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Chapter 1

Introduction

In many educational and psychological research settings, data often have a multilevel

structure, such as students within schools or participantsnested within day care centers.

Further, binary outcome variables (e.g., true-false answer, present-absent symptom, endorsed-

not endorsed attitude) are often assessed. When the data structure is multilevel resulting

from cluster sampling or multistage sampling and the type ofoutcome is binary, multilevel

item response models have been widely applied.

In many multilevel item response model applications, the same item discriminations

or loadings are often assumed at the within-level (e.g., thestudent level) and the between-

level (e.g., the school level). In Rasch multilevel item response models, it is assumed

that item discriminations over levels are the same and constant (Kamata, 2001). In two-

parameter multilevel item response models, the same item discriminations over levels are

estimated (e.g., Fox & Glas, 2001; Fox, 2004, 2005, 2010; Houts & Cai, 2013; Jeon &

Rabe-Hesketh, 2012). Further, the same item discriminations are assumed over levels in a

multilevel extension of multiple-indicator multiple-cause (MIMIC; Jöreskog & Goldberger,

1975) approaches (Finch & French, 2011; Kim, Suh, Kim, Albanese, & Langer, 2013).

The model formulation that has the same item discriminations over levels is referred to as

a variance component factor model (Rabe-Hesketh, Skrondal, & Pickles, 2004).

Following the tradition of a general multilevel factor model or multilevel structural

equation modeling (MSEM; McDonald, 1993; Muthén, 1991, 1994; Rabe-Hesketh, Skron-

dal, & Pickles, 2004), it is possible to have separate item discrimination parameters at each

level of multilevel data. Jak, Oort, and Dolan (2014) used the termcluster biasto refer to

measurement bias across clusters, and cluster bias can be interpreted as measurement bias

regarding any cluster-level variable. Item discrimination differing across levels is consid-
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ered evidence ofcluster biasor a lack of cluster invariance. Cluster bias can exist at the

test level or at the item level. Hereafter, cluster bias at the test level is calledglobal cluster

bias, whereas cluster bias at the item level is calleditem cluster bias.

Cluster invariance is an important assumption to test in real data applications. Within-

level item discrimination indicates how strongly each itemcorrelates with a within-level

latent variable, and between-level item discrimination indicates how strongly each item

correlates with a between-level latent variable. Thus, in the presence of cluster bias, the

latent variables in multilevel item response models do not have the same scale or meaning

over levels. In such cases, separate scores at different levels should be reported (Cronbach,

1976). When cluster invariance is assumed, it can be hypothesized that the mean of the

within-level scores is approximately equal to the between-level scores (Patarapichayatham

& Kamata, 2014). However, in the presence of cluster bias, itis not appropriate to report

the mean individual scores instead of the between-level scores.

As noted in Muthén and Asparouhov (2013), some applications are required to have

different item discriminations at each level and differentnumbers of latent variables at

each level. For example, Härnqvist, Gustafsson, Muthén,and Nelson (1994) found “fluid”

abilities highly loaded on a general factor in addition to five other residual factors at the

student level, whereas “crystallized” abilities highly loaded on the general factor in addition

to two other residual factors at the classroom level.

In addition, testing cluster bias is crucial for reducing the number of parameters to be

estimated in multilevel item response models or MSEM with binary responses. The model

with cluster invariance is a much simpler model than the model with cluster bias. In two-

level data with cluster bias, for example, a model with cluster invariance can be obtained by

setting equality constraints between the within-level item discriminations and the between-

level item discriminations when the number of latent variables over levels is the same in

the model.

Previous research on measurement invariance in multileveldata focused on testing
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whether the parameters of multiple-group multilevel confirmatory factor analysis (CFA)

are the same across groups at the cluster level (e.g., treatment school group vs. regular

school group) (Jak & Oort, 2015; Kim, Kwok, & Yoon; 2012; Mehta & Neale, 2005;

Muthén, Khoo, & Gustafsson, 1997; Ryu, 2014) or at the individual level (e.g., male stu-

dents vs. female students) (Jak et al., 2014; Kim, Yoon, Wen,Luo, & Kwok, 2015; Ryu,

2014). Jak and Oort (2015) reported the performance of a Waldtest and a likelihood ratio

test (LRT) to detect cluster bias at the cluster level with a two-level common factor model.

Compared to individual-level or cluster-level research, few studies have addressed the

cluster bias over levels (e.g., the student level and the school level). Jak et al. (2014)

presented a method for testing cluster bias in a two-level common factor model using a

chi-square difference test and evaluated the performance of the test to detect cluster bias

over levels. De Jong, Steenkamp, and Fox (2007) and Fox and Verhagen (2010) presented

random item response models to test whether individual-level item parameters differ over

clusters. Patarapichayatham and Kamata (2014) showed the effects of different patterns

and magnitudes of item discriminations over levels on the estimates of within-level and

between-level abilities in a two-parameter multilevel item response model. However, there

is a lack of research on the evaluation of cluster bias detection methods and the conse-

quences of ignoring cluster bias in terms of the accuracy of parameter estimates in the use

of multilevel item response models.

Thus, the first purpose of this study is to evaluate detectionmethods for cluster bias.

The second purpose is to show the consequences of ignoring cluster bias for the accuracy

of parameter estimates and standard errors (SEs) in a two-parameter multilevel item re-

sponse model because many multilevel IRT applications did not consider the cluster bias

in the model. We limit our study to two-level data and a latentvariable at each level that

are common among educational and psychology studies. Further, in this study, the param-

eters of the model are estimated using marginal maximum likelihood estimation (MMLE).

Accordingly, cluster bias detection methods are discussedwhen MMLE is used.
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This paper is organized as follows. First, we specify the two-parameter multilevel item

response model with and without cluster bias and present thedetection methods. Second,

an empirical study is shown to illustrate global and item cluster bias detection when the

two-parameter multilevel item response models are used. Subsequently, a simulation study

is presented to evaluate the detection methods and to show the consequences of ignoring

cluster bias. We end with a summary and a discussion.
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Chapter 2

Multilevel Item Response Model and Cluster Bias

To frame this data structure within the multilevel literature (e.g., Bryk & Raudenbush,

1992, Ch. 8), item responses at Level 1 are cross-classified with persons and items. Persons

at Level 2 are nested within clusters at Level 3. In our specification, Level 2 is the within-

level, and Level 3 is the between-level.

2.1 Multilevel Item Response Models

Multilevel Item Response Model with Cluster Bias

Figure 2.1 depicts a two-level two-parameter multilevel item response model with clus-

ter bias, which is then specified with equations. In the figure, the squares and the el-

lipses represent manifest and latent variables, respectively. Item responses are specified

as [y jk1, . . . ,y jki , . . . ,y jkI ]
′ for person j ( j = 1, . . . ,J), clusterk (k = 1, . . . ,K), and item

(i = 1, . . . , I ). Dependency in item responses is explained by two latent variables,θ jk and

θk, for the within-level and the between-level, respectively. Each item has its own item

discrimination at Level 2 and Level 3, specified asαi,W andαi,B, respectively. An item

location parameter,βi,B, is specified at Level 3.

Let there be a latent responsey∗jki so that the observed response is 1 wheny∗jki > 0 and

0 otherwise. Assuming that

y∗jki = αi,W ·θ jk +αi,B ·θk−βi,B+ ε jki , (2.1)

whereε jki is a logistic distribution with a logit link. An individual item score is the com-

bination of the cluster mean and its deviation from the cluster mean (E[y∗jki ] = E[y∗Bki] +

E[y∗W jki]) (Heck & Thomas, 2009). Accordingly, an item location is presented at Level 3.
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   . . .. . .

Between (Level 3)

Item Responses

Within (Level 2)

y jk1 y jki y jkI

α1,B αi,B αI ,B

α1,W αi,W αI ,W

β1,B

βi,B

βI ,B
θk

θ jk

1

N(0,1)

N(0,1)

Figure 2.1: Multilevel (two-level) item response model with cluster bias
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The latent response formulation in Equation 2.1 produces the model for the observed

responsey jki . The two-parameter multilevel item response model with cluster bias is as

follows:

logit[P(y jki = 1|θ jk,θk)] = αi,W ·θ jk +αi,B ·θk−βi,B. (2.2)

To identify the model, the means and variances of the latent variables (σ2 andτ2) are set to

0 and 1, respectively. Alternatively, item location and discrimination for one of the items

(e.g., the first item) can be set to 0 and 1, respectively, instead of setting the variances to 1:

β1 = 0, α1,W = 1, andα1,B = 1 to identify the location and scale units of parameters. This

scaling of the unit variances over levels provides comparable item discrimination estimates

over levels. However, this scaling does not yield equal units on a common construct. As

in multigroup item response models, item parameters can be linked through anchor items

over levels.

Based on Equation 2.2, an intraclass correlation (ICC) can be specified for each item to

indicate the proportion of variance that is attributable toclusters. The ICC is the correlation

coefficient (Corr) among the probabilities of the item responses on the logit scale for the

same clusterk, but different personsj and j ′, and can be defined as follows:

ICCi = Corr(P(y jki),P(y j ′ki)) =
Cov(P(y jki),P(y j ′ki))√

Var(P(y jki)) ·
√

Var(P(y j ′ki))
(2.3)

=
α2

i,Bτ2

√
α2

i,Wσ2+α2
i,Bτ2 ·

√
α2

i,Wσ2+α2
i,Bτ2

. (2.4)

With model identification constraints,σ2 = τ2 = 1, ICCi leads to

ICCi =
α2

i,B√
α2

i,W +α2
i,B ·

√
α2

i,W +α2
i,B

=
α2

i,B

α2
i,W +α2

i,B

. (2.5)

The derivation for ICCi is shown in the Appendix.

