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Chapter 1

INTRODUCTION

1.1 Motivation

Quality research involving advanced materials, particularly composite materials, has

provided solutions to challenges faced across several industries, including aerospace and

automotive. The syntheses of these composite materials are usually superior in their perfor-

mance due to the combination of the different interactions between their material properties

and chemical compositions. Not only have these material innovations led to technological

breakthroughs in new engineering structures, (i.e., stronger and lighter comparatively than

traditional metallic materials) but engineering design tools have steadily complimented

these advancements.

Advances in computational power have allowed researchers to develop a strong com-

putational framework, which can model and simulate the failure process of these compos-

ite materials. These new materials span a broad range of length scales, thus they exhibit

a rich variety of microstructures with varying degrees of disorder (i.e., material hetero-

geneities). Therefore, questions concerning their quantitative characterizations continue to

present many fundamental and practical challenges.

Shortcomings of this field included the need to accurately model the microstructure of

the composite material and characterize its varying length scales. The size scale difference

between the scale of the overall composite material and the constituent materials where

failure initiates and propagates exists and is an issue. Therefore, massive amounts of com-

putational power would be required to accurately resolve the microstructures of these com-

posite materials and would be computationally formidable to complete the analysis. The

lack of sufficient experimental data has made it difficult to characterize the performance of
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these advanced composite materials. Lastly, a wide variety of failure mechanisms acting

on microstructures of the composite materials has led to problems predicting the behavior

of the material.

From the academic front, several numerical theories have been developed to predict

the behavior of these composite materials. One methodology of interest is computational

homogenization, which has emerged as a powerful modeling and simulation tool for struc-

tures made of composite and heterogeneous materials. The key characteristic of computa-

tional homogenization is that the macroscopic constitutive behavior of the heterogeneous

material is provided by the numerical solution of a boundary value problem defined over

the representative volume of the microstructure. One of the main challenges of computa-

tional homogenization is the computational complexity involved in solving boundary value

problems at two (or more) scales.

Eigendeformation-based reduced order homogenization method has been shown to be

an effective approach to significantly improving the computational efficiency of computa-

tional homogenization while maintaining reasonable accuracy. The methodology can be

applied to problems involving material nonlinearities [1, 2, 3], as well as interface deco-

hesion at the microstructural scale [4, 5]. This approach employs the transformation field

analysis [6, 7], and evaluates the nonlinear microscale problem using only a small set of

unknowns through construction of microstructural influence functions and localization op-

erators that are pre-computed using linear elastic microscale problems. Many reduced order

approaches rely on representing the nonlinear response using a small number of functions,

spanning a basis with dimensions much smaller than the full scale microscale boundary

value problem. Choosing the appropriate basis, as well as choosing the model order that

can represent the fine scale response, is therefore a critical question. The basis functions are

typically reduced from the response of fully resolved microstructure problems subjected to

a small number of load scenarios that the overall structure is expected to undergo. In non-

linear problems, the microstructure loading may significantly change through the course of
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the loading due to load redistribution. While the reduced order models are accurate in the

load conditions at which they are derived, their performance at full load spectrum is not

always accurate.

Predictive failure models in continuum damage mechanics have been an area of in-

terest because multifaceted failure mechanisms can occur due to the complex interactions

between the microconstituents. Different failure mechanisms include fiber buckling, fiber

fracture, matrix failure and fiber matrix debonding [8]. Advances in computational algo-

rithms have allowed researchers to develop a strong computational framework which is

able to model and simulate the failure process of composite materials.

The fundamental focus of this dissertation is to draw attention to the development of

practical domain partitioning strategies to reduce the computational cost within the multi-

scale eigendeformation-based reduced order homogenization framework. This dissertation

addresses four major issues: (i) integrating multiscale computational homogenization using

eigendeformation-based reduced order homogenization [1, 2, 3] within a search heuristic

framework (i.e., genetic algorithms). This approach mimics natural selection to identify

the optimal reduced order basis for inelastic and failure response within heterogeneous

materials. (ii) To reduce the computational cost of the existing multiscale methodolo-

gies, these potential crack failure paths are allowed to overlap and the collections of these

parts will characterize the domain of the proposed ROM, further reducing the number of

internal state variables in the model. This ideas utilize the basic principles of combina-

torics [9, 10, 11]. (iii) Provide an alternative to the methodology proposed by Fish and

co-workers [12], where the inclusion locking phenomenon leads to spurious post failure

residual stresses. (iv) Lastly, to extend the applicability of overlapping failure paths to

more complex microstructures in three dimensions addressing the issues of computational

cost when evaluating large, realistic structural domains.
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1.2 Research Objectives & Tasks

This dissertation presents a reduced order multiscale methodology to simulate and pre-

dict failure in heterogeneous materials. The research objectives stated below were aligned

to provide the basis for ongoing work in the development of a new multiscale tool useful

for simulating failure in composites within aerospace applications. The primary research

objectives for my dissertation are as follows:

1. Create a reduced order multiscale methodology for the simulation of failure in brittle

composite structures which operates in a heuristic framework.

2. Create an efficient and accurate methodology which saves computational effort when

evaluating the reduced order models, alleviates mesh dependency of multiscale mod-

eling, and addresses residual stress locking post failure in the composite materials.

3. Apply the new reduced order methodology to life prediction in brittle composite

materials by conducting numerical experimental investigations.

The proposed reduced order modeling methodology is implemented to model the brit-

tle response of the composite material. The matrix material of the composite structure is

subjected to various loading modes and the failure of the matrix material is the foundation

for the selection of the ROM basis.

1.3 Dissertation Organization

The first research objective was addressed by the identification of the optimal reduced

order model which the details are discussed in Chapter 2. The identification of the optimal

reduced order model is posed as an integer optimization problem and the genetic algorithm

is used to evaluate the fitness of every individual within the population after a series of

successive events [i.e., selection of individuals, cross-over, mutation, and population gen-

eration]. This elite individual, not only satisfies optimality, but has the best genetic coding
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(elemental genes) which can be used as the partition for the evaluation of the reduced order

model. The identification of the optimal ROM validates the method of failure paths. The

optimal ROM is verified against direct numerical simulations of a heterogeneous particle

reinforced material. In Chapter 3, the reduced order model is improved. The accuracy and

computational efficiency of the reduced order model is related to the number of parts form-

ing a partition for a specific reduced model order, n. As the number of parts increases for

a particular reduced model order, the computational complexity increases and ultimately

results in a larger set of nonlinear equations that must be evaluated. This issue is over-

come by allowing the potential crack paths to overlap which reduces the number of internal

state variables that characterizes the ROM. The reduced order model does not capture the

post-failure response of the representative volume element accurately. To address this issue

of inclusion locking, new sets of coefficient tensors are generated to exhibit a near ‘zero’

mode in the reduced order coarse-scale stress computation. The details are discussed in

Chapter 3. Since each chapter contains related but separate topics, an introduction to each

chapter provides a review of the relevant literature. Finally, Chapter 4 contains conclusions

and future research.
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Chapter 2

IDENTIFICATION OF OPTIMAL REDUCED ORDER HOMOGENIZATION

MODELS FOR FAILURE OF HETEROGENEOUS MATERIALS

2.1 Introduction

Computational homogenization is emerging as a powerful modeling and simulation

tool for structures made of composite and heterogeneous materials. The computational

homogenization method is based on the mathematical homogenization theory pioneered

by Babuska [13], Bensoussan [14], Suquet [15], and Sanchez-Palencia [16]. The key

characteristic of this method is that the macroscopic constitutive behavior of the hetero-

geneous material is provided by the numerical solution of a boundary value problem de-

fined over the representative volume of the microstructure. The computational homoge-

nization method has been successfully applied to evaluate the mechanical and functional

behavior of materials with complex microstructures that include inelastic, viscous and dam-

age effects [17, 18], geometric nonlinearities [19, 20] and multiphysics response [21, 22].

Recently, significant research is ongoing to extend the computational homogenization ap-

proach to model failure and cracking phenomena in composite materials [23, 24, 25].

One of the main challenges of computational homogenization is the computational

complexity involved in solving boundary value problems at two (or more) scales. The

issue of computational complexity is addressed using parallel implementation strategies,

reduced order modeling at the coarse scale using high order (i.e., plate and shell) theories

or reduced order modeling at the fine scales to efficiently evaluate the microscale response,

as well as a combination of these three approaches. Parallelization of the computational

homogenization [24, 26, 27] is natural and domain decomposition is readily applicable due

to the local character of the microscale boundary value problems that are typically evalu-
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ated at the integration points of the macroscale grid. Model reduction at the coarse scale is

achieved by exploiting the characteristics of the macroscopic domain. For instance, plate

and shell theories have been recently employed to evaluate the response of thin structures

with heterogeneous microstructure [28, 29, 30, 31].

The third approach to reducing the computational cost of the computational homoge-

nization method is to approximate the microscale boundary value problem with a reduced

order representation. This approach finds its roots in the effective medium theory [32],

which provides analytical or semi-analytical approximation to the microscale problem.

More recently, computational reduced order models have been proposed to address com-

plex microstructural topologies and nonlinear behavior. Major progress in reduced or-

der modeling has been made using the boundary element method [33], the Voronoi cell

method [34], the method of cells [35], the fast Fourier transforms [36], the network approx-

imation method [37], the proper orthogonal decomposition [38] and the proper general-

ized decomposition [39]. Eigendeformation-based reduced order homogenization method

has been shown to be another effective approach that can be applied to problems involv-

ing material nonlinearities [1, 2, 3], as well as interface decohesion at the microstructural

scale [4, 5]. This approach employs the transformation field analysis [6, 7] and evaluates the

nonlinear microscale problem using only a small set of unknowns through construction of

microstructural influence functions and localization operators that are pre-computed using

linear elastic microscale problems. Many reduced order approaches rely on representing

the nonlinear response using a small number of functions spanning a basis with dimen-

sions much smaller than the full scale microscale boundary value problem. Choosing the

appropriate basis, as well as the order that can represent the fine scale response is therefore

the critical question. The basis functions are typically reduced from the response of fully

resolved microstructure problems subjected to a small number of load scenarios that the

overall structure is expected to undergo. In nonlinear problems, the microstructure loading

may significantly change through the course of the loading due to load redistribution. While
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the reduced order models are accurate in the load conditions at which they are derived, their

performance at full load spectrum is not always accurate.

In this chapter, a methodology to identify optimal reduced order homogenization mod-

els for efficiently approximating the inelastic and failure response of heterogeneous materi-

als is provided. The reduced order modeling approach taken in this study is the eigendeformation-

based reduced order homogenization method [4]. The identification of the optimal reduced

order model lends itself as an integer optimization problem, which is evaluated using the

genetic algorithm optimization technique. In particular, this chapter addresses (1) how to

identify the best reduced order basis for a given model order; (2) the effect of increasing the

model order on the overall accuracy of the microscale computations; and, (3) the accuracy

characteristics of the optimal reduced order models across a full load spectra beyond the

loading directions at which the reduced order models are developed.

The remainder of this chapter is organized as follows: The macroscale and microscale

problems in the context of the computational homogenization method are described in Sec-

tion 2.2. Section 2.3 provides the reduced order model based on the eigendeformation-

based reduced order homogenization method. In Section 2.4, the problem statement for

the identification of the optimal reduced order model is provided. The solution methodol-

ogy based on genetic algorithm and the details of the implementation of the identification

problem is described. The numerical examples are discussed in Section 2.5.

2.2 Computational Homogenization

The inelastic deformation in the macroscopic domain, Ω, are modeled with a heteroge-

neous microstructure as illustrated in Fig. 2.1. The domain of the representative microstruc-

ture, Θ, consists of c ≥ 2 constituent phases. The macroscopic domain is formed by the

repetition of the microstructure. The macroscopic and microscopic domains are parameter-

ized by the position vectors, x and y, respectively. The response fields (e.g., displacement,

strain, stress) are taken to be periodic with respect to Θ. The macro- and microscale po-
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Figure 2.1: Macro- and microscopic structures.

sition vectors are related by the small positive scaling parameter ζ (i.e., 0 < ζ � 1), such

that y = x/ζ .

The mathematical homogenization theory with multiple scales [14] is employed to for-

mulate coupled boundary value problems that describe the response of an equivalent ho-

mogeneous domain (i.e., the macroscale problem) and the representative volume element

(i.e., the microscale problem). To this extent, the displacement field is decomposed using a

two-scale asymptotic expansion:

ui (x,y, t) = ūi (x, t)+ζ u1
i (x,y, t) (2.1)

in which, ūi and u1
i are the macroscopic and microscopic displacement fields, respectively.

The two-scale decomposition of the displacement field is substituted in the governing equa-

tions of equilibrium and asymptotic analysis is employed to decompose the governing equa-

tions into the macro- and microscale counterparts [4].

2.2.1 Macroscale problem

Applying the two-scale asymptotic decomposition into the equilibrium equations, con-

sidering the O(1) terms and averaging over the representative volume element (RVE) leads
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to the following macroscale equilibrium equation defined over the macroscopic domain, Ω:

σ̄i j,x j (x, t)+ b̄i (x, t) = 0 (2.2)

in which, σ̄i j and b̄i denote the macroscopic stress tensor and body force, respectively,

which are volume-averaged over the domain of the RVE, Θ:

σ̄i j (x, t) =
〈
σi j
〉

(2.3)

b̄i (x, t) = 〈bi〉 (2.4)

where, the Macaulay brackets are defined as:

〈·〉= 1
|Θ|

∫
Θ

(·)dy (2.5)

|Θ| is the volume of the RVE.

The stress field is expressed as:

σi j (x,y, t) = Li jkl (y)
[
ε̄kl (x, t)+u1

(k,yl)
(x,y, t)−µkl (x,y, t)

]
(2.6)

where, Li jkl is the fourth order tensor of elastic moduli that vary within the RVE due to ma-

terial heterogeneity. Li jkl is taken to be symmetric and strongly elliptic. ε̄i j = ū(i,x j) is the

macroscopic strain tensor; a subscript comma denotes differentiation, parentheses in the

subscript denotes a symmetric differentiation. Small strain kinematics with additive split

of the strain tensor is assumed: εi j = εe
i j− µi j, where εe

i j is the elastic strain and µi j is the

history-dependent inelastic strain tensor present due to one or a combination of plastic, vis-

cous, damage and thermal processes, described in terms of internal state variables. In this

section, the inelastic processes are modeled using a scalar continuum damage mechanics

model for simplicity. The evolution equations for the damage model are explained below.
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The boundary conditions of the macroscale problem are defined as:

ūi (x, t) = gi (x, t) ; x ∈ Γu (2.7)

σ̄i j (x, t)n j = ti (x, t) ; x ∈ Γt (2.8)

in which, gi is the boundary displacement data prescribed on Γu ⊂ ∂Ω; and, ti is the bound-

ary traction data prescribed on Γt ⊂ ∂Ω, such that Γu ∩Γt = /0 and Γu ∪Γt = ∂Ω. The

prescribed boundary conditions are taken to vary with respect to the macroscopic scale

only and are constant with respect to the microscopic coordinates.

2.2.2 Microscale problem

Applying the two-scale asymptotic decomposition into the equilibrium equations, con-

sidering the O(ζ−1) terms leads to the following microscale equilibrium equation defined

over the RVE domain, Θ:

σi j,y j (x,y, t) = 0 (2.9)

where, σi j is given in Eq. 2.6. Equation 2.9 is evaluated for the microscale displacement

field, u1
i , where the macroscopic strain, ε̄i j acts as the loading function for the microscale

problem. The boundary condition of the microscale problem is taken to be periodic. For

a rectangular cuboidal shaped RVE domain, the boundary is split into nsd subdomains de-

noted by Γξ , where nsd = 2 or 3 is the number of spatial dimensions. Each boundary sub-

domain is a pair of parallel faces of the RVE boundary. The periodic boundary conditions

are expressed as:

u1
i (y, t) = u1

i
(
y− lζ nξ , t

)
; y ∈ Γξ ; ξ = 1, . . . ,nsd (2.10)

in which, nξ is the unit outward normal on Γξ , and lξ is the length of the RVE along nξ .

Zero microscale displacement is imposed at the vertices of the RVE domain to restrict rigid
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body motion.

2.3 Reduced Order Homogenization

When solving linear problems, the linearity of the microscale displacement field with

respect to the macroscopic strains is exploited to pose the microscale problem in terms

of a third order influence function, Hikl (i.e., u1
i (x,y) = Hikl (y) ε̄kl (x)). The macroscale

stress is then a function of Hikl . The influence function is computed numerically and

then employed in the evaluation of the macroscale problem. In nonlinear problems, the

microscale displacement field is a nonlinear and typically history-dependent function of

the macroscale strain field. Therefore, a separate microscale problem is assigned to each

integration point of a macroscale problem and evaluated for every load increment and it-

eration of a macroscale analysis. The computational burden in this approach is tremen-

dous in case of large structural simulations or when the microstructure is complex. The

eigendeformation-based reduced order homogenization approach [4, 5] was employed to

develop a reduced order model for efficiently solving for the microscale response. The

microscopic displacement field is expressed as:

u1
i (x,y, t) = Hikl (y) ε̄kl (x, t)+

∫
Θ

hikl (y, ŷ)µkl (x, ŷ, t)dŷ (2.11)

u1
i (x,y, t) = Hikl (y) ε̄kl (x, t)+ ũi (x,y, t) (2.12)

ũi (x,y, t) =
∫

Θ

hph
ikl (y, ŷ)µkl (x, ŷ, t)dŷ (2.13)

The inelastic influence function, hikl , consists of the particular solutions of the RVE and is

approximated by numerical solutions of the linear elastic RVE problems [4]. The inelastic

strain field is expressed as:

µi j (x,y, t) =
n

∑
α=1

N(α) (y)µ
(α)
i j (x, t) (2.14)
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µi j (x,y, t) =
n

∑
γ=1

N(γ) (y)µ
(γ)
i j (x, t) (2.15)

where, N(α) are the mesomechanical shape functions; n is the order of discretization (also

referred to as the model order in this section), and µ
(α)
i j are the microscopically nonlocal

inelastic strain coefficients:

µ
(α)
i j (x, t) =

∫
Θ

ϕ
(α) (y)µi j (x,y, t)dy (2.16)

µ
(γ)
i j (x, t) =

∫
Θ

ϕ
(γ) (y)µi j (x,y, t)dy (2.17)

in which, ϕ(α) are mesomechanical weight functions. Employing Eqs. 2.13, 2.15, and 2.1,

a kinematic relationship between the nonlocal inelastic strain coefficients and nonlocal total

strain coefficient is obtained:

ε
(γ)
i j (x, t) = A(γ)

i jkl ε̄ (x, t)+
n

∑
β=1

P(γβ )
i jkl µ

(β )
kl (x, t) (2.18)

where, ε
(α)
i j is defined analogous to Eq. 2.17, and:

A(γ)
i jkl = Ii jkl +

∫
Θ

ϕ
(γ) (y)Gi jkl (y)dy (2.19)

P(γβ )
i jkl =

∫
Θ

∫
Θ

ϕ
(γ) (y)gi jkl (y, ŷ)N(β ) (ŷ)dŷdy (2.20)

in which, Gi jkl = H(ikl,y j) and gi jkl = h(ikl,y j) are elastic and inelastic polarization tensors,

respectively; and, Ii jkl the fourth order identity tensor. The evolution of the inelastic strains

is modeled in terms of the nonlocal variables. In the functional form:

µ̇
(α)
i j = f

(
µ
(α)
i j ,ε

(α)
i j ,σ

(α)
i j ,h(α)

)
(2.21)

where, σ
(α)
i j is the nonlocal stress coefficients defined analogous to Eq. 2.17 and using

Eq. 2.6, and h(α) denotes additional internal state variables defining the evolution of the
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inelastic process. Equation 2.21 along with Eq. 2.18 are evaluated to obtain µ
(α)
i j for a pre-

scribed macroscopic strain state. The computed inelastic strain field satisfies the microscale

equilibrium a-priori via the influence functions. The evaluation of µ
(α)
i j therefore provides

an approximation to the solution of the microscale problem. The specific form of the evo-

lution equations (Eq. 2.21) requires that the nonlocal inelastic strain coefficients describe

the inelastic processes at a subdomain occupied by a single constituent phase. Let Θi ⊂ Θ

denote the domain of phase i (1 ≤ i ≤ c) within the RVE. Each phase is decomposed into

ni non-overlapping parts: Θi =∪
n j
j=1Θ

( j)
i , where Θ

( j)
i ∩Θ

(k)
i = /0 if j 6= k. A part in the RVE

is further defined as, Θ(α) = Θ
( j)
i such that α = j+∑

i−1
k=1 nk. The mesomechanical shape

and weight functions are taken to be piecewise constant within the RVE domain:

N(γ) (y) =

 1 if y ∈Θ(γ)

0 elsewhere
(2.22)

ϕ
(γ) (y) =

1∣∣Θ(γ)
∣∣N(γ) (y) (2.23)

where,
∣∣∣Θ(α)

∣∣∣ is the volume of part Θ(α). This set of shape functions clearly forms an

orthonormal basis and satisfies the partition of unity property of the reduced order basis.

2.3.1 Continuum damage mechanics model

In this study, the evolution of the inelastic strain is modeled using a scalar continuum

damage mechanics model:

µ
(γ)
i j = ω

(γ)
ε
(γ)
i j (2.24)

in which, ω(α) ∈ [0,1) is the damage variable with ω(α) = 0 and ω(α) → 1 indicate the

states of no damage and complete loss of load carrying capacity within part Θ(α), respec-
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tively. The evolution of the damage variable follows:

ω
(γ) (x, t) = Φ

(
κ
(γ) (x, t)

)
;

∂Φ

(
κ(γ)

)
∂κ(γ)

≥ 0 (2.25)

where,

κ
(γ) (x, t) = max

{
υ
(γ) (x,τ)

∣∣∣τ ≤ t
}

(2.26)

υ(α) is the nonlocal damage equivalent strain defined based on the strain-based damage

theory [40] as:

υ
(γ) (x, t) =

√
1
2

ε
(γ)
i j L(γ)

i jklε
(γ)
kl (2.27)

L(α)
i jkl is the tensor of elastic moduli of the constituent phase occupying Θ(α). By strong

ellipticity of L(α)
i jkl , the nonlocal damage equivalent strain is non-negative. The evolution

of phase damage as a function of the phase deformation function follows the arctangent

law [1]

Φ
(γ) =

atan
(

a(γ)κ(γ) (x, t)−b(γ)
)
+atan

(
b(γ)
)

π/2+atan
(
b(γ)
) (2.28)

in which, a(α) and b(β ) are material parameters. Considering the particular form of the

scalar damage model (Eq. 2.24), combining with Eq. 2.18 and using the shape and weight

functions defined as in Eqs. 3.48 and 2.23, the nonlocal inelastic strain coefficients are

expressed in the following algebraic form (∀α = 1,2, . . . ,n):

n

∑
β=1

[
δγβ Ii jkl−P(γβ )

i jkl ω
(γ) (x, t)

]
µ
(β )
kl (x, t)−ω

(γ) (x, t)A(γ)
i jkl ε̄kl (x, t) = 0 (2.29)

where, δαβ is Kronecker delta.

2.4 Identification of Optimal Reduced Order Model

In this section, the problem of identifying the optimal reduced order models is formu-

lated and the solution strategy for the identification problem based on optimization with
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the genetic algorithm is provided. A separate optimization problem is posed to scale the

parameters of the optimal reduced order models and minimize the modeling errors.

2.4.1 Problem statement

Consider a finite element discretization of the RVE domain, Λ= {e1,e2, . . . ,enel}, where

ei denotes a finite element; and, nel the total number of finite elements. A reduced order

model of order n is represented by an index set (i.e., individual) X = {X1,X2, . . . ,Xnel} such

that Xi = α if ei ⊂Θ(α).

Let σre f and σX be the response metrics computed using the computational homoge-

nization method (i.e., reference model) with full resolution of the microstructure and using

the reduced order model, X of order n, respectively. The identification of the optimal re-

duced order model consists of minimizing the discrepancy between the response metrics

computed by the reference and the reduced order models:

Find X∗ ∈ χn ≡ {X |1≤ Xi ≤ n}, which satisfies:

F(X∗) = min
X∈χn

∥∥σre f −σX
∥∥
(·) (2.30)

where χn is a set of all possible individuals that define a reduced order model with model

order, n, and X∗ is the optimal reduced order model. In this section, the macroscopic stress-

strain response when subjected to nload loading conditions are taken as the response metric.

The objective function becomes:

F(X∗) = min
X∈χn

nload

∑
κ=1

∥∥∥σ̄
(κ)
re f (ε̄i j)− σ̄

(κ)
X (ε̄i j)

∥∥∥
2

(2.31)

where ‖·‖2 denotes L2 norm, σ̄
(κ)
re f and σ̄

(κ)
X are the histories of the macroscopic Von-Mises

stress under the load case, κ , computed using the reference model and the reduced order

model, respectively.

16



   Generate 
initial population

Evaluate
     fitness of individuals

Select elite
individuals

Populate next
   generation

Mutation
operation

No Select parent
      pairs

    Check
convergence

Yes      Terminate
genetic algorithm

Cross-over
 operation

Figure 2.2: Structure of the identification strategy using genetic algorithm.

Each individual in the space χn represents a reduced order model of order n but the

representation is non-unique: multiple individuals may represent the same reduced order

model. This difficulty is alleviated by ordering of the parts, Θ(α). An example is the

ascending order of the parts such that the element with the smallest label in each part Θ(α)

increases with α: Let Λ(α) = {ei |ei ∈ Θ(α); 1 ≤ i ≤ nel} be the set of the finite elements

spanning the part Θ(α) ordered such that Λ(α)(i) > Λ(α)(i−1); 2 ≤ i ≤ nel. The parts are

reordered such that Λ(1)(1)< Λ(2)(1)< .. . < Λ(n)(1).

The model order of n is ensured by assigning at least one element to each part. By this

constraint a model of order m cannot be represented by a model of a higher order n > m.

2.4.2 Genetic algorithm

The optimal reduced order models are identified using the genetic algorithm optimiza-

tion method. Identification of the optimal reduced order model is an integer optimization

problem, since each individual in the search space, χn, is represented using an integer set.

The gradient-based optimization methods [41], commonly employed in many engineering

problems, are typically for real valued problems and therefore not applicable. Evolution-

ary (e.g., genetic) algorithms provide an effective approach to solving nonlinear integer

optimization problems [42, 43, 44], since they are based on function evaluations only (no

gradient information is needed or convexity required), they are global optimizers (local

minima do not necessarily compromise the solution) and represent the search space digi-
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tally, naturally fitting integer representations. The literature in evolutionary algorithms is

vast and they have been successfully employed in a variety of problems [45, 46, 44]. Ge-

netic Algorithms typically consist of: (a) Creation of a set of individuals (i.e., population)

by random sampling of the search space. (b) Assessment of the fitness of the individuals

within the population based on objective function evaluation, where the fitness of an indi-

vidual is inversely proportional to the corresponding objective function. (c) Creation of a

set of new individuals from the previous population (i.e., generation) based on the fitness

of the individuals. Assessment of the fitness and creation of subsequent generations are

repeated until an individual with the desired fitness (i.e., the extremum of the objective

function) is achieved up to the chosen tolerance.

The structure of the genetic algorithm employed in this section is illustrated in Fig. 2.2.

The algorithm is initiated by creating the initial population of individuals (P = {X1,X2, . . . ,

Xnpop}), where X i denotes an individual; and, npop the total number of individuals in the

population. The initial population is randomly generated. The fitness of each individual

in the population is computed, where the fitness is defined as the inverse of the objective

function provided in Eq. 2.31.

The creation of the next generation of the population consists of several steps, namely,

the selection of a number of parent pairs from the current population for the cross-over

operation, the mutation of some individuals in the population, and finally, the selection

of elite individuals for inclusion in the next generation. The roulette wheel algorithm is

employed in the selection of the parent pairs. In the roulette wheel algorithm, each indi-

vidual within the population is assigned a probability of selection that is proportional to

its fitness value. The parent pairs are randomly chosen from the population based on the

assigned probabilities [47, 48]. The cross-over operation consists of the generation of two

offspring’s from each parent pair using the integer representation (chromosome) of each

individual. The chromosome of each parent is split into two parts at a randomly selected

locus and the chromosome fragments are interchanged between the two parents to generate
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Figure 2.3: Implementation of the genetic algorithm: (a) parallel execution of the fitness
evaluation; and, (b) strategy for evaluating the fitness of an individual.

two new chromosomes (the offspring’s). A number of offspring’s resulting from the cross-

over operations are subjected to mutation, which consists of replacing a targeted gene from

the chromosome of an offspring. The selection of the individual to be mutated, the gene

that will be targeted and the new value of the gene are all randomly chosen. The mutation

operation reduces the probability of convergence to a local minimum by including random

individuals into the search space at each generation. A number of elite individuals with the

highest fitness values within the populations are passed on to the next generation without

change.

New generations are created until a convergence criterion is satisfied. Two convergence

criteria are employed in this study. The first criterion indicates convergence when the

fitness of the best individual in the current generation is less than a predefined tolerance.

The second criterion indicates convergence when the change in the average fitness of the

population remains under a specified tolerance for a predefined number of generations (i.e.,

stall generations).

The genetic algorithm optimization for the identification of the optimal reduced order

model is implemented using Matlab’s global optimization toolbox. The general structure
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of the implementation at a given genetic algorithm step is illustrated in Figure 2.3. The

genetic algorithm is implemented using a parallel solution strategy for computational effi-

ciency. The computational cost of the identification problem is primarily due to the fitness

evaluations, which consist of solving the multiscale boundary value problems. The popu-

lation at a generation is split into p equal subsets (batches). The fitness of the individuals

in the batches are evaluated concurrently using p compute nodes. At each fitness evalu-

ation of an individual within a batch, the coefficient tensors for the reduced order model

represented by the individual is computed. The genetic algorithm code communicates with

a commercial finite element software (Abaqus) to conduct numerical simulations using the

reduced order model. The user supplied subroutine functionality of Abaqus (UMAT) is

used to incorporate the reduced order model into the Abaqus framework. The reference

simulations based on the computational homogenization method is conducted a-priori, and

the appropriate data is stored in a file for access during fitness computation.

2.4.3 Parameter scaling

The predictions of the reduced order models based on eigendeformation-based reduced

order homogenization approach typically overestimate the strength properties. While the

optimal reduced order model identification based on the methodology described above pro-

vides the best model among all possible models of the same order, the accuracy of the model

can be improved by adjusting the model parameters. Let s be a vector of scaling constants

associated with the material parameters of the microstructural constituents. The problem

of identifying the parameter scaled optimal reduced order model is defined as:

Find the scaling constants, s∗, which satisfies:

F (s∗) = min
s

nload

∑
κ=1

∥∥∥σ̄
(κ)
re f (ε̄i j)− σ̄

(κ)
X∗ (ε̄i j;s)

∥∥∥
2

(2.32)

where σ̄
(κ)
X∗ (ε̄i j;s) is the constitutive response of the optimal reduced order model using the
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parameter set, s. The identification problem constitutes nonlinear optimization with real

valued parameters. Gradient based and evolutionary optimization methods are applicable

in the evaluation of this problem.

The continuum damage mechanics model employed in this study includes two param-

eters for each microstructural constituent: a(α) and b(α). a(α) controls the degree of brit-

tleness at a material point at failure, whereas b(α) controls the strength of the constituents.

For a microstructure with two constituents (e.g., fiber and matrix), the parameter set is:

s = {s(m)
a ,s(m)

b ,s( f )
a ,s( f )

b }. In the numerical examples considered in this study, the parameter

scaling (Eq. 2.32) is evaluated for a single parameter b(m) by employing the Nelder-Mead

simplex method.

2.5 Numerical Examples

Numerical verification experiments were conducted to assess the capability of the pro-

posed approach in identifying reduced order models under biaxial and triaxial loading con-

ditions. The performance of the optimal reduced order models are compared to the direct

numerical simulations based on the computational homogenization method, which consti-

tutes the best solution that can be obtained by the reduced order models, since they are

derived based on computational homogenization.

Numerical verification analyses are conducted by considering a unidirectional rein-

forced matrix microstructure with geometry, the discretization and the loading conditions

are shown in Fig. 2.4. The finite element discretization of the unit cell consists of 351

tetrahedra. The matrix and the reinforcements are discretized using 251 and 98 elements,

respectively. A unit cube discretized using a single hexahedral finite element constitutes

the macroscale domain. The volume fraction of the reinforcement within the unit cell is

40%.

The numerical verifications consist of the identification of the optimal reduced order

model partitioning based on a small number of load cases, which is then followed by
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Figure 2.4: Geometry and discretization of the numerical example. (a) Microstructure;
(b) Macrostructure subjected to biaxial tensile loading; (c) Macrostructure subjected to
combined biaxial tensile and shear loading.

parameter scaling and assessment of model performance using a wider range of loading

conditions. A reduced order model is named based on the load cases employed in the

identification step and the model order, n. Ti and Si j denote uniaxial loading along the

i-direction (i = x,y,z) and shear loading along the i j-direction, respectively. For instance,

model Tx-Sxz-4 indicates a model of order 4 (n = 4) identified based on uniaxial tensile

loading in the x-direction and shear loading in xz-direction (i.e., nload = 2).

The parameters associated with the genetic algorithm are identical for all numerical

experiments considered. The population size, npop, is taken to be 100. The predefined

tolerance for convergence due to the fitness of the best individual is taken to be 100. The

number of stall generations is set to 40 and the tolerance for convergence due to stall is set

to 1e-6. The mutation ratio, which is the portion of the population that is mutated at each

generation, is set to 0.01. The identification analyses are conducted using eight parallel

compute nodes (p = 8).

2.5.1 Biaxial tensile loading

The performance of the reduced order models are assessed under the condition of bi-

axial loading perpendicular to the direction of the reinforcement. The elastic modulus and

Poisson’s ratio for the reinforcements are E( f )= 200 GPa and ν( f )= 0.3, and for the matrix
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Figure 2.5: Failure envelopes for models Tx-4, Tx-5 and Tx-8 when subjected to tensile
loading in x- and y-directions.

are E(m) = 6 GPa and ν(m) = 0.3. The reinforcement is taken to be linear elastic, whereas

the matrix is modeled using the continuum damage mechanics model with the material pa-

rameters of a(m) = 32.0 and b(m) = 16.3. Each part within the matrix phase is taken to have

the same material parameters. In all configurations considered, the entire reinforcement

phase is taken to be a single part.

Figure 2.5 illustrates the accuracy of three reduced order models identified under uniax-

ial tensile loading in the x-direction. The stress envelopes computed using parameter-scaled

models Tx-4, Tx-5 and Tx-8 display a reasonable match with the failure envelope computed

using the reference computational homogenization method. The parameter scaling con-

stants for models Tx-4, Tx-5 and Tx-8 are 0.87, 0.93 and 0.93, respectively. The modeling

error after parameter scaling are respectively, 7.4%, 5.6% and 5.4% for the three models

considered. A slight increase in the accuracy is observed with increasing model order for

reduced order models with parameter scaling. The increase in accuracy as a function of

model order is more pronounced in unscaled models with modeling errors of 17%, 11%

and 9.7% for models Tx-4, Tx-5 and Tx-8, respectively, yet the impact of parameter scaling

on the model accuracy is evident.
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Figure 2.6: Failure envelopes for models Tx-Ty-4, Tx-Ty-5 and Tx-Ty-8 when subjected
to tensile loading in x- and y-directions: (a) after parameter scaling; (b) before parameter
scaling.

Figure 2.6 shows the failure envelopes of the three additional reduced order models

identified under the combined uniaxial tension in the x- and y-directions (i.e., nload=2)

compared to the reference simulations after (Fig. 2.6a) and before (Fig. 2.6b) parameter

scaling. The model errors prior to parameter scaling are 11.2%, 8.2% and 9.1% for Tx-

Ty-4, Tx-Ty-5 and Tx-Ty-8, respectively, whereas the model errors with parameter scaling

are respectively, 6.1%, 4.8% and 5.5%. The failure envelopes computed by the unscaled

reduced order models clearly show stiff response compared to the computational homog-

enization model, despite similar shape of the envelope and parameter scaling provides a

significant improvement on the accuracy of the models. The errors clearly indicate that the

accuracy is a non-monotonic function of the model order, and Tx-Ty-5 marginally outper-

forms Tx-Ty-8. Higher model orders do not include lower orders as subsets as each part

is constrained to contain at least a single finite element. The optimal reduced order model

partitions at orders 4, 5, and 8 are shown in Fig. 2.7. The model performance of the re-

duced order models identified using a single load case is comparable to that with two load

cases due to the symmetry of the unit cell with respect to the loading directions. The ideal

failure envelope is circular because of the symmetry of the microstructure with respect to

the loading considered. The failure envelopes computed using the reference model as well
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Figure 2.7: Optimal reduced order model partitioning’s for models Tx-Ty-4, Tx-Ty-5 and
Tx-Ty-8.

as the reduced order models deviate from the circular shapes due to the relatively coarse

discretization of the microstructure.

Figure 2.8 illustrates the stress-strain response as computed using the models Tx-Ty-

4, Tx-Ty-5 and Tx-Ty-8, and the computational homogenization model when subjected to

uniaxial loading (Fig. 2.8a-b) and under the biaxial loading with prescribed displacement

ratio of gx/gy = 1.5 (Fig. 2.8c-d). In addition to accurately capturing the ultimate strength,

the reduced order models capture the entire stress-strain response.

2.5.2 Combined biaxial tensile and shear loading

In the current example, a reduced order model for laminated unidirectional reinforced

composites is developed. In laminated composites, the plies are typically subjected to a

combined state of normal stresses along the reinforcement and transverse directions as well

as shear stresses that develop due to the mismatch between neighboring ply orientations.

A graphite fiber (IM-7) reinforced epoxy (977) resin is considered. The elastic modulus

and Poisson’s ratio for the reinforcements are E( f ) = 263 GPa and ν( f ) = 0.32, and for the

matrix are E(m) = 3.55 GPa and ν(m) = 0.35. Damage is considered in both matrix and
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Figure 2.8: Stress-strain curves: (a) unscaled models subjected to unaxial tension in
y-direction, (b) parameter scaled models subjected to unaxial tension in y-direction, (c)
unscaled models subjected to biaxial loading, and (d) parameter scaled models subjected
to biaxial loading.

fiber phases with the material parameters of a(m) = 0.1 and b(m) = 65 for the matrix phase

and a( f ) = 0.1 and b( f ) = 300 for the fiber phase.

The reduced order model, Tx-Sxz-5, is identified under the uniaxial tensile loading in the

transverse direction and shear (nload = 2). A single part is assigned to the fiber phase since a

sudden fiber failure that predominate the strength in the reinforcement direction is very well

captured by a single part. Figure 2.9 shows the two-dimensional failure envelope along the

combined transverse normal and shear directions as computed using Tx-Sxz-5 and the ref-

erence computational homogenization model. The parameter scaling constants for the fiber

and matrix parts are 1.0 and 0.69, respectively. The reduced order model provides a good

approximation to the reference model. Figure 2.10 shows the three-dimensional failure en-

velope as computed by the reference (Fig. 2.10a) and the reduced order (Fig. 2.10b) models

for combined biaxial tensile and shear loading configurations. The predictions of Tx-Sxz-5
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Figure 2.10: Three dimensional failure envelopes when subjected to combined tensile
loading in reinforcement and transverse directions, and shear: (a) the reduced order model,
Tx-Sxz-5; and, (b) the reference model.

for all possible loading scenarios are satisfactory when compared to the reference solution.

The predictions of the stress-strain response of the reduced order model are compared to

the computational homogenization model in Fig. 2.11. The stress-strain response when the

material is subjected to loading in the reinforcement direction is naturally dominated by the

fiber behavior (Fig. 2.11a). More complex matrix dominated failure is observed at loading

in the transverse (Fig. 2.11b), shear (Fig. 2.11c) and biaxial loading along the reinforcement

and transverse directions with applied displacement ratio of gx/gz = 0.75 (Fig. 2.11d).
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Chapter 3

REDUCED ORDER HOMOGENIZATION OF HETEROGENEOUS MATERIALS

WITH OVERLAPPING FAILURE PATHS

3.1 Introduction

Computational homogenization has emerged as a powerful modeling and simulation

tool for structures made of composite and other heterogeneous materials. The compu-

tational homogenization method is based on the mathematical homogenization theory and

was formalized by Babuska [13], Bensoussan [14], Suquet [15], and Sanchez-Palencia [16].

The computational homogenization method has been used to evaluate the elastic, inelastic,

viscous and damage effects [17, 18], geometric nonlinearities [19, 20] and multiphysics

response [21, 22]. Recently, the computational homogenization approach is being used

to predict the model failure and cracking phenomena in composite materials [23, 24, 25].

One of the main challenges of computational homogenization is the computational com-

plexity involved in solving boundary value problems (BVP) at two (or more) scales. Major

progress in reducing the computational cost of the computational homogenization method

has been made using the boundary element method [33], the Voronoi cell method [34],

the method of cells [35], the fast Fourier transforms [36], the network approximation

method [37], the proper orthogonal decomposition [38] and the proper generalized decom-

position [39]. To properly characterize the nonlinear response, most reduced order model

(ROM) approaches use a small number of functions to span the basis of the microstruc-

tural domain as compared to a fully resolved microscale BVP. The accuracy of the ROM

depends on the partitioning model order. Hence, choosing the appropriate basis functions

to represent the fine scale response is therefore a very critical question.

Eigendeformation-based reduced order homogenization method is an effective approach
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that can be applied to problems involving material nonlinearities [1, 2, 3], as well as inter-

face decohesion at the microstructural scale [4, 5]. This approach employs the transfor-

mation field analysis (TFA) [6, 7] and evaluates the nonlinear microscale problem using

only a small set of unknowns through construction of microstructural influence functions

and localization operators that are pre-computed using linear elastic microscale problems.

As mentioned before, many ROMs rely on representing the nonlinear response of the full

scale microscale BVP using a small number of functions spanning a basis that has dimen-

sions much smaller in comparison. In nonlinear problems, the microstructure loading may

change significantly during a loading period due to load redistribution. While the reduced

order models are accurate in the load conditions at which they are derived, their perfor-

mance at full load spectrum is not always accurate and is duly noted [4, 5, 49].

To properly characterize the nonlinear response, the use of a small number of functions

spanning the basis of the microstructural domain directly translates to a reduced number of

internal state variables to approximate the overall behavior of the ROM. Sparks and Oskay

[49] have proposed using a brute force heuristic genetic algorithm (GA) to find the optimal

ROM partitioning. The optimal ROM is posed as an nonlinear integer optimization problem

(NIOP) provided reasonable results but even with parallel computing, the GA proved to be

computationally intractable due to its brute force search for the global minimizer. This can

become an issue if the geometry of the microstructure becomes more complex and finer

mesh resolutions are used within the microstructure.

The ROM partitioning strategy used in this chapter utilizes the method of failure paths

[5]. The potential failure paths are selected as the reduce order model basis. In order to

further reduce the computational time, without compromising the accuracy of the results,

the potential crack path process zones are allowed to intersect and that the collection of

these overlapping parts will characterize the domain of the ROM. Allowing for these over-

lapping parts further reduces the number of internal state variables in the model as well

as the model order, hence computational cost savings. This assumption yields reasonable
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results but there is still room for improvement.

During post-processing of the analysis, spurious residual stresses were observed post

failure. These observations have been duly noted throughout the literature [4, 12] and this

so-called inclusion locking phenomenon has been an issue in need of mitigation. Fish and

co-workers propose that the reasoning of this phenomenon is due to the overall macroscopic

stress having residual contributions from the elastic deformation of the fiber phase if the

matrix phase is exhibiting a perfectly plastic behavior [12]. The notion of these impotent

(harmless) eigenstrain terminology has been suggested in the literature by T. Mura, R. Fu-

ruhashi [50] and these eigenstrains are either coined as being incompatible or compatible.

To alleviate this overly stiff phenomenon and to improve the accuracy of the ROM, mod-

ified ‘zero mode’ impotent eigenstrains are incorporated into the constitutive framework

to help predict the overall material response. The consideration of these modified ‘zero

mode’ impotent eigenstrains are a novel contribution because multiple sets of coefficient

tensors are computed a-prior to the macroscale analysis. Thus, they are computed one time

and stored away for later use during the macroscale stress update of the ROM analysis, as

opposed to recomputing the coefficient tensors which is computationally prohibitive.

In this chapter, a non-local multiscale model for failure analysis of heterogeneous mate-

rials using the eigendeformation-based reduced order homogenization method is presented.

A two-scale asymptotic expansion is used to decompose the problem into a macro and mi-

croscale BVP and a variant of the transformation field analysis is used to reduce the compu-

tational cost of direct homogenization. The ROM partitioning strategy utilizes the method

of failure paths, in which the representative volume element is subjected to various loading

modes until damage is induced on the microstructure, yielding potential non-local failure

crack paths. These potential failure crack paths have a failure process zone on the order

of the non-local characteristic length and a crack can occur in this zone. In order to fur-

ther reduce the computational time, these potential crack path process zones are allowed to

intersect and they form overlapping parts which will characterize the domain of the ROM
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and reduce the number of internal state variables in the model as well as the model order.

To improve the accuracy of the ROM, a modified ‘zero mode’ impotent eigenstrains is in-

corporated into the constitutive framework to help predict the overall material response and

alleviate these spurious residuals post failure.

The proposed eigendeformation-based reduced order homogenization methodology ad-

dresses the following shortcomings (1) how to identify the model order of the reduced basis

for a microstructure using the method of failure paths [5] in nonlocal continuum damage

model; (2) attention is given to account for the effect of overlapping failure paths in the mi-

croscopic domain when using combinatorics to identify the partition for the reduced order

model. Lastly, (3) the reduced order model does not capture the post-failure response of

the representative volume element accurately. To address this issue of inclusion locking, a

new set of coefficient tensors which exhibit a near ”zero” mode is generated in the reduced

order coarse-scale stress computation.

The remainder of this chapter is as follows: The problem statement is defined on a

composite domain in Section 3.2. The macroscale and microscale boundary value problems

in the context of the computational homogenization method are described in Section 3.3.

In Section 3.4, eigendeformation-based reduced order homogenization is employed in the

formulation to solve for the microscale response, the idea of overlapping failure paths is

presented, and a modified ‘zero mode’ impotent eigenstrain formulation as noted in [12] is

introduced to alleviate post failure residual stresses. In Section 3.5, the continuum damage

mechanics model is defined and a new nonlocal equivalent strain driver is utilized. The

computational aspects of the reduced order model development strategy is presented in

Section 3.6. Numerical verification examples of the representative volume element (RVE)

are large scale beam bending examples are discussed in Section 3.7.
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Figure 3.1: Macro- and microscopic structures.

3.2 Problem Statement

A heterogeneous structure with macroscopic domain, Ω, is formed by repetition of the

locally periodic microstructure as illustrated in Fig. 3.1. The periodic microstructure con-

sists of c≥ 2 constituent phases (as shown in Fig. 3.1a), and the local domain is denoted as

Θ. The response fields (e.g., strain, displacement, stress) are functions of the macroscopic

and microscopic coordinate systems, and these domains are parameterized by the position

vectors, x and y, respectively. These response fields are assumed to be periodic about the

representative volume element. The ratio between the size of the macroscopic and micro-

scopic domains are related by a small positive size scale ratio, ζ , (i.e., 0 < ζ � 1), such

that y = x/ζ .

Assuming small deformation theory applies, the governing equations on a macroscopic

composite domain, Ω, are outlined as:

σ
ζ

i j, j(x, t)+bζ

i (x, t) = ρ
ζ üζ

i (x, t) x ∈Ω (3.1)

σ
ζ

i j(x, t)= Lζ

i jkl(x)(ε
ζ

kl(x, t)−µ
ζ

kl(x, t))≡ [1−ω̇
ζ (x, t)]Lζ

i jkl(x)ε
ζ

kl(x, t) x,µ ∈Ω (3.2)

ε
ζ

i j(x, t) = uζ

(i, j)(x, t)≡
1
2
(uζ

i,x j
+uζ

j,xi
) x ∈Ω (3.3)
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ω̇
ζ = ω̂

ζ (σ
ζ

i j ,ε
ζ

i j,s
ζ

i j) ω ∈Ω (3.4)

where uζ

i (x) denotes displacement, σ
ζ

i j(x) denotes the Cauchy stress and ε
ζ

kl(x) the to-

tal strain that can be additively decomposed into the elastic strain and the inelastic strain

µ
ζ

i j(x). A subscript comma denotes differentiation, parentheses in the subscript denotes a

symmetric differentiation (i.e., uζ

i,x j
). bζ

i (x) is the body forces, Lζ

i jkl the tensor of elastic

moduli. ω ∈ [0,1) is the damage variable with ω = 0 and ω→ 1 indicating the states of no

damage and complete loss of load carrying capacity. The evolution of the damage variable

is explicitly defined in Section 3.5.

The initial and boundary conditions are assumed to be function of the macroscopic coordi-

nates:

uζ

i (x, t) = ûi(x) x ∈Ω, t = 0 (3.5)

u̇ζ

i (x, t) = v̂i(x) x ∈Ω, t = 0 (3.6)

uζ

i (x, t) = ūi(x, t) x ∈ ∂Ω
u, t ∈ [0, t0] (3.7)

σ
ζ

i j(x, t)n j = t̄i(x, t) x ∈ ∂Ω
t , t ∈ [0, t0] (3.8)

in which ūi(x) and t̄i(x) are the prescribed displacement and tractions on the boundaries

∂Ωu and ∂Ωt , where ∂Ωu∪∂Ωt = ∂Ω and ∂Ωu∩∂Ωt = /0. n j is the unit normal to ∂Ωt .

A general form of the response field, f is expressed in terms:

f ζ (x) = f (x,y(x)), (3.9)

where, superscript ζ indicates the oscillatory behavior of the response field due to the local

microstructural heterogeneities. It is important to note that Eq. 3.9 is a function of both the

macroscopic and microscopic coordinate systems. Utilizing the chain rule, the macroscopic
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spatial derivative, has the form:

f ζ
,xi
(x) = f,xi(x,y)+

1
ζ

f,yi(x,y), (3.10)

where, i = 1,2, ...,nsd and a comma appearing in the subscript indicates taking the partial

derivative with respect to the components. The response fields are assumed to be locally

periodic throughout the deformation process and are denoted as:

f (x,y)) = f (x,y+kŷ)) (3.11)

in which, ŷ represents the periods of the micro-structure and k is a nsd×nsd diagonal ma-

trix consisting of integer entries.

3.3 Computational Homogenization

The coupled boundary value problems which describes the equivalent homogeneous do-

main (i.e., the macroscale problem) and representative volume element (i.e., the microscale

problem) are formed following the mathematical homogenization theory with multiple spa-

tial scales [14]. The displacement field of the heterogeneous material is decomposed using

a two-scale asymptotic expansion:

ui (x,y, t) = ūi (x, t)+ζ u1
i (x,y, t) (3.12)

in which, ūi and u1
i are the macroscopic and microscopic displacement fields, respectively.

The first order displacement field is independent of the microscale coordinates. The two-

scale decomposition of the displacement field is substituted into the equilibrium governing

equation and asymptotically expanding the displacement field yields the macro- and mi-

croscale BVP counterparts [4]. The strain and stress fields have the same decomposition
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and can be expanded using asymptotics analogously.

3.3.1 Macroscale problem

When the two-scale asymptotic decomposition is substituted into the equilibrium equa-

tions, considering the O(1) terms and averaging over the representative volume element

(RVE) leads to the homogenized macroscale equilibrium equation defined over the macro-

scopic domain, Ω:

σ̄i j,x j (x, t)+ b̄i (x, t) = 0 (3.13)

in which, σ̄i j and b̄i denote the macroscopic stress tensor and body force, respectively,

which are volume-averaged (homogenized) over the domain of the RVE, Θ:

σ̄i j (x, t) =
〈
σi j
〉

(3.14)

b̄i (x, t) = 〈bi〉 (3.15)

where, the Macaulay brackets indicate averaging over the RVE domain:

〈·〉= 1
|Θ|

∫
Θ

(·)dy (3.16)

|Θ| is the volume of the RVE. Using the strain decompositions, derived analogously to the

displacement and integrating over the domain and combining with the stress field equation

as shown in [4]. The stress field is expressed as:

σi j (x,y, t) = Li jkl (y)
[
ε̄kl (x, t)+u1

(k,yl)
(x,y, t)−µkl (x,y, t)

]
(3.17)

where, Li jkl is the fourth order tensor of elastic moduli, taken to be symmetric and strongly

elliptic. Li jkl varies within the RVE due to material heterogeneity but is taken to be constant

in macroscale coordinates. ε̄i j = ū(i,x j) is the macroscopic strain tensor. The boundary
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conditions of the macroscale problem are defined as:

ūi (x, t) = gi (x, t) ; x ∈ Γu (3.18)

σ̄i j (x, t)n j = ti (x, t) ; x ∈ Γt (3.19)

in which, gi is the boundary displacement data prescribed on Γu ⊂ ∂Ω; and, ti is the bound-

ary traction data prescribed on Γt ⊂ ∂Ω, such that Γu ∩Γt = /0 and Γu ∪Γt = ∂Ω. The

prescribed boundary conditions are taken to vary with respect to the macroscopic scale

only and are constant with respect to the microscopic coordinates.

3.3.2 Microscale problem

Substituting the two-scale asymptotic decomposition into the equilibrium equations,

considering the O(ζ−1) terms leads to the formulation of the microscale equilibrium equa-

tion defined over the RVE domain, Θ:

σi j,y j (x,y, t) = 0 (3.20)

Equation 3.20 along with the evolution equations for damage are evaluated for the mi-

croscale displacement field, u1
i , where the macroscopic strain, ε̄i j acts as the loading func-

tion for the microscale problem. The boundary condition of the microscale problem is

taken to be periodic. For a rectangular (or cuboidal) shaped RVE domain, the boundary is

split into nsd subdomains denoted by Γξ , where nsd = 2 or 3 is the number of spatial di-

mensions. The RVE boundary consists of multiple pairs of parallel sides (or faces) within

each boundary subdomain. The periodic boundary conditions are expressed as:

u1
i (y, t) = u1

i
(
y− lζ nξ , t

)
; y ∈ Γξ ; ξ = 1, . . . ,nsd (3.21)
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in which, nξ is the unit outward normal on Γξ , and lξ is the length of the RVE along

nξ . The nonlinear microscale BVP is solved to evaluate the microscale displacement field,

u1 (x,y, t) by enforcing these periodic boundary conditions. In order to restrict rigid body

motion, zero microscale displacement is imposed at the vertices of the RVE domain.

3.4 Reduced Order Homogenization

When solving linear problems, the linearity of the microscale displacement field with

respect to the macroscopic strains is exploited to pose the microscale problem as the prod-

uct of the third order influence function, Hikl (i.e., u1
i (x,y) = Hikl (y) ε̄kl (x)), and scaling

the term by the macroscale strain field. The macroscale stress is then a function of Hikl .

Hikl is obtained by substituting the above expression into the microscale BVP and then

solving the microscale problem when the microscale problem is free of damage (i.e, ω = 0

). The influence function is computed numerically by solving the elastic influence function

problem and then employed in the evaluation of the macroscale problem. When evaluating

these nonlinear problems, the microscale displacement field is typically a nonlinear and

history-dependent function of the macroscale strain field. Therefore, a separate microscale

problem is assigned to each integration point of a macroscale problem and evaluated for

every load increment and iteration of a macroscale analysis. Hence, there is a strong cou-

pling between the macroscale and microscale BVP and the computational burden in this

approach is tremendous in case of large structural simulations or when the microstructure

is complex. The eigendeformation-based reduced order homogenization approach [4, 5]

was employed to develop a reduced order model for efficiently solving for the microscale

response. The microscopic displacement field is expressed as:

u1
i (x,y, t) = Hikl (y) ε̄kl (x, t)+

∫
Θ

hikl (y, ŷ)µkl (x, ŷ, t)dŷ (3.22)
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The inelastic influence function, hikl , is a type of numerical Green’s function and consists

of the particular solutions of the RVE and is approximated as numerical solutions on the

linear elastic RVE problems. The numerical evaluation of the elastic and damage influence

functions are provided in [4] and skipped herein for brevity.

The computational complexity of solving the RVE problem is reduced by the discretization

of the eigendeformation fields, using the following expression:

µi j (x,y, t) =
n

∑
α=1

N(α) (y)µ
(α)
i j (x, t) (3.23)

where, N(α) is the mesomechanical shape function; n is the order of discretization (also

referred to as the model order), and µ
(α)
i j are the microscopically nonlocal inelastic strain

coefficients expressed as:

µ
(α)
i j (x, t) =

∫
Θ

ϕ
(α) (y)µi j (x,y, t)dy (3.24)

in which, ϕ(α) are mesomechanical weight functions. The mesomechanical shape functions

differ from the standard finite element shape functions in the sense that they are coarser and

requires only C−1 continuity. Analogously, the phase damage ω(α) has a similar expression

as Eq. 3.24. The strain field of the heterogeneous material is decomposed using a two-scale

asymptotic expansion and consist of a macroscopic and microscopic contribution. Em-

ploying the discretized inelastic strain field shape function and integrating over the domain

of the RVE, a kinematic relationship between the nonlocal inelastic strain coefficients and

nonlocal total strain coefficient is obtained:

ε
(α)
i j (x, t) = A(α)

i jkl ε̄ (x, t)+
n

∑
β=1

P(αβ )
i jkl µ

(β )
kl (x, t) (3.25)
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where, ε
(β )
i j is defined analogous to Eq. 3.24, and:

A(α)
i jkl = Ii jkl +

∫
Θ

ϕ
(α) (y)Gi jkl (y)dy (3.26)

P(α)
i jkl =

∫
Θ(α)

gi jkl(y, ŷ)N(α)(y)dŷ (3.27)

P(αβ )
i jkl =

∫
Θ

∫
Θ

ϕ
(α) (y)gi jkl (y, ŷ)N(β ) (ŷ)dŷdy (3.28)

M(α)
i jkl =

1∣∣Θ(α)
∣∣ ∫

Θ

L(α)
i jmn(y)

(
P(α)

mnkl(y)− ImnklN(α)(y)
)
dy (3.29)

in which, Gi jkl = H(ikl,y j) and gi jkl = h(ikl,y j) are elastic and inelastic polarization tensors,

respectively; and Ii jkl is the fourth order identity tensor. A(α)
i jkl is the fourth order elastic

strain concentration tensor. P(α)
i jkl , P(αβ )

i jkl and M(α)
i jkl are coefficient tensors providing the

microstructural morphology information.

The evolution of the inelastic strains is in terms of the nonlocal variables, has the following

form:

µ̇
(α)
i j = µ̂

(α)
i j

(
ε
(α)
i j ,h(α)

)
(3.30)

where, ε
(α)
i j is the nonlocal strain coefficient and h(α) denotes additional internal state vari-

ables defining the evolution of the inelastic process. Analogously, Eq. 3.30 is defined

similarly as Eq. 3.4. Equation 3.30 along with Eq. 3.25 are evaluated to obtain µ
(α)
i j for

a prescribed macroscopic strain state. The computed inelastic strain field satisfies the mi-

croscale equilibrium a-priori via the influence functions. The evaluation of µ
(α)
i j therefore

provides an approximation to the solution of the microscale problem. The specific form

of the evolution equations Eq. 3.30 requires that the nonlocal inelastic strain coefficients

describe the inelastic processes at a subdomain occupied by a single constituent phase.

Considering the particular form of the inelastic strain field, combining with Eq. 3.23 and

Eq. 3.17, premultiplying the resulting equation by ϕ(α) and integrating over the unit cell

yields the nonlocal inelastic strain coefficients expressed in the following algebraic form
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(∀α = 1,2, . . . ,n):

n

∑
β=1

[
δαβ Ii jkl−P(αβ )

i jkl ω
(α) (x, t)

]
µ
(β )
kl (x, t)−ω

(α) (x, t)A(α)
i jkl ε̄kl (x, t) = 0 (3.31)

where, δαβ is Kronecker delta. The constitutive relation for the macroscopic problem

is obtained by combining the homogenized stress with the decomposition of the phase

damage, ω (x,y, t), which is defined analogous to the inelastic strain field in Eq. 3.23,

and utilizing the definitions of the coefficient tensors. The constitutive relation for the

macroscopic problem is:

σ̄i j (x, t) = L̄i jkl ε̄kl (x, t)+
n

∑
α=1

M̄(α)
i jkl µ

(α)
kl (x, t) (3.32)

3.4.1 Method of failure paths

The accuracy and computational efficiency of the reduced order model is related to the

model order (n) as well as the selection of the shape and weight functions of the ROM.

As the model order increase for a particular ROM, the computational complexity increases

and ultimately results in a larger set of nonlinear equations that must be evaluated.

Let iΘ ⊂ Θ denote the domain of phase i (1 ≤ i ≤ c) within the RVE. Consider an

alternative decomposition of the domain of the RVE into n possibly intersecting subdo-

mains, with Θ(α) as the α th subdomain (or part) in the partition. A part is taken to be the

subdomain of a single phase: Θ(α) ⊂ iΘ and the overlap of multiple phase domains is not

allowed. Hence,

Θ≡ S0∪
n⋃

α=1

Θ
(α) (3.33)

where, S0 is the null set. The intersection between two parts is denoted as Θ(αβ ) ≡ Θ(α)∩

Θ(β ). A material point within the RVE is allowed to lie in all n parts or less but taken

to occupy only those parts that are within the corresponding phase, iΘ. The intersection

between multiple parts are defined by repetitive Greek superscripts: Θ(αβν ...) ≡ Θ(α) ∩
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Θ(β ) ∩Θ(ν) . . .. Θ
(α)
k is further defined as the subdomain of Θ(α) that intersect precisely

k−1, other parts Θ(β ). Thus, Θ
(α)
1 indicates the region exclusively bounded by Θ(α). Let’s

suppose, Sk are the subdomains that are in exactly k of the Θ(α)’s. Thus, Sk is exactly

k intersections of the subdomain, where, k = 1,2, . . . ,n. Hence, Θ
(α)
k ≡ Θ(α) ∩ Sk and

Θ
(αβ )
k ≡Θ(α)∩Θ(β )∩Sk. The definition can be generalized as:

Θ
(αβν ···)
k ≡Θ

(α)∩Θ
(β )∩Θ

(ν)∩·· ·∩Sk. (3.34)

Below is a pictorial illustration of the overlapping subdomains in Θ, which consist of

Sk, with exactly k intersections. The Θ
(α)
k ’s are the subdomains of the phase part.

Θ(1)
1

Θ

S2

Θ(1)
1

Θ(3)
1

Θ(3)
1 Θ(4)

1

Θ(2)
1Θ(2)

1

Θ(4)
1

S2
S2

S2
S3S3

S3S4
S4

Θ(5)
1

Figure 3.2: Intersections of exactly k in the subdomain with the collection of Θ(α) parts.

The phase shape functions N(α) are assumed to satisfy the partition of unity property:

n

∑
α=1

N(α) (y) = 1; y ∈Θ (3.35)

and the phase weight functions, ϕ(α) satisfy positivity:

ϕ
(α)(y)≥ 0 (3.36)
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and normalization condition. ∫
Θ

ϕ
(α)(y)dy = 1 (3.37)

The various choices of weight and shape functions and the significance of using non-

orthogonal basis sets in comparison to using an orthogonal basis are explained below. By

allowing the parts within the failure paths to overlap, the number of equations that have to

be solved in the system are effectively reduced. A basis which is formed by non-orthogonal

functions is defined as:

Si j =
〈
bi|b j

〉
=
∫

b∗i b jdv (3.38)

where Si j constitutes the overlap matrix, or the quantities are known as overlap integrals

and they are assumed to have a basis of n functions bi. If a particular special case of an

orthogonal basis set is considered, then the overlap matrix becomes the identity matrix,

Si j = δi j. With the appropriate choice of orthogonal shape functions, it is a trivial task to

show that the shape and weight functions imply orthonormality.

∫
Θ

ϕ
(α)(y)N(β )(y)dy = δ

K
αβ

(3.39)

in which δ K
αβ

is the Kronecker delta. If a non-orthogonal basis is considered, then Si j is

over overall matrix. Hence,

Sαβ =
〈

N(α)|N(β )
〉
=
∫

Θ

N(α) ∗N(β )dy (3.40)
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The shape functions for the reduced order model, N(α), are chosen as:

N(α) (y) =



1 if y ∈Θ
(α)
k

∖ n⋃
β=1
α 6=β

Θ
(αβ )
k

1
k

if y ∈Θ
(α)
k ∩Θ

(β )
k

0 elsewhere

(3.41)

in which, k = 1,2,3,4, . . . ,n and has exactly k intersections. The shape functions defined

in Eq. 3.41 allow the possibility of intersecting subdomains and do not form an orthogonal

basis, instead due to the overlapping nature of the parts, the corresponding shape functions

are constructed to form the reduced basis.

Previous investigators [4, 12, 20] have all used an orthogonal basis to form their shape

functions, but the overlapping parts can be decomposed by utilizing Gram-Schmidt to con-

struct an orthogonal version of the same basis. The evaluation of the overlap matrix can be

posed as a generalized eigenvalue problem and the problem can be decomposed into two

equivalent eigenvalue problems. The details of the solution strategy is given in the follow-

ing lecture notes [51]. Another solution strategy is to evaluate the effect of the stability of

the system by calculating the condition numbers.

3.4.2 Identification of parts

The identification of the proper reduced order model for the RVE affects the efficiency

and accuracy of the proposed ROMs. As the model order, n increases, the accuracy of

the ROM increases at the expense of additional computational effort. There are many ap-

proaches which investigates the identification of the proper partitioning strategy. Sparks

and Oskay [49] have proposed using a brute force heuristic genetic algorithm (GA) to find

the optimal ROM partitioning. The optimal ROM is posed as a nonlinear integer opti-

mization problem (NIOP) provided reasonable results but even with parallel computing,

the GA proved to be computationally intractable due to its brute force search for the global
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minimizer. This can become an issue if the geometry of the microstructure becomes more

complex and finer mesh resolutions are used. Previous investigators [4] have proposed us-

ing a dynamic and static partitioning strategy. The dynamic partitioning strategy resembles

an h-version adaptive finite element refinement, in which the space is probed based on a

pre-defined error metric and once a hot spot has been identified based on the response met-

ric, the model order is increased accordingly. This dynamic partitioning strategy is rigorous

and efficiency decreases due to the complication of the adaptive process and there is a sig-

nificant computational cost. In static partitioning the ROM basis is selected a-priori based

on your intuition after sufficient probing of the space. In this section, the static partition-

ing strategy (or method of predetermined failure paths) [5] is used and the RVE domain

partition and model order are identified prior to the macroscopic analysis.

A periodic microstructure where the constituent phases, c = 2, consists of matrix mate-

rial and is reinforced by a fiber is considered. The fiber material is assumed to be isotropic

and elastic with no damage accumulation. The matrix phase is allowed to degrade and has

damage evolution parameters. The RVE is subjected to various loading modes which are

admissible by homogenization theory until damage is induced on the microstructure, yield-

ing potential non-local failure crack paths. The various loading modes are uniform macro-

scopic strain modes (i.e., uniaxial tensile or shear) which are applied along the boundaries

of the microstructure. The potential failure paths are selected as the reduce order model ba-

sis using a small number of domain parts (i.e., small model order n). The potential failure

crack paths have a failure process zone on the order of the non-local characteristic length

and a crack can occur in this zone when these loads are applied. In order to further reduce

the computational time, these potential crack path process zones are assumed to intersect

and they form overlapping parts which will characterize the domain of the ROM and reduce

the number of internal state variables in the model as well as the model order, n.
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3.4.3 Modified ‘zero mode’ impotent eigenstrains

The system for solving the ROM has generally been defined. Once these uniform

macroscopic strains are applied to the periodic microstructure, potential failure crack paths

are formed. Although, the crack can occur anywhere within this potential failure path, for

simplicity sake, the whole path is taken as a failed part and selected as the failure path for

that given admissible loading.

During post-processing of the analysis, spurious residual stresses were occurring post

failure. These observations have been duly noted throughout the literature [4, 12] and this

so-called inclusion locking phenomenon has been an issue in need of mitigation. Fish and

co-workers propose that the reasoning of this phenomenon is due to the overall macro-

scopic stress having residual contributions from the elastic deformation of the fiber phase

if the matrix phase is exhibiting a perfectly plastic behavior [12]. The notion of these im-

potent (harmless) eigenstrain terminology has been suggested in the literature by T. Mura,

R. Furuhashi [50] and these eigenstrains are either coined as being incompatible or com-

patible. To alleviate this overly stiff phenomenon and to improve the accuracy of the ROM,

a modified ‘zero mode’ impotent eigenstrains is incorporated into the constitutive frame-

work to help predict the overall material response. The consideration of these modified

‘zero mode’ impotent eigenstrains area novel contribution because multiple sets of coeffi-

cient tensors are computed a-prior to the macroscale analysis. Thus, they are computed one

time and stored away for later use during the macroscale stress update of the ROM analysis,

as opposed to recomputing the coefficient tensors which is computationally prohibitive.

To demonstrate the effect of residual stress for zero mode eigenstrains, a three part

non-overlapping ROM as shown in Fig. 3.3a is considered. Suppose ω(1)=1; ω(2)=ω(3)=0.

Using Eq. 3.31:

(
Ii jkl−P(11)

i jkl (y)ω
(1))

µ
(1)
kl (x, t)−P(12)

i jkl (y)ω
(1)

µ
(2)
kl (x, t)−P(13)

i jkl (y)ω
(1)

µ
(3)
kl (x, t)

= ω
(1)A(1)

i jkl(y)ε̄kl(x, t)
(3.42)
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Figure 3.3: New sets of coefficient tensors are generated based on the combination of
activated potential failure crack paths, (i.e. zero mode impotent eigenstrains). The dark
grey (matrix) and the light grey (fiber) regions retain their original material properties.
The white region is the activated potential crack which is idealized as an empty space
failure path. (a) Corresponds to Θ(1) empty space failure path for the given loading;
(b) simultaneous Θ(1) and Θ(2) potential empty space failure paths which intersect for
the given loading; and lastly (c) Θ(n) simultaneous potential empty space failure paths
corresponding to n loading conditions.

−P(21)
i jkl (y)ω

(2)
µ
(1)
kl (x, t)+

(
Ii jkl−P(22)

i jkl (y)ω
(2))

µ
(2)
kl (x, t)−P(23)

i jkl (y)ω
(2)

µ
(3)
kl (x, t)

= ω
(2)A(2

i jkl(y)ε̄kl(x, t)
(3.43)

−P(31)
i jkl (y)ω

(3)
µ
(1)
kl (x, t)−P(32)

i jkl (y)ω
(3)

µ
(2)
kl (x, t)+

(
Ii jkl−P(33)

i jkl (y)ω
(3))

µ
(3)
kl (x, t)

= ω
(3)A(3)

i jkl(y)ε̄kl(x, t)
(3.44)

Applying the above damage state conditions to the equations above simplifies to:

(Ii jkl−P(11)
i jkl (y)ω

(1))µ
(1)
kl (x, t) = A(1)

i jkl(y)ε̄kl(x, t) (3.45)

Thus,

µ
(1)
kl (x, t) =

(
Ii jkl−P(11)

i jkl (y)
)−1A(1)

i jkl(y)ε̄kl(x, t) (3.46)

It is therefore a trivial task to see that µ
(2)
kl (x, t) = µ

(3)
kl (x, t) = 0.
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Substituting Eq. 3.45 into Eq. 3.31:

σ̄i j (x, t) = L̄i jkl ε̄kl (x, t)+ M̄(1)
i jkl

(
Ii jkl−P(11)

i jkl (y)
)−1A(1)

i jkl(y)ε̄kl(x, t) (3.47)

Note that:

N(α) (y) =

 1 if y ∈Θ(α)

0 elsewhere
(3.48)

ϕ
(α) (y) =

1∣∣Θ(α)
∣∣N(α) (y) (3.49)

where,

A(1)
i jkl = Ii jkl +

1∣∣Θ(1)
∣∣∫

Θ(1)
Gi jkl (y)dy (3.50)

P(1)
i jkl =

1∣∣Θ(1)
∣∣ ∫

Θ(1)
gi jkl(y, ŷ)dŷ (3.51)

P(11)
i jkl =

1∣∣Θ(1)
∣∣ ∫

Θ(1)

∫
Θ(1)

gi jkl (y, ŷ)dŷdy (3.52)

M(1)
i jkl =

L(1)
i jmn(y)∣∣Θ(1)

∣∣ [(∫
Θ(1)

∫
Θ(1)

gmnkl (y, ŷ)dŷdy− Imnkl

)
+(∫

Θ(1)

∫
Θ(1)

gmnkl (y, ŷ)dŷdy− Imnkl

)
+
(∫

Θ(1)

∫
Θ(1)

gmnkl (y, ŷ)dŷdy− Imnkl

)]
(3.53)

Simplifying the above expression for M(1)
i jkl yields:

M(1)
i jkl = c(1)L(1)

i jkl(y)
(
P(11)

i jkl (y)− Ii jkl
)
+ c(1)L(1)

i jkl(y)P
(12)
i jkl (y)+ c(1)L(1)

i jkl(y)P
(13)
i jkl (y) (3.54)

Hence, the final expression for the homogenized stress is:

σ̄i j (x, t) = L̄i jkl ε̄kl (x, t)+
[
c(1)L(1)

i jkl(y)
(
P(11)

i jkl (y)− Ii jkl
)
+

c(1)L(1)
i jkl(y)P

(12)
i jkl (y)+ c(1)L(1)

i jkl(y)P
(13)
i jkl (y)

](
Ii jkl−P(11)

i jkl (y)
)−1A(1)

i jkl(y)ε̄kl(x, t)
(3.55)
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Under the applied loading along the horizontal (1-direction), the overall stress along

the same direction has to vanish due to complete separation within the microstructure (i.e.,

a potential failure path has formed). The computation is generally nonzero, as described in

[12, 50]. In the present chapter, the following idea has been implemented. Consider at the

point of failure, the tensor of elastic moduli associated with failure path is set to vanish (i.e.

L(1)
i jkl(y) = 0). The second part of the RHS of Eq. 3.55 consequently vanishes. As illustrated

in Fig. 3.3a, it is clear that the components of the homogenized tensor along the 1-direction

also vanish, leading to vanishing stress along the direction perpendicular to the direction of

the failure path. This simple example was to demonstration the effect of residual stress for

zero mode eigenstrains.

Now that a simple example has shown the effect of the residual stress, the details of

solving for the original coefficient tensors and generating these multiple sets of coefficient

tensors corresponding to these zero mode eigenstrains are provided. A set of coefficient

tensors are generated, a-priori to the macroscale analysis, which represent the different

nonoverlapping and overlapping parts described in Eq. 3.34. When determining the origi-

nal set of coefficient tensors, the tensor of elastic moduli is utilized. L(α)
i jkl is defined as the

tensor of elastic moduli of the constituent phase occupying Θ(α), this L(α)
i jkl is taken to be

constant throughout the Θ(α). Utilizing this same L(α)
i jkl throughout the Θ(α) will contribute

to the inclusion locking since the rest of the transformation influence functions are a con-

sequence of the elastic boundary value problems, as shown above in the simple three part

non-overlapping example.

To alleviate this overly stiff phenomenon, the periodic microstructure described above

in Fig. 3.2 is considered and multiple sets of new coefficient tensors are generated. One set

of coefficient tensors as described previously are selected, then a series of zero eigenmode

coefficient tensors are generated. A new tensor of elastic moduli, L̂(α)
i jkl is defined, which is

related to phase damage.

Consider the damage in a failure path which is now an empty space. This empty space
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can be idealized as a crack and the corresponding L(α)
i jkl is now defined by this new L̂(α)

i jkl .

It is shown in Fig. 3.3a, that the dark and light gray regions bounded by Θ(2) and Θ(3),

respectively, retain their same material properties. The only difference is the white region

bounded by Θ(1) is now idealized as an empty space, therefore the original L(α)
i jkl is reduced

by a scaling term ι . Hence, L̂(α)
i jkl = ιL(α)

i jkl . This is the general procedure to generate the first

order coefficient tensors for the analysis based on Fig. 3.3a.

The above idea may be generalized to account for multiple sets of newly generated

coefficient tensors (i.e., second order, and higher order) based on the combination of acti-

vated potential failure crack paths, and this idea is illustrated in Fig. 3.3b-c. For instance,

in Fig. 3.3b, if two potential failure paths have activated at the same time (i.e., ω(β ) = ω(ν)

=1), a series of coefficient tensors corresponding to [Θ(12),Θ(13),Θ(14),Θ(23),Θ(24),Θ(34)]

are generated based on the combination of interacting overlapping failure paths. This same

idea can be applied for higher order multiple sets of coefficient tensors, in which all the

combinations of potential failure paths are taken into account once activated at the same

time for a given loading condition.

To distinguish between the different sets of coefficient tensors, the symbol, ς̄ is defined.

This corresponds to the collection of all original coefficient tensors, hence, ς̄ = [P(α)
i jkl , P(αβ )

i jkl ,

M(α)
i jkl , · · · ]. Now a new set for the first order zero eigenmode coefficient tensors are defined

where, β failure that has degraded. Thus, ς̃ (β ) = [P̃(α)
i jkl , P̃(αβ )

i jkl , M̃(α)
i jkl , · · · ]. Analogously,

a set for the second order zero eigenmode coefficient tensors is defined, and corresponds

to the set of coefficient tensors where, both α and β has degraded. ˆ̃ς
(βν)

= [ ˆ̃P(α)
i jkl , ˆ̃P(αβ )

i jkl ,

ˆ̃M(α)
i jkl , · · · ].

Finally, a metric in which to select the correct set of coefficient tensors needs to be

defined. The trivial way is to utilize the information from the phase damage, ω(α), if the

phase damage values have achieved 1 or otherwise.
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Let ς , correspond to the collection of all the coefficient tensors.

ς =



ς̄ if ω(α) < 1 ∀α = 1,2, . . . ,n

ς̃ (β ) if ω(β ) = 1; ω(α) < 1; α 6= β

ˆ̃ς
(βν)

if ω(β ) = ω(ν) = 1; ω(α) < 1; α 6= β ,ν

...

(3.56)

A new tensor of elastic moduli, L̂(α)
i jkl , which is related to phase damage is defined as:

L̂(α)
i jkl(y) =



L(α)
i jkl if ω(α) < 1 ∀α = 1,2, . . . ,n

ιL(β )
i jkl if ω(β ) = 1; ω(α) < 1; α 6= β

ιL(βν)
i jkl if ω(β ) = ω(ν) = 1; ω(α) < 1; α 6= β ,ν

...

(3.57)

where, ι � 1, is a very small, positive scaling constant. When ι = 1, the original

tensor of elastic moduli defined in Θ(α), is recovered. This concludes the process behind

generating these multiple sets (i.e., first order, second order, ect.) of coefficient tensors

corresponding to these zero mode eigenstrains.

The consideration of these modified ‘zero mode’ impotent eigenstrains are a novel con-

tribution because multiple sets of coefficient tensors are computed a-prior to the macroscale

analysis. Thus, they are computed one time and stored away for later use during the

macroscale stress update of the ROM analysis, as opposed to recomputing the coefficient

tensors which is computationally prohibitive.

3.5 Damage Evolution Model

The evolution of the inelastic strain is based on the thermodynamic theory of irre-

versible processes with internal state variables and is modeled using a scalar continuum
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damage mechanics model:

µ
(α)
i j = ω

(α)
ε
(α)
i j (3.58)

in which, ω(α) ∈ [0,1) is the damage variable with ω(α) = 0 and ω(α) → 1 indicate the

states of no damage and complete loss of load carrying capacity within part Θ(α).

The evolution of the damage variable follows:

ω
(α) (x, t) = Φ

(
κ
(α) (x, t)

)
;

∂Φ

(
κ(α)

)
∂κ(α)

≥ 0 (3.59)

κ
(α) (x, t) = max

{
υ̂
(α)
nl (x,τ)

∣∣∣τ ≤ t
}
. (3.60)

To help define the strain driver for the damage model, critical plane theory provides

some insight for a better understanding of the principal causes of these many failure mech-

anism in structures. Some of these failures can be attributed to complex geometrical shapes

of engineering structures and components (i.e. aircrafts, vehicles, axles and rotating disk)

which result in complex multiaxial stress-strain states instead of simplified uniaxial load-

ings. In critical plane approaches, the basic postulate is that cracks initiate and grow on cer-

tain planes and that the normal strains to those planes help to propagate the crack growth.

Although this gives us a physical interpretation of how the fatigue damage accumulation

process works, similar principals can be applied to understand how failure in continuum

damage occurs. There are several multiaxial fatigue theories to predict fatigue life origi-

nally proposed by Brown and Miller [52], the approach was modified by Fatemi and Socie

with additional hardening parameters [53], the stress and strain models using Tresca and

Mises criteria were proposed by Kandil et al. [54] and current research conducted by Liu

and Mahadevan [55] investigates high cycle fatigue predictions. Utilizing the general form

for the effective strain amplitude based on von Mises to describe the nominal normal and

shear strains, a slight modification to the equivalent principal strains definition found in

any linear elastic mechanics book can be used. This modified scaling parameter is on the
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maximum shear strain amplitude and does not negate the contributions from the maximum

normal strains in the other directions.

To define the equivalent strain measure υ
(α)
ph , a modified principal strain definition in

terms of strains is utilized and has the following form:

υ
(α)
ph =

ε11 + ε22

2
±

√(
ε11− ε22

2

)2

+(kε12)
2 (3.61)

where, ε11, ε22, and ε12 are the x and y normal strain components and the xy is the shear

component. k is a material parameter which scales the shear term, when k→ 1 implies

principle strains as the equivalent strain measure. To investigate the influence of k on the

model please refer to the Appendix A for details. Following the modified principle strain

definition, the modified strains are computed and used in the Mazar’s model:

υ̂
(α)
ph =

√√√√ 2

∑
i=1

〈
υ
(α)
ph(i)

〉2

+
(3.62)

υ̂
(α)
ph is the damage equivalent strain based on Mazar’s model [56]. The positive part of

Eq. 3.62 is used as the driver in the nonlocal damage model. When the modified equivalent

strain reaches a threshold, damage within the material is activated and the material loses

strength due to the damage accumulation. The nonlocal damage equivalent strains are

expressed as:

υ̂
(α)
nl (y, ŷ) =

∫
Θ

λ (y, ŷ)υ̂(α)
ph (y, ŷ)dŷ∫

Θ
λ (y, ŷ) dŷ

(3.63)

The evolution of phase damage as a function of the phase deformation function follows the

arctangent law [1]

Φ
(α) =

atan
(

a(α)κ(α) (x, t)−b(α)
)
+atan

(
b(α)

)
π/2+atan

(
b(α)

) (3.64)

in which, a(α) and b(β ) are material parameters.
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3.6 Computational Aspects

To accurately capture the overall behavior of the composite material, it is necessary to

have the correct implementation of the reduced order model. The implementation of the

reduced order model is conducted in two stages where the first stage involves the decompo-

sition of elastic and inelastic strains which allows for the precomputations of localization

operators, coefficient tensors, influence functions a priori to the nonlinear analysis. The

second stage is the macroscale stress update during the nonlinear analysis.

3.6.1 Numerical Evaluation of the Reduced-Order Model

The evaluation of the reduced order model for the microscale boundary value problem

involves updating the macroscopic stress at a macro material point. A brief outline of the

macroscopic stress update procedure will be provided below.

Given: The overall macroscopic strain, t ε̄i j is provided at a material point and time; the

increment of the overall strain, ∆t ε̄i j; the phase damage variables, tω
(α)
ph ; and the damage

induced inelastic strains, t µ
(α)
i j . The previous and current increments are denote by t� and

t+1�, respectively. When referring to the left subscript of current increment, it will be

neglected in the writing for simplicity.

Compute: The current values (at time: t +∆t) of the overall macroscopic stress, σ̄i j; the

current phase damage variables, ω
(α)
ph ; and the current damage induced inelastic strains,

µ
(α)
i j .

d =
{
µ(1), ...,µ(n)

}T
(3.65)

The discrete system of nonlinear equations, Ψ, are defined based on reduced order model

as:

Ψ(d) = K
(

ω
(α)
ph

)
d+ f

(
ω

(α)
ph ; ε̄i j

)
= 0 (3.66)
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where, f is the contribution of the force vector.

K =

[
KPP(ω

(α)
ph )

]
(3.67)

and

KPP =



Ii jkl−P(11)
i jkl ω

(1)
ph −P(12)

i jkl ω
(1)
ph · · · −P(1n)

i jkl ω
(1)
ph

−P(21)
i jkl ω

(2)
ph Ii jkl−P(22)

i jkl ω
(2)
ph · · · −P(2n)

i jkl ω
(2)
ph

...
... . . . ...

−P(n1)
i jkl ω

(n)
ph −P(n2)

i jkl ω
(n)
ph · · · Ii jkl−P(nn)

i jkl ω
(n)
ph


(3.68)

K is an unsymmetric matrix and the solution of Ψ = 0 is evaluated by unsymmetric

nonlinear solvers. The force vector, f is defined as

f =
{

A(1)
i jklω

(1)
ph ,A

(2)
i jklω

(2)
ph , · · · ,A

(n)
i jklω

(n)
ph

}T
ε̄kl (3.69)

The computational algorithm to evaluate the reduced order model is outlined in Box 1.

(Step 1) The algorithm is initiated by imposing the overall strain, t ε̄i j, on the reduced order

domain. The next strain increment is calculated at (t +∆t) and (Step 2 and 3) Newton’s

method is initialized and employed to find the root of the nonlinear eigendeformation vec-

tor, d. There are several nonlinear solvers that can be utilized at this step, but Newton’s

solver is used because it is relatively stable and provides quadratic convergence so long as

the step size is not too large. The Jacobian is calculated and the approximation for k+1d is

made. (Step 4) The analysis will iteratively march along until convergence is satisfied be-

fore moving to the next step. The macroscopic stress is calculated and the analysis proceeds

until the end of the algorithm. ∆t ε̄i j
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1. Update the macroscopic strains: ε̄i j = t ε̄i j +∆ε̄i j

2. Utilize Newton’s method to solve Eqn. 3.66

k+1d = kd−
(

∂Ψ

∂d

)
|−1

kd Ψ|kd (3.70)

3. Initialize Newton’s method by setting k = 0, kd = td,
k
ω

(α)
ph =

t
ω

(α)
ph .

4. Loop over the iterations k until convergence:

(a) Compute kK, kf, and
(

∂Ψ

∂d

)
|−1

kd .

(b) Evaluate Eqn. 3.70 to obtain k+1d.

(c) k← k+1

5. Compute the macroscopic stress σ̄i j utilizing Eqn. 3.32.

(a) Exit the algorithm

End iteration loop

Box 1: The stress update algorithm for evaluation of the reduced order model.

3.6.2 Macroscopic tangent moduli

In this section, a closed form expression for the macroscopic tangent moduli, Li jkl is

derived and the field values at the current and previous time steps as noted in Section 3.3.1

are recorded. In Section 3.4, the macroscopic stress was expressed as:

σ̄i j (x, t) = L̄i jkl ε̄kl (x, t)+
n

∑
α=1

M̄(α)
i jkl µ

(α)
kl (x, t) (3.71)

where the coefficient tensors, L̄i jkl and M̄(α)
i jkl are independent of the macroscopic strain,

ε̄kl (x, t). The closed form of Li jkl is determined by differentiating Eq. 3.32 with respect to

ε̄kl (x, t):

Li jkl =
σ̄i j

ε̄kl
= L̄i jkl +

n

∑
α=1

M̄(α)
i jmn

∂ µ
(α)
mn

∂ ε̄kl
(3.72)
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Thus, to evaluate ∂d
∂ ε̄kl

, refer back to the discrete system in Eq. 3.66:

Ψ̂(d) = K(d)d− f
(
d; ε̄i j

)
= 0 (3.73)

and taking derivatives of the above expression with respect to ε̄kl (x, t) and using chain rule

yields:
∂d

∂ ε̄kl
= C−1 ∂ f

∂ ε̄kl
, (3.74)

where,

C=
∂Ψ̂

∂d
=

∂K
∂d

d+K− ∂ f
∂d

(3.75)

the expression for ∂ f
∂ ε̄kl

is obtained trivially from Eqn. 3.69:

f =
{

A(1)
i jklω

(1)
ph ,A

(2)
i jklω

(2)
ph , · · · ,A

(n)
i jklω

(n)
ph

}T
. (3.76)

Differentiating the force vector, f with respect to the vector of state variables, d and using

chain rule yields:

∂ f
∂d

=
n

∑
α=1

∂ f

∂ω
(α)
ph

∂ω
(α)
ph

∂d
; (3.77)

where,
∂ω

(α)
ph

∂d
=

∂ω
(α)
ph

∂κ
(α)
ph

∂κ
(α)
ph

∂ν
(α)
ph

∂ν
(α)
ph

∂ε(α)

∂ε(α)

∂ ε̃(α)

∂ ε̃(α)

∂d
. (3.78)

The expression for ∂ f
∂ω

(α)
ph

may be calculated by differentiating Eq. 3.69 with respect to the

phase damage variable, ω
(α)
ph yields:

∂ f

∂ω
(α)
ph

=
{

0, · · · ,0,A(α)
i j ε̄ j,0, · · · ,0

}T
. (3.79)
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∂ω
(α)
ph

∂κ
(α)
ph

is calculated by differentiating Eqn. 3.64

∂ω
(α)
ph

∂κ
(α)
ph

=
a(α)

ph[
π/2+atan(b(α)

ph

][
1+(a(α)

ph κ
(α)
ph −b(α)

ph )2
] . (3.80)

∂κ
(α)
ph

∂ν
(α)
ph

= 1 during damage accumulation and vanishes if their is no damage in the current step

k.
∂ν

(α)
ph

∂ε(α) is obtained by differentiating Eq. 3.61 with respect to the total strain, consequently,

there are three strain components to consider. The derivatives components of the modified

equivalent strains are obtained as:

∂ν
(α)
ph

∂ε(α)
=

∂ν
(α)
ph

∂ε
(α)
11

+
∂ν

(α)
ph

∂ε
(α)
22

+
∂ν

(α)
ph

∂ε
(α)
12

(3.81)

∂ν
(α)
ph

∂ε
(α)
11

=
1
2
± ε11− ε22

4
1√(

ε11−ε22
2

)2
+(kε12)

2
(3.82)

∂ν
(α)
ph

∂ε
(α)
22

=
1
2
± ε11− ε22

4
1√(

ε11−ε22
2

)2
+(kε12)

2
(3.83)

∂ν
(α)
ph

∂ε
(α)
12

=±k2ε12

4
1√(

ε11−ε22
2

)2
+(kε12)

2
. (3.84)

∂ε(α)

∂ ε̃(α) is obtained by taking the derivative with respect to the strain field, hence it is equal

to the identity tensor. The phase average damage induced strains, ε̃(α) can be expressed in

terms of damage induced strains, which is given below:

ε̃
(α)
i j =

n

∑
α=1

P(αβ )
i jkl µ

(α)
kl (x, t) . (3.85)
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The derivative of ε̃
(α)
i j with respect to d yields:

∂ ε̃(α)

∂d
=
{

P(α1)
i jkl P(α2)

i jkl · · · P(αn)
i jkl

}
, (3.86)

this final derivative completes the evaluation of ∂ f
∂d . The K matrix is a function of the phase

damage variables, ω
(α)
ph as displayed in Eqns. 3.66-3.68.

∂K
∂d

=
n

∑
α=1

∂K

∂ω
(α)
ph

∂ω
(α)
ph

∂d
, (3.87)

and it has nonzero components when evaluating the derivative of K with respect to damage

variable, ∂KPP

∂ω
(α)
ph

, hence it has the form below:

∂KPP

∂ω
(α)
ph

=



0 0 · · · 0
...

... . . . ...

0 0 · · · 0

−P(α1)
i jkl −P(α2)

i jkl · · · −P(αn)
i jkl

0 0 · · · 0
...

... . . . ...

0 0 · · · 0



. (3.88)

3.6.3 Implementation strategy

Figure 3.4 gives the computational framework for computing the macroscopic stress in

the reduced order analysis. One advantage of using computational homogenization is that

the methodology is valid for a spectrum of different material properties and microstruc-

tures. The user only needs to supply the geometry of the microstructure, the material

properties of the composite material and the failure paths which forms the reduced basis

for the system. The CoefTenseCompute program will then evaluate the elastic boundary
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Reduced Order Model
(Macro Stress Update)

     Preprocessing
(CoefTensCompute)

Figure 3.4: Computational framework for solving reduced order model.

value problem for the elastic influence functions and then solve for the phase influence

functions before ultimately outputting the coefficient tensors corresponding to the reduced

order model. The coefficient tensors are inputs for the calculation of the macroscale stress.

An important remark to note is the macroscale geometry is not limited and is valid for any

arbitrary geometry once the coefficient tensors are generated. Hence, the user can eval-

uate a series of different macroscale domains as necessary. The macroscale analysis is

implemented through a user supplied subroutine (i.e., UMAT) and it solves the system of

nonlinear equations in the ROM and calculates the updated macroscopic stress.
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Figure 3.5: Symmetric and random microscopic structures and ROMs

3.7 Numerical Examples

Numerical verification experiments were conducted to assess the capabilities of the pro-

posed reduced order models compared to the direct finite element simulations. The analy-

sis is conducted by considering a unidirectional fiber reinforced matrix microstructure with

geometry and discretization as shown in Fig. 3.5a-b, for a symmetric and random fiber mi-

crostructure, respectively. The single element ROM for each case is also shown with parts

as defined in Section 3.4.2, and there corresponding geometry is shown in Fig. 3.5c-d, for

the symmetric and random microstructures. The verification study consists of: (1) analyz-

ing the resolved RVE response and comparing with the ROM predictions, and (2) analyzing

a fully resolved macroscale beam problem and assessing the performance and capabilities

of the reduced order model in capturing the overall macroscopic failure response.

61



(a)

(c)

(b)

Figure 3.6: Symmetric microstructure with local model (a) coarse mesh: 6,698 elements;
(b) medium mesh: 11,242 elements; (c) fine mesh: 24,848 elements.

(a)

(c)

(b)

Figure 3.7: Symmetric microstructure with nonlocal model (a) coarse mesh: 6,698 ele-
ments; (b) medium mesh: 11,242 elements; (c) fine mesh: 24,848 elements.
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3.7.1 Preliminary RVE investigations

Preliminary mesh studies were conducted during the verification stage on the local

model as well as the nonlocal model for the determination of the appropriate characteristic

length as shown in Fig. 3.6 and Fig. 3.7. The local damage models used during this prelim-

inary verification study were similar to the one defined in [4]. Failure regions under various

loadings using local and nonlocal damage evolution are shown in Figs. 3.6 and 3.7, respec-

tively. A mesh size of coarse (Fig. 3.6a), medium (Fig. 3.6b), and fine (Fig. 3.6c) were

considered. It was observed in the analysis with the local damage model, that the failure

strains localize in single element wide regions, rendering the analysis highly mesh depen-

dent. As the mesh is refined, the potential crack paths do not visually converge to the same

failure path, instead multiple failure paths began to activate. It was also observed from the

load-displacement curves that both the peak load and the total dissipated energy decrease

as the mesh is refined. Mesh dependency of local damage models are very well understood

in the literature [57, 58, 59], hence the need for a nonlocal formulation with a characteristic

length larger than a single element to be introduced at the microstructural scale. Fig. 3.7

shows the effect of introducing a length scale into the nonlocal damage model formulation.

As the mesh is refined, the potential failure crack paths remain unchanged and the mesh de-

pendency is mitigated. The load-displacement curves for all the nonlocal mesh refinements

exhibited the same peak load. One remark: The load-displacement curves corresponding

to the local and nonlocal models are not shown since this phenomena is well documented

in the literature, for the purposes of the preliminary mesh studies, it was sufficient enough

to demonstrate the mesh dependency as shown in Fig. 3.6 and Fig. 3.7.

3.7.2 RVE analysis

Numerical verification analyses were conducted on the resolved RVE microstructures

shown in Figs. 3.5a-b to identify failure paths and corresponding ROM parts as seen in
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Figure 3.8: The partitioning and model reduction strategy. RVE failure profiles are
shown when subjected to (a) uniform biaxial loading; (b) uniaxial in the lateral direc-
tion; (c) uniaxial in the vertical direction; (d) shear loading along the positive direction;
(e) shear loading along the negative direction; (f) overlapping failure partition.
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Figure 3.9: The partitioning and model reduction strategy. RVE failure profiles are
shown when subjected to (a) uniform biaxial loading; (b) uniaxial in the lateral direc-
tion; (c) uniaxial in the vertical direction; (d) shear loading along the positive direction;
(e) shear loading along the negative direction; (f) overlapping failure partition.
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Figs. 3.8 and 3.9. The finite element discretization of the RVE for the symmetric mi-

crostructure and random microstructure consists of 6,698 and 11,241 triangular elements,

respectively. The symmetric microstructure matrix and reinforcements are discretized us-

ing 6,240 and 458 elements. The random microstructure matrix and reinforcements are dis-

cretized using 10,072 and 1,169 elements. The ROM is discretized into non-overlapping

and overlapping parts with model order (n=15 and n=6), respectively for the symmetric

ROM. For the random ROM, the non-overlapping and overlapping parts have model or-

der (n=12 and n=6), respectively. A single quadrilateral element of unit length is used to

represent the macroscale domain for each of the two different microstructures. The vol-

ume fraction of the reinforcement within the RVE is 34% for the symmetric microstructure

and 11% for the random microstructure. The characteristic length of the matrix material is

taken to be 1/8 of the size of the RVE for both the microstructures.

3.7.3 RVE verifications

The performance of the reduced order models are assessed when the microstructures are

subjected to the loading conditions shown in Figs. 3.8 and 3.9. The elastic modulus and the

Poisson’s ratio for the fiber are E(f)= 400 GPa and ν(f)= 0.15; for the matrix they are E(m)=

115 GPa and ν(m)=0.3. The fiber is taken to be linear elastic and the matrix is modeled using

continuum damage mechanics with the material parameters of a(m)= 10,000 and b(m)= 45,

from Eq. 3.64 and these parameters are also the same for each microstructure. The matrix

phase is taken to have the same material properties in each part within the partition and the

fiber reinforcement phase is taken to be in a single part. For the remainder of this section, a

reduced order model is named based on the load cases employed in the identification step

and the model order, n. Ti and Si j denote uniaxial loading along the i-direction (i=x,y) and

the shear loading along the ij-direction, respectively. P or N designation in front of the Si j

corresponds to positive or negative shear stress state, respectively.

The reference symmetric RVE direct finite element simulation is compared to the ROM
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Figure 3.10: Stress-strain curves for the symmetric microstructure when subjected to (a)
positive shear loading; (b) negative shear loading; (c) uniaxial in the lateral direction; (d)
uniaxial in the vertical direction.
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Figure 3.11: Stress-strain curves for the symmetric microstructure when subjected to (a)
positive shear loading; (b) negative shear loading; (c) uniaxial in the lateral direction; (d)
uniaxial in the vertical direction.
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Figure 3.12: Stress-strain curves for the random microstructure when subjected to (a)
positive shear loading; (b) negative shear loading; (c) uniaxial in the lateral direction; (d)
uniaxial in the vertical direction.

with non-overlapping partition with model order, (n=15) and the ROM with overlapping

partition with model order, (n=6). These results are summarized in Fig. 3.10. There are

noticeable post failure residual stresses in all of the Fig. 3.10a-d and this phenomenon

can be mitigated by utilizing the modified ’zero mode’ impotent eigenstrains described in

3.4.3. The improved accuracy of the reduced order models (for the symmetric geometry)

is summarized in Fig. 3.11. Utilizing the new zero mode eigenstrains minimizes the post

failure spurious residual stresses. The post failure action of the brittle matrix material

shows zero stress which indicates complete loss of load carrying capacity and shows that

the ROM’s can accurately handle the spurious stress behavior. In Fig. 3.11, as the number

of parts increases, the stress-strain response of the reference simulation is more accurately

captured but with additional computational effort. The symmetric microstructure ROM

with model (n=15) has a larger system of nonlinear equations to solve than the (n=6) model.

While the 6 part model sacrifices some of the accuracy, it is able to predict the failure

envelope well while solving a smaller set of nonlinear equations. Fig. 3.12 shows the
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random microstructure reference model in comparison with the ROM corresponding to

the non-overlapping (n=12) and overlapping (n=6) ROM’s. The ROM from Fig. 3.12 show

reasonable agreement with the reference model for each of the loading scenarios. The effect

of the spurious residual stresses for the random microstructure was not shown because the

effect is similar to the results as shown in Fig. 3.10 for the symmetric microstructure and

only the results for the zero mode analysis is shown here. The ROM models consistently

over predict the peak stress before failure and this error can be improved by parameter

scaling found in Ref. [60].

3.7.4 Crack propagation in a beam

(b)
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(a)

100 mm
1 

m
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10
0 

m
m

12.5 mm

Figure 3.13: Geometry of the different macroscopic beam domains; (a) the periodic mi-
crostructure is resolved around the notch tip and (b) the ROM represents the homogenized
response of the heterogeneous materials.

The notch beam is subjected to a tensile load and has been simulated using non-local

damage continuum model and is shown in 3.13. Figures 3.13a-b are the geometries for the

different macroscopic beam domains. In Fig. 3.13a, the periodic microstructure is resolved
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around the notch tip and in Fig. 3.13b the ROM is used to represent the homogenized re-

sponse of the heterogeneous material. The beams were subjected to a uniform displacement

boundary condition, where P = 0.06 mm. The reference beam consists of 30,272 standard

triangular elements and the ROM has 393 quadrilateral elements. The length of the beam is

200 mm and has a depth of 100 mm. Only half of the geometry is modeled using symmet-

ric boundary conditions along the notch face. The dimension of the notch is 12.5 x 1 mm.

The fibrous reinforcements are taken to be linear elastic and the matrix material is modeled

using continuum damage mechanics. Numerical analyses were performed to determine the

crack propagation response of the reference and multiscale ROM.

Figure 3.14 shows snapshots of reference and ROM crack length-applied displacement

from tensile fracture onset. Fig. 3.14a shows the crack length of the reference model

as compared to the ROM models Tx-15 and Tx-6 (non-overlapping and overlapping in

Fig. 3.14b-c, respectively). It is shown that the overlapping model Tx-6 crack length is

less than the reference, while non-overlapping model Tx-15 has a crack length greater than

the reference at this applied displacement increment.

The rate of crack length grow is more pronounced in the ROM analysis as compared to

the reference simulation as shown in Fig. 3.15. This error can be due to several issues. One

source is the considerable amount of information that is lost during the model reduction

formulation as compared to the direct finite element analysis. The representative volume

element is assumed to be much smaller than the size of the overall macroscopic domain and

this scale separation assumption is not always well pronounced. Another source of error

lies in the fact that we are comparing a nonlocal damage model in the reference analysis to

a local ROM, hence a length scale is present in the formulation of the reference model but

the same does not exist in the ROM. Another source of error lies in the mesh resolution.

ROM models for the non-overlapping and overlapping cases are highly mesh dependent

and this is a direct artifact of utilizing local damage models and not having a characteristic

length in the model. These are some of the errors that contribute to the crack length and
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Figure 3.14: Snapshot of reference and ROMs crack length-applied displacement from
tensile fracture onset at applied displacement of 0.0342 mm (a) reference, (b) Tx-15 and
(c) Tx-6.
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Figure 3.15: Reference and ROM crack length-applied displacement curves.

70



displacement curves not being perfectly aligned with the same crack rate. Incorporating a

fracture mechanics model could also provide more information to better characterize the

crack propagation rate and growth.
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Chapter 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

This dissertation provided a computational framework for the formulation and imple-

mentation of an eigendeformation-based reduced order homogenization for characterizing

the inelastic and failure response of composite materials. Numerical testing verified and

assessed the performance characteristics of the proposed model against the direct finite

element method. Detailed summaries of included work are presented below.

In chapter 2 a strategy for identifying optimal reduced order models for inelastic and

failure response in heterogeneous materials was presented. The reduced order modeling ap-

proach in this study, is the eigendeformation-based reduced order homogenization method.

The identification of the optimal reduced order model is posed as an integer optimization

problem and the genetic algorithm method is used to evaluate the optimization problem.

A series of numerical simulations were conducted to assess the performance of the identi-

fied reduced order models against the computational homogenization method, which con-

siders full resolution of the material microstructure. Since the reduced order models are

derived from the computational homogenization formulation in eigendeformation-based

reduced order homogenization, the accuracy characteristics of the reduced order models

are bounded by the computational homogenization method.

The reduced order models identified using the proposed methodology are able to ac-

curately capture the failure response characteristics for a wide range of loading conditions

in the investigations. The failure response using relatively small order models were found

to be satisfactory. The errors do not monotonically reduce by increasing the model order.

This is attributed to possible identification of reduced order models at local minima of the
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objective function and the constraint imposed on high order models that preclude lower

order models from being represented identically by the high order models in the model

hierarchy.

While the proposed methodology is effective in identifying satisfactory reduced order

models, some issues remain to be addressed. The parameter scaling for the materials that

exhibit more complex microconstituent response characteristics call for a different iden-

tification approach than employed in this study. Constitutive models for more complex

material behavior include multiple material parameters, which cannot be identified using

the Nelder-Mead simplex method. The increase in computational complexity of the identi-

fication problem when the material microstructure is highly resolved remains outstanding.

When the microstructure is densely meshed, the search space for the identification problem

becomes very large and the interrogation of the search space with the posed integer opti-

mization problem is computationally exhaustive. The reduction of the search space for the

reduced order models is critical for highly resolved material microstructures.

Chapