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Summary 

I studied three biological problems in my dissertation research. The problems involved 

flow of information into the cells from outside, the regulation of information flow by the 

ribosomes in protein synthesis, and the disruption of information flow due to 

microsatellite repeat expansions leading to a human disease myotonic dystrophy. In the 

first study, I built a conceptual basis for interpreting and understanding the cellular 

responses to multiple concurrent stimuli. A gene represents the inherent information of 

the cells while a stimulus represents the information outside their boundary. Since a 

gene and a stimulus are both packets of information, they can be considered 

analogues. Therefore, the concepts of gene interactions can be applied to the study of 

modulation of cellular processes by stimuli. This assumption allowed me to define the 

concepts of environmental interactions and environmental epistasis in terms of gene 

interactions and genetic epistasis. I used proteomic and transcriptomic changes in 

Saccharomyces cerevisiae to test the conceptual framework. In the second study, I 

designed and performed experiments to test the ribosome filter hypothesis. The 

ribosome filter hypothesis says that the amount of information flow from a transcript to a 

protein is regulated by the compositions of the subpopulations of ribosomes in a cell. 

The composition of a ribosome determines its interactions with the mRNA and 

accessory factors, which in turn determine the efficiency of translation of a transcript. 

Therefore, to efficiently translate the proteome required for growing in one 

environmental condition would require a specific complement of ribosomes with different 

compositions. The required complement of ribosomes will be different for a cell growing 

in a different environmental condition. A difference in the protein composition of 
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ribosomes from cells growing in two different conditions would be evidence supporting 

the ribosome filter hypothesis. It would allow identification of candidate ribosomal 

proteins, or their post-translation modifications that regulate information flow from 

specific transcripts. I used growth of S. cerevisiae with fermentable carbon source, 

glucose, and non-fermentable carbon source, glycerol, as two conditions. I used iTRAQ 

labeling based quantitative proteomics as well as, in collaboration with the Joachim 

Frank lab, cryo-electron microscopy to measure the changes in protein composition of 

ribosomes. I used yeast genetics and polysome profiling to measure the effect of loss of 

function of a candidate ribosomal protein, Rpl8a or Rpl8b, on translation. In the third 

project, I studied the changes introduced in the skeletal muscle proteome of myotonic 

dystrophy patients, both type 1 and 2, due to the disruption of information flow by 

microsatellite repeat expansions in the non-coding regions of mRNA transcripts. I used 

iTRAQ labeling based quantitative proteomics analysis to quantitate the changes in the 

skeletal muscle proteome of DM patients compared to healthy volunteers. I identified 

differentially present proteins and used pathway analysis to understand their role in the 

pathogenesis. I have identified a number of candidate proteins that are interesting 

targets for more in depth genetic and biochemical studies including a ribosomal protein 

RPL13A, previously implicated in regulating information flow by translational inhibition of 

transcripts containing the GAIT sequence motif. In summary, I have studied three 

different ways the information content of cells and tissues are affected. 
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Chapter I 

Introduction 

An organism alters its biochemical state in response to the changes in its environment 

or the stage in its life cycle. One way it can alter its biochemical state is by regulating its 

cellular proteome. Regulation of the cellular proteome is essential for continued survival 

of an organism. In my research, I studied three facets of regulation of cellular proteomes 

that I will describe in the subsequent chapters. This introduction has been divided into 

three parts to reflect the three projects described in my thesis. In the first part, I will 

present experimental evidence and model the cellular responses to multiple concurrent 

changes in the environmental conditions. I will describe a conceptual framework that 

helps understand the biological effects of the concurrent stimuli using changes in the 

cellular proteome and transcriptome of Saccharomyces cerevisiae. In the second 

project, I will present experimental evidence and discuss the role of ribosome as a 

regulatory element in translational control of the cellular proteome in S. cerevisiae. In 

the third project, I will dissect the misregulation of the human skeletal muscle proteome 

due to the expansion of microsatellite repeat elements in the human genome that leads 

to a human disease myotonic dystrophy. 

Regulation of the proteome by environmental stimuli. 

The interaction of an organism with its environment determines its internal 

biochemical state. In turn, the organism modifies the biochemical state of its 

environment by secretion of biomolecules or dissipation of chemical energy. The 

process by which the organism modifies its biochemical state requires information flow 
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between the organism and its environment. The information packet could be 

biomolecules, such as signaling molecules or nutrients, or physiochemical agents such 

as pH and temperature. The organism uses the information stored in its genetic material 

as well as its current biochemical state to bring about the required modifications to its 

biochemical state. The biochemical state is a reservoir of information and a component 

of the information repertoire of a cell. Other components of the information repertoire 

include spatial distribution of biomolecules, their chemical structures, and their 

conformational states. 

The proteome is one of the critical components of the biochemical state. In most 

of the biochemical processes, proteins, the building blocks of a proteome, act as 

molecular actuators providing essential biochemical activities. The proteome is very 

dynamic. New molecules are constantly being synthesized and old molecules degraded. 

Not all proteins are present at the same abundance levels. The cell needs to fine tune 

its synthesis and degradation machinery to maintain an optimal level of every protein in 

the molecule. The optimal levels of different proteins depend upon the external 

environmental conditions, or stimuli. 

An important motivation for studying the modification of proteome by 

environmental stimuli comes from the study of tumors and their microenvironments. The 

environmental conditions inside the tumor microenvironments are different from the 

physiological conditions at multiple levels  (Vaupel, Kallinowski, and Okunieff 1989; 

Mbeunkui and Johann Jr 2008; Trédan et al. 2007; Finger and Giaccia 2010; Song 

1984; Kessenbrock, Plaks, and Werb 2010; CHUNG et al. 2005; Hazlehurst, 

Landowski, and Dalton 2003; Kenny, Lee, and Bissell 2007; Whiteside 2008). Tumor 
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microenvironment has been found to promote tumor growth by activating survival 

pathways. It also helps tumor cells escape the host immune response (Whiteside 2008). 

The local tumor microenvironment allows cells in the tumor to crosstalk, which might 

contribute to continued survival signaling through autocrine loops (Mbeunkui and 

Johann Jr 2008). It can promote drug resistance by modulating the delivery of a drug or 

its stability (Trédan et al. 2007). The local tumor microenvironment has also been 

proposed to provide sanctuaries for subpopulations of tumor cells that facilitates 

acquisition of drug resistance (Hazlehurst, Landowski, and Dalton 2003). Essentially the 

tumor microenvironment expands the information repertoire of the tumors allowing the 

cells in it to escape the host machinery designed to inhibit uncontrolled cell growth.  

Another motivation for studying the effect of environmental stimuli comes from 

the goal of ensuring food security for an ever growing world population (Hanjra and 

Qureshi 2010; Rosegrant and Cline 2003; Fan et al. 2011; Godfray et al. 2010). To 

achieve that we need to develop strains of plants that can grow in a wide variety of 

stress conditions, such as drought, high salinity, and extreme fluctuations in 

temperatures, to name a few. This would require understanding the cellular responses 

to environmental stimuli (Chapin III, Autumn, and Pugnaire 1993; Apel and Hirt 2004; 

W. J. Chen and Zhu 2004; De Angelis and Gobbetti 2004; Mizoguchi, Ichimura, and 

Shinozaki 1997). 

Microarray based transcriptomic studies: The advent of high throughput 

technologies, for example microarrays, heralded a new era in the study of modifications 

of the information repertoire of the cells in response to environmental stimuli (Schena et 

al. 1995; Lockhart et al. 1996). Due to technological reasons the initial focus of these 
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studies was on the transcriptomic responses. One of the earliest systems level studies 

of the transcriptome involved its modulation by environmental stimuli in human cell 

culture models. In this study two stimuli were used, heat shock at 43 oC for 4 hours and 

growth in the presence of phorbol esters for 4 hours (Schena et al. 1996). . Comparison 

of the transcriptomic response to the two stimuli revealed distinct changes specific to 

them. The technique was later applied to study transcriptomic changes in cancer. A 

pioneering study identified characteristic changes in the transcriptome that 

accompanied tumor suppression (J. DeRisi et al. 1996). 

Budding yeast Saccharomyces cerevisiae was at the forefront of these studies. 

In one of the earliest studies transcriptomic studies, S. cerevisiae was used to study 

metabolic reprogramming in response to the changes in the nutrient availability (J. L. 

DeRisi, Iyer, and Brown 1997). A study with large numbers of stimuli revealed that there 

are common genes and pathways that are activated or repressed in response to all 

environmental stimuli. The authors called this group of genes the environmental stress 

response genes (Gasch et al. 2000). Although these studies provided important insights 

into modifications of the information repertoire of the transcriptome in responses to 

environmental stimuli, the translation of the insights to the proteome was not straight 

forward. Development of new technologies was needed for systems level study of the 

information repertoire of proteomes. 

Mass spectrometry based proteomics: Mass spectrometry is a very powerful 

technique for studying chemical composition and structure of molecules. Its utilization 

was initially limited because of the lack of a technique to ionize and get the 

biomolecules in gaseous state. Development of matrix assisted laser desorption 
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ionization (MALDI) and electrospray ionization (ESI) provided a handle to study 

biomolecules. Application of MALDI was first to be reported and was used to analyze 

molecules with up to 100 000 m/z (Tanaka et al. 1988). Soon after, the application of 

ESI to study oligonucleotides and proteins was reported (Fenn et al. 1989). Earlier the 

application of tandem mass spectrometry in sequencing proteins and peptides had been 

demonstrated (Hunt et al. 1986). In this study, enzymatic digestion of proteins to yield 

smaller peptides followed by liquid chromatography fractionation was used. The 

peptides were ionized using liquid secondary ion mass spectrometry (Hunt et al. 1986). 

These developments catalyzed rapid explosion in the application of mass spectrometry 

for studying large biomolecules, including proteins (Aebersold and Mann 2003; Yates, 

Ruse, and Nakorchevsky 2009). 

The mass spectrometers used in proteomics studies have also undergone rapid 

improvements over the last two decades. It has included improvements in resolution 

and mass accuracy as well as improved ion optics and data acquisition speeds (Yates, 

Ruse, and Nakorchevsky 2009; Walther and Mann 2010; Smith 2002; X. Han, Aslanian, 

and Yates III 2008; Michalski et al. 2011; Senko et al. 2013). These improvements are 

allowing study of proteomes at ever greater depth (Kim et al. 2014; M. Wilhelm et al. 

2014).  

A feature of ESI is that ions are generated from a solution. This allows inline 

coupling of an ESI source to liquid chromatography systems for separation of peptides. 

Liquid chromatography tandem mass spectrometry is the most widely used technology 

in proteomics for both protein identification and quantitation (Rudnick et al. 2010). 
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Quantitative proteomics approaches: In the last decade the focus of mass 

spectrometry based proteomics has shifted towards quantitative studies from the 

generation of catalogs of protein identifications (Altelaar, Munoz, and Heck 2013; Ong 

and Mann 2005; Bantscheff et al. 2007; Bantscheff et al. 2012; Larance and Lamond 

2015). A number of techniques have been developed for quantitation using mass 

spectrometry. The techniques can be broadly divided into two categories – (1) label free 

and (2) labeling based. Alternatively, the techniques can be divided into categories 

based upon whether the quantitation is done using precursor ions or the fragment ions. 

In this case too there can be two categories – (1) precursor ion based and (2) fragment 

ion based. 

Label free approaches have been the most popular quantitative approach due to 

the ease of sample preparation and a reduced cost of running experiments. Examples 

of label free approach include quantitation using area under the curve of precursor ion 

intensities, as a peptide is detected during elution from the liquid chromatography 

column, and spectral counting (Neilson et al. 2011). Label free approaches have lower 

precision and accuracy that led to the development of a number of isotopic labeling 

approaches. The isotope labels can be added metabolically as in the stable isotope 

labeling by amino acids in cell culture (SILAC) and Neutron encoding stable isotope 

labeling by amino acids in cell culture (NeuCode SILAC) (Hebert et al. 2013; Ong et al. 

2002). It can also be added chemically as in isobaric tag for relative and absolute 

quantitation (iTRAQ), isotope coded affinity tag (ICAT), tandem mass tag (TMT) and 

mass-coded abundance tagging (MCAT) (Ross et al. 2004; Gygi et al. 1999; Thompson 

et al. 2003; Cagney and Emili 2002). 
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TMT and iTRAQ are isobaric tagging approaches in which quantitation is done 

using the fragment ion intensities (Thompson et al. 2003; Ross et al. 2004). The tags 

are designed in such a way that the mass added to the tagged peptides is the same 

across the set of samples being analyzed together. This allows co-isolation and 

fragmentation of peptides in the mass spectrometers. Peptide fragmentation releases 

reporter ions whose masses differ from each other. The reporter ion intensity is 

proportional to the amount of peptide in the samples. Since peptides from all the 

samples in a set are sampled at the same point in time, comparing the ratios of the 

reporter ions provides a measure of relative quantitation of the peptides. If a common 

control sample is used in one of the reporter ion channels, any number of samples can 

be quantitated relative to a common control (Hoek et al. 2015). Similar experiment 

designs have been developed with precursor level quantitation approaches for large 

scale quantitative proteomics approaches(Geiger et al. 2010).  

The advances in mass spectrometry based quantitative proteomics have been 

critical for the systems level studies of the information repertoire of the proteomes. 

Information in the proteome is encoded through abundances of proteins, their post-

translational modifications, and spatial localization of the molecules. Mass spectrometry 

based proteomics is revolutionizing the research in every aspect of biology (Yates, 

Ruse, and Nakorchevsky 2009; Stastna and Van Eyk 2012; Clancy and Hovig 2014; 

Choudhary and Mann 2010; Drissi, Dubois, and Boisvert 2013; Gajadhar and White 

2014; Y. Zhang et al. 2013; Hennrich and Gavin 2015; Altelaar, Munoz, and Heck 2013; 

Breker and Schuldiner 2014). 
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Studying protein abundance changes: The cellular abundance of proteins is one 

feature of the information repertoire encoded through the proteome. The abundances of 

specific proteins are changed in response to an environmental stimulus (Feder and 

Hofmann 1999; Lindquist 1986; Blokhina, Virolainen, and Fagerstedt 2003; Roth, 

Roepenack-Lahaye, and Clemens 2006). Some of the changes lead to synthesis of 

proteins that are needed for responding to the stimulus, for example heat-shock 

proteins upon heat-shock (Feder and Hofmann 1999). Others might lead to a 

downregulation, for example that of pro-inflammatory receptors to avoid tissue damage 

(Ohta and Sitkovsky 2001). The goal of systems biology is to understand the 

contributions of all the components of an organism towards its continued survival and 

adaptation to new environments (Kitano 2002; Kitano 2000; Ideker, Galitski, and Hood 

2001). Understanding the global protein level changes is a minimum requirement 

towards fulfilling the goals of systems biology. Mass spectrometry based proteomics 

has been one of the most widely used approaches in this area. 

In one of the earliest applications of quantitative proteomics, ICAT was used to 

study the differences between the steady state proteomes of S. cerevisiae cells growing 

with either ethanol or galactose as carbon source. The differences in expression of two 

isoforms of alcohol dehydrogenase, ADH1 and ADH2 that are 93% identical at the 

amino acid sequence level, were determined. These differences were similar to the 

predicted differences based upon their distinct functions in carbon metabolism (Gygi et 

al. 1999). Soon after another stable isotope labeling approach for quantitation, SILAC, 

was used to study muscle differentiation in cell culture using C2C12 myoblasts (Ong et 

al. 2002). Quantitative proteomics is also a popular method to study proteomic changes 
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in cancer (Ong and Mann 2005; Xu et al. 2008; Everley et al. 2004; Hanash, Pitteri, and 

Faca 2008; Wulfkuhle, Liotta, and Petricoin 2003). Multiple reaction monitoring 

approach has been used to determine the abundances of proteins present in 41 copies 

per cell to more than a million copies per cell (Picotti et al. 2009). 

In another study, the proteomic changes with either carbon or nitrogen limitation 

in S. cerevisiae was assayed using N15 labeling in chemostat cultures. This study 

identified 102 differentially expressed proteins; many of those changes were expected 

based upon previous studies. The proteins that were upregulated in carbon limitation 

showed good correlation with the transcriptomic changes. However, the proteins that 

were upregulated in nitrogen limitation did not correlate well with the transcriptomic 

changes. This suggested a transcriptional regulation of carbon source limitation 

response while the predominant mode of regulation in response to nitrogen limitation 

was either translational or degradation controlled (Kolkman et al. 2006).  

A perturbation study, where one of the environmental parameter is perturbed 

keeping everything else constant, is a powerful technique. It allows us to find the 

changes in the biochemical state in response to the perturbation. However, cells in their 

native environment are rarely subject to single discrete changes in their environment. 

Therefore the application of this approach in modeling complex cellular responses in 

native conditions is limited. One way to expand the power of this approach would be to 

perform combinatorial perturbation analysis where multiple environmental stimuli are 

applied concurrently. 
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Cellular responses to combinatorial stimuli: Combinatorial effects of compounds 

have been an active area of research in toxicology, drug combination therapy, and 

environmental science (Greco, Bravo, and Parsons 1995; Altenburger et al. 2013; 

Altenburger, Nendza, and Schüürmann 2003; Altenburger et al. 2012; Altenburger, 

Walter, and Grote 2004; Faust et al. 2001; Ankomah and Levin 2012; GARDNER 2002; 

Berenbaum 1989; Deneer 2000; Schoen 1996; Hermens, Leeuwangh, and Musch 

1985). Most of these studies focused on one aspect of the cellular responses such as 

mixture toxicity or therapeutic effect of a combination of drugs. However, there have 

been only a limited number of systems level studies of cellular responses to multiple 

concurrent stimuli. Most of these have been transcriptomic studies. 

In a pioneering study of transcriptomic changes in response to combinatorial 

changes in the environmental stimuli, regression analysis was used to interpret the 

observed changes. In this study 10 environmental parameters were varied. The total 

number of unique conditions was 55 and the total number of experiments was 170. 

Combinatorial stimulus was found to have profound effect on the expression pattern 

(Knijnenburg et al. 2009). The same analysis approach was also used in a study of 

transcriptomic responses of Arabidopsis thaliana liquid cultures to concurrent stimuli. In 

this study, the stimuli were high salinity and carbon dioxide concentration (Kanani, 

Dutta, and Klapa 2010). Although the regression models were able to explain significant 

amount of the statistical variances in the two studies, a biological interpretation was not 

straightforward. 

In a more recent study, the combinatorial effects of high NaCl and pheromone 

signaling was assayed in S. cerevisiae (Vaga et al. 2014). Phosphorylation events were 
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used as measures of activation/repression of specific signaling pathways. A set of 

ordinary differential equations were used to build logic models describing the integration 

of signaling through the high osmolarity and mating signaling pathways. This approach 

identified complex interconnections between the two pathways. However, similar to the 

regression approach above, a biological interpretation of the data is not straightforward. 

This motivated me to explore approaches that can be used to precisely and accurately 

model the combinatorial responses and at the same time have a simpler biological 

interpretation. 

I searched upon the conceptual framework of gene interactions that can be easily 

applied to the study of environmental stimuli (P. C. Phillips 1998). As an abstraction a 

gene is a packet of information, so is an environmental stimulus. A gene has an effect 

on the information repertoire of the cell when the information stored in it is used to build 

functional molecules such as regulatory RNAs or proteins. In cells the products of 

multiple genes carry the information from their respective genetic loci. The information 

from genes travels through the information networks inside cells. The interaction 

between the gene products, or sometimes a lack of interaction due to a loss of function, 

integrate the information and modify the information repertoire of the cells. The 

information for modification comes from within the cells, its genetic material. In the case 

of an environmental stimulus, the information from outside the cell travels through the 

cellular information network to modify its information repertoire. If multiple stimuli are 

present, the information from each of them would be integrated inside the cellular 

information network.  
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As an abstraction, this integration of information could be similar to the 

integration of information from genes through gene interactions. Therefore, the 

conceptual framework of gene interactions can be used to study the combinatorial effect 

of concurrent environmental stimuli. I called it the concepts of environmental 

interactions and environmental epistasis. I defined an environmental interaction as the 

interaction between different environmental stimuli that affect the same observable 

characteristic or trait. In this schema, environmental epistasis is a special case of 

environmental interaction in which the effects of the individual stimuli are not 

independent of each other. We have tested the applicability of this approach in studying 

the effects of multiple concurrent environmental stimuli in S. cerevisiae (Samir et al. 

2015). 

Regulation of the proteome by the ribosomes 

The information stored in the genome is the template used to build the 

information repertoire stored in a proteome. It involves encoding of the information into 

an intermediate class of molecules called messenger RNAs (mRNAs) followed by 

translation of the information from mRNAs into amino acid sequences of proteins 

through a process called translation. Translation consists of 4 steps: (1) initiation, (2) 

elongation, (3) termination, and (4) recycling. A host of proteins and RNAs regulate 

these steps (Kapp and Lorsch 2004). The catalytic engine of this process is the 

ribosome. The eukaryotic ribosome consists of a 60S large ribosomal subunit and a 40S 

small ribosomal subunit. The large subunit has three rRNA molecules (28S, 5.8S and 

5S) and 46 ribosomal proteins. The small subunit is made up of a single rRNA (18S) 

and 33 ribosomal proteins (Jonathan R Warner 1999; Nakao, Yoshihama, and 
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Kenmochi 2004). The catalytically competent fully functional 80S ribosome is a 

heterodimeric complex of the small and large subunits.  

Ribosomes are assembled inside the nucleus through a process called ribosome 

biogenesis. Ribosome biogenesis is one of the most energy intensive processes. In 

eukaryotes requires concerted action of hundreds factors, including proteins and small 

nucleolar RNAs (snoRNAs) (J. Woolford 2015; J. L. Woolford and Baserga 2013; de la 

Cruz, Karbstein, and Woolford Jr. 2015; Turowski and Tollervey 2014; Planta 1997; 

Boisvert et al. 2007; J. R. Warner 1989). RNA Pol I transcribes the pre-rRNA whose 

endolytic processing generates 28S, 18S, and 5.8S rRNAs. RNA Pol III transcribes 5S 

rRNA (Kressler, Linder, and Cruz 1999; Venema and Tollervey 1999; Granneman and 

Baserga 2004; Nazar 2004). During ribosome biogenesis, pre-RNA is processed and 

the ribosomal proteins sequentially added (Gamalinda et al. 2014). Once the ribosomal 

subunits have been assembled, they are exported out of the nucleus and undergo a 

final round of processing before joining the free ribosomal subunit pool primed to start 

translation (Johnson, Lund, and Dahlberg 2002; Rouquette, Choesmel, and Gleizes 

2005; Zemp and Kutay 2007; van Riggelen, Yetil, and Felsher 2010). 

In the first step of translation, translation initiation factors help assemble a 

functional ribosome on an mRNA (Kapp and Lorsch 2004). Eukaryotic mRNAs contain 

5’ cap structure in which a guanosine nucleotide is connected through 5’-5’ bond. This 

guanosine is also methylated on position 7. The cap acts as the start beacon, among its 

many functions (Shatkin 1976). It helps recruit eIF4 initiation factors to the mRNA. The 

eIF4 complex unwinds the secondary structures on the mRNA and helps recruit the 43S 

preinitiation complex (PIC) (Gingras, Raught, and Sonenberg 1999, 4). PIC consists of 
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40S ribosomal subunit bound to eIF2 and initiator Met-tRNA. eIF2 in PIC is bound to 

GTP.  The 40S subunit scans the mRNA to find the initiation AUG codon. The 40S 

ribosome starts scanning the mRNA to find the initiation AUG codon. Once the initiation 

codon has been identified, the GTP bound to eIF2 is hydrolyzed and eIF2 dissociates 

from the complex. This paves way for recruitment of the 60S ribosomal subunit leading 

to the formation of a fully functional ribosome and translation elongation can begin 

(Hinnebusch 2005; Kapp and Lorsch 2004; Sonenberg and Hinnebusch 2009; Gingras, 

Raught, and Sonenberg 1999; Korostelev 2014).  