Cluster bias. Measurement invariance is tested at the following four levels (e.g.,
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Widaman & Reise, 1997): (a) configural invariance-the dimension and the pattern of zero

and non-zero loadings (or item discriminations) are the same across groups; (b) weak

invariance-the loading is invariant across groups; (c) strong invariance-the loading and the

intercept (or item location) are invariant across groups; and (d) strict invariance-the loading,

the intercept, and the residual variances are invariant across groups. Applying these four

analyses to cluster bias, only configural invariance and weak invariance are relevant to the

use of multilevel item response models. In this study, configural invariance was assumed

because we set a limit of one latent variable at each level. Inmultilevel measurement in-

variance testing for clusters, cluster bias over levels involves only item discriminations for

the weak invariance assumption.

With the derivation of ICCi (Equation 2.5), cluster bias (CBi) can be calculated as

follows:

CBi = αi,B−αi,W = αi,B−αi,B ·

√
1− ICCi

ICCi
. (2.6)

As can be seen in Equation 2.6, cluster bias magnitude increases with decreasing ICCi.

Multilevel Item Response Models with Cluster Invariance

When cluster invariance is assumed, equality constraints over levels are imposed on

item discriminations in Equation 2.2:αi,W = αi,B = αi . Accordingly, the two-parameter

multilevel item response model with cluster bias and ICCi reduces to

logit[P(y jki = 1|θ jk,θk)] = αi ·θ jk +αi ·θk−βi,B = αi · (θ jk +θk)−βi,B, (2.7)

and

ICCi =
α2

i

α2
i +α2

i

= 0.5. (2.8)

In the model with cluster invariance, the variance of the latent variable at Level 2 (σ2) can

be set to 1 for model identification, and the variance of the latent variable at Level 3 (τ2)

can be estimated. Alternatively, the ICC can be presented for latent variables in the models
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with cluster invariance:

ICCθ =
τ2

1+ τ2 . (2.9)

The ICCi is often smaller than 0.3 in cross-sectional empirical studies (e.g., Bliese,

2002; Hox, 2002; Snijders & Bosker, 1999), which indicates thatα2
i.B is likely to be smaller

thanα2
i.W in many applications. In addition, for the fixed number of ICCi = C, the mag-

nitudes of item discrimination parameters with the equality constraint,αi,B = αi,W = αi ,

are expected to be larger than the magnitudes of between-level item discriminations (αi,B)

as the number of items with cluster bias increases. Further,as the number of items with

cluster bias increases, the magnitudes ofαi are expected to be close toα2
i.W. Thus, in the

case of ICCi = C, the variance of the latent variable at Level 3 (τ2) decreases in a cluster

invariance model as the number of items with cluster bias increases (withσ2 = 1 for model

identification). To put this expected result ofτ2 into an equation,

ICCi =
α2

i.Bτ2

α2
i.W +α2

i.Bτ2
=C, (2.10)

whereα2
i.B tends to be overestimated thanα2

i andα2
i.W is close toαi as the number of items

with cluster bias increases. With this pattern,τ2 tends to be underestimated in order to have

ICCi =C.

2.2 Parameter Estimation

MMLE and expected a posteriori (EAP) scoring were implemented using Mplus ver-

sion 7.11 (Muthén & Muthén, 1998-2015). In Mplus, MMLE canbe implemented with the

MLR estimator option, which provides a test statistic and SEs using the Huber-White sand-

wich estimator that are robust against non-normality. Fifteen adaptive quadrature points

were used for estimation and EAP scoring.
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Chapter 3

Detection Methods

In this section, the LRT (also known as the chi-square difference test) and model in-

formation criteria are described as methods for detecting global cluster bias. In addition to

these methods, the Wald test is described as a method for detecting item cluster bias.

3.1 Global Cluster Bias

Two models that we compared to detect global cluster bias areas follows: Model 1 (the

invariance model), for all items, discrimination parameters are the same at the within-level

and the between-level; and Model 2 (the global bias model), for all items, the discrimination

parameters are freely estimated at the within-level and between-level.

Because the two models are nested, the LRT can be conducted. In the LRT, the ap-

proximately chi-square-distributed test statistics is−2 times the difference between the log

likelihoods from the two models, with degrees of freedom equal to the difference in the

number of free parameters (i.e., number of items + 1[variance at Level 3]).

The two models are also compared with model information criteria, the AIC (Akaike,

1974), the BIC (Schwarz, 1978), and the sample-size adjusted BIC (saBIC; Sclove, 1987),

specified for a Modelm as follows:

AICm =−2 ·LL+2p, (3.1)

BICm =−2 ·LL+ p · ln(J), (3.2)

and

saBICm =−2 ·LL+ p · ln(
J+2
24

), (3.3)

whereLL is the log-likelihood of the estimated model,p is the number of estimated pa-
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rameters, andJ is the number of observations. In calculating the BIC, it is difficult to

define the sample size (Skrondal & Rabe-Hesketh, 2004). In multilevel IRT applications,

the number of persons,J, has been used for this purpose (e.g., Bartolucci, Pennoni,& Vit-

tadini, 2011; Cho & Cohen, 2010; May, 2006). Thus, in the current study,J was chosen for

the calculation of the BIC. The lowest AIC or (sa)BIC value istaken to indicate the best

fitting model. See Cohen and Cho (2015) and Vrieze (2012) for reviews on using model

information criteria in item response modeling and latent variable modeling.

3.2 Item Cluster Bias

The following two models can be compared to detect item cluster bias, based on the

LRT, AIC, BIC, and saBIC specified in Equations 3.1-3.3: Model 1 (invariance model), for

all items, the discrimination parameters are the same at thewithin-level and the between-

level; and Model 2 (item bias model), for one item to be studied, the discrimination pa-

rameters are different at the within-level and the between-level. In the item bias model, the

variance of the Level 3 latent variable can be estimated because there are anchor items over

the levels. Thus, there is one degree of freedom for the LRT.

To detect item cluster bias, a Wald test for each item can be implemented. For an item

i, z= (α̂iW−α̂iB)−0
SE(α̂iW−α̂iB

) can be used to test whetherH0 : ai = αiW −αiB = 0 can be rejected at

the 0.05 level. A two-tailed test was implemented because item discrimination parameters

can range from positive infinity to negative infinity (Baker &Kim, 2004), and thus,αi

ranges from positive infinity to negative infinity. When an item is tested using the Wald

test, other items are assumed to be anchor items for scale comparability over levels. Thus,

the variance of the Level 3 latent variable can be estimated in the detection of item cluster

bias. It is expected that the performances of the Wald test and the LRT are similar because

the Wald test is asymptotically equivalent to the LRT (Engle, 1984).
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Chapter 4

Empirical Study

4.1 Data

To illustrate global and item cluster bias detection in the use of a two-parameter multi-

level item response model, we chose a data set collected by Doolaard (1999) and previously

analyzed by Fox and Glas (2001) and Vermunt (2007) using the two-parameter multilevel

item response models. The data are from an 18-item math test taken by 2,156 students in

97 schools in the Netherlands. The average cluster size (i.e., the number of students for

each school) was 22.22 (standard deviation = 10.31, range=[10, 66]).

4.2 Analysis

The data set was analyzed twice, once with the cluster invariance model and again with

the cluster bias model. Vermunt (2007) showed that a two-parameter item response model

with the same item discriminations over levels fits the same data better than Rasch model.

Fox and Glas (2001) analyzed the same data using a two-parameter two-level item response

model with unidimensionality at each level (assuming cluster invariance). Thus, we assume

that configural invariance holds across two levels (i.e., students at Level 2 and schools at

Level 3) to illustrate cluster bias detection methods and tocompare results between the

models with cluster invariance and with cluster bias.

4.3 Results

Table 4.1 presents the results of global and item cluster bias detection. There was

evidence of global cluster bias based on the LRT (chi-squarevalue=95.29,d f=17, p-

value=0.000), AIC, and saBIC. However, the BIC suggested evidence of global cluster

12



Table 4.1: An Empirical Study: Results of Cluster Bias Detection

Num. LL Wald(SE) LRT(d f) AIC BIC saBIC
Cluster Invariance 37 -20071.795 - - 40217.589 40427.602* 40310.048
Cluster Bias 54 -20024.150 - 95.290(17) 40156.300* 40462.805 40291.240*
Item 1 38 -20065.873 0.541*(0.146) 11.844*(1) 40207.745* 40423.434* 40302.703*
Item 2 38 -20067.790 0.534*(0.132) 8.010*(1) 40211.580* 40427.269* 40306.538*
Item 3 38 -20071.701 -0.058(0.148) 0.188(1) 40219.403 40435.091 40314.360
Item 4 38 -20070.832 0.211(0.162) 1.926(1) 40217.664 40433.352 40312.621
Item 5 38 -20071.156 -0.141(0.146) 1.278(1) 40218.311 40434.000 40313.269
Item 6 38 -20067.765 -0.345*(0.140) 8.060*(1) 40211.531* 40427.219* 40306.488*
Item 7 38 -20071.685 -0.060(0.132) 0.220(1) 40219.371 40435.059 40314.328
Item 8 38 -20070.772 -0.252(0.190) 2.046(1) 40217.543* 40433.232 40312.501
Item 9 38 -20071.427 -0.108(0.139) 0.736(1) 40218.854 40434.542 40313.811
Item 10 38 -20070.918 0.194(0.152) 1.754(1) 40217.836 40433.525 40312.794
Item 11 38 -20071.669 0.063(0.213) 0.252(1) 40219.338 40435.026 40314.295
Item 12 38 -20039.835 -1.006*(0.136) 63.920*(1) 40155.669* 40371.358* 40250.627*
Item 13 38 -20071.642 -0.115(0.306) 0.306(1) 40219.284 40434.973 40314.242
Item 14 38 -20071.781 0.022(0.165) 0.028(1) 40219.563 40435.251 40314.520
Item 15 38 -20069.259 0.324(0.172) 5.072*(1) 40214.517* 40430.206 40309.475*
Item 16 38 -20070.947 0.172(0.145) 1.696(1) 40217.894 40433.583 40312.852
Item 17 38 -20071.282 -0.219(0.222) 1.026(1) 40218.564 40434.252 40313.521
Item 18 38 -20071.780 -0.019(0.175) 0.030(1) 40219.560 40435.248 40314.517
Note.* indicates cluster bias.

