role in wound repair. Different methods 

allowed us to demonstrate that CTGF levels rise quickly (7-15 days) following 

injury and decline thereafter. The endogenous up-regulation of CTGF in early 

time points following injury suggested it was expressed during the proliferative 

phase of wound repair. We speculate that the pathologic role of CTGF is 

conferred upon continued expression during the remodeling phase. Our data 

demonstrate that the temporal expression of CTGF dictates its effects on wound 

repair. 



101 
 

Significance 

The work described in this dissertation delineated the effects of sFRP2 in 

MSC biology. sFRP2 increased proliferation, prevented apoptosis and decreased 

differentiation of MSCs. As a whole these data suggest sFRP2 is a potent factor 

involved in MSC self-renewal. Our work is the first to identify a MSC self-renewal 

factor. Increasing MSC self-renewal is critical to enhancing their therapeutic 

efficacy and therefore the work on sFRP2 is critically important. The significance 

of this finding can be appreciated by looking at the impact self-renewal factors 

have had on other stem cell fields. Particularly, the ex-vivo expansion of 

hematopoietic stem cells (HSCs, CD34+) through addition of recombinant self-

renewal factors is being actively pursued and has yielded important results in 

several clinical trials of a variety of human diseases [162].  

Expansion of the HSC pool requires symmetric self-renewing cell divisions 

that give rise to two daughter cells that retain HSC function, and Hoxb4, Wnt 

signaling and Notch signaling are thought to drive this event [163]. Until now, no 

signaling cascade had been implicated in MSC self-renewal. Careful study of 

sFRP2 allowed us to identify a role for Wnt signaling in MSC biology. Our data 

correlate with previously published results which associated increased Wnt 

activity to tissue specific stem cell dysfunction or aging [97, 98].  

 

Endogenous sFRP2 Expression during Myogenic Repair 

sFRP2 was originally cloned from a BM-derived stromal cell line [100]. Our 

lab first identified this protein when comparing BM-derived MSCs from the 
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superhealer MRL/MpJ mouse to MSCs (MRL-MSCs) from a wild-type C57-Bl6 

mouse; sFRP2 transcripts as well as protein were significantly up-regulated in 

the MRL-MSCs [75]. These data suggest there is an important role for this 

protein in successful MSC-derived healing. But is there a role for sFRP2 in non 

MSC-derived healing?  

Endogenous presence of sFRP2 could delineate whether or not it might 

play a role in wound repair. Studies in the developing chick embryo (in situ 

hybridizations) implicated sFRP2 in myogenesis, given its expression in 

mesenchyme associated with developing muscles in the limb bud as well as in 

ventricular myocardium [159]. The expression of sFRP2 mRNA on whole rabbit 

muscle is highest at embryonic day 21 and quickly decreases to undetectable 

levels by post-natal day 5 [164]. However, sFRP2 can be detected in expanded 

myogenic precursors (satellite cells) isolated from uninjured adult muscle. The 

levels of sFRP2 decrease in the adult muscle satellite cells with age [165]. 

Interestingly, as early as 24 hours following cardiotoxin injury or muscle 

denervation the levels of sFRP2 mRNA re-appear [164, 165]. These data 

demonstrate sFRP2 is involved in myogenesis and/or muscle repair yet also hint 

to a role in myogenic precursor maintenance.  

Anakwe et al., grafted sFRP2-overexpressing cells onto a stage 18-20 

chick embryo causing impaired myogenesis [166].  This group demonstrated that 

the number of pre-myogenic cells (Pax-3 positive cells) was increased in the 

sFRP2-transfected limbs compared to control limb [166]. More proof on the role 

of sFRP2 in myogenic precursor maintenance came from a time-course, 
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expression analysis of cardiotoxin injected muscle. Following injury, sFRP2 was 

up-regulated at time points that correlate with satellite cell activation and 

proliferation, and its expression coincided with the increase in Pax-7 [167]. 

Furthermore sFRP2 inhibits in vitro myoblast differentiation of rabbit and mice 

satellite cells. Its effects are increased if added before the induction of 

differentiation, and not observed if administered after myogenic commitment has 

taken place [168]. Although all of the data presented above are circumstantial, 

taken together with our data on the role of sFRP2 in MSC self-renewal, it is 

possible sFRP2 plays an important role in myogenic tissue-resident stem cell 

maintenance.  

 

Future Directions  

 To address the role of endogenous sFRP2 in tissue repair, we created a 

tissue-specific inducible transgenic mouse. The fibroblast specific protein 1 

(FSP1) Green Fluorescent Protein (GFP) (FSP1.GFP) construct was attained 

from the laboratory of E. Neilson [169]. Two loxP sites were cloned into the 

vector sequence, one directly upstream of the GFP start codon and one following 

its poly A tail [170]. The complete coding sequence for sFRP2 as well as a poly A 

tail was added downstream of the GFP poly A tail, following the second loxP site. 

Digestion of the final product with XhoI and FsPI produced a linearized product 

for injection into zygotes. Figure 26 contains the map of the vector constructed to 

generate the transgenic mouse line. 
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Pro-nuclear DNA injections were performed at the Vanderbilt Transgenic 

Mouse/ES Cell Shared Resource facility. PCR analysis of the ten lines generated 

uncovered four different mouse lines positive for the transgene. These lines are 

currently being bred with a Rosa 26 Cre-ERT2 mouse line (The Jackson 

Laboratory No. 008463) which express a conditional recombinase that is retained 

in the cytoplasm until tamoxifen administration; binding of tamoxifen to the 

estrogen receptor releases the recombinase to allow it to act upon loxP sites in 

the nucleus [171].  
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Figure 26. Map of the Floxed GFP Construct for Inducible sFRP2 
Expression in Vivo 

 

 

The in vivo recombination event is in the process of being confirmed. 

Once the system is finely tuned, the transgenic mouse line that we created will 

allow us to induce the expression of sFRP2 in a tissue specific manner. The 

literature suggests that expression of sFRP2 prior to injury will allow the pool of 

myogenic progenitors to increase; however its prolonged expression might block 

lineage commitment of these cells [164]. Understanding the timing and extent of 
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recombination will be a unique challenge. Nevertheless, this mouse serves as a 

powerful tool to understand the role of endogenous sFRP2 in tissue repair. 

The exact mechanism of action of sFRP2 in vivo remains unknown and 

the work described herein demonstrates the need to further understand this 

molecule, particularly as it pertains to stem cell biology and wound repair. 

Although its roles in Wnt and BMP signaling inhibition have been demonstrated 

by our work and others, we have noticed a dosage issue that must be explored 

further. It is possible however, that sFRP2 acts on other signaling pathways and 

may have roles directed by its structural domains [172]. 

Experiments utilizing small molecule inhibitors of Wnt and BMP signaling 

may demonstrate that the effects of sFRP2 are indeed due to its dual actions. 

These inhibitors can be injected following injury by themselves, in conjunction 

with the MSCs, or used for pre-treatment of the MSCs prior to administration. If 

indeed concomitant inhibition of Wnt and BMP is the mechanism of action of 

sFRP2, then these experiments will demonstrate the importance of sFRP2 on the 

MSCs themselves (autocrine) or on the damaged tissue (paracrine). These 

experiments might demonstrate that pre-treatment with these inhibitors may yield 

MSCs with an increased reparative phenotype.  

  



107 
 

Closing Remarks 

Overall, this work delineates the molecular function of sFRP2 in MSC-

directed wound repair and more importantly in MSC biology. sFRP2 expression 

by MSCs enhances their reparative potential; it increases MSC self-renewal by 

functional inhibition of BMP and Wnt signaling. Further roles for this molecule 

remain to be determined, however our work shows that sFRP2 could serve as a 

powerful marker for successful MSC-directed wound repair.    
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