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CHAPTER I 

 

INTRODUCTION 

 

A brief history of our understanding of the variety of influences on genetic 
flow 

Debates raged in the first half of the twentieth century- what is the 

molecular makeup of our genetic code? Proteins or DNA? Although DNA rightly 

won the title for our genetic material through elegant discoveries of its 

transformative properties and information-storing structure, the story of genetic 

flow was still incomplete (Avery et al., 1944; Franklin and Gosling, 1953; Griffith, 

1928; Hershey and Chase, 1952; Watson and Crick, 1953). The central dogma in 

its simplest form lays the groundwork for genetics: DNA is the central genetic 

material that is stably housed in the nucleus of (almost) every eukaryotic cell and 

in the nucleoid of prokaryotic cells. Because DNA is (generally) stationary, our 

genetic material is copied into smaller, portable forms, RNAs, which can travel to 

the ribosome for translating genetic information into proteins. Each of these 

steps, though faithfully copied into every textbook, has a caveat associated with 

it- genetics are not actually this simple. 

Indeed, when the human genome was completed, the gene count was 

surprisingly low compared to original estimates and nodded to our current 

understanding that our DNA sequences alone are not enough to explain life’s 
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vast complexity (Consortium, 2004; Lander et al., 2001; Pertea and Salzberg, 

2010; Venter et al., 2001). Beyond the simple DNA sequence, epigenetic 

discoveries of histone structure, its modification, and DNA modifications began to 

explain how post-translationally modified proteins and DNA modifications could 

shape our genetic landscape, even revealing how environmental impacts could 

alter gene expression (Feil and Fraga, 2012; Felsenfeld, 2014). RNA regulation 

was recognized as a key way to shape and change the flow of genetic 

information, through cell-specific RNA processing and splicing, miRNA-induced 

repression of RNA expression, piwi-interacting RNA-mediated protection from 

transposable elements, long non-coding RNAs functioning as epigenetic 

controllers, and post-transcriptional modification, including RNA editing 

(Licatalosi and Darnell, 2010). 

 

A-to-I RNA Editing 

RNA editing, in particular, involves endogenous RNA processing events, 

which add complexity to the process of genetic flow by altering genetic 

information post-transcriptionally. One form of RNA editing is adenosine-to-

inosine (A-to-I) RNA editing, which is an enzyme-mediated, hydrolytic 

deamination of adenosine residues to inosine within regions of double stranded 

RNA (dsRNA) (Bass and Weintraub, 1988; Wagner et al., 1989) (Figure 1.1). 

This conversion can lead to recoding when it occurs within the open reading 

frame of an mRNA, because inosine base pairs with cytidine (in a similar manner 
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as guanosine) in the tRNA anticodon loop, thus A-to-I editing functions like an A-

to-G conversion (Basilio et al., 1962). 

 

 

 

Figure 1.1. ADAR Enzymes convert adenosine residues to inosine by 
hydrolytic deamination. 

 

This enzymatic reaction is catalyzed by the ADAR enzymes (Adenosine 

Deaminase acting on RNA), which are a family of dsRNA-binding proteins, 

including ADAR1, ADAR2 and ADAR3. ADAR1 and ADAR2 are the only 

catalytically active enzymes of the family, functioning as homodimers, and 

possessing varying selectivity regarding which RNAs, as well as which specific 

sites, they target (Chen et al., 2000; Cho et al., 2003; Gallo et al., 2003; 

Lehmann and Bass, 2000).  ADAR1 and ADAR2 are found ubiquitously 

throughout the human body, whereas ADAR3 is brain-specific, and ADAR 

homologs are conserved from humans to the earliest branching metazoan 

lineages (including sponges, C. elegans, D. melanogaster, squid, rat, mouse) 

(Chen et al., 2000; Feng et al., 2006; Gerber et al., 1997; Grice and Degnan, 
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2015; Kim et al., 1994a). In shorter, imperfect duplexes, ADARs deaminate A-to-I 

in a site-specific manner, whereas in the context of extensive duplexes, ADARs 

are known to edit non-specifically, such as with invading viral dsRNA genomes 

(George et al., 2011; Nishikura, 2010). In mammalian tissues, A-to-I editing 

occurs prominently in the brain where it serves to modulate the function of many 

proteins important for nervous system function including the ion-selectivity and 

biophysical properties of the AMPA Glutamate Receptor subunit 2 (GluA2), 

altering activation and deactivation kinetics of the GABAA receptor 3 subunit 

(Gabra3), regulating G-protein coupling efficacy and constitutive activity for the 

serotonin 5-HT2C receptor (5HT2C), and modulating the calcium-dependent 

inhibition of a voltage-gated calcium channel subunit (Cav1.3) (Huang et al., 

2012; Niswender et al., 1999; Rula et al., 2008; Sommer et al., 1991).  The 

importance of these and additional editing events also is highlighted by the 

effects observed in mutant mice where the expression of ADAR1 or ADAR2 has 

been selectively ablated. ADAR1 knockout mice exhibit embryonic lethality 

between embryonic day 11 (E11) and E12.5, exhibiting widespread apoptosis 

and defects in hematopoiesis that can be partially rescued by inhibiting 

components of the innate immune system (Hartner et al., 2004; Mannion et al., 

2014; Wang et al., 2004). ADAR2 knockout mice display postnatal lethality 

between postnatal day 0 (P0) and P20, coinciding with progressive seizures, 

which can be rescued through expression of the genomically edited GluA2 

receptor (Higuchi et al., 2000). 
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Although ADAR2’s role in creating the edited isoform of the GluA2 

receptor leads to the most drastic phenotypic effects (lethality), editing regulation 

for other ADAR2 targets has the potential to modulate editing levels to allow for 

tissue-specific expression of edited isoforms. This is particularly evident in the 

tissue-specific expression of the 5HT2C receptor, where five editing sites lead to 

32 different mRNA species encoding 24 possible protein isoforms. RNA editing of 

these five sites varies across different brain regions, presumably leading to 

altered isoform ratios and altered contributions to neuronal function (Morabito et 

al., 2010). This editing-dependent fine-tuning of neuronal function in a brain 

region-specific manner is likely at play for another ADAR2 substrate, the voltage 

gated potassium channel -subunit, Kv1.1. 

 

Voltage-gated potassium channels 

Voltage-gated potassium channels (Kv) are characterized by their 

conduction of potassium ions through the channel pore following a voltage 

change in the membrane potential. They are a diverse family of potassium 

channel subunits arising from at least 40 genes in humans, which are further 

characterized into 12 subfamilies (Gutman et al., 2005). Each subfamily contains 

multiple members, called -subunits, which generally form homo- and 

heterotetramers in a subfamily-specific manner (as is the case for Kv1 channels) 

(Gutman et al., 2005). However, the Kv5, Kv6, Kv8, and Kv9 families encode 
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subunits which act as modifier subunits within Kv2 heterotetramers (Gutman et 

al., 2005). 

Structural insights regarding these six helical transmembrane domain 

proteins has been gained through determination of the Kv1.2 crystal structure 

(Chen et al., 2010; Long et al., 2005). Each -subunit is composed of six -

helical transmembrane domains (S1-S6): S1 through S4 together form the 

voltage-sensor domain while S5, the P loop, and S6 together form the pore 

domain (Sands et al., 2005) (Figure 1.2). The extracellular face of the pore is 

composed of a selectivity filter which allows for the selective flow of potassium 

(K+) ions down their electrochemical gradient, with conformational control over 

the intracellular face of the pore conferred by the charged residues of the S4 

helix, in the voltage sensing domain, which twists upon changes in the 

membrane potential (Glauner et al., 1999). A cytoplasmic N-terminal 

tetramerization domain (T1, also called the N-terminal A and B box domain, or 

NAB) of Kv channels is responsible for allowing the four -subunits to associate 

with each other as well as with four accessory -subunits (Yu et al., 1996). 
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Figure 1.2. Domain topology for the Kv1.1 -subunit and accessory Kv-
subunit. The voltage-sensing domain is composed of the S1-S4 helices, with 
conformational control of the voltage sensor mediated by the positively charged 
S4 helix. The pore domain is composed of the S5-P loop-S6 region, and the 
I400V residue (determined by RNA editing) is contained within the S6 helix, 

within a hydrophobic region (shaded blue). Tetramerization of four -subunits 

with each other and with four accessory Kv-subunits is mediated by the N-

terminal T1 domain. The -subunit contains an inactivation domain composed of 
hydrophobic (shaded blue) and positively charged residues which interact with 
the hydrophobic residues of the channel pore and the negatively charged 
residues of the T1 domain (Adapted from Hood and Emeson, 2012). 

 

Potassium channels can exist in several states: closed, open, or 

inactivated (Figure 1.3). The closed and inactivated states occur when the pore is 

constricted or blocked at different locations within the central pore. The closed 

versus opened state occurs when the S6 transmembrane domains of each -

subunit constrict on the intracellular face of the channel, in a region called the 

bundle-crossing and the activation gate (Holmgren et al., 1998; Long et al., 2005; 
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Yellen, 2002). In addition to closing, there are two types of inactivation that can 

occur following opening of the channel, despite maintaining a continuous 

depolarizing voltage, slow (C-type) and fast (N-type) inactivation. Both types of 

inactivation are distinct from the closed state and represent stable, non-

conducting states which are maintained for periods of time before the channels 

are closed and available to be opened again by depolarization (a process 

quantified as the recovery from inactivation) (Kurata and Fedida, 2006). C-type 

inactivation is generally slower than N-type and involves a change in the 

extracellular pore of the channel, proposed to be mediated either by pore 

constriction or pore dilation at the outermost face of the selectivity filter (Choi et 

al., 1991; Hoshi and Armstrong, 2013). N-type inactivation is a rapid inactivation 

which can be mediated by two types of auto-inhibitory peptides, either N-terminal 

domains which are part of some -subunits, such as Shaker and Kv1.4 (Hoshi et 

al., 1990; Lee et al., 1996; Po et al., 1992; Zagotta et al., 1990), or from the N-

terminal domains of accessory -subunits (Rettig et al., 1994; Zhou et al., 2001). 

N-type inactivation is proposed to be a docking of these N-terminal inactivation 

peptides within the inner channel pore, representing approximately 20 amino 

acids (Zagotta et al., 1990). The peptides contain a string of 10 hydrophobic 

followed by 10 positively charged or hydrophilic amino acids which interact with 

the negatively charged amino acids within the T1 domain and the hydrophobic 

residues within the intracellular pore of the channel (Long et al., 2005). 
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Figure 1.3. Conformational states of Kv channels. Kv channels (composed of 

four -subunits) can exist in several conformational states, including closed, 
open, and inactivated either by slow (C-type) inactivation or fast (N-type) 
inactivation. Slow inactivation has been proposed to be either a pore dilation or 
pore constriction. Fast inactivation can be mediated by the inactivation domain of 

an accessory -subunit (shown in red) or by an intrinsic inactivation domain of 

some Kv -subunits (not shown) (Adapted from Bezanilla, 2004). 

 

Kv1.1 and the Kv1 family 

The homolog of the mammalian Kv1 family was first discovered in 

Drosophila melanogaster, and named Shaker, describing the rapid shaking 

phenotype of Shaker mutant flies upon treatment with ether (Kaplan and Trout, 

1969). Cloning of the Shaker locus revealed it encoded a potassium channel and 

subsequent studies characterized its electrophysiological properties (Kamb et al., 

1987; Tempel et al., 1987). The Kv1.1 mammalian Shaker-homolog, originally 

named MBK1 and RCK1, was first discovered by hybridizing Shaker 
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complementary DNA (cDNA) probes, directed against the transmembrane 

segments, under low-stringency to a cDNA library composed of either mouse 

brain or rat cortex mRNA (Baumann et al., 1988; Tempel et al., 1988). Rat and 

mouse Kv1.1 were found to have 68% and 65% sequence homology with 

Drosophila Shaker, respectively, highlighting the selective pressure to maintain 

these proteins’ functions in evolutionarily distant organisms (Baumann et al., 

1988; Tempel et al., 1988). 

The Kv1 family is composed of eight Shaker-related family members, 

Kv1.1 through Kv1.8 (human gene names KCNA1 through KCNA10), each with 

unique biophysical characteristics of activation, deactivation, and inactivation 

(Bardien-Kruger et al., 2002; Grupe et al., 1990; Gutman et al., 2005; Heinemann 

et al., 1996; Kalman et al., 1998; Kirsch et al., 1991; Lang et al., 2000; McKinnon, 

1989; Stühmer et al., 1989; Swanson et al., 1990; Yao et al., 1995). These family 

members can be subdivided based upon their inactivation characteristics. For 

example, Kv1.4 is a rapidly inactivating (A-type) channel with N-type inactivation 

conferred by its intrinsic N-terminal inactivation domain (Gutman et al., 2005; Lee 

et al., 1996). The other Kv1 family members are delayed rectifiers that 

intrinsically inactivate only by C-type inactivation (Gutman et al., 2005). N-type 

inactivation can be conferred to channels containing most of the delayed rectifier 

subunits, by co-assembly with -subunits or heterotetramerization with Kv1.4, 

though Kv1.6 contains an N-type inactivation prevention (NIP) domain (Gutman 

et al., 2005; Heinemann et al., 1996; Po et al., 1993; Roeper et al., 1998). 
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Kv1 channels can co-assemble with accessory -subunits, in an 44 

configuration (Parcej et al., 1992). Multiple isoforms of -subunits include Kv1 

(alternative splicing isoforms: 1.1, 1.2, and 1.3), Kv2 (alternative splicing 

isoforms: 2.1 and 2.2), and Kv3 (England et al., 1995; Pongs and Schwarz, 

2010). These isoforms differ predominantly in their N-terminal domains, which 

are responsible for mediating inactivation, whereas high homology is found 

throughout the rest of the proteins (Dolly and Parcej, 1996). Kv2.1 is the -

subunit with the highest abundance in the mammalian brain, whereas Kv2.2 has 

only been found in the C6 rat glioblastoma cell line, reactive astrocytes from a rat 

model of gliosis, and rabbit portal vein, but not normal rat brain (Akhtar et al., 

1999; Rhodes et al., 1996; Thorneloe et al., 2001). Of these -subunits, isoforms 

of Kv1 has been shown to interact and inactivate Kv1.1 channels, whereas 

Kv2 and Kv3 can co-assemble with Kv1.1 but do not inactivate it (Heinemann 

et al., 1996; Heinemann et al., 1995; Rettig et al., 1994). Kv2 is proposed to 

modulate the fast inactivation properties of other inactivating proteins, as it 

prevents Kv1 fast-inactivation when both -subunits are co-expressed with Kv1 

channels and speeds Kv1.4-induced inactivation (McCormack et al., 1995; Xu 

and Li, 1997). Pulldown studies have isolated Kv1.1-containing heterotetramers 

with Kv1.1 and Kv2.1 subunits in the human brain, whereas the Kv1.2 and 

Kv1.3 isoforms are predominantly found in the heart. One study did find Kv1.3 

expression in the brain, but it was weakly inactivating for Kv1.1 (Coleman et al., 

1999; England et al., 1995; Wang et al., 1996). Interestingly, another accessory 

subunit, Lgi1, can oppose Kv1 inactivation in tetramers of Kv1.1 and Kv1.4, 
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however inactivation by intrinsic inactivation of Kv1.4 remained intact (Schulte et 

al., 2006). Lgi1 mutations are associated with autosomal dominant lateral 

temporal lobe epilepsy; these mutations prevent Lgi1 function to regulate Kv1 

inactivation, further underscoring the importance of tightly regulated -mediated 

inactivation (Schulte et al., 2006). 

 Expression of the Kv1 family in mammals varies by family member and by 

tissue type. Most subunits are expressed in at least some tissues of the nervous 

system (including the brain and spinal cord), localized particularly in axons and 

nerve terminals, though Kv1.5 had very low expression and Kv1.7 was only 

found in peripheral tissues (Gutman et al., 2005; Kalman et al., 1998; Trimmer 

and Rhodes, 2004). Kv1 family members are also prominently expressed in 

heart, aorta, pancreatic islets, and skeletal and smooth muscle (Gutman et al., 

2005). Particular family members also contribute to specific tissues, such as 

Kv1.1 and Kv1.2 in the retina, Kv1.3 and Kv1.6 in the lungs, Kv1.5 and Kv1.8 in 

the kidneys, and Kv1.3 in the spleen and lymphocytes (Gutman et al., 2005). 

These sites of expression underscore the ubiquitous role that the Kv1 family 

plays in maintenance of the membrane potential for a variety of cell and tissue 

types. 

One of the main roles that the Kv1.1 -subunit plays is the regulation of 

neuronal excitability. By dampening excitability at the axon initial segment and 

juxtaparanodal region (Robbins and Tempel, 2012), it can influence action 

potential initiation, propagation, and reduce nerve terminal excitability, permitting 

fine-tuning of neurotransmitter release (Ishikawa et al., 2003). Kv1.1 is widely 
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expressed throughout the mammalian brain, with high levels of expression in the 

hippocampus (notably in CA3 pyramidal cells and dentate gyrus granule cells) 

and cerebellum (particularly in basket cell nerve terminals synapsing to Purkinje 

neurons) (Kirchheim et al., 2013; Tsaur et al., 1992; Wang et al., 1993). 

Underscoring its physiological importance, genetic knockout studies have 

revealed that mice lacking Kv1.1 expression develop spontaneous seizures, 

cold-sensitive neuromyotonia, decreased motor coordination, hyperalgesia, and 

neurogenic cardiac dysfunction (Clark and Tempel, 1998; Glasscock et al., 2010; 

Smart et al., 1998). Kv1.1-knockout mice display an incompletely penetrant 

lethality due to increased developmental seizure susceptibility, with 

approximately half of the homozygous mutants dying before the sixth postnatal 

week (Rho et al., 1999; Smart et al., 1998; Zhang et al., 1999; Zhou et al., 1998). 

Although Kv1.1 can form functional homotetrameric channels, Kv1.1 is 

predominantly found in heterotetramers with other Kv1 family members (denoted 

Kv1.x) that contribute to the large diversity of Kv1 channel kinetics and 

pharmacology throughout the mammalian central nervous system (Coleman et 

al., 1999; Koch et al., 1997; Rasband et al., 2001; Sokolov et al., 2007). Most 

often Kv1.1 is found in various heterotetrameric combinations with Kv1.2 and/or 

Kv1.4, as these three subunits are the most predominant Kv1 -subunits in the 

mammalian brain (Coleman et al., 1999; Trimmer and Rhodes, 2004; Wang et 

al., 1999; Wang et al., 1993; Wang et al., 1994). Kv1.1 also is co-expressed with 

subunits of lesser abundance, co-localized with Kv1.3 in the choroid plexus and 

cerebellar cortex and with Kv1.6 in interneurons (Rhodes et al., 1997; Speake et 
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al., 2004; Trimmer and Rhodes, 2004; Wang et al., 1999). Heterotetrameric 

assembly leads to channels with biophysical properties intermediate to the 

characteristics of homotetrameric -subunit channels, and the ratios of each type 

of -subunit lead to dose-dependent contribution to the overall channel 

characteristics (Bagchi et al., 2014; Ovsepian et al., 2016; Sokolov et al., 2007). 

Kv1.1 has a unique role in influencing heterotetrameric voltage-dependence and 

the kinetics of activation, as it opens at an especially low voltage threshold 

(Kv1.1 V1/2:-35 mV; Kv1.2 V1/2: 5 and 27 mV; Kv1.4 V1/2: 22 and 34 mV) and 

faster than other highly co-expressed Kv1.x -subunits (Kv1.1 : 5 ms; Kv1.2 : 6 

ms; Kv1.4 : 16.5 ms) (Ovsepian et al., 2016). 

Subunit composition not only alters the biophysical characteristics of the 

heteromeric channel, but may also alter the trafficking of Kv1 channels to the 

plasma membrane. When subunits were expressed as homotetramers in 

transfected cell lines and primary hippocampal cultures, Kv1.1 was 

predominantly localized to the endoplasmic reticulum (ER), Kv1.4 to the cell 

surface, and Kv1.2 expression was split between the ER and the plasma 

membrane (Manganas and Trimmer, 2000). Increasing the ratio of Kv1.1 

subunits in Kv1.x heterotetramers shifted the expression towards greater 

intracellular localization, whereas Kv1.4 had the opposite effect, and Kv1.2 had a 

neutral effect (Manganas and Trimmer, 2000). Extracellular pore residues within 

the P loop of homotetrameric Kv1.1 channels, which differ from other Kv1.x 

family members (A352P and Y379K), are thought to prevent Kv1.1 cell surface 

trafficking from the ER, though a mechanism has not been elucidated (Manganas 
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et al., 2001). Additional studies found that heterotetrameric assembly impacted 

subcellular localization in neurons, with Kv1.2 being a prominent determinant for 

Kv1.1 axonal trafficking (Jenkins et al., 2011). 

Co-assembly with -subunits increases the surface expression of homo- 

and heterotetrameric combinations of Kv1.1, Kv1.2, and Kv1.4, with the notable 

exception of Kv1.1 homotetramers (Manganas and Trimmer, 2000; Shi et al., 

1996). The ability of -subunits to facilitate surface expression was attributed to 

its oxidoreductase activity, as mutations to the NADP+ co-factor binding pocket 

abolished the -subunits’ ability to promote trafficking (Campomanes et al., 

2002). Axonal targeting also has been attributed to the T1 domain interaction 

with -subunits (Gu et al., 2003). Although these functions have been suggested 

for the role of -subunits, based on studies in transfected mammalian cells and 

primary hippocampal cultures, surface expression and axonal localization of Kv1 

proteins were not affected in Kv2 knockout mice and only affected in a subset of 

Kv1/Kv2 double-knockout animals (Connor et al., 2005; McCormack et al., 

2002). These finding suggest that -subunits may have additional unknown roles 

and that the inactivation and surface-promoting properties of Kv1.4, Kv1, and 

Kv2 serve redundant functions. 
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Episodic Ataxia type-1 

The role of Kv1.1 and its effects on human health have also been studied 

in the context of a related genetic disorder. Genetic linkage analyses have ident-

ified over 30 heterozygous mutations within the gene encoding human Kv1.1 

(KCNA1) that have been associated with the sporadic and autosomal dominant 

neurological disorder, episodic ataxia type-1 (EA1) (D'Adamo et al., 2015). EA1 

occurs with an age of onset in patients between 2 and 15 years old and is 

characterized by stress-induced motor discoordination, involuntary, repetitive 

muscle contraction (myokymia), and can coincide with seizures (Graves et al., 

2014). Types of stressors found to trigger ataxia vary between patients, most 

commonly including exercise/exertion, stress/emotional upset, and environmental 

temperature; additional triggers can include, but are not limited to, fever, caffeine, 

alcohol, startle, prolonged rest, sudden movement, and diet (Graves et al., 2014). 

The most common symptoms include imbalance, slurred speech, incoordination 

of hands, weakness, tremors, and muscle twitching or stiffness (Graves et al., 

2014). 

The majority of EA1-related mutations result in a loss of channel function, 

reduced surface expression, or a change in biophysical properties where the 

mutant subunits can exert a dominant-negative effect by association with wild-

type -subunits (Chen et al., 2016; D'Adamo et al., 2015; Eunson et al., 2000; 

Imbrici et al., 2006; Mestre et al., 2016; Petitjean et al., 2015; Tomlinson et al., 

2013; Zerr et al., 1998). Deficits have also been observed in heterotetramers with 

other Kv1 family members as well as when co-expressed with auxiliary -
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subunits (Imbrici et al., 2006). Only one mouse model of EA1 has been 

developed in which an identified human EA1 mutation responsible for a valine to 

alanine change at amino acid position 408 (V408A) was introduced into the 

endogenous mouse Kcna1 locus. The V408A mutation has been described to 

have altered the biophysical parameters of homotetrameric channels compared 

to wild-type Kv1.1, and have dominant-negative effects on heterotetrameric 

channels containing wild-type Kv1.1 and V408A (Adelman et al., 1995; 

Bretschneider et al., 1999; D'Adamo et al., 1999; D'Adamo et al., 1998; Imbrici et 

al., 2011; Imbrici et al., 2006; Maylie et al., 2002; Zerr et al., 1998). The 

homozygous (V408A/V408A) mutants die between E3 and E9, while the 

heterozygotes (V408A/+) exhibit stress-induced and temperature-sensitive motor 

dysfunction, with alterations in cerebellar signaling (Begum et al., 2016; Brunetti 

et al., 2012; Herson et al., 2003). In addition, Ishida et al. (2012) used a forward 

genetic screen for mutations leading to myokymia, neuromyotonia, and seizures 

in rats, which led to the development of the autosomal dominant myokymia and 

seizures (ADMS) rat model with relevance to EA1.  A missense mutation was 

found in ADMS rats within the Kv1.1 S4 voltage sensor domain leading to S309T, 

which is in close proximity to two known human EA1 mutations, L305F and 

R307C (D'Adamo et al., 2015; Ishida et al., 2012). S309T channels displayed a 

dominant-negative dysfunction with wild-type Kv1.1 in heterotetrameric channels, 

leading to an 80% decrease in outward K+ current (Ishida et al., 2012). 

S309T/S309T homozygotes died around P16, whereas S309T/+ rats displayed 
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increased mortality from 16 to 30 weeks, both corresponding with increasing 

spontaneous seizures (Ishida et al., 2012). 

Despite the broad distribution and altered functions resulting from these 

mutations throughout the channel protein, no clear correlation has been 

established between the diverse clinical phenotypes of EA1 patients and specific 

mutations within Kv1.1, or why stress triggers symptoms (though neuromyotonia 

and myokymia have been attributed to hyperexcitability of peripheral nerve 

endings) (Brunetti et al., 2012; D'Adamo et al., 2015; Graves et al., 2014; Graves 

et al., 2010). This lack of consistency in clinical presentation suggests that 

additional mechanisms could also be responsible for alterations in channel 

function and EA1 heterogeneity. One factor that has yet to be addressed is how 

the EA1 disorder is impacted by the endogenous Kv1.1 isoform variation arising 

from RNA editing. 

 

Modulation of Kv1.1 function by RNA editing 

RNA editing was first discovered in the Drosophila potassium channel, 

Shaker, and subsequently found in its mammalian homolog Kv1.1, though no 

editing was discovered in any of the other Kv1.x or Kv families (Decher et al., 

2010; Hoopengardner et al., 2003). RNA transcripts encoding Kv1.1 are modified 

by a site-specific A-to-I RNA editing event in which a genomically-encoded 

isoleucine (AUU) is converted to a valine (IUU) codon at amino acid position 400 

of the protein (I400V) (Hoopengardner et al., 2003). This amino acid lies within 
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the S6 transmembrane domain predicted to line the ion-conducting pore of the 

channel (Figure 1.2). Editing of Kv1.1 transcripts is dependent upon a region of 

dsRNA within exon 2 which forms intramolecular base-pairing interactions 

between imperfect, inverted repeat elements surrounding the targeted adenosine 

moiety (Bhalla et al., 2004). This process was determined to be catalyzed by 

ADAR2 through exogenous expression in HEK293 cells as well as the almost 

complete absence of Kv1.1 RNA editing in ADAR2-null mice (Bhalla et al., 2004; 

Horsch et al., 2011). 

Although an isoleucine to valine substitution does not seem substantial, 

only resulting in an amino acid with one fewer methyl group, previous studies 

have revealed that Kv1.1 channels containing edited [Kv1.1(V)] subunits display 

a 20-fold faster rate of recovery from Kv1.1-inactivation, compared to non-

edited channels [Kv1.1(I)] (Bhalla et al., 2004). More recent studies have 

indicated that only small alterations in the hydrophobicity of the editing site amino 

acid were needed to reproduce the editing-dependent alterations in recovery 

kinetics (Gonzalez et al., 2011). In addition, the extent of inactivation was heavily 

influenced by the accessible surface area of the hydrophobic amino acid at the 

editing site; thus the non-edited [Kv1.1(I)] isoform has a greater extent of 

inactivation than the edited [Kv1.1(V)] isoform (Gonzalez et al., 2011). 

Interestingly, the alteration in the recovery from inactivation following a slight 

change in the hydrophobic interactions has been recapitulated previously in a 

complimentary experiment, where the hydrophobic residues of the N-terminus of 

the auxiliary -subunit were substituted for alanine or valine (Zhou et al., 2001). 
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The dissociation constants of the mutant -subunits were generally faster 

compared to wild-type, further supporting the role of these hydrophobic 

interactions, between the - and -subunits, in setting the dissociation rate of -

inactivation (Zhou et al., 2001). 

-subunits are not alone in conferring hydrophobic-mediated inactivation 

of potassium channels, as endogenous lipids can not only induce fast inactivation 

(arachidonic acid induces fast inactivation in Kv1.1), but they also can prevent -

inactivation (such as PIP2 preventing Kv1.1 inactivation by Kv1.1) (Honoré et 

al., 1994; Oliver et al., 2004). Extensive drug studies have elucidated that the 

editing status of Kv1.1 has a prominent effect on the efficacy of drug-mediated 

channel blockers. Edited Kv1.1 was insensitive to the channel block mediated by 

important endogenous signaling lipids, including arachidonic acid, 

docosahexaenoic acid, and the endocannabinoid anandamide, whereas non-

edited channels were readily blocked (Decher et al., 2010). Although the binding 

rate of arachidonic acid was not different between non-edited [Kv1.1(I)] and 

edited [Kv1.1(V)] isoforms, the recovery from arachidonic acid-induced block was 

rapid for edited [Kv1.1(V)] and slow for non-edited [Kv1.1(I)] channels, mirroring 

the recovery from inactivation kinetics of the -subunit (Bhalla et al., 2004; 

Decher et al., 2010). Several pharmacological open channel blockers displayed 

similar selectivity for the non-edited [Kv1.1(I)] channel, including the known Kv1 

channel blockers, Psora-4 and 4-aminopyridine (4-AP) (Decher et al., 2010). 

When different ratios of non-edited [Kv1.1I(I)] and edited [Kv1.1(V)] channels 

were co-expressed to make a tetramer, only one edited [Kv1.1(V)] subunit was 
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needed to suppress the sensitivity to endogenous and pharmacological blockers, 

reducing the inhibition by 60% for arachidonic acid and 65% for Psora-4, 

compared to channels made entirely of non-edited [Kv1.1(I)] subunits (Decher et 

al., 2010). Similarly, heterotetrameric assembly of edited [Kv1.1(V)] with other 

Kv1.x family members significantly reduced the affinity of the channels to open 

channel blockers (Decher et al., 2010). These studies emphasize that even 

tissues with low levels of Kv1.1 RNA editing may be able to impact signaling 

kinetics through the effects of a single edited [Kv1.1(V)] subunit within a 

heterotetramer.  

Kv1.1 editing also has been implicated in altering trafficking to the plasma 

membrane. Although homotetrameric Kv1.1 is known to be predominantly 

localized to the ER, some non-edited [Kv1.1(I)] channels still express at the cell 

surface. By contrast, edited [Kv1.1(V)] surface expression was significantly 

reduced compared to the non-edited [Kv1.1(I)] channels (Streit et al., 2014). Co-

expression with Kv1.4 trafficked both the non-edited [Kv1.1(I)] and edited 

[Kv1.1(V)] channels to the plasma membrane, equalizing the surface expression 

of both isoforms (Streit et al., 2014). A caveat to these trafficking experiments 

was that they were performed in HeLa, HEK293, and CHO cells and in Xenopus 

oocytes, rather than in primary hippocampal cultures like previous Kv1.x 

trafficking experiments. It is unknown whether these cell lines contain all of the 

necessary components for Kv1.1 trafficking. 

Kv1.1 editing has been found predominantly in nervous tissue, though 

some editing has been found in human aorta (but not in the heart) (Decher et al., 
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2010; Hoopengardner et al., 2003; Li et al., 2009). The percentage of Kv1.1 

editing is found to vary in dissected portions of the mammalian nervous system, 

with approximately 20% editing in human hippocampus compared to 70% in 

human spinal cord (Hoopengardner et al., 2003). In addition, Kv1.1 RNA editing 

is developmentally regulated in the mouse brain, with low editing (approximately 

5-7%) in whole brain samples at E15, E19, P0, and P2, but by P21 levels rise to 

approximately 30%, near the adult levels of 45% (Jacobs et al., 2009; Wahlstedt 

et al., 2009). Although many other editing targets share similar trends in editing 

regulation, with low embryonic editing (except the GluA2 RNA which is always 

highly edited), most other targets have increases in editing at birth, whereas 

Kv1.1 RNA editing lags behind these other targets (Flna RNA has a similar 

lagging RNA editing trend to Kv1.1) (Jacobs et al., 2009; Wahlstedt et al., 2009). 

The same Kv1.1 developmental RNA editing trend was observed by 

transcriptome-wide RNA-seq, detecting editing patterns across development for 

human and mouse tissues, and these studies also further resolved that Kv1.1 

editing began increasing at P7 in mice (Hwang et al., 2016). At this time, it is 

unknown whether adult neurogenesis occurring following a seizure leads to a 

similar lag in Kv1.1 RNA editing that has been observed during embryonic 

development. 

As is the case with the quantification of Kv1.1 editing described above, 

most editing profiles are quantified from entire tissues or brain regions that may 

be composed of many different cell types. The heterogeneity of these tissues 

leads to different interpretations of what the editing percentages mean. Are 
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tissues composed of a few cell types with high levels of editing in the midst of 

other cells with no editing, or does editing occur in every cell at a variable ratio? 

Although Kv1.1 RNA editing has not been determined in defined cell 

types, patch-clamp studies on acutely isolated thalamic LGN and hippocampal 

CA1 neurons by Decher et al. (2010) provide an indirect method for inferring 

single-cell editing. Using the differential pharmacological sensitivity to Psora-4 

(blocks nonedited [Kv1.1(I)] and Kv1.x channels, but not edited [Kv1.1(V)] or 

Kv1.4) versus rHongotoxin-1 (HgTX) (blocks both nonedited [Kv1.1(I)] and edited 

[Kv1.1(V)] and Kv1.x, but not Kv1.4 or Kv1.5), investigators were able to 

determine estimates of edited Kv1.1 expression in individual neurons of each cell 

type (Decher et al., 2010; Koschak et al., 1998; Vennekamp et al., 2004). The 

currents which were Psora-4-resistant, but HgTX-sensitive, indicated the 

presence of the edited [Kv1.1(V)] protein isoform in these cell types. Sequencing 

reverse transcriptase-polymerase chain reaction (RT-PCR) amplicons derived 

from these isolated neuronal populations revealed that the average Kv1.1 RNA 

editing correlated well with the edited [Kv1.1(V)] protein expression estimated 

from the single-cell electrophysiological characterization; 63% of the current from 

LGN neurons was Psora-4 resistant, indicative of edited Kv1.1 expression, and 

52% of the Kv1.1 RNA was edited in the population of these isolated cells 

(Decher et al., 2010). By contrast, 15% of the current from CA1 pyramidal cells 

was Psora-4 resistant, correlating with a 7% editing profile for Kv1.1 RNA in 

these cells (Decher et al., 2010). These studies provide evidence that 

intermediate editing ratios are observed within single cells, though they do not 
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exclude the possibility that editing could still vary by cell type within tissues. 

Little is known about how Kv1.1 RNA editing is regulated in vivo, however, 

Kv1.1 editing levels are altered in two mouse models of epilepsy. In the first 

model, control rats displayed low Kv1.1 editing levels in the entorhinal cortex 

(5.1%), whereas, following epileptic induction by kainic acid, editing was 

increased (21.5%) (Streit et al., 2011). In normal rat entorhinal/hippocampal 

slices, 4-AP induces seizure-like events, however slices from kainic acid epileptic 

rats are resistant to 4-AP effects (Streit et al., 2011). These data suggest that 

increased editing may be associated with a decreased seizure-susceptibility in 

rats. The second model is a genetic model of epilepsy where editing of the GluA2 

receptor was decreased in the mouse forebrain (in particular, GluA2 Q/R site 

editing in the hippocampus was decreased approximately 25%) (Krestel et al., 

2013; Krestel et al., 2004). In this model, Kv1.1 RNA editing was also increased 

in the epileptic mice compared to controls (Krestel et al., 2013). 

There are several possible mechanisms for these increases in Kv1.1 RNA 

editing following seizure induction. First, increases in editing may result from 

increased expression of ADAR2, as previous studies have indicated that, 

following kainic acid seizure induction, rats had a 40% increase in ADAR2 protein 

expression (O'Leary et al., 2016). Second, the kainic acid-induced seizure rat 

model has also been associated with increased activity of two MAP kinases, and 

the nuclear localization of ADAR2 is positively regulated by a phosphorylation-

dependent interaction with the phosphorylation-dependent prolyl-isomerase, Pin1 

(whereas localization in the cytoplasm can lead to degradation mediated by the 
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E3-ubiquitin ligase, WWP2) (Kim et al., 1994b; Marcucci et al., 2011). Third, 

ADAR2 gene expression is regulated by the CREB transcription factor and 

seizure-induction can activate CREB (in these cases, seizures were induced by 

pentylenetetrazole (PTZ) or 1-3-bischloroethyl-nitrosurea (BCNU)) (Moore et al., 

1996; Peng et al., 2006; Pennacchio et al., 2015). Although editing regulation 

may occur by altering ADAR2 expression and activity, as detailed above, other 

unknown factors may be involved as well. 

Aside from these mouse models displaying alterations in Kv1.1 RNA 

editing, one study has correlated Kv1.1 editing in epileptic patients. Tissue 

samples obtained from patients undergoing surgery for mesial temporal lobe 

epilepsy revealed an editing-dependent association, where levels of Kv1.1 RNA 

editing were inversely correlated with the duration of years that the patients had 

experienced epileptic activity, such that lower editing was correlated with a longer 

epilepsy duration (Krestel et al., 2013). These results could indicate that 

increased editing of Kv1.1 has a protective effect, dampening future seizures in 

chronic epilepsy, and that decreased editing could represent a risk factor for 

long-term seizures, though further experiments are necessary to test this 

hypothesis. 

Of note, in two brain regions of interest, the hippocampus and the 

cerebellum, Kv1.1 expression is lower than other Kv1.x subunits (including 

combinations of Kv1.2, Kv1.4, and/or Kv1.6), thus Kv1.1-containing 

heterotetramers in these tissues may contain only one Kv1.1 subunit (Scott et al., 

1994). Kv1.1 is an important subunit, even in heterotetramers, because it opens 
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at lower voltages and faster than other Kv1.x subunits (Ovsepian et al., 2016). 

This Kv1.1 subunit could be non-edited or edited, thus heterotetramers may be 

further stratified into groups defined by the unique and dominant characteristics 

conferred by the absence or presence of an edited subunit. The role of Kv1.1 in 

defining the opening kinetics of heterotetramers, and editing conferring rapid 

recovery from inactivation, may underlie the particular vulnerability of mutations 

and altered editing patterns in leading to dysfunctions related to hippocampal and 

cerebellar function.  

 

Summary 

 Kv1.1 is an important regulator of neuronal signaling in normal physiology 

and its dysregulation leads to EA1, yet the role of Kv1.1 RNA editing as it 

contributes to healthy and EA1 physiology are still largely unknown. Although 

several studies have indicated that edited [Kv1.1(V)] channels have altered 

biophysical characteristics, these studies have been performed predominantly in 

cell culture and Xenopus oocytes, rather than in an endogenous context. In 

addition, no studies have been performed to understand how RNA editing 

impacts the human disorder, EA1, though several EA1 mutations are in close 

proximity to the editing site. 

 The data in Chapter II describe our attempts to understand Kv1.1 RNA 

editing in a physiological context. Thus we have generated two mutant mouse 

lines which solely express either the non-edited Kv1.1 [Kv1.1(I)] or edited Kv1.1 

[Kv1.1(V)] isoform. We describe how globally regulating Kv1.1 editing leads to 
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phenotypic alterations in each mouse line compared to wild-type littermates. Both 

the non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice exhibited an incompletely 

penetrant postnatal lethality that appeared to be dependent upon environmental 

factors. Non-edited [Kv1.1(I)] mice displayed EA1-like stress-induced ataxia, with 

alterations in gait and locomotor activity. In addition, editing altered drug-induced 

seizure susceptibility of both mouse lines, with the non-edited [Kv1.1(I)] mice 

displaying an increased susceptibility and faster latency to 4-AP-induced 

seizures and the edited [Kv1.1(V)] mice displaying a decreased susceptibility to 

both 4-AP and PTZ-induced seizures. Initial electrophysiological analysis of 

Kv1.1 in mouse hippocampal slices did not find differences in signaling 

parameters for non-edited [Kv1.1(I)] mice that would explain this alteration in 

seizure susceptibility. 

 In Chapter III, we detail the impact of RNA editing on EA1 mutant RNAs 

and proteins. Although numerous Kv1.1 mutations have been associated with the 

human disorder EA1, three EA1 mutations, V404I, I407M, and V408A, are 

located within the RNA duplex structure required for Kv1.1 RNA editing. Each 

EA1 mutation decreased RNA editing in vitro and the V408A mutation was 

confirmed to decrease RNA editing in vivo using a mouse model bearing the 

heterozygous V408A allele. Editing of transcripts encoding mutant channels 

affected numerous biophysical properties including channel opening, closing, and 

inactivation. Thus, EA1 symptoms could be influenced not only by the direct 

effects of the mutations on channel properties, but also by their influence on RNA 

editing. These studies provide the first evidence that mutations associated with a 



28 

human genetic disorder can affect cis-regulatory elements to alter RNA editing. 

Finally, Chapter IV summarizes the conclusions of these studies and 

describes future directions to address new questions spurred on by the 

discoveries made thus far.  



29 

CHAPTER II 

 

FUNCTIONAL CONSEQUENCES OF KV1.1 RNA EDITING 

IN MOUSE MODELS 

 

Introduction 

Although initial studies have characterized the effects of Kv1.1 RNA 

editing on channel function, most have been performed in exogenously 

expressing Xenopus oocytes. Thus, further studies are needed to better 

understand the physiological impact of Kv1.1 RNA editing in vivo. We have 

developed mutant mouse lines that have been genetically modified to solely 

express either the non-edited [Kv1.1(I)] or edited [Kv1.1(V)] isoforms. These 

mutant mouse lines have allowed us to assess the phenotypic effects of 

dysregulating normal editing patterns for Kv1.1 transcripts, and serve as 

important tools to examine the native electrophysiological properties of Kv1.1-

expressing neurons. 

 These novel mouse lines have been developed in the context of several 

other related mouse models, whose characterized defects could indicate that our 

editing mouse models will have similar dysfunctions. Three models of Kv1.1 

dysfunction have been created thus far including a Kv1.1-null mouse in which 

expression of the Kcna1 gene encoding Kv1.1 is ablated (Smart et al., 1998). 

Although Kv1.1-null mice exhibit a normal Mendelian distribution at birth, no overt 
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ataxia, and normal Kv1.2 distribution in the cerebellum, they display spontaneous 

seizures starting at 3 weeks of age, hyperalgesia, neurogenic cardiac 

dysfunction, and have an enlarged hippocampus and ventral cortex (Clark and 

Tempel, 1998; Glasscock et al., 2010; Persson et al., 2007; Smart et al., 1998). 

Half of Kv1.1-null mice die within 3-5 weeks after birth, often immediately 

following seizures, though surviving mice can live up to 12 months of age (Smart 

et al., 1998). Kv1.1-null mice also displayed a shorter latency to flurothyl-induced 

seizure onset, with seizures occurring 60% sooner than wild-type animals, and 

heterozygous null mice showed a modest change in the onset of seizures (9% 

sooner than wild-type) (Rho et al., 1999; Smart et al., 1998). Surprisingly, no 

differences were found in the intrinsic membrane properties of CA3 pyramidal 

cells, though other electrophysiological changes were observed, including lower 

threshold for antidromic action potentials and a subset of cells which displayed 

epileptic late burst discharges upon mossy fiber stimulation (Smart et al., 1998). 

In the cerebella of Kv1.1-null mice, Purkinje neurons displayed increased 

frequency of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs), 

and these mice displayed motor deficits walking across a stationary thin rod, but 

were not different from wild-type animals using the rotarod test (Zhang et al., 

1999). Peripheral nerve transmission also was altered in Kv1.1-null mice, 

including recordings in the sciatic nerve that indicated that loss of Kv1.1 leads to 

a prolonged repolarization and a longer recovery period and hyperexcitable 

neuromuscular transmission following cooling of isolated phrenic nerve (Smart et 

al., 1998; Zhou et al., 1998).   
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The mceph/mceph mouse is a megencephaly mouse model resulting from 

an 11-bp deletion in Kv1.1, leading to a frame-shifted, C-terminally truncated 

protein (truncated at amino acid 230 out of 495) (Petersson et al., 2003). These 

mice have a 25% increase in brain size, shakiness in gait, and display complex 

partial seizures starting at 3 weeks of age (Donahue et al., 1996; Petersson et 

al., 2003). Electrophysiological characterization in mossy cells of the 

hippocampus revealed increased frequency of stimulus-induced pulse trains, but 

no change in action potential shape or membrane resistance (Petersson et al., 

2003). The truncated protein was expressed in mice, though localized to the ER, 

and Kv1.2 and Kv1.3 protein expression was decreased in mceph/mceph 

hippocampus (Persson et al., 2005; Petersson et al., 2003). 

Another Kv1.1 mutant mouse was developed which incorporated a human 

EA1 mutation, V408A, into the endogenous Kcna1 locus (Herson et al., 2003). 

Mice homozygous for the V408A mutation die during embryonic development 

between E3 and E9, while heterozygous V408A mice (V408A/+) display stress-

induced motor discoordination (Herson et al., 2003). Electrophysiological 

characterization of V408A/+ cerebellar Purkinje neurons indicated this mutation 

increased the frequency and amplitude of sIPSCs, attributed to action potential 

broadening at basket cell boutons leading to increased GABA release (Begum et 

al., 2016; Herson et al., 2003). Recordings from V408A/+ motor nerves also 

revealed spontaneous bursting activity, which was triggered by fatigue, ischemia, 

and low temperature (Brunetti et al., 2012). 
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In addition to mouse lines with introduced mutations in the Kv1.1 -

subunit, four -subunit knockout models also have been developed. Kv1.1-null 

mice exhibited no changes in lifespan, brain morphology, seizure activity, or 

alterations in open field or bar hang behavioral tasks (Connor et al., 2005; Giese 

et al., 1998). However, electrophysiological characterization of CA1 pyramidal 

neurons in Kv1.1-null mice revealed several alterations compared to wild-type 

controls. Kv1.1-nulls showed a decreased amplitude of inactivation, faster 

action potential repolarization during trains of depolarizing pulses (a decrease in 

the frequency-dependent spike broadening), and a reduced amplitude of the slow 

after-hyperpolarization phase of the action potential following spike trains (Giese 

et al., 1998). Kv1.1-null mice did not have any overt impairment in spatial or 

contextual learning and extracellular field recordings in the CA1 region did not 

reveal any differences in synaptic plasticity, though subtle learning impairments 

were observed in some cases (including in an altered paradigm of the Morris 

water maze, where previously trained mice had to find a new hidden platform 

location, and in the social transmission of food preference test) (Giese et al., 

1998; Need et al., 2003). 

Kv2-null mice were found to have phenotypic alterations similar to the 

Kv1.1-null mice, including cold swim-induced tremors, shortened life span 

(though normal Mendelian distribution at weaning), and the presence of sporadic 

seizures, but no differences in PTZ-induced seizure susceptibility (Connor et al., 

2005; McCormack et al., 2002). Phenotypes were altered in a strain-specific 

manner, with Kv2-null mice on a C57B/6J background demonstrating more 
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severe phenotypes than the 129/SvEv background, which could result from a 

strain-specific 5-fold higher expression of Kv2 in C57B/6J versus 129/SvEv 

wild-type mice (Connor et al., 2005; Sandberg et al., 2000). The presence of 

seizures in this model is consistent with human patient data where a deletion 

including the region of Kv2 was a significant risk factor for epilepsy or 

epileptiform activity observed by EEG analysis (Heilstedt et al., 2001). 

Surprisingly, none of the observed mouse phenotypes could be attributed to 

presumed functions of Kv2. Previous characterization of Kv2 in heterologous 

expression systems suggested that Kv2, which does not induce fast-

inactivation, was involved in potassium channel trafficking and axonal targeting 

(Gu et al., 2003; Shi et al., 1996). However, characterization of Kv2-null mice 

indicated no change in trafficking of Kv1.1 and Kv1.2 in the cerebellum or in the 

juxtaparanodal localization of Kv1.1 and Kv1.2 within the sciatic nerve 

(McCormack et al., 2002). In addition to Kv2-null animals, an additional mutant 

line was developed in which the oxidoreductase catalytic domain was targeted, 

but no observable phenotype resulted (McCormack et al., 2002). 

Double mutant animals, in which the expression of both Kv1.1 and Kv2 

were ablated, were developed to assess whether these subunits perform 

redundant functions (McCormack et al., 2002). Kv1.1/Kv2 double mutants had 

decreased lifespan compared to the Kv2-null animals, however Kv1.1 loss did 

not further exacerbate the cold swim-induced tremors (Connor et al., 2005). 

Localization of Kv1.2 within the pinceau region of cerebellar basket cells was 

more variable for the double mutants, with 5/8 mutants displaying less robust and 
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more diffuse expression of Kv1.2 (Connor et al., 2005). However, 3/8 mutants 

had comparable expression to wild-type controls, still indicating that proper 

localization could occur without either -subunit (Connor et al., 2005). 

Mouse models containing alterations in either the Kv1.1 -subunit or Kv 

subunits serve as important references to compare the phenotype of mutant 

animals in which the editing profile for Kv1.1 RNAs has been fixed. For these 

studies, we have focused specifically on phenotypic alterations in survival, 

stress-induced motor discoordination, seizures and seizure susceptibility, and 

brain slice electrophysiology. Our initial characterization indicates that Kv1.1 

editing serves a modulatory function for motor coordination and seizure 

susceptibility. 

 

Materials & Methods 

 

Mouse Experiment Approval 

All animal care and experimental procedures involving mice were 

approved by the Vanderbilt University Medical Center Institutional Animal Care 

and Use Committee and were performed in accordance with relevant guidelines 

and regulations. 
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Characterization of Kv1.1 editing in wild-type mouse tissues 

To characterize wild-type Kv1.1 RNA editing levels, wild-type C57BL/6 

mice were euthanized by cervical dislocation under anesthesia followed by 

decapitation. Seven tissues (whole brain, spinal cord, lung, heart, bladder, 

skeletal muscle, kidney) were dissected from four male wild-type adult mice. Six 

brain regions (cerebellum, hippocampus, hypothalamus, cortex, striatum, 

olfactory bulb) were dissected from three additional male wild-type adult mice. 

Tissues were flash-frozen in liquid nitrogen and RNA was isolated by sonication 

in TRIzol (Ambion) according to the manufacturer’s instructions. RNA was 

reverse-transcribed with random primers using the High Capacity cDNA Reverse 

Transcription kit (Applied Biosystems) and Kv1.1 editing was quantified by high-

throughput sequence analysis as described previously (Hood et al., 2014) 

(VANTAGE, Vanderbilt University). 

 

Generation of non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mutant mice 

Our collaborator, Dr. Robert Reenan (Brown University), generated mice 

that were genetically modified to solely express either the non-edited [Kv1.1(I)] or 

the edited [Kv1.1(V)] subunit isoform. Mutations were incorporated at the 

endogenous Kcna1 locus (knock-in) by homologous recombination with a 

replacement-type targeting vector in C57BL/6J embryonic stem cells (Figure 2.1). 

This targeting vector included a positive selectable marker (neomycin cassette 

flanked by loxP sites) within and a negative selectable marker (thymidine kinase) 
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outside the region of homology, respectively. Mice with the mutant-neo allele 

were crossed with a mutant line expressing Cre recombinase to excise the 

neomycin resistance cassette, leaving a single loxP site downstream of exon 2. 

The non-edited [Kv1.1(I)] targeting vector incorporated two point mutations 

surrounding the editing site, which have previously been shown to disrupt the 

critical RNA duplex structure required for editing (Bhalla et al., 2004), yet 

maintain the codon identities in this region (Figure 2.2). The targeting vector to 

generate edited [Kv1.1(V)] transcripts was designed to introduce a guanosine at 

the editing site to mimic the coding potential of the inosine normally generated by 

A-to-I conversion (Figure 2.2). 

 

 

 

Figure 2.1. Targeting strategy to solely generate non-edited [Kv1.1(I)] or 
edited [Kv1.1(V)] isoforms in mutant mice. The targeting strategy for creating 
the non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mutant mice is outlined. The 
Kcna1 mouse gene is labeled with the editing site (indicated as a red A) within 
the RNA duplex region, indicated by arrows. Mutant constructs included the 
mutations required for either the non-edited or the edited isoform (indicated as a 
red asterisk) in conjunction with a positive selectable marker (neomycin cassette 
flanked by loxP sites) within the region of homology and a negative selectable 
marker (thymidine kinase) outside the region of homology. Mice with the mutant-
neo allele were crossed with a Cre recombinase-expressing mouse to excise the 
neomycin resistance cassette, leaving a single loxP site behind (blue triangle). 
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Figure 2.2. Design of duplex mutations to solely generate non-edited 
[Kv1.1(I)] or edited [Kv1.1(V)] transcripts in mutant mice. The predicted 
secondary structure for the wild-type mouse Kv1.1 pre-mRNA, in the proximal 
region of exon 2, is shown with the position of the I/V editing site indicated. The 
introduction of mutations to generate mutant mouse lines, solely expressing the 
non-edited and edited isoforms of the channel, are indicated in red. 

 

Genotyping was performed by polymerase chain reaction (PCR) 

amplification of a 534 base pair (bp) region surrounding the editing site using 

sense (5’- TCCTCTTCATTGGGGTCATACTGT-3’) and antisense (5’- 

GGGGTTTGTTTGGGGCTTTTGTTG-3’) oligonucleotide primers in exon 2. The 

presence of the mutations incorporated into these mouse lines creates or 

destroys restriction sites for the non-edited (Sfc I) and edited (Mfe I) alleles, 

respectively, allowing accurate genotyping to be distinguished from heterozygous 

breeding crosses. Genotyping was performed using tail biopsies with the 



38 

REDExtract-N-Amp Tissue PCR Kit (Sigma-Aldrich). 

To ensure expression of the mutant allele at the RNA level, RNA from 

mouse cerebellum for each genotype was isolated with TRIzol and subjected to 

RT-PCR, as described previously, and directly sequenced by Sanger sequencing 

(VANTAGE, Vanderbilt University). To further ensure that the non-edited 

[Kv1.1(I)] mice did not have undetectable RNA editing occurring, spinal cord 

cDNA was subjected to high-throughput sequence analysis as described 

previously (Hood et al., 2014) (VANTAGE, Vanderbilt University). 

 

Kv1.1 RNA Expression Characterization in non-edited [Kv1.1(I)] and edited 
[Kv1.1(V)] mutant mice 

Six adult mice each (mixed sex) of non-edited [Kv1.1(I)], edited [Kv1.1(V)], 

and wild-type animals were euthanized by cervical dislocation under anesthesia 

followed by decapitation. Six brain regions (cerebellum, hippocampus, 

hypothalamus, cortex, striatum, olfactory bulb) were dissected from each mouse. 

RNA was extracted and used as a template for reverse transcription with random 

primers using the High Capacity cDNA Reverse Transcription kit (Applied 

Biosystems). Steady-state RNA expression was assayed from each isolated 

cDNA using Taqman probes directed against mouse Kcna1 (Mm00439977_s1, 

ThermoFisher Scientific) and using mouse Gapdh as an internal normalization 

control (Mm99999915_g1, ThermoFisher Scientific). Quantitative RT-PCR (qRT-

PCR) reactions were prepared using Taqman Universal PCR mastermix (2X) 

(ThermoFisher Scientific) according to the manufacturer’s protocol. Technical 
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replicates for all cDNA samples were performed in triplicate and average values 

used for data analyses. Gene efficiencies were calculated using the PCR miner 

algorithm (Zhao and Fernald, 2005). All data were normalized to internal Gapdh 

expression using the CFX Manager Software (Bio-Rad). In addition, all samples 

were normalized to a standard wild-type sample (of the same tissue type), re-

assayed on each qRT-PCR plate. This ensured normalization consistency, as the 

number of replicate tissue samples required assaying over multiple qRT-PCR 

plates. 

 

Mendelian distribution of progeny 

Heterozygous crosses of Kv1.1 non-edited mice and heterozygous 

crosses of Kv1.1 edited mice were set up in multiple mouse housing facilities 

(MCNII Facility, on multiple floors, and the Barrier Facility) and the offspring tailed 

for genotyping. These offspring were generated for subsequent experimental 

analyses. Separate heterozygous crosses were set up for prenatal lethality 

analysis. Pregnant heterozygous female mice with embryos at E18.5 were 

anesthetized and euthanized. 
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Behavioral Testing 

Initial behavioral characterization was performed using adult male non-

edited [Kv1.1(I)] and edited [Kv1.1(V)] mice, and their wild-type littermates 

(Brooks and Dunnett, 2009). Grip strength was assessed with a force gauge 

(San Diego Instruments, San Diego, CA). The pole climb test involved placing 

the mice face upwards on the top of a vertical pole. The time to turn 180º and 

climb down the pole was measured for each animal. 

Muscle endurance and motor coordination were assessed using an 

accelerating rotarod test (Ugo Basile, Comerio, Italy) on adult male mice: non-

edited [Kv1.1(I)], edited [Kv1.1(V)], and their wild-type littermates (Brooks and 

Dunnett, 2009). Mice were placed on an accelerating rotating rod (rod diameter: 

3.2 cm; acceleration: 5 to 40 revolution/minute over a 5-minute period). Latency 

to fall off the rod was measured by the device’s automatic stopwatch. Mice that 

failed to walk on the rotarod were scored as fallen after two successive stationary 

rotations. Original unstressed trials were performed with the traditional rotarod 

paradigm: 3 trials per day for 3 days. A modified rotarod paradigm was 

performed for follow-up unstressed and stressed rotarod trials: trials were 

performed daily for 9 days with either control animals or mice that were stressed 

for 30 minutes by conical tube restraint immediately preceding the rotarod trial. 

Gait analysis was assessed using the footprint test on adult male non-

edited [Kv1.1(I)] mice, edited [Kv1.1(V)] mice, and their wild-type littermates 

(Carter et al., 2001). Forepaws and hindpaws were painted with non-toxic red or 
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blue paint, respectively, and mice were allowed to run through an opaque, 

plexiglass tunnel on standard legal paper (8.5 x 14 inches) to record the position 

of the paw prints. A light positioned above the entrance to the tunnel was used to 

motivate the mice to run to a dark, enclosed box at the end of the tunnel. 

Analysis of gait metrics included forelimb and hindlimb stride length, front and 

hind base width, and right and left overlap measurements. One group of mice 

performed the footprint test unstressed and another group were stressed for 30 

minutes by conical tube restraint prior to the test. 

The inverted screen task was performed on adult male non-edited 

[Kv1.1(I)] mice, edited [Kv1.1(V)] mice, and their wild-type littermates (Brooks 

and Dunnett, 2009). Prior to the task, mice were either unstressed or stressed by 

30 minutes of conical tube restraint. Latency to fall from the inverted screen was 

measured, to a maximum of 60 s, and the task was repeated three times for the 

unstressed and stressed conditions. 

The open-field task was performed to assess the locomotion and anxiety 

of adult male non-edited [Kv1.1(I)], edited [Kv1.1(V)], and their wild-type 

littermates (Brooks and Dunnett, 2009). Mice were tested under either the 

unstressed or stressed paradigm (30 minutes of conical tube restraint 

immediately prior the task), and then observed in the open field chamber for 30 

minutes. Analysis of locomotion was achieved through measurements of 

distance traveled and velocity. Analysis of anxiety was achieved through 

measurements of center time, center entries, rearing counts, and grooming time. 
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Spontaneous Seizure Monitoring 

Spontaneous seizures were analyzed by electroencephalogram (EEG) 

analysis. Preliminary studies were performed on adult male non-edited [Kv1.1(I)] 

mice, edited [Kv1.1(V)] mice, and their wild-type littermates by Alison Miller in the 

laboratory of Dr. Jennifer Kearney, which suggested that the non-edited [Kv1.1(I)] 

mice had abnormal recordings. Therefore, we performed an additional pilot study 

comparing a non-edited [Kv1.1(I)] mouse to a wild-type littermate, using cortical 

surface electrodes to allow for more precise measurements. Following isoflurane 

anesthesia, mice were implanted with cortical surface electrodes. Six positions 

were marked for electrode and screw placement- two positions above bregma on 

either side of the midline and four positions between lambda and bregma (two on 

either side of the midline). A microdrill was used to gently carve away an opening 

at each pre-marked position. Two screws were gently placed in the holes closest 

to lambda; these screws were used to anchor the prefabricated head mount. 

Surface electrodes attached to the head mount were gently threaded through the 

skull openings and secured with a small amount of cyanoacrylate. 

Electromyography (EMG) electrodes were placed in the muscle at the base of 

the skull. Following electrode placement, dental acrylic was used to seal and 

anchor the implant and the skin was sutured (sutures were later removed 10 to 

14 days post-surgery). Ketoprofen was administered following surgery and once 

a day for 72 hours. Mice were returned to a singly housed holding cage that was 

maintained at a constant 39°C temperature during recovery with a Deltaphase 

isothermal pad (Braintree Scientific) placed under half of the cage. After 
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approximately 3 weeks of recovery, a continuous video-EEG recording was 

recorded for approximately 6 hours using Sirenia Acquisition software and data 

analyzed with Sirenia Seizure Basic software (Pinnacle Technology). Mice were 

returned to animal housing (singly housed) when not performing EEG analysis 

and euthanized within 2 months after initial EEG surgery.  

 

Drug-induced Seizure Susceptibility 

Flurothyl-induced seizures were performed by Alison Miller in the lab of 

Dr. Jennifer Kearney, comparing the seizure thresholds of adult non-edited 

[Kv1.1(I)] mice, edited [Kv1.1(V)] mice, and their wild-type littermates. Mice were 

individually placed in a clear plexiglass container and exposed to the volatile 

convulsant flurothyl (2,2,2-trifluroethyl ether) (Sigma-Aldrich), which was 

introduced via a syringe pump at a rate of 20 L/min and allowed to volatize from 

a suspended platform. Latency to tonic-clonic seizure onset was measured as 

the seizure threshold. 

Pentylenetetrazole (PTZ)-induced seizures were performed to compare 

the seizure threshold scores of the following genotypes using adult mice (mixed 

sex): non-edited [Kv1.1(I)], edited [Kv1.1(V)], V408A/+, and V408A/+ wild-type 

littermates. PTZ (Sigma-Aldrich) was dissolved in sterile saline (0.9% NaCl) and 

administered intraperitoneally at a volume of 0.1 mL/10 g mouse’s body weight 

(De Sarro et al., 2004). Several doses were prepared by serial dilution to create a 

dose response curve based on previously determined seizure threshold data for 
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C57BL/6J mice in the literature: 0 mg/kg, 30 mg/kg, 60 mg/kg, 90 mg/kg, and 120 

mg/kg (mg/kg= mg PTZ administered per kg of mouse’s body weight) (De Sarro 

et al., 2004; Ferraro et al., 1999; Itoh and Watanabe, 2009). Mice were observed 

in isolated cages and video-monitored for 30 min, and scored for latency to 

hindlimb extension and for seizure severity using a modified Racine scale 

detailed in Table 2.1 (Racine 1972). Scoring of all exhibited behaviors was 

monitored and recorded on scoring sheets by two investigators during the 

experiment; following conclusion of the experiment, videos were reviewed by one 

investigator to ensure consistent scoring. 

 

Table 2.1: Seizure threshold scale for scoring PTZ-induced seizures 

stage description 

0 normal movement 

1 hypoactivity with possible isolated small myoclonic jerks 

2 recurrent partial clonus 

3 generalized clonus without falling 

4 generalized clonus with falling 

5 tonic hindlimb extension 
 

4-aminopyridine (4-AP)-induced seizures were assessed in two replicate 

trials. In the original 4-AP experiment, the seizure threshold scores of the 

following adult mice (mixed sex) were compared: non-edited [Kv1.1(I)], edited 

[Kv1.1(I)], V408A/+, and V408A/+ wild-type littermates. In the replicate 4-AP 

experiment the following adult mice (mixed sex) were compared: non-edited 

[Kv1.1(I)], edited [Kv1.1(I)], and the wild-type littermates of each. 4-AP (Sigma-
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Aldrich) was dissolved in sterile saline (0.9% NaCl), the pH adjusted to 7 with 

HCl, and administered subcutaneously at a volume of 0.1 mL/10 g mouse’s body 

weight (De Sarro et al., 2004). Several doses were prepared by serial dilution to 

create a dose response curve based on previously determined seizure threshold 

data for C57BL/6J mice in the literature: 0 mg/kg, 2 mg/kg, 6 mg/kg, 10 mg/kg, 

and 14 mg/kg (mg/kg= mg 4-AP administered per kg of mouse’s body weight) 

(Chung et al., 2009; De Sarro et al., 2004; Dhir et al., 2011; Kim et al., 2001). 

Mice were observed in isolated cages and video-monitored for 1 hour and scored 

for latency to hindlimb extension and for seizure severity using a modified Racine 

scale detailed in Table 2.2 (Racine 1972). Scoring of all exhibited behaviors was 

monitored and recorded on scoring sheets by two investigators during the 

original experiment and 3 during the replicate experiment, however following the 

conclusion of the experiment videos were reviewed by one investigator to ensure 

consistent scoring. Additional precautions were taken in the replicate 4-AP 

experiment, where all investigators were blinded toward mouse genotype during 

the scoring and the final review of all the scores was performed by an 

investigator who was not part of the original test and who was unfamiliar with the 

original results. 
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Table 2.2: Seizure threshold scale for scoring 4-AP-induced seizures 

stage description 

0 normal movement 

1 hypoactivity with possible isolated small myoclonic jerks 

2 recurrent partial clonus 

3 episodes of generalized clonus without loss of righting 
ability 

4 continuous generalized clonus with or without loss of 
righting ability and/or motoric control 

5 tonic hindlimb extension 
 

Hippocampal Slice Electrophysiology 

 We collaborated with Dr. Sam Centanni in the laboratory of Dr. Danny 

Winder to perform electrophysiological recordings of dentate granule cells in 

hippocampal slices of non-edited [Kv1.1(I)] mice and their wild-type littermates. 

Recordings were performed on mice which had either been unstressed or had 

been subjected to 30 minutes of conical tube restraint prior to brain isolation. 

Acute, 300 µm slices were obtained containing the hippocampus and recordings 

performed solely from dentate gyrus granule cells. The recordings were 

conducted using a potassium gluconate internal solution. All recordings were 

conducted in a current clamp configuration where the cell was injected with the 

necessary current required to keep the cell held at -70 mV. To analyze firing 

characteristics and intrinsic properties, current steps were applied for 1 second 

and increased in 25 pA increments (starting with -150 pA and going up to +350 

pA). 
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Statistical analysis 

 Statistical tests were performed using Graphpad Prism (Graphpad Soft-

ware). In experiments that have a single independent variable (genotype), one-

way ANOVA was performed with Tukey’s multiple comparisons test to determine 

genotype comparisons (grip strength, pole climb, and flurothyl-induced seizures). 

When two independent variables were present (genotype and type of brain 

region; genotype and stress), 2-way ANOVA was performed with Tukey’s or 

Sidak’s multiple comparisons test (type of multiple comparisons test was chosen 

based on recommendations by the Prism software) (qRT-PCR, gait analysis, 

inverted screen, open field, PTZ and 4-AP-induced seizures, and dentate granule 

cell electrophysiology). Rotarod data, which involved two independent variables 

(genotype and trial day), were analyzed by 2-way repeated measures ANOVA 

with Tukey’s multiple comparisons test of the main effects, to determine 

genotype differences regardless of trial day. Deviations from normal Mendelian 

inheritance patterns were determined by 2 analysis. Statistical significance was 

defined as p ≤ 0.05. 
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Results 

 

Characterization of Kv1.1 editing in wild-type mouse tissues 

Previous studies have characterized the levels of Kv1.1 editing in human 

nervous and peripheral tissues, but only a few mouse and rat tissues were 

examined (Decher et al., 2010; Hoopengardner et al., 2003; Li et al., 2009). We 

confirmed and extended these previous characterizations, demonstrating that 

Kv1.1 RNA editing occurs most substantially in the nervous system and that 

distinct RNA editing profiles are observed when comparing different brain regions 

(Figure 2.3).  
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Figure 2.3. Quantitative analysis of Kv1.1 RNA editing (I/V site) in mouse. 
The extent of editing for Kv1.1 transcripts isolated from (a) mouse tissues or (b) 
dissected brain regions in adult animals was determined by high-throughput 
sequence analysis as described previously (Hood et al., 2014); data represent 
the analysis of 4 and 3 individual animals for tissue and brain regions, 
respectively (mean ± SEM). 

 

Verification of non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mutant mouse 
models 

 

Although the function of the non-edited [Kv1.1(I)] and edited [Kv1.1(V)] 

isoforms of Kv1.1 have been studied in heterologous expression systems, no 

studies have been performed to examine the physiological significance of these 

editing-dependent changes in vivo. To address this issue, in collaboration with 

Dr. Robert Reenan, we have taken advantage of homologous recombination in 

C57BL/6J embryonic stem cells to generate genetically-modified mice that solely 
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expressed either the non-edited [Kv1.1(I)] or edited [Kv1.1(V)] subunit isoforms 

(Figures 2.1 and 2.2). 

To confirm that mutant mice bearing modified Kv1.1 alleles expressed 

transcripts solely encoding the non-edited [Kv1.1(I)] or edited [Kv1.1(V)] isoform 

of the channel, cDNA was generated by RT-PCR amplification of cerebellar RNA 

and the resulting amplicons were sequenced directly. Sequences from wild-type 

animals exhibited overlapping adenosine/guanosine peaks in electropherogram 

traces resulting from a mixture of non-edited and edited Kv1.1 transcripts, as 

inosine base pairs similarly to guanosine during reverse transcription. As 

expected, sequences obtained from mutant animals showed only an adenosine 

or guanosine moiety, for the non-edited and edited transcripts, respectively 

(Figure 2.4). 
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Figure 2.4. Confirmation of Kv1.1 isoform identity in mutant mice. Sequence 
analysis of Kv1.1 RNA isoforms in mutant mice. RNA was isolated from cerebella 
dissected from wild-type, non-edited [Kv1.1(I)], and edited [Kv1.1(V)] adult mice. 
A region spanning the editing site was amplified by RT-PCR and the amplicons 
were analyzed by Sanger sequencing. Electropherogram traces are shown with 
the editing site indicated in inverse lettering; mutant nucleotides introduced to 
produce the non-edited and edited isoforms are underlined. 

 

Although the results in Figure 2.4 indicated that the expected Kv1.1 

isoforms are being expressed in both mouse models, Sanger sequencing is 

qualitative by nature. To generate the edited [Kv1.1(V)] mouse model, the Kcna1 

gene was genomically altered at the editing site to a guanosine; this target 

cannot be altered by the adenosine-specific ADAR2 enzyme, and thus needed 

no further validation. In contrast, the non-edited [Kv1.1(I)] mouse model was 

generated by incorporating mutations around the editing site, relying on these 

synonymous mutations to sufficiently disrupt the Kv1.1 RNA duplex structure to 

prevent ADAR2 from recognizing and editing the RNA. As Sanger sequencing 

may not be sufficiently sensitive to determine whether low levels of editing may 
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have been occurring in the non-edited [Kv1.1(I)] mutant animals, we further 

examined Kv1.1 RNA expression using a high-throughput sequence strategy 

previously developed in our laboratory (Hood et al., 2014). We quantified RNA 

editing levels in the spinal cord, which contains one of the highest RNA editing 

levels, and thus would be the most likely of our tissue targets to display aberrant 

editing. Three mouse spinal cord samples were analyzed where isolated RNA 

was subjected to RT-PCR amplification and the resulting amplicons were 

sequenced by high-throughput sequence analysis (Hood et al., 2014).  The mean 

RNA editing detected in the non-edited [Kv1.1(I)] spinal cord samples was 0.045 

± 0.0046 %, which corresponded to approximately 28 out of an average 60879 

total reads.  

After confirming that our mouse models solely expressed their intended 

RNA isoform, we sought to determine whether the isoform identity affected the 

steady-state RNA expression level encoding the Kv1.1 channel. We performed 

qRT-PCR to determine the relative expression of Kv1.1 RNA in six brain regions 

from non-edited [Kv1.1(I)], edited [Kv1.1(V)] and wild-type mice (Figure 2.5). 

Results from this analysis revealed no differences in steady-state Kv1.1 RNA 

expression between the non-edited [Kv1.1(I)], edited [Kv1.1(V)], and wild-type 

animals for all brain regions examined. 
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Figure 2.5. Steady-state Kv1.1 RNA expression is unchanged in non-edited 
[Kv1.1(I)] and edited [Kv1.1(V)] mutant mice compared to wild-type mice. 
Steady-state RNA expression was quantified by qRT-PCR. No genotype was 
significantly different from another in any brain region analyzed by 2-way ANOVA 
with Tukey’s multiple comparisons test (mean ± SEM, n=6). 

 

Mendelian distribution of progeny 

The non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice were generated from 

heterozygous crosses of each mouse line to determine whether the ratio of 

offspring followed the expected Mendelian inheritance pattern of 1:2:1 for wild-

type, heterozygous mutant and homozygous mutant animals, respectively 

(Tables 2.3 and 2.4). Interestingly, we discovered that the inheritance pattern 

varied based upon the animal facility in which the mice were being housed. In the 

original breeding location (MCNII animal facility), we observed a significantly 

diminished number of non-edited [Kv1.1(I)] and edited [Kv1.1(V)] homozygous 

mutant animals genotyped at the time of weaning (P21). By contrast, when 
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embryos from the original breeding location were genotyped at E18.5, 

immediately prior to birth, homozygous mutants from each mutant line did not 

differ from the expected Mendelian inheritance pattern. These results indicated 

that both strains demonstrate an incompletely penetrant postnatal lethality. 

However, when the mouse colony was moved to a new floor in the same facility, 

both mouse lines no longer exhibited the lethality observed for homozygous 

mutants. While undefined environmental factors such as background noise or 

access to the room by multiple investigators could produce stressors that affect 

the survival of mutant Kv1.1 homozygotes, we rederived both mouse lines into 

the pathogen-free barrier facility. Surprisingly, both lines regained the 

incompletely penetrant postnatal lethality. We observed fewer homozygous 

mutants at P21 in the original MCNII and Barrier facilities, yet genotype analyses 

of mice that died between P0 and P21 did not identify an overrepresentation of 

homozygous mutants which could be explained by the small sample size of 

mouse bodies that were found. 
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Non-edited: Kv1.1(I)/+  x  Kv1.1(I)/+ 
 

 
 
genotype 

E18.5 
Original 

P21 
Original 

P21 
Barrier 

Obs (Exp) Obs (Exp) Obs (Exp) 

Wild-type 
+/+ 

13 (12.25) 19 (17.75) 43 (34) 

Heterozygous 
Kv1.1(I)/+ 

28 (24.5) 49 (35.5) 75 (68) 

Homozygous 
Kv1.1(I)/Kv1.1(I) 

8 (12.25) 3 (17.75) 18 (34) 

total 49 71 136 
p-value p≤0.3641 p≤0.0002 p≤0.0049 

 

Table 2.3. Conditional non-Mendelian distribution of non-edited [Kv1.1(I)] 
mutant offspring. Upon breeding heterozygous non-edited [Kv1.1 (I)] mice 
(Kv1.1(I)/+), either in the original facility or the barrier facility, offspring were 
genotyped at either E18.5 or by P21. Observed (Obs) progeny versus the 

expected (Exp) progeny were compared by 2 analysis to determine 
significance. 

