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CHAPTER I 

 

INTRODUCTION 

 

Helicobacter pylori 

 

Helicobacter pylori is a Gram-negative, urease-, catalase-, and oxidase-positive curved 

bacillus that possess 4-5 sheathed polar flagella that are used for motility (Figure 1).  H. 

pylori is one of the most genetically diverse bacteria known, with virtually every isolate 

being unique.  H. pylori is specifically adapted for survival in its niche, the human 

stomach.  Many strains of H. pylori express factors that have evolved to affect host cell 

signaling pathways, resulting in enhanced risk for pathogenicity.  Approximately 50% of 

the world’s population is colonized with H. pylori; however, only a subset of infected 

persons develop disease (226).  Of infected individuals, 10% develop peptic ulcer 

disease, 1% develop gastric adenocarcinoma, and less than 0.1% develop mucosa 

associated lymphoid tissue (MALT) lymphoma.  H. pylori infection is most commonly 

acquired at a young age and is thought to be passed from parent to child (72).  Although 

infection can be found in all regions of the world, the prevalence of H. pylori 

colonization is higher in developing regions than in developed countries (69, 72).  Risk 

factors for colonization with H. pylori include low socioeconomic status, household 

crowding, country of origin, and ethnicity (72, 291). 
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Figure 1. Helicobacter pylori.  H. pylori is a gram-negative bacillus that has a 
characteristic curved rod shape.  H. pylori possess 4-5 polar flagella that facilitate motility 
in the mucous gel layer above the gastric epithelium.  Electron micrograph provided by 
and reprinted with the permission of Aime T. Franco. 
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Identification of H. pylori as an etiological agent for disease 

 

H. pylori was identified in 1982 when Robin Warren and Barry Marshall made the 

seminal observation that curved bacillary bacteria were consistently found associated 

with foci of chronic inflammation in the stomach (312).  While physicians had reported 

the presence of spiral bacteria associated with gastric tissue as early as 1938 and 1940 

(60, 90), the prevailing dogma was that the stomach was a sterile organ, and any observed 

bacteria were likely contaminants from the mouth.  A study by Palmer, reported in 1954, 

effectively ended the debate by demonstrating that in 1,140 gastric biopsy specimens, no 

spiral bacteria were found (222).  However, the staining technique used in the Palmer 

study was not effective for visualizing H. pylori.  When Warren and Marshall published 

their initial observations, many in the medical community were resistant to the notion that 

a bacterium could stably colonize the gastric mucosa and potentiate inflammation, 

resulting in gastric disease.  However, Marshall was unwilling to cede to pressure from 

the medical community and performed the definitive experiment to fulfill Koch’s 

postulates: drinking a culture of H. pylori, recording symptoms and documenting 

pathology via serial endoscopies, and then eliminating the infection with antibiotics 

(177).  Eventually physicians realized the validity of Warren and Marshall’s findings, and 

today, gastritis and peptic ulcers are treated with antibiotics.  H. pylori infection has also 

now become an important model to study chronic inflammation and cancer.  The impact 

on public health has been so significant that Warren and Marshall were awarded the 2005 

Nobel Prize in Medicine or Physiology. 
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The role of H. pylori colonization in the genesis of gastric adenocarcinoma 

 

Gastric adenocarcinoma is the second leading cause of cancer-related death in the world 

(226).  Approximately 649,000 persons die from this malignancy each year and 5-year 

survival rates in the United States are <15% (38).  Before H. pylori was known to be 

causally linked with gastric cancer, the pathologic progression of this disease had been 

well characterized.  Two histologically distinct variants of gastric adenocarcinoma are 

predominant: diffuse-type and intestinal-type adenocarcinoma.  Diffuse-type gastric 

cancer consists of individually infiltrating neoplastic cells that do not form glandular 

structures, while intestinal-type adenocarcinoma progresses through a series of histologic 

steps known as the Correa pathway, initiated by the transition from normal mucosa to 

chronic superficial gastritis, which then leads to atrophic gastritis and intestinal 

metaplasia, and finally to dysplasia and adenocarcinoma (Figure 2) (37, 226, 273).  

Intestinal-type gastric cancer is more common among men (male:female ratio 2.1:1) and 

older patients (mean age 50.4 years for men and 47.7 for women) (39, 118).  The reasons 

for this gender disparity are not clear.  However, the duration of disease progression is 

likely due to the time required to accumulate mutations necessary for transformation. 

 

H. pylori selectively colonizes gastric epithelium and induces persistent gastritis.  

Microbial persistence implies linkage in which signals of the colonizing organism affect 

signals of the host, and indeed, H. pylori has the ability to send and receive signals from 

gastric epithelium, allowing the host and bacteria to participate in a dynamic equilibrium.   



 

5 

 

 

Figure 2.  Progression to intestinal-type gastric adenocarcinoma.  H. pylori 
colonization usually occurs during childhood and, over a period of days to weeks, leads 
to superficial gastritis.  The presence of the cag pathogenicity island within infecting H. 
pylori isolates and host polymorphisms that promote high expression levels of the 
cytokine IL-1β augment the risk of development of atrophic gastritis, intestinal 
metaplasia, dysplasia and, eventually, gastric adenocarcinoma over the course of many 
years.  The development of cancer has been attributed to the accumulation of mutations 
in DNA caused by chronic inflammation, recruitment and engraftment of bone marrow-
derived cells, and an imbalance between epithelial cell proliferation and apoptosis. ROS, 
reactive oxygen species; NO, nitric oxide.  Adapted from Peek and Blaser & Fox and 
Wang (86, 226). 
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However, there are biological costs to the long-term relationship between H. pylori and 

humans as chronic colonization confers a significantly increased risk of developing 

peptic ulcer disease, atrophic gastritis, intestinal metaplasia, and distal gastric 

adenocarcinoma (16, 37, 83, 109, 114, 132, 145, 149, 154, 190, 206, 224, 226, 234, 269, 

272, 299, 314).  For reasons that are not clearly understood, duodenal ulcer patients are 

not at increased risk for gastric cancer (115).  

 

Based upon these data, the World Health Organization has classified H. pylori as a class I 

carcinogen for gastric cancer, and since virtually all infected persons have superficial 

gastritis, it is likely that the organism plays a causative role early in the progression to 

adenocarcinoma (Figure 2).  A randomized controlled study determined that eradication 

of H. pylori significantly decreases gastric cancer risk in infected individuals without pre-

malignant lesions (319), while another study demonstrated that eradication of H. pylori 

significantly reduces the presence of pre-malignant lesions (187), providing additional 

evidence that this organism influences early stages in gastric carcinogenesis.  In addition, 

our laboratory has recently shown that in the Mongolian gerbil model of H. pylori 

infection and gastric cancer, early intervention with antibiotic therapy significantly 

reduced the development of gastric dysplasia and neoplasia (245).  These studies support 

the idea that H. pylori eradication therapy can play an important role in gastric cancer 

prevention, but the stage in human disease at which intervention is most effective is still 

not clear.  However, as with all disease related to chronic injury, the earliest intervention 

seems to be the most effective. 
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A tumor can be thought of as an atypical organ, possessing its own vasculature and 

mechanisms for self-propagation.  Thus, it has been hypothesized that, like normal organs, 

a tumor may possess a stem cell population from which tumor cells originate (239, 258).  

Recently several groups have identified prospective cancer stem cells in tumors in 

different organs (4, 35, 76, 133, 251, 270, 271, 310).  A commonality among these stem 

cells is that they all possess characteristics that are similar to peripheral stem cells.  

Peripheral stem cells are attractive candidates as tumor progenitor cells because they have 

characteristics that are necessary for sustained tumorigenesis such as the ability to 

temporarily bypass normal growth control programs, which under normal circumstances 

allows proliferation for wound healing and tissue replacement.  Historically, the stem cell 

zone of the stomach has been defined as the area of highest density of proliferating cells, 

which are thought to contain both the true stem cells and the first few generations of 

rapidly proliferating daughter cells.  This region has been considered the most likely 

candidate for the accumulation of mutations necessary for the development of neoplastic 

growth.  However, one outcome of chronic inflammation is atrophy and loss of these 

specialized cells.  Therefore, an additional population of stem cells may be necessary for 

the development of gastric cancer.  A recent study by Houghton et al. elegantly 

demonstrated that in mice that had been transplanted with genetically labeled bone 

marrow and infected with Helicobacter felis, bone marrow-derived cells (BMDCs) homed 

to and repopulated the gastric mucosa and developed over time into cancer (131).  These 

data have greatly shifted the model for the development of gastric cancer and provide a 

mechanism that helps explain the progression to cancer caused by chronic inflammation 

induced by H. pylori.  The mechanism is thought to be one in which chronic inflammation 
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leads to injury, which over time progresses to depletion of gastric stem cell populations.  

Stem cell failure, in turn, leads to the recruitment and engraftment of BMDCs into areas 

previously populated by the stem cells, where the BMDCs functionally replace gastric 

stem cells.  With ongoing inflammation and injury, BMDCs are exposed to a hostile tissue 

environment containing free radicals that damage DNA and cytokines that dysregulate cell 

systems, causing them to fail to regulate growth programs appropriately and progress 

instead through stages of metaplasia and dysplasia (86).  

 

However, only a small percentage of colonized persons ever develop neoplasia, raising the 

hypothesis that enhanced cancer risk may be related to H. pylori strain differences, 

inflammatory responses governed by host genetic diversity, and/or specific interactions 

between host and microbial determinants.  These observations, in conjunction with 

evidence from our laboratory and others, indicating that carriage of certain H. pylori 

strains is inversely related to the prevalence of Barrett’s esophagus and esophageal 

adenocarcinoma (33, 59, 167, 301, 307), underscore the importance of identifying 

mechanisms that regulate biological interactions of these organisms with their hosts which 

promote gastric carcinogenesis.  Results generated by such studies would permit 

physicians to more appropriately focus diagnostic and eradication strategies on targeted 

high-risk populations to optimize prevention of subsequent neoplastic events.  
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H. pylori and chronic inflammation 

 

Infection with H. pylori results in the presence of chronic active gastritis, which is 

characterized by both chronic (lymphocytic) and active (neutrophilic) forms of 

inflammation (108, 178).  H. pylori is one of several organisms that can elicit an 

inflammatory response that predisposes the host to neoplastic transformation.  Some 

examples of such microorganisms that colonize mucosal surfaces or epithelial cells and 

increase the risk of cancer are Human papilloma virus, Hepatitis C and B viruses, Epstein-

Barr Virus, and parasitic helminthes Opisthorchis viverrini and Schistosoma haematobium 

(123, 199).   

 

H. pylori produce several bacterial factors that are proinflammatory, such as neutrophil 

activating protein (NapA), urease, and the cag secretion system (discussed in the next 

section).  NapA is a cytosolic protein that forms a dodecameric structure capable of 

binding large quantities of iron, insuring that H. pylori can acquire enough iron for 

survival (329).  However, NapA release by H. pylori autolysis has the side effect of 

eliciting an immune response consisting of neutrophils, monocytes, and mast cells (197).  

Urease is an enzyme that converts urea into ammonia and carbonate, which is further 

converted to carbon dioxide.  The production of ammonia and carbon dioxide neutralizes 

the bacterial cytosol and acidic microenvironment surrounding the bacteria, which is 

necessary for successful colonization and prolonged survival (315).  However, urease is 

also immunogenic and contributes to the immune response directed against H. pylori 

(105).  Thus, H. pylori produces constituents that promote survival in the gastric niche, 
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but have the consequence of eliciting an immune response, which results in injury and 

disease for the human host. 

 

Two topics of great interest are how H. pylori evade clearance by the inflammatory 

response and how the immune response is dysregulated during infection.  H. pylori has 

co-evolved with humans for at least 58,000 years (74, 101), and, as a result, is highly 

adapted to survive in the harsh environment of the stomach and avoid elimination by the 

immune system.  One constituent that contributes to survival is bacterial arginase encoded 

by rocF, which converts L-arginine (L-Arg) to L-ornithine and urea, which is then further 

metabolized to ammonia by H. pylori urease (185).  The benefits conferred by arginase for 

H. pylori are two fold: neutralization of the local environment and resistance to innate 

immune killing.  Macrophages and epithelial cells produce inducible nitric oxide synthase 

(iNOS) in response to H. pylori, which utilizes L-Arg as a necessary precursor molecule 

in nitric oxide (NO) synthesis (92, 104, 318).  NO is a highly reactive molecule that is 

toxic to many bacterial pathogens, but which also has the negative effect of causing DNA 

damage in host cells, which contributes to the accumulation of mutations that promote 

oncogenesis (15, 78, 210).  Macrophage-produced NO has been shown to kill H. pylori in 

vitro and is thought to play an important role in vivo.  Thus, depriving cells of L-Arg 

through the production of bacterial arginase may enhance bacterial survival (29, 92, 104, 

320).   

 

Survival of H. pylori may also be promoted by evasion of innate immune pattern 

recognition receptors such as toll-like receptors (TLR).  Activation of TLRs leads to the 
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initiation of proinflammatory signaling.  TLR-5 is a toll-like receptor that detects flagella 

of many bacterial organisms as they come into contact with epithelial cells.  Unlike the 

flagella of many other bacteria, H. pylori flagella do not activate TLR-5 (100).  H. pylori 

LPS is at least 1000-fold less immunogenic than Escherichia coli LPS, which is 

recognized by TLR-4 (198).  These mechanisms likely help to dampen the immune 

response to H. pylori and contribute to persistent infection.  By surviving direct 

encounters with phagocytes and oxidative compounds, H. pylori are able to persist despite 

an inflammatory response induced by it own constituents, such as NapA, urease, and the 

cag secretion system. 

 

While H. pylori is well-adapted for survival within the gastric niche, and avoids 

activating many components of the innate immune system, such as TLRs, Anderson et al. 

have shown that TLR-9 plays an important role in inducing inflammation in 

Helicobacter-infected mice (7).  TLR-9 distinguishes bacterial DNA from mammalian 

DNA by recognizing hypomethylated CpG dinucleotides, eliciting a strong Th1-like 

inflammatory response (116, 122).  However, TLR-9 is not constitutively expressed on 

gastric epithelial cells, although it is expressed on epithelial cells in Peyer’s patches in the 

small intestines (267).  Recently Peyer’s patches have been shown to play a critical role 

in recognizing both H. pylori and H. felis infection in mice and mediating the subsequent 

inflammatory response (151, 203).  There is also evidence to suggests that Peyer’s 

patches preferentially recognize the coccoid form of H. pylori (203), a nonculturable 

form that is induced under unfavorable conditions such as an anaerobic environment, 

increased oxygen tension, and long-term culture (240, 322).  Thus, TLR-9 expressed on 
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cells in Peyer’s patches may be a key mediator of inflammation induced by the coccoid 

form of H. pylori. 

 

The H. pylori cag pathogenicity island and type IV secretion system 

 

H. pylori strains isolated from different individuals are extremely diverse (5, 103, 250, 

292), and studies have demonstrated that the genetic composition of isolates can change 

over time (137).  Although this extraordinary diversity has slowed the search for bacterial 

determinants unambiguously associated with cancer, several genetic loci have been 

identified that augment risk for carcinogenesis.  

 

The cag pathogenicity island is a 40 kB locus present in approximately 60% of H. pylori 

strains in the United States (2, 5, 32, 292).  Although all H. pylori strains induce gastritis, 

strains harboring the cag island (cag+) augment the risk for severe gastritis, atrophic 

gastritis, gastric ulcer disease, and distal gastric cancer compared to cag- strains (Figure 

2) (24, 42, 52, 53, 156, 223, 228, 229, 237, 248, 268, 294, 309).  Cag genotype also 

influences the topography of colonization in the human stomach, as H. pylori cag- strains 

are located predominately within the mucus gel layer, while disease-associated cag+ 

strains are found immediately adjacent and frequently adherent to epithelial cells (30).  

 

Several cag genes encode products that form a type IV secretion system, which acts as a 

molecular syringe to translocate effector molecules into host epithelial cells.  Upon 

binding to host cells, a component of the secretion system (CagL) interacts with α5β1 
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integrins, enabling the secretion system to deliver molecules into the cytoplasm of host 

cells (159).  This system is known to deliver at least two bacterial factors into host cells.  

Components of bacterial cell wall peptidoglycan can be translocated by the cag secretion 

system into host cells where they are recognized by a component of innate immune 

system, the intracellular pattern recognition receptor NOD1 (306).  In addition, the 

product of the terminal gene in the cag island, CagA, is delivered into host cells where it 

exerts numerous effects. 

