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CHAPTER I 

 

INTRODUCTION 

 

1.1  Overview 

Many critical mechanical components experience multiaxial cyclic loadings 

during their service life, such as railroad wheels, crankshafts, axles, and turbine blades, 

etc. Different from the uniaxial fatigue problem, the multiaxial fatigue problem is more 

involved due to the complex stress states, loading histories and different orientations of 

the fatigue crack in the components. Fundamental understanding of multiaxial fatigue 

problem is essential for the reliability assessment under realistic service condition and is 

valuable for the design and maintenance against fatigue failure. 

The fatigue process of mechanical components under service loading is stochastic 

in nature. Life prediction and reliability evaluation is still a challenging problem despite 

extensive progress made in the past decades. Compared to fatigue under constant 

amplitude loading, the fatigue modeling under stochastic loading becomes more complex 

both from deterministic and probabilistic points of view. An appropriate uncertainty 

modeling technique is required to include the stochasticity in both material properties and 

external loadings, which is critical in evaluating the long-term reliability of mechanical 

component. 

Damage accumulation due to fatigue, plastic deformation and wear significantly 

reduce the service life of the railway track and wheels. In recent years, higher strain 

speeds and increased axle loads led to larger wheel/rail contact forces. Also, efforts have 
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been made to optimize wheel and rail design. This evolution tends to change the major 

wheel rim damage from wear to fatigue. Unlike the slow deterioration process of wear, 

fatigue causes abrupt fractures in wheels or material loss in the tread surface. These 

failures may cause damage to rails, damage to the train suspensions and, in rare case, 

serious derailments of the train. The failures may be very expensive in terms of human 

and economic loss. Thus, an accurate understanding of the underlying physical 

mechanism and a methodology to prevent fatigue failure have become important research 

needs for the railroad industry.    

This study combines structural failure analysis, reliability methods, and advanced 

finite element method to develop a methodology for the reliability assessment of railroad 

wheels. Failure analysis focuses on developing fundamental multiaxial fatigue and 

fracture models to analyze the fatigue crack initiation and propagation behavior, and 

implement these methods with finite element analysis. Reliability analysis focuses on 

uncertainty quantification and propagation from laboratory conditions to service 

conditions. The randomness observed in the fatigue life of mechanical components is 

represented using the proposed numerical methods.  Mechanics analysis is combined with 

limit state-based reliability analysis methods, inspection, testing, and failure data, to 

develop failure probability estimates of railroad wheels.  

 

1.2  Research objectives  

Based on the discussion above, the research objectives are summarized below: 

1. Develop fundamental multiaxial fatigue and fracture models. Both crack 

initiation and propagation models are explored. As fundamental models for 
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fatigue damage evaluation, the models’ performance against various materials and 

loading conditions is the major concern in the current study. The objective is to 

develop a general multiaxial model not only applicable to the railroad industry but 

also to many other situations.  

2. Develop a general methodology for stochastic fatigue damage 

accumulation of mechanical/structural components. The major focus is on the 

uncertainty quantification and probabilistic life distribution under laboratory and 

realistic conditions. The objective is to integrate the randomness in material, 

applied loading and geometry to the proposed mechanical modeling, which can 

accurately and efficiently predict the long term reliability of mechanical 

components. 

3. Develop a computational methodology for the complex rolling contact 

fatigue simulation of railroad wheels. Advanced finite element analysis, fatigue 

theory and fracture mechanics are combined. Due to the expensive computational 

effort in highly nonlinear finite element analysis, the major objective is to develop 

a suitable technique to simulate the fatigue and fracture processes efficiently and 

accurately. 

4. Collect and analyze existing manufacturing, testing, inspection, and failure 

data in the open literature and from the Union Pacific database. One objective of 

this work is to validate the proposed multiaxial fatigue and fracture models for 

various materials. The other objective is to collect appropriate statistics as input 

random variables for reliability prediction and future inspection planning. 
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1.3  Advantages of the proposed methodology 

Although numerous models for multiaxial fatigue analysis are available and some 

of them try to integrate randomness into reliability estimation, none of them have 

achieved universal acceptance, and many are limited in applicability. The proposed 

methodology is seen to have broad applicability, using a set of comparisons with the 

available methods in the literature and validations with the experimental results. Very 

few assumptions and empirical formulas are used in the proposed model. This feature of 

the proposed model makes it more attractive because it can be easily extended to the 

fatigue analysis of other mechanical systems. 

The numerical simulation method of rail-wheel contact analysis is more accurate 

than classical contact theory results. The method is efficient in computation and can 

include many factors which are ignored by the classical contact theory. The finite element 

model is flexible and suitable in describing different types of motion of the railroad 

wheels, such as rotating, sliding, impacting and hunting movement. Both crack initiation 

and propagation are simulated and compared with field observations. The proposed 

methodology is seen to represent the failure behavior of railroad wheels very well, both 

qualitatively and quantitatively.  

The reliability analysis method in this study includes both time and space 

variation. This methodology is especially suitable for large systems and complicated 

problems. The covariance structure of the fatigue damage accumulation process is 

considered and found to be important in reliability analysis, which is commonly ignored 

by previous existing models. The response surface method combined with Monte Carlo 
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simulation techniques used in the reliability analysis method can significantly reduce the 

calculation time.  

 

1.4  Organization of the dissertation 

The dissertation is organized as follows: In Chapter 2, fatigue life under 

multiaxial loading is predicted with the help of fundamental mechanicals modeling. The 

present work focuses on both fatigue crack initiation life and crack propagation life under 

proportional and non-proportional multiaxial loading. The terms “crack initiation” and 

“crack propagation” are somewhat unclear since both of them include crack growth and 

damage accumulation but on different scales. Usually, fracture mechanics is used to deal 

with crack propagation analysis and damage mechanics is used to deal with crack 

initiation analysis. Both crack initiation and propagation analysis are explored in this 

study. A new multiaxial fatigue theory is developed based on a characteristic plane 

approach. The results of crack initiation analysis and crack propagation analysis are 

combined together to predict the total life of materials under cyclic fatigue loading.   

Chapter 3 focuses on the application of the proposed multiaxial fatigue theory to 

the rolling contact fatigue problem of railroad wheels. This problem differs from the 

usual fatigue problems in mechanical systems. The loading in rolling contact fatigue 

causes a non-proportional multiaxial stress state in railroad wheel. The principal stress 

direction in a fixed point rotates during one loading cycle. Traditional fatigue analysis 

cannot be applied to this type of loading. The fatigue crack initiation and propagation are 

subject to overall compressive loading, which is different from the “classical” fatigue 

problem (tensile stress state). The subsurface fatigue crack behavior is the major focus in 
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the current study and known as “shattered rim” failure. The failure pattern and crack 

profile is numerically simulated and compared with field data qualitatively. Several 

factors affecting the fatigue life of railroad wheels are explored in detail. 

Chapter 4 focuses on the stochastic modeling of fatigue damage in the railroad 

wheels. Large variations and uncertainties in applied loadings, material properties, and 

environmental conditions cause much variation in wheel reliability and quality. One 

important benefit of this study is to develop a reliability-based inspection planning 

methodology. Accurate and efficient reliability calculation is a key factor in achieving 

this benefit. First, numerical simulation results from finite element analysis and fatigue 

analysis are used to construct the response surface of the fatigue damage index with 

respect to the geometry, loading, material properties and other random variables.  Next, 

the Karhunen-Loeve expansion technique is applied for increased accuracy in describing 

the random damage field/process. Then a simulation-based method is used to estimate the 

reliability of railroad wheels under rolling contact fatigue loading. Finally, probabilistic 

life distribution using the proposed methodology is compared with field failure statistics. 
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CHAPTER II 

 

MULTIAXIAL FATIGUE AND FRACTURE 

 

2.1  Overview 

The word fatigue originated from the Latin expression fatigue which means ‘to 

tire’. The terminology used in engineering refers to the damage and failure of materials 

under cyclic loads, including mechanical loads, thermal loads, etc. Major advances have 

been made during the past hundred years in fatigue analysis. However, the application of 

fatigue concepts to practical situations encounters many complicated conditions and is far 

from final solution. These conditions include multiaxial stress state, stochastic load 

spectra, detrimental environments, etc (Suresh, 1998). Fatigue failure is one the most 

important failure modes of mechanical components, including railroad wheels. Fatigue 

failure can significantly reduce the system reliability and durability and cause economic 

and human lose. Table 1 summarizes the types of fatigue analysis for different conditions.  

Many critical mechanical components experience multiaxial cyclic loadings 

during their service life, such as railroad wheels, crankshafts, axles, turbine blades, etc. 

Different from the uniaxial fatigue problem, the multiaxial fatigue problem is more 

complex due to the complex stress states, loading histories and different orientations of 

the initial crack in the components. The railroad wheel fatigue problem belongs to high-

cycle multiaxial fatigue and includes both fatigue crack initiation and fatigue crack 

propagation. The main objective of this chapter is to develop a general methodology for 
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fundamental multiaxial fatigue analysis, which is to be used for railroad wheel fatigue life 

prediction in Chapter 3. 

 

Table 1. Classification of various types of fatigue analysis 

Classification basis Fatigue analysis type Description 

Uniaxial  
One cyclic stress or strain 

component dominates during 
the life Loading 

Multiaxial  
Multiaxial cyclic stress or 

strain components dominates 
during the life  

High-cycle  Fatigue life >103~4 cycles Fatigue life Low-cycle  Fatigue life <103~4 cycles 

Crack initiation  From no macro crack to macro 
crack  Damage stage 

Crack propagation  From macro crack to final 
failure 

Stress-life approach (S-N) Stress is used to predict fatigue 
life 

Strain-life approach (e-N) Strain is used to predict fatigue 
life 

Energy approach  Energy is used to predict 
fatigue life 

Analysis approach 

Fracture mechanics approach 
(K, J, COD)  

Fracture parameters are used to 
predict fatigue life 

 

 

2.2  Stress-based high cycle multiaxial fatigue crack initiation 

In recent decades, numerous studies have attempted to develop multiaxial fatigue 

damage criteria. Several reviews and comparisons of existing multiaxial fatigue models 

can be found elsewhere (Garud, 1981; You and Lee, 1996; Papadopoulos, 1997; Wang 

and Yao, 2004). Despite the differences in different multiaxial models, the general idea is 

similar, which is to reduce the complex multiaxial stress state to an equivalent uniaxial 

stress state or an equivalent damage scalar. Thus the fatigue life is assessed based on the 
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equivalent parameter. All fatigue damage models for crack initiation analysis can be 

classified into three groups: stress approach, strain approach and energy approach (Wang 

and Yao, 2004). The stress approach has been commonly used for high-cycle fatigue 

problems. 

Although there are many proposed models for multiaxial fatigue damage 

modeling, most of them are limited to specific materials or loading conditions. Some of 

them cannot predict the initial crack orientation, which is another distinct characteristic of 

multiaxial fatigue damage compared with the uniaxial fatigue problem. To the author’s 

knowledge, no existing multiaxial fatigue damage model is universally accepted. 

In recent years, criteria based on the critical plane approach for multiaxial fatigue 

evaluation are becoming more popular because they generally give more accurate 

predictions of the fatigue damage (Socie, 1989; You and Lee, 1996). According to this 

approach, the fatigue evaluation is performed on one plane across a critical location in the 

component. This plane is called the critical plane, which is usually different for different 

fatigue models. However, one disadvantage of the common critical plane approach is that 

the definition of the critical plane is often related to the maximum value of one stress 

component or the combination of several stress components. It is doubtful whether the 

critical plane only depends on the stress state and has no relation with the material 

properties. Carpinteri and Spagnoli (2001) gave a new definition of the critical plane 

considering both the stress state and the material properties. However, their proposed 

formula is empirical and can be applied only to a range of metals. 

In this section, first several high-cycle fatigue damage models are briefly 

discussed. Then a new fatigue criterion based on characteristic plane approach is 
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proposed. Unlike the previous critical plane approaches, the characteristic plane in the 

current model is theoretically correlated with the fatigue crack initiation plane and also 

depends on the material properties. Next a correction factor considering the effect of the 

mean stress is introduced. The current model is compared with other existing criteria 

using the available experimental data in the literature. The fatigue criterion is then 

extended to predict the fatigue life under multiaxial loading conditions. The predicted 

lives are compared with experimental observations in the literature.  

2.2.1 Existing high-cycle multiaxial fatigue criterion 

Since the main focus of this section is multiaxial high-cycle fatigue problem, only 

the stress-based approach is reviewed in this section. Strain-based approach for low-cycle 

fatigue will be covered in the next section. The stress-based approaches can be divided 

into four groups based on empirical equivalent stress, stress invariants, average stress and 

critical plane stress.    

In the empirical equivalent stress approach, the criteria based on yield theories are 

most often used because of the simplicity of the formula. Langer (1979) proposed an 

equivalent stress based on the Tresca equivalent stress. For sinusoidal, fully-reversed, 

out-of-phase bending and torsion, the equivalent stress amplitude (SALT) is: 

    2
1

2
1

422a ])K)2cos(K21(K1[
2

SALT ++++= φ
σ

                                      ( 1 ) 

where: aσ is the bending stress amplitude, aτ is the torsion stress amplitude, aa /2K στ=  

and φ  is the phase angle between bending and torsion. For proportional loading ( 0=φ ), 

Eq. (1) reduces to Tresca stress: 

2
a

2
a 4SALT τσ +=                                                       ( 2 ) 
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A modified Langer’s Method, which is based on Von Mises equivalent stress, is 

expressed as: (ASME, 1978) 

2
1

2
1

422a ])K
16
9)2cos(K

2
31(K

4
31[

2
SEQA ++++= φ

σ
                ( 3 ) 

For proportional loading ( 0=φ ), Eq. (3) reduces to the Von Mises stress: 

2
a

2
a 3SALT τσ +=                                                        ( 4 ) 

Another popularly used formula is suggested by Gough and Pollard (1935, 1951). 

For a ductile material, the fatigue criterion follows an eclipse equation: 

 1
tf 2

1

2
a

2
1

2
a =+

−−

τσ
                                                                ( 5 ) 

For a brittle material, the fatigue criterion follows the equation: 

1
tf

)
t
f2(

f
)1

t
f( 2

1

2
a

1

a

1

1
2
1

2
a

1

1 =+−+−
−−−

−

−−

− τσσ
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where 1f−  and 1t−  are fatigue limits in fully reversed bending and torsion, respectively. If 

we rewrite Eq. (5) as 

1
2
a2

1

2
12

a f
t
f

−
−

− =+ τσ                                                           ( 7 ) 

The left hand side of Eq. (7) can be treated as an equivalent stress amplitude. For 

a material with 5.0f/t 11 =−− , Eq. (7) coincides with the equivalent Tresca stress (Eq. 

(2)). For material with 3/1f/t 11 =−− , Eq. (7) coincides with the equivalent Von Mises 

stress (Eq. (4)). 

Lee (1985) proposed an empirical equivalent stress based on Gough’s formula as 

follows: 
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where β  is material constant need to be calibrated using experimental data. 

The empirical equivalent stress approach is easy to calculate and convenient for 

engineering application. However, it has been shown that the results based on Tresca or 

Von Mises stresses are non-conservative (You and Lee, 1996). Gough’s formula can only 

be used for proportional loading conditions. Lee’s formula has a material constant which 

requires extra experimental work and thus limits the application of the method.   

The basic idea in the stress invariants approach is to directly relate the fatigue 

strength with the second invariant of the stress deviator and first invariant of the stress (3 

times the hydrostatic stress). The general form is as follows: 

ξ=))J(,)J(,)J(,)J((f m
'
2m1a

'
2a1                                             ( 9 ) 

where 

3211J σσσ ++=                                                               ( 10 ) 

])()()[(
6
1J 2

13
2

32
2

21
'
2 σσσσσσ −+−+−=                                ( 11 ) 

The subscripts a  and m  in Eq. (9) refer to the stress amplitude value and mean 

stress value respectively; ξ  is a material constant calibrated using fatigue experiments.  

Sines (1959) gave a popular criterion based on m1 )J(  and a
'
2 )J(  as: 

ξλ =+ m1a
'
2 )J()J(                                                               ( 12 ) 

where m
mft σλ /)33( 11 −− −= , 1−= tξ  and mf 1−  is the uniaxial fatigue limit with mean 

stress mσ . 
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Crossland (1956) suggested that fatigue evaluation should consider the maximum 

value of the hydrostatic stress: 

 ξλ =++ ])J()J[()J( a1m1a
'
2                                                      ( 13 ) 

Kakuno and Kawada (1979) suggested that the contribution of m1 )J(  and a1 )J(  

should be different: 

ξλκ =++ ama JJJ )()()( 11
'
2                                                    ( 14 ) 

where in Eq. (12) to (14), λ , ξ  and κ  are material constants, which are generally 

different for different models.  

One limitation of the stress invariant approach is that the orientation of the initial 

crack cannot be predicted (Papadopoulos, 1997).  The other drawback is that non-

conservative results may be obtained (You and Lee, 1996). The other issue is that, 

although not clearly stated in the equation, some methods based on this approach can 

only be applied to a range of metals. For example, in Crossland's criterion, λ  

equals )3/3( 11 −−− ft . Considering that the tensile mean stress will reduce the fatigue 

limit. λ  should be positive, ie., 3/1/ 11 >−− ft . Thus Crossland’s criterion can only be 

applied to metals with 3/1/ 11 >−− ft . 

The average stress approach uses an average of the stress components involving 

the critical point. This quantity is treated as an equivalent stress and correlated to the 

fatigue damage. Papadopoulos (1997) gave a simple formula through a complex double 

integral calculation:  

ξλτ
σ

λ =+++=++ ])()[(
3

])()[( 11
2

2

11
2

maa
a

maa JJJJT                      ( 15 ) 
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where 2
aT  is the average quantity within a volume, )3/3( 11 −= −− ftλ  and 1−= tξ . 

The formula looks similar with the Crossland's criterion except the second 

invariant of the stress deviator is replaced by the average stress quantity. It also has the 

limitation of the material. As stated by Papadopoulos,  11 / −− ft  is better to be between 

0.577 and 0.8. The other limitation of the model is that non-proportional loading has no 

effect based on Eq. (15), which is in conflict with experimental observations (You and 

Lee, 1996).  

Papadopoulos (2001) improved the model using a critical plane type model: 

ξλ =++Δ ])()[()max( 11 maa JJT                                                              ( 16 ) 

where Δ
aT  is an average stress quantity (named generalized shear stress amplitude by 

Papadopoulos) on the critical plane Δ . The critical plane is defined as the plane Δ  where 

aT  achieves the maximum value. For this model, although stated by the author that no 

particular form is required for the basic fatigue S-N curve, there does seem to be an 

implicit assumption that the uniaxial S-N curve is parallel to the torsional S-N curve. 

Generally this assumption holds for some materials or for the life regime close to the 

fatigue limit life.   

The other average stress approaches can be found elsewhere (e.g. Liu and Zenner, 

1993; Grubisic and Simburger, 1976). 

The concept of the critical plane approach is very simple and convenient to apply 

to the multiaxial fatigue problem. Despite the different definitions of the critical plane in 

different methods, the general methodology is the same. First a material plane is 

determined, and then the fatigue damage is evaluated using one or a combination of the 

stress components on the critical plane. Although there are some critiques on the critical 
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plane approach, the results based on this approach have been shown to have a good 

correlation with the experimental observations. 

Findley (1959) proposed a damage parameter based on the linear combination of 

the shear stress amplitude and maximum normal stress acting on the critical plane.  The 

critical plane is defined as the plane where the damage parameter achieves the maximum 

value: 

 
⎪⎩

⎪
⎨
⎧

=+

+=

ξθφσθφτ

θφσθφτθφ
θφ

),(),(

)],(),([max),(

max

max),(

cccca

acc

k

k
                                                   ( 17 ) 

where the material constants k  and ξ  are computed as: 

)4/4/()();1/2/()/2( 11
2

11111 −=−−= −−−−−−− tfftftfk ξ                      ( 18 ) 

Matake (1977) uses the same form of the damage parameter as Findley but 

defines the critical plane as the plane on which the shear stress amplitude achieves the 

maximum value: 

⎪⎩

⎪
⎨
⎧

=+

=

ξθφσθφτ

θφτθφ
θφ

),(),(

)],([max),(

max

),(

cccca

acc

k
                                               ( 19 ) 

where the material constants k  and ξ  are given as: 

111 );1/2( −−− =−= tftk ξ                                                    ( 20 ) 

McDiarmid (1991) uses the concept of case A and case B cracks (Brown and 

Millar, 1973). Case A cracks propagate along the component surface, while case B cracks 

propagate inwards the surface. The fatigue damage is evaluated on the critical plane 

corresponding to the two crack cases. The critical plane is defined same as in Matake's 

model. 
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where BA,τ  is the material parameter according to case A or case B cracks, uσ  is the 

ultimate tensile strength of the material. 

Carpinteri and Spagnoli (2001) proposed a criterion based on the critical plane for 

hard metals. The calculation of the critical plane is performed in two steps. First the 

weighted mean direction of the maximum principal stress is evaluated (Carpinteri et al, 

1999(a), Carpinteri et al, 1999(b)). This direction is also believed to be the initial fatigue 

fracture plane. Then an empirical formula is used to correlate the critical plane to the 

fatigue fracture plane. After determining the critical plane, the fatigue criterion is 

expressed by a nonlinear combination of the maximum normal stress and shear stress 

amplitude acting on the critical plane. 
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where δ  is the angle between cw  and cl in degrees, cw  is the normal vector of the critical 

plane, cl  is the direction of the weighted mean direction of the maximum principle stress. 

Some of the critical plane methods have the limitations with respect to the 

applicable range of the material properties. For Findley's criterion, 11 / −− ft  should be less 

than one. For the model suggested by Carpinteri and Spagnoli (2001), 11 / −− ft  should be 

between 0.577 and 1. Another aspect of the critical plane approach is that most of the 

critical plane definitions only depend on the stress state. Carpinteri and Spagnoli define 
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the critical plane which depends on both stress state and material properties. But the 

relation between fatigue fracture plane and critical plane is purely empirical, which is a 

parabolic interpolation between two assumed values.  

2.2.2 Proposed new multiaxial fatigue model 

The definitions of the fatigue fracture plane and the characteristic plane should be 

clarified first. Experimental results show that for commonly used metallic materials, 

fatigue crack first occurs along the crystal slip plane, and then propagates perpendicular 

to the maximum principal stress direction. The fatigue fracture plane here refers to the 

crack plane observed at the macro level. The characteristic plane is not an actual crack 

plane. It is a material plane on which the fatigue damage is evaluated. The two planes 

may or may not coincide with each other. Several authors proposed different methods to 

predict the fatigue fracture plane. McDiarmid (1991) defines the fracture plane as the 

plane which experiences the maximum principal stress. Carpinteri et al (1999(a), 1999(b)) 

suggest that the fracture plane coincides with the weighted mean principal stress direction. 

Socie (1987) proposed to correlate the fatigue fracture plane to either a Mode I crack or a 

Mode II growth mechanism. Here in this chapter, the fatigue fracture plane is assumed to 

be the plane which experiences the maximum normal stress amplitude. 

The characteristic plane orientation may differ from the fatigue fracture plane for 

different materials. However, in this chapter, it is not arbitrarily assumed. The calculation 

of the characteristic plane orientation is derived as below. 

First consider the fully reversed bending-torsion fatigue problem (with no mean 

stress). A new fatigue damage parameter is proposed based on the nonlinear combination 
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of the normal stress amplitude, shear stress amplitude and hydrostatic stress amplitude 

acting on the characteristic plane, as 

β
στσ

=++
−−−
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f

k
tf

H
cacaca                                                  ( 23 ) 

where ca,σ , cat ,  and H
ca,σ  are the normal stress amplitude, shear stress amplitude and 

hydrostatic stress amplitude acting on the characteristic plane respectively. k  and β  are 

material parameters which can be determined by uniaxial and torsional fatigue limits. 

It should be noted that the expression in Eq. (23) is not a required assumption of 

the current methodology. The damage parameter can also be assumed as linear or other 

combinations of the stress amplitudes. If a different damage parameter is used, a different 

fatigue damage model can be obtained following the procedure described in this section. 

Since the relationship between the characteristic plane and fatigue fracture plane 

has not been determined yet, suppose that for one type of material the characteristic plane 

coincides with the fatigue fracture plane. In other words, the angle between these two 

planes is zero. 

For a fully reversed uniaxial fatigue experiment )0,( 1 == − aa f τσ , the fatigue 

fracture plane is perpendicular to the normal stress direction. Thus we obtain: 
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For a fully reversed pure torsional fatigue experiment ),0( 1−== taa τσ , the 

fatigue fracture plane has an angle of 45 degrees with the shear stress direction. Thus 
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Substitute Eq. (24) and (25) to Eq. (23), we can get: 
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Solve Eq. (26) for material parameters. 
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Notice that the physical meaning of k  is the contribution of damage caused by the 

hydrostatic stress amplitude. It should be non-negative. So 11 f/t −−  should not be less 

than one. Materials with 3/1f/t 11 ≤−− are usually known as ductile (mild) metals. For 

Materials with 1f/t3/1 11 ≤≤ −−  are usually known as brittle (hard) metals (Carpinteri 

and Spagnoli, 2001). Materials with 1f/t 11 ≥−−  are referred as extremely brittle (hard) 

metals in this chapter. Recall the assumption made before this calculation. It is only 

possible for an extremely brittle material ( 1f/t 11 ≥−− ) that the characteristic plane 

coincides with the fatigue fracture plane using the present damage parameter (Eq. (23)). 

It is also interesting to notice that k  equals zero when 1f/t 11 =−− , which means (from 

Eq. (23)) that the hydrostatic stress amplitude has no contribution to the fatigue damage 

for this material according to the present definition of the damage parameter (Eq. (23)). 
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Now suppose that for one type of material, the characteristic plane is 45 degrees 

off the fatigue fracture plane, which is the maximum shear stress plane for uniaxial and 

torsional loading. Following the steps described above, the material parameters k  and β  

are once again calculated. 

For a fully reversed uniaxial fatigue experiment )0,( 1 == − aa f τσ , the stress 

components on the characteristic plane are 

⎪
⎩

⎪
⎨

⎧

=

=

=

−

−

−

3/f

2/f
2/f

1
H

c,a

1c,a

1c,a

σ

τ
σ

                                                                           ( 28 ) 

For a fully reversed pure torsional fatigue experiment ),0( 1−== taa τσ , the stress 

components on the characteristic plane are 
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Substituting Eqs. (28) and (29) in Eq. (23): 
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Solving Eq. (30) for the material parameters, we obtain: 
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From Eq. (31), 11 f/t −−  should not be less than 3/1 . This type of material 

( 3/1f/t 11 ≥−− ) is often known as a brittle (hard) metal. Recall the assumption made 
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before this calculation. Thus, it is only possible for brittle metals ( 3/1f/t 11 ≥−− ) that 

the characteristic plane could be 45 degrees off the fatigue fracture plane using the 

present damage parameter. Similar to the first case, k  equals zero when 3t/f 11 =−− , 

which means (From Eq. (23)) that the hydrostatic stress amplitude H
c,aσ  has no 

contribution to the fatigue damage for this material according to the present definition of 

the damage parameter. 

Several conclusions can be drawn based on the derivations of the characteristic 

plane orientations for the two cases above. The contribution of the hydrostatic stress 

amplitude is different for different materials if the characteristic plane is fixed for all 

materials. There are two materials ( 1f/t 11 =−−  and 3/1f/t 11 =−− ), for which the 

contribution of the hydrostatic stress amplitude is zero if the characteristic plane is 

defined as shown in these two cases. It is also noticed that, if the characteristic plane is 

fixed, the range of applicable material parameters are limited. 

