
Biochemical Reaction Networks from a Systems Biology Perspective

By

Erin Michelle Shockley

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Chemical and Physical Biology

May 10, 2019

Nashville, Tennessee

Approved:

Vito Quaranta, M.D.

Chris Fonnesbeck, Ph.D.

Todd Giorgio, Ph.D.

William Holmes, Ph.D.

Alissa Weaver, M.D., Ph.D.

To my Oma, who was a survivor

ii

ACKNOWLEDGMENTS

Portions of this dissertation are reprinted from:

• reference [1] as allowed by the author license granted by PNAS.

• reference [2], as allowed by the author license granted by Bioinformatics. Content

was originally published in Bioinformatics, published by Oxford University Press.

iii

TABLE OF CONTENTS

Page
DEDICATION . ii
ACKNOWLEDGMENTS . iii
LIST OF TABLES . vi
LIST OF FIGURES . vii
Chapter
1 Introduction . 1

1.1 General Background . 1
1.2 Introduction to Model Calibration . 1
1.3 Introduction to Model Flux Analysis . 3
1.4 Introduction to Model Sensitivity Analysis . 4
1.5 Introduction to Information Theory . 5

2 The COX-2 Reaction Model (CORM) . 6
2.1 Biological Background . 6
2.2 Model Scope and Implementation . 7
2.3 Detailed Model Description . 8

3 Advances in Model Calibration . 11
3.1 Specific Advances from this Work . 11
3.2 Background on PyDREAM Algorithm and Specific Implementation 12

3.2.1 Introduction to Bayesian Inference . 12
3.2.2 Introduction to Markov Chain Monte Carlo (MCMC) 13
3.2.3 The DREAM Algorithm and Implementation in PyDREAM 14
3.2.4 PyDREAM Validation . 19

3.2.4.1 10D Bimodal Mixture Model 19
3.2.4.2 200D Multivariate Normal . 19

3.3 Calibration of CORM with PyDREAM . 19
3.3.1 Available Calibration Constraints . 22

3.3.1.1 Experimental Data and Experimentally Measured Kinetic Rates . 22
3.3.1.2 Thermodynamic Constraints . 22
3.3.1.3 Kinetic Parameter Prior Distributions 24

3.3.2 Calibration Results . 25
3.3.3 Insights into COX-2 Catalysis . 28

3.4 Calibrating a Larger Model with PyDREAM 30

iv

4 Advances in Model Flux Analysis . 39
4.1 Specific Advances and Problems Solved . 39
4.2 Calculating Network Pathway Flux . 40
4.3 Applying Pathway Flux Analysis to CORM 43

5 An Analysis of Information Transfer in the Multi-Input Multi-Output COX-2 Network 54
5.1 Motivation . 54
5.2 Pathway Entropy is Dynamic Across Input Concentrations 55
5.3 Input Output Behavior in CORM . 58
5.4 Channel Capacity from Substrates to Products 59
5.5 COX-2 Integrates Information from Both AA and 2-AG 63
5.6 Information Flow is Dictated by Substrate Concentration 67

6 Perturbing the COX-2 Network: A Sensitivity Analysis of CORM 72
6.1 Motivation . 72
6.2 Introduction to Sensitivity Analysis with RS-HDMR 73
6.3 Constructing an HDMR Meta Model of CORM 75
6.4 HDMR Based Sensitivity Indices for CORM 80
6.5 CORM Sensitivity to Perturbations at Different Substrate Levels 93

7 High Performance Computing with Amazon Web Services: A Case Study 98
7.1 Introduction . 98

7.1.1 Overview of the protocol . 99
7.2 Materials . 100
7.3 Protocol . 100
7.4 Troubleshooting . 111

8 Discussion and Future Directions . 113
8.1 Discussion . 113

8.1.1 COX-2 as an Allosteric Enzyme . 113
8.1.2 Role of COX-2 Allostery In Vivo . 114
8.1.3 Relationship Between AA and 2-AG In Vivo 115
8.1.4 Ensemble Model Calibration . 115

8.2 Future Directions . 119
8.2.1 PyDREAM for Larger Models . 119
8.2.2 The COX-2 Reaction Model . 120

BIBLIOGRAPHY . 122

APPENDICES . 144

v

LIST OF TABLES

Table Page

2.1 CORM Species . 9
2.2 CORM Reactions . 10

3.1 EARM Rate Constant Constraints . 30
3.2 Experimentally Measured Parameters from Literature Used for EARM Calibration 34
3.3 Association Rate Parameters Predicted with TransComp and Used for EARM

Calibration. All units are M−1 s−1. 35

6.1 CORM HDMR Variable Names . 77

7.1 Troubleshooting guidance for using AWS Batch. 112

vi

LIST OF FIGURES

Figure Page

2.1 COX-2 Reaction Model (CORM) . 8

3.1 Schematic representation of PyDREAM workflow. The experimental data,
model setup, prior parameter distribution, and likelihood function are defined
as algorithmic input (top). This serves as input to the technical heart of Py-
DREAM (middle) which uses differential evolution for chain evolution, with a
Metropolis selection rule to decide whether to accept/reject candidate points.
These sampled chain trajectories (bottom) are then returned to the user and
used to summarize the marginal posterior parameter distributions. 18

3.2 PyDREAM samples for a 10D bimodal test case. Each subfigure depicts a
parameter dimension. Samples drawn using PyDREAM are shaded while the
true distribution is indicated by a black line. Sampled values are in arbitrary
units. 20

3.3 PyDREAM samples for a 200D multivariate normal test case. Each subfigure
depicts one of ten representative parameter dimensions. Samples drawn using
PyDREAM are shaded while the true distribution is indicated by a black line.
Sampled values are in arbitrary units. 21

3.4 Thermodynamic Cycles in CORM . 23
3.5 Prior Distributions for Fitted Parameters . 25
3.6 Simulated model PG and PGG values generated using the most probable pa-

rameter vector obtained during calibration at several concentrations of AA and
2-AG. Experimental data is shown in black and simulated results in red. . . . 26

3.7 Distributions of parameter values for each fitted kinetic rate in CORM. . . . 27
3.8 Distribution of catalytic rate (in s-1) when AA is bound in both the catalytic

site and allosteric site of COX-2. The experimentally measured catalytic rate
for the enzyme in the absence of any allosteric modulator is indicated by the
red line. 28

3.9 Distribution of catalytic rate (in s-1) when AA is bound in the catalytic site and
2-AG in the allosteric site of COX-2. The experimentally measured catalytic
rate for the enzyme in the absence of any allosteric modulator is indicated by
the red line. 29

vii

3.10 Distribution of catalytic rate (in s-1) when 2-AG is bound in the catalytic site
and AA in the allosteric site of COX-2. The experimentally measured catalytic
rate for the enzyme in the absence of any allosteric modulator is indicated by
the red line. 29

3.11 Uncoverged distributions of MCMC draws for a single parameter in the EARM
model. Different colors indicate different chains run in parallel, which should
reflect similar distributions for convergence. 31

3.12 The process used for selecting parameter priors for EARM calibration, using
either experimental data or computational prediction. 35

3.13 Converged (by Gelman-Rubin metric) distributions of MCMC draws for a sin-
gle parameter in the EARM model. Parameter values are log transformed. The
normal prior used was derived from experimental measurements in the liter-
ature. Different colors indicate different chains run in parallel, which should
reflect similar distributions after convergence. 36

3.14 Converged (by Gelman-Rubin metric) distributions of MCMC draws for a sin-
gle parameter in the EARM model. Parameter values are log transformed. The
calibrated parameter values are unchanged from the uniform prior. Different
colors indicate different chains run in parallel, which should reflect similar
distributions after convergence. 36

3.15 Converged (by Gelman-Rubin metric) distributions of MCMC draws for a sin-
gle parameter in the EARM model. Parameter values are log transformed.
The original parameter prior was uniform across the range of values. Differ-
ent colors indicate different chains run in parallel, which should reflect similar
distributions after convergence. 37

3.16 Converged (by Gelman-Rubin metric) distributions of MCMC draws for a sin-
gle parameter in the EARM model. Parameter values are log transformed.
The original parameter prior was uniform across the range of values. Differ-
ent colors indicate different chains run in parallel, which should reflect similar
distributions after convergence. 37

3.17 Unconverged (by Gelman-Rubin metric) distribution of MCMC draws for a
single parameter in the EARM model (bottom) and the corresponding trace-
plot for that parameter and other parameters, some of which had reached con-
vergence (top). Parameter values are log transformed. The original parameter
prior was uniform across the range of values. Different colors indicate dif-
ferent chains run in parallel, which should reflect similar distributions after
convergence. 38

viii

4.1 An overview of the method for calculating network pathway flux using a graph
theoretic analysis to determine network paths and an integrator to return the
integrated flux through specific chemical reactions. 41

4.2 Calculating paths between reactants and products. Edges are directed towards
the flow of the net integrated reaction flux (for bidirectional reactions) or the
integrated forward reaction flux (for unidirectional reactions). Edge labels in-
dicate the probability of selecting that reaction path into a node, calculated as
the proportion of total flux leaving the node that came from a given reaction. . 42

4.3 Possible paths between COX-2 and PG in CORM. 44
4.4 Possible paths from COX-2 to PGG in CORM. 44
4.5 Dominant PG Production Paths in CORM. Colors correspond to path fluxes in

Fig. 4.7A. (D) Dominant PG-G Production Paths in CORM. Colors correspond
to path fluxes in Fig. 4.7B. 45

4.6 Dominant PG-G Production Paths in CORM. Colors correspond to path fluxes
in Fig. 4.7B. 45

4.7 Concentration-dependent PG and PG-G production paths. (A) Dominant Re-
action paths for PG Production Vary with AA and 2-AG Concentration. Each
individual plot depicts the amount of flux through each path in 2.1C for a
given concentration of 2-AG across varying concentrations of AA. Colors cor-
respond to labeled paths in Fig. 4.5. The error bars in each plot indicates the
flux variation resulting from inferred kinetic rates. (B) Dominant Mechanisms
of PG-G Production Vary with AA Concentration. Each individual plot is at
a given concentration of 2-AG. In all plots AA increases from left to right at
concentrations of 0.5, 1, 2, 4, 8 and 16 µM in A and 0, 0.5, 1, 2, 4, 8, and 16
µM in B. Colors correspond to labeled paths in Fig. 4.6 The error bars in each
plot indicates the flux variation from inferred kinetic rates. 48

4.8 Distribution (arising from calibrated parameter uncertainty) of the percentage
of the total flux to product PG from the path COX-2→ COX-2:AA→ PG at
different starting AA and 2-AG concentrations. 49

4.9 Distribution (arising from calibrated parameter uncertainty) of the percentage
of the total flux to product PG from the path COX-2 → COX-2:AA → 2-
AG:COX-2:AA→ PG at different starting AA and 2-AG concentrations. . . . 50

4.10 Distribution (arising from calibrated parameter uncertainty) of the percent-
age of the total flux to product PG from the path COX-2 → COX-2:AA →
AA:COX-2:AA→ PG at different starting AA and 2-AG concentrations. . . . 51

4.11 Distribution (arising from calibrated parameter uncertainty) of the percentage
of the total flux to product PGG from the path COX-2 → COX-2:2-AG →
PGG at different starting AA and 2-AG concentrations. 52

ix

4.12 Distribution (arising from calibrated parameter uncertainty) of the percentage
of the total flux to product PGG from the path COX-2 → COX-2:2-AG →
AA:COX-2:2-AG→ PGG at different starting AA and 2-AG concentrations. . 53

5.1 Pathway entropy within CORM. (A) Pathway Entropy for Production of PG.
The intensity indicates the pathway entropy in units of bits. (B) Pathway En-
tropy for Production of PG-G. Units are the same as in A. 57

5.2 Input vs output plots for substrates and products in CORM. (A) Input vs Output
plots for AA to PG. 2-AG varies randomly. All concentrations are measured
at steady-state (10 seconds). (B) Input vs Output plots for 2-AG to PG-G. AA
varies randomly. All concentrations are measured at steady-state (10 seconds). 59

5.3 Estimated channel capacities from substrates to intermediates or products in
CORM. (A) Estimated Channel Capacities from Input to intermediates and
final products within CORM when levels of AA and 2-AG are strongly cor-
related (Pearson correlation coefficient = 1). Distributions in the channel ca-
pacities arise from uncertainty in the kinetic parameter values after model cal-
ibration.(B) Estimated Channel Capacities from AA to intermediates and final
products within CORM when AA and 2-AG are varied independently. Distri-
butions in the channel capacities arise from uncertainty in the kinetic parameter
values after model calibration.(C) Estimated Channel Capacities from 2-AG to
intermediates and final products within CORM when AA and 2-AG are varied
independently. Distributions in the channel capacities arise from uncertainty
in the kinetic parameter values after model calibration. 62

5.4 Distributions of response entropy under different input correlation and sig-
nal/response pairs. While the response entropy spans a similar range with both
independent and correlated inputs, the transfer efficiency increases with corre-
lation. 64

5.5 Sum of channel capacity from AA and 2-AG to intermediates and final outputs
when inputs are semi-correlated (Pearson correlation coefficient = .5). Distri-
butions arise from uncertainty in calibrated parameter values. 65

5.6 Channel capacity from AA and 2-AG to intermediates and final outputs when
inputs are present in a 2 to 1 AA to 2-AG ratio. Distributions arise from uncer-
tainty in calibrated parameter values. 66

x

5.7 Effect of substrate level on estimated channel capacities between substrates
and products in CORM. (A) Total Estimated Channel Capacity from AA and
2-AG combined to products across regions of substrate space. Distributions in
the channel capacities arise from uncertainty in the kinetic parameter values
after model calibration. (B) Estimated Channel Capacities from input to prod-
ucts when levels of AA and 2-AG are perfectly correlated across regions of
substrate space. Distributions in the channel capacities arise from uncertainty
in the kinetic parameter values after model calibration. 68

5.8 Sum of channel capacity from AA and 2-AG to intermediates when inputs are
varied independently in different regions of substrate space. Distributions arise
from uncertainty in calibrated parameter values. 69

5.9 Channel capacity from AA and 2-AG to intermediates when inputs are varied
correlated (Pearson correlation coefficient = 1) in different regions of substrate
space. Distributions arise from uncertainty in calibrated parameter values. . . 70

5.10 Left: channel capacity between independent inputs and PG intermediates at
different substrate levels. Right: absolute flux between independent inputs and
PG intermediates at different substrate levels. 70

5.11 Left: channel capacity between independent inputs and PGG intermediates at
different substrate levels. Right: absolute flux between independent inputs and
PGG intermediates at different substrate levels. 71

6.1 Prediction accuracy and error for a second order HDMR model of CORM sim-
ulations. In the outputs column, (c) and (a) denote the catalytic and allosteric
subunits of COX-2, and 0 indicates that either site is unbound. 78

6.2 Original CORM simulation values versus values calculated from a second or-
der HDMR model trained to the CORM. 79

6.3 Heatmap of first order Sa
i sensitivity indices calculated for all i parameter in

CORM. Each row represents a model parameter (input) and each column an
output (PG, PGG, or the ratio of the two). Lighter values indicate stronger
sensitivity of the output to variation in an input. 80

6.4 Heatmap of first order Sb
i sensitivity indices calculated for all i parameter in

CORM. Each row represents a model parameter (input) and each column an
output (PG, PGG, or the ratio of the two). Color indicates either positive or
negative error in estimates induced by random correlation in the data. 81

6.5 Heatmap of first order Si sensitivity indices calculated for all i parameter in
CORM. Each row represents a model parameter (input) and each column an
output (PG, PGG, or the ratio of the two). Lighter values indicate stronger
sensitivity of the output to variation in an input. 82

xi

6.6 Heatmap of Sa
i sensitivity indices calculated for all i, j parameters in CORM.

Each cell represents the sensitivity of PGs to a change in the row and column
model parameters. Lighter values indicate stronger sensitivity of the output to
variation in the combination of inputs. 83

6.7 Heatmap of Sb
i sensitivity indices calculated for all i, j parameters in CORM.

Each cell represents the error in an estimated sensitivity value calculated for
PGs to a change in the row and column model parameters. Color indicates
either either positive or negative error in estimates induced by random correla-
tion in the data. 84

6.8 Heatmap of Si sensitivity indices calculated for all i, j parameters in CORM.
Each cell represents the sensitivity of PGs to a change in the row and column
model parameters. Lighter values indicate stronger sensitivity of the output to
variation in the combination of inputs. 85

6.9 Heatmap of Sa
i sensitivity indices calculated for all i, j parameters in CORM.

Each cell represents the sensitivity of PGGs to a change in the row and column
model parameters. Lighter values indicate stronger sensitivity of the output to
variation in the combination of inputs. 86

6.10 Heatmap of Sb
i sensitivity indices calculated for all i, j parameters in CORM.

Each cell represents the error in an estimated sensitivity value calculated for
PGGs to a change in the row and column model parameters. Color indicates
either either positive or negative error in estimates induced by random correla-
tion in the data. 87

6.11 Heatmap of Si sensitivity indices calculated for all i, j parameters in CORM.
Each cell represents the sensitivity of PGGs to a change in the row and column
model parameters. Lighter values indicate stronger sensitivity of the output to
variation in the combination of inputs. 88

6.12 Heatmap of Sa
i sensitivity indices calculated for all i, j parameters in CORM.

Each cell represents the sensitivity of the PG to PGG ratio to a change in the
row and column model parameters. Lighter values indicate stronger sensitivity
of the output to variation in the combination of inputs. 89

6.13 Heatmap of Sb
i sensitivity indices calculated for all i, j parameters in CORM.

Each cell represents the error in an estimated sensitivity value calculated for
the ratio of PGs to PGGs to a change in the row and column model parameters.
Color indicates either either positive or negative error in estimates induced by
random correlation in the data. 90

xii

6.14 Heatmap of Si sensitivity indices calculated for all i, j parameters in CORM.
Each cell represents the sensitivity of the ratio of PGs to PGGs to a change
in the row and column model parameters. Lighter values indicate stronger
sensitivity of the output to variation in the combination of inputs. 91

6.15 HDMR functions for relationships between the most sensitive parameters in
CORM and the ratio of PGs to PGGs. From left to right, the parameters are
kcat AG1, KD AG 1, and KD AA 1. 93

6.16 Levels of AA and 2-AG Used to Generate Data for Sensitivity Analysis . . . 94
6.17 HDMR Model Accuracy for Each Region of Substrate Space 94
6.18 First order sensitivity indices for PG in each region of substrate space. Each

row represents sensitivity to perturbations in a particular model parameter, and
each column is a different region of substrate space. Lighter colors indicate
higher sensitivity. 95

6.19 First order sensitivity indices for PGG in each region of substrate space. Each
row represents sensitivity to perturbations in a particular model parameter, and
each column is a different region of substrate space. Lighter colors indicate
higher sensitivity. 96

8.1 Predicted concentration of CORM species ten seconds after mixing as a func-
tion of AA concentration. Darker lines indicate the prediction generated from
the most probable parameter vector in the ensemble and the shaded region en-
compasses predictions based on the entire ensemble of parameters. 116

8.2 A kernel density estimate of the joint parameter probability density for two
kinetic parameters in CORM, indicating a nonlinear relationship between the
variables. 118

xiii

Chapter 1

Introduction

1.1 General Background

Computational modeling of biochemical systems at the level of signaling networks has

provided insights into the origins of biochemical heterogeneity [3, 4], the plausibility of

different mechanistic hypotheses about biological processes [5, 6], and the efficacy of dif-

ferent drug perturbations [7]. Deriving useful insights from mechanistic models poses a

number of challenges related to model creation, calibration, and analysis.

Many of the challenges related to model creation have been ameliorated by the advent

of rule-based modeling. Instead of enumerating all possible model species, Rule-based

modeling defines valid interactions as a set of rules and then determining the species that

can form given the rule set. This avoids directly tackling the combinatorial complexity

present in many biochemical systems, while still faithfully representing the known system

interactions [8]. The rule-based approach has been used to create models containing as

many as three billion species [9]; when combined with network-free simulation methods

[10], the number of model species may theoretically be infinite. Numerous modeling pack-

ages [11, 12] simplify the creation of transparent, reusable, extensible rule-based models.

Rigorous, efficient methods for model calibration and analysis have lagged behind those

for model creation. The next section features a discussion of model calibration in systems

biology.

1.2 Introduction to Model Calibration

Model calibration is the process of quantifying the fit of a model to experimental data,

and iteratively improving that fit by modifying kinetic rate constants, initial conditions,

1

or model interactions. Uncertainty in all three components (kinetic rate constants, initial

conditions, and interactions) complicates the process.

The model components to be modified, the means of quantifying data fit, the algorithm

for improving that fit, and the quantification of uncertainty in final fitted values have all

evolved with the systems biology field. One of the first mechanistic systems biology mod-

els simply compared simulated outputs to experimental data by eye, varying only model

interactions (manually) to determine the effect on model output [13]. The kinetic rate

constants were rough estimates based on the type of biological interaction, and the initial

conditions were known.

The use of computational algorithms to adjust model elements iteratively and optimize

the fit to experimental data has become standard as the rise in available computational

power has made efficient optimization possible. These algorithms require an objective

function which quantifies the fit of simulated output to experimental data. Systems biol-

ogy optimization problems are frequently non-convex with many minima [14], stymieing

attempts to use highly efficient local optimization (also called determistic optimization)

methods, which can become stuck in local minima. One early proposed solution to this

was the multi-start method, in which multiple local solutions obtained from different start

locations were compared to (hopefully) find the global minima [15]. Because this quickly

becomes inefficient as the same minima are repeatedly discovered, the more computation-

ally intense but rigorous global optimization (or stochastic optimization) methods became

preferred. Hybrid optimization methods, which combine an initial global search followed

by a local search, were developed to capitalize on the advantages of both techniques. Global

optimization algorithms utilized in systems biology have included the DIRECT algorithm

[16], simulated annealing [17, 18], genetic algorithms [19], evolution strategy [20], differ-

ential evolution [21] and particle swarm optimization [22]. Hybrid methods have also been

used [23].

If model predictions are desired, optimizing the fit of a model to experimental data is

2

only a first step in the model calibration process. Because model predictions depend on

model parameters, the uncertainty in those parameters must be quantified lest the predic-

tions be of unknown confidence and thus meaningless. There are two main approaches

to quantifying model parameter uncertainty [24]. In the first, parameter uncertainty is ap-

proached in terms of identifiability, and the ultimate goal is to calculate confidence intervals

for unknown parameters given the experimental data. If the available experimental data is

not sufficiently informative, some parameters will be unidentifiable, and their confidence

intervals infinite. Any model predictions that depend on these unidentifiable parameters

are then not determined (non-observable) and likely meaningless. This can be ameliorated

by targeted collection of experimental data to produce identifiable calibrated parameters

and reliable model predictions. The second approach is to use Bayesian inference meth-

ods to specify model parameter prior probability distributions, probability distributions that

specify what is known about a model parameter before calibration, and then infer posterior

probability distributions given the priors and a likelihood function that incorporates experi-

mental data (see Chapter 3, section 2.1 for an introduction to Bayesian inference). Typically

model calibration is then performed using a Markov Chain Monte Carlo (MCMC) walk (see

Chapter 3, section 2.2 for an introduction to MCMC). Model parameter prior distributions

may include constraints such as those imposed by biophysical limitations (for example,

diffusion limits). In many cases, both approaches will give similar results [24]. The first is

likely to be more computationally efficient; however, the second can be successful in cases

where the available experimental data is sparse.

1.3 Introduction to Model Flux Analysis

The analysis of flux through a mathematical representation of a biological system is one

approach to derive non-trivial insights into the system. One of the most common techniques

applied is called flux balance analysis (FBA). In FBA, linear programming is used to solve

for a distribution of fluxes for system reactions at steady state, given any constraints on the

3

reaction rates[25]. Specific points in this constrained space can then be selected to optimize

a given objective function (e.g. metabolic growth rate). An alternate approach, pathway

flux analysis, is presented in this work. In this method, described in more detail in section

4.2, reaction fluxes are directly calculated after parameter calibration, and this information

is used to determine the path by which a particular molecule is produced in the system.

Because this does not require the system to be at steady state, it can uncover system signal

and product dynamics at any simulation point and is more widely applicable than FBA.