invariance. For cluster bias at the item level, Items 1, 2, 6,and 12 were detected for item

cluster bias based on all criteria. Item 15 was detected as anitem having cluster bias based

on the LRT, AIC, and saBIC, and Item 8 was detected as an item having cluster bias based

only on the AIC.

Table 4.2 shows the item parameter estimates and the ICC for the models with and with-

out cluster bias. The item locations from the two models weresimilar (correlation=0.999).

With equality constraints over levels on item discriminations in the model with cluster

invariance, the item discrimination estimates are considered between-level item discrimi-

nations. Compared to between-level item discriminations in the cluster bias model, they

were overestimated in the invariance model. The SEs for the item discrimination estimates

in the cluster invariance model were smaller than those of the cluster bias model. In the

invariance model, the variance estimate of Level 3 was 0.351, which was an expected result

because ICCi in the invariance model was larger than that in the bias model.

Figure 4.1 presents the IRT scale score comparisons betweenthe model with cluster

bias and the model with cluster invariance. At Level 2 (the student level), it appears that
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Table 4.2: An Empirical Study: Results of Item Parameter Estimates from Models with
Cluster Bias and Cluster Invariance

Item Cluster Bias Cluster Invariance
αi,W αi,B βi,B ICC αi βi,B ICC

Item 1 1.161(0.121) 0.945(0.138) -0.509(0.176) 0.399 1.283(0.092) -0.539(0.134) 0.5
Item 2 1.220(0.145) 0.920(0.176) -1.408(0.172) 0.363 1.318(0.099) -1.435(0.143) 0.5
Item 3 1.133(0.125) 0.655(0.124) -0.186(0.122) 0.250 1.120(0.077) -0.183(0.119) 0.5
Item 4 1.121(0.146) 0.812(0.191) -1.609(0.168) 0.344 1.195(0.115) -1.630(0.142) 0.5
Item 5 0.731(0.111) 0.388(0.124) -0.891(0.101) 0.220 0.701(0.084) -0.883(0.094) 0.5
Item 6 0.874(0.105) 0.368(0.076) 0.051(0.090) 0.151 0.791(0.067) 0.066(0.099) 0.5
Item 7 1.119(0.116) 0.568(0.118) -0.734(0.132) 0.205 1.069(0.091) -0.721(0.121) 0.5
Item 8 1.162(0.149) 0.528(0.145) -2.333(0.164) 0.171 1.066(0.095) -2.292(0.144) 0.5
Item 9 0.979(0.102) 0.476(0.098) -0.459(0.096) 0.191 0.927(0.071) -0.446(0.097) 0.5
Item 10 0.814(0.126) 0.596(0.111) -1.274(0.137) 0.349 0.874(0.082) -1.290(0.111) 0.5
Item 11 0.981(0.140) 0.585(0.152) -1.389(0.156) 0.262 0.978(0.086) -1.388(0.119) 0.5
Item 12 0.968(0.097) 0.013(0.078) -0.045(0.067) 0.000 0.650(0.054) 0.009(0.094) 0.5
Item 13 1.136(0.242) 0.607(0.189) -2.934(0.224) 0.222 1.104(0.160) -2.926(0.180) 0.5
Item 14 1.595(0.142) 0.935(0.219) -1.835(0.194) 0.256 1.582(0.118) -1.830(0.185) 0.5
Item 15 1.075(0.152) 0.732(0.144) -1.151(0.139) 0.317 1.126(0.113) -1.166(0.115) 0.5
Item 16 0.756(0.089) 0.472(0.102) -0.869(0.096) 0.280 0.767(0.073) -0.872(0.084) 0.5
Item 17 1.334(0.185) 0.725(0.134) -2.563(0.169) 0.228 1.295(0.113) -2.549(0.165) 0.5
Item 18 1.057(0.142) 0.604(0.122) -0.463(0.114) 0.246 1.039(0.077) -0.459(0.109) 0.5
Note.Estimates are not on the same scale.

the scores from the two models were similar (correlation=0.999). At Level 3 (the school

level), the scores for the model with invariance were higherthan the scores for the model

with cluster bias at the lower level of the IRT scale scores. However, the reverse pattern was

found at the higher level of the IRT scale scores. Figure 4.2 reports the SE comparisons

between the model with cluster bias and the model with cluster invariance. The SEs for

the model with cluster invariance were larger than those forthe model with cluster bias at

Level 2, whereas the SEs for the model with cluster invariance were smaller than for the

model with cluster bias at Level 3. The smaller SEs in the model with cluster invariance

may be due to overestimated item discriminations at Level 3 with equality constraints.
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Figure 4.1: Score comparisons between cluster bias (x-axis) and cluster invariance (y-axis)
at Level 2 (top) and at Level 3 (bottom)
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Figure 4.2: Standard error (SE) comparisons between cluster bias (x-axis) and cluster in-
variance (y-axis) at Level 2 (top) and at Level 3 (bottom)

16



Chapter 5

Simulation Study

Cluster bias and cluster invariance conditions were generated to evaluate detection

methods for Type I error rates and power, and to present the consequences of ignoring

cluster bias. For cluster bias conditions, the population data-generating model is a two-

parameter multilevel item response model with cluster bias(Equation 2.2). An R program

(R Core Team, 2015) was used to generate data sets.

We selected simulation conditions that may affect the parameters of multilevel model-

ing from previous research (e.g., Lüdtke, Marsh, Robitzsch, & Trautwein, 2011; Preacher,

Zhang, & Zyphur, 2011). The simulation conditions include the number of clusters, cluster

size (i.e., the number of individuals per cluster), and the ICC. Further, simulation condi-

tions related to cluster bias such as the magnitudes of cluster bias and the number of items

that have cluster bias were also considered (e.g., Patarapichayatham & Kamata, 2014). As

shown in Equation 2.5, the degree of the ICC reflects the cluster bias magnitudes. In this

study, the ICC was chosen as a simulation condition instead of cluster bias magnitudes. In

the following, we explain these selected conditions in moredetail.

5.1 Simulation Condition

Number of clusters.

The number of clusters was set toK = 50 or 100. The smaller size of 50 was chosen

in accordance with what is found in many intervention studies (e.g., Bottge et al., 2015).

The larger size of 100 represents the magnitude found in national or international assess-

ments (e.g., National Assessment of Educational Progress and the Trends in International

Mathematics and Science Study).

Cluster size.
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Balanced cluster sizes were selected asnk = 20 or 50; both are commonly found in

multilevel studies (e.g., Preacher et al., 2011).

Given a selected number of clusters and cluster size, the total number of individuals

results in four different sample sizes,J = 1,000, 2,000, 2,500, or 5,000.

ICC (cluster bias magnitude).

The ICC was set at ICC = .05, .10, or .30. ICC values are rarely greater than .30 in

educational and organizational studies (e.g., Bliese, 2002). As considered in Preacher et al.

(2011), values of .05, .10, and .30 represent small, medium,and large ICCs, respectively.

Number of items that have cluster bias.

Twenty percent, 50%, and 100% of the items (4 items, 10 items,and 20 items, respec-

tively) were considered as the number of items that have cluster bias. The first 16 items and

10 items for the 20% and 50% conditions, respectively, were set to have cluster invariance.

As a fixed condition, the number of item parameters was set at 20. Item parameters for

the model with cluster invariance (αi andβi) were generated. Cluster bias was introduced

to item discriminations at Level 3 (αi,B) for the model with cluster bias and was manipu-

lated by the ICC (using Equation 2.5). Item location (βi) was generated from a standard

normal distribution, and item discrimination (αi,W) was generated from a log-normal distri-

bution with a mean of 0 and a variance of .25 used as a prior distribution in the BILOG-MG

program (Zimowski, Muraki, Mislevy, & Bock, 1996). Latent variables (θ jk andθk) were

generated with a standard normal distribution to adhere to the model identification con-

straints.

For cluster bias, 500 replications were simulated for each of the 36 conditions (= 2

levels for the number of clusters× 2 levels for cluster sizes× 3 degrees of ICC× 3 levels

for the number of items that have cluster bias) to show the performance of the detection

methods. To show the consequences of ignoring cluster bias and the model comparison

approaches, each generated data set per condition was analyzed twice, once with the model

with cluster invariance and with the model with cluster bias. Thus, the total number of runs
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was 36,000 (= 36 conditions× 500 replications× 2 models). For detecting item cluster

bias, the models with item cluster bias were compared with the invariance model. The

number of item cluster bias models was the same as the number of items that have cluster

bias: 4, 10, and 20 models for the 20%, 50%, and 100% bias conditions, respectively.