 

CagA 

 

CagA is a 120-140 kDa protein that contains tyrosine phosphorylation motifs (glutamate-

proline-isoleucine-tyrosine-alanine, EPIYA) within the carboxy-terminal variable region 

of the protein (Figure 3) (278).  There are at least four phosphorylation motif regions that 

can be found in CagA, which are termed EPIYA-A, -B, -C, or -D (118).  Each motif is 

distinguished by the amino acid sequence surrounding the EPIYA motif (118).  Most 

variants of CagA contain an EPIYA-A and -B site, which are phosphorylated to a lesser 

degree, whereas the major -C and -D phosphorylation sites segregate to either Western or 

East-Asian strains respectively (118).  Thus, the majority of cag+ Western strains are 

CagA A-B-C and East-Asian strains are A-B-D strains.  Additionally, the number of 

EPIYA-C regions vary to contain between 1-3 repeated copies among different strains 

(118).  Following its injection into epithelial cells, CagA can affect a myriad of cell 

signaling pathways, which can be divided into either phosphorylation or non-

phosphorylation-dependent signaling.   
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Figure 3. The influence of EPIYA-repeat polymorphisms on the pathophysiological 
activities of CagA.  A.) Uninfected AGS gastric epithelial cells B.) H. pylori infected 
AGS cells demonstrating the characteristic cell elongation “hummingbird” phenotype.  
C.) EPIYA-C and EPIYA-D sites are the major tyrosine phosphorylation sites of Western 
and East-Asian CagA, respectively. Among Western CagA species, those having larger 
numbers of EPIYA-C exhibit stronger SHP-2 binding activity and greater ability to 
induce hummingbird like cells than those having less numbers of EPIYA-C sites. The 
EPIYA-D site of East-Asian CagA binds SHP-2 more strongly than does the EPIYA-C 
site of Western CagA. As a result, East-Asian CagA can induce hummingbird cells more 
intensely than Western CagA.  The photographs in panels A and B were originally 
published by Segal et al. (256).  Panel C is adapted from Hatakeyama and Higashi (119). 
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CagA can undergo tyrosine phosphorylation in the early stages of cellular infection by 

members of the Src family of kinases (Src, Fyn, Lyn, and Yes) and in the later stages by 

the protein tyrosine kinase Abl (Figure 4) (10, 13, 212, 256, 257, 279, 286).  Phospho-

CagA subsequently binds and activates at least three eukaryotic Src Homology 2 (SH2) 

domain containing proteins: the protein tyrosine phosphatase SHP-2, carboxy-terminal Src 

kinase (Csk), and the adaptor protein Crk (126, 283, 286, 297).  These interactions lead to 

morphological changes that are reminiscent of unrestrained stimulation by growth factors, 

known as the “hummingbird” phenotype (Figure 3B) (10, 13, 125, 126, 212, 256, 257, 

278, 279, 297).  The hummingbird phenotype requires two successive events: 1) the 

induction of motility leading to cell scattering and 2) host cell elongation (196).  

Formation of the CagA-SHP-2 complex requires tyrosine phosphorylation of the EPIYA-

C or -D sites in Western or East-Asian CagA proteins respectively.  The intensity of SHP-

2 signaling in Western strains directly correlates with an increased number of EPIYA-C 

motifs (Figure 3) (125).  Interestingly, the EPIYA-D site of East-Asian strains perfectly 

matches the consensus high-affinity binding sequence for the SH2 domains of SHP-2 

(118).  As expected, the EPIYA-D site of East-Asian CagA exhibits stronger SHP-2 

binding and greater morphogenetic activity than the EPIYA-C motif of Western CagA.  

The second SH2 domain-containing protein identified to interact with CagA is Csk.  The 

interaction of phospho-CagA with Csk negatively regulates Src-family kinases by 

phosphorylating inhibitory tyrosine residue located in the carboxy-terminal regions (297).  

In this way, phospho-CagA induces a negative regulatory feedback loop that limits the 

activity of Src.  The inhibition of Src reduces the amount of phosphorylated CagA present 

in the cell and subsequently attenuates CagA-SHP-2 signaling (297).  Because sustained 
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activation of SHP-2 induces apoptosis in gastric epithelial cells, Csk mediated negative 

feedback may represent a regulatory mechanism that permits cag+ H. pylori to persists for 

the lifetime of the host without causing serious damage in the majority of cases (297).  

Recently, phosphorylated-CagA was also found to interact with the Crk protein family in 

complex with Abl (283, 286).  This interaction was determined to be important for the 

induction of the hummingbird phenotype, but the full implication of this observation has 

yet to be determined. 

 

CagA also affects numerous pathways in a phosphorylation-independent manner (Figure 

4).  CagA interacts with the adaptor protein Grb2 and activates the Ras/MAPK cascade 

eventuating in ERK1/2 activation, which leads to cell scattering (194).  Activation of 

ERK1/2 by CagA can also lead to the activation of NF-κB and the release of the 

proinflammatory cytokine IL-8 (26, 150).  NF-κB activation requires the C-terminal 

region of the protein but is independent of phosphorylation status (26).  Unmodified CagA 

also interacts with Par1, a MARK kinase that phosphorylates microtubule-associated 

proteins (249).  The CagA/Par1 interaction inhibits Par1 kinase activity, coinciding with 

the disruption of apical-junctional complexes, perturbation of epithelial differentiation in 

polarized MDCK epithelial cells, and the induction of the hummingbird phenotype (6, 14, 

249). Disruption of apical-junction complexes coincides with colocalization of CagA with 

the tight-junction proteins ZO-1 and JAM, and in some instances, recruiting these 

junctional proteins to ectopic sites of H. pylori binding (6).  In addition, CagA induces the 

nuclear localization of the proto-oncogene β-catenin in a phosphorylation independent 
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Figure 4.  Type IV cag secretion system-mediated effects on the host cell. The cag 
secretion system (electron micrograph, white arrow) binds to the host cell via an 
interaction involving α5β1 integrins and CagL.  CagA is then translocated into the host 
cell and affects signaling pathways involved in proliferation, motility, actin-cytoskeletal 
rearrangements, disruption of cell-cell junctions, and proinflammatory responses.  The 
secretion system also translocates components of the bacterial cell wall molecule 
peptidoglycan (PGN), which is recognized by the intracellular receptor Nod1, leading to 
the induction of proinflammatory signaling responses. TJ, Tight-Junctions; AJ, Adherens-
Junctions.  The electron micrograph was originally published by Rohde et al. (243).  
Figure adapted from Backert and Meyer (12). 
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manner (88).  There are data to suggest that CagA induces nuclear β-catenin by binding E-

cadherin and disrupting the β-catenin/E-cadherin interaction, thereby freeing β-catenin to 

localize to the nucleus (202).  β-catenin then forms heterodimers with the TCF/LEF 

transcription factor to initiate transcription (88), and may activate target genes that are 

involved in transformation.   

 

Indeed, a recent investigation by our laboratory has demonstrated that in the Mongolian 

gerbil model of H. pylori infection, gerbils infected with cagA- isogenic mutants 

developed no precancerous or cancerous lesions compared to gerbils infected with the 

wild-type strain in which tumors developed in at least 50% of infected animals by 12-16 

weeks (89).  In addition, Ohnishi et al. have recently demonstrated a direct causal link 

between CagA and gastrointestinal cancer by utilizing a transgenic mouse model of CagA 

expression (217).  Transgenic mice that expressed wild-type CagA developed gastric 

epithelial hyperplasia by fours weeks of age and at 72 weeks some of the mice developed 

gastric polyps (8-22%) and adenocarcinomas (1-2%) of the stomach and small intestine 

(217).  This study also strengthened the link between CagA phosphorylation and 

oncogenicity by demonstrating that in mice expressing a phosphoresistant-CagA, the 

development of gastric epithelial hyperplasia was almost completely attenuated and 

gastrointestinal cancer was not observed (217).  While CagA plays an important role in 

inducing cell responses that lead to gastric cancer, the selective advantage that this protein 

provides for the bacteria is not well defined.  However, the recent studies showing that 

CagA disrupts tight-junctions suggest that CagA may help to release nutrients into the 

local environment and/or allow the bacteria to invade into the epithelial mucosa, which 
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may contribute to the ability of H. pylori to persist for decades in the harsh niche of the 

stomach (6, 14, 283). 

The vacuolating cytotoxin, VacA 

 

An independent H. pylori locus linked with gastric cancer is vacA, which encodes a 

bacterial toxin known as the vacuolating cytotoxin (VacA) (41, 44, 235, 255, 289).  In 

vitro, VacA induces the formation of intracellular vacuoles (163) and can also induce 

gastric epithelial cell apoptosis (43).  The vacuolating activity of VacA has been 

extensively studied and is dependent on the formation of oligomeric VacA structures in 

the host cell membrane that exhibit anion-selective channel activity (56, 138, 285, 293).  

VacA has also been shown to suppress T and B cell activation-induced proliferation in 

vitro (25, 97, 281, 295), which may contribute to the longevity of H. pylori colonization 

by dysregulating the adaptive immune response.  Unlike the cag island, vacA is present in 

virtually all H. pylori strains examined (11, 44); however, strains vary in cytotoxin activity 

due to variations in vacA gene structure.  The regions of greatest diversity are localized 

near the 5’ signal region of vacA (allele types s1or s2) and in the mid-region of vacA 

(allele types m1 or m2) (11, 302, 303).  Functionally, s1-type strains are associated with 

vacuolating activity in vitro (11, 247), with the hydrophobic N-terminus of the toxin 

playing a vital role in this process (308, 326).  In contrast, s2-type VacA is generally non-

vacuolating due to the presence of a hydrophilic N-terminal 12-amino acid extension that 

blocks activity (161, 162, 181).  Mid-region allele type determines the cell specificity of 

vacuolation by affecting toxin binding to epithelial cells, such that m1 forms cause 

vacuolation in a wider range of epithelial cell lines than m2 forms (140, 162, 221, 274).  
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H. pylori strains that possess a type s1/m1 vacA allele are associated with an increased risk 

of gastric cancer compared to s2/m2 strains (99, 169, 191, 192).  A recent study by Rhead 

et al. identified a third polymorphic region of importance for VacA function, termed the 

intermediate (i) region, which is located between the signal and mid-regions (241).  Two 

allelic variants of the i-region were identified (i1 and i2) (241).  H. pylori s1/m1 strains 

were found to typically be i1-type and s2/m2 strains were i2-type (241).  Interestingly, 

s1/m2 strains varied in their i-region status, and this affected vacuolation ability in vitro, 

with s1/i1/m2 strains inducing vacuolation, whereas s1/i2/m2 strains did not demonstrate 

vacuolating activity (241).  These findings may have important implications for previous 

studies relating vacA mid-region type to disease because s1/m2 strains may have differed 

in i-region type and vacuolating activity. 

 

Host factors that influence the propensity for development of gastric cancer 

 

Although important, H. pylori constituents are not absolute determinants of 

carcinogenesis, which has highlighted the need to identify host factors that may be linked 

with gastric cancer. Cyclooxygenases catalyze key steps in the conversion of arachidonic 

acid to endoperoxide, a substrate for a variety of prostaglandin synthases that, in turn, 

catalyze the formation of prostaglandins and other eicosanoids (112).  Prostaglandins 

regulate a diverse array of physiologic processes including immunity and maintenance of 

vascular tone (112).  Three isoforms of cyclooxygenase have been identified, each 

possessing similar activities, but differing in expression characteristics.  COX-1 and COX-

3, a splice variant of COX-1, are expressed constitutively while COX-2 can be induced by 
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growth factors and pro-inflammatory cytokines (317).  Up-regulation of COX-2 is a 

promoting event for colorectal carcinogenesis and COX-2 expression is increased in 

epithelial cells co-cultured with H. pylori (143, 244) and within gastric mucosa of H. 

pylori-infected individuals (92, 253).  COX-2 expression is further increased within H. 

pylori-induced pre-malignant (atrophic gastritis and intestinal metaplasia) and malignant 

(adenocarcinoma) lesions (242, 282) and COX inhibitors have been shown to decrease the 

risk for distal gastric cancer (3, 79).  

 

Polymorphisms within the human IL-1β or TNF-α gene promoters that are associated with 

increased expression of IL-1β or TNF-α (pro-inflammatory cytokines that have potent 

acid-suppressive properties) also heighten the risk for atrophic gastritis and gastric 

adenocarcinoma (65, 66, 94, 173).  These relationships are only present among H. pylori-

colonized persons, emphasizing the importance of host-environment interactions and 

inflammation in the progression to gastric cancer and consistent with these observational 

studies, H. pylori induces expression of each of these cytokines during co-culture with 

gastric epithelial cells in vitro (226).  H. pylori strain characteristics further augment the 

risk of gastric cancer exerted by host genotype.  Figuiredo et al. stratified infected subjects 

on the basis of both high-expression IL-1β polymorphisms and virulence genotypes of 

their infecting H. pylori strains (80).  In persons with high-expression IL-1β alleles 

colonized by H. pylori cag+ or vacA s1-type strains, the relative risks for gastric cancer 

were 25- and 87-fold over baseline, respectively (80), indicating that interactions between 

specific host and microbial determinants are biologically significant for the development 

of gastric cancer. 
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Salt intake is also an important risk factor for disease.  An increased risk for the 

development of gastric cancer has been associated with high intake of dietary salt in 

epidemiological studies (296), and salt intake has also been positively associated with H. 

pylori-induced gastric cancer in animal models (208, 288).  Salt has been shown to act 

synergistically and dose-dependently to promote the development of gastric 

adenocarcinoma in Mongolian gerbils treated with the carcinogen N-methyl-N-nitrosourea 

(MNU) (146, 208).  In humans, mucosal damage induced by dietary salt intake may 

facilitate persistent infection by H. pylori (84).  H. pylori gene expression can also be 

affected by salt concentration.  Growth of H. pylori in media containing increasing 

concentrations of salt leads to increased translocation and phosphorylation of CagA in 

vitro (168).  Thus, increased CagA activity in the gastric epithelium due to high salt 

concentrations may contribute to oncogenesis.  These data suggest that there are several 

mechanisms working in tandem that increase cancer risk, but more research is needed to 

fully elucidate risk factors.  However, evidence from studies on the association between 

dietary salt intake and the risk of gastric cancer indicates that dietary modifications that 

reduce salt are likely protective against gastric cancer (296). 

 

H. pylori contact-mediated cytokine release 

 

The presence of acute inflammatory components within H. pylori-infected mucosa 

suggests that soluble mediators capable of attracting polymorphonuclear cells, such as 

cytokines, are key regulators of disease.  Compared with uninfected individuals, the 
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gastric epithelium from infected persons contains increased levels of IL-1β, IL-2, IL-6, 

IL-8, and TNF-α (50, 51, 75, 229, 323), and within this group, IL-8 has been studied 

most intensively as a mediator of pathogenesis.  IL-8 is a potent neutrophil-activating 

chemokine that is secreted by gastrointestinal epithelial cells in response to pathogenic 

bacteria (64).  IL-8 binds to the extracellular matrix and establishes a haptotactic gradient 

that directs inflammatory cell migration towards the epithelial cell surface (141, 182-

184).  Expression of IL-8 is increased within H. pylori-colonized gastric mucosa (49, 

229) where it localizes to gastric epithelial cells (49).  Further, levels of IL-8 are directly 

related to the severity of gastritis (229).  In vitro, H. pylori stimulates IL-8 expression 

from gastric epithelial cells and these events are dependent upon an active interplay 

between viable bacteria and epithelial cells (48, 55, 264).  Thus, a paradigm for the acute 

component of gastric inflammation is that contact between H. pylori and epithelial cells 

stimulates IL-8 secretion, which then regulates neutrophilic infiltration into the gastric 

mucosa. 

 

Molecular regulation of H. pylori-induced IL-8 gene expression 

 

The human IL-8 gene contains several motifs within its promoter region including 

binding sites for NF-κB, AP-1 (comprised of the binding elements c-fos and c-jun), and a 

recently identified novel element that is homologous to an interferon-stimulated 

responsive element (ISRE) (1, 31, 225, 324).  NF-κB constitutes a family of transcription 

factors sequestered in the cytoplasm, whose activation is tightly controlled by inhibitory 

proteins termed IκB’s (305).  Multiple signals, including microbial contact, stimulate 



 

24 

phosphorylation of IκBα by IκB kinase ß (IKKß), which leads to proteasome-mediated 

degradation of phospho-IκBα, thereby liberating NF-κB to enter the nucleus where it 

regulates transcription of a variety of genes, including immune response genes (188).  

Mitogen-activated protein kinases (MAPK) are components of signal transduction 

networks that target transcription factors such as AP-1 and participate in a diverse array 

of cellular functions, including cytokine expression (96, 135, 254).  MAPK cascades are 

organized in three-kinase tiers consisting of a MAPK, a MAPK kinase (MKK), and a 

MKK kinase (MKKK), and transmission of signals occurs by sequential phosphorylation 

and activation of components specific to a respective cascade.  In mammalian systems, 

MAPK modules include ERK1/2, p38, and JNK (96, 135, 254).  Contact between H. 

pylori and gastric epithelial cells in vitro results in brisk activation of NF-κB as well as 

p38, ERK1/2, and JNK, which is followed by increased IL-8 expression (1, 147, 174, 

263, 324).  