Instead of fixing the characteristic plane, the current model searches for the 

characteristic plane orientations on which the contribution of the hydrostatic stress 

amplitude is minimized to zero. This is a general approach that can be applied to all 

material. 

For an arbitrary material, let the angle between the characteristic plane and the 

fatigue fracture plane be α . Since the contribution of the hydrostatic stress amplitude is 

zero, Eq. (23) is rewritten as: 
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The objective is to find α  and β  for an arbitrary material, following the steps 

described for the first two cases. 

For a fully reversed uniaxial fatigue experiment )0,( 1 == − aa f τσ , the fatigue 

fracture plane is perpendicular to the normal stress direction. The characteristic plane is at 

an angle α  off the fatigue fracture plane. Thus, we obtain: 
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For fully reversed pure torsional fatigue experiment ),0( 1−== taa τσ , the 

characteristic plane is at an angle α  degree off the maximum normal stress plane. Thus: 
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Substituting Eqs. (33) and (34) in Eq. (32),  
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Solving Eq. (35) for α  and β , we obtain 
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where 
1

1

f
t

s
−

−=  is a material constant. Here α  takes values from 0  to 
2
π . As shown in Eq. 

(36), both  α  and β  are the functions of the material property s . It is found that α  
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increases as s  decreases. α  equals 0  when s  equals 1, and α  equals 
2
π  when s  equals 

zero. β  does not change monotonically with respect to s , but all the β  values are close 

to 1 for materials with 1s3/1 << .    

From Eq. (36), α  has no real solution for 1s > . This indicates that for an 

extremely brittle material, the contribution of hydrostatic stress amplitude cannot be 

minimized to zero and must be considered during the fatigue damage evaluation. We use 

the results in case 1 for the material with 1s > . The summary of material parameters for 

all types of materials are listed in Table 2. 

As a result of the above derivation, the methodology becomes very simple with 

the current model. First the plane with maximum normal stress amplitude is identified 

during one stress cycle. For an arbitrary loading history, the plane is searched 

numerically by checking the normal stress amplitude on all possible planes. In this 

chapter, an angle increment of 1 degree is used during the numerical computation. Then 

the characteristic plane and material parameters are determined for different materials 

according to Table 2. Finally the stress components on the characteristic plane are 

calculated and the fatigue damage is evaluated using Eq. (23).   

Practical mechanical components generally experience cyclic fatigue loading 

together with the mean stress. The mean stress could also be introduced by residual stress, 

environmental effects, etc. It is well known that the mean normal stress has an important 

effect on fatigue life. Normally, tensile mean stress reduces the fatigue life, while 

compressive mean stress increases the fatigue life (Sines, 1961). 

There are many models for mean normal stress effect correction. Gerber (1874), 

Goodman (1899), Soderberg (1939) and Morrow (1969) proposed different correction 
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factors. Kujawski and Ellyin (1995) proposed a unified approach to mean. For the 

multiaxial fatigue problem, mean normal stress is included in the model in different ways 

(Socie, 2000) depending on different models. Fatemi and Socie (1988) considered the 

maximum normal stress acting on the critical plane. Papadopoulos (1997) considered the 

hydrostatic mean stress. Farahani (2000) used a correction factor based on the mean 

stress on the critical plane.  

 

Table 2. Material parameters for fatigue damage evaluation 

Material 
Property 
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In the case of mean shear stress effect, there is still much argument as to the 

proper way to include this effect. From many experimental observations, Smith (1942) 

concluded that mean shear stress has little effect on the fatigue life and endurance limit. 

Sines (1959) stated that a superimposed mean static torsion has no effect on the fatigue 

limit of metals subjected to cyclic torsion. A similar conclusion was also found by Davoli 

et al (2003). The mean shear stress effect is often neglected in the high cycle fatigue 

analysis (Davoli et al 2003). Therefore in the current model, the mean shear stress is also 

assumed to have no effect on the fatigue criterion and fatigue life in high-cycle fatigue 

regime. Based on the experimental data collected from the literature, the mean stress is 
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introduced to the fatigue model by a correction factor )
f

1(
1
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rewritten as: 
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where η  is a material parameter, which can be calibrated using uniaxial fatigue tests with 

mean stress. For different materials used in this chapter, η  ranges from 0.60 to 1.3. If 

fatigue tests with mean stress are not available, a simplified function (Eq. (38)) is 

suggested. The experimental value and the simplified formula of η  are plotted in Fig. 1. 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥=

≤
−

−
+=

−

−

−

−−

−

)1
f
t

(1

)1
f
t

()
13

t
f3

(
4
1

4
3

1

1

1

11

1

η

η
                                          ( 38 ) 

 

 

 

 

 

 

 

 

Fig. 1 Experimental value and simplified value of mean stress factor       
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After developing the fatigue limit criterion as above, the methodology for fatigue 

life prediction is relatively easy. Notice that the fatigue limit is often referred to the 

fatigue strength at very high cycle (usually 106 ~107 cycles). For finite fatigue life 

prediction, the damage parameter should be correlated with the life (number of loading 

cycles). Eq. (37) can be rewritten as 
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The left hand side of Eq. (39) can be treated as an equivalent stress amplitude. It 

can be used to correlate with the fatigue life using the uniaxial S-N curve. Thus the 

fatigue life model is expressed as: 
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and 
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where fN  is the number of cycles to failure. Notice here 1f−  and 1t−  in Eq. (37) and Eq. 

(38) change to 
fNf  and 

fNt respectively, which are fatigue strength coefficients at finite 

life fN  for uniaxial and torsional loadings. Eq. (40) has no closed form solution. In 

practical calculation, a trial and error method can be used to find fN . For high cycle 

fatigue,
fNf  and 

fNt take initial values as 1f−  and 1t− . It is found that usually a few 
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iterations are enough to make fN converge. Eq. (40) and Eq. (41) together with the 

parameters in Table 2 are used for fatigue life prediction in this chapter. The quantity s  in 

Table 2 is redefined as 
f

f

N

N

f

t
s = . 

2.2.3 Comparison with experimental observations 

Two sets of bending and torsion experimental fatigue limit data are used to 

validate the current fatigue criterion in this section. The first one contains four different 

materials (Papadopoulos et al, 1997). Some material properties are reported in Table 3. 

The error index of the current model is compared with three other models: Matake’s 

(1977), McDiarmid’s (1991) and Papadopoulos’s (1997). The error index is defined same 

as in Papadopoulos (1997): the relative difference between the left and right hand sides of 

each criterion. 
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 Table 3. Material properties employed by Papadopoulos (1997) 

 

 The experimentally observed fatigue fracture plane orientations are not reported 

by Papadopoulos (1997). Only the experimental fatigue limit data are compared with the 

model predictions. The main objective of the comparison is to find the model’s 

applicability to different materials and loading conditions. So the comparisons here are 

Material 1f− (Mpa) 1t− (Mpa) 11 f/t −−  uσ (Mpa) 
Hard Steel 313.9 196.2 0.63 680 
42CrMo4 398 260 0.65 1025 

34Cr4 410 256 0.62 795 
30NCD16 660 410 0.62 1880 
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performed using the mean absolute error for different phase differences according to 

different materials through Fig. 2.   

In Fig. 2, it is seen that both the Papadopoulos' model and the proposed model 

give a good estimation of the fatigue limit. For some materials, the results of the 

proposed model give slightly smaller errors, while for others Papadopoulos' results are 

better. Both Matake's model and McDiarmid's model give a relatively larger error. It also 

seems that the error in McDiarmid's model increases as the phase difference increases. 

Notice that the 11 f/t −−  values of all the materials fall into a very small range (0.62~0.65, 

Table 3), making it difficult to predict the performance of the models for other materials 

outside this narrow range. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Mean absolute error comparisons under different phase 

a) Hard Steel b) 42CrMo4 

c) 34Cr4 d) 30NCD16 
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Another set of experimental data (Carpinteri and Spagnoli, 2001) is used to test 

the model's performance for different materials. The material properties are listed in 

Table 4. It should be noted that the experimental work for Hard Steel in Table 3 is exactly 

same as that for Hard Steel in Table 4. This was originally done by Nishihara and 

Kawamoto (1945). Different other fatigue limit data have been reported by several 

authors. Papadopoulos (1997) uses the data reported by McDiarmid (1987). Carpinteri 

and Spagnoli (2001) use the data reported by Macha (1989). In order to diminish the data 

estimation error introduced by different authors, both data sets are used here.  

 

Table 4. Material properties employed by Carpinteri (2001) 

Material 1f−  (Mpa) 1t−  (Mpa) 11 f/t −−  uσ  (Mpa) 
Hard Steel 313.9 196.2 0.63 704.1 
Mild Steel 235.4 137.3 0.58 518.8 
Cast Iron 96.1 91.2 0.95 230.0 

 

The fatigue fracture plane orientation is reported by Macha (1989). The 

comparisons of the fatigue fracture orientations between experimental observations and 

present model predictions are listed together in Table 5. The present model predictions of 

the fatigue fracture orientation agree with the experimental observations very well. 

Although not listed in this chapter, both McDiarmid's model and Carpinteri's model gave 

almost the same predictions as the current model. 

The comparisons of the fatigue limits for different models are plotted in Fig. 3.  

Since Matake's model fails to determine the critical plane under some loading cases 

(Carpinteri and Spagnoli, 2001), Carpinteri and Spagnoli's model is used in the current 

comparison.  
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Table 5. Comparisons of fatigue fracture orientations  

Hard Steel Mild Steel Cast Iron 
Test 
No 

)(exp
oθ  )(o

calθ Test 
No 

)(exp
oθ )(o

calθ Test 
No 

)(exp
oθ  )(o

calθ  

1 0 0 1 0 0 1 0 0 
2 12 11 2 12 11 2 12 11 
3 22 22 3 22 22 3 25 22 
4 34 34 4 30 34 4 34 34 
5 45 45 5 45 45 5 49 45 
6 16 22 6 12 18 6 0 0 
7 32 34 7 8 35 7 0 0 
8 8 18 8 0 0 8 37 39 
9 22 35 9 8 0    

10 0 0 10 39 39    
11 0 0       
12 28 39       

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Mean absolute error comparisons under different phase differences 

a) Hard Steel b) Mild Steel 
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From Fig. 3, both Carpinteri's model and the present model give an overall small 

error. McDiarmid's model gives a poor estimation for cast iron. Papadopoulos' model 

seems to have an increased error as the phase difference increases, especially for cast iron. 

It is interested to find that Carpinteri's model and the present model gave very close 

predictions for all the material and loading conditions. For the experimental data used by 

Carpinteri and Spagnoli (2001), mean stress is zero and 11 f/t −−  is less than one. Their 

criterion (Eq. (22)) is rewritten as 
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The present model (Eq. 37) can be rewritten as 
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Since the fatigue fracture planes predicted by the two models are almost the same, 

the only differences between the two criteria are the material parameters  α  and β . 

Their values are plotted in Fig. 4. As shown in Fig. 4, it is found that the two sets values 

of the material parameters α  and β  are close for hard metals ( 1f/t3/1 11 << −− ), 

especially for the materials used by Carpinteri and Spagnoli (2001). Thus the two models 

give very close results in this case. However, Carpinteri and Spagnoli’s model is 

empirical and cannot be applied to extreme brittle metals ( 1f/t 11 >−− ) and ductile 
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metals ( 3/1f/t 11 <−− ), because the critical plane is not defined in those range by 

Carpinteri.  

 

 

 

 

 

 

 

Fig. 4 Comparison of the material parameters for present model and Carpinteri's model  

 

Four sets of fatigue experimental data are employed to validate the fatigue life 

prediction model. They are SAE-1045-1 steel reported by Kurath et al (1989), SAE-1045-

2 steel reported by Fatemi and Stephens (1989), SM45C steel reported by Lee (1989), 5% 

chrome work roll steel reported by Kim et al (2004).   Some material axial and torsion 

fatigue properties are listed in Table 6.  

Notice that the proposed model has no special requirement of the S-N curve 

format. Different formats can be used for best regression results. The R2 values are also 

listed in Table 6. The four materials cover a wide range of steel, from extremely brittle 

steel to ductile steel ( 11 f/t −−  ranges from 0.57 to 1.28).  The comparisons of the present 

model predictions and experimental observations are plotted together in Fig. 5. Two 

bounds are also plotted. The inner bound is according to the life factor of 2. The outer 

bound is according to the life factor of 3.   
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Table 6. Material fatigue properties of four different steels  

Material Fully Reversed S-N Curve R2 
Fatigue 
Limits 
(Mpa) 1

1

f
t

−

−  

Axi. 9315.0
a ))N(Log(8.1261 −=σ  0.98 237.76 

SAE-1045-1 
Tor. 8303.0

a ))N(Log(33.603 −=σ  0.98 136.29 
0.61 

Axi. 9157.0
a ))N(Log(7.1248 −=σ  0.99 242.05 

SAE-1045-2 
Tor. 7402.0

a ))N(Log(84.558 −=σ  0.98 148.35 
0.57 

Axi. 25.8
a

)
23.4

)N(Log(1

25.37875.445
+

+=σ

 
0.99 445.75 

SM45C 

Tor. 30.9
a

)
60.4

)N(Log(1

63.15812.317
+

+=σ

 
0.99 317.12 

0.71 

Axi. 8.1256)N(Log46.125a +−=σ  0.99 504.04 5% chrome 
work roll steel Tor. 8.1515)N(Log3.145a +−=σ  0.91 644.00 1.28 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Comparisons of life predictions and experimental observations  
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From Fig. 5, it is seen that the proposed model agrees with the experimental 

observations very well. 78% of the total points fall into the range of life factor 2 and 92% 

of the total points fall into the range of life factor 3. There are no systemic errors for the 

loading conditions, material properties and mean stress effect in the present model. The 

error index is defined as the relative difference from the experimental observations. The 

histogram of the error index considering all the experimental specimens is plotted in Fig. 

6.  

The worst case of the proposed model’s life prediction is for 5% chrome work roll 

steel. As mentioned by Kim et al (2004), there is more scatter in life data for this material 

than usually observed in the laboratory for ductile metals. This is believed to be an 

inherent characteristic of materials whose life is controlled by defects (Hanlon et al, 1997; 

Nadot et al, 1999). Despite the larger scatter, the proposed model predicts the trend very 

well. The fatigue fracture plane orientations are also reported by Kim et al (2004). The 

present model predictions and experimental observations are listed in Table 7. 

 

 

 

 

 

 

 

 

Fig. 6 Histogram of the error index of fatigue life (log scale)  
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Table 7. Comparisons of fatigue fracture orientations between experimental observations 
and model predictions for 5% chrome work roll steel  

Test 
No 

)(exp
oθ  )(o

calθ  Test No )(exp
oθ  )(o

calθ  

1 25 24 11 10 17 
2 10 21 12 170 163 
3 172 173 13 39 32 
4 31 32 14 32 34 
5 25 33 15 35 34 
6 143 146 16 40 38 
7 41 37 17 31 34 
8 40 38 Uniaxial 0 0 
9 135 139 Torsion 45 45 
10 21 24    

 

 

2.3  Strain-based low cycle multiaxial fatigue crack initiation 

For low-cycle multiaxial fatigue problems, strain-based or energy-based models 

are commonly used. Similar to high-cycle multiaxial fatigue problems, the effectiveness 

of individual methods varies with material, fracture mechanism and loading conditions 

(Kim et al, 1999). No single theory has been applied to a wide variety of materials and 

loading conditions (Socie, 1987). To the authors’ knowledge, no existing multiaxial 

fatigue damage model is universally accepted. This paper focused on the strain-based 

models and thus only those models are briefly described below.  

2.3.1 Existing low-cycle fatigue models 

Early investigations used the equivalent strain approach (Pascoe and Devilliers, 

1967) and plastic work or plastic strain energy approach (Garud, 1979, Ellyin and Valarie, 

1982). In recent years, fatigue models based on the critical plane approach for multiaxial 

fatigue evaluation have been gaining popularity due to their success in accurately 

predicting lives (Socie, 1989; You and Lee, 1996). A number of the critical plane 
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approaches that are based on strain or energy, are for the shear failure mode (Brown and 

Miller, 1973; Kandil et al, 1982; Lohr and Ellison, 1980; Socie et al, 1989; Fatemi and 

Socie, 1988; Farahani, 2000; Pan, 1999).  Some other models are based on tensile failure 

mode (Smith et al, 1970; Socie, 1987; Chu et al, 1993; Kim et al, 2004). It has been 

found that the methods based on one failure mode perform poorly for the fatigue 

modeling of the other failure mode (Socie, 1987; Farahani, 2000; Kim et al, 2004). 

Bannantine and Socie (1991) suggest using two different models for different failure 

modes and choosing the better prediction as the final result. Similar methodologies are 

used by other researchers (Chen et al, 1999; Liu and Wang, 2001). Park and Nelson 

(2000) reviewed the two-model methodology suggested by Socie (1987) and stated that 

the failure modes depend on the materials. It appears that the failure mode depends not 

only on the material properties but also on the stress state (Socie, 1987; Lee et al, 2003). 

Lee et al (2003) found that STS304 shows different failure modes in low-cycle regime 

and high-cycle regime. This type of observations make the two-model approach some 

what difficult to apply because no information is available for choosing the model before 

the failure modes are observed. Sometimes, the crack information is not available as it 

may be not possible due to the nature of the loadings or equipments (Kim et al ,1999; 

Kallmeyer et al, 2002). 

The critical plane approach was originally proposed based on the observations 

that the fatigue crack nucleation occurs at the persistent slip bands, formed in some grains 

(crystals) of the materials. The planes are named critical plane and the stress (strain) 

components on it are used for fatigue analysis (Papadopoulos, 1997). That is the physical 

basement of the critical plane approach. This assumption or basement makes it difficult to 
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apply the model to the material with different microstructures as normally used metals. 

Also, this assumption usually requires cracking analysis to distinguish the failure modes 

before you apply the appropriate critical-plane based model (Fatemi and Socie, 1988). If 

both failure modes occur and neither of them dominates in the experiments, the decision 

of choosing the appropriate model is hard to make.  

In this section, a new fatigue damage model based on the characteristic approach 

is proposed. The characteristic plane approach is similar with the critical plane in the 

calculation procedure. A plane is first determined and the strain components on the plane 

are combined together and used for fatigue life prediction. Unlike most of existing critical 

plane-based models, the characteristic plane in the proposed model is not based on the 

physical observations of the crack but arises from the idea of dimension reduction. It 

assumes the complex multiaxial fatigue problem can be approximated by using the strain 

components on a certain plane (named characteristic plane in this paper). Then the 

objectives are to find the plane and the formula of combinations of the strain components 

on that plane. Through this type of definition of the characteristic plane, failure mode 

analysis is not required and the proposed model can automatically adapt for different 

materials. Also, this definition makes the proposed model have the potential to apply to 

the materials with non-metal microstructures. The correction factors for the extra out-of 

phase plastic hardening and mean stress are also introduced to the proposed model. A 

wide range of experimental observations for metals available in the literature are used to 

validate the proposed model. Very good correlations are found between predicted and 

experimental fatigue lives under proportional and nonproportional loading for both low-

cycle and high-cycle regimes.   
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2.3.2 Proposed new multiaxial fatigue model 

Multiaxial fatigue problem is complex because it usually involves 3D stress 

(strain) histories. To directly analysis the multiaxial fatigue problem is either 

cumbersome or unpractical, as it may require too much computational and experimental 

effort. Moreover, when the applied multiaxial loadings are non-proportional, the 

determination of the stress (or strain) amplitudes becomes difficult (Papadopoulos et al, 

1997). In this work, we are trying to reduce the dimension of the problem and 

approximate the complex 3D fatigue problem by using the strain components on a certain 

plane, which reduce the dimension of the problem and simplified the calculation.  This 

plane is named characteristic plane in the proposed model. 

In the proposed model, we make an assumption that there exists a characteristic 

plane, on which the strain components or their combinations can be used to approximate 

the complex multiaxial fatigue problem. Following this assumption, the two objectives of 

this paper become clear. One objective is to find the characteristic plane for different 

materials. The other is to find the formula for the combination of those strain components 

acting on the plane.  

Before we process to the detailed derivation of the proposed method, a short 

discussion is given here to distinguish the difference between the characteristic plane-

based model and the critical plane-based model. These two methods differed in three 

main aspects as described below. 

Their physical bases are different. As described in the previous section, the 

critical plane approach originates from the observations of the fatigue crack, which is 

usually either the maximum normal stress (strain) plane (Mode I) or the maximum shear 
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stress (strain) plane (Mode II or III). The characteristic plane approach originates from 

the dimension reduction idea, in which the main objective is to reduce the complexity of 

the multiaxial fatigue problem. The resulting characteristic plane is only a material plane, 

on which the fatigue damage is evaluated. It may or may not have a direct relation with 

the fatigue crack orientation observed in the experiments. The physical difference makes 

the characteristic plane approach not require failure modes analysis before application to 

multiaxial fatigue damage calculation, which is usually required by the critical plane-

based models. Also, the characteristic plane approach has the potential to apply to the 

non-metals, in which the non-crystal like microstructure violates the physical basis of the 

critical plane approach.    

 The identification procedures of the characteristic plane and the critical plane are 

different. Once the material failure mode is observed, the identification of the critical 

plane is straightforward. It only relies on stress (or strain) analysis. For different materials 

with the same failure mode, the critical plane orientation is fixed. It is either the 

maximum normal stress (or strain) plane or the maximum shear stress (or strain) plane. 

The characteristic plane in the proposed model is determined through minimizing the 

contributions of the hydrostatic strain amplitude to zero. It explicitly relies both on the 

material properties and strain analysis. For different materials with the same failure mode, 

the characteristic plane could be different since it is depends on both the uniaxial and 

pure torsional e-N curves. From this point of view, the determination of the critical plane 

is semi-analytical because it requires that the analyst determine the failure modes first 

from experimental data or assumes from experience. The characteristic plane 
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determination is fully analytical since it only requires the quantitative data from uniaxial 

and torsional experiments. 

The results and robustness of the characteristic plane approach and the critical 

plane approach are different. The result of the critical plane is a discrete function, which 

is either maximum normal strain plane or maximum shear strain plane. The result of the 

characteristic plane is a quantitative and continuous function. In the multiaxial fatigue 

experiments, usually both Mode I and Mode II cracks exist. For example, under pure 

shear tests, the crack usually occurs along the maximum shear strain plane then 

propagates along the maximum principle stress plane. In that case, only visual or 

empirical observation is not good enough to decide which model to use. Also, if you 

make a decision based on a certain parameter exceeding a threshold value (e.g. Life of 

Mode II crack exceeds 70% of the total life), there is still a problem because you create a 

discontinuity subjectively. The material with 69% uses the critical plane of maximum 

normal strain amplitude and the material with 71% uses the critical plane which is 45 

degree off the maximum normal strain amplitude plane. Therefore, a quantitative and 

continuously varying model is more desirable. For the material changing failure modes 

with respect to loadings and environmental conditions or the material with out failure 

mode information, it is risky to apply either of those models, because their error is 

unpredictable. From this point of view, the proposed model is more robust since it can 

automatically adapt to those conditions. 

A new damage parameter defined on the characteristic plane is proposed. 

Consider the fully reversed uniaxial-torsional fatigue problem (with no mean stress). The 

strain tensors under plane stress condition are given in Eq. (45):  
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where aε  and aγ  are the normal and shear strain amplitude (half of the strain range), 

respectively. effv  is the effective Poisson’s ratio which is given by: 

a
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vv
v

ε
εε +

=                                                              ( 46 ) 

where ev  is the elastic Poisson’s ratio. If no experimental value is available, a value of 

0.3 can be used instead. pv  is the plastic Poisson’s ratio and takes the value of 0.5. aeε  

and apε  are the elastic and plastic strain amplitude, respectively. They can be calculated 

from a cyclic stress-strain relationship, such as the Ramberg-Osgood equation: 
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⎛+=+=
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εεε                                              ( 47 ) 

where E  is the Young’s modulus. 'K  and 'n are the cyclic strength coefficient and the 

cyclic strength exponent, respectively. 

To simplify the discussion, we first investigate the fatigue failure criteria at the 

fatigue limit stage. As stated in the previous section, one objective in the proposed 

method is to find an appropriate formula to combine the strain components for fatigue 

damage evaluation. It is obvious that both shear stress (or strain) and normal stress (or 

strain) contribute to the final failure of mechanical components under multiaxial fatigue 

loading. However, several researchers have also noticed the importance of hydrostatic 

stress and included its effect in their models (Papadopoulos, 1997). It was also shown that 
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the contribution of hydrostatic stress is different for different models and seems to vary 

with materials. The proposed model includes damage contribution from three sources - 

the normal strain ( c,aε ), shear strain acting ( c,aγ ) on the characteristic plane and 

hydrostatic strain amplitude ( H
c,aε ). It assumes that the material fails when the summation 

of the normalized energies due to the three strain components reaches a critical value. A 

mathematical expression is formulated as  

BA
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H
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τγ
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                                          ( 48 ) 

where c,aσ , c,aτ  and H
c,aσ  are the normal stress amplitude, shear stress amplitude acting on 

the characteristic plane, and hydrostatic stress amplitude, respectively. 1−ε  and 1−γ  are 

uniaxial and torsional fatigue strain limits, respectively. 1−σ  and 1−τ  are uniaxial and 

torsional fatigue stress limits, respectively. A  and B  are material parameters which are 

determined from uniaxial and torsional fatigue tests.  

The physical meaning of Eq. (48) is that the final damage is the summation of the 

damage caused by different energy components. Parameter A is a materials parameter 

and considers the different contributions of the hydrostatic strain amplitude 

corresponding to different materials. Under the fatigue limit state, the material is usually 

elastic. In that case Eq. (48) can be simplified only using strain terms.  
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where k  and β  are material parameters which can be determined by uniaxial and 

torsional fatigue tests. The strain-based version is easy to calculate compared with the 

model directly using energy terms. Also, the fatigue properties expressed in e-N curves 
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are in common use already. This makes it easy to implement the proposed method to 

practical applications. 

Since the orientation of the characteristic plane has not been determined yet, 

suppose that for one type of material the characteristic plane coincides with the maximum 

normal strain amplitude plane. In this case, the characteristic plane is similar with the 

critical plane definition of tensile failure mode. 

For a fully reversed uniaxial fatigue experiment )0,( a1a == − γεε , the strain 

components on the characteristic plane are: 
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For a fully reversed pure torsional fatigue experiment ),0( 1aa −== γγε , the 

strain components on the characteristic plane are: 
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Substitute Eq. (50) and (51) to Eq. (49) and solve for material parameters, we 

obtain: 
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Notice that the physical meaning of k  is the contribution of damage caused by the 

hydrostatic strain amplitude. It should be non-negative. So 11 / −− εγ  should not be less 
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than two. Recall the assumption made before this calculation. It is only possible for a 

material ( 2/ 11 ≥−− εγ ) that the characteristic plane coincides with the maximum normal 

strain plane using the present damage parameter (Eq. (49)). It is also interesting to notice 

that k  equals zero when 2/ 11 =−− εγ , which means (from Eq. (49)) that the hydrostatic 

strain amplitude has no contribution to the fatigue damage for this material according to 

the present definition of the damage parameter (Eq. (49)). 

Now suppose that for one type of material, the characteristic plane is 45 degrees 

off the maximum normal strain amplitude plane, which is the maximum shear strain 

amplitude plane for uniaxial and torsional loading. In this case, the characteristic plane is 

similar with the critical plane of shear failure mode. Following the steps described above, 

the material parameters k  and β  are once again calculated. 

For a fully reversed uniaxial fatigue experiment )0,( a1a == − γεε , the strain 

components on the characteristic plane are 
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For a fully reversed pure torsional fatigue experiment ),0( 1aa −== γγε , the 

strain components on the characteristic plane are 
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Substituting Eqs. (53) and (54) in Eq. (49) and solving for the material parameters: 
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From Eq. (55), 11 / −− εγ  should not be less than 
( )
( )2eff

2
eff

v14

v1
2

−−

+
. The mechanical 

component is usually kept in elastic condition near the fatigue limit regime, thus effv  can 

be approximated using 0.3. Under this assumption, 11 / −− εγ  should not be less than 1.39. 

Thus, it is only possible for a certain type of material (
( )
( )2eff

2
eff

11 v14

v1
2/

−−

+
≥−− εγ ) that 

the characteristic plane could be the maximum shear strain amplitude plane using the 

present damage parameter (Eq. (49)). Similar to the first case, k  equals zero when 

( )
( )2eff

2
eff

11 v14

v1
2/

−−

+
=−− εγ , which means (From Eq. (49)) that the hydrostatic strain 

amplitude H
aε  has no contribution to the fatigue damage for this material according to the 

present definition of the damage parameter. 

Several conclusions can be drawn based on the derivations of the characteristic 

plane orientations for the two cases above. The contribution of the hydrostatic strain 

amplitude is different for different materials if the characteristic plane is fixed for all the 

materials. There are two special types of material ( 2/ 11 =−− εγ  and 

( )
( )2eff

2
eff

11 v14

v1
2/

−−

+
=−− εγ ), for which the contribution of the hydrostatic strain 

amplitude is zero if the characteristic plane is defined as either the maximum normal 

strain plane or maximum shear strain plane.  
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Instead of fixing the characteristic plane, the current model searches for the 

characteristic plane orientations on which the contribution of the hydrostatic strain 

amplitude is minimized to zero. This is the general approach that can be applied to all 

materials. 

For an arbitrary material, let the angle between the characteristic plane and the 

maximum normal strain amplitude plane be α . Since the contribution of the hydrostatic 

strain amplitude is zero, Eq. (49) is rewritten as: 

β
γ
γ

ε
ε

=+
−−

2

1

c,a2

1

c,a )()(                                                   ( 56 ) 

The objective is to find α  and β  for an arbitrary material, following the steps 

described for the first two cases. 

For a fully reversed uniaxial fatigue experiment )0,( a1a == − γεε , the strain 

components on the characteristic plane are given as: 

( ) ( )
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αεγ

αεεε
                                ( 57 ) 

For a fully reversed pure torsional fatigue experiment ),0( 1aa −== γγε , the 

strain components on the characteristic plane are given as: 

⎪⎩

⎪
⎨
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=

=

−

−

)2sin(

)2cos(
2

1c,a

1
c,a

αγγ

α
γ

ε
                                                        ( 58 ) 

Substituting Eqs. (57) and (58) in Eq. (56) and solving for α  and β ,  
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where 
1

1s
−

−=
ε
γ

 is a material constant. Here α  takes values from 0  to 
2
π . As shown in Eq. 

(59), both  α  and β  are the functions of the material property s  and the effective 

Poisson’s ratio effv . It is found that α  increases as s  decreases. α  equals 0  when s  

equals 2, and α  equals 
4
π  when s  equals 

( )
( )2eff

2
eff

v14

v1
2

−−

+
. β  does not change 

monotonically with respect to s , but all the β  values are close to 1 for materials with 

( )
( ) 2s

v14

v1
2 2

eff

2
eff <<
−−

+
.   The variations of α  and β  with respect to s  are plotted in 

Fig. 7 with two different Poisson’s ratios. One is for pure elastic condition and takes the 

value of 0.3. The other is for pure plastic condition and takes the value of 0.5. Notice that 

the physical meaning of  α  is an indication of material failure mode. When α  is close to 

0 degree, it indicates the tensile failure mode. When α  close to 45 degree, it indicates the 

shear failure mode. As shown in Fig. 7, the value of  α  also depends on the effective 

Poisson’s ratio. It appears that, for the material with constant value of s , shear failure 

mode is likely to occur under low-cycle regime (larger plastic deformation). 
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From Eq. (59), α  has no real solution for 2s > . This indicates that for those 

materials, such as 5% chrome work roll steel (Kim et al, 2005), the contribution of 

hydrostatic strain amplitude cannot be minimized to zero and must be considered during 

the fatigue damage evaluation. We use the results of which the characteristic plane is 

defined on the maximum normal strain plane for the materials of 2s > . The summary of 

material parameters for all types of materials are listed in Table 8. 

 

Table 8. Material parameters for fatigue damage evaluation 

Material 
parameters 
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Fig. 7 Variations of α and β at different Poisson’s ratios 
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After developing the fatigue limit criterion as above, the methodology for fatigue 

life prediction is relatively easy. Notice that the fatigue limit often refers to the fatigue 

strength at very high cycle (usually 106 ~107 cycles). For finite fatigue life prediction, the 

damage parameter should be correlated with the life (number of loading cycles). Eq. (49) 

can be rewritten as 

1
2H

a
2

c,a
2

1

12
c,a )(k)()()(1

−
−

− =++ εεγ
γ
ε

ε
β

                                          ( 60 ) 

The left side of Eq. (60) can be treated as the equivalent strain amplitude and can 

be used to correlate with the fatigue life using the uniaxial e-N curve. Thus the fatigue 

life model is expressed as: 

( )fN
2H

a
2

c,a
2

N

N2
c,a Nf)(k)()()(1

f

f

f ==++ εεγ
γ

ε
ε

β
                          ( 61 ) 

where fN  is the number of cycles to failure and ( )fNf  is the uniaxial strain-life 

function obtained from experimental results. Notice here 1−ε  and 1−γ  in Eq. (61) are 

replaced by 
fNε  and 

fNγ respectively, which are fatigue strengths at finite life fN  for 

uniaxial and torsional loadings. Eq. (61) has no closed form solution. In practical 

calculation, a trial and error method can be used to find fN . 
fNε  and 

fNγ take initial 

values as 1−ε  and 1−γ . It is found that usually a few iterations are enough to make 

fN converge. Eq. (61) together with the parameters in Table 8 are used for fatigue life 

prediction in this paper. The quantity s  in Table 2 is redefined as 
f

f

N

Ns
ε

γ
= . 

Under out-of phase nonproportional loading, the principal stress and strain 

direction rotates during one cycle of loading. If plastic deformation occurs, it causes 
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additional hardening of the material (Socie and Maquis, 2000). Due to the additional 

hardening, the stress amplitude increases under the same applied strain amplitude for out-

of phase loading and thus reduces the fatigue life. A pure strain-based approach does not 

take into account the additional hardening since there are no stress terms. There are some 

methodologies to overcome this drawback. Socie (1987) included a stress term on the 

critical plane to consider the additional hardening caused by out-of phase loading. The 

energy-based approach (Farahani, 2000) can consider this effect because the stress term 

is inherent in the energy expression. However, if the stress term is used, plasticity theory 

is required to predict more accurate elasto-plastic hysteresis loops under nonproportional 

loading. Although there are some available plasticity models (Mcdowell et al, 1982; 

Doong and Socie, 1991; Borodii et al, 1996; Shang et al, 2000) for calculating the stress-

strain relationship under nonproportional loading, these models usually require extensive 

numerical computational efforts and many material constants requiring several multi-

axial experiments. For the engineering application, a simple correction factor was used to 

consider the additional hardening (Kanazawa et al, 1979; ASME, 1978; Itoh, 1995; 

Borodii and Strizhalo, 2000). The general form is given as: 

 aNPNP,a )F1( ερε +=                                                        ( 62 ) 

where NP,aε  is the equivalent strain quantity considering the nonproportional correction. 

aε  is the multiaxial fatigue strain parameter used by different models.  NPF  is the so 

called nonproportionality factor and depends on different strain paths. ρ  is a material 

constant which indicates the material sensitivity to the out-of phase loading. Different 

authors gave different definitions for NPF  and ρ . Borodii and Strizhalo (2000) found that, 

with the same maximum strain amplitude, higher hardening occurs for the strain path 
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which envelops a larger effective area. This phenomenon is also supported by numerous 

experimental data (Socie, 1987; Kanazawa, 1979; Kurath et al, 1989; Itoh et al, 1995).  

In this paper, a simple definition of  NPF  is suggested and the value of ρ  can be 

calibrated using one set of out-of phase fatigue tests. First, the strain path is plotted in 

normalized coordinates, on which the x axis represents the normal strain divided by 

maximum normal strain amplitude and the y axis represents the shear strain divided by 

the maximum shear strain amplitude. The nonproportionality factor is defined as the 

envelope area divided by 4. Several strain paths used in this paper for model validations 

are plotted in Fig. 8.  

In Fig. 8, the uniaxial, torsional and proportional loading paths have no envelope 

area, thus NPF  equals to zero. For box path loading (Fig. 8-(i)), NPF  achieves the 

maximum value of 1. For other strain paths, NPF  equals the shaded area divided by the 

box strain path area (dashed line). In this section, only constant multiaxial loading is 

considered. For variable multiaxial fatigue loading, suitable modification may be needed. 

In the comparisons with experimental data, it is shown that the current definition of NPF  

obtains very good predictions under constant nonproportional multiaxial loading for 

various metals.  

One additional multiaxial data with a specific value of NPF  is used to calibrate the 

material constant ρ  using Eq. (62). If the strain amplitude is low and the specimen is 

under elastic condition, additional hardening does not occur, and thus ρ  can take the 

value of zero. If no experimental data is available, a simple formula is suggested as Eq. 

(63), which is obtained from the experimental data collected in this work (Table 9). The 

simplified function and the experimental value are plotted in Fig. 9.  
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Fig. 8 Different strain paths used in this study 
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Fig. 9 Variations of ρ vs. s 

 

Practical mechanical components generally experience cyclic fatigue loading 

together with the mean stress. The mean stress could also be introduced by residual stress, 

environmental effects, etc. It is well known that the mean normal stress has an important 

effect on fatigue life. Normally, tensile mean stress reduces the fatigue life, while 

compressive mean stress increases the fatigue life (Sines, 1961). 

There are many models for mean normal stress effect correction. Gerber (1874), 

Goodman (1899), Soderberg (1939) and Morrow (1968) proposed different correction 

factors. Kujawski and Ellyin (1995) proposed a unified approach to mean stress 

correction. For the multiaxial fatigue problem, mean normal stress is included in the 

model in different ways (Socie and Maquis, 2000) depending on different models. Fatemi 

and Socie (1988) considered the maximum normal stress acting on the critical plane. 

Papadopoulos (1997) considered the hydrostatic mean stress. Farahani (2000) used a 

correction factor based on the mean stress on the critical plane.  

Based on the experimental data collected from the literature, the mean stress is 
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where c,mσ  is the mean stress on the characteristic plane; yσ  is the yield strength of the 

material. Comparisons with the available experimental data in the next section show a 

good correlation using this correction factor. However, for an arbitrary material, the 

analyst could use different correction factors such as the one suggested by Kujawski and 

Ellyin (1995) and calibrate the factors using the experimental data. 

In proposed model (Eq. (64), k and β  are determined from experimental values 

of 
fNε and 

fNγ , which are obtained using uniaxial and torsional e-N curves. NPF  is the 

stain path parameter and not a material parameter, thus does not require calibration using 

experimental data. ρ  is the only fitting constant requiring calibration using one 

additional non-proportional loading experiment.  

As a result of the above derivation, the methodology becomes very simple with 

the current model. For any arbitrary loading history, the maximum normal strain 

amplitude plane is identified. This is achieved by enumeration, by changing the angle by 

1 degree increment. Then the angle α  and material parameters are determined for 

different materials according to Table 8. The characteristic plane is the plane which has 

an angle α  with the maximum normal strain amplitude plane. Finally the strain 

components on the characteristic plane are calculated and the fatigue damage is evaluated 

using Eq. (64). Note that the characteristic plane in the proposed model explicitly 

depends on both the strain state (maximum normal strain amplitude plane) and on the 

material properties (angle α ).  
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2.3.3 Comparison with experimental observations 

Twelve sets of fatigue experimental data are employed in this section, and are 

listed in Table 9.  It is noted that the purpose of these comparisons is to validate the 

model’s generality to different materials and conditions. The collected data cover 

materials used in a lot of different industries, such as construction engineering, 

automotive engineering, and aerospace engineering. They differ in several ways, such 

failure mechanism (3 shear, 3 tensile, 2 mixed, and 4 unknown), loading path and other 

unique characteristics (temperature, surface treatments, etc.). Table 9 includes a detailed 

description of the experimental data collected in this paper, such as material name, 

reference, multiaxial strain path, failure mode, s range, stain range and other information 

unique to the experimental data used. 

As mentioned in the derivation, the proposed method shows a positive correlation 

between the ratio s and material failure mechanism. Shear dominated failure is likely to 

occur for a low value of s and tensile dominated failure is likely to occur for a high value 

of s. Experimental observations are also found to support this statement. Table 9 includes 

the failure patterns observed in the experiments and also the s  values defined in the 

proposed model. It shows a positive correlation between the failure mechanisms and the 

s  value. For shear dominated failure (A533B pressure vessel steel, Waspaloy, Al-6061-

T6), lower values of s  are observed and range from 1.52 to 1.7. For tensile dominated 

failure (5% chrome work roll steel, 304 stainless steel, 45 steel), higher values of  s  are 

observed and range from 2.3 to 3.1. For mixed failure (1Cr-18Ni-9Ti stainless steel, 

Hastelloy-X at different temperatures), moderate values of s  are observed and range 
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from 1.4 to 2.7. This type of observations indicates the material failure patterns can be 

related or explained by the s  values as suggested by the proposed method. 

 

Table 9. Experimental data used for model validation 

Material Ref Multiaxial 
loading path* 

Failure mechanism s range Strain 
range (%) 

Other 

Waspaloy [48,49] Sin90 Shear 1.3~1.7 0.5~1.74 Different surface 
treatments 

Al-6061-T6 [50] Pro Shear 1.52~1.55 0.5~0.9  
A533B pressure 

vessel steel 
[51] Pro, sin90 Mixed and shear 

dominated 
1.52~1.57 0.19~1.68  

Hastelloy-X [52] Pro, sin90, cro, 
ball 

23oC: shear; 
649oC: tensile 

23oC: 
1.4~1.7;649
oC: 1.7~2.5 

0.52~1.15 Different 
temperatures 

1Cr-18Ni-9Ti 
stainless steel 

[53] Sin90 Mixed and depends 
on loadings 

1.8~2.7 0.2~1.0 Weld and base 
metal 

AISI Type 304 
stainless steel 

[8] Pro, sin90, box, 
box2 

Tensile 2.3~2.8 0.2~1.0  

45 steel [25] Sin90, pro, box, 
cro, tri90 

Tensile 2.8 0.33~0.6  

5% chrome 
work roll steel 

[23] Tri-XX tensile 2.95~3.1 0.28~0.45  

SAE-1045 steel [39] Pro, sin90, box N/A 1.56~1.79 0.15~2  
SM45C steel [7] Pro, sin22, sin45, 

sin90, box 
Not performed 1.65~2.5 0.3~2.5  

Ti-6Al-4V alloy [28] Pro, sin90, ttr Not performed 1.7~2.1 0.01~0.3 Mean stress 
included 

Hayness 188 [54,55] Pro, sin90, tri60, 
tri90 

N/A 2.2~3.1 0.1~1.4 At the temperature 
of 760oC 

*Note: The abbreviations in column 3 are defined and illustrated in Fig. 8. 

 

 

 

 

 

 

 

Fig. 10 Comparisons of predicted and experimental fatigue lives  
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The predicted fatigue lives and the experimental lives are plotted together in Fig. 

10. In Fig. 10, the x-axis is the experimental life and the y-axis is the predicted life. Both 

lives are in log scale. The solid line indicates that the predicted results are identical with 

experimental results. The dashed lines are the life factor of 2. The different strain paths 

shown in the legend are also shown in Fig. 8.  

As shown in the Fig. 10, the predicted results agree with the experimental results 

very well. Most of the points fall within the life factor of 2. The worst case of the 

proposed model’s life prediction is for 5% chrome work roll steel. As mentioned by Kim 
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et al (2004), there is more scatter in life data than usually observed in the laboratory for 

ductile metals. This is believed to be an inherent characteristic of materials whose life is 

controlled by defects (Hanlon et al, 1997; Nadot et al, 1999). Despite the larger scatter, 

the proposed model predicts the trend very well. 

A statistical comparison is also performed to evaluate the model’s performance 

under different conditions. An error index is defined as: 

)
N
N

log(Error
pre

exp=                                                              ( 65 ) 

where expN  is the experimental life and preN  is the predicted life. When the absolute 

value of the error index is log(2), it is the inner bounds shown in Fig. 10 and known as 

the life factor of 2. Four different types of comparisons are used as shown in Fig. 11. The 

dashed lines in Fig.11 are the life factor of 2. The number of total data points is 429.  

The histogram of the error index is shown in Fig. 11(a). From Fig. 11(a), it 

appears that error is centered near zero, which indicates that the proposed model has no 

systematic error. Also, 90% of the total data points fall within the life factor of 2 and 98% 

of the total data points fall within the life factor of 3. The mean absolute error of the 

predictions for different fatigue life regions is shown in Fig. 11(b). It appears the 

proposed model has no systematic errors for different fatigue life regions (from low-cycle 

fatigue to high-cycle fatigue). The mean absolute errors for different loadings are plotted 

in Fig. 2.11(c). It is shown that the proposed model has no systematic errors to different 

loadings, such as uniaxial loading, pure torsional loading, multiaxial proportional loading, 

and multiaxial non-proportional loading. The mean absolute error of the predictions for 

different values of s  is plotted in Fig. 2.11(d). 
f

f

N

Ns
ε

γ
=  is an important material property 
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in the proposed fatigue model and controls the material failure modes. Tensile dominated 

failure is likely to occur for a large value of s  and shear dominated failure are likely to 

occur for a small value of s . It is shown that the proposed model has no systematic error 

to different material failure modes. Thus the proposed model has no systematic error due 

to fatigue regime, loading or failure mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Statistical error evaluation of the proposed method 
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2.4  Fatigue crack initiation of anisotropic materials 

The multiaxial fatigue problem of engineering materials is mainly caused by two 

reasons. In isotropic materials, the multiaxial stress within the material is due to the 

complex applied loading history. In anisotropic materials, a multiaxial stress state is 

obtained even if the applied loading is uniaxial.  

Many engineering materials exhibit some degree of anisotropy in mechanical 

properties, such as rolled metals. Moreover, strongly anisotropic materials such as 

composite laminates are being used in the industry more popularly in the recent decades. 

Unlike the extensive progress in multiaxial fatigue analysis of isotropic materials, much 

further effort is needed to include the anisotropy of the material (Fround 1985; Lin et al 

1993; Shokrieh and Lessard, 1997; Diao et al 1999). 

In this section, a unified multiaxial fatigue damage model is proposed for both 

isotropic and anisotropic materials. The proposed model is a characteristic plane-based 

model, which is developed based on the model in Section 2.2. The derivation for 

isotropic materials is already described earlier. The model is extended for anisotropic 

materials. A simple case for orthotropic materials is derived and used for illustration.  A 

wide range of experimental observations available in the literature, including metals, and 

unidirectional and multidirectional composite laminates, are used to validate the proposed 

model. 

2.4.1 Existing fatigue models for anisotropic materials 

Several investigations have been reported for anisotropic composite laminates. 

Fatigue analysis of composite materials is difficult due to several basic characteristics of 

the composite material (Fong 1982). However, many attempts have been made for fatigue 
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modeling and life prediction of fiber-reinforce polymers. Degrieck and Van Paepegem 

(2001) classify existing fatigue models into three categories: fatigue life model (S-N 

curves), residual strength or residual stiffness model, and progressive damage model.  

The fatigue life model is established based on S-N curves or Goodman diagrams. 

This approach does not consider the details of the damage mechanism. It is entirely 

empirical and needs a lot of experimental data. For every variation in laminates (different 

stacking sequence and ply orientation), a new set of specimens are needed to develop the 

S-N curves, thus making this approach expensive and time-consuming. But this 

methodology is easy to apply and a lot of commercial software packages are available for 

use. The failure criteria mimic the form of static strength criteria, based on two major 

failure modes, i.e. fiber failure and matrix failure (Hasin and Rotem, 1973; Reifsnider 

and Gao, 1991). 
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where 1σ  and 2σ  are the stresses along the fiber direction and transverse to the fiber 

direction respectively, andτ  is the shear stress. uu
21

,σσ , and uτ  are the ultimate strengths 

of the three stress components. They are functions of the stress level, stress ratio and the 

number of stress cycles. The relationship is expressed in S-N curves from previous 

experimental data. 

Wu (1993), Jen and Lee (1998) proposed different failure criteria based on the 

Tsai-Hill criterion. Philippidis and Vassilopoulos (1999) proposed a failure criterion 

based on the Tsai-Wu criterion. All these methods use the fatigue strength (corresponding 
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to a given N, from the S-N curves) instead of the ultimate strength in the Tsai-Hill or 

Tsai-Wu criteria.  

Other researchers directly use the family of S-N curves to calculate the fatigue life 

(Fawaz Z and Ellyin, 1994; Haris 1985; Bond, 1999). The family of S-N curves includes 

stress ratio, load frequency and other factors affecting the shape of the S-N curves. The 

main objective is to use the same computing methodology to account for different 

loading conditions.  

The residual strength or residual stiffness model is based on damage mechanics, 

which relates fatigue failure to the damage evolution process. The degradation of 

stiffness or strength is correlated with a damage variable (damage index).  Different 

damage evolution functions (Hwang and Han, 1986(a); Hwang and Han, 1986(b); 

Sidoroff and Subagio, 1987; Van Paepegem and Degrieck, 2000, Caprino et al, 1999; 

Whitworth, 2000; Yao and Himmel, 2000; Mao and Mahadevan, 2002) have been 

suggested based on some assumptions or experimental results. The failure is assumed to 

occur when the cumulative damage reaches a critical value (usually unity). The general 

form of the damage accumulation rule is: 

...),,,( NDf
dN
dD

ii εσ=                                                      ( 67 ) 

where D  is the damage index,  ii εσ ,  are the stress and strain components, and N  is the 

number of load cycles. The parameters in the damage model are calibrated through 

experimental observations or through reasonable assumptions.  

Unlike the above two approaches in fatigue analysis, which are at the 

macroscopic level, the progressive failure model considers local damage mechanisms, 

such as delamination, local ply buckling, fiber breakage, etc. All these local damage 
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mechanisms lead to damage accumulation to the macroscopic material. Global failure 

occurs once the damage introduced by the local failure exceeds the global allowable level. 

This method is computationally complicated because it accounts for many failure 

mechanisms and is also related to damage accumulation. Tserpes et al. (2004) gives a 

progressive damage model which includes seven local failure modes, including material 

stiffness degradation.  

The fatigue life model is easy to use and has an experimental data base. Also the 

commercial software and methodology are available to calculate the fatigue life. 

However, this model requires a lot of experimental work, which is sometime cost 

prohibitive. Most of the fatigue life models do not consider damage accumulation and are 

difficult to extend to complicated loading condition. 

The residual strength and the stiffness model consider damage accumulation. The 

idea of the residual strength model is simple and easy to apply. But the damage evolution 

function is assumed and calibrated through constant amplitude tests. For composite 

materials, the damage mechanism is different under different stress levels and also 

depends on the load sequence. It is hard to use a simple damage accumulation rule to 

describe the damage evolution under complicated loading conditions. 

The progressive model seems to be more accurate because it accounts for the 

detailed failure mechanism of the composite material. But for accurate analysis, this 

model requires that the damage introduced by local failure be correlated with the material 

properties degradation. A quantitative relationship in this regard is difficult to find and 

needs extensive experimental data. Also this model is computationally expensive and 

complicated, and thus is difficult to apply directly to engineering design.  
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Most of the fatigue models for anisotropic composite laminates are for single 

applied off-axis loading, which causes proportional multiaxial stress state within the 

laminates. Very few theoretical and experimental studies are found in the literature for 

the non-proportional multiaxial fatigue analysis of general anisotropic materials.    

2.4.2 Proposed new multiaxial fatigue model 

For anisotropic materials, the uniaxial and torsional fatigue strengths also depend 

on the orientations of the axes at the critical point within the material. In the proposed 

multiaxial fatigue criterion (Eq. (23) in Section 2.2.2), fatigue limits 1f−  and 1t−  become 

functions of the orientation θ , say, )(f 1 θ−  and )(t 1 θ− . In order to extend the fatigue 

model (Eq. (23)) to anisotropic materials, we need to specify a reference plane, on which 

the uniaxial and torsional strength of the anisotropic material can be evaluated. In the 

current model, the key point is to calculate the angle between the maximum normal stress 

amplitude plane and the characteristic plane. We define the reference plane for the 

anisotropic material as the plane that experiences the maximum normal stress amplitude. 

Thus, Eq (23) is rewritten as a unified multiaxial fatigue criterion: 

   β
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where maxθ  indicates the direction of maximum stress amplitude. For isotropic materials, 

Eq. (68) reduces to Eq. (23) since the functions )(f 1 θ−  and )(t 1 θ−  become constants. 

Similarly, the fatigue life model for anisotropic materials can be expressed as: 
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Eq. (69) can be rewritten as: 
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If the mean stress is also included into the model, Eq. (70) could be used. 
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where 
)(f

)(t
)(s

maxN

maxN
maxN

f

f

f θ

θ
θ =  is the strength ratio of the torsional loading and the 

uniaxial loading along the direction of  maxθ . 
)0(f

)(f
)(p

f

f

f
N

maxN
maxN

θ
θ =  is the ratio of 

uniaxial strength along the directions of  maxθθ =  and 0=θ . The left side of Eq. (71) can 

be treated as an equivalent stress amplitude. It can be used to correlate with the fatigue 

life using the uniaxial S-N curve along the direction of zero degree. 

The procedure for the fatigue analysis of anisotropic materials is almost identical 

with that of isotropic material. For any arbitrary loading history, the maximum stress 

amplitude plane is identified first. The uniaxial and torsional fatigue strength along this 

direction is also evaluated, usually from experimental data. Then the angle α  and the 

material parameters are determined for different materials according to Table 2. Notice 

that, the quantity s  in Table 2 is now redefined as 
)(f

)(t
)(ss

maxN

maxN
maxN

f

f

f θ

θ
θ == . Finally the 

equivalent stress amplitude and the fatigue life are calculated using Eq. (70) (or Eq. (71)) 

if mean stress is included).  
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For an arbitrary anisotropic material, the variation of the uniaxial and torsional 

fatigue strengths corresponding to the orientation of the axes is quite complex and 

requires extensive experimental work to quantify. However, for some special anisotropic 

materials, this can be simplified using one of strength theories available in the literature. 

In this paper, an example of orthotropic composite laminate is used for illustration.  

Consider a fiber reinforced composite laminate. Several static strength theories 

have been proposed for orthotropic laminates, such as Tsai-Hill and Tsai-Wu theory 

(Daniel and Ishai, 1994). In this study, the Tsai-Wu theory is used. For the case of plane 

stress, the Tsai-Wu theory is expressed as: 

1F2FFFFF 21122211
2
666

2
222

2
111 =+++++ σσσσσσσ                         ( 72 ) 

where 1σ  and 2σ are the stresses along the fiber direction and transverse to the fiber 

direction, respectively, and 6σ  is the in-plane shear stress. 11F , 22F , 66F , 12F , 1F , and 

2F  are strength parameters and can be calibrated using experiments.  
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where )(
Ls ± , )(

Ts ±  are the strengths along the fiber direction and transverse to the fiber 

direction, respectively. The plus symbol indicates tension strength and the minus symbol 

indicates compression strength. LTs  is the in-plane shear strength. For the fatigue 

problem, the stress terms in Eq. (73) refer to the stress amplitudes along different 

directions. If the strengths are defined using stress amplitude values, the plus and minus 



 68

symbols in the above strength notation disappear since the stress amplitude is always 

positively defined. Thus, Eq. (72) and Eq. (73) are rewritten for the fatigue problem as: 

  1F2FFF 2112
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666

2
222
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111 =+++ σσσσσ                                        ( 74 ) 
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Using the Tsai-Wu strength theory, the uniaxial strength and shear strength along 

an arbitrary direction θ  can be easily obtained as  
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For the fatigue life model, the fatigue strength parameters are also functions of the 

fatigue life ( fN ), which can be evaluated from the experimental S-N curves. Eq. (76) is 

rewritten as: 
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( 77 ) 

Substituting Eq. (77) into Eq. (70), we can solve for the fatigue life ( fN ). Similar 

to isotropic materials, Eq. (70) usually has no closed form solution. In practical 

calculation, a trial and error method can be used to find fN . For an orthotropic 

composite laminate, the experimental S-N curves along the fiber direction, transverse to 

the fiber direction, and in-plane shear stress are required in the proposed model. Then the 

fatigue life under arbitrary multiaxial loading can be predicted.  
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The fatigue model for the isotropic material in Section 2.2 is consistent with the 

fatigue model for the anisotropic material in derived here. If 662211 F
3
1FF == , the 

fatigue model for the orthotropic material is identical with the fatigue model for the 

isotropic material with 3s = , in which the Tsai-Wu criterion reduces to be the Von-

Mises criterion.  

2.4.3 Comparison with experimental observations 

The proposed multiaxial fatigue life prediction model is validated using 

experimental observations found in the literature. Three categories of data are explored: 

metals for isotropic material, unidirectional composite laminates for orthotropic material 

and multidirectional composite laminates for anisotropic material. 

Twelve sets of fatigue experimental data are employed in this section, and are 

listed in Table 10. The collected materials cover several different industries, such as 

construction engineering, automotive engineering, and aerospace engineering and range 

from brittle to ductile. 

The predicted fatigue lives and the experimental lives are plotted together in Fig. 

12. In Fig. 12, the x-axis is the fatigue life and the y-axis is the equivalent stress 

amplitude which is calculated from Eq. (70). Both axes are in log scale. The dashed lines 

are the prediction results and the points are the experimental observations. In the legends, 

“uni” represents uniaxial loading, “tor” represents pure torsional loading, “pro” 

represents proportional multiaxial loading and “non-pro” represents non-proportional 

multiaxial loading. For data sets where mean stress data is available, mean stress effect is 

also included in the results. 
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As shown in Fig. 12, the predicted results agree very well with the experimental 

results despite different amounts of scatter for different materials. For different materials 

and loading conditions, the proposed model correlates the experimental observations 

together using the uniaxial fatigue S-N curve.  

 

Table 10.Experimental data for isotropic metals 

Material References 
SAE-1045 steel Kurath et al (1989) 

S45C steel Kim et al (1999) 
5% chrome work roll steel Kim et al (2004) 

SM45C Lee (1989) 
7010 aluminum alloy Chaudonneret (1993) 

Waspaloy Jayaraman and Ditmars (1989)  
Learch et al (1984) 

Hastelloy-X Jordan (1985) 
Hayness 188 Bonacuse et al (1992) 

 Kalluri et al (1991) 
1Cr-18Ni-9Ti stainless steel Chen et al (2004) 

Ti-6Al-4V alloy Kallmeyer et al (2002) 
AISI Type 304 stainless steel Socie (1987) 

Z12CNDV12-2 steel Chaudonneret (1993) 
 

 

 

 

 

 

 

 

 

Fig. 12 Comparisons of predicted and experimental fatigue lives for metals 
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Fig. 12 Cont. 

c) 5% chrome work roll steel d) SM45C steel 
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i) Hayness 188 j) 1Cr-18Ni-9Ti steel--base metal 
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Eight sets of fatigue experimental data for unidirectional composite laminate 

under off-axis loading are employed in this section, and are listed in Table 11.  

 

Table 11. Experimental data for unidirectional composite laminates 

Material References 
E-glass/polyester Philippidis and Vassilopoulos (1999) 

E-glass fibre/epoxy-1 Kadi and Ellyin (1994) 
T800H/epoxy Kawai et al (2001(a)) 

T800H/polyimide Kawai et al (2001(a)) 
AS4/PEEK Kawai et al (2001(a)) 

GLARE 2(fibre–metal laminates) Kawai et al (2001(b)) 
T800H/2500 carbon/epoxy Kawai and Suda (2004) 

E-glass fibre/epoxy-2 Hashin and Rotem (1973) 
Reported by Petermanna and Plumtreeb (2001) 

 

In the proposed fatigue life model for orthotropic materials, experimental S-N 

curves for the fiber direction, transverse to the fiber direction, and pure in-plane shear 

stress are required. However, most of the fatigue experimental data do not include the 

pure shear test results. It is possibly due to the difficulty of applying the pure shear 

loading to the composite laminate. The S-N curve under pure shear loading is calibrated 

using one additional off-axis fatigue test data set and then used for fatigue life prediction 

for the other off-axis fatigue loadings.  

The predicted fatigue lives and the experimental lives are plotted together in Fig. 

13. In Fig. 13, the x-axis is the fatigue life and the y-axis is the equivalent stress 

amplitude which is calculated from Eq. (70). Both axes are in log scale. The dashed lines 

are the prediction results and the points are the experimental observations. The angles of 

the off-axis loading are shown in the legends. Only some of the references in Table 11, 

namely, Kadi and Ellyin (1994) and Kawai and Suda (2004) include the mean stress 
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effect on the fatigue life. Figs. 13(b) to 13(d) include this stress ratio, which is defined as 

the minimum stress divided by the maximum stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Comparisons of predicted and experimental fatigue lives for composites 
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Fig. 13 Cont 
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As shown in Fig. 13, the predicted results agree very well with the experimental 

results despite different amounts of scatter for different materials. Generally speaking, the 

scatter for composite laminates is larger than that for metals. The worst case is for E-glass 

fibre/epoxy-2 (Fig. 13(l)). In the original data, very large scatter was observed. A 

probabilistic approach may be more appropriate to describe the fatigue behavior of 

composite materials.  

Composite structures are more likely to be in the form of multidirectional 

laminates consisting of multiple laminate or plies, which may have different ply 

orientations and stacking sequences. Due to the arbitrary combinations of the plies, the 

marco-mechanical properties of the multidirectional composite laminates are anisotropic. 

The fatigue analysis is more complicated than that for unidirectional composite laminates 

and requires extensive experimental work to quantify the effect of anisotropy. However, 

multidirectional composite laminates are built up with many orthotropic plies. For this 

type of material, the authors (Liu and Mahadevan, 2005(b)) developed a two-stage 

methodology for the fatigue analysis. First, divide the total loading history into several 

blocks. In each block, check the failure of each ply using the fatigue model. If no failure 

occurs, accumulate the fatigue damage for each ply caused in this block and progress to 

the next step. If failure occurs, assume that the ply strength and stiffness decrease to zero. 

Then update the global stiffness matrix and progress to the next step. The computation is 

continued till the entire laminate fails. This section uses this methodology. In each ply, 

the fatigue model derived for unidirectional composite laminate is used to check the 

failure. 
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Fatigue test data of glass-fiber-based multidirectional composite laminates 

(Mandell and Samborsky, 2003) are used to validate the proposed fatigue model. The 

material chosen, D155, is a balanced laminate which consists of pairs of layers with 

identical thicknesses and elastic properties but with θ+  and θ−  orientations. Again, the 

fatigue S-N curve for pure shear test is not available and the balanced laminate ([±45]3) is 

used to calibrate the shear S-N curve. 

 

 

 

 

 

 

 

 

Fig. 14. Comparisons of predicted and experimental fatigue lives for D155 with R=0.1 

 

 

 

 

 

 

 

Fig. 15 Comparisons of predicted and experimental fatigue lives for D155 with R=10 

Fig. 2.18 Comparisons of predicted and experimental fatigue lives for D155 with 

R=0.1 

10

100

1000

10000

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Fatigue life (N))

St
re

ss
 a

m
pl

itu
de

 (M
Pa

) ([±0]) [±10] [±20] [±30]

[±40] [±45]

10

100

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Fatigue life (N))

St
re

ss
 a

m
pl

itu
de

 (M
Pa

)
[±50] [±60] [±70] [±80] [±90]

a) b) 

10

100

1000

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Fatigue life (N))

St
re

ss
 a

m
pl

itu
de

 (M
Pa

) [±0]

[±30]

[±40]

[±45]
10

100

1000

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Fatigue life (N))

St
re

ss
 a

m
pl

itu
de

 (M
Pa

)

[±50]

[±60]

[±90]

a) b) 



 78

The prediction results and the experimental observations are plotted in Figs. 14-15. 

The x-axis is the fatigue life and the y-axis is the applied stress amplitude. The dashed 

lines are the prediction results and the points are experimental results. 

From Figs. 14-15, the agreement is seen to be generally very good, with a few 

exceptions. In all cases, the predictions capture the major trends in the experimental 

observations. Very few multiaxial fatigue life prediction models are available in the 

literature for multidirectional composite laminates. Therefore, quantitatively comparison 

of the proposed model’s performance with the others is difficult. However, if graphically 

compared with the prediction results for unidirectional composite laminates (e.g. Figs. 8-

9 in Kawai (2004)), Figs. 14-15 show similar accuracy in the prediction results. 

Considering the large scatter inherent in the fatigue behavior of multidirectional 

composite laminates, a probabilistic fatigue model appears more appropriate to describe 

the fatigue behavior. 

 

2.5  Mixed-mode fatigue crack propagation 

The investigation of fatigue crack behavior using fracture mechanics has been 

largely focused on mode I loading (Plank and Kuhn, 1999). However, engineering 

components or structures are often subjected to both normal and shear loading (mode II 

and III). This type of fatigue problem is usually referred to either as the multiaxial fatigue 

problem for classical fatigue analysis (S-N or e-N curve approach) or the mixed-mode 

fatigue crack problem within the context of fracture mechanics. Several reviews of 

existing multiaxial fatigue models (You and Lee, 1996; Papadopoulos, 1997) and mixed-

mode fatigue crack growth models (Bold et al, 1992; Qian and Fatemi, 1996) are 
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available in the literature. A comprehensive review and comparison of different models is 

not the objective of the current study and thus only a few of them are briefly described 

below.  

2.5.1 Existing mixed-mode fatigue crack propagation models 

For the mixed-mode fatigue crack analysis, two types of models can be found in 

the literature. A number of available models assume that the tensile crack growth 

dominates during the fatigue crack propagation. The Maximum Tangential Stress (MTS) 

criterion proposed by Erdogan and Sih (1963) and the Maximum Tangential Strain 

(MTSN) criterion proposed by Chambers et al (1991) are two typical models using the 

tensile failure mode assumption. Yan et al (1992) used an equivalent stress intensity 

factor defined on the maximum tangential stress plane, which also assumed the tensile 

failure mode. Many other models based on energy concepts, such as the energy release 

rate model (Forth et al. 2003), the strain energy density model (Sih and Barthelemy, 1980) 

and the dilatational strain energy density model (Theocaris and Andrianopoulos, 1982), 

can be also deemed as variations of a tensile failure-based model similar to the MTS 

criterion (Chao and Liu, 1997). Compared with a large number of models based on the 

tensile failure mode, relatively few models based on the shear failure mode are available 

in the literature. Otsuka et al (1975) observed Mode II crack growth in ductile steels and 

stated that fatigue cracks can either grow along the maximum tangential stress plane 

(mode I) or along the maximum shear stress plane (mode II). A similar approach for the 

crack growth under static loading has been proposed by Chao and Liu (1997), in which 

the MTS criterion and the MSS (maximum shear stress) criterion are combined together 

to predict the crack growth. Socie et al (1987) proposed an equivalent strain intensity 
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factor for the near threshold small crack growth, which is defined on the maximum shear 

strain plane. A similar approach was also proposed by Reddy and Fatemi (1992).  

It is well known that models based on the tensile failure mode work well for 

brittle materials. For ductile materials, both mode I and mode II cracks could occur and 

the models based on a single failure mechanism cannot give a satisfactory prediction 

(Bold et al, 1992; Chao and Liu, 1997). For mixed-mode fatigue crack growth, it has 

been reported that the crack could change the growth mode depending on the applied 

loading amplitude (Gao et al, 1982). Gao et al (1982) observed that the near threshold 

crack growth is shear-mode and the crack branches to tensile-mode when the applied 

mixed-mode loading is gradually increased. This type of observation indicates that no 

single model based on a specific failure mechanism can be applied to the whole regime of 

the fatigue crack growth, i.e. from near-threshold crack growth to long crack growth, 

since the underlying failure mechanisms could be different.  

For the fatigue problem under multiaxial loading, the non-proportionality of the 

applied loading is another important factor affecting the fatigue life. The effects of 

different loading paths on the fatigue crack initiation life have been studied by previous 

researchers (Itoh, 1995; Borodii and Strizhalo, 2000; Socie and Maquis, 2000, Liu and 

Mahadevan, 2005(b)). For mixed-mode fatigue crack propagation, several studies have 

focused on the non-proportionality effect (Bold et al, 1992; Plank and Kuhn, 1999; Feng 

et al, 2006). Feng et al (2006) observed different crack growth behavior under different 

loading paths with identical loading magnitude in the axial and the torsional directions 

and stated that many models using applied stress intensity range or J-integral range are 

not capable under this situation as they produce identical predictions under different 
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loading paths. A reasonable model for mixed-mode fatigue crack growth should consider 

the loading path effects. 

2.5.2 Proposed mixed-mode fatigue crack model 

In this section, a new model for mixed-mode fatigue crack threshold and growth 

rate prediction is proposed. The method is a non-local approach since it is developed 

using remote stresses rather than stresses near the crack tip. Two major advantages of the 

proposed model are that it can automatically adapt for different failure mechanisms and it 

considers the loading path effects. The multiaxial fatigue limit criterion proposed earlier 

(Section 2.2.2) is extended to develop a fatigue crack threshold criterion using the 

Kitagawa diagram (Kitagawa and Takahashi, 1976). Following this, an equivalent stress 

intensity factor is proposed for the crack growth rate prediction.  

The concept of fatigue limit is traditionally used within the fatigue resistance 

design approach, which defines a loading criterion under which no marcroscopic crack 

will form. The concept of fatigue crack threshold is often used within the damage tolerant 

design approach, which defines a loading criterion under which the cracks will not grow 

significantly (Lawson et al, 1999). A link between the fatigue limit and the fatigue crack 

threshold was proposed by Kitagawa and Takahashi (1976). The fatigue limit against the 

crack size using the Kitagawa diagram is shown in Fig. 2. According to the well-known 

El Haddad model (El Haddad et al, 1979), the fatigue limit can be expressed using the 

fatigue threshold and a fictional crack length a . The crack length a  represents the 

intersection of the smooth specimen fatigue limit and the LEFM (linear elastic fracture 

mechanics) fatigue threshold, i.e. 

a
K

f th,I
1 π
=−                                                           ( 78 ) 
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where th,IK  is the fatigue crack threshold for mode I loading. A similar formula can be 

also expressed for mode II (or III) loading. 

a
K

t th,II
1 π
=−   or (

a
K

t th,III
1 π
=− )                                                  ( 79 ) 

where th,IIK  and th,IIIK  are the fatigue crack thresholds for mode II and mode III loading, 

respectively. 

 

 

 

 

 

 

 

 

Fig. 16 Schematic representation of 
Kitagawa diagram for fatigue limits and 

fatigue threshold 

Fig. 17 Centered crack in a infinite plate 
under remote multiaxial stress 

 

As discussed above, the Kitagawa diagram links the fatigue behavior of cracked 

and non-cracked material together. Using this concept, it is easy to extend the multiaxial 

fatigue limit criterion in Section 2.2.2 to a mixed-mode fatigue crack threshold criterion, 

as derived below. 

For ease of discussion, first consider a simple problem as shown in Fig. 3. An 

infinite plate is under remote tensile stress and shear stress, which has a centered crack of 
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remote tensile stress has a range of σ  with zero stress ratio and the remote shear stress 

has a range of τ  with zero stress ratio. 

The range of the mode I stress intensity factor is 

aK I πσ=                                                              ( 80 ) 

The range of the mode II stress intensity factor is 

aK II πτ=                                                              ( 81 ) 

Substituting Eqs. (80)-(81) into Eq. (23) and Table 2, we obtain 

B)
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k(A)

K
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K
k( 2

th,I

H
2

th,II

22

th,I

1 =++                                       ( 82 ) 

where 1k , 2k  and Hk  are loading-related parameters with the same units as stress 

intensity factor. For proportional multiaxial loading, they can be expressed as 
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where α  is the characteristic plane orientation. It can be expressed as 

γβα +=                                                                          ( 84 ) 

where β  is the maximum normal stress amplitude plane orientation at the far field. For 

proportional loading, )
K
K2(tan

2
1

I

II1−=β . A schematic representation of the 

characteristic plane orientation is shown in Fig. 18. 

For general nonproportional loading, the axial loading and the torsional loading 

may not reach the maxima simultaneously. Numerical search is required to find the value 
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of β , 1k  and 2k  (Liu and Mahadevan, 2005(a)). γ  has been defined in Table 1 earlier. 

Notice that s  in Table 1 is redefined using the fatigue crack threshold under mode I and 

mode II loading as 
th,I

th,II

K
K

s = . Eqs. (82) to (84) together with the material parameters 

defined in Table 2 are used for fatigue crack threshold prediction under general mixed-

mode loading.  

 

 

 

 

 

 

 

Fig. 18 Orientation of characteristic plane and maximum normal stress plane 

 

In Eq. (82), 1k  and 2k  are loading-related parameters with the same units as the 

stress intensity factor. However, they are not the same as those defined in the fracture 

mechanics for kinked cracks (Cotterell and Rice, 1980). The equivalent stress intensities 

of kinked crack are obtained using the stress field near the crack tip. The proposed 

parameters are obtained using the remote stress transformation and thus we name the 

proposed model as a non-local approach. 

Similar to Liu and Mahadevan (2005(a)), the ratio of mode II and mode I fatigue 
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value of s ( 1s ≥ ) indicates tension-dominated failure and smaller s (
3

1s ≤ ) indicates 

shear-dominated failure. If the value of s is known (based on uniaxial and pure torsional 

fatigue tests), the proposed model can automatically adapt for different failure 

mechanisms. 

After developing the fatigue crack threshold criterion as above, the methodology 

for fatigue crack growth rate prediction is relatively easy. Notice that the fatigue crack 

threshold is often related to the stress intensity at a very low crack growth rate 

( cycle/mm10~10
dN
da 78 −−< ). Eq. (82) can be rewritten as 

th,I
2

H
222

1 K)
s

k(A)
s

k()k(
B
1

=++                                        ( 85 ) 

The left side of Eq. (85) can be treated as the equivalent stress intensity. It can be 

used to correlate with the crack growth rate using the mode I crack growth curve. For 

prediction corresponding to a general crack growth rate da/dN, the fatigue thresholds 

( th,IK  and th,IIK ) may be replaced by the stress intensity coefficients at the specific crack 

growth rate ( dn/da,IK  and dn/da,IIK ). Then the mixed-mode crack growth model is 

expressed as 

)
dN
da(fK)

s
k(A)

s
k

()k(
B
1K dn/da,I

2
H

222
1eq,mixed ==++=                      ( 86 ) 

where )
dN
da(f  is the crack growth curve obtained under mode I loading. The quantity s  

in Table 1 is redefined as 
dN/da,I

dN/da,II

K
K

s = . Eq. (86) has no closed-form solution. In practical 
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calculation, a trial and error method can be used to find 
dN
da . For high cycle fatigue 

problem, dN/da,IIK  and dN/da,IK  take initial values as th,IIK  and th,IK , respectively. It is 

found that usually a few iterations are enough to make fN converge. Eq. (86) together 

with the parameters in Table 2 may be used for fatigue crack growth rate prediction under 

mixed-mode loading. 

The above derivation is for mixed mode I+II loading. Similar results can be 

obtained for mixed mode I+III loading. For isotropic materials, no difference is obtained 

for fatigue limit for in-plane shear stress or out-of-plane shear stress. These two different 

loadings result in mode II and mode III stress intensity factors if the frictional crack is 

included. Similar to Eq. (80), the mode III stress intensity factor can be expressed as  

 aK III πτ=                                                            ( 87 ) 

Following the same procedure as described for mixed-mode I+II, the mixed mode 

I+III fatigue crack threshold and growth rate model can be also developed. They are 

almost same with those for mode I+II except all the mode II components are replaced by 

mode III components, i.e. IIK , th,IIK  and dN/da,IIK  are replaced by IIIK , th,IIIK  and 

dN/da,IIIK ,  respectively. 
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If the material is under remote tensile stress, in-plane and out-plane shear stress, it 

results in mixed mode I+II+III loading on the crack. Compared with mode I+II and mode 
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I+III loading, the problem is more difficult, especially when none of these stress 

components is proportional. Eqs. (90) and (91) is used for general mixed mode loading. 

Following the same procedure for the mixed-mode I+II case, the formulas for general 

mixed mode I+II+III loading can be expressed as 
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2.5.3 Comparison with experimental observations 

 

Table 12. Experimental threshold data used for model validation 

Material name References Loading case KI,th(MPam1/2) s=KII,th/KI,th 
6061Al Wang et al(1995) I+II 3.9 0.55 
7075-T6 

aluminum alloy 
Otsuka et al (1987) I+II 1.6 0.64 

316 stainless 
steel 

Gao et al (1982) I+II 5.81 0.7 

Aluminum 
alloy 

Soh and Bian (2001) I+II 2.75 0.83 

2017-T3 
aluminum alloy 

Otsuka et al (1987) I+II 1.6 0.9 

Mild steel Pook (1985) I+III 6.6 1.1 
2024Al Liu and Wang (1996) I+II 3.9 1.46 

SiCp/2024Al 
composite 

Liu and Wang (1996) I+II 4.8 1.79 

 

Eight sets of fatigue experimental data available in the literature are employed in 

this section, and are listed in Table 12. The predicted thresholds and the experimental 

observations are plotted in Fig. 19. In Fig. 19, the x-axis and the y-axis are the applied 

stress intensity ranges for mode I and mode II (or mode III), respectively. All values are 
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normalized using the mode I fatigue threshold. For comparisons, the predictions using the 

MTS, the maximum strain energy release rate and the minimum strain energy density are 

also plotted.  

Two different formats of experimental data are collected. Several materials 

(6061Al, 316 stainless steel, mild steel, 2024Al, SiCp/2024Al composite) used the 

fatigue threshold values directly. Other materials (7075-T6 aluminum alloy, aluminum 

alloy, 2017-T3 aluminum alloy) used the values for initial growth crack and non-growth 

crack. For the later ones, predictions going through between the two sets of data points 

indicate good approximation, since the actual fatigue threshold values fall between the 

values of initial growth crack and non-growth crack. As shown in Fig. 19, the predicted 

values agree with experimental observations very well.  

Theoretical s values for the MTS, the minimum strain energy density and the 

maximum strain energy release rate methods are 0.87, 0.96(plane strain) and 1, 

respectively, regardless of the material. When the material has a s value near one of the 

above numbers, the corresponding model gives a reasonable predictions (See Fig. 19(d) 

for aluminum alloy and Fig. 19(e) for 2017-T3 aluminum alloy. The actually observed s 

values for the material are shown in the figures). For materials with other s values, it is 

seen the above three models give poor predictions (See Figs. 19(a-c,f-h)). The proposed 

method generally gives better predictions than the available three models. 
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Fig. 19 Comparisons of predicted and experimental fatigue thresholds 

 

a) 6061Al b) 7075-T6 aluminum 
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Fig. 19 Cont. 

 

Table 13. Experimental crack growth rate data used for model validation 

Material name References Loading case 
3.5NiCrMoV forging steel Yates and Mohammed (1996) I+III 

Rail steel Kim and Kim (2002) I+II 
Metal X Yokobori et al (1985) I+II 

304 stainless steel Biner (2001) I+II 
 

Four sets of fatigue experimental data are employed to validate the fatigue crack 

growth model, and are listed in Table 13. The predicted crack growth rates and 

experimental observations are plotted in Fig. 20. In Fig. 20, the x-axis is the equivalent 

applied stress intensity range (Eq. (89)) under mixed-mode loading. The y-axis is the 

fatigue crack growth rate. Different types of mixed mode loading are represented using 

an angle ϕ , which is listed in the legend. The angle ϕ  is defined as 

)
K
Ktan(

II

I=ϕ                                                      ( 92 ) 

As shown in Fig. 20, the proposed model correlates different types of mixed mode 

crack growth rates using the mode I crack growth function. It needs to be pointed out that 
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the proposed model is not tied to a specific function format to represent the experimental 

data. Instead of using the commonly used Paris law or other model forms, the best 

regression model form is used to represent the experimental mode I data and to predict 

the crack growth rate under mixed mode loading.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20 Comparisons of predicted and experimental fatigue crack growth rates 
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Fig. 21 Comparisons of predicted and experimental fatigue crack growth rates 

 

One typical observation of mixed mode crack growth is that the underlying failure 

mechanism might change at different stages. Gao et al (1982) observed that fatigue crack 

initially propagates in a shear-mode. After growing a few grain diameters, a tensile-mode 

growth was observed and continued until failure. A schematic plot of the fatigue crack 

growth is shown in Fig. 21(a). It is well known that the total fatigue crack growth regime 
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can be divided into three sub-regimes: near-threshold crack growth, Paris law-type crack 

growth and rapid crack growth, as shown schematically in Fig. 21(b) (Suresh, 1998). 

Gao’s observations (Gao et al, 1982) indicate that both the fatigue crack growth rates and 

the underlying mechanisms are quite different for near-threshold crack growth and Paris 

law-type type crack growth. It can be expected that any single failure mechanism-based 

model can not be applied to such conditions since their physical basis is violated.  

However, the proposed model can easily adapt for different failure modes, and 

thus is capable of representing both near-threshold crack growth and Paris law-type crack 

growth. Gao’s (Gao et al, 1982) experimental observations for shear-mode and tensile-

mode crack growth thresholds are plotted in Fig. 21(c). The predictions using the 

proposed model are also plotted. It is observed that the proposed model works well for 

both failure modes, i.e., s = 0.7 (shear dominated) and s = 1.6 (tension dominated).  

For multiaxial fatigue or mixed-mode fatigue crack problem, the non-

proportionality of the applied loading affects the final fatigue damage. Models purely 

based on the applied loading amplitude cannot capture the loading path effect. The 

proposed model is developed from a characteristic plane-based model, which considers 

the loading path effect. In the proposed model, the characteristic plane depends on the 

maximum normal stress amplitude plane during the cyclic loading. For loadings with 

identical amplitudes but different loading paths, the maximum stress amplitude planes are 

different. Thus the fatigue damage prediction is also different.  

Most fatigue tests for cracked specimens are performed by applying uniaxial 

fatigue loading on a plate with an inclined crack. This causes proportional loading ahead 

of the crack tip. Fatigue tests for cracked specimens under general nonproportional 
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loading are seldom found in the open literature. Liu and Mahadevan (2005(a;b)) have 

shown that the proposed concept accurately predicts the loading path effect for the 

fatigue limit prediction, which is the same as fatigue threshold predictions following the 

assumption of the Kitagawa diagram. For the fatigue crack growth under general 

nonproportional loading, experimental data is needed to validate the proposed model. 

 

2.6  Summary 

Multiaxial fatigue models for several situations are developed in this chapter, 

based on a characteristic plane approach. The predictions based on the proposed criterion 

show good agreement with the fatigue experimental data in the open literature. Most of 

the existing characteristic plane-based models can only be applied to certain types of 

failure modes, i.e. shear dominated failure or tensile dominated failure. Their 

applicability generally depends on the material's properties and loading conditions. In the 

proposed model, the characteristic plane changes corresponding to different material 

failure modes, thus making the proposed model have almost no applicability limitation 

with respect to different metals. The characteristic plane is theoretically determined by 

minimizing the damage introduced by the hydrostatic strain amplitude. The mean stress 

effect is also included in the proposed model through a mean stress effect correction 

factor.  

One of the advantages of the proposed approach is that it can automatically adapt 

for different failure mechanisms, namely shear-dominated failure and tension-dominated 

failure. From Table 2, it can be seen that the characteristic plane in the proposed model 

depends on the material property s. It has been shown that s, the ratio of shear strength 
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coefficient and tensile strength coefficient, is related to the material ductility (Liu and 

Mahadevan, 2005(a)) and to the material failure modes (Liu and Mahadevan, 2005(b)). 

Once the s value is known, the proposed model can be used to predict the crack growth 

for any failure mechanism.  

A useful mechanical parameter is found during the development of the proposed 

approach. The ratio of torsional fatigue strength and uniaxial fatigue strength s  appears 

to be very important for the multiaxial fatigue problem. According to the proposed 

multiaxial fatigue theory and the experimental data collected in this study, different 

material failure modes may be related to this parameter. Also, from the experimental 

results collected from the literature, this parameter shows a good correlation to the extra 

hardening of the material caused under nonproportional loading. It is shown that there are 

no systematic errors in the model, for various material properties and loading conditions. 

There are some other advantages of the proposed approach. The fatigue fracture 

plane is also determined and directly related to the characteristic plane. The calculation is 

relatively simple. In the fatigue life prediction model, no special requirements are needed 

for the form of the S-N curve function. The users can choose any S-N curve function 

form for the best regression results. The mean stress effect is also included in the model 

through a general mean stress effect correction factor. The factor can be calibrated using 

experimental fatigue test data with mean stress, or the empirical formula suggested by the 

author, may be used instead.  

The proposed fatigue crack growth model is a non-local approach, which is 

developed using the remote stress components and the characteristic plane concept. Most 

of the existing fatigue crack growth models can only be applied to individual failure 
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modes, i.e. shear dominated failure or tension dominated failure. Their applicability 

generally depends on the material's properties and loading conditions. In the proposed 

model, the characteristic plane changes corresponding to different material failure modes, 

thus helping the proposed model to have a wide range of applicability.  

The proposed model is also capable of handling nonproportional mixed-mode 

loading. Compared with many of the existing fatigue crack growth models, which give 

identical predictions for the experiments with same amplitudes but different loading paths, 

the proposed model gives different predictions as should be expected. However, further 

experimental work is required to validate the proposed methodology.   
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CHAPTER III 

 

APPLICATION TO RAILROAD WHEELS 

 

3.1  Overview 

Several multiaxial fatigue life prediction models have been developed in the 

previous chapter. In this chapter, those models are applied to the wheel/rail rolling 

contact problem. The models described in the last chapter are improved and combined 

with new numerical techniques to achieve both computational accuracy and efficiency.  

The multiaxial fatigue crack initiation model is extended for general three-

dimensional components under multiaxial non-proportional loading. A numerical search 

technique using Euler angle transformation is adopted into the multiaxial fatigue theory 

to reduce the computational effort for fatigue fracture plane and characteristic plane 

identification. 

A three-dimensional elasto-plastic finite element model for the wheel/rail contact 

problem is used for stress analysis. A submodeling technique is used to achieve both 

computational efficiency and accuracy. Then the fatigue damage in the wheel is 

evaluated numerically using the stress history during one revolution of the wheel rotation. 

Several important factors that affect the wheel failure are explored. These include axle 

loading, wheel geometry and material properties. Parametric study is performed to 

evaluate the importance of these factors.  

The initial crack location and geometry from the crack initiation analysis is used 

for fatigue crack propagation analysis. The previous developed mixed-mode crack 
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propagation model is combined with finite element model to simulation the crack 

propagation within railroad wheels. A frictional crack is built into the sub-model and the 

stress intensity histories along the crack tip are used to evaluate the crack propagation 

rate. Several important factors affecting the crack propagation life are explored, such as 

wheel diameter, applied loading, crack profile and material properties. 

The crack initiation life and the crack propagation life are combined together to 

give the total life to failure of railroad wheels. The results of this chapter will be used for 

stochastic fatigue modeling and reliability analysis in Chapters 4. 

 

3.2  Crack initiation in railroad wheels 

Damage accumulation due to fatigue, plastic deformation and wear significantly 

reduces the service life of the railway track. In recent years, higher train speeds and 

increased axle loads have led to larger wheel/rail contact forces. Also, efforts have been 

made to optimize wheel and rail design. This evolution tends to change the major wheel 

rim damage from wear to fatigue (Tournay and Mulder, 1996). Unlike the slow 

deterioration process of wear, fatigue causes abrupt fractures in wheels or the tread 

surface material loss. These failures may cause damage to rails, damage to train 

suspensions and, in rare cases, serious derailment of the train.  

The fatigue problem of railroad wheels is often referred to as rolling contact 

fatigue (Johnson, 1990), and is caused by repeated contact stress during the rolling 

motion. The proper understanding of the underlying mechanism of rolling contact fatigue 

requires detailed knowledge of the interaction between wheel and rail. A proper 

multiaxial fatigue damage accumulation model under complex rolling contact stress state 
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is also required. An overview of rolling contact problem of railroad wheels was given by 

Ekberg and Kabo (2005). 

In this section, first the previously developed multiaxial high-cycle fatigue 

damage model of Chapter 2 is extended to general 3D stress states. Both the initiation 

crack plane orientation and fatigue initiation life can be predicted based on the proposed 

model. Then a three-dimensional finite element model for wheel/rail rolling contact 

analysis is developed. Submodeling technique is used to achieve both computation 

efficiency and accuracy. The stress response of numerical simulation of the wheel rolling 

motion is used for fatigue life prediction. The influences of several parameters are 

evaluated and several conclusions are drawn based on the present results. The method 

developed in the current study is very valuable for fatigue resistance design and 

inspection planning of railroad wheels. 

3.2.1 Previous work 

Railroad wheels may fail in different ways corresponding to different failure 

mechanisms (Stone and Moyar, 1989; Marais, 1998; Mutton et al, 1991).  Ekberg and 

Marais (1999) divide the wheel fatigue failure modes into three different failure types 

corresponding to different initiation locations: surface initiated, subsurface initiated and 

deep surface initiated fatigue failures. On the tread surface, there are usually two types of 

cracks. One is caused by the repeated mechanical contact stress. The other is initiated by 

thermal stresses arising from on-tread friction braking. The thermal cracks appear as 

short cracks oriented axially on the wheel tread (Gordon and Perlman, 1998). 

According to the Union Pacific Railroad wheel fracture database (Snyder, 2003), 

65 percent of railroad wheel failures are caused by shattered rims, 5 percent by thermal 
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cracking, and the other 30 percent by vertical split rim. Thermal cracking usually breaks 

off a piece of the wheel tread, while shattered rim can destroy the wheel’s integrity and 

thus is more dangerous. Subsurface-initiated failures (shattered rim) are the types of 

failures we focused on in this dissertation. Studies on surface-initiated fatigue have been 

developed elsewhere (Moyar and Stone, 1991; Giménez and Sobejano, 1995; Marais and 

Pistorius, 1994). 

Shattered rim failures are the result of large fatigue cracks that propagate roughly 

parallel to the wheel tread surface (Stone et al, 2002; Giammarise and Gilmore, 2001). 

Berge (2000) and Stone and Geoffrey (2000) suggest that the large stress, perhaps due to 

wheel/rail impact or material discontinuity, is responsible for the initiation of shattered 

rims. It is no doubt that voids and inclusions in a sufficient size in a stress field will lead 

to failure of wheels.  Significant improvements have been made in recent years to prevent 

shattered rim failure, such as tight regulations in wheel manufacturing inspection, etc. 

However, these only help to reduce the occurrence of some shattered rims, but will not 

prevent the formation of all of them (Stone et al, 2002). Ekberg et al (2002) reported that 

the shattered rim can initiate from both inclusions and non-inclusion locations. More 

importantly, the “new” wheels may have a better resistance to the shattered rim failure, 

but this is not necessarily true for millions of “old” wheels that are still in use. The final 

objective of this project is to find an optimized inspection and maintenance plan for the 

“old” wheels in order to reduce shattered rim failures.  

There are two major difficulties in rolling contact fatigue analysis. One is that the 

mechanical component is usually under non-proportional multiaxial stress state. 

Multiaxial fatigue theory is needed to handle this type of fatigue problem for initiation 
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life prediction. There is no universally accepted multiaxial fatigue model (Papadopoulos 

et al, 1997).  The other difficulty is how to accurately describe the stress state under 

contact condition. Analytical solutions, such as the Hertz contact theory (Johnson, 1985), 

are easy to use if the problems satisfy the assumptions in Hertz contact theory. However, 

some practical problems cannot meet the required assumptions in the Hertz contact 

theory. For example, this theory assumes that the contact area is small compared to body 

dimension and surface curvature. For the wheel/rail contact problem, when the contact 

area is near the wheel flange, the surface curvature is comparable with the contact area 

and thus the Hertz contact theory is not applicable. In order to overcome the limitations 

inherent in the analytical solution, numerical methods for contact analysis, such as finite 

element method and boundary element method, are widely used.  

Guo and Barkey (2004) use a 2D finite element model and a multiaxial fatigue 

model developed by Fatemi and Socie (1988) for bearing rolling contact fatigue analysis. 

Sraml et al (2003) use the Hertz contact theory to calculate the stress response and treat 

the multiaxial fatigue problem as a uniaxial fatigue problem. The principle stress/strain 

component in one direction is used for fatigue analysis. Ringsberg (2001) developed a 

semi-analytical approach for stress calculation, which used 3D finite element analysis but 

applied the contact pressure based on Hertz theory. The multiaxial fatigue model is a 

critical-plane based model which uses the damage parameter proposed by Jiang and 

Sehitoglu (1999). Ekberg et al (1995) developed a fatigue life prediction methodology for 

the wheel/rail contact fatigue problem, which uses the Hertz contact theory for stress 

calculation and multiaxial fatigue model proposed by Dang Van et al (1989). 
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Most of the existing rolling contact fatigue models use a simplified stress 

calculation technique, such as Hertz analytical solution or simplified finite element 

analysis. Due to the complex geometry of the wheel/rail contact area, it is more 

appropriate to use a 3D finite element method to calculate stress response in the 

mechanical components. It is also better to include the some factors which cannot be 

included into the simplified method, such material nonlinearity, irregular surface 

condition and hunting movement of the wheel.  

Most of the available multiaxial fatigue models are limited in applicability to 

narrow range of material properties. More important, some of them cannot predict the 

initial crack plane orientation, which is another distinct characteristic of multiaxial 

fatigue problem and very important for crack propagation analysis later. Liu and 

Mahadevan (2005(a)) have proposed a new multiaxial fatigue theory, which is applicable 

to a wide variety of ductile and brittle metals and also directly correlates the characteristic 

plane orientation and initial crack plane orientation. This paper extends the new 

multiaxial fatigue theory to general three dimensional stress state and applies it to the 

wheel/rail rolling contact fatigue problem. 

3.2.2 Improvement of previous multiaxial fatigue theory 

The multiaxial fatigue model developed in Section 2.2.2 and validated using 

bending-torsional experiments, is suitable only usually for 2-D state of stress and 

includes one normal stress and one shear stress (in-plane) on the characteristic plane. For 

the general 3D state of stress, one normal stress and two shear stresses (one is in-plane 

and the other is out-of-plane) on the characteristic plane need to be included. In that case, 

the computation is more complex, partly due to the definition of stress amplitude. On an 
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arbitrary material plane across the point in consideration, the normal stress amplitude 

acting on the plane can be fully described by its algebraic value, since its direction will 

not change during one stress cycle. However, for the shear stress acting on the plane, its 

amplitude and direction will generally change during one stress cycle (Papadopoulos et al, 

1997).  

 

 

 

 

 

 

 

 

Fig. 22 Characteristic plane definition 

 

Fig. 23 Relationship of characteristic 
plane and fatigue fracture plane 

As shown in Fig. 22, ABCD is the material plane across the point O. 1 is the 

normal vector of the plane ABCD. The normal stress amplitude acting on the plane 

ABCD is defined along the 1 direction. In this paper, shear stress amplitude on the plane 

ABCD is defined on an orthogonal coordinate system O23, which makes the shear stress 

amplitude value achieves maxima along the 2 direction. The shear stress amplitude along 

the 3 direction is included into the fatigue analysis. Eq. (23) is then rewritten as 

f

f

f

f

f

f

f N
2H

c,a
2

)3(c,a
2

N

N2
)2(c,a

2

N

N2

N

)1(c,m
N)1(c,a f)(k)()

t

f
()()

t

f
()]

f
1([1

=++++ σττ
σ

ησ
β

     

( 93 ) 

O

O

Z Y

X

2

21

1 3
α

,

(3)
, ,

α

Fatigue Fracture Plane

Critical Plane

A

B

C
O

D

1 3 2

Critical 
Plane

Shear Stress Trace 



 104

where the subscripts (1), (2), (3) of ca,σ , cat ,  and c,mσ  indicate the directions of the stress 

amplitude. For the bending-torsion problem, one component of shear stress amplitude 

reduces to zero, and Eq. (93) reduces to Eq. (23).  

For an arbitrary stress history of the point concerned, the initial fatigue crack 

plane and the characteristic plane are not known a priori. All possible planes through the 

point concerned are explored. For a biaxial fatigue problem, such as bending and torsion 

fatigue, it is relatively easy to identity the fatigue fracture plane and characteristic plane. 

For general 3D stress problem, an efficient simple procedure is proposed as shown below. 

Consider the stress transformation equation 

[ ] [ ][ ] [ ]Txyzzyx TT''' σσ =                                                     ( 94 ) 

where [ ]σ  is the stress matrix, subscripts xyz and x’y’z’ refers to the two coordinate 

systems. [ ]T  is the transformation matrix from the corordinate system xyz to x’y’z’.  [ ]T  

consists of nine direction cosines, in which only three of them are independent because of 

the orthogonality conditions. For convenience in numerical calculation,  [ ]T  matrix is 

described using Euler angles ),,( ψθφ  which represent three counterclockwise rotations 

following the so-called x-convention definition (Landau and Lifschitz, 1976). If the Euler 

angles are given, the transformation matrix [ ]T  can be written as 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+−−−
+−

=

θφθφθ

θψψφθφψψφθφψ

θψψφθφψψφθφψ

ccsss
sccccsscsccs
sscccscssccc

T                              ( 95 ) 

where c and s correspond to cosine and sine function, subscripts represent the arguments 

of such functions. The general ranges for Euler angles ),,( ψθφ  are ]2,0[ π , ],0[ π  and 
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]2,0[ π , respectively. However, because we only calculate the stress amplitude along 

one direction, no difference is made if the direction is reversed. The Euler angle ranges 

can be reduced to ],0[ π  for all three angle parameters ),,( ψθφ . Furthermore, if we 

rotate the coordinate system along any original axis by 2/π , the stress matrix 

components are same except in a different arrangement. During the calculation, we 

reduce the Euler angle ranges to ]2/,0[ π  for all three angle parameters ),,( ψθφ  and 

search for all three direction stress amplitudes by angle increments of 2 degrees. The 

normal vector of maximum principal stress amplitude plane is named as 1’. On the plane 

perpendicular to 1’, we search for the maximum shear stress amplitude by rotating the 

coordinate system about 1’ axis by angle increments of 2 degrees. The vector of the 

maximum shear stress amplitude direction on the plane is named as 2’. 1’, 2’ and 3’ 

(perpendicular to both 1’, 2’) can be treated as a new orthogonal coordinate system. (Fig. 

23) 

After obtaining the new O1’2’3’ coordinate system, we can calculate the 

characteristic plane based on Table 2. For different materials, check the α  value from 

Table 2. Rotate O1’2’3’ about 3’ axis by an angle of α  degrees to be the new coordinate 

system O123 (Fig. 22). The plane O2’3’ is the fatigue fracture plane and plane O23 is the 

characteristic plane. 

Next we transform the stress history in the original OXYZ coordinate system to 

the new O123 coordinate system using Eqs. (94) and (95). Accounting for the stress on 

the characteristic plane and substituting into Eq. (93), we solve for the fatigue life Nf.  
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3.2.3 Finite element modeling and failure simulation 

A railroad wheel is usually rigidly mounted on a steel shaft. Due to the high axle 

load and small contact area of the wheel/rail interface, the stresses at contact region are 

very high. To overcome the limitations of the traditional approaches for the wheel/rail 

contact problem, a 3D elasto-plastic finite element model is needed. After comparing 

several possible approaches, a simulation methodology for wheel/rail contact analysis is 

proposed in this paper. It has several advantages compared with previous analytical and 

numerical approaches. First, it is a realistic 3D finite element model and can accurately 

calculate the 3D stress response in the contact region. Next, it includes both material and 

geometric nonlinearity. It can be used to simulate large and complex wheel motions, such 

as rotation, sliding, hunting movement and even dynamic impact response. Finally, 

through sub-modeling techniques, the proposed model is made very efficient in 

computing and hardware requirements. Based the authors’ experience, it can save up to 

100 times the computational time for the current analysis compared with the 3D finite 

element model without using submodeling techniques, for the same level of accuracy.  

For accurate contact analysis, geometry profiles of the rail head and the wheel 

tread are very important. Due to wear, the rail head profile and wheel tread profile will 

change overtime. For a relatively new wheel/rail, profiles from manufacturing can be 

used instead of field measurements. In order to show the methodology, wheel and rail 

sets are assumed to have the manufacturing profiles in the current study. All the finite 

element models are built using the commercial software ANSYS 7.0. The general 

procedure is described below. 
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Fig. 24 Finite element modeling of wheel/rail contact 

 

First, use the available profiles to build the geometry model of one wheel and a 

piece of rail. This model is called the full model. The rail length equals the length 

between two sleepers. Fixed boundary conditions are applied to the two ends of the rail. 

Different meshing is applied to the full model using 3D element (SOLID 45 in ANSYS). 

In the contact region, relatively finer mesh is used. At the wheel center, a pilot point is 

connected to the wheel using some rigid link elements. All the external loading and 

boundary conditions of the wheel are applied on the pilot point. These loading and 

boundary conditions can be obtained through field measurements or from numerical 

simulation of the track system motion analysis. On the possible contact areas of the 

railhead and the wheel tread, area contact elements (CONTACT 174 and TARGET 170 

in ANSYS) are used corresponding to the geometry mesh of the wheel. The contact 

algorithm is augmented Lagrangian method (Ansys, 2003). Friction effect is included 
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into the material properties of the contact element. A Coulomb friction model is used in 

ANSYS. Friction coefficients can be calibrated using field measurement data. The 

material properties of the wheel and rail as described using a bilinear kinematic 

hardening model in ANSYS. No isotropic hardening is included in the current model. 

The finite element model is shown in Fig. 24.  

Next, quasi-static analysis is performed for the full model and the results for each 

step are stored. Then the geometry model of the contact region is cut out to be a sub-

model. The size of the sub-model depends on the analysis objective and also on the wheel 

motion simulated. The same types of elements as those in the full-model analysis are 

used to mesh the sub-model. Very fine mesh is applied to the contact area and to some 

depth under the contact surface. The results of the full-model are interpolated on the 

cutting edge of the sub-model corresponding to different calculation steps, and the 

interpolation results are applied as boundary conditions to the sub-model. In sub-

modeling, the results from the sub-model need to be verified to make sure the cut 

boundaries are far enough from the stress concentration (contact region in this problem). 

The results in the sub-model are obtained using a fine mesh. They need not agree with the 

results from coarse-mesh global model. The disagreement can be caused not only by 

mesh refinement differences, but also due to geometric and material nonlinearities around 

the contact region. A detailed explanation can be found in ANSYS (2003). The cutting 

edge results from sub-model analysis are compared with those results in the full-model. If 

the difference is small enough, output the results in sub-model for future fatigue analysis. 

Otherwise, change the sub-model and repeat the previous steps. The flowchart of the 

finite element modeling is shown in Fig. 25.  
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The wheel profile is chosen according to the AAR standard (1998) wide flange 

contour. The wheel diameter is 0.838 meter (33 inches). The details of wheel tread 

surface geometry are shown in AAR standard M107/208. The vertical load is assumed to 

be the maximum design load, which is 146.2 KN (32,875 lb.). The material properties of 

the rail and wheel are assumed to be same (yielding strength = 500 MPa; Young’s 

Modulus= 205 MPa; Friction coefficient = 0.25). The rail length is 600mm, which is 

normally the length between two sleepers (Telliskivi et al, 2000). In the current study, the 

initial contact point is assumed to occur at the railhead center and wheel tread center. 

 

 

 

 

 

 

 

 

 

Fig. 25 Finite element modeling methodology 

 

For 3D elasto-plastic contact analysis, it is usually very time-consuming, even 

using the submodeling techniques. It is shown that different constitutive relations will 

cause different stress response in the contact components (Bhargava et al, 1985; Hahn et 

al, 1987; Gupta et al, 1993; Howell et al, 1995), especially for ratcheting problem 
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(Ekberg and Kabo, 2004). Different constitutive models were used for rolling contact 

stress analysis, such as linear kinematic hardening model (Guo and Barkey, 2004; Gupta 

et al, 1993) or nonlinear kinematic hardening model (Ringsberg, 2001; Jiang and 

Sehitoglu, 1999). In the current study, linear kinematic hardening model is used. If only 

material nonlinearity is considered, the component reaches the steady state after the first 

cycle. However, since the geometry nonlinearity is also involved in the rolling contact 

problem, the component probably reaches the steady state after first several load cycles. 

Under fatigue cyclic loading, it is important to use the steady-state stress response within 

the mechanical components. It only requires a few rolling cycles to achieve the steady-

state by moving the roller backward and forward in one cycle. Guo and Barkey (2004) 

assume that the stress states after six cycles represent the stabilized values for a 2D finite 

element model. In order to balance the computational effort and analysis accuracy for the 

current 3D finite element model, the stress responses after two cycles are assumed to be 

stabilized values and used for fatigue life prediction.   

The static load analysis of the wheel/rail contact is performed first. The results of 

the sub-model are plotted in Fig. 26 and Fig. 27. Fig. 26 shows the Von Mises stresses 

from two different section views. Fig. 27 shows two in-plane shear stresses ( xyτ  and yzτ )  

from two different section-views. From the Fig. 26, it is found that the maximum Von 

Mises stress occurs at some depth below the tread surface. The stress decreases quickly 

as the depth increases. The high stress only occurs within a small region of the contact 

location. The stress in the other parts of the model is almost zero. This indicates that only 

a small portion of the motion simulation is needed because the stress far away from the 

contact location is zero.  
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From Fig. 27, a butterfly pattern of the shear stress yzτ  is observed. The 

maximum value also occurs at a depth of about 5 mm below the tread surface. Unlike the 

maximum Von Mises stress that occurs just above the contact location, the maximum xyτ  

and yzτ   occur at the location some distance away from the contact location. From Fig. 

26(a) and Fig. 27(a), the stress pattern indicates multiple contact points between the 

wheel/rail interfaces. The contact pressure and contact area on the wheel tread surface are 

plotted in Fig. 28. Two contact points are observed: one is near the center of the flat 

surface of the tread, and the other near the flange corner. This clearly shows that, the 

contact area near the flange corner is different from that predicted by the traditional Hertz 

theory, which is usually assumed to be an eclipse. Due to the non-Hertzian contact 

conditions, very high contact stress amplitude is obtained at this location. This conclusion 

is consistent with Telliskivi et al (2000).  

 

 

 

 

 

 

 

 

Fig. 26 Von-Mises stress distribution of wheel/rail contact 

 

 

(a) Front Section View (a) Left Section View 
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Fig. 27 In-plane shear stress distribution of wheel/rail contact 

 

 

 

 

 

 

 

Fig. 28 Contact pressure distribution on the tread surface 

 

After performing the static analysis, we simulate the wheel rotation on the rail, 

which is the normal motion mode of the wheel. This is done by applying the proper 

boundary conditions on the pilot node in the full model. Details about controlling the 

motion in contact analysis can be found in ANSYS (2003). The stress histories of two 

points (one is 3 mm below the tread surface, the other is 10 mm below the tread surface) 

during half a revolution of the wheel rotation are plotted in Fig. 29. The x-axis does not 

(a) Distribution of xyτ  (b) Distribution of yzτ  
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indicate the real time and is the time step in FE analysis during the simulation of wheel 

rotating. Fig. 29 shows that the stress history in the wheel under rolling contact condition 

is not proportional, which indicates that the maximum normal stress and maximum shear 

stress do not occur simultaneously. The normal stress amplitude decreases from the depth 

of 3 mm to 10 mm. The FEA results only show very small residual stresses at these two 

locations. They can be barely seen in Fig. 29 and their effects are negligible in the current 

analysis. 

 

 

 

 

 

 

 

 

Fig. 29 Stress history at two locations in the wheel 

 

After obtaining the stress history of the wheel, the proposed multiaxial fatigue 

criterion is used to calculate the fatigue initiation life and initial crack plane orientation. 

Because the critical location is not available, all the possible nodes on the radial section 

of the wheel are explored. The fatigue S-N curve for uniaxial and torsional loading are 

plotted in Fig. 30. In this, the S-N curve is used only to demonstrate the methodology. In 

the next chapter, material properties that represent the service conditions will be used for 
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reliability calculation. The fatigue damage distribution, initial crack plane orientation and 

field observation of one wheel failure are plotted together in Fig. 31. It needs to be 

pointed out that the current comparison is qualitative. Quantitative comparison will be 

shown in the next chapter.  

 

 

 

 

 

 

 

 

Fig. 30 S-N curve for uniaxial and torsional loading 

 

 

 

 

 

 

 

 

Fig. 31 Numerical simulation and field observation of shattered rim failure of railroad 
wheels 
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Several conclusions can be drawn from both the numerical predictions and 

experimental observations. From the field observations, fatigue cracks usually initiate at a 

depth 5 mm~20 mm below the tread surface. The numerical crack initiation locations are 

obtained by checking each material point for the maximum damage. In the current 

analysis, it is the point 5 mm below the contact region. One possible reason that the 

current analysis predicts the lower value of the range is because no inclusions are 

considered. Ekberg (2002) observed that no inclusions were found in shattered rim 

failures upto 10 mm depth, and macroscopic inclusions were found in failures between 10 

mm and 20 mm depth. The initial fatigue crack plane has a shallow angle with the wheel 

tread surface. In the current numerical example, it is about 20 degrees. Notice that the 

current analysis uses the constant loading for normal working conditions (maximum 

design loading for wheels) and does not include the effects of initial defects. Further 

study needs to include the variable loading and initial defects in the service condition.  

3.2.4 Parametric study 

In this section, the influence of several factors on the fatigue damage of the 

wheels is studied, using the finite element and multiaxial fatigue models developed in the 

previous section. 

The diameter of the wheel will affect the fatigue damage. One simple explanation 

is that the radius of the wheel will affect the internal stress in the wheel according to the 

Hertz theory. However, for non-linear contact analysis and multiaxial fatigue analysis, 

the relationship between fatigue life and wheel diameter needs to be studied more 

carefully. A set of numerical simulations of wheels with different diameters, from 0.711 

meter (28”) to 1.168 meter (46”) (AAR, 1998), are used. The vertical loading uses the 
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maximum design load for 0.838 meter (33”) wheel (AAR, 1998). The damage 

accumulation rates (damage per cycle for constant amplitude loading) for different wheel 

size are plotted in Fig. 32.  

From Fig. 32, it is seen that the damage accumulation rate and decreases as the 

wheel diameter increases. The effect is more significant for small size wheels (wheel 

diameter smaller than 0.838 meter). It is interesting to notice that for 0.914 meter (36”) 

wheel, the damage accumulation rate exhibits a local increase. This phenomenon is also 

observed by Ekberg (2000) numerically.   

 

 

 

 

 

 

 

Fig. 32 Relationship between damage 
accumulation rate and wheel diameter 

Fig. 33 Relationship between damage 
accumulation rate and vertical load 

 

The damage accumulation rate on the wheel section for the 0.914 meter (36”) 

wheel under different vertical loads (64 KN, 96 KN, 128 KN, 160 KN and 192 KN) are 

calculated and plotted in Fig. 3.33. As expected, the damage accumulation rate increases 

as the vertical load increases. In this case, the equivalent stress amplitude is lower than 

the endurance limit for the vertical load below 105 KN.  
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For the rolling contact problem, such as wheel/rail pair and gears, hardness is a 

very important material parameter; it directly affects the contact stiffness and thus the 

stress response in the wheel. AAR (1998) specifies the Brinell hardness requirements for 

wheel rims.  

Hardness and strength are correlated to each other: strength increases as hardness 

increases. Isakov (2000) gives the empirical formulas for the relationship between 

hardness and ultimate strength for a variety of metals. Generally speaking, the 

relationship of hardness and strength also depends on different materials. Two sets of 

experimental data (Lovelace, 1971; Devine and Alber, 1982) for railroad wheels are 

collected and used to correlate the hardness with yield strength. The experimental data 

and linear regression are plotted in Fig. 34.  

From Fig. 34, a positive linear relationship between hardness and yield strength is 

found. In the current study, different yield strengths are used in the finite element model 

for different hardness using the linear regression function shown in Fig. 34. Following 

the same procedure as in the previous section, the damage accumulation rate for different 

hardness materials are calculated and plotted in Fig. 35. 

 

 

 

 

 

 

Fig. 34 Relationship between hardness 
and yield strength for wheel materials 

Fig. 35 Relationship between hardness 
and damage accumulation rate in wheels 
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From Fig. 35, it is seen that the damage accumulation rate increases as the 

hardness increases. This is because, for the material with higher hardness, the local 

plastic flow at the contact surface is not likely to occur and a smaller contact area 

between wheel and rail is obtained. A higher contact pressure is obtained for higher 

hardness material under the same vertical force. This leads to higher stress response in 

the railroad wheel. It should perhaps be noted that the same effect as for increased 

material hardness will occur if the material is subjected to isotropic hardening.  

The effects of material endurance limit on the damage in railroad wheels are 

studied next. In the proposed multiaxial fatigue model, two material fatigue properties are 

used: the uniaxial fatigue strength and the ratio of torsional fatigue strength and uniaxial 

fatigue strength. The uniaxial fatigue strength effect is studied in this section first, 

followed by the ratio effect. 

A 0.914 meter (36”) railroad wheel under 160 KN vertical loading is used for the 

calculation. The fatigue S-N curve takes the same format as shown in Fig. 30. Five 

different numerical experiments using different fatigue endurance limits are explored. 

The damage accumulation rates for different fatigue endurance limits are plotted in Fig. 

36.  

From Fig. 36, the fatigue damage accumulation rate decreases as the material 

fatigue endurance increases as expected. In this case, no crack will be initiated if the 

fatigue endurance limit is higher than 340 MPa. The fatigue limits in the laboratory test 

data indicate the fatigue life around 107 cycles (about 20,000 service miles), which is 

below the usually fatigue life observed for railroad wheels. This is mainly due to two 

reasons. One is that the total life of the railroad wheel is the sum of the crack initiation 
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life and the crack propagation life. In this section, we only discuss fatigue crack 

“initiation life” and do not include fatigue crack “propagation life”. A wheel reaching its 

initiation life does not always mean it fails. The other reason is that the laboratory test 

data are obtained under constant loading conditions. The railroad wheels are under 

spectrum loading. According to Union Pacific data, a large number of the loading cycles 

for the railroad wheels cause stresses are well below fatigue strength, which indicates that 

those loading cycles cause no damage to the wheels.  

 

 

 

 

 

 

Fig. 36 Relationship between damage 
accumulation rate and fatigue endurance 

limit 

Fig. 37 Maximum equivalent stress 
amplitude for materials vs. strength ratio 

 

In the proposed multiaxial fatigue model, the material parameter 
ff NN f/ts =  is 

important, and is the ratio between torsional fatigue strength and uniaxial fatigue strength. 

Several authors (Carpinteri A., Spagnoli, 2001; Papadopoulos, 1997) correlate this 

parameter with the material ductility. s  increases as the material gets brittle. For the 

commonly used cast iron for railroad wheels, it falls into the range 1s3/1 ≤≤ .  

A 0.914 meter (36”) railroad wheel under 160 KN vertical loading is again used 

for the calculation. The maximum equivalent stress amplitudes for different values of s  

are computed and plotted in Fig. 37. It is interesting to find that not only the maximum 
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equivalent stress amplitude but also the critical location changes as s  increases. The 

equivalent stress amplitudes at two different locations are plotted together. One location 

is 5mm below the tread surface, the other one is on the tread surface.  

 

 

 

 

 

 

 

 

Fig. 38 Tresca stress and normal stress distribution of wheel/rail contact 

 

From Fig. 37, it shows different trend for the maximum equivalent stress 

amplitude corresponding to s . For smaller s , the crack is likely to initiate at subsurface. 

For larger s  (more brittle material), the crack is likely to initiate from surface. A possible 

explanation is described below. The maximum shear stress (Tresca stress) and normal 

stress distribution are plotted in Fig. 38. Fig. 38 shows that the maximum normal stress 

and a smaller shear stress occur on the tread surface, and the maximum Tresca stress and 

a smaller normal stress occur at some depth below the tread surface. According to the 

proposed multiaxial fatigue model, the final fatigue damage is sum of the contributions 

by both normal stress and shear stress. For a ductile material, the characteristic plane is 

close to the maximum shear stress plane and is more likely to initiate at a location with 

a) Maximum shear stress (Tresca stress) 
distribution  

b) Normal stress distribution 
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larger shear stress (some depth below the tread surface). For a brittle material, the 

characteristic plane is close to the maximum principal stress plane and is more likely to 

initiate at a location with larger normal stress (on the tread surface). 

3.3  Crack propagation in railroad wheels 

There are two major groups of models for the subsurface fatigue crack analysis 

under rolling contact loading. One is the group of fatigue crack initiation prediction 

models based on the S-N or e-N curve approach. This type of models has been discussed 

in the last section. The other is the group of fatigue crack propagation prediction models 

based on the fracture mechanics and is discussed below. 

3.3.1 Previous work 

Guagliano and Vergani (2005) proposed a semi-analytical approach for the 

analysis of internal cracks in wheels, in which the finite element method with the applied 

Hertz contact loading is used to calculate the stress intensity factors. Lansler and Kabo 

(2005) used a simplified 2D finite element model for the analysis of subsurface crack 

face displacements in railway wheels. Bogdański and Trajer (2005) used a simplified 

plane strain finite element model and the applied Hertz contact pressure for the analysis 

of stress intensity range in rolling contact fatigue. Glode  and Ren (1998) combined a 

simplified finite element analysis with applied Hertz contact pressure and a mixed-mode 

crack growth model based on strain energy release rate for the fatigue crack propagation 

analysis. Cho and Komvopoulos (1997) and Komvopoulos (1996) used a simplified finite 

element analysis with applied Hertz contact pressure and a mixed-mode crack 

propagation model based on the maximum shear stress intensity factor (mode II). 
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The proposed finite element computational methodology for the wheel/rail 

contact described in the last section is used to calculate the stress intensity factors. The 

crack propagation prediction of railroad wheels is predicted using the obtained stress 

intensity factors and the fundamental mixed-mode fatigue crack propagation model 

described in chapter 2.. 

Most of the available subsurface crack analyses are focused on the stress intensity 

calculations. Some of them use a simplified mixed-mode crack propagation model, such 

as the strain energy release rate model of Glode  and Ren (1998). Feng et al (2006) 

observed different crack growth behavior under proportional and nonproportional loading 

paths with identical loading magnitude and stated that the models based on the strain 

energy release rate cannot represent this trend. Traditionally, the models for mixed-mode 

crack propagation are developed and validated using proportional loading, i.e. a plate 

with inclined crack under remote uniaxial loading. In the later part of this section, it is 

shown that the subsurface crack stress intensity factor histories are nonproportional under 

rolling contact condition. A mixed-mode crack propagation model, which can consider 

the effect of loading non-proportionality, is required for the crack propagation and fatigue 

life prediction for railroad wheels.  

A general methodology for subsurface fatigue crack propagation analysis for 

railroad wheels is proposed in this section. It combines a 3D finite element model for the 

wheel/rail contact and a mixed-mode crack propagation model developed in Chapter 2. 

Parametric studies are performed using the proposed methodology for different vertical 

loadings, wheel diameters, crack geometries and crack surface friction coefficients.  
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3.3.2 Finite element modeling and crack propagation simulation 

Following the description of the finite element modeling for crack initiation 

simulation, the same full model for wheel/rail contact analysis is used. A sub-model with 

an embedded crack is built. The results of the full-model are interpolated on the cutting 

edge of the sub-model corresponding to different calculation steps, and the interpolation 

results are applied as boundary conditions to the sub-model.  

 

 

 

 

 

 

 

 

 

 

Fig. 39 Finite element modeling of wheel/rail contact with subsurface crack 

 

 An elliptical crack is built into the sub-model. The crack location and orientation 

are determined from the previous numerical prediction of the initial fatigue crack profile 

(Section 3.2.3), which is consistent with the field observation of subsurface crack in 

railroad wheels. The major axis is along the track direction and the minor axis is 

perpendicular to the track direction. Based on the field observations of the initial fatigue 
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crack profile, the aspect ratio of the elliptical crack is assumed to be 1.5. The subsurface 

crack is modeled as two contact surfaces to make sure that the two crack surfaces do not 

penetrate each other. On the crack surfaces, area contact elements (CONTACT 174 and 

TARGET 170 in ANSYS) are used. Friction effect is also included between the two 

crack surfaces. A very fine mesh (the average element length is about 0.1 mm) is applied 

near the crack region. The finite element models of the full model, sub-model and crack 

are shown in Fig. 39. 

 

 

 

 

 

 

 

 

 

Fig. 40 Finite element modeling methodology with subsurface crack 

 

In sub-modeling, the results from the sub-model need to be verified to make sure 

the cut boundaries are far enough from the stress concentrations (contact region and crack 

tip in this problem). The results in the sub-model are obtained using a fine mesh. They 

need not agree with the results from the coarse-mesh global model. The disagreement can 

be caused not only by mesh refinement differences, but also due to geometric and 
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material nonlinearities around the contact region. A detailed explanation can be found in 

ANSYS (2003). The cutting edge results from sub-model analysis are compared with the 

results of the full-model. If the difference is small enough, output the results in sub-model 

for future fatigue analysis. Otherwise, change the sub-model and repeat the previous steps. 

The flowchart of the finite element modeling is shown in Fig. 40.  

The wheel profile is chosen according to the AAR standard (1998) wide flange 

contour. The wheel diameter is 0.914 meter (36 inches). The subsurface crack is assumed 

to be located locate 6 mm below the tread surface, with an inclined angle of 20 degrees 

with respect to the tread surface. The semi-minor axis is 5 mm. In the current study, the 

initial contact point is assumed to occur at the railhead center and wheel tread center. 

The static load analysis of the wheel/rail contact is performed first. The results of 

the sub-model are plotted in Fig. 41 and Fig. 42. Fig. 41 shows the Von Mises stresses 

from two different section views. Fig. 42 shows two in-plane shear stresses ( xyτ  and yzτ )  

from two different section-views. From the Fig. 41, it is found that the maximum Von 

Mises stress occurs at some depth below the tread surface. The stress decreases quickly 

as the depth increases. The maximum Von Mises stress also occurs around the crack tip, 

which is caused by the stress singularity near the crack tip. The high stress only occurs 

within a small region of the contact location. The stress in the other parts of the model is 

almost zero. This indicates that only a small portion of the motion simulation is needed 

because the stress far away from the contact location is zero.  

From Fig. 42, a butterfly pattern of the shear stress yzτ  is observed. The 

maximum value also occurs at the crack tip. From Fig. 41(a) and Fig. 42(a), the stress 

pattern indicates multiple contact points between the wheel/rail interfaces. The contact 
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pressure and contact area on the wheel tread surface are plotted in Fig. 43. Two contact 

points are observed: one is near the center of the flat surface of the tread, and the other 

near the flange corner. This clearly shows that, the contact area near the flange corner is 

different from that predicted by the traditional Hertz theory, which is usually assumed to 

be an ellipse.  

 

 

 

 

 

 

 

 

Fig. 41 Von-Mises stress distribution of wheel/rail contact with subsurface crack 

 

 

 

 

 

 

 

 

Fig. 42 In-plane shear stress distribution of wheel/rail contact with subsurface crack 

(a) Front Section View (a) Left Section View 

(a) Distribution of xyτ  (b) Distribution of yzτ  
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 After performing the static analysis, we simulate the wheel rotation on the rail, 

which is the normal motion mode of the wheel. This is done by applying the proper 

boundary conditions on the pilot node in the full model. Details about controlling the 

motion in contact analysis can be found in section 3.2.3.  

 

 

 

 

 

 

 

 

 

Fig. 43 Stress distribution of contact area 

 

After performing the static analysis, we simulate the wheel rotation on the rail, 

which is the normal motion mode of the wheel. This is done by applying the proper 

boundary conditions on the pilot node in the full model. Details about controlling the 

motion in contact analysis can be found in Liu et al (2006).  

The current study focuses on the subsurface crack behavior under rolling contact 

loading. The crack deformation behavior is studied first. A relative displacement between 

is defined same as Lansler and Kabo (2005). 

)III,II,I(u)III,II,I(u)III,II,I(u lowerupperrel −=                  ( 96 ) 
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where relu  is the relative displacement between the upper crack surface and the lower 

crack surface. upperu  and loweru  are the absolute displacement of the upper and lower crack 

surface, respectively. )III,II,I(  indicates the three modes of crack deformation, i.e. 

Mode I, Mode II and Mode III, respectively.  

 

 

 

 

 

 

 

Fig. 44 Relative crack surface displacement 

 

The maximum relative displacements along the major and minor axis are plotted 

in Fig. 44. Due to the possible non-proportionality of the stress intensity histories in the 

three modes, those maximum values may not occur simultaneously. Fig. 44 shows that 

both mode II and III components are significant and must be included into the fatigue 

crack propagation analysis. During the rolling contact, the crack surfaces are closed and 

no opening displacement for the mode I component exists. The negative sign of mode I 

displacement in Fig. 44 is due the small penetration of the contact element in the 

numerical calculation and cannot occur in realistic situation. Compared with the larger 

mode II and mode III displacements, mode I displacement is small and its effect is 

ignored in the current study. 
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The mode II and III stress intensity histories (SIF) of two crack tips at the major 

axis and the minor axis (points 1 and 2 in Fig. 39(d)) during half a revolution of the 

wheel rotation are plotted in Fig. 45. The x-axis does not indicate the real time and is the 

time step in FE analysis during the simulation of wheel rotating. Fig. 45 shows that the 

SIF in the wheel under rolling contact condition is not proportional, which indicates that 

the maximum mode II and mode III SIF do not occur simultaneously. The FEA results 

only show very small residual stresses at these two locations (nonzero SIF values at the 

end of the calculation). The residual stresses are small and their effects are negligible in 

the current analysis. 

 

 

 

 

 

 

 

 

Fig. 45 Stress intensity factor history under rolling contact 

 

After obtaining the stress intensity factor histories of the wheel, the proposed 

multiaxial fatigue crack propagation model is used to calculate the fatigue crack 

propagation life and crack propagation profile. Several different models with different 
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relationship between the crack size and the stress intensity factor are used for fatigue life 

prediction. The uniaxial fatigue crack propagation curve is reported by Kuna et al (2005) 

for a ductile wheel iron and is plotted in Fig. 46. The pure torsional fatigue crack 

propagation curve is not reported. We assume the ratio of s as 0.6, which is typically for 

ductile metals (Liu and Mahadevan, 2005(a)).The stress ratio effect is included in the 

crack propagation using the well-known Walker (1970) model. The general crack 

propagation function is expressed as 

meff )
)R1(

K
(C

dN
da

γ

Δ
−

=                                               ( 97 ) 

where 
dN
da  is the crack growth rate. effKΔ  is the effective stress intensity range for 

mixed-mode loading. For uniaxial fatigue loading, it equals mode I stress intensity factor. 

R  is the stress ratio. C , m  and γ are material parameters. Eq. (97) and experimental 

results are plotted together in Fig. 46. 

 

 

 

 

 

 

Fig. 46 Fatigue crack growth rate curve and experimental data 
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)a(YaFKeff πΔΔ =                                               ( 98 ) 

where FΔ  is the applied vertical loading range. )a(Y  is a geometry function considering 

the effect of crack configuration and boundary conditions, which is calibrated using the 

finite element results. Substituting Eq. (98) into Eq. (97) and solve for fatigue life 

∫
−
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a m
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m
0 ))a(Ya(

da)R1(
)F(C

1)a(N
πΔ

γ

                                    ( 99 ) 

where )a(N  is the number of cycle to growth a crack from the initial length 0a  to the 

length of a . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 47 Crack shape comparison between numerical prediction and field observation 

75 mm 

a) Field observations of crack shape 

b) Numerical prediction of crack shape 
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In the current study, the crack shape is assumed to be controlled by the four points 

on the crack front (points 1-4 in Fig. 39(d)). The crack front profile is approximated using 

an elliptical curve. The crack growths along the major and the minor axis are calculated 

using the proposed method. The crack front contours at the different number of cycle are 

plotted in Fig. 47. The increment of the number of cycles between each contour is 

1.5x106. A couple of field observations of the crack are also plotted for comparison. 

Notice that the current analysis uses the constant maximum design loading for wheels 

and the current comparison is only qualitative. Quantitative comparison of fatigue lives 

needs extensive experimental and site data, such as loading spectra and failure crack 

lengths.  

It is seen that the numerical prediction of the crack shape agrees very well with 

the field observation. The early stage crack propagation is in a circular configuration, 

which shows almost equal crack propagation rate in both the minor and major axis 

direction. Then the crack propagates in an elliptical manner, which is mainly along the 

major axis direction (track direction). Both numerical prediction and field observations 

show a compressed contour in the minor axis direction and extruded contour in the major 

axis direction.  

3.3.3 Parametric study 

In this section, the influence of several factors on the fatigue damage of the 

wheels is studied, using the finite element and multiaxial fatigue models developed in the 

previous sections.  

The diameter of the wheel will affect the fatigue damage. One simple explanation 

is that the radius of the wheel will affect the internal stress in the wheel according to the 
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Hertz theory. However, for non-linear contact analysis and multiaxial fatigue analysis, 

the relationship between fatigue life and wheel diameter needs to be studied more 

carefully. A set of numerical simulations of wheels with different diameters, from 0.711 

meter (28”) to 0.965 meter (38”) (AAR, 1998), are used. The vertical loading uses the 

maximum design load for 0.914 meter (36”) wheel (AAR, 1998). The equivalent mixed-

mode stress intensity factors for different wheel size are plotted in Fig. 48. From Fig. 48, 

it is seen that the equivalent mixed-mode stress intensity factor decreases as the wheel 

diameter increases. It is interesting to notice that for 0.914 meter (36”) wheel, the mixed-

mode SIF exhibits local maxima, which indicates larger fatigue damage for this type of 

wheel. This phenomenon is also observed in section 3.2.3 and Ekberg (2000) using the 

classical S-N curve fatigue analysis.   

 

 

 

 

 

 

 

Fig. 48 Wheel diameter effect on the SIF Fig. 49 Loading effect on the SIF 

 

The equivalent SIF for the 0.914 meter (36”) wheel under different vertical loads 
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Fig. 49. The equivalent increases as the vertical load increases almost linearly.  For 

different points at the crack front, the slopes change slightly. 

The effects of different crack lengths are plotted in Fig. 50. A 0.914 meter (36”) 

railroad wheel under 146.2 KN vertical loading with different semi-minor axis length (1 

mm, 3 mm, 5mm, 10 mm and 15 mm) are calculated. Different behaviors are observed 

for the SIF at the major axis and at the minor axis.  

For the point at the major axis (point 1 in Fig. 39(d)), the SIF increases as the 

crack length increases. For relative short cracks, the increase is significant. For long 

cracks, the increase is small. The reason is that the high stress only occurs within a small 

region near the contact location. The stress in the other parts of the wheel is almost zero 

at a certain time instant. When the crack is long enough to exceed the stressed region, the 

crack beyond the stressed region has little effect on the stress field around the crack tip 

and the SIF. The long crack experience almost same SIF range during one evolution of 

the wheel.  

For the point at the minor axis (point 2 and 4 in Fig. 39(d)), the SIF does not 

change monotonically as the crack length increases. For short cracks, the SIF increases as 

the crack length increase. For long cracks, the SIF decreases as the crack length increases. 

The reason is that long cracks exceed the stressed region near contact location and the 

crack tip experiences less stress compared with the case that the crack tip is within the 

stressed region. This is the reason the crack contour is compressed along the minor axis 

in Fig. 3.47. 

A 0.914 meter (36”) railroad wheel under 146.2 KN vertical loading with 

different crack orientations (0 degree, 10 degree, 20 degree and 30 degree) is used for the 
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calculation. The SIF of different crack orientations are plotted in Fig. 51. From Fig. 51, 

the SIF changes slightly with respect to the crack orientation. For points 1 and 4, the SIF 

experience a local maxima between 20~30 degree. This possibly explains why the crack 

observed in field shows a similar orientation about 20 degree to the tread surface.   

 

 

 

 

 

 

Fig. 50 Crack length effect on the stress 
intensity factor 

Fig. 51 Crack orientation effect on the 
stress intensity factor 

 

A 0.914 meter (36”) railroad wheel under 146.2 KN vertical loading with 

different crack depths (3 mm, 4 mm, 5 mm, 6 mm, 7 mm and 8 mm below the tread 

surface) is used for the calculation. The SIF of different crack depths are plotted in Fig. 

52. From Fig. 52, the SIF does not change monotonically with respect to different crack 

depths. The SIF experiences local maxima around a depth of about 6~7 mm. This 

possibly explains why the crack observed in the field shows a similar depth about 5~10 

mm below the tread surface.   

A 0.914 meter (36”) railroad wheel under 146.2 KN vertical loading with 

different crack surface friction coefficients (0, 0.1, 0.2, 0.3, 0.4 and 0.5) is used for the 

calculation. The SIF of different crack surface friction coefficients are plotted in Fig. 53. 
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From Fig. 53, the crack surface friction coefficient has little effect on the SIF and its 

effect can be ignored in the current study. 

 

 

 

 

 

 

Fig. 52 Crack depth effect on the stress 
 intensity factor 

Fig. 53 Crack surface friction coefficient 
 effect on the stress intensity factor 

 

3.4  Summary 

A multiaxial fatigue crack initiation and propagation propagation life prediction 

model is developed in this chapter, which is based on the multiaxial fatigue theory and 

mixed-mode crack propagation model developed in Chapter 2.  

The new multiaxial fatigue model is applied to the fatigue life prediction of 

wheel/rail contact problem. Non-linear finite element analysis is used for stress and stress 

intensity factor computation and a submodeling technique is used to improve the 

efficiency and accuracy. The stress and stress intensity factor history is then used to 

calculate the fatigue life. A numerical example is implemented and compared with field 

observation of failure pattern. The effect of several parameters, namely wheel diameter, 

material properties, vertical loads, crack length, crack orientation, crack depth and crack 

surface friction, on the equivalent damage and stress intensity in railroad wheels are 

studied using the proposed model. 
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In the current study, the effects of different parameters have been studied 

individually. Future research needs to consider interactive effects of those parameters 

because the wheel/rail contact problem is highly nonlinear. For example, what is the 

variation of the equivalent stress intensity factor if both crack depth and vertical loading 

change? Extensive experimental data is needed to validate such interaction models. Also, 

other effects, such as residual stress from manufacturing, brake loading, thermal loading, 

dynamic and impact loadings, material defects, etc, need to be included in the proposed 

methodology.  
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CHAPTER IV  

 

STOCHASTIC FATIGUE MODELING AND RELIABILITY 

 

4.1 Overview 

In Chapters II and III, a general deterministic methodology for multiaxial fatigue 

analysis has been developed and applied to the wheel/rail rolling contact problem. 

However, due to the large scatter observed in field and experimental data, it is more 

appropriate to include the variability in assessing the reliability of the railroad wheels.  

In this chapter, the previous deterministic analysis methodology is extended to 

probabilistic analysis. An efficient statistical design of experiments technique is used to 

reduce the computational cost, and a response surface is developed based on the 

numerical experiments.  A simulation based methodology for reliability calculation is 

proposed.  

The reliability analysis of railroad wheels is a time-dependent reliability problem. 

The fatigue damage caused within the wheel varies with location and time, and is deemed 

as a random field/process. Stochastic field/process expansion techniques are applied for 

increased accuracy in describing the random damage field/process. Due to the modular 

nature of the proposed method, the analyst could choose classical statistical analysis if the 

prediction accuracy is acceptable or the experimental data is not sufficient.  

The methodology used for railroad wheel reliability analysis in this chapter is 

organized as follows: 
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The stochastic fatigue damage accumulation process under variable amplitude 

loading and spectrum loading is studied first. A non-linear damage accumulation rule is 

proposed. Uncertainty modeling of material properties and applied loading is explored to 

describe the randomness observed in service based on the experimental data from 

laboratory. 

The multiaxial fatigue damage accumulation process is numerically simulated 

using deterministic analysis techniques (finite element and fatigue damage analysis). This 

work has been done in Chapters II and III. 

A response surface method (RSM) combined with design of experiments (DOE) 

is used to obtain a simplified empirical formula for the damage accumulation process 

considering several sources of variation. 

Time-dependent failure probability is evaluated, where the failure is defined to 

occur when the accumulated damage exceeds an acceptable value or the crack exceeds a 

critical value. A Monte Carlo simulation method is used to calculate the probabilistic life 

distribution. 

Experimental and field data are collected and analyzed. The information is used to 

calibrate and validate the proposed methodology. 

 

4.2  Stochastic fatigue damage accumulation 

The fatigue process of mechanical components under service loading is stochastic 

in nature. Life prediction and reliability evaluation is still a challenging problem despite 

extensive progress made in the past decades. A comprehensive review of early 

developments can be found in Yao et al (1986).  
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Compared to fatigue under constant amplitude loading, the fatigue modeling 

under variable amplitude loading becomes more complex both from deterministic and 

probabilistic points of view. An accurate deterministic damage accumulation rule is 

required first, since the frequently used linear Palmgren-Miner’s rule may not be 

sufficient to describe the physics (Fatemi and Yang, 1997). Second, an appropriate 

uncertainty modeling technique is required to include the stochasticity in both material 

properties and external loadings, which should accurately represent the randomness of the 

input variables and their covariance structures. In addition to the above difficulties, such 

a model should also be computationally and experimentally inexpensive. The last 

characteristic is the main reason for the popularity of simpler models despite their 

inadequacies. 

In this section, a general methodology for stochastic fatigue life prediction under 

variable loadings is proposed, which combines a nonlinear fatigue damage accumulation 

rule and uncertainty modeling methods for material properties and applied loading. A 

brief review of fatigue damage accumulation rule is given first and a simple nonlinear 

damage accumulation model is proposed. Next, the uncertainty modeling is discussed and 

a stochastic S-N curve approach using the Karhunen-Loeve expansion technique is 

proposed to represent the covariance behavior observed in the experimental data. A rain-

flow counting technique together with a random loading generation method is used to 

represent the uncertainty observed in the applied loading. The numerically generated 

material properties and applied loading are used in the Monte Carlo simulation to 

calculate the fatigue life distribution of mechanical components. A wide range of 

experimental data is explored to validate the proposed methodology. The probabilistic 
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fatigue life predictions of the numerical model are compared with those from 

experimental data under variable loadings. 

The proposed model offers several advantages over existing approaches. It uses a 

nonlinear fatigue damage accumulation rule, which improves the accuracy of the Miner’s 

rule by considering the load dependence effect of the fatigue damage. Unlike most of the 

previous nonlinear fatigue damage accumulation models, the proposed model does not 

require cycle-by-cycle calculation and can directly use the cycle counting results from the 

loading history, which significantly reduces the calculation effort, especially for the 

reliability evaluation. A stochastic S-N curve approach can capture the covariance 

structure of the fatigue damage process under different stress levels (which is usually 

ignored by other models), and thus makes the reliability evaluation more accurate 

compared to the available models.  

4.2.1 Damage accumulation rule 

Fatigue damage increases with applied loading cycles in both constant loading 

and variable loading. However, the characteristics of damage accumulation under 

different loadings are different. For more than eighty years, researchers have tried to find 

the best rule to describe the fatigue damage accumulation behavior. A comprehensive 

review is not the objective of this paper and can be found in Fatemi and Yang (1998). 

Only a few damage accumulation rules are briefly described below.   

Among all the fatigue damage accumulation rules, the LDR (linear damage 

accumulation rule), also known as Palmgren-Miner’s rule, is probably the most 

commonly used. Miner (1945) expressed the fatigue damage accumulation under variable 

loadings as 
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where D  is the fatigue damage of the material, in  is the number of applied loading 

cycles corresponding to the ith load level, iN  is the number of cycles to failure at the ith 

load level, from constant amplitude experiments. Eq. (100) implies that fatigue damage 

accumulates is in a linear manner.  

If LDR is used for fatigue life prediction, it is usually assumed that the material 

fails when the damage D reaches unity. However, it has been shown that LDR produces a 

large scatter in the fatigue life prediction of both metal and composites (Shimokawa and 

Tanaka, 1980; Kawai and Hachinohe, 2002). Also, LDR cannot explain the load level 

dependence of fatigue damage observed in the experiments (Halford, 1997). Despite all 

those deficiencies, LDR is still frequently used due to its simplicity. 

In order to improve the accuracy of LDR, nonlinear functions have been proposed 

to describe the damage accumulation. Marco and Starkey (1954) expressed the damage 

accumulation function as  

iC
k

1i i

i )
N
n

(D ∑
=

=                                                                   ( 101 ) 

where iC  is a material parameter related to ith loading level. A similar formula named 

damage curve approach has been proposed by Manson and Halford (1981). Eq. (101) can 

reflect the load-level dependence and load-sequence dependence effects of the fatigue 

damage accumulation. It is shown that the Miner’s sum ∑
=

>
k

1i i

i 1
N
n

 for low-high load 

sequences and ∑
=

<
k

1i i

i 1
N
n

 for high-low sequence (Fatemi and Yang, 1998). As pointed 
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out by Van Paepegem and Degrieck (2002), this conclusion cannot be applied to all 

materials in the existing experimental data base in the literature.  

Due to the nonlinearity of Eq. (101), the fatigue damage under service loading 

needs to be computed in a cycle-by-cycle manner, which requires a large amount of 

computational effort. This disadvantage can be circumvented by approximating the 

nonlinear function by double linear functions (Halford, 1997). In each stage, a linear 

damage accumulation rule is applied. For two-block loading, the double linear damage 

model is easy to implement. For the multi-block loading or spectrum loading, the 

determination of the parameters in the model becomes complicated (Halford, 1997, 

Goodin et al, 2004). 

Several more complex fatigue damage accumulation functions have been 

proposed for increased accuracy.  Halford and Manson (1985) proposed a double damage 

curve approach, which combines the accurate parts of both the double linear damage 

approach and the damage curve approach. A similar result was obtained by using the 

fatigue crack growth concept (Vasek and Polak, 1991). A more recent approach for 

fatigue damage accumulation is to use a nonlinear continuum damage mechanics model 

(Fatemi and Yang, 1998; Cheng and Plumtree, 1998; Shang and Yao, 1999). Despite the 

different proposed damage functions, the basic idea is to calculate the fatigue damage in 

an evolutionary manner using a scalar damage variable. The main differences lie in the 

number and characteristics of the parameters used in the model, in the requirements for 

additional experiments, and in their applicability (Fatemi and Yang, 1998). 

From the brief discussion above, it is found that most of the nonlinear fatigue 

damage models improve the deficiencies within LDR by considering additional loading 
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effects. However, they are usually computationally expensive compared to LDR 

especially when the applied loading is repeated block loading or spectrum loading, since 

most of them require cycle-by-cycle calculation. This disadvantage makes it difficult to 

perform simulation-based reliability evaluation. Furthermore, the parameters calibration 

using experimental results is hard to perform for some nonlinear fatigue damage models. 

The model parameter calibration of double linear damage rule is difficult if only multi-

block loading test is available. Some models contain several parameters and need couples 

of different variable amplitude loading data to solve these parameters uniquely (Goodin 

et al, 2004). In the following section, we are trying to develop a nonlinear damage 

accumulation model, which improves the deficiencies within the linear damage 

accumulation rule but still maintains its computational simplicity. Since the major 

deficiency of LDR is that it is independent of applied load levels, this paper attempts to 

modify the LDR to make it load level dependent and yet preserve the linear summation 

form to make the calculation easier.  

We first discuss the stationary loading process. Under laboratory conditions, the 

stationary loading process is usually approximated by repeated multi-block loading. 

Within each block, the loading is not stationary. But this assumption of stationary process 

holds when the material experiences many blocks before it fails (i.e. high-cycle fatigue 

problem). Under the stationarity assumption, the distribution of applied loading cycles is 

adequate to describe the loading process.  

To make the discussion easier for the fatigue damage accumulation under 

stationary loading, let us consider a fatigue problem under a repeated two-block loading 
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first. fN  is the total number of cycles to failure. If the linear damage accumulation rule 

is used, we obtain: 
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Eq. (100) can be rewritten as 
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From Eq. (103) we can express the cycle ratio 
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n  as a function of cycle 
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If the fatigue S-N curve under constant amplitude loading (s) is expressed as 

)s(gN =                                                      ( 105 ) 

then, 1A  in Eq. (103) is a material parameter depending on the stress levels and equals 

)s(g
)s(g

2

1 . Similarly, the cycle ratio of the second stress level can be expressed as a function 

of the cycle distribution as 
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where 2A  is a material parameter depending on the stress levels and equals 
)s(g
)s(g

1

2 . 

 Substituting Eq. (106) and Eq. (104) into Eq. (103), we obtain 
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The above derivation is under the assumption of a linear damage accumulation 

rule. For the materials that follow this rule, the right hand of Eq. (107) equals unity. For 

materials that do not follow the linear rule, iA  cannot be determined only by constant 

amplitude experiments. They depend on the material properties and loading conditions. 

This parameter can be calibrated using one additional fatigue experiment under variable 

loading. In the proposed model, we plot the cycle ratio and cycle distribution together for 

each stress level. Then we compute the coefficients iA  in Eq. (104) through least square 

regression. Based on the experimental data collected in this study, the following 

empirical function is used to calculate iA : 

βα )s/s(A ii =                                                         ( 108 ) 

where α  and β  are material parameters; is  is the current stress level and s  is the mean 

value of all the stress amplitudes in each block. Notice that the modified LDR (Eq. (107)) 

is stress dependent. 

Eq. (107) is extended for repeated multi-block loading as 

∑∑
==

=
−+

=
k

1i
i

i

i

k

1i i

i

A1
A

1
N
n

Ψ

ω

                                                ( 109 ) 

For continuous stationary spectrum loading, Eq. (109) is expressed as 
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where the cycle distribution iω (probability description for block loading) becomes the 

probability density function )s(f of the applied continuous random loading (see Fig. 54). 

Eq. (109) and Eq. (110) constitute the proposed fatigue damage accumulation model 

under stationary loading. Compared with the linear damage rule, the proposed model 

includes the effect of the stress levels. The Miner’s sum is not a constant but depends on 

the cycle distribution of the applied loadings. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 54 Schematic illustration of cycle distribution using rain-flow counting method 

 

When using Eq. (109) (or Eq. (110)) for fatigue life prediction, the right hand side 
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distribution of the different stress levels at failure can be approximated using the cycle 

distribution value in a single block. For high-cycle fatigue, this is a reasonable 

approximation. Then the fatigue life prediction is performed in the same way as the 

classical procedure using the linear damage rule.   

From Eq. (109) (or Eq. (110)), it is seen that the proposed model still maintains 

the simplicity of the linear damage rule. It can directly use the cycle counting results and 

does not require cycle-by-cycle calculation. The proposed model includes the load level 

effect and load contents effects, which improve the deficiencies within the LDR model. 

In the later part of this paper, it is shown the proposed model give a more accurate 

prediction with similar calculation effort compared to the LDR model. 

Fatigue damage accumulation under non-stationary loading is complicated 

compared with that under stationary loading. The proposed model described above is 

only applicable to stationary loading as it only considers the cycle distribution of the 

applied loading. For non-stationary applied loading, the cycle distribution is not sufficient 

to describe the loading process. Under laboratory conditions, step loading is also used for 

variable loading tests. The material is first pre-cycled under one or several stress levels. 

Then the material is cycled till failure at a certain stress level. This type of loading is non-

stationary as the mean value and variance of the applied loading change corresponding to 

time. For this type of loading, load sequence effect of the fatigue damage accumulation is 

observed for some materials (Fatemi and Yang, 1998). The high-low and the low-high 

loading sequences result in different Miner’s sum. A comprehensive study of the general 

non-stationary loading needs further work. In the current study, several step loading 
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experimental data are collected. The proposed model shown above is modified to include 

the load sequence effect for step loadings. 

The model coefficients iA  expressed in Eq. (108) are modified as 

   )
s
slog()

s
s

log()Alog(
k

i
i γβα ++=                                            ( 111 ) 

where γ  is a material parameter to describe the load sequence effect of the material, and 

ks  is the stress amplitude at the last step. The third term in Eq. (111) represents the load 

sequence effect on the final fatigue damage of the material. When the material does not 

experience load sequence effect ( 0=γ ) or the applied loading is stationary 

( 0)
s
slog(
k

= ), Eq. (111) reduces to Eq. (108). The material parameters in Eq. (111) can 

be calibrated using the high-low and the low-high step loading experiments following the 

same procedure for repeated block loading. 

Eq. (109) and Eq. (111) are used together for fatigue life prediction under step 

loadings. For non-stationary loading, the cycle distribution at failure is not known before 

hand. Therefore a trial and error method can be used to find the solution of Eq. (109). The 

initial values for cycle distribution can be computated using the LDR model. It is found 

that usually a few iterations are enough for convergence. 

The prediction results using the proposed nonlinear damage accumulation rule are 

compared with experimental data available in the literature. Only the mean value for the 

fatigue damage is compared here. The comparison of the variability of the fatigue 

damage is shown in the next section. The objective is to show the applicability of the 

model to different materials and different loadings. The collected experimental data 
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includes metals and composites under step and multi-block loadings. Another guideline 

in collecting the data is that the experimental data should have enough data points both in 

the constant amplitude tests and variable amplitude tests, so that reliable statistical 

analysis and comparisons can be performed.  

A brief summary of the collected experimental data is shown in Table 14, which 

includes material name, reference, variable loading type, and specimen numbers at 

constant and variable loading tests. In Table 14, the abbreviation and schematic 

illustration of the applied variable loading is shown in Fig. 54.  

 

Table 14. Experimental description of collected materials 

*The abbreviation and schematic illustration of the type of the variable loading is shown in Fig. 54. 
** The number of specimens indicates the number under the same stress level (constant loading) or the 
same type of variable loading.  

 

The material fatigue properties (constant S-N experimental data) are plotted in Fig. 

55. The statistics of the experimental data are shown in Table 15, which includes the 

mean value and standard deviation of the fatigue life at different stress levels. The 

original data for LY12CZ aluminum alloy under constant amplitude tests are not 

Number of specimens** Material name Refence Types of Variable 
loading* Constant loading Variable loading 

Nickel-silver Tanaka et al 
(1984) 

TS  200 50 

16Mn steel Xie (1999) TS and MS 15 10 
LY12CZ 

aluminum alloy 
Wu (1985) MB N/A 15~21 

Carbon steel Xie (1999) TS 15~18 13~15 
45 steel-1 Zheng and Wei 

(2005) 
MB 10 9 

45 steel-2 Yan et al (2000) MB 10 6 
DD16 fiberglass 

composite 
laminates 

Mandell and 
Samborsky (2003) 

TB 15~20 3~62 
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available, thus only the statistics of the test data are listed in Table 15. The fatigue lives 

under constant amplitude tests are assumed to follow the lognormal distribution. 

 

Table 15. Statistics of constant amplitude S-N curve data 

Statistics of 
Fatigue life 

(log(N)) 

Statistics of Fatigue 
life (log(N)) 

Material Stress 
amplitude 

(MPa) 
Mean Std. 

Material Stress 
amplitude 

(MPa) 
Mean Std. 

478 5.62 0.10 525 5.33 0.32 
583 5.09 0.09 500 5.50 0.34 Nickel- 

silver 666 4.73 0.07 475 5.59 0.29 
394 5.05 0.10 450 5.82 0.35 
373 5.29 0.06 

45 steel-1 
 

400 6.15 0.26 16Mn steel 
344 5.85 0.07 750 4.49 0.15 

125.44 4.37 0.10 650 5.00 0.14 
101.92 4.76 0.04 630 5.04 0.12 
78.79 5.16 0.09 590 5.24 0.10 
49.98 5.65 0.15 

45 steel-2 

520 5.65 0.24 
46.06 6.01 0.25 206 5.48 0.39 

LY12CZ 
 

37.04 6.82 0.13 241 4.83 0.34 
366 4.73 0.19 328 3.29 0.27 
331 5.16 0.14 414 2.44 0.30 Carbon 

steel 309 5.79 0.16 

DD16 
fiberglass 
composite 
laminates 

   
 

The comparison of the prediction results using the proposed nonlinear fatigue 

damage accumulation rule and the experimental results is performed first. As shown in 

section 4.2.2, the three different uncertainty modeling techniques have no effect on the 

mean value of the fatigue damage. In order to minimize the randomness effect on the 

fatigue damage accumulation modeling, the mean values of the experimental data are 

used. The comparisons of Miner’s sum of the LDR and the proposed model are plotted in 

Fig. 56. The x-axis is the cycle distribution and the y-axis is the cycle ratio as described in 

Eq. (109). The dashed curves are the prediction of the proposed method and the points 

are experimental results. From Fig. 56, it is seen that the proposed function (Eq. (109)) 
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give a satisfactory prediction and relate the cycle ratio and cycle distribution under 

different loading conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 55 Constant amplitude S-N curve data for different materials 
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Fig. 56 Cycle ratio and cycle distribution relationship for different materials  

a) Nickel-silver b) 16Mn steel 

d) Carbon steel c) LY12CZ aluminum alloy 

e) 45 steel-1 

g) DD16 composite laminates 

f) 45 steel-1 
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The predicted Miner’s sums under variable loadings are compared with 

experimental results for all the materials in Fig. 57. From Fig. 57, it is seen that the 

proposed method gives a better prediction compared to the LDR. For composite 

laminates DD16 collected in this study, the average Miner’s sum is about 0.5, which is 

much lower than that predicted by the nonlinear damage accumulation rule. Using the 

LDR under this condition results a highly non-conservative prediction. 

 

 

 

 

 

 

 

Fig. 57 Comparisons between predicted and experimental Miner’s sum for different 
materials  

 

4.2.2 Uncertainty modeling of material properties 

In classical fatigue life analysis, a fatigue damage accumulation rule together with 

the material properties under constant amplitude loading is used to predict the fatigue life 

under variable loadings. Many probabilistic methods have been proposed to describe the 

statistics observed under constant amplitude fatigue tests and to evaluate the reliability 

under variable loadings. Depending on the method to handle the randomness in constant 

amplitude tests, the probabilistic methods can be grouped into two categories.   
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One type is to treat the fatigue lives at different stress levels as independent 

variables. The statistics of the random variables are described using a statistical 

distribution function, such as Weibull or lognormal. In this paper, we name this type of 

approach as statistical S-N curve approach. Liao et al (1995) used a model named 

dynamic interference statistical model to evaluate the reliability under spectrum loading, 

which assumes independent lognormally distributed life and linear fatigue damage 

accumulation. Kam et al (1998) compared several damage accumulation rules including 

the Miner’s rule using both Lognormal and Weibull distribution of fatigue life for 

composites. Le and Peterson (1999) also used lognormal distribution and the LDR for 

fatigue reliability analysis of engine blades. Shen et al (2000) used similar assumptions 

for fatigue life prediction under a narrow band Gaussian stochastic stress process. 

Kaminski (2002) used a perturbation-based stochastic finite element method for fatigue 

analysis of composites, in which the LDR was also used. The restrictions of input random 

variables of fatigue life is looser since only the numerical characteristics of the random 

variables are required in the computational methodology, such as mean and variance. 

The other widely used approach is to use a family of S-N curves corresponding to 

different survival probability of the material. This approach is also known as quantile or 

percentile S-N curve (referred as Q-S-N curve in this chapter later on). Shimakawa and 

Tanaka (1980) used the quantile S-N curve and the LDR to analyze the fatigue reliability 

under a two-step loading. Both lognormal and Weibull distribution assumption of fatigue 

life were explored. Kopnov (1993, 1997) proposed a method named intrinsic fatigue 

curve (IFC), which is another format of the quantile S-N curve approach, combined with 

the LDR for fatigue analysis. The difference between quantile S-N curve and IFC is that 
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Q-S-N uses a set of deterministic S-N curves and each represents a different survival 

probability level. IFC uses a single random function in which the realizations of the 

random function are the same as Q-S-N. A similar methodology for describing the scatter 

in the constant amplitude S-N curves was proposed by Pascual and Meeker (1999) using 

a random fatigue-limit model. This random fatigue limit is explicitly included in the S-N 

model. Maximum likelihood methods are then used to estimate the parameters of the S-N 

equation as well as the parameters of the fatigue limit distribution. If the fatigue limit 

takes the quantile value from the distribution, the resulting S-N curve is the quantile S-N 

curve.  Rowatt and Spanos (1998) used Q-S-N curves and Markov chain models 

proposed by Bogdanoff and Kozin (1984) for fatigue life prediction of composites. Ni 

and Zhang (2000) used Q-S-N and LDR for fatigue reliability and compared their 

prediction results with the experimental results under two-step loading. Zheng and Wei 

(2005) assumed that the constant fatigue life follows a lognormal distribution and used 

Q-S-N with LDR for probabilistic fatigue life prediction under repeated block loading. 

The model predictions were compared with experimental results for one type of steel. 

From a statistical point of view, both statistical S-N curve and Q-S-N curve have 

an important implicit assumption in representing the set of random variables. The 

statistical S-N curve approach assumes the covariance function of these variables is zero 

and the quantile S-N curve approach assumes the covariance function is unity. Either 

assumption can be barely achieved in the realistic condition. A more appropriate 

approach is to propose an S-N curve representation technique which can include the 

covariance structure of the constant amplitude fatigue lives. A schematic comparison of 

the various methods for representing the S-N curves is plotted in Fig. 58.  
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Fig. 58 Schematic comparisons of different approaches in representing the fatigue S-N 
curve 

 

In this work, the fatigue lives N under different constant amplitude tests are 

treated as random fields/processes with respect to different stress levels s. Stochastic 

expansion techniques are very successful in describing the variation in the corresponding 

random field/process. Several methods are available, such as spectral representation 

method (Grigoriu, 1993; Shinozuka and Deodatis, 1991), Karhunen-Loeve (KL) 

expansion method (Loeve, 1977), polynomial chaos expansion (Ghanem and Spanos, 

1991; Ghanem, 1999) etc. In this study, the KL expansion technique is used and a new 

stochastic S-N curve method is proposed based on the KL expansion technique. 

The fatigue lives under constant amplitude loading are assumed to follow the 

lognormal distribution for the sake of illustration. As mentioned earlier in this section, 
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both lognormal and Weibull distributions are commonly used in the literature. The 

lognormal assumption makes the ))s(Nlog(  a Gaussian process with mean value process 

of ))s(Nlog( and standard deviation of )s()Nlog(σ , where ))s(Nlog( is the mean S-N 

curve obtained by regression analysis. It needs to be pointed out that the Gaussian 

assumption is not a requirement in the proposed methodology. Non-Gaussian methods for 

random field representation are available and can be applied to the problem without 

difficulty. It is shown that the lognormal distribution gives a satisfactory prediction for 

the materials collected in this study. 

It has been shown that the variance is not a constant but a function of stress level s 

(Pascual and Meeker; 1999). The )s()Nlog(σ  represents the scatter in the data and can be 

obtained by classical statistical analysis. Based on the above assumption, the process 

)s(
))s(Nlog())s(N(log)s(Z

)Nlog(σ
−

=                                          ( 112 ) 

is a normal Gaussian process with zero mean and unit variance. 

From a physical standpoint, the autocovariance function of the fatigue lives 

should decrease as the difference between stress levels increases. An exponential decay 

function is proposed for the covariance function )s,s(C 21  of )s(Z  as  

21 ss
21 e)s,s(C −−= μ                                                  ( 113 ) 

where μ  is a measure of the correlation distance of )s(Z  and depends on the material. 

In classical S-N fatigue experiments, the specimen is tested until failure or runout at a 

specified stress level and cannot be tested at the other stress levels. Due to the non-

repeatable nature of fatigue tests, the covariance function cannot be determined by 

constant amplitude fatigue experimental data alone. Since in the proposed methodology, 
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the nonlinear fatigue damage accumulation model also needs one additional variable 

loading fatigue test to calibrate the model parameters α , β  and/or γ . μ  can be 

calibrated by the same variable loading fatigue test data as well.   

In KL expansion, the random process/field )s(Z  can be expressed as a function 

of a set of standard random variables, or, in other words, expressed as a combination of 

several random functions. Generally, the expansion takes the form 

∑
∞

=

=
1i

iii )s(f)()s(Z θξλ                                                ( 114 ) 

where )(θξ i is a set of independent random variables, satisfying  

                        
⎩
⎨
⎧

=
=

ijji

i

E
E

δθξθξ
θξ

))()((
0))((

                                                   ( 115 ) 

where E denotes the mathematical expectation operator, and ijδ  is the Kronecker-delta 

function. 

In Eq. (114), iλ  and )(xfi are the ith eigenvalues and eigenfunctions of the 

covariance function )s,s(C 21 , evaluated by solving the homogenous Fredholm integral 

equation analytically or numerically:                            

                      ∫ =
D

1ii2i21 )s(f)s(f)s,s(C λ                                     ( 116 ) 

In practical calculation, only a truncated number of terms in Eq. (114) is required 

to achieve the satisfied accuracy. Under the standard Gaussian assumption, ten to twenty 

terms are adequate to get very precise results. The detailed computational procedure for 

KL expansion can be found elsewhere (Phoon et al, 2002; Huang et al, 2002). 

From Eqs. (111)~(115), we obtain 
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∑ +=
∞

=1
)log( ))(log()()()())(log(

i
iiiN sNsfssN θξλσ                       ( 117 ) 

Substituting Eq. (118) into Eq. (109) (or Eq. (110)), we can solve for the fatigue 

life under variable amplitude loading. No analytical solution exists and Monte-Carlo 

simulation is used to find the probabilistic fatigue life distribution. 

The proposed uncertainty modeling method in this section includes the covariance 

structure in the fatigue analysis. The importance of the covariance structure on the final 

reliability evaluation can be illustrated using the example problem below.  

Consider a two-block loading case under linear damage accumulation assumption. 

The covariance function for statistical S-N approach, Q-S-N and the proposed stochastic 

S-N approach can be expressed as 

⎪
⎩

⎪
⎨

⎧

−=

−−=
−=

−− curveNSstochastice)s,s(C

NSQ1)s,s(C
curveNSlstatistica0)s,s(C

21 ss
21

21

21

μ

                    ( 118 ) 

For fatigue damage accumulation 

21
2

2

1

1 DD
N
n

N
nD +=+=                                                 ( 119 ) 

the mean value of the fatigue damage is 

)D(E)D(E)D(E 21 +=                                               ( 120 ) 

and the variance of the fatigue damage is 

)D(Var)D(Var2)D(Var)D(Var)D(Var 2121 ρ++=                    ( 121 ) 

where ρ  is the  correlation coefficient of the random variables 1D  and 2D . It is seen that 

the different approaches have no effect on the mean value of the fatigue damage but have 

effect on the variance. Thus, 
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)NSQ(Var)NSstochastic(Var)NSlstatistica(Var −−≤−≤−          ( 122 ) 

A schematic representation of the failure probability with respect to time from the 

three methods is shown in Fig. 59. The mean value of the fatigue life is 5 (log scale) and 

standard deviation is 0.1, 0.15 and 0.2 (log scale) for statistical S-N, stochastic S-N and 

Q-S-N, respectively.  These amounts of difference in the standard deviation are observed 

for the collected materials in this study. Thus different approaches give different fatigue 

reliability estimates. The difference is especially significant around the tail region. For 

design and maintenance against fatigue, it is usually required that the mechanical 

component stay at a very low failure probability (i.e. less than 0.1%). At this stage, the 

difference among the three approaches is around 0.16 in log scale, which is about 45% 

difference in real life cycles. Zheng and Wei (2005) used Q-S-N approach and observed 

that the standard deviation of the predicted fatigue life of 45 steel notched elements under 

variable amplitude loading is longer than that of test results. The authors stated that the 

reason behind it should be further investigated. Eqs. (118) - (122) give a possible 

explanation for this phenomenon, i.e., the effect of the correlation structure. Since the 

fully un-correlated and fully correlated cases can be barely found in reality, the standard 

deviation of the experimental results should lie between those predicted by the statistical 

S-N approach and the Q-S-N approach. In the next section, it is shown that this 

phenomenon is not only for 45 steel but also for other materials.  

It is interesting to notice that the statistical S-N approach and Q-S-N are two 

special cases of the proposed method. If μ  in Eq. (119) approaches positive infinity, the 

covariance function reduces to zero, giving the statistical S-N method. If μ  in Eq. (119) 

approaches zero, the covariance function reduces to 1, giving the Q-S-N method.  
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Fig. 59 Failure probability predictions by different approaches 

 

For the stochastic fatigue modeling methodology, the final objective is to predict 

the fatigue life distribution under different variable loadings. This enables the reliability 

estimation of mechanical components. In this section, the predicted fatigue life 

distributions are compared with the empirical fatigue life distribution of experimental 

data. Due to large number of experimental data collected in this study and the space 

limitations, we only show the comparisons under several loading conditions for each 

material. The comparisons are shown in Fig. 60 by plotting the predicted and 

experimental distribution together. The details of the plotted experimental distributions 

are listed in Table 16. All the prediction results are obtained using 10,000 Monte Carlo 

simulations. Since the proposed nonlinear damage accumulation model does not require 

cycle-by-cycle calculation, the computational time is very short and ranges from 5-20 

seconds for 10,000 Monte Carlo simulations. In Fig. 60, the stepped lines are 

experimental results and the smooth lines are prediction results. It is observed that the 

prediction results agree with the experimental results very well for different variable 

loadings. 
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Fig. 60 Empirical cumulative distribution function comparisons between prediction and 
experimental results 

 

d) Carbon steel 

1 2 3 

c) LY12CZ aluminum alloy 

1 2 

e) 45 steel 

1 2 

f) DD16 composite laminates 

1

1 
2 

3

a) Nickel-silver b) 16Mn steel 

1 2
3 

4



 164

 

Table 16. Experiments description shown in Fig. 60 

Material Symbol in Fig. 60 Variable loading* 
1-Fig. 60(a) TS: 666 (5.54x104) → 478 (X) 
2-Fig. 60(a) TS: 666 (3.98x104) → 478 (X) 
3-Fig. 60(a) TS: 478 (1.15 x105) → 666 (X) 

Nickel-silver 

4-Fig. 60(a) TS: 478 (4.46 x105) → 666 (X) 
1-Fig. 60(b) TS: 394 (7.5 x104) → 373 (X) 
2-Fig. 60(b) TS: 373 (1.46 x105) → 394 (X) 

16Mn steel 

3-Fig. 60(b) MS: 373 (105) → 394 (105) → 373 (105) → 344 (105) 
→ 394 (105) → 344 (105) → 394 (X) 

1-Fig. 60(c) MB: 93.1 (2.64x103) → 69.58 (1.056x104) → 46.06 
(1.848x104) → 23.52 (3.432x104) 

LY12CZ 

2-Fig. 60(c) MB: 93.1 (6.6x102) → 69.58 (3.3x103) → 55.86 
(6.6x103) → 46.06 (1.584x104) → 37.24 (3.96x104) 

1-Fig. 60(d) TS: 331 (8.06 x104) → 373 (X) 
2-Fig. 60(d) TS: 331 (1.21 x105) → 373 (X) 

Carbon steel 

3-Fig. 60(d) TS: 331 (4.03 x105) → 309 (X) 
45 steel-1 2-Fig. 60(e) MB: 240 (105) → 350 (8x104) → 400 (2.5x104) → 500 

(104) → 400 (2.5x104) → 350 (8x104) →240 (105) 
45 steel-2 1-Fig. 60(e) MB: 500 (1.5x104) → 590 (4x103) → 626.6 (5x103) → 

590 (4x103) → 500 (1.5x104) 
DD16 1-Fig. 60(f) TB: 328 (10) → 207 (103) 

* The number before the bracket indicates the stress level and the number in the bracket is the applied cycle 
numbers. For the step loadings (TS and MS), the applied cycle number of the last stress level is not known 
as prior and thus an “X” is used. 

 

The standard deviation of the fatigue life of experiments and predictions are 

plotted in Fig. 61, for all the experimental data collected in this study. The predictions 

using statistical S-N approach, Q-S-N approach and the proposed stochastic S-N 

approach are plotted together. The prediction results of all three approaches use 10,000 

Monte Carlo simulations. Points lying close to the diagonal line indicate close agreement 

between the experimental results and the prediction results. From Fig. 61, it is seen that 

the statistical S-N approach tends give a smaller variance prediction, since most of the 

prediction results lie below the diagonal line. The Q-S-N tends to give a larger variance 

prediction, since most of them lie above the diagonal line. The proposed stochastic S-N 

approach is closer to the experimental results, since the variance prediction is between the 
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statistical S-N approach and Q-S-N approach. This type of observation is consistent with 

Eq. (122). It can be concluded that the covariance structure in the S-N curve is important 

for probabilistic fatigue life prediction under variable loading and thus needs to be 

considered in analysis and design. 

 

 

 

 

 

 

 

 

Fig. 61. Comparisons between predicted and experimental Std. for different approaches  

 

4.2.3 Uncertainty modeling of applied loading 

Two approaches are commonly used to describe the scatter in the random applied 

loading to describe the scatter in the random applied loading. One is in the frequency 

domain and uses power spectral density methods. The other is in the time domain and 

uses cycle counting techniques. The major advantages of the frequency domain approach 

are that it is more efficient and can obtain an analytical solution under some assumptions 

of the applied loading process, such as Gaussian process, stationary and narrow banded. 

This of cause limits the applicability of the frequency domain approach to some real 

problems (Jiao 1995; Tovo, 2000). Also, most of the frequency domain approaches 
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assume the linear fatigue damage accumulation rule (Fu and Cebon, 2000; Banvillet et al, 

2004, Benasciutti and Tovo, 2005), due to the loss loading sequence information during 

the computation of the power spectral density function from the loading history. 

The time domain approach is used in this paper. Among many different cycle 

counting techniques, rain flow counting is predominantly used and is adopted in the 

proposed methodology. A detailed description of the rain flow counting method can be 

found in Suresh (1998).  

In the proposed fatigue damage accumulation model, the cycle distribution is 

required for fatigue life prediction. This information can be obtained by performing rain 

flow counting of the loading history. A schematic explanation is shown in Fig. 54 for two 

different loading histories.  

A Monte Carlo (MC) simulation technique is used for damage accumulation and 

probabilistic life prediction. As shown in the section 4.2.1 of damage accumulation rule, 

the whole life of the mechanical components is divided into small blocks. Each block has 

the specific stress amplitude and the number of cycles. For stochastic loading during a 

certain time period, not only is the stress amplitude eqS  a random variable, but also the 

number of cycles in  at the stress amplitude eqS . Nagode and Fajdiga (1998) proved that 

conditional PDF ( )n(f iSn eqi
) of number of cycles in  at the stress amplitude level eqS  can 

be modeled by Normal distribution based on the DeMoivre–Laplace principle with the 

mean and standard deviation expressed in Eq. (123).  

⎪⎩

⎪
⎨
⎧

−−=

−−+=

)S(F))S(F1)(1N(

))S(F1)(1N(1

eqeq

eq

σ

μ
                                     ( 123 ) 
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where N  is a long enough loading cycle, )S(F eq  is the cumulative density function 

(CDF) of the stress amplitude, which can be obtained by rain-flow counting technique. 

The proposed stochastic fatigue life prediction methodology includes various 

uncertainties in the material and loadings. It also includes the randomness of spatial and 

temporal domain. 

First, consider the stress response at a specific location and time instant. The 

equivalent stress amplitude eqS  is calculated using Eq. (5). At any fixed location, eqS  is a 

random variable with probability density function (PDF) of ( )eqS Sf
eq

. Next, the fatigue 

damage caused by the stress amplitude is usually expressed as a fraction of total number 

of cycles to failure: 

  
sN

1D =                                                                      ( 124 ) 

where sN  is the fatigue life estimation from the S-N curve under constant stress 

amplitude eqS . sN  represents the material resistance to fatigue loading. It is also a 

random variable at certain stress amplitude.  The conditional PDF of sN  can be found 

from experimental data and expressed as )N(f sSN eqs
. The single cycle damage 

considering both the randomness in material resistance and applied stress amplitude is a 

random variable and its joint PDF can be expressed as: 

 ( ) ( ) ( ) ( )eqSSN2eqSSDD Sf
D
1f

D
1SfDfDf

eqeqseqeq
⎟
⎠
⎞

⎜
⎝
⎛==                       ( 125 ) 

For the fatigue damage accumulation process in the time domain, a damage 

accumulation rule is required. In the current study, the nonlinear damage accumulation 

rule is used (Eq. (108)).  
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Combining Eq. (108) and Eq. (124), the PDF of the total damage at a specific 

location can be expressed as: 

)S(f)n(f)
D
1(f

D
11)D(f eqSiSnSN2totalD eqeqieqstotal Ψ

=                               ( 126 ) 

Fatigue crack initiation is assumed to occur when the fatigue damage equals or 

exceeds Ψ . For multiple site fatigue, we check the damage accumulation at different 

locations. If fatigue damage exceeds Ψ at one location, the number of loading blocks is 

the fatigue life of the structure. Eq. (127) is a general expression for structural fatigue 

damage. 

1)R,...R,N,x(G)Dmax(D P1ijx,totalstructure j
===                                ( 127 ) 

where jx  is the coordinate at the different location, iN  is the number of loading cycles to 

fatigue crack initiation, 1R  through PR  are random variables which affect the fatigue 

damage in the structure.  Solve Eq. (127) for iN , we obtain 

( )P1jii R,...R,xfN =                                                 ( 128 ) 

Eq. (128) shows that the fatigue crack initiation life is a function of geometric 

locations and input random variables. Analytical solution for iN  using Eq. (128) is rather 

complicated and sometimes impractical. Therefore, we use Monte Carlo simulation to 

calculate the fatigue crack initiation life.  

Once the fatigue crack is initiated, we use the proposed fatigue crack propagation 

model to predict the fatigue crack propagation life. The equivalent stress intensity 

amplitude eqK  is calculated using Eq. (89). At any point at the crack tip, eqK  is a random 

variable with probability density function (PDF) of ( )eqK Kf
eq

. Following the similar 
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procedure for the stochastic fatigue crack initiation life prediction, the loading histories 

can be divided into many small blocks. In each block, the crack propagation length is 

accumulated to the initial crack length. When the crack reaches the critical length, the 

mechanical component is assumed to fail. The failure criterion is expressed as 

∑
=

≥+=
R

1m
cmitotal aaaa                                             ( 129 ) 

where R  is the number of loading blocks, ma  is the crack length increment during each 

loading block. In Eq. (129), ia , ma  and ca are random variables. ia  is the initial crack 

length after the crack initiation and can be calculated using the Kitagawa diagram (Eq. 

(78)) and is related to material properties. ca is obtained using field observations of 

failure components (failed railroad wheels in the current paper). ma  is calculated using 

the proposed crack propagation model and is related to the applied stochastic loading and 

material properties. Solve Eq. (128) for fatigue crack propagation life pN , we obtain 

)R,...R,a,a(fN p1cipp =                                          ( 130 ) 

Eq. (130) shows that the fatigue crack propagation life is a function of several 

random variables. Analytical solution for pN  using Eq. (130) is rather complicated and 

sometimes impractical. Therefore, we use Monte Carlo simulation to calculate the fatigue 

crack propagation life.  

Combining the fatigue crack initiation life and propagation life together, we 

obtain the total life of mechanical components. 
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4.3  Response surface approximation and design of experiments 

The response surface method (RSM) was originally proposed by Box and Wilson 

(1954) as a statistical tool, to find the operating conditions of a chemical process at which 

some response was optimized. Myers and Montgomery (1995) and Khuri and Cornell 

(1997) describe the application of RSM to a wide range of physical problems. The basic 

idea in RSM is to describe the approximate relation between input variables and output 

variables using a few sample points. Despite numerous different methods suggested by 

different authors, the general steps involved in RSM are the same: (1) choose the input 

sample points, which is called design of experiments (DOE); (2) analyze the system 

performance using the chosen input samples and obtain the interested output results; (3) 

develop the mathematical relationship between input variables and output variables using 

least squares curve fitting.  

 

 

 

 

 

 

 

 

Fig. 62. Several DOE rules 
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Several DOE methods are available and are suitable for different types of 

problems and random parameters (Ghiocel, 2001). Some of these are shown in Fig. 62.  

The choice of DOE is critical for computational efficiency and accuracy. In DOE, some 

authors build the experimental design in the physical space (Bucher and Bourgund, 1990; 

Liu and Moses, 1994); while some others build the experimental design in the 

uncorrelated standard normal space (Enevoldsen, 1994; Lemaire, 1998).  

Due to the expensive computational effort involved in the rolling contact finite 

element modeling, the response surface method (RSM) is used here to describe the 

approximate relation between input variables and output variables using a few sample 

points. 

In the current study, three random variables are considered for the crack initiation 

and the crack propagation analysis. Full factorial design is used to illustrate the 

methodology for probabilistic fatigue life prediction. If the number of random variables 

increased, efficient DOE methods (i.e., Latin Hypercube sampling) can be used to reduce 

the computational cost. The final objective of current response surface approximation is 

to find the relationship between the equivalent fatigue stress and the equivalent stress 

intensity factor under multiaxial loading corresponding to some input random variables.  

4.3.1 Fatigue crack initiation life 

Previous parametric studies showed that several geometric and material variables 

have important effects on the final fatigue life of railroad wheels. The wheel diameter, 

material hardness and applied loading have important effects on the fatigue crack 

initiation life railroad wheels. The initial crack location, crack length and applied loading 

have important effects on the fatigue crack propagation life of railroad wheels. The lower, 
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middle and upper design values for five variables are listed in Table 17. In Table 17, the 

applied loading is normalized with the maximum design loading specified in AAR (1998). 

A total of 54 numerical experiments for fatigue crack initiation analysis and fatigue crack 

propagation analysis are evaluated using the finite element modeling and fatigue 

modeling described in the present study. 

 

Table 17. Design values for the three random variables 

Random variables (unit) Lower Middle Upper 
Wheel diameter D (in) 28 33 38 
Hardness Ha (BHN) 235 320 405 
Applied loading F 0.4 1.0 1.5 

Crack depth a (mm) 5 6 8 
Crack length d (mm) 1 5 15 
 

Analysis of the numerical results shows that the maximum equivalent stress not 

only varies its amplitude but also its location (depth below the tread surface). A two-step 

regression analysis is performed to handle this problem. First, for each numerical 

experiment, a rational regression function (Eq. (131) is used to formulate the stress 

variation corresponding to the depth.  

2eq CxBxA
1S
++

=                                                              ( 131 ) 

where eqS  is the equivalent stress, A , B and C are the function of input random variables, 

x  is the depth below the tread surface. 

The regression results using Eq. (131) for two specific numerical examples are 

plotted in Fig. 63(a). The regression results for all the numerical examples are plotted in 

Fig. 63(b). It needs to be pointed out that Eq. (131) is a random function, which 



 173

represents the stress variation corresponding to spatial domain. The regression result of 

Eq. (131) is used for fatigue life prediction in the next section. 

 

 

 

 

 

 

 

Fig. 63 Comparison between FEA results and regression results 
 

4.3.2 Fatigue crack propagation life 

For the crack propagation analysis, the equivalent stress intensity factor is 

expressed as  

 )d,a,F(fKeq =                                              ( 132 ) 

As shown before in the parametric study, the stress intensity factor at the different 

locations around the crack front show different behavior. In the current study, we use the 

stress intensity factor the critical crack length along the major axis to predict the fatigue 

crack propagation life.  

In the previous parametric study, it is shown that the equivalent stress intensity is 

almost linear to the applied loading. But the curve does not go through the origin point, 

which is due to the friction effect between the two crack surfaces. When the loading is 

very small, the two surfaces can not slip and result no mode II and III stress intensity. 

When the loading is high enough and exceeds a threshold value, it causes the slip motion 
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between the two crack surfaces and the mode II and III stress intensity factors. A 

reasonable formula needs to include this effect. 

The crack depth effect in the previous parametric study shows that the equivalent 

stress intensity factor achieves local maxima at a certain depth below the tread surface. 

This effect can be included into the formula by a critical depth parameter. The stress 

intensity factor decreases as the distance between the crack and the critical depth 

increases. 

 

 

 

 

 

 

 

Fig. 64 Comparison between the simplified formula and FEA results 
 

Based on the above discussion and the finite element results, a simple formula is 

proposed to calculate the equivalent stress intensity factor as 
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where cF  is the characteristic loading to trigger the slip motion of the two crack surfaces. 

cd  is the critical depth at which the stress intensity factor achieve the local maxima. ξ  is 

a scale factor. The prediction using Eq. (133) and the finite element results are plotted in 
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Fig. 64. It is seen that the proposed formula agrees with the finite element results very 

well. 

 

4.4  Monte Carlo simulation and field observations 

A Monte Carlo simulation-based methodology is used to calculate the 

probabilistic life distribution of railroad wheels. The response surface developed in 

Section 4.3 is used to calculate the fatigue crack initiation and propagation life. Various 

uncertainties from material properties, wheel geometry, applied loading and crack 

profiles are included in the proposed calculation. The predicted fatigue lives are 

compared with field observations from the UP failure database. 

4.4.1 Statistics of input random variables 

For the wheel-rail rolling contact problem, the required distribution function of 

the input random variables are obtained from experimental data or using some 

assumptions. The details are shown below. 

The fatigue S-N curve was obtained using the experimental data reported by 

Bernasconi et al (2004) for high speed wheel materials. The median fatigue S-N curve 

and its 90% bounds are plotted with experimental data in Fig. 65. Due to the insufficient 

data to construct the covariance structure of the fatigue S-N curves, we used the Q-S-N 

curve as it produced conservative prediction. For wheel diameter, collected field data 

shows that it can be described as a multinomial distribution. The histogram of wheel 

diameter is plotted in Fig. 66. The applied loading on railroad wheels appears to be a 

bimodal distribution. The reason is that the service loading on track can be classified as 
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empty loaded and full loaded. In the current study, this distribution is simulated using Eq. 

(134).   

)R(F56.0)R(F44.0)R(F LweibullLnormallogLalmodbi +=                          ( 134 ) 

where )R(F LXXXXX  is the CDF of different distributions. No experimental data for 

material hardness distribution is available. However, the hardness value for class B and C 

railroad wheels is bounded between 277 and 363 (AAR, 1998). In the current study, we 

assume it follows Beta distribution. The PDF of beta distribution is plotted in Fig. 68. 

 

 

 

 

 

 

Fig. 65 Fatigue S-N curve Fig. 66 Histogram of wheel diameter 

 

 

 

 

 

Fig. 67 Histogram of loading factor Fig. 68 PDF of hardness distribution 

 

The fatigue crack propagation curve reported in the Union Pacific database is 
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size after the fatigue crack initiation is calculated using the Kitagawa diagram. It depends 

on the fatigue limit and the fatigue crack threshold value. In the current study, the initial 

crack length is approximated using a lognormal distribution. The PDF of the initial crack 

length is plotted in Fig. 70. The crack depth uses the previous prediction results of fatigue 

crack initiation. The final failure crack length uses the collected data from UP failure 

database. The critical crack length is approximated using a lognormal distribution. The 

histogram and lognormal fit are plotted in Fig .71. 

 

 

 

 

 

 

Fig. 69 Fatigue crack growth curve Fig. 70 PDF of initial crack length 

 

 

 

 

 

 

 

Fig. 71 Histogram of critical crack length 
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4.4.2 Probabilistic life distribution and reliability  

Using the described statistics of the input random variables, the Monte Carlo 

simulation can be used to predict the final failure of railroad wheels. 

Ten thousand Monte Carlo samples are used to simulate the fatigue failure life of 

railroad wheels. Field data regarding the number of cycles to failure of railroad wheels 

are collected and compared with the Monte Carlo simulation results. The empirical CDF 

of the numerical fatigue life prediction and the field observations are plotted in Fig. 72. 

The fatigue life in Fig. 72 is censored at 2x109 because the wheel would fail due to other 

failure mechanism by the end of their time-period. 

In Fig. 72, the numerical fatigue life prediction agree with the field observation 

well and capture the major trend of the life distribution. However, a significant difference 

is observed at the short life region, i.e. the tail region of the CDF of the fatigue life 

distribution. This type of observation indicates that other factors affecting the fatigue life 

need to be considered, such as initial defects, brake and thermal loading. The latter two 

factors are beyond the scope of the current study. Only the effect of initial defect is 

considered here since the fracture mechanics-based fatigue crack analysis has been 

developed in this study. Since no information about the initial defect geometry and 

distribution is available at this stage. Two different lengths of the initial defect are 

assumed. One is 3.2 mm (1/8 in) according to the regulation of AAR. The other is 10 mm. 

The location of the initial defect is assumed to be uniformly distributed between 5 mm to 

8 mm below the tread surface. It is also assumed that the initial defect can be 

approximated as an elliptical crack so the proposed fatigue crack propagation analysis 

can be used. Monte Carlo simulation is used again to calculate the fatigue life of 
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defective railroad wheels, in which 10% of the failed wheels are assumed to be controlled 

by the large initial defects. The numerical prediction and field observations are plotted in 

Fig. 73. It is seen that the numerical prediction are closer to the field observations if the 

initial defect is considered. For the 10 mm initial defect assumption, the numerical 

prediction is almost identical with field data. It is clear that large initial defects 

significantly reduce the wheel reliability. The current comparison is only qualitative as 

the initial defect information is assumed. Future work is required to study the effect of the 

initial defect and other factors quantitatively. 

 

 

 

 

 

 

 

 

Fig. 72 Empirical CDF of the field data and numerical predictions with no initial defects 
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Fig. 73 Empirical CDF of the field data and numerical predictions with initial defects 

 

4.5  Summary  

A general stochastic fatigue life prediction methodology under variable loading is 

proposed in this study. It combines a nonlinear fatigue damage accumulation rule and a 

stochastic S-N curve representation technique. The nonlinear fatigue damage 

accumulation rule improves the deficiency inherent in the Miner’s rule but still maintain 

a) 3.2 mm initial defect 

a) 10 mm initial defect 
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its simplicity in calculation. The verification with experiments shows that the proposed 

fatigue damage accumulation rule improves the mean value of the fatigue life prediction 

while only using the similar computational effort as that of the Miner’ rule. 

A new uncertainty modeling method for fatigue S-N curve representation is 

proposed. It uses the Karhunen-Loeve expansion technique to consider the covariance 

structures within different stress levels. It is shown that the available probabilistic fatigue 

life prediction methods are two special cases of the proposed method, which implicitly 

assume that the covariance function is either zero or unity. The verification with 

experiments shows that ignoring the covariance of the input variables results in different 

variance predictions of the fatigue life. The difference is especially significant at the low 

failure probability stage, which is of more interest for practical design and maintenance 

decision with respect to fatigue. 

Compared with traditional fatigue life prediction methods (i.e. using linear 

damage accumulation rule and ignoring the covariance of input random variables), the 

proposed methodology requires only one additional set of experimental data under 

variable loading. The benefits are achieved both in the accuracy of the mean value and 

variance prediction of the fatigue life.  

The proposed methodology is suitable and validated for stationary variable 

loading and certain types of non-stationary variable loading (step loadings). For general 

non-stationary variable loadings, further research work is required both for model 

development and experimental validation. The current validation is only for uniaxial 

loading. The proposed methodology needs to be extended to general multiaxial loading.  
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The proposed fundamental multiaxial fatigue analysis methodology is applied to 

railroad wheels. Both the fatigue crack initiation and propagation life are included in the 

current study. A response surface method combined with the Monte Carlo simulation 

technique is used. Several important factors affecting the fatigue life are used for the 

design of experiments. Field data on the fatigue properties, material properties, wheel 

geometry and crack profile are collected and analyzed to obtain the statistics for the 

reliability analysis. Numerical predictions are compared with field failure data and shows 

excellent agreements. 
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CHAPTER V 

 

CONCLUSIONS AND FUTURE WORK 

 

The multiaxial fatigue problem is much more complex compared with commonly 

studied uniaxial fatigue problem. It has been an activate research topic in the past two 

decades. In the current study, fundamental modeling for multiaxial fatigue problems is 

investigated in detail. A new approach based on the characteristic plane approach is 

proposed. Most of the existing critical plane-based models can only be applied to 

individual types of failure modes, i.e. shear dominated failure or tensile dominated failure. 

Their applicability generally depends on the material's properties and loading conditions. 

In the proposed model, the characteristic plane changes corresponding to different 

material failure modes, thus making the proposed model have almost no applicability 

limitation with respect to different metals. A useful mechanical parameter is found during 

the development of the proposed model. The ratio of torsional fatigue strength and 

uniaxial fatigue strength s  appears to be very important for the multiaxial fatigue 

problem. According to the proposed multiaxial fatigue theory and the experimental data 

collected in this study, different material failure modes may be related to this parameter. 

Also, from the experimental results collected from the literature, this parameter shows a 

good correlation to the extra hardening of the material caused under nonproportional 

loading. 

Due to the unique nature of the proposed multiaxial theory, i.e. not based on the 

specific failure mode and certain microstructure, it has a great potential to be applied to 
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many new engineering materials, such as anisotropic composites and inhomogeneous 

functionally graded materials. In this paper, the proposed model has been extended to 

isotropic materials and compared with experimental results for unidirectional and 

multidirectional composite laminates. Future work is needed to extend the proposed 

model to inhomogeneous material.  

A general methodology is proposed to apply the developed multiaxial fatigue 

theory to the structural/component level, specifically the wheel/rail rolling contact fatigue. 

Non-linear finite element analysis is used for stress computation and a submodeling 

technique is used to improve the efficiency and accuracy. The finite element results are 

then used to calculate the fatigue life. Numerical examples are implemented and 

compared with field observation of failure pattern. The effect of several parameters on 

the fatigue damage in railroad wheels is studied using the proposed model. 

A general methodology for probabilistic multiaxial fatigue life prediction is still 

lacking in the open literature. The current study focuses on the uncertainty modeling of 

the fatigue damage accumulation process. A simulation based calculation procedure is 

proposed for the multiaxial fatigue life prediction, which combines stochastic process 

theory, response surface method and Monte Carlo simulation technique. The proposed 

method can include various types of randomness from material property, applied loading 

and geometry. Field failure statistics is compared with numerical prediction and very 

good agreement is obtained. 

For fundamental multiaxial fatigue damage modeling, future work is required to 

explore the fatigue behavior of materials at a smaller scale. The present work focuses on 

the mesoscopic and macroscopic scale, i.e. from physically small crack to macro crack. It 
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appears that the multiaxial fatigue is controlled by two dominated failure mechanisms 

(shear failure and tensile failure). The microstructure effects, such as grain size, grain 

orientation and grain boundary, on the multiaxial fatigue behavior are still not fully 

understood.  

Various fatigue models available in the open literature are developed a wide range 

of scales within the engineering context, such as structural level (i.e. steel bridges), 

component level (i.e. engine blades and shaft bearings), material level (i.e. small 

specimen tests) and microstructural level (i.e. grain and subgrain fatigue crack analysis). 

A general framework for integrating models at multiple lengths is still lacking, especially 

in the context of uncertainty, such as the uncertainty propagation from one length scale to 

the other. Both the physics and the uncertainty propagation are quite different across 

different length scales. From this point of view, an integration of both deterministic and 

probabilistic methods is desired. 

The proposed fatigue reliability evaluation method of rail/wheel rolling contact 

problem is seen to agree with the failure pattern observed in the field and can capture the 

major trend in the reliability variation. However, a noticeable difference exists at the 

shorter fatigue life regime, i.e. the tail region of the CDF of the fatigue life. It indicates 

that some other effects may contribute to the rare early failure of railroad wheels, such as 

brake loading, thermal loading and initial defects. These effects need to be explored in 

the future. 

The results in this study can be used to develop reliability-based inspection 

planning to prevent the shattered rim failure. Sensitivity analysis and field data cluster 

analysis are required to identify the most important factors affecting the wheel reliability. 



 186

Proper inspection techniques, sampling methods and optimization theory need be 

combined with the present numerical prediction methodology to develop a general 

methodology for optimized inspection procedure.    
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