The total number of runs was 24,000 for the 20% bias condition, 60,000 for the 50% bias

condition, and 120,000 for the 100% bias condition (= 12 conditions × 500 replications

× each number of models). Four additional conditions were conducted to show Type I

error rates of detection methods at different levels of sample sizes (2 levels of cluster size

and 2 levels of the number of clusters). The invariance modeland the global bias model

were compared in these conditions. Therefore, an additional 4,000 (= 4 conditions× 500

replications× 2 models) were considered for Type 1 error rates in the case ofglobal bias.

5.2 Evaluation Measure

The performance of the detection methods was evaluated for Type I error rates and

power. Type I error rates were defined as the ratio of the number of times that global cluster

bias was incorrectly identified by the detection methods across replications when no bias

was simulated. Power was defined as the proportion of the number of times that global and

item cluster bias was correctly identified by the detection methods across replications when

cluster bias was simulated.

To show the consequences of ignoring cluster bias, bias and the root mean square error

(RMSE) for the item parameter estimates, and the IRT scale scores were calculated for

the results of the model with cluster invariance. Bias for the item location estimates and

IRT scale scores were considered instead of relative bias because the relative bias can be

misleading when the true parameters to be used in the denominator are close to 0. However,

for within- and between-item discriminations that are not near 0 values in the denominator,

percentage relative bias was considered instead of bias to present the acceptable degree

with an empirical cutoff (i.e., 10%).
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To evaluate the SEs for each kind of parameter estimate, the relative difference of the

estimated SE (Hoogland & Boomsma, 1998) for each model was calculated and compared

between the cluster invariance model and the global bias model:

SE=
ŜE−σ

σ
, (5.1)

whereŜE is the average SE across replications andσ is the standard deviation of the pa-

rameter estimates across the replications.

5.3 Result Hypotheses

In this section, the expected results are described for the detection methods and the

accuracy of the parameter estimates and SEs.

Model selection.

The LRT and the information criteria are used to detect global cluster bias. Deviance

becomes smaller as a model has more free parameters to estimate. Therefore, the deviance

of a global cluster bias model is always smaller than that of an invariance model. The

difference in deviance between the two models approximately follows the chi-square dis-

tribution with the difference in the number of free parameters as the degrees of freedom. If

the global cluster bias model has a better fit than the invariance model, the LRT result will

be significant. The result of the LRT becomes significant whenthe difference in deviances

is large and the degrees of freedom are small. The differencein the number of parameters

is smaller in conditions with a small number of items that have cluster bias. Therefore, the

LRT is more likely to show significant results in conditions with a small number of items

that have cluster bias, controlling for deviance. The difference in the cluster bias magnitude

between the global cluster bias model and the invariance model is greater in low ICC con-

ditions, which results in a large difference between the deviances. Accordingly, the LRT is

more likely to show significant results in low ICC conditions.
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The AIC tends to select the more complicated model (the global cluster bias model)

when the difference in the number of parameters is smaller between the two models (e.g.,

Burnham & Anderson, 2002). Therefore, the AIC is expected toselect the global cluster

bias model compared to the invariance model in conditions with a small number of items

that have cluster bias when the deviance of the two models is the same. In addition, when

only the ICC differs between the two models, the deviance candiffer between the two

models even though the number of parameters is the same. Therefore, the AIC is expected

to select the global cluster bias model in low ICC conditions, controlling for other factors.

Further, as the sample size becomes larger, the deviance also becomes larger, controlling

for the number of parameters. Because the AIC does not take into account the sample size,

the AIC is expected to select the global cluster bias model inlarger sample size conditions,

controlling for other factors.

The BIC penalizes more than the AIC when the sample size becomes larger than 8

(ln(8) = 2.08). The sample size is always larger than 8 in the simulationconditions. In

addition, a more drastic increase in log-likelihood is required before a complex model (the

global cluster bias model) is chosen over a simple model (theinvariance model). Therefore,

the BIC is expected to select the global cluster bias model less often than the AIC. The BIC

also takes into account the number of parameters in the penalty term; thus the expected

pattern is similar to AIC: the global cluster bias model willbe selected when there is a

small number of items having cluster bias and low ICC conditions, controlling for other

factors. In spite of the penalty term for the sample size, previous research has shown that

the accuracy of the information criteria improves when the sample size is large (e.g., Lin &

Dayton, 1997).

The Wald test is used to detect item cluster bias. The result of the Wald test is significant

when the cluster bias magnitude is large and the SE is small. Therefore, it is likely that the

power will be higher in low ICC conditions (the cluster bias magnitude is large) and large

sample sizes conditions (the SE is small). Information criteria are also used to detect item
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cluster bias. The general pattern of results by condition isexpected to mimic that presented

for global cluster bias. That is, higher power is expected inthe low ICC and small number

of items having cluster item bias conditions.

Consequences of ignoring cluster bias.

The invariance model has the same item discrimination parameter estimates over levels

even when the true parameters are different. This equality constraint makes item discrim-

ination parameter estimates in the invariance model more biased than those in the global

cluster bias model. Because between-level item discriminations are smaller than within-

level item discriminations (in our simulation design and expected in the empirical study),

it is expected that the between-level item discriminationsare overestimated. Under the in-

variance model, bias is expected to be larger in low ICC conditions because the cluster bias

magnitude is larger. In addition, in the invariance model, bias is expected to be larger in

large cluster bias item conditions because more items exhibit cluster bias.

As shown in Equation 1, the probability of a correct responseis expressed as the dif-

ference between the item location parameter and the IRT scale score weighted by the item

discrimination parameter. The item location parameter estimates will not be biased if the

mean of the weighted IRT scale scores is assumed to be the sameas in the population. The

distribution of the true IRT scale scores at each level follows the standard normal distribu-

tion. The mean of the weighted IRT scale scores is not affected by the item discrimination

parameter because the mean of the true IRT scale scores is 0. The mean of the IRT scale

scores for each model was assumed to be 0 for model identification in the invariance model

and global cluster bias model. Because the mean of the IRT scale scores is assumed to be 0

and the mean of the true population is also 0, the item location parameter estimates are not

biased in either model.

As the bias becomes larger, the RMSE also becomes larger whenvariance is controlled.

As the bias for the item discrimination parameter is larger for the invariance model than for

the global cluster bias model, the RMSE is also expected to belarger for the invariance

22



model. For the invariance model, the RMSE is expected to be larger in conditions with a

low ICC and a large number of cluster bias items because the estimates are more biased

in those conditions. For the global cluster bias model, the RMSE is not influenced by

those conditions because the estimates are not biased. As the sample size increases, the

SE of the estimates decreases. Under both models, the RMSE isexpected to be smaller

in large sample size conditions, controlling for bias. Because the item location parameter

estimates are not biased, the RMSE is influenced only by the sample size. The item location

parameter estimates are expected to be smaller in large sample size conditions in both

models.

When MMLE is used, IRT scale scores are predicted based on theitem parameter esti-

mates. Item parameter estimates are more biased and have larger RMSE in the invariance

model than in the true model. As a result, the IRT scale scoresare expected to be more

biased and have larger RMSE in the invariance model than in the the global cluster bias

model. Within each model, the bias is expected to be larger inconditions with a low ICC

and a large number of cluster bias items because the bias of the item parameters is larger in

those conditions, when the variability of the estimates is the same between the two models.

The RMSE is expected to be larger in low ICC, large number of cluster bias items, and

smaller sample size conditions because the RMSE of the item parameters is larger in those

conditions.

The differences in the SE between the invariance and clusterbias models are expected

to be stronger as the ICC and the number of items with cluster bias are larger.

5.4 Results

No convergence problem occurred during the estimation process. Below, we first show

the results for the detection methods. Subsequently, the results for the consequences of

ignoring cluster bias are presented in terms of bias and the RMSE for the item parameter

estimates and the IRT scale score.
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Results of Detection Methods

Type I error rates. Table 5.1 shows the Type I error rates for the detection methods.

To investigate the Type I error rates of the detection methods, the invariance model was

compared with the global bias model when there was no clusterbias.

The Type I error rate for the LRT and the AIC was mainly affected by cluster size,nk.

For the LRT, the Type I error rate was 0.040 in the level ofnk = 50, whereas it marginally

exceeds in the level ofnk = 20. The AIC fell below the nominal significance level: 0.008

with nk = 20 and 0.006 withnk = 50. The Type I error rate was 0 across all conditions for

the BIC and the saBIC.

Power. In this subsection, the power of the detection methods is presented for global

cluster bias and item cluster bias, respectively.

Global cluster bias.Table 5.1 and Figure 5.1 (top) present the result of power based

on the LRT and the information criteria. In the 20% and 50% bias conditions, all criteria

yielded acceptable power for all conditions (>0.994) except two conditions for the BIC.

The power for the two conditions based on the BIC was 0.832 and0.606 in ICC= 0.3, K =

50,nk = 20 in the presence of 20% and 50% bias. In the 100% bias condition, all methods

did not successfully detect the true model, the invariance model. Power ranged from 0.036

to 0.190 for the LRT, less than or equal to 0.028 for the AIC. Power for the saBIC was 0 for

all conditions. The power of the LRT and the AIC decreased with increasing sample size

and increasing ICC.