The cap-dependent mode of translation initiation discussed above is the 

predominant mode of translation initiation. In addition, a cap-independent translation 

initiation mechanism can also be employed by some mRNAs (Merrick 2004). In cap 

independent translation initiation, the ribosomes are recruited directly to an internal 

ribosome entry site (Merrick 2004; Pelletier and Sonenberg 1988; Jang et al. 1988; 

Chappell, Edelman, and Mauro 2000). Some viruses exploit this mechanism of 

translation by shutting down the cap-dependent translation that shuts down most of the 

host protein synthesis. This allows viral protein synthesis to occur using a cap-

independent mechanism (Sk et al. 1989; Firth and Brierley 2012; Boehringer et al. 2005; 

Fernández et al. 2014).   

Once the 80S ribosome is assembled on an mRNA, translation elongation can 

begin (Kapp and Lorsch 2004). This phase of translation requires two elongation 

factors, eEF1 and eEF2, and tRNAs charged with cognate amino acids. tRNAs are the 

keys for decoding the information from mRNA. They contain three letter anticodon key 

that is complementary to the three letter codons on mRNA. The elongation factor eEF1 
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facilitates the entry of charged tRNA to the free ribosome acceptor site as well GTP 

hydrolysis upon correct anticodon-codon base pairing. Upon correct anticodon-codon 

base pairing, a new peptide bond is formed to extend the length of the nascent 

polypeptide through peptidyl transferase reaction. The peptidyl transferase catalytic 

activity resides in the 28S rRNA component of the 60S large ribosomal subunit, making 

ribosome an example of ribozyme. Another molecule of GTP is consumed by eEF2 

elongation factor for translocating the ribosome three nucleotides once the peptidyl 

transfer reaction has occurred. This ensures that information from the mRNA is 

decoded sequentially three nucleotides at a time. GTP hydrolysis helps in reducing the 

errors during translation elongation as well as provides directionality (Kapp and Lorsch 

2004; G. R. Andersen, Nissen, and Nyborg 2003; Nilsson and Nissen 2005; Nyborg and 

Liljas 1998; Frank 2012). 

Translation elongation continues till the ribosome encounters one of the stop 

codons - UAA, UAG, and UGA. The stop codons mark the end of the message in the 

mRNAs. There are no tRNAs for any of the stop codons. Instead, the translation 

termination factor eRF1 is recruited to the free acceptor site on the ribosome followed 

by the binding of another termination factor eRF3 (Kapp and Lorsch 2004; Dever and 

Green 2012). The termination factor eRF1 can recognize all of the three stop codons. 

Once it has ensured that the ribosome has reached a stop codon, it catalyzes the 

peptide release from the ribosomes. Although peptide release can be catalyzed by 

eRF1 alone, presence of eRF3 greatly increases the reaction rate. The cooperative 

actions of eRF1 and eRF3 ensure proper and speedy translation termination. After 

peptide has been released the complex of tRNA, termination factors, ribosome, and the 
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mRNA is known as post-termination complex (Dever and Green 2012; Georges et al. 

2014; Inge-Vechtomov, Zhouravleva, and Philippe 2003, -). 

The final step in translation is recycling of the ribosomes from the post-

termination complex to start another round of translation. This is also the least 

understood phase in translation, especially in eukaryotes. There are two fates possible 

for the ribosome bound to the mRNA after termination – (1) it can reinitiate translation at 

a downstream start codon, or (2) it can be dissociated from the mRNA making it 

available for another round of translation. Both possibilities have been found to be 

utilized in cells, albeit the latter being more frequent than the former (Nürenberg and 

Tampé 2013; D. J. Young et al. 2015; S. K. Young et al. 2015; Dever and Green 2012; 

Jackson, Hellen, and Pestova 2012; Franckenberg, Becker, and Beckmann 2012). 

In the traditional model of translational control, all powers to regulate are invested 

in the protein and RNA accessory factors, and the ribosomes are considered passive 

players. Most studies of translational control have focused on such regulatory 

molecules. This effort has led to the identification of the core components of 

translational control and a better understanding of this process (Kapp and Lorsch 2004; 

Dever and Green 2012; Sonenberg and Hinnebusch 2009; Hinnebusch 2015). In recent 

years, the idea that the ribosomes are regulatory elements in gene expression 

regulation has been gaining ground. The role of ribosome in the regulation of gene 

expression is a very active area of research (Ruggero and Pandolfi 2003; Kondrashov 

et al. 2011; Xue et al. 2015; Jonathan R. Warner and McIntosh 2009; Jonathan R. 

Warner 2015; McIntosh and Warner 2007; Komili et al. 2007). This idea was nucleated 
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due to the observation of heterogeneity in the ribosomal sub-populations in cellular 

slime molds (S. Ramagopal 1992). 

Ribosome heterogeneity: Heterogeneity in ribosome composition has been known 

since the early work with E. coli ribosomes (Kurland et al. 1969). Soon after studies in 

rat revealed the differences between the protein composition of ribosomes from muscle 

and liver (Sherton and Wool 1974). Studies in cellular slime mold Dictyostelium 

discoideum revealed three modes of heterogeneity (S. Ramagopal 1992). In the first 

mode, some ribosomal proteins were found to be exclusively present in the vegetative 

or differentiated state. Two of the ribosomal proteins were present only in the vegetative 

state, while three only in the differentiated spores (S. Ramagopal 1992; Subbanaidu 

Ramagopal and Ennis 1981). In the second mode, some ribosomal proteins were 

present in varying stoichiometries in different developmental stages (Subbanaidu 

Ramagopal and Ennis 1981; S. Ramagopal 1992). These modes of generating 

ribosomal heterogeneity were found to be conserved across several cellular slime mold 

species (Subbanaidu Ramagopal and Ennis 1984). A third mode of heterogeneity 

generation involved differential post-translational modifications of ribosomal proteins.  In 

Dictyostelium discoideum, ribosomal proteins were found to be methylated or 

phosphorylated. Many of the modifications were specific to vegetative cells or starvation 

induced aggregation competent cells (S. Ramagopal 1992; S. Ramagopal 1991). The 

fact the heterogeneity was present in growth stage specific manner suggested a 

functional significance of heterogeneity. 

In a more recent study in A. thaliana, liquid chromatography tandem mass 

spectrometry analysis of protein composition of ribosomes revealed changes in 
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composition in response to sucrose feeding. Some of the changes in composition 

involved paralogous ribosomal proteins. Paralogous ribosomal proteins may have 

arisen through gene or whole genome duplications and are nearly identical to each 

other. In A. thaliana, 231 ribosomal protein genes code for ribosomal proteins. Each 

ribosome contains 79 proteins (Hummel et al. 2012). The presence of paralogs provides 

a mechanism of generating ribosomal heterogeneity through a specific use of paralogs 

in A. thaliana ribosomes (Nakao, Yoshihama, and Kenmochi 2004). 

In S. cerevisiae too there are 59 ribosomal protein paralog pairs (Nakao, 

Yoshihama, and Kenmochi 2004). Therefore, the presence of paralog can allow 

heterogeneity in the ribosomal populations also in S. cerevisiae. In a study involving 

oxidative stress, RPL22A and RPL16B were found to be upregulated in response to 

hydrogen peroxide treatment (Chan et al. 2012). A mutational analysis revealed that 

loss of rpl22a but not rpl22b leads to sensitivity to the oxidative stress. The other 

paralog pair, RPL16A and RPL16B, did not show sensitivity to oxidative stress 

suggesting a functional complementation between them (Chan et al. 2012). The lack of 

functional complementation between RPL22A and RPL22B suggest a functional role for 

paralog mediated ribosomal heterogeneity in translational control. 

The ribosome filter hypothesis: The ribosome filter hypothesis was proposed in light 

of the observations that some mRNAs contained regions that were similar or 

complementary to 18S or 28S rRNAs (Vincent P Mauro and Gerald M Edelman 2007). It 

was expanded to include ribosomal protein mediated interactions with the mRNAs. The 

underlying idea is that the ribosomes with different compositions translate specific 

mRNAs with differing efficiency (Figure 1) (Mauro and Edelman 2002; Vincent P Mauro 
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and Gerald M Edelman 2007). There are four basic tenets of the hypothesis that I am 

reproducing here – “(1) the ribosome is a regulatory structure that embodies 

mechanisms for preferentially translating different subsets of the message population, 

(2) ribosomes may display a continuum of regulatory effects, (3)  competition  for  

binding  sites  in  ribosomal  subunits  may affect  the  rate  of  translation  of  different  

mRNAs, and (4)  the  filter  may  also  be  modulated  as  a  result  of  altering  or 

masking  particular  binding  sites  on  ribosomes” (Mauro and Edelman 2002; Vincent P 

Mauro and Gerald M Edelman 2007). 
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Figure 1 - The ribosome filter hypothesis. 

A) A cartoon showing that two ribosomes in differing composition translate a transcript with different 

efficiencies. The dark ribosome is more efficient than the light ribosome. B) A cartoon showing the 

presence of heterogeneous subpopulations of ribosomes differing in their composition. To efficiently 

translate two different proteomes, two different subpopulations of ribosomes are needed. 



 

21 
 

The depot hypothesis: The depot hypothesis was proposed to explain the 

extra-ribosomal functions of ribosomal proteins (Ray, Arif, and Fox 2007). In one of the 

earliest examples of extra-ribosomal function of a ribosomal protein, RPL13A was found 

to inhibit translation of ceruloplasmin (Cp) mRNA (Mazumder et al. 2003). RPL13A is a 

component of interferon-Gamma Activated Inhibitor of Translation (GAIT) complex that 

binds to GAIT element in the 3’UTR of Cp mRNA (Mazumder et al. 2003; R. 

Mukhopadhyay et al. 2009). Under normal conditions, RPL13A remains associated with 

the 60S subunit of the ribosomes. It is phosphorylated in response to interferon-Gamma 

singling. Phosphorylation is the trigger for its dissociation from the ribosome. The free 

phosphorylated protein binds to the GAIT element to inhibit translation of target mRNAs 

(Mazumder et al. 2003). This observation led to the authors “to propose a ‘depot 

hypothesis’ in which macromolecular assemblies, while maintaining their ordinary 

activity, acquire the non-canonical capability to release component proteins that perform 

new functions outside the complex” (Ray, Arif, and Fox 2007). 

A number of examples of ribosomal proteins have been described in addition to 

the one described above (Jonathan R. Warner and McIntosh 2009). In mammals, S27-

like and S27 have been found to inhibit MDM2 mediated ubiquitination of p53 (Xiong et 

al. 2011). In A. thaliana, phosphorylation of RPL10 causes it to translocate to nucleus 

where it is hypothesized to be involved in host defense against virus infection (Carvalho 

et al. 2008). These examples suggest a frequent utilization of ribosomal proteins in 

functions outside their primary function in translation as predicted by the depot 

hypothesis. The ribosome filter and depot hypothesis have a human disease element 

too. 
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The ribosomopathies: Ribosomopathies have been defined as “a collection of 

disorders in which genetic abnormalities cause impaired ribosome biogenesis and 

function, resulting in specific clinical phenotypes” (Narla and Ebert 2010). The earliest 

example of a ribosomopathy is a human disease Diamond Blackfan Anemia (DBA) 

(Jonathan R. Warner 2015; Narla and Ebert 2010). Mutations in RPS19 locus were 

found to be associated with DBA. The types of mutation included nonsense, frameshift, 

splice site, and missense mutations (Draptchinskaia et al. 1999). Since then mutations 

in 11 ribosomal protein genes have been found to be associated with DBA (Aspesi et al. 

2014). 

Since discovery of mutations in ribosomal proteins in DBA, a number of other 

ribosomopathies have identified. One example is X-linked Intellectual Disability caused 

by the mutation in RPL10. The mutant protein is still functional and is able to 

complement the conditional mutant of RPL10. The missense mutation also led to an 

increase in actively translating ribosomes (Zanni et al. 2015). Mutation in RPS20 was 

found to cause predisposition to Hereditary Nonpolyposis Colorectal Carcinoma 

(Nieminen et al. 2014). The list of ribosomopathies is growing with new mutations and 

diseases continuously being found to be associated with each other (Narla and Ebert 

2010; Jonathan R. Warner 2015; Yelick and Trainor 2015; Danilova and Gazda 2015; 

Amanatiadou et al. 2015; Brooks et al. 2014; Ruggero and Pandolfi 2003; Yang et al. 

2015; Martin et al. 2014). These studies are providing added motivation for studying the 

regulatory functions of ribosomes. 

In this study, I used changes in protein composition of S. cerevisiae ribosomes in 

response to a change in carbon source to identify candidate ribosomal proteins that 
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might be playing a role in ribosome filter mediated translational control. I used iTRAQ 

based quantitative proteomics and cryo-EM, in collaboration with the Joachim Frank lab, 

to study the changes in composition of ribosomes both at the population as well as 

single particle levels. I identified 11 such proteins that includes a paralog pair, Rpl8a 

and Rpl8b, using quantitative proteomics. I am using yeast genetics, biochemistry, and 

next-generation sequencing in follow up experiments to dissect the exact mechanism of 

ribosome filter mediated translational control. 

The proteome in myotonic dystrophy 

 Myotonic dystrophy (dystrophia myotonica, DM) is an autosomal dominant 

progressive multisystemic disorder caused by expansion of microsatellite repeats 

(Thornton 2014). It is the most common form of adult muscular dystrophy (Udd and 

Krahe 2012). DM was first described by Steinert, Batten and Gibb in 1909 (Schoser and 

Timchenko 2010). It was later recognized as a multisystemic disorder with the 

observation of a high incidence of cataracts in DM patients (Schoser and Timchenko 

2010). DM is characterized by progressive muscle weakness, myotonia, cataracts, and 

cardiac conduction defects (Udd and Krahe 2012; Thornton 2014; Machuca-Tzili, Brook, 

and Hilton-Jones 2005; Turner and Hilton-Jones 2014). 

The causative agent for DM was identified as an expansion of CTG repeat 

element in the 3’ untranslated region of dystrophia myotonica-protein kinase (Brook et 

al. 1992; Mahadevan et al. 1992; Y. H. Fu et al. 1992). Shortly afterwards, many cases 

of DM were described that lacked the CTG expansion (Thornton, Griggs, and Moxley 

1994; Ricker K et al. 1995; Ricker et al. 1994; Udd et al. 1997; Meola et al. 1996). 

These patients typically had a milder form of the disease. Since the proximal muscles 
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are involved in this form of the disease, instead of the distal muscles in the previously 

described form, it was named proximal myotonic myopathy. The two forms of the 

disease were later renamed as myotonic dystrophy type 1 (DM1) and myotonic 

dystrophy type 2 (DM2). DM1 patients had the CTG repeat expansions. DM2 was 

subsequently found to be caused by a CCTG tetranucleotide repeat expansion in the 

first intron of Znf9 gene. 

Myotonic dystrophy type 1 (DM1): DM1 is the classic form of the disease that was 

first described more than a hundred years ago. DM1 can present in four different forms: 

adult onset, congenital, childhood onset, and late onset oligosympotomatic. The age of 

onset negatively correlates with the repeat size. The adult form is the most typical form 

while the congenital form is the most severe form of DM1 (Udd and Krahe 2012). DM1 

is more prevalent in European populations, where it ranges from 1:1100 in Finland to 

1:10700 in other countries (Thornton 2014). It was found to be a rare disease in Taiwan 

and sub-Saharan Africa. In Taiwan the disease incidence was found to be 0.46:100000 

(Hsiao et al. 2003). Incidences of DM1 in Africa in non-European populations were very 

rare. For example, only one DM1 family was identified in Nigeria, when the population of 

country was 120 million. The same study revealed that DM1 was more prevalent in 

Europe, Japan, Southwest Asia and India. It was less prevalent or extremely rare in 

West African, Bantu, Ethiopian, Tunisian Berbers, Southern Chinese, Thai and non-

European Australians (Ashizawa and Epstein 1991).  

 The molecular basis of DM1 was independently identified by three groups 

(Mahadevan et al. 1992; Y. H. Fu et al. 1992; Brook et al. 1992). Interestingly, one of 

the studies mistakenly identified the repeat to be a GCT repeat. They were using GCT 
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repeat synthetic oligonucleotides as probes in their experiment. An oligonucleotide with 

repeated GCT sequences is virtually identical to a CTG repeat sequence, except the 

ends, that confounded their interpretation (Y. H. Fu et al. 1992). Previous studies had 

identified the long arm of chromosome 19 to contain the locus that was in linkage 

disequilibrium with DM1 (Korneluk et al. 1989; Brunner et al. 1989; Shaw et al. 1986; 

Smeets et al. 1990; Aslanidis et al. 1992). Other two studies used a positional cloning 

strategy to clone the previously identified DM1 locus and identified the CTG repeat 

expansions as the causative agent (Brook et al. 1992; Mahadevan et al. 1992). The 

number of repeats in normal individuals was found to vary between 5 and 30. In DM1 

patients, the number of repeats exceeded 50 (Brook et al. 1992; Mahadevan et al. 

1992). 

 CTG repeats are highly unstable. In one study only 4 out of 110 cases 

were identified where the repeats were passed on unchanged from the parental 

generation. In the same study, the repeat expansions by more than 400 in a single 

generation were observed (Redman JB et al. 1993). The repeats are also biased 

towards expansion (Thornton 2014; Redman JB et al. 1993; Temmerman et al. 2004). 

There is also a pronounced maternal expansion bias (Pearson, Edamura, and Cleary 

2005). Different mechanisms for expansions have been proposed that include genome 

duplication errors, genome maintenance error in quiescent state or recombination 

defects during meiosis (Pearson, Edamura, and Cleary 2005).  

A high amount of somatic instability in CTG repeat length suggests a prominent 

role for errors in genome maintenance or duplications that occur after meiosis (Loreto 

Martorell et al. 1997). A comparison between the repeat lengths of identical twins 
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showed different patterns of expansion in one of the two pairs (de Munain et al. 1994). 

The repeat was also found to expand with time in the same individual (L. Martorell et al. 

1995). A number of studies have reported variable length of the repeats in different 

tissues of the same individuals (Thornton, Johnson, and Moxley 1994; Shelbourne et al. 

1992; Lavedan et al. 1993; G. Jansen et al. 1994). Interestingly, repeat contraction was 

reported in a father-son pair with repeat length falling to the normal range for the son 

who did not have the disease (Shelbourne et al. 1992). In one of the studies, CTG 

repeats were found to be larger in skeletal muscles compared to leukocytes (Thornton, 

Johnson, and Moxley 1994). Taken together, it suggests a more prominent role for 

errors in genome maintenance during mitosis or quiescence in repeat expansion. 

Myotonic dystrophy type 2 (DM2): DM2 was described shortly after identification of 

CTG repeat expansion as the cause for classical DM. Although DM1 and DM2 are 

similar in their symptoms, and being a RNA dominant disorder, there are important 

differences between the two. DM2 is a relatively milder form of DM. DM2 does not 

involve a severe central nervous system defect. It is primarily a late onset disease. A 

congenital form of DM2 has not been observed. (Thornton 2014; Machuca-Tzili, Brook, 

and Hilton-Jones 2005; Turner and Hilton-Jones 2014, -; Cho and Tapscott 2007; 

Ulane, Teed, and Sampson 2014; Ranum and Day 2002). The numbers of 

tetranucleotide CCTG repeats are below 30 for normal individuals while they vary 

between 75 and 11000 in affected individuals making it much larger than the ones 

observed in DM1 (Liquori et al. 2001). Surprisingly, the repeat length has not been 

found to be associated with the age of onset or severity of the disease (Ranum and Day 

2002).  
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In normal individuals CCTG repeats are interrupted by GCTG motif, TCTG motif, 

or both (Kurosaki et al. 2012; Liquori et al. 2003). The repeat tracks are polymorphic 

with the form (TG)n(TCTG)n(CCTG)n(NCTG)n(CCTG)n (Bachinski et al. 2009). In 

affected individuals, only the CCTG motif of the repeat expands (Kurosaki et al. 2012; 

Day et al. 2003; Liquori et al. 2001; Bachinski et al. 2009). The repeats are very 

instable. They can contract as well as expand over generations (Kurosaki et al. 2012; 

Day et al. 2003; Ulane, Teed, and Sampson 2014). Nuclear magnetic resonance 

spectroscopy showed that the CCTG repeats are prone to forming metastable hairpin 

and dumbbell structures. The structures were shown to undergo dynamic 

conformational exchange. Both the structures were also found to contain flexible stem 

(Lam et al. 2011). In another study, it was found that the DM2 repeats are 

recombination hotspots. This process might be driven by DNA repair mechanisms (Dere 

and Wells 2006). The repeat itself was proposed to have originated from an insertion of 

Alu elements in the ZNF9 gene. The normal repeat structure was found to be conserved 

in primates, mouse, and rat (Kurosaki et al. 2012; Liquori et al. 2003).  

 In contrast to DM1, which has a relatively broader geographical 

distribution, DM2 seems to be more prevalent in European Caucasians. DM2 is more 

common in Northern European ancestry. Extensive haplotype analysis suggested that 

DM2 spread from a common founder (Liquori et al. 2003). More recently, a DM2 patient 

was identified in Japan. Haplotype analysis suggested that the DM2 repeat in this 

individual originated separately from those in European populations (Saito et al. 2007). 

There have been incidences of DM2 in non-European individuals in Morocco, Algeria, 

Lebanon, Afghanistan and Sri Lanka (Saito et al. 2007). 
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Molecular mechanisms behind DM pathogenesis: DM is classified as a RNA-

dominant disease (Osborne and Thornton 2006). The disease is thought to be caused 

by sequestration of essential RNA binding proteins by toxic RNA that contains the 

repeat elements in their non-coding region. Although this is now a universally accepted 

mechanism with certain modification, it was not always so clear. In an aptly titled review, 

“Myotonic dystrophy: will the real gene please step forward! “, Sarah Harris, Colin 

Moncrieff, and Keith Johnson expressed the frustrations of researchers in finding the 

molecular mechanism of the pathology (Harris, Moncrieff, and Johnson 1996). This was 

years after identification of CTG repeat expansion as the disease causing agent. A 

number of putative mechanisms had been proposed that explained some aspect of 

pathogenesis but not all. In addition, a new type of DM, DM2, had recently been found 

that did not contain the CTG repeat expansions. 

A number of pathogenic mechanism models have been proposed, many of them 

might contribute to the disease (J. E. Lee and Cooper 2009). Shortly after identification 

of the repeats, a haploinsufficiency model was proposed. In this model, the decrease in 

the amount of DMPK protein leads to pathogenesis. This model was supported by the 

observation that DMPK protein and mRNA levels were decreased in DM1 patients (Y.-

H. Fu et al. 1993). Follow up studies in mouse models suggested that although the 

decrease in DMPK protein levels might be contributing to the disease; it was not the 

sole cause. In one of the study, the mice null for Dmpk  had only mild phenotype (Gert 

Jansen et al. 1996). In another study, Dmpk null mice developed late onset myopathy, 

but did not show all the abnormalities observed in DM1 patients (Reddy et al. 1996). 
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Furthermore, a loss of function mutation in DMPK has not yet been identified suggesting 

that a decrease in DMPK is not the sole cause of DM1 (J. E. Lee and Cooper 2009). 

DMPK locus lies in a very gene rich region of the genome. Using this information 

it was proposed that the repeat expansion is affecting the expression of adjacent genes. 

In one of the studies condensed chromatin was found downstream of DMPK gene 

(Otten and Tapscott 1995). This suggested that the transcription of genes in the vicinity 

would be decreased. This was indeed found to be a case where the expression of a 

candidate homeodomain gene DMAHP (also known as SIX5) was reduced in DM1 

patients. However in a study in mice, knocking out Six5 led to development of cataract 

without apparent abnormalities in the skeletal muscles (Klesert et al. 2000). This 

suggested that the effect of repeat expansion on the chromatin and transcription of 

neighboring genes might be a contributing factor, not the primary one in DM1 

pathogenesis. 

The failure of other models to explain all the clinical features of DM1 lead to the 

proposition of RNA dominance model (Osborne and Thornton 2006). It is also called 

RNA gain-of-function and RNA toxicity models (Sicot and Gomes-Pereira 2013; J. E. 

Lee and Cooper 2009). Mice models with CTG repeats in the genome displayed the 

repeat instability including expansions and contractions in both germline as well as 

somatic tissues (Monckton et al. 1997; Gourdon et al. 1997). Transgenic mice with DM1 

region of a patient inserted in its genome displayed many of the associated pathological 

features. The pathological features included myotonia, progressive weakness of skeletal 

muscles, testicular atrophy as well as cognitive dysfunction among others (Seznec et al. 