 

To define the bacterial factors involved in H. pylori-induced IL-8 secretion, our 

laboratory and others have demonstrated that H. pylori cag+ strains selectively activate 

NF-κB, p38, ERK 1/2, and JNK in gastric epithelial cells (148, 189).  However, these 

effects may not be completely dependent upon CagA translocation (Figure 5).  Viala et 

al. demonstrated that components of cell wall peptidoglycan are delivered to the host cell 

cytoplasm by the cag secretion system and are then recognized by the intracellular 

pathogen-recognition receptor Nod1, which eventuates in NF-κB activation and the 

induction of IL-8 (306).  An additional layer of complexity is added when one considers 

that maximal H. pylori-induced IL-8 gene transcription requires the presence of NF-κB, 
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Figure 5. Translocation of CagA and induction of IL-8 in AGS cells is dependent 
upon numerous components of the cag pathogenicity island.  Induction of IL-8 for 
individual isogenic cag island mutant strains of H. pylori is shown on the y-axis in 
comparison to the wild type (WT) strain 26695 in blue (100%).  The ability of each wild 
type or mutant strain to translocate CagA into AGS cells as measured by CagA tyrosine 
phosphorylation (x-axis) is represented by (+) or (-). cagA and cagE are highlighted.  
Adapted from Fischer et al. (81). 
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AP-1, and ISRE elements, and that ISRE activation may be dependent upon an H. pylori 

outer membrane protein (OMP) exogenous to the cag island, OipA (324). However, the 

involvement OipA in cytokine release has not been universally accepted, as other 

investigators have reported that mutation of OipA does not significantly affect H. pylori-

induced expression of IL-8 (62).  Collectively, these data indicate that the inflammatory 

response to H. pylori likely involves multiple intracellular pathways converging on the 

IL-8 promoter, but the specific mechanisms that mediate IL-8 expression remain poorly 

defined.  Investigations that define these pathways are critical since H. pylori-mediated 

host signaling is of central importance for understanding the inflammatory response to 

this pathogen, which if left untreated over decades, may progress to gastric cancer. 

 

Rodent models of H. pylori-induced gastric adenocarcinoma 

 

Rodent models have provided valuable insights into the host, bacterial, and 

environmental factors involved in gastric carcinogenesis.  Long-term (>1 year) H. pylori 

infection of Mongolian gerbils can lead to inflammation-induced gastric adenocarcinoma, 

without the co-administration of known carcinogens (130, 214, 313, 331), and gastric 

cancer development in this model occurs in the distal stomach, as in humans.  We have 

shown that various H. pylori wild-type and mutant strains colonize gerbils well (136, 

231), allowing an examination of the role of virulence determinants on parameters of 

gastric injury.  Recently our group has demonstrated that the gerbil-adapted H. pylori 

strain 7.13 can induce adenocarcinoma in 59% of challenged gerbils by 8-16 weeks post-

innoculation (88).  However, there are limitations to using this model.  Mongolian gerbils 
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are outbred with undefined genetic backgrounds, which tend to increase the variability of 

responses to any stimulus.  Compared with mice, gerbils are relatively poorly 

characterized and few reagents including antibodies or immune markers are available for 

detailed investigation.  Finally, the ability to utilize inbred mice with defined genotypes 

as well as transgenic lines allows a more detailed analysis of host susceptibility to H. 

pylori virulence determinants and pathological consequences. Therefore, our laboratory 

and others have also utilized murine models of gastritis. 

 

One host determinant that may influence the development of gastric cancer is gastrin.  In 

vitro, gastrin stimulates gastric epithelial cell proliferation (139), and transgenic mice that 

over-express gastrin (INS-GAS mice) spontaneously develop gastric cancer, although this 

requires the virtual lifetime of the animal (2 years) (311).  Concomitant infection with H. 

pylori or a related Helicobacter species, H. felis, accelerates this process (85, 87, 311), 

suggesting that persistently elevated gastrin levels synergistize with Helicobacter to 

augment the progression to gastric cancer.  

 

One phenotypic difference between neoplasia that develops in INS-GAS mice compared 

to gerbils and humans is anatomic location.  Even though H. pylori-infected gerbils and 

humans with hypergastrinemia and corpus-predominant gastritis often develop parietal 

cell loss similar to experimentally infected INS-GAS mice (157), most adenocarcinomas 

in gerbil or human tissue occur in the antrum (130, 313).  In contrast, cancer in INS-GAS 

mice develops more frequently in the corpus (85, 87, 311); thus, although carcinogenesis 

in this model is likely regulated by the same host conditions (e.g. hypergastrinemia) 
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induced by H. pylori infection in humans, the most susceptible gastric site for disease is 

different.  Collectively, these findings indicate that development of gastric cancer in 

humans is associated with features present in both H. pylori-infected gerbils (distal gastric 

adenocarcinoma), and mice (parietal cell loss and altered glandular differentiation).  

Therefore, these models likely are complementary, each contributing important 

information to our understanding of the events leading to transformation associated with 

H. pylori colonization. 

 

H. pylori adherence and pathogenesis 

 

Adherence of H. pylori to gastric epithelial cells is important for persistent colonization 

of the stomach.  The gastric environment is hostile and H. pylori need to withstand a 

constant wave of peristalsis, and shedding and regeneration of the mucus gel layer.  

Contact between H. pylori and gastric epithelium is mediated by interactions between 

bacterial binding proteins known as adhesins and host proteins known as receptors.  

Though the majority of H. pylori in colonized hosts are free-living, approximately 20% 

bind to gastric epithelial cells (124).  Adhesion by H. pylori to gastric epithelium is 

highly specific in vivo and when H. pylori is found in the duodenum, it only overlays 

islands of gastric metaplasia (321).  Sequence analysis of the genomes from three 

completely sequenced H. pylori strains 26695, J99, and HPAG1 has revealed that an 

unusually high proportion of identified open reading frames are predicted to encode outer 

membrane proteins (OMPs) (5, 216, 292), many of which have been identified as 
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adhesins (36).  This large repertoire of OMPs permits H. pylori to engage in a range of 

interactions with host cells, some of which play a role in pathogenesis (61, 275).  

 

BabA is an OMP encoded by the strain-specific gene babA2 that binds the Lewisb (Leb) 

histo-blood-group antigen on gastric epithelial cells (99, 134).  BabA binding specificities 

reflect H. pylori strain adaptation to different glycosylation patterns that predominate in a 

particular host population and BabA-mediated Leb binding can be altered by both 

bacterial phase variation and genetic recombination (275).  Of interest, babA2 and 

another gene encoding an outer membrane protein (Omp27) have been shown to co-vary 

with the presence of the cag island (134), and since evolutionary pressures tend to select 

for the co-inheritance of genes involved in common pathways, these observations raise 

the hypothesis that outer membrane proteins may act in conjunction with the cag 

secretion system to aberrantly alter epithelial cell responses.  Consistent with this 

hypothesis, toxigenic H. pylori strains that possess babA2 and cagA incur the highest risk 

for gastric cancer (99).  The H. pylori adhesin SabA binds the sialyl-Lewisx (sLex) 

antigen, which is an established tumor antigen and marker of gastric dysplasia (176).  

Gastric inflammation induced by H. pylori up-regulates the expression of sLex on 

epithelial cells, which amplifies interactions between this molecule and SabA.   

 

Studies focused on adherence have also provided mechanistic insights into the 

topography of injury that develops within the stomach.  Syder and colleagues studied 

bacterial colonization and inflammation in transgenic mice that lacked acid-secreting 

parietal cells (284).  Mice were colonized with an H. pylori strain that expressed adhesins 
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that bind epithelial NeuAcα2,3Galß1,4 glycan receptors.  In control mice, H. pylori 

exhibited tropism for gastric mucosa that did not contain parietal cells, and lymphocytic 

infiltration was found preferentially in this area.  In mice having a genetic ablation of 

parietal cells, epithelial progenitor cells synthesized NeuAcα2,3Galß1,4 glycans, and this 

was accompanied by an expansion of bacterial colonization and lymphoid aggregates 

within the glandular epithelium (284).  Collectively, these studies indicate that adherence 

of H. pylori to gastric epithelium likely plays an important role in the induction of 

inflammation and injury. 

 

Several H. pylori proteins have been identified that are involved in adherence but have no 

known receptors.  The outer membrane proteins AlpA and AlpB, which are encoded by 

the same operon, are involved in adherence (213).  These genes are highly homologous, 

but both proteins are required for Alp mediated adherence (58, 211, 213).  AlpAB binding 

to gastric epithelial cells differs from BabA-mediated binding, suggesting that a different 

receptor is involved (213).  In addition, AlpAB is critical for successful colonization of 

both guinea pigs and mice, suggesting that AlpAB likely plays an important role in 

human disease (58, 170).  Further, phase variation of H. pylori adhesins, such as BabA 

and SabA, suggests that interactions with gastric cells may vary among strains.  Thus, 

identifying adhesin/receptor interactions and their roles in the H. pylori lifecycle are 

critical to understanding H. pylori-induction of injury and disease. 
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Decay-accelerating factor and gastric injury 

 

Decay-accelerating factor (DAF/CD55) was first described in 1969 as an erythrocyte 

surface protein that regulates complement activation (128).  DAF has since been shown 

to be a member of a family of regulators of complement activation proteins, and its 

primary function is to inactivate the C3/C5 convertases of the classical and alternative 

complement pathway by dissociating them into their constituent proteins (27).  

Inactivation of C3/C5 convertases protects cells from inadvertent complement-mediated 

lysis.  DAF is a 70-80 kDa glycoprotein that contains five extracellular domains 

consisting of four contiguous complement control protein (CCP) domains followed by a 

serine/threonine rich heavily O-glycosylated C-terminal domain that elevates the 

molecule at the cell membrane surface where it is attached to the outer leaflet of the 

membrane by a glycosylphosphatidylinositol (GPI)-anchor (Figure 6) (260).  DAF is 

highly expressed on cells that are exposed to serum such as endothelial cells and 

inflammatory cells.  The clinical importance of DAF in underscored by its function in 

several human diseases including paroxysmal nocturnal hemoglobinuria (PNH) (195, 

246), rheumatoid arthritis (287), systemic sclerosis and psoriasis (304), and ulcerative 

colitis (300).  DAF also suppresses hyperacute and acute graft rejection in 

xenotransplantation (57, 328).  
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Figure 6.  The structure of decay-accelerating factor (DAF).  A.) DAF is a 70-80 kDa 
protein made up of four complement control protein (CCP) domains with a N-linked 
glycan located between CCP-1 and 2, and a heavily O-glycosylated serine/theronine rich 
stalk domain that is attached to the lipid bilayer by a GPI anchor.  B.) Crystal structure of 
DAF originally published by Lukacik et al. (172) 
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In addition to its role in preventing complement-mediated attack, DAF also functions as a 

cellular receptor for pathogenic organisms including uropathogenic diffusely-adhering E. 

coli, coxsackieviruses, echoviruses, and enteroviruses (17, 34, 111, 117, 120, 144, 207, 

236, 260-262).  A common property of these organisms is the ability to persist for 

prolonged periods within the host, a pattern that mirrors the chronicity of H. pylori 

infection.  E. coli that express DAF-binding Dr adhesins cause chronic interstitial 

nephritis (259), while echoviruses and coxsackieviruses are associated with chronic 

fatigue syndrome and chronic dilated cardiomyopathy, respectively (179, 327).  Thus, 

DAF is a receptor that is exploited by pathogens notable for their ability to induce 

chronic inflammation, injury, and disease.  

 

DAF has also been shown to orchestrate epithelial pro-inflammatory responses to 

pathogens.  Co-culture of T84 intestinal epithelial cells that express endogenous DAF 

with Afa/Dr diffusely adhering E. coli leads to activation of ERK1/2, p38, and JNK, 

which eventuates in IL-8 secretion (21, 22, 45), results that mirror the effects of H. pylori 

on gastric epithelial cells.  In vivo data indicate that DAF may also mediate pathologic 

changes associated with H. pylori infection.  Expression of DAF is increased within H. 

pylori-infected human gastric tissue compared to uninfected mucosa, and the intensity of 

DAF expression is directly related to H. pylori colonization density and the severity of 

inflammation (18, 238, 252).  Increased DAF expression is present in gastric cancer 

precursor lesions such as intestinal metaplasia and gastric adenomas, and in gastric 

adenocarcinoma specimens compared to non-transformed gastric mucosa (152), 

suggesting that aberrant expression of DAF precedes the development of gastric cancer.  
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In vitro, expression of DAF can be induced by H. pylori-responsive pro-inflammatory 

cytokines such as IL-1ß and TNF-α (21, 22), and polymorphisms within the promoter 

regions of these cytokines confer differing risks for gastric cancer among H. pylori-

infected persons (65, 66, 94, 173).  Thus, there is strong evidence from in vitro and in 

vivo model systems that DAF may regulate pathologic outcomes that develop in response 

to H. pylori. 

 

Summary and dissertation goals 

 

Gastric adenocarcinoma is strongly associated with the presence of H. pylori, and both 

microbial and host factors influence the risk for carcinogenesis.  Adherence of H. pylori 

to epithelial cells likely plays an important role in the development of gastric injury.  

DAF is a surface protein that can orchestrate pro-inflammatory responses and is over-

expressed in both pre-malignant and malignant gastric lesions. Thus, DAF may mediate 

host responses related to inflammation and carcinogenesis within the context of H. pylori 

colonization, prompting us to hypothesize that H. pylori:DAF interactions contribute to 

pathogenesis.  Molecular delineation of intracellular pathways activated by such host-

microbial interactions will not only improve our understanding of H. pylori-induced 

carcinogenesis, but may also provide mechanistic insights into other malignancies that 

arise within the context of inflammatory states (e.g. ulcerative colitis and colon cancer). 

 

 

 



 

35 

Identification of DAF as an H. pylori receptor and its role in pathogenesis 

DAF is a molecule that is induced in H. pylori associated human disease and is co-opted 

by several mucosal pathogens as a receptor.  Previous studies have shown that the 

expression of DAF on gastric epithelial cells is localized to the luminal surface of gastric 

epithelial cells; thus, we hypothesized that H. pylori uses DAF as a receptor.  In Chapter 

II, this hypothesis is investigated using an in vitro model of H. pylori:DAF interaction. 

The results from this study identify DAF as a novel H. pylori receptor.  We then 

characterized the domains of DAF that are important mediators of H. pylori binding and 

provide evidence that DAF is a vital receptor for H. pylori induction of inflammation in 

vivo utilizing a murine genetic model of DAF deficiency.  

 

The molecular regulation of DAF mediated by H. pylori  

H. pylori induces significantly increased expression of DAF in gastric epithelial cell 

culture models of infection and increased DAF expression coincides with H. pylori 

infection in humans.  These results raised the question as to whether the bacteria induce 

DAF through a specific mechanism or if exposure of the cells to the pathogen elicited a 

non-specific response to protect cells from complement attack during inflammation. 

Therefore, we sought to delineate the bacterial and host constituents that mediate DAF 

induction.  In Chapter III, we demonstrate that H. pylori induces the transcriptional up-

regulation of DAF.  The cell signaling pathway by which H. pylori signals DAF up-

regulation is identified and we demonstrate that a functional cag secretion system is 

necessary for DAF induction in vitro and in an in vivo murine model of infection.  This 

work underscores the importance of dissecting H. pylori induced cell signaling events 
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and demonstrates a novel mechanism by which the cag secretion system induces the 

expression of a cognate cellular receptor, thereby implicating this virulence locus as 

mediating previously undescribed events that may increase the fitness of H. pylori within 

its gastric niche. 
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CHAPTER II 

 

THE ROLE OF DECAY-ACCELERATING FACTOR AS A RECEPTOR FOR 
HELICOBACTER PYLORI AND A MEDIATOR OF  

GASTRIC INFLAMMATION  
 

Summary 

 

Persistent gastritis induced by Helicobacter pylori is the strongest known risk factor for 

peptic ulcer disease and distal gastric adenocarcinoma, a process for which adherence of 

H. pylori to gastric epithelial cells is critical. Decay-accelerating factor (DAF), a protein 

that protects epithelial cells from complement-mediated lysis, also functions as a receptor 

for several microbial pathogens. In this study, we investigated whether H. pylori utilizes 

DAF as a receptor and the role of DAF within H. pylori-infected gastric mucosa. In vitro 

studies showed that H. pylori adhered avidly to CHO cells expressing human DAF but 

not to vector control expressing cells. In H. pylori, disruption of the virulence factors 

vacA, cagA, and cagE did not alter adherence, but in DAF, deletion of complement 

control protein (CCP) domains 1-3 abolished binding. In cultured gastric epithelial cells, 

H. pylori induced transcriptional up-regulation of DAF, and genetic deficiency of DAF 

attenuated the development of inflammation among H. pylori-infected mice. These 

results indicate that DAF may regulate H. pylori-epithelial cell interactions relevant to 

pathogenesis.  
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Introduction 

 

Helicobacter pylori induces an inflammatory response in the stomach that persists for 

decades and biological costs incurred by chronic infection include an increased risk for 

peptic ulceration, gastric adenocarcinoma, and non-Hodgkins lymphoma of the stomach 

(200, 226).  However, most colonized individuals remain asymptomatic and increased 

disease risk is related to bacterial strain differences, epithelial responses governed by host 

diversity, and/or specific interactions between host and microbial determinants.  

 

While the vast majority of H. pylori in colonized hosts are free-living, approximately 

20% bind to gastric epithelial cells and this adherence is required for induction of injury.  

The H. pylori cag pathogenicity island encodes a type IV secretion system that, following 

adherence, translocates peptidoglycan and CagA into host cells (10, 13, 212, 257, 279, 

306). CagA subsequently undergoes Src-dependent tyrosine phosphorylation and 

activates a eukaryotic phosphatase (SHP-2), eventuating in dephosphorylation of host cell 

proteins and cellular morphological changes (13, 126, 257, 278).  Recently, CagA has 

also been shown to activate ß-catenin and induce NF-κB-mediated IL-8 release from 

gastric epithelial cells (26, 88).  The presence of the cag island influences the topography 

of colonization, as H. pylori cag- strains predominate within the mucus gel layer, while 

cag+ strains are found immediately adjacent to epithelial cells (30).  Concordant with 

these properties, H. pylori strains that harbor a functional cag island are associated with 

an increased risk for ulcer disease and gastric cancer compared to cag- strains (226).  
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Another H. pylori locus linked with pathologic outcomes is vacA, which encodes a 

bacterial toxin (VacA) that induces vacuolation and apoptosis of epithelial cells (43, 163, 

227).  VacA binds to a unique receptor-type protein tyrosine phosphatase, PTPζ, a 

member of a family of receptor-like enzymes that regulate cellular proliferation, 

differentiation, and adhesion (93).  Another virulence factor, an adhesin termed BabA 

(encoded by the H. pylori strain-selective gene babA2), binds the blood-group antigen 

Lewisb on gastric epithelial cell membranes (275), and H. pylori babA2+ strains increase 

the risk for gastric adenocarcinoma (99).  Finally, genetic ablation of parietal cells in 

mice induces gastric epithelial progenitor cells to synthesize NeuAcα2,3Galß1,4 glycan, 

which serves as a receptor for H. pylori, and this is accompanied by an expansion of 

bacterial colonization and inflammation within the glandular epithelium (215, 284). 

Collectively, these results indicate that dynamic and specific interactions between H. 

pylori and host receptors legislate pathologic outcome. 

 

Decay-accelerating factor (DAF) is an intrinsic regulator of complement, which is 

attached to the outer leaflet of the cell membrane (260).  It is a 70 kDa glycoprotein 

containing 4 contiguous 60 amino acid long repeats termed complement control protein 

repeats (CCPs) followed by a serine-threonine rich heavily O-glycosylated C-terminal 

domain that elevates the molecule at the membrane surface (260). DAF is membrane 

linked by a glycosylphosphatidylinositol (GPI)-anchor.  DAF protects self cells from 

complement activation on their surfaces by dissociating membrane-bound C3 convertases 

that are required for cleaving C3 and initiating further propagation of the complement 

cascade.  
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Previous work has shown that DAF is utilized as a cellular receptor for several 

pathogenic organisms including uropathogenic diffusely-adhering E. coli, 

coxsackieviruses, echoviruses, and enteroviruses (17, 34, 111, 117, 120, 144, 207, 236, 

260-262).  Studies by other investigators have shown that expression of DAF is increased 

within H. pylori-infected human gastric tissue compared to uninfected mucosa, and this 

increase is directly related to the density of H. pylori colonization and severity of 

inflammation (18, 238, 252).  It has also been shown that increased DAF expression is 

present in gastric cancer precursor lesions such as intestinal metaplasia and gastric 

adenomas, and in gastric adenocarcinoma specimens compared to non-transformed 

gastric mucosa (152), suggesting that aberrant expression of DAF precedes the 

development of gastric cancer.  Since DAF is over-expressed within H. pylori-associated 

pre-malignant and malignant lesions, we investigated whether H. pylori utilizes DAF as a 

receptor in vitro and the role of DAF within H. pylori-infected gastric mucosa in order to 

define a potential pathogenic response towards this organism.  
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Experimental Procedures 

 

Recombinant cell lines 

Chinese hamster ovary (CHO) cell transfectant clones that stably express human DAF 

cDNA (DAF/A9), cDNA CCP deletion constructs (DAF∆CCP1/029-6B, 

DAF∆CCP2/043-7A, DAF∆CCP3/044-2D, DAF∆CCP4/054-5 x 4), a cDNA 

serine/threonine (S/T) rich region deletion construct (DAF∆S/T), a cDNA S/T region 

deletion construct containing an in-frame fusion of the cDNA encoding the amino-

terminal region of DAF with the carboxy-terminus of HLA-B44 (DAF∆S/T + HLA), or 

vector alone were used as previously described (46).  Cells were cultured at 37oC in 

Ham’s nutrient mixture F-12 (GIBCO-BRL, Rockville, MD) supplemented with 10% 

heat-inactivated fetal bovine serum (FBS, Sigma), 50 U of penicillin/ml, 50 µg of 

streptomycin/ml, 2 mM L-glutamine, nonessential amino acids, and 250 µg of G-418/ml 

when indicated. AGS (ATCC CRL 1739) or MKN28 (kindly provided by Dr. Robert 

Coffey, Vanderbilt University) human gastric epithelial cells were grown in RPMI 1640 

(GIBCO-BRL) with 10% heat-inactivated FBS and 20 µg/ml gentamicin in an 

atmosphere of 5% CO2 at 37
o
C. 

 

Bacterial strains used in vitro 

Experiments were performed with the cag+ toxigenic H. pylori strain J166, as well as 8 

additional (5 cag+ toxigenic, 3 cag- non-toxigenic) well-characterized clinical strains.  

Clinical strains were selected from a larger population of isolates that have been 

previously described as part of an ongoing prospective study designed to study 
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mechanisms of H. pylori pathogenesis (227).  Since we sought to analyze the importance 

of H. pylori genes related to disease, we selected strains that varied in cag status and 

toxin production.  Isogenic cagA, cagE, and vacA null mutants were constructed within 

strain J166 by insertional mutagenesis, using aphA (conferring kanamycin resistance) as 

previously described (54, 227), and were selected on Brucella agar with kanamycin (25 

µg/ml).  H. pylori wild-type P1 and isogenic alpAB mutant strains and alpAB mutant 

constructs were a generous gift from the laboratory of Steffan Backert (Otto von 

Guericke Unviersity, Magdeburg, Germany).  H. pylori wild-type G27 and omp27(hopQ) 

and omp28(babA) mutant strains were generous gifts of Nina Salama (Fred Hutchinson 

Cancer Research Center, Seattle, WA).  The isogenic oipA null mutant was constructed in 

strain 7.13, G27, and J166 by insertional mutagenesis as previously described (325), 

using a chloramphenicol resistance gene cassette (cat), and recombinants were selected 

on Brucella agar containing chloramphenicol (10ug/mL). The isogenic hp1501, hp0605, 

and hp0025 null mutants were constructed in strain 7.13 by insertional mutagenesis as 

previously described (227, 325).  The isogenic wbcJ mutant was generated in strain J166 

as previously described (186).  As bacterial controls, Campylobacter jejuni strain 81176 

and a Dr DAF adhesin negative, flagellated Escherichia coli strain (HB101) were also co-

cultured with CHO cells (54).  

 

Recombinant CHO cells expressing full-length DAF, its domain deletion mutants, or 

vector alone were seeded in 100 mm polypropylene tissue culture dishes (Nunc, 

Denmark) at 2.5 x 106 cells/dish and allowed to grow for 24 hours to subconfluency.  H. 

pylori were grown in Brucella broth with 10% FCS for 18 h, harvested by centrifugation, 
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resuspended to a concentration of 1 x 10
10

 colony forming units (cfu)/ml (OD600=1 equals 

5.5 x 108 cfu/ml), and added to cells at a bacteria:cell ratio of 10:1 (136).  Co-culture 

experiments with viable H. pylori were performed in antibiotic-free media with 10% 

FBS.  For quantitative culture of adherent bacteria, H. pylori:CHO cell co-cultures were 

washed after 4 hours with 2 ml phosphate-buffered saline (PBS; pH 7.6) x 2 to remove 

non-adherent bacteria, and total cell extracts were harvested in 500 µl PBS using a rubber 

policeman as described (54).  Three to six serial 10-fold dilutions (50 µl extract in 450 µl 

PBS) of 500-µl aliquots of cell extracts were cultured on 5% sheep blood agar plates, and 

incubated for 3 to 5 days under microaerobic conditions before H. pylori colonies were 

counted.  Results are expressed as cfu/ml. 

 

Immunofluorescence 

CHO and gastric cells were plated in 4-well chamber slides at 5 x 104 cells/well and 

grown to subconfluency over 18-24 hours, and cells treated with or without H. pylori for 

4 hours (MOI=100) were washed twice with PBS, fixed in 4% paraformaldehyde in PBS 

for 20 min at room temperature, incubated in 0.1% PBST with 5% BSA for 1 hour, and 

then incubated with mouse monoclonal anti-DAF antibody 1H4 (1:100) (46) for 1 hour.  

For dual immunofluorescence, slides were stained with mouse monoclonal anti-DAF 

antibody 1H4 (1:100) and rabbit anti-H. pylori antibody (1:100, DakoCytomation).  

Slides were washed 3x in 0.1% PBST and then incubated with either goat anti-mouse 

Alexa Fluor 546-conjugated antibody (1:100; Molecular Probes) for single 

immunofluorescence or Alexa Fluor 488-conjugated goat anti-rabbit antibody and Alexa 

Fluor 546-conjugated goat anti-mouse antibody (1:100, Molecular Probes) for dual 
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immunofluorescence at room temperature for 1 hour.  Nuclei were stained using DAPI.  

Slides were mounted using Vectashield mounting medium (Vector Laboratories, 

Burlingame, CA), and immunofluorescence was observed using a fluorescence 

microscope (113).  For antibody inhibition studies, CHO cells were pre-incubated with 

anti-DAF monoclonal antibodies (1:100) 11D7 (directed against CCP domain 1), 1H4 

(directed against CCP domain 3), 8D11 (directed against CCP domain 4) (46), and ascites 

fluid containing the monoclonal antibody IF7 (1:1000) (directed against CCP domain 2) 

(111) for 30 minutes prior to infection with H. pylori.  Anti-DAF antibodies were 

provided by Douglas Lublin (Washington University, St. Louis). 

 

Western analysis 

Transfected CHO cells or gastric cells from H. pylori:AGS or H. pylori:MKN28 cell co-

cultures were lysed in RIPA buffer (50 mM Tris, pH7.2; 150 mM NaCl; 1% Trioton X-

100; 0.1% SDS) and protein concentrations were quantified by the Bradford assay 

(Pierce) (54).  Proteins (20 µg) were separated by 8% SDS-PAGE and transferred to 

polyvinylidene difluoride (PVDF) membranes (Pall Corporation, Ann Arbor, MI).  DAF 

levels were measured in gastric cells by Western blotting using anti-DAF (1:1000, 1H4) 

antibodies (54).  Primary antibodies were detected using goat anti-mouse (Santa Cruz) 

horseradish peroxidase-conjugated secondary antibodies and visualized by Western 

Lightning Chemiluminescence Reagent Plus (Perkin-Elmer) according to the 

manufacturer's instructions.  
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Real-time PCR 

MKN28 and AGS gastric epithelial cells were grown to confluence, serum-starved for 24 

hours and then co-cultured with H. pylori for 2, 6, 12, and 24 hours (MOI=100). RNA 

was prepared from H. pylori:gastric cell co-cultures using TRIzol Reagent following the 

manufacturer’s instructions (Invitrogen), and contaminating DNA was removed using the 

RNeasy RNA purification kit (Qiagen).  Reverse transcriptase PCR was performed using 

TaqMan reverse transcription reagents (Applied Biosystems), which was followed by 

real-time quantitative PCR using the TaqMan Gene Expression Assay and a 7300 Real-

Time PCR system (Applied Biosystems).  Daf cDNA was quantitated using a daf 

TaqMan Gene Expressions primer set (Hs00167090_m1) purchased from Applied 

Biosystems and expression levels were normalized to levels of 18S rRNA (VIC labeled).  

 

Mice, bacteria, and experimental infections 

Daf1 knockout mice were developed as described previously (165).  Briefly, the Daf1 

gene on one chromosome was inactivated by homologous recombination and Cre/LoxP-

mediated deletion in murine GK129 embryonic stem cells.  The recombined embryonic 

stem cells were microinjected into blastocytes, chimeras were generated, and the 

chimeric mice were then bred with the C57BL/6 strain.  Eight- to 12-week knockout mice 

and wild-type C57BL/6 mice were used.  All experiments were approved by the Case 

Western Reserve Institutional Animal Care and Use Committee.  Brucella broth 

containing 2 x 107 cfu of the H. pylori rodent-adapted strain SS1 was used as inoculum 

and was delivered by gastric intubation as previously described (95).  
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Eight weeks post-challenge, mice were euthanized.  At necropsy, linear strips extending 

from the squamocolumnar junction through proximal duodenum were fixed in 10% 

neutral-buffered formalin, paraffin-embedded, cut at 5 µM, and stained with hematoxylin 

and eosin.  Indices of inflammation and injury in the gastric cardia, corpus, and antrum 

were scored on an ordinal scale from 0-5 in increments of 0.5 by a single veterinary 

pathologist blinded to treatment groups as previously described (95).  

 

For quantitative culture, gastric tissue was homogenized, plated, and incubated under 

microaerobic conditions at 37oC for 5-6 days as previously described (95).  After 

verification by Gram's stain, urease, catalase and oxidase reactions, colonies were 

counted and comparisons between groups were based on the log cfu/gram of stomach 

tissue as described (95).   

 

Small-interfering RNA 

DAF was knocked down in vitro using small-interfering RNA (siRNA).  Daf specific 

siRNA (Dharmacon Smartpool siGENOME cat# M-004573-00) was transiently 

transfected into MKN28 and AGS gastric epithelial cells.  Fluorescently labeled siGLO 

Cyclophilin B siRNA (Dharmacon) was used as a positive control for mRNA knock-

down and transfection efficiency.  A siGLO RISC-Free siRNA (Dharmacon), which is 

chemically modified to inhibit RISC uptake and processing and does not target any 

known genes, was used as a control for transfection efficiency and non-specific effects of 

introducing siRNAs into cells.  A siCONTROL non-targeting siRNA (Dharmacon), 

which is processed by RISC but does not target any known genes, were used as a 
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negative control for non-specific effects of siRNA.  siRNA stocks were resuspended in 

1x siRNA buffer (Dharmacon) to a concentration of 20 µM. AGS and MKN28 gastric 

epithelial cells were plated in 12-well plates at 1 x 105 and 2 x 105 respectively in 1 ml 

antibiotic free RPMI.  Dharmafect 2 transfection reagent was used for transient 

transfection.  siRNA (0.5 µl/well for 10 µM) was added to opti-MEM (50 µl/well) and in 

a separate tube Dharmafect 2 (2 µl/well) was added to opti-MEM (50 µl/well) and 

incubated at room temperature for 5 minutes.  The 2 tubes were then mixed and incubated 

at room temperature for 20 minutes.  100 µl of transfection mixture was added to each 

well.  Daf mRNA knock-down was assessed at 24 and 48 hours using real-time qRT-

PCR.  DAF protein levels were measured using Western immunoblotting.  Once optimal 

conditions were identified for significantly reduce levels of DAF protein, cells were 

incubated with H. pylori strain J166 and isogenic cagA and cagE mutants as controls for 

6 hours at an MOI of 100.  CagA translocation and phosphorylation were assessed by 

Western immunoblotting using anti-CagA and anti-phosphotyrosine antibodies as 

previously described (257).   

 

IL-8 enzyme-linked immunosorbant assay (ELISA) 

Cell culture media was collected from cells that had been co-cultured with H. pylori 

strain J166 at a MOI of 100 and IL-8 induction was quantified using an Quantikine IL-8 

ELISA kit (R&D Systems, Inc.) according to the manufactures instructions as previously 

described (113, 298).   
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Statistical analysis 

The Mann-Whitney U test was used for statistical analyses of inter-group comparisons.  

Significance was defined as p<0.05. 
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Results 

 
Expression of human DAF increases cellular binding of H. pylori in vitro 

To determine if DAF mediates H. pylori binding to host cells, we used CHO cells stably 

transfected with a human DAF cDNA or vector alone (Figure 7A) and co-cultured the 

transfectants with a well-characterized H. pylori strain, J166, which is easily 

transformable and binds well to gastric epithelial cells (230).  We assessed binding by 

quantitative culture.  Compared to cells lacking DAF, H. pylori strain J166 bound more 

avidly to DAF-expressing cells and recoverable colony-forming units (cfu) were >1 log-

fold higher following only 4 hours of co-culture (Figure 7B).  

 

To further assess DAF binding by H. pylori, we used immunofluorescence. For this, 

strain J166 was co-cultured with CHO cells that either did or did not express DAF. A 

significantly greater number of H. pylori adhered to DAF+ versus DAF- CHO cells 

(Figure 7C).  

 

To insure that H. pylori binding to DAF was a specific interaction rather than a non-

specific bacterial response of the cells to bacteria, we incubated DAF+ and DAF- CHO 

cells with equivalent numbers of non-diffusely adhering E. coli or C. jejuni for 4 hours 

and measured binding by quantitative culture.  Adherence of E. coli or C. jejuni did not 

differ between CHO cells that either expressed or did not express DAF (Figure 7B).  

Thus, the DAF interaction specifically mediated adherence of H. pylori to host cells.   
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Figure 7.  H. pylori strain J166 adheres significantly more avidly to CHO cells 
expressing full-length human DAF.  A.) Western blot for human DAF using CHO cells 
transfected with either full-length human DAF or vector alone.  B.) CHO cells transfected 
with either full-length DAF (DAF+) or vector alone (DAF-) were incubated with H. pylori 
strain J166, E. coli strain HB101, or C. jejuni strain 81176 (10:1 bacteria:epithelial cell 
ratio). Bacterial adherence was assessed using quantitative culture as described in 
Experimental Procedures. Error bars, SEM. *, p<0.05 versus infected DAF- cells. C.) 
Distribution of H. pylori (green) and DAF (red) in CHO cells transfected with either full-
length human DAF or vector alone was detected by immunofluorescence as described in 
Experimental Procedures. 
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Binding to DAF is independent of H. pylori virulence constituents encoded by the cag 
pathogenicity island or vacA 
 
The H. pylori cag island and vacA induce epithelial responses that may lower the 

threshold for disease.  Consequently, we examined the effects of these virulence 

determinants on binding of H. pylori to DAF-expressing cells.  To do this, we co-cultured 

DAF+ or DAF- CHO cells with H. pylori wild-type cag+ toxigenic strain J166 or isogenic 

cagA, cagE, or vacA null mutant derivatives.  Compared to the parental wild-type strain, 

loss of cagA had no effect on binding to DAF (Figure 8A).  Inactivation of cagE or vacA 

decreased the extent of bacterial binding compared to the wild-type strain; however, the 

level of reduction was similar in DAF-expressing and DAF-deficient CHO cells (Figure 

8A).  These results indicate that, although cagE and vacA may contribute to binding of H. 

pylori to host cells, these effects do not involve DAF. 

 

The extent of H. pylori binding to DAF-expressing cells varies among a population of 
clinical isolates 
 
Most persons infected with H. pylori cag+ toxigenic strains remain asymptomatic, 

suggesting that additional microbial and/or host factors influence disease.  Therefore, we 

next investigated DAF binding patterns among a population of clinical H. pylori isolates.  

Although absolute levels varied between different isolates, all 9 strains tested (6 cag+ 

toxigenic, 3 cag- non-toxigenic) displayed at least a 10-fold increase in binding affinity to 

DAF+ versus DAF- CHO cells (Figure 8B).  Levels of binding did not segregate with cag 

genotype or toxigenicity, confirming the results from isogenic mutant experiments 

(Figure 8A). 
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Figure 8. Adherence of H. pylori strain J166 to DAF-expressing cells is not mediated 
by the cag pathogenicity island or vacA.  A.) CHO cells transfected with either full-
length DAF (DAF+) or vector alone (DAF-) were cultured in the presence of the H. pylori 
cag+ toxigenic strain J166 or isogenic cagA, cagE, or vacA null mutant derivatives at 
bacteria:cell ratios of 10:1. Adherence was assessed by quantitative culture. Error bars, 
SEM. *, p<0.05 versus infected DAF- cells. B.) Adherence to DAF+ or DAF- CHO cells 
by H. pylori clinical isolates with varying cag island status and toxigenic phenotypes was 
assessed using quantitative culture. Results are expressed as a ratio of H. pylori recovered 
from DAF+ versus DAF- cells. A representative result of multiple repetitions performed 
on at least 2 occasions is shown. 
 



 

53 

The H. pylori interaction with DAF is not mediated by several known adhesins and outer-
membrane proteins 
 
To better understand the H. pylori:DAF interaction, we sought to identify the H. pylori 

adhesin that binds DAF.  To do this we generated isogenic mutants in several well-known 

H. pylori adhesins (BabA, SabA, AlpAB), outer-membrane proteins that are involved in 

pathogenesis and may be associated with adherence (OipA and HopQ), and putative 

OMPs that have not been well characterized (Omp2, Omp32, and HefA).  Because LPS 

antigenic modifications are associated with adherence, we also generated an isogenic 

wbcJ mutant that is defective in LPS modification and as a result does not present LeX, 

LeY, or O-antigens on the bacterial cell surface (186, 198).  Table 1 lists the isogenic 

mutants and the parental strains in which the mutants were generated.  These wild-type 

strains and the isogenic mutants were tested for DAF adherence by co-culture with DAF+ 

and DAF- CHO cells and quantitative culture.  Wild-type H. pylori strain P1 does not 

bind well to either DAF+ or DAF- CHO cells.  Wild-type strains G27 and 7.13 do adhere 

significantly more avidly to the DAF+ versus DAF- cells.  None of the isogenic mutants 

demonstrated a significant attenuation in DAF binding.  These results indicate that the 

genes listed in Table 1 are not necessary for the H. pylori interaction with DAF.  

 

Binding of H. pylori to CHO cells that express mutant DAF 

DAF is composed of four CCPs, and microbial pathogens vary in their utilization of CCP 

domains for binding.  Based on this, we next localized the sites on DAF that H. pylori 

utilize by studying CHO cells stably transfected with deletion mutants of each of the four  



 

54 

 

 

 

Table 1. H. pylori parental strains and 
isogenic mutants tested for adherence to 
DAF+ vs DAF- CHO cells in which no 
difference in DAF affinity was determined 
for WT vs. isogenic mutant 

Null Gene 
H. pylori 
strain(s) 

babA (omp28) 7.13, G27 

sabA 7.13 

alpAB J166, P1 

oipA 7.13, J166, G27 

hopQ (omp27) G27 

wbcJ J166 

omp32 (hp1501) 7.13 

hefA (hp0605) 7.13 

omp2 (hp0025) 7.13 
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DAF CCP domains.  Each deletion mutant expresses an amount of DAF at least equal to 

cells expressing wild-type DAF (46).  Removal of CCP domains 1, 2 or 3 completely 

abolished H. pylori binding to DAF (Figure 9), whereas removal of CCP 4, the domain 

in closest apposition to the cell surface, resulted in an approximate 60-70% reduction in 

binding.  

 

To further confirm the role of CCP domains for H. pylori binding, DAF+ and DAF- CHO 

cells were pre-treated with the DAF CCP-specific monoclonal antibodies (mAbs) 11D7, 

IF7, IH4, and 8D11 prior to infection with H. pylori strain J166.  Pre-incubation with 

each individual mAb alone did not reduce H. pylori binding to DAF+ cells (data not 

shown).  However, pre-incubation with an equal mixture of the four CCP-specific mAbs 

completely blocked adherence of H. pylori to DAF-expressing cells (Figure 9B), 

confirming results using cells transfected with DAF CCP deletion mutants (Figure 9A).  

 

DAF CCP domains are linked to a serine/threonine (S/T)-rich heavily O-glycosylated C-

terminal domain that elevates the molecule at the membrane surface.  Since H. pylori can 

bind to carbohydrate residues on cell surfaces (1,2), we determined the requirement for 

the DAF S/T region by utilizing a CHO cell transfectant clone that stably expresses a 

DAF cDNA construct containing a deletion of the S/T-rich domain, or a clone expressing 

a S/T deletion construct that attaches the four CCP domains to the unrelated non-

complement protein HLA-B44.  The latter construct is anchored by the transmembrane  
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Figure 9. Adherence of H. pylori to DAF-expressing cells is mediated by multiple 
DAF domains. A.) Attachment of H. pylori strain J166 to CHO cells expressing either 
full-length DAF or individual CCP or S/T region deletion mutants. H. pylori strain J166 
was co-cultured with CHO cells stably transfected with either full-length human DAF 
(DAF+), vector alone (DAF-), a series of deletion mutants that individually lack one of 
the four DAF CCP domains, a serine/threonine (S/T) rich region deletion mutant (∆S/T), 
or a S/T rich region deletion mutant containing an in-frame fusion of the cDNA encoding 
the amino-terminal region of DAF with the carboxy-terminus of HLA-B44 (∆S/T + 
HLA). Bacterial adherence was assessed using quantitative culture as described in 
Experimental Procedures and is expressed as a ratio of DAF+:DAF- cells. Therefore, a 
value of 1 represents baseline. Error bars, SEM. *, p<0.05 versus infected DAF- cells. B.) 
Binding of H. pylori to CHO cells transfected with either full-length human DAF or 
vector alone in the presence or absence of an equal mixture of anti-DAF CCP-specific 
monoclonal antibodies 11D7, IF7, 1H4 or 8D11, or an irrelevant anti-Myc monoclonal 
antibody was detected by immunofluorescence as described in Experimental Procedures. 
Error bars, SEM. *, p<0.05 versus infected DAF- cells. 
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and cytoplasmic domains of HLA-B44 and functions efficiently as a complement 

regulatory protein.  Results from binding experiments using both of these S/T deficient 

DAF clones demonstrate that removal of the O-glycosylated region decreased H. pylori 

binding to DAF (Figure 9A), indicating that the S/T region does not simply function as a 

non-specific spacer for binding.  These results indicate that H. pylori binding to DAF 

either involves all CCP domains, or is dependent on DAF’s conformation in its intact 

state.  

 
H. pylori induces DAF expression in human gastric epithelial cells 

Since H. pylori is a human pathogen that selectively colonizes gastric epithelium, we 

investigated whether H. pylori alters DAF expression in human gastric epithelial cells.  

Real-time PCR analysis demonstrated that H. pylori induced DAF expression in MKN28 

(Figure 10A) and AGS (data not shown) gastric epithelial cells beginning at 2 hours.  

Levels decreased to baseline by 24 hours post-inoculation. H. pylori co-culture mRNA 

changes reflected increased DAF protein expression since increases in levels were 

detected at 6 hours and DAF protein remained elevated for 24 hours (Figure 10B).  

Immunofluorescence staining confirmed the increased DAF expression on MKN28 

gastric epithelial cells following co-culture with H. pylori (Figure 10C).  These results 

indicate that the prototype H. pylori strain J166 induces transcriptional up-regulation of 

DAF in human gastric epithelial cells.  

 
H. pylori-induced gastric inflammation is attenuated in the absence of DAF 

To determine if the DAF binding is physiologically relevant within the context of H. 

pylori-induced inflammation in vivo, we utilized Daf1-/- mice and the rodent-adapted H.
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Figure 10. H. pylori strain J166 up-regulates DAF in gastric epithelial cells. A.) 
MKN28 gastric epithelial cells were cultured for 24 hours prior to incubation with H. 
pylori strain J166. Levels of daf mRNA were determined by real-time RT-PCR as 
described in Experimental Procedures and were normalized to corresponding levels of 
18S rRNA. Results are expressed as fold increase in daf mRNA in H. pylori-infected 
versus uninfected samples. Error bars, SEM. *, p<0.05 versus uninfected cells at time 0. 
B.) MKN28 cells were cultured for 24 hours prior to incubation with H. pylori strain 
J166. Cell extracts harvested at different time-points were then used for Western blot 
analysis using an anti-DAF antibody as described in Experimental Procedures. (-), cells 
incubated with medium alone. A representative blot is shown. Anti-actin blots served as 
normalization controls for MKN28 cell viability under different experimental conditions. 
Equal protein loading was also determined by Fas green staining (not shown). C.) 
Distribution of DAF (red) in AGS gastric epithelial cells was detected by 
immunofluorescence following infection with medium alone (left panel) or H. pylori 
strain J166 (right panel) for 24 hours. 
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 pylori strain SS1.  We infected wild-type and Daf1-/- mice in 2 independent challenges 

and followed disease outcome.  All mice challenged with H. pylori were successfully 

infected and there were no differences in colonization efficiency or density between wild-

type and DAF deficient mice (Figure 11A). 

 

Eight weeks post-challenge, there were few lesions in the stomachs of wild-type or Daf1-

/- mice inoculated with broth alone (Figure 11B), whereas, as expected, all wild-type 

mice challenged with H. pylori developed gastritis.  Inflammation was most extensive at 

the transition zones between the antrum or cardia and the corpus.  Inflammatory cells 

within infected mucosa consisted of polymorphonuclear cells and large mononuclear 

cells in the lamina propria (Figure 12).  In the lamina propria, the infiltrate separated and 

displaced the glands (Figure 12).  Gastric pits were lengthened and were lined by less 

mature flattened epithelial cells with basophilic cytoplasm; mitotic figures were 

frequently identified.  In the submucosa, edema often accompanied the cellular infiltrate 

(Figure 12). 

 

In contrast to infected wild-type mice, in H. pylori-colonized DAF deficient mice, the 

intensity of inflammation was significantly attenuated (p=0.013; Figures 11B, 12).  

Moreover, there were no differences in severity of gastritis between uninfected and 

infected Daf1-/- mice (p=0.53; Figure 11B).  These results thus indicate that DAF 

contributes to the ability of H. pylori to induce injury within the gastric niche. 
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Fig. 11. DAF deficiency significantly attenuates inflammation, but not colonization 
density, in H. pylori-infected mice. A.) Wild-type (WT) or Daf -/- littermates were 
infected with H. pylori strain SS1 for 8 weeks in 2 independent experiments. 
Colonization density was determined by quantitative culture as described in Experimental 
Procedures and results are expressed as log cfu/gram of stomach tissue. Error bars, SEM. 
B.) Comparison of gastric inflammation in wild-type (WT) or Daf -/- mice infected with 
H. pylori strain SS1 or broth alone. Mucosal inflammation was determined by histologic 
testing, as described in Experimental Procedures, and scores are expressed as scatter-
plots with mean values. *, p=0.013 versus H. pylori-infected Daf -/- mice. 
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Figure 12.  Development of inflammation and injury within the gastric corpus of H. 
pylori-infected wild-type, but not Daf -/- mice, 8 weeks post-inoculation. 
Representative hematoxylin and eosin stains are shown (original magnification x 40). 
Mild-moderate inflammation is present within the lamina propria of H. pylori-infected 
wild-type mice (left panel, arrows). In contrast, no significant inflammation or injury is 
present within gastric mucosa of H. pylori-infected Daf -/- mice (right panel). 
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DAF silencing does not affect CagA translocation or phosphorylation 

We have shown that the inflammatory response initiated by H. pylori infection was 

significantly attenuated in Daf -/- mice; therefore, we sought to determine the pro-

inflammatory signaling events that may be initiated by the interaction of H. pylori with 

DAF.  An important mediator of H. pylori induced inflammation is expression of IL-8.  

While DAF is a GPI-anchored protein with no cytoplasmic signaling domain, it has been 

shown to associate with other signaling molecules such as the TLR-4 signaling complex 

as well as the Src family of protein tyrosine kinases (121, 232, 266, 277).  Also, the H. 

pylori pathogenicity factor CagA is phosphorylated by the Src and Abl family of kinases 

upon translocation into host cells (257, 286).  Therefore, we hypothesized that DAF may 

represent a novel signaling receptor that mediates the effects of the cag island.   

 

To test this hypothesis, we silenced DAF in vitro using siRNA and examined the 

translocation and phosphorylation of CagA and levels of induced H. pylori induced IL-8. 

Transfection with 10 µM anti-DAF siRNA effectively reduced daf mRNA expression to 

10-15% of control levels 24 hours post-transfection in both AGS (Figure 13A) and 

MKN28 cells (data not shown) and DAF protein was undetectable by western blot at 24 

hours post-transfection.  Therefore, we began co-culture of DAF knock-down cells with 

H. pylori 24 hours post-transfection.  H. pylori strain J166 was co-cultured with both 

AGS and MKN28 cells for 6 hours and CagA translocation and phosphorylation were 

measured by western blot (Figure 13B).  We found that knock-down of DAF had no 

effect on CagA translocation or phosphorylation, suggesting that DAF is not necessary 

for the delivery of CagA or subsequent Src/Abl mediated phosphorylation.  In addition, 
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silencing of DAF had no effect on cag dependent H. pylori induction of IL-8 (Figure 

13C).  
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Figure 13.  DAF is not a mediator of in vitro translocation/phosphorylation of CagA 
or the induction of IL-8.  A.) AGS cells were transiently transfected with either 10, 50, 
or 100 µM scrambled control or DAF siRNA for 24 and 48 hours.  Levels of daf mRNA 
were measured using real-time RT-PCR. Data are expressed as percent expression of 
untreated sample at the corresponding time point. B.) AGS cells were transiently 
transfected with 10 µM scrambled siRNA or DAF siRNA for 24 and 48 hours and then 
infected with the H. pylori strain J166 for 6 hours. Cell lysates were collected and 
analyzed using a western immunoblot.  The blot was stained using anti-DAF, anti-
phosho-CagA, anti-CagA, and anti-Actin antibodies. C.) Co-culture supernatants from 
control or H. pylori infected control and siRNA treated cells were subjected to an IL-8 
ELISA. The experiments were repeated on 3 occasions.  Error bars, SEM; *, p≤0.05. 
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Discussion 

 

Colonization of humans by pathogenic bacteria is common, but disease occurs in only a 

fraction of infected persons.  Our current experiments identify a new mechanism that may 

contribute to H. pylori pathogenesis.  This insight was gained by 1) capitalizing on a 

recombinant cell model to demonstrate that the protein DAF serves as a receptor for H. 

pylori, 2) finding that H. pylori can induce DAF expression in a biologically relevant in 

vitro model of microbial:gastric epithelial cell interaction, 3) both confirming and 

mapping the components of DAF required for these effects, and 4) through the use of a 

Daf1-/- knockout mouse, documenting that the interaction is important for pathogenesis.  

Collectively, these studies indicate that H. pylori co-opts DAF as a receptor to induce 

disease. 

 

The hallmark of the gastric inflammatory response to H. pylori is its capacity to persist for 

decades.  This is in contrast to inflammatory reactions induced by other mucosal 

pathogens, such as Salmonella, that either resolve within days or progress to eliminate the 

host.  Research to date has shown that H. pylori has evolved numerous strategies to 

facilitate its persistence within the stomach including limiting the bactericidal effects of 

pro-inflammatory molecules (104) and varying the antigenic repertoire of surface-exposed 

proteins (9).  Adherence of H. pylori to gastric epithelial cells is also critical for 

colonization.  According to our data, the ability of H. pylori to utilize DAF as a receptor 

contributes to the latter strategy and is consistent with the role that this molecule plays in 

other host:microbial interactions involving persistent pathogens.  E. coli that express 
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DAF-binding Dr adhesins cause chronic interstitial nephritis (259).  Echoviruses and 

coxsackieviruses that target DAF as a receptor are associated with chronic fatigue 

syndrome and chronic dilated cardiomyopathy, respectively (179, 327).  The current 

studies focused on H. pylori:DAF interactions further implicate DAF as a receptor that is 

exploited by pathogens notable for their ability to induce chronic inflammation, injury, 

and disease. 

 

Our in vitro results indicate that binding of DAF by H. pylori requires all of the CCP 

domains and the S/T-rich O-glycosylated region, a pattern that is distinct from those 

involved in DAF binding by other pathogens.  For example, Dr-expressing E. coli require 

CCP2 and CCP3 (111, 117, 207).  E. coli that express X adhesins, require CCP3 and 

CCP4 (26).  Echovirus 7 utilizes CCPs 2-4 (34, 120) and coxsackieviruses A21 and B3 

exploit CCP1 and CCP2, respectively (17, 144, 262).  Another layer of complexity 

beyond the scope of this investigation is added when results from inhibition studies are 

considered.  Anti-DAF antibodies that block cellular binding of coxsackievirus 21 

reciprocally enhance binding of echovirus 7 (261), raising the possibility that ligand 

binding of one CCP domain affects binding of another CCP moiety within the same DAF 

molecule.  Importantly, we have a unique in vitro model of bacterial:epithelial interactions 

using an H. pylori strain that is easily transformable in which to evaluate the individual 

and collective effects of each of these factors. 

 

We were unsuccessful in identifying the H. pylori adhesin that binds DAF.  However, H. 

pylori strain P1 may lack the adhesin needed for DAF binding, which may present an 
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opportunity to identify the adhesin by RNA microarray or proteomic comparison of strain 

P1 and a strain that binds well to DAF expressing cells such as J166.  We have also 

determined that the DAF binding protein is likely a novel adhesin that may be represented 

by one of the poorly described H. pylori OMPs or hypothetical proteins. 

 

Murine models have provided valuable insights into the host, bacterial, and environmental 

factors involved in H. pylori-induced gastric inflammation and injury.  Using a Daf1-/- 

mouse, we now demonstrate that loss of DAF does not alter colonization but attenuates 

the inflammatory response to H. pylori.  This may occur via more than one mechanism.  

Based on our in vitro data, DAF does not play a role in CagA translocation or 

phosphorylation and is not necessary for the induction of IL-8.  Therefore, the immuno-

modulatory role played by DAF is not likely due to cag PAI-mediated effects.  Our 

available data so far indicate that H. pylori up-regulates DAF in gastric epithelial cells.  

This is consistent with reports from other investigators that DAF expression is increased 

within infected human gastric mucosa, where it localizes to the apical surface of gastric 

epithelial cells (18, 238, 252).  One possibility raised by our findings is that in addition to 

direct bacterial stimulation, expression of DAF can be increased by H. pylori-induced pro-

inflammatory cytokines such as IL-1ß and TNF-α, which are up-regulated in response to 

transepithelial migration of neutrophils (21, 22).  DAF has also been recently identified as 

an apical epithelial ligand for polymorphonuclear cells that regulates the rate of neutrophil 

migration across apical epithelial membranes (160).  Finally, since H. pylori binding to 

DAF involves its complement regulatory CCP2 and 3 domains, the binding might affect 

complement activation.  All these questions will require further study.  Thus, DAF 
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regulated by both H. pylori and host immune mediators is well-positioned to modulate the 

inflammatory response to this pathogen. 

 

In conclusion, H. pylori binds avidly to cells expressing human DAF and this is mediated 

by DAF CCPs 1-4 and the O-glycosylated serine threonine rich C-terminal domain.  H. 

pylori induces transcriptional up-regulation of DAF in gastric epithelial cells and in vivo, 

DAF deficiency decreases the intensity of inflammation in H. pylori-infected mice.  

Taken together, these data open a new avenue of investigation in pathogenic mechanisms 

underlying H. pylori infection. 
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CHAPTER III 

 

REGULATION OF THE HELICOBACTER PYLORI CELLULAR RECEPTOR 
DECAY-ACCELERATING FACTOR 

 

Summary 

 

Chronic gastritis induced by Helicobacter pylori is the strongest known risk factor for 

peptic ulceration and distal gastric cancer, and adherence of H. pylori to gastric epithelial 

cells is critical for induction of inflammation. One H. pylori constituent that increases 

disease risk is the cag pathogenicity island, which encodes a secretion system that 

translocates bacterial effector molecules into host cells. Decay-accelerating factor (DAF) 

is a cellular receptor for H. pylori and a mediator of the inflammatory response to this 

pathogen. H. pylori induces DAF expression in human gastric epithelial cells; therefore, 

we sought to define the mechanism by which H. pylori up-regulates DAF and to extend 

these findings into a murine model of H. pylori-induced injury. Co-culture of MKN28 

gastric epithelial cells with the wild-type H. pylori cag+ strain J166 induced 

transcriptional expression of DAF, which was attenuated by disruption of a structural 

component of the cag secretion system (cagE). H. pylori-induced expression of DAF was 

dependent upon activation of the p38 mitogen-activated protein kinase pathway, but not 

NF-κB. Hypergastrinemic INS-GAS mice infected with wild-type H. pylori demonstrated 

significantly increased DAF expression in gastric epithelium versus uninfected controls 

or mice infected with an H. pylori cagE- isogenic mutant strain. These results indicate 

that H. pylori cag+ strains induce up-regulation of a cognate cellular receptor in vitro and 
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in vivo in a cag-dependent manner, representing the first evidence of regulation of an H. 

pylori host receptor by the cag pathogenicity island. 
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Introduction 

 

Helicobacter pylori induces an inflammatory response in the stomach that persists for 

decades and increases the risk not only for peptic ulceration, but also for gastric 

adenocarcinoma and non-Hodgkins lymphoma of the stomach (200, 226). Gastric 

adenocarcinoma is the second leading cause of cancer-related death in the world, and 

chronic gastritis induced by H. pylori is the strongest known risk factor for this 

malignancy (20, 23, 38, 70, 199, 226). However, only a fraction of infected persons ever 

develop cancer, underscoring the importance of defining mechanisms that regulate 

biological interactions between H. pylori and their hosts that promote transformation.  

 

While the vast majority of H. pylori in colonized hosts are free-living, approximately 

20% bind to gastric epithelial cells and adherence is important in the induction of injury 

(124). BabA is an outer-membrane protein (OMP) encoded by the strain-specific gene 

babA2, which binds the Lewisb (Leb) histo-blood-group antigen on gastric epithelial cells 

(99, 134). BabA binding specificities reflect H. pylori strain adaptation to different 

glycosylation patterns that predominate in a particular host population and BabA-

mediated Leb binding can be altered by both bacterial phase variation and genetic 

recombination (275). Another H. pylori adhesin, SabA, binds the sialyl-Lewisx (sLex) 

antigen, which is an established tumor antigen and marker of gastric dysplasia (176). 

Gastric inflammation induced by H. pylori up-regulates the expression of sLex on 

epithelial cells, which amplifies interactions between this molecule and SabA. 
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We recently identified another H. pylori receptor, Decay-accelerating factor (DAF), that 

is up-regulated following bacterial contact (209). DAF is an intrinsic regulator of 

complement that is attached to the outer leaflet of the cell membrane by a GPI anchor 

(260). DAF protects cells from complement activation on their surfaces by dissociating 

membrane-bound C3 convertases that are required for cleaving C3 and further 

propagating the complement cascade.  DAF can also be utilized as a cellular receptor by 

several pathogenic organisms associated with chronic inflammatory diseases, including 

uropathogenic diffusely-adhering E. coli, coxsackieviruses, echoviruses, and 

enteroviruses (17, 34, 111, 117, 120, 144, 207, 236, 260-262). 

 

Expression of DAF is increased within H. pylori-infected human gastric tissue compared 

to uninfected mucosa, and the intensity of expression is directly related to the density of 

H. pylori colonization and severity of inflammation (18, 238, 252). We recently 

demonstrated that DAF influences the inflammatory response to H. pylori as infected 

DAF deficient mice developed significantly less severe inflammation compared to 

infected wild-type mice, suggesting that the interaction between H. pylori and DAF is 

important for pathogenesis (209). 

 

In addition to host effectors that mediate injury, H. pylori constituents can also regulate 

pathogenic responses. Following adherence, H. pylori strains that possess a type IV 

secretion system (TFSS) encoded by the cag pathogenicity island (PAI), translocate 

CagA and components of peptidoglycan into host cells (10, 13, 212, 256, 257, 279, 306). 

CagA subsequently undergoes Src and Abl-dependent tyrosine phosphorylation and 
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activates a eukaryotic phosphatase (SHP-2), eventuating in dephosphorylation of host cell 

proteins and cellular morphological changes (13, 125, 126, 257, 278, 286). H. pylori 

peptidoglycan components delivered by the cag secretion system are recognized by the 

intracellular pattern recognition receptor NOD1, which initiates cell-signaling events 

including activation of NF-κB (306). In vivo, the presence of the cag island also 

influences the topography of colonization, as H. pylori cag- strains predominate within 

the mucus gel layer, while cag+ strains are found immediately adjacent to epithelial cells 

(30). Compared to cag- strains, H. pylori cag+ strains augment the risk for severe 

pathologic outcomes, such as peptic ulceration and gastric cancer (226). Since adherence 

likely plays a critical role in pathogenesis, we sought to delineate the host and bacterial 

factors that mediate H. pylori induction of DAF. We demonstrate that H. pylori cag+ 

strains up-regulate DAF expression in gastric epithelial cells in vitro and in vivo in a cag-

dependent manner, and that this induction is mediated by p38 MAP kinase activation. 
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Experimental Procedures 

 

Reagents and constructs 

 Actinomycin D, cycloheximide, the p38 inhibitor SB203580, and the JNK1/2/3 inhibitor 

JNK inhibitor II were obtained from Calbiochem, while the MEK1/2 inhibitor PD98059 

was obtained from Cayman Chemical.  Mouse monoclonal anti-DAF antibodies IA10 

(BD PharMingen) and MCA1614 (AbD Serotec) were used for Western analysis and 

immunohistochemistry respectively. The pNF-κB luciferase vector (Clontech) and pRL 

Renilla luciferase vector (Promega) were used for NF-κB luciferase studies. Dominant-

negative mutant ΙκΒα S32/36A and dominant-negative IKKβ K44A constructs were used 

for NF-κB inhibition studies (generous gifts of Dr. Andrew Neish, Emory University 

School of Medicine) (330).  

 

Cell Culture 

MKN28 human gastric epithelial cells (kindly provided by Dr. Robert Coffey, Vanderbilt 

University) were grown in RPMI 1640 (GIBCO-BRL) with 10% heat-inactivated FBS 

and 20 µg/ml gentamicin in an atmosphere of 5% CO2 at 37
o
C. 

 

Bacterial strains 

Experiments were performed with the H. pylori cag+ strains J166 and 7.13 (88, 209). 

Isogenic cagA, cagE, and cagM null mutants were constructed by insertional 

mutagenesis, using aphA (conferring kanamycin resistance) as previously described (54, 

227), and were selected on Brucella agar with kanamycin (25 µg/ml). Heat-killed H. 
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pylori were generated by heating the bacteria to 80°C for 10 minutes. H. pylori lysates 

were generated by sonication as previously described (100). Lysates were then sterilized 

using a 0.2µm pore size filter. 

 

Western analysis 

MKN28 gastric epithelial cells were grown to confluence, then cultured in serum-free 

medium for 24 hours and then co-cultured with H. pylori for specified times at a 

multiplicity of infection (MOI) of 100. H. pylori-infected and uninfected MKN28 cells 

were lysed in RIPA buffer (50 mM Tris, pH 7.2; 150 mM NaCl; 1% Triton X-100; 0.1% 

SDS) and protein concentrations were quantified by the BCA assay (Pierce) (54).  

Proteins (30 µg) were separated by SDS-PAGE and transferred to polyvinylidene 

difluoride (PVDF) membranes (Pall Corporation, Ann Arbor, MI). DAF levels were 

examined in gastric cells by Western blotting using an anti-DAF (1:1000, IA10) 

antibody. Primary antibodies were detected using goat anti-mouse horseradish 

peroxidase-conjugated secondary antibodies (Santa Cruz) and visualized by Western 

Lightning Chemiluminescence Reagent Plus (Perkin-Elmer) according to the 

manufacturer's instructions. Western blots were imaged and band intensities were 

quantified using the ChemiGenius Gel Bio Imaging System (Syngene). 

 

Real-time quantitative RT-PCR 

MKN28 gastric epithelial cells were grown to confluence, then cultured in serum-free 

medium for 24 hours and then co-cultured with H. pylori for specified times (MOI=100). 

RNA was prepared from H. pylori:gastric cell co-cultures using the RNeasy RNA 
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purification kit (Qiagen) following the manufacturer’s instructions. Reverse transcriptase 

PCR was performed using TaqMan reverse transcription reagents (Applied Biosystems), 

which was followed by real-time quantitative PCR using the TaqMan Gene Expression 

Assay and a 7300 Real-Time PCR system (Applied Biosystems). Daf and gapdh cDNA 

were quantified using a TaqMan Gene Expressions primer set purchased from Applied 

Biosystems. Fold induction of daf mRNA was determined from the threshold cycle 

values normalized for gapdh mRNA expression and was then normalized to the value 

derived from cells cultured with medium alone. 

 

Transfections and Luciferase assay 

MKN28 cells were transiently transfected using Fugene 6 reagent (Roche) per the 

manufacturer’s instructions.  For transfection in 24-well plates, MKN28 cells were plated 

at 1 x 105 cells/well.  The expression constructs were used at the following concentrations 

per well: pNF-κB luciferase, 50 ng; pRL Renilla luciferase, 5 ng; pDN-IκBα, 50 ng; 

pDN-IKKβ, 50 ng.  Sheared salmon sperm DNA was used to bring total DNA to 200 

ng/well.  Fugene 6 was aloud to come to room temperature.  In separate tubes DNA and 

Fugene 6 (0.6 µl/well) were mixed with opti-MEM (10 µl/well) and incubated at room 

temperature for 5 minutes.  DNA/opti-MEM and Fugene 6/opti-MEM mixtures were then 

mixed and incubated for 20 minutes at room temperature.  Transfection mixtures were 

then added to cells (20 µl/well).  Cells were allowed to incubate with the transfection 

mixture for 24 hours, then cultured in serum-free medium for an additional 24 hours, and 

then co-cultured with H. pylori strain J166 (MOI=100). Samples were assayed for 
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luciferase activity on a TD-20/20 Luminometer (Turner Designs) using the Dual 

Luciferase® reporter kit (Promega) according to the manufacturer’s instructions. 

 

Experimental animal infections 

All procedures were approved by the Institutional Animal Care Committee of Vanderbilt 

University. Male INS-GAS transgenic mice on the FVB/N background, 6-8 weeks of age, 

were challenged with either sterile Brucella broth, wild-type H. pylori strain 7.13, or a 

7.13 cagE- mutant by oral gavage as previously described (87). Mice were euthanized at 

4, 12, and 24 weeks post-challenge. At necropsy, linear strips extending from the 

squamocolumnar junction through proximal duodenum were fixed in 10% neutral-

buffered formalin, paraffin-embedded, and cut at 5 µM increments. Sections were then 

deparaffinized and DAF immunohistochemical (IHC) staining was carried out as 

previously described (88) using the anti-DAF antibody MCA1614 (Serotec). A single 

pathologist (Elizabeth Harris), experienced in murine pathology and blinded to treatment 

groups, scored DAF IHC staining on an ordinal scale from 0-4 by as previously described 

(265).  

