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CHAPTER I

INTRODUCTION

In recent years, the development of microelectromechanical systems (MEMS) and na-

noelectromechanical systems (NEMS), such as mechanical actuators, pumps, accelerom-

eters, and micro- and nano-scale motors, has received intense attention and effort from

scientists and engineers. With their much smaller size, fewer raw material requirements,

and lower energy demand, MEMS and NEMS have the potential to bring ideas that ex-

ist only in science fiction, such as lab-on-a-chip and robotic blood vessel clog-cleaners,

to reality. However, the manufacturing and application of these devices requires a series

of technological breakthroughs as well as an increased understanding of the physical and

chemical behavior of every component at such a minute scale, especially for NEMS. Since

most of these devices will be working in a fluidic environment, a vitally important question

emerges: whether or not the fluid trapped by micro- and nano-scale devices still behaves

the same as its corresponding bulk. And, in particular, whether or not a fluid undergoes a

phase transition in nano-scale dimensions, such as by forming an ordered solid, or solid-

like, phase.

Research on this question has given rise to a vigorous debate that began in the early

1990s. Following the earliest observation of nanoconfinement-induced solidification by

Israelachvili and coworkers using static surface force apparatus (SFA)1 , experiments by

Klein and coworkers2–4, using the dynamical surface force balance (SFB), on octamethyl-

cyclotetrasiloxane (OMCTS) nanoconfined between two atomically smooth mica surfaces,

yielded observation of orders of magnitude increase in viscosity and the onset of a non-

zero yield stress, suggested a first order phase transition as the solid-surface separation is

reduced from seven to six molecular layers. However, SFA experiments by Granick and
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coworkers5 instead suggest a second-order transition rather than first-order, since no yield

stress was observed and the viscosity increase is significantly smaller6,7. This controversy

has spanned over two decades, despite a large number of experimental studies that aimed

to definitively answer this important question. This is in large part due to the intrinsic diffi-

culties faced in conducting these experiments8. Specifically, the fact that the nanoconfined

phase is buried between two solid mica walls makes it impossible to directly observe its

structure. From an experimental point of view, the inability to directly observe what occurs

in the nanoconfined region is the major obstacle preventing a definitive conclusion. More-

over, the discovery of platinum nanoparticles on the mica surfaces in some experiments9,10

led to a re-examination of published results, which potentially compromised some previous

experimental observations11.

Conversely, simulation studies, which have intrinsic molecular resolution, have no such

observational problems. However, concerns over the realism of molecular models used in

simulations as well as the lack of a clear demonstration that the solid-like structure observed

is an equilibrated structure, rather than a metastable or transitional structure, has hindered

wide acceptance of the results of these studies. The question of model accuracy has recently

been well addressed by the Cummings group via the use of atomistically detailed models

and physically realistic simulations of non-polar organic molecules nanoconfined by mica

sheets. These simulation studies have provided strong evidence to support the experimental

studies that observe a first-order phase transition, but haven’t yet answered the question of

whether or not the observed structure is metastable in nature.

To determine if a structure is metastable, the key measurement required is the free

energy (FE) of the system since this quantity is minimized at equilibrium. However, to

date, simulation studies of phase transitions under nanoconfinement have not effectively

measured this quantity, probably due to the difficulty of computing the FE, both in bulk

and, particularly, under confinement. Thus, this dissertation research is concentrated on

the development and applications of absolute FE calculation methodology, specifically for
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nanoconfined systems, in order to apply the absolute FE as a tool to assist in an increased

understanding of nanoconfined fluid phase behavior.

Chapter II of this thesis reviews previous experimental and simulation studies with em-

phasis on the debate in the SFA/SFB community. Evidence by researchers using other

techniques, such as atomic force microscopy (AFM) , neutron scattering, differential scan-

ning calorimetry (DSC) and other methods, are also briefly introduced. Subsequently, sim-

ulation studies on nanoconfined non-polar fluids are also reviewed and discussed. Like

experimental studies, simulation studies have not reached a complete consensus on the

nature of the phase transition with divergent simulation results and opposite conclusions

reported in the last two decades. Lastly, Chapter II also reviews the development of major

FE calculation techniques in the last several decades and briefly illustrates the pros and

cons of recently proposed FE determination methods.

Chapter III details the model and methodology, and their step-by-step derivation, used

in this research. The basic algorithm shows consistency with literature and the modified

algorithm, which is specifically for nanoconfined systems, has also been validated. To cor-

rect the systematic error in FE calculation for nanoconfined system, we also introduce a

modified tail correction. Use of this new tail correction greatly minimizes the error in po-

tential evaluation, especially in nanoconfined systems with strong wall-fluid interactions.

In a departure from conventional FE calculations, this work takes advantage of the parallel

efficiency of molecular dynamics (MD) to speedup FE calculation. The difference in re-

sults due to the use of MD instead of monte carlo (MC) is also quantified and discussed.

The advent of general-purpose computing on graphics processing units (GPGPU) in the

last decade has enabled intensive parallel computing power for scientific research for ap-

plications able to take advantage of their unique architecture. Given the parallel nature of

MD, implementation of GPGPU increases the speed of these simulations and, as such, was

used to accelerate the calculations presented in this work.

Chapter IV can be viewed as the foundational work with the emphasis on the reex-
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amination of FE calculations for bulk crystals. As the first step in solid FE calculation,

this work reveals the roles of basic accuracy-influencing factors in FE calculation, such as

simulation box shape, finite system size, finite-cutoff radius effect and so on. Their effects

have been quantitatively measured in a series of judiciously selected scenarios. Potential

compensation strategies, such as asymptotic finite size correction (FSC) and using a larger

cutoff radius, have been reviewed and examined as ways to minimize the systematic error

in absolute FE calculations. Meanwhile, the relative thermodynamic stability of fundamen-

tal crystal types has also been compared by employing absolute FE calculations. Among

the investigated crystal types, including face centered cubic (FCC) crystal, body centered

cubic (BCC) crystal, hexagonal closed packed (HCP) crystal, FCC demonstrates the lowest

free energy and hence the highest thermodynamic stability.

Primary applications of the absolute FE calculation for nanoconfined systems are in-

cluded in Chapter V to directly address fundamental questions in understanding nanocon-

fined phenomena. The roles of wall-fluid interaction strength and the wall-wall separation

have been quantified by evaluating absolute FE values. Agreement has been reached with

previous studies that employ indirect methods, such as calculating relative FE12,13 and de-

riving a Clapeyron equation for confined fluid systems14. The FE data obtained in this

work supports the existence of a phase transition. Additionally, an answer to the basic

question of whether the nanoconfined phase is structurally identical to its bulk state has

also been provided. We determined that the bulk-like configuration becomes less stable

with increasing confinement and temperature. This means that a configuration with defects

is preferred. Furthermore, FE calculations in incommensurate systems, where the size of

wall particles is different from the size of fluid particles, in addition to commensurate sys-

tems, are also investigated. To reveal the effect of wall-fluid size on the confined phase

thermodynamic stability, FE measurements of systems with various fluid/wall size ratios

have been performed and compared with experimental results.

The nanoconfined systems investigated in Chapter VI are much closer to scenarios seen
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in physical experiments. In most experimental scenarios, the nanoconfined phase is im-

mersed in the bulk fluid. Therefore, to stay true to experiments, grand canonical molecular

dynamics (GCMD) simulations were conducted and the absolute FE of the nanoconfined

phase measured, to better understand the nature of nanoconfined fluid behavior. Given

the intensive computing power provided by graphics processing unit (GPU) and the paral-

lel nature of molecular dynamics simulation, the open source software package HOOMD

(highly optimized object-oriented many-particle dynamics) was used to accelerate the sim-

ulation. With the advantage of having the absolute FE calculated, the thermodynamic sta-

bility comparison under different wall-wall separations then became straightforward. The

nanoconfined phase exhibited a large absolute FE oscillation as the separation increased,

rather than exhibiting a smooth monotonically increasing line. This provides hints that

even if the existence of a phase transition is proven and a consensus on the nature of that

transition is reached, the behavior of the nanoconfined phase when the wall-wall separation

is below the critical value, might not be exactly the same as was originally assumed. In

other words, the nanoconfined phase might not stay in a solid state as the separation is re-

duced below the transition point. With the assistance of absolute FE measurements on each

individual layer, the role of boundary and central layers in determining nanoconfined phase

thermodynamic stability was differentiated in this work. The finding that the nanoconfined

fluid phase behavior is dominated by central layers, in conjunction with FE calculations

specifically for central layers, provides clues as to why there exists differing conclusions

among experimental researchers. However, these still leave the debate unresolved.

Chapter VII examines some of the crucial differences between the SFB experiment

by Klein’s group and the SFA experiment by Granick’s group. Of particular interest is

how these differences contribute to each group’s dramatically different understanding of

nanoconfined fluid behavior as well as what intrinsic properties are actually shared by

these experimental studies. Large scale molecular dynamics simulations and real-time or-

der parameter measurements suggest that the larger contact area used in Granick’s exper-
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iment15,16 requires more time for the system to equilibrate. Additionally, several factors

indicate a dramatically slower dynamic such as the manner in which the two solid walls

approach each other, the viscosity measurement, the much faster confining speed, and the

slower shearing speed. These systems turn out to be more difficult to reach equilibrium

which increases the probability of the existence of “jammed” atoms in the nanoconfined

region. In these simulations, extra atoms are artificially inserted into the nanoconfined re-

gion to mimic the aforementioned scenarios. The absolute FE measurements on systems

with artificially injected atoms reveals that the extra atoms destabilize the system and limit

the ability to transition a fluid into an equilibrated solid. Subsequently, Chapter VIII further

investigates systems with various nanoconfined-phase densities, and examines the roles of

“jammed” atoms in nanoconfined fluid behavior.

Based on the FE calculations performed in previous chapters, and the most recent sim-

ulation studies on nanoconfined fluid, this dissertation research proposes a thought process

that might reconcile the two-decades-long debate in this field and give a relatively clear

view on the nature of nanoconfined fluid behavior.

The last chapter summarizes this dissertation research and provides suggestions for

future research as well as possible applications based on the knowledge obtained in this

work.
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CHAPTER II

BACKGROUND

2.1 Understanding the Nanoconfined Fluid

2.1.1 MEMS/NEMS Development

In the last fifty years, the electronics industry has seen many great developments, not the

least of which are advancements in device miniaturization. Early in 1962, Tufte, Chapman,

and Long17, working at Honeywell, successfully created the first electromechanical de-

vice at the micron scale: a silicon integrated piezo-actuator at a thickness of approximately

200 microns. Only three years later, Nathanson and Wickstrom18, working at Westing-

house, reported the successful creation of an accelerometer at a much smaller size, only

6.3 microns in radius. Following these pioneering creations, the practical application of

such small devices started at a rapid pace. The first commercialized micron-sized sensor

appeared on the market in 1973. After that, the doorway to developing and utilizing micron

scale or even smaller, nanoscale, electromechanical devices was opened. In a workshop in

1989, Professor Howe19,20 from U.C. Berkeley first used the acronym for microelectrome-

chanical systems (MEMS, shown in Figure 2.1) to name this new field. In the early days

of the field these devices shared a plethora of similarities with microelectronics, but even

then they were already a distinct arena. MEMS and its future substitute and supplementary,

NEMS, have seen a rapid expansion of manufacturing capacity in the microscopic world

within the last several decades. To date, in addition to intense research attention and ef-

forts, MEMS/NEMS have already found wide applications in industry in such devices as

inkjet print heads, high-resolution digital displays, pressure and inertial sensors and many

others20.

Recently discovered and synthesized carbon-based structures such as buckyballs23–25,

graphene26, and carbon nanotubes27,28 (shown in Figure 2.2), make excellent candidate
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Figure 2.1. Semi-schematic diagram (left) of a MEMS electrostatic micromotor from the
work of Roukes21. Scanning electron microscope (SEM) image (right) of a mite approach-
ing a gear chain from Sandia National Lab.22 The mite is approximately 1 millimeter long.

components for building nanoscale electromechanical devices due to their marvelous prop-

erties and well defined configuration. However, further development and application of

MEMS/NEMS not only have to deal with traditional problems, such as the miniaturization

of devices, component assembly in nanoscale, and their compatibility with the working

environment, but they also have to meet new challenges brought on by shrinking their di-

mension by many orders of magnitude. Specifically, fluid management and fluid processing

devices for biological microanalysis and drug delivery are important branches of the many

emerging applications of MEMS/NEMS. A thorough understanding of whether or not the

fluid confined in the nanoscale still behaves as its bulk state is crucial to the successful

application of these devices.

2.1.2 Nanoscale Lubrication

Due the massive increase in information capture and storage seen in the past several years,

it has been necessary to create devices with a great storage capacity such as the high stor-

age hard drive. This is a challenge to scientists and engineers in a similar manner to other

MEMS/NEMS devices because as the on-disk data density increases exponentially, the

distance between the read head and disk decreases exponentially30. The lubricant fluid is

thereby confined to a smaller and smaller slit, which is the same challenge seen in cre-
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Figure 2.2. Illustration of all eight carbon allotropes by Mstroeck29. Buckyballs, graphene,
and carbon nanotubes are perfect components for constructing electromechanical devices.

ating nanoscale electromechanical devices. More explicitly stated the challenge is, under

extreme confinement, does the lubricant fluid still keep the same lubricating property as

its bulk state? In other words, given that the distance between the read head and disk is

lower than a certain critical value, does the lubricant fluid transition into other phases? If a

solidification does in fact take place, then it likely means the upper bound storage capacity

of this kind of hard drive .

2.1.3 Biological Application

A thorough understanding of nanoconfined fluid behavior also has great importance in

medicine and biology. For example, synovial joints have very low friction over a large

normal pressure range31. However, the mechanism of super lubrication of natural synovial

fluids is not fully understood32. More research into understanding how a fluid nanoconfined

between two surfaces behaves in nature will certainly facilitate the development of a new
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generation of artificial joints that could effectively mimic the ultra-low slide friction of

natural synovial joints.

Another application is in attempting to answer one of the basic problems in biologi-

cal science: the origin of life. It is widely accepted that there existed a RNA world that

was the precursor of our current life which is based on a combination of DNA , RNA,

and protein33,34. As for the origin of the RNA world itself, the pioneering experiment by

Miller and subsequent similar experiments35,36 already addressed the question of how the

nucleotide is formed. However, the chemical mechanism that occurs between a nucleotide

and the formation of RNA (or oligonucleotide) remains unclear. Given the existence of

mica sheets soon after the Earth’s formation, and the similarity of a confined fluid region to

a Golgi apparatus37, it would be interesting to investigate the physical change of nanocon-

fined behavior on the chemical properties as well as the possible role of confined fluids in

this mechanism.38

2.1.4 Importance in AFM Operation

One product of the advances in MEMS technology, the invention of AFM in 1981, earned

its inventors, Gerd Binnig and Heinrich Rohrer (at IBM Zrich)39, the Nobel Prize in Physics

in 1986. Since then, AFM has become one of the foremost tools in nanoscience. It provides

true atomic resolution not only in a ultra-high vacuum condition, but also in an ambient en-

vironment. Due to the presence of a fluid layer on the surface40,41 in ambient conditions,

the study of nanoconfined fluid behavior is considerably important to AFM applications.

Specifically, if a nanoconfinement-induced solidification takes place in the confined region

between the probing tip and sample surface, it could potentially cast doubts on some AFM

measurement results. As such, a modified and updated form of AFM is already an impor-

tant tool in the investigations on nanoconfined fluid phenomena.
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2.2 Controversy among Experimentalist

2.2.1 Introduction to SFA/SFB

While the first experimental studies of nanoscale confined fluids were performed by Is-

raelachvili and Adams42,43 in the 1970s, the first step in the study of such systems is

attributed to the work of Tabor and Winterton44,45, who, in the late 1960s, developed a

method of determining the force between surfaces separated by nanometers. While the

focus of their research was not nanoconfined fluids (rather it was to measure the attractive

van der Waals forces between surfaces in air), the technique they developed overcame a

number of important obstacles in the study of nanoscale systems. Building upon the work

of Tabor and Winterton, Israelachvili and Adams42,43,46 developed an improved apparatus

capable of not only measuring both attractive and repulsive forces, but of doing so over

a six orders of magnitude range of forces. This improved experimental approach became

known as the surface force apparatus (SFA) and it, together with further improvements, has

formed the basis of nanoconfined fluid research from the 1970s to date.

Among the most important improvements to the SFA technique of Israelachvili and

Adams has been the ability to measure the effect of surface shear on the confined fluid.