 

Edited: Kv1.1(V)/+  x  Kv1.1(V)/+ 
 

 
 
genotype 

E18.5 
Original 

P21 
Original 

P21 
Barrier 

Obs (Exp) Obs (Exp) Obs (Exp) 

Wild-type 
+/+ 

12 (14.75) 46 (29) 55 (37.25) 

Heterozygous 
Kv1.1(V)/+ 

34 (29.5) 60 (58) 67 (74.5) 

Homozygous 
Kv1.1(V)/Kv1.1(V) 

13 (14.75) 10 (29) 27 (37.25) 

total 59 116 149 
p-value p≤0.4949 p≤0.0001 p≤0.0024 

 

Table 2.4. Conditional non-Mendelian distribution of edited [Kv1.1(V)] 
mutant offspring. Upon breeding heterozygous edited [Kv1.1 (V)] mice 
(Kv1.1(V)/+), either in the original facility or the barrier facility, offspring were 
genotyped at either E18.5 or by P21. Observed (Obs) progeny versus the 

expected (Exp) progeny were compared by 2 analysis to determine 
significance. 
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Behavioral characterization 

 We have used a variety of tasks to distinguish behavioral differences 

between the non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mutant mouse models 

compared to their wild-type littermates (Brooks and Dunnett, 2009). Initial 

behavioral tasks showed that these mutant animals did not have deficits in grip 

strength, but that the edited [Kv1.1(V)] mice displayed enhanced motor 

coordination on the pole climb task (Figure 2.6). The locomotor coordination of 

the non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice was tested using the 

accelerating rotarod behavioral task, first using the traditional paradigm: three 

trials/day for three days (Figure 2.7). In preliminary studies, we compared non-

edited [Kv1.1(I)] and edited [Kv1.1(V)] mutants to the performance of wild-type 

littermates, as well as their heterozygous mutant littermates [Kv1.1(I)/+ and 

Kv1.1(V)/+]. There were no significant differences between either type of mutant 

mice compared to the wild-type littermates or their respective heterozygous 

mutant mice (Figure 2.7). This lack of any impairment phenotype under normal 

conditions was similar to the EA1 mouse model (V408A/+), which only displays 

locomotor deficits under stressed conditions. All further behavioral tests were 

performed under control conditions (unstressed) as well as in response to a well 

characterized stressor involving 30 minutes of conical tube restraint immediately 

prior to the tests (Buynitsky and Mostofsky, 2009). 
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Figure 2.6. Initial behavioral analysis of non-edited [Kv1.1(I)] and edited 
[Kv1.1(V)] mice.  Adult non-edited [Kv1.1(I)], edited [Kv1.1(V0], and wild-type 
littermate male mice were subjected to the (a) grip strength and (b) pole climb 
behavioral tests. No significant differences were found in the grip strength test, 
but the edited [Kv1.1(V)] mice were significantly faster to descend on the pole 
climb test compared to wild-type and non-edited [Kv1.1(I)] mice (mean ± SEM, 
n=7-13, *p<0.05, 1-way ANOVA with Tukey’s multiple comparisons test). 
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Figure 2.7. Non-edited [Kv1.1(I)] and edited [Kv1.1(V)] heterozygous and 
homozygous mutant mice do not display locomotor dysfunction under the 
unstressed traditional rotarod paradigm.  Adult non-edited [Kv1.1(I)], edited 
[Kv1.1(V)], and wild-type littermate male mice were subjected to the traditional 
rotarod paradigm (3 rotarod trials per day over 3 days). Day and trial numbers 
are deliniated as D and T, respectively. (a) Non-edited homozygous 
[Kv1.1(I)/Kv1.1(I)] and non-edited heterozygous [Kv1.1(I)/+] mice were compared 
to wild-type mice and (b) Edited homozygous [Kv1.1(V)/Kv1.1(V)] and edited 
heterozygous [Kv1.1(V)/+] mice were compared to wild-type mice (mean ± SEM, 
n=5-12, indicated in parentheses in the legend). No significant differences were 
observed between genotypes (2-way ANOVA with Tukey’s multiple comparisons 
of the main effects). 
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To incorporate a stressor paradigm in conjunction with the rotarod test, a 

modified rotarod paradigm was developed where mice were run on the rotarod 

one trial per day for nine days, with or without 30 minutes of conical tube 

restraint, immediately preceding the rotarod test. This modified rotarod paradigm 

was replicated in three unstressed replicate trials (Figure 2.8) and two stressed 

replicate trials (Figure 2.9). In the absence of a stressor, no differences were 

observed between the mutant and wild-type mouse lines, whereas, following 30 

minutes of conical tube restraint, the non-edited [Kv1.1(I)] mice consistently 

underperformed compared to both the wild-type and the edited [Kv1.1(V)] mice. 

These studies were replicated and continued to show that homozygous mice 

solely expressing non-edited [Kv1.1(I)] underperformed compared to the wild-

type and edited [Kv1.1(V)] lines. 
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Figure 2.8. Non-edited [Kv1.1(I)] and edited [Kv1.1(I)] mutant mice do not 
display locomotor dysfunction under the unstressed modified rotarod 
paradigm.  Adult non-edited [Kv1.1(I)], edited [Kv1.1(V)], and wild-type littermate 
male mice were subjected to the modified rotarod paradigm (1 rotarod trial per 
day over 9 days). (a) Unstressed trials I, (b) II, and (c) III were performed by 
three separate cohorts of mice (mean ± SEM, n=6-13, indicated in parentheses 
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in the legend). No significant differences were observed between non-edited 
[Kv1.1(I)], edited [Kv1.1(V)], or wild-type genotypes (2-way repeated measures 
ANOVA with Tukey’s multiple comparisons of the main effects). 

 

 

 

 

Figure 2.9. Non-edited [Kv1.1(I)] mutant mice display stress-induced 
locomotor dysfunction under the stressed modified rotarod paradigm.  
Adult non-edited [Kv1.1(I)], edited [Kv1.1(V)], and wild-type littermate male mice 
were subjected to a stressor (30 minutes of conical tube restraint) followed by the 
modified rotarod paradigm (1 rotarod trial per day over 9 days). (a) Stressed trials 
I, (b) II were performed by two separate cohorts of mice (mean ± SEM, n=6-8, 
indicated in parentheses in the legend). Significant differences were observed 
between the non-edited [Kv1.1(I)] mice and the edited [Kv1.1(V)] and wild-type 
genotypes (*p<0.05, ***p<0.001, 2-way repeated measures ANOVA with Tukey’s 
multiple comparisons of the main effects). 
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To determine the underlying factors responsible for alterations in the 

rotarod task in response to stress, additional behavioral studies were employed 

to examine alterations in gait directly, similar to the deficits observed in EA1 

patients. Alterations in gait were assessed using the footprint test, under 

unstressed or stressed conditions (30 min of conical tube restraint prior the task), 

and each condition was replicated twice using the same cohort of mice (Figure 

2.10). No differences were seen between the replicate trials of either the 

unstressed or the stressed paradigm. In addition, no differences were found 

comparing the genotypes by the forelimb stride length and front base 

parameters. The hindlimb stride length, hind base, and right overlap parameters 

contained significant differences in one unstressed or stressed trial, but not both 

trials, suggesting that these differences were not replicable in our preliminary 

studies. In both stressed trials of the left overlap parameter, however, the non-

edited [Kv1.1(I)] mice had a significantly smaller left overlap parameter as 

compared to wild-type littermates. 
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Figure 2.10. Non-edited [Kv1.1(I)] mice display reproducible stress-induced 
gait alterations. Adult non-edited [Kv1.1(I)], edited [Kv1.1(V)], and wild-type 
littermate male mice were subjected to either an unstressed or stressed 
paradigm (30 minutes of conical tube restraint) followed by footprinting gait 
analyses. Two trials were performed on the same cohort of mice 
(Un1=Unstressed trial 1, Un2=Unstressed trial 2, S1=Stressed trial 1, 
S2=Stressed trial 2). Several metrics were determined: (a) Forelimb Stride 
Length, (b) Hindlimb Stride Length, (c) Front Base, (d) Hind Base, (e) Left 
Overlap, and (f) Right Overlap. Several significant differences were observed 
(mean ± SEM, n=5-17, *p<0.05, **p<0.01, 2-way ANOVA with Tukey’s multiple 
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comparisons test, comparing genotypes within each trial). Replicate trials were 
not different from each other by 2-way ANOVA wtih Sidak’s multiple comparisons 
test. 

 

Stressed effects to grip strength were determined by performing the 

inverted screen task, under the unstressed and stressed conditions (30 min of 

conical tube restraint prior the task) (Figure 2.11). Both the unstressed and 

stressed paradigms were replicated three times each. No significant differences 

were seen for the non-edited [Kv1.1(I)], edited [Kv1.1(V)], or the wild-type 

littermates, when comparing genotypes within the same trial. 
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Figure 2.11. Non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice do not display 
stress-induced alterations by the inverted screen test. Adult non-edited 
[Kv1.1(I)], edited [Kv1.1(V)], and wild-type littermate male mice were subjected to 
either an unstressed or stressed paradigm (30 minutes of conical tube restraint) 
followed by the inverted screen test for a maximum of 60 s. Three trials were 
performed for the unstressed and stressed paradigms (Un1=Unstressed trial 1, 
Un2=Unstressed trial 2, Un3=Unstressed trial 3, S1=Stressed trial 1, 
S2=Stressed trial 2, S3=Stressed trial 3). No significant differences were 
observed between the genotypes within the same trial (mean ± SEM, n=9-13, 2-
way ANOVA with Tukey’s multiple comparisons test). 

 

Finally, locomotion and anxiety were tested using an open field behavioral 

test under both unstressed and stressed conditions. Mice were observed for 30 

min during the task and many parameters were observed (Figure 2.12). 

Although, many parameters were altered by stress when comparing each 

individual genotype (such as distance traveled, velocity, center time, center 

entries, and grooming time), differences between genotypes were rare. The only 

identified difference observed between genotypes was a decrease in thigmotaxis 

for non-edited [Kv1.1(I)] animals compared to wild-type mice. 
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Figure 2.12. Open-field analysis of non-edited [Kv1.1(I)] and edited 
[Kv1.1(V)] mice. Adult non-edited [Kv1.1(I)], edited [Kv1.1(V)], and wild-type 
littermate male mice were subjected to either an unstressed or stressed 
paradigm (30 minutes of conical tube restraint) followed by 30 min of open-field 
analysis. Several metrics were determined: (a) Distance Traveled, (b) Velocity, 
(c) Center Time, (d) Center Entries, (e) Rearing Counts, and (f) Grooming Time. 
Several significant differences were observed between the Unstressed and 
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Stressed trials of the same genotype (mean ± SEM, n=8-13; *p<0.05, ***p<0.001, 
****p<0.0001, 2-way ANOVA with Sidak’s multiple comparisons test). When 
comparing genotypes within each trial, only the non-edited [KV1.1(I)] center 
entries were different from WT in (d) (#p<0.05, 2-way ANOVA with Tukey’s 
multiple comparisons test).  

 

Spontaneous Seizure Monitoring 

Although collaborative EEG recordings, performed by Alison Miller in Dr. 

Jennifer Kearney’s lab, qualitatively suggested abnormal activity in the non-

edited [Kv1.1(I)] mutants, this data was not conclusive due to a high background 

in the collected data. To decrease the background for our EEGs, we performed a 

pilot study comparing a non-edited [Kv1.1(I)] mouse to its wild-type littermate 

using surface cortical electrodes, instead of screws, to decrease any noise that 

could be interfering with the measurements. The non-edited [Kv1.1(I)] mouse did 

not display any epileptiform activity visible in the EEG traces during six hours of 

recording, but video analysis revealed two tonic events in the non-edited 

[Kv1.1(I)] animal during sleep. 

 

Drug-induced Seizure Susceptibility 

 Drug-induced seizure susceptibility was investigated using three different 

convulsant drugs: flurothyl, PTZ, and 4-AP in homozygous Kv1.1 mutant lines 

and wild-type mice. No differences were seen for flurothyl-induced seizures, 

however genotype-specific differences were observed in response to PTZ and 4-

AP (Figure 2.13). 
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Figure 2.13. Flurothyl-induced seizures. Mice were individually exposed to the 
volatile convulsant flurothyl at a rate of 20uL/min. Latency to tonic-clonic seizure 
was measured. No genotypes were significantly different than another by 1-way 

ANOVA  with Tukey’s multiple comparisons test (mean ± SEM, n=4). 

 

Upon administration of PTZ, the edited [Kv1.1(V)] mice displayed a 

damped seizure susceptibility, with significantly lower seizure scores at the 60 

mg/kg PTZ dose than the wild-type and non-edited [Kv1.1(I)] animals (Figure 

2.14). Additionally, no differences were found in seizure score when comparing 

male versus female mice of each genotype (Figure 2.15).No differences were 

found between genotypes when comparing the latency to hindlimb extension 

(HLE) (which corresponds to the maximal seizure score, which was not uniformly 

observed for all mice of any genotype) (Figure 2.16). 
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Figure 2.14. PTZ-induced seizure threshold scores. Mice were 
intraperitoneally administered increasing doses of PTZ, observed for 30 minutes, 
and scored for seizure severity on a scale from 0 to 5 (as described in the 
Materials & Methods). Non-edited [Kv1.1(I)], edited [Kv1.1(V)], and V408A/+ mice 
were compared to the wild-type littermates of the V408A/+ mice. Edited [Kv1.1 
(V)] mice differed significantly from wild-type and non-edited [Kv1.1 (I)] animals at 
the 60mg/kg PTZ dose by 2-way ANOVA with Tukey’s mulitple comparisons test 
(mean ± SEM, n=7-9 mice for each genotype per dose; Edited to WT: *p<0.05; 
Edited to Non-edited:  #p<0.05). 
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Figure 2.15. Male versus female comparison of PTZ-induced seizure 
threshold scores. Mice were intraperitoneally administered increasing doses of 
PTZ, observed for 30 minutes, and scored for seizure severity on a scale from 0 
to 5 (as described in the Materials & Methods). Male non-edited [Kv1.1(I)], edited 
[Kv1.1(V)], V408A/+ mice, and the wild-type littermates of the V408A/+ mice 
were compared to their respective female counterparts within each dose. No 
comparisons were significant by 2-way ANOVA with Tukey’s mulitple 
comparisons test (mean ± SEM, n=3-5 mice for each genotype per dose and per 
sex). 
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Figure 2.16. Latency to hindlimb extension following PTZ-induced seizures. 
Mice were subcutaneously administered increasing doses of 4-AP, observed for 
1 hour, measuring the latency to first hindlimb extension (HLE), if it occurred. 
Non-edited [Kv1.1(I)], edited [Kv1.1(V)], and V408A/+ mice were compared to the 
wild-type littermates of the V408A/+ mice (mean ± SEM, n=7-9 mice for each 
genotype per dose; not every mouse reached HLE). No statistical comparisons 
were significant by 2-way ANOVA with Tukey’s multiple comparisons test. 

 

In the original 4-AP-induced seizure threshold test, the non-edited 

[Kv1.1(I)] mice displayed an increased seizure susceptibility, displaying higher 

scoring seizures at the 6mg/kg 4-AP dose, compared to all other genotypes 

(Figure 2.17a). Due to experimental limitations, the PTZ and original 4-AP 

seizure threshold tests used wild-type littermates from the V408A/+ mice as 

control animals. To ensure consistency however, the 4-AP seizure threshold test 

was replicated with the appropriate wild-type littermates for non-edited [Kv1.1(I)] 

and edited [Kv1.1(V)] mice (Figure 2.17b). In the replicate 4-AP analysis, the 

non-edited [Kv1.1(I)] mice demonstrated a significantly higher score at the 6 

mg/kg 4-AP dose compared to wild-type animals, yet edited [Kv1.1(V)] mice 
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showed a significantly lower score. Furthermore, the edited [Kv1.1(V)] mice had 

a significantly dampened seizure susceptibility compared to the non-edited 

[Kv1.1(I)] mice at the higher (6 mg/kg and 10 mg/kg) 4-AP doses. Although male 

versus female differences were observed in both 4-AP trials, replicate tests did 

not agree on the type of sex differences, and likely were not biologically 

significant (Figure 2.18). The non-edited [Kv1.1(I)] mice, of both replicate trials, 

had a significantly shorter latency to HLE at the 10 mg/kg dose compared to all 

the other genotypes (Figure 2.19). In addition, many non-edited [Kv1.1(I)] mice 

exhibited HLE at the 6 mg/kg dose in both replicate trials (though not enough 

individuals of the other genotypes exhibited HLE for statistical analysis at this 

dose). 
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Figure 2.17. 4-AP-induced seizure threshold scores. Mice were 
subcutaneously administered increasing doses of 4-AP, observed for 1 hour, and 
scored for seizure severity on a scale from 0 to 5 (as described in the Materials & 
Methods). (a,b) Two trials were performed. (a) Non-edited [Kv1.1(I)], edited 
[Kv1.1(V)], and V408A/+ mice were compared to the wild-type littermates of the 
V408A/+ mice. Non-edited mice had a significantly higher score at the 6 mg/kg 4-
AP dose compared to all other genotypes by 2-way ANOVA with Tukey’s multiple 
comparisons test (mean ± SEM, n=7-10 mice for each genotype per dose; 
****p<0.0001). (b) Non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice were 
compared to their wild-type littermates (mean ± SEM, n=8-16 mice for each 
genotype per dose). Non-edited mice and edited mice were significantly different 
than wild-type at the 6 mg/kg 4-AP dose by 2-way ANOVA with Tukey’s multiple 
comparisons test (compared to WT: **p<0.01, ****p<0.0001). Non-edited and 
edited mice were significantly different than each other at the 6 mg/kg and 10 
mg/kg 4-AP doses by 2-way ANOVA with Tukey’s multiple comparisons test 
(#p<0.05, ####p<0.0001). 
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Figure 2.18. Male versus female comparison of 4-AP-induced seizure 
threshold scores. Mice were subcutaneously administered increasing doses of 
4-AP, observed for 1 hour, and scored for seizure severity on a scale from 0 to 5 
(as described in the Materials & Methods). (a,b) Two trials were performed. (a) 
Male non-edited [Kv1.1(I)], edited [Kv1.1(V)], V408A/+ mice, and the wild-type 
littermates of the V408A/+ mice were compared to their respective female 
counterparts within each dose. At the 6 mg/kg 4-AP dose, edited [Kv1.1(V)] male 
mice were significantly different than the respective female mice by 2-way 
ANOVA with Tukey’s multiple comparisons test (mean ± SEM, n=3-6 mice for 
each genotype per dose and per sex; *p<0.05). (b) Male non-edited [Kv1.1(I)], 
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edited [Kv1.1(V)], and their wild-type littermate mice were compared to their 
respective female counterparts within each dose. At the 6 mg/kg 4-AP dose, non-
edited [Kv1.1(I)] male mice were significantly different than the respective female 
mice by 2-way ANOVA with Tukey’s multiple comparisons test (mean ± SEM, 
n=3-9 mice for each genotype per dose and per sex; **p<0.01). 
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Figure 2.19. Latency to hindlimb extension following 4-AP-induced 
seizures. Mice were subcutaneously administered increasing doses of 4-AP, 
observed for 1 hour, measuring the latency to first hindlimb extension (HLE), if it 
occurred. (a,b) Two trials were performed. (a) Non-edited [Kv1.1(I)], edited 
[Kv1.1(V)], and V408A/+ mice were compared to the wild-type littermates of the 
V408A/+ mice (mean ± SEM, n=7-10 mice for each genotype per dose; not every 
mouse reached HLE). No statistical comparisons were possible at the 6 mg/kg 4-
AP dose, because only the non-edited [Kv1.1(I)] mice had more than one 
individual mouse reaching HLE. Non-edited [Kv1.1(I)] mice had a significantly 
shorter latency to HLE at the 10 mg/kg 4-AP dose compared to all other 
genotypes by 2-way ANOVA with Tukey’s multiple comparisons test 
(*p<0.05,**p<0.01). (b) Non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice were 
compared to their wild-type littermates (mean ± SEM, n=8-16 mice for each 
genotype per dose; not every mouse reached HLE). No statistical comparisons 
were possible at the 6 mg/kg 4-AP dose, because only the non-edited [Kv1.1(I)] 
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mice had mice reaching HLE. Non-edited [Kv1.1(I)] mice had a significantly 
shorter latency to HLE at the 10 mg/kg 4-AP dose compared to all other 
genotypes by 2-way ANOVA with Tukey’s multiple comparisons test (***p<0.001, 
****p<0.0001). 

 

Preliminary Electrophysiological characterization 

 Due to the observed alterations in drug-induced seizure susceptibility, we 

collaborated with Dr. Sam Centanni in the laboratory of Dr. Danny Winder to 

perform a pilot study of slice electrophysiology in homozygous non-edited 

[Kv1.1(I)] mutant mice. We focused our pilot recordings on dentate granule cells 

in the hippocampus of non-edited [Kv1.1(I)] mice compared to wild-type 

littermates because of a recent study which observed a dramatic upregulation of 

Kv1.1 in these neurons in a model of temporal lobe epilepsy (Kirchheim et al., 

2013). Results from this analysis showed no differences between non-edited 

[Kv1.1(I)] and wild-type animals, comparing the intrinsic properties and single 

action potential firing characteristics of dentate granule cells. Since we observed 

phenotypic differences only in non-edited [Kv1.1(I)] mice following conical tube 

restraint, Dr. Centanni also performed recordings on mice that had just 

undergone conical tube restraint and again, there were no significant differences 

in any signaling parameters between the genotypes (Figure 2.20). 

 

  



78 

 

 

Figure 2.20. Electrophysiological characterization of dentate gyrus granule 
cells of non-edited [Kv1.1(I)] and wild-type mice. Dentate gyrus granule cells 
were recorded from hippocampal slices obtained from non-edited [Kv1.1(I)] and 
wild-type littermates. Prior to hippocampal isolation the mice were either 
unstressed or stressed by 30 minutes of conical tube restraint. 
Electrophysiological parameters recorded from dentate gyrus granule cells 
included: (a) resting membrane potential (RMP), (b) membrane resistance (Rm), 
(c) rheobase, (d) action potential (AP) latency, (e) AP amplitude, (f) AP half-
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width, (g) AP rise time, (h) AP decay, (i) AP area. No significant differences were 
found between genotypes or unstressed versus stressed conditions, though p-
values close to 0.05 are marked (mean ± SEM, n=5-9, 2-way ANOVA with 
Sidak’s multiple comparisons test). 

 

Discussion 

 

Characterization of Kv1.1 editing in wild-type mouse tissues 

Our studies extending characterization of Kv1.1 editing in wild-type mouse 

tissues highlight the importance of Kv1.1 regulation throughout the nervous 

system. We did not see substantial Kv1.1 editing in any peripheral tissues 

examined, however these dissections were of large tissues and do not discount a 

small subset of cells that might still undergo RNA editing, which could have been 

diluted out in our broad studies.  The specific and reproducible levels of Kv1.1 

editing characterized in each of the brain regions tested may indicate that 

regulating expression of the non-edited versus edited Kv1.1 transcripts allows for 

unique signaling properties for each tissue type. Further studies will be required 

on single cells to determine whether the RNA editing levels we observed occur 

across multiple cell types or whether the level of editing in a subset of the cellular 

populations drives the average. 

In general, the levels of RNA editing that we observed in these mouse 

tissues were comparable to the levels other investigators have seen in mice, rats, 

and humans, especially considering the known variation in editing between 
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different wild-type mouse strains (Morabito et al., 2010). One notable exception 

was Decher et al. (2010), where a high level of editing in human striatum was 

observed (approximately 65%), whereas levels of editing in mouse striatum were 

approximately 14%. These results suggest that mouse and human Kv1.1 editing 

profiles could vary more in the striatum as compared to other tissues. It is also 

important to note that RNA editing levels are necessarily more precise in mouse 

lines, which are genetically identical, compared to wide variability in human RNA 

editing. This variability has been previously characterized for Kv1.1 in human 

tissues obtained from patients undergoing surgery for mesial temporal lobe 

epilepsy with hippocampal sclerosis (MTLE+HS) (Krestel et al., 2013). Krestel et 

al. (2013) observed normal Kv1.1 RNA editing levels in control human 

hippocampal RNA at 23% and 20%, respectively, representing commercially 

available human hippocampal RNA (pooled sample from 19 individuals) and from 

autopsy controls (pooled from 5 individuals). Conversely, their samples from 

MTLE+HS patients varied widely, with Kv1.1 RNA editing ranging from 0% to 

approximately 47%. The variability of editing levels in epilepsy patients could 

result from their underlying disorder or might represent normal variability between 

individuals, whereas the controls were pooled samples that could artificially mask 

the population’s variability. A second interpretation is that the dissections are not 

of comparable regions of the striatum. In Decher et al. (2010), human brain RNA 

was obtained commercially and consisted of pooled RNA from 100 to 200 

individuals. Unfortunately, no detail is given for which part of the striatum was 

obtained, whether a particular region or a homogenate of the entire brain region, 
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or whether the RNA was obtained from clinically healthy humans or from patients 

with an underlying disorder. In a similar manner, the wide variability in MTLE+HS 

patients also could stem from differences in which part of the hippocampus was 

surgically removed. For these reasons, we can only speculate as to whether the 

difference in editing frequency between mouse and human striatum is biologically 

consequential or an experimental artifact. Future research is needed to describe 

the normal human variation in Kv1.1 RNA editing, in order to understand if it is as 

variable as observed in MTLE+HS tissue samples, and if this variability could 

underlie a risk factor for seizures or whether variability is a resulting 

consequence of seizures (Krestel et al., 2013). This could particularly be studied 

by comparing Kv1.1 RNA editing in focal tissue versus the surrounding/non-focal 

tissue from epileptic patient samples. Our high-throughput sequencing method 

would be key to detecting accurate measurements of RNA editing, as other 

studies of human variation of RNA editing have lacked robustness, with low read 

levels covering the editing site (O'Neil and Emeson, 2012). 

 

Verification of non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mutant mouse 

models 

Our mutant mouse lines can serve as important model systems to assess 

the consequences resulting from editing dysregulation of Kv1.1 transcripts, 

including alterations in survival, behavior, seizure-susceptibility, and 

electrophysiological properties of Kv1.1-expressing neurons in their native 
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environment. However, to make meaningful assertions regarding the roles of the 

non-edited [Kv1.1(I)] and edited [Kv1.1(V)] isoforms, we needed to first validate 

that our mouse models only differed in Kv1.1 isoform identity, not steady-state 

Kv1.1 mRNA levels. First, we confirmed that the intended isoform was being 

expressed and not altered at the RNA level by qualitative Sanger sequencing of 

RT-PCR amplicons generated from cerebellar RNAs from the wild-type, non-

edited [Kv1.1(I)], and edited [Kv1.1(V)] mouse lines. Editing of the Sanger 

sequenced WT cerebellum sample in Figure 2.4 appears to be greater than the 

editing determined by high-throughput sequence analysis in Figure 2.4; for a 

comparative analysis of editing quantification by Sanger versus high-throughput 

sequencing, see Appendix A and Figure A.1. 

Additional verification was performed for non-edited [Kv.1.1(I)] mice to 

ensure that the mutations introduced around the editing site were sufficient to 

prevent RNA editing from occurring. Although a low level of RNA editing was 

detected for the non-edited [Kv1.1(I)] mice in RNAs isolated from spinal cord 

(0.045 ± 0.0046 %), it is likely to have little physiological significance. These 

edited reads are likely the outcome of the low level of erroneous nucleotide 

incorporation, arising from the error rate of the polymerase during RT-PCR 

amplification, as well as the error rate for accurate detection on the Illumina 

sequencing platform. Two contributing factors to the error profiles using Illumina 

sequencing are the presence of the motif GGC (or GCC when sequencing the 

reverse strand) within 10 bases of the sequence specific error (SSE) as well as 

the presence of inverted repeats in the vicinity of the SSE (Nakamura et al., 
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2011). Interestingly, there are two GCC motifs within 10 bases downstream of 

the editing site and the editing site naturally resides within an extended inverted 

repeat. These type of errors also are heavily influenced by the sample 

preparation method as well as primers used, with different motifs influencing the 

types of errors that occur (Schirmer et al., 2015). They also noted that amplicon-

based sequencing is more prone to motif-based errors due to the high degree of 

similarity in sequenced reads. Our high-throughput sequencing technique is able 

to limit the effects of errors by excluding reads containing any errors that differ 

from the reference sequence, but cannot differentiate necessarily between G-to-

A and A-to-G sequencing errors at the editing site. This represents a small 

amount of error with little effect on the overall editing percentage, but can explain 

the very small number of edited reads found in spinal cord RNA isolated from 

non-edited [Kv1.1(I)] mice. 

To make accurate conclusions about our mouse models, we also needed 

to verify whether our efforts to express a fixed Kv1.1 isoform led to alterations in 

steady-state Kv1.1 RNA expression. Quantitative RT-PCR experiments validated 

that isoform identity did not alter Kv1.1 RNA levels for either isoform from that 

observed in wild-type mice. These controls further support the idea that any 

variation in phenotype that we might observe would result from restricting Kv1.1 

expression to a single edited isoform, either non-edited [Kv1.1(I)] or edited 

[Kv1.1(V)], and not due to unpredicted isoform expression or alterations in Kv1.1 

RNA expression levels. 
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Mendelian distribution of progeny 

 We have observed that both homozygous non-edited [Kv1.1(I)] and 

edited[Kv1.1(V)] mutant alleles can result in early postnatal lethality with 

incomplete penetrance, but that such postnatal lethality may be dependent on 

environmental factors such as stress. Mice were bred in both a traditional 

(MCNII) and pathogen-free Barrier facility to assess whether the observed 

postnatal lethality in homozygous mutant mice resulted from an external 

pathogen. However, both facilities demonstrated lethality for a subset of the 

homozygous mutants. Although we cannot rule out that there was a difference in 

the gut microbiota of the two breeding colonies in the different floors of the MCNII 

facilities, prior studies of gut microbiota variability have demonstrated that raising 

mice in individually ventilated cages in separate rooms of the same facility led to 

mice with statistically similar cecal microbiomes (Hufeldt et al., 2010). Because 

mutations in Kv1.1 underlie the etiology of EA1, which involves stress-induced 

symptoms, it is possible that there are stress-induced environmental factors that 

lead to the difference in survival. Such environmental factors might include a 

difference in animal care technicians, levels of noise, and/or levels of activity in 

each room. Informal characterization of the two MCNII rooms indicates that one 

had a higher level of noise and activity because it contained a commonly used 

procedural hood. When we genotyped the corpses of dead pups found in the 

breeding facilities, we did not see an overrepresentation of homozygous mutants 

for any genotype. There are several possibilities for why we never observed the 

postnatal lethality. One possibility is that the offspring are dying sometime after 
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birth, triggered by an environmental stressor, at an early enough stage that the 

mother can cannibalize the dead pup without leaving any trace. Another 

possibility is that some of the homozygous pups are dying during the stress of 

birth, followed by maternal cannibalization. Finally, environmental stressors could 

be affecting the mother rather than the pup, leading to selective maternal 

cannibalism of the homozygous mutants. Although it seems unlikely that the 

mothers are using some unknown differentiating factor to distinguish 

homozygous mutants versus heterozygotes and wild-type littermates, this has 

been previously documented in the literature for other homozygous mutant 

animals (Kastner et al., 1996; Lohnes et al., 1993; Lugt et al., 1994). More 

detailed video monitoring and cross-fostering analyses will be required to 

determine when these homozygous mutant animals are lost and what the 

underlying factors could be (Kuroda and Tsuneoka, 2013; Weber et al., 2013).  

 

Behavioral characterization  

We observed that the non-edited [Kv1.1(I)] mice show locomotor deficits 

under stressed conditions, similar to those observed in the human disorder, EA1. 

While rotarod results for all animals were within the range of normal literature 

values obtained from C57BL/6J mice, the mice of  some unstressed trials did not 

appear to increase their improvement on the task (Figure 2.8b) (Matsuo et al., 

2010). This apparent lack of learning in one of the unstressed trials likely results 

from random sampling and increasing the number of animals used in the trial 
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could better display this trend. Local maxima are seen before the last trial day for 

the first and third trials, but this is in agreement with studies by Matsuo et al. 

(2010), which also observed this kind of trend for data with smaller animal 

numbers, whereas when they increased their sample size from 13 to 1087 

animals, the curve smoothed to a steady plateau. 

We observed a statistical difference between left overlap parameters of 

the non-edited [Kv1.1(I)] mice compared to the wild-type littermates in gait 

analyses, though not in any other parameters. This result could be indicative of a 

stress-induced gait difference, though it is generally held that decreases in the 

paw overlap indicate improvements in motor coordination rather than 

impairments (Carter et al., 1999; Carter et al., 2001). However, there are several 

examples of mouse models with locomotor deficits in the rotarod task that do not 

display an ataxic gait by footprinting analysis (Jayabal et al., 2015; Kayakabe et 

al., 2014). Furthermore, the observed decrease in left paw overlap could 

potentially lead to dysfunction because it is an unbalanced change not reflected 

in the right overlap. 

Importantly, all behavioral tasks where we observed stress-mediated 

differences were performed on mice originating from the second MCNII facility, 

where no lethality was observed for either mutant genotype. As we have 

hypothesized that the conditional lethality of the original MCNII and barrier 

facilities may be associated with an environmental stressor, using mice from 

these facilities could result in inadvertently selecting for mutants that are 

hardened to stress, which could confound our interpretation. In contrast, by using 
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mice from the facility with no observed lethality, we avoided this possible 

selection. 

Unfortunately, additional studies of grip strength, motor coordination by 

the pole climb test, inverted screen, and open field analysis did not indicate 

dysfunction for homozygous non-edited [Kv1.1(I)] mice. The results of open field 

analysis also indicate that the non-edited [Kv1.1(I)] mice do not have increased 

anxiety, although direct assessments of anxiety-like behavior (e.g. elevated plus 

maze) were not employed. The rotarod task may be uniquely suited to promoting 

the stress-induced ataxia because it is a more strenuous task than the other 

behavioral studies used for these animals. 

 The interaction between stress and genotype is complex and leads to 

further questions about how stress is leading to genotype differences. Stress 

appears to increase performance for all genotypes, but also reveals a differential 

genotypic effect of stress between different trial days. To compare the effects of 

stress, the data described in Figures 2.8 and 2.9 were combined; this was done 

in order to minimize the differences due to each trial being performed at a 

different time on separate, naive cohorts (trials would need to be simultaneous 

for all groups for the most accurate comparisons) (Figure 2.21). Stress led to 

significant increases in rotarod performance for all genotypes, when comparing 

the performance over the entire test (significant main effects indicated by # 

symbols in Figure 2.21). Significant differences comparing among the unstressed 

genotypes or among the stressed genotypes followed the insignificant and 

significant trends described for the individual cohort data in Figures 2.8 and 2.9, 
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respectively (significant main effects indicated by + symbols in Figure 2.21). 

Interestingly, when the significance was tested for each trial day separately, the 

edited [Kv1.1(V)] and wild-type stressed groups performed significantly longer 

than the corresponding unstressed edited or wild-type groups starting on days 2 

and 3, respectively (indicated by * symbols in Figure 2.21). In contrast, the non-

edited [Kv1.1(I)] stressed group was not significantly increased compared to the 

non-edited [Kv1.1(I)] unstressed group until day 6. This indicates that the non-

edited [Kv1.1(I)] mice gain less from the stressed performance enhancement 

compared to the other genotypes and the stress performance enhancement 

begins later. 
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Figure 2.21. Stress-enhancement of rotarod performance.  Adult male mice 
were subjected to the unstressed or stressed condition (stress: 30 minutes of 
conical tube restraint) followed by the modified rotarod paradigm (1 rotarod trial 
per day over 9 days). Data described above were composed of the combined 
data of multiple naive cohorts, tested at different times, described in Figures 2.8 
and 2.9 (mean ± SEM, n=13-29, indicated in parentheses in the legend). 
Significant differences were observed between the unstressed versus stressed 
groups within each genotype (###p<0.001, ####p<0.0001 (color-coded for 
genotype), 2-way repeated measures ANOVA with Tukey’s multiple comparisons 
of the main effects). No differences were found between unstressed groups as in 
Figure 2.8, but similar differences were found between the stressed groups as is 
reported in Figure 2.9 (+p<0.05, +++p<0.001, 2-way repeated measures ANOVA 
with Tukey’s multiple comparisons of the main effects). In addition, significant 
differences were observed on individual trial days between the unstressed versus 
stressed groups within each genotype (***p<0.001, ****p<0.0001 (color-coded for 
genotype), 2-way repeated measures ANOVA with Tukey’s multiple 
comparisons). 

 

Finally, our data also lead to another question, whether the enhancement 

over the test period could be related to habituation to the stressor. If habituation 

were occurring, we would expect to see the non-edited [Kv1.1(I)] mice performing 

more divergently only when the stressor was novel and that performance would 



90 

not differ as the mice became habituated to the stressor. As the non-edited 

[Kv1.1(I)] unstressed versus stressed mice do not significantly differ until day 6, 

this could indicate a delay in habituation compared to the other genotypes 

(Figure 2.21). Unfortunately, for the comparisons between genotypes in Figures 

2.8 and 2.9, the statistics were limited to main effects, because comparisons at 

individual trials were underpowered for most trial days (though in the combined 

data in Figure 2.21, the non-edited [Kv1.1(I)] mice were significantly decreased 

compared to the edited [Kv1.1(V)] mice on days 2, 3, 4, 5 and 7). Thus, in order 

to determine significance between genotypes at each trial day in data consisting 

of a single cohort, a mixed-model should be developed for more precise 

statistical comparisons. An important caveat to the rotarod paradigm is that the 

maximum run time for the mice is 300 s, thus the apparent plateau in rotarod 

performance over time is likely an artifact of this ceiling effect, which could 

confound statistical tests at the later trial days, and future experiments should 

increase the maximum time to determine the exact latency to fall value. In order 

to specifically address any stressor habituation, a follow-up study could be 

performed, using a chronic unpredictable stress protocol (Monteiro et al., 2015). 

Varying the stressor may reveal additional deficits, possibly leading to further 

decreases in rotarod performance for the non-edited [Kv1.1(I)] mice compared to 

the unstressed paradigm or the other genotypes. Although a chronic 

unpredictable stress paradigm may provide additional insights into genotypic 

differences, the nature of EA1 as a paroxysmal stimulus-induced disorder 

suggests that patients do not habituate to the triggering stressors, and using a 
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chronic unpredictable stress may reveal no more information than only using the 

conical tube restraint stressor (Dreissen and Tijssen, 2012). 

 

Spontaneous Seizure Monitoring and Drug-induced Seizure Susceptibility 

 Initial EEG analyses did not reveal epileptiform activity, though the 

homozygous non-edited [Kv1.1(I)] mouse exhibited two tonic events during 

sleep. These abnormal movements could not be classified as seizures, because 

there were no concurrent alterations in the EEG traces, yet they suggested that 

the non-edited [Kv1.1(I)] mutants may have underlying signaling deficits that 

could lead to altered seizure-susceptibility. Additional studies are required to 

discern if this observed activity was consistent for this genotype. 

Subsequent studies assessed whether Kv1.1 mutant animals displayed 

differences in drug-induced seizure susceptibility using the pro-convulsant drugs, 

flurothyl, PTZ, and 4-AP. These convulsants were chosen due to their 

widespread use, as well as prior use in Kv1.1 studies in the literature. PTZ has 

been shown to alter the voltage dependence and decrease the maximal current 

of Kv1.1, when exogenously expressed in Xenopus oocytes, and Kv1.1 editing 

has been implicated in reducing the 4-AP-seizure susceptibility (Madeja et al., 

1996; Madeja et al., 1994; Streit et al., 2011). These drugs each have different 

mechanisms of action, therefore it is not surprising that one has no effect 

(flurothyl) and the others have opposite effects (PTZ and 4-AP) on homozygous 

Kv1.1 mutant animals. 
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The mechanism of action for flurothyl is not well understood, so the lack of 

a genotype difference is less informative. It has been previously demonstrated 

that Kv1.1-null mice experience flurothyl-induced seizures 60% faster than their 

wild-type littermates (Smart et al., 1998). In contrast, we found no difference in 

the onset of flurothyl-induced seizures between our mutant mouse lines, 

indicating that any effect of flurothyl is independent of Kv1.1 editing. The loss of 

Kv1.1 in null mice might lead to an increase in seizure susceptibility by increasing 

the expression of Kv1.x channels at the plasma membrane (since Kv1.1 can lead 

to greater internalization of heterotetrameric Kv1.x channels) (Manganas and 

Trimmer, 2000). Our characterization of the steady-state levels of Kv1.1 RNA 

indicates similar expression of either isoform in mutant lines compared to wild-

type mice, so an expression-dependent flurothyl effect would not be expected to 

alter seizure-susceptibility. We did not follow up with a larger cohort study 

because power analyses (at 80% power and 5% type-I error rate) predicted that 

we would need to test 2472 non-edited [Kv1.1(I)] and 1185 edited [Kv1.1(V)] 

animals in order to see significant differences compared to wildtype (using the 

average standard deviation derived from our flurothyl data described above). By 

contrast, it is interesting that 4-AP and PTZ are each able to reveal differences 

between the homozygous non-edited [Kv1.1(I)] and edited[Kv1.1(V)] mutant 

mice, respectively. 

PTZ is proposed to weaken GABAA receptor mediated inhibition and PTZ 

has been shown to alter the voltage-dependence of Kv1.1 in exogenously 

expressing Xenopus oocytes (Madeja et al., 1994; Ramanjaneyulu and Ticku, 
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1984). We observed that the edited [Kv1.1(V)] mice displayed a dampened 

seizure-susceptibility towards PTZ-induced seizures. The main biophysical 

difference between the non-edited [Kv1.1(I)] and edited[Kv1.1(V)] mutant 

channels is the speed of the recovery from fast-inactivation. Whereas faster 

recovery from inactivation is epileptogenic for sodium channels (R1460H 

mutation in SCN1A) (Alekov et al., 2000), we have observed that the edited 

[Kv1.1(V)] isoform is resistant to PTZ-induced seizures, indicating that faster 

recovery from inactivation for potassium channels is anti-epileptogenic. The 

opposing effects of faster recovery from inactivation for the sodium channel 

mutant and potassium channel edited isoform mentioned above may alter the 

frequency and shape of the repetitive firing of action potentials. Faster recovery 

from inactivation for a sodium channel may overall lead to greater sodium influx 

and hyperexcitability, whereas faster recovery for a potassium channel may lead 

to less potassium efflux and hypoexcitability. Our studies indicating that the 

edited channel confers dampened seizure susceptibility also are consistent with 

studies indicating that drugs, which open potassium channels or prevent -

inactivation, counteract PTZ-induced seizures (Lu et al., 2008; Pozo et al., 1990). 

4-AP is a known Kv channel blocker with high-affinity for the Kv1 channel 

family (Decher et al., 2010; Grissmer et al., 1994). It was hypothesized that 

homozygous non-edited [Kv1.1(I)] mice would have a greater 4-AP-induced 

impairment, given that 4-AP efficiently blocks the non-edited [Kv1.1(I)] isoform, 

but not the edited [Kv1.1(V)] isoform when exogenously expressed in Xenopus 

oocytes (IC50: nonedited= 98 µM; edited= 6.7 mM) (Decher et al., 2010). 



94 

Recordings from entorhinal slices from chronic epileptic rats, observed to have 

increases in Kv1.1 RNA editing, revealed a resistance to 4-AP-induced seizure-

like events (Streit et al., 2011). Thus our results, demonstrating that the 

homozygous non-edited [Kv1.1(I)] mutant mice were more susceptible to 4-AP-

induced seizures agrees well with previous studies. The 4-AP experiment was 

replicated twice and the increase in seizure susceptibility was still observed, 

though interestingly our second experiment, using the wild-type littermates of the 

non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice demonstrated further differences 

that were not seen in the original experiment using the wild-type littermates of the 

V408A/+ mice. The latency to HLE did differ between genotypes for the 4-AP-

induced seizures, unlike the results with PTZ (in which genotype had no effect on 

seizure latency). This difference in the seizure latency was only observed for the 

non-edited [Kv1.1(I)] mice, which exhibited faster maximal seizure onset (HLE) 

than the other genotypes. The presence of edited channels in the edited 

[Kv1.1(V)], wild-type, and V408A/+ mice may have a dominant effect on seizure 

latency, which all displayed similar seizure latency, whereas the complete lack of 

edited channels in the non-edited [Kv1.1(I)] mice led to faster and more severe 

seizures. 

It is noteworthy that the wild-type littermates had an intermediate 4-AP 

seizure-susceptibility curve between the non-edited [Kv1.1(I)] and edited 

[Kv1.1(V)] mice, especially given the lower rates of editing in the hippocampus in 

particular (approximately 18%). This could also indicate that the edited [Kv1.1(V)] 

isoform exerts a dominant effect, even when it is expressed at a lower ratio 



95 

compared to the non-edited [Kv1.1(I)] channel. This interpretation is consistent 

with studies by Decher et al. (2010), which demonstrated that edited [Kv1.1(V)] 

exerts dominant effects on drug and fatty acid binding when in tetramers with 

non-edited [Kv1.1(I)] as well as in tetramers with other Kv1.x family members. 

Another possible explanation is that a small subset of neurons has a high 

expression of edited [Kv1.1(V)] and these neurons set the epileptic tone of the 

predominantly nonedited [Kv1.1(I)] isoform expressing tissue. This is possible but 

is less likely, given that editing has been quantified in CA1 pyramidal neurons 

and these neurons had low levels of editing (7%), similar to the average of region 

(Decher et al., 2010). 

 

Preliminary Electrophysiological characterization 

 Collaborations with the Winder lab performed the first electrophysiological 

characterization of the homozygous non-edited [Kv1.1(I)] mutant mice. We chose 

to focus on the non-edited [Kv1.1(I)] animals to probe whether these mice have 

altered signaling properties which could explain the heightened seizure-

susceptibility seen in the 4-AP experiments. In addition, recordings were 

performed under stressed conditions, due to the observed stress-induced motor 

discoordination of non-edited [Kv1.1(I)] mutant animals upon conical tube 

restraint. Kv1.1 has been implicated in alterations in dentate granule cells’ 

signaling, as Kv1.1 was upregulated in dentate granule cells in a model of 

temporal lobe epilepsy (Kirchheim et al., 2013). When Kv1.1 was reversibly 
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knocked down by antisense oligonucleotides, electrophysiological recordings of 

dentate granule cells revealed action potential broadening and an abolished 

hyperpolarization phase, though no alterations in other parameters were 

observed, such as the resting membrane potential and action potential amplitude 

(Kirchheim et al., 2013; Meiri et al., 1997). Unfortunately, our studies did not 

identify any differences between the homozygous non-edited [Kv1.1(I)] mice and 

their wild-type littermates. This outcome may result from our choice of recording 

in the hippocampus where wild-type mice express approximately 80% non-edited 

Kv1.1 transcripts, which could explain why the signaling in the hippocampus of 

non-edited [Kv1.1(I)] mutant animals was very similar to that observed in control 

mice. The lack of a difference in signaling for the non-edited [Kv1.1(I)] mice may 

indicate that the presence or absence of the edited [Kv1.1(V)] isoform may be 

more informative for understanding Kv1.1 editing effects in vivo. 

 

Summary 

 Until now, characterization of Kv1.1 editing has been restricted to 

heterologous expression systems. Our newly developed mouse models allow for 

phenotypic contrasting of the non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice 

and the opportunity to observe the electrophysiological changes upon solely 

expressing either isoform in vivo. Our characterization has revealed that 

disrupting the normal ratios of Kv1.1 editing has surprising effects on postnatal 

lethality that are related to environmental factors. Furthermore, our phenotypic 
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characterization has indicated that the non-edited [Kv1.1(I)] mouse shares 

similarities with the V408A EA1 mouse model, posing new questions as to how 

these two mouse models are similar and whether altered Kv1.1 editing could be 

a contributing factor in the V408A/+ mouse model as well.  
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CHAPTER III 

 

INTERACTIONS BETWEEN KV1.1 RNA EDITING AND EPISODIC ATAXIA 
TYPE-1 MUTATIONS 

 

The contents of this chapter were adapted from the published work, 

“Mutations underlying Episodic Ataxia type-1 antagonize Kv1.1 RNA editing,” in 

the journal Scientific Reports in February 2017, under a Creative Contributions 

Attribution v4.0 International License (Ferrick-Kiddie et al., 2017). 

 

Introduction 

At least three EA1-associated mutations (V404I, I407M, and V408A) have 

been identified within the duplex region required for editing of Kv1.1 RNAs 

(Adelman et al., 1995; Eunson et al., 2000; Imbrici et al., 2006; Maylie et al., 

2002; Tomlinson et al., 2013; Zerr et al., 1998). Due to the proximity of the 

mutant amino acids to the editing site (I400V), we sought to determine whether 

such EA1 mutations affect the editing profiles for Kv1.1 transcripts and to 

determine the resultant biophysical properties of edited, mutant channels. 

Our studies reveal an antagonistic relationship between these EA1 

mutations and RNA editing. Each EA1 mutation decreased the rate of RNA 

editing using an in vitro editing system and the V408A mutation decreased the 

extent of editing in a previously characterized mouse model of EA1. Furthermore, 
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we show that editing can have a variable effect on each type of EA1 mutant 

protein, altering voltage sensitivity, activation and deactivation, and inactivation 

with a Kv subunit. Not only do our studies demonstrate that EA1 mutations can 

impede RNA editing and alter resulting protein function, but also represent the 

first examples of existing disease-associated human mutations which act to 

disrupt cis-regulatory elements required for RNA editing. 

 

Materials & Methods 

 

Kv1.1 and Kv1.1 constructs 

A 463 bp-region encompassing the duplex required for Kv1.1 editing was 

amplified by PCR from human genomic DNA using sense (5’-GC-

GAAGCTTCCTCTTCATCGGGGTCATCCT-3’) and antisense (5’-

GCGGCGGCCGCAGTTTTGGTTAGCAGTGG-3’) oligonucleotide primers in 

exon 2. To aid in subcloning, the primers incorporated Hind III and Not I 

restriction sites on their 5’-ends for the sense and antisense primers, 

respectively. The PCR amplicon was subcloned into the mammalian expression 

vector, pRc-CMV (Thermo Fisher) to generate a wild-type Kv1.1 minigene. To 

generate the V404I, I407M, and V408A minigenes, the wild-type Kv1.1 construct 

was mutagenized using the QuikChange II Site-Directed Mutagenesis kit (Agilent 

Technologies), where the PCR reactions were supplemented with 5% DMSO. 

Full-length mouse Kv1.1 (Addgene) and mouse Kv1.1 (Thermo Scientific) 



100 

cDNAs were subcloned into the Xenopus expression vector, pGEM HE (Liman et 

al., 1992). The following full-length constructs were created by PCR mutagenesis 

from the full-length mouse non-edited [Kv1.1(I)] cDNA and validated by sequence 

analysis: wild-type edited [Kv1.1(V)] and V404I, I407M, and V408A mutant Kv1.1 

(non-edited [Kv1.1(I)] and edited [Kv1.1(I)]) cDNAs. 

 

In vitro analysis of RNA editing 

RNAs were transcribed in vitro from the wild-type Kv1.1 minigene, as well 

as corresponding minigenes harboring the V404I, I407M, and V408A mutations 

using the MAXIscript kit (Ambion) with T7 RNA polymerase according to 

manufacturer’s instructions. Nuclear extracts were prepared from transiently 

transfected HEK293 cells expressing rat ADAR2, as described previously, and 

stored at -80º C until required (Schreiber et al., 1989; Stefl et al., 2010). 

Immediately prior to in vitro editing analysis, nuclear extracts were diluted 1:10 in 

dialysis buffer [20 mM HEPES, 1 mM EDTA, 1 mM EGTA, 10% glycerol, 300 mM 

NaCl, 1 mM PMSF, 1 mM DTT, 1X complete, EDTA-free protease inhibitor 

cocktail (Roche)], before a 2-hour incubation at 30°C with RNase inhibitors and 

RNA substrates varying in concentration from 0.125 to 2 nM. Nuclear extracts 

represented one-third of the total 50 L reaction volume which was diluted with 

the RNA substrate and water to reduce the glycerol concentration into a range 

necessary for ADAR2 activity. The incubation time was determined empirically by 

time-course analyses to ensure that editing of the wild-type Kv1.1 minigene was 
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within the linear range of the reaction (Figure 3.1). In Figure 3.1, editing was 

determined by Sanger sequencing electropherogram peak height analysis (see 

Appendix A for additional description of the accuracy of Sanger compared to 

high-throughput sequencing analyses). By the limitations of this technique, very 

low editing levels were undetectable, especially at the 1 hour time point for the 

mutant duplexes (and editing was undetectable for all RNA duplexes in pilot trials 

at 20 minutes (data not shown)). Reactions were terminated by the addition of 

TRIzol (Ambion) and RNA was extracted according to the manufacturer’s 

protocol. RNA was reverse-transcribed with random primers using the High 

Capacity cDNA Reverse Transcription kit (Applied Biosystems) and the extent of 

RNA editing was quantified by high-throughput multiplexed sequence analysis as 

described previously (Hood et al., 2014). The editing rate was calculated as the 

fmol RNA converted to the edited isoform divided by the duration of the reaction. 
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Figure 3.1. Time course analysis to determine the linear range for the in 
vitro RNA editing rates. Wild-type (WT) and mutant Kv1.1 RNA minigenes, 
encompassing the duplex region required for editing, were in vitro transcribed 
and incubated between 1 and 4 hours with nuclear extracts prepared from 
HEK293 cells transiently expressing rat ADAR2. The extent of editing was 
quantified by the relative A and G peak heights derived from Sanger sequence 
analysis, used to calculate the approximate editing rate. 

 

In vivo analysis of RNA editing 

All animal care and experimental procedures involving mice were 

approved by the Vanderbilt University Medical Center Institutional Animal Care 

and Use Committee and were performed in accordance with relevant guidelines 

and regulations. Mice harboring the heterozygous V408A mutation (V408A/+) 

were generously provided by Dr. James Maylie (Oregon Health & Science 

University) (Herson et al., 2003). At approximately 6 weeks of age, male V408A/+ 

and wild-type littermates were euthanized by cervical dislocation under 

anesthesia followed by decapitation. Six brain regions (cerebellum, 

hippocampus, hypothalamus, cortex, striatum, olfactory bulb) and spinal cord 

were dissected from each mouse. Tissues were flash-frozen in liquid nitrogen 

and RNA was isolated by sonication in TRIzol (Ambion) according to the 
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manufacturer’s instructions. RNA was reverse-transcribed and Kv1.1 editing was 

quantified by high-throughput sequence analysis as described for in vitro RNA 

editing analyses. 

 

Electrophysiological recording in Xenopus oocytes 

All animal care and experimental procedures involving Xenopus laevis 

were approved by the University of Puerto Rico Institutional Animal Care and 

Use Committee. Kv1.1 and full-length, wild-type, V404I, I407M, and V408A 

Kv1.1 RNAs were transcribed in vitro, capped, and polyadenylated using the T7 

mScript Standard mRNA Production System (CELLSCRIPT). Ovary sections 

containing several hundred oocytes were removed from adult specimens of 

Xenopus laevis obtained from Xenopus Express (Brooksville, FL). Oocytes were 

dispersed with type II collagenase and manually defolliculated. Stage V and VI 

oocytes were then selected by manual inspection for subsequent RNA injection. 

On day 1, oocytes were injected with 38.6 nL of one of the eight full-length Kv1.1 

RNAs encoding non-edited [Kv1.1(I)] and edited [Kv1.1(V)] isoforms of wild-type, 

V404I, I407M, and V408A channels, with or without the Kv1.1 RNA. Injection 

concentrations were optimized individually for each construct, with greater 

concentrations required for the I407M and V408A RNAs due to protein 

expression differences previously described in the literature (Tomlinson et al., 

2013; Zerr et al., 1998). Each -subunit was injected at a concentration from 2 

ng/L to 1 g/L and co-injected with Kv1.1 when applicable; concentrations for 
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the Kv1.1 constructs were 10-fold more than each -subunit, up to a maximum 

injection concentration of 500 ng/L. Electrophysiological analysis of oocytes 

were performed between day 3-5 post-injection using the cut-open oocyte 

voltage-clamp technique (Stefani and Bezanilla, 1998). The external solution 

consisted of: 20 mM K-glutamate, 100 mM L-glutamate, 2.5 mM MgCl2, 2.5 mM 

CaCl2, 10 mM HEPES, pH 7.4. The internal solution consisted of: 120 mM K-

glutamate, 2.5 mM EGTA, 10 mM HEPES, pH 7.4. The pH of the solutions was 

adjusted using N-methyl-D-glucamine, as an alternative to NaOH, to limit the 

introduction of sodium ions into the solutions. To gain electrical access to the 

oocyte interior, the internal solution was supplemented with 0.3% saponin and 

used for a brief permeabilization prior to recording. The oocyte membrane 

potential was controlled using a CA-1B High Performance Oocyte Clamp (Dagan 

Corporation). Analog current signals were digitized at 100 kHz using an 

SBC6711 A/D D/A board (Innovative Integration, Simi Valley CA) and filtered at 5 

kHz. To avoid errors introduced by series resistance, only traces exhibiting less 

than 10 A were used for analysis. GPATCH M software, kindly provided by Dr. 

F. Bezanilla (University of Chicago), was used for data collection and clamp 

control. Leak currents were subtracted using a linear P/4 procedure. Data were 

analyzed using ANALYSIS software, also provided by Dr. F. Bezanilla, for fitting 

data with exponential functions and measuring current amplitudes. In addition, 

single exponential curves were fitted to recovery from the inactivation data using 

Graphpad Prism (Graphpad Software) to determine the rate constant, . As the 

channels encoded by edited V408A transcripts closed too rapidly for 
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measurements of tail current amplitude, conductance (G) was calculated using 

Ohm’s law (Equation 3.1), 

 

rVV

I
G


  (3.1) 

 

where I represents the maximal current at the test potential (V) and Vr signifies 

the reversal potential, determined empirically. In primary traces displayed, points 

arising from brief capacity transients were removed for clarity. 

 

Statistical analysis 

Statistical comparisons for in vitro and in vivo editing analyses were 

determined by 2-way ANOVA with Tukey’s multiple comparisons test (Figures 

3.3 and 3.4). Boltzmann functions were fitted using non-linear regression to 

model conductance-voltage curves and to determine V1/2 and k values 

associated with each replicate. Two-sample Student’s t-tests were used to 

compare the voltage-dependent parameters, long pulse characterization with and 

without Kv1.1, and recovery from inactivation  values (Tables 3.2 and 3.3; 

Figures 3.9 and 3.11). The above analyses were conducted using Graphpad 

Prism (Graphpad Software). To maintain the type I error rate for each experiment 

at 5%, a Bonferroni correction was applied to each test based on the number of 

comparisons within each experiment and statistical significance for any pair of 
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treatment comparisons was redefined according to these adjusted p-values. For 

Table 3.2 and Table 3.3, 10 comparisons were made and the significance was 

adjusted to p ≤ 0.005. For Figure 3.9b, 42 comparisons were made and the 

significance was adjusted to p ≤ 0.0012. For Figures 3.9c and 3.11b, 30 

comparisons were made and the significance was adjusted to p ≤ 0.0017. 

Analysis of activation and deactivation, and inactivation kinetics (Figures 3.6, 3.8, 

and 3.10) were performed with linear mixed models using the natural log of the 

acquired data to better meet model assumptions (developed by Dan Ayers). 

Individual group comparisons for p-values were based on the Wald tests of 

model-based predicted (least square) means and appropriate standard errors 

(and reported in Appendix B). Because these data indicate that the 

measurements of activation, deactivation, and -inactivation were dependent on 

voltage, comparisons were made only between values obtained at the same volt-

age. Data are presented with their original scale to allow for easier interpretation 

and comparison with the existing EA1 literature. All statistical tests were two-

sided and statistical significance was defined as p ≤ 0.05. Unless specified, no 

adjustments for multiple comparisons were performed. 
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Results 

 

EA1-associated mutations alter RNA editing in vitro 

Three known EA1-associated mutations, V404I, I407M, and V408A, are 

encoded within the predicted 114-bp RNA duplex, which represents the minimum 

sequence required for site-specific editing of Kv1.1 transcripts by ADAR2 (Figure 

3.2) (Bhalla et al., 2004). Using an RNA-folding algorithm (mfold) (Zuker, 2003), 

we examined whether any of these mutations were predicted to grossly alter the 

structure of the duplex region. Results from this analysis revealed that each 

individual mutation predicted a single-nucleotide mismatch within the duplex at 

each mutation site, with no further perturbations to the predicted RNA secondary 

structure and only minimal alterations in the free-energy (G) calculations for 

each duplex (Table 3.1) (SantaLucia, 1998). 
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Figure 3.2. The proximity of the Kv1.1 editing site compared to the EA1 
mutations responsible for V404I, I407M, and V408A. The predicted secondary 
structure for a portion of the wild-type (WT) human Kv1.1 pre-mRNA is indicated 
with the positions of the A-to-I editing site (I400V) and three non-synonymous 
mutations associated with EA1 shown with inverse lettering. The locations of two 
human versus mouse sequence differences are indicated in blue (which are both 
G in the mouse sequence). 

 

 

Table 3.1. Free energy calculations of wild-type and EA1 human mutant 
duplexes 

 

Duplex type G 

Wild-type Kv1.1 -42.6 

V404I -39.3 

I407M -41.7 

V408A -38.5 
 

To test whether these mutations affected the rate of editing for Kv1.1 

RNAs, each of the EA1-associated mutations was incorporated separately into 

constructs encompassing a 463-bp region of human Kv1.1, centered on the 

known editing site. RNA transcripts were transcribed in vitro using these 

minigenes as a template and a range of concentrations for each RNA was 

subjected to an in vitro editing assay using ADAR2 protein derived from nuclear 
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extracts isolated from HEK293 cells transiently expressing ADAR2 (Stefl et al., 

2010). The extent of editing was quantified by high-throughput sequence analysis 

as described previously and used to calculate the rate of editing (Figure 3.3) 

(Hood et al., 2014). Results from these studies clearly demonstrated that 

introduction of any of these EA1-associated point mutations into the wild-type 

sequence was sufficient to decrease the editing rate for Kv1.1 transcripts in vitro. 

Furthermore, the magnitude of this rate decrease corresponded to the proximity 

of the mutation to the editing site (I400V), with the most severe deficit observed 

for the V404I mutation (81% rate reduction at 2 nM RNA), and a 58% and 17% 

reduction in editing rate for the I407M and V408A mutations, respectively. 
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Figure 3.3. Quantitative analysis of in vitro RNA editing rates for wild-type 
and mutant Kv1.1 transcripts. Wild-type (WT) and mutant human Kv1.1 RNA 
minigenes, encompassing the duplex region required for editing, were in vitro 
transcribed and incubated with nuclear extracts prepared from HEK293 cells 
transiently expressing rat ADAR2. The extent of editing was quantified by high-
throughput sequence analysis and used to calculate the editing rate, as 
described previously (Hood et al., 2014). Statistical differences were determined 
for replicates at the 2 nM RNA concentration by 2-way ANOVA with Tukey’s 
multiple comparisons test (mean ± SEM, n=4 replicate reactions, *p ≤ 0.05; ****p 
≤ 0.0001). Small error bars were obscured by the data symbol for the V404I 2nM 
data point. 

 

A mouse model of EA1 (V408A/+) alters RNA editing in vivo 

To date, only one mouse model of EA1 has been developed (Herson et 

al., 2003). Mutant mice homozygous for the V408A allele die between E3 and 

E9, whereas V408A/+ heterozygotes are characterized by stress-induced ataxia 

as well as attenuated cerebellar Purkinje signaling, which has been attributed to 

action potential broadening at basket cell boutons leading to increased GABA 

release (Begum et al., 2016; Herson et al., 2003). To determine whether the 

presence of the V408A mutation inhibited Kv1.1 editing in vivo, we isolated RNA 
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from multiple dissected brain regions and spinal cord of wild-type and V408A/+ 

mutant animals to determine RNA editing profiles by high-throughput sequence 

analysis of Kv1.1 transcripts. Since this deep-sequencing approach generates 

sequence reads covering both the V408A mutation and the editing site, it was 

possible to quantify allele-specific editing profiles in V408A/+ heterozygotes. 

Results from this analysis indicated that the extent of editing for the wild-type 

allele in V408A/+ mutant mice was similar to that observed in wild-type animals. 

Editing for the mutant V408A allele showed a 59% reduction in site-specific 

editing efficiency in all tissues examined when compared to either wild-type 

littermates or the V408A/+ wild-type allele (Figure 3.4). 

 

 

 

Figure 3.4. Quantitative analysis of allele-specific Kv1.1 editing in V408A 
mutant mice. The extent of editing for the wild-type and mutant alleles in 
heterozygous V408A adult mice (V408A/+), compared to wild-type littermates, 
was determined for RNA isolated from dissected brain regions and spinal cord by 
high-throughput sequence analysis. Significance was determined by 2-way 
ANOVA with Tukey’s multiple comparisons test (mean ± SEM, n=4, ***p ≤ 0.001, 
****p ≤ 0.0001). Cbl, cerebellum; Hyp, hypothalamus; Hip, hippocampus; Ctx, 
cortex; Str, striatum; Olf, olfactory bulb; Sp C, spinal cord. 



112 

Gating properties are altered between non-edited and edited Kv1.1 
channels harboring EA1 mutations 

 

We now have demonstrated that these three EA1 mutations can affect the 

rate of editing in vitro and the V408A allele can reduce the extent of editing in 

vivo. Although editing and EA1 mutations separately have been shown to alter 

the biophysical properties of Kv1.1 channels, it is unknown whether editing may 

cause unique effects when paired with these EA1-associated mutations. 

Similarly, it is unclear whether the phenotypic alterations observed in patients 

bearing the V404I, I407M, or V408A mutations result from changes in channel 

function mediated by these missense mutations alone or in concert with their 

affects upon editing. To address these questions, Xenopus oocytes were injected 

with in vitro transcribed RNAs encoding either the non-edited [Kv1.1(I)] (N) or 

edited [Kv1.1(I)] (E) isoforms of the wild-type, V404I, I407M, or V408A mouse 

Kv1.1 subunits, expressed as homotetramers. 

The voltage dependence of activation for each channel subtype was 

analyzed to determine editing-dependent changes, and representative traces for 

each channel are shown in Figure 3.5. The relationship between macroscopic 

conductance and voltage was quantified for each channel type. For most 

constructs, this was derived from normalized tail current measurements; 

however, V408A E closed too quickly for accurate measurements of tail currents 

so conductance was measured using outward currents (see Equation 3.1 in 

Materials & Methods). Conductance (G) versus voltage (V) curves were fit to a 

Boltzmann function (Equation 3.2), 
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to estimate the midpoint of channel activation (V1/2) and the relative voltage 

sensitivity (k) (Table 3.2). Consistent with previous reports for I407M N 

channels(Tomlinson et al., 2013), we observed a 30 mV positive shift in the V1/2, 

but this change was not influenced by editing (Figure 3.5 and Table 3.2). By 

contrast, V404I also caused a positive shift, but it was more pronounced for the 

non-edited channel (a shift of 22.1 mV for the non-edited channel, 14.2 mV for 

the edited channel). Thus, editing partially ameliorated the alteration in channel 

function caused by the V404I mutation. V408A channels did not exhibit altered 

voltage-dependence for either the non-edited or edited isoforms. Editing had little 

effect on voltage sensitivity for any of the wild-type or mutant homotetrameric 

channels. 
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Figure 3.5. Voltage-dependence of non-edited compared to edited mutant 
channels. Whole-cell K+ currents were recorded from oocytes expressing either 
the non-edited (N) or edited (E) isoforms of homotetrameric wild-type (WT), 
V404I, I407M, or V408A mouse Kv1.1 channels. Test potentials were elicited in 
10 mV voltage steps from -50 to 40 mV, from a holding potential of -80mV. (a) 
Representative activating traces at -20 and 40 mV are shown for each construct. 
(b) Conductance (G) versus voltage plots are shown where data has been 
normalized to the maximal conductance (Gmax), demonstrating shifts in voltage 
dependence for I407M and V404I. Normalized conductance was measured from 
tail current amplitude for all channel types except for V408A E, which exhibited 
tail currents too fast to measure and was derived by Ohm's Law (Equation 3.1), 
as described in the Materials and Methods. Conductance (G) versus voltage 
plots were normalized to the maximal conductance (Gmax) (mean ± SEM, n = 4-
8 oocytes). Small error bars may be obscured by the data symbols in some 
cases. 
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Table 3.2. Voltage-dependence of activation. Voltage-dependence of 
activation was determined by fitting data to a Boltzmann function (Equation 3.2), 
to determine the mid-point of channel activation (V1/2) and relative voltage 
sensitivity (k). All data are represented as mean ± SEM, n=4-8 oocytes for each 
channel type. Non-edited (N) and edited (E) isoforms of the mutant channels 
were compared to WT E and WT N channels, respectively: ***p≤0.001; 
****p<0.0001. All types of N channels were compared to their respective E 
channels: ++p≤0.005; +++p≤0.001. Significance was determined by two-sample 
t-tests; due to multiple comparisons, significance was set at p≤0.005. 

 

To examine how editing affected channel opening kinetics, the time to 

reach half-maximal activation across a range of voltages was determined (Figure 

3.6). The only editing-dependent change was observed for the I407M mutation. 

Both I407M channels opened more slowly than their wild-type counterparts, but 

the slowing was more severe for I407M E channels, leading to channels with an 

exacerbated slow opening phenotype. In addition, I407M E and V408A E 

channels demonstrated non-linearity in their voltage dependence for outward 

currents (Figure 3.7). This was particularly evident at very positive voltages, 

where I407M E and V408A E channels reached peak current amplitudes at 50 

and 40 mV respectively, with further voltage steps resulting in decreasing current 

amplitudes. 
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Figure 3.6. Editing alters opening (activation) kinetics of I407M channels. 
(a) Example trace overlay of I407M editing dependent alteration of opening 
kinetics at the 10mV activating pulse (b) Representative activation traces, 
depicting whole-cell currents, were recorded from oocytes expressing either a 
non-edited (N) or edited (E) isoform of the wild-type (WT) or mutant mouse Kv1.1 
channel. Test potentials were elicited in 10 mV voltage steps from -10 to 80 mV, 
from a holding potential of -80 mV. (c) Opening kinetics were measured as the 
time to reach half-maximal current amplitude and individual group comparisons 
for p-values were based on the Wald tests of model-based predicted (least 
square) means (mean ± SEM, n=3-7 oocytes). I407M N and I407M E channels 
were significantly slowed in their time to half-activation compared to each other, 
in the voltage range -10 to 70 mV (0.05 > p ≥ 0.0008). I407M N was significantly 
slower than WT N at all voltages (p ≤ 0.0001) and I407M E was significantly 



117 

slower than WT E at all voltages (0.01 > p ≥ 0.0001). Small error bars were 
obscured by the data symbols in some cases. 

 

 

 

 

Figure 3.7. I407M E and V408A E channels display decreased currents at 
the most positive voltages. Whole-cell K+ currents were recorded from oocytes 
expressing either the I407M E or V408A E mouse Kv1.1 channel. Test potentials 
were elicited in 10 mV voltage steps from -50 to 80 mV, from a holding potential 
of -80 mV. (a) Representative traces for I407M E and V408A E channels are 
shown, indicating loss of current amplitude at the highest voltages. Voltages at 
60mV (blue) and 80mV (red) are colored for clarity. (b) Current (I) versus voltage 
plots, normalized to the maximal current (Imax), are shown; note the unusual 
bell-shaped curves. Data points represent mean ± SEM (N=7-8 oocytes). Small 
error bars were obscured by the data symbols in some cases. 
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 Closing (deactivation) kinetics were measured by fitting single exponential 

curves to tail current traces to obtain estimates of tau (), the reciprocal of the 

closing rate constant (Figure 3.8). Editing resulted in wild-type channels closing 

slightly faster. In addition, the I407M and V408A mutations greatly increased 

closing speeds on their own. The editing of I407M channels had only a small 

effect on deactivation kinetics, while the edited V408A channels closed so quickly 

that the closing rate could not be accurately measured. Unlike the other 

mutations, however, V404I led to slower closing speeds and editing partially 

ameliorated this phenotype. 
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Figure 3.8. Editing alters closing (deactivating) kinetics of V404I channels. 
(a) Example trace overlay of V404I editing dependent alteration of closing 
kinetics at the -100mV deactivating pulse (b) Representative tail current traces, 
depicting whole-cell K+ currents, were recorded from oocytes expressing either a 
non-edited (N) or edited (E) isoform of the wild-type (WT) or mutant mouse Kv1.1 
channel. Following a holding potential of -80 mV and a depolarizing pulse to 20 
mV, test potentials were elicited in 10 mV voltage steps from -120 to -60 mV. (c) 
Closing kinetics were determined by fitting the tail currents with single 

exponential curves to determine the associated  value; individual group 
comparisons for p-values were based on the Wald tests of model-based 
predicted (least square) means (mean ± SEM, n = 3-6 oocytes). WT N and WT E 
channels closed significantly slower than each other from -120 to -80 mV (0.05 > 
p ≥ 0.0002). V404I N channels closed slower than V404I E from -120 to -100 mV 
(0.05 > p ≥ 0.0066). V404I N channels closed slower than WT N at all voltages (p 
< 0.0001) and V404I E channels closed significantly slower than WT E channels 
from -120 to -80 mV (0.01 ≥ p ≥ 0.0005). I407M E channels closed significantly 
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faster than I407M N channels from -120 to -80 mV (0.05 > p ≥ 0.0036). I407M N 
and I407M E channels closed significantly faster than their WT counterparts at all 
voltages tested (N: p ≤ 0.0001; E: 0.01 > p ≥ 0.0001). V408A E channels closed 
too quickly for measurement, but V408A N channels closed significantly faster 
than WT N channels at all voltages (p ≤ 0.0001). Small error bars were obscured 
by the data symbols in some cases. 

 

Slow inactivation (C-type) was examined by analyzing channel function 

under conditions of long depolarizations. The I407M E and V408A E channels 

demonstrated editing-dependent dysfunction, with a prominent fast component of 

their inactivation appearing alongside the slow component. Thus, while a single 

exponential function was sufficient to describe the inactivation for the majority of 

the channels, I407M E and V408A E required a double exponential fit (Figure 

3.9a). Both the fast and slow components of the I407M E and V408A E channels 

were fast compared to their non-edited counterparts (Figure 3.9b). By contrast, 

the extent of inactivation was predominantly mutation-driven, except for the 

V408A mutation, in which editing decreased the extent of inactivation, bringing it 

closer to wild-type levels (Figure 3.9c). 
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Figure 3.9. Long pulse characterization of WT and EA1 channels. (a) 
Representative traces, depicting whole-cell K+ currents, were recorded from 
oocytes expressing either a non-edited (N) or edited (E) isoform of the wild-type 
(WT) or mutant mouse Kv1.1 channel. Test potentials were elicit­ed in 20 mV 
voltage steps from -40 to 80 mV for 1 s, from a holding potential of -80 mV. 
Voltages at 60mV (blue) and 80mV (red) are colored for clarity. (b) The slow 
inactivation was predominantly measured by fitting single exponential curves to 

the test pulse currents to determine  values, however the I407M E and V408A E 

channels were best fit by double exponential curves with fast and slow values 

(mean ± SEM, n=6-7 oocytes). Both the fast and slow  values of I407M E were 
significantly faster than I407M N channels at all voltages tested. I407M N 
channels were significantly different from WT N from 60 to 80mV (though within 
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the range of WT E). Both the fast and slow  values of V408A E were significantly 
faster than V408A N  channels at all voltages tested. (c) Extent of inactivation 
was measured by dividing the amplitude of inactivation by the total amplitude 
(mean ± SEM, n=3-7 oocytes). I407M N channels had significantly greater 
inactivation that WT N channels at all voltages tested. V408A N channels had 
significantly increased inactivation compared to V408A E at all voltages tested. 
V408A N had significantly greater inactivation that WT N at all voltages tested 
and V408A E was significantly different from WT E channels from 40 to 60mV. 
Significance was determined by two-sample t-tests; due to multiple comparisons, 
significance was set at p ≤ 0.0012 for (b) and p ≤ 0.0017 for (c). Small error bars 
were obscured by the data symbols in some cases. 

 

Inactivation kinetics are altered between non-edited and edited EA1 mutant 
proteins 

 

Previous characterization of non-edited and edited wild-type Kv1.1 

channels found that the most profound difference was a change in the rate of 

recovery from channel inactivation, presumably by altering interactions with an 

inactivating Kv subunit (Bhalla et al., 2004). To determine the effect of EA1 

mutations on this biophysical property, non-edited and edited isoforms of the 

wild-type, V404I, I407M, and V408A channels were co-expressed with Kv1.1 to 

measure N-type, fast inactivation kinetics and recovery from inactivation. 

Oocytes expressing each channel subtype, along with Kv1.1, were 

subjected to short depolarizing pulses to different voltages and the resulting fast 

inactivation traces were fit to a single exponential (Figure 3.10). These studies 

identified a previously uncharacterized difference in wild-type channels where 

editing modestly slowed the rate of channel inactivation. V404I N and E channels 

inactivated within the wild-type range, without exhibiting any editing-dependent 
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changes. Inactivation for non-edited isoforms of the I407M and V408A mutants 

resembled edited, wild-type channels, however, editing of I407M and V408A 

resulted in drastically slower rates of inactivation for both channels. This effect 

was most extreme and apparent at all voltages for I407M E, whereas slowing 

was only observed for V408A E with shallow depolarizations. Interestingly, the 

V404I N channels also exhibited a low extent of inactivation where inactivation 

could not be measured in over half the oocytes tested. This variability in the 

extent of inactivation for the mutant channels is consistent with previous studies 

demonstrating that the extent of inactivation could be manipulated by varying the 

aliphatic amino acid residues at the position of the editing site (Gonzalez et al., 

2011). 
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Figure 3.10. Editing slows Kv1.1-induced inactivation kinetics of I407M 
and V408A channels. (a) Example trace overlays of I407M and V408A editing-

dependent alterations of Kv1.1-inactivation kinetics at the 80 and 10 mV 

activating pulses, respectively (b) Representative Kv1.1-inactivation traces, 
depicting whole-cell currents, were recorded from oocytes expressing either a 
non-edited (N) or edited (E) isoform of the wild-type (WT) or mutant mouse Kv1.1 

channel, co-expressed with mouse Kv1.1. Test potentials were elicited in 10 mV 
voltage steps from 10 to 80 mV, from a holding potential of -80 mV. (c) 
Inactivation kinetics were measured by fitting single exponential curves to the 

test pulse currents, to determine the associated  value; individual group 
comparisons for p-values were based on the Wald tests of model-based 
predicted (least square) means (mean ± SEM, n=3-6 oocytes). WT E channels 
were significantly slower than WT N channels at every voltage (p ≤ 0.0001). 
V404I N and V404I E were not significantly different from each other, though 
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each was significantly different from their respective WT counterpart (N: 0.05 > p 
≥ 0.0052; E: 0.01 > p ≥ 0.0002). I407M E channels were significantly slower to 
inactivate than I407M N channels at every voltage (p ≤ 0.0001) and both I407M 
N and I407M E channels were slower than WT N and WT E channels, 
respectively, at every voltage (p ≤ 0.0001). V408A E channels were significantly 
slower than V408A N channels from 10 to 50mV (0.05 > p ≥ 0.0005). V408A E 
channels were slower than WT E channels from 10 to 60mV (0.05 > p ≥ 0.0001). 
V408A N channels were significantly slower than WT N channels at all voltages 
(p ≤ 0.0001). Small error bars were obscured by the data symbols in some 
cases. 

 

Long depolarizing pulses were measured to determine the fast and slow 

components of Kv1.1 channels when co-expressed with Kv1.1 (Figure 3.11). 

Double exponential curves were fit to the inactivating traces, to determine the 

fast and slow  values and the relative amplitude of the fast component of the 

inactivation (compared to the slow component). The fast and slow  values 

largely corresponded to the results described for the -inactivation of the short 

pulses and the slow inactivation of the long pulses without Kv1.1 (data not 

shown). In wild-type channels, editing led to an increase in the relative amplitude 

of the fast component of inactivation. An editing-dependent change also was 

observed for the V404I channels, where editing brought the relative amplitude of 

the fast component closer to that of the wild-type channel. 
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Figure 3.11. Long pulse characterization of Kv1.1-inactivation of WT and 

EA1 channels. (a) Representative Kv1.1-inactivation traces, depicting whole-
cell K+ currents, were recorded from oocytes expressing either a non-edited (N) 
or edited (E) isoform of the wild-type (WT) or mutant mouse Kv1.1 channel, co-

expressed with mouse Kv1.1. Test potentials were elicit­ed in 20 mV voltage 
steps from -40 to 80 mV for 1 s, from a holding potential of -80 mV. Voltages at 
60mV (blue) and 80mV (red) are colored for clarity. (b) The slow and fast 
inactivation was measured by fitting double exponential curves to the test pulse 
currents to determine the relative amplitude of the fast component of the 
inactivation (fast amplitude as a ratio of the total inactivation amplitude) (mean ± 
SEM, n=5-7 oocytes). Significance was determined by two-sample t-tests; due to 
multiple comparisons, significance was set at p ≤ 0.0017. WT E channels were 
significantly slower than WT N channels from 40 to 60mV. V404I N and V404I E 
were significantly different from each other at every voltage tested, as well as 
compared to their respective WT counterpart. I407M N and I407M E channels 
were not significantly different from each other, though I407M E was significantly 
lower than WT E at 80mV. V408A N and V408AE channels only differed from 
one another at 40mV, and V408A E channels differed from WT E at 60 and 
80mV. Small error bars were obscured by the data symbols in some cases. 
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Finally, the rate of recovery from fast inactivation was measured using a 

two-pulse protocol, where the fractional recovery at specific time intervals was 

assessed after the onset of inactivation. A representative experiment for oocytes 

expressing either I407M N or E channels is presented in Figure 3.12a. As 

previously reported in Bhalla et al. (2004), editing increased the rate of recovery 

when comparing non-edited and edited isoforms of the wild-type channel (Figure 

3.12b) (Bhalla et al., 2004). All edited isoforms of the mutant channels exhibited 

a significantly faster rate of recovery than their respective non-edited 

counterparts (Figure 3.12b and Table 3.3). Recovery from inactivation for the 

V404I E channel was significantly slower than that of the WT E channel, whereas 

for the I407M N, I407M E, and V408A N channels it was faster compared to its 

corresponding wild-type channel. Although the extent of the effect differed for 

each mutation, editing resulted in a unique and substantial contribution to the 

rate of recovery from fast-inactivation for each channel type. 
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Figure 3.12. Editing alters the recovery from Kv1.1-induced inactivation in 
V404I, I407M, and V408A channels. Whole-cell K+ currents were recorded from 

oocytes co-expressing the mouse Kv1.1 subunit and either a non-edited (N) or 
edited (E) isoform of the wild-type (WT) or mutant mouse Kv1.1 channel. (a) 
Representative I407M N and I407M E recovery traces are overlaid to depict the 

increased rate of recovery from -inactivation, typical of an E isoform. A two-
pulse protocol was used, eliciting a depolarizing pulse to 80 mV followed by a 
variable interpulse duration at -80 mV before a final depolarizing pulse at 80 mV. 

Recovery from -inactivation was plotted as the time for the second pulse to 

regain the current amplitude of the first pulse. (b)  values were determined by 
fitting single exponential curves to the recovery plots (mean ± SEM, n=3-7 
oocytes, ***p ≤ 0.001, ****p ≤ 0.0001). 
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Table 3.3. Kinetics of recovery from Kv1.1 inactivation. All data represent 
mean ± SEM, n=3-7 oocytes for each channel type. Mutant N and E channels 
were compared to their WT N and E channels, respectively: ***p ≤ 0.001; ****p ≤ 
0.0001. All types of N channels were compared to their respective E channels: 
+++p ≤ 0.001; ++++p ≤ 0.0001. Significance was determined by two-sample t-
tests; due to multiple comparisons, significance was set at p ≤ 0.005. 

 

Discussion 

 

Proof of concept that existing mutations alter RNA editing 

The conversion of A-to-I by RNA editing has been shown to represent an 

important post-transcriptional modification by which to modulate the function of 

numerous proteins critical for nervous system function (Hood and Emeson, 

2012). Previous studies have shown that site-selective editing of transcripts 

encoding the Kv1.1 channel can affect the rate of recovery from channel 

inactivation, the binding of drugs and highly unsaturated fatty acids, the 

regulation of homotetrameric Kv1.1 channel trafficking, and seizure-susceptibility 

in chronic epileptic rats (Bhalla et al., 2004; Decher et al., 2010; Gonzalez et al., 
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2011; Streit et al., 2011; Streit et al., 2014). While numerous EA1-associated 

mutations have been identified throughout the KCNA1 coding region, several of 

these mutations (V404I, I407M, and V408A) are within close proximity to the 

Kv1.1 editing site (I400V) and also are predicted to disrupt the critical RNA 

duplex structure required for this post-transcriptional modification.  

To our knowledge, the present studies represent the first demonstration 

that disease-associated mutations can disrupt critical cis-regulatory elements to 

change their gene’s RNA editing profile, by altering the RNA structure required 

for site-selective A-to-I conversion. It is well established that artificially 

incorporating mutations in an RNA duplex can abolish editing by disrupting 

duplex pairing; indeed, this technique was used to experimentally verify the RNA 

duplex responsible for Kv1.1 editing (Bhalla et al., 2004; Dawson et al., 2004). 

However, this is the first evidence that existing human mutations in an RNA can 

disrupt its own editing and represents a unique advancement in our 

understanding of the mutational consequences of human disorders involving 

RNA editing targets. Results using both in vitro and in vivo model systems have 

shown significant reductions in the extent and rate of editing for Kv1.1 transcripts 

harboring specific EA1 mutations (Figures 3.3 and 3.4). Importantly, because the 

wild-type allele RNA was unchanged in the V408A/+ mouse model, it is likely that 

the observed changes in the editing of the V408A allele-derived RNA were solely 

due to the V408A mutation and not due to any developmental, compensatory 

changes. These in vitro and in vivo data serve as a proof of concept that even 

single nucleotide changes in an RNA can alter its RNA editing potential. 
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Furthermore, our studies suggest that both synonymous and non-

synonymous duplex-disrupting mutations and single nucleotide polymorphisms 

within Kv1.1 and other edited RNA targets may also affect the expression of their 

specific edited isoforms, thus altering the activity of the encoded protein 

products. And more broadly, the mutations we studied affect Kv1.1 RNA 

interactions with the editing enzyme and dsRNA-binding protein, ADAR2, and 

could indicate that mutational consequences in other genes should be studied 

not only for the amino acid changes, but also for their alterations on RNA-binding 

protein interactions. 

 

Edited Isoforms of EA1 mutants alter electrophysiological properties 

These studies also have revealed that the effects of EA1 mutations on 

Kv1.1 function are far more complex than originally anticipated, as each mutation 

produces channels with unique biophysical properties that depend on the I400V 

amino acid identity, mediated by RNA editing. The V404I mutation altered 

several electrophysiological parameters on its own, but the edited isoform 

demonstrated less drastic changes than the non-edited isoform, as observed for 

channel voltage sensitivity, closing kinetics, and the amplitude of -inactivation 

(Figures 3.5, 3.8, and 3.11). Although it is tempting to speculate that editing could 

dampen the defects in channel function resulting from this point mutation, it also 

should be noted that this mutation largely prevents the RNA from being edited in 

the first place (Figure 3.3). Thus, it is anticipated that edited V404I isoforms 
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contribute little to the electrophysiological properties of Kv1.1 channels in those 

tissue where they are expressed. 

Unlike the V404I channel, however, editing combined with the I407M or 

V408A mutations led to more severe channel dysfunctions than the non-edited 

isoforms. Edited isoforms of both I407M and V408A exhibited unusually slow -

dependent inactivation kinetics (Figure 3.10) and severe defects in activation at 

higher voltages (Figure 3.7). The current-voltage curves of I407M E and V408A E 

were bell-shaped, resembling the ‘rapid’ delayed rectifier activation kinetics 

typical of Kv11.1 (hERG) channels, though reaching peak amplitudes at 

markedly higher voltages than Kv11.1 (Figure 3.7) (Sanguinetti et al., 1995). 

These defects could possibly be caused by a significantly faster entry into, or 

slower recovery from, C-type inactivation (Figure 3.9) (Sanguinetti et al., 1995). 

In addition, while the I407M mutation slowed the kinetics of channel opening, the 

effect was greater for the edited isoform (Figure 3.6). These studies also 

extended the characterization of the I407M mutation, as previous studies of the 

non-edited I407M channel reported only alterations in expression and voltage-

sensitivity, while the present study also shows changes in kinetics (Tomlinson et 

al., 2013). 

Although our studies suggest that edited isoforms of mutant channels 

represent a smaller portion of the total Kv1.1 population, they may still exert 

functional effects, particularly in tissues with higher editing levels (such as 

cerebellum and spinal cord) (Figure 3.4). This is supported by previous studies, 

which have shown that incorporating even one edited subunit into a Kv1.x 
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heterotetramer was sufficient to alter its sensitivity to open-channel blocking 

molecules (Decher et al., 2010). Alternatively, despite the many functional 

differences observed between edited isoforms of the mutant channels, all 

recovered from fast inactivation significantly faster than their non-edited 

counterparts (Figure 3.12). As these EA1 mutations reduced their own isoform 

editing, it is predicted that the overall recovery from fast inactivation in vivo will be 

comparatively slow, possibly resulting in unanticipated effects that could prevent 

normal neuronal signaling.  

 

Incorporating RNA editing into the complex interactions involved in the 
EA1 disorder 

 

While no clear correlation has been established between the diverse 

clinical phenotypes of EA1 patients and specific mutations within Kv1.1 (Graves 

et al., 2014; Graves et al., 2010), part of the observed variability in symptoms 

might be explained by differences in RNA editing. These phenotypic differences 

could arise from EA1 mutations that disrupt the editing duplex, or from overall 

changes in Kv1.1 editing regulation. Although the mechanisms regulating Kv1.1 

RNA editing are largely unknown, recent studies have demonstrated that 

inducing rats with chronic epilepsy led to a 4-fold increase in Kv1.1 editing in the 

entorhinal cortex (Streit et al., 2011). Interestingly, once Kv1.1 editing was 

increased, recordings in isolated rat brain slices demonstrated that these animals 

had a decreased sensitivity to 4-AP-induced seizure-like events, suggesting that 
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increasing editing might dampen seizure susceptibility. Similarly, analyses of 

patients undergoing surgery for mesial temporal lobe epilepsy revealed that 

having increased levels of Kv1.1 RNA editing was negatively correlated with the 

period of years that the patients had experienced epileptic activity (Krestel et al., 

2013), suggesting that decreased Kv1.1 editing may represent a risk factor for 

long-term seizures. Graves et al. (2010) clinically surveyed two families 

containing the same EA1 mutation (F414S), and found that one family exhibited 

seizures while the other did not, raising the possibility that additional factors, 

such as differences in editing regulation, could represent an explanation for these 

phenotypic differences (Graves et al., 2010). As previous studies have shown 

that open-channel blocking drugs interact less with edited Kv1.1 homo- and 

heterotetramers (Decher et al., 2010), a precise therapeutic strategy for the 

treatment of Kv1.1-dependent seizures may require not only a knowledge of the 

specific mutation(s) involved, but also the editing profiles of Kv1.1 transcripts. 
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CHAPTER IV 

 

CONCLUSIONS 

 

Significance 

Kv1.1 is an important voltage gated -subunit and human mutations have 

revealed that its misregulation contributes to epilepsy and the EA1 disorder. 

Although Kv1.1 RNA editing is known to be regulated differentially in the brain, 

until now, its impacts were mainly proposed from exogenous expression studies 

within cell lines and Xenopus oocytes. This work has begun the process of 

understanding the role of Kv1.1 RNA editing within the context of normal 

physiology, as well as its implications for the EA1 disorder. 

By utilizing two newly developed mouse models, we have characterized 

the effects of solely expressing either the non-edited [Kv1.1(I)] or edited 

[Kv1.1(V)] isoforms in mice. We have observed that our editing mouse models 

share similarities with previously characterized Kv1.1 and Kv mouse models, 

relating to ataxia and seizure-susceptibility. The non-edited [Kv1.1(I)] mouse 

displays EA1-like stress-induced ataxia, similar to the V408A/+ mouse (Herson et 

al., 2003). This is particularly salient because our EA1 experiments have 

demonstrated that the V408A mutation leads to decreased editing in vivo; thus 

ataxia might have a multifaceted onset arising from either mutant Kv1.1 or 
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editing-deficient Kv1.1. The non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice 

display diverging susceptibilities to 4-AP-induced seizures, where the non-edited 

[Kv1.1(I)] mice required a smaller concentration of drug for seizure symptoms 

compared to the wild-type littermates and the edited [Kv1.1(V)] mice required a 

greater concentration. This is in agreement with the studies of Streit et al. (2011), 

which compared the 4-AP susceptibility of rats with higher versus lower Kv1.1 

RNA editing. Importantly, we have also observed that the dampening of seizure 

susceptibility observed in the edited [Kv1.1(V)] mice is translatable to PTZ 

seizure induction as well, indicating that Kv1.1 RNA editing may have a 

protective effect against seizures arising from disparate pathways of initiation and 

propagation. Although no changes in signaling were observed upon 

electrophysiological characterization of dentate granule cells of the hippocampus, 

interestingly other mouse models of Kv1 and Kv alterations also do not show 

overt changes in electrophysiology, such as the intrinsic membrane properties of 

the Kv1.1-null mice. 

Our characterization of the complex interplay between RNA editing and 

EA1 mutations have revealed new mechanisms of channel dysfunctions to factor 

into our broader understanding of this human disorder. First, we have 

demonstrated that at least three documented EA1 mutations contain the ability to 

inhibit Kv1.1 RNA editing in vitro, and confirmed that the V408A mutation inhibits 

editing in vivo. We observed that the in vivo decreases in editing were more 

severe than would be predicted by our in vitro editing assay- indicative of the 

presence of further regulatory factors that mediate the rate of editing in vivo. 
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Unfortunately, little is known about the regulation of RNA editing, though 

particular nucleotide motif biases and structural determinants play a dominant 

role in setting the rates (Dawson et al., 2004). It was surprising that only single-

nucleotide changes in the Kv1.1 duplex were necessary to impair editing to such 

a high degree, as well as that the level of editing impairment was related to the 

proximity to the editing site (with the closest mutation,V404I, leading to the 

greatest impairment in editing). This may be indicative that the Kv1.1 duplex is 

particularly susceptible to mutation-driven decreases in RNA editing because it is 

a relatively poor ADAR2 substrate; this is supported by data which shows that 

Kv1.1 editing is low compared to other ADAR2 substrates sequences isolated 

from the same tissue dissections, across development and in adult mice (ex. 

GluA2 Q/R site and the 5HT2C D site) (Hood et al., 2014; Jacobs et al., 2009). In 

addition, we experimentally observed that the wild-type Kv1.1 duplex was a 

poorer substrate compared to the 5HT2C RNA duplex, which was used as a 

positive control for the in vitro editing assay (data not shown). The susceptibility 

of mutations leading to RNA disruptions signifies that other mutations, including 

silent mutations or single-nucleotide polymorphisms within the Kv1.1 duplex may 

also be able to disrupt Kv1.1 editing.  

And, finally, edited isoforms of EA1 mutant proteins were shown to have 

altered electrophysiological properties compared to their non-edited counterparts. 

The type and severity of the defects were unique to each mutation. The edited 

V404I mutant channels seemed to normalize the biophysical properties that were 

dysfunctional in the non-edited V404I channels. In contrast, the edited I407M and 
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V408A mutant channels often displayed more severe defects compared to their 

non-edited counterparts. The role of editing on setting the fast rate of recovery 

from -inactivation was noticeably similar between wild-type and mutant 

channels, indicating that the I400V amino acid has a particularly important role in 

this capability, regardless of mutations. However, the expression of these edited 

channels will depend on each mutation’s disruption of normal RNA editing. If 

RNA editing is decreased substantially in patients with duplex mutations, then the 

altered edited mutant channels may have little effect on overall physiology. In 

contrast, the editing-dependent fast rate of the recovery from -inactivation would 

be prominently lost if editing is lowered substantially. As the EA1 disorder is a 

multifaceted disorder with incomplete penetrance, additional factors, including 

the presence of edited mutant isoforms, may be able to explain the clinical and 

genetic heterogeneity in symptom severity. 

 

Future Directions 

 

Utilizing the newly developed mouse models of Kv1.1 editing 

 Although our studies have brought new insights into the role of Kv1.1 RNA 

editing for normal physiology and in the context of EA1, new questions can now 

be raised in response. First of all, we have developed new mouse models of 

Kv1.1 editing, the non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice, which should 

continue to be characterized in-depth. And our studies of the implications of 
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Kv1.1 RNA editing on the complexity of EA1 provide a new avenue for 

investigating this multifaceted disorder. 

Our mouse models offer a unique opportunity to study the impacts of the 

non-edited [Kv1.1(I)] and edited [Kv1.1(V)] isoforms in vivo, starting with a 

detailed study of each isoform’s localization and heterotetrameric assembly in the 

brain. Immunohistochemistry of non-edited [Kv1.1(I)], edited [Kv1.1(V)], and wild-

type brain slices can be performed to determine whether editing alters Kv1.1 

localization in different brain regions, as well as the impacts on other Kv1 family 

members and -subunits. In addition, subcellular localization may be determined 

by differential centrifugation strategies to isolate different membrane protein 

fractions. Alterations in localization at the plasma membrane versus the ER could 

be determined by Western blot analysis and performed in concert with Kv1.1-

pull-down studies to probe for other Kv1.x and -subunits (particularly for co-

assembly with Kv1.2, Kv1.4, Kv1, Kv2). These studies will be important for 

determining whether localization and heterotetrameric assembly differs for non-

edited and edited Kv1.1. 

Although we have performed many behavioral tests to compare the non-

edited [Kv1.1(I)] and edited [Kv1.1(V)] mice, there are several others that could 

give important insights. Kv1.1 has known roles in mechanosensation and 

nociception (Clark and Tempel, 1998; Galeotti et al., 1997; Hao et al., 2013), and 

editing effects on these signaling pathways could be tested by observing 

alterations between the non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice in von 

Frey filament stimulation and thermal stimulation (such as the hotplate test). 
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Alterations in ananamide effects would be interesting to study, given the known 

differential in anandamide block for the non-edited [Kv1.1(I)] versus edited 

[Kv1.1(V)] isoforms (Decher et al., 2010) and the locomotor deficits and 

antinociception observed following anandamide administration (Stein et al., 

1996). The non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice could be 

administered anadamide and monitored for alterations in locomotion and 

nociception, in order to determine whether editing has a role in regulation of 

these anadamide responses. For testing prolonged effects of anandamide, these 

experiments could be done in mutants crossed with fatty acid amide hydrolase 

(FAAH) knock-out mice, as FAAH is the enzyme responsible for hydrolyzing 

anandamide, and FAAH-null mice display magnified anandamide effects (Cravatt 

et al., 2001). Finally, the role of Kv1.1 editing on metabolic function could be 

probed, as Kv1.1 has been implicated in contributing to glucose-induced insulin 

release, with islets isolated from both mceph/mceph and Kv1.1-null mice 

secreting greater insulin upon glucose challenge (Ma et al., 2011). Ma et al. 

(2011) detail that, while there are discrepancies in the literature concerning 

detecting Kv1.1 in islets, their expression analyses and electrophysiological 

characterization supports functional expression in mouse -cells, and expression 

was further confirmed in rat and human islets (Ma et al., 2011; MacDonald and 

Wheeler, 2003). In addition, ADAR2 expression has been shown to be 

upregulated in pancreatic islets following a high-fat diet, leading to an increase in 

GluA2 RNA editing (unfortunately Kv1.1 expression was undetectable in this 

study) (Gan et al., 2006). First, editing should first be fully characterized in 
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pancreas and islets from normal and type-2 diabetic mice (we have preliminary 

studies that Kv1.1 editing might be affected, however these preliminary studies 

need to be replicated to determine precise quantification). Following this, the 

non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice could be subjected to metabolic 

studies starting with glucose tolerance tests, compared to wild-type littermates, to 

see whether editing alters glucose homeostasis. 

 The altered seizure susceptibility to PTZ and 4-AP-induced seizures has 

indicated that editing plays a role as a contributing factor in seizure severity. 

While we did not observe spontaneous seizures in either mouse model, the 

alteration in seizure-susceptibility suggests that, although editing may not be an 

originating cause for seizures, it can act as a downstream modifier to heighten or 

dampen seizures. Now that we have characterized this function by drug-induced 

seizures, seizure-susceptibility could be further investigated in chronically 

induced-seizure models (such as the kainic acid model) or by genetic 

mechanisms- breeding non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice with 

genetic mouse models of epilepsy to see if editing status can affect seizure 

susceptibility and resistance. A relevant epilepsy mouse model to begin with 

could be breeding the non-edited [Kv1.1(I)] or edited [Kv1.1(V)] mice with Kv1.2-

null mice, which are postnatal lethal from P16 to P19 and coincide with 

spontaneous seizures (Brew et al., 2007). The severe phenotype of the Kv1.2-

null mouse is in sharp contrast to the mild phenotypes of other knock-out models 

of Kv1 family members, which have normal life spans and no (Kv1.3-null and 

Kv1.5-null) or limited seizures (Kv1.4-null) (Archer et al., 2001; London et al., 
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1998; Xu et al., 2003). Unexpectedly, hypoactivity and larger K+ currents were 

observed in auditory neurons of the medial nucleus of the trapezoid body 

(MNTB) in the brainstem of Kv1.2-null mice (hyperexcitability was found in the 

same neurons of Kv1.1-null mice) (Brew et al., 2007; Brew et al., 2003). As the 

brainstem is a location of high levels of Kv1.1 RNA editing (60% in mice, 80% in 

humans) (Decher et al., 2010; Hoopengardner et al., 2003), this could be an 

indication that Kv1.1 editing may serve a more dominant role in Kv1.2-null mice. 

Knowing that editing can dampen seizure-susceptibility also begs the 

question: how can this knowledge be utilized in a pharmacological approach to 

treat epilepsy (or at least dampen its severity)? The predominant biophysical 

difference noted between the non-edited [Kv1.1(I)] and edited [Kv1.1(V)] 

channels is that the edited isoform promotes rapid recovery from -subunit 

inactivation. Thus, a non-edited [Kv1.1(I)] channel could be pharmacologically 

similar to an edited [Kv1.1(V)] channel if the inactivation domain of the -subunit 

was prevented from interacting. Interestingly, studies of this topic have already 

been performed and fit well with the editing-modifier effects on seizures that we 

have observed (Lu et al., 2008; Pozo et al., 1990). In particular, Lu et al. (2008) 

performed in-depth drug screens looking for drugs that could disrupt -

inactivation while not altering interactions responsible for the assembly of the -

subunit with the Kv1 T1 domain (while leaving Kv1.4 inactivation intact). Drugs 

discovered in this screen were then administered prior to PTZ-induced seizures. 

Three drugs dampened seizure-susceptibility, indicating that decreasing -

inactivation pharmacologically could dampen seizure susceptibility (Lu et al., 
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2008). These drugs could be further tested with our mice to determine whether 

editing-dependent alterations mediating the -interaction are involved in 

mediating this dampened seizure-susceptibility. 

 Finally, a key reason for developing our non-edited [Kv1.1(I)] and edited 

[Kv1.1(V)] mouse models was to allow for electrophysiological characterization of 

neurons in slices. Our initial studies in dentate granule cells of the non-edited 

[Kv1.1(I)] mutants should be compared next to signaling dynamics of the same 

cells in edited [Kv1.1(V)] mice. In addition, as Kv1.1 editing is regulated during 

embryonic development, our mice could be used as controls for a study of 

alterations in Kv1.1 editing during adult neurogenesis of dentate granule cells 

following seizure-induction in wild-type mice. Alterations in signaling in immature 

versus mature dentate granule cells may correlate with the Kv1.1 editing status, 

and our non-edited [Kv1.1(I)] and edited [Kv1.1(V)] mice may serve as important 

controls. As the non-edited [Kv1.1(I)] mice display stress-induced motor 

dyscoordination, cerebellar recordings of basket cells and Purkinje neurons will 

be important for determining if editing in basket cells is altering the GABA 

release, controlling the rate of Purkinje neuron firing. Since MNTB neurons have 

already been described in Kv1.1-null and Kv1.2-null mice, characterizing the 

excitability of these neurons in our mouse models may be able to differentiate 

whether editing is a key contributor to the normally low excitability of these 

neurons (Brew et al., 2007; Brew et al., 2003). Peripheral nerve studies can also 

be performed, particularly investigating whether the non-edited [Kv1(I)] or edited 

[Kv1.1(V)] mutants have similarities to the Kv1.1-null mice, which have 
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temperature-sensitive neuromuscular transmission (Zhou et al., 1998). Particular 

attention should be devoted to probing for the type of altered signaling dynamics 

that have been observed in other Kv1-related mouse models, not only assessing 

passive membrane properties and action potential shape. This could include 

probing for alterations in repetitive firing properties such as the frequency of 

stimulus-induced pulse trains (mceph/mceph mice) and the presence of 

frequency-dependent spike broadening (Kv1.1-null mice) (Giese et al., 1998; 

Petersson et al., 2003). 

Recording from neurons in slices also offers a convenient model for 

epileptic drug administration, using drugs we have already determined to have an 

effect (4-AP and PTZ) as well as other widely used pharmacological agents, such 

as picrotoxin (Gonzalez-Sulser et al., 2012; Marsh et al., 1999; Piredda et al., 

1985). We expect that experiments using these drugs will give comparable 

results consistent with our seizure studies as well as the previous findings using 

4-AP to induce seizure-like events in slices from chronic epileptic rats (which 

displayed higher editing levels) (Streit et al., 2011). We predict that seizure-like 

events will be observed to the greatest extent in the slices from non-edited 

[Kv1.1(I)] mice, absent in the edited [Kv1.1(V)] mice, and intermediate in severity 

in the wild-type mice (or possibly similar to the non-edited mice). Finally, aside 

from incorporating a stressor prior to hippocampal slice isolation (as is described 

in the electrophysiology of Chapter 2), other methods of stressing the slices 

during recording could include oxygen-glucose deprivation, hypo- and hyper-

osmotic challenges, and incubation with corticosterone (Alfarez et al., 2002; 
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Karst et al., 1993; Lipski et al., 2006; Risher et al., 2009). These stressor 

experiments could help define mechanisms for the stress-vulnerability for the 

non-edited [Kv1.1(I)] mice. 

  

Continuing the study of RNA editing effects on EA1 

 We have identified that RNA editing is impacted by the presence of EA1 

mutations and that edited EA1 isoforms have altered homotetrameric properties. 

However, additional experiments are needed to further understand the role of 

EA1 RNA editing in heterotetramers. The V408A/+ mice can also be further 

studied for in vivo effects of EA1 altered RNA editing. 

Further characterizations of edited EA1 mutant channels could help us 

better understand their physiological defects in vivo. These include stimulating 

the channels with action potential-like commands (trains of depolarizing pulses) 

to assess cumulative inactivation, as well as probing the voltage-dependence of 

their inactivation. As Kv1.1 is rarely found in vivo in homotetrameric complexes, 

the alterations in heterotetrameric properties need to be investigated. Previous 

studies have indicated that the V404I and V408A mutations alter the kinetics of 

heterotetramers composed of tandem-linked Kv1.1-Kv1.2 or Kv1.1-Kv1.4 -

subunits (D'Adamo et al., 1999; Imbrici et al., 2006; Manganas and Trimmer, 

2000). These experiments could be performed with the edited EA1 isoforms, 

tandem-linked with Kv1.2 or Kv1.4 (or a combination of both), with or without co-

expression with -subunits. These heterotetrameric studies will also be important 
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for determining whether the co-expression with Kv1.2 and Kv1.4 improves the 

expression of I407M and V408A non-edited and edited isoforms. Wild-type and 

edited EA1 characterization in tandemly-linked channels containing Kv1.2 

subunits should also be specifically studied for editing-dependent changes in the 

use-dependent activation property (also called prepulse potentiation), which has 

recently been attributed to Kv1.2-containing heterotetramers (Baronas et al., 

2015). 

Now that we have established that the V408A/+ mice are an in vivo model 

of reduced Kv1.1 editing, it can be used as a unique model for testing editing 

effects and therapeutic strategies targeted towards editing. The plasma 

membrane versus ER expression of the different wild-type and V408A non-edited 

and edited isoforms could be determined by isolating different membrane 

fractions by differential centrifugation of brain regions and then subjecting them 

to mass spectrometry for protein isoform identification. Also, as described 

previously, there are several known drugs that can prevent the fast-inactivation 

mediated by -subunits and could potentially abolish the slow recovery from 

inactivation of non-edited [Kv1.1(I)] (Lu et al., 2008). These drugs could be 

administered prior to rotarod analyses or electrophysiological recordings to 

determine if the decreased Kv1.1 editing of V408A/+ mice is a contributing factor 

to stress-induced motor dyscoordination and altered Purkinje neuron firing. 

These experiments could be performed on the V408A/+ mice as well as V408A 

mutant mice that have been bred with the non-edited [Kv1.1(I)] or edited 

[Kv1.1(V)] mice, for additional alterations in the wild-type allele editing level. 
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These further breeding experiments may reveal whether restricting the wild-type 

isoform to non-edited or edited could lead to dominant-negative effects on motor 

dyscoordination or electrophysiology. 

Finally, we have also detailed how several EA1 mutations had 

consequences on the RNA editing process, presumably by altering the enzymatic 

recognition of the RNA structure. Expanding the implications of our studies for 

the wider scientific community, we hope that this will encourage others to see 

whether mutations alter the RNA editing of other substrates or, more broadly, if 

other mutations affect RNA interactions with other RNA-binding proteins. This 

could include other heritable mutations, somatic mutations arising in cancer, or 

synonymous variants, which could alter RNA structures while leaving the coding 

unchanged. Interestingly, there are many known single nucleotide 

polymorphisms in the region of the Kv1.1 RNA duplex (which encodes amino 

acids 373 through 410) as well as many documented mutations arising in a 

variety of cancers (Ensembl release 87 (Aken et al., 2017)) and recent studies 

have linked Kv1.1 expression with apoptosis and sensitivity to drug-induced cell 

death (Leanza et al., 2014; Szabò et al., 2010). Our studies suggest that the 

Kv1.1 duplex is sensitive to small perturbations, and the presence of variants in 

the duplex could account for RNA editing variation among the population, which 

could be risk factors for patients that have additional germline or somatic 

mutations. Of particular interest would be to test whether several known 

synonymous human variants around the editing site could alter Kv1.1 RNA 

editing similarly to the EA1 mutations we have described. To date, there are 13 
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synonymous variants that have been documented within the minimal duplex 

required for ADAR2-mediated RNA editing, on either side of the duplex, and 

several coincide with locations of EA1 mutations as well (Figure 4.1 and Table 

C.1). These silent variants may be additional factors regulating RNA editing in 

vivo. The EA1 mutations’ impacts on Kv1.1 RNA editing may not be an isolated 

phenomenon, but could rather be an initial case-study revealing the 

consequences of mutations and variants on RNA-RNA interactions (such as with 

miRNAs) and RNA-protein interactions.  

 

 

 

Figure 4.1. Human variants found in the Kv1.1 mRNA duplex. The predicted 
secondary structure for the minimal duplex required for ADAR2 editing of the 
wild-type human Kv1.1 pre-mRNA. Human variants are located in various 
positions of the duplex and color-coded for variant type, checkered letters 
indicate multiple types of variants at a given location (blue: missense somatic 
mutation, purple: synonymous somatic mutation, yellow: missense genetic 
variant, red: synonymous genetic variant). The position of the A-to-I editing site 
(I400V) is indicated with a black box and the four non-synonymous mutations 
associated with EA1 indicated with dark grey boxes. The numbered arrows 
indicate the codon positions of the associated amino acids. The locations of two 
human versus mouse sequence differences are indicated in light grey letters 
(which are both G in the mouse sequence). 
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We hope our studies will encourage others to continue studying the 

editing-dependent effects of Kv1.1 function in normal physiology and in the EA1 

disorder, as well as inspire the broader scientific community to study the impacts 

of mutations, not only for their amino acid alterations, but also in terms of their 

possible altered RNA interactions.  
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Appendix A: Comparative analysis of editing rates determined by Sanger 
sequencing versus High-throughput sequence analysis 

 

The wild-type ratio of the peak heights described in Figure 2.4 appears to 

diverge from the wild-type cerebellar RNA editing rate reported in (Figure 2.3). 

This discrepancy highlights the importance of using our high-throughput 

sequencing approach to quantify RNA editing rather than relying on the ratio of 

electropherogram peak heights, which are known to vary based on the 

polymerase incorporation preference for dideoxynucleotide type, sequencing 

direction, and sequence context (Carr et al., 2009; Li et al., 1999; Rinkevich et 

al., 2012). In order to highlight the differences in quantification by these two 

methods, I have compared three data sets where I quantified the same samples 

using both methods and displayed the differences in the percent editing or the 

rate of percent editing (Figure A.1). In Figure A.1a and b, I have detailed how the 

quantification methods compared for Kv1.1 editing from mouse tissues 

(described previously in Figures 2.3 and 2.4) and from my in vitro editing assay 

(Figure 3.3). In these data, the Sanger sequencing peak height quantification 

mainly overestimates the editing level or editing rate quantified by high-

throughput sequencing, though it gives close to accurate measurements for the 

hippocampal editing level. However, Figure A.1c demonstrates that Sanger 

sequencing can underestimate editing levels in different contexts (these data are 

derived from a collaborative study I contributed to for Dr. Martin Gallagher, 

quantifying Gabra3 RNA editing in the thalamic reticular nucleus (nRT) dissected 

from mouse brain) (Zhou et al., 2015). This variation in underestimating versus 
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overestimating the percent editing has been documented previously (Rinkevich 

et al., 2012). 
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Figure A.1. Comparative analysis of editing quantification by Sanger and 
High-Throughput Sequencing. Editing was quantified from samples by both 
measuring peak heights of Sanger sequencing electropherogram traces and by 
high-throughput sequence analysis (HT) as described previously (Hood et al., 
2014).  (a) The extent of editing was quantified for Kv1.1 transcripts isolated from 
mouse brain regions (n=3, mean ± SEM) and (b) for the Kv1.1 in vitro editing 
assay (where the extent of editing was converted into the editing rate). (c) 
Gabra3 RNA editing was quantified from dissected VB/nRT brain regions in WT 
and heterozygous (Het) Gabra1 knock-out mice (Zhou et al., 2015). (n=3-4, 
mean ± SEM). Statistics could be performed for (a) and (c), determining 
significance by 2-way ANOVA with Sidak’s multiple comparisons test (p<0.05). 
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Appendix B: Additional p-value tables 

For the sake of brevity, ranges of p-values were reported in the legends 

for Figures 3.6, 3.8, and 3.10. P-values associated with these figures are 

presented below. 
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Table B.1: P-values corresponding to Figure 3.6 (time to half-activation) 

  voltage -10 0 10 20 30 40 50 60 70 80 significant range 

Non-edited vs 
Edited (4 

comparisons) 

WT N vs   WT E 0.0266 0.0443 0.0631 0.0766 0.0791 0.0695 0.052 0.0334 0.0185 0.009 0.0443>p>0.009 

significant * * ns ns ns ns ns * * *   

V404I N vs V404I E 0.099 0.0574 0.0397 0.0325 0.0316 0.0364 0.0497 0.0813 0.1576 0.3391 0.0497>p>0.0316 

significant ns ns * * * * * ns ns ns   

I407M N vs I407M E 0.0055 0.0018 0.001 0.0008 0.0009 0.0013 0.0029 0.0089 0.0397 0.2249 0.0397>p>0.0008 

significant * * * * * * * * * ns   

V408A N vs V408A E 0.0004 0.0048 0.0432 0.2189 0.5883 0.9986 0.7067 0.5621 0.555 0.681 0.0432>p>0.0004 

significant * * * ns ns ns ns ns ns ns   

WT N vs 
mutant N (3 

comparisons) 

WT N vs V404I N 0.0006 0.0017 0.0043 0.0093 0.0165 0.0246 0.0309 0.0336 0.0322 0.028 0.0336>p>0.0006 

significant * * * * * * * * * *   

WT N vs I407M N <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 all p<0.0001 

significant * * * * * * * * * *   

WT N vs V408A N 0.0778 0.0804 0.0906 0.1096 0.1407 0.1905 0.2701 0.3962 0.587 0.847 none 

significant ns ns ns ns ns ns ns ns ns ns   

WT E vs 
mutant E (3 

comparisons) 

WT E vs V404I E 0.2704 0.1292 0.0664 0.0377 0.0236 0.0165 0.0131 0.0128 0.0165 0.0292 0.0377>p>0.0165 

significant ns ns ns * * * * * * *   

WT E vs I407M E <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0001 0.0027 0.027>p>0.0001 

significant * * * * * * * * * *   

WT E vs V408A E 0.1427 0.0592 0.026 0.0122 0.006 0.0031 0.0017 0.0011 0.001 0.0013 0.026>p>0.001 

significant ns ns * * * * * * * *   

Individual group comparisons for p-values were based on the Wald tests of model-based predicted (least square) means. Significance was defined as p<0.05. 
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Table B.2: P-values corresponding to Figure 3.8 (closing kinetics) 

  voltage -120 -110 -100 -90 -80 -70 -60 significant range 

Nonedited vs 
Edited (4 

comparisons) 

WT N vs   WT E 0.0002 0.0004 0.001 0.0042 0.034 0.4182 0.2903 0.034>p>0.0002 

significant * * * * * ns ns   

V404I N vs V404I E 0.0066 0.0122 0.0254 0.0586 0.1447 0.3556 0.7789 0.0586>p>0.0066 

significant * * * ns ns ns ns   

I407M N vs I407M E 0.0086 0.0041 0.0036 0.0054 0.015 0.0807 0.6194 0.015>p>0.0036 

significant * * * * * ns ns   

V408A N vs V408A E N/A N/A N/A N/A N/A N/A N/A 
 

significant ns ns ns ns ns ns ns N/A 

WT N v other 
N (3 

comparisons) 

WT N vs V404I N <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 all p<0.0001 

significant * * * * * * *   

WT N vs I407M N <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 all p<0.0001 

significant * * * * * * *   

WT N vs V408A N <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 all p<0.0001 

significant * * * * * * *   

WT E v other 
E (3 

comparisons) 

WT E vs V404I E 0.0005 0.0005 0.0009 0.0024 0.01 0.0637 0.45 0.01>p>0.0005 

significant * * * * * ns ns 
 

WT E vs I407M E 0.0019 0.001 0.0005 0.0003 0.0001 <0.0001 <0.0001 0.0019>p>0.0001 

significant * * * * * * *   

WT E vs V408A E N/A N/A N/A N/A N/A N/A N/A 
 

significant ns ns ns ns ns ns ns N/A 

Individual group comparisons for p-values were based on the Wald tests of model-based predicted (least square) means. 
Significance was defined as p<0.05. 
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Table B.3: P-values corresponding to Figure 3.10 (kinetics of Kv1.1 inactivation) 

  voltage 10 20 30 40 50 60 70 80 significant range 

Nonedited vs 
Edited (4 

comparisons) 

WT N vs   WT E <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 all p<0.0001 

significant * * * * * * * * 
 

V404I N vs V404I E N/A N/A N/A N/A 0.6925 0.947 0.6908 0.5607 none 

significant ns ns ns ns ns ns ns ns 
 

I407M N vs I407M E N/A N/A <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 all p<0.0001 

significant ns ns * * * * * * 
 

V408A N vs V408A E 0.0005 0.001 0.002 0.0051 0.017 0.0683 0.3027 0.9997 0.017>p>0.0005 

significant * * * * * ns ns ns 
 

WT N v other 
N (3 

comparisons) 

WT N vs V404I N N/A N/A N/A N/A 0.0052 0.0138 0.0263 0.0386 0.0386>p>0.0052 

significant ns ns ns ns * * * * 
 

WT N vs I407M N N/A <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 all p<0.0001 

significant ns * * * * * * * 
 

WT N vs V408A N <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 all p<0.0001 

significant * * * * * * * * 
 

WT E v other 
E (3 

comparisons) 

WT E vs V404I E 0.0002 0.0003 0.0006 0.0012 0.0018 0.0023 0.0024 0.0025 0.0025>p>0.0002 

significant * * * * * * * *   

WT E vs I407M E N/A N/A <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 all p<0.0001 

significant ns ns * * * * * *   

WT E vs V408A E <0.0001 <0.0001 <0.0001 <0.0001 0.001 0.0194 0.2455 0.8719 0.0194>p>0.0001 

significant * * * * * * ns ns 
 

Individual group comparisons for p-values were based on the Wald tests of model-based predicted (least square) 
means. Significance was defined as p<0.05. 
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Appendix C: Human variants found in the Kv1.1 mRNA duplex 

Table C.1 was compiled from data accessed from Ensembl release 

87(Aken et al., 2017) and the Human Gene Mutation Database (Stenson et al., 

2014). These data further describe the information found in Figure 4.1. 

http://uswest.ensembl.org/Homo_sapiens/Gene/Variation_Gene/Table?db=core;

g=ENSG00000111262;r=12:4909905-4931361;t=ENST00000382545 

http://www.hgmd.cf.ac.uk/ac/index.php
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Table C.1: Human variants found in the Kv1.1 mRNA duplex 

residue 
number 

genomic 
location 

variation ID variant type description amino acid 
change 

nucleotide 
change 

373 12:4912496 COSM4042554 missense somatic mutation stomach carcinoma V373A T1118C 

374 12:4912500 rs778171002 synonymous variant   A1122T 

374 12:4912500 rs778171002 synonymous variant   A1122C 

375 12:4912503 rs144351014 synonymous variant   C1125T 

376 12:4912505 COSM3461760 missense somatic mutation skin, malignant melanoma G376D G1127A 

378 12:4912512 COSM940253 missense somatic mutation endometrium carcinoma M378I G1134A 

379 12:4912513 rs774543663 missense variant  Y379D T1135G 

379 12:4912515 rs759584837 synonymous variant   C1137T 

382 12:4912523 COSM4694135 missense somatic mutation large intestine carcinoma T382K C1145A 

382 12:4912524 rs768750670 synonymous variant   A1146C 

386 12:4912536 COSM468479 missense somatic mutation kidney carcinoma K386N G1158T 

387 12:4912539 COSM4042555 synonymous somatic mutation stomach carcinoma I387I C1161T 

388 12:4912540 COSM346166 missense somatic mutation large intestine and lung carcinoma V388M G1162A 

389 12:4912545 rs775643582 synonymous variant   C1167A 
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residue 
number 

genomic 
location 

variation ID variant type description amino acid 
change 

nucleotide 
change 

390 12:4912548 rs760496447 synonymous variant   C1170G 

391 12:4912549 COSM219473 synonymous somatic mutation breast carcinoma L391L T1171C 

391 12:4912551 rs763811664 synonymous variant   G1173A 

392 12:4912554 rs753733816 synonymous variant   T1176C 

393 12:4912557 COSM940254 synonymous somatic mutation endometrium carcinoma A393A C1179T 

396 12:4912564 COSM5739544 missense somatic mutation small intestine, adenoma G396C G1186T 

397 12:4912568 COSM3727191 missense somatic mutation skin malignant melanoma V397A T1190C 

398 12:4912570 rs761868527 synonymous variant   C1192T 

401 12:4912580 rs797044929 missense variant inborn genetic disorder (Farwell et 
al., 2015) 

A401V C1202T 

401 12:4912580 COSM5375323 missense somatic mutation skin, malignant melanoma A401V C1202T 

403 12:4912586 rs867232553 missense variant Unclear, but from melanoma 
paper (Arafeh et al., 2015) 

P403L C1208T 

404 12:4912588 rs104894355 
and CM981109 

missense EA1 variant Characterized in EA1 (Scheffer et 
al., 1998) 

V404I G1210A 

407 12:4912599 rs138936640 synonymous variant  I407I T1221C 
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residue 
number 

genomic 
location 

variation ID variant type description amino acid 
change 

nucleotide 
change 

407 12:4912599 CM130980 Missense EA1 variant Characterized in EA1 (Tomlinson 
et al., 2013) 

  

408 12:4912600 rs113994117 
and CM092472 

missense EA1 variant Characterized in EA1 (Demos et 
al., 2009) 

V408L G1222T 

408 12:4912601 rs104894352 
and CM940995 

missense EA1 variant Characterized in EA1 (Browne et 
al., 1994) 

V408A T1223C 

408 12:4912602 rs142055425 synonymous variant   G1224A 

409 12:4912603 COSM4042556 missense somatic mutation stomach carcinoma S409T T1225A 

409 12:4912605 rs757958737 synonymous variant   C1227A 

410 12:4912608 COSM1747035 missense somatic mutation urinary tract carcinoma N410K T1230A 
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