 

To assess colonization, gastric tissue was homogenized, plated, and incubated under 

microaerobic conditions at 37oC for 5-6 days as previously described (87). Colonies were 

verified as H. pylori by Gram's stain, urease, catalase and oxidase reactions as described 

(87). Successful colonization was confirmed by IHC staining using an anti-H. pylori 

antibody. 
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Statistical analysis 

An ANOVA one-way analysis of variance and the Tukey-Kramer post test were used for 

analysis of in vitro data. The Mann-Whitney U test of inter-group comparisons was used 

for analysis of in vivo data. Significance was defined as p<0.05. All calculations were 

performed with the GraphPad Prism 4 statistical analysis software package (GraphPad 

Software, Inc). 
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Results 

 

H. pylori induction of DAF is regulated at the transcriptional level  

We previously demonstrated that H. pylori up-regulates DAF in vitro (209). To determine 

if DAF induction was transcriptionally or post-transcriptionally mediated, the H. pylori 

cag+ strain J166 was co-cultured with MKN28 gastric epithelial cells that had been 

pretreated with either actinomycin D (inhibitor of transcription) or cycloheximide 

(inhibitor of translation). DAF protein expression was assessed after 24 hours of co-

culture (Figure 14). Actinomycin D completely blocked DAF induction in response to H. 

pylori  (p<0.001), and inhibition of translation by cycloheximide blocked DAF induction 

in a dose-dependent manner. Vehicle treated, H. pylori-infected cells expressed 

significantly more DAF than H. pylori-infected cells that had been pretreated with 

cycloheximide (p<0.01) and DAF expression in cycloheximide-treated, infected cells was 

not significantly higher than vehicle treated, uninfected control cells. These results 

indicate that up-regulation of DAF by H. pylori in human gastric epithelial cells is 

mediated at a transcriptional level. 

 

H. pylori induction of daf requires viable bacteria 

Bacteria can activate epithelial signaling pathways via multiple mechanisms. To 

determine if live H. pylori are necessary for daf induction or if inert bacterial components 

are sufficient, we incubated MKN28 cells with viable bacteria or with H. pylori that had 

either been heat-killed or lysed by sonication and assessed daf mRNA expression using 

real-time quantitative RT-PCR (Figure 15). Co-culture of cells with live H. pylori, as  
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Figure 14. H. pylori induces the transcriptional up-regulation of DAF in gastric 
epithelial cells. MKN28 gastric epithelial cells were pretreated with either actinomycin D 
(ActD) or cycloheximide (CHX) at the indicated concentrations and then co-cultured 
with the H. pylori cag+ strain J166 for 24 hours at an MOI=100. A.) Western blot 
analysis was performed using an anti-DAF antibody as described in “Experimental 
Procedures”. (-), cells incubated with medium alone. A representative blot is shown. 
Anti-GAPDH blots served as normalization controls. B.) Densitometry represents data 
from 3 independent experiments, Error bars, SEM. *, p<0.001 J166 versus control cells 
or ActD treated cells. §, p<0.01 J166 versus CHX treated cells.  
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Figure 15. H. pylori induction of daf requires viable bacteria.  MKN28 cells were 
incubated with medium alone (-), live, heat-killed, or sonicates of H. pylori strain J166 
for 2 hours. Levels of daf mRNA were determined by real-time qRT-PCR as described in 
“Experimental Procedures” and were normalized to corresponding levels of gapdh 
mRNA. Results are expressed as fold increase in daf mRNA in H. pylori-infected versus 
uninfected samples. Error bars, SEM. *, p<0.001 versus uninfected cells. 
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expected, significantly induced daf mRNA. However, incubation with either heat-killed 

or sonicated H. pylori failed to induce expression of daf. These results indicate that 

induction of daf in gastric epithelial cells is dependent upon an active interplay with 

viable bacteria.   

 

DAF induction is mediated by a functional type IV secretion system 

The requirement for viable H. pylori to induce daf raised the possibility that bacterial 

components intimately involved in epithelial contact may mediate daf expression. The 

cag PAI encodes a bacterial TFSS that translocates effector molecules such as 

peptidoglycan and CagA into host cells following binding, thus affecting cell function. 

Therefore, we determined if H. pylori-mediated up-regulation of DAF is cag PAI 

dependent. 

 

MKN28 cells were co-cultured with either wild-type H. pylori or isogenic cagA or cagE 

null mutant derivatives. Real-time qRT-PCR analysis demonstrated that co-culture with 

the cagA- mutant induced daf expression to levels similar to those induced by the wild-

type strain (Figure 16A). However, co-culture with the cagE- mutant failed to induce daf 

and expression levels were no different than levels in uninfected cells. Western blot 

analysis confirmed that inactivation of cagE significantly attenuates the ability of H. 

pylori to induce DAF (Figure 16B). Experiments were also performed with an 

independent H. pylori cag+ strain, 7.13, which readily infects animals and has been 

shown to induce gastric cancer in Mongolian gerbils and hypergastrinemic mice 
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Figure 16. DAF induction is mediated by a functional cag secretion system, but not 
CagA. MKN28 cells were co-cultured with wild-type H. pylori strain J166 or isogenic 
cagA- or cagE- mutants at an MOI=100.  A.) Levels of daf mRNA were determined by 
real-time qRT-PCR following 2 hours of co-culture and were normalized to 
corresponding levels of gapdh mRNA. Results are expressed as fold increase in daf 
mRNA in H. pylori-infected versus uninfected samples. Error bars, SEM. *, p<0.05 
versus uninfected cells. B.) Cell extracts were used for Western blot analysis using an 
anti-DAF antibody. A representative blot of multiple repetitions performed on 3 
occasions is shown. Anti-GAPDH blots served as normalization controls. 
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(87-89, 245).  Similar to results obtained with strain J166, real-time qRT-PCR results 

showed that daf induction was dependent upon cagE, but not cagA. The importance of 

the cag secretion system was more rigorously confirmed by demonstrating that 

inactivation of another cag gene encoding a structural component of the TFSS (cagM) 

similarly attenuated daf expression (data not shown). These results indicate that H. pylori 

induction of DAF is dependent upon a functional cag secretion system, but not CagA per 

se. 

 

H. pylori induction of daf occurs via a NF-κB-independent pathway 

Activation of the transcription factor NF-κB by H. pylori is mediated by the cag secretion 

system (26, 47, 102, 127, 155, 171, 180, 201, 204, 306). The daf promoter contains a κB 

response element and activation of NF-κB leads to the up-regulation of DAF in response 

to pro-inflammatory stimuli (8, 73, 129, 290). To define the role of NF-κB in H. pylori-

induced DAF expression, MKN28 cells were transiently transfected with constructs that 

express either a dominant-negative IκBα or dominant-negative IKKβ, as well as a NF-κB 

responsive luciferase reporter construct. As expected, H. pylori strain J166 significantly 

increased NF-κB mediated luciferase activity, which was abolished by the dominant-

negative IκBα and IKKβ constructs (Figure 17A).  However, inhibition of NF-κB had 

no effect on the ability of H. pylori to induce daf (Figure 17B). 

 

Activation of p38 mediates daf up-regulation by H. pylori  

Our group and others have shown that H. pylori cag+ strains activate MAP kinases such 

as ERK, p38, and JNK in a cag-dependent manner (54, 148). Therefore, we investigated  
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Figure 17. NF-κB is not required for H. pylori induction of daf. MKN28 cells were 
transiently transfected with a NF-κB responsive Luciferase reporter construct and either a 
dominant-negative IκBα (dn-IκBα) or a dominant-negative IKKβ (dn-IKKβ) expression 
construct. Cells were then co-cultured with H. pylori strain J166 at MOI=100. A.) NF-κB 
driven Firefly Luciferase activity was assayed on a luminometer after 6 hours of co-
culture and normalized to Renilla Luciferase activity. Error bars, SEM. *, p<0.001 versus 
uninfected cells. B.) Levels of daf mRNA were determined by real-time qRT-PCR 
following 2 hours of co-culture with the H. pylori strain J166 and were normalized to 
corresponding levels of gapdh mRNA. Results are expressed as fold increase in daf 
mRNA in H. pylori-infected versus uninfected samples. Error bars, SEM. *, p<0.05 
versus uninfected cells. 
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the role of these signaling molecules in the transcriptional up-regulation of daf.  MKN28 

cells were pretreated with inhibitors of MEK, p38, or JNK and then daf mRNA 

expression was quantified by real-time qRT-PCR. Inhibition of p38 blocked the induction 

of daf by H. pylori strains J166 (Figure 18) and 7.13 (data not shown), whereas 

inhibition of ERK had no effect. Inhibition of JNK resulted in slightly higher levels of daf 

than observed in the H. pylori-infected vehicle-treated control; however, this difference 

was not statistically significant. These data indicate that H. pylori-induced daf expression 

is mediated in a p38 MAPK-dependent manner. 

 

Inactivation of a component of the cag secretion system attenuates H. pylori induction of 
DAF in vivo 
 
To determine if the in vitro observations in MKN28 cells mirrored events within 

colonized gastric mucosa, DAF expression was assessed in transgenic hypergastrinemic 

INS-GAS mice. INS-GAS mice over-express gastrin and spontaneously develop gastric 

cancer, but this requires the virtual lifetime of the animal (311).  Infection with H. pylori 

accelerates this process and closely models lesions found in human disease (85, 87, 311). 

Therefore, we infected INS-GAS mice with the H. pylori cag+ strain 7.13, which readily 

infects rodents, and investigated DAF expression (87-89, 245). 

 

Mice were challenged with Brucella broth alone, wild-type strain 7.13, or a 7.13 cagE- 

isogenic mutant for 4, 12, and 24 weeks. DAF expression was detected using 

immunohistochemistry and scored on an ordinal scale from 0-4 as previously described  
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Figure 18. Activation of p38 is required for daf up-regulation by H. pylori. MKN28 
cells were pretreated with pharmacological inhibitors of MEK1/2 (PD98095, 50 µM), 
p38 (SB203580, 10 µM),  JNK (JNK inhibitor II, 10 µM), or vehicle control (DMSO) (-) 
for 30 minutes and then co-cultured with the H. pylori strain J166 at MOI=100. Levels of 
daf mRNA were determined by real-time qRT-PCR following 2 hours of co-culture and 
were normalized to corresponding levels of gapdh mRNA. Results are expressed as fold 
increase in daf mRNA in H. pylori-infected versus uninfected samples. Error bars, SEM. 
*, p<0.05 versus uninfected cells.  
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(265). DAF staining in uninfected mice was localized to stromal plasma cells, 

lymphocytes, and endothelial cells, with focal weak staining of surface foveolar epithelial 

cells (Figure 19D). There were no differences in DAF staining detected at 4 weeks post 

challenge among the groups. However, mice infected with wild-type H. pylori strain 7.13 

for 12 weeks and 24 weeks demonstrated significantly more abundant DAF staining 

versus uninfected mice (Figure 19A). DAF staining was accentuated along the luminal 

surface in gastric epithelial cells that comprise the foveolar pits and was often 

accompanied by light diffuse cytoplasmic staining (Figure 19B, inset). The intensity of 

DAF staining in mice infected with the cagE- mutant (Figure 19C) was significantly 

attenuated compared to mice infected with wild-type H. pylori and was similar to 

uninfected mice. These in vivo findings recapitulate our in vitro data and confirm that a 

functional cag secretion system is required for H. pylori-mediated induction of DAF in 

gastric epithelial cells. 
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Figure 19. Inactivation of a component of the cag secretion system attenuates H. 
pylori induction of DAF in vivo. INS-GAS mice were challenged with Brucella Broth 
(BB) control, wild-type H. pylori cag+ strain 7.13, or an isogenic 7.13 cagE- mutant for 4, 
12, or 24 weeks. A.) Immunohistochemical staining of DAF was performed and scored 
on an ordinal scale from 0-4 by a single pathologist. Error bars, SEM. *, p<0.05 WT 7.13 
vs. BB or cagE-. (B-D) Representative DAF IHC stained sections from mice challenged 
for 12 wk with wild-type H. pylori strain 7.13 (B); 7.13 cagE- isogenic mutant (C); or 
Brucella broth alone (D). Magnification, 20x. 
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Discussion 

 

Our results have demonstrated that 1) H. pylori cag+ strains induce DAF expression in a 

cag PAI dependent manner that does not require CagA, 2) H. pylori-induction of daf is 

abolished by inhibition of p38, and 3) an in vivo model of H. pylori-induced gastritis 

recapitulates our in vitro observations by demonstrating a requirement for a functional 

cag secretion system to induce DAF in epithelial cells. Collectively, these data indicate 

that H. pylori utilizes the cag island to affect the expression of DAF, potentially 

increasing adherence capacity, which may be important for initial and chronic 

colonization of its host. 

 

Increased pathologic outcomes have been associated with infection by H. pylori cag+ 

strains, but the mechanism by which these strains increase disease risk is not completely 

understood. Several studies have highlighted the importance of the translocated effector 

protein CagA, which is responsible for aberrant activation of multiple signaling 

pathways. These include activation of β-catenin, SHP-2, and Grb-2, molecules that have 

been implicated in carcinogenesis.  However, our results demonstrate that CagA is not 

required for increased expression of DAF. 

 

Our finding that a functional cag secretion system is sufficient for H. pylori-mediated 

induction of DAF implicates additional bacterial factors that may be translocated into 

host cells leading to DAF induction. A candidate molecule for such induction is the 

bacterial cell wall component peptidoglycan. Peptidoglycan motifs that are recognized by 
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NOD1 are delivered into host cells via the cag secretion system and an important 

signaling event mediated by NOD1 is activation of NF-κB (306). However, while others 

have shown that DAF regulation is responsive to NF-κB activation by pro-inflammatory 

stimuli (8, 164), our data demonstrate that NF-κB activation is not necessary for DAF 

induction by H. pylori. 

 

Listeria monocytogenes induces IL-8 secretion via NOD1 activation in a NF-κB and p38-

dependent manner (219), and H. pylori-induced secretion of IL-8 is dependent upon p38 

activation and NOD1 activation of NF-κB (1, 148, 263, 306). Activation of NOD1 can 

also induce activation of p38, and although the mechanism of this action remains unclear 

(280), there are several mechanisms by which p38 may promote increased DAF 

expression.  Activation of p38 can transactivate the transcription factor CREB, which has 

previously been shown to transcriptionally up-regulate DAF in intestinal epithelial cells 

(73, 129, 290). Alternatively, daf mRNA transcript stability has been shown to be 

increased by activation of p38 in monocytic cell lines (91). Investigations into the 

mechanism by which p38 mediates DAF induction are currently ongoing in our 

laboratory.  

 

Murine models provide valuable insights into host, bacterial, and environmental factors 

involved in H. pylori-induced gastric injury and inflammation. The INS-GAS model of 

gastritis has been used extensively for the study of H. pylori-induced inflammation and 

injury (85, 87, 153, 218, 276, 311). Utilizing this model, we have shown that the pattern 

of DAF up-regulation mirrors our in vitro studies; specifically, a functional cag secretion 
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system plays an active role in the induction of epithelial DAF. Since H. pylori cag+ 

strains are found in closer juxtaposition to gastric epithelium than cag- strains (30), our 

current results suggest that DAF may represent one of several receptors that are up-

regulated during chronic inflammation and which contribute to the persistence of more 

virulent H. pylori strains. 

 

In addition to its role in maintaining chronic inflammation during infection, DAF has also 

been shown to play a role in tumorigenesis.  Increased expression of DAF by transformed 

cells has been linked with resistance to immune clearance (82, 98, 142). Increased DAF 

expression is present in gastric cancer precursor lesions such as intestinal metaplasia, 

gastric adenomas, and gastric dysplasia, suggesting that aberrant expression of DAF 

precedes the development of gastric cancer (152). Our results implicating the cag 

pathogenicity island in DAF up-regulation may also help to explain why persons infected 

with H. pylori cag+ strains are at significantly increased risk for the development of 

gastric cancer versus those infected with cag- strains. 