2001). In a cell culture model, expression of DMPK cDNA containing 46 CTG repeats 
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inhibited myoblast differentiation (Usuki et al. 1997). These studies strongly suggested a 

critical role for RNA in DM1 pathogenesis. 

Stronger evidences were provided by experiments in which the CTG repeats 

were expressed independent of DMPK. In a cell culture model, expression of CTG 

repeat alone was able to inhibit myoblast differentiation (Bhagwati, Shafiq, and Xu 

1999). In another cell culture experiment, expression of DMPK 3’UTR with expanded 

repeats was able to delay myoblast differentiation and the normal DMPK 3’UTR did not 

have an effect (Amack, Paguio, and Mahadevan 1999). A transgenic mice model with 

250 CTG repeats construct inserted in the first intron of human skeletal actin (HSA-

CTG) was able to reproduce most of the disease features (Mankodi et al. 2000). Further 

evidence was provided by the identification of CCTG repeat as the disease causing 

agent in DM2.  

DM1 and DM2 have similar phenotypes, but are caused by mutations at very 

different loci in the genome suggesting an involvement of a common pathway. DMPK 

and ZNF9 have not been identified to function in the same molecular pathway. The 

mutations in both of the diseases are in the non-coding region of the transcript. Even if 

the repeats are assumed to be translated, the resulting proteins will have expansions 

containing different amino acids. Combined with the observation that expression of 

mutant RNA repeat alone in cell culture models as well as mouse models is able to 

replicate many of the clinical features of the diseases, a critical role of RNA gain of 

function seems to be beyond doubt. 
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Effects of RNA gain-of-function on splicing: The expanded CTG repeat caused a 

number of abnormalities including sequestering of RNA binding proteins in the nucleus, 

formation foci in the nucleus, changing the methylation state of the surrounding areas, 

formation of heterochromatin in the adjoining areas, decreasing transcription of the 

adjoining genes, and a decrease in the amount of DMPK protein itself. The diverse 

array of the effects of CTG expansion confounded the quest for discovery of molecular 

pathogenesis for a long time till unequivocal evidence in favor of RNA gain-of-function 

were obtained. 

 RNA gain-of-function model needs trans acting factors whose misregulation 

leads to the splicing defects observed in DM. CUG-BP1 was found to bind to CTG 

repeats in in vitro experiments with cytoplasmic and nuclear extracts (L. T. Timchenko 

et al. 1996). CUG-BP1 is a member of CELF family of proteins with six members 

(Osborne and Thornton 2006; Ranum and Cooper 2006). The EDEN-BP, a Xenopus 

homolog CELF homolog, was found to be involved in deadenylation (Paillard 1998). In 

another experiment, CUG-BP1 was found to regulate alternative translation initiation in 

in vitro experiments with mammalian cell extracts. The use of alternative initiation sites 

is one of the mechanisms to generate different isoforms of C/EBPβ transcription factor 

(N. A. Timchenko et al. 1999). CUG-BP1, another CELF family member, was found to 

modulate C to U RNA editing in mammalian cell extracts (Anant et al. 2001). In another 

study, CELF family members were found to regulate alternative splicing in cell and 

developmental stage specific manner (Ladd, Charlet-B, and Cooper 2001). In one 

study, CUG-BP2 was found to bind ARE elements in 3’ UTR of cyclooxygenase-2 

mRNA. The binding of CUG-BP2 stabilized the mRNA, but also inhibited translation (D. 
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Mukhopadhyay et al. 2003). These studies suggested that sequestration of CELF family 

proteins by the repeat containing toxic RNA could be one mechanism for DM 

pathogenesis.  

However, two very important observations contradicted the model with CELF 

family proteins at the center of DM pathogenesis mechanism. First, binding of CUG-BP 

was not found to be proportional to the CUG repeat length (Michalowski et al. 1999). 

Second, CUG-BP failed to colocalize with the nuclear RNA foci (Fardaei et al. 2001). 

This suggested that although CELF family proteins may be important in DM, they were 

not sequestered in the RNA foci and were not the primary splicing regulators important 

for pathogenesis. In a recent study, CUG-BP1 was found to be overexpressed in 

skeletal muscle biopsies of DM1 patients but not in DM2 patients (Cardani et al. 2013). 

This further ruled out CELF family proteins as the common splicing regulator affected in 

the two types of DM. 

The hunt for splicing regulator sequestered by CUG repeat containing RNAs led 

to the muscleblind-like (MBNL) family of proteins. There are three MBNL proteins in 

humans (Ranum and Cooper 2006). Muscleblind was identified in Drosophila as 

developmentally regulated gene that was important for eye and muscle development 

(Begemann et al. 1997; Artero et al. 1998). MBNL was identified as a candidate after it 

was found to bind to the larger CUG expansions in vitro. In crosslinking experiments, 

MBNL was not found to bind to RNA that had less than 11 CUG repeats (Miller 2000). 

This provided a model in which MBNL proteins were not binding to the normal repeats, 

but were only binding to the disease causing expanded repeat. 
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The expression pattern of MBNL was found to extensively overlap with the 

expression DMPK (Kanadia et al. 2003). All of the three MBNL proteins were also found 

to colocalize with the nuclear RNA foci in both DM1 and DM2 cells (Fardaei et al. 2002; 

Miller 2000; Mankodi et al. 2003). MBNL proteins were found to regulate alternative 

splicing of cardiac troponin T (cTNT) and insulin receptor (IR). Interestingly, CELF 

family proteins and MBNL promoted different splicing events in cTNT and IR suggesting 

that they have distinct roles in DM pathogenesis (Ho et al. 2004).  

MBNL sequestration can have wide ranging effects on the biology of the cells. In 

embryonic stem cells, MBNL has been found to negatively regulate expression of 

pluripotency genes. Knockdown of MBNL led to expression of pluripotency genes that 

were under control of FOXP1 transcription factor (H. Han et al. 2013). In Mbnl 

knockdown mice, fetal tau isoform expression and Mapt isoform misregulation was 

detected suggesting defects leading to mis-expression of developmentally regulated 

genes in adults. In DM1 patients there is downregulation of a chloride channel CLCN1. 

This downregulation is caused by introduction of premature stop codons in the open 

reading frame (ORF) due to splicing defects (Mankodi et al. 2002; Charlet-B. et al. 

2002; Osborne and Thornton 2006). CLCN1 had been shown to be the primary cause of 

myotonia (Koch et al. 1992). Interestingly, overexpression of CUG-BP was able to 

recapitulate the aberrant splicing defect in CLCN1 (Charlet-B. et al. 2002). Since CELF 

family proteins and MBNL proteins have opposite effects on determining the splicing 

pattern, could it be that the disruption of equilibrium between the two is the primary 

driver behind splicing defects in DM (Charlet-B. et al. 2002; Ho et al. 2004)? 
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MBNL1 has also been found to be involved in biogenesis of miR-1 in heart 

muscles from DM patients (Rau et al. 2011). In rats, miR-1 defect has been shown to be 

involved in heart development and its misregulation leads to heart conduction defect 

(Zhao et al. 2007). Regulation of miR-1 biogenesis by MBNL1 explains the heart 

conduction defects observed in DM patients. 

Transcriptomic studies in mouse models have revealed that the majority of 

defects in DM1 can be explained by the loss of MBNL1 function. In the study, mRNA 

expression of three mice strains were compared; (1) a transgenic mice expressing CUG 

repeat, (2) Mbnl knockout mice, and (3) a Clcn1 null mice (Osborne et al. 2009). In 

another study, both CUG-BP1 and MBNL1 were found to bind to the 3’UTR of target 

mRNAs and promote mRNA decay (Masuda et al. 2012). Comparison of mouse models 

expressing expanded CUG repeat containing mRNA or defective Mbnl1, revealed that 

more than 80% of the splicing defects can be explained by the loss of MBNL1 function 

(Du et al. 2010). A study in mouse and Drosophila models has revealed a global role for 

MBNL proteins in regulating the localization of mRNA (Wang et al. 2012). Taken 

together, MBNL proteins lie at the center of pathogenesis mechanism in DM. 

Differences in mechanism between DM1 and DM2: Pathogenesis mechanism in both 

DM1 and DM2 were thought to be solely mediated by RNA gain-of-function. A 

contradiction arose with studies in mouse models of DM2. In contrast to Dmpk, loss of 

function of ZNF9 led to multisystemic defects in ZNF9 heterozygous mice that was 

reminiscent of DM2 (W. Chen et al. 2007). This suggested critical role for ZNF9 protein 

in DM2 pathogenesis.  In yeast S. cerevisiae, ZNF9 was found to be a constituent of 

ITAF complex that regulates cap independent translation (Gerbasi and Link 2007). 
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Although the initial studies did not reveal a change in ZNF9 protein and mRNA levels in 

DM2 patients, many subsequent studies found a decrease in both ZNF9 protein and 

mRNA levels (Udd and Krahe 2012). In myoblasts derived form DM2 pateints, IRES 

mediated translation was found to be decreased. ZNF9 was also found to directly bind 

the IRES elements in the 5’ UTR of orinithine decarboxylase mRNA and activate cap-

independent translation (Sammons et al. 2010). 

These studies have revealed very important insights in the pathogenesis 

mechanisms of DM1 and DM2. Transcriptomic studies have shed light on the changes 

in mRNA abundances as well as RNA processing. However, the effect on the global 

proteome is poorly understood. This study is expected to shed light on the changes in 

the proteome of DM patients as well as mouse models.  
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Chapter II 

Environmental interactions and epistasis are revealed in the 

proteomic responses to complex stimuli 

Abstract 

Ultimately, the genotype of a cell and its interaction with the environment 

determine the cell’s biochemical state.  While the cell’s response to a single stimulus 

has been studied extensively, a conceptual framework to model the effect of multiple 

environmental stimuli applied concurrently is not as well developed.  In this study, we 

developed the concepts of environmental interactions and epistasis to explain the 

responses of the S. cerevisiae proteome to simultaneous environmental stimuli. We 

hypothesize that, as an abstraction, environmental stimuli can be treated as analogous 

to genetic elements. This would allow modeling of the effects of multiple stimuli using 

the concepts and tools developed for studying gene interactions. Mirroring gene 

interactions, our results show that environmental interactions play a critical role in 

determining the state of the proteome. We show that individual and complex 

environmental stimuli behave similarly to genetic elements in regulating the cellular 

responses to stimuli, including the phenomena of dominance and suppression. 

Interestingly, we observed that the effect of a stimulus on a protein is dominant over 

other stimuli if the response to the stimulus involves the protein. Using publicly available 

transcriptomic data, we find that environmental interactions and epistasis regulate 

transcriptomic responses as well.  
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Introduction 

In their native environments, cells continuously respond to a complexity of 

environmental stimuli. These include ambient temperature fluctuations, nutrient 

availability, signaling molecules, and physical forces. In response, cells adjust their 

biochemical state through multiple mechanisms including the differential production, 

modification, and degradation of transcripts and proteins (Gasch et al. 2000; Gerner et 

al. 2002; Pratt et al. 2002; Soufi et al. 2009; Yan et al. 2006). Both extracellular 

signaling and the metabolic environment strongly influence a cell’s growth and 

responses to therapeutic treatments (Whiteside 2008; Vaupel, Kallinowski, and Okunieff 

1989; Trédan et al. 2007; Hazlehurst, Landowski, and Dalton 2003). Model organisms 

have been used extensively to study cellular responses to individual and combinations 

of environmental stimuli (Gasch et al. 2000; Brauer et al. 2008; Nicola et al. 2007; 

Kanani, Dutta, and Klapa 2010; Knijnenburg et al. 2009; Knijnenburg et al. 2007; Murray 

et al. 2004; Tai et al. 2005; Vaga et al. 2014). We extend these approaches by 

developing and testing a novel conceptual framework to study proteomic responses of 

cells to the combinatorial effects of multiple concurrent environmental factors. We have 

modeled our analysis of these complex environmental interactions using the concepts of 

gene interaction and genetic epistasis. 

Gene interaction is defined as the interaction between genes at different loci that 

affect the same characteristic or a trait (Pierce 2005). Classically, genetic epistasis is 

referred to a type of gene interaction in which a mutation at one locus masks or 

suppresses the phenotype of a mutation at a different locus (Pierce 2005; Bateson 

1909). To test the independence of the effects of individual genes, genetic epistasis has 
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also been defined mathematically as a type of gene interaction in which the combined 

effect of two or more mutations is not the sum of the effects of the individual mutations 

(Cordell 2002; P. C. Phillips 2008; Fisher 1958).  

Conceptually, the problem of studying multiple concurrent environmental stimuli 

is similar to the problem of studying the effects of multiple genetic mutations. The 

product of a gene functions as part of one or more functional modules in concert with 

the products of many genes. The changes in a gene, for example its loss of function or 

gain of function, affects the phenotype due to the changes in the activity of the 

functional modules. If multiple genetic alterations are present, the total effect is due to 

the integration of the effects of the individual alterations through the functional modules. 

Similarly, environmental stimuli affect the biochemical state of the cells through specific 

sensing, signaling, and response modules. Concurrent application of multiple 

environmental stimuli, similar to the genetic alterations, requires the integration of 

information from these modules to mount an optimal response. By considering an 

environmental stimulus as an analogue of a gene, we hypothesized that the concepts of 

gene interaction and epistasis can be extrapolated to devise a conceptual framework for 

studying the combined effects of multiple concurrent stimuli.  There are several benefits 

of using this approach; (1) all the genetic, biochemical, and computational tools and 

concepts developed for studying gene interactions would become available for studying 

the effects of the environment, (2) it would allow for easier mechanistic interpretation of 

the responses to complex environmental stimuli, (3) the contributions of an individual 

stimulus to altering  biological processes can be more easily elucidated, and (4) it would 
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provide a unifying framework for studying gene-gene, gene-environment and 

environment-environment interactions.  

In this study, we define an environmental interaction as the interaction between 

different environmental stimuli that affect the same observable characteristic or trait. 

Similar to the statistical definition of genetic epistasis, environmental epistasis is an 

environmental interaction in which the effects of the individual stimuli are not 

independent of each other (Cordell 2002; Fisher 1958; P. C. Phillips 2008).   To test our 

hypothesis, we used the yeast S. cerevisiae and grew cells at standard conditions 

(glucose, 30oC) and changed growth conditions  to either high temperature (37oC, HT 

stimulus) or the non-fermentable carbon source glycerol (G stimulus) and concurrently 

with both environmental stimuli (glycerol, 37oC, HT+G stimuli) (Figure 2).  Using precise 

quantitative proteomics of the S. cerevisiae proteome and the changes in protein 

abundance as the readouts of the interactions, we show that environmental interactions 

and epistasis play central roles in determining the state of the proteome in response to 

multiple, concurrent environmental stimuli. We also show that, using the dominance of 

one stimulus over another, environmental interactions can be used to identify proteins 

that are important for responding to a dominant stimulus. We validated our approach 

using an independent publicly available transcriptomic dataset.  
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Figure 2 - Experiment design to study environmental interactions and epistasis. 

Experimental design workflow used in this study. Two environmental stimuli used were high temperature 

and glycerol as the carbon source. Diploid S. cerevisiae cells (BY4743) were grown in rich media under 4 

conditions: 1) glucose at 30oC (used as control), 2) glycerol at 30oC (G stimulus), 3) glucose at 37oC (HT 

stimulus), and 4) glycerol at 37oC (HT+G stimuli).  Three biological replicates were performed for each 

condition. 
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Materials and Methods 

Strains and Media.  All experiments used the diploid S. cerevisiae strain BY4743, 

which has been previously described (Baker Brachmann et al. 1998). Cells were grown 

using standard techniques (Amberg, Burke, and Strathern 2005).  

Growth rate analysis. Cells were grown in 96 well plates in 100 μL cultures (10 μL of 

starter culture and 90 μL of fresh media) with continuous shaking in a BioTek Synergy™ 

4 Hybrid Microplate Reader for 10 h. Growth rates were assayed at 8 conditions: (1) 

Synthetic complete medium with glucose (ScD) at 30oC, (2) ScD at 37oC, (3) Synthetic 

complete medium with glycerol (ScG) at 30oC, (4) ScG at 37oC, (5) Yeast extract, 

peptone medium with glucose (YPD) at 30oC, (6) YPD at 37oC, (7) Yeast extract, 

peptone medium with glycerol (YPG) at 30oC, and (8) YPG at 37oC. Absorbance was 

measured at 660nm at 3 min intervals. Using custom R scripts, the doubling times were 

calculated from the linear regression curve through the log growth phase using the log 

of the absorbance and time of growth. A two-tailed t-test of independence with 

Bonferroni correction for the 11 comparisons (7 comparisons of the control, YPD at 

30oC, to the test conditions, 3 comparisons of the observed concurrent double stimuli 

effect to the expected sum of individual stimulus effects, and 1 comparison of the 

observed concurrent three stimuli effect to the expected sum of the effects of the three 

individual stimulus) was used to calculate the statistical significance of a stimulus effect 

on the growth rate (Dunn 1961).  

Preparation of yeast protein extracts: Five mL of YPD (1% yeast extract, 2% 

peptone, 2 % glucose) was inoculated with a single yeast colony from a YPD agar plate 

and grown overnight.  Three replicates were grown under each growth condition: YPD 
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at 30°C and 37°C and YPG at 30°C and 37°C.  50 mL of YPD was inoculated with 50 

µL of the overnight culture and grown at 30°C and 37°C.  100 mL of YPG (1% yeast 

extract, 2% peptone, and 3% glycerol v/v) was inoculated with overnight cultures and 

grown at 30°C and 37°C. The cultures were grown with constant shaking at 175 rpm in 

Innova 44 shaker incubators (New Brunswick Scientific). For all four growth conditions, 

cells were harvested at mid-log phase as determined by OD600 measurements.  Cells 

grown in YPD were harvested after 14 h, while cells grown in YPG were harvested after 

24 h. All cultures were centrifuged at 2000 rpm for 5 min at 4°C using a Sorvall 

HLR6/H600A/HBB6 rotor in Sorvall RC-3B centrifuge and washed with ice cold 

deionized H20.  The cell pellets were resuspended in 1 mL ice cold wash buffer (10 mM 

Tris pH 8.0, 5 mM beta-mercaptoethanol, 500 mM ammonium chloride, 100 mM 

magnesium acetate) and lysed at 4°C using glass beads and a Bead Beater (BioSpec, 

Inc) for 10 min as previously described (Browne et al. 2013).  The whole cell extracts 

(WCE) were clarified by centrifugation at 20,000g for 15 min at 4°C, and a 200 μL 

aliquot of the cleared WCE was stored at -80 °C.   

iTRAQ labeling: The total protein concentration was determined using a Bradford 

assay according to the manufacturer’s protocol (Sigma Aldrich).  For each growth 

condition, 50 μg of total protein was mixed with 50 ng of bovine serum albumin (Thermo 

Scientific) as an internal standard.  Each protein sample was acetone precipitated and 

resolublized in 25 µl iTRAQ dissolution buffer (500 mM triethylammonium bicarbonate, 

0.1% sodium dodecyl sulfate).  The proteins were reduced with tris(2-

carboxyethyl)phosphine at 60°C for 60 min and the cysteines were derivatized with 

methyl methanethiosulfonate at room temperature for 10 min.  All samples were 
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digested with sequencing-grade modified trypsin (1:50; Promega Corporation) overnight 

at 37°C.  Equal fractions of the tryptic digests from the three replicates grown in YPD at 

30°C were pooled separately and used as a control for the iTRAQ experiments.   Fifty 

μg of the pooled control and 50 μg of each of the replicates were used for iTRAQ 

labeling. The iTRAQ labeling reagents were resolublized in 150 μL anhydrous ethanol 

(Sigma Aldrich). 75 μL of iTRAQ reagent solutions were added to each 50 μg sample, 

incubated with shaking for 1 h at room temperature on an Eppendorf Thermomixer R, 

pooled, frozen, lyophilized, resolublized in 200 μL of buffer A (0.1 % formic acid), and 

stored at -80°C. 

Liquid chromatography and mass spectrometry:  The iTRAQ-labeled samples were 

analyzed with MudPIT as previously described (Hoek et al. 2015). Briefly, 11 fractions 

corresponding to ammonium acetate pulses of 25mM, 50mM, 75mM, 100mM, 150mM, 

200mM, 250mM, 300mM, 500mM, 750mM, and 1M concentrations were analyzed on 2 

hour reverse phase gradients. Precursor ions were analyzed in the Orbitrap mass 

analyzer followed by four CID fragment ion scans in the ion trap and four HCD fragment 

ion scans (normalized collision energy  = 45%) in the Orbitrap. Dynamic exclusion was 

enabled with exclusion window of 180 seconds. Monoisotopic precursor selection was 

enabled. 

iTRAQ data analysis: RAW files generated by the MudPIT experiments were searched 

using the Sequest HT database search engine  running under Proteome Discoverer 

v1.4 (Thermo Scientific) against a forward and reverse yeast protein database 

(S.cererevisiae_orf_trans_all_SGD.fasta.6718) with appended common contaminant 

sequences (Eng et al. 2008; Eng, McCormack, and Yates 1994). The CID and HCD 
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spectra were merged using the Spectrum Grouper function in Proteome Discoverer by 

setting the retention time window to 0.05 minutes and precursor mass tolerance to 

10ppm. Beta-methylthiolation of cysteines, and iTRAQ modification of lysine and N-

terminus were included as constant modifications. Oxidation of methionine and 

tryptophan, and deamidation of glutamine and asparagine were used as variable 

modifications. Precursor mass tolerance was set to 3 Da and fragment mass tolerance 

was set to 0.8 Da. Protein assembly, reporter ion quantitation, and protein fold change 

calculations were done using ProteoIQ at 5% peptide and protein FDR (Premier 

Biosoft). Hierarchical clustering analysis was done using Cluster 3.0 (Eisen et al. 1998). 

Heatmaps were generated using Java Treeview (Saldanha 2004).  Circos plots were 

generated as described in Krzywinski et. al. to visualize the genomic locations of the 

quantitated proteins (Krzywinski et al. 2009).  For better visualization, only those regions 

of the genome that were quantitated in this study are shown.  

Environmental interaction analysis: All analyses were performed using R scripts to 

parse the fold change expression data to identify proteins that show specific expression 

patterns in response to complex environmental stimuli. For each protein, we used linear 

regression to test for any association of high temperature or glycerol using a model that 

included main effects for glycerol and temperature and the glycerol by temperature 

interaction. We used the effect size estimates and ANOVA p-values (3 df) calculated by 

the lm function and adjusted the p-values for a 5% FDR using the Benjamini-Hochberg 

procedure for finding differentially expressed proteins  (Benjamini and Hochberg 1995). 

We used the adjusted p-value cut-off of 0.05 to determine statistical significance. If the 

overall adjusted p-value was greater than 0.05, we classified the proteins as non-
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responders. The positive and negative signs of the effect size estimates correspond to 

upregulation and downregulation, respectively, showing the direction of change.  The 

remaining proteins were further classified into environmental interaction classes based 

upon the effect size estimate p-values and the direction of change. If the p-value of an 

estimate was less than 0.05, the protein was considered differentially expressed in 

response to that environmental stimulus.  

To test if a protein is affected by environmental epistasis, the effect size 

estimates for the individual high temperature (HT) and glycerol stimuli (G) were 

summed, the combined standard error calculated as the square root of the sum of the 

squared standard errors, and a two-sample t-test of independence was used to 

compare the summed effect size estimate to the effect size estimate for the concurrent 

high temperature and glycerol stimuli (HT+G). If a t-test p-value was less than 0.05, the 

protein was assumed to be affected by environmental epistasis. 

Environmental interaction analysis of transcriptomic dataset: Normalized 

expression data described in Knijnenburg et. al. was downloaded (Knijnenburg et al. 

2009). The transcriptomic data were generated using haploid S. cerevisiae 

(CEN.PK113-7D MATa) cells grown in chemostat cultures (Knijnenburg et al. 2009). We 

chose 4 culture conditions similar to our experimental design for further analysis. The 

culture conditions tested were: 1) with ammonium sulfate as the nitrogen source (n=5), 

2) with methionine as the nitrogen source (n=3), 3) anaerobic conditions (n=4), and 4) 

with methionine as the nitrogen source and anaerobic conditions concurrently (n=3).  