Such an adaptation has been performed by a number of groups with the most famous being

that proposed by Klein and co-workers6,16,47 (referred to as a surface force balance) and

Granick and co-workers48 (retaining the name of surface force apparatus). For compari-

son, Figure 2.3 provides schematics for the experimental setups of the groups of Granick

(Figure 2.3a) and Klein (Figure 2.3b). In both cases the apparatus essentially consists of

two surfaces, immersed in the fluid to be studied, coupled to a means of inducing oscil-

latory shear. In the case of the SFA (Granick) this is a piezoelectric bimorph strip, while

the SFB (Klein) uses a piezoelectric tube (PZT), however, the end effect is similar (i.e.

oscillatory shear). By measuring the resistance to this shear induced motion it is possible

to infer a frequency-dependent viscosity that, in turn, may be extrapolated to zero-shear to

obtain a measure of the viscosity of the confined fluid. It is by observing changes in this
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viscosity measurement, together with the previously mentioned measures of the attractive

and repulsive forces between the confining surfaces, that the structure of the confined fluid

is inferred.

Figure 2.3. Schematic representations of surface force apparatus (SFA) and surface force
balance (SFB) employed by Granick et al. and Klein et al., respectively. In SFA (top, taken
from Granicks paper48), the shear is driven by the left piezoelectric bimorph strip (driver)
and a voltage is measured as the right piezoelectric bimorph strip (receiver) detects the
response of the desired system. In SFB (bottom, diagram taken form Kleins work16),the
piezoelectric tube(PZT) provides a lateral motion (along x direction) to the top mica surface
and the force is monitored by the capacitance of G.

2.2.2 Conflicting Results from SFA Community

Application of SFA to study the behavior of nanoconfined fluids was initially concerned

with understanding fundamental issues, such as friction, lubrication, and adhesion. These

studies focused on what are often referred to as ultra-thin films (typically corresponding

12



to a surface separation of 3 molecular diameters or less). During this course of research

it was discovered that when nonpolar fluids, such as linear and cyclic alkanes, are con-

fined between surfaces separated by distances approaching several molecular diameters,

their properties are dramatically different to those of their corresponding bulk state6,49–52.

Specifically, it was noted that for a variety of non-polar fluids, confinement to this level

(3 molecular diameters or less), at conditions in which they are normally in a liquid state,

resulted in behavior consistent with that of a solid.

The ordering of a liquid immediately adjacent to a solid surface was originally intro-

duced by Hardy in 191253. Subsequently, Reychler, Harkins, and Langmuir supported and

popularized this idea54. It is now universally accepted that the layer of a liquid closest to

a surface consists of a monolayer of oriented molecules due to the constraint provided by

the solid wall.

The observation of this unexpected solid-like behavior in the nanoconfined region spurred

an increase in research efforts aimed at understanding the nature of the transition from

fluid-like to solid-like behavior and the 1990s saw a number of such SFA and SFB stud-

ies6,7,16,47,51,55–58. Unfortunately, the results from the various experimental laboratories

performing these studies were not in agreement and led to two conflicting theories. The

first of these two theories is proposed by Klein and co-workers6,16,47,55,56 and states that

the transition is first-order as a function of surface separation (shown in Figure 2.4). The

second theory is proposed by Granick and co-workers7,51,57 who believe that the transition

is second-order and thus equivalent to vitrification. Of course, both theories are supported

by the experiments performed in each group. Specifically, those who espouse a first or-

der transition observe a many orders of magnitude increase in viscosity, together with the

abrupt onset of a non-zero yield stress. By contrast, proponents of a second-order transition

observe only a dramatic increase in viscosity (i.e., a finite yield stress is not observed).

Since these two competing theories were proposed in the 1990s, there have been several

efforts that attempt to reconcile the observed differences between what should essentially
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be identical experimental measurements. Unfortunately, to date, none has been successful

and, for nearly two decades, a robust debate over this issue has taken place in the literature.

By necessity, given the inability to observe directly what occurs between the confining sur-

faces, much of this debate has revolved around reducing perceived sources of error in the

experimental apparatus. For example, Granick considers his early experiments that repre-

sented many-order of magnitude increase in viscosity to be compromised due to contam-

ination of the mica sheets by platinum nanoparticles (the mica sheets were cleaved using

hot platinum wire)7,59–62. Repeating these experiments using a different surface prepara-

tion method that eliminated platinum nanoparticle contamination, Granick and coworkers

found different orders-of-magnitude increase in the viscosity depending on the confinement

rate7. By contrast, Klein found no evidence of such problems in his experiments56 and,

ironically, the agreement with the new experiments of Granick was worse, not better.

While the new, platinum free, experiments from the Granick laboratory were unable

to measure a non-zero yield stress, they did provide some new insight into confinement

induced phase transitions. Specifically they observed that, for octamethylcyclotetrasilox-

ane (OMCTS), the occurrence of a many order-of-magnitude increase in viscosity was

dependent upon the rate of approach of the confining mica surfaces; a “rapid” confinement

(0.5-2.0 nm · s−1)) resulted in an increased viscosity while a quasi-static (< 0.01 nm · s−1)

confinement resulted in a very low viscosity (shown in Figure 2.4). While this result has

been disputed63, it has been noted that such an observation is consistent with the formation

of a jammed, non-equilibrium state64. If this is the case, it seems logical that the definition

of “rapid” is a function of both the nature of the confined fluid as well as the size of the

confining surfaces and that variations in these may account for the occurrence of jamming

effects in some, but not all, experiments.

Given that the experimental apparatus used in each laboratory is of a custom design

and build, the differences between them is, of course, not limited to just platinum particles

or surface size effects but, rather, consists of a plethora of variations whose importance is
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unknown or contested (e.g. the role of fluid purity16). However, at its heart, the biggest

hurdle to determining conclusively the change in the structure of a fluid upon nanocon-

finement is that current experimental techniques lack the molecular resolution required to

observe directly what occurs.

2.2.3 Results of AFM Experiments

In addition to the intense research efforts from the SFA/SFB community, researchers of

other communities, using different experimental techniques, studied similar problems. In

particular, atomic force microscopy (AFM) has also been applied to study the confinement

of organic fluids65–67. Atomic force microscopy (AFM), when compared to SFA/SFB, has

a much smaller contact area than either. AFM, and modified versions of this technique40,

allows for a wider choice of substrates, geometry, and the possibility of simultaneously

measuring other properties with other equipment.

These AFM studies65–67 found that the viscosity of a confined organic fluid stays bulk-

like down to three molecular layers, before exhibiting enhancements in the viscosity as

the last 2 fluid layers are expelled67. These results are similar to the work of Granick and

coworkers, although it is necessary to note that pyrolytic graphite confining surfaces were

used instead of mica. However, Mugele and coworkers68 have raised questions about the

suitability of AFM in the study of confinement-induced solidification. Specifically, due to

the non-monotonic nature of nanoconfined fluid properties, they found that the typically

assumed relation between molecular diffusivity and the damping measured by the AFM tip

does not hold for nanoconfined fluids. More importantly, the manner in which AFM con-

ducts measurements, by using up and down clicking movements instead of a lateral motion

as used by SFA/SFB, might mean that AFM overlooked a possible solid phase. When

taking into account that the absolute FE calculations in Chapter VI suggests a fluid/solid

oscillatory nature as the separation is reduced below the critical value, the probability is

high that AFM experiments actually miss the nanoconfinement-induced solid.
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2.2.4 Other Techniques

Over the last two decades, in addition to significant advances in SFA/SFB techniques69,

several alternate methods have been applied to the study of nanoconfined fluid behavior

including neutron scattering, X-ray70 (solid surface deformation x-ray or neutron scatter-

ing), and differential scanning calorimetry (DSC). However, due to the extremely small

amount of material in the nanoconfined region, background noise can have a substantial

impact leading to results that are less than conclusive and even meaningless. Moreover,

DSC itself is a tool that lacks sufficient precision to quantify such properties. To date, there

still remains no general agreement between major experimental groups with respect to the

existence of a sharp order-disorder transition as a function of surface separation.

2.2.5 Consistency in Nanoconfined Water Behavior

Given its fundamental importance in life, as well as its significance in physical, chemical,

and biological properties, water has always drawn intense interest in related research. A

similar scenario as described previously is also seen in the investigations on nanoconfined

water systems. However, while there is no general agreement on the nature of nanocon-

fined non-polar fluid behavior, conclusions from studies on nanoconfined water behav-

ior are quite consistent, both in simulation and experimental groups. Raviv et al.71 in

2001 reported experimental results for water nanoconfined between mica sheets. Different

from nonpolar organic fluid, such as OMCTS, cyclo-hexane, etc., water does not exhibit

a many orders-of-magnitude increase in effective viscosity nor does it have a noticeable

yield stress. Following that, the same conclusions have been reached by Leng and Cum-

mings72,73 in molecular simulation studies of water nanoconfined by mica sheets.

This behavior of water primarily stems from its strong, directional hydrogen bonds.

The lack of increase in the viscosity of water can be well explained using the nanoconfined

phase transition theory by Radhakrishnan et al.74. Due to the existence of hydrogen bonds,

the interaction between water molecules is much stronger than nonpolar fluids. The interac-
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tion between water molecules and solid water does not overwhelm the interaction between

water molecules. Hence, there is no freezing/melting point increase based on Radhakrish-

nan’s theory. Additionally, the hydrogen bonds are highly directional. Water in a fluid state

actually consists of water clusters75 rather than single molecules. Extra energy is needed

to break clusters and form a solid structure that might not be favored by hydrogen bond

direction.

2.3 Simulation Research

2.3.1 Pros and Cons of Simulation

While the problem of direct observation of what occurs when a fluid is nanoconfined be-

tween molecularly smooth step-free surfaces (typically mica sheets) is a major hurdle that

experimentalists have yet to overcome, for molecular simulations, which have an inher-

ent molecular resolution, no such issue exists. Additionally, molecular simulation is free

from the interference of uncertainties, such as previously unknown platinum contamination.

Also, results by molecular simulation are relatively easier to reproduce between different

research groups. Thus, in the study of nanoconfined systems, molecular simulation is an

extremely powerful tool capable of providing direct evidence in the debate over the physics

of confinement-induced phase transitions.

In fact, a wide range of computational studies have already been undertaken with the

aim of obtaining such evidence. However, although molecular simulation techniques may

not suffer a lack of resolution, they are not, of course, without their limitations and weak-

nesses. Most models employed in simulations are not atomistically detailed and may not

completely grasp the key features of systems under investigation. Thus, while studies to

date have provided useful insight, they have yet to prove in a sufficiently convincing manner

the nature of confinement induced phase changes (i.e., the debate still persists). Given that

this dissertation research is based on molecular simulation, we will now describe briefly

some of the more prominent simulation studies as well as noting their apparent weaknesses.
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2.3.2 Results from Simple Models

Pioneering simulation studies on nanoconfined fluid have been carried out by Thompson et

al.76,77 in the early 1990s, even before conflicting observations were reported experimen-

tally. However, their original focus is the dynamic features of lubricants. By mimicking

scenarios in experiments, they tried to gain insight on the origin of distinct dynamic fea-

tures. The by-product of this work was the nanoconfinement-induced crystalline structure

in static state and support of the as-yet-undisputed phase transition.

More comprehensive investigations were performed by Gao et al.78–81 in the late 1990s.

Gao et al. developed and applied the grand-canonical molecular dynamics (GCMD) tech-

nique to the study of systems between two face centered cubic (FCC) gold surfaces. Their

simulations clearly show that when the separation between the two confining surfaces is

less than 5 or 6 layers (i.e. for the commensurate system (with σmm = σwm), the critical

thickness is 6 layers, while for the incommensurate system (with σmm 6= σwm ), the critical

thickness is 4 to 5 layers) the confined fluid exhibits features characteristic of solid-like

response. Their study of the commensurate system is consistent with the reported fluid-to-

solid-like transition of 6-layer thick octamethylcyclotetrasiloxane (OMCTS)6 fluid film in

Klein’s surface force balance (SFB) measurement. Moreover, their views of the structure

for sufficiently confined n-hexadecane not only exhibit well-layered configuration perpen-

dicular to the gold surface, but also in-layer order.

Seminal work by Radhakrishnan and Gubbins74,82 examined the behavior of a model

system composed of Lennard-Jones (LJ) spheres under confinement, providing strong evi-

dence of the existence of a first-order phase transition. In particular, their studies employed

umbrella sampling to calculate the relative free energy difference between a confined dis-

ordered phase and a confined solid phase, demonstrating that the solid phase was lower

in free energy over a wide range of state points. They additionally demonstrated that the

order-disorder transition temperature shifts to higher values as the wall-fluid interaction

exceeds the fluid-fluid interaction.
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Also relevant are the work of Cui et al.83–86, who provide further evidence supporting

a first-order phase transition, and that of Jabbarzadeh et al.87,88 who argue that the high

friction fluid film is metastable rather than a thermodynamically stable state, and thus the

transition is second-order. Making use of a united-atom model89 for dodecane and a simple

FCC lattice for the mica surfaces, both of them made a number of important observations.

In the work of Cui et al.83–86, they first note that the formation of an ordered solid-like

structure upon nanoconfinement depends upon the relative strength of the wall-fluid inter-

action, occurring only when the wall-fluid interaction is sufficiently strong. Second, they

demonstrate that if the wall-wall interaction is fitted to the experimental surface energy

of mica (i.e., the surface energy of the freshly cleaved mica surface is from 200 to 400

mJm−2 47) then the wall-fluid interaction is strong enough to support the formation of an

ordered solid-like structure, when dodecane is confined to 6 molecular diameters or less.

Furthermore, they show that this transition is first order as a function of surface separation

(i.e., for 7 layers dodecane remains fluidic) as well as determining that the confined struc-

ture consists of layers of dodecane in a herringbone arrangement (shown in Figure 2.5). In

contrast with observations of Cui et al., Jabbarzadeh et al. find that the ordered solid-like

structure is in a metastable state in their nonequilibrium molecular dynamics (NEMD) sim-

ulation, and they demonstrate an even more stable super-low-friction state for their specific

system similar to the phenomenon reported by Zhu and Granick90. However, the shear

rates in the Jabbarzadeh et al. work are many orders of magnitude greater than the Zhu

and Granick experiment, casting doubt on whether they are related phenomena. Hence, the

debate which originally focused on experiments has somewhat expanded to simulations.

2.3.3 Evidence from Atomistically Detailed Model

However, as noted above, all of the simulation studies to date are open to criticism for a

number of reasons. Firstly, the models employed in such simulations are not atomistically

detailed or physically realistic. In all of these previous works78–81,83–88, the fluid molecules
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are described as united-atoms92, which treat methyl and methylene groups as single inter-

action sites and are thus not sufficiently detailed. Additionally, it is not physically realistic

to assume that the mica sheets only consist of simple LJ atoms located in face centered

cubic (FCC) lattice sites statically. In contrast to gold, the mica surface is not FCC in na-

ture93. Given this, it can be argued that the observed phenomena may be different to what

occurs in experiment. Secondly, the timescale of these simulations is also limited, all in

the range of 300ps to 100ns, which means the observed well-ordered structure could be a

metastable state.

Recently, Docherty and coworkers89,94 addressed the first problem for nanoconfined

non-polar fluids. In their simulations, they used a fully atomistically detailed model for

both the fluid (dodecane and cyclohexane95) and solid (mica93), and demonstrated that

the nanoconfined fluids undergo a rapid and dramatic transition to a layered and ordered

structure (shown in Figure 2.6). And as a reassessment of previous assumptions, they found

that a hexagonal ordering of the sufficiently confined cyclohexane could be induced by the

hexagonal nature of the mica surface. These are the most convincing results among those

investigations to date, but the problem still remains of whether the ordered phase observed

in the molecular simulations is thermodynamically stable or metastable due to these studies

being conducted in the previously mentioned timescale range. A rigorous solution to this

problem will be the development and application of FE calculation techniques to the study

of nanoconfined systems. Therefore, FE calculations need to be performed to show whether

the ordered phase observed in molecular simulation is in a thermodynamically stable state.

2.4 Free Energy

2.4.1 Criteria for Defining a Solid

In order to determine if there is a fluid-to-solid phase transition, the primary concern then

becomes how is a solid/crystal phase defined. Simionesco et al. have reviewed criteria that

are generally implemented in solid determination96. Some examples include the Hansen-
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Verlet criterion that the magnitude of the structure factor at its first peak is 2.897, the Lin-

demann criterion that the amplitude of vibration of the atoms is not sufficient to invade the

space of their nearest neighbors98, and the Born criterion that shear strength characteristic

of solids is present99. However, all of these criteria are defined on a kinetic basis and might

not be thermodynamically conclusive.

2.4.2 Pivotal Role of FE in Thermodynamics

FE plays a fundamental role in thermodynamics. The FE of a system is the quantity which

is minimized at equilibrium. For example, at constant pressure (P), temperature (T ) and

number of molecules (N), the Gibbs FE (G) is minimized; since a systems Gibbs free en-

ergy can in some cases be lowered by splitting into two phases (e.g., vapor and liquid),

minimization of Gibbs FE is an important principle in understanding phase equilibrium.