1.4 Introduction to Model Sensitivity Analysis

In sensitivity analysis, the degree of response to each input is calculated for each output

of interest. This can be useful both as a post-calibration analysis technique and as a pre-

lude to model calibration, since any inputs that have no effect on an output of interest both

alone and in tandem with other inputs may be safely fixed at a given value, decreasing the

dimension of the calibration problem and saving computational time. Like optimization,

sensitivity analysis also comes in two varieties, local and global. Local methods produce

estimates of sensitivity at a particular point (or set of points) in parameter space [26]. Math-

ematically, a local sensitivity coefficient is the partial derivative of an output, y, with respect

to a particular input parameter, p:

Si =
δy
δ p

= lim
p→0

y(p+∆p)− y(p)
∆p

(1.1)

The derivative may be numerically approximated using the finite difference approximation

(in which Si is approximated by a small perturbation of p) or analytically computed with

the direct differential method (in which the differential equation representation of a given

model is solved for the sensitivity coefficients) [27]. For systems biology models, the finite

difference method has been shown to give inaccurate results due to numerical instability

in the derivative calculations [24]. Global sensitivity analysis methods instead produce

4

estimates of sensitivity over an entire region of parameter space deemed relevant for the

model in question [26].

1.5 Introduction to Information Theory

In 1948, Claude Shannon introduced the information theory framework to quantify

information transfer and signal processing by a generic input-response network or commu-

nication system subjected to some source of noise [28]. For a discrete Markov process with

event probabilities equal to p1...pn, he proposed the Shannon entropy, H:

H =−
n

∑
x=1

P(xi) log2 P(xi) (1.2)

as a measure of the degree of uncertainty in a variable given its probability distribution

across states. A higher entropy state is one that is more uncertain; entropy increases both

with the inclusion of more possible states and with increased diffusivity of probability

across the possible states.

Quantifying uncertainty provided a means to measure the degree to which knowledge of

one random variable X decreases uncertainty in a second variable Y , the mutual information

between X and Y :

I(X ;Y) = ∑
X

∑
Y

P(x,y) log2
P(x,y)

P(x)P(y)
(1.3)

In recent years, information theory has been leveraged to analyze biological signaling

systems [29, 30, 31]. Because the input signaling distributions to which biological signal-

ing systems are exposed are generally unknown, previous researchers have estimated the

channel capacity:

C = suppx(x)I(X : Y) (1.4)

for a given system by sampling reasonably exhaustively across possible input distributions.

In this work, information theory is applied to a specific catalytic system to investigate the

role multiple inputs and varying input levels play in information transfer.

5

Chapter 2

The COX-2 Reaction Model (CORM)

2.1 Biological Background

The enzyme cyclooxygenase-2 (COX-2) lies at the interface of the eicosanoid and en-

docannabinoid signaling pathways [32, 33] and its dysregulation has been implicated in

the pathogenesis of many diseases, including cancer [34], neurodegenerative diseases [35],

and artheriosclerosis [32]. COX-2 is a homodimeric enzyme that acts as a heterodimer,

with one subunit serving as the catalytic site and the other as an allosteric site [36, 37, 38].

It processes multiple substrates, has multiple allosteric regulators (including some mem-

bers of the class of nonsteroidal anti-inflammatory drugs) [39, 40, 1, 41, 42, 43], and yields

multiple products that drive pro- and anti-inflammatory downstream processes [44, 45, 46].

Because of the identical structure of COX-2’s two subunits, both substrates and allosteric

modulators can bind to and compete for both sites simultaneously, enabling substrates to

also allosterically modulate catalytic activity and some inhibitors to act both competitively

and noncompetitively.

The development of the computational model of COX-2 dynamics utilized in this work,

the COX-2 Reaction Model (CORM), was motivated by the observation that COX-2 in

the presence of two of its substrates, arachidonic acid (AA) and 2-arachidonoyl-glycerol

(2-AG), displays behavior that cannot be explained by simple competition between the

two substrates. Both AA and 2-AG are cleaved from membrane phospholipids prior to

processing by COX-2. COX-2 turnover of AA produces prostaglandins (PGs), while 2-AG

turnover produces prostaglandin-glycerol (PGG). Initial turnover produces the intermediate

prostaglandin H2 (PGH2) or PGGH2; prostaglandin synthases that are expressed in a cell-

type specific manner then convert the intermediate to specific prostaglandin subtypes, each

of which exert particular downstream effects through corresponding receptors [32, 44].

6

2.2 Model Scope and Implementation

CORM includes the enzyme COX-2 (with both subunits contained in a single species).

In CORM, the COX-2 species contains an allosteric and a catalytic site. Either site may

bind either of the two COX-2 substrates included in the model, AA and 2-AG. COX-2

species with AA in the catalytic site are processed into PG (meant to represent the PGH2

intermediate), while those with 2-AG in the catalytic site are processed to PGG (PGGH2).

The exception to this is the COX-2 species with 2-AG bound in both sites; because 2-AG

displays substrate-dependent inhibition, turnover of this complex does not occur. Because

the model was meant to represent a system in which the enzyme and substrates are well-

mixed (reflecting the experimental calibration in vitro data), all forward binding rate con-

stants (k f s) were set to be diffusion limited. The corresponding reverse binding rates (krs)

were allowed to vary independently during calibration, as were all catalytic rates (kcats)

except those that were experimentally determined (indicated in red in Table 2.2). CORM

does not encode the prostaglandin synthases that produce various prostaglandin subtypes

by processing PGs; nor does it include any other substrates of COX-2 or COX-2 inhibitors.

CORM was implemented as a PySB [12] model within a single module and is available as

Python code at http://github.com/LoLab-VU/CORM. A diagram of all model interactions

is shown in Figure 2.1.

7

PG PGG

COX2

AA:COX2 COX2:AA 2-AG:COX2: COX2:2-AG

AA:COX2:AA 2-AG:COX2:AA AA:COX2:2-AG 2-AG:COX2:2-AG

A A G G

A A G A A G G G

Figure 2.1: COX-2 Reaction Model (CORM)

2.3 Detailed Model Description

Model species are shown in Table 2.1 and model reactions in Table 2.2.

8

Species Starting Concentration (µmolar)

COX-2 .015

AA 0, .5, 1, 2, 4, 8, 16

2-AG 0, .5, 1, 2, 4, 8, 16

PG 0

PGG 0

COX-2:AA(cat) 0

COX-2:2-AG(cat) 0

COX-2:AA(allo) 0

COX-2:2-AG(allo) 0

COX-2:AA(cat):AA(allo) 0

COX-2:2-AG(cat):2-AG(allo) 0

COX-2:AA(cat):2-AG(allo) 0

COX-2:2-AG(cat):AA(allo) 0

Table 2.1: CORM Species

9

PySB-generated Reaction Rate or Equilibrium Constant
COX-2 + AA
 COX-2:AA(cat) KD AA cat1 = .83 µmolar
COX-2 + AA
 COX-2:AA(allo) KD AA allo1
COX-2 + 2-AG
 COX-2:2-AG(cat) KD AG cat1 = .76 µmolar
COX-2 + 2-AG
 COX-2:2-AG(allo) KD AG allo1
COX-2:2-AG(allo) + AA
 COX-2:AA(cat):2-AG(allo) KD AA cat2
COX-2:AA(cat) + AA
 COX-2:AA(cat):AA(allo) KD AA allo2
COX-2:2-AG(allo) + 2-AG
 COX-2:2-AG(cat):2-AG(allo) KD AG cat2
COX-2:AA(cat) + 2-AG
 COX-2:AA(cat):2-AG(allo) KD AG allo2
COX-2:AA(allo) + AA
 COX-2:AA(cat):AA(allo) KD AA cat3
COX-2:2-AG(cat) + AA
 COX-2:2-AG(cat):AA(allo) KD AA allo3
COX-2:AA(allo) + 2-AG
 COX-2:2-AG(cat):AA(allo) KD AG cat3
COX-2:2-AG(cat) + 2-AG
 COX-2:2-AG(cat):2-AG(allo) KD AG allo3 = 63 µmolar
COX-2:AA(cat)→ PG + COX-2 kcat AA1 = 1.3 s-1

COX-2:2-AG(cat)→ PGG + COX-2 kcat AG1 = 1.2 s-1

COX-2:AA(cat):2-AG(allo)→ PG + COX-2:2-AG(allo) kcat AA2
COX-2:2-AG(cat):2-AG(allo)→ PGG + COX-2:2-AG(allo) 0 s-1

COX-2:AA(cat):AA(allo)→ PG + COX-2:AA(allo) kcat AA3
COX-2:2-AG(cat):AA(allo)→ PGG + COX-2:AA(allo) kcat AG3

Table 2.2: CORM Reactions

10

Chapter 3

Advances in Model Calibration

3.1 Specific Advances from this Work

As described in Section 1.2, calibration of systems biology models is complicated by

several factors, including parameter identifiability, large numbers of parameters, lack of

experimental data for model calibration, and large uncertainties in individual parameter es-

timates. Because uncertainty in parameter estimates translates to uncertainty in all model

predictions and is one metric of the trustworthiness and applicability of a model, inter-

est in applying calibration methods that provide uncertainty estimates is increasing, al-

though examples in the literature are still rare [5]. This chapter introduces PyDREAM, a

Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis

(DREAM(ZS)) algorithm developed by [47] and [48]. The PyDREAM codebase was devel-

oped as a part of this thesis and resulted in a publication [2]. In addition, detailed results

from two model calibrations performed with PyDREAM are presented, the first of which

also resulted in a publication [1].

The original DREAM(ZS) algorithm [47, 48] encoded in PyDREAM has several char-

acteristics that make it particularly suited for calibration of systems biology models. First,

it provides probability distributions for fitted parameters, allowing quantification of uncer-

tainty. Second, it is designed to fit large models containing many parameters, and models in

which parameters may be multi-modal. Third, it employs parallel computation when pos-

sible; since simulation of many systems biology models is CPU-intensive, and calibration

involves many model simulations, this is highly desirable. Finally, the DREAM algorithm

(a form of Markov Chain Monte Carlo (MCMC)), obeys detailed balance (a characteristic

of MCMC algorithms described in detail below, without which the results of an MCMC

chain are likely unreliable). Because the only other systems biology model calibrated us-

11

ing MCMC methods violated detailed balance in order to obtain distributions that were

deemed to be converged [5], this represents an important advance.

3.2 Background on PyDREAM Algorithm and Specific Implementation

3.2.1 Introduction to Bayesian Inference

The statistical methods most commonly applied in biology are frequentist, so named

because in a frequentist context the probability that a particular event will take place is

interpreted as the frequency of that event over a set of observations. This type of statistical

analysis assumes that the parameters that describe the underlying population to be sampled

remain fixed, while the observed data is sampled. Conclusions draw from a frequentist

study then hinge upon the probability of again sampling data with similar characteristics.

So a 95% confidence interval, for example, quantifies the region within which there is a

95% probability of getting a similar estimate for a given parameter, if the experiment were

repeated and new samples from the population were drawn. Bayesian statistical analysis

flips the convention; in a Bayesian context, probability is instead defined as a measure of

belief or confidence that a given event will take place. When performing Bayesian analysis,

observed data is fixed, while parameters describing the underlying population are sampled.

A Bayesian 95% credible interval (the analogue of a frequentist confidence interval) quan-

tifies the region within which there is a 95% probability that the true parameter lies. While

the frequentist and Bayesian definition of probability align when a large enough sample

of not improbable events is available, the Bayesian concept of prior belief is particularly

powerful when data is sparse and can yield divergent conclusions in such cases.

The overarching goal of Bayesian inference is to calculate the posterior probability, that

is, the probability of an occurrence (e.g., a delayed flight) given both the prior probability

of that event (e.g., prior experience at an airport and knowledge of delay history) and the

likelihood of observing the available data (e.g., the frequency of flight delays from the

airport) given a particular probability of delayed flights. The relationship between these

12

terms is defined mathematically as:

π(θ |D) =
π(θ)L(D|θ)∫

θ
π(θ)L(D|θ)dθ

(3.1)

where π(θ |D) is the posterior probability of an event θ after observing the data, D,

π(θ) is the prior probability of the event θ before observing any data, and L(D|θ) is the

likelihood, the probability of observing the data D if θ were true. The denominator in

Equation (5.1) is termed the evidence, and is often computationally intensive to calculate.

Fortunately, when only a single model is being studied, the evidence can be treated as a

normalizing constant [49].

Occasionally, the posterior probability can be calculated analytically. More often, such

as when θ is a high-dimensional vector, analytical solutions become intractable, and nu-

merical approximations must be used. In this case, a suitable method to calculate posterior

probabilities is to apply the Markov Chain Monte Carlo (MCMC) technique, discussed in

the next section.

3.2.2 Introduction to Markov Chain Monte Carlo (MCMC)

Sometimes it is easier to estimate a deterministic quantity (such as the posterior prob-

abilities discussed above) through random sampling rather than a direct analytical calcu-

lation. This approach was first envisioned by Stanislaw Ulam, a Polish American mathe-

matician, while he passed the time recovering from an illness by playing Canfield solitaire.

After considering for some time how to calculate the probability of winning a game of soli-

taire, he realized that sampling many solitaire games and recording win rates was a simpler

approach than analytically calculating the win probability. He called the new random sam-

pling method Monte Carlo sampling [50] in reference to the eponymous region of Monaco

famous for its casinos and games of chance.

In order to generate random samples from a particular probability distribution, Markov

13

Chain Monte Carlo (MCMC) walk employs the Markov chain method. In a Markov chain,

the next step taken depends only on the current location, and not on the path that led to the

current location (i.e., the previous steps). Markov chains have some useful mathematical

properties for sampling of probability distributions, detailed in reference [51]. In MCMC, a

Markov chain that has the probability distribution of interest as its equilibrium distribution

is created. After a number of steps spent reaching equilibrium, the chain can be analyzed

and tested for convergence to the target distribution, and all further chain steps are samples

taken from the converged probability distribution. In order for a Markov chain to con-

verge to its equilibrium distribution, it must be both irreducible and aperiodic [51]. An

irreducible Markov chain is one in which it is possible to reach any state in the chain from

any other state in the chain through positive probability transitions [51], while an aperiodic

chain is one that does not contain periodic ”loops” within the chain [51]. While a Markov

chain that meets these criteria will eventually converge to the desired equilibrium distribu-

tion, this convergence may be so slow as to make the analysis effectively computationally

intractable. Adaptive MCMC is a class of algorithms designed to speed convergence to the

target distribution by adapting the proposal distribution over the course of the algorithm.

A variety of these algorithms have been developed [52, 53]; the specific adaptive MCMC

method, DREAM, implemented in this work is discussed in the next section.

3.2.3 The DREAM Algorithm and Implementation in PyDREAM

PyDREAM provides a Python interface to several variants of a specific adaptive MCMC

algorithm, DiffeRential Evolution Adaptive Metropolis (DREAM) [54, 55, 48]. PyDREAM

includes the DREAM(ZS) [47, 53] and the MT-DREAM(ZS) [48] algorithms. All variants

of the DREAM algorithm utilize a multi-chain structure in which multiple MCMC chains

walk the parameter space simultaneously. In both implemented variants, a shared history

of past chain states is maintained, and the next state is proposed by adding a perturba-

tion derived from the distance between two randomly chosen history points. Occasionally,

14

these parallel updates are supplemented by perpendicular snooker updates [47] in order

to diversify proposal points. In the most recent MT-DREAM(ZS) [48] algorithm, multiple

parallel proposals for each chain are created using parallel and snooker implementations

of the multiple proposal schema introduced in [56]. The pseudo-code of the algorithm is

given on the next page. PyDREAM follows [53] with the exception that the use of a single

chain pair (e.g. δ = 1) was hardwired for the parallel direction and snooker update. Scalars

appear as lower-case italic, vectors as lower case letters, and matrices as upper case letters.

Functions are typeset bold. Default values are used for the algorithmic variables. For a

detailed list of all PyDREAM options, please see Appendix I.

15

1: c = 0.05 . Default values of DREAM algorithmic variables

2: c∗ = 10−12

3: ncr = 3

4: pγ = 0.2

5: k = 10 . Default values of DREAM(ZS) algorithmic variables

6: psn = 0.1

7: m0 = 10d

8: cr =
[
1/ncr 2/ncr · · · 1

]
. Crossover values

9: pcr = 1/ncrones(ncr) . Selection probability crossover values: ncr unity vector multiplied with 1/ncr

10: Z = prior(m0) . Create initial archive with m0 draws from the prior distribution

11: X = Z[m0−nchains +1 : m0] . Use last nchains points of archive Z as initial chain states

12: pX = pdf(X) . Calculate posterior density of initial chain states

13: m = m0 . Set initial length archive equal to m0

14: for iter in niter do . For each iteration

15: Λ = uniform(-c, c,nchains) . Draw nchains values from uniform distribution between −c and c

16: e = c∗normal(0,1,nchains) . Vector of nchains standard normal draws multiplied with c∗

17: if uniform(0,1) ≤ (1− psn) then . Parallel direction or snooker jump for this generation (iteration)?

18: for chain in nchains (sequential) do . Parallel direction jump for each chain

19: a, b = randsample(m, 2) . Sample two integers from 1, 2, ... m

20: cross = draw crossover(cr, pcr) . Sample crossover from vector cr with probabilities pcr

21: d∗ = 0 . Number of dimensions to update is zero

22: for dim in ndim do . For each dimension

23: if uniform(0,1) ≤ cross then . Is dimension dim selected with current crossover, cross

24: dxdim = Z[a]dim - Z[b]dim . Update dx dimension dim to difference of dim of points Z[a] and Z[b] of

archive

25: d∗ = d∗+1 . Increment dimensions updated

26: else

27: dxdim = 0 . Zero jump in respective dimension

28: end if

29: end for

30: if uniform(0,1) ≥ pγ then

31: γ = 2.38/
√

2δd∗ . Use default jump factor for d∗ dimensions

32: else

33: γ = 1 . Set jump factor to unity to simplify mode jumping

34: end if

35: dX[chain] = e[chain]+ γ(1+Λ[chain])dx . Parallel direction jump vector of current chain

36: αsn[chain] = 1 . Symmetric proposal distribution (no snooker correction needed)

37: end for

16

38: else

39: for chain in nchains (sequential) do . Snooker jump for each chain

40: a, b, c = randsample(m, 3) . Sample three integers from 1, 2, ... m

41: γ = uniform(1.2, 2.2) . Sample randomly the jump factor

42: F = X[chain] - Z[a] . Difference vector of current chain state and archive point Z[a]

43: zp = orthog proj(F, Z[b], Z[c]) . Project orthogonally points Z[b] and Z[c] of archive Z onto F

44: dX[chain] = e[chain]+ γ(1+Λ[chain])zp . Snooker jump vector of current chain

45: αsn[chain] =
(
(X[chain]+dX[chain]−Z[a])2/(X[chain]−Z[a])2

)(d−1)
. Snooker correction nonsymmetry

jump

46: end for

47: end if

48: Xp = X + dX . Compute candidate points for the chains

49: for chain in nchains (in parallel) do . For each chain

50: pXp[chain] = pdf(Xp[chain]) . Calculate posterior density of proposal point

51: end for

52: for chain in nchains (sequential) do

53: pacc[chain] = min
(
1,αsn[chain](pXp[chain]/pX[chain])

)
. Calculate acceptance probability

54: if pacc[chain]≥ uniform(0,1) then . If accept Xp of current chain

55: X[chain] = Xp[chain] . Candidate point becomes new state of chain

56: pX[chain] = pXp[chain] . Density of proposal is equivalent to density of current state chain

57: end if

58: end for

59: if modulus(iter, k) == 0 then . Check whether to append current population to archive

60: Z[m+1 : m+nchains] = X . Append current states of chains to archive

61: m = m+nchains . Increment number of points in archive

62: end if

63: end for

17

Calibration of a kinetic model with PyDREAM involves three steps: specifying the

model and any constraints on the model (such as from experimental data or physical con-

straints), sampling with PyDREAM, and analysis of inferred kinetic rate distributions. The

process is outlined in Fig. 3.1.

k1

1.2/s

[P]

T

2 µM 1/s

1 2

3

4 5

1. Interaction network

2. Experimental kinetic rates

3. Experimental data

4. Experimental conditions

5. Plausible ranges for kinetic

rates (priors)

3 µM

1/s 10 nM

Inferred kinetic rate distributions

k1

KD1

KD2

PyDREAM

parallel chains

subspace search

multi-try

snooker update

Accept/reject move
based on fit to (3)

Simulate

converged?

[P]

T

Figure 3.1: Schematic representation of PyDREAM workflow. The experimental data,
model setup, prior parameter distribution, and likelihood function are defined as algorith-
mic input (top). This serves as input to the technical heart of PyDREAM (middle) which
uses differential evolution for chain evolution, with a Metropolis selection rule to decide
whether to accept/reject candidate points. These sampled chain trajectories (bottom) are
then returned to the user and used to summarize the marginal posterior parameter distribu-
tions.

18

3.2.4 PyDREAM Validation

To ensure that the version of DREAM encoded in PyDREAM is consistent with orig-

inal version of DREAM in MATLAB, PyDREAM performance for several test cases was

computed and compared to the MATLAB results.

3.2.4.1 10D Bimodal Mixture Model

This test case, originally described in [55], is a ten-dimensional bimodal pdf with modes

centered around -5 and 5, each with a variance of 5. Two thirds of the density is centered

around the latter mode. PyDREAM was run for 50,000 iterations with 3 chains and 5 multi-

try parallel tests, requiring 5 minutes on a six-core CPU. The first 50% of the samples were

removed as burn-in. The sampled distributions for each parameter dimension are shown in

Figure 3.2.

3.2.4.2 200D Multivariate Normal

This test case, described in [48], is a 200-dimensional multivariate normal distribution.

The variance of the jth variable is equal to j, and the pairwise correlations are set to 0.5.

PyDREAM was run for 150,000 iterations with 3 chains and 5 multi-try parallel tests,

requiring 50 minutes on a six-core CPU. The first 50% of the samples were removed as

burn-in. The sampled distributions for 10 representative dimensions are shown in Figure

3.3.

3.3 Calibration of CORM with PyDREAM

As mentioned in Section 2.1, the development of CORM was motivated by the observa-

tion that COX-2 in the presence of two of its substrates, AA and 2-AG, displays kinetics that

cannot be explained by commonly used models of inhibition and competition [57] based on

Michaelis-Menten assumptions [58]. It was hypothesized that in order to accurately predict

experimentally observed COX-2 product (PG and PGG) kinetics when both substrates were

19

Figure 3.2: PyDREAM samples for a 10D bimodal test case. Each subfigure depicts a pa-
rameter dimension. Samples drawn using PyDREAM are shaded while the true distribution
is indicated by a black line. Sampled values are in arbitrary units.

20

Figure 3.3: PyDREAM samples for a 200D multivariate normal test case. Each subfigure
depicts one of ten representative parameter dimensions. Samples drawn using PyDREAM
are shaded while the true distribution is indicated by a black line. Sampled values are in
arbitrary units.

21

present, all possible interactions between both substrates and the enzyme at both catalytic

and allosteric sites should be considered. It was further hypothesized that the reason for the

observed kinetics was a difference in catalytic rates induced by allosteric interactions. Cre-

ating a computational model of COX-2, AA, and 2-AG dynamics (CORM) and fitting that

model to available experimental data would provide distributions of kinetic parameters and

make it possible to test whether first, a model including all interactions could accurately re-

produce the experimentally observed dynamics, and second, whether kinetic rates inferred

from the experimental data and model would support the role of allostery in catalysis.

3.3.1 Available Calibration Constraints

3.3.1.1 Experimental Data and Experimentally Measured Kinetic Rates

The available experimental data consisted of 49 measurements at different substrate

concentrations of the products PG and PGG, all measured ten seconds after the mixing of

enzyme and substrate. Each data point was collected in triplicate and reported as a mean

and standard deviation. The experimental data can be found in reference [1], Figure 3. Six

experimentally measured catalytic rates and disassociation constants were available from

our collaborators. These are marked in red in Table 2.2.

3.3.1.2 Thermodynamic Constraints

When a kinetic scheme contains cycles with identical beginning and ending species,

at equilibrium the net flux through the cycle vanishes. This constrains the product of the

equilibrium constants for the reactions in the cycle to be equal to one. Alternatively, one

may view the cycle as energy conserving (no net change in free energy). Within the spec-

ified interaction network, there are four such thermodynamic cycles, within which relative

parameter values must be consistent with energy conservation. These cycles are shown in

Figure 3.4.

22

1

COX-2
AA

COX-2
AA AA

COX-2
AA

COX-2 COX-2
2-AG

COX-2
AA

COX-2
AA

COX-2

2-AG

2

COX-2
AA

COX-2
2-AG AA

COX-2
2-AG

COX-2

3

COX-2
2-AG

COX-2COX-2

COX-2

2-AG2-AG2-AG

4

Figure 3.4: Thermodynamic Cycles in CORM

23

3.3.1.3 Kinetic Parameter Prior Distributions

Broad (spanning multiple orders of magnitude), normal prior distributions were speci-

fied for all parameters to be fitted. These were selected based on expert biological knowl-

edge provided by collaborators. Disassociation constants were used rather than forward

and reverse rates; the forward rates were assumed to be diffusion limited and the reverse

rates were varied to give a particular KD. Prior distributions for all parameters are shown

in Figure 3.5.

24

Figure 3.5: Prior Distributions for Fitted Parameters

3.3.2 Calibration Results

PyDREAM was initialized with five chains in random locations in parameter space

drawn from prior parameter probability distributions. Sampling was performed for 2.5

million iterations; 100,000 samples were discarded as burn-in, and sample matrixes were

thinned by a factor of 10. All chains converged to a limiting distribution as assessed by

both the Geweke score [59] and Gelman Rubin convergence criterion [60]. After calibra-

25

tion, simulation at any vector in the ensemble of parameter sets produced results within

experimental data error; representative simulation results generated using the most proba-

ble parameter vector from the ensemble overlaid with experimental data points are shown

in Figure 3.6.

Figure 3.6: Simulated model PG and PGG values generated using the most probable pa-
rameter vector obtained during calibration at several concentrations of AA and 2-AG. Ex-
perimental data is shown in black and simulated results in red.

Parameter distributions from the calibrated parameter ensemble for each of the twelve

fitted kinetic rates in CORM are shown in Figure 3.7.

26

Figure 3.7: Distributions of parameter values for each fitted kinetic rate in CORM.

27

3.3.3 Insights into COX-2 Catalysis

CORM was designed to address two biological questions related to COX-2 catalysis.

The first question was whether a model including all interactions at both catalytic and

allosteric sites would be able to capture the nonlinear dynamics present in the experimental

data. This did occur, as is evident by the close fit of simulations to data in Figure 3.6. The

second question was whether the calibrated kinetic rates from CORM would support the

importance of allostery in the system dynamics. The calibrated rates suggest that allostery

does measurably impact the catalytic rates in the system, altering the system dynamics. The

allosteric effects on catalysis vary depending on the substrate and allosteric regulator. As

shown in Figures 3.8 and 3.9, the distributions of the catalytic rates for AA turnover when

either 2-AG or AA is bound in the allosteric site indicate that binding of the allosteric

modulator most likely increases the catalytic rate (as the bulk of the probability density lies

to the right of the experimentally measured allosterically unbound enzyme indicated by the

red line.

Figure 3.8: Distribution of catalytic rate (in s-1) when AA is bound in both the catalytic site
and allosteric site of COX-2. The experimentally measured catalytic rate for the enzyme in
the absence of any allosteric modulator is indicated by the red line.

28

Figure 3.9: Distribution of catalytic rate (in s-1) when AA is bound in the catalytic site and
2-AG in the allosteric site of COX-2. The experimentally measured catalytic rate for the
enzyme in the absence of any allosteric modulator is indicated by the red line.

When 2-AG is in the catalytic site, however, binding of AA in the allosteric site most

likely decreases the turnover rate for 2-AG, as indicated by the majority of the probability

density present to the left of the allosterically unbound enzyme in Figure 3.10.

Figure 3.10: Distribution of catalytic rate (in s-1) when 2-AG is bound in the catalytic site
and AA in the allosteric site of COX-2. The experimentally measured catalytic rate for the
enzyme in the absence of any allosteric modulator is indicated by the red line.

29

3.4 Calibrating a Larger Model with PyDREAM

After the successful calibration of CORM with PyDREAM, calibration of a larger

model was initiated. While CORM has only twelve free rate parameters, models with

many more free parameters occur in systems biology research [5, 18], and are generally

far more challenging to calibrate to experimental data. The Extrinsic Apoptosis Reaction

Model (EARM) was chosen as a test model because it had previously been calibrated and

a set of parameter values with good fit to experimental data already identified, but further

calibration to identify the uncertainty in these parameter values would be valuable. EARM

contains 105 free rate parameters. The experimental data available for calibration of EARM

is quantitatively different than that available for CORM calibration. While CORM calibra-

tion data consists of two outputs measured at a single time point across a range of different

initial conditions, EARM experimental data consists of time courses for three outputs under

a single initial condition.

Initial attempted calibration attempts for EARM with PyDREAM used a set of uni-

form priors that were chosen based on physiological constraints to particular types of rate

constants, as defined in Table 3.1. A variety of different algorithmic settings (including Py-

DREAM chain numbers of 3, 5, and 12, the use of multi-try updates and snooker updates,

and selection of start points with good fit to experimental data rather than random start

points) were tested repeatedly to assess whether convergence of parameters was occurring.

Rate Constant Type Lower Bound Upper Bound

Forward association rate (k f) 10−4/(M ∗ s) 106/(M ∗ s)

Equilibrium dissociation constant (KD) 10−12 M 10−3 M

Catalytic constant (kcat) 10−2 103

Table 3.1: EARM Rate Constant Constraints

Unfortunately, inferring calibrated parameter distributions for EARM using only the

generic physiologically relevant priors listed above was not successful; different chains did

30

not converge to the same distribution visually (see Fig. 3.11 for an example).

Figure 3.11: Uncoverged distributions of MCMC draws for a single parameter in the
EARM model. Different colors indicate different chains run in parallel, which should re-
flect similar distributions for convergence.

As a way to provide further constraints to the parameters in the system and hopefully

achieve convergence, two methods were applied. First, experimental parameter rates from

the literature were located when possible (see Table 3.2 for experimentally measured pa-

rameter values and their literature source). All reverse rate constants (kr) values present

in the table are actually KD values used as described above. Values in the table are given

in molar units, but for use in EARM all values were scaled by Avogadro’s number and a

cellular volume of 1.661 pL (chosen to match median experimental measurements of HeLa

cell cytoplasmic volumes [61]). Parameters for kinetic rates operating in the mitochondrial

membrane were set to 7% of the cytoplasmic volume.

As a second source of constraints, certain kf values for which structures were available

were inferred using the program TransComp [62]. Complex association rates may be lim-

ited by either diffusion or conformational change. In addition, diffusion limited complex

formation when strong electrostatic attraction between the two subunits is present may in-

crease the association rate beyond that dictated by diffusion alone. Predictions generated

by TransComp are generated based on transient-complex theory. The transient-complex

31

represents the boundary between the unbound and bound states for a given complex of

two proteins when the reaction is diffusion-limited (accounting for electrostatic interac-

tion). In the unbound state, the two subunits in the complex have complete rotational and

translational freedom, but few specific inter-subunit short-range interactions. In the bound

state, the opposite is true; the subunits are translationally and rotationally constrained, but

there are many specific inter-subunit short-range interactions. Forward association rates for

diffusion-limited complex formation (with accompanying electrostatic interactions) were

predicted well by the following equation:

ka = ka0 exp(
−∆G∗el

kBT
) (3.2)

where ka0 is the basal association rate by diffusion alone, and the Boltzmann factor reflects

the contribution to association from electrostatic interactions [63]. TransComp takes as

input the structure of the complex and calculates both ka0 and ∆G∗el . EARM association

rate parameters which were predicted using TransComp, the PDB structure used as input,

and the literature reference for the structure are shown in Table 3.3. In cases where multi-

ple structures were available, TransComp was used to predict an association rate for each

structure and the variance in the results was used to set the standard deviation in a normal

prior around the average of all results.

A decision tree summarizing the process for selecting priors during EARM calibration

using the available constraints is shown in Fig. 3.12. The calibration process when includ-

ing these constraints was more successful than without. Multiple parameters converged,

both as measured by the Gelman-Rubin metric and by visual comparison of distributions.

These included parameters that had prior constraints (Fig. 3.13) as well as parameters that

had no experimental or predicted prior constraints available (Figs. 3.14, 3.15, and 3.16).

The latter category included both parameters for which the initial prior was returned after

calibration (Fig. 3.14), indicating the available calibration data provided no information

32

about the marginal distribution of the parameter, as well as parameters for which the avail-

able calibration data did further constrain the parameter posteriors (Figs. 3.15 and 3.16).

Unfortunately, while including the constraints did allow some parameters to converge, there

were still parameters that failed to converge after millions of iterations, and traceplots for

these parameters showed evidence of poor mixing (Fig. 3.17). At this juncture resources

were redirected to focus on further exploration of the COX-2 system, which was hoped to

be more fruitful.

33

Parameter Name (as used in EARM) Value Reference

bind L R to LR kr 10 M [64]

catalyze ApopC3pro to Apop C3A kc .1 s−1 [65, 66]

bind Apop XIAP kr 11 nM [67, 68]

bind SmacA XIAP kr 1 µM [69]

catalyze C8AC3pro to C8A C3A kc .37 s−1 [65]

bind XIAP C3A to XIAPC3A kf 2.5 µM [70]

bind XIAP C3A to XIAPC3A kr .5 nM [71, 72, 73, 74]

catalyze C3APARPU to C3A PARPC kc 1 s−1 [65, 75]

catalyze C3AC6pro to C3A C6A kc 9.1 s−1 [65]

equilibrate BidT to BidM kr 100 µM [76, 77]

equilibrate BaxC to BaxM kr 50 nM [78]

equilibrate BclxLC to BclxLM kr 50 nM [78]

bind BidM BaxC to BidMBaxC kr 600 nM [79]

bind BidM BakM to BidMBakM kr 5 mM [80]

bind BidM Bcl2M kr 100 nM [81, 82, 83]

bind BidM BclxLM kr 200 nM [79, 81, 82, 84, 85]

bind BidM Mcl1M kr 1 nM [81]

bind BaxA Bcl2 kr 100 nM [82, 86]

bind BaxA BclxLM kr 150 nM [82, 86]

bind BaxA Mcl1 kr 39.5 nM [82]

bind BakA Bcl2 kr 95 nM [82, 86]

bind BakA BclxLM kr 15 nM [82, 86]

bind BakA Mcl1M kr 10 nM [82, 86]

bind BadM Bcl2 kr 14 nM [81, 82]

bind BadM BclxLM kr 10 nM [79, 81, 82, 85, 87, 88]

bind NoxaM Mcl1M kr 24 nM [81, 82]

Table 3.2: Experimentally Measured Parameters from Literature Used for EARM Calibra-
tion 34

Parameter Name (as used in EARM) Predicted Value PDB ID Reference

bind L R to LR kf 1 x 104 1D4V, 1D0G, 1DU3 [89, 90, 91]

convert ApafA C9 to Apop kf 34.9 4RHW [92]

bind Apop XIAP kf 2.52 x 103 1NW9 [93]

bind SmacA XIAP kf 8.17 x 105 1G73 [94]

bind BidM BaxM to BidMBaxM kf 1.75 x 104 4ZIG, 4BD2 [95, 96]

bind BidM BakM to BidMBakM kf 7.31 x 105 2M5B [80]

bind BidM BclxLM kf 2.37 x 104 4QVE [97]

bind BidM Mcl1M kf 1.58 x 104 2KBW [98]

bind BaxA Bcl2 kf 5.44 x 103 2XA0 [82]

bind BaxA Mcl1 kf 1.63 x 104 3PK1 [99]

bind BakA BclxLM kf 1.1 x 105 1BXL, 2LP8 [100, 101]

bind NoxaM Mcl1M kf 2.31 x 105 2ROD, 2JM6 [102, 103]

Table 3.3: Association Rate Parameters Predicted with TransComp and Used for EARM
Calibration. All units are M−1 s−1.

Figure 3.12: The process used for selecting parameter priors for EARM calibration, using
either experimental data or computational prediction.

35

Figure 3.13: Converged (by Gelman-Rubin metric) distributions of MCMC draws for a
single parameter in the EARM model. Parameter values are log transformed. The normal
prior used was derived from experimental measurements in the literature. Different colors
indicate different chains run in parallel, which should reflect similar distributions after
convergence.

Figure 3.14: Converged (by Gelman-Rubin metric) distributions of MCMC draws for a sin-
gle parameter in the EARM model. Parameter values are log transformed. The calibrated
parameter values are unchanged from the uniform prior. Different colors indicate different
chains run in parallel, which should reflect similar distributions after convergence.

36

Figure 3.15: Converged (by Gelman-Rubin metric) distributions of MCMC draws for a
single parameter in the EARM model. Parameter values are log transformed. The original
parameter prior was uniform across the range of values. Different colors indicate different
chains run in parallel, which should reflect similar distributions after convergence.

Figure 3.16: Converged (by Gelman-Rubin metric) distributions of MCMC draws for a
single parameter in the EARM model. Parameter values are log transformed. The original
parameter prior was uniform across the range of values. Different colors indicate different
chains run in parallel, which should reflect similar distributions after convergence.

37

Figure 3.17: Unconverged (by Gelman-Rubin metric) distribution of MCMC draws for a
single parameter in the EARM model (bottom) and the corresponding traceplot for that
parameter and other parameters, some of which had reached convergence (top). Parameter
values are log transformed. The original parameter prior was uniform across the range
of values. Different colors indicate different chains run in parallel, which should reflect
similar distributions after convergence.

38

Chapter 4

Advances in Model Flux Analysis

4.1 Specific Advances and Problems Solved

After publication of the work described in Sections 2.1 and 3.3, knowledge of COX-2

catalytic function in the presence of allosteric regulators was significantly increased. Com-

putational modeling and rigorous model calibration provided the information that, for the

two allosteric modulators examined, both positive and negative allosteric regulation of

catalysis can occur, depending on the substrate in question. However, this analysis did

not address the degree to which the system actually utilizes different catalytic complexes,

and whether that degree of utilization depends on levels of key nodes within the network.

A method to analyze the amount of chemical reaction flux through different paths within

the network would be valuable for the COX-2 system, in which multiple complexes (con-

taining combinations of different allosteric regulators and substrates) could theoretically

produce product. It would also be applicable to any system in which multiple paths lead

from system inputs to system outputs; given the combinatorial complexity present in many

biochemical networks, a large number of applications in other biological systems would

be expected. As one example, the extrinsic apoptosis model described previously, EARM,

includes apoptosis induction through mitochondrial membrane pore formation by two dif-

ferent proteins, Bax and Bak [5, 12]. Application of such a tool could untangle the degree

to which the death signal proceeds through pore formation using each protein, and whether

this varies with the levels of network components, intrinsic noise, or other system features.

Such an analysis technique was not found in the literature. Flux balance analysis (per-

haps the most common form of flux analysis in a network), is performed on a system at

steady-state to calculate the possible combinations of fluxes into and out of a system that

will conserve mass at steady-state [25, 104, 105]; for example, if a network consists of a

39

single input node that is then processed by either of two downstream output branches to

produce two outputs, the system has two possible outcomes at steady-state for every single

molecule of input (assuming each branch consumes only a single input molecule): produc-

tion of a single molecule of product one via path one, or production of a single molecule of

product two via path two, and any linear combination thereof with increasing amounts of

input. This process does not require kinetic rate information and is time independent; while

these features make it more easily applicable, they also limit the insights derived to general

rather than specific. Flux balance analysis enumerates the possible flux states the system

could possibly access, but not the actual chemical traffic passing through the network with

its unique kinetic constraints.

Because this level of detailed kinetic information was available for the COX-2 network,

a different technique was needed. To this end, a method was developed to calculate network

pathway flux, the chemical reaction flux through a given pathway in a network, given kinetic

constraints, initial conditions, and, if desired, stochasticity. The method combines a graph

theoretical analysis of the network to find paths between nodes with a modified PySB [12]

integrator that returns integrated individual chemical reaction fluxes. A description of the

method, its application to the CORM, and the insights derived from the analysis follows.

4.2 Calculating Network Pathway Flux

In this approach, a node edge graph is constructed in which each node is a set of re-

actants or products, and each edge represents a reaction connecting a reactant-product set.

The edges are directed with the direction dictated by the net integrated reaction flux (f luxk f

- f luxkr) at a given time; these edges are therefore time dependent given the time depen-

dence of the net reaction flux. We then determine all simple paths (paths with no repeating

reactant-product nodes) connecting initial reactants (COX-2 + AA or COX-2 + 2-AG in

the case of CORM) to final products (PG and PGG for CORM) via the net integrated flux

directed edges, which are returned by the modified PySB [12] integrator. Simple paths are

40

determined using the Python package networkx [106]. The overall process is outlined

in Fig. 4.1. The relationship between paths then allows calculation of the proportion of

flux each path contributes to the final product as the joint probability of all reactions that

constitute that path (see Fig. 4.2 for an example).

Figure 4.1: An overview of the method for calculating network pathway flux using a graph
theoretic analysis to determine network paths and an integrator to return the integrated flux
through specific chemical reactions.

41

Figure 4.2: Calculating paths between reactants and products. Edges are directed towards
the flow of the net integrated reaction flux (for bidirectional reactions) or the integrated
forward reaction flux (for unidirectional reactions). Edge labels indicate the probability of
selecting that reaction path into a node, calculated as the proportion of total flux leaving
the node that came from a given reaction.

42

4.3 Applying Pathway Flux Analysis to CORM

All pathway fluxes were calculated for the first ten seconds of CORM catalysis after

mixture with the substrates, a time chosen to match previous experimental work [1]. Path

flux distributions were calculated for an ensemble of calibrated parameter values to quantify

path flux uncertainty arising from parameter uncertainty. Path fluxes were also calculated

over a range of initial substrate conditions, again chosen to match previous experimental

work [1].

Our analysis indicates that there are six possible paths to produce PG (Fig. 4.3) and four

possible paths to produce PG-G (Fig. 4.4) for all evaluated substrate concentration com-

binations. However, not all paths exhibit significant reaction flux during catalysis across

all the concentrations. This occurs because paths in which binding of a species to the al-

losteric site precedes binding to the catalytic site are kinetically disfavored in CORM. As

shown in Figs. 4.5 and 4.6, three paths dominate PG production and two paths dominate

PG-G production. The dominant PG-producing paths (Fig. 4.5) include those with one or

two intermediates, and the allosteric site empty or occupied by AA or 2-AG. Our results

show that the dominant path is highly dependent on the substrate input concentrations (Fig.

4.7A). The presence of AA and 2-AG in the allosteric site enhances the production of PG

[1]. The dominant PG-G-producing paths include one or two intermediates (Fig. 4.6) with

the allosteric site empty or occupied by AA. The presence of AA in this site reduces the rate

of PG-G production [1]. Similar to PG production, we also found that the flux through each

dominant path for PG-G production is dependent on substrate concentration (Fig. 4.7B).

43

Figure 4.3: Possible paths between COX-2 and PG in CORM.

Figure 4.4: Possible paths from COX-2 to PGG in CORM.

44

Figure 4.5: Dominant PG Production Paths in CORM. Colors correspond to path fluxes
in Fig. 4.7A. (D) Dominant PG-G Production Paths in CORM. Colors correspond to path
fluxes in Fig. 4.7B.

Figure 4.6: Dominant PG-G Production Paths in CORM. Colors correspond to path fluxes
in Fig. 4.7B.

45

In the absence of 2-AG and at low (0.5 µM) AA, PG is produced without allosteric

modulation (Fig. 4.7A, purple; purple-labeled path in Figure 4.5, top); as the concentration

of AA increases, the proportion of PG produced with AA as an allosteric modulator also

increases (Fig. 4.7A, green). When 2-AG is added to the system, PG production shifts to

using 2-AG as an allosteric modulator (Fig. 4.7A, red), with this path favored to a greater

extent as the concentration of 2-AG increases (Fig. 4.7A, lower plots). Even in the absence

of 2-AG, about 20% of PG is produced by AA-modulated COX-2, and once even a small

amount of 2-AG (0.5 µM) is added to the system, more than half of PG production occurs

via a 2-AG or AA allosterically modulated path. In the presence of high concentrations of

either modulator, as much as 90% of PG is produced via an allosterically modulated path.

Because 2-AG and COX-2 display substrate-dependent inhibition [1], the production of

PG-G occurs via fewer paths than are available to PG. In the absence of AA, all PG-G pro-

duced is generated in the absence of an allosteric modulator (Fig. 4.7B, purple), because the

intermediate with 2-AG bound in both catalytic and allosteric sites is not turned over. As

AA is added to the system, the proportion of PG-G produced by the AA-modulated path-

way (Fig. 4.7B, red) increases. Thus, in the range of tested substrate concentrations, the

dominant mechanism of PG-G production depends entirely on the amount of AA present

in the system. Compared to PG, a smaller proportion of PG-G produced by the system

results from an allosterically regulated pathway because PG-G is only created via the AA-

modulated species or the allosterically unbound species. Nevertheless, at high concentra-

tions of AA, again as much as 90% of PG-G is produced by AA-modulated COX-2. For

paths containing a species bound in the allosteric site, binding at the catalytic site followed

by binding at the allosteric site is the favored mechanism.

At any given substrate concentration, the uncertainty arising from the calibrated kinetic

parameter distributions never exceeds a 20% change in the percentage of product produced

by a given path (Figs. 4.8- 4.12). We find that changes in substrate levels and their relative

ratios have a much larger effect on the dominant reaction paths than changes in kinetic

46

rates within the calibrated CORM parameter distributions. Overall, these findings suggest

that variation of substrate concentrations in physiologically-relevant ranges has a signifi-

cant impact on COX-2’s mechanism of catalysis. In the next chapter I introduce a novel

information theory based metric to quantify to what degree COX-2 utilizes the mechanisms

available to it, and how this varies with substrate level.

47

Figure 4.7: Concentration-dependent PG and PG-G production paths. (A) Dominant Reac-
tion paths for PG Production Vary with AA and 2-AG Concentration. Each individual plot
depicts the amount of flux through each path in 2.1C for a given concentration of 2-AG
across varying concentrations of AA. Colors correspond to labeled paths in Fig. 4.5. The
error bars in each plot indicates the flux variation resulting from inferred kinetic rates. (B)
Dominant Mechanisms of PG-G Production Vary with AA Concentration. Each individ-
ual plot is at a given concentration of 2-AG. In all plots AA increases from left to right at
concentrations of 0.5, 1, 2, 4, 8 and 16 µM in A and 0, 0.5, 1, 2, 4, 8, and 16 µM in B.
Colors correspond to labeled paths in Fig. 4.6 The error bars in each plot indicates the flux
variation from inferred kinetic rates.

48

Figure 4.8: Distribution (arising from calibrated parameter uncertainty) of the percentage
of the total flux to product PG from the path COX-2 → COX-2:AA → PG at different
starting AA and 2-AG concentrations.

49

Figure 4.9: Distribution (arising from calibrated parameter uncertainty) of the percentage
of the total flux to product PG from the path COX-2→ COX-2:AA→ 2-AG:COX-2:AA
→ PG at different starting AA and 2-AG concentrations.

50

Figure 4.10: Distribution (arising from calibrated parameter uncertainty) of the percentage
of the total flux to product PG from the path COX-2→ COX-2:AA→ AA:COX-2:AA→
PG at different starting AA and 2-AG concentrations.

51

Figure 4.11: Distribution (arising from calibrated parameter uncertainty) of the percentage
of the total flux to product PGG from the path COX-2→ COX-2:2-AG→ PGG at different
starting AA and 2-AG concentrations.

52

Figure 4.12: Distribution (arising from calibrated parameter uncertainty) of the percentage
of the total flux to product PGG from the path COX-2→ COX-2:2-AG→ AA:COX-2:2-
AG→ PGG at different starting AA and 2-AG concentrations.

53

Chapter 5

An Analysis of Information Transfer in the Multi-Input Multi-Output COX-2 Network

5.1 Motivation

Many biological signaling networks process multiple inputs and yield multiple out-

puts. Examples of multiple-input multiple-output (MIMO) biochemical systems include

the mitogen-activated protein kinase (MAPK) network, which can respond to numerous

ligands and yield a range of outputs including proliferation and differentiation[107]; the

NF-κB pathway, which triggers pro- and anti-inflammatory responses to a variety of lig-

ands [108]; and myriad metabolic networks, which respond to multiple substrates and al-

losteric regulators by producing energy and the building blocks of cellular components

[109]. Recent work [3, 4, 110, 111, 112, 113, 114] has highlighted the fact that modulation

of input concentrations in intracellular networks can yield markedly different outcomes.

Despite this clear indication that MIMO systems are crucial to biological processes, few

reports exist to date to explain how multiple inputs modulate reaction flux and information

flow in a network to allow signal processing with a range of adaptive outputs.

To explore the properties of MIMO systems in biology, we chose to study the dynam-

ics of cyclooxygenase-2 (COX-2), a key enzyme that controls the balance between pro-

and anti-inflammatory signals in mammalian organisms. COX-2 lies at the interface of

the eicosanoid and endocannabinoid signaling pathways [32, 33] and is itself the target of

the widely used nonsteroidal anti-inflammatory drugs (NSAIDs). Although COX-2 is a

structural homodimer, it behaves as a heterodimer. One subunit in the dimer harbors the

catalytically active site, while the other subunit contains an allosteric site that modulates

the overall activity of the enzyme [36, 37, 38]. An array of substrates, inhibitors, and

allosteric modulators can bind to, and thus compete for, either site, giving rise to highly

complex reaction kinetics [39, 40, 1, 41, 42, 43]. The various products from COX-2 ac-

54

tivity drive multiple downstream pro- and anti-inflammatory processes that lead to diverse

cellular fates including stress responses and apoptosis [44, 45, 46].

It is clear that COX-2 orchestrates a complex interplay between a variety of substrates

(the enzyme inputs), various allosteric regulators, and the concentration of downstream

products (the enzyme outputs) that control processes such as inflammation [44, 45, 46].

Previously, most studies of COX-2 function have used simplified models based on Michaelis-

Menten kinetics [115]. Not surprisingly, these approaches have proved insufficient to cap-

ture the rich complexity of the COX-2 network of reactants, intermediates and products [1].

We posit that a systems approach to understand COX-2 mechanism will improve inhibitor

design to achieve desired outcomes in clinical settings.

To explore the COX-2 MIMO signal processing mechanism, we used an information-

theoretic approach [28] to understand the flow of information between network inputs, var-

ious intermediates, and the product outputs. This analysis reveals that competition between

AA and 2-AG for the allosteric and active site generates highly complex concentration-

dependence curves for COX-2 that are context-sensitive. In addition to providing insight

into how COX-2 functions as a hub for the processing of inflammatory signals, our work

suggests that our systems biochemistry framework provides useful information relevant to

the study of other MIMO biological systems. This work also demonstrates that the extreme

context-sensitivity of MIMO systems must be considered when attempting to modulate

their behavior through targeted interventions.

5.2 Pathway Entropy is Dynamic Across Input Concentrations

Calculating the flux through each path (as described in section 4.3) allows us to obtain

information about the preferred sequences of reactions that the system executes while pro-

cessing AA and 2-AG. However, these measurements do not provide an estimate of how

chemical traffic (i.e. the flow of chemical signals in the network) is distributed throughout

the network. To explore the distribution of biochemical network traffic, we introduce the

55

pathway entropy to quantify the degree to which COX-2 utilizes multiple paths at different

concentrations of substrates. Our definition of entropy, originally introduced by Claude

Shannon [28] provides a measure of the uncertainty in a probability distribution across

states as follows:

H =−
n

∑
x=1

P(xi) log2 P(xi) (5.1)

where H is entropy and P(xi) is the probability of any state xi. To determine the degree

of uncertainty associated with product production (the pathway entropy), we considered

each pathway as a state and use the fraction of flux that a given pathway contributes to the

product as a measure for the probability of that state. This analysis yields a measure of how

evenly distributed production is across possible paths. In general, evenly distributed fluxes

across paths in a network would maximize pathway entropy for a multi-path system.

Since the dominant paths vary with substrate concentration (Fig. 4.7), we would ex-

pect that pathway entropy would also vary. In Fig. 5.1 we present the pathway entropy

dependence on input concentration for PG (Fig. 5.1A) and PG-G (Fig. 5.1B). The pathway

entropy for PG production is highest at intermediate levels of AA and low levels of 2-AG,

while the pathway entropy is highest for PG-G production at intermediate levels of AA

and any level of 2-AG. These maxima correspond to states where the reaction flux is most

spread across the possible paths from reactant to product (see Fig. 4.7A, top plot, center,

and Fig. 4.7B, top plot, center). In contrast, in the lowest entropy states - low AA and high

2-AG for PG (Fig. 4.7A, bottom plot, far left) and low AA across the entire 2-AG spectrum

for PG-G (Fig. 4.7B, bottom row), flux is concentrated in a single or a few paths. Reac-

tion flow is thus highly distributed in some conditions yet highly concentrated in one path

in other conditions. This finding suggests that MIMO networks utilize multiple execution

modes across input concentrations. It also suggests that approaches to modulate or inhibit

network activity, which focus on disrupting one or more of these paths, may need to be

tailored to specific conditions. These behaviors could have physiological relevance. For

example, high-entropy conditions with highly redundant path fluxes may require multiple

56

targets for inhibition compared to a condition with low entropy.

Figure 5.1: Pathway entropy within CORM. (A) Pathway Entropy for Production of PG.
The intensity indicates the pathway entropy in units of bits. (B) Pathway Entropy for Pro-
duction of PG-G. Units are the same as in A.

57

5.3 Input Output Behavior in CORM

The above findings on pathway entropy suggest a complex relationship between in-

put concentrations, reaction intermediates, and product concentration in CORM. To un-

derstand these relationships, we next considered concentration-dependence curves derived

from simulations using a fixed set of CORM kinetic parameters in which PG was calcu-

lated at increasing AA concentrations in the presence of random quantities of 2-AG (Fig.

5.2A) or PG-G was calculated at increasing 2-AG concentrations in the presence of random

quantities of AA (Fig. 5.2B). Each data point was taken at steady-state (10 seconds) for

consistency with experiments and previous work. Note that the presence of both substrates

results in competitive inhibition with suppression of product formation from either one.

Thus, the highest levels of output in each case occur when the concentration of the oppos-

ing substrate is low. These levels are similar for PG and PG-G because COX-2 utilizes

the two substrates with similar catalytic efficiencies when they are present individually.

As the concentration of the opposing substrate increases, competitive inhibition is partially

balanced by positive allosteric modulation in the case of the conversion of AA to PG, but

exacerbated by negative allosteric modulation in the case of the conversion of 2-AG to PG-

G. Therefore, the suppression of PG-G formation is greater than that of AA formation as

seen in the lower plateau level achieved in (Fig. 5.2B). In addition, the range of inputs over

which the output varies depends significantly on which input/output pair is chosen (note the

difference in that range in Fig. 5.2A,B). Clearly, variation of both inputs (e.g. changing AA

in addition to changing 2-AG in Fig. 5.2A), results in significant variation in the outputs.

Thus, while our simulations are deterministic, introducing uncertainty in the AA concen-

tration generates a type of “extrinsic noise” in the relationship between 2-AG and PG-G

(Fig. 5.2B), and vice versa for the impact of 2-AG on the relationship between AA and PG,

Fig. 5.2A). This noise represents allosteric modulation in the network due to varying input

concentrations.

58

Figure 5.2: Input vs output plots for substrates and products in CORM. (A) Input vs Output
plots for AA to PG. 2-AG varies randomly. All concentrations are measured at steady-
state (10 seconds). (B) Input vs Output plots for 2-AG to PG-G. AA varies randomly. All
concentrations are measured at steady-state (10 seconds).

5.4 Channel Capacity from Substrates to Products

To better understand how this output variation, combined with the shape of the concentration-

dependence curves, influences the COX-2 reaction network, we applied an additional con-

cept from information theory to measure dependence between inputs and outputs, namely

59

the Mutual Information:

I(X ;Y) = ∑
X

∑
Y

P(x,y) log2
P(x,y)

P(x)P(y)
(5.2)

where X represents a given signal and Y the response to that signal [28]. Mutual infor-

mation quantifies the degree to which one variable provides information about a second

variable. Equivalently, it is a measure of how knowledge about one variable decreases

uncertainty in the value of a second variable. For biological systems, quantifying mutual

information is challenging because the input distribution is generally unknown. Previous

work [29, 30, 31] has focused on estimating the “channel capacity,” which is the maximum

information attainable across all possible input distributions:

C = suppx(x)I(X : Y) (5.3)

Note that any practical calculation provides a lower bound estimate for the channel capacity

C, since only a finite set of input distributions is used to estimate I [31]. We calculated

channel capacities using the approach and software published in Suderman et al. [31],

which is similar to that used in Cheong et al. [29].

We applied this estimate to two different sets of simulations. In the first set of simula-

tions, we considered a case where AA and 2-AG are perfectly correlated with each other;

to do this, we sampled the AA concentration from a uniform distribution on [0,16 µM] and

set the 2-AG concentration to be exactly the same. In the second set, we independently

sampled the input AA and 2-AG substrate concentrations from a uniform distribution on

the interval [0,16 µM]. In each case, we sampled a total of 500 distinct input conditions

and ran CORM simulations to 10s to agree with experiments and previous work [1]. The

channel capacity was then estimated between the two different inputs (either AA or 2-AG)

and every possible intermediate and product. The maximum theoretical channel capacity,

log2(500)≈ 9 bits, would be obtained if each of the 500 inputs yielded a distinct response.

60

We repeated the channel capacity calculation for the top 5000 most probable parameter

vectors from the calibrated parameter ensemble. This then allowed us to quantify the effect

of kinetic parameter variation on channel capacities in the system. In total the analysis

required approximately 1.5M CPU hours. An example of input data used for calculating

channel capacities from AA to PG and 2-AG to PG-G for a single parameter set is shown

in Fig. 5.2. Greater detail regarding the high performance computing methods used is

provided in Chapter ??.

61

Figure 5.3: Estimated channel capacities from substrates to intermediates or products in
CORM. (A) Estimated Channel Capacities from Input to intermediates and final products
within CORM when levels of AA and 2-AG are strongly correlated (Pearson correlation
coefficient = 1). Distributions in the channel capacities arise from uncertainty in the kinetic
parameter values after model calibration.(B) Estimated Channel Capacities from AA to in-
termediates and final products within CORM when AA and 2-AG are varied independently.
Distributions in the channel capacities arise from uncertainty in the kinetic parameter val-
ues after model calibration.(C) Estimated Channel Capacities from 2-AG to intermediates
and final products within CORM when AA and 2-AG are varied independently. Distribu-
tions in the channel capacities arise from uncertainty in the kinetic parameter values after
model calibration. 62

5.5 COX-2 Integrates Information from Both AA and 2-AG

For ease of visualization, we estimated kernel densities of channel capacities given vari-

ation in calibrated kinetic parameters as shown in the violin plots in Fig. 5.3. In these plots,

the data are represented by a central box plot that provides the mean, interquartile range

and 95% credible interval, and the surrounding shape depicts the probability distribution,

with wider regions indicating a higher probability. Because the input-output relationship in

these simulations is deterministic, deviations from the theoretical maximum (≈9 bits) arise

from the two phenomena described above: either changes in the input do not really lead to

significant changes in the output (i.e. the “flat” part of the concentration-dependence curves

in Fig. 5.2) or the independent variation in one of the substrates generates variation in the

output that is not due to the input being considered (i.e. the apparent noise in Fig. 5.2).

From Fig. 5.3, it is clear that the combination of these effects significantly reduces the

observed channel capacities from the theoretical maximum. The highest observed value

for any of the input/output pairs (AA to PG, 2-AG to PG-G, etc.) is at most half of the

theoretical maximum (less than 4.5 bits). When input values are perfectly correlated ([AA]

= [2-AG]), Fig. 5.3A, the channel capacity between the (correlated) inputs and the outputs is

between 3 and 4.5 bits (depending on the parameters), indicating that, while not perfect, the

concentration-dependence curves allow for high levels of information flow between inputs

and outputs. It is interesting to note that the uncertainty in the kinetic parameters leads to

some variation in the calculated channel capacities; since the inputs here are correlated, this

variation is due to changes in the shape of the concentration-dependence curves between

data sets. Many channel capacities in the correlated case are bimodal, suggesting that two

specific concentration-dependent curve shapes are most likely.

When the inputs are varied independently, channel capacity values decrease even fur-

ther (Fig. 5.3B and C). The channel capacity between AA and PG or PG-G is generally less

than 2 bits, and the channel capacity between 2-AG and those outputs is generally less than

1.5 bits. This could occur for two reasons. First, a lack of correlation could result in less

63

Figure 5.4: Distributions of response entropy under different input correlation and sig-
nal/response pairs. While the response entropy spans a similar range with both independent
and correlated inputs, the transfer efficiency increases with correlation.

entropy in the response (i.e. less uncertainty in the value of the product). Since the mutual

information is limited by the response entropy (eq. 5.2, [28, 29, 31]), this would cause

a decrease in the mutual information. However, if the response entropy remains constant

when there is no correlation between inputs, then mutual information can only decrease

if information transfer through the network is less efficient. As shown in Fig. 5.4, the

response entropy does not differ between the independent and correlated cases, indicating

that independent variation in one of the inputs while the other input is known has a large

effect on the output. In other words, COX-2 is truly an integrator of these signals, since ac-

curate determination of the substrate concentrations given the output is considerably more

difficult if the two substrates are independently varied.

Since perfect correlation and complete independence represent only the two extremes

of the relationship between AA and 2-AG concentration, we also investigated the behavior

of the system when the inputs exhibit moderate correlation (Pearson correlation coefficient

64

Figure 5.5: Sum of channel capacity from AA and 2-AG to intermediates and final outputs
when inputs are semi-correlated (Pearson correlation coefficient = .5). Distributions arise
from uncertainty in calibrated parameter values.

= 0.5), and when the inputs are consistently present in a 2-to-1 AA-to-2-AG ratio (Fig.

5.5 and Fig. 5.6). The behavior when input ratios were fixed was similar to that for the

correlated values (when the input levels were fixed equal to each other); channel capacities

were again higher than in the independent case and the effect of kinetic parameter variation

on channel capacity was higher. When the inputs are moderately correlated, the system is

still able to obtain high channel capacities for some kinetic parameter sets, although the

overall distribution of channel capacities shifts to lower values compared to when input

correlation is perfect, further confirming COX-2 input integration.

65

Figure 5.6: Channel capacity from AA and 2-AG to intermediates and final outputs when
inputs are present in a 2 to 1 AA to 2-AG ratio. Distributions arise from uncertainty in
calibrated parameter values.

66

5.6 Information Flow is Dictated by Substrate Concentration

We next tested whether the channel capacity between substrates and products varies

with substrate level. We binned the input data into four quadrants (high or low values

of either substrate) and calculated the channel capacity between inputs and outputs inde-

pendently for each quadrant; input ranges were otherwise identical to those used for the

calculations described above. Low substrate values spanned 0-8 µM and high substrate

values 8-16µM.

Both independently varied inputs (Fig. 5.7A) and correlated inputs (Fig. 5.7B) yielded

estimated channel capacities that were significantly different between the different regions

of input space. In addition to differences in PG and PG-G channel capacity, we found that

the distribution of information that passed through different intermediates changed with

substrate concentration (Fig. 5.8 and Fig. 5.9); certain paths to product had greater in-

formation transfer capacity at particular levels of substrates. This echoes findings from

our pathway analysis (Figs. 4.7 and 5.1), indicating that changes in substrate concentration

result in significant changes in how the enzyme executes its catalytic mechanism. Inter-

estingly, we found no detectable correlation between the flux through a pathway and the

mutual information between an input and an intermediate in that path (Fig. 5.10 and Fig.

5.11). We leave further investigation of the relationship between information transfer and

actual physical reaction fluxes for future work.

Splitting the input space into different quadrants also revealed signficant variation be-

tween different parameter sets, with most distributions showing significant bimodality across

parameters (Fig. 5.7). This suggests that both the shape of the concentration-dependence

curves, and the impact of “extrinsic noise” due to variation of one substrate independent of

another, varies across parameter sets. Since all of these parameter sets are equally consis-

tent with experimental data [1], this suggests that multiple modes of information flow are

available to the COX-2 reaction network without significant changes to the core function-

ality of the enzyme.

67

Figure 5.7: Effect of substrate level on estimated channel capacities between substrates and
products in CORM. (A) Total Estimated Channel Capacity from AA and 2-AG combined
to products across regions of substrate space. Distributions in the channel capacities arise
from uncertainty in the kinetic parameter values after model calibration. (B) Estimated
Channel Capacities from input to products when levels of AA and 2-AG are perfectly cor-
related across regions of substrate space. Distributions in the channel capacities arise from
uncertainty in the kinetic parameter values after model calibration.

68

Figure 5.8: Sum of channel capacity from AA and 2-AG to intermediates when inputs
are varied independently in different regions of substrate space. Distributions arise from
uncertainty in calibrated parameter values.

69

Figure 5.9: Channel capacity from AA and 2-AG to intermediates when inputs are var-
ied correlated (Pearson correlation coefficient = 1) in different regions of substrate space.
Distributions arise from uncertainty in calibrated parameter values.

Figure 5.10: Left: channel capacity between independent inputs and PG intermediates at
different substrate levels. Right: absolute flux between independent inputs and PG inter-
mediates at different substrate levels.

70

Figure 5.11: Left: channel capacity between independent inputs and PGG intermediates
at different substrate levels. Right: absolute flux between independent inputs and PGG
intermediates at different substrate levels.

71

Chapter 6

Perturbing the COX-2 Network: A Sensitivity Analysis of CORM

6.1 Motivation

The analyses in the preceding chapters are largely concerned either with model con-

struction and calibration to experimental data, or with understanding how the system itself

functions (e.g. the pathway and information theoretical analyses). In many cases, how-

ever, the ultimate goal of modeling and analyzing a biological system is to predict how

best to change some output of interest in that system. For the COX-2 network previously

discussed, modifying the final system outputs (prostaglandins and prostaglandin glycerols)

would be the most obvious means to change the inflammatory phenotype tied to those

products, and a greater understanding of the effect of different perturbations on the net-

work could deepen the current understanding of why different nSAIDs do (or do not) affect

inflammation in vivo.

Sensitivity analysis, discussed briefly in the introduction, is designed specifically to ad-

dress the question of how a given output changes in response to variation in other model

variables. For a model like CORM, in which there is some level of uncertainty in actual

system input variables (uncertainty that has been quantified by the calibration methods

used), global sensitivity analysis to assess the sensitivity of a given output across the entire

range of plausible input values are preferable to local sensitivity analysis methods that re-

strict analysis to individual locations in input space. The specific global sensitivity analysis

method used to assess sensitivities in CORM, Random Sampling High Dimensional Model

Representation (RS-HDMR) is briefly introduced in the next section.

72

6.2 Introduction to Sensitivity Analysis with RS-HDMR

Random Sampling High Dimensional Model Representation (RS-HDMR) [116, 117,

118] is a global sensitivity analysis method suitable for discerning the fraction of output

variation that can be tied to a specific input (or combination of inputs). Crucially, RS-

HDMR can be applied to to models in which input variables are correlated, a challenging

regime for many other methods [119].

As a variance-based sensitivity analysis method, RS-HDMR quantifies the sensitivity

index of an output Y to a particular input Xi as a reduction in the variance of Y:

Si =
Vi

V (Y)
=

Var(E(Y |Xi))

Var(Y)
(6.1)

In addition, higher order interaction indices may be calculated to assess the sensitivity

of an output to simultaneous variation in multiple inputs. For example, the second order

interaction indices may be calculated as follows:

Si j =
Vi j

V (Y)
=

Var(E(Y |Xi,X j))−Vi−Vj

Var(Y)
(6.2)

Just as the variance in Y may be decomposed, Y itself (f(x)) may also be decomposed

in a similar manner:

f (x) = f0 +
n

∑
i=1

fi(xi)+ ∑
1≤i< j≤n

fi j(xi,x j)+ · · ·+ f1,2···n(x1, · · · ,xn) = f0 +
2n−1

∑
j=1

fp j(xp j)

(6.3)

When the inputs are independent, the component functions are mutually orthogonal,

and the decomposition is unique. When this is the case, the function decomposition can be

related to a parallel decomposition of the unconditional variance in Y:

73

V (Y) =
n

∑
i=1

Vi + ∑
1≤i< j≤n

Vi j + · · ·+V1,2···n =
2n−1

∑
j=1

Vp j (6.4)

When the inputs are not independent, the unconditional variance in Y can instead be

decomposed into the sum of the covariances Cov(fp j ,Y) and the averaged square error ε2:

V (Y) =
np

∑
j=1

Cov(fp j ,Y)+(ε,ε) =
np

∑
j=1

[Var(Y)+Cov(fp j ,
np

∑
k=1,k 6= j

fpk)]+ ε
2 (6.5)

Each covariance term Cov(fp j ,Y) is composed of a structural piece, Var(Y), which

is always positive, and a contribution from correlation, Cov(fp j ,
np

∑
k=1,k 6= j

fpk) which may

be either positive or negative. When the inputs are independent, the calculation of V (Y)

simplifies to only include the structural piece, and the previously enumerated sensitivity

indices are sufficient to characterize the sensitivity of this variance to changes in the output.

In cases when the inputs are not independent, the sensitivity indices may be redefined to

separate the contributions from structure and correlation:

Sp j = Sa
p j
+Sb

p j
(6.6)

where

Sa
p j
=Var(fp j)/V (Y) (6.7)

is the structural sensitivity index and

Sb
p j
=

Cov(fp j ,
np

∑
k=1,k 6= j

fpk)

V (Y)
(6.8)

is the correlation sensitivity index.

In contrast to classical sensitivity analysis methods [119] which directly sample inputs

74

and outputs from the original system, RS-HDMR for reasons of efficiency first fits a meta-

model to the input-output data available for a system and then uses this meta-model to

calculate the sensitivity indices.

6.3 Constructing an HDMR Meta Model of CORM

CORM contains eighteen parameters (catalytic rates and equilibrium constants) for

which the effect of a perturbation on outputs of interest may be tested. In addition, the

effect of perturbing substrate levels (AA and 2-AG) was also tested in this analysis. Each

parameter to be tested was assigned an HDMR variable name, listed in Table 6.1. CORM

parameter names are identical to those used in Table 2.2. An svr-based HDMR model

utilizing a radial basis function (rbf) kernel was built to model the relationships between

inputs and outputs in CORM. To measure error between the HDMR model and the orig-

inal model, three measurements were used. The first, the relative absolute average error

(RAAE) is defined as:

RAAE =

1
N

N

∑
s=1
|ŷ(s)i − y(s)i |

σi
(6.9)

where σi is the standard deviation of the N testing or training data y(s)i and ŷ(s)i is the

HDMR approximation of y(s)i . The second measure of error, relative maximum absolute

error (RMAE) is defined as:

RMAE =
maxs |ŷ(s)i − y(s)i |

σi
(6.10)

with variables having identical meanings to those in Equation 6.9. R, the correlation coef-

ficient, defined as:

R = 1−

1
N

N

∑
s=1
|ŷ(s)i − y(s)i |

σi
(6.11)

75

again with identical variables to those used in Equation 6.9, was used as the final measure

of error stemming from the HDMR approximation of the CORM model. Several training

and testing dataset sizes were examined to minimize training time while maximizing pre-

dictive power. Based on this analysis a training set of two thousand CORM simulations at

parameter values randomly drawn from the marginal parameter distributions fitted during

model calibration was chosen. After training a second order HDMR model, performance

was tested on a testing dataset containing two hundred points. Error measurements for

both the training and testing datasets are shown in Figure 6.1. Truth plots (original CORM

simulation values versus values estimated from the HDMR model) are shown in Figure 6.2.

76

CORM Parameter Name HDMR Input Variable

kcat AA2 x1

kcat AA3 x2

KD AG cat3 x3

KD AG cat2 x4

KD AG allo2 x5

KD AG allo1 x6

KD AA allo1 x7

KD AA allo2 x8

KD AA allo3 x9

kcat AG3 x10

KD AA cat3 x11

KD AA cat2 x12

kcat AA1 x13

KD AG cat1 x14

KD AG allo3 x15

kcat AG1 x16

kcat AG2 x17

KD AA cat1 x18

AA 0 x19

AG 0 x20

Table 6.1: CORM HDMR Variable Names

77

Figure 6.1: Prediction accuracy and error for a second order HDMR model of CORM
simulations. In the outputs column, (c) and (a) denote the catalytic and allosteric subunits
of COX-2, and 0 indicates that either site is unbound.

78

Figure 6.2: Original CORM simulation values versus values calculated from a second order
HDMR model trained to the CORM.

79

6.4 HDMR Based Sensitivity Indices for CORM

The HDMR meta-model of CORM was used to calculate first and second order Sa
i (the

structural sensitivity component), Sb
i (the correlation component), and Si (the total sensi-

tivity of an output to an input) for each input and output combination in CORM. Note

that because the input simulations for HDMR training were sampled independently along

marginal parameter distributions determined in CORM calibration, Sb
i serves here as a mea-

sure of error stemming from random correlations present in the non-infinite dataset rather

than a measure of sensitivity resulting from correlations between parameters. Calculated

first order Sa
i indices are shown in Figure 6.3, first order Sb

i indices in Figure 6.4, and first

order Si in Figure 6.5.

PG PGG PG/PGG

[2-AG]

[AA]

AA:KDc1

2-AG:kcat2

2-AG:kcat1

2-AG:KDa3

2-AG:KDc1

AA:kcat1

AA:KDc2

AA:KDc3

2-AG:kcat3

AA:KDa3

AA:KDa2

AA:KDa1

2-AG:KDa1

2-AG:KDa2

2-AG:KDc2

2-AG:KDc3

AA:kcat3

AA:kcat2

0.00

0.08

0.16

0.24

0.32

Figure 6.3: Heatmap of first order Sa
i sensitivity indices calculated for all i parameter in

CORM. Each row represents a model parameter (input) and each column an output (PG,
PGG, or the ratio of the two). Lighter values indicate stronger sensitivity of the output to
variation in an input.

80

PG PGG PG/PGG

[2-AG]

[AA]

AA:KDc1

2-AG:kcat2

2-AG:kcat1

2-AG:KDa3

2-AG:KDc1

AA:kcat1

AA:KDc2

AA:KDc3

2-AG:kcat3

AA:KDa3

AA:KDa2

AA:KDa1

2-AG:KDa1

2-AG:KDa2

2-AG:KDc2

2-AG:KDc3

AA:kcat3

AA:kcat2

0.02

0.01

0.00

0.01

0.02

Figure 6.4: Heatmap of first order Sb
i sensitivity indices calculated for all i parameter in

CORM. Each row represents a model parameter (input) and each column an output (PG,
PGG, or the ratio of the two). Color indicates either positive or negative error in estimates
induced by random correlation in the data.

81

PG PGG PG/PGG

[2-AG]

[AA]

AA:KDc1

2-AG:kcat2

2-AG:kcat1

2-AG:KDa3

2-AG:KDc1

AA:kcat1

AA:KDc2

AA:KDc3

2-AG:kcat3

AA:KDa3

AA:KDa2

AA:KDa1

2-AG:KDa1

2-AG:KDa2

2-AG:KDc2

2-AG:KDc3

AA:kcat3

AA:kcat2

0.00

0.08

0.16

0.24

0.32

Figure 6.5: Heatmap of first order Si sensitivity indices calculated for all i parameter in
CORM. Each row represents a model parameter (input) and each column an output (PG,
PGG, or the ratio of the two). Lighter values indicate stronger sensitivity of the output to
variation in an input.

Estimated second order sensitivity indices for PG are shown in Figure 6.6 (Sa
i), Figure

6.7 (Sb
i), and Figure 6.8 (Si). Second order sensitivity indices for PGG are found in Figure

6.9 (Sa
i), Figure 6.10 (Sb

i), and Figure 6.11 (Si). Second order sensitivity indices for the

ratio of PG to PGG are shown in Figure 6.12 (Sa
i), Figure 6.13 (Sb

i), and Figure 6.14 (Si).

82

A
A

:k
ca

t2

A
A

:k
ca

t3

2-
A

G
:K

D
c3

2-
A

G
:K

D
c2

2-
A

G
:K

D
a2

2-
A

G
:K

D
a1

A
A

:K
D

a1

A
A

:K
D

a2

A
A

:K
D

a3

2-
A

G
:k

ca
t3

A
A

:K
D

c3

A
A

:K
D

c2

A
A

:k
ca

t1

2-
A

G
:K

D
c1

2-
A

G
:K

D
a3

2-
A

G
:k

ca
t1

2-
A

G
:k

ca
t2

A
A

:K
D

c1

[A
A

]

[2
-A

G
]

[2-AG]
[AA]

AA:KDc1
2-AG:kcat2
2-AG:kcat1
2-AG:KDa3
2-AG:KDc1

AA:kcat1
AA:KDc2
AA:KDc3

2-AG:kcat3
AA:KDa3
AA:KDa2
AA:KDa1

2-AG:KDa1
2-AG:KDa2
2-AG:KDc2
2-AG:KDc3

AA:kcat3
AA:kcat2

0.000

0.008

0.016

0.024

0.032

0.040

Figure 6.6: Heatmap of Sa
i sensitivity indices calculated for all i, j parameters in CORM.

Each cell represents the sensitivity of PGs to a change in the row and column model pa-
rameters. Lighter values indicate stronger sensitivity of the output to variation in the com-
bination of inputs.

83

A
A

:k
ca

t2

A
A

:k
ca

t3

2-
A

G
:K

D
c3

2-
A

G
:K

D
c2

2-
A

G
:K

D
a2

2-
A

G
:K

D
a1

A
A

:K
D

a1

A
A

:K
D

a2

A
A

:K
D

a3

2-
A

G
:k

ca
t3

A
A

:K
D

c3

A
A

:K
D

c2

A
A

:k
ca

t1

2-
A

G
:K

D
c1

2-
A

G
:K

D
a3

2-
A

G
:k

ca
t1

2-
A

G
:k

ca
t2

A
A

:K
D

c1

[A
A

]

[2
-A

G
]

[2-AG]
[AA]

AA:KDc1
2-AG:kcat2
2-AG:kcat1
2-AG:KDa3
2-AG:KDc1

AA:kcat1
AA:KDc2
AA:KDc3

2-AG:kcat3
AA:KDa3
AA:KDa2
AA:KDa1

2-AG:KDa1
2-AG:KDa2
2-AG:KDc2
2-AG:KDc3

AA:kcat3
AA:kcat2

0.0050

0.0025

0.0000

0.0025

0.0050

Figure 6.7: Heatmap of Sb
i sensitivity indices calculated for all i, j parameters in CORM.

Each cell represents the error in an estimated sensitivity value calculated for PGs to a
change in the row and column model parameters. Color indicates either either positive or
negative error in estimates induced by random correlation in the data.

84

A
A

:k
ca

t2

A
A

:k
ca

t3

2-
A

G
:K

D
c3

2-
A

G
:K

D
c2

2-
A

G
:K

D
a2

2-
A

G
:K

D
a1

A
A

:K
D

a1

A
A

:K
D

a2

A
A

:K
D

a3

2-
A

G
:k

ca
t3

A
A

:K
D

c3

A
A

:K
D

c2

A
A

:k
ca

t1

2-
A

G
:K

D
c1

2-
A

G
:K

D
a3

2-
A

G
:k

ca
t1

2-
A

G
:k

ca
t2

A
A

:K
D

c1

[A
A

]

[2
-A

G
]

[2-AG]
[AA]

AA:KDc1
2-AG:kcat2
2-AG:kcat1
2-AG:KDa3
2-AG:KDc1

AA:kcat1
AA:KDc2
AA:KDc3

2-AG:kcat3
AA:KDa3
AA:KDa2
AA:KDa1

2-AG:KDa1
2-AG:KDa2
2-AG:KDc2
2-AG:KDc3

AA:kcat3
AA:kcat2

0.00

0.01

0.02

0.03

0.04

0.05

Figure 6.8: Heatmap of Si sensitivity indices calculated for all i, j parameters in CORM.
Each cell represents the sensitivity of PGs to a change in the row and column model pa-
rameters. Lighter values indicate stronger sensitivity of the output to variation in the com-
bination of inputs.

85

A
A

:k
ca

t2

A
A

:k
ca

t3

2-
A

G
:K

D
c3

2-
A

G
:K

D
c2

2-
A

G
:K

D
a2

2-
A

G
:K

D
a1

A
A

:K
D

a1

A
A

:K
D

a2

A
A

:K
D

a3

2-
A

G
:k

ca
t3

A
A

:K
D

c3

A
A

:K
D

c2

A
A

:k
ca

t1

2-
A

G
:K

D
c1

2-
A

G
:K

D
a3

2-
A

G
:k

ca
t1

2-
A

G
:k

ca
t2

A
A

:K
D

c1

[A
A

]

[2
-A

G
]

[2-AG]
[AA]

AA:KDc1
2-AG:kcat2
2-AG:kcat1
2-AG:KDa3
2-AG:KDc1

AA:kcat1
AA:KDc2
AA:KDc3

2-AG:kcat3
AA:KDa3
AA:KDa2
AA:KDa1

2-AG:KDa1
2-AG:KDa2
2-AG:KDc2
2-AG:KDc3

AA:kcat3
AA:kcat2

0.000

0.008

0.016

0.024

0.032

Figure 6.9: Heatmap of Sa
i sensitivity indices calculated for all i, j parameters in CORM.

Each cell represents the sensitivity of PGGs to a change in the row and column model
parameters. Lighter values indicate stronger sensitivity of the output to variation in the
combination of inputs.

86

A
A

:k
ca

t2

A
A

:k
ca

t3

2-
A

G
:K

D
c3

2-
A

G
:K

D
c2

2-
A

G
:K

D
a2

2-
A

G
:K

D
a1

A
A

:K
D

a1

A
A

:K
D

a2

A
A

:K
D

a3

2-
A

G
:k

ca
t3

A
A

:K
D

c3

A
A

:K
D

c2

A
A

:k
ca

t1

2-
A

G
:K

D
c1

2-
A

G
:K

D
a3

2-
A

G
:k

ca
t1

2-
A

G
:k

ca
t2

A
A

:K
D

c1

[A
A

]

[2
-A

G
]

[2-AG]
[AA]

AA:KDc1
2-AG:kcat2
2-AG:kcat1
2-AG:KDa3
2-AG:KDc1

AA:kcat1
AA:KDc2
AA:KDc3

2-AG:kcat3
AA:KDa3
AA:KDa2
AA:KDa1

2-AG:KDa1
2-AG:KDa2
2-AG:KDc2
2-AG:KDc3

AA:kcat3
AA:kcat2

0.0030

0.0015

0.0000

0.0015

0.0030

Figure 6.10: Heatmap of Sb
i sensitivity indices calculated for all i, j parameters in CORM.

Each cell represents the error in an estimated sensitivity value calculated for PGGs to a
change in the row and column model parameters. Color indicates either either positive or
negative error in estimates induced by random correlation in the data.

87

A
A

:k
ca

t2

A
A

:k
ca

t3

2-
A

G
:K

D
c3

2-
A

G
:K

D
c2

2-
A

G
:K

D
a2

2-
A

G
:K

D
a1

A
A

:K
D

a1

A
A

:K
D

a2

A
A

:K
D

a3

2-
A

G
:k

ca
t3

A
A

:K
D

c3

A
A

:K
D

c2

A
A

:k
ca

t1

2-
A

G
:K

D
c1

2-
A

G
:K

D
a3

2-
A

G
:k

ca
t1

2-
A

G
:k

ca
t2

A
A

:K
D

c1

[A
A

]

[2
-A

G
]

[2-AG]
[AA]

AA:KDc1
2-AG:kcat2
2-AG:kcat1
2-AG:KDa3
2-AG:KDc1

AA:kcat1
AA:KDc2
AA:KDc3

2-AG:kcat3
AA:KDa3
AA:KDa2
AA:KDa1

2-AG:KDa1
2-AG:KDa2
2-AG:KDc2
2-AG:KDc3

AA:kcat3
AA:kcat2

0.000

0.008

0.016

0.024

0.032

0.040

Figure 6.11: Heatmap of Si sensitivity indices calculated for all i, j parameters in CORM.
Each cell represents the sensitivity of PGGs to a change in the row and column model
parameters. Lighter values indicate stronger sensitivity of the output to variation in the
combination of inputs.

88

A
A

:k
ca

t2

A
A

:k
ca

t3

2-
A

G
:K

D
c3

2-
A

G
:K

D
c2

2-
A

G
:K

D
a2

2-
A

G
:K

D
a1

A
A

:K
D

a1

A
A

:K
D

a2

A
A

:K
D

a3

2-
A

G
:k

ca
t3

A
A

:K
D

c3

A
A

:K
D

c2

A
A

:k
ca

t1

2-
A

G
:K

D
c1

2-
A

G
:K

D
a3

2-
A

G
:k

ca
t1

2-
A

G
:k

ca
t2

A
A

:K
D

c1

[A
A

]

[2
-A

G
]

[2-AG]
[AA]

AA:KDc1
2-AG:kcat2
2-AG:kcat1
2-AG:KDa3
2-AG:KDc1

AA:kcat1
AA:KDc2
AA:KDc3

2-AG:kcat3
AA:KDa3
AA:KDa2
AA:KDa1

2-AG:KDa1
2-AG:KDa2
2-AG:KDc2
2-AG:KDc3

AA:kcat3
AA:kcat2

0.0000

0.0015

0.0030

0.0045

0.0060

Figure 6.12: Heatmap of Sa
i sensitivity indices calculated for all i, j parameters in CORM.

Each cell represents the sensitivity of the PG to PGG ratio to a change in the row and
column model parameters. Lighter values indicate stronger sensitivity of the output to
variation in the combination of inputs.

89

A
A

:k
ca

t2

A
A

:k
ca

t3

2-
A

G
:K

D
c3

2-
A

G
:K

D
c2

2-
A

G
:K

D
a2

2-
A

G
:K

D
a1

A
A

:K
D

a1

A
A

:K
D

a2

A
A

:K
D

a3

2-
A

G
:k

ca
t3

A
A

:K
D

c3

A
A

:K
D

c2

A
A

:k
ca

t1

2-
A

G
:K

D
c1

2-
A

G
:K

D
a3

2-
A

G
:k

ca
t1

2-
A

G
:k

ca
t2

A
A

:K
D

c1

[A
A

]

[2
-A

G
]

[2-AG]
[AA]

AA:KDc1
2-AG:kcat2
2-AG:kcat1
2-AG:KDa3
2-AG:KDc1

AA:kcat1
AA:KDc2
AA:KDc3

2-AG:kcat3
AA:KDa3
AA:KDa2
AA:KDa1

2-AG:KDa1
2-AG:KDa2
2-AG:KDc2
2-AG:KDc3

AA:kcat3
AA:kcat2

0.0030

0.0015

0.0000

0.0015

0.0030

Figure 6.13: Heatmap of Sb
i sensitivity indices calculated for all i, j parameters in CORM.

Each cell represents the error in an estimated sensitivity value calculated for the ratio of
PGs to PGGs to a change in the row and column model parameters. Color indicates either
either positive or negative error in estimates induced by random correlation in the data.

90

A
A

:k
ca

t2

A
A

:k
ca

t3

2-
A

G
:K

D
c3

2-
A

G
:K

D
c2

2-
A

G
:K

D
a2

2-
A

G
:K

D
a1

A
A

:K
D

a1

A
A

:K
D

a2

A
A

:K
D

a3

2-
A

G
:k

ca
t3

A
A

:K
D

c3

A
A

:K
D

c2

A
A

:k
ca

t1

2-
A

G
:K

D
c1

2-
A

G
:K

D
a3

2-
A

G
:k

ca
t1

2-
A

G
:k

ca
t2

A
A

:K
D

c1

[A
A

]

[2
-A

G
]

[2-AG]
[AA]

AA:KDc1
2-AG:kcat2
2-AG:kcat1
2-AG:KDa3
2-AG:KDc1

AA:kcat1
AA:KDc2
AA:KDc3

2-AG:kcat3
AA:KDa3
AA:KDa2
AA:KDa1

2-AG:KDa1
2-AG:KDa2
2-AG:KDc2
2-AG:KDc3

AA:kcat3
AA:kcat2

0.0000

0.0015

0.0030

0.0045

0.0060

0.0075

Figure 6.14: Heatmap of Si sensitivity indices calculated for all i, j parameters in CORM.
Each cell represents the sensitivity of the ratio of PGs to PGGs to a change in the row
and column model parameters. Lighter values indicate stronger sensitivity of the output to
variation in the combination of inputs.

For PG, the sum of all first and second order sensitivity indices is about .99, indicating

that 99% of the variance in PG values can be captured by varying the parameters and

substrate levels individually or in pairs. The sum of first order indices is .807, with the

remaining variance coming from second order interactions, indicating that while 80% of

the variance can be captured by varying single parameters, capturing final fifth requires

simultaneous variation of parameters (though not higher than second order interactions).

As can be seen in Figure 6.5 column 1 and Figure 6.8, PG values are most sensitive to the

equilibrium constants for binding of each substrate to the catalytic site (the constant for

AA captures 38% of the variance while the 2-AG constant captures 25%), as well as to

the catalytic rate for AA turnover when nothing is bound in the allosteric site (10% of the

variance). The single greatest contributor to PG variation is the equilibrium constant for

91

AA binding in the catalytic site, when nothing is bound in the allosteric site. It accounts

for more than a third of the total variance, which suggests that affecting AA binding in

the catalytic site would be the most effective means to perturb PG values (and would be

superior to simply affecting the catalytic turnover rate for AA).

For PGG, the sum of all first and second order sensitivity indices is again about .99.

As with PG, the bulk of PGG variation (about 82%) can be captured by changing only

single parameters, with the remainder attributable to interactions between two parameters.

As shown in Figure 6.5 column 2 and Figure 6.11, PGG depends roughly equally on the

equilibrium constant for 2-AG binding in the catalytic site (28% of the variance) and

the catalytic turnover rate of 2-AG when nothing is bound in the allosteric site (24% of

the variance). There is a slightly smaller dependence on the AA catalytic site equilbrium

binding constant (17%). To change PGG levels, changing the affinity of the catalytic site

2-AG and changing the catalytic turnover rate of 2-AG when the enzyme is allosterically

unbound are expected to have roughly the same effect, though neither will have as large an

effect as changing AA affinity for the catalytic site would have on PG levels.

Finally, the sum of all first and second order sensitivity indices is again nearly 1 when

considering sensitivity of the ratio of PG to PGG. First order indices capture a greater

proportion of the variance than for either individual product (91%), with the remainder

depending on second order interactions between parameters. The ratio of products depends

strongly and roughly equally on the equilibrium constants for binding of the substrate in the

catalytic site (35% for AA and 33 % for 2-AG), with a much smaller contribution (8%)

from the 2-AG turnover rate. The contribution from the AA turnover rate is even smaller

(2%).

Note, however, that HDMR returns the most effective perturbations, but these pertru-

bations may be in either direction. As shown in Figure 6.15, an increase in the ratio (more

PGs, fewer PGGs) could be accomplished by increasing the equilibrium constant for 2-AG

catalytic site binding (making binding less tight), while a decrease in the ratio (fewer PGs,

92

more PGGs) could be accomplished by increasing either the catalytic turnover rate for 2-

AG with nothing in the allosteric site, or by increasing the equilibrium constant for AA

binding in the catalytic site. In the final section we test whether the key perturbations for

each output vary depending on the location in substrate space (as levels of AA and 2-AG

are likely to vary in vivo).

Figure 6.15: HDMR functions for relationships between the most sensitive parameters in
CORM and the ratio of PGs to PGGs. From left to right, the parameters are kcat AG1,
KD AG 1, and KD AA 1.

6.5 CORM Sensitivity to Perturbations at Different Substrate Levels

In order to test whether the levels of AA and 2-AG affect sensitivity to perturbations

in the CORM network, a second analysis was performed in which four different datasets

located in different regions of substrate space (as shown in Figure 6.16) were generated

for both the PG and PGG outputs. Each dataset was used to fit an HDMR model, and a

sensitivity analysis was performed for each.

93

Figure 6.16: Levels of AA and 2-AG Used to Generate Data for Sensitivity Analysis

For construction of each HDMR model, 2000 training points and 1000 testing points

were used. HDMR error measures compared to the original data are shown in Figure 6.17.

Figure 6.17: HDMR Model Accuracy for Each Region of Substrate Space

First order sensitivity indices for each region of substrate space for PG are shown in

Figure 6.18 and for PGG in Figure 6.19. First order indices capture 85% of the variance,

similar to in the previous analyses.

94

high AA/high 2-AG high AA/low 2-AG low AA/high 2-AG low AA/low 2-AG

[2-AG]

[AA]

AA:KDc1

2-AG:kcat2

2-AG:kcat1

2-AG:KDa3

2-AG:KDc1

AA:kcat1

AA:KDc2

AA:KDc3

2-AG:kcat3

AA:KDa3

AA:KDa2

AA:KDa1

2-AG:KDa1

2-AG:KDa2

2-AG:KDc2

2-AG:KDc3

AA:kcat3

AA:kcat2

0.00

0.08

0.16

0.24

0.32

Figure 6.18: First order sensitivity indices for PG in each region of substrate space. Each
row represents sensitivity to perturbations in a particular model parameter, and each column
is a different region of substrate space. Lighter colors indicate higher sensitivity.

95

high AA/high 2-AG high AA/low 2-AG low AA/high 2-AG low AA/low 2-AG

[2-AG]

[AA]

AA:KDc1

2-AG:kcat2

2-AG:kcat1

2-AG:KDa3

2-AG:KDc1

AA:kcat1

AA:KDc2

AA:KDc3

2-AG:kcat3

AA:KDa3

AA:KDa2

AA:KDa1

2-AG:KDa1

2-AG:KDa2

2-AG:KDc2

2-AG:KDc3

AA:kcat3

AA:kcat2

0.00

0.08

0.16

0.24

0.32

0.40

Figure 6.19: First order sensitivity indices for PGG in each region of substrate space. Each
row represents sensitivity to perturbations in a particular model parameter, and each column
is a different region of substrate space. Lighter colors indicate higher sensitivity.

These calculated sensitivities do appear to indicate that an output’s sensitivity to pertur-

bation in a given model parameter does depend on the levels of system substrates. Further-

more, the changes in sensitivity can be rationalized by considering what paths an output is

predominately being produced (see Figs. 4.3, 4.4, and 4.5). For example, PG is more sen-

sitive to perturbations in kcat AA1, the catalytic rate for the turnover of AA in the absence

of any allosteric regulator, when levels of 2-AG are low, which corresponds to conditions

under which relatively more PG is produced by the unmodulated pathway. PG sensitivity

to kcat AA2 (the catalytic turnover rate for AA when 2-AG is bound in the allosteric site),

increases under the opposite conditions, when 2-AG levels are high, corresponding to con-

ditions when relatively more of the product is produced by the 2-AG-modulated pathway.

PGG sensitivities can be similarly rationalized; for example, sensitivity to kcat AG1, the

turnover of 2-AG with no allosteric modulator present, is highest when AA is low and 2-AG

96

is high, conditions corresponding to when production is predominately via that complex.

There are several caveats to this analysis. First, the binning of substrate values was

somewhat arbitrary, and it would be useful to see what bin size maximizes the sensitivity

information obtained while not requiring excessive samples. Secondly, for this analysis

the parameters were perturbed within the ranges dictated by their calibrated distributions,

meaning some parameters could vary considerably while others very little. This was done

under the rationale that this was the regime under which the model captured the experimen-

tal data; however, since the goal of a perturbation is to disrupt the system behavior, a future

analysis in which parameters were perturbed in a range determined by what could theoret-

ically be achieved in vivo. Despite these caveats, this analysis indicates that the calculation

of sensitivity indices in this relatively simple system for multiple input/output combinations

is computationally feasible, and should inform similar analyses for larger models.

97

Chapter 7

High Performance Computing with Amazon Web Services: A Case Study

7.1 Introduction

Many of the sophisticated analyses presented in the preceding chapters are computa-

tionally intensive; for example, the information theoretical estimation of channel capacities

required more than a million CPU hours. Such analyses are increasingly common in the

era of big data, originally defined by the ”3Vs” suggested by the Gartner group (volume,

variety, and velocity) [120], with the later addition of a fourth V, veracity, by IBM [121].

IBM has also suggested a fifth emerging quality of big data, value [121]. Experts have fur-

ther noted that each quality should be defined relative to the needs and abilities of the user

[122]; for example, for a user with proficiency only in data analysis via spreadsheets, data

becomes big data at the point when the user can no longer effectively analyze it, regardless

of whether the computer would be similarly stymied.

Much biomedical research now generates data with the defining features of big data.

The volume of data available to biomedical researchers is growing exponentially and has

been for more than a decade [123, 124, 125, 126, 127]. This data features a variety of

data types and structures; some datasets, like ’omics’ data [128], are collected extremely

systematically and consequently are highly structured, while other datasets (such as clinical

notes in electronic health records) [129], are valuable but require an imposition of structure

before analysis can begin. Huge volumes of data are generated at high velocity by methods

such as next-generation sequencing [124, 125], requiring high-throughput computational

methods to process. The veracity of this data may sometimes be in question, in part due

to the current ”reproducibility crisis” in science [130]. Finally, the value of this data is

becoming increasingly evident as related for-profit fields like healthcare leverage big data

to improve quality and efficiency [126].

98

Two characteristics of big data, volume and velocity, have encouraged the adoption of

parallel computing methods of analysis, in which large compute clusters or supercomputers

are used to quickly analyze reams of data [131]. The related field of cloud computing,

in which these resources are accessed remotely [131], has similarly grown in the wake

of demand for big data processing capabilities. In addition to a host of academic and

government-owned clusters, major companies such as Google (Google Cloud Platform)

and Amazon (Amazon Web Services (AWS)) offer vast computing power to the general

public. These latter commercially available services have led to the release of many cloud-

based analysis packages developed in research labs [132, 133, 134, 135, 136, 137, 138,

139, 140, 141]. Such analysis pipelines are extremely useful when a user has similar data to

analyze; however, general guidelines for utilizing cloud computing resources for arbitrary

big data are lacking.

7.1.1 Overview of the protocol

In the following we introduce a flexible workflow for analysis of big data using AWS’s

Amazon Batch service, which generates an on-demand cluster in the cloud that is optimized

to the computational needs of the user. While the specific application we utilized this ap-

proach for is detailed, the overall method is flexible enough to be applicable to any problem

that would benefit from some degree of parallelization. although cost-effectiveness may

vary (as discussed in detail in the protocol). The protocol assumes that the code needed for

a specific analysis has already been generated and tested and now requires translation to

the AWS Batch environment.

Preparing, running, and retrieving data for an arbitrary AWS Batch job consists of three

major stages:

1. Prepare Docker image with any required software and small files and transfer large

data files and code to AWS S3.

99

2. Setup AWS Batch variables: required access role(s), job definition, job queue, and

compute environment.

3. Submit jobs to queue, monitor, and retrieve final output.

To facilitate the quick development of a AWS Batch workflow, template scripts have

been generated for several steps and are provided in Appendix II.

7.2 Materials

• An AWS account (created at aws.amazon.com).

• Analysis code to be paralyzed (in programming language(s) of choice)

• A standard personal computer

7.3 Protocol

Stage 1: Prepare Docker image with required software, store the image on AWS,

and transfer large files for analysis and analysis code to the cloud. Timing: variable

depending on size of files to be transferred to cloud; less than an hour active interaction

required.

1. Install the AWS Command Line Interface (CLI), a set of tools for interfacing with

AWS from the command line. A platform-specific installation guide is available in

the AWS CLI documentation at docs.aws.amazon.com/cli.

2. Download and install Docker [142], software that allows you to place any programs

and small files you need for your computation in an enclosed container (called a

Docker image) which can then be deployed independently on any computational

node. This simplifies development of a consistent execution script across a possi-

bly heterogeneous compute cloud. Docker is free and may be downloaded from

docker.com.

100

3. Download and unzip AWS templates for creating a new Docker image from

https://github.com/awslabs/aws-batch-helpers/archive/master.zip. Inside the unzipped

folder (fetch-and-run) are two files:

• Dockerfile

• fetch and run.sh

These templates allow the creation of a Docker image based on the latest Amazon

Linux image that will download and run an arbitrary script from the cloud.

4. Modify the Dockerfile for the demands of your job. This includes:

(a) If desired, change the base image (changing the base operating system of the

Docker image from the default Amazon Linux by modifying the FROM line in

the Dockerfile:

FROM amazonlinux:latest

Note that unless you have a compelling reason to use a different base image,

the Amazon Linux default is likely to work well.

(b) Install any necessary software. The template Dockerfile includes the line:

RUN yum -y install unzip aws-cli

which installs AWS command line tools, allowing the created Docker image

to access other AWS tools, including S3. You can add additional RUN lines

with shell commands to install other software, change directories, change per-

missions, or anything else needed. Note that the specific commands will be

dependent on the base image selected in part (a); commands for the default

Amazon Linux base image are shown. An example of a modified Dockerfile

used in our own research is provided in Appendix II. It includes installation of

Java and Python as well as several Python packages and commandline utilities.

101

(c) Add any small files that will be used in all analyses to the Docker image. The

template Dockerfile includes an example of this:

ADD fetch and run.sh /usr/local/bin/fetch and run.sh

which adds the fetch and run.sh script to the Docker image. The first argument

to the command is the path to the file on the current filesystem, and the second is

the desired path on the created Docker image. The example Dockerfile included

in Appendix II includes addition of several small text files to the Docker image.

(d) If desired, change the working directory (the directory the image will start in).

By default this directory is /tmp:

WORKDIR /tmp

(e) If desired, change the user to execute commands in the image from the default:

USER nobody

5. Build the new Docker image. To do so, open a terminal, navigate to the directory

containing your modified Dockerfile, and enter the following command:

docker build -t awsbatch/fetch and run .

If desired, the image name can be changed from awsbatch/fetch and run to a desired

name. After the image builds successfully, you can issue the following command:

docker images

to list your current images. The new image (awsbatch/fetch and run, or

whatever name selected) should be listed.

6. To use the Docker image in AWS Batch, it will need to be added (pushed) to the

AWS Elastic Container Registry (ECR). Creating a repository allows version control

for a given container image. To do so:

(a) Select AWS Elastic Container Service (ECS) from the Services menu in AWS.

102

(b) Under Amazon ECR on the left, select Repositories.

(c) Click Get Started or Create Repository.

(d) Enter a name for the new repository, copy the repository URI, and click Next

step.

(e) Note the current AWS region located in the upper right of the screen, next to

the current AWS username.

(f) Login to ECR from the command line using the following command (depending

on operating system):

i. $(aws ecr get-login --region us-east-1) (on macOS or

Linux)

ii. Invoke-Expression -Command (Get-ECRLoginCommand -Region

us-east-1).Command (on Windows)

If the AWS region you noted earlier is not US East (N. Virginia), replace us-

east-1 with the correct AWS region code.

(g) Tag the Docker image you created in step 5 so that it can be pushed to the

repository you just created:

docker tag awsbatch/fetch and run:latest REPOURI:latest

replacing REPOURI with the URI of the repository copied in step 6d. If you al-

tered the name of the Docker image from awsbatch/fetch and runwhen

building the image in step 5, use your chosen name in place of awsbatch/fetch and run.

(h) Finally, push the tagged Docker image to the created repository:

docker push REPOURI:latest

again replacing REPOURI with the repository URI from step 6d.

7. Any files required by the parallel jobs and not included in the created Docker image

103

will need to be uploaded to AWS S3 and then retrieved by individual jobs (instruc-

tions for the latter are detailed in step X). To do so:

(a) Select AWS S3 from the Services menu in AWS.

(b) Click Create bucket (a storage area with a given set of permissions and options).

(c) Enter a name for the bucket, select the same region used for the ECR repository

in step 6e and click Next.

(d) Advanced options are configurable on the next screen but are unnecessary for a

basic AWS Batch run and can be configured later if required. Click Next.

(e) The default selected options will give Read and Write access to the new bucket

to your AWS username, as well as the ability to change who can access Read

and Write privileges for the bucket. If you are creating a bucket to be accessed

by a group of users rather than just by you, you can search for and add permis-

sions for other AWS users on this screen. Once you’ve finished adding users,

click Next.

(f) Review the summary of the bucket information for correctness and click Create

bucket.

(g) In the console, click on the newly created bucket.

(h) Upload any files required by your jobs and not included in the created Docker

image. This includes scripts as well as any large datasets to be accessed by

individual jobs. If desired, you can organize code and input data files into

folders in the S3 console. In addition to any input data files, one file that should

be added to S3 if using the fetch and run.sh setup provided by AWS and

discussed in step 3 is a shell script that will be run on initializing the Docker

container. A basic template for this script is provided in Appendix II. The

following Stage details the process for setting up the AWS Batch environment.

104

Stage 2: Setup AWS Batch variables, including required access role(s), job definition,

a compute environment, and a job queue. Timing: about an hour.

1. Setting up an analysis with AWS Batch involves several steps:

(a) If you will need to access any files on S3 during a job (as when using the

fetch and run.sh setup), an AWS Identity and Access Management (IAM)

role with permissions to access S3 will need to be created.

(b) A template for a set of jobs, called a job definition, must be created.

(c) A compute environment optimized for the jobs must be created.

(d) A job queue must be created. Jobs will be submitted to the queue and then

initialized on a particular compute environment.

These steps are further detailed below.

2. To set up an AWS IAM role with access to S3 (if required):

(a) Select AWS IAM from the Services menu in AWS.

(b) Select Roles from the menu on the left.

(c) Click Create role.

(d) Choose Batch from the list of AWS services.

(e) Click Next: Permissions.

(f) AWS provides a default AWS Batch role, AWSBatchServiceRole, which pro-

vides access to the default services needed by AWS (but not S3). The permis-

sions of this role have already been selected. Access to S3 will be added after

role creation. Click Next:Review.

(g) Enter a name for your new role and click Create role.

(h) In the list of roles, select the role you just created.

(i) If not already active, select the Permissions tab. Click Attach policies.

105

(j) Select AmazonS3FullAccess from the list of permissions. Note that if your

job required access to any of AWS’s other services, permissions for that access

could be added here as well. Click Attach policy.

3. To create a job definition:

(a) Select AWS Batch from the AWS services menu. On the left, click Job defini-

tions.

(b) Click Create.

(c) Enter a name for the job definition.

(d) If desired, change the maximum number of attempts for a given job (if failure

occurs), which is 1 by default.

(e) If you created a access role with new permissions in step 2, select it next to Job

role.

(f) Next to Container image, enter the ECR URI from stage 1, step 6d.

(g) The Docker container image created previously will expect to be passed a shell

script name, and any arguments to the script, in the Command value, just as you

would call the same script from the command line. For example, to run a script

called runjob.sh, with arguments cat and 3, enter

runjob.sh cat 1

in the Space delimited tab next to Command. Below the text box, the JSON

command that will be actually passed to the Docker container when the job

runs is shown. For the example above, this would be:

["runjob.sh", "cat", "1"]

If you have only a single job to run, entering a command using the Space de-

limited tab is the simplest method. However, if you have a large number of jobs

to run that are identical except for the data to be analyzed, the simplest method

106

is to create a job array using the JSON tab next to Command. A job array is a

set of jobs, each of which launches with the AWS BATCH JOB ARRAY INDEX

environment variable set to a different integer. The number of jobs in the array

is set using a value called ARRAYSIZE. To create a job array:

i. Instead of selecting the Space delimited tab next to Command, select the

JSON tab.

ii. In the JSON tab, enter the following (with exact capitalization and punctu-

ation, including all brackets, commas, and quotes):

{"containerOverrides":{"command":COMMAND},

"arrayProperties":{"size":ARRAYSIZE}}

where COMMAND is the command to be passed to the Docker image in

JSON format (e.g. ["runjob.sh", "cat", "1"] in the example

above), and ARRAYSIZE is the number of datasets you need to analyze us-

ing this job definition. For example, a job definition with ARRAYSIZE of

100 will launch 100 jobs, each with the AWS BATCH JOB ARRAY INDEX

set between 0 and 99.

(h) Next to vCPUs, enter the number of virtual CPUs required by each individual

job in the array. Note that if your job requests more resources than listed in the

job definition during execution, it will fail.

(i) Next to Memory (MiB), enter the amount of memory required by an individual

job in the array in mebibytes. Note that if your job requests more resources

(either vCPUs or memory) than listed in the job definition during execution, it

will fail.

(j) If desired, change the privileges and username of the user who will execute

commands in the Docker container. For most jobs the defaults should be fine.

(k) If desired, you can expose particular Mount points and Volumes to the container

107

when each job runs. This is an alternative to using S3 for file storage for jobs

that is not further detailed in this guide.

(l) If using the default fetch and run.sh job format provided by AWS and

described when creating the Docker image in Stage 1, step 3, and a job script

based on the template provided in Appendix II and added to S3 in Stage 1, step

7h, up to four environment variables will need to be set. To enter these, select

Add environment variable and enter the variable name under Key and its value

under Value. The variables that may be required are:

i. BATCH FILE S3 URL : the S3 URL for the job script to be executed

(based on the template in Appendix II). This can be found by selecting

the uploaded file in the S3 console and clicking Copy path.

ii. BATCH FILE TYPE : if you uploaded a shell script to S3 to be run by the

job, enter script. Alternatively, you can upload a zip file containing a

script to S3 and enter zip here.

iii. INPUTDIR : the S3 URL for the directory containing your input files.

iv. OUTPUTDIR : the S3 URL for the directory to which you wish to upload

your output files.

(m) Click Create Job Definition.

4. To create a compute environment in AWS Batch:

(a) Open the AWS Batch console.

(b) On the left, click Compute environments.

(c) Click Create environment.

(d) The default selection of a Managed compute environment (in which AWS con-

trols the scaling and configuration of the nodes in the environment) is likely to

be ideal for all but advanced users.

108

(e) Enter a name for the compute environment.

(f) Leave Create new role selected to create a new Service role and a new Instance

role for use by the environment.

(g) Next to Provisioning model, select either

i. On-Demand : to pay for instances on demand, at full price or

ii. Spot : to pay for ”Spot” instances at a discounted price; however your jobs

can be interrupted.

(h) Leave default values for the other entries. If desired, you may wish to alter

the Maximum vCPUs (the maximum number of virtual CPUs in your compute

environment at one time). Note that new AWS accounts begin with a limit on

the number of an instance type that can be launched simultaneously. These

limits can be increased by entering a request with AWS Support.

(i) Click Create.

5. To create a job queue to which to submit jobs:

(a) Open the AWS Batch console.

(b) On the left, select Job queues.

(c) Enter a name for the job queue.

(d) If desired, enter a number for the priority of the queue. Higher numbered queues

are given higher priority. Note this is only useful if you intend to have multiple

job queues.

(e) Ensure the box for Enable Job queue is checked.

(f) Select the new compute environment you just created.

(g) Click Create Job Queue.

109

6. After completion of steps 1-5, all infrastructure is in place for running AWS Batch

jobs. In Stage 3, the process for submitting and monitoring output for jobs will be

detailed.

Stage 3: Submit a job and monitor and retrieve job output. Timing: Variable depending

on job length; less than an hour active interaction required.

1. To submit a job to AWS Batch:

(a) Open the AWS Batch Dashboard.

(b) Click Create job.

(c) Enter a name for the job.

(d) Select the job definition you created in Stage 2, step 3.

(e) Select the job queue you created in Stage 2, step 5.

(f) Optionally, you may alter any of the variables defined in the job definition by

altering on the Create job screen; if you do not enter text for an entry on this

screen, the value from the job definition will be used by default. Note that you

do not need to reenter information from the job definition on this screen if it is

the same as that already entered when creating the job definition.

(g) Press Submit job.

2. To monitor a submitted job:

(a) Open the AWS Batch Dashboard.

(b) The number of jobs in a given status will be shown next to the queue the

jobs were submitted to on this dashboard. As the job progresses, it will move

from a status of SUBMITTED to PENDING, to RUNNABLE, to STARTING,

to RUNNING, and finally to either FAILED or SUCCEEDED depending on

whether the process exits with an error code or not.

110

(c) To see details about jobs in a particular queue and status category:

i. Click the job queue/job status combination in the Dashboard table. This

will open a list of jobs with that status in that queue on the Jobs screen

of AWS Batch. Alternatively, you could find these jobs by selecting the

correct queue and status directly from the Jobs screen instead.

ii. In the list of jobs on the Jobs screen, click on a Job ID.

iii. If the job you selected is an Array job, you’ll be taken to another list with

the individual array jobs. Click any one on the list.

iv. Details for the job are shown, including its current status, start and end

times, and job ID. To see the command line output for the compute instance

running the job, click View logs under Attempts. If the job was attempted

multiple times, there will be multiple logs.

v. Clicking the View logs link will open AWS CloudWatch, where the logs

are stored. The output of the given job will be shown. If the job is currently

running, you may click the refresh icon in the upper right corner to retrieve

the most recent output. Note that these logs are the most useful resource

for troubleshooting jobs that fail or yield unexpected output.

3. To retrieve job output:

(a) The process for retrieving output logs for a given job is detailed in step 2c.

(b) Any output files uploaded to S3 will be available for download on S3 after the

job successfully runs.

7.4 Troubleshooting

Troubleshooting advice can be found in Table 7.1.

111

Step Problem Possible reason Solution

Stage 3,

Step 2

A job appears with a

FAILED status.

The job exited with a sta-

tus code other than 0. This

could indicate an error in the

code itself, or that the job re-

quested more CPUs or mem-

ory than it was allotted in the

job definition.

Check the output logs for the

job by following the steps

in Stage 3, step 2c. If

the container has returned an

OutofMemoryError, in-

crease the memory requested

in the job definition and re-

submit. If the code has

thrown an error, correct the

code, reupload it to S3, and

resubmit the job.

Stage 3,

Step 2

A job remains in the

RUNNABLE state indef-

initely.

The compute environment is

incorrectly configured.

Create a new compute envi-

ronment and attach it to the

job queue for that job.

Stage 3,

Step 2

AWS Batch launches

fewer simultaneous

instances than are spec-

ified as the maximum

number of instances

when creating the

compute environment.

AWS account limits are de-

creasing the number of simul-

taneously running instances

of the type required for your

job.

Create a new case for Service

Limit Increases in the AWS

Support Center (accessible in

the upper right hand corner)

and request a limit increase.

Table 7.1: Troubleshooting guidance for using AWS Batch.

112

Chapter 8

Discussion and Future Directions

8.1 Discussion

8.1.1 COX-2 as an Allosteric Enzyme

In 1997, Swinney et al. [143] reported that COX-1 behaves as an allosteric enzyme

with a Hill coefficient of 1.3. Their interpretation of this apparent cooperativity was later

disputed by Chen et al. [144], who explained the phenomenon on the basis of COXs re-

quirement for product hydroperoxide to activate the enzymes active site. Since that time,

researchers have generally agreed that the COX isoforms do not behave as allosteric en-

zymes with regard to AA. However, recent evidence strongly supports the concept that

the enzymes are functional heterodimers and that activity is modulated by binding of non-

substrate ligands to the allosteric subunit [37, 39, 145]. Through creation and analysis of

CORM, we reported that AA and 2-AG, despite similar catalytic efficiencies with COX-2

when measured individually in vitro, differ markedly in their rate of oxygenation in the

presence of the other substrate. Furthermore, we present data consistent with the hypothe-

sis that this modulation of COX-2 activity not only occurs with purified protein but also in

intact cells.

COX-2 has significant regulatory flexibility: it is an allosteric protein, with multiple

substrates and multiple allosteric regulators, all of which can influence how COX-2 oper-

ates on its substrates in vivo. The pathway analysis (Fig. 2.1B and 2.1C) suggests that

COX-2 functions by first binding a substrate at the catalytic site, followed by binding of an

allosteric regulator. Allostery can be viewed as a shift in the conformational free-energy

landscape sampled by COX-2 through preferential binding of the allosteric regulator to

particular conformations [146, 147]. From this perspective, modulating the concentrations

of allosteric regulators in the COX-2 system shifts the conformational ensemble towards

113

conformations favored by particular regulators. In the case of PG, these conformations are

more easily turned over to product than the unmodulated enzyme, while for PG-G, the al-

losteric influence makes catalysis less energetically favorable (shifts the ensemble towards

conformations that are less active). This allows COX-2 to manage the balance between PG

and PG-G production in a more complex (and potentially farther-reaching) fashion than

that provided by simple competition between substrates. This added complexity suggests

a physiological reason why the COX-2 system would integrate information from multiple

inputs: by adding a second competitive input, the system can access different responses

than with a single input. Furthermore, the response dynamics of COX-2 gain even greater

complexity because its inputs act as allosteric modulators in addition to substrates. The sit-

uation in vivo is likely far more complicated (and flexible) than considered here, as COX-2

has potential substrates in addition to AA and 2-AG [148], and some nonsubstrate fatty

acids that act as allosteric regulators [36, 37, 42, 43, 149]. In addition, many of the non-

steroidal anti-inflammatory drugs that target COX-2 also may bind at either the catalytic or

allosteric site.

8.1.2 Role of COX-2 Allostery In Vivo

Our findings that AA inhibits 2-AG oxygenation in vitro and that cellular AA and PG-G

levels are inversely correlated lead one to question the degree to which allosteric control

modulates PG-G synthesis in cells. Most studies of cellular PG-G production have used

stimuli that trigger the release of high concentrations of free AA, only a portion of which

is converted to PGs. In most cases, the ratio of AA to 2-AG in whole-cell lysates is at least

10:1, whereas the ratio of PGs to PG-Gs has been in the range of 5001,000:1 [150, 151].

In the experiments reported in our work, the PG:PG-G ratio was from 20- to 100- fold

higher than the AA:2-AG ratio. These findings are consistent with our evidence that AA

suppresses 2-AG oxygenation by COX-2. However, allosteric regulation is likely only one

of a number of factors contributing to the high PG:PG-G ratio found in cells. Others include

114

the kinetics of release of AA and 2-AG, the local concentrations of each substrate, and the

hydroperoxide tone in the immediate vicinity of the enzyme.

8.1.3 Relationship Between AA and 2-AG In Vivo

In vivo, COX-2, AA, and 2-AG concentrations vary across cells in different tissues

[152, 153, 154]. In most tissues, AA processed by COX-2 is released from membrane phos-

pholipids, predominantly through the action of cytosolic phospholipase A2 [155]. In some

tissues, (particularly the brain) a major source of AA is hydrolysis of 2-AG [156, 157].

In turn, 2-AG is also sourced from membrane phospholipids; through the sequential ac-

tion of phospholipase C, which forms diacylglycerol (DAG), followed by conversion of

DAG to 2-AG by DAG lipase [158]. Both DAG lipase and cytosolic phospholipase A2

are stimulated by increases in intracellular Ca2+ [155, 159]. Thus, many stimuli (such as

zymosan phagocytosis by macrophages [151]) promote the release of AA and 2-AG simul-

taneously, with concentrations of AA typically higher than those of 2-AG. Considering the

precursor-product relationship between 2-AG and AA, however, it is conceivable that in

some cells, the levels of the two substrates may change inversely to one another, or that the

level of one may change while the other remains constant. These considerations suggest

that the system features we find that vary with AA and 2-AG level (pathway entropy and

information transfer capacity) are states accessible by the true biological system with the

attendant repercussions for information transfer within that system. In addition, the postu-

lated link between diet and the substrates available for COX-2 turnover [160] suggests that

the information transfer properties of the system could be modulated by fatty acid intake.

8.1.4 Ensemble Model Calibration

Every aspect of COX-2 analysis presented herein required the use of an ensemble model

calibration method like PyDREAM. Such methods have the obvious benefit of providing

an estimate of certainty in all predictions generated from the ensemble. For many CORM

115

species, prediction uncertainties are broad (Fig. 8.1), indicating that a prediction generated

from a single (or a few) vector(s) would be extremely misleading. In the case of COX-2

(and we hypothesize other systems as well), a kinetic parameter ensemble also provides the

advantage of an understanding of how relationships between parameters are constrained.

Figure 8.1: Predicted concentration of CORM species ten seconds after mixing as a func-
tion of AA concentration. Darker lines indicate the prediction generated from the most
probable parameter vector in the ensemble and the shaded region encompasses predictions
based on the entire ensemble of parameters.

In many systems biology models, even when individual parameters are not well con-

strained by available experimental data, relationships between the parameters are, a prop-

erty referred to as sloppiness [161]. As in previous literature [162], many of the relation-

ships between calibrated parameters in CORM are nonlinear (Fig. 8.2) and therefore not

well approximated by linear analysis techniques such as PCA. While the quality and quan-

tity of experimental calibration data and the predictions of interest will determine whether

or not an ensemble method is critical to generate predictions from a given model, these

116

results suggest that the importance of parameter ensembles for a given modeling problem

should not be presumed unnecessary without first deploying a sampling method such as

MCMC to determine if the problem would benefit from an ensemble analysis approach.

117

Figure 8.2: A kernel density estimate of the joint parameter probability density for two
kinetic parameters in CORM, indicating a nonlinear relationship between the variables.

118

8.2 Future Directions

8.2.1 PyDREAM for Larger Models

As discussed in section 3.4, calibration of a larger model (more than 100 parameters)

with PyDREAM was unsuccessful. Future work could focus on determining the necessary

conditions to achieve convergence for a system like EARM within reasonable computa-

tional time constraints. Hypotheses for why these distributions failed to converge during

this work include:

• Insufficient experimental data available to constrain parameter priors and allow con-

vergence in a reasonable amount of time. The generic parameter priors selected

are quite broad, spanning more than ten orders of magnitude in some cases (such

as for generic k f values, which are known to span this range biologically [62]). A

recent article in Nature Protocols [163] describes a process for generating informa-

tive literature-based systems biology model priors that focuses largely on centrally

massed, heavy-tailed priors. The authors suggest the use of such priors even for

parameters without literature values, in which case priors are based on a generic pa-

rameter type (such as a k f). Rigorous application of their process using the already

curated set of literature-based parameter values discussed in this work could yield

sufficient constraints to generate converged distributions for all parameters. It is also

possible that convergence would be theoretically possible but only with sampling so

long as to be essentially infinite, in which case MCMC methods that adapt more

quickly than those available now would need to be developed and applied to this and

similar problems.

• Possible bimodality in some parameters, causing certain chains to become stuck in

particular modes and leading to failure of convergence checks (this behavior appears

to be a possibility in the unconverged parameter shown in Fig. 3.17).

• Parameters in EARM that require violation of physiologically relevant ranges in or-

119

der to fit experimental data; note that certain parameters (i.e. Fig. 3.16) that did

converge with the added experimental and predictive constraints appear to be most

probable on the edges of the boundaries set by the uniform prior. The parameter prior

setting protocol discussed above [163] specifically advises against uniform priors be-

cause of the typical lack of such hard boundaries in actual biological systems. The

parameter in Fig. 3.16 is a k f and therefore the upper boundary of the prior is set by

diffusion-limited association; converged values along this boundary could indicate

that EARM requires values above the diffusion limit for this parameter in order to

adequately reproduce experimental data, which could further suggest potential issues

with the model itself.

Note that these possible explanations are not mutually exclusive. Future advances in

superior adaptive MCMC methods, increased experimental data availability, and (perhaps,

if the third possibility is an issue) greater accuracy in EARM itself could make achieving

convergence possible, but fall outside the scope of this work.

8.2.2 The COX-2 Reaction Model

Further development of CORM could proceed in several directions:

• The addition of drug modules for COX-2 inhibitors with different binding modalities,

including aspirin, ibuprofen, and others, as well as hypothetical drugs designed for

maximum perturbation of the system.

• Upstream expansion of CORM to include synthesis of substrates, which introduces

interactions both with dietary fatty acid intake and cellular phospholipids from which

AA and 2-AG are cleaved.

• Downstream expansion of CORM to include specific PG and PG-Gs and their con-

verting enzymes; because different prostaglandins can have opposite effects (on e.g.

inflammation) this is key for tying CORM to an actual phenotypic outcome, rather

120

than the generic all prostaglandin proxy currently in use. Furthermore, different

tissue types heterogeneously express the different prostaglandin synthases and the

receptors that bind them to mediate downstream effects, meaning this effort is likely

to create a more accurate picture of the actual biological function in vivo rather than

a simplified ”average” picture across all tissues.

• Addition of other substrate and non-substrate regulators that bind COX-2. This com-

plexity is difficult to measure in vivo or recreate in vitro, making it ideal for compu-

tational modeling.

Finally, a sensitivity analysis with CORM kinetic parameters and protein levels as in-

puts with a phenotypic outcome such as inflammation (as discussed above) as an output

would be a useful means to probe the key drivers of system behavior and translate the

model into actionable insights. The sensitivity analysis described in Chapter 6 represents a

first step towards this goal.

121

BIBLIOGRAPHY

[1] Michelle M Mitchener, Daniel J Hermanson, Erin M Shockley, H Alex Brown,

Craig W Lindsley, Jeff Reese, Carol A Rouzer, Carlos F Lopez, and Lawrence J

Marnett. Competition and allostery govern substrate selectivity of cyclooxygenase-

2. Proceedings of the National Academy of Sciences of the United States of America,

112(40):12366–12371, October 2015.

[2] Erin M Shockley, Jasper A Vrugt, and Carlos F Lopez. PyDREAM: high-

dimensional parameter inference for biological models in python. Bioinformatics,

18:343, 2017.

[3] Sabrina L Spencer, Suzanne Gaudet, John G Albeck, John M Burke, and Peter K

Sorger. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis.

Nature, 459(7245):428–432, May 2009.

[4] Lorenz Adlung, Sandip Kar, Marie-Christine Wagner, Bin She, Sajib Chakraborty,

Jie Bao, Susen Lattermann, Melanie Boerries, Hauke Busch, Patrick Wuchter, An-

thony D Ho, Jens Timmer, Marcel Schilling, Thomas Höfer, and Ursula Klingmüller.

Protein abundance of AKT and ERK pathway components governs cell type-specific

regulation of proliferation. Molecular Systems Biology, 13(1):904, January 2017.

[5] Hoda Eydgahi, William W Chen, Jeremy L Muhlich, Dennis Vitkup, John N Tsitsik-

lis, and Peter K Sorger. Properties of cell death models calibrated and compared us-

ing Bayesian approaches. Molecular Systems Biology, 9(1):644–644, January 2013.

[6] Tian-Rui Xu, Vladislav Vyshemirsky, Amélie Gormand, Alex von Kriegsheim,

Mark Girolami, George S Baillie, Dominic Ketley, Allan J Dunlop, Graeme Mil-

ligan, Miles D Houslay, and Walter Kolch. Inferring signaling pathway topologies

122

from multiple perturbation measurements of specific biochemical species. Science

Signaling, 3(113):ra20–ra20, March 2010.

[7] Birgit Schoeberl, Emily A Pace, Jonathan B Fitzgerald, Brian D Harms, Lihui Xu,

Lin Nie, Bryan Linggi, Ashish Kalra, Violette Paragas, Raghida Bukhalid, Viara

Grantcharova, Neeraj Kohli, Kip A West, Magdalena Leszczyniecka, Michael J

Feldhaus, Arthur J Kudla, and Ulrik B Nielsen. Therapeutically Targeting ErbB3:

A Key Node in Ligand-Induced Activation of the ErbB Receptor–PI3K Axis. Sci.

Signal., 2(77):ra31–ra31, June 2009.

[8] Lily A Chylek, Leonard A Harris, James R Faeder, and William S Hlavacek. Mod-

eling for (physical) biologists: an introduction to the rule-based approach. Physical

Biology, 12(4):045007, July 2015.

[9] Ryan Suderman and Eric J Deeds. Machines vs. ensembles: effective MAPK signal-

ing through heterogeneous sets of protein complexes. PLoS computational biology,

9(10):e1003278, 2013.

[10] Michael W Sneddon, James R Faeder, and Thierry Emonet. Efficient modeling, sim-

ulation and coarse-graining of biological complexity with NFsim. Nature Methods,

8(2):177–183, February 2011.

[11] Leonard A Harris, Justin S Hogg, José-Juan Tapia, John A P Sekar, Sanjana Gupta,

Ilya Korsunsky, Arshi Arora, Dipak Barua, Robert P Sheehan, and James R Faeder.

BioNetGen 2.2: advances in rule-based modeling. Bioinformatics, 32(21):3366–

3368, October 2016.

[12] Carlos F Lopez, Jeremy L Muhlich, John A Bachman, and Peter K Sorger. Pro-

gramming biological models in Python using PySB. Molecular Systems Biology,

9(1):646–646, January 2013.

123

[13] Boris N Kholodenko, Oleg V Demin, Gisela Moehren, and Jan B Hoek. Quantifica-

tion of Short Term Signaling by the Epidermal Growth Factor Receptor. Journal of

Biological Chemistry, 274(42):30169–30181, October 1999.

[14] Julio R Banga. Optimization in computational systems biology. BMC Systems Biol-

ogy, 2(1):47, May 2008.

[15] Carmen G Moles, Pedro Mendes, and Julio R Banga. Parameter Estimation in Bio-

chemical Pathways: A Comparison of Global Optimization Methods. Genome Re-

search, 13(11):2467–2474, November 2003.

[16] J W Zwolak, J J Tyson, and L T Watson. Globally optimised parameters for a

model of mitotic control in frog egg extracts. IEE Proceedings - Systems Biology,

152(2):81–92, June 2005.

[17] P Mendes and D Kell. Non-linear optimization of biochemical pathways: ap-

plications to metabolic engineering and parameter estimation. Bioinformatics,

14(10):869–883, 1998.

[18] William W Chen, Birgit Schoeberl, Paul J Jasper, Mario Niepel, Ulrik B Nielsen,

Douglas A Lauffenburger, and Peter K Sorger. Input–output behavior of ErbB sig-

naling pathways as revealed by a mass action model trained against dynamic data.

Molecular Systems Biology, 5:239, January 2009.

[19] Ivan Arisi, Antonino Cattaneo, and Vittorio Rosato. Parameter estimate of signal

transduction pathways. BMC Neuroscience, 7(1):S6, October 2006.

[20] Yves Fomekong-Nanfack, Jaap A Kaandorp, and Joke Blom. Efficient parameter es-

timation for spatio-temporal models of pattern formation: case study of Drosophila

melanogaster. Bioinformatics, 23(24):3356–3363, December 2007.

124

[21] Kuan-Yao Tsai and Feng-Sheng Wang. Evolutionary optimization with data collo-

cation for reverse engineering of biological networks. Bioinformatics, 21(7):1180–

1188, April 2005.

[22] Brandon R Thomas, Lily A Chylek, Joshua Colvin, Suman Sirimulla, Andrew H A

Clayton, William S Hlavacek, and Richard G Posner. BioNetFit: a fitting tool com-

patible with BioNetGen, NFsim, and distributed computing environments. Bioinfor-

matics, 32(5):btv655–800, November 2015.

[23] Maria Rodriguez-Fernandez, Jose A Egea, and Julio R Banga. Novel metaheuristic

for parameter estimation in nonlinear dynamic biological systems. BMC Bioinfor-

matics, 7(1):483, November 2006.

[24] Andreas Raue, Marcel Schilling, Julie Bachmann, Andrew Matteson, Max Schelke,

Daniel Kaschek, Sabine Hug, Clemens Kreutz, Brian D Harms, Fabian J Theis, Ur-

sula Klingmüller, and Jens Timmer. Lessons Learned from Quantitative Dynamical

Modeling in Systems Biology. PLoS ONE, 8(9):e74335, September 2013.

[25] Jeffrey D Orth, Ines Thiele, and Bernhard Palsson. What is flux balance analysis?

Nature Biotechnology, 28(3):245–248, March 2010.

[26] H Rabitz, M Kramer, and D Dacol. Sensitivity Analysis in Chemical Kinetics.

dx.doi.org, 34(1):419–461, November 2003.

[27] Z Zi. Sensitivity analysis approaches applied to systems biology models. IET Sys-

tems Biology, 5(6):336–346, November 2011.

[28] C E Shannon. A Mathematical Theory of Communication. The Bell System Techni-

cal Journal, 27:379–423– 623–656, October 1948.

[29] Raymond Cheong, Alex Rhee, Chiaochun Joanne Wang, Ilya Nemenman, and An-

125

dre Levchenko. Information transduction capacity of noisy biochemical signaling

networks. Science, 334(6054):354–358, October 2011.

[30] Jangir Selimkhanov, Brooks Taylor, Jason Yao, Anna Pilko, John Albeck, Alexan-

der Hoffmann, Lev Tsimring, and Roy Wollman. Systems biology. Accurate in-

formation transmission through dynamic biochemical signaling networks. Science,

346(6215):1370–1373, December 2014.

[31] Ryan Suderman, John A Bachman, Adam Smith, Peter K Sorger, and Eric J Deeds.

Fundamental trade-offs between information flow in single cells and cellular pop-

ulations. Proceedings of the National Academy of Sciences of the United States of

America, 114(22):5755–5760, May 2017.

[32] Mireille Alhouayek and Giulio G Muccioli. COX-2-derived endocannabinoid

metabolites as novel inflammatory mediators. Trends in Pharmacological Sciences,

35(6):284–292, June 2014.

[33] Carol A Rouzer and Lawrence J Marnett. Endocannabinoid Oxygenation by

Cyclooxygenases, Lipoxygenases, and Cytochromes P450: Cross-Talk between

the Eicosanoid and Endocannabinoid Signaling Pathways. Chemical Reviews,

111(10):5899–5921, September 2011.

[34] C S Williams, M Mann, and R N DuBois. The role of cyclooxygenases in inflam-

mation, cancer, and development. Oncogene, 18(55):7908–7916, December 1999.

[35] Vincenzo Di Marzo, Nephi Stella, and Andreas Zimmer. Endocannabinoid sig-

nalling and the deteriorating brain. Nature reviews. Neuroscience, 16(1):30–42, Jan-

uary 2015.

[36] Liang Dong, Narayan P Sharma, Brice J Jurban, and William L Smith. Pre-existent

asymmetry in the human cyclooxygenase-2 sequence homodimer. The Journal of

biological chemistry, 288(40):28641–28655, October 2013.

126

[37] Liang Dong, Alex J Vecchio, Narayan P Sharma, Brice J Jurban, Michael G

Malkowski, and William L Smith. Human cyclooxygenase-2 is a sequence ho-

modimer that functions as a conformational heterodimer. The Journal of biological

chemistry, 286(21):19035–19046, May 2011.

[38] R J Kulmacz and W E Lands. Prostaglandin H synthase. Stoichiometry of heme

cofactor. Journal of Biological Chemistry, 259(10):6358–6363, May 1984.

[39] Shalley N Kudalkar, Spyros P Nikas, Philip J Kingsley, Shu Xu, James J Galligan,

Carol A Rouzer, Surajit Banerjee, Lipin Ji, Marsha R Eno, Alexandros Makriyannis,

and Lawrence J Marnett. 13-Methylarachidonic Acid Is a Positive Allosteric Mod-

ulator of Endocannabinoid Oxygenation by Cyclooxygenase. Journal of Biological

Chemistry, 290(12):7897–7909, March 2015.

[40] R J Kulmacz and W E Lands. Stoichiometry and kinetics of the interaction of

prostaglandin H synthase with anti-inflammatory agents. Journal of Biological

Chemistry, 260(23):12572–12578, October 1985.

[41] Gilad Rimon, Ranjinder S Sidhu, D Adam Lauver, Jullia Y Lee, Narayan P Sharma,

Chong Yuan, Ryan A Frieler, Raymond C Trievel, Benedict R Lucchesi, and

William L Smith. Coxibs interfere with the action of aspirin by binding tightly to one

monomer of cyclooxygenase-1. Proceedings of the National Academy of Sciences

of the United States of America, 107(1):28–33, January 2010.

[42] Chong Yuan, Ranjinder S Sidhu, Dmitry V Kuklev, Yuji Kado, Masayuki Wada, In-

seok Song, and William L Smith. Cyclooxygenase Allosterism, Fatty Acid-mediated

Cross-talk between Monomers of Cyclooxygenase Homodimers. Journal of Biolog-

ical Chemistry, 284(15):10046–10055, April 2009.

[43] Liang Dong, Hechang Zou, Chong Yuan, Yu H Hong, Dmitry V Kuklev, and

William L Smith. Different Fatty Acids Compete with Arachidonic Acid for Binding

127

to the Allosteric or Catalytic Subunits of Cyclooxygenases to Regulate Prostanoid

Synthesis. The Journal of biological chemistry, 291(8):4069–4078, February 2016.

[44] C D Funk. Prostaglandins and leukotrienes: advances in eicosanoid biology. Sci-

ence, 294(5548):1871–1875, November 2001.

[45] Carol A Rouzer and Lawrence J Marnett. Mechanism of free radical oxygenation of

polyunsaturated fatty acids by cyclooxygenases. Chemical Reviews, 103(6):2239–

2304, June 2003.

[46] W L Smith, D L DeWitt, and R M Garavito. Cyclooxygenases: structural, cellular,

and molecular biology. Annual review of biochemistry, 69(1):145–182, 2000.

[47] J A Vrugt and C J F Ter Braak. Differential evolution Markov chain with snooker

updater and fewer chains. Statistics and Computing, 18(4):435–446, 2008.

[48] Jasper A Vrugt and Eric Laloy. High-dimensional posterior exploration of hy-

drologic models using multiple-try DREAM (ZS)and high-performance computing.

Water Resources Research, 48(1):W01526, 2012.

[49] William M Bolstad. Introduction to Bayesian Statistics. Bolstad/Bayesian Statistics.

John Wiley & Sons, Inc., Hoboken, NJ, USA, January 2005.

[50] Roger Eckhardt. Stan ulam, john von neumann, and the monte carlo method. Los

Alamos Science, 1987.

[51] David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov Chains and

Mixing Times. American Mathematical Soc., 2008.

[52] Christophe Andrieu and Johannes Thoms. A tutorial on adaptive MCMC. Statistics

and Computing, 18(4):343–373, 2008.

128

[53] Jasper A Vrugt. Markov chain Monte Carlo simulation using the DREAM software

package: Theory, concepts, and MATLAB implementation. Environmental Mod-

elling & Software, 75:273–316, January 2016.

[54] Jasper A Vrugt, Cajo J F ter Braak, Martyn P Clark, James M Hyman, and Bruce A

Robinson. Treatment of input uncertainty in hydrologic modeling: Doing hydrology

backward with Markov chain Monte Carlo simulation. Water Resources Research,

44(12):n/a–n/a, December 2008.

[55] J A Vrugt, CJF Ter Braak, and CGH Diks. Accelerating Markov chain Monte Carlo

simulation by differential evolution with self-adaptive randomized subspace sam-

pling. International Journal of . . . , 10(3), 2009.

[56] Jun S Liu, Faming Liang, and Wing Hung Wong. The Multiple-Try Method and

Local Optimization in Metropolis Sampling. Journal of the American Statistical

Association, 95(449):121–134, March 2000.

[57] J F Morrison. Kinetics of the reversible inhibition of enzyme-catalysed reactions by

tight-binding inhibitors. Biochimica et biophysica acta, 185(2):269–286, 1969.

[58] L Michaelis and M L Menten. Die kinetik der invertinwirkung. Biochemistry

Zeitung, 49:333–369, 1913.

[59] Alan E Gelfand and Adrian F M Smith. Sampling-Based Approaches to Calculating

Marginal Densities. Journal of the American Statistical Association, 85(410):398–

409, June 1990.

[60] A Gelman and D B Rubin. A single series from the Gibbs sampler provides a false

sense of security. In J Bernardo, editor, Bayesian Statistics. 1992.

[61] Orane Guillaume-Gentil, Rashel V Grindberg, Romain Kooger, Livie Dorwling-

Carter, Vincent Martinez, Dario Ossola, Martin Pilhofer, Tomaso Zambelli, and

129

Julia A Vorholt. Tunable Single-Cell Extraction for Molecular Analyses. Cell,

166(2):506–516, July 2016.

[62] Sanbo Qin, Xiaodong Pang, and Huan-Xiang Zhou. Automated Prediction of Protein

Association Rate Constants. Structure, 19(12):1744–1751, December 2011.

[63] Ramzi Alsallaq and Huan-Xiang Zhou. Electrostatic rate enhancement and transient

complex of protein–protein association. Proteins: Structure, Function, and Bioin-

formatics, 71(1):320–335, 2008.

[64] A Truneh, S Sharma, C Silverman, S Khandekar, M P Reddy, K C Deen, M M

McLaughlin, S M Srinivasula, G P Livi, L A Marshall, E S Alnemri, W V Williams,

and M L Doyle. Temperature-sensitive differential affinity of TRAIL for its re-

ceptors. DR5 is the highest affinity receptor. Journal of Biological Chemistry,

275(30):23319–23325, July 2000.

[65] Margarita Garcia-Calvo, Erin P Peterson, Dita M Rasper, John P Vaillancourt,

Robert Zamboni, Donald W Nicholson, and Nancy A Thornberry. Purification and

catalytic properties of human caspase family members. , Published online: 08 April

1999; — doi:10.1038/sj.cdd.4400497, 6(4):362–369, April 1999.

[66] Hua Zou, Ruomei Yang, Junshan Hao, Jean Wang, Chaohong Sun, Stephen W Fesik,

Joe C Wu, Kevin J Tomaselli, and Robert C Armstrong. Regulation of the Apaf-

1/caspase-9 apoptosome by caspase-3 and XIAP. Journal of Biological Chemistry,

278(10):8091–8098, March 2003.

[67] Kelly M Boatright, Martin Renatus, Fiona L Scott, Sabina Sperandio, Hwain Shin,

Irene M Pedersen, Jean-Ehrland Ricci, Wade A Edris, Daniel P Sutherlin, Douglas R

Green, and Guy S Salvesen. A Unified Model for Apical Caspase Activation. Molec-

ular Cell, 11(2):529–541, February 2003.

130

[68] C Sun, M Cai, R P Meadows, N Xu, A H Gunasekera, J Herrmann, J C Wu, and

S W Fesik. NMR structure and mutagenesis of the third Bir domain of the inhibitor

of apoptosis protein XIAP. Journal of Biological Chemistry, 275(43):33777–33781,

October 2000.

[69] Z Liu, C Sun, E T Olejniczak, R P Meadows, S F Betz, T Oost, J Herrmann, J C Wu,

and S W Fesik. Structural basis for binding of Smac/DIABLO to the XIAP BIR3

domain. Nature, 408(6815):1004–1008, December 2000.

[70] S Riedl. Structural Basis for the Inhibition of Caspase-3 by XIAP. Cell, 104(5):791–

800, March 2001.

[71] Q L Deveraux, R Takahashi, G S Salvesen, and J C Reed. X-linked IAP is a direct

inhibitor of cell-death proteases. Nature, 388(6639):300–304, July 1997.

[72] Y Suzuki, Y Nakabayashi, K Nakata, J C Reed, and R Takahashi. X-linked inhibitor

of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. Journal of

Biological Chemistry, 276(29):27058–27063, July 2001.

[73] John Silke, Paul G Ekert, Catherine L Day, Christine J Hawkins, Manuel Baca,

Joanne Chew, Miha Pakusch, Anne M Verhagen, and David L Vaux. Direct inhibi-

tion of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. The EMBO

Journal, 20(12):3114–3123, June 2001.

[74] Fiona L Scott, Jean-Bernard Denault, Stefan J Riedl, Hwain Shin, Martin Rena-

tus, and Guy S Salvesen. XIAP inhibits caspase-3 and -7 using two binding sites:

evolutionarily conserved mechanism of IAPs. The EMBO Journal, 24(3):645–655,

February 2005.

[75] Cristina Pop, Brett Feeney, Ashutosh Tripathy, and A Clay Clark. Mutations in the

Procaspase-3 Dimer Interface Affect the Activity of the Zymogen †. Biochemistry,

42(42):12311–12320, October 2003.

131

[76] Sanjeevan Shivakumar, Martin Kurylowicz, Nehad Hirmiz, Yaseen Manan, Ouided

Friaa, Aisha Shamas-Din, Pourya Masoudian, Brian Leber, David W Andrews,

and Cecile Fradin. The Proapoptotic Protein tBid Forms Both Superficially Bound

and Membrane-Inserted Oligomers. Biophysical Journal, 106(10):2085–2095, May

2014.

[77] Aisha Shamas-Din, Scott Bindner, Weijia Zhu, Yehudit Zaltsman, Clinton Campbell,

Atan Gross, Brian Leber, David W Andrews, and Cecile Fradin. tBid undergoes

multiple conformational changes at the membrane required for Bax activation. The

Journal of biological chemistry, 288(30):22111–22127, July 2013.

[78] Lieven P Billen, Candis L Kokoski, Jonathan F Lovell, Brian Leber, and David W

Andrews. Bcl-XL Inhibits Membrane Permeabilization by Competing with Bax.

PLOS Biol, 6(6):e147, June 2008.

[79] Loren D Walensky, Kenneth Pitter, Joel Morash, Kyoung Joon Oh, Scott Barbuto,

Jill Fisher, Eric Smith, Gregory L Verdine, and Stanley J Korsmeyer. A stapled

BID BH3 helix directly binds and activates BAX. Molecular Cell, 24(2):199–210,

October 2006.

[80] Tudor Moldoveanu, Christy R Grace, Fabien Llambi, Amanda Nourse, Patrick

Fitzgerald, Kalle Gehring, Richard W Kriwacki, and Douglas R Green. BID-induced

structural changes in BAK promote apoptosis. Nature Structural & Molecular Biol-

ogy, 20(5):589–597, May 2013.

[81] Michael Certo, Victoria Del Gaizo Moore, Mari Nishino, Guo Wei, Stanley Ko-

rsmeyer, Scott A Armstrong, and Anthony Letai. Mitochondria primed by death

signals determine cellular addiction to antiapoptotic BCL-2 family members. Can-

cer Cell, 9(5):351–365, January 2006.

[82] Bonsu Ku, Chengyu Liang, Jae U Jung, and Byung-Ha Oh. Evidence that inhibition

132

of BAX activation by BCL-2 involves its tight and preferential interaction with the

BH3 domain of BAX. Cell Research, 21(4):627–641, April 2011.

[83] Anthony Letai, Michael C Bassik, Loren D Walensky, Mia D Sorcinelli, Solly

Weiler, and Stanley J Korsmeyer. Distinct BH3 domains either sensitize or acti-

vate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell,

2(3):183–192, September 2002.

[84] Ariele Viacava Follis, Fabien Llambi, Li Ou, Katherine Baran, Douglas R Green,

and Richard W Kriwacki. The DNA-binding domain mediates both nuclear and

cytosolic functions of p53. Nature Structural & Molecular Biology, 21(6):535–543,

June 2014.

[85] Tomomi Kuwana, Lisa Bouchier-Hayes, Jerry E Chipuk, Christine Bonzon, Bar-

bara A Sullivan, Douglas R Green, and Donald D Newmeyer. BH3 domains of BH3-

only proteins differentially regulate Bax-mediated mitochondrial membrane perme-

abilization both directly and indirectly. Molecular Cell, 17(4):525–535, February

2005.

[86] Dayong Zhai, Chaofang Jin, Ziwei Huang, Arnold C Satterthwait, and John C Reed.

Differential regulation of Bax and Bak by anti-apoptotic Bcl-2 family proteins Bcl-B

and Mcl-1. Journal of Biological Chemistry, 283(15):9580–9586, April 2008.

[87] T Scott Chen, Hector Palacios, and Amy E Keating. Structure-Based Redesign of

the Binding Specificity of Anti-Apoptotic Bcl-xL. Journal of Molecular Biology,

425(1):171–185, January 2013.

[88] Sean T Campbell, Kevin J Carlson, Carl J Buchholz, Mark R Helmers, and Indraneel

Ghosh. Mapping the BH3 Binding Interface of Bcl-x L, Bcl-2, and Mcl-1 Using

Split-Luciferase Reassembly. Biochemistry, 54(16):2632–2643, April 2015.

133

[89] J Mongkolsapaya, J M Grimes, N Chen, X N Xu, D I Stuart, E Y Jones, and

G R Screaton. Structure of the TRAIL-DR5 complex reveals mechanisms confer-

ring specificity in apoptotic initiation. Nature structural biology, 6(11):1048–1053,

November 1999.

[90] S G Hymowitz, H W Christinger, G Fuh, M Ultsch, M O’Connell, R F Kelley,

A Ashkenazi, and A M de Vos. Triggering cell death: the crystal structure of

Apo2L/TRAIL in a complex with death receptor 5. Molecular Cell, 4(4):563–571,

October 1999.

[91] S S Cha, B J Sung, Y A Kim, Y L Song, H J Kim, S Kim, M S Lee, and B-

H Oh. Crystal structure of TRAIL-DR5 complex identifies a critical role of the

unique frame insertion in conferring recognition specificity. Journal of Biological

Chemistry, 275(40):31171–31177, October 2000.

[92] Qi Hu, Di Wu, Wen Chen, Zhen Yan, Chuangye Yan, Tianxi He, Qionglin Liang,

and Yigong Shi. Molecular determinants of caspase-9 activation by the Apaf-1 apop-

tosome. Proceedings of the National Academy of Sciences of the United States of

America, 111(46):16254–16261, November 2014.

[93] Eric N Shiozaki, Jijie Chai, Daniel J Rigotti, Stefan J Riedl, Pingwei Li, Srinivasa M

Srinivasula, Emad S Alnemri, Robert Fairman, and Yigong Shi. Mechanism of

XIAP-mediated inhibition of caspase-9. Molecular Cell, 11(2):519–527, February

2003.

[94] G Wu, J Chai, T L Suber, J W Wu, C Du, X Wang, and Y Shi. Structural basis of IAP

recognition by Smac/DIABLO. Nature, 408(6815):1008–1012, December 2000.

[95] A Y Robin, K Krishna Kumar, D Westphal, A Z Wardak, G V Thompson, G Dew-

son, P M Colman, and P E Czabotar. Crystal structure of Bax bound to the BH3

134

peptide of Bim identifies important contacts for interaction. Cell Death and Dis-

ease, 6(7):e1809–e1809, July 2015.

[96] Peter E Czabotar, Dana Westphal, Grant Dewson, Stephen Ma, Colin Hockings,

W Douglas Fairlie, Erinna F Lee, Shenggen Yao, Adeline Y Robin, Brian J Smith,

David C S Huang, Ruth M Kluck, Jerry M Adams, and Peter M Colman. Bax crystal

structures reveal how BH3 domains activate Bax and nucleate its oligomerization to

induce apoptosis. Cell, 152(3):519–531, January 2013.

[97] Sreekanth Rajan, Minjoo Choi, Kwanghee Baek, and Ho Sup Yoon. Bh3 induced

conformational changes in Bcl-Xl revealed by crystal structure and comparative

analysis. Proteins: Structure, Function, and Bioinformatics, 83(7):1262–1272, July

2015.

[98] Qian Liu, Tudor Moldoveanu, Tara Sprules, Edna Matta-Camacho, Nura Mansur-

Azzam, and Kalle Gehring. Apoptotic regulation by MCL-1 through heterodimer-

ization. The Journal of biological chemistry, 285(25):19615–19624, June 2010.

[99] Peter E Czabotar, Erinna F Lee, Geoff V Thompson, Ahmad Z Wardak, W Douglas

Fairlie, and Peter M Colman. Mutation to Bax beyond the BH3 domain disrupts

interactions with pro-survival proteins and promotes apoptosis. The Journal of bio-

logical chemistry, 286(9):7123–7131, March 2011.

[100] M Sattler, H Liang, D Nettesheim, R P Meadows, J E Harlan, M Eberstadt, H S

Yoon, S B Shuker, B S Chang, A J Minn, C B Thompson, and S W Fesik. Structure of

Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science,

275(5302):983–986, February 1997.

[101] Piotr Wysoczanski, Robert J Mart, E Joel Loveridge, Christopher Williams, Sara B-

M Whittaker, Matthew P Crump, and Rudolf K Allemann. NMR solution structure

135

of a photoswitchable apoptosis activating Bak peptide bound to Bcl-xL. Journal of

the American Chemical Society, 134(18):7644–7647, May 2012.

[102] Catherine L Day, Callum Smits, F Cindy Fan, Erinna F Lee, W Douglas Fairlie, and

Mark G Hinds. Structure of the BH3 domains from the p53-inducible BH3-only

proteins Noxa and Puma in complex with Mcl-1. Journal of Molecular Biology,

380(5):958–971, July 2008.

[103] Peter E Czabotar, Erinna F Lee, Mark F van Delft, Catherine L Day, Brian J Smith,

David C S Huang, W Douglas Fairlie, Mark G Hinds, and Peter M Colman. Struc-

tural insights into the degradation of Mcl-1 induced by BH3 domains. Proceedings

of the National Academy of Sciences, 104(15):6217–6222, April 2007.

[104] Stefan Schuster and Claus Hilgetag. On elementary flux modes in biochemical re-

action systems at steady state. Journal of Biological Systems, 02(02):165–182, June

1994.

[105] Jeremy S Edwards, Markus Covert, and Bernhard Palsson. Metabolic modelling of

microbes: the flux-balance approach. Environmental Microbiology, 4(3):133–140,

March 2002.

[106] A Hagberg, P Swart, and D S Chult. Exploring network structure, dynamics, and

function using NetworkX. Proceedings of the th Python in Science Conference

SciPy, 2008.

[107] Silvia D M Santos, Peter J Verveer, and Philippe I H Bastiaens. Growth factor-

induced MAPK network topology shapes Erk response determining PC-12 cell fate.

Nature Cell Biology, 9(3):324–330, March 2007.

[108] Toby Lawrence. The nuclear factor NF-kappaB pathway in inflammation. Cold

Spring Harbor Perspectives in Biology, 1(6):a001651–a001651, December 2009.

136

[109] Doriane Lorendeau, Stefan Christen, Gianmarco Rinaldi, and Sarah-Maria Fendt.

Metabolic control of signalling pathways and metabolic auto-regulation. Biology of

the cell, 107(8):251–272, August 2015.

[110] Tujin Shi, Mario Niepel, Jason E McDermott, Yuqian Gao, Carrie D Nicora,

William B Chrisler, Lye M Markillie, Vladislav A Petyuk, Richard D Smith, Karin D

Rodland, Peter K Sorger, Wei-Jun Qian, and H Steven Wiley. Conservation of

protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK

pathway. Science Signaling, 9(436):rs6–rs6, July 2016.

[111] Sui Huang. Non-genetic heterogeneity of cells in development: more than just noise.

Development (Cambridge, England), 136(23):3853–3862, December 2009.

[112] Adam James Waite, Nicholas W Frankel, Yann S Dufour, Jessica F Johnston, Junji-

ajia Long, and Thierry Emonet. Non-genetic diversity modulates population perfor-

mance. Molecular Systems Biology, 12(12):895, December 2016.

[113] Simon Mitchell, Koushik Roy, Thomas A Zangle, and Alexander Hoffmann. Non-

genetic origins of cell-to-cell variability in B lymphocyte proliferation. Pro-

ceedings of the National Academy of Sciences of the United States of America,

115(12):E2888–E2897, March 2018.

[114] Jia-Yun Chen, Jia-Ren Lin, Karlene A Cimprich, and Tobias Meyer. A two-

dimensional ERK-AKT signaling code for an NGF-triggered cell-fate decision.

Molecular Cell, 45(2):196–209, January 2012.

[115] G E Briggs and J B Haldane. A Note on the Kinetics of Enzyme Action. Biochemical

Journal, 19(2):338–339, 1925.

[116] Herschel Rabitz. Global Sensitivity Analysis for Systems with Independent and/or

Correlated Inputs. Procedia - Social and Behavioral Sciences, 2(6):7587–7589,

2010.

137

[117] Genyuan Li, Herschel Rabitz, Paul E Yelvington, Oluwayemisi O Oluwole, Fred

Bacon, Charles E Kolb, and Jacqueline Schoendorf. Global Sensitivity Analysis

for Systems with Independent and/or Correlated Inputs. The Journal of Physical

Chemistry A, 114(19):6022–6032, May 2010.

[118] Genyuan Li, Xi Xing, William Welsh, and Herschel Rabitz. High dimensional

model representation constructed by support vector regression. I. Independent vari-

ables with known probability distributions. Journal of Mathematical Chemistry,

55(1):278–303, 2016.

[119] Andrea Saltelli and Stefano Tarantola. On the Relative Importance of Input Fac-

tors in Mathematical Models. Journal of the American Statistical Association,

97(459):702–709, September 2002.

[120] Gartner group. Pattern-Based Strategy: getting value from Big Data , July 2011.

[121] IBM. Extracting business value from the 4 V’s of big data.

[122] H V Jagadish. Big Data and Science: Myths and Reality. Big Data Research,

2(2):49–52, June 2015.

[123] Michael R Stratton, Peter J Campbell, and P Andrew Futreal. The cancer genome.

Nature, 458(7239):719–724, April 2009.

[124] Jay Shendure and Hanlee Ji. Next-generation DNA sequencing. Nature Biotechnol-

ogy, 26(10):1135–1145, October 2008.

[125] Michael L Metzker. Sequencing technologies — the next generation. Nature Re-

views Genetics, 11(1):31–46, December 2009.

[126] Travis B Murdoch and Allan S Detsky. The Inevitable Application of Big Data to

Health Care. JAMA, 309(13):1351, April 2013.

138

[127] Clifford Lynch. How do your data grow? Nature, 455(7209):28–29, September

2008.

[128] Andrew R Joyce and Bernhard Ø Palsson. The model organism as a system: inte-

grating ’omics’ data sets. Nature Reviews Molecular Cell Biology, 7(3):198–210,

March 2006.

[129] S T Rosenbloom, J C Denny, H Xu, N Lorenzi, W W Stead, and K B Johnson. Data

from clinical notes: a perspective on the tension between structure and flexible doc-

umentation. Journal of the American Medical Informatics Association, 18(2):181–

186, March 2011.

[130] Reality check on reproducibility. Nature, 533(7604):437–437, May 2016.

[131] Jake Luo, Min Wu, Deepika Gopukumar, and Yiqing Zhao. Big Data Application in

Biomedical Research and Health Care: A Literature Review:. Biomedical Informat-

ics Insights, 8:BII.S31559, January 2016.

[132] Cuiping Pan, Gregory McInnes, Nicole Deflaux, Michael Snyder, Jonathan Bing-

ham, Somalee Datta, and Philip S Tsao. Cloud-based interactive analytics for ter-

abytes of genomic variants data. Bioinformatics, 33(23):3709–3715, December

2017.

[133] Sheila M Reynolds, Michael Miller, Phyliss Lee, Kalle Leinonen, Suzanne M Pa-

quette, Zack Rodebaugh, Abigail Hahn, David L Gibbs, Joseph Slagel, William J

Longabaugh, Varsha Dhankani, Madelyn Reyes, Todd Pihl, Mark Backus, Matthew

Bookman, Nicole Deflaux, Jonathan Bingham, David Pot, and Ilya Shmulevich. The

ISB Cancer Genomics Cloud: A Flexible Cloud-Based Platform for Cancer Ge-

nomics Research. Cancer Research, 77(21):e7–e10, November 2017.

[134] Nick Weber, David Liou, Jennifer Dommer, Philip MacMenamin, Mariam

Quiñones, Ian Misner, Andrew J Oler, Joe Wan, Lewis Kim, Meghan Coakley Mc-

139

Carthy, Samuel Ezeji, Karlynn Noble, and Darrell E Hurt. Nephele: a cloud platform

for simplified, standardized and reproducible microbiome data analysis. Bioinfor-

matics, 34(8):1411–1413, April 2018.

[135] Michael A Cianfrocco, Indrajit Lahiri, Frank DiMaio, and Andres E Leschziner.

cryoem-cloud-tools: A software platform to deploy and manage cryo-EM jobs in

the cloud. Journal of structural biology, 203(3):230–235, September 2018.

[136] Abhinav Nellore, Leonardo Collado-Torres, Andrew E Jaffe, José Alquicira-

Hernández, Christopher Wilks, Jacob Pritt, James Morton, Jeffrey T Leek, and Ben

Langmead. Rail-RNA: scalable analysis of RNA-seq splicing and coverage. Bioin-

formatics, 33(24):4033–4040, December 2017.

[137] Tara M Madhyastha, Natalie Koh, Trevor K M Day, Moises Hernández-Fernández,

Austin Kelley, Daniel J Peterson, Sabreena Rajan, Karl A Woelfer, Jonathan Wolf,

and Thomas J Grabowski. Running Neuroimaging Applications on Amazon Web

Services: How, When, and at What Cost? Frontiers in neuroinformatics, 11:63,

2017.

[138] Jia Yu, Jochen Blom, Alexander Sczyrba, and Alexander Goesmann. Rapid pro-

tein alignment in the cloud: HAMOND combines fast DIAMOND alignments with

Hadoop parallelism. Journal of biotechnology, 257:58–60, September 2017.

[139] Daniel Castaño-Dı́ez. The Dynamo package for tomography and subtomogram aver-

aging: components for MATLAB, GPU computing and EC2 Amazon Web Services.

Acta crystallographica. Section D, Structural biology, 73(Pt 6):478–487, June 2017.

[140] Heath R Pardoe and Ruben Kuzniecky. NAPR: a Cloud-Based Framework for Neu-

roanatomical Age Prediction. Neuroinformatics, 16(1):43–49, January 2018.

[141] Yiqi Wang, Gen Li, Mark Ma, Fazhong He, Zhuo Song, Wei Zhang, and Chengkun

140

Wu. GT-WGS: an efficient and economic tool for large-scale WGS analyses based

on the AWS cloud service. BMC Genomics, 19(Suppl 1):959, January 2018.

[142] Dirk Merkel. Docker: lightweight Linux containers for consistent development and

deployment. Linux Journal, 2014(239):2, March 2014.

[143] D C Swinney, A Y Mak, J Barnett, and C S Ramesha. Differential allosteric regula-

tion of prostaglandin H synthase 1 and 2 by arachidonic acid. Journal of Biological

Chemistry, 272(19):12393–12398, May 1997.

[144] W Chen, T R Pawelek, and R J Kulmacz. Hydroperoxide dependence and coop-

erative cyclooxygenase kinetics in prostaglandin H synthase-1 and -2. Journal of

Biological Chemistry, 274(29):20301–20306, July 1999.

[145] Hechang Zou, Chong Yuan, Liang Dong, Ranjinder S Sidhu, Yu H Hong, Dmitry V

Kuklev, and William L Smith. Human cyclooxygenase-1 activity and its responses

to COX inhibitors are allosterically regulated by nonsubstrate fatty acids. Journal of

lipid research, 53(7):1336–1347, July 2012.

[146] Bernhard C Lechtenberg, Stefan M V Freund, and James A Huntington. An ensem-

ble view of thrombin allostery. Biological chemistry, 393(9):889–898, September

2012.

[147] Ruth Nussinov and Chung-Jung Tsai. Allostery in Disease and in Drug Discovery.

Cell, 153(2):293–305, April 2013.

[148] Carol A Rouzer and Lawrence J Marnett. Cyclooxygenases: structural and func-

tional insights. Journal of lipid research, 50 Suppl(Supplement):S29–34, April

2009.

[149] Liang Dong, Hechang Zou, Chong Yuan, Yu H Hong, Charis L Uhlson, Robert C

Murphy, and William L Smith. Interactions of 2-O-arachidonylglycerol ether and

141

ibuprofen with the allosteric and catalytic subunits of human COX-2. Journal of

lipid research, 57(6):1043–1050, June 2016.

[150] Carol A Rouzer, Susanne Tranguch, Haibin Wang, Hao Zhang, Sudhansu K Dey,

and Lawrence J Marnett. Zymosan-induced glycerylprostaglandin and prostaglandin

synthesis in resident peritoneal macrophages: roles of cyclo-oxygenase-1 and -2.

Biochemical Journal, 399(1):91–99, October 2006.

[151] Carol A Rouzer and Lawrence J Marnett. Glycerylprostaglandin Synthesis by Res-

ident Peritoneal Macrophages in Response to a Zymosan Stimulus. Journal of Bio-

logical Chemistry, 280(29):26690–26700, July 2005.

[152] Karen Seibert, Yan Zhang, Kathleen Leahy, Scott Hauser, Jaime Masferrer, and Peter

Isakson. Distribution of Cox-1 and Cox-2 in Normal and Inflamed Tissues. In

Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation

Injury 2, pages 167–170. Springer US, Boston, MA, 1997.

[153] A M Monjazeb. Arachidonic acid-induced gene expression in colon cancer cells.

Carcinogenesis, 27(10):1950–1960, August 2006.

[154] T Sugiura, S Kishimoto, S Oka, and M Gokoh. Biochemistry, pharmacology and

physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand.

Progress in Lipid Research, 45(5):405–446, September 2006.

[155] Christina C Leslie. Cytosolic phospholipase A2: physiological function and role in

disease. Journal of lipid research, 56(8):1386–1402, August 2015.

[156] B M Ignatowska-Jankowska, S Ghosh, M S Crowe, S G Kinsey, M J Niphakis,

R A Abdullah, Q Tao, S T O’ Neal, D M Walentiny, J L Wiley, B F Cravatt, and

A H Lichtman. In vivocharacterization of the highly selective monoacylglycerol li-

pase inhibitor KML29: antinociceptive activity without cannabimimetic side effects.

British Journal of Pharmacology, 171(6):1392–1407, March 2014.

142

[157] Jonathan Z Long, Weiwei Li, Lamont Booker, James J Burston, Steven G Kinsey,

Joel E Schlosburg, Franciso J Pavón, Antonia M Serrano, Dana E Selley, Loren H

Parsons, Aron H Lichtman, and Benjamin F Cravatt. Selective blockade of 2-

arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nature

Chemical Biology, 5(1):37–44, November 2008.

[158] Filomena Fezza, Monica Bari, Rita Florio, Emanuela Talamonti, Monica Feole, and

Mauro Maccarrone. Endocannabinoids, Related Compounds and Their Metabolic

Routes. Molecules, 19(11):17078–17106, November 2014.

[159] Tiziana Bisogno, Fiona Howell, Gareth Williams, Alberto Minassi, Maria Grazia

Cascio, Alessia Ligresti, Isabel Matias, Aniello Schiano-Moriello, Praveen Paul,

Emma-Jane Williams, Uma Gangadharan, Carl Hobbs, Vincenzo Di Marzo, and

Patrick Doherty. Cloning of the first sn1-DAG lipases points to the spatial and tem-

poral regulation of endocannabinoid signaling in the brain. The Journal of Cell

Biology, 163(3):463–468, November 2003.

[160] Chu Chen. Lipids: COX-2’s new role in inflammation. Nature Chemical Biology,

6(6):nchembio.375–402, June 2010.

[161] Kevin S Brown and James P Sethna. Statistical mechanical approaches to models

with many poorly known parameters. Physical Review E, 68(2 Pt 1):021904, August

2003.

[162] Ryan N Gutenkunst, Fergal P Casey, Joshua J Waterfall, Christopher R Myers, and

James P Sethna. Extracting Falsifiable Predictions from Sloppy Models. Annals of

the New York Academy of Sciences, 1115(1):203–211, December 2007.

[163] Areti Tsigkinopoulou, Aliah Hawari, Megan Uttley, and Rainer Breitling. Defining

informative priors for ensemble modeling in systems biology. Nature Protocols,

1:396, October 2018.

143

APPENDICES

Appendix I: PyDREAM Options Reference

nchains The number of parallel DREAM chains to run. Default: 5

niterations The number of iterations of the algorithm to run. Default: 50000

start A location in parameter space to begin the algorithm. This may be either a list of

locations the same length as nchains, or a single location at which to start all chains.

Default: None. Start all chains in random locations drawn from the prior.

restart A flag to use when continuing an earlier run. When used, will attempt to load

earlier history and fitted probability values using the model name specified by the

model_name argument. Default: False

verbose Trigger printing of detailed information relating to the run, such as acceptance or

rejection of a jump and the current acceptance rate. Default: True

tempering Whether to use parallel tempering of the parallel DREAM chains. This feature

has been very minimally tested. Use at your own risk! Default: False

nseedchains The number of draws to seed the history with at the start of a new DREAM

run. Default: The number of sampled parameter dimensions times ten

nCR The number of different crossover probability values to use. Default: 3

adapt crossover Whether to adapt crossover probability values. Default: True

adapt gamma Whether to adapt gamma values. Default: False

crossover burnin How many iterations to adapt crossover and/or gamma values. Default:

10% of the total iterations.

144

DEpairs The number of pairs of sampled past points to use for determining the next jump

size. Default: 1

lamb Small random error to ensure ergodicity in walk. Default: .05

zeta Randomization term. Default: 10-12

history thin How many iterations to take before saving a point to the history. Default: 10

snooker Probability of proposing a snooker update. Default: .10

p gamma unity Probability of setting γ=1. Default: .20

gamma levels Levels of γ adaptation (decreases default γ value as levels increase. Useful

to get universally smaller jump sizes.) Default: 1

start random Whether to start from a random location in parameter space. Default: True

save history Whether to save the history to file at the end of the run. This also controls

whether crossover and gamma level probabilities are saved to file at the end of the

run. Default: True

history file The name of a file to load a history of chain states from a previous run. This

will be set automatically if you specify the model_namewith restart = True.

crossover file The name of a file to load a set of previously fit crossover probabilities. This

will be set automatically if you specify the model_namewith restart = True.

gamma file The name of a file to load a set of previously fit gamma level probabilities.

This will be set automatically if you specify the model_namewith restart = True.

multitry Whether to use multiple trials for each chain at each iteration. This can be set to

True, False, or a value for the number of multiple trials per iteration. Default: False.

If set to True, the default number of multiple trials is 5.

145

parallel Whether to execute multiple trials in parallel (different DREAM chains are always

run in parallel). Default: False

model name A string for the model name. This will be used when saving history, crossover

probabilities, and gamma level probability files. It will also be used for automatic

loading of previous run files when restart = True. Default: Save files with the

current date and time in the file name.

146

Appendix II: AWS Batch Examples

Example Dockerfile

FROM amazonlinux:latest}

RUN yum -y install epel-release}

RUN yum -y update

RUN yum -y install unzip

RUN yum -y install aws-cli

RUN yum -y install java-1.8.0*

RUN yum -y install zip

RUN yum -y install sudo

RUN yum -y install gcc

RUN curl "https://bootstrap.pypa.io/get-pip.py" -o "get-pip.py"

RUN python get-pip.py

RUN pip install plumbum

RUN pip install numpy

RUN yum -y install python27-devel

RUN yum -y install tcl

RUN yum -y install tcl-devel

RUN yum -y install tkinter27

RUN pip install seaborn

RUN pip install matplotlib

RUN yum -y install which

RUN mkdir /data

ADD EstCC/EstCC.jar /data

ADD fetch_and_run.sh /data

RUN chmod 777 /data/fetch_and_run.sh

147

ADD CORM_columns.txt /data

ADD modified_params.txt /data

WORKDIR /data

USER root

ENTRYPOINT ["/data/fetch_and_run.sh"]

Example Shell Script for a Containerized Job Run with AWS Batch

#!/usr/bin/env bash

#This script assumes the use of a job array and that the datasets

#to be analyzed have been uploaded to S3 and are numbered from 0

#to ARRAYSIZE-1 (a given job has environment variable

#$AWS_BATCH_JOB_ARRAY_INDEX with this number)

#It also assumes that the environment variable $INPUTDIR was set

#to the S3 path of your input files,

and the environment variable $OUTPUTDIR

#was set to the S3 path to which you wish to save output files.

#If you passed any arguments to the script when setting the job

#definition, these will be stored in variables $1, $2, etc.

#The template below assumes no extra arguments to the script were

#included.

FILENAME=inputdata_$AWS_BATCH_JOB_ARRAY_INDEX.csv

#This command copies the input file in the given S3 input directory and with the filename determined by the job array value to the folder data in the container.

aws s3 cp $INPUTDIR$FILENAME /data

148

#Add specific analysis code to be run on the individual dataset.

#Remember that any programs required for analysis will need to be

#installed in the Docker container when creating the container image.

#For example, to run a Python script with an argument of the FILENAME that produces an output file outpudata_$AWSBATCH_JOB_ARRAY_INDEX.csv (note that for this example to work, you would need to either add the analyze_data.py file to the Docker container initially, or upload the .py file to S3 and copy it to the container, using the command above for the input data):

cd /data

python analyze_data.py $FILENAME

#This command uploads the newly created output file to S3.

aws s3 cp outputdata_$AWSBATCH_JOB_ARRAY_INDEX.csv $OUTPUTDIR

149