Transcriptomic data from the cells grown with ammonium sulfate as the nitrogen source 

were used as the baseline control. The fold change was calculated by subtracting the 
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average normalized expression data of baseline samples from the individual expression 

data. Finally, the genes were classified into various types of environmental interaction 

as described above. 

Co-expression network analysis: Sparse PArtial Correlation Estimation (SPACE) was 

used to build protein co-expression networks and identify the hub genes (Peng et al. 

2009). To account for outliers, the data were normalized using probabilistic quotient 

normalization and scaled using a generalized logarithmic scaling factor (Dieterle et al. 

2006; Durbin et al. 2002). The data were scaled and centered to have a standard 

deviation of 1 and mean of 0 to remove any bias in the correlation analysis (Berg et al. 

2006). We estimated the partial correlation matrix using the space.dew method 

implemented in the SPACE R package (Peng et al. 2009).  We selected the default 

value of the tuning parameter for constructing the initial network (Peng et al. 2009). The 

network was visualized in Cytoscape 3.1.1 (Shannon et al. 2003). 

Results 

While cells measure and respond to many environmental stimuli, we chose 

temperature and carbon source to test our hypothesis. Both stimuli are known to be 

important factors for survival and have wide-ranging effects on yeast metabolism 

(Gasch et al. 2000).  We used growth with glucose at 30°C as the control, and high 

temperature and glycerol as the stimuli. The changing growth conditions were:  glucose 

at 37°C (HT stimulus), glycerol at 30°C (G stimulus), and glycerol at 37°C concurrently 

(HT+G stimulus).  To precisely measure the proteomic responses of the cell, we used 

isobaric tag for relative and absolute quantitation (iTRAQ) labeling followed by multi-

dimensional protein identification technology (MudPIT)-based mass spectrometry to 
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quantify the steady state proteomes under the four different growth conditions (Link et 

al. 1999; Ross et al. 2004).  A total of 1064 proteins were quantitated in the control and 

the three test conditions. We filtered the data to focus only on the 466 proteins that were 

quantitated in all three independent replicates of all of the three test conditions (Fig. 3A).   

 

Figure 3 - Proteomic responses to complex environmental stimuli. 

Diploid S. cerevisiae (BY4743) cells were grown in rich media under 4 conditions: 1) glucose as the 

carbon source at 30oC, 2) glycerol as the carbon source at 30oC, 3) glucose at 37oC, and 4) glycerol at 

37oC.  Three biological replicates for each growth conditions were performed. Fold changes were 

calculated from iTRAQ reporter ion intensities using reporter ion intensities from the pooled replicates of 

growth in glucose as the carbon source at 30oC as the baseline. The fold changes were log2 transformed 

for downstream analysis. The color bar shows the fold change ranges. A) Complete filtered proteomic 

dataset for high temperature stimulus (HT), glycerol stimulus (G), and concurrent glycerol and high 

temperature stimuli (HT+G) (Red: Up, Green: Down, Black: No change). The heatmap represents the fold 

changes of 466 proteins. B) Fold changes of 283 proteins differentially expressed in response to HT 

stimulus. C) Bar graph shows the –log q-value of enrichments of the top 5 pathways in the list of proteins 
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differentially expressed after the HT stimulus. D) Fold changes of 379 proteins differentially expressed in 

response to the G stimulus. E) Bar graph shows the –log q-value of enrichments of the top 5 pathways in 

the list of proteins differentially expressed after the G stimulus. 
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Figure 4 - Correlation matrix heatmap 

Correlation matrix was generated in R. There is a high correlation among replicates showing 

reproducibility across experimental replicates (red is high). 

Cross-correlation analysis of the filtered data showed high reproducibility among 

the replicates (Figure 4). The proteomic changes in the cells grown with the concurrent 

stimuli were more similar to the changes induced by glycerol compared to high 

temperature (Figure 4).  

We defined the response to an environmental factor(s) as the log2-fold change in 

protein abundance/expression between the control and experimental conditions.  For 

this study, we use “fold change” to denote the log2 fold change.  We built linear 

regression models for each protein using fold changes to estimate the effect sizes of the 

stimuli. We used ANOVA for estimating statistical significances since we were 
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comparing multiple stimuli. We interpreted the positive or negative sign of the effect size 

as either upregulation or downregulation, respectively.  The Benjamini-Hochberg 

procedure was used to adjust the ANOVA p-values at 5% FDR (Benjamini and 

Hochberg 1995). A protein was assumed to be differentially expressed if the adjusted 

overall ANOVA p-value was less than 0.05. These proteins were further analyzed and 

classified into different environmental interaction classes using the direction of the 

change (upregulated or downregulated) and the p-values of the effect size estimates 

(Benjamini and Hochberg 1995).  

Stimuli-specific expression patterns can be used to identify proteins important 

for responding to the stimuli. 

We observed 283 proteins differentially expressed with high temperature, 379 

proteins differentially expressed in response to glycerol, and 370 proteins were 

differentially expressed in concurrent high temperature and glycerol (Fig. 3B and D, and 

Table 1), while 41 proteins did not change in response to any of the stimuli. We selected 

GeneMANIA Cytoscape plugin for pathway analysis since it extends the input list of 

differentially expressed proteins by adding related proteins to enhance sensitivity and 

coverage (Montojo et al. 2010; Mostafavi et al. 2008). It also allows using the complete 

proteome as the background. This helped to build a more complete picture of 

differentially regulated pathways. Pathway analysis of these two differentially expressed 

protein groups revealed the same top five pathways; none were specific to either 

stimulus (Fig. 3C and E). All of the top five pathways were related to protein synthesis 

and translational control, suggesting that the regulation of protein synthesis is an 

important step in responding to environmental stimuli. Translation factors are some of 
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the most abundant proteins in yeast and our proteomic assays are limited by the 

abundance of proteins in the cell. Although this could have confounded pathway 

analysis and led to the identification of translation associated pathways as being the 

most enriched, using only the differentially expressed proteins suggests that these 

pathways are, at the least, being differentially regulated. Furthermore, similar 

observations have also been made in previous studies (Gasch et al. 2000; Brauer et al. 

2008; Roberts and Hudson 2006). It is noteworthy that the pathways expected to be 

important for responding to these stimuli, such as “protein folding” for growth at high 

temperature and “TCA cycle” for growth with glycerol  were present farther down the list 

at numbers 39 and 53, respectively (Tables 2 and 3) (Richter, Haslbeck, and Buchner 

2010; Riezman 2004; Schüller 2003). This mirrors a common problem in ‘omics’ studies 

that generate large lists of candidate genes, transcripts and proteins. The important 

responders are lost in a long list where a majority of differentially expressed genes or 

proteins is not directly responding to the stimulus. Therefore, choosing candidates for 

an in-depth mechanistic study becomes a challenge.  

To address this problem, we devised a methodology using dominance in 

environmental interactions to identify proteins and pathways important for responding to 

a stimulus.  We noticed proteomic expression patterns in which the response to one 

stimulus was dominant over the other. We speculated that a protein critical in 

responding to a stimulus will respond to that stimulus even when challenged by a 

competing stimulus. If this hypothesis is correct, such an environmental interaction 

could serve as a filter to select and identify proteins that respond specifically to the 

dominant environmental stimulus.  
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To test this hypothesis, we classified the list of 466 proteins responding to the 

concurrent glycerol and high temperature stimuli based upon their expression patterns. 

Two classes of dominant environmental interactions are possible.  In one class, a 

stimulus reverses an expression change induced by the other stimulus (Fig5A and B, 

top panels, rows 1 and 3). In the other class, a stimulus induces a change in 

expression, while the other stimulus has no effect on its own and does not change the 

response to the concurrent stimulus (Fig. 5A and B top panels, rows 2 and 4). Each 

class is represented by two theoretical expression patterns for a total of four expression 

patterns for each stimulus (Fig. 5A and B top panels). 

 

Figure 5 - Dominance of an environmental stimulus used to identify proteins that are important for 

responding to the environmental stimulus 

The color bar shows the range of fold changes.  Pathway analysis was done using the GeneMANIA 

Cytoscape plugin. Bar graphs were generated in Graphpad Prism. A) Proteins for which HT stimulus is 
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dominant over G stimulus.  The theoretical expression patterns are depicted in the top panel (Red, 

upregulation; green, downregulation; and black no statistically significant change in expression). The 

heatmap of fold changes in expression for 30 proteins for which HT stimulus is dominant over G stimulus 

is shown in bottom panel.  B) Proteins for which G stimulus is dominant over HT stimulus.  The theoretical 

expression patterns are depicted in the top panel. The heatmap of fold changes in expressions for 121 

proteins for which G stimulus is dominant over HT stimulus is shown in bottom panel.  C) Bar graph 

shows the –log q-value of enrichments of the top five pathways in the list of proteins for which HT 

stimulus is dominant over G stimulus. D) Bar graph shows the –log q-value of enrichments of the top five 

pathways in the list of proteins for which G stimulus is dominant over HT stimulus. 

For the environmental interactions in which the HT stimulus was dominant over 

the G stimulus, the p-values for all of the effect size estimates were less than 0.05. The 

changes for the HT and HT+G stimuli were in the same direction and differed from the 

G stimulus (Fig. 5A, top panel, rows 1 and 3). Alternatively, the p-values for only the HT 

and HT+G stimuli effect size estimates were less than 0.05 and the directions of change 

for the HT and HT+G stimuli were the same (Fig. 5A, top panel, rows 2 and 4). In all, we 

identified 30 proteins for which the response to the HT stimulus was dominant over the 

G stimulus (Fig. 5A and Table 1). We used pathway analysis to identify which protein 

classes were responding to the dominant stimulus.  The group of proteins for which the 

HT stimulus was dominant included the heat shock response proteins HSP10, HSP60, 

SSA1, SSA2, and HSP150 (Fig. 5A bottom panel, and Table 1). Pathway analysis of 

these 30 proteins showed that the top five enriched pathways included protein folding, 

protein refolding, and unfolded protein binding (Fig. 5C, Table 5). These pathways are 

expected to be important for growth at higher temperatures (Richter, Haslbeck, and 

Buchner 2010; Riezman 2004; Åkerfelt, Morimoto, and Sistonen 2010; de Nadal, 

Ammerer, and Posas 2011). 
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For the environmental interaction in which the G stimulus is dominant, we saw a 

similar set of patterns as described above except the G stimulus dominates the HT 

stimulus (Fig. 5B, top panel). There are 121 proteins for which the response to the G 

stimulus was dominant over the HT stimulus (Fig. 5B, bottom panel and Table 1).  The 

group of proteins for which the G stimulus was dominant includes metabolic enzymes 

such as CDC19, ACO1, and LSC1 (Fig. 5B, bottom panel, and Table 1).  Pathway 

analysis of these 121 proteins showed that the top five pathways included the oxidation-

reduction process, the generation of precursor metabolites and energy, and the 

tricarboxylic acid cycle (Fig. 5D, and Table 6). All of these three pathways are expected 

to be important for respiratory growth (Schüller 2003; Brisson et al. 2001; Nevoigt and 

Stahl 1997).  Consistent with our hypothesis, pathway analysis of proteins that respond 

to a dominant environmental stimulus reveals a functional relationship to the response 

to the stimulus.  High temperature has a dominant effect on proteins involved in protein 

folding, while glycerol has a dominant effect on proteins involved in respiratory 

metabolism. These results show the practical applications of using dominant 

environmental interactions to identify proteins that respond to specific stimuli and that 

are directly involved in the cell’s response to that stimulus.  

Analysis of expression patterns reveals that environmental interactions mirror 

gene interactions. 

In addition to the dominant interactions of concurrent environmental stimuli, we 

observed other classes of environmental interactions that mirror gene interactions.  

First, we observed a class of proteins whose abundance either increased or decreased 

in response to both the individual stimuli as well as the concurrent stimuli (Fig. 6A). This 
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is similar to gene pairs in which both the individual mutants as well as the double mutant 

have the same phenotype.  We classified these proteins as non-specific environmental 

responders. This class is represented by two theoretical expression patterns:  activated 

or repressed (Fig. 6A, top panel and Table 1). For these non-specific environmental 

response modules, the p-values for all the effect size estimates were less than 0.05 and 

the directions of change were the same (Fig. 5A, top panel). We identified 175 proteins 

that correspond to these patterns, and pathway analysis revealed that they are largely 

involved in protein synthesis and translational control (Fig. 5A, bottom panel and 5D, 

and Table 7).  

We also observed proteomic responses to concurrent environmental stimuli 

similar to gene interactions in which the two single mutants are wild-type or have one 

phenotype, while the double mutant has a different phenotype (Fig. 6B).  This class 

includes proteins whose expression was either decreased or unchanged after a single 

stimulus but was increased if both stimuli were applied concurrently.  The class also 

includes proteins whose expression was either increased or unchanged after a single 

stimulus but was decreased by the concurrent stimuli. We classified this environmental 

interaction group as a discordant class. There are eight theoretical expression profiles in 

the discordant environmental interaction class (Fig. 6B, top panel). For the discordant 

environmental interaction, the p-value for the HT+G concurrent stimuli effect size 

estimate was less than 0.05 and the directions of change for either the HT or G stimuli 

were not the same as HT+G. We identified 41 proteins that show discordance (Fig. 6B, 

bottom panel and Table 1).  They are mainly involved in protein synthesis and metabolic 

pathways (Fig. 6E, and Table 8).   
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Figure 6 - Proteins in different environmental interaction classes and the corresponding enriched 

pathways after concurrent G and HT stimuli 

The color bar shows the range of fold changes. Pathway analysis was done using GeneMANIA 

Cytoscape plugin. Bar graphs were generated in Graphpad Prism. A) Non-specific environmental 

response (NER) proteins to individual and concurrent HT and G environmental stimuli. The theoretical 

expression patterns are shown in the top panel. The fold changes of 175 NER proteins are shown as a 

heatmap. B) The theoretical expression patterns for discordant environmental interaction are shown in the 

top panel. The fold changes of 41 proteins are shown as a heatmap. C) The theoretical expression 

patterns for suppression environmental interaction are shown in the top panel. The fold changes of the 58 

proteins affected by suppression are shown as a heatmap. D) Bar graph shows the –log q-value of 

enrichments for the top 5 pathways for the non-specific environmental response proteins. E) Bar graph 
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shows the –log q-value of enrichments for the top 5 pathways in the list of proteins affected by discordant 

environmental interaction. F) Bar graph shows the –log q-value of enrichments for the top 5 pathways in 

the list of proteins affected by suppression environmental interaction. 

Finally, we observed suppression, in which a protein’s abundance changed in 

response to a single stimulus, yet the change was suppressed by the simultaneous 

application of the second stimulus (Fig. 6C).  This class is similar to gene interactions in 

which double mutants show the wild-type phenotype (Dixon et al. 2009; St Johnston 

2002). The suppression class is represented by eight theoretical expression patterns 

(Fig. 3C, top panel).  For suppression environmental interactions, the p-value for the 

HT+G effect size estimate was more than 0.05, and the p-value for at least one of HT 

and G stimuli effect size estimates was less than 0.05. We identified 58 proteins that are 

affected by suppression (Fig. 6C, bottom panel and Table 1). Pathway analysis 

revealed that metabolic pathways are most affected by suppression (Fig. 6F and Table 

9).  

A large fraction of the proteome is affected by environmental epistasis. 

An important feature of genetic epistasis is that the modulating effects of multiple 

genes are not always independent of each other (Cordell 2002; P. C. Phillips 2008; 

Fisher 1958; Visser, Cooper, and Elena 2011; Mani et al. 2008).  In many cases, non-

independence is diagnostic of a functional relationship between genes (Cordell 2002; P. 

C. Phillips 1998; Visser, Cooper, and Elena 2011).  Genetic epistasis is used to test if 

the effects of genetic elements are independent. Genetic epistasis occurs when the 

effects are not independent.  We tested if the effects of these two individual 

environmental stimuli were independent of each other for individual proteins in the 
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proteome. Similar to the mathematical approach to genetic epistasis, we measured the 

response of each protein and classified a response as influenced by environmental 

epistasis if the sum of the effects of the individual stimuli for a protein was not equal to 

the response to the concurrent stimuli (t-test, p-value ≤0.05) (Cordell 2002; Fisher 1958; 

P. C. Phillips 2008).  We used log2 fold change as the measure of the effect of a 

stimulus. From our list of 466 quantitated proteins, 240 proteins were affected by 

environmental epistasis (Table 1). Pathway analysis of these proteins revealed that a 

majority of the enriched pathways are involved in protein synthesis and translation 

control (Fig. 7A and Table 10). The topmost enriched pathways included cytoplasmic 

translation, cytosolic ribosome, and structural constituent of ribosome (Fig. 7A and 

Table 11).  
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Figure 7 -  Environmental epistasis in the proteomic response to concurrent stimuli 

Pathway analysis was done using the GeneMANIA Cytoscape plugin. Bar graphs were generated in 

Graphpad Prism.  A) Bar graph shows the –log q-value of enrichments of the top 10 pathways in the list 

of proteins affected by epistasis (purple) and their –log q-value in the list of proteins not affected by 

epistasis (orange). B) Bar graph shows the–log q-value of enrichments of the top 10 pathways in the list 

of proteins not affected by epistasis (orange) and their –log q-value in the list of proteins affected by 

epistasis (purple). 

  



 

60 
 

Pathway analysis of the 226 proteins not affected by environmental epistasis 

revealed a large number of metabolic pathways (Fig. 7B and Tables 1 and 10). It is 

interesting to note that the distribution of pathways affected by environmental epistasis 

is different from those that are unaffected. Protein synthesis and translational control 

seems to be disproportionately affected by environmental epistasis compared to other 

pathways. These pathways have previously been found to change in response to the 

changes in the growth rate (Regenberg et al. 2006; Slavov and Botstein 2011). If the 

effects of the two stimuli on the growth rate are not independent, it could explain the 

observed environmental epistasis. To test the independence in the effects of the two 

stimuli on the growth rate, we determined the doubling times under the same conditions. 

The change in the doubling times was used to measure the effect of a stimulus. Our 

data shows that the effects of high temperature and glycerol on the growth rate are 

additive and, therefore, independent of each other (Fig. 8). Further studies are required 

to elucidate the functional significance of the environmental epistasis. 

A number of genetic epistasis subtypes have been defined based upon the 

mathematical models used to measure the expectation of a phenotype in double 

mutants (Visser, Cooper, and Elena 2011; Mani et al. 2008; Gao, Granka, and Feldman 

2010; Hallgrímsdóttir and Yuster 2008; Li and Reich 2000). Four most commonly used 

definitions are (1) additive, (2) multiplicative, (3) minimum, and (4) log (Mani et al. 2008; 

Gao, Granka, and Feldman 2010).  Although we used only the additive definition for 

developing the concept of the environmental epistasis in this study, future studies can 

be performed to compare the results obtained using different definitions.  
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Figure 8 - The effect of high temperature and glycerol on yeast doubling times 

Doubling times were calculated for growth in control (n=25), high temperature (n=25), glycerol (n=25), 

and concurrent high temperature and glycerol (n=24). The difference in doubling times from the control 

was used to measure the effect of the stimuli and is plotted on Y-axis. HT leads to a decrease of  -11 

minutes (sd = 6), G leads to an increase of 137 minutes (sd = 14), and HT+G leads to an increase of 142. 

minutes (sd = 22). The expected effect of HT+G was calculated by summing the observed effects of HT 

and G (Sum HT+G, increase of 127 minutes with sd of 16). The difference in the means for HT+G and 

Sum HT+G was not statistically significant (p-value = 0.1034, two-tailed t-test of independence with 

Bonferroni correction for 11 comparisons) 
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Environmental interactions and epistasis regulate mRNA levels. 

Although, we identified the environmental interactions using quantitative 

proteomic data, we speculated that this framework would be applicable to any 

quantifiable readout including transcriptomic and phenotypic traits. In pioneering studies 

using chemostat cultures of S. cerevisiae, Knijnenburg et al. measured the 

transcriptional response of yeast to multiple, concurrent environmental stimuli 

(Knijnenburg et al. 2009).  They found linear regression models of expression for the 

vast majority of genes required a combinatorial interaction term (Knijnenburg et al. 

2009). This suggests the change in transcription of most genes cannot be explained by 

simply adding the effects of the individual stimuli.  Based on our proteomic results, we 

hypothesized that environmental epistasis plays a role in determining the state of the 

transcriptome as well. 

  To test if our environmental interaction and epistasis models are observed in the 

transcriptomic responses to concurrent stimuli, we analyzed Knijnenburg dataset which 

measured the transcriptomic responses of yeast cells growing in carbon limited 

chemostat cultures (Knijnenburg et al. 2009).  In the experiment, two concurrent stimuli 

were applied: (1) a change in nitrogen source from ammonium sulfate to methionine 

and (2) a change from aerobic to anaerobic growth (Fig. 9A and Table 12) (Knijnenburg 

et al. 2009). The data showed 564 transcripts were affected by environmental epistasis, 

while 5987 transcripts were not affected (p-value ≤0.05) (Table 12).  In contrast to our 

proteomic analysis, pathway analysis of the transcripts affected by environmental 

epistasis revealed enrichment for pathways including microbody, peroxisome, and 

phytosteroid metabolic process (Table 13). This could be because of the differences 
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between the strains, stimuli, and culture conditions used in the transcriptomic and our 

proteomic studies. Similar to our proteomic analysis, we observed dominant 

environmental interactions in the expression of the transcripts (Fig. 9B and 9C and 

Table 12).  Nitrogen source was dominant for 281 transcripts (Fig. 9B and Table 12).  

Pathway analysis of these transcripts identified pathways involved in methionine 

metabolism such as sulfur amino acid metabolic process, sulfur compound metabolic 

process and methionine metabolic process (Fig. 9D and Table 14).  Similarly, anaerobic 

growth was dominant for 938 transcripts (Fig. 9C and Table 12). Pathway analysis of 

these differentially expressed transcripts showed enrichment of pathways involved in 

energy production such as cellular respiration, mitochondrial membrane and respiratory 

chain (Fig. 9E and Table 15).  We also observed the same environmental interaction 

classes in their transcriptomic data as in our proteomic data, including non-specific 

environmental response, discordance, and suppression (Table 12). These results 

strongly suggest that environmental interactions play a significant role in regulating the 

biochemical state of cells. 
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Figure 9 - Environmental interactions affect transcriptomic profiles as well 

Normalized expression data from Knijnenburg et. al. 2009 was used for the analyses. The transcriptomic 

data used in the study used haploid S. cerevisiae cells (CEN.PK113-7D MATa) grown in carbon limited 

chemostat cultures under 4 conditions – 1) ammonium sulfate as nitrogen source  (n=5), 2) methionine as 

nitrogen source, NS stimulus (n=3), 3) Anaerobic condition, AN stimulus (n=4), and  4) methionine as 

nitrogen source under anaerobic conditions NS+AN stimulus (n=3) (13).  Fold changes were calculated 

from normalized expression data using average normalized expression data from the five replicates of 

growth with ammonium sulfate as the baseline. The color bar shows the range of fold changes. Pathway 

analysis was done using GeneMANIA Cytoscape plugin. Bar graphs were generated in Graphpad Prism. 

A) A heatmap of fold changes of the complete transcriptomics dataset consisting of 6551 transcripts. B) A 

heatmap showing the fold changes for 281 transcripts for which NS stimulus is dominant. C) The –log q-

value of enrichment for the top 5 pathways enriched in the list of transcripts for which NS stimulus is 
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dominant. As anticipated, pathways expected to be involved in metabolization of methionine are enriched. 

D) A heatmap showing the fold changes for 938 transcripts for which AN stimulus is dominant. E) The –

log q-value of enrichment for the top 5 pathways enriched in the list of transcripts for which AN stimulus is 

dominant. As anticipated, pathways expected to be involved in energy production are enriched. 

Coexpression network analysis shows community structures are guided by 

environmental interaction and epistasis. 

 Coexpression networks link together proteins whose expression levels are 

regulated in the same way (Stuart et al. 2003; B. Zhang and Horvath 2005).   As a 

consequence, coexpression network analysis can be used to determine if the 

abundances of proteins affected by environmental epistasis are regulated differently 

than the proteins that are not affected by environmental epistasis. To explore the protein 

modules whose expression changes are correlated with each other, we built a 

coexpression network using the merged proteomic responses from both individual and 

concurrent stimuli using the Sparse PArtial Correlation Estimation approach (SPACE) 

(Fig. 2A) (Peng et al. 2009). An edge, representing coexpression, was introduced 

between two proteins if the correlation between them was above the average of the 

correlation matrix.  To validate the network, we first tested the power law structure of the 

reconstructed network (Peng et al. 2009; Clauset, Shalizi, and Newman 2009). The 

reconstructed network followed the power law distribution. The power law parameter α 

was approximately 4, which is close to the empirically observed value of 3.45 (Clauset, 

Shalizi, and Newman 2009).  

  



 

66 
 

 

Figure 10 - Coexpression network based on all the quantified proteins and all conditions 

Proteins are depicted as nodes. Nodes that are coexpressed are connected with an edge. The 

coexpression network was generated with SPACE algorithm using fold change. Network visualization and 

analysis was done in Cytoscape 3.1.1. Bar graphs were generated in Graphpad prism. A) All nodes that 

have at least one edge. Nodes affected by environmental epistasis are highlighted in purple. The circular 

layout was used to generate the initial network graphics in Cytoscape 3.1.1. Far-flung communities of 

inter-connected nodes were manually brought together, while preserving the inner community structure, 

for better visualization. B) The largest community in the coexpression network. Most of the proteins 

affected by environmental epistasis are members of a subgraph (top circle) that predominantly contains 

A B 
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other proteins that are also affected by environmental epistasis. A similar trend is observed with the 

proteins not affected by environmental epistasis (bottom circle). C) The numbers of three types edges: 1) 

both nodes are affected by environmental epistasis (199 edges), 2) neither of the nodes are affected by 

environmental epistasis (85 edges), and 3) only one of the nodes is affected by environmental epistasis 

(75 edges). Proteins affected by epistasis are predominantly connected to proteins that are also affected 

by epistasis. D) Number of edges that connect nodes to other nodes within the same environmental 

interaction classes (299) or between the classes (60). Co-regulatory connections between proteins are 

predominantly between those of the same class. 

Next, we repeatedly reconstructed the network by varying the tuning parameter 

around the default value and fitting the network to the power law distribution. We found 

that the reconstructed network follows the power law distribution and that the power law 

parameter was in the range of 3.75. We identified the sub-graph spanned by the top 1% 

of highly connected nodes. We found that the Jaccard similarity score of these highly 

connected nodes was 0.83 on the scale of 0 to 1.  Therefore, these nodes were 

classified as hub nodes, which is one of the characteristic features of power law 

networks. There were 7 hub nodes based upon the above criterion.  Next, we checked 

the significance of the identified hubs using the Wilcox Rank sum test and found that the 

hub community is statistically significant (p-value = 0.04) (Kolaczyk and Csárdi 2014). 

Finally, we compared the reconstructed network with BioGrid protein interaction data 

and found that approximately 30% of the edges are previously known interactions and 

that these interactions were found in every reconstructed network when we varied the 

tuning parameter to estimate the partial correlation matrix (Stark et al. 2006). The final 

coexpression network consisted of 329 nodes with at least one neighbor and a total of 

359 edges (Fig. 10A).   
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The largest community within this network includes 205 nodes and 249 edges, 

with two clearly separate sub-graphs connected by a single node (Fig. 10B). 

Interestingly, one sub-graph consists predominantly of proteins affected by 

environmental epistasis while the second sub-graph consists of proteins not affected by 

environmental epistasis. Within the global coexpression network, we observed that 

proteins affected by epistasis were more likely to be linked with each other than with 

proteins that are not affected by epistasis and vice versa (Fig 10A).  There are 199 

edges between two proteins affected by epistasis and 85 edges between two proteins 

not affected by epistasis. However, only 75 edges involved proteins of both types (Fig. 

10C). This structural organization of the coexpression network suggests that the 

responses of proteins affected by environmental epistasis are controlled by a different 

mechanism than the responses of those not affected by environmental epistasis. 

 Previous studies indicate that proteins linked in a coexpression network are likely 

to function in the same pathway (Stuart et al. 2003). We hypothesized that the grouping 

of proteins upon classification into environmental interaction classes might be driven by 

their functional associations.  If true, we would expect to find more edges in the 

coexpression network between proteins within the environmental classes. Indeed, we 

found this result in this network.  Our data show that 299 of the edges (83%) are 

between proteins in the same environmental interaction class, while only 60 are 

between proteins in different classes (Fig 10D). 

Discussion 

Using the concepts of gene interactions and epistasis, we have developed a 

unifying conceptual framework to understand the cellular responses to complex 
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environmental stimuli. Although, we have only explored the cases with complete 

dominance of a stimulus, it is possible that both the stimuli contribute to a change in 

expression. It is also possible that many stimuli contribute towards a change. We 

speculate that the tools and approaches developed for gene-gene interactions involving 

multiple genes can be applied in such cases (Cordell 2009). In addition to linear 

regression modeling and ANOVA, we also tested our hypothesis using one sample and 

two sample t-tests of independence. The results from both approaches were in good 

agreement. 

The effect of mixtures of compounds has been actively studied in toxicology, 

especially in the context of environmental toxins (Altenburger et al. 2013; Hermens, 

Leeuwangh, and Musch 1985; Belden, Gilliom, and Lydy 2007; Altenburger, Nendza, 

and Schüürmann 2003; Altenburger et al. 2012; Altenburger, Walter, and Grote 2004; 

Berenbaum 1989; Deneer 2000; Greco, Bravo, and Parsons 1995; J.-H. Lee and 

Landrum 2006; Schoen 1996; Faust et al. 2001). These studies have led to the 

development of three complementary models to predict the combined effects of 

compounds in a mixture: (1) in the concentration addition model the total toxicity of a 

mixture is the sum of the individual toxicities of the component compounds, (2) in the 

independent action model the toxicities of the components of a mixture are independent 

of each other, and (3) in the simple interaction model the individual components, at the 

concentrations being tested, are not toxic, but are toxic when used together in a 

mixture. These models have been successful in predicting the total toxic effects of 

mixtures of compounds in many cases (Hermens, Leeuwangh, and Musch 1985; 

Belden, Gilliom, and Lydy 2007; Altenburger, Nendza, and Schüürmann 2003; 
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Altenburger et al. 2012; Altenburger, Walter, and Grote 2004; Deneer 2000; Faust et al. 

2001) . However, it is not immediately clear which one to apply in a specific case 

without model fitting (Belden, Gilliom, and Lydy 2007).  

Environmental interactions and epistasis can be extrapolated to explain the three 

models.  For example, the concentration addition model can be the case of incomplete 

dominance where many stimuli affect the biological processes under investigation. This 

would happen if the compounds in the mixture affect similar biological pathways. If the 

actions of the compounds are antagonistic to each other, it may lead to either the 

dominance or the suppression interaction. If their actions are not antagonistic, the 

combined effect would be the sum of the individual effects which could be observed as 

the non-specific environmental response.  

The independent action model explains the case where the compounds under 

investigation act upon different pathways (Altenburger et al. 2013; Altenburger, Nendza, 

and Schüürmann 2003; Altenburger et al. 2012; Altenburger, Walter, and Grote 2004; 

Greco, Bravo, and Parsons 1995; Schoen 1996). This is similar to a gene interaction 

where two mutations have two unrelated phenotypes and both phenotypes persist in the 

double mutant. By applying the logic of environmental interaction to this model, we can 

deduce that the changes induced by a mixture that follows the independent action 

model would have elements specific to the component compounds of the mixture. 

Additionally, the changes important to a specific compound would persist in the 

combinatorial condition, which could be used to identify molecules and pathways that 

respond to the specific compound in the mixture.  



 

71 
 

The simple interaction model explains the cases where the compounds 

individually have little or no toxicity, but are toxic when applied together (Berenbaum 

1989; Greco, Bravo, and Parsons 1995). In terms of environmental interaction, this 

could be a case of the discordance interaction. The effects explained by this model 

could also be a special case of environmental epistasis, where the combined effect of 

compounds is more than the sum of their individual effects. It is worth noting that 

although we discuss only three of the mixture toxicity models, there are a number of 

other models that explain the toxicities of compounds in a mixture (Hermens, 

Leeuwangh, and Musch 1985; Altenburger et al. 2013; Belden, Gilliom, and Lydy 2007; 

Altenburger, Nendza, and Schüürmann 2003; Altenburger et al. 2012; Altenburger, 

Walter, and Grote 2004; Berenbaum 1989; Deneer 2000; Greco, Bravo, and Parsons 

1995; J.-H. Lee and Landrum 2006; Schoen 1996; Faust et al. 2001). Environmental 

interactions and epistasis provides a conceptual framework unifying the different toxicity 

models. The interpretation of results can be made simpler using environmental 

interactions and epistasis.  

Phenotypic plasticity provides the conceptual framework for studying the 

interaction between genotype and environment. Phenotypic plasticity is the ability of an 

organism to change its phenotype in response to changes in the environment (Scheiner 

1993). It has been used to explain the ability of the same genotype to generate different 

phenotypes in different environments (Scheiner 1993).  However, phenotypic plasticity 

considers the environment as a monolithic entity. It fails to separate the relative 

contributions of the different environment components, for example; physical 

components such as temperature and pressure, chemical components such as 
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nutrients, and signaling molecules that activate different pathways. Applying 

environmental interactions and epistasis would help parse out the individual 

contributions of the stimuli towards the change in the phenotype. 

Similar to genetic epistasis, our data show that the effects of individual 

environmental stimuli are not necessarily additive.  Proteins affected by environmental 

epistasis are distributed throughout the genome and do not appear to be clustered at 

specific locations in the genome (Fig. 11). The prevalence of environmental epistasis in 

determining the changes in the proteome suggests that epistasis needs to be taken into 

account when building mathematical models of gene expression.  

Consideration of environmental epistasis is especially important in light of the 

recent attempts to build quantitative linear regression models of gene expression in 

which the independent variables are the environmental stimuli and the dependent 

variable is gene expression (Nagano et al. 2012). Interestingly, in a linear regression 

modeling study of transcriptional regulation in rice under native conditions, the 

regression model was able to predict gene expression under native conditions even if 

the environmental parameters varied slightly from those used for building the model. 

However, the predictive power of the regression model was reduced under controlled 

laboratory conditions suggesting that there may have been unknown epistatic 

interactions in the native conditions absent in the controlled lab conditions (Nagano et 

al. 2012).   
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Figure 11 - Visualization of S. cerevisiae genomic locations of the proteins quantitated with fold changes 

represented as a heatmap using Circos plot 

Outermost circle- chromosomes, Second circle-fold changes of proteins with HT stimulus, Third circle-fold 

changes of proteins with G stimulus, Fourth circle-fold changes of proteins with HT+G stimuli, innermost 

circle-whether affected by epistasis or not (Purple: Affected by environmental epistasis, Orange: Not 

affected by environmental epistasis). 
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Concurrently applied environmental stimuli behave similarly to genetic elements 

in the way they interact to regulate the biochemical states of the cells. The observation 

of environmental interactions and epistasis in determining the states of both the 

proteome and transcriptome in diverse experimental conditions suggests the prevalence 

of this phenomenon in nature. Essentially, environmental interaction in concert with 

phenotypic plasticity and gene interactions can be envisaged as a mathematical 

operator with three components that determines the changes in the biochemical state of 

the cell.  The gene interaction component is derived from the effects of the genetic 

elements, while the environmental interaction component results from the effects of all 

the environmental stimuli. When the gene and environmental interactions are not 

independent of each other, phenotypic plasticity accounts for the deviations of the 

observed from the expected characteristic or trait. Most studies so far have treated 

phenotypic plasticity, gene interactions, and environmental interactions separately due 

to a lack of a common unifying framework (Cordell 2002; P. C. Phillips 1998; St 

Johnston 2002; Visser, Cooper, and Elena 2011; Mani et al. 2008; Altenburger et al. 

2013; Belden, Gilliom, and Lydy 2007; Altenburger, Nendza, and Schüürmann 2003; 

Altenburger, Walter, and Grote 2004; Greco, Bravo, and Parsons 1995; Scheiner 1993; 

Via and Lande 1985; Carl D. Schlichting and Levin 1984; Gerard, Vancassel, and 

Laffort 1993; C. D. Schlichting and Pigliucci 1993; Wilson and Lindow 1993; Tonsor, 

Elnaccash, and Scheiner 2013). Our data suggest that as an abstraction, environmental 

stimuli can be treated as genes to build a conceptual framework that combines the 

effects of genes and stimuli.  Environmental interactions and epistasis play a critical role 
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in cellular homeostasis as seen in this study’s patterns of change in the proteome and 

the transcriptome.  

Our data also suggest that a protein or a transcript is more likely to be critical for 

responding to a dominant environmental stimulus than to a recessive one. This could 

lead to more efficient experiment designs for identifying factors directly affected by an 

environmental stimulus. For example, experiments could be designed in which an 

unrelated stimulus B is applied concurrently with the stimulus of interest A.  The proteins 

or transcripts, for which the effect of A is dominant, would be more likely to be directly 

affected by stimulus A. We speculate that the same approach may be extended to 

genetic perturbations. In this case, an environmental stimulus could be applied in 

conjunction with the genetic perturbation. As with two concurrent environmental stimuli, 

a transcript or a protein for which the genetic perturbation is dominant may be more 

likely to be directly affected by it.  Therefore, using dominance, environmental 

interactions can also be used to devise studies to identify agents, such as regulatory 

RNAs, proteins, or small molecules which are critical for driving a range of biological 

processes in health and disease including drug interactions, adaptation in tumor 

microenvironment and immune responses.  
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Chapter III 

Carbon Source Alters the Protein Composition of Ribosomes for 

Translational Control 

Abstract 

Ribosomes are the catalytic engines that drive protein synthesis. More recently, 

the role of ribosome in gene expression regulation has come under increased focus. In 

this study, I have explored the role of ribosomal proteins in translational control. I used 

iTRAQ labeling followed by liquid chromatography tandem mass spectrometry based 

protein quantitation and cryo-electron microscopy single particle classification and 

reconstruction to assay the changes in the protein composition of the ribosomes. I 

identified Rpl8a and Rpl8b as a candidate paralog pair whose change in abundance on 

the ribosomes is important for the ribosome filter mediated translational control. My data 

using yeast genetics and polysome profiling shows that Rpl8a and Rpl8b are not 

completely interchangeable. I found evidence supporting the presence of 

substoichiometric ribosomes and regulation of their proportions in response to changes 

in the carbon source. 

Introduction 

Gene expression can be regulated at multiple levels, including transcription and 

translation. Regulation of translation, also known as translational control, is a major 

mechanism modulating eukaryotic gene expression. Translation is the process, driven 

by ribosomes as the catalytic engines, by which the information encoded in an mRNA is 

used to synthesize a protein. Translational control is the regulatory mechanism through 
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which the protein synthesis machinery is regulated to control the information flow from 

mRNA transcripts to proteins. The protein and RNA accessory factors play an active 

role in this process. The ribosomes were initially considered passive players (Kapp and 

Lorsch 2004; Dever and Green 2012; Sonenberg and Hinnebusch 2009; Hinnebusch 

2015).  

In recent years, the idea that the ribosomes are regulatory elements in gene 

expression regulation has been gaining ground. The role of ribosome in the regulation 

of gene expression is a very active area of research (Ruggero and Pandolfi 2003; 

Kondrashov et al. 2011; Xue et al. 2015; Jonathan R. Warner and McIntosh 2009; 

Jonathan R. Warner 2015; McIntosh and Warner 2007; Komili et al. 2007). Two 

complementary mechanisms have been proposed to explain the regulatory functions of 

ribosomes. In the first model, ribosomes act as reservoirs of regulatory molecules that 

are released upon specific cellular cues. This model is called the depot hypothesis 

(Ray, Arif, and Fox 2007; Mazumder et al. 2003). An important example of this mode of 

action is the role of RPL13A protein in inflammatory response (Mazumder et al. 2003; 

Kapasi et al. 2007).  

The second model is based upon the heterogeneity in the protein and rRNA 

compositions of the ribosomes. In baker’s yeast Saccharomyces cerevisiae, 138 

ribosomal protein genes are present. This includes 59 duplicated paralog pairs. The 

amino acid sequences of the paralogs are not identical. There are nearly 150 copies of 

rRNA genes in yeast. These copies are not identical (McIntosh and Warner 2007; Komili 

et al. 2007; Jonathan R Warner 1999). Ribosomal proteins have been found to be post-

translationally modified. Post-translational modifications add another level of complexity 
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to the ribosomal subpopulations (Martin et al. 2014; S. Ramagopal 1992). Taking these 

observations into account, Vincent Mauro and Gerald Edelman proposed the ribosome 

filter hypothesis. According to the hypothesis, different ribosomes with differing 

composition translate specific mRNAs more efficiently (Mauro and Edelman 2002; 

Vincent P Mauro and Gerald M Edelman 2007). 

In addition to the heterogeneity in ribosome composition due to the use of a 

specific paralog, a post-translational modification and a difference in the rRNA 

sequence, two other potential sources of heterogeneity involving the core components 

of the ribosomes are possible. In one model, a ribosomal protein can be present in more 

than one copy on the ribosome. We call this the superstoichiometric composition model 

in which subpopulations of ribosomes carrying extra copies of a ribosomal protein can 

act either as a depot of the regulatory extra copy ribosomal protein, or translate certain 

mRNA with higher efficiency. In the second model, a ribosome can be missing 

ribosomal protein(s) or sequences of rRNA. We call this the substoichiometric model. 

Similar to the superstoichiometric model, these ribosomes might have acted as a depot 

of the regulatory missing ribosomal protein(s). Alternatively, the substoichiometric 

ribosome can translate specific mRNAs at a higher efficiency. 

The publication of ribosome filter hypothesis has provided a conceptual 

framework in which to understand the role of ribosomal heterogeneity, and the ribosome 

has received increased attention as a regulatory factor in recent years (Xue and Barna 

2012; McIntosh and Warner 2007). The ribosome filter hypothesis has gained support 

from many subsequent studies (A. S.-Y. Lee, Burdeinick-Kerr, and Whelan 2013; 

Kondrashov et al. 2011; Komili et al. 2007; Xue et al. 2015). A large body of work has 
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concentrated on the rRNAs and suggests that ribosomes are indeed regulatory 

elements, and that rRNA heterogeneity arising from multiple copies of rRNA genes 

plays an important role in this process (Vincent P Mauro and Gerald M Edelman 2007; 

Mauro and Edelman 1997; Owens et al. 2001; Hu et al. 1999).  

There is also evidence that suggests the heterogeneity in ribosomal proteins 

results in differences in translational efficiency (S. Ramagopal 1992). A comparison of 

protein composition of ribosomes from skeletal muscles and liver in rats using 2-

dimensional gel electrophoresis revealed differences between the ribosomes from the 

two tissues (Sherton and Wool 1974). This suggested a differential requirement of 

ribosomal proteins in different mammalian tissues. Dictyostelium discoideum, ribosomes 

from spores and vegetative cells differ in protein composition and posttranslational 

modification (S. Ramagopal 1992). This suggested a differential temporal requirement 

of ribosomal proteins and their post-translation modifications in organismal 

development. In S. cerevisiae, deletion of one of the paralog pairs often results in a 

different phenotype from that of the other paralog, indicating that that the different 

paralogs have different roles (Komili et al. 2007; Giaever et al. 2002; Breslow et al. 

2008). Pamela Silver and co-workers demonstrated that translation of the S. cerevisiae 

ASH1 mRNA is more efficient in the presence of particular paralogs (Komili et al. 2007). 

Studies in Maria Barna lab has shown that Rpl38 is needed for efficient translation of 

specific Hox mRNAs (Xue et al. 2015; Kondrashov et al. 2011). In another study, Rpl40 

was found to be required for translation initiation of vesicular stomatitis virus (VSV) 

mRNAs (A. S.-Y. Lee, Burdeinick-Kerr, and Whelan 2013). Hyper-phosphorylation of S6 

has been implicated in upregulation of protein synthesis (Thomas et al. 1982; Duncan 
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and McCONKEY 1982).  The phosphorylation of S6 has been proposed to increase the 

affinity of the ribosomes for TOP-element containing mRNAs, although there are 

conflicting observations in mice (Ruvinsky et al. 2005; Volarević and Thomas 2000; 

Ruvinsky and Meyuhas 2006).  

Taken together, these studies have provided strong evidence in support of the 

ribosome filter hypothesis. However, the hypothesis is yet to be directly tested. This has 

been mainly because of the difficulty in identifying both the ribosomes with a specific 

composition and the mRNAs that they translate more efficiently. To identify both the 

ribosome and the transcripts, I devised a simple strategy based upon a corollary of the 

ribosome filter hypothesis. Cells growing in one growth condition require a specific 

proteome that is optimum for that condition. Cells growing in a different condition will 

require a different proteome. Therefore, if the ribosome filter hypothesis is correct, the 

complement of ribosomes required to synthesize the two proteomes will be different 

(Figure 1). Quantification of the ribosomal proteins in the purified ribosomes should 

allow identification of the paralogs whose requirements are different. Once a paralog 

has been identified, ribosome profiling of null mutants will allow identification of the 

transcripts whose translation is affected by specific paralogs. Using this strategy in 

yeast cells growing with glucose or glycerol as carbon source, I have identified the 

paralog pair Rpl8a and Rpl8b as candidate ribosomal proteins with differential 

requirements for specific transcripts. Polysome profile analysis using heterozygous 

diploid null mutants, rpl8a and rpl8b, suggests that the functions of Rpl8ap and rpl8bp 

are not inter-changeable. Using cryo-electron microscopy in collaboration with the 

Joachim Frank lab, I have found evidence in favor of substoichiometric ribosomes. A 
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time course experiment coupled with cryo-EM revealed that the proportions of 

substoichiometric ribosomes changed in response to change in carbon source from 

glucose to glycerol. 

Materials and methods 

Strains and Media. All yeast media, growth, and genetic manipulation was done using 

standard techniques (Amberg, Burke, and Strathern 2005).The diploid strain BY4743 

has been previously described (Baker Brachmann et al. 1998).  

Preparation of protein extract and ribosome purification: Three biological replicates 

were used for each growth conditions tested, YPD at 30 oC and YPG at 30 oC. A 5ml 

overnight culture in YPD (1% yeast extract, 2% peptone, 2 % glucose) was inoculated 

from a single yeast colony from a YPD agar plate.  Fifty ml of YPD at 30 oC was 

inoculated with 50 µL of the overnight culture.  One hundred ml of YPG at 30 oC (1% 

yeast extract, 2% peptone, 3% glycerol) inoculated with 1 ml of the overnight culture. 

The twelve cultures were grown side-by-side with constant shaking at 175 rpm in an 

Innova 44 shaker incubator (New Brunswick Scientific). For all four growth conditions, 

cells were harvested at mid-log phase as determined by OD600 measurements.  Cells 

growing in YPD were harvested after 14 h, while cells  in YPG were harvested after 24 

h. All cultures were centrifuged at 2000 rpm for 5 min at 4 oC using a Sorvall 

HLR6/H600A/HBB6 rotor in Sorvall RC-3B centrifuge and washed with ice cold 

deionized H20.  The cell pellets were resuspended in 1 mL ice cold wash buffer (10 mM 

Tris pH 8, 5 mM beta- mercaptoethanol, 500 mM ammonium chloride, 100 mM 

magnesium acetate) and lysed at 4 oC using glass beads and a Bead Beater (BioSpec, 

Inc) for 10 min as previously described (Browne et al. 2013).  The whole cell extracts 
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(WCE) were clarified by centrifugation at 20,000g for 15 min at 4 oC and a 200 µL 

aliquot of the cleared WCE was stored at -80 oC.  The remaining cleared WCEs were 

overlaid onto a 5/20% discontinuous sucrose gradient prepared in wash buffer. The 

gradients were centrifuged at 28,000 RPM using a SW-41 swinging bucket rotor for 18 h 

at 4 oC. The supernatant was discarded and the ribosome pellet was resuspended in ice 

cold 1 mL standard buffer (10 mM Tris pH 8, 5 mM beta-mercaptoethanol, 50 mM 

ammonium chloride, 5 mM magnesium acetate) and centrifuged for 10 min at 10,000g 

at 4 oC.  The pellet was discarded and the ribosome suspension was stored at -80 oC. 

For cryoEM analysis, ribosomes were purified as above after shifting the cells grown in 

glucose to glycerol and taking aliquots at the following time points: 0Min, 30Min, 60Min, 

120Min, 240Min, and 450Min. 

iTRAQ labeling: The total protein concentration of all ribosome suspensions were 

determined using Bradford assay according to the manufacturer protocol (Sigma 

Aldrich, St. Louis, MO. Catalog # B6916-500ML). Fifty micrograms of total protein from 

each growth condition was mixed with 50 ng of bovine serum albumin (Thermo 

Scientific, #23209) as an internal standard.  Each protein sample was acetone 

precipitated and resolublized in 25 µL iTRAQ dissolution buffer (500 mM 

triethylammonium bicarbonate, 0.1 % sodium dodecyl sulfate).  The proteins were 

reduced with tris(2-carboxyethyl)phosphine at 60 oC for 60 min and the cysteines were 

derivatized with methyl methanethiosulfonate at RT for 10 min.  All samples were 

digested with sequencing grade modified trypsin (1:50; Promega Corporation, Catalog # 

V5111) overnight at 37 oC. An equal fraction of the tryptic digest of ribosomes from the 

3 replicates grown in YPD at 30 oC were pooled separately and used as a control for the 
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iTRAQ experiments. Ten µg from each replicate tryptic digested sample and pooled 

control were used for iTRAQ labeling. The iTRAQ labeling reagents were resolublized in 

150 µL anhydrous ethanol (Sigma Aldrich, St. Louis, MO. Catalog # E7023-500ML). 

Seventeen µL of iTRAQ reagents were added to each 10 µg sample and the pooled 

control, incubated with shaking for 1 h at room temperature on Eppendorf Thermomixer 

R, pooled, frozen, lyophilized, resolublized in X ul of buffer A (0.1 % formic acid in 

HPLC-grade water), and stored at -80 oC. 

Liquid chromatography and mass spectrometry:  The iTRAQ labeled samples were 

analyzed with MudPIT as previously described (Browne et al. 2013). Precursor ions 

were analyzed in the Orbitrap mass analyzer followed by 4 CID fragment ion scans in 

the ion trap and 4 HCD fragment ion scans (normalized collision energy  = 45%) in the 

Orbitrap.  

iTRAQ data analysis: The data analysis workflow essentially mirrored the workflow 

described in Chapter II. Briefly, RAW files generated by the MudPIT experiments were 

searched using the Sequest database search engine running under Proteome 

Discoverer v1.4 (Thermo Scientific) against a forward and reverse yeast protein 

database (S.cererevisiae_orf_trans_all_SGD.fasta.6718) with appended common 

contaminant sequences (Eng et al. 2008; Eng, McCormack, and Yates 1994). Protein 

assembly and reporter ion quantitation and statistical analysis were done using 

ProteoIQ (Premier BioSoft Inc). Principal component analysis was done using princomp 

function in R and the PCA plot was generated using Scatterplot3d package (R Core 

Team 2015; Ligges and Mächler 2003). Boxplots were generated in RStudio. All python 

and R scripts used in this study will be made available on request. 
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Multiple Reaction monitoring: Proteotypic peptides were selected for targeted 

quantitation from a database of identified peptides in the MudPIT experiments. 

Transitions for unscheduled scout experiments were selected based upon NIST and 

GPM spectral libraries. Fifty µg of the purified ribosomes were digested with sequencing 

grade modified trypsin (1:50; Promega Corporation, Catalog # V5111) and desalted 

essentially as described (Browne et al. 2013). Peptides were eluted using an elution 

buffer composition of 50% Acetonitrile, 0.1% Trifluoroacetic acid. Peptides were 

analyzed using a 90 min scheduled SRM analysis.  Briefly, peptides were autosampled 

onto a 200 mm by 0.1 mm (Jupiter 3 micron, 300A), analytical column coupled directly 

to an TSQ-Vantage (ThermoFisher) using a nanoelectrospray source and resolved 

using an aqueous to organic gradient (1-45% Buffer B) at X ul/min flow rate.  Using 

series of unscheduled scout runs to determine retention times and transitions to 

monitor, a scheduled instrument method encompassing a 10 min window around each 

retention time along with calculated collision energies was created using Skyline 

(MacLean et al. 2010).Q1 peak width resolution was set to 0.7, collision gas pressure 

was 1 mTorr, and utilized an EZmethod cycle time of 5 s. The resulting RAW instrument 

files were imported into Skyline for peak-picking and quantitation (MacLean et al. 2010). 

The peak areas of the transitions were exported and further analysis done in Microsoft 

Excel. Sum of the peak areas of all the transitions of a given peptide, peptide peak area, 

was used as the quantitative measure of abundance for the peptide. The average of 

peptide peaks areas of all the peptides from a given protein, protein peak area, was 

used as the quantitative measure of abundance of the protein. The average protein 

peak areas of single copy ribosomal protein RPL5 was used as control.  For differential 
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analysis, in the first step a ratio of peak area of the test protein to the peak area of the 

control was calculated across all samples. In the next step, two sample t-test with alpha 

level 0.05 was performed with the ratios to test for statistical significance. Finally, fold 

change was calculated by ratioing the average of ratios. The calculated was fold 

changes were log2 transformed. 

Cryoelectron Microscopy (in collaboration with the Joachim Frank lab): For each 

specimen of the time series, ribosome samples were applied to Holey carbon-coated 

Quantifoil copper grids, freeze-plunged using the Vitrobot Mark IV freeze-plunger (FEI, 

Portland, Oregon), and then visualized in an FEI Tecnai F20 electron microscope at 200 

kV acceleration voltage and 5,000x magnification, using a 4k x 4k CCD camera (Gatan, 

Pleasanton, CA) and automated data collection employing the programs Leginon and 

Appion (Grassucci, Taylor, and Frank 2008; Suloway et al. 2005). Each pixel 

corresponds to 2.25A on the object scale. A total number of 260,440 particles were 

selected from 2,661 micrographs. Of these, 159,654 were verified using a work-flow 

written in Arachnid, and processed using the program RELION, which combines 

maximum likelihood-based classification with reconstruction, as well as a novel 

convergence analysis that finalizes the classification results (Bo Chen, Shen, and Frank 

2014; Scheres 2012).  For a comprehensive analysis of the time series, all data were 

pooled together so that increase and decrease of each sub-population could be 

effectively studied, and the maximum number of particles was available for the 3D 

reconstruction of each class. 

GOzilla: GOzilla is a custom Python script. It uses GO Slim database from 

Saccharomyces cerevisiae Genome Database (SGD) (Cherry et al. 1998; Christie et al. 
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2004). In the first step COMPzilla creates a dictionary with GO terms as the keys and 

the proteins that have the given GO term associated with them in the GO Slim database 

as the values. In the next step, GOzilla creates a dictionary in which GO terms are still 

the keys, but values are fold changes corresponding to the proteins that were mapped 

to GO terms in the first step. In the third step, GOzilla creates a list all the fold changes 

in the experiment that will be considered the population of fold changes for statistical 

testing. Finally, GOzilla compares the fold change distribution associated with the GO 

terms with population fold change distribution using two sample t-test of independence 

and two sample Kolomogorv-Smirnov test. GOzilla exports the results of the two tests in 

separate tab delimited text files, in which first column contains the GO terms, the 

second column t-statistics or ks-statistics, and the third column contains the 

corresponding p-value (Source code in Appendix R).  

COMPzilla: COMPzilla is a custom Python script. It uses CYC2008 2.0, a manually 

curated database of biomolecular complexes in yeast to identify complexes that are 

differentially present (Pu et al. 2007; Pu et al. 2009). In the first step COMPzilla creates 

a dictionary with complex names as keys and the proteins that constitute the complex 

as values. In the next step, COMPzilla creates a dictionary in which complex names are 

still the keys, but values are mapped fold changes of the proteins that constitute the 

complex. In the third step, COMPzilla creates a list all the fold changes in the 

experiment that will be considered the population of fold changes for statistical testing. 

Finally, COMPzilla compares the fold change distributions associated with protein 

complexes with population fold change distribution using two sample t-test of 

independence and two sample Kolomogorv-Smirnov test. COMPzilla exports the results 
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of the two tests in separate tab delimited text files, in which first column contains the 

complex names, the second column t-statistics or ks-statistics, and the third column 

contains the corresponding p-value. (Source code in Appendix S) 

Results 

Ribosomal proteins abundances are regulated in response to environmental 

stimuli but the abundances of all RPs do not change to the same extent. 

 To investigate the regulation of abundances of ribosomal proteins in response to 

environmental stress, we reanalyzed our previously published dataset using Python 

scripts GoZilla.py and CompZilla.py ((Source codes in Appendices R and S). The whole 

cell extract analyzed in this study were the sources for the purified ribosomes for this 

study (Samir et al. 2015). GoZilla identifies the Gene Ontology terms that are either 

downregulated or upregulated in a gene expression data. It uses the Go Slim database 

downloaded from Saccharomyces genome database for looking up GO terms (Cherry et 

al. 1998; Christie et al. 2004). CompZilla identifies the differentially regulated 

biomolecular complexes in gene expression data. It uses a manually curated database 

of yeast biomolecular complexes to lookup their constituents (Pu et al. 2007; Pu et al. 

2009).  

 In the three stimuli used in the previous study, most of the proteins with structural 

constituent of ribosome GO terms were downregulated (Fig. 12A). Similarly most of the 

components of 60S and 40S ribosomal subunits were downregulated too (Fig. 12B). 

However, the log2 transformed fold changes were not consistent for all of the ribosomal 

proteins. This suggested that at least some of the ribosomal proteins were being 
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differentially regulated compared to others. This is in agreement with the predictions of 

both ribosome filter hypothesis and the depot hypothesis (Mauro and Edelman 2002; 

Ray, Arif, and Fox 2007; Mazumder et al. 2003). However, this does not exclude the 

possibility that the changes in ribosomal protein abundances were independent of the 

changes in the protein composition of ribosomes themselves. 
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Figure 12 - : Analysis of whole cell extract quantitative protoemics data using GoZilla and CompZilla. 

A) A boxplot showing the fold change distribution of proteins with structural constituent of ribosome GO 

term. GoZilla was used to generate the fold change distribution. Boxplots were generated in RStudio. B) 

Fold change distributions of 40S and 60S subunit proteins. CompZilla was used to generate the fold 

change distribution. Boxplots were generated in RStudio. 
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Quantitative proteomics analysis of protein abundances in purified ribosomes. 

To directly measure the changes in the protein composition of ribosomes, we 

focused on two environmental stimuli – (1) growth in rich media with glucose as carbon 

source at 30 oC, and (2) growth in rich media with glycerol as carbon source at 30 oC. 

We purified the ribosomes using a discontinuous sucrose gradient centrifugation. We 

analyzed the samples using iTRAQ labeling followed by liquid chromatography tandem 

mass spectrometry. We identified 135 ribosomal proteins, 131 of which were 

quantitated in the three replicates. Since the ribosomes were purified from the same 

whole cell extracts used in the previous study, we compared the fold changes of 

ribosomal proteins in purified ribosomes to that in the whole cell extracts (Samir et al. 

2015). Surprisingly, a correlation matrix analysis revealed that there was no correlation 

between the two fold changes (Fig. 13A-D). There was good correlation in the ribosomal 

protein levels between the replicates, both in whole cell extracts and purified ribosomes 

(Fig. 14A-F). This suggested that the lack of correlation was not due to a noisy data with 

high variance. 
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Figure 13 – Correlation analysis between the changes in whole cell extracts and purified ribosomes 

There are three replicates each corresponding to WCE and purified ribosomes. A) Cross0correlation 

matrix, numbers represent Pearson’s R, W# represent whole extracts, R# represent purified ribosomes. 

B-D) Scatter plots showing relationship between fold changes in whole cell extract (X-axis) and purified 

ribosomes (Y-axis) Three replicates are depicted.  
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Figure 14 - Scatterplots showing reproducibility among replicates of whole cell extracts and purified 

ribosomes 

Sctterplots were generated in RStudio. A-C) Scatterplots of whole cell extracts. Replicate 1 vs Replicate 

2, Replicate 1 vs Replicate 3, and Replicate 3 vs Replicate 2. D-F) Scatterplots of purified ribosomes. 

Replicate 1 vs Replicate 2, Replicate 1 vs Replicate 3, and Replicate 3 vs Replicate 2.
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Figure 15 – Quantitation of ribosomal proteins in purified ribosomes using quantitative mass spectrometry 

A) 45 ribosomal proteins quantitated using at least one unique peptides in iTRAQ experiments. B) 11 

Differentially present ribosomal proteins in purified ribosomes identified using t-test p-value less than 

0.05. C) The amounts of RPL8A and RPL8B were validated using multiple reaction monitoring approach 

in three independently purified ribosomes. These were different samples from the ones used in iTRAQ. 

To identify differentially present ribosomal proteins, we used t-test of 

independence with alpha level of 0.05. Since there are minimal sequence differences 

between the paralogs, to reliably quantify the paralog specific changes we reanalyzed 
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the mass spectrometry data to use only the unique peptides for quantitation. We 

quantitated 45 ribosomal proteins with at least one unique peptide, 11 of which were 

differentially present in the purified ribosomes (Fig. 15A-B). This included a paralog pair, 

Rpl8a and Rpl8b (Fig. 15C). We validated the iTRAQ data using multiple reaction 

monitoring. 

Using CryoEM to detect changes in the ribosomal protein composition over time. 

Quantitative proteomics is a population based technique that could not address 

superstoichiometric and substoichiometric models for changes in the protein 

composition of ribosomes. To determine the changes in the protein composition of 

ribosomes consistent with superstoichiometric and substoichiometric models, we used 

cryoEM in collaboration with the Joachim Frank lab at Columbia University. We focused 

on the changes in 80S ribosomes. We identified 3 populations of ribosomes, (1) a 

population of complete 80S ribosomes that has the full complement of ribosomal 

proteins, (2) a population of 80S ribosomes missing Rpl10 (ΔuL16), and (3) a population 

of ribosomes missing both Rpl10 and Rps1 (ΔuL16 ΔeS1) electron densities (Fig. 16A). 

We did not observe ribosomes with superstoichiometric composition of ribosomal 

protein(s) in our data.  
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Figure 16 - Cryo-EM analysis 

A) Electron densities corresponding to Rpl10 (uL16) and Rps1 (eS1) in cryo-EM structures. 

Substoichiometric ribosomes lacking these proteins were identified. B) Time-course analysis to measure 

the dynamic changes in the proportions of ribosomes missing uL16 or both uL16 and eS1. 
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To study the kinetics of change in the composition of 80S ribosomes, we 

performed a time-course experiment to track the proportions of these sub-populations. 

The cells were grown in with glucose as the carbon source. At time 0 minutes, the cells 

were spun down and resuspended in media containing glycerol as the carbon source. 

We aliquoted cells at 0, 30, 60, 120, 240, and 450 minutes after shifting from glucose to 

glycerol. We purified ribosomes from these cells and used cryo-EM to determine the 

relative proportions of the three structures (Fig. 16B). The proportion of complete 

ribosomes decreased sharply within the first 30 minutes of the shift. There was a similar 

increase in the proportion of ΔuL16 ΔeS1 ribosomes in the same time frame. After 60 

minutes, the proportion of complete ribosomes started to recover with a concomitant 

decrease in the ΔuL16 ΔeS1 ribosomes. However, the proportions of complete and 

ΔuL16 ΔeS1 ribosomes never recovered to the initial level in the time frame used in this 

study. The proportion of ΔuL16 ribosomes continued to steadily increase throughout our 

experiment. However, the rate of increase was minimal. The substoichiometric 

composition is consistent with both the depot hypothesis and the ribosome filter 

hypothesis. 

Paralog specific roles of Rpl8a and Rpl8b in translation using null mutants. 

 We used polysome profile analysis to study the paralog specific roles of Rpl8a 

and Rpl8b in global translational control. We used the rpl8a and rpl8b null mutants that 

had been previously described (Winzeler et al. 1999). We used the diploid wild type 

(BY4743) and null mutant strains (Baker Brachmann et al. 1998; Winzeler et al. 1999). 

Similar to the proteomics analysis, we grew cells with either glucose or glycerol as 

carbon source (Fig. 17 and 18). Polysome profiles of rpl8a cells showed a large 
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increase in 40S peak and shoulders on the 80S and polysome peaks (Fig. 17B). The 

shoulder defect was rescued by either adding back Rpl8a or overexpressing Rpl8b from 

their native promoters (Fig. 17B, 17D, 17E). However, the 40S peak defect was rescued 

only by adding back Rpl8a (Fig. 17B, 17D, 17E). Polysome profiling of rpl8b cells did 

not show a difference from wild type (Fig. 17C). When the cells were grown with 

glycerol, rpl8a cells showed a very prominent 40S peak, which was rescued by adding 

back Rpl8a (Fig. 18B, 18D). This defect was not rescued by overexpression of Rpl8b 

(Fig. 18E). In glycerol, rpl8b cells too showed a larger 40S peak that was rescued by 

Rpl8b but not by Rpl8A (Fig. 18C, 18F, 18G).  
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Figure 17 – Polysome profiles with glucose as carbon source 
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A) Polysome profile of WT diploid strain BY4743. B) Polysome profile of rpl8a diploid null mutant. C) 

Polysome profile of rpl8b diploid null mutant. D) Polysome profile of rpl8a diploid null mutant with Rpl8a 

on a plasmid expressing from native promoter. E) Polysome profile of rpl8a diploid null mutant with Rpl8b 

on plasmid expressing from native promoter. F) Polysome profile of rpl8b diploid null mutant with Rpl8a 

on a plasmid expressing from native promoter. E) Polysome profile of rpl8b diploid null mutant with Rpl8b 

on plasmid expressing from native promoter. 
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Figure 18 – Polysome profiles with glycerol as carbon source 

A) Polysome profile of WT diploid strain BY4743. B) Polysome profile of rpl8a diploid null mutant. C) 

Polysome profile of rpl8b diploid null mutant. D) Polysome profile of rpl8a diploid null mutant with Rpl8a 
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on a plasmid expressing from native promoter. E) Polysome profile of rpl8a diploid null mutant with Rpl8b 

on plasmid expressing from native promoter. F) Polysome profile of rpl8b diploid null mutant with Rpl8a 

on a plasmid expressing from native promoter. E) Polysome profile of rpl8b diploid null mutant with Rpl8b 

on plasmid expressing from native promoter. 
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Figure 19 – Quantification of peak areas ratios of polysome profiles 

A) Ratio of 40S:60S peak areas. B) Ratio of 80S:Polysome peak areas. D is BY4743, AD is rpl8a diploid 

null, AAD is rpl8a diploid null with Rpl8a, ABD is rpl8a diploid null with Rpl8b on a plasmid, BD is rpl8b 

diploid null, BBD is rpl8b diploid null with Rpl8b, BAD is rpl8b diploid null with Rpl8a on a plasmid. 

We further analyzed the polysome profiles quantitatively by measuring the peak 

areas of the 40S, 60S, 80S, and polysome peaks. We used two parameters – (1) the 

ratio of 40S:60S peak areas (40/60 ratio), and (2) the ratio of 80S:Polysome peak areas 

(80/Poly ratio) (Fig. 19). Both rpl8a and rpl8b cells showed elevated 40/60 ratios with 
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either glucose and glycerol as carbon sources (Fig. 19A). In rpl8a cells. the ratios were 

rescued to the wild type levels by adding back Rpl8a (Fig. 19A). Although the 

overexpression of Rpl8b decreased the ratios, but it did not reach the wild type levels 

(Fig. 19A). In rpl8b cells too showed a similar pattern, with adding back Rpl8b rescuing 

the defect (Fig. 19A). Overexpression of Rpl8a was only able to partially rescue the 

defect (Fig. 19A). 

Analysis of 80S/Poly ratios showed no defectin either rpl8a or rpl8b cells when 

grown in glucose (Fig. 19B). Overexpression of Rpl8a or Rpl8b in the mutant cells did 

not lead to a defect either (Fig. 19B). When cells were grown in glycerol, there was an 

elevation in the ratio for rpl8b cells but not for the rpl8a cells (Fig. 19B). The elevated 

80S/Poly ratio defect was rescued by adding back Rpl8b but not by overexpression of 

Rpl8a (Fig. 19B). Taken together, the polysome profile analysis suggested paralog 

specific roles for Rpl8a and Rpl8b proteins. This is consistent with the ribosome filter 

hypothesis. 

Discussion 

 Presence of ribosomes with substoichiometric composition of ribosomal proteins 

presents intriguing possibilities. In E. coli, ribosomes lacking a 43 nucleotide segment 

on the 3’ end of the 16S rRNA selectively translates leaderless mRNA. This would be 

an example of a ribosome with substoichiometric composition, in this case a rRNA, 

acting as a filter for translating a specific class of mRNA. Do the ribosomes missing 

Rpl10, Rps1, or both translate a special class of mRNAs? It is also possible that Rpl10 

and Rps1 have extra-ribosomal functions similar to RPL13A in GAIT complex. There 

dissociation from the ribosome to perform their extra-ribosomal function may leave 
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behind ribosomes lacking their electron densities. Another intriguing possibility is that 

the dissociation of Rpl10 and/or Rps1 acts as a break. This is consistent with the 

observation that the proportion of ribosomes missing either of the two proteins 

increases rapidly immediately after shifting the carbon source (Fig. 16B). Since cells 

have to adapt to a new environment, they may pause for a time before making new 

proteins. Furthermore, the proportion of complete ribosomes never recovers to the pre 

shift stage during the time frame of this study. Since yeast cells grow very slowly with 

glycerol as carbon source compared to glucose, the ribosomes lacking one or both of 

the ribosomal proteins may be part of a non-translating reserve pool. Although we 

cannot differentiate between the three possibilities, the very presence of 

substoichiometric ribosomes suggests alternative biological models that would need to 

be addressed in future studies. 

 Although the change in composition of ribosomes with the changes in the growth 

condition was not completely unexpected, we provide experimental evidence that it 

does occur, at least in S. cerevisiae. The paralog specific roles of Rpl8a and Rpl8b 

observed in the polysome profiles provide direct evidence in favor of the ribosome filter 

hypothesis. In planned follow up experiments, we are using ribosome footprint profiling 

with the wild type and mutant cells to identify the mRNAs whose translation is 

differentially affected by either of the paralogs (Ingolia 2014). It would be very 

interesting to see if there are sequence features on the mRNAs under paralog specific 

translational control. A recent study in mouse has found RNA secondary structures in 5’ 

UTRs of a subset of Hox mRNAs (Xue et al. 2015). These RNA structures resemble 

internal ribosome entry sites required for the cap-independent translation initiation 
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mechanism. They are expected to recruit ribosomes to the mRNA through a mechanism 

dependent upon Rpl38 (Xue et al. 2015). 

 A number of single copy ribosomal proteins are differentially present in the 

purified ribosome samples in the proteomics experiment but not in the cryo-EM 

experiments focused on 80S ribosomes. There could be three possibilities that can 

explain these observations – (1) confounding of the mass spectrometry quantitation by 

impurities, unassociated 40S and 60S subunits, biogenesis or degradation 

intermediates, in the sample prep, (2) cofounding of the mass spectrometry quantitation 

by unidentified post-translational modifications, and (3) the changing composition in free 

40S and 60S subunits that were excluded from cryo-EM analysis. 

In our experiments, we pelleted down all of the ribosomes including 40S, 60S, 

and 80S. Our protocol would also have pelleted the ribosomes in the intermediate 

stages of biogenesis or degradation. We cannot differentiate between the tryptic 

peptides coming from the different sources in the sample. Each of these peptides 

contributes to quantification and potentially confounds our results. In cryo-EM, we 

focused only on the 80S ribosomes. We were able to filter out all the other sources of 

variation from our analysis. Therefore, cryo-EM provides a cleaner data for the single 

copy ribosomal proteins. However, cryo-EM cannot differentiate between the different 

paralogs at the resolutions routinely achieved through this approach. This makes 

quantitative proteomics and cryo-EM complementary techniques to address these 

different questions. 
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A second reason for the changes detected in the single copy ribosomal proteins 

could be the confounding by the unidentified post-translational modifications. Ribosomal 

proteins are known to be post-translationally modified (Ohn et al. 2008; Spence et al. 

2000; W. M. Anderson, Grundholm, and Sells 1975; Kruiswijk et al. 1978; Kaerlein and 

Horak 1976; Arragain et al. 2010; Nesterchuk, Sergiev, and Dontsova 2011; Xirodimas 

et al. 2008; Arnold et al. 1999; Thomas et al. 1982). The post-translational modification 

of peptides confounds mass spectrometry based quantitation if the modified peptides 

have been not been identified in the experiment. This is because the modification 

changes the mass as well as the retention time for a chromatography run. This leads to 

absence of signal that can be misinterpreted as differential presence. To minimize this 

possibility, use of two or more peptides for quantitation is recommended because the 

probability of both peptides being modified simultaneously is considered lower than an 

individual peptide. Although these precautions can minimize the chances of errors in 

quantitation due to post-translational modifications, it cannot completely rule them out. 

A third reason for the changes in the single copy ribosomal protein could be that 

the proportions of ribosomes missing these ribosomal proteins are changing between 

the two growth conditions. Although we did not observe the 80S structures missing 

these ribosomal proteins in cryo-EM analysis, they might be present in the ribosomal 

subunits or intermediates of biogenesis or degradation. 

In conclusion, we have showed the changing protein compositions of ribosomes 

using two complementary approaches. Paralog specific changes are consistent with the 

ribosome filter hypothesis. The changes in the single copy ribosomal proteins observed 

in the quantitative proteomics study and cryo-EM are consistent with both the depot 
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hypothesis and the ribosome filter hypothesis. The planned future studies are expected 

to shed light on the functional significance of the changing compositions. 
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Chapter IV 

Quantitative Proteomics Analysis of Human Myotonic Dystrophy 

Skeletal Muscles Reveals Specific and Common Modules of 

Differentially Expressed Proteins. 

Abstract 

Myotonic dystrophy, a form of muscular dsystrophy, is an autosomal dominant 

multi-systemic disorder caused by the expansion of nucleotide repeats.  There are two 

types of myotonic dystrophy. Myotonic dystrophy type 1 (DM1) is cause by a CTG 

trinucleotide repeat expansion in the 3’ untranslated region of dystrophia myotonica-

protein kinase (DMPK) gene.  Myotonic  dystrophy type 2 (DM2) is caused by a CCTG 

tetranucleotide repeat expansion in the first intron of zinc finger 9 (ZNF9) gene.  The 

expression of the repeat expansions in both cases lead to the nuclear accumulation of 

RNA granules, which sequester RNA processing factors.  This RNA toxicity is thought to 

be the cause of the disease symptoms. However, the effect of the repeat expansions on 

the proteome is poorly understood. 

To address this, we quantified the proteomes of the skeletal muscles of myotonic 

dystrophy patients and healthy volunteers to identify differentially regulated proteins. We 

used iTRAQ labeling followed by liquid chromatography tandem mass spectrometry for 

protein quantitation. Skeletal muscles from 5 healthy volunteers, 7 DM1 patients and 6 

DM2 patients were used in this study. We quantitated 3575 proteins across all the 

samples. We used one way ANOVA, with the Benjamini Hochberg procedure for 

controlling false discovery rate in multiple comparisons, to identify differentially 
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regulated proteins. We identified 30 proteins upregulated and 4 proteins downregulated 

in both DM1 and DM2. We found 154 proteins to be upregulated and 218 proteins to 

downregulated uniquely in DM1 patients. Pathway analysis of these proteins revealed 

biochemical pathways that appear to be affected by the repeat expansions. 

Introduction 

Myotonic dystrophy (DM) is an autosomal dominant multi-systemic disorder 

caused by the expansion of CTG or CCTG repeat elements in DMPK or ZNF9 genes, 

respectively. DM caused by the expansion CTG repeat in the 3’untranslated region of 

DMPK gene is called myotonic dystrophy type 1 (DM1) (Brook et al. 1992; Y. H. Fu et 

al. 1992; Mahadevan et al. 1992). It is also called Steinert’s disease and congenital 

myotonic dystrophy (Machuca-Tzili, Brook, and Hilton-Jones 2005). It is the more 

severe form of DM. DM caused by the expansion of CCTG repeat in the first intron of 

ZNF9 gene is called myotonic dystrophy type 2 (DM2) (Ranum et al. 1998; Liquori et al. 

2001). It is also called the proximal myotonic dystrophy (PROMM). This is a relatively 

mild form of DM (Machuca-Tzili, Brook, and Hilton-Jones 2005). DM1 and DM2 are 

thought to be caused by accumulation of toxic RNA (J. E. Lee and Cooper 2009; 

Osborne and Thornton 2006; Thornton 2014). DM symptoms include myotonia, 

cataracts, neurological disorders and heart conduction defects. 

 DM1 was first described more than hundred years ago (Machuca-Tzili, Brook, 

and Hilton-Jones 2005). It was the third example of a disease caused by repeat 

expansions in 1992 (Thornton 2014; Brook et al. 1992; Mahadevan et al. 1992; Y. H. Fu 

et al. 1992). The number of CTG repeat in general human population is variable. The 

number of repeats in healthy individuals lies between 5 and 37 (Thornton 2014). In DM1 
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patients the number of repeats exceeds 50 and can even be more than 3000 (Thornton 

2014). The number of repeats correlates with the degree of severity of the disease. It 

also negatively correlates with the age of onset, the larger of number of repeats being 

associated with an earlier age of onset (Redman JB et al. 1993; Temmerman et al. 

2004). DM1 can present in either congenital or adult onset form. This depends on the 

number of repeats in an individual.  

 DM2 was first described in 1994 as the myotonic dystrophy that lacked the CTG 

repeat expansion described two years earlier (Thornton, Griggs, and Moxley 1994). A 

number of DM patients were soon found to lack the CTG expansion (Ricker K et al. 

1995; Ricker et al. 1994; Meola et al. 1996; Udd et al. 1997). This form of the disease 

was initially called proximal myotonic myopathy because of the involvement of proximal 

muscles, in contrast to the distal muscles in the previously described form of DM (Udd 

et al. 1997; Moxley III 1996; Ricker et al. 1994). It was later renamed as DM2 to signify 

the form of DM that lacked CTG repeat expansion. DM2 is an adult onset disease. A 

congenital form of DM2 has not been identified. DM2 was subsequently found to have a 

CCTG tetranucleotide expansion in the first intron of Znf9 gene(Liquori et al. 2001).  

 The expression of RNA with the DM repeat expansions leads to the formation of 

RNA foci in the nucleus. It has been proposed that important RNA processing factors 

bind to the repeat containing RNA and are sequestered in these foci. This leads to the 

misregulation of RNA processing, including defects in splicing and polyadenylation. As 

such DM has been characterized as a RNA toxicity disease (Thornton 2014; Cho and 

Tapscott 2007; Turner and Hilton-Jones 2014; Machuca-Tzili, Brook, and Hilton-Jones 
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2005; J. E. Lee and Cooper 2009; Osborne and Thornton 2006; Douglas and Wood 

2011).  

There is a large body of literature describing the alterations in the RNA 

processing machinery (Osborne and Thornton 2006; Douglas and Wood 2011). 

However, the effect of the defect in RNA processing on the proteome is poorly 

understood. In this study, we used quantitative proteomics analysis to determine the 

changes in the proteomes of the skeletal muscles of DM patients.  

Materials and Methods 

Patient details: Muscular biopsies were kindly provided by Dr. Bjarne Udd from 

University of Helsinki, Finland. 

iTRAQ quantitation of the proteome: Protein extract was prepared by ultrasonicating 

the skeletal muscle tissue in lysis buffer (50% Trifluoroethanol 50 mM HEPES). The 

amountsl protein in the samples were determined using BCA assay. 10 µg of protein 

was aliquoted out, reduced by tris(2-carboxyethyl)phosphine, cysteine blocked by 

Methyl methanethiosulfonate, and digested with trypsin (1:50 :: trypsin:protein) 

overnight. The peptides were desalted using solid phase extraction with reverse phase 

microtrap coloum (Michrom Bioresources) as described in Link and La Baer. The 

peptides were resolublized in 7 ul 500 mM triethylammonium bucarbonate (TEAB). 85 ul 

of isopropyl alcohol was added to iTRAQ reagents. 12 µL of iTRAQ reagents were 

added to the samples, incubated with shaking for 2 hours, pooled, frozen, lyophilized, 

resolublized in buffer A (5% acetonitrile, 0.1 % formic acid in HPLC grade water) and 

stored at -80 0C. The iTRAQ labeled samples were analyzed by MudPIT essentially as 



 

112 
 

described with one change (Browne et al. 2013). The precursor ions were analyzed in 

the Orbitrap followed by 4 CID fragment ion scans in the ion trap to identify the peptides 

followed by 4 HCD fragment ion scan of the same precursors as in CID to get obtain the 

reporter ion intensities in the orbitrap.  

Mass spectrometry data processing and analysis: Mass spectrometry data 

processing was done as described in (Samir et al. 2015). RAW files generated by LC-

MS/MS experiments were searched using Sequest database search engine running 

under proteome Discoverer v1.4 (Thermo Scientific) to identify the peptides (Eng et al. 

2008; Eng, McCormack, and Yates 1994). Sequest searches were done against an 

ENSEMBL database of human protein sequences. Protein assembly and reporter ion 

quantitation and statistical analysis were done using ProteoIQ (Premier BioSoft). Log2 

transformed fold change against a common control prepared from lysates of wild type 

myoblasts (PromoCell) was used as the measure of abundance. Correlation plot was 

generated in R (R Core Team 2015). 

Differential expression and pathway analysis: One way ANOVA was used to identify 

differentially expressed proteins using in R using a modified version of a previously 

described script (Samir et al. 2015; R Core Team 2015). The modification allowed using 

data from control patients as covariates. Pathway analysis using the differentially 

expressed proteins was done using the GeneMANIA Cytoscape plugin (Montojo et al. 

2010; Mostafavi et al. 2008). Cytoscape was used to visualize the network diagrams 

(Shannon et al. 2003). Bar graphs were generated in MS Excel. 
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Results 

Proteomic analysis of myotonic dystrophy skeletal muscle biopsies. 

We analyzed the proteome of skeletal muscle biopsies from 5 control subjects, 7 

DM1 patients, and 6 DM2 patients. We used iTRAQ labeling followed by MudPIT 

analysis for the quantitation (Ross et al. 2004; Link et al. 1999). We quantitated 3575 

proteins across the three groups (fig. 20A). We analyzed the list of quantitated proteins 

using GeneMANIA Cytoscape plugin to identify the list of overrepresented pathways in 

the list (Montojo et al. 2010). GeneMANIA generated network had 801 nodes and 64138 

edges (fig.20B). A smaller number of nodes in the network compared to the input list of 

proteins represent the redundancies in the protein list due to the presence of multiple 

isoforms. The overrepresented pathways included a number of pathways expected to 

be involved in muscle physiology. The top 5 pathways enriched the list were contractile 

fiber part, muscle filament sliding, actin-myosin filament sliding, contractile fiber, and 

muscle system process (fig. 20C). In addition to muscle related pathways, energy 

production and translational control pathways were also enriched the list of quantitated 

proteins. This was expected based upon the cellular abundances of translational control 

proteins and metabolic enzymes.  
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Figure 20 – Quantitative proteomics analysis of skeletal muscles from DM patients 

A) Heatmap showing the expression ratioed against the common control. B) Network interactions 

generated using GeneMANIA. C) Top 6 enriched pathways in the list of proteins identified across all the 

experiments. CF1 is control female 1, CF1 is control female 2, CM1 is control male 1, CM2 is control male 

2, CM3 is control male 3, DM1F1 is DM1 patient female 1, DM1F2 is DM1 patient female 2, DM1F3 is 

DM1 patient female 3, DM1M1 is DM1 patient male 1, DM1M2 is DM1 patient male 2, DM1M3 is DM1 

patient male 3, DM1M4 is DM1 patient male 4, DM2F1 is DM2 patient female 1, DM2F2 is DM2 patient 
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female 2, DM2F3 is DM2 patient female 3, DM2F4 is DM2 patient female 4, DM2M1 is DM2 patient male 

1, DM2M2 is DM2 patient male 2. 

Closer analysis of the GeneMANIA generated network revealed that all but two 

nodes were part of a subnetwork spanning rest of the nodes. The two nodes were zinc 

finger 788 (ZNF788) and proline rich basic protein-1 (PROB1). They were not 

connected to any other node in the network. ZNF788 belongs to krueppel c2h2 type 

zinc finger protein family (The UniProt Consortium 2015). No disease mutation in 

ZNF788 has been reported (Peterson et al. 2010). PROB1 has been found to be 

mutated in human cancers (Wu et al. 2014). 

Protein downregulated in both DM1 and DM2 

Proteins products of three genes, RPL13A, P4HB, and MYH7B, were found to be 

downregulated in both DM1 and DM2 (Figure 21A-C). RPL13A is a ribosomal protein 

with diverse functions in translational control (The UniProt Consortium 2015). It has not 

been associated with a disease in DMDM database (Peterson et al. 2010). It has been 

found to be mutated in human cancers, which might be reflecting its polymorphism (Wu 

et al. 2014). RPL13A was found to have extraribosomal function in translational control 

of interferon regulated mRNAs. This led to the proposition of the depot hypothesis 

(Mazumder et al. 2003; Ray, Arif, and Fox 2007). According to ENSEMBL database 

(Ensembl release 82) RPL13A pre-mRNA contains 8 exons and 7 introns (Cunningham 

et al. 2015). A number of transcripts with retained introns have been reported. These 

transcripts are not translated into proteins (Cunningham et al. 2015). Since aberrant 

splicing is a common defect in DM1 and DM2, it provides a mechanism by which 

RPL13A protein levels might be downregulated in both DM1 and DM2.  
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GeneMANIA based pathway analysis to find pathways that might be affected by 

changes in RPL13A levels revealed translational control as the main pathway. Most of 

the proteins in the resulting network were ribosomal proteins (Fig. 21A). One of the 

members of the RPL13A network is Mago-Nashi Homolog (MAGOH), which is a 

member of exon junction complex (The UniProt Consortium 2015). MAGOH regulates 

neural stem cell division. A haploinsufficiency in Magoh leads to reduced brain size in 

mouse (Silver et al. 2010). 

 Second protein downregulated in both DM1 and DM2 is prolyl 4-hydroxylase, 

beta polypeptide (P4HB) (Fig. 21B). P4HB belongs to protein disulfide isomerase family 

of proteins (The UniProt Consortium 2015). P4HB has not been found to be associated 

with a human disease, but it has been found to be mutated in human cancers that might 

be reflecting its polymorphism (Peterson et al. 2010; Wu et al. 2014). P4HB pre-mRNA 

contains 11 exons and 10 introns. Similar to RPL13A, a number of transcripts with 

retained introns have been described. These transcripts are not translated into proteins 

suggesting a mechanism of downregulation dependent upon aberrant splicing 

(Cunningham et al. 2015). GeneMANIA analysis of a network generated from P4HB 

revealed association with metabolic enzymes (Fig. 21B). 
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Figure 21 – Network of interactions of the three genes downregulated in both DM1 and DM2 

Networks were generated using GeneMANIA Cytoscape plugin. The gene corresponding to the identified 

protein is colored green. Grey nodes were inferred from by GeneMANIA. A) Network of interactions of 

ribosomal protein RPL13A. B) Network of interactions of P4HB. C) Network of interactions of MYH7B. 
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The third and final protein downregulated in both DM1 and DM2 was Myosin heavy 

chain 7B (MYH7B) (Figure 21C). MYH7B has 9 transcripts that are generated by 

alternative splicing (Cunningham et al. 2015). The largest protein coding isoform has 43 

exons and 42 introns. The smallest protein coding isoform has 4 exons and 3 introns. 

There is a transcript with retained intron that does not code for a protein (Cunningham 

et al. 2015). MYh7B has been associated with left ventricular noncompaction disease 

(Cunningham et al. 2015). The large numbers of introns in MYH7B pre-mRNA makes it 

very susceptible to defects in splicing machinery. GeneMANIA analysis of a network 

generated from MYH7B revealed interactions with other myosins as well as other 

cytoskeletal components (Fig. 21C). 

Protein upregulated in both DM1 and DM2 

 Protein products of three genes were found to upregulated in both DM1 and DM2 

(Fig. 22A-C). The first gene is ATPase, Ca++ transporting, cardiac muscle, fast twitch 1 

(ATP2A1). ATP2A1 is an ATP dependent calcium ion transporter responsible for 

reuptake of Ca++ ions into the sarcoplasmic reticulum in striated muscles. A mutation in 

ATP2A1 has been found to be associated with Brody disease (Odermatt et al. 2000). 

Brody disease is a rare inherited myopathy characterized by delayed skeletal muscle 

relaxation and silent cramps (Voermans et al. 2012). This is similar to myotonia 

observed in DM, in which patients have difficulty relaxing their muscles. Brody disease 

is associated with a loss of Calcium uptake function of ATP2A1. The significance of an 

upregulation of ATP2A1 in both DM1 and DM2 is not immediately clear. GeneMANIA 

analysis of the network generated from ATP2A1 revealed its associations with a number 

of cytoskeleton components (Fig. 22A). 
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Figure 22 – Network of interactions of the three genes upregulated in both DM1 and DM2 

Networks were generated using GeneMANIA Cytoscape plugin. The gene corresponding to the identified 

protein is colored red. Grey nodes were inferred from by GeneMANIA. A) Network of interactions of 

ribosomal protein ATP2A1. B) Network of interactions of RAP1A. C) Network of interactions of RAP1B. 

The other two proteins upregulated are Ras-related protein Rap-1A (RAP1A) and 

Ras-related protein Rap-1b (RAP1B) (Fig. 22B-C). They are paralogous proteins with 

similar sequences. They have been reported because it was not possible to distinguish 
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between the two based upon the identified proteins. They are members of RAS 

oncogene family. RAP1A has 4 transcripts generated from alternative splicing, while 

RAP1B has 33 transcripts. Neither protein has been found to be associated with an 

inherited human disease (Peterson et al. 2010). GeneMANIA network generation and 

analysis using RAP1A and RAP1B individually revealed associations with signaling 

pathways as well as translation initiation factor. RAP1B was found to associate with 

translation initiation factor eIF5 as well ubiquitin. 

Proteins downregulated in DM1 

 GeneMANIA network generation and pathway analysis revealed muscle function 

related pathways to be overrepresented in the list of proteins downregulated only in 

DM1 (Fig. 23A-B). There are 56 downregulated gene products in the GeneMANIA 

network (Fig. 23A). The downregulated proteins included critical components of 

muscles including Titin (TTN), myosin light chains, and myosin heavy chain. It also 

included energy producing metabolic enzymes such as Phosphoglycerate kinase 1 

(PGK1) and Fructose-bisphosphate aldolase A (ALDOA). Both of the proteins have 

been associated with neuromuscular diseases (The UniProt Consortium 2015). Top 5 

misregulated pathways in the list of proteins downregulated in DM1 are muscle filament 

sliding, actin-myosin filament sliding, actin-mediated cell contraction, actin filament-

based movement, and muscle contraction (Fig. 23B).  
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Figure 23 – Pathway analysis of proteins downregulated in DM1 

Networks were generated using GeneMANIA Cytoscape plugin. The nodes corresponding to the 

identified proteins are colored green. Grey nodes were inferred from by GeneMANIA. A) The network 

interactions generated using GeneMANIA. B) Top 5 enriched pathways in the list. 
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Another protein downregulated in DM1 is Superoxide dismutase (SOD1). A 

number of mutations in SOD1 has been found to be associated with inherited familial 

amyotrophic lateral sclerosis (ALS) (Nakano et al. 1994; Rosen et al. 1993; Kostrzewa, 

Burck-Lehmann, and Müller 1994; P. M. Andersen et al. 2003). ALS shares many 

similarities with DM (Robberecht and Philips 2013). Misregulation of SOD1 is an 

interesting candidate event that could explain the similarities between ALS and DM. 

 Heat shock 70kDa protein 8 (HSPA8) is also downregulated in DM1. HSPA8 is a 

multifunctional protein involved in activation of transcription, protein quality control and 

bacterial lipopolysaccharide response in immune cells (Matsumura, Sakai, and Skach 

2013; Triantafilou, Triantafilou, and Dedrick 2001; Yahata et al. 2000). Although HSPA8 

has not been implicated in inherited human diseases, as part of PRP19-CDC5L 

complex it binds to all the core components of spliceosomes (Makarova et al. 2004). A 

downregulation of HSPA8 might contribute to the splicing anomalies observed in DM1. 

Proteins upregulated in DM1 

 The analysis of proteins upregulated in DM1 revealed protein products of 39 

genes (Fig. 24). The network generated in GeneMANIA contains the 39 query genes 

and 20 associated genes (Fig. 24A). Top five enriched pathways in the list are positive 

regulation of mitochondrial membrane permeability involved in apoptotic process, 

mitochondrial outer membrane permeabilization, protein insertion into mitochondrial 

membrane involved in apoptotic signaling pathway, regulation of mitochondrial outer 

membrane permeabilization involved in apoptotic signaling pathway, and regulation of 

protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 

(Fig. 24B). 
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 One protein upregulated in DM1 is Elongation factor 1-alpha 2 (EEF1A2). 

EEF1A2 is a translation elongation factor belonging to TRAFAC class translation factor 

GTPase superfamily and EF-Tu/EF-1A subfamily. It contains one tr-type G (guanine 

nucleotide-binding) domain (The UniProt Consortium 2015). EEF1A2 has two 

transcripts generated from alternative splicing. Both of the transcripts code for a 463 

amino acid protein. One of the mRNAs is made 8 exons, 7 of which constitute the 

coding region while the other consists of 7 exons all of which are coding (Cunningham 

et al. 2015). EEF1A2 has been found to be associated with Epileptic encephalopathy, 

early infantile, 33 (Veeramah et al. 2013; de Ligt et al. 2012). EEF1A2 has also recently 

been found to be associated with Mental retardation, autosomal dominant 38 (Nakajima 

et al. 2015). Given the neurological symptoms of DM1, the aberrant function EEF1A2 in 

DM1 seems to be one of the contributing factors in DM1 (de León and Cisneros 2008). 
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Figure 24 – Pathway analysis of proteins upregulated in DM1 
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Networks were generated using GeneMANIA Cytoscape plugin. The nodes corresponding to the 

identified proteins are colored red. Grey nodes were inferred from by GeneMANIA. A) The network 

interactions generated using GeneMANIA. B) Top 5 enriched pathways in the list. 

Another translational control protein upregulated in DM1 is ribosomal protein 

S27a (RPS27A). RPS27A contains ubiquitin on its N-Terminus. It has 10 transcripts, 4 

of which are protein coding (Cunningham et al. 2015). The largest protein coding 

transcript consists of 6 exons, 5 which of which are coding exons. The smallest protein 

coding transcript consists of 5 exons with 4 coding exons. Six non-coding transcripts 

generated from RPS27A gene contain retained introns (Cunningham et al. 2015). 

RPS27A has not been found to associated with an inherited human disease (Peterson 

et al. 2010). RPS27A is one of the major contributors to the ubiquitin pool in the cells 

(Bianchi et al. 2015). It is also involved in regulation of p53 level through degradation of 

its regulator MDM2. Overexpression of RPS27A was shown to stabilize and increase 

the amount of p53 (Xiong et al. 2011). It has been shown that DM1 muscles undergo an 

increased rate of apoptosis (Loro et al. 2010). An increase in the amount of of RPS27A, 

which might lead to an increase in p53 and apoptosis, provides a putative mechanism 

for explaining this observation. 

Discussion 

A common theme in the proteins whose expression is altered in both DM1 and 

DM2 is the presence of alternative splicing in their mRNA maturation. This is in 

agreement with the previous studies that showed a central role for aberrant splicing in 

DM pathogenesis. In addition to supporting the previous studies, we have identified a 

number of candidate proteins pathways that are attractive targets for follow up studies.  
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Formation of cataracts is a common symptom in both DM1 and DM2. This was 

initially thought to be caused by a decrease in expression of SIX5 gene in DM1 (Klesert 

et al. 1997; Klesert et al. 2000; Sarkar et al. 2000). The decrease in SIX5 expression is 

attributed to the changes in the heterochromatin around the DMPK locus. Since ZNF9 

locus is not on the same chromosome, this suggested that the decrease in SIX5 protein 

may not be the common mechanism behind cataract formation. It was also noted that 

the type of cataracts observed in mouse deficient in Six5 and DM patients were different 

(Rhodes et al. 2012). To identify candidate causal agents, a microarray study was done 

on lens from DM patients (Rhodes et al. 2012). The study revealed differential 

expression of interferon responsive genes. These genes might be activated in response 

to double stranded RNA (dsRNA) in the cells (Rhodes et al. 2012). An important feature 

of immune response is the temporal regulation of gene expression so that the 

probability of a runaway immune response leading death of the host is reduced (R. 

Mukhopadhyay et al. 2009). 

A critical player in regulating the inflammatory response is the GAIT complex (R. 

Mukhopadhyay et al. 2009). GAIT complex is heterotetrameric complex consisting of 

IFN-γ-activated inhibitor of translation (GAIT) complex comprising glutamyl-prolyl tRNA 

synthetase (EPRS), NS1-associated protein 1 (NSAP1), RPL13A, and glyceraldehyde-

3-phosphate dehydrogenase (GAPDH). GAIT complex is maintained in an inactive state 

in which RPL13A is not present. RPL13A phosphorylation on the ribosome triggers its 

release from the ribosome. Its subsequent binding to the inactive GAIT complex 

activates it. The activated GAIT complex binds to the 3’UTR of target mRNAs and 

inhibits translation initiation (R. Mukhopadhyay et al. 2009). A decrease in RPL13A 
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protein levels can cause failure of activation of GAIT complex. This might lead to a 

decrease in the resolution of inflammation and can explain the observation of differential 

expression of immune responsive genes in DM eyes (Rhodes et al. 2012). 

A number of other candidate genes have been identified in this study that can 

contribute to the different symptoms observed, especially in DM1. Surprisingly, no DM2 

specific changes in the protein levels were observed. This could be because of the 

milder phenotype of DM2. Since we solely relied on the statistical significance obtained 

from our linear regression analysis, a technical reason could be the high variance in the 

proteomic expression patterns of DM2 patients. Nevertheless, this study provides an 

important resource and catalog of proteins differentially expressed in DM1 and DM2. 

Studies in mouse models of DM2 had suggested a key requirement for ZNF9 

protein, whose loss was able to recapitulate some of the symptoms of DM2 (W. Chen et 

al. 2007). This suggested that loss of function of a protein was at least contributing to 

DM pathogenesis in DM2. It became imperative to find the molecular function of ZNF9 

protein. Previous studies in the Link lab had suggested a role for translational control in 

DM2 pathogenesis due to the molecular function of ZNF9 protein. ZNF9 was found to 

be involved in IRES mediated translation in yeast as well as cell culture models of DM1 

(Gerbasi and Link 2007; Sammons et al. 2010). Another common theme in this study 

was the misregulation of many translational control proteins. It provides further evidence 

for the critical role of translational control in health and disease. 
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Chapter V 

Conclusions and Future Directions 

In my graduate research, I studied three problems of the regulation of biochemical state 

and the information repertoire of cells and tissues. The first problem involved studying 

the regulation of biochemical states by the information from outside the cellular 

boundary. I built a conceptual basis for interpreting complex cellular responses to 

multiple concurrent environmental stimuli. The second problem involved testing the 

ribosome filter hypothesis. A ribosome filter is a ribosome mediated regulatory element 

that controls the amount of information flow from specific mRNA transcripts to proteins. 

The third and final problem was to investigate the proteomic changes in the skeletal 

muscles of myotonic dystrophy patients. These proteomic changes might have been 

caused by the disruption of information flow due to microsatellite repeat expansions in 

the genomes of the patients. 

Cellular responses to environmental stimuli 

The complement of molecules contained in a cell, including the cell surface, 

constitutes its biochemical state. The biochemical state is a reservoir of information. The 

genetic material of an organism, its DNA or RNA, contains the template information 

which is used to synthesize all of the necessary molecules, or in some cases the 

molecules that can make or modify those molecules. The flow of information from the 

genetic material to the functional molecules, for example RNAs or Proteins, is known as 

the central dogma (Crick 1970). An organism uses the information flow to respond to 

and modify its environment. This flow of information, however, is not linear. The DNA 

bases can be covalently modified that affects the information flow through transcription 
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(Suzuki and Bird 2008; Robertson 2005; T. Phillips 2008). Similarly, RNAs have been 

found to be extensively edited or modified, which also modifies their information content 

(Nishikura 2010). In most of these processes, the class of molecules responsible for the 

function, the molecular actuators, are the proteins. Although the backbone of the protein 

can be synthesized solely based upon the information content in the genetic material, 

with the notable exception of those synthesized from edited mRNA templates, they 

themselves can be covalently modified after synthesis. The covalent modifications can 

have many functions that include altering the biochemical activity of the proteins, 

modulating sub-cellular localization or binding to cofactors, and targeting or protecting 

for degradation (Wells, Whelan, and Hart 2003; P. Anderson and Kedersha 2009; Wold 

1981; Lodish 1981; Nussinov et al. 2012; Vucic, Dixit, and Wertz 2011; Beltrao et al. 

2013; Terman and Kashina 2013).  This adds another layer of information content. 

There are two fold consequences of this added layer: (1) it allows the living beings to 

store more information (increase in information repertoire) that it can use to respond to 

a wider range of environments, and (2) the prior biochemical state, including its 

complement of proteins and their covalent modifications, determines the exact cellular 

response. 

 The information repertoire of the cells, therefore, is dependent upon two factors; 

(1) the information in the genetic material, and (2) the information in the environmental 

stimuli, including the prior stimuli they had been exposed to. Extrapolating this logic, 

since genes and stimuli are just packets of information that cells use for their continued 

survival, as an abstraction they can be thought to be the same. There is a very 



 

130 
 

important consequence of this assumption, viz. the tools used for studying genes can 

be applied for stimuli. 

 The information flow from genes has been a well-studied problem. Consequently, 

there is a large body of work and a well-defined conceptual basis associated with it. The 

conceptual basis for studying information flow and integration of information from 

multiple genes is called gene interactions. It provided, in many cases, an easy 

interpretation of observed changes in the characteristics or traits upon alterations in 

genes. It has also been used to decipher the order in biochemical and signaling 

pathways making it a very valuable tool for research (St Johnston 2002). With the 

abstraction that stimuli are analogous to genes, most of these concepts and tools can 

become available for studying the effects of multiple concurrent stimuli.  

 I used one of the abstractions, the dominance in gene interactions, as a tool to 

identify proteins and transcripts that are important for responding to specific stimulus in 

S. cerevisiae. The assumption here was that if a protein or transcript contains the 

information important for responding to a stimulus, the effect of the stimulus would be 

dominant over the effects of an unrelated stimulus. There is a caveat associated with 

this approach that makes using absolute dominance fraught with false negative results. 

If a biomolecule contains information for responding to multiple stimuli among the set 

under investigation, dominance will not observed. This would lead to a false negative 

result. To address this caveat and further refine the idea follow up studies are needed. 
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Follow up studies about environmental interactions and epistasis 

 The follow up studies on environmental interactions and epistasis can be 

classified into two categories – (1) showing the general applicability of the ideas, and (2) 

understanding the mechanistic basis behind the interactions. 

 The validity of the concepts of environmental interactions and epistasis has been 

shown only in S. cerevisiae with the transcriptomic and proteomic changes (Samir et al. 

2015). Paucity of published datasets in other organisms makes it difficult to test the 

general validity of the concept. There is a published dataset in which liquid cultures of A. 

thaliana cells were used to study the effects of carbon dioxide concentrations and high 

salinity on the transcriptome as well as the metabolome (Kanani, Dutta, and Klapa 

2010; Dutta et al. 2009). This dataset is ready resource to test the validity of the 

conceptual basis in plants. The post-translational modifications data in the study of high 

osmolarity or pheromone signaling provides a resource for testing the hypothesis with a 

different cellular response, albeit still in S. cerevisiae (Vaga et al. 2014). 

 HeLa cells could be used to test the hypothesis in mammalian systems. The 

stimuli used could be increasing concentrations of two inhibitors that target different 

signaling pathways. Rapamycin can be used to inhibit the mTOR pathway while one of 

the “inhibitors of Wnt response” compounds (Law 2005; Baozhi Chen et al. 2009). 

Transcriptomic responses can be measured by RNA-Seq and the proteomic responses 

can be measured by iTRAQ labeling liquid chromatography tandem mass spectrometry 

(Ross et al. 2004; Cloonan et al. 2008; Lister et al. 2008; Nagalakshmi et al. 2008; B. T. 

Wilhelm et al. 2008; Mortazavi et al. 2008). Phosphoproteomics analysis can be used to 

assay the changes in phosphorylation states of the target proteins (Winter et al. 2012). 
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Mouse models of T-cell and B-cell activation can be used to test the validity in 

mammalian systems in vivo. An ovalbumin specific transgenic mouse, OT-1 can be 

used as the model system. This strain of mice contains T-cell receptor that is specific to 

a peptide antigen generated from ovalbumin (Hogquist et al. 1994; Clarke et al. 2000). 

The stimuli used can be different concentrations of the antigenic peptide and the 

adjuvants. The transcriptomic and proteomic responses can be assayed in peripheral 

blood mononuclear cells (PBMC) and polymorphonuclear cells (PMN). Metabolomic 

changes can be assayed in blood plasma. An important feature of this study design is 

the use of different concentrations of the stimuli. A multiple linear regression model built 

with the different concentrations can help identify the molecules that are important for 

responding to multiple stimuli if their response is dose dependent. 

 The second aspect, to identify a mechanistic basis for the observed phenomenon 

can be done in S. cerevisiae using the same stimuli as before with quantitative 

proteomics analysis. In this study, a time course experiment would be needed. The 

order of application of the second stimuli would need to be changed. This experiment 

design would allow assay of kinetics of modulation of the proteome. The biomolecular 

complexes, or their components, that are differentially regulated in the kinetics 

experiments can be the candidates, with an assumption that they are involved in the 

modulation information flow, for pursuing more in depth biochemical and genetic 

analyses. 

Regulation of proteome by the ribosome filter 

 In this study, I used two complementary techniques, quantitative mass 

spectrometry and cryo-EM (in collaboration with the Joachim Frank lab), to test the 
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ribosome filter hypothesis by measuring changes in the protein composition of the 

ribosomes. The ribosome filter provides a mechanism for the ribosomes to regulate 

information flow through translational control. It can act through the use of specific 

paralogs for translating specific mRNAs more efficiently.  

I identified 11 ribosomal proteins whose abundances in the purified ribosomes 

were changing. The list included a paralog pair, Rpl8a and Rpl8b. Polysome profiling 

with the null mutants of either Rpl8a or Rpl8b suggested that their functions are not 

redundant. I identified 80S ribosomes with substoichiometric protein compositions using 

cryo-EM. A time course experiment after shifting cells from a glucose containing media 

to a glycerol containing media followed by ribosome purifications cryo-EM analysis 

showed that the proportions of the substoichiometric ribosomes were changing. This 

suggested the cells dynamically regulate their ribosome composition. 

In conclusion, I have used two techniques to assay the changing composition of 

ribosomes. These changes support the ribosome filter hypothesis. Follow up 

experiments are needed to identify the transcripts affected by Rpl8a/b mediated 

ribosome filter as well the underlying mechanism. 

Follow up studies on ribosome mediated translational control 

 I have identified a candidate paralog pair, Rpl8a and Rpl8b, which might have 

specific functions in translation. They might be required for translation of specific 

transcripts. However, the identity of the transcripts is not known. Ribosome footprint 

profiling after RNAse treatment can be used to identify such transcripts. Once the 

transcripts have been identified, two complementary approaches can be used to 
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decipher the mechanism through which RPL8A or RPL8B helps translate specific 

transcripts. In the first approach, a bioinformatics search can be performed to find 

sequence motifs overrepresented in transcripts that need a specific paralog. Reporter 

assays can be done to check the effects of the sequence motifs on translation. In the 

second approach, in vitro translation reactions using the ribosomes from the null 

mutants can be used to directly assay the rate of translations of the identified 

transcripts. The transcripts will need to be in vitro transcribed to ensure quality control 

across experiments.  

 After testing the ribosome filter hypothesis in yeast, it could be tested in 

mammalian cell culture system using a similar approach. In this case, HeLa cells can be 

used as the model system because they are one of the most well characterized 

mammalian cell culture systems. 

 Another question that arises from this study deals with the exact mechanism(s) of 

change in the composition. There can be three models that explain the changes in the 

composition. In the first model, there are free floating ribosomal protein paralogs in the 

cytoplasm or nucleus. Upon specific signaling cues, the paralog on the ribosome is 

exchanged for the free floating one. The advantage of this model for the cell is that the 

kinetics of changing composition will be the fastest. However, the cells would need to 

synthesize proteins that they do not need at any given time. This will mean expenditure 

of energy to keep the system primed. Since translation is the most energetically costly 

process in the cells, and translation of ribosomal proteins constitutes a very large chunk 

of the total expenditure, the energetic cost for the cell will be very high. In the second 

model, new ribosomes are synthesized with specific paralogs in response to signaling 
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cues. In this model, there is less expenditure of energy as cells synthesize only the 

ribosomal proteins and rRNAs that they need at any given time. However, a 

disadvantage of this model for the cell is that the response time might be very high. This 

is because the biogenesis of ribosomes requires multiple steps. In the third model, the 

cells degrade the ribosomes that contain the paralogs that they do not need. The short 

term energy cost of this model is the least because it does not require synthesis of new 

ribosomes. However, the long-term energy cost of this model might be the highest 

because it does not involve synthesis of ribosomes only with the paralog that is needed. 

This means the cells will have to continuously spend energy on making ribosomes that 

it does not need and then degrade it. To decipher the exact mechanism, labeling with 

stable isotopes followed by mass spectrometry quantitation can be used.  

Regulation of proteome by RNA repeat expression in myotonic dystrophy 

RNA repeat expansion disrupts the information flow by sequestering important 

RNA binding factors that regulate the transfer and modification of information from 

genome to proteins. I have identified several candidate proteins that might have roles in 

DM pathogenesis. This included RPL13A, P4HB, and MYH7B. This study is a starting 

point for further studies with these candidate proteins to dissect the mechanism of 

disruption in information repertoire that leads to DM. 

Follow up studies about the proteomic changes in myotonic dystrophy 

 A number of interesting candidate proteins were identified that might play roles in 

DM pathogenesis. Since I am interested in translational control, especially the 

regulation by ribosomes, I think RPL13A is a very interesting candidate. A previous 

transcriptomic study had identified misregulation of inflammatory response genes in eye 
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lenses of DM patients. Since RPL13A protein has been shown to regulate inflammation 

in a temporal manner, it might be playing a role. Inflammation inside the eye has been 

found to be associated with cataract formation (Hodge, Whitcher, and Satariano 1994; 

Durrani et al. 2004). Since RPL13A inhibits translation of proinflammatory proteins as 

part of GAIT complex, its loss of function can cause persistent inflammation. This could 

explain the observation of cataracts in DM patients. The function of RPL13A can be 

studied in mouse models. 

 Since ZNF9 has been found to be involved in IRES mediated translation, it would 

be informative to find its in vivo targets. RNA-pulldown experiments followed by RNA-

Seq can be used to identify its targets. An attractive alternative is the PAR-CLIP for 

identification of RNA binding sites for candidate RNA binding proteins on the transcripts. 

An unrelated RNA binding protein, such as PABP can be used as a control in this 

experiment. Once the targets have been identified, their regulation in DM2 patients can 

be studied. Yeast, cell culture and mouse models can be used to study the effect of 

their loss of function. X-Ray crystallography can be used to determine the structural 

basis for Znf9 binding to mRNAs. 
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Appendix A – Table 1: Proteins Quantitated in Environmental 

Interactions Study 

https://drive.google.com/open?id=0BxmfH2AgA_HkQ2NnTTZ5eGZQa3M 

 

Appendix B – Table 2: GeneMANIA pathway analysis output 

for HT stimulus 

https://drive.google.com/open?id=0BxmfH2AgA_HkRTZNZGROeTE1Z1k 

 

Appendix C – Table 3: GeneMANIA pathway analysis output 

for G stimulus 

https://drive.google.com/open?id=0BxmfH2AgA_HkQ3h3WFFVcF9vZ2c 

 

Appendix D – Table 4: GeneMANIA pathway analysis output 

for HT+G stimulus 

https://drive.google.com/open?id=0BxmfH2AgA_HkbzFZMmRSRGJEYmc 

 

Appendix E – Table 5: GeneMANIA pathway analysis output 

for HT stimulus dominance 

https://drive.google.com/open?id=0BxmfH2AgA_Hkd2VEd0tkdHUtT28 

https://drive.google.com/open?id=0BxmfH2AgA_HkQ2NnTTZ5eGZQa3M
https://drive.google.com/open?id=0BxmfH2AgA_HkRTZNZGROeTE1Z1k
https://drive.google.com/open?id=0BxmfH2AgA_HkQ3h3WFFVcF9vZ2c
https://drive.google.com/open?id=0BxmfH2AgA_HkbzFZMmRSRGJEYmc
https://drive.google.com/open?id=0BxmfH2AgA_Hkd2VEd0tkdHUtT28
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Appendix F – Table 6: GeneMANIA pathway analysis output 

for G stimulus dominance 

https://drive.google.com/open?id=0BxmfH2AgA_HkQnE3M1ZwalpwT0E 

 

Appendix G – Table 7: GeneMANIA pathway analysis output 

for non-specific environmental response in protein 

expression 

https://drive.google.com/open?id=0BxmfH2AgA_HkcGc4bXhSOVF3V2c 

 

Appendix H - Table 8: GeneMANIA pathway analysis output 

for discordance in protein expression 

https://drive.google.com/open?id=0BxmfH2AgA_HkVFdiMW4xbGdaQzA 

 

Appendix I – Table 9: GeneMANIA pathway analysis output 

for suppression in protein expression 

https://drive.google.com/open?id=0BxmfH2AgA_HkeHJ4bWJvTzBlSEE 

 

https://drive.google.com/open?id=0BxmfH2AgA_HkQnE3M1ZwalpwT0E
https://drive.google.com/open?id=0BxmfH2AgA_HkcGc4bXhSOVF3V2c
https://drive.google.com/open?id=0BxmfH2AgA_HkVFdiMW4xbGdaQzA
https://drive.google.com/open?id=0BxmfH2AgA_HkeHJ4bWJvTzBlSEE
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Appendix J – Table 10: GeneMANIA pathway analysis output 

for environmental epistasis in protein expression 

https://drive.google.com/open?id=0BxmfH2AgA_HkRTI2aWdZNUsyWDA 

 

Appendix K – Table 11: GeneMANIA pathway analysis output 

for no environmental epistasis in protein expression 

https://drive.google.com/open?id=0BxmfH2AgA_HkOEhOUTZiUGpRaW8 

 

Appendix L – Table 12: Complete data matrix of transcripts 

https://drive.google.com/open?id=0BxmfH2AgA_HkMTF5dzdwM1NLUm8 

 

Appendix M – Table 13: GeneMANIA pathway analysis output 

for environmental epistasis in transcript expression 

https://drive.google.com/open?id=0BxmfH2AgA_HkaGJiUXNLT0VjN2c 

 

Appendix N – Table 14: GeneMANIA pathway analysis output 

for dominance of NS 

https://drive.google.com/open?id=0BxmfH2AgA_Hkbzg0Q1lMYy1QVms 

 

https://drive.google.com/open?id=0BxmfH2AgA_HkRTI2aWdZNUsyWDA
https://drive.google.com/open?id=0BxmfH2AgA_HkOEhOUTZiUGpRaW8
https://drive.google.com/open?id=0BxmfH2AgA_HkMTF5dzdwM1NLUm8
https://drive.google.com/open?id=0BxmfH2AgA_HkaGJiUXNLT0VjN2c
https://drive.google.com/open?id=0BxmfH2AgA_Hkbzg0Q1lMYy1QVms
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Appendix O – Table 15: GeneMANIA pathway analysis output 

for dominance of AN 

https://drive.google.com/open?id=0BxmfH2AgA_HkUWdSbm5KclF5YWM 

 

Appendix P – Table 16: Doubling times under the 8 growth 

conditions 

https://drive.google.com/open?id=0BxmfH2AgA_HkbkdCVGp2WWJQMlk 

 

Appendix Q – R source codes for the analysis in 

environmental interactions analysis 

https://drive.google.com/open?id=0BxmfH2AgA_Hkdmp1ZG1STllYZkU 

 

https://drive.google.com/open?id=0BxmfH2AgA_HkZlp0OGNJTU16N0k 

 

https://drive.google.com/open?id=0BxmfH2AgA_HkMUMySWxOWmdNSXc 

 

https://drive.google.com/open?id=0BxmfH2AgA_HkMHozNjZ4NDA5OUU 

 

Appendix R – Python source code for GoZilla 

https://drive.google.com/open?id=0BxmfH2AgA_HkMlpiNTBQSUVZMkU 

https://drive.google.com/open?id=0BxmfH2AgA_HkUWdSbm5KclF5YWM
https://drive.google.com/open?id=0BxmfH2AgA_HkbkdCVGp2WWJQMlk
https://drive.google.com/open?id=0BxmfH2AgA_Hkdmp1ZG1STllYZkU
https://drive.google.com/open?id=0BxmfH2AgA_HkZlp0OGNJTU16N0k
https://drive.google.com/open?id=0BxmfH2AgA_HkMUMySWxOWmdNSXc
https://drive.google.com/open?id=0BxmfH2AgA_HkMHozNjZ4NDA5OUU
https://drive.google.com/open?id=0BxmfH2AgA_HkMlpiNTBQSUVZMkU
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https://drive.google.com/open?id=0BxmfH2AgA_HkOTRGSVdsOWM0LVU 

 

https://drive.google.com/open?id=0BxmfH2AgA_HkZ1h4bkxMellCUTg 

 

https://drive.google.com/open?id=0BxmfH2AgA_HkemJCX2puNmYtSW8 

 

Appendix S – Python source code for CompZilla 

https://drive.google.com/open?id=0BxmfH2AgA_HkVnF2WkVKdy1PWUU 

 

https://drive.google.com/open?id=0BxmfH2AgA_HkanRTLWdDeEUyXzA 

 

https://drive.google.com/open?id=0BxmfH2AgA_HkZUZ6SDM2LWxwWmM 

 

Appendix T – Table 17: Purified ribosomes quantitative 

proteomics dataset. 

https://drive.google.com/open?id=0BxmfH2AgA_HkOHZacmI0WFcwcFU 

 

Appendix U – Table 18: Myotonic dystrophy quantitative 

proteomics datasets. 

https://drive.google.com/open?id=0BxmfH2AgA_HkRUwwci05U0FFaGs 

https://drive.google.com/open?id=0BxmfH2AgA_HkOTRGSVdsOWM0LVU
https://drive.google.com/open?id=0BxmfH2AgA_HkZ1h4bkxMellCUTg
https://drive.google.com/open?id=0BxmfH2AgA_HkemJCX2puNmYtSW8
https://drive.google.com/open?id=0BxmfH2AgA_HkVnF2WkVKdy1PWUU
https://drive.google.com/open?id=0BxmfH2AgA_HkanRTLWdDeEUyXzA
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Appendix V – Manuscript – 1: Environmental Interactions and 
Epistasis Are Revealed in the Proteomic Responses to 
Complex Stimuli 
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Appendix W – Manuscript – 2: ℓ2 multiple kernel fuzzy SVM-

based data fusion for improving peptide identification 
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Appendix X – Manuscript – 3: A Cell-Based Systems Biology 

Assessment of Human Blood to Monitor Immune Responses 

after Influenza Vaccination 
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Appendix Y – Manuscript – 4: Sculpting MHC class II-

restricted self and non-self peptidome by the class I Ag-

processing machinery and its impact on Th-cell responses 
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Appendix Z – Manuscript – 5: A Novel Algorithm for 

Validating Peptide Identification from a Shotgun Proteomics 

Search Engine 
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Appendix AA – Manuscript – 6: The Yeast Eukaryotic 

Translation Initiation Factor 2B Translation Initiation 

Complex Interacts with the Fatty Acid Synthesis Enzyme 

YBR159W and Endoplasmic Reticulum Membranes 
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Appendix AB – Manuscript – 7: Saccharomyces cerevisiae 

Gis2 interacts with the translation machinery and is 

orthogonal to myotonic dystrophy type 2 protein ZNF9 
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Appendix AC – Manuscript – 8: Analyzing the Cryptome: 

Uncovering Secret Sequences 
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