Item cluster bias.Table 5.2 and Figure 5.1 (bottom) present the power results for cluster

bias at the item level. The power of the AIC was the highest across all conditions among

the five detection methods. The Wald test, LRT, and saBIC showed similar power across

all conditions. The BIC showed the lowest power. In the 20% and 50% bias conditions,

the following patterns were evident. All methods but the BICshowed acceptable (>0.800)

power in the ICC=0.05 and ICC=0.1 conditions. When the ICC=0.3, all methods failed

to have acceptable power, except for the largest sample size(i.e., K = 100,nk = 50). For
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Table 5.1: Simulation Study: Type I error and Power for Global Cluster Bias

DIF% ICC K nk LRT AIC BIC saBIC
0 .50 50 20 0.060 0.008 0.000 0.000
0 .50 50 50 0.040 0.006 0.000 0.000
0 .50 100 20 0.056 0.008 0.000 0.000
0 .50 100 50 0.040 0.006 0.000 0.000
20 .05 50 20 1.000 1.000 1.000 1.000
20 .05 50 50 1.000 1.000 1.000 1.000
20 .05 100 20 1.000 1.000 1.000 1.000
20 .05 100 50 1.000 1.000 1.000 1.000
20 .1 50 20 1.000 1.000 1.000 1.000
20 .1 50 50 1.000 1.000 1.000 1.000
20 .1 100 20 1.000 1.000 1.000 1.000
20 .1 100 50 1.000 1.000 1.000 1.000
20 .3 50 20 1.000 1.000 0.832 0.994
20 .3 50 50 1.000 1.000 1.000 1.000
20 .3 100 20 1.000 1.000 0.998 1.000
20 .3 100 50 1.000 1.000 1.000 1.000
50 .05 50 20 1.000 1.000 1.000 1.000
50 .05 50 50 1.000 1.000 1.000 1.000
50 .05 100 20 1.000 1.000 1.000 1.000
50 .05 100 50 0.998 1.000 1.000 1.000
50 .1 50 20 1.000 1.000 1.000 1.000
50 .1 50 50 1.000 1.000 1.000 1.000
50 .1 100 20 1.000 1.000 1.000 1.000
50 .1 100 50 1.000 1.000 1.000 1.000
50 .3 50 20 1.000 1.000 0.606 0.996
50 .3 50 50 1.000 1.000 1.000 1.000
50 .3 100 20 1.000 1.000 0.996 1.000
50 .3 100 50 1.000 1.000 1.000 1.000
100 .05 50 20 0.190 0.028 0.000 0.000
100 .05 50 50 0.056 0.006 0.000 0.000
100 .05 100 20 0.098 0.014 0.000 0.000
100 .05 100 50 0.060 0.004 0.000 0.000
100 .1 50 20 0.086 0.008 0.000 0.000
100 .1 50 50 0.068 0.002 0.000 0.000
100 .1 100 20 0.062 0.004 0.000 0.000
100 .1 100 50 0.036 0.006 0.000 0.000
100 .3 50 20 0.068 0.006 0.000 0.000
100 .3 50 50 0.038 0.000 0.000 0.000
100 .3 100 20 0.052 0.004 0.000 0.000
100 .3 100 50 0.050 0.006 0.000 0.000
Note.Type I error rates in bold
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Table 5.2: Simulation Study: Power for Item Cluster Bias

bias% ICC K nk Wald LRT AIC BIC saBIC
20 .05 50 20 0.971 0.971 0.992 0.915 0.971
20 .05 50 50 1.000 1.000 1.000 0.999 1.000
20 .05 100 20 0.997 0.996 1.000 0.983 0.995
20 .05 100 50 1.000 1.000 1.000 1.000 1.000
20 .1 50 20 0.937 0.935 0.976 0.830 0.938
20 .1 50 50 0.998 0.999 1.000 0.983 0.997
20 .1 100 20 0.991 0.991 0.998 0.956 0.989
20 .1 100 50 1.000 1.000 1.000 1.000 1.000
20 .3 50 20 0.597 0.587 0.738 0.433 0.595
20 .3 50 50 0.834 0.825 0.920 0.628 0.783
20 .3 100 20 0.747 0.752 0.860 0.541 0.710
20 .3 100 50 0.950 0.951 0.982 0.828 0.918
50 .05 50 20 0.878 0.874 0.941 0.767 0.878
50 .05 50 50 0.978 0.975 0.991 0.923 0.967
50 .05 100 20 0.955 0.953 0.981 0.885 0.944
50 .05 100 50 0.998 0.997 1.000 0.986 0.997
50 .1 50 20 0.804 0.803 0.886 0.680 0.807
50 .1 50 50 0.943 0.942 0.974 0.856 0.927
50 .1 100 20 0.915 0.915 0.958 0.811 0.899
50 .1 100 50 0.994 0.994 0.999 0.965 0.989
50 .3 50 20 0.473 0.467 0.627 0.305 0.475
50 .3 50 50 0.683 0.667 0.786 0.485 0.622
50 .3 100 20 0.605 0.607 0.741 0.428 0.567
50 .3 100 50 0.901 0.824 0.899 0.649 0.764
100 .05 50 20 0.068 0.051 0.152 0.009 0.054
100 .05 50 50 0.072 0.047 0.152 0.004 0.029
100 .05 100 20 0.062 0.050 0.156 0.005 0.036
100 .05 100 50 0.060 0.048 0.149 0.003 0.020
100 .1 50 20 0.064 0.050 0.157 0.008 0.053
100 .1 50 50 0.074 0.048 0.160 0.005 0.030
100 .1 100 20 0.063 0.054 0.159 0.005 0.038
100 .1 100 50 0.060 0.051 0.159 0.004 0.021
100 .3 50 20 0.062 0.050 0.150 0.009 0.053
100 .3 50 50 0.064 0.046 0.152 0.004 0.028
100 .3 100 20 0.052 0.046 0.152 0.005 0.032
100 .3 100 50 0.059 0.052 0.159 0.004 0.022

Average
bias%
20% 0.918 0.917 0.955 0.841 0.908
50% 0.844 0.835 0.899 0.728 0.820
100% 0.063 0.049 0.155 0.005 0.035
ICC
0.05 0.618 0.612 0.655 0.575 0.607
0.1 0.603 0.598 0.648 0.546 0.591
0.3 0.502 0.489 0.597 0.360 0.464
K
50 0.552 0.544 0.619 0.465 0.537
100 0.600 0.594 0.650 0.592 0.576
nk
20 0.569 0.564 0.646 0.476 0.557
50 0.648 0.637 0.693 0.574 0.617
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Figure 5.1: power: Global cluster bias (top) and item cluster bias (bottom)
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the largest sample size, the AIC, LRT, and Wald test showed power over 0.800. For all

criteria, power decreased with the increasing number of biased items and ICC, whereas

power increased with the increasing number of clusters and cluster sizes. In the 100%

bias condition, all methods showed low power, and power was not largely affected by any

conditions of the number of clusters, cluster size, or ICC. The power for the saBIC, Wald

test, LRT, and BIC was less than or equal to 0.074. The power for the AIC was less than or

equal to 0.160.

Results for Consequences of Ignoring Cluster Bias

In this section, the accuracy of the item parameter estimates and the IRT scale scores

and that of the SEs are presented for the invariance model andthe global bias model in

the presence of cluster bias. Accordingly, the results of the invariance model are for the

consequence of ignoring cluster bias. Results of the globalbias model are reported for

comparison purposes.

Item parameter estimates.

Bias.The bias for the item discrimination parameters is shown in Table 5.3 and Figure

5.2. Relative bias was reported for item discrimination estimates, and absolute bias was re-

ported for item location estimates. Regarding within-level item discrimination parameters,

the relative bias in all conditions was less than 10% for the invariance model and the global

bias model. The performance of the global bias model was superior to that of the invari-

ance model in the 20% and 50% conditions except the 20% bias and ICC=0.3 conditions.

For those conditions, the invariance model showed smaller bias than the global bias model

because the degree of bias was ignorable. These results indicate that ignoring cluster bias

led to inaccurate results in within-level item discrimination estimates unless the number of

cluster bias items was small and the ICC was high (the degree of bias was inversely related

to ICC). When cluster bias was ignored as in the invariance model, the bias was negative

(i.e., the within-level item discrimination parameters were underestimated) and increased

with number of bias items in 20% and 50% conditions.
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Figure 5.2: Accuracy: Percentage relative bias for within-level item discrimination param-
eters (αi,W) (top) and between-level item discrimination parameters (αi,B) (bottom)
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However, in the 100% condition, the bias in the invariance model was unexpectedly

smaller than the bias in the global bias model. We further investigated the item discrim-

ination parameter estimates in the invariance model to investigate these unexpected re-

sults. When cluster invariance items exist over levels as inthe 20% and 50% conditions,

the within-level item discrimination estimates were closeto an average of the within- and

between-item discrimination parameters in the invariancemodel. However, when all item

discriminations differed between levels as in the 100% condition, the within-level item dis-

crimination estimates were close to the within-level item discrimination parameters instead

of the average of the within- and between-level item discrimination estimates.

Regarding the between-level item discrimination parameters, the bias was dramatically

higher for the invariance models than for the global bias model across all conditions, which

suggested that ignoring cluster bias would be problematic in terms of the accuracy of the

between-level item discrimination estimates. As expected, the between-level item discrim-

ination parameters were overestimated in ignoring clusterbias. For the global bias models,

the relative bias was acceptable (<10%) in most conditions, except the condition when the

number of cluster bias items was 100%, ICC was low, and the sample size was small. The

invariance model showed acceptably small bias only with 20%cluster bias and 0.3 ICC

conditions. The bias was positive (i.e., the between-levelitem discrimination parameters

were overestimated) and decreased with a higher ICC and a decreasing number of cluster

bias items.