 

In conclusion, H. pylori induces the transcriptional up-regulation of the cellular receptor 

DAF. DAF induction is mediated by the cag secretion system, but does not require the 

translocated effector protein CagA. DAF induction is also mediated by activation of p38 

MAPK. In vivo, a functional cag secretion system is important for the induction of DAF 

by H. pylori in a murine model of gastritis. Collectively, these data have identified a 

novel mechanism by which H. pylori cag+ strains may tightly regulate their interactions 

with gastric epithelial cells and lower the threshold for more severe disease. 
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CHAPTER IV 

 

CONCLUSIONS AND FINAL REMARKS 

 

Conclusions and future directions 

 

Twenty-six years have passed since the discovery of H. pylori and its capacity to 

chronically colonize gastric mucosa.  This discovery has greatly advanced the 

understanding and treatment of gastric diseases such as peptic ulcer disease, MALT 

lymphoma, and gastric cancer.  The study of H. pylori has also enhanced our general 

understanding of diseases that are associated chronic inflammation.  Elucidation into the 

function of the secreted bacterial cytotoxin VacA has offered new paradigms for the role 

of bacterial toxins in disease, furthering our understanding of T cell immunity and which 

interestingly, may have potential as a treatment for HIV infection (220).  The results of 

studying CagA and the cag secretion system exemplify the pluralistic functions of H. 

pylori virulence factors in disease, as CagA has proven to be a multifunctional protein 

that affects many cell signaling pathways.  CagA plays a significant role in the induction 

of gastric cancer (89) and has provided an important cell biology model system for the 

study of apoptosis, homeostasis, motility, transformation, and the function of cell 

junction associated proteins. 

 

Disease associated with H. pylori infection is the result of chronic inflammation.  H. 

pylori is uniquely adapted to the gastric niche, utilizing survival mechanisms that help the 
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bacteria avoid immune clearance.  The fact that all H. pylori infections result in chronic 

inflammation indicates that inflammation is a necessary part of the H. pylori lifecycle; 

however, it not clear what advantage this may provide to the bacteria.  Some have 

speculated that the resulting disruption to the epithelium releases nutrients necessary for 

survival of the bacteria.  However, chronic inflammation has a well established role in the 

promotion of neoplastic transformation (40).  Inflammation induced by H. pylori, in 

combination with the effects of pathogenicity factors, over time leads to tissue damage, 

erosion, and atrophy of the gastric mucosa, resulting in epithelial hyper-proliferation to 

replace cells that are destroyed.  These cells are exposed to reactive oxygen species that 

damage DNA, and a cytokine milieu that dysregulates cell function.  One seminal study 

in mice has shown that at an undefined point during the progression of disease, bone 

marrow-derived cells (BMDCs) engraft into the gastric glands, replacing the endogenous 

stem cell population that has been eliminated by inflammation.  After accumulating 

mutations, BMDCs and their progenitors become resistant to apoptosis and anti-

proliferative signals, leading to transformation and eventually invasive cancer.  However, 

most infections do not result in cancer, underscoring the importance of defining the 

specific pathogenicity factors and host determinants that result in an environment 

conducive for cancer promotion. 

 

Adherence of H. pylori is critical for the progression of disease and is also necessary for 

successful colonization of the host.  H. pylori cannot translocate pathogenicity factors, 

such as CagA, without direct interaction with host cells.  Therefore, the study of host cell 

receptors and bacterial adhesins is paramount for understanding H. pylori pathogenicity 



 

95 

and disease progression.  When this project began, several host receptor/adhesin 

interactions had been identified.  BabA and SabA are bacterial adhesins that bind Leb and 

sLex antigens respectively (134, 176).  H. pylori LPS is modified with O-glycans and 

Lewis antigens that are mediators of adherence (175).  Several members of the 

hypothetical outer-membrane protein (Hop) family are thought to play an important role 

in adherence, and AlpA and AlpB have been shown to play a critical role in colonization 

of mice and guinea pigs, but have no known cognate receptors (58, 170).  However, 

much remains to be discovered regarding H. pylori adherence and its pathological 

consequences. 

 

The results of the work comprising this dissertation contribute to the understanding of H. 

pylori adherence to host cells.  In Chapter II, we identified DAF as a novel H. pylori 

receptor, and demonstrated that the majority of the molecule is necessary for efficient H. 

pylori binding.  Our results indicate that H. pylori interacts most avidly with CCP 

domains 1-3, or that the interaction is dependent upon the conformation of full-length 

DAF.  We also showed that H. pylori up-regulates DAF through direct interaction with 

the epithelial cell, and defined the importance of DAF as a receptor in vivo by 

demonstrating that H. pylori infected DAF-/- mice exhibit significantly attenuated 

inflammation compared to levels seen in infected wild-type mice.  Attenuated 

inflammation is not likely due to disruption of cag-mediated effects because in vitro 

silencing of DAF in human epithelial cells did not affect CagA translocation, 

phosphorylation, or the induction of IL-8.  Thus, we have established that the H. pylori 

interaction with DAF affects inflammation, albeit through an undefined mechanism.  
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In Chapter III, we extended these observations and defined the mechanism by which H. 

pylori induces the expression of DAF.  We demonstrated that H. pylori induces the 

transcriptional up-regulation of DAF via the cag type IV secretion system.  However, the 

induction of DAF was independent of CagA translocation, implicating either translocated 

moieties of peptidoglycan or an unidentified translocated molecule.  Another possibility 

is that cag binding to host cells activates receptor mediated intracellular signaling events.  

We also identified activation of the p38 MAPK pathway as a necessary component of 

DAF induction.  This is analogous to other studies that have shown that H. pylori 

activates MAPK pathways through cag PAI dependent mechanisms (54, 148, 189); 

however, the specific H. pylori effector that is driving MAPK activation in the absence of 

CagA has yet to be defined.  Others have shown that activation of the intracellular pattern 

recognition receptor NOD1 results in activation of p38, but the mechanism of this action 

remains unclear (280).  Components of H. pylori peptidoglycan are translocated through 

the cag secretion system and result in NOD1 activation (306).  Thus, H. pylori 

translocated peptidoglycan may induce DAF expression via NOD1 activation of p38, but 

additional work is required to confirm this hypothesis.  Finally, we demonstrated that the 

cag secretion system is important for DAF induction in vivo using a mouse model of H. 

pylori pathogenesis, confirming the relevance of our finding that the cag secretion system 

mediates DAF induction by recapitulating the results in the significantly more complex 

environment of a host stomach.   

 

Taken together these data suggest a novel mechanism of pathogenesis utilized by cag+ 

strains (Figure 20).  Others have observed that H. pylori cag+ strains are more frequently 
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found in close contact with epithelial cells in the gastric mucosa (30).  A potential 

explanation for this finding is that H. pylori cag+ strains selectively induce DAF as a 

receptor, thereby allowing a more intimate interaction with host cells.  We have 

demonstrated in Chapter II that DAF is an important mediator of H. pylori induced 

inflammation.  Therefore, the increased oncogenic potential of cag+ strains may be due in 

part to the pro-inflammatory H. pylori:DAF interaction.  H. pylori adherence to gastric 

epithelial cells is a dynamic interaction mediated by several receptors and bacterial 

adhesins.  Mahdavi et al. demonstrated that H. pylori binds sLex after the bacteria induces 

sLex up-regulation in host cells (176).  A model was proposed in which H. pylori first 

binds a constitutively expressed receptor, such as Leb, and then up-regulates other 

receptors, such as sLex, allowing a more robust interaction with the host cell (176).  Our 

data suggest that DAF, much like sLex, may be regulated by H. pylori to adjust binding 

avidity much like a rheostat.  However, the H. pylori:DAF interaction may be a more 

intricate component in bacterial pathogenesis than simply as a mediator of attachment.  

H. pylori is known to induce the formation and clustering of lipid rafts at points of 

attachment similar to those induced by E. coli (63), and E. coli mediate raft clustering 

through interactions with DAF (260).  Therefore, DAF may represent a molecule 

involved in orchestrating H. pylori-directed raft formation and clustering, allowing 

increased avidity to the host cell and potentially mediating at least three other events 

involved in H. pylori pathogenesis:  intracellular signaling, invasion, and tropism for cell-

cell junctions. 
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Figure 20.  Proposed model of H. pylori pathogenic responses mediated by DAF 
based on our data and results from other investigators.  1.) H. pylori binding to the 
host cell is mediated initially by constitutively expressed receptors such as Leb allowing 
the cag secretion system to activate p38 MAPK, leading to increased expression of DAF.  
2.) H. pylori interacts more intimately with the host cell via induced receptors such as 
DAF and sLex, leading to the formation and clustering of lipid rafts.  3.) DAF mediates 
intracellular signaling.  4.) Raft clustering and DAF signaling mediate invasion into the 
host cell and survival in intracellular vacuoles.  5.) DAF mediates H. pylori tropism for 
cell-cell junctions, positioning the bacteria for the uptake of nutrients and invasion of the 
gastric mucosa, which is facilitated by CagA disruption of cell-cell junctions.  PGN, 
peptidoglycan; TJ, tight-junction; AJ, adherens-junction. 
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Others have shown that pathogens that utilize DAF as a receptor can also activate 

intracellular signaling through DAF binding (21, 22, 45, 106).  This suggests that there 

may be a parallel mechanism by which H. pylori initiates proinflammatory signaling via 

DAF binding (Figure 20).  While DAF is a GPI-anchored protein that lacks a 

transmembrane or cytoplasmic domain, it has been shown to interact with other cell 

surface proteins that possess cytoplasmic signaling domains.  These interactions allow 

DAF to activate signaling into the host cell, which may be an important component in 

two subsequent aspects of H. pylori pathogenesis: host cell invasion and disruption of 

cell-cell junctions. 

 

H. pylori recruitment and formation of lipid rafts leads to the formation of pedestals and 

invaginations into the host cell, allowing the bacteria to invade and reside in intracellular 

vacuoles (63).  H. pylori has classically been considered to be an extracellular pathogen.  

However, several studies have shown that H. pylori are found in intracellular sites within 

gastric epithelial cells in vitro and in vivo (28, 67, 68, 71, 158, 205, 233, 316).  Similarly, 

Dr+ E. coli strains bind DAF, leading to lipid raft recruitment and invasion of epithelial 

cells, allowing E. coli to reside in intracellular compartments (77, 106, 107, 110).  

Interestingly, these compartments appear similar to the compartments in which H. pylori 

are found (63).  We hypothesize that DAF may play an important role in H. pylori 

invasion of gastric epithelial cells (Figure 20).  To test this, DAF siRNA expression 

constructs (166) could be used to generate stable DAF knock-down cell lines to assess H. 

pylori invasion using a gentamicin protection assay and electron microscopy.  If DAF is 

determined to be an important mediator of H. pylori epithelial invasion, this will 
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demonstrate a novel and important mechanism in H. pylori pathogenesis that may 

contribute to the persistence of the bacteria, evasion of the immune system, and might 

represent a therapeutic target.  

 

A third possibility is that DAF plays a role in directing H. pylori localization to cell-cell 

junctions.  Upon binding to epithelial cells, H. pylori co-localize with the tight-junction 

markers ZO-1 and JAM (6).  This may allow the bacteria to acquire nutrients that are 

released by CagA-mediated disruption of the junctions and/or facilitate invasion of the 

gastric mucosa.  Coxsackievirus has been shown to also specifically migrate to tight-

junctions where the virus gains entry into the cell, and this trafficking is mediated by 

DAF (45).  The virus orchestrates clustering of lipid rafts via DAF-mediated activation of 

Abl kinase, triggering Rac dependent actin rearrangements that direct virus movement to 

the tight-junctions (45).  The similarities observed between H. pylori and coxsackievirus 

lead us to hypothesize that DAF may mediate H. pylori’s tropism for tight junctions 

(Figure 20).  To test this, DAF could be knocked-down via siRNA and the number of H. 

pylori localized to junctional complexes could be quantified using immunofluorescence 

and transmission electron microscopy.  If DAF does mediate H. pylori localization to 

tight-junctions, this would represent a novel mechanism for an important facet of H. 

pylori pathogenesis. 

 

We have highlighted the importance of defining H. pylori adhesin/receptor interactions 

and identified DAF as a receptor for H. pylori.  Therefore, another future extension of 

this work is to identify the bacterial adhesin(s) required for this interaction and define its 
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role in pathogenesis.  The H. pylori genome has been estimated to encode a large number 

of outer membrane proteins, many of which may function as adhesins.  Because of the 

large number of potential targets, an efficient methodology for quickly identifying DAF 

adhesins could be employed, such as proteomics.  For example, in vitro protein 

interaction assays could be used to isolate H. pylori proteins that are found to interact 

with DAF.  These proteins could then be identified using matrix-assisted laser desorption 

ionization, time-of-flight mass spectrometry (MALDI-TOF MS).  These experiments 

may identify a novel bacterial adhesin or class of adhesins that interact with DAF.  This 

would be particularly exciting, as it would permit one to focus on a specific bacterial 

protein and isogenically inactivate the gene encoding this effector to perform more robust 

experiments in vitro and in vivo; thus, more clearly implicating DAF’s role in 

pathogenesis.  

 

In addition to identifying the DAF adhesin, defining the role of DAF in gastric cancer is 

also of great importance.  Several studies have demonstrated that DAF provides a 

selective advantage for transformed cells by protecting against complement mediated 

lysis and DAF may also help to protect against other immune mediated killing 

mechanisms (193).  Increased DAF expression parallels severity of cancer staging, and 

may contribute to the neoplastic potential of the cells through signaling events mediated 

by DAF (193).  We have identified an important role for DAF in H. pylori pathogenesis 

using an in vivo mouse model in Chapter II; however, the importance of DAF in H. 

pylori-induced cancer remains to be determined.  To define the role of DAF in an in vivo 

model of H. pylori induced cancer, we are in the process of backcrossing C57/BL6 DAF-



 

102 

/- mice onto the FVB/N INS-GAS background.  Once crossed onto this background, the 

INS-GAS DAF-/- will be infected with the carcinogenic H. pylori strain 7.13 and 

monitored for the development of premalignant lesions as well as gastric cancer.  It is 

likely that in the absence of DAF, the development of gastric cancer will be significantly 

delayed or completely attenuated because inflammation is a key mediator of H. pylori-

induced cancer.  The results of these experiments will also greatly enhance our 

understanding of the role of DAF in vivo. 

 

Final Remarks 

 

The discovery of H. pylori and the subsequent recognition of its role in human disease 

marked a paradigm shift in the way physicians view gastric diseases.  This impact has 

been far-reaching and our understanding of the mechanisms of H. pylori pathogenesis has 

advanced rapidly.  Constituents that contribute to disease have been identified in both 

humans and H. pylori, furthering the ability to identify those at increased risk for the 

development gastric diseases, such as ulceration or cancer.  Bacterial survival factors 

have been identified that allow persistence of H. pylori for decades in the harsh niche of 

the stomach, and pathogenicity factors such as the cag PAI and the vacuolating cytotoxin 

have been discovered to have a multitude of functions, which are important to the 

determination of disease outcome.  In addition, several cellular receptors have been 

identified that allow the bacteria to interact with host cells.  This dissertation has outlined 

the identification and characterization of novel host receptor that is likely to play an 

important role in human disease.   
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A theme that emerges when one examines H. pylori pathogenesis is one of bacterial 

constituents resulting in injury and disease caused by induction of inflammation that 

develops in response to the microbial constituents.  H. pylori urease and NapA are 

important for colonization and survival in the gastric niche, but are also proinflammatory 

(86).  The cag secretion system plays a role in disrupting cell-cell junctions and normal 

cell function, which may induce nutrient release, but the cag secretion system also 

mediates the production of proinflammatory cytokines such as IL-8 and promotes 

neoplastic transformation (118).  The H. pylori:DAF interaction may represent another 

factor in H. pylori pathogenicity that may have negative consequences for the host.  One 

potential outcome is that bacterial binding to DAF interferes with the host cell’s ability to 

protect itself from complement-mediated lysis.  C3b is extensively deposited on the 

gastric epithelium during H. pylori infection (19), lending credence to this hypothesis. 

There are many avenues of investigation opened by the findings in this dissertation and 

more work is needed to define the full implications of the H. pylori:DAF interaction. 

 

While there is still much to be elucidated regarding the significance of the H. pylori:DAF 

interaction in human disease, we have identified several important facets.  Co-segregation 

of DAF affinity and cag PAI status was not identified in our experiments (Chapter II); 

however, we found that cag positive strains up-regulate DAF both in vitro and in vivo 

(Chapter III).  We also found that DAF is an important mediator of inflammation in vivo 

(Chapter II), suggesting that part of the increased pathogenicity of H. pylori cag positive 

strains is due to the up-regulation and binding of DAF.  The mechanism of DAF as a 

mediator of inflammation and its potential role in carcinogenesis is not clear.  However, 
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DAF has recently been identified as an apical epithelial ligand for polymorphonuclear 

cells that regulates the rate of neutrophil migration across apical epithelial membranes 

(160).  This may represent a mechanism by which DAF expression regulates the 

inflammatory response mediated against H. pylori.  To define the role of DAF in H. 

pylori-induced gastric cancer, we have initiated studies to utilize INS-GAS DAF-/- mice.  

In addition, identification of the H. pylori DAF adhesin will provide a deeper 

understanding of the role of DAF in pathogenesis.   

 

It is important to note that DAF serves as a receptor for many pathogens and that the 

subsequent chronic inflammation is the foundation upon which disease develops.  With 

this body of work, we have added H. pylori to this list of pathogens.  Our results support 

a role for DAF as a mediator of inflammation in addition to providing a means of 

interacting with the host cell.  These data also suggest that DAF may play a key role in 

the development of gastric cancer.  If so, DAF may represent a potential target of 

therapeutic benefit for treatment of H. pylori-associated disease and gastric cancer. 
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