Another example are systems at constant volume (V ), temperature (T ), and number of

molecules (N), in which case the Helmholtz FE (A) is minimized. If the relative thermo-

dynamic stability of two phases is required at a given condition, such as density (ρ) and

temperature T and N, a simple comparison of Helmholtz FE (A) would fulfill that. Provided

that the FE is known with sufficient accuracy, theoretically, a conclusive determination of

the stable structure and full description of the phase behavior of the system of interest

would be straightforward.

2.4.3 FE Determination Methodologies

Given the importance of FE, however, the calculation of FE, even for a relatively simple

system, can be a cumbersome or even impractical task. The direct measurement of FE in

experiment and simulation, like pressure or temperature, is not possible. FE is a measure

of the volume in phase space that a system can access rather than a mechanical property

expressible in terms of position and momentum of molecule100. Hence, the study of FE

calculation is itself a large and expanding topic of great interest. Following the introduction

of novel methodologies and exponentially increasing computational capability in the last
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several decades, significant advances in FE determination have been made for a variety of

systems, from early stage idealized particles to water, from sparse fluid to dense solids101,

from pure systems to mixtures102,103. To date, a plethora of elegant free energy determina-

tion approaches have been proposed, validated, and widely implemented104–106,106–109.

2.4.3.1 Fluid FE Calculation

FE calculation for a fluid is relatively straightforward. The most classic method is thermo-

dynamic integration. By employing a path that reversibly connects the fluid of interest with

a free energy known state (i.e., FE reference), typically an ideal gas, the thermodynamic in-

tegration measures the FE difference between the system of interest and this FE reference.

Subsequently, a simple summation of the FE difference and the FE of reference state will

give the FE of the fluid under study. The integration is not limited to trace a reversible path

that real experiments could follow. More often than not, the integration is performed along

a path that actually does not exist in reality, and is only accessible in simulations. One

example is an integration path with varying bond strength while other parameters remains

constant. This method was given a new terminology, Hamiltonian integration101, and is

very useful in FE measurements.

Another robust fluid FE calculation approach, known as the particle insertion method,

was proposed in 1963. It is also widely known as the Widom insertion method109. By

randomly inserting a never-accepted test particle into an N-particle system, the Widom

insertion method evaluates the excess chemical potential (µex) of the N-particle fluid system

using the following equation:

µex =−kBT ln
∫

dsN+1 〈exp(−β∆U)〉N (2.1)

where, kB is the Boltzmann constant, T is temperature, sN+1 is scaled coordinate, β is

equal to 1/(kBT ), ∆U is the interaction energy between the inserted test particle and the
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remaining molecules, and 〈...〉 denotes the canonical ensemble average over the configu-

ration space of this N-particle system. The summation of the excessive chemical potential

(µex) and the chemical potential of ideal gas under the same condition (µid) gives absolute

FE. Moreover, attention should be given to the fact that the tail correction used in the poten-

tial calculation here is twice that of the generally used one. The Widom insertion method

is especially useful for FE calculations on dilute or moderately dense fluid. However, it

should be noted that if the system under investigation is dense, the frequency of impor-

tant insertion would be extremely low thereby rendering FE measurements by this method

impractical.

2.4.3.2 Solids FE Calculation

Partly due to the relatively high density of solids and the hysteresis that occurs in the phase

transition, especially in simulation, determining a robust strategy to connect an arbitrary

solid under investigation to a known free energy reference in order to determine its absolute

FE takes a much longer time and more research effort than for fluid. Hoover and Ree110,111

carried out pioneering work in the late 1960s by introducing the single-occupancy cell

method. This method models the dense solid as a lattice gas that the particle moves within

its cell and lets the lattice gas uniformly expand to low densities without a first-order tran-

sition. Only two years later, Hoover, Gray, and Johnson104,105 proposed an alternative

method by cooling the solid into a harmonic crystal. However, both the single-occupancy

cell method and the cooling method have limitations. Research a few years later112 proved

that the uniform expansion may not be free from hysteresis and the cooling method prob-

ably encounters phase transitions in the molecular solid cooling process. Hence, a robust

new method that is free from these limitations is needed for solid FE measurement.

In 1984, Frenkel and Ladd106 proposed a novel method which employed an analyti-

cally known FE - the Einstein crystal that is structurally identical with its target solid as

the reference state (the method is named after this reference state). This method then mea-

23



sures the free energy difference between the reference and solid of interest by introducing

two stages. Since the reference and solid of interest are structurally the same, the Ein-

stein crystal method avoids the first-order phase transition along the integration path to the

largest extent possible. Currently, it has already become the standard method for solid FE

calculation101. Subsequently, another straightforward and robust method was introduced

by Wilding and coworkers113–115 known as the phase switch Monte Carlo method. It de-

termines the FE difference of two phases by using an extended sampling in just a single

MC run. However, the phase switch Monte Carlo method is not feasible for measuring two

systems with a large FE discrepancy. Meanwhile, the Wang-Landau Method107, which was

named after its author, has also been proposed. Sharing some similarities with the switch

Monte Carlo method, the Wang-Landau Method adjusts the weighting factor in MC sim-

ulations to get the density of states and then calculates the FE difference. Most recently,

Kofke and coworkers have developed a very efficient harmonically targeted temperature

perturbation (HTTP) method108,116 which is aimed at FE calculation for arbitrary solids. It

determines its reference system by cooling the solid to a sufficiently low temperature in or-

der to create a solid that behaves like a harmonic crystal whose FE can then be analytically

calculated. Therefore, the HTTP method partially inherits the limitations of the cooling

method, including the possible phase transition in the cooling process and the probability

of an unreachable harmonic crystal. Additionally, the usage of HTTP is limited to systems

with a continuous potential because the existence of the first derivative of the potential

function is a prerequisite for FE calculation.

To date, a large amount of research has been devoted to the investigation of FE calcu-

lation techniques, which has promoted the improvement of these methods. The majority

of these methods are focused on FE calculations for a specific group of systems, while

others attempt to be more generally applicable. Meanwhile, FE measurements for classic

ideal systems have already been widely conducted. For instance, a large amount of FE data

for ideal hard spheres systems106,107,117–121, LJ fluids122, and crystals123,124 are available.
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However, these methods are typically developed for the study of bulk systems and none of

them are directly applicable to the specialized case of nanoconfined fluids. Thus, in order

to determine the FE for nanoconfined systems, further development of the most applicable

method is required.
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Figure 2.4. Conflicting results presented by Granick et al.7 and Klein et al.16. Quasistatic
compression (top) is from the work of Granick et al.7. There is no dramatic elastic-viscosity
shift as the separation decreases from 220 nm to 1 nm. Applied motion and feedback sig-
nals at various separations (bottom left) and effective mean viscosity as a function of sep-
aration (bottom right) are observed by Klein et al.16. The abrupt increase and decrease of
feedback signal (left, C) at six molecular layers indicate a non-zero yield stress. Moreover,
effective mean viscosity demonstrates an orders of magnitude increase as the separation is
equal to or less than six molecular layers.
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Figure 2.5. Snapshots of the nanoconfined dodecane at a separation equal to six molec-
ular layers (from Cui et al.85 work). A side view (left) of n-dodecane (SKS united atom
model91) fluid nanoconfined by mica (FCC(100)) surfaces. A perspective view of the same
configuration, showing a herringbone in-layer arrangement with 90◦ angle.

Figure 2.6. Snapshots of the nanoconfined dodecane at a separation equal to five molecular
layers (taken from Cummings et al.94 work). A side view (top) of n-dodecane (OPLS
all-atom model) nanoconfined by mica (Heinz al.93) sheets. A perspective view (bottom)
shows a herringbone in-layer arrangement with 120◦ angle.
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CHAPTER III

SIMULATION AND FE CALCULATION METHODOLOGY

3.1 Choice of Models and Methodology

The focus of this dissertation research is in developing absolute FE calculation strategies

for nanconfined systems and subsequently employing the FE measurement as a tool to

determine the nature of nanoconfined phase behavior. Specifically, the motivation is to

decisively resolve the two-decades-long debate in both experimental and simulation com-

munities and determine whether the layered and ordered state of the nanoconfined fluid

observed in molecular simulation is thermodynamically stable. This work is done via the

absolute FE determination and FE comparison of corresponding states.

3.1.1 Models

Prior to choosing a reasonable interaction model in FE calculation for a nanoconfined fluid,

a quick review of the materials used in previous experiments is necessary. As for the solid

wall, molecularly smooth mica sheets typically have been used. Mica has a hexagonal

sheet-like arrangement of its atoms. Its structure and chemical component have been known

for quite some time125. Currently, modern standard measurements, such as nuclear mag-

netic resonance (NMR) spectroscopy, X-ray diffraction, X-ray spectra, and Infrared (IR)

spectroscopy126, can be used to easily determine the structural properties of mica. How-

ever, it is important to note that the chemical formula of mica is not fixed, and a detailed

composition depends on its type and where it was mined. Based on the experimental data

and previous work, Heinz and coworkers93 have developed a widely compatible force field

for mica and similar phyllosilicates. However, the computational cost associated with the

Heinz model makes it intractable for FE calculations. Simplifications, such as assuming a

uniform FCC crystal, with interaction strength mapped to realistic interactions, has been

used in other work83. This puts the relative strength between a methyl group and mica

28



at 4.47 times that of methyl-methyl groups. Meanwhile, the typical organic fluid used in

experimental study is OMCTS, a molecule that has a flat sphere configuration (shown in

Figure 3.1) and serves as a model liquid for Lennard-Jones (LJ) fluids.

Figure 3.1. Top (left) and side (right) view of OMCTS by Avogadro package127. The color
coding of atoms is: red - oxygen, light grey - hydrogen, dark grey - carbon, and dark blue
- silicon.

Since the absolute FE determination is simulation based, a brief comparison of previ-

ously used models and their conclusions are presented in Table 3.1. Taking into consid-

eration the setting differences in the simulations, such as the specific system under study,

wall-fluid interaction, wall-fluid size ratio, and surface orientation, results by a simplified

model demonstrate good consistency with those using an atomistically-detailed model. For

instance, the layering and ordering transition of the sphere and sphere-like fluid cyclo-

hexane molecule takes place around 4 to 5 molecular diameters. This indicates that the

simplified model already captures key features of nanoconfined fluid behavior.
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Consequently, taking into consideration the computational cost in FE calculation (es-

pecially since the method used in this work takes twenty simulations to carry out a single

FE measurement), the classic 12-6 Lennard-Jones (LJ) potential is employed to model in-

teractions in the nanoconfined system.

U = 4εi j

[(
σi j

r

)12
−
(

σi j

r

)6
]

(3.1)

Where U is the potential, εi j is the potential well depth, σi j is the interatomic distance at

which the potential energy is equal to zero, and i and j denote the type of atom. Generally,

w and m are used in this work to denote the solid wall particles and the fluid particles, re-

spectively. Mostly in this research, Berthelot-Lorentz Combining rules are applied, except

for FE calculations of the incommensurate systems in section 5.4. Additionally, it is im-

portant to note that all of the following work uses LJ reduced units, except for the explicitly

specified scenarios. The interaction used in the subsequent work are designed to closely

mimic the parameters used for systems such as mica and OCTMS, yet still be generally

applicable.

3.1.2 FE Calculation Methodology

As reviewed in Chapter II, the phase switch Monte Carlo method114,115 is straightforward

and efficient but limited to low FE discrepancy measurements, with the Wang-Landau

method sharing similar limitations. The newly developed HTTP method108,116 takes con-

tinuous potential as the prerequisite and, as such, is not suitable for molecular solids. How-

ever, by employing a FE-known Einstein crystal (shown in Figure 3.2a) that is structurally

identical with the solid of interest as the reference state, the Einstein crystal method106 clev-

erly minimizes the probability of abrupt configuration shifts and thus far largely decreases

the possibility of problems arising from phase transitions along the integration path. Al-

though it is not as efficient as the phase switch Monte Carlo method, it is applicable for
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arbitrary solids. Thus, in this dissertation research, FE calculations are done using the Ein-

stein crystal method as the starting point. The essential parts of this dissertation research

are evaluating existing basic algorithms of the Einstein crystal method, developing modi-

fied algorithms, adapting these algorithms to the FE measurement, and employing FE as

the tool to reveal the nature of nanoconfined fluid behavior.

Figure 3.2. Schematic illustration of the Einstein crystal method. (a)Einstein crystal,
(b)Einstein solid, (c)solid of interest. Stage 1: turning on the intermolecular intercations.
Stage 2: gradually turning off the harmonic potential.

3.2 Basic Algorithm

3.2.1 Introduction

The original algorithm of the Einstein crystal method was proposed by Frenkel and Ladd106.

Since its introduction in 1984, several improvements have been introduced119,128 and mod-

ified applications have also been reported129,130. The Einstein crystal method to date has

become a standard and robust method of absolute FE determination for arbitrary solids.

More recently, it has been revisited in detail by Vega and co-workers101,130. The basic al-

gorithm employed in this work was introduced by Almarza128, who successfully removed

the fixed-center-of-mass constraint in the original algorithm, making it more straightfor-

ward and much easier to use.

Basically, the Einstein method works by designing a reversible path to connect the

system under investigation with a known FE reference and measure the FE change along

the reversible path to obtain the FE of the investigated system. In particular, the Einstein

crystal method employs a known FE Einstein crystal as the reference, which only consists
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of non-interacting harmonic oscillators, and constructs the reversible path via two stages.

Hence, the calculated absolute Helmholtz FE (A) of a solid of interest is generally the sum-

mation of the following terms (shown in Figure 3.2 and the formula below): the absolute

Helmholtz FE analytically-known reference (A0), the FE change in stage one (∆A1), and

the FE change in stage two (∆A2). The reference state (A0) is an Einstein crystal (i.e.,

non-interacting particles attached to lattice points), which is structurally identical to the

solid of interest. The first stage measures the FE difference between a system of interacting

particles attached to lattice points and the Einstein crystal ∆A1 (i.e., when intermolecular

interactions are turned on). The second stage calculates the change in FE associated with

removal of the harmonic potential (∆A2), leaving a system of interacting particles.

A(N,V,T ) = A0 (N,V,T )+4A1 (N,V,T )+4A2 (N,V,T ) (3.2)

3.2.1.1 FE of the Reference (A0)

The FE of the reference state, an Einstein crystal, can be calculated analytically via sim-

plifying and evaluating the partition function. In canonical ensemble, volume (V ), temper-

ature (T ), and number of molecules (N) are constants. The appropriate expression for the

partition function (Q(V,T )) of a N-particle reference system would be:

Q(V,T ) =
1

N!h3N

∫
exp [−βH (q, p)]dω (3.3)

where h is the Plank constant, β is equal to 1/(kBT ), dω is considered as a volume ele-

ment of the phase space, and H(q, p) denotes Hamiltonian of the N-particle reference (i.e.,

energy of the reference system). q and p in H(q, p) are, respectively, position coordinate

and momentum coordinate. It is important to note that the reference system employed here

is not center-of-mass fixed.

33



Since the reference Einstein crystal consists of non-interacting harmonic oscillators,

there is no energy associated with the relative position of particles. The Hamiltonian of the

reference thus only includes kinetic energy (Eq. 3.4) and harmonic bond energy (Eq. 3.5)

components.