Regarding the item location parameters, in most conditionsthe bias was small regard-

less of the model. The degree of bias was less than or equal to .033 across all conditions.

RMSE.Concerning the within-level item discrimination RMSEs (see Figure 5.3 top),

the global bias model outperformed the invariance model in the 20% and 50% bias con-

ditions. The global bias model showed small RMSEs in most conditions (from 0.047 to

0.115), whereas the invariance model showed larger RMSEs for low ICC (i.e., a higher

bias magnitude in item discriminations) and a larger numberof cluster bias items. How-

30



ever, in the 100% bias condition, the RMSE in the invariance model was a bit higher than

the RMSE in the global bias model. This unexpected pattern isfrom the fact that there was

smaller bias in the invariance model than in the global bias model (as discussed above) and

there was a smaller number of item discrimination parameters to be estimated in the invari-

ance model than in the cluster bias model (i.e., smaller variability). The RMSE decreased

with the increasing number of clusters and cluster size.

Regarding the between-level item discrimination parameters (see Figure 5.3 bottom),

the global bias model showed better performance in all conditions, which implies that the

result interpretation for the between-level item discrimination estimates can be misleading

when ignoring cluster bias. Similar to the within-level item discrimination parameters, a

higher ICC was positively associated with a smaller RMSE forthe invariance model in

the 20% and 50% conditions. In the 100% condition, the invariance model had a notice-

ably high RMSE when global bias was used because of the large degree of bias. In this

condition, the RMSE was not affected by sample size.

Regarding RMSEs for item location estimates, the global bias model and the invariance

model yielded comparable values in every condition.

Relative bias of SE.Regarding the SE for the within-level item discrimination parameter

estimates, acceptable levels of bias for the SE were obtained in almost every condition for

the global bias model, whereas unacceptable bias was found for the invariance model in

low ICC (0.05 and 0.1) and large cluster size (nk = 50) conditions.1 Regarding the SE

for the between-level item discrimination parameter estimates, the relative bias of the SE

for the invariance model was identical to that for the within-level discrimination parameter

because of the equality constraint. The global bias model showed acceptable relative bias

in the 20% and 50% bias conditions, but unacceptable SEs wereobtained in the 100%

1Increasing relative bias of SE in a large cluster size might be counter-intuitive. This result resulted in
the characteristics of relative bias. The standard deviation of estimates decreased as the total number of
individuals increased, whereas the average of estimate SE decreased both the number of individuals and the
number of clusters increased. Thus, controlling for the number of individuals, the relative bias of SE was
larger in large cluster size conditions.
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Figure 5.3: Accuracy: RMSE for within-level item discrimination parameters (αi,W) (top)
and between-level item discrimination parameters (αi,B) (bottom)
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bias condition. The SE was severely overestimated the most in the low ICC (0.05) and

the smallest sample size (nk = 20 andK = 50) condition. Concerning the item location

parameter, both models yielded overestimated SEs in every condition. The relative bias

increased with increasing sample sizes.

IRT scale score precision. When there was no cluster bias, the IRT scale score did not

show any difference between the invariance and global bias models in terms of bias and

RMSE. Below, the results are interpreted for cluster bias conditions (i.e., 20%, 50%, and

100%).

Bias. Table 5.4 presents the accuracy of IRT scale scores (also seeFigure 5.4). The

invariance model and the global bias model yielded comparable values in almost every

condition: from -0.033 to 0.018 for the invariance model andfrom -0.033 to 0.043 for the

global bias model. Bias was mainly affected by the total sample sizes (i.e.,J=number of

clusters× cluster size). For example, the average bias of the IRT scalescores at the within-

level across conditions within the same total sample size was 0.022, -0.033, -0.021, and

0.001 inJ=1000, 2500, 2000, and 5000, respectively, and the bias did not differ between

the invariance and global bias models.

RMSE.Regarding the IRT scale scores at the within- and between-levels (see Figure

5.5), the RMSE for the invariance model was higher than that of the global bias model

except the 100% bias condition. The RMSE decreased with increasing sample size (J) and

higher ICC in both models. In the 100% bias condition, the RMSE ranged from .366 to

.760 for the invariance model and from .237 to .967 for the global bias model. This extreme

RMSE at the between-level resulted from different reasons in the invariance and global bias

models. In the invariance model, the estimated variance of the scores at the between-level

was largely underestimated. Thus, all IRT scores at the between-level shrank to the mean.

In the global bias model, there was no problem with the variance of the latent variable at

the between-level because it was fixed to 1 for model identification. Instead, the item dis-

crimination parameter estimates were close to 0 as the ICC decreased (range=[0.089,0.528]
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Figure 5.4: Accuracy: Bias for IRT scale scores at Level 2 (θ jk) (top) and at Level 3 (θk)
(bottom)
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for ICC=0.05; range=[0.129,0.767] for ICC=0.1; range=[0.254,1.506] for ICC=0.3). It was

because the true parameters at the between-level for items with a low ICC had values close

0 according to the formula we used for the ICC calculation as in Equation (5).

Relative bias of SE.Across all conditions, the estimated SE was less accurate for both

the within- and between-levels in the invariance model thanthe global bias model. The ac-

curacy of the SE estimation for the global bias model worsened as ICC increased, whereas

that for the invariance model was not affected by the ICC. In the 100% bias condition, the

invariance model revealed that the relative bias of the SE atthe between-level decreased as

ICC increased.
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Figure 5.5: Accuracy: RMSE for IRT scale scores at Level 2 (θ jk) (top) and at Level 3 (θk)
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Table 5.3: Simulation Study: Accuracy of Item Parameter Estimates

Bias* RMSE SE
Invar. Bias Invar. Bias Invar. Bias

DIF% ICC K nk αW αB β αW αB β αW αB β αW αB β αW αB β αW αB β
0 .50 50 20 1.27 1.27 0.020 1.53 -1.93 0.012 0.103 0.103 0.093 0.131 0.114 0.090 0.040 0.040 1.143 0.023 0.457 1.187
0 .50 50 50 0.91 0.91 -0.030 1.12 -2.59 -0.025 0.065 0.065 0.066 0.081 0.076 0.062 0.028 0.028 2.128 0.014 0.991 2.224
0 .50 100 20 0.68 0.68 -0.009 0.79 0.54 -0.006 0.071 0.071 0.066 0.092 0.079 0.064 0.036 0.036 1.149 0.022 0.361 1.199
0 .50 100 50 1.34 1.34 0.014 1.36 -3.65 0.015 0.049 0.049 0.0490.060 0.064 0.044 0.028 0.028 1.588 0.021 0.965 2.034
20 .05 50 20 -2.77 35.34 0.017 1.45 -0.68 0.025 0.216 0.180 0.092 0.109 0.102 0.094 0.073 0.073 0.966 0.023 0.019 0.966
20 .05 50 50 -3.00 35.66 -0.030 1.20 0.42 -0.020 0.185 0.151 0.068 0.068 0.063 0.060 0.138 0.138 1.786 0.026 0.035 1.814
20 .05 100 20 -3.76 33.84 -0.006 0.54 0.65 -0.008 0.190 0.151 0.067 0.074 0.069 0.064 0.074 0.074 0.997 0.032 0.036 0.993
20 .05 100 50 -2.80 35.88 0.017 1.44 -0.96 0.017 0.178 0.145 0.048 0.051 0.048 0.045 0.170 0.170 1.621 0.051 0.067 1.676
20 .1 50 20 -1.90 23.40 0.016 1.36 0.15 0.026 0.197 0.168 0.0910.108 0.100 0.094 0.062 0.062 0.993 0.032 0.030 0.990
20 .1 50 50 -2.01 23.50 -0.032 1.21 0.67 -0.020 0.169 0.142 0.069 0.069 0.064 0.061 0.102 0.102 1.763 0.013 0.017 1.794
20 .1 100 20 -2.85 22.06 -0.005 0.52 0.44 -0.006 0.175 0.141 0.066 0.075 0.069 0.065 0.056 0.056 0.998 0.028 0.033 0.995
20 .1 100 50 -1.81 23.69 0.015 1.43 0.03 0.017 0.162 0.135 0.046 0.051 0.047 0.045 0.140 0.140 1.672 0.053 0.062 1.691
20 .3 50 20 0.13 8.79 0.017 1.32 0.85 0.026 0.143 0.133 0.092 0.108 0.103 0.095 0.040 0.040 1.045 0.034 0.026 1.043
20 .3 50 50 -0.01 8.68 -0.033 1.05 0.97 -0.021 0.110 0.103 0.068 0.067 0.065 0.062 0.044 0.044 1.923 0.032 0.021 1.936
20 .3 100 20 -0.64 7.90 -0.006 0.46 0.55 -0.005 0.119 0.104 0.065 0.075 0.071 0.064 0.047 0.047 1.072 0.041 0.039 1.075
20 .3 100 50 0.19 8.87 0.018 1.24 0.97 0.017 0.102 0.094 0.045 0.051 0.048 0.046 0.051 0.051 1.833 0.026 0.030 1.780
50 .05 50 20 -8.33 105.39 0.018 1.15 -3.89 0.028 0.303 0.334 0.090 0.114 0.099 0.094 0.126 0.126 0.743 0.028 0.026 0.731
50 .05 50 50 -8.58 106.46 -0.029 1.05 -1.09 -0.009 0.276 0.3160.069 0.071 0.062 0.060 0.273 0.273 1.290 0.034 0.032 1.306
50 .05 100 20 -9.89 100.43 -0.003 0.21 -0.14 -0.004 0.295 0.310 0.066 0.080 0.069 0.062 0.102 0.102 0.806 0.017 0.020 0.787
50 .05 100 50 -8.16 106.75 0.016 1.42 -4.41 0.016 0.276 0.318 0.048 0.054 0.050 0.043 0.267 0.267 1.236 0.041 0.058 1.321
50 .1 50 20 -6.53 66.21 0.017 0.95 -2.02 0.028 0.269 0.304 0.090 0.113 0.101 0.094 0.093 0.093 0.771 0.039 0.018 0.766
50 .1 50 50 -6.67 66.66 -0.028 0.95 -0.39 -0.004 0.244 0.285 0.066 0.072 0.062 0.058 0.205 0.205 1.443 0.017 0.030 1.458
50 .1 100 20 -7.79 63.18 -0.005 0.28 0.05 -0.004 0.260 0.280 0.065 0.079 0.069 0.063 0.101 0.101 0.835 0.042 0.037 0.826
50 .1 100 50 -6.16 67.38 0.016 1.51 -2.15 0.017 0.242 0.288 0.046 0.054 0.049 0.044 0.203 0.203 1.276 0.031 0.048 1.376
50 .3 50 20 -1.65 21.41 0.019 1.46 0.12 0.031 0.167 0.201 0.0910.115 0.105 0.096 0.057 0.057 0.942 0.037 0.031 0.939
50 .3 50 50 -1.90 21.29 -0.033 1.07 0.67 0.001 0.138 0.177 0.067 0.073 0.065 0.058 0.056 0.056 1.707 0.017 0.010 1.688
50 .3 100 20 -2.62 20.13 -0.005 0.53 0.54 -0.003 0.152 0.176 0.063 0.081 0.072 0.063 0.042 0.042 0.987 0.026 0.043 0.993
50 .3 100 50 -1.59 21.54 0.014 1.41 0.50 0.017 0.136 0.175 0.042 0.054 0.049 0.044 0.067 0.067 1.663 0.032 0.025 1.683
100 .05 50 20 0.58 338.44 0.020 1.66 -43.07 0.021 0.116 0.912 0.087 0.121 0.199 0.088 0.026 0.026 0.158 0.105 0.928 0.172
100 .05 50 50 1.04 340.42 -0.030 1.22 -0.34 -0.034 0.074 0.9130.062 0.076 0.063 0.065 0.017 0.017 0.333 0.019 0.399 0.328
100 .05 100 20 -0.07 335.58 -0.016 0.45 -6.85 -0.018 0.082 0.904 0.062 0.085 0.098 0.063 0.024 0.024 0.200 0.067 0.535 0.201
100 .05 100 50 1.45 342.22 0.010 1.52 -10.28 0.010 0.056 0.9200.039 0.057 0.054 0.039 0.026 0.026 0.306 0.029 0.307 0.304
100 .1 50 20 0.91 202.74 0.020 1.57 -15.01 0.019 0.116 0.797 0.088 0.123 0.137 0.088 0.023 0.023 0.249 0.061 0.496 0.250
100 .1 50 50 0.94 202.81 -0.029 0.98 0.59 -0.033 0.073 0.792 0.061 0.076 0.059 0.063 0.013 0.013 0.561 0.012 0.377 0.559
100 .1 100 20 -0.06 199.81 -0.015 0.07 1.15 -0.017 0.080 0.7850.061 0.086 0.074 0.062 0.030 0.030 0.316 0.029 0.231 0.316
100 .1 100 50 1.44 204.33 0.012 1.48 -7.63 0.013 0.056 0.799 0.040 0.058 0.051 0.041 0.028 0.028 0.479 0.027 0.308 0.477
100 .3 50 20 1.10 54.43 0.019 1.45 -1.36 0.013 0.111 0.432 0.089 0.127 0.102 0.088 0.020 0.020 0.671 0.019 0.361 0.682
100 .3 50 50 0.92 54.16 -0.028 1.00 1.97 -0.033 0.068 0.419 0.063 0.078 0.064 0.066 0.028 0.028 1.274 0.023 0.761 1.289
100 .3 100 20 0.18 53.03 -0.010 0.19 2.76 -0.014 0.075 0.416 0.062 0.087 0.074 0.063 0.036 0.036 0.702 0.036 0.283 0.716
100 .3 100 50 1.41 54.91 0.012 1.43 -3.06 0.025 0.052 0.424 0.041 0.058 0.049 0.047 0.049 0.049 1.232 0.036 0.670 1.243

Avg.
bias%
20% -1.77 22.30 -0.001 1.10 0.34 0.004 0.162 0.137 0.068 0.076 0.071 0.066 0.083 0.083 1.389 0.032 0.035 1.396
50% -5.82 63.90 0.000 1.00 -1.02 0.009 0.230 0.264 0.067 0.080 0.071 0.065 0.133 0.133 1.142 0.030 0.031 1.156
100% 0.82 198.57 -0.003 1.08 -6.76 -0.004 0.080 0.709 0.063 0.086 0.085 0.064 0.027 0.027 0.540 0.039 0.471 0.545
ICC
0.05 -3.41 147.42 -0.001 1.02 -5.43 0.002 0.173 0.427 0.061 0.074 0.075 0.060 0.101 0.101 0.803 0.036 0.189 0.815
0.1 -2.50 89.67 -0.001 0.95 -1.86 0.003 0.157 0.378 0.061 0.074 0.068 0.060 0.081 0.081 0.874 0.029 0.130 0.885
0.3 -0.37 27.93 -0.001 1.05 0.46 0.004 0.114 0.238 0.066 0.081 0.072 0.066 0.045 0.045 1.254 0.030 0.192 1.256
K
50 -1.99 90.31 -0.006 1.16 -3.23 0.002 0.157 0.356 0.074 0.089 0.085 0.073 0.073 0.073 0.980 0.030 0.190 0.985
100 -2.29 89.55 0.003 0.85 -1.47 0.004 0.141 0.346 0.051 0.064 0.058 0.051 0.080 0.080 0.960 0.034 0.149 0.971
nk
20 -2.55 94.01 0.005 0.87 -3.65 0.008 0.170 0.374 0.077 0.0980.095 0.078 0.057 0.057 0.747 0.039 0.177 0.747
50 -1.96 95.85 -0.008 1.26 -1.31 -0.001 0.144 0.366 0.055 0.063 0.056 0.053 0.104 0.104 1.300 0.029 0.181 1.318
Note.*: Relative percentage bias was reported for item discrimination estimates.
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Table 5.4: Simulation Study: Accuracy of IRT Scale Score

Bias RMSE SE
Invar. Bias Invar. Bias Invar. Bias

DIF% ICC K nk θ jk θk θ jk θk θ jk θk θ jk θk θ jk θk θ jk θk

0 .50 50 20 0.022 -0.013 0.021 -0.020 0.477 0.199 0.481 0.206 0.350 1.383 0.327 1.088
0 .50 50 50 -0.033 0.013 -0.033 0.017 0.473 0.159 0.474 0.162 0.272 1.357 0.266 1.253
0 .50 100 20 -0.021 0.012 -0.021 0.015 0.482 0.216 0.483 0.2190.354 1.357 0.343 1.212
0 .50 100 50 0.001 0.002 0.001 0.003 0.470 0.160 0.470 0.157 0.269 1.295 0.267 1.300
20 .05 50 20 0.022 -0.015 0.022 -0.009 0.473 0.237 0.459 0.2030.350 1.370 0.232 0.370
20 .05 50 50 -0.033 0.014 -0.033 0.021 0.469 0.190 0.451 0.1450.275 1.353 0.210 0.366
20 .05 100 20 -0.021 0.018 -0.021 0.014 0.478 0.247 0.458 0.210 0.355 1.365 0.242 0.392
20 .05 100 50 0.001 0.010 0.001 0.006 0.466 0.202 0.449 0.148 0.272 1.354 0.206 0.349
20 .1 50 20 0.022 -0.015 0.022 -0.008 0.472 0.234 0.462 0.206 0.352 1.400 0.253 0.477
20 .1 50 50 -0.033 0.013 -0.033 0.022 0.469 0.187 0.456 0.151 0.271 1.351 0.218 0.452
20 .1 100 20 -0.021 0.017 -0.021 0.015 0.477 0.245 0.462 0.2160.355 1.369 0.259 0.488
20 .1 100 50 0.001 0.008 0.001 0.006 0.465 0.199 0.453 0.154 0.270 1.365 0.217 0.439
20 .3 50 20 0.022 -0.015 0.022 -0.008 0.474 0.217 0.472 0.209 0.351 1.413 0.311 0.898
20 .3 50 50 -0.033 0.010 -0.033 0.020 0.469 0.173 0.466 0.162 0.271 1.379 0.252 0.925
20 .3 100 20 -0.021 0.014 -0.021 0.015 0.478 0.231 0.474 0.2250.354 1.380 0.320 0.939
20 .3 100 50 0.001 0.007 0.001 0.005 0.466 0.182 0.463 0.164 0.269 1.370 0.250 0.894
50 .05 50 20 0.022 -0.016 0.022 -0.005 0.466 0.336 0.445 0.2120.351 1.450 0.185 0.193
50 .05 50 50 -0.033 0.015 -0.032 0.040 0.462 0.282 0.439 0.1480.273 1.401 0.174 0.203
50 .05 100 20 -0.021 0.018 -0.021 0.021 0.471 0.325 0.442 0.215 0.357 1.409 0.191 0.223
50 .05 100 50 0.001 0.012 0.001 0.008 0.460 0.292 0.436 0.147 0.272 1.398 0.173 0.197
50 .1 50 20 0.022 -0.016 0.022 -0.005 0.465 0.320 0.449 0.220 0.351 1.440 0.203 0.261
50 .1 50 50 -0.033 0.015 -0.032 0.041 0.462 0.266 0.443 0.157 0.270 1.392 0.186 0.271
50 .1 100 20 -0.021 0.017 -0.021 0.020 0.471 0.311 0.448 0.2240.353 1.414 0.208 0.291
50 .1 100 50 0.001 0.011 0.001 0.008 0.459 0.278 0.441 0.155 0.268 1.403 0.183 0.272
50 .3 50 20 0.022 -0.015 0.022 -0.004 0.469 0.257 0.467 0.225 0.347 1.427 0.278 0.688
50 .3 50 50 -0.033 0.012 -0.032 0.043 0.464 0.206 0.460 0.174 0.266 1.390 0.231 0.717
50 .3 100 20 -0.021 0.016 -0.021 0.019 0.474 0.263 0.468 0.2380.348 1.388 0.287 0.748
50 .3 100 50 0.001 0.006 0.001 0.007 0.462 0.220 0.457 0.170 0.264 1.392 0.229 0.735
100 .05 50 20 0.021 -0.019 0.021 -0.019 0.432 0.760 0.445 0.967 0.211 2.646 0.146 -0.068
100 .05 50 50 -0.032 0.017 -0.033 0.013 0.426 0.682 0.428 0.604 0.196 2.007 0.179 0.696
100 .05 100 20 -0.021 0.013 -0.021 0.012 0.427 0.745 0.433 0.763 0.229 2.542 0.184 0.493
100 .05 100 50 0.001 0.011 0.002 0.012 0.425 0.700 0.426 0.6170.190 2.114 0.180 1.044
100 .1 50 20 0.022 -0.018 0.021 -0.019 0.439 0.685 0.450 0.6450.250 2.135 0.187 0.319
100 .1 50 50 -0.033 0.016 -0.033 0.011 0.432 0.603 0.434 0.4430.208 1.749 0.197 1.018
100 .1 100 20 -0.021 0.013 -0.021 0.012 0.436 0.662 0.440 0.556 0.263 2.028 0.238 1.022
100 .1 100 50 0.001 0.011 0.002 0.014 0.431 0.618 0.432 0.449 0.203 1.804 0.197 1.304
100 .3 50 20 0.022 -0.017 0.021 -0.023 0.455 0.415 0.459 0.3040.308 1.588 0.280 1.029
100 .3 50 50 -0.033 0.015 -0.033 0.009 0.450 0.353 0.450 0.2380.236 1.509 0.231 1.291
100 .3 100 20 -0.021 0.014 -0.021 0.011 0.457 0.401 0.459 0.317 0.315 1.542 0.302 1.256
100 .3 100 50 0.001 0.007 0.002 0.019 0.447 0.366 0.448 0.237 0.232 1.498 0.230 1.374

Avg.
bias%
20% -0.008 0.005 -0.008 0.008 0.471 0.212 0.460 0.183 0.312 1.372 0.248 0.582
50% -0.008 0.006 -0.007 0.016 0.466 0.280 0.450 0.190 0.310 1.409 0.211 0.400
100% -0.008 0.005 -0.008 0.005 0.438 0.583 0.442 0.512 0.2371.930 0.213 0.898
ICC
0.05 -0.007 0.006 -0.007 0.009 0.420 0.385 0.409 0.337 0.2561.570 0.177 0.343
0.1 -0.007 0.006 -0.007 0.009 0.421 0.354 0.413 0.275 0.263 1.450 0.196 0.509
0.3 -0.008 0.005 -0.008 0.009 0.464 0.274 0.462 0.222 0.297 1.440 0.267 0.958
K
50 -0.005 -0.001 -0.005 0.006 0.434 0.337 0.428 0.285 0.270 1.495 0.208 0.532
100 -0.009 0.012 -0.009 0.012 0.434 0.342 0.426 0.274 0.272 1.481 0.216 0.656
nk
20 0.000 0.000 0.000 0.002 0.462 0.383 0.455 0.342 0.322 1.628 0.239 0.557
50 -0.016 0.012 -0.016 0.017 0.455 0.333 0.446 0.248 0.250 1.513 0.208 0.697
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Chapter 6

Summary and Discussion

The first purpose of this study was to evaluate the performance of the model selection

criteria to detect global bias and item cluster bias. Overall, the expected simulation results

were found except the case in which all items exhibited cluster bias. LRT generally revealed

acceptable Type I error rates, whereas all model selection criteria revealed acceptable power

to detect global cluster bias when some portion of items exhibits cluster bias (e.g., 20% and

50%). One exception for power was the BIC with a small sample size and high ICC (i.e.,

small cluster bias magnitude in discriminations). In addition, different detection methods

showed different power regarding item cluster bias. As expected, the AIC showed the

highest power among the information criteria we compared. When there is cluster bias for

all items, unexpectedly, the detection methods of global bias and item cluster bias were

problematic using all detection methods we considered.

The second purpose of this study was to show the consequencesof ignoring cluster bias

in terms of the accuracy of the parameter estimates and SEs. As expected, the bias and the

RMSE of the within-level and between-level item discrimination parameter estimates were

mainly problematic when a portion of items have cluster bias(e.g., 20% and 50%). Ignor-

ing cluster bias would be acceptable only when a small portion of the items have cluster

bias (e.g., 20%) and a high ICC (small bias magnitude in discrimination). Because of the

equality constraints used when ignoring cluster bias, between-level item discriminations

tend to be overestimated when they are not as high as within-level item discriminations

(which is commonly true because the ICC is smaller than .5 in most applications). Further,

unacceptable SEs of the item discrimination estimates werefound when ignoring cluster

bias unless there is small ICC and large cluster size. Regarding IRT scale scores, the overall

accuracy (quantified RMSE) was low in ignoring cluster bias.However, bias was unexpect-
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edly comparable between models with and without taking intoaccount cluster bias. The

SEs of the IRT scale scores were not precise in ignoring cluster bias in all conditions we

considered.

The results from the present study provide implications forevaluating the detection

methods and the consequences of ignoring cluster bias in multilevel item response models.

First, two forms of the BIC performed differently dependingon the number of cases used

in the equation. The BIC with the total sample size (J=the number of clusters× cluster

size) as the number of cases showed the lowest power among thecriteria. The power for

the BIC increased as the sample size became larger, but the power was still not adequate

(<.80) in the condition with a large number of bias items (50%) and a high ICC (0.3). In

contrast, the performance of the saBIC was comparable to that of the Wald test or the LRT.

The saBIC includes a smaller penalty terms than the BIC does in the formula. Otherwise,

the BIC with the number of clusters as the number of cases might be a better indicator of

a multilevel item response model. Yu and Park (2014) reported that using the number of

clusters leads to a better performance than total sample size in the BIC for multilevel latent

class models. Taken together, based on our study, the total number of individuals is not

recommended for BIC calculation in multilevel item response models. Instead, the saBIC

or the BIC with the number of clusters is recommended.

Second, the power for item cluster bias was unexpectedly lowwhen all items have clus-

ter bias. As shown in this study, largely overestimated between-level item discriminations

are expected in ignoring a large amount of cluster bias in theinvariance model, which is the

baseline model in detecting global bias and item bias. We chose the invariance model as a

baseline model to follow IRT differential item functioning(DIF) detection method conven-

tion. When a large number of bias items is suspected, the baseline model (the invariance

model) is a misspecified model. In such a case, a global bias model is more appropriate

than the invariance model as a baseline model. Thus, when a large number of cluster item

bias is found (e.g., larger than 50%), comparing item cluster bias detection results between
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two different baseline models, invariance and global bias models is recommended.

There are methodological limitations to the present study.First, the simulation con-

ditions employed in the study are limited to two-level data and one latent variable at each

level. More extensive simulations that vary these limited conditions should be conducted to

make solid generalizations. Second, as mentioned earlier,there are alternative approaches

for testing cluster bias for item discriminations, such as arandom item response modeling

approach using Bayesian analysis (De Jong, Steenkamp, & Fox, 2007; Fox & Verhagen,

2010). The random item response modeling approach was not considered in this study be-

cause our focus was on the model selection methods with MMLE.Comparing the model

selection methods considered in this study to the random item response model approach is

also left as a future study.

In spite of the methodological limitations, this study illustrates and evaluates model se-

lection methods for global and item cluster bias in a common multilevel data structure - one

found in empirical studies - and in the use of MMLE (which is a more common estimation

method than Bayesian analysis in current IRT applications). As summarized earlier, LRT

provides adequate Type I error rates and power for detectingglobal cluster bias, whereas

the AIC is generally recommended for detecting item clusterbias. We showed that ignor-

ing cluster bias is of concern for between-level item discriminations used for understanding

constructs in multilevel data. Given our simulation results, we recommend testing global

and item cluster bias as part of the analysis steps applied tomultilevel item response mod-

els.
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