H (q, p) =
N

∑
i=1

(
p2

i
2m

)
(3.4)

+
N

∑
i=1

(
ΛEr2

i
)

(3.5)

where ri is the distance between the harmonic oscillator i and its lattice point, ΛE de-

notes the harmonic bond constant, and m is the mass of particles. In the following, the

partition function can be rewritten as

Q(V,T ) =
1

N!h3N

∫
exp
[
−ΛEr2

i
kBT

] N

∏
i=1

(
d3qi

)∫
exp
[
− p2

i
2mkBT

] N

∏
i=1

(
d3 pi

)
(3.6)

Performing the integration, brings the partition function to Equation 3.7 and then Stir-

ling’s approximation is applied. Subsequently, the equation below (Eq. 3.8) is obtained:

A0

NkBT
= − lnQ(V,T )

N
(3.7)

=

{
−3(N−1)

2N
ln(π/ΛE)−

3
2N

lnN− 3
N

ln
N
V

}
+

{
3
2

ln
(

h2

2πmkBT

)}
(3.8)

where h2

2πmkBT is the square of the de Broglie wavelength. In this work, its value is

set to unity for solid systems. Thus, Equation 3.8 could be further simplified. Finally,

an analytic expression for the FE of an N-particle reference system is presented in the
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following equation:

A0

NkBT
=−3(N−1)

2N
ln(π/ΛE)−

3
2N

lnN− 3
N

lnρ
? (3.9)

3.2.1.2 Evaluation of ∆A1

The FE change ∆A1 in stage one is defined as the FE difference between the reference sys-

tem Einstein crystal and the intermediate system Einstein solid. The terminology Einstein

solid here is used to specify a system consisting of harmonic oscillators, but with the inter-

molecular interaction between particles turned on. The ∆A1 in the Einstein crystal method

is determined by the division of partition functions of the Einstein crystal and the Ein-

stein solid (Eq. 3.10). It is calculated by conducting umbrella sampling131 of the Einstein

crystal. The expression of ∆A1 is given in the following equations:

∆A1 (N,V,T ) = −kBT ln
Q1 (V,T )
Q0 (V,T )

(3.10)

= −kBT ln
∫

exp(−βU1)d1....dN∫
exp(−βU0)d1....dN

(3.11)

= −kBT ln〈exp [−β (U1−U0)]〉0 (3.12)

where U0 is the harmonic potential energy of Einstein crystal, U1 is the overall po-

tential energy of the intermediate system Einstein solid (including harmonic potential and

intermolecular potential energy), and 〈....〉0 denotes a canonical ensemble average over the

reference system Einstein crystal. For simplicity, Ui (shown in Eq. 3.13) is defined as the

energy difference between U1 and U0. In other words, it is the calculated intermolecular

interaction potential energy based on configurations of the reference system. In FE deter-

mination, a MC simulation is employed in this stage to conduct the sampling and calculate

∆A1.
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∆A1 =−kBT ln〈exp [−β (Ui)]〉0 (3.13)

However, in practical calculations, the value of exp [−β (Ui)] is too large to be accu-

rately processed by the computer. Its range is beyond current computer capability. There-

fore, a subtraction is introduced to evaluate a much smaller value, exp [−β (Ui−Ui lattice)],

to avoid this problem.

∆A1 =Ui lattice− kBT ln〈exp(−β (Ui−Ui lattice))〉0 (3.14)

where Ui lattice is the intermolecular interaction energy of the reference system in the

lattice configuration. Hence, Eq. 3.14 is used in the following FE calculations for ∆A1.

3.2.1.3 Evaluation of ∆A2

Subsequently, in stage two, the harmonic interaction in the intermediate system, Einstein

solid, is gradually decoupled to reach the solid of interest. A Hamiltonian thermodynamic

integration (shown in Eq. 3.15) is carried out in that process to measure the FE change

∆A2. It is worthwhile to note that such a route is rare or non-existent in real experiments.

However, it still can be simulated by the computer.

∆A2 (N,V,T ) =

λ=1∫
λ=0

〈
dU (λ )

dλ

〉
dλ (3.15)

Here, λ is the coupling parameter with the value ranging from zero to unity. Zero and

unity denote Einstein solid and the solid of interest, respectively. U(λ ) is the potential en-

ergy of the system of interest in the harmonic interaction turning-off process and is defined
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by:

U (λ ) = λUi +(1−λ )(Uh +Ui) (3.16)

where Uh denotes the harmonic potential energy with full bond strength and Ui denotes

intermolecular interaction potential energy component. Bringing in this formula, Equation

3.15 would be simplified as

∆A2 (N,V,T ) = −
λ=1∫

λ=0

〈Uh〉N,V,T,λ dλ (3.17)

= −
ΛE∫
0

〈Uh〉N,V,T,λ

ΛE
dλΛE (3.18)

Since Uh varies by several orders of magnitude, a change of variable technique is em-

ployed here to smooth the variation of Uh and improve the accuracy. Hence, the formula

3.18 can be rewritten as:

∆A2 = −
ln(ΛE+C)∫

lnC

〈Uh〉N,V,T,λ (λΛE +C)

ΛE
d ln(λΛE +C) (3.19)

where ΛE is the harmonic bond constant and C is a general constant. Since previous

work in the literature106,132 shows that C = exp(3.5) gives a good estimate of the integral,

this value is used in the following FE calculations.
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3.2.1.4 Parameters Setting

Combining previous equations together (Eq. 3.2, 3.9, 3.14, and 3.19,), the FE of the solid

of interest is given by

A
NkBT

=
A0

NkBT
+
4A1

NkBT
+
4A2

NkBT
(3.20)

=

{
−3∗ (N−1)

2N
ln
(

π

ΛE

)
− 3

2N
lnN− 3

N
lnρ

∗
}

(3.21)

+{Ui lattice− kBT ln〈exp(−β (Ui−Ui lattice))〉0} (3.22)

−
∫ ln(ΛE+c)

lnc

〈Uh〉N,V,T,λ (λΛE + c)

ΛE
d (ln(λΛE + c)) (3.23)

In practical simulations, the choice of harmonic bond strength (ΛE) is not arbitrary. Too

strong a bond strength will tightly bond the atoms around their lattice sites and thus lower

the efficiency of sampling. Similarly, a too weak bond strength will also raise issues. The

weak bond might not be able to pull back the atoms to the lattice site in certain cases, and

hence either crashes the simulation or drives the term (exp(−β (Ui−Ui lattice))) to infinity.

Tested in preliminary work, the value of 1200kBT/σ2 is used for ΛE in most cases in this

dissertation work except in scenarios in which it is explicitly clarified.

As for the FE change in Stage two, the twenty-points Gauss-Legendre quadrature for-

mula (Eq. 3.24) is used to evaluate the integral:

∫ 1

−1
f (x)dx =

N

∑
i=1

wN,i f (xN , i) (3.24)

where N is the number of points of Gauss-Legendre quadrature formula and wN,i de-

notes the weight factor. This dissertation research employs MD instead of MC to sample

the transition states along the integration path in order to take advantage of the computa-

tional power of parallel computing.
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3.2.2 Validation

To validate the basic algorithm employed later in this work, and since it is fundamen-

tal to the following research, the absolute Helmholtz FE determination for a face cen-

tered cubic (FCC) LJ crystal under the same conditions as literature (T ? = 2.0, ρ? =

1.28)123,123,124,130,133 has been conducted. Monte Carlo (MC) umbrella sampling131 was

used in stage one (∆A1) and Nosé-Hoover MD simulations within LAMMPS (Large-scale

Atomic/Molecular Massively Parallel Simulator) 134 to sample the state points along the

harmonic potential removing stage(∆A2), rather than a more general MC-based approach,

was used to take advantage of the efficient multiple parallel CPUs135.

As shown in Table 3.2, the calculated FE values demonstrate a good consistency with

the FE values by Barroso and Ferreira124, Vega and Noya130, von der Hoef’s123 equation,

and Mastny and Pablo’s133 equation. This agreement verifies the basic algorithm used in

this work. Among these published approaches, Barroso et al. and Vega et al. used the

Einstein crystal method that employs the classic MC-based approach in the second stage,

while Von der Hoef proposed a fitting formula for the absolute FE of a Lennard-Jones solid

and Mastny subsequently updated constants in this formula.

Table 3.2. Comparison of calculated absolute Helmholtz FE with literature values. The
system under study is a LJ FCC crystal at T ? = 2.0, ρ? = 1.28. Free energy A is in units of
NkBT , N is number of particles, kB is Boltzmann constant, and T is temperature.

Calculated Barroso124 Vega130 von der Hoef123 Mastny133

A 2.618 2.596 2.601 2.623 2.606
Fitting 2.618− 12.156

N 2.601− 7.704
N

3.2.3 Monte Carlo versus Molecular Dynamics

However, as demonstrated in section 3.2, although the calculated FE value determined

by using the basic algorithm is consistent with literature values, the MD-sampling based

FE in this work still shows a minor difference from the MC-sampling based values in

the literature. In particular, the slope of the fitting formula by MD sampling is obviously
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steeper.

Among the possible factors that lead to this difference, the divergence of the intended

temperature and the achieved temperature in simulation could be the source. To this end,

Butler and coworkers136 developed an approach to calculate the configurational tempera-

ture (Tcon f ig, shown in Eq. 3.25) to represent the achieved system temperature in canonical

MC simulation. By using this formula, the Tcon f ig could be directly evaluated based on the

system configurations in MC simulation.

Tcon f ig = − ∑
N
i=1 F2

i

kB ∑
N
i=1 ∑ j 6=i ∇ri jFi j

(3.25)

Fi = ∑
j 6=i

Fi j =−∑
j 6=i

∂Ui j

∂ ri j
(3.26)

where Ui j is the potential energy between particle i and particle j, and ri j is the posi-

tion vector between these two particles. As revealed by Butler and coworkers, Tcon f ig in

canonical MC is always smaller than Tinput (i.e., the desired temperature) and the discrep-

ancy between these two rapidly decays with the increasing system size (shown in Figure

3.3), turning out less than 0.2% for 2000 particles. Although the calculated FE difference

is negligible in large system sizes, the dramatic discrepancy in small system sizes still ex-

erts an obvious impact on the slope of the linear fitting line and the extrapolated value in

the thermodynamic limit (i.e., 1/N→0 ). Hence, special attention should be paid if the

FE comparison between the MC-based and MD-based calculations is conducted for small

systems.

3.3 Modified Algorithm for Nanoconfined System

3.3.1 FE Calculation for Nanoconfined System

Validation of the basic algorithm was conducted in the previous section. This section sub-

sequently extends FE calculation efforts specifically to nanoconfined systems, which is the
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Figure 3.3. System size dependence of Tcon f ig in canonical MC simulation (taken from
Butler et al.136 work). Tcon f ig is measured by using Eq. 3.25 and it is always lower than the
desired temperature (Tinput = 1.0).

primary focus of this dissertation research. However, the Einstein crystal method was orig-

inally proposed for bulk solid FE calculation and current applications are limited to bulk or

bulk-like systems. Therefore, modifications and scrutiny over the effects of these modifi-

cations are required to properly adapt this free energy method to nanoconfined systems.

Here, we treat wall particles in the confined system as static for simplicity. Seminal

work by Dominguez and coworkers137 has successfully employed the same assumption in

Einstein crystal method based FE calculations, however, they only concentrate their study

on weak wall-fluid interaction systems. This work extends FE calculations of nanoconfined

systems to the scenarios much closer to the experimental conditions we are interested in

(i.e., the wall-fluid interaction is approximately four times of fluid-fluid interaction). While

the nanoconfined phase in a weak wall-fluid interaction system mostly retains its bulk-like

property, strong wall-fluid interactions in nanoconfined systems renders the behavior of the

nanoconfined phase dramatically different. It is important to note that the typical nanocon-

fined system investigated in this work includes a LJ solid wall and a LJ nanoconfined phase.
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3.3.2 Modified Tail Correction

3.3.2.1 Introduction

The model system in this dissertation research is mostly composed of identically sized LJ

spheres. The strongly differing interaction strengths make this a heterogeneous system. As

such, using a standard tail correction in the nanoconfined system would result in systematic

errors, making it difficult to conduct a direct comparison with other systems such as bulk

phases. Besides, as shown in Fig. 4.5 in section 4.4, the potential calculation that the tail

correction is involved in actually dominates the finite cutoff dependence in FE calculations.

Therefore, we introduced a well defined modified tail correction138 to account for this.

It is based on the surface area formula for spherical segments and takes advantage of one

important feature of the spherical segment’s surface area formula. That is, if two parallel

surfaces intersect a sphere, surface area of the spherical segment between these two parallel

surfaces is determined only by two parameters, the radius of the sphere (r) and the distance

between these two parallel surfaces (h). In the nanoconfined system under study, these two

surfaces are the wall-fluid boundary planes and h is the wall-wall separation correspond-

ingly.

Figure 3.4. Schematic representation of the modified tail correction.

In Figure 3.4, S is the surface area of the spherical shell (including the surface area of the

partial sphere in the nanoconfined phase and that in the solid wall), rc is the cutoff distance

used in potential calculation, and the subscripts m and w specify the mobile fluid particles

and static wall particles, respectively.
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To derive a tail correction specifically for the nanoconfined system under study, two

following assumptions (shown in Figure 3.5) have been introduced. The first one assumes

that the solid wall and the nanoconfined phase are homogeneous themselves although the

whole system is heterogeneous. That means the densities of the solid wall (ρw) and the

confined phase (ρm) remain constant for the whole system. The second assumption is that

radial distribution functions gwm(r) and gmm(r) approach unity as r ≥ rc. Additionally, in

order to guarantee that both wall-fluid boundary planes could intersect with the sphere, the

cutoff radius used in the potential calculation should be equal to or larger than the wall-wall

separation (rc ≥ h)

Figure 3.5. Assumptions for our modified tail correction

U tail =
1
2

∞∫
rc

drρSU (r)

=
1
2

∞∫
rc

dr [ρmSmUmm (r)+ρwSwUwm (r)]

= 2πhρmεmmσ
2
mm

{
1
5

(
σmm

rc

)10

− 1
2

(
σmm

rc

)4
}

−2πhρwεwmσ
2
wm

{
1
5

(
σwm

rc

)10

− 1
2

(
σwm

rc

)4
}

+
8
3

πρwεwmσ
3
wm

{
1
3

(
σwm

rc

)9

−
(

σwm

rc

)3
}

(3.27)
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After performing the integral, Equation 3.27 is obtained. The detailed step-by-step

derivation of the modified tail correction is included in Appendix A. It is important to

note that, since this formula inherits from the spherical segment’s surface area formula, the

prerequisite to successfully using this formula is that the cutoff distance must be equal to

or larger than the separation of the two solid walls.

3.3.2.2 Effectiveness Test

Now it is necessary to measure the effectiveness of the modified tail correction in potential

calculations. This new modified tail correction is tested in potential calculations for an ideal

nanoconfined system, which consists of two perfect FCC walls and a perfect FCC nanocon-

fined phase. The following test calculations were performed at σm = σw = 1.0,ρ∗w = ρ∗m =

1.0,ε∗wm = 4.0 and T ∗ = 0.75.

Utailmm =
8
3

πρwεmmσ
3
mm

{
1
3

(
σmm

rc

)9

−
(

σmm

rc

)3
}

Utailwm =
8
3

πρwεwmσ
3
wm

{
1
3

(
σwm

rc

)9

−
(

σwm

rc

)3
}
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Figure 3.6. Comparison of scenarios with no tail correction, modified tail correction, and
two general tail corrections in potential calculations. (top) The wall-wall separation is 3
ideal layers, with minimum cutoff radius rc = 2.7σ . (bottom) The separation is 6 ideal
layers, with minimum cutoff radius rc = 5.4σ .

As shown in Figure 3.6, neither Utailmm, Utailwm, nor the no tail correction could

model the heterogeneous nature of a nanoconfined system. The large difference between
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values provided by these strategies and the potential calculated at an extremely large cutoff

radius suggests a better tail correction is necessary. Fortunately, the modified tail correction

proposed in this dissertation research demonstrates dramatic advantages over these afore-

mentioned strategies. The minor difference between the modified tail correction potential

value and the potential calculated at extremely large cutoff radii indicates that the modi-

fied tail correction could better describe the heterogeneous nature of nanoconfined systems

with sufficient accuracy. The difference between generally used standard tail corrections

and the modified tail correction is on the order of 0.1 NkBT . This strongly suggests that

simply using the traditional tail correction in a nanoconfined system will bring a dramatic

systematic error. However, this can be avoided by the modified tail correction.

3.3.3 Adapted Algorithm Validation

To examine the adapted algorithm, an absolute FE comparison (shown in figure 3.7) has

been designed and performed. In this model system, both the walls and the nanoconfined

phase are structurally identical with its corresponding bulk. All their interaction parameters

in the nanoconfined and bulk systems are the same, with the only difference being the

mobile particles in the confined phase. They will feel the interaction of static rather than

mobile particles in the nanoconfined system.

In the test FE determination, the adapted algorithm has been employed and given a

FE value A = −5.465NkBT for the confined phase in the model system. This is in close

agreement with the FE of the bulk system as determined by using the basic algorithm

(A = −5.482NkBT ) and the value published in literature (A = −5.494NkBT )123 for bulk

crystals under the same condition (i.e., T = 0.75 and ρ = 1.0). Hence, this consistency has

validated the modified algorithm that will be used in the following research.

Meanwhile, this consistency also strongly suggests that the treatment of wall particles

as stationary has a negligible effect on the FE of the nanoconfined phase. In particular,

considering that the wall particles themselves will be much more tightly bound to their
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lattice positions under strong wall-fluid interaction scenarios, the discrepancy owing to the

static assumption is even less obvious.

Figure 3.7. Snapshots of the nanoconfined system and the bulk FCC solid used in the
modified algorithm validation. (left) The nanconfined system consists of an ideal FCC(111)
structure confined between FCC(111) walls. (right) The bulk solid consists of FCC. The
color coding of particles is: blue - mobile particles, orange - static solid wall particles.

.

3.3.4 Definition of Separation

As a crucial parameter in nanoconfined fluid behavior, the definition of separation (h) in a

nanoconfined system is somewhat artificial in simulations. Since two kinds of surfaces with

different orientations have been employed in this work, a brief introduction of separation

definition is included here. Equation 3.28 is the separation definition in a FCC(111) solid

surface nanoconfined system and Equation 3.29 is the separation definition in a FCC(110)

solid surface nanoconfined system.
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Figure 3.8. Definitions of separation in nanoconfined system employed in this dissertation
research. (left) The solid wall consists of FCC(111) in nanoconfined system. (right) The
solid wall has FCC(110) surface.

h = d1−21/6 (6/9)1/2
σwρ

−1/3 (3.28)

h = d2−0.5(2)1/3
σwρ

−1/3 (3.29)

where h is the separation, σw is the inter-atomic distance at which the potential energy

between two wall atoms is equal to zero, ρ is the reduced density of solid wall, and d1 and

d2 denote the closest distance between the atom centers in two solid wall in a FCC(111) sur-

face nanconfined system and a FCC(110) surface nanoconfined system respectively (shown

in Figure 3.8). Generally, the sizes of wall particles and fluid particles are identical and ρ

is set to unity in this dissertation research.

3.4 GPU accelerated calculation

3.4.1 Performance Gains via GPU Computing

As a specialized category among processors, the graphics processing unit (GPU) was orig-

inally created for 3D game rendering on a computer monitor. However, the large improve-

ment in the capability and programmability of GPU over the last decade has swiftly ex-
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tended its applications beyond its original arena139. To date, it has gained broad applica-

tions in computational acceleration in new areas, such as large-scale scientific computation,

financial statistics, natural resource exploration, and weather forecasts. The usage of GPUs

in general-purpose computation also exert a large impact on the development of super-

computers. Among the fastest supercomputers in the world140, there are many machines

installing GPUs to achieve augmented computing power while obtaining better energy ef-

ficiency per flop.

As compared to the central processing unit (CPU) in design, a GPU devotes a much

higher ratio of transistors to computing rather than data cache. Thus, the GPU has greater

computational resources compared with the general CPU. In addition to that, the intrinsic

parallel architecture brings huge performance gains especially in algorithms designed to

harness this parallelism. A template performance comparison of CPU and GPU in MD

simulations has been conducted, using CPU-based LAMMPS and GPU-Based HOOMD.

As shown in Figure 3.8, the simulation running on a GPU is at least one order of mag-

nitude faster than on a CPU on the same motherboard. Considering the computationally

intensive nature of FE calculation, GPU-accelerated simulation is used to facilitate the FE

determination and promote the research based on FE values.
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Figure 3.9. Performance comparison of CPU and GPU in MD simulation at various system
size. CPU: Intel E5-2667 ×2141 GPU: Tesla K40142.

3.4.2 Thermostat in MD

As for open-source GPU-accelerated molecular dynamics packages, the most popular and

efficient one is HOOMD (highly optimized object-oriented many-particle dynamics)143.

HOOMD was developed from the ground up for GPUs, with a particular emphasis on

coarse-grained models used herein, and thus is more efficient than LAMMPS. However,

special attention should be paid to its implementations in canonical simulations of systems

involving bonds, such as an Einstein solid with a harmonic bond described in this research.

In molecular dynamics simulations, the most commonly used temperature controller is

the Nosé-Hoover thermostat named after its creators Nosé144 and Hoover145. HOOMD

employs their original algorithm in the simulation. While the Nosé-Hoover thermostat

works extremely well for ergodic systems (i.e., the trajectory average can be taken into the

phase space average), it probably fails in simulations for systems that are not so ergodic,

for instance, small or stiff systems. An Einstein solid with harmonic bonds is less ergodic.

As shown in Figure 3.10, the temperature of a system simulated by HOOMD does

not converge after a sufficiently long run time. Hence, that limits the usage of HOOMD
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in some circumstances in FE calculation. Modified dynamics using a chain of variables

(Nosé-Hoover chain), that is, chains of thermostats that augment temperature control/sta-

bility, rather than the single thermostat variable in the original Nosé-Hoover dynamics, was

introduced146 and is an option for taking full advantages of the GPU in FE calculations

in the future. In the following dissertation research, the usage of GPU’s massive parallel

computing power is limited to conducting non-bonded molecular simulations.
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CHAPTER IV

BULK CRYSTAL SOLIDS

4.1 Role of Simulation Box Shape

According to previous studies on hard sphere systems121, the simulation box shape plays

a role in the accuracy of calculated absolute FE when using the Einstein crystal method.

Briefly, the accuracy is determined by the largest cubic in the simulation box. Considering

that the nanoconfined phase investigated in this dissertation research is inside a slit and

is not cubic in shape, it is necessary to determine the role of box shape in absolute FE

calculation of this system.

As shown in Figure 4.1, we measured the influence of box shape by comparing the

calculated FEs of three different simulation box shapes. The calculated FEs for Lennard-

Jones systems demonstrate dependence on the system’s size (i.e., the number of particles),

and not on the largest cubic in the simulation box. According to Figure 4.1, the box shape

has an impact on the accuracy of calculated FEs, but it is minor compared to the system

size. The influence of the simulation box shape can be minimized by using a larger system

size or employing a good finite-size correction.
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Figure 4.1. The effect of simulation box shape on calculated FEs for LJ crystals. A com-
parison (top) of the dependence of calculated FEs on box shape and a schematic diagram
(bottom) showing what types of simulation box shapes are utilized.

.

4.2 Finite System Size Dependence and Correction

It is already known that a finite system size and a finite cutoff radius are the two major

sources of systematic error in absolute FE calculations106,119,130,133. As such, to pave the

way for more precise implementations of FE later on, their roles in FE determinations have

been detailed and quantified. Moreover, reasonable compensation strategies have been
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explored to correct the systematic errors brought by them.

Figure 4.2. Phase diagram of Lennard-Jones system (taken from Martin A. van der Hoef’s
paper147). Blue line denotes Lennard-Jones system at T ? = 0.75 and ρ? = 1.00. Purple line
denotes Lennard-Jones system at T ? = 2.00 and ρ? = 1.28.

To quantify the finite-size effect, we have conducted absolute FE calculations for three

basic crystal types, face centered crystal (FCC), hexagonal closed packed crystal (HCP),

and body centered crystal (BCC) at T ? = 0.75 and ρ? = 1.00, using a series of simulation

system sizes from 256 to 6912 (Figure 4.2). As shown in Figure 4.3, all free energy calcu-

lations demonstrate strong finite-size dependence, regardless of their crystal types. Hence,

a universal finite size correction is necessary to correct the systematic error that stems from

the usage of finite system size in calculation.

55



0 . 0 0 0 0 . 0 0 2 0 . 0 0 4 0 . 0 0 6 0 . 0 0 8

- 5 . 5 0

- 5 . 4 5
- 5 . 4 0
- 5 . 3 5
- 5 . 3 0

 

 

A /
Nk

BT

1 / N

 B C C
 F C C
 H C P
 L i n e a r  F i t t i n g

Figure 4.3. System size dependence of calculated FEs for LJ crystals, at T ? = 0.75, ρ? =
1.00. FEs of face centered cubic (FCC) crystal, hexagonal closed packed (HCP) crystal
and body centered cubic (BCC) crystal have been calculated and compared.

The effort to introduce a finite-size correction (FSC) was pioneered by Hoover and

Ree111, which was followed with studies done by other researchers who used a modified

FSC. Here we tested the effectiveness of the FSC-asymptotic, a semi-empirical finite size

correction proposed by Vega and Noya130, under the same conditions that subsequent FE

calculations will use. The FSC-asymptotic compensated FE is given by

AN→∞

NkBT
=

3
2

ln
(

ΛE

π

)
(4.1)

+
1
2

{4A(N,ΛE)

NkBT
+
4A(N,ΛE)

NkBT (1−1/N)

}
(4.2)

where 4A(N,ΛE) is the summation of ∆A1 and ∆A2, representing the FE difference
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between the Einstein crystal and the solid of interest and AN→∞ is the absolute Helmholtz

FE in the thermodynamic limit (i.e., calculated FE with infinite system size and cutoff

radius).

As shown in Table 4.1, we performed FE calculations for three crystal types under

different density and temperature conditions, with extension to a larger simulation system

size, along with the implementation of MD-based sampling instead of MC in stage two.

FSC-asymptotic is always able to provide reasonable compensation for a finite-size effect,

which gives precise prediction of FE in the thermodynamic limit, especially as the system

size is close to 2000 particles. This suggests that use of the FSC-asymptotic correction as

a universal finite-size effect compensation strategy is appropriate in FE calculations.
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4.3 Relative Stability of LJ Crystals

According to absolute free energy calculations for different basic crystal types, the Lennard-

Jones FCC solid clearly demonstrates the lowest FE (Figure 4.3) when compared with

hexagonal closed packed crystal (HCP) and body centered crystal (BCC). This is similar

to the FE comparison of hard sphere crystal types in the previous study, in which the hard

sphere FCC solid has the lowest free energy106.

The lowest FE also indicates that FCC is thermodynamically the most stable Lennard-

Jones crystal type among these three types under the selected condition (T ? = 0.75, ρ?

= 1.00). Although FCC and HCP both belong to closed packing crystal types, the ABA

layering of FCC (HCP, AB layering) gives more permutation possibilities and, hence, more

microstates and lower entropy. However, the FE difference between FCC and HCP is minor

(highlighed with inset in Figure 4.3) when compared to their FE gap with BCC.

4.4 Finite Cutoff Radius Effect

In addition to the effect of finite system size, the finite cutoff radius is also a major system-

atic error source in FE calculations, especially for solids. Solid structures microscopically

exhibit intrinsic high ordering and solid crystals therefore have anisotropic properties. Due

to this intrinsic ordering in solids, the generally used cutoff radius in fluid simulations is

not sufficient to guarantee the accuracy of solid simulations, particularly, potential and FE

calculations for solids.

As shown in Figure 4.4, the radial distribution of FCC, HCP, and BCC crystals still os-

cillates dramatically at relatively large radii compared to fluid, as does the potential residue.

The assumption, that radial distribution function g(r) is equal to unity at large values of r,

for the generally used standard tail correction does not hold well when using a typical cut-

off radius for fluids. Hence, we investigated the finite-cutoff radius dependence of each

term in the absolute free energy calculations to find specific compensation strategies for

each.
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In this work we performed FE calculations for LJ crystals at a series of cutoff radii at

T ? = 0.75, ρ? = 1.0, and a given large system size. As shown in Figure 4.5, calculated

FEs demonstrate a strong finite cutoff dependence and each term in the FE calculation has

a remarkably different cutoff-radius sensitivity.

The results in Figure 4.5 clearly demonstrate that the finite cutoff effect is in large

part determined by the choice of cutoff radius in ∆A1 evaluation, rather than that of ∆A2.

According to the profiles in Figure 4.5, a cutoff radius larger than 3.0 sigma is already

sufficient to provide a FE change value with necessary precision in ∆A2 evaluation. ∆A1, at

a cutoff radius of 3.0, still shows a strong dependence on cutoff radius.

This difference suggests that in order to achieve a sufficient accuracy, a longer cutoff

radius is particularly necessary in the ∆A1 calculation. This puts additional importance

on the potential calculation in FE determination. In the following FE calculations, the

employed cutoff radius should be as long as possible within the practical conditions, and

the choice of tail correction also needs to capture the nature of the solid system.
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CHAPTER V

IDEAL NANOCONFINED SYSTEMS

5.1 Wall-Fluid Interaction

It is known that the wall-fluid interaction and the wall-wall separation (i.e., split pore size)

play crucial roles in determining nanoconfined fluid behavior. Previous simulation work

predicts that as the interaction strength between walls and mobile fluid particles (εwm) is

increased to values exceeding the fluid-fluid interaction (εmm) at sufficient confinement,

the transition temperature will shift to higher temperatures than an equivalent bulk sys-

tem148,149. Hence, this chapter begins by revisiting the impact of the wall-mobile fluid

interaction strength on the thermodynamic stability and transition temperature of nanocon-

fined fluids. This allows for the establishment of boundaries for the specific model and

parameters used in this work, as well as to further test the adapted free energy method.

We adapted absolute FE calculations for nanoconfiend ideal FCC structures at various

wall-fluid interactions (εwm = 2.0 ∗ εmm and εwm = 4.0 ∗ εmm) and separations. As shown

in Figure 5.1, the increment of wall-fluid interaction (εwm = 2.0∗ εmm to εwm = 4.0∗ εmm),

draws the FE of the nanoconfined phase lower, and thus further stabilizes the nanocon-

fined solid. This trend holds with the two different surface orientations (FCC(100) and

FCC(111)) investigated in the study.
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Figure 5.1. Absolute Helmholtz FE (A/NkBT ) as a function of reduced temperature.
A/NkBT is calculated in the scenario in which the densities of bulk fluid, bulk solid,
solid wall, and nanoconfined phase are all equal to unity (ρ∗bulk f luid = ρ∗bulksolid = ρ∗wall =
ρ∗con f ined phase = 1.0). The separation for the nanoconfined phase is fixed at 4 ideal lay-
ers. The A/NkBT of the bulk solid and fluid are given by von der Hoef’s equation123 and
Johnson’s equation122, respectively. The interaction strength between the solid wall and the
nanoconfined phase is set to 1.0, 2.0, and 4.0 respectively (εwm = {1.0,2.0,4.0},εmm = 1.0).
(top) FCC(100) solid wall with nanoconfind FCC(100) crystal. (bottom) FCC(111) solid
wall with nanoconfined FCC(111) crystal.

More importantly, along with the increment of the wall-fluid interaction, FE of the

confined structure demonstrates a tendency to converge with the FE profile of the bulk fluid

at higher temperatures compared to the FE profile of the corresponding bulk solid(εwm).

This is in agreement with previous simulation studies148,149, as well as Radhakrishnan and

Gubbins’ relative FE results74. By using umbrella sampling to calculate the relative FE

of nanoconfined systems, Radhakrishnan and Gubbins successfully demonstrate a higher

melting/freezing point with a larger wall-fluid interaction strength.
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5.2 Role of Wall-Wall Separation

The next key parameter to study in nanoconfined fluid behavior is the wall-wall separa-

tion. As reported in experimental studies, first-order phase transitions of nonpolar organic

fluids occurs only when the thickness of the slit pore (created by mica sheets) is smaller

than seven molecular diameters6,16,47. Thus, this work takes a thermodynamic approach to

investigate the role of wall-wall separations in nanoconfined phenomena by calculating the

FE of nanoconfined idealized solid structures at various molecular diameters.

As shown in Figure 5.2, the absolute FE of the nanoconfined phase decreases with nar-

rowing separation. Together with the results demonstrated in Figure 5.1, the absolute FE

of the nanoconfined phase can be lowered either by enhancing the wall-fluid interaction

and/or decreasing the nanoconfined slit pore size. In this manner, the solid structure turns

out to be more thermodynamically stable and enables a much easier fluid-to-solid transi-

tion of nanoconfined fluids. This trend demonstrates good consistency with the previous

simulation and relative FE calculation results74,96,150
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Figure 5.2. Free Energy (A/NkBT ) of the nanoconfined ideal crystal as a function of wall-
wall separation. FE calculations are conducted under separations ranging from two ideal
layers to seven ideal layers. The nanoconfined solid system consists of two FCC(111) walls
and a nanoconfined FCC(111) crystal.

.
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5.3 Structure of Nanoconfined Phase

As indicated in the previous sections, sufficient nanoconfinement and strong wall-fluid

interactions have the potential to induce a fluid-to-solid phase transition for a nonpolar

fluid, given the fact that they can remarkably lower the FE of the nanoconfined phase in

solid states. However, another question emerges if the solid structure forms. Specifically,

whether or not the solid structure formed in the nanoconfined split pore is identical with its

corresponding bulk.

To answer this question, we examined another group of FE comparisons (as shown in

Figure 5.3), under the condition that the temperature is well below the bulk solid melting

point (T ∗= 0.75) and around the melting point (T ∗= 1.00). The FE difference is measured

between the perfectly packed crystal of the nanoconfined phase (its structure is identical

with its bulk crystal) and the configuration with stacking faults that is taken from MD

simulations.

As demonstrated in Figure 5.3, the configuration with the stacking faults at a separation

of two ideal layers has a lower FE than that of the corresponding perfectly packed crystal.

This suggests that the confined phase tends to form a solid structure that is different from

its corresponding bulk. However, that does not mean the configuration with staking faults

is always more stable. As the separation increases in the nanoconfined phase as a whole,

the bulk-like perfect structure is preferred. The increase of temperature, from T ∗ = 0.75 to

T ∗ = 1.00, also demonstrates a similar trend (Figure 5.3). The bulk-like perfect structure

is thermodynamically more stable at a higher ambient temperature. This indicates that the

confined phase as a whole, tends to form a bulk-like structure as the separation widens and

the temperature increases, and vice versa.
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Figure 5.3. Absolute Helmholtz FE difference between perfectly stacked crystal and cor-
responding structure that has stacking faults. The wall-fluid interaction strength is 4.0
times of that of fluid-fluid interaction (εwm = 4.0εmm) and sigma for the solid wall and the
nanoconfined fluid/phase are the same (σww = σmm). The density is 1.0 both for the wall
and nanoconfined phases (ρ∗w = ρ∗m = 1.0).

5.4 Fluid-Wall Particle Size Ratio

In previous sections, for FE calculation and comparison simplicity, the nanoconfined sys-

tems studied were all commensurate systems (i.e., the fluid particle size is identical with

the wall spacing). Unfortunately, such scenarios are rare in real experiments. Additionally,

simple organic fluids nanoconfined by solid walls show similar phase behavior regardless

of their own molecular size16,47. Because of this, this research thus examines FE deter-

minations at various fluid/wall particle size ratios to reveal its role in nanoconfined fluid

behavior. Moreover, various fluid-wall size ratios can also be interpreted as having differ-

ent surface roughness, meaning this can be viewed as the impact of wall surface roughness

on the nanoconfined phase thermodynamic stability.

As Figure 5.4 shows, the FE of the confined phase decreases with the increment of

the fluid-wall size ratio. Both potential energy and entropy contribute to the change of

the absolute Helmholtz FE while the potential energy governs the change. The entropy
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Figure 5.4. FE, potential energy, and entropy varies with fluid-wall particle size ratio, at
ρ∗mobile = ρ∗wall = 1.0. Left column T ∗ = 0.75; Right column T ∗ = 1.00. The separation is
scaled with fluid particle size and fixed at four ideal layers.

.

of the nanoconfined face increases steadily with fluid particle size, both at T ∗ = 0.75 and

T ∗ = 1.00. This suggests that with a larger organic fluid particle, or smaller wall spacing

and surface roughness, the nanoconfined phase has a lower FE and a higher thermodynamic

stability. Moreover, Figure 5.4 also indicates that this trend is actually dominated by the

wall-fluid potential.

σwm = (σww +σmm)/2

εwm = (εww ∗ εmm)
1/2 (5.1)
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When conducting studies on fluid-wall particle size ratios, it is important to note that

the FE calculation for incommensurate systems is somewhat artificial. As noted above,

the wall-fluid potential energy plays a dramatic role in the thermodynamic stability of the

nanoconfined phase. Hence, the definitions of fluid-wall interaction range may have a

dramatic impact on the calculated FE. To clarify this, aside from the standard Berthelot-

Lorentz combining rule (Equation 5.1) used previously, two other definitions of wall-fluid

interaction range (Equation 5.2 and Equation 5.3) are used to determine the free energy of

the nanoconfined phase and investigate the role of fluid-wall size ratio. In order to make the

comparison more straightforward, the separations in all of these FE calculations are scaled

with fluid particle size and fixed at four ideal layers.

σwm = (σww ∗σmm)
1/2 (5.2)

σwm = 1 (5.3)

As shown in Figure 5.5, using the geometric average of the full-full interaction and the

wall-wall interaction to define the wall-fluid interaction range (Equation 5.2) gives a similar

profile as the standard Berthelot-Lorentz combining rule (Equation 5.1). Nonetheless, the

FE change of the system with a fixed wall-fluid interaction range is dramatically different.

While the former two definitions remain similar and the absolute FE of the nanoconfined

system gradually decreases with the increment of the fluid-wall particle size ratio, the FE

profile demonstrates a local minimum at σ f luid/σwall = 1.0 in the latter case.
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Figure 5.5. FE as a function of the fluid-wall particle size ratio at different definitions
of wall-fluid interaction range. (Upper) Berthelot-Lorentz combining rule; (Central) ge-
ometric average; (Bottom) fixed wall-fluid interaction range at σwm = 1. Densities and
temperature of the system are set to ρ∗mobile = ρ∗wall = 1.0, and T ∗ = 0.75. The separation
is scaled with fluid particle size and fixed at four ideal layers.
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CHAPTER VI

NONIDEAL NANOCONFINED SYSTEMS

6.1 GCMD

6.1.1 Molecular Dynamics Simulations

In experimental scenarios, the nanoconfined region is typically immersed in fluid151. Early

simulations conducted by Gao et al.78 have investigated properties of nanoconfined fluids

in grand canonical molecular dynamics (GCMD) simulations. This dissertation research

details both simulation analysis and FE measurements to further understand the nanocon-

fined phase that is immersed in bulk fluid.

To this end, we conducted grand canonical molecular dynamics (GCMD) simulations

as pioneered by Gao and Landman152. Our GCMD simulations consist of an FCC slit

nanopore embedded within a large, rectilinear bulk system, allowing for the free exchange

of particles between the pore and the bulk environment (see Figure 6.1). Here, the system

is designed such that when the density in the pore = 1.0, the bulk has a density of 0.85;

because of the large size of the bulk, the bulk density is essentially unaffected by small

changes in the pore density. As a result, particles in the bulk are essentially unaffected

by changes within the pore. As shown in Figure 6.1, we performed simulations with a

constant number of particles N, volume V , and temperature T (i.e., NV T ); while GCMD

simulations are often performed at constant pressure P (i.e., NPT ), the large size of the

bulk fluid makes the use of NPT unnecessary, as negligible changes in system pressure

were seen as a function of time.

In this work, two different sets of simulations are performed. The first set of simulations

consists of GCMD simulations of 86000 total particles and are used to investigate the order-

disorder transition (ODT) and as input to the FE calculations (shown in Figure 6.1). These

are performed with both the HOOMD-Blue143,153 and LAMMPS134 simulation packages
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using the Nosé-Hoover thermostat with timestep = 0.001 in LJ units; HOOMD-Blue143,153

is used for calculations performed on clusters equipped with graphical processing units

(GPU) whereas LAMMPS was used for parallel simulations on traditional distributed CPU-

systems. Both packages produced essentially identical results. Simulations use the XPLOR

style shifting which leaves the well depth unchanged as a result of potential truncation and

shifting. The cutoff of the interaction between mobile particles is set to 3σ (as suggested in

Section 4.4), where XPLOR shifting starts at 2.75σ . The wall-mobile particle interaction

cutoff is set to 5.0σ , with XPLOR shifting starting at 4.75σ . Since the wall-mobile particle

interaction energy will, in general, exceed the interaction between mobile particles, a larger

cutoff is required to minimize artifacts associated with truncation. This longer cutoff and

XPLOR shifting is also used to ensure better continuity with free energy calculations.

Figure 6.1. Snapshot of a nanoconfined system in a typical GCMD simulation. In this case,
two pores constructed of stationary particles are embedded within a large bulk fluid, with
periodic boundary conditions in all dimensions. The simulation is accelerated by using a
GPU.

The second set of simulations consists of large-scale GCMD simulations with 960,000

and 6,220,000 total particles used to investigate the effects of surface contact area on or-

dering (results and analysis will be seen in Section 7.3). These simulations are carried out

using a hybrid GPU-CPU version of LAMMPS134, capable of efficiently scaling to mil-

lions of particles. These simulations also use the Nosé-Hoover thermostat with timestep =

0.005 and XPLOR shifting starting at 4.75σ .
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6.1.2 Order-disorder Transition Temperature Analysis

To investigate the order-disorder transition (ODT ), the GCMD simulations were performed

by starting from a high temperature disordered state at T ?= 4.0, then cooling by increments

of ∆T ? = 0.1 until a low temperature solid is achieved. The ODT is estimated via visual

inspection and examination of a layer-by-layer global 2D hexagonal order parameter (OP)

of particles within the pore, constructed by taking the Fourier transform with frequency

` = 6 of the super-position of the in-plane first neighbor shell surrounding atoms within

a given layer154,155; a perfectly ordered layer will result in an OP value of unity. For

reference, T bulk
ODT ∼ 0.9 for a bulk system at ρ? = 1 (note, ρ? = 1 is the density of an ideal

minimal potential energy FCC crystal). Table 6.1 summarizes the ODT for ideal pore

separations (i.e., integer multiples of the FCC layer spacing, 2(1/6)
√
(6/9)σ ), for various

εwm values. Here we see that as εwm is increased, so does T conf
ODT, which is in agreement with

previous work148,156. The ODT is also shifted to higher temperatures as the pore separation

is reduced. This is likely a consequence of the fact that larger pores have a smaller fraction

of the total number of confined particles in contact with the walls. Also, we observe that

even when interactions are symmetric (εwm = εmm = 1), small pores demonstrate a slight

increase in T conf
ODT as compared to the bulk phase. We also note note that as we exceed

six ideal layers, T conf
ODT ∼ T bulk

ODT, within the accuracy of our ODT calculations and density

variations within the pore.

Table 6.1. TODT estimated using GCMD simulations with resolution ∆T ? = 0.1.

# separation T conf
ODT T conf

ODT T conf
ODT

layers (σ ) (εwm=1) (εwm=2) (εwm=4)
3 2.75 1.7 2.3 3.0
4 3.67 1.4 1.8 2.3
5 4.58 1.1 1.4 1.7
6 5.50 0.9 1.1 1.2
7 6.42 0.8 0.9 1.0

To unambiguously assess the trends predicted by the GCMD simulations, we have em-

ployed the modified Einstein crystal method to calculate the absolute Helmholtz FE for
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idealized confined FCC systems. In Figure 5.2 of Section 5.2, A/NkBT of ideal nanocon-

fined FCC structures is plotted as a function of separation, for various εwm values. These

calculations are performed at T ? = 0.75 as it is below the bulk ODT and thus all separa-

tions should exhibit a stable solid structure. Not surprisingly, A/NkBT is reduced as εwm

is increased; reducing A/NkBT means the phase is more stable relative to the bulk, which

manifests itself in T conf
ODT > T bulk

ODT. These FE measurements also observe that A/NkBT is

lower for smaller pores than larger pores, and thus smaller pores should likewise be ex-

pected to have a higher ODT value than the bulk. These results are fully consistent with

previous studies by Gubbins et al.148, and Kaneko et al.156. However, FE measurements

in Section 5.2 are limited to ideal nanoconfined FCC structures and are oversimplified. A

more general FE description of nanoconfined phase behavior in experiments still relies on

a direct FE measurement of the nanoconfined phase in GCMD.

6.2 Free Energy of Nanoconfined Phase

We next simulated a system consisting of 86000 total particles and used their configurations

for FE measurements of the nanoconfined phase (Figure 6.1). The same FE determination

methodology that was validated in Section 3.3 and utilized in Chapter V is used here. First,

attention is focused on the εwm = 4 system, as this strength is roughly characteristic of

mica-organic molecule interactions, and at the wall-wall separation with an integer number

of ideal layers.

As shown in Figure 6.2, the FE of the confined phase is much lower than that of its cor-

responding fluid in the bulk region. This suggests that the confined phase and the fluid in

the bulk region, although they are the same species and are in contact with each other, form

different phases. Since particles in the confined region certainly are in the fluid state when

the wall-wall separation is sufficiently large, the formation of a different phase in GCMD

indicates that there should be a phase change as the wall-wall separation decreases, i.e.,

the fluid in the confined region might undergo a fluid-to-solid transition, due to the larger
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influence of nanoconfinement and wall-fluid interaction. The most recent pressure mea-

surement by Gubbins et al.157 demonstrates a similar trend. They found that the pressure

of the nanoconfined phase is much higher than the corresponding bulk fluid.
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Figure 6.2. Absolute Helmholtz FE of LJ nanoconfined phase and bulk fluids as a function
of wall-wall separation in GCMD simulations. The absolute FE of the nanoconfined phase
is determined by employing the modified Einstein crystal method (Section 3.3), while the
FE of bulk fluids is evaluated by measuring their densities in simulations first, then subse-
quently using the Johnson’s equation158.

Next, GCMD simulations were performed as a continuous function of separation, not

just with ideal pore spacings. Each pore separation is an independent simulation employ-

ing stationary walls and thus there is no need to consider the effects of pore compression

rate159,160. In Figure 6.3, the FE of the nanoconfined phase in the fluid state that is esti-

mated based on the measured number density, the FE of nanoconfined phase in solid state,

and the FE of bulk fluid, are plotted as a function of separation for systems at T ? = 1.0.

Their configurations are taken from equilibrated simulations that were generated by slowly

cooling from a high temperature disordered state. At T ? = 1.0, solid structures form within

the nanopores over the entire range sampled in figure 6.3, while the bulk region of the

GCMD simulation remains in a disordered fluid state.

Using the configurations generated via GCMD simulation as the input, and the modified
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Einstein crystal method to calculate A/NkBT as a function of separation, we then plot the

FE of corresponding states in Figure 6.3. As shown in Figure 6.3, there exist peaks and

valleys in the FE curves of the nanoconfined phase in both the fluid and solid states. Like

most chemical and physical transitions, the FE peaks of the nanoconfined phase in the

solid state occur just prior to the transition between an integer number of layers. As the six

configurational snapshots in the upper-right corner of Figure 6.3 shows, the central region

of the nanoconfined phase is in a disordered state. This suggests the transition points are

locally unstable states in the FE profile. Additionally, closer scrutiny reveals that a new

layer is about to be generated if the separation kept growing, and that the height of this

transition peak would decrease as pore separation is reduced.

On the contrary, ideal separations occur roughly midway between the peak on the left

and the peak on the right, at the position where the FE of the nanoconfined phase reaches a

local minimum (shown via the snapshots of nanoconfined phase configurations inserted in

the FE profile 6.3). The nanoconfined phase forms a well-ordered structure at those points.

Later in this research, the study on the density of the nanoconfined phase will demonstrate

that these are also the points where the number densities of nanoconfined phase are most

close to ρ? = 1.00 (i.e., the density of the energetic minimum FCC crystal).
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Moreover, for ideal separations, A/NkBT of the nanoconfined solid is significantly low-

ered as the separation is reduced, as was seen in Figure 5.2. The difference in the peak

height versus valley depth of the free energy curve is most significant for small separations,

whereas the differences are relatively minor for larger separations. That is, there is a smaller

penalty for transitioning between integer layer numbers as the pore size is increased.

Also plotted in Figure 6.3 is the free energy of the bulk region of the GCMD simulation

at ρ? = 0.85, as calculated using the Johnson’s equation158. Over the entire range, A/NkBT

of the nanoconfined region is lower than the bulk phase it is in contact with. As such,

there is a strong thermodynamic driving force associated with forming a solid phase within

the pore. For an additional comparison, the density within the pore is used as input to

the Johnson’s equation, i.e., we compare to the free energy of a disordered liquid at the

same density as the solid within the pore. A/NkBT of a liquid state scales with density158,

whereas the solid phase demonstrates a more complex density behavior related to its ability

to accommodate the crystal structure.

6.3 Role of Boundary Layers

As revealed in previous simulation studies on various nanoconfined systems, the boundary

layer, which is the fluid layer most adjacent to the solid wall, has properties that are sig-

nificantly different from other layers in the nanoconfined fluid. In the slit nanopore we are

investigating, there are two boundary layers total. These two layers physically behave more

like a solid rather than a fluid in most scenarios, even if the rest of the nanoconfined fluid

is in a well-defined fluid state. As such, it is necessary to differentiate the boundary layers

from the rest of the nanoconfined fluid, and to determine if they have different physical

properties and what are their specific roles in nanoconfined-fluid phase behavior.

We begin this investigation of boundary layers by measuring their densities and the den-

sities of the central layers as well as the entire nanoconfined phase in GCMD simulations.

In Figure 6.4, the densities as a function of wall-wall separation are plotted. At the temper-
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ature T ? = 1.00, the number of fluid particles in the boundary layers remains constant: 168

in the selected area (shown in snapshots in the upper-left of Figure 6.4), regardless of the

change in wall-wall separation. However, the number of fluid particles in the central layers

keeps increasing monotonically with a larger wall-wall separation. The number densities

of the central layers and the entire nanoconfined phase see oscillations with the increasing

wall-wall separation.

Figure 6.4. (Upper Left) number of particles in the selected region within the boundary
layer at various separations. (Upper Right) Number of particles in the boundary layers,
the central layers, and the entire nanoconfined region as a function of separation. (Bottom)
Number density of the boundary layers, the central layers and the entire nanoconfined
region, as a function of separation.

Nevertheless, due to the high mobility of fluid particles in central layers and the rela-

tively weak intermolecular interaction strength between fluid particles, the prerequisite of

successfully using the modified Einstein crystal method in Section 3.3 does not hold for the

FE calculation of boundary layers. In other words, assuming the fluid particles in the cen-

tral layers are static at all separations would render the FE determination, and all following
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studies based on FE, erroneous. Thus, it is not applicable to characterize the boundary

layers via direct absolute FE measurements.

6.4 Free Energy of Central Region

Our results thus far have only considered comparisons between bulk phases and nanocon-

fined solids. The free energy of a nanoconfined disordered liquid may actually be lower

than the equivalent bulk phase, based on the contribution of the wall-fluid potential en-

ergy (U) to the total free energy (A = U −T S). Thus, while we have clearly shown that

nanoconfined solids have lower free energy than equivalent bulk phases, we have not shown

via direct absolute free energy calculations that nanoconfined solids have lower free energy

than nanoconfined disordered liquids. Calculating the absolute free energy of a nanocon-

fined fluid directly is challenging, as the simulated systems appear to be strongly driven

towards forming ordered solid structures, unless an external bias is applied.

Recall that previous work148 employed umbrella sampling to investigate the relative

free energy difference between nanoconfined solids and nanoconfined disordered fluids

(note, umbrella sampling includes a biasing criteria allowing sampling of regions of phase

space that would otherwise be unlikely to be visited during a typical simulation).
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Figure 6.5. Global version of the 2d hexagonal order parameter as a function of location
within a 6 layer pore for εwm = 4.00. l = 1 corresponds to the layer in contact with the
wall, l = 3 corresponds to the 3rd layer, farthest from either wall.

Rather than employing a biasing scheme, we can take advantage of the heterogeneous
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nature of nanoconfined systems to provide further insight into the phase transition. Specif-

ically, it has been previously observed that particles that occupy the central most region

of the nanopore strongly dictate the ODT148. A recent study of confined hard sphere flu-

ids reveals that the position of particles perpendicular to the solid wall determines their

diffusive dynamics, whereas particles near the wall move much more slowly even in the

absence of a strong wall-fluid interaction161. Particles in the central region, those not in

contact with the wall, experience the weakest levels of wall-mobile fluid interaction and

the highest mobility, tending to lag behind regions closer to the walls in terms of structural

ordering. The entire system cannot be considered a solid until this central region transitions

from disordered to ordered. In Figure 6.5, we plot the 2d global hexagonal OP as a function

of T ? for different spatial regions in the pore, for a system that can accommodate six ideal

layers. Particles along the pore walls demonstrate a high value of the OP, even at high T ?,

slowly increasing as T ? is reduced. Structural ordering of the particles in the central most

layer lag significantly behind the wall region and demonstrate a more rapid transition to

an ordered state as T ? is reduced. The spatially intermediate second layer from the wall

has characteristics more closely matching the central most layer as opposed to the layer in

contact with the wall.

Following this, we make the assumption that, due to the significantly increased ordering

at high T ?, particles along the walls effectively act as the confining surface for the central

region as it orders, allowing us to treat the layers in contact with the walls as stationary

within the free energy calculation. Again, since these central layers dominate in determin-

ing when and if the system undergoes an ODT, comparing the free energy of this region

to the bulk state is more appropriate as it mostly eliminates the contribution of the strong

wall-mobile fluid potential energy to the total free energy.

In Figure 6.6a we plot A/NkBT of the central region of the nanoconfined system with

εwm = 4.0, simulated at T ?=1.0; we also plot A/NkBT of the full nanoconfined system and

A/NkBT of the bulk disordered fluid at the same density as the pore, calculated using the
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Figure 6.6. (a) A/NkBT of the central region of the pore (i.e., excluding particles along the
walls) as compared to the entire confined region and the bulk value at matching density.
(b) A/NkBT as a function of the central region for εwm = [2,4,6].

Johnson’s equation. The free energy of the central region still demonstrates fluctuations

in A/NkBT , where peaks occur for non-ideal separations and valleys for ideal separations.

Interestingly, A/NkBT of the central most confined region and the equivalent density bulk

fluid appear to oscillate with respect to each other; the fluid state is lower in free energy

for non-ideal separations whereas the confined solid is lower for ideal separations. This

agrees with calculations by Kaneko and coworkers that suggest the freezing/melting points

oscillate with separation156. This trend persists up to approximately six ideal layers, at

which point the values of A/NkBT converge. This strongly suggests that for larger sepa-

rations there is no longer a sufficient driving force for crystallization in the central region
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of the pore, consistent with the previous ODT calculations in Table 6.1, where we saw that

T con f
ODT ∼ T bulk

ODT for greater than six layers when εwm = 4.0. The fact that the solid state is not

universally lower in free energy may help to explain why evidence of a fluid-solid transition

is not observed in all experiments, e.g., if the system is compressed to a non-ideal spacing

for the fluid.

It is important to note that while this comparison largely factors out the strong wall-

fluid interaction, the free energy of the equivalent bulk state does not take into account

the effects confinement on the entropy. Confinement will reduce entropy162, resulting in

an increase in total free energy, as compared to a bulk state, and the free energy should

increase as pore size is reduced.

In Figure 6.6b we compare A/NkBT of the central region for various values of εwm.

As εwm is reduced to 2, A/NkBT is shifted upwards, resulting in convergence with the free

energy of an equivalent density bulk phase at a smaller separation (∼5 layers). Similarly,

increasing εwm to 6, A/NkBT of the central region is lowered, shifting convergence with

the equivalent density bulk system to a separation exceeding six layers. This is consistent

with the trends in ODT in Table 6.1, where systems with low values of εwm transitioned to

bulk-like ODT values at smaller separations than systems with larger values of εwm. This

trend may also help explain differences in experiments, as variations in the effective value

of εwm (e.g., related to the surface ion concentration in the cleaved mica) may shift the

confinement induced transition.
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CHAPTER VII

EXAMINATION OF EXPERIMENTAL DIFFERENCES

7.1 Consistency

7.1.1 Experimental Studies

In the previous chapter, nanoconfined fluid systems examined using GCMD and FE mea-

surements, supporting the assertion of the existence of a solid-fluid transition. The absolute

FE investigation on a nanoconfined fluid is in agreement with Klein’s observations in their

SFA experiments2–4 that the solid phase is the stable, low free energy state under sufficient

confinement. However, this does not fully resolve why other experiments from Granick

find evidence of glassy states11, rather than crystals, or why AFM measurements65,66,68

tend to agree more closely with the conclusions of Granick and coworkers. In the AFM

community, researchers prefer to attribute the much lower viscosity increment observed in

modfied AFM experiments (compared with the viscosity increment in Klein’s SFB experi-

ments), to the second order glass transition. While much effort has been spent to determine

which group’s experiments are correct, researchers in both the experimental and simulation

communities want to explore whether there is a way to explain most of the experimental

results by using the same description of nanoconfined nonpolar fluid behavior. In other

words, they wish to develop a theory that is capable of illustrating most all of the observa-

tions in current experimental studies at the same time.

First, let us consider some of the consistent findings among experimental studies. As

shown in Israelachvili’s summary of experimental results63 (in Figure 7.1, right), a com-

mon phenomenon that is shared by all experiments, even the experiments with platinum

nanoparticle contamination, is the oscillation of the normal force. The normal force (or

solvation force) oscillates between attraction and repulsion, and the amplitude of oscilla-

tion increases as the separation is reduced. This indicates that the separation-reducing pro-
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cess actually consists of a series of spontaneous and non-spontanous sub-processes. The

attraction in the normal force corresponds to a spontaneous process while the repulsion

corresponds to a non-spontaneous process.

We also see similar scenarios appearing in simulation studies . Briefly, most investi-

gations into nanoconfined non-polar fluid behavior, thus far, share the same conclusion:

the separation-reducing process is oscillatory in nature rather than gradually altering. That

means that if a universal theory is to explain most of the investigation results to date, it

must include the oscillation and give a clear description of that oscillation in the separation-

reducing process.
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Figure 7.1. (Left) The free energy of the entire system as a function of separation. Green ar-
row: spontaneous process; Red arrow: non-spontaneous process. (Right) Normal force/R
versus separation (taken from Israelachvili’s paper63).

7.1.2 Cumulative FE Measurements

Due to the conclusive nature of FE measurements and the straightforwardness of absolute

FE comparison, FE study on the entire system should have the ability to further prove the

aforementioned consistency. However, given that different phases coexist in the system and
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external forces are applied, obtaining the FE of the entire system itself is not a straightfor-

ward process. Thus, we introduce several assumptions to estimate the absolute FE of the

entire system (denoted in Figure 6.3 Bottom) and we employ a hybrid approach to measure

the FE. That is, we divide the nanoconfined system into three parts, and evaluate their FE

change individually and finally combine them together to get the FE change of the entire

system from the initial separation (the separation of six ideal layers is selected here).

∆AEC = ∆ANC +∆ABC +∆ABL (7.1)

where ∆AEC is the FE change of the entire system with reference to the system at a six-

ideal-layer separation. ∆ANC, ∆ABC, and ∆ABL denote the FE change of the nanoconfined

phase, bulk fluid system, and the boundary region between the nanoconfined phase and the

bulk fluid respectively.

∆ANC = ∆(AN ∗N) (7.2)

∆ABC = AB ∗∆N (7.3)

∆ABL ≈ 0 (7.4)

Among these, the FE change of the entire nanoconfined phase (∆ANC) is defined as

the change in the product of absolute FE of the nanoconfined phase (AN) and the number

of particles in the nanoconfined phase (N); the definition of the FE change of the entire

bulk fluid system (∆ABC) is based on the assumption that the bulk is not influenced by the

nanoconfined and its FE does not alter. The FE of the boundary layer (∆ABL) is assumed to

stay constant.

Even though this is a large NVT simulation that is used to simulate a NPT process and

given that the FE of entire system is an estimation, Figure 7.1 still reveals the oscillation be-
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tween spontaneous and non-spontaneous processes (corresponding to negative and positive

normal force respectively). This supports the aforementioned consistency shared by both

experimental and simulation studies, and proves that the absolute FE measurement is able

to describe the characteristic property of nanoconfined fluid behavior. Hence, in the fol-

lowing section, we compare the difference in details between both sides of the debate and

employ absolute FE determination as a tool to further explore the nature of nanoconfined

fluid behavior.

7.2 Comparison of Specifications in Experiments

While the key parameters, such as shear frequency, shear amplitude, and contact area di-

ameter are directly included in Klein and coworkers’ introduction to their experiment16,

the aforementioned key parameters are not all directly available in Granick’s publication90.

Therefore, we summarize the same parameters employed by Granick’s group in previous

experiments reported7,15 and list them in the following table (Table 7.1)

Table 7.1. Comparison of shear frequency, shear amplitude, and contact area diameter in
experiments employed by both sides.

Surface Force Apparatus Surface Force Balance
SFA SFB

Shear Frequency (Hz) 1.37 55016

Shear Amplitude (nm) 0.590 150016

Contact Area Diameter (µm) 10015 1016

To make the comparison in Table 7.1 more straightforward, a schematic plot is pro-

vided in Figure 7.2. As it shows, the experiment conducted by Klein and coworkers16 has

a smaller nanoconfined area, much higher shearing frequency, and a larger amplitude of

shearing. It indicates that it is much easier to get the fluid particles outside of the nanocon-

fined region in Klein and coworkers’ experiments16 than in Granick’s experiments. It also

suggests that it is easier/faster to reach a thermodynamically stable state in the Klein ap-

paratus. The difference in these key parameters might be the root cause of the opposing

results reached by both sides.
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Figure 7.2. Schematic comparison of key parameters in both sides’ experiments. (Left)
Shear frequency, shear amplitude, and contact area diameter employed in Granick’s experi-
ment7,15,90. (Right) Shear frequency, shear amplitude, and contact area diameter employed
in Klein’s experiment16.

7.3 Role of Larger Contact Area

Furthermore, it is important to note that typical simulations are performed with surface

contact areas of ∼ 10−5 to 10−4µm2, whereas experiments with the surface force balance

(where solid phases are observed) have contact areas3 of ∼ 102µm2, and experiments with

the surface force apparatus (where solid phases are not observed) have contact areas15 of

∼ 104µm2. The orders of magnitude difference in contact area may also play a significant

role, influencing the dynamics and the ability to form the lowest free energy state. To inves-

tigate this, we performed GCMD simulations for increasing surface contact area, focusing

on ordering with the central most layer; our interest is in whether the final structures are

the same as those seen in the smaller simulations and how the time to order in these large

simulations varies with pore contact area.

Specifically, we simulate two systems with 960,000 and 6,220,000 particles, each that

can accommodate six ideal layers. If we assume that σw = 3.5 Å, roughly the diameter

of the potassium atoms in mica149, we find that these systems have surface contact areas

of 0.0021µm2 (960,000 particles) and 0.014 µm2 (6,220,000 particles). Simulations are

performed by first disordering the system at T ? = 4.0 and then instantaneously quenching

to T ? = 1.1; we monitor the in-plane 2-d hexagonal OP within the most central layer (i.e.,

l = 3 in Figure 6.5) as a function of time. T ? = 1.1 places us just within the ordered regime

predicted from the smaller system sizes (see Table 6.1).

In Figure 7.3 we plot the OP as a function of time for the two system sizes. The larger

89



system requires a significantly longer time, by a factor of ∼5, to reach the same level of

ordering as the smaller system. The ratio of surface areas is ∼6.6; extrapolating this trend,

we would expect that a two order of magnitude increase in surface contact area would

result in the system requiring a factor of ∼75 more time to reach an equivalently ordered

state. Previous work160 has focused on the connection between rate of compression of

the surfaces (i.e., the time at each separation the system has to relax) and the structure,

conjecturing that higher-rates form non-equilibrium, jammed states. Clearly, this may be

further exacerbated by surface size effects, where systems with larger contact areas simply

take much longer to reach equilibrium, which may be further augmented by the significant

effects that wall interaction strength and pore separation can have on the absolute free

energy of the confined phase.
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Figure 7.3. In-plane 2-d hexagonal order parameter within the central most layers (l=3) of a
system that can accommodate 6 ideal layers as a function of time for small (960k particles)
and large (6,220k particles).

7.4 Role of “Jammed” Atoms

As noted in the previous section, the dimensions of a nanoconfined region in experiments

is 4 ∼ 6 orders of magnitude larger than the fluid molecule scale3,15. Considering that the

thickness of a nanoconfined fluid is in the range of several molecular diameters, there is the

possibility that extra fluid particles are jammed in the confined region as the two surfaces

approach. It is necessary to take this into consideration, especially in the time scale used
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for the current experiment. Therefore, we measured the FE shift due to a change in the

nanoconfined fluid density, in order to understand the role of jammed atoms its behavior.

Here, we artificially inserted particles into the nanoconfined region to mimic the jammed

phenomena that possibly exists in experiments, then equilibrated the nanoconfined fluid

systems and took their configurations for FE measurements. It is important to note here that

we calculated the FE of the central layers instead of the nanoconfined fluid as a whole, since

it is known that the central layers actually dominate the phase behavior of the nanoconfined

fluid138.

As shown in Figure 7.4, when comparing the FE of bulk solids under the same condi-

tions, the nanoconfinement and the large fluid-wall interaction introduces an FE local min-

imum for the confined fluid, whereas the confined fluid is equal to unity and is in its stable

state. However, as the local density increases due to the jammed atoms, the FE of the cen-

tral layers increases sharply in comparison to the bulk solids. This indicates that jammed

atoms, which may stem from insufficiently slow confinement speeds and large contact ar-

eas, have the potential to destabilize the nanoconfined solid if a nanoconfinement induced

solid phase is formed. This interesting result provides a hint towards understanding the dif-

ference between Granick’s and Klein’s results: the reason why there is no fluid-solid phase

transition observed in Granick’s experiments might be due to the existence of “jammed”

atoms.
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Figure 7.4. FE of central atoms as a function of the nanoconfined phase density, compared
with FE of the bulk at the same density.
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7.5 Fluid-Solid Oscillation

It is well known that the properties of a nanoconfined fluid are dramatically different com-

pared to its corresponding bulk fluid. Current studies focus on exactly how the nanocon-

fined phase is different from its corresponding bulk. Is a solid formed when the wall-wall

separation is below the critical value, or is a glassy state reached? Based on the FE mea-

surements in the previous sections, our work seems to support the formation of a solid

state. However, the theory that the nanoconfined phase transitions into a solid state below

the critical separation is unable to give a reasonable explanation for the other researchers’

results, including Granick’s research and, more importantly, the experimental results from

the larger AFM community. This indicates that simply viewing a nanoconfined phase that

has a smaller separation than the critical value as solid, still misses some key points in the

nanoconfined fluid phase behavior. Simply borrowing ideas from the macroscopic bulk

behavior is not able to provide a complete description of the confined fluid behavior in
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nanoscale.

In view of this drawback to the current way of understanding, we introduce an alterna-

tive way to describe the nanoconfined fluid behavior, based on the difference in parameters

in experiment and the role of “jammed” atoms in the nanoconfined phase. That is, the

nanoconfined phase does not always stay in a solid state in any separation that is lower than

the critical value. As the wall-wall separation is equal to an integer number of ideal layers,

a solid state is formed that is different from its corresponding bulk. While the wall-wall

separation is between an integer number of ideal layers, we assume that the nanoconfined

fluid stays in a fluid-like state, which is different than the current way of understanding

nanoconfined phase behavior.

Using this thought process, we can potentially resolve the differences between the work

of Klein and Granick. Firstly, it supports the existence of a nanoconfinement-induced solid

state, which is consistent with Klein and coworders’ experimental results2–4. Secondly,

the lack of a solid state observation in Granick and coworker’s studies11 can be explained

by the much higher possibility of jamming fluid particles inside the nanoconfined region

(even in a quasi-static compression manner), and the capability of jammed particles in

destabilizing the nanoconfined phase. In other words, it is the jammed atoms that renders

different observations in Klein’s and Granick’s experiments.

As shown schematically in Figure 7.5, due to the smaller nanoconfined area, a much

higher shearing frequency, and a larger shear amplitude, fluid particles in Klein’s experi-

ment are able to leave the nanoconfined region much easier. Additionally, the much smaller

nanoconfined area enables it to reach equilibrium faster. Contrary to Klein’s experiment,

the jamming of fluid particles inside the nanoconfined region, even in a quasi-static mode,

is highly possible in Granick’s experiment. This leads to no soild formation.
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Figure 7.5. Schematic representation of the divergence and corresponding state of
Granick’s and Klein’s experimental results using a new thought process that considers the
oscillation

.

The newly introduced line of reasoning can also explain the lack of observation of a

fluid-to-solid phase transition in AFM experiments. This is due to the probing style of

AFM tips. In the experiment, the AFM is mainly moving up and down. Hence, it is more

difficult for the fluid particles to leave the confined region. This is the same as in Granick’s

experiment. Due to the existence of the “jammed” fluid particles, the studies using AFM

are also unable to observe the fluid-to-solid first order phase transition in nanoconfined

phenomena. Thus, these contrary experimental results can be explained by this new thought

process.
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CHAPTER VIII

NANOCONFINED SYSTEMS WITH VARIOUS DENSITIES

8.1 Configurations at Various Densities

As demonstrated in Chapter VII, the density of the nanoconfined fluid (i.e., the “jammed”

atoms) could be the source of the divergent observations in experimental studies. As a

benefit from the absolute FE measurements used, we are now able to directly compare the

relative stability of each state. Hence, in this chapter, the focus is placed on the nanocon-

fined fluid behavior at various confined phase densities.

We varied the nanoconfined phase density by means of artificially inserting/removing

particles from the nanoconfined region, and subsequently equilibrating the system with

the input of FE measurements (as shown in Figure 8.1). According to snapshots of each

system, the well ordered structure is formed at the density ρ∗ = 1.00, which is consistent

with previous simulations.
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Figure 8.1. Snapshots of nanoconfined systems at various densities. Separation =
5.0L,εwm = 4.00 ∗ εmm,T ∗ = 1.00,σmm = σww. A well ordered structure is formed at the
density ρ∗ = 1.00.

8.2 Separation

We next determine the absolute Helmholtz FE of central layers in nanoconfined systems

with separations ranging from 3 to 5 ideal layers at various nanoconfined phase densities.

As detailed in previous sections, the nanoconfined fluid phase bahavior is dominated by

its corresponding central layers. Because of this, the FE measurements in this section are

concentrated on the central layers.

In Figure 8.2, the FE of the central layers at densities around ρ∗ = 1.00 demonstrate a

similar trend as the FE of central layers at ρ∗= 1.00. That is, a smaller wall-wall separation

will lower the absolute Helmhotz FE of central layers and thus stabilize the nanoconfined
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phase. This trend is not affected by the actual density of the nanoconfined phase.
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Figure 8.2. FE of central layers in nanoconfined system as a function of total density at
different number of layers. Blue denotes 4 layers. Red denotes 5 layers. Green denotes 6
layers. Dash-dot line denotes FE of corresponding bulk.

8.3 Wall-Fluid Interaction

In addition to the wall-wall separation, we also further examined the role of wall-fluid

interactions under various nanoconfined fluid phase densities. As shown in Figure 8.3 and

Figure 8.4, wall-fluid interaction strengths εwm = 1.0,2.0,4.0,4.47 have been employed in

simulation studies and the central-layers FE measurements.

While there is a dramatic trend whereby a smaller wall-wall separation gives a lower

central layers FE, the FE of the central layers does not obviously share a single, linear

dependence on the wall-fluid interaction strength at all densities. This is different from

previous studies in this work which show that a strong wall-fluid interaction strength will
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lower the FE of both the entire nanoconfined phase and its corresponding central layers.

When the nanoconfined phase density is not equal to unity (especially at a density larger

than unity), the FE of the central layers is not always lower at stronger wall-fluid interaction

strength. This is a very interesting phenomenon.

Furthermore, a FE local minimum of the central layers occurs around the density of

the nanoconfined phase equal to unity (ρ∗ = 1.0) in all four of these interaction strength

scenarios. This supports the thermodynamic stability of the nanoconfined phase with unity

density. Nonetheless, as the density of the nanoconfined phase rises beyond unity (ρ∗ >

1.0), the FE of the central layers increases sharply in almost all wall-wall separation and

wall-fluid interaction strength conditions. This strongly suggests that the “jammed” atoms

have the capability to destabilize the nanoconfined phase and thus render the supposed

fluid-to-solid transition non-existent.

8.4 Boundary Layers

Given that particles in the central layers have a much higher mobility than those in the

boundary layers, performing a FE calculation for the boundary layers by assuming that the

central layer is stationary is not an accurate approach. Hence, this section does not directly

measure FE of each part of the nanoconfined phase, but compares their corresponding

densities instead.

As shown in Figure 8.3, the density of the boundary layers and the central layers

gradually increases with the increment of the entire nanoconfind phase density, under the

condition that the wall-fluid interaction strength is equal to that of the fluid-fluid interac-

tion (εwm = 1.0). Meanwhile, in the system where the wall-fluid interaction strength is

stronger than unity (εwm > 1.0) and the density of the nanoconfined phase is lower than

unity (ρ∗ < 1.0), the density of the boundary layers stays in unity (Shown in Figure 8.3 and

Figure 8.4), whereas the density of the central layers keeps increasing with the increment

of the nanoconfined phase density.
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According to the density and FE comparison in Figure 8.3 and Figure 8.4, the system

where the entire nanoconfined phase density is equal to unity (ρ∗ = 1.0), serves as the

turning point for the density and FE of the corresponding layers, while ρ∗ = 1.0 itself is

locally the most stable state.
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Figure 8.3. Absolute Helmholtz FE of central layers and densities of the central layers, the
boundary layers, and the entire nanoconfined phase as a function of the nanoconfined fluid
density. Left column: wall-fluid interaction strength εwm = 1.0. Right column: wall-fluid
interaction strength εwm = 2.0. Upper row: 4 ideal layers. Central row: 5 ideal layers,
Bottom row: 6 ideal layers.
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Figure 8.4. Absolute Helmholtz FE of central layers and densities of the central layers, the
boundary layers, and the entire nanoconfined phase as a function of the nanoconfined fluid
density. Left column: wall-fluid interaction strength εwm = 4.0. Right column: wall-fluid
interaction strength εwm = 4.47. Upper row: 4 ideal layers. Central row: 5 ideal layers,
Bottom row: 6 ideal layers. Left-hand side Epsilon 4.0.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

In this dissertation research we have developed absolute FE calculation strategies specif-

ically for nanconfined systems, and subsequently employed these strategies as a research

tool to reveal the nature of nanoconfined phase behavior, determine whether the layered

and ordered state of the nanoconfined fluid observed in molecular simulation is thermody-

namically stable, and attempt to resolve the two-decades-long debate in both experimental

and simulation communities.

First, we revisited the basic algorithm of the Einstein crystal method and quantified

the effects of simulation box shape, finite system size, and finite cutoff radius, paving the

way for adaptation and further application of this method. We revealed that in continuous-

potential modeled systems, the calculated FE shows dependence mainly on system size,

rather than simulation box shape. Additionally, according to FE measurements conducted

at various system sizes and crystal types, we demonstrated that FCC LJ crystals have the

lowest free energy among the investigated basic LJ crystal types, and found that the FSC-

asymptotic is a good option for finite-size correction strategy and has broader applications

beyond the original scenario in which it was proposed. Moreover, according to direct

comparison of the finite-cutoff-radius dependence of each stage, we have shown that it is

stage one (∆A1) that dominates the finite-cutoff effect in the aforementioned Helmholtz

absolute free energy calculations.

Subsequently, we extended the absolute free energy calculations to the study of nanocon-

fined fluid phase behavior. By utilizing a validated absolute Helmholtz free energy calcu-

lation algorithm specifically for nanoconfined fluid, we demonstrated that the free energy

of the nanoconfined phase decreases as the wall-fluid interaction increases, and the melting
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point for nanoconfined fluid correspondingly showed a trend to shift to a higher tempera-

ture. This indicates that the fluid at certain temperatures has the potential to transition into

a solid in the presence of a strong wall-fluid interaction and sufficient nanoconfinement.

Furthermore, by conducting free energy comparisons of perfectly stacked structures and

structures with defects, we found that the nanoconfined phase as a whole prefers to form

a structure distinct from its bulk as the separation narrows and the temperature decreases,

because the structure with defects has a lower free energy.

It is important to note that our simulations and free energy calculations only explore the

behavior of fluid/wall systems with commensurate fluid and wall molecular sizes. This is

by design to simplify the analysis and enable comparison with bulk crystalline structures.

Incommensurability of sizes may play an important role, shifting the free energy due to a

competition between ordering dictated by the wall roughness and the preferred crystallinity

and spacing of the fluid. Specifically, it has been observed that the relative orientation of

herringbone structures observed for nanoconfined alkanes depend strongly on the structure

of the walls85,159,163; however, the accumulation of simulation results to date suggests that

incommensurability does not lead to the elimination of the ODT. The FE measurements

on systems with different fluid-wall particle size ratios agree with previous experimental

and simulation studies. Given that fluid particles are larger in size compared to wall crystal

spacing, the slightly lower FE further stabilizes the nanoconfined solid phase.

We then extended the free energy measurements to more realistic GCMD simulations.

Combining GCMD simulations with absolute free energy measurements in studies of nanocon-

fined fluid phase behavior, we demonstrated that the absolute Helmholtz free energy of the

nanoconfined region is not equal to that of its corresponding bulk fluid. The much lower

free energy of the nanoconfined region compared with its bulk fluid indicates that the fluid

may undergo a fluid-to-solid phase transition as the separation decreases. This demon-

strates consistency with the observations previously reported by experimentalists6,16,47 and

other researchers focused on simulation89,94.
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Meanwhile, the focus of free energy measurements in GCMD simulations is not only

on the entire nanoconfined phase, but also on the behavior of different regions inside the

nanoconfined phase. We showed that particles in contact with the pore walls demonstrate

markedly different behavior than those in the central most region, whereas atoms in the

central most region ultimately dictate the solidification. Using this, we calculated the

Helmholtz free energy of the central region alone, factoring out the effects of the strong

wall interactions. For systems with interaction strengths closely matching mica-organic

molecule parameters, we found that this transition occurs at roughly 6 layers, in good

agreement with previous simulations and experiments.

However, this agreement, mainly with observations by Klein’s group6,16,47 and other

researchers focusing on simulation89,94, is not able to provide a reasonable explanation as

to why Granick’s observations are so dramatically different with Klein’s results or why the

experimental data from the AFM community actually supports Granick’s perspective.

We started with the consistencies between the two sides of the debate, then compared

their differences in experimental conditions and studied the possible role of these factors

in the dramatically different experimental results. This revealed the significant role that

surface contact area plays in the ordering process; the additional time needed to order

scales roughly with the ratio of surface contact area.

More interestingly, our free energy measurements on central layers of artificially in-

creased nanoconfined phase density indicate that the jammed atoms have the potential to

destabilize the nanoconfinement-induced solid structure. This provides hints to the question

of why the experimental results reported by some researchers11 is contrary to others6,16,47.

Consequently, we suggested a novel thought process to better describe the nature of

nanoconfined fluid behavior. The new thought process replaces the old macroscopic view

of the nanoconfinement-induced solid, like a bulk solid below the melting temperature,

into discrete solid states formed at separations around integer numbers of ideal layers, and it

well explains the origin of the differences seen among researchers focusing on experimental
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studies.

Finally, our investigations on the nanoconfined system with various densities further

support the idea that “jammed” atoms have the capability to destabilize the nanoconfined

solid phase and remove the supposed fluid-to-solid transition.

To sum up, this dissertation research reviewed fundamental issues in solid FE determi-

nations, supported the existence of a nanoconfinement-induced fluid-to-solid phase transi-

tion via absolute FE measurements, and introduced a theory that better reveals the nature

of nanoconfined fluid behavior and reconciles the difference among experimental studies.

9.2 Future work

9.2.1 Free Energy of Fluid State

An important study that has yet to be completed in this work is the development of a

method to determine the absolute Helmholtz FE of nanoconfined systems in a fluid state.

The nanoconfined fluid is a highly dense system. Employing the aforementioned insertion

method100 to sample a fluid system with a large density is extremely inefficient. Addi-

tionally, the nanoconfined fluid system in scenarios that are close to experimental condi-

tions, such as large wall-fluid interaction strengths, has a strong tendency to form a well-

ordered structure. That places an extra hurdle on the way to directly measuring the absolute

Helmholtz FE of nanoconfined systems in a fluid state.

In this work, we mostly used an indirect approach to estimate the FE of a nanoconfined

system in a fluid state. That is, measuring the density of the nanoconfined system and then

bringing the measured density value into the FE formula for the bulk fluid to then obtain

the FE of the nanoconfined system. However, the implementation of the aforementioned

indirect approach brings systematic error and, hence, undermines the conclusions that are

reached in this work. Therefore, the introduction of a novel FE calculation strategy to

directly and efficiently measure the absolute FE of a nanoconfined system in a fluid state is

a primary goal in the near future.
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9.2.2 Oscillatory Properties

In Chapter VII we advanced the understanding of nanoconfined fluid behavior to an oscil-

latory nature, which was a benefit from the ease in which we could directly compare the

absolute FE. More importantly, by employing this novel theory, we were able to explain

the dramatic difference seen in experimental studies, based on their different experimental

conditions.

Nonetheless, the support provided by this dissertation research is preliminary and not

definitively strong. Aside from the need to develop the aforementioned FE calculation

method for a nanoconfined system in a fluid state, simulation and experimental studies with

specific emphasis on the oscillatory properties of nanoconfined systems are required. The

potential applications of the nanoconfined-fluid’s oscillatory properties, such as normal-

force-adjusted viscosity, super lubrication, etc., are also very interesting topics to study.

When an external pressure is applied perpendicularly to the solid, the nanoconfined system

becomes fluid and functions as a lubricant. While the normal force is removed, the lubricant

turns back to a solid state. The viscosity is increased to several orders of magnitude and

blocks the relative motion of the wall.

9.2.3 Chemical Reactions

The mechanism by which the nanoconfined phase oscillates between a solid state and a

corresponding fluid state as the wall-wall separation varies, creates a special environment

for polymerization or biochemical reactions.

The well-ordered structure of the nanoconfined phase has the potential to cage reactive

functional groups inside a small region, and hence increase the frequency and probability

of effective collisions in chemical reactions. After the reaction is completed, the disordered

state between two adjacent ordered states and the increased fluidity as a result, forms perfect

channels for the reaction product to leave the nanoconfined region. Most recently, DNA

microfluidic nanochannnels164 have been used to conduct DNA sequencing and synthesis.
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It would be interesting to investigate the change in chemical reactions that are occurring in

the nanoconfined phase, as the wall-wall separation gradually decreases or increases.
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Appendix A

Modified Tail Correction

The detailed step-by-step derivation of the modified tail correction is demonstrated here.

In nanoconfined systems, correction of the potential for finite cutoff radius includes contri-

butions from both fluid-fluid interaction potential within the nanoconfined phase, and also

fluid-wall interaction potential due to the existence of solid walls. It models the behav-

ior of nanoconfined systems, and is, therefore, more accurate than the generally-used tail

corrections.

In the following equation, S is the surface area of a spherical shell (including the surface

area of the partial sphere inside the nanoconfined phase and in the solid wall), rc is the cutoff

distance used in the potential calculation, and the subscripts m and w, respectively, specify

mobile fluid particles and static wall particles. ρ is density, r is distance, h is the wall-wall

separation, U is potential energy, and σ is the interatomic distance at which the potential

energy is equal to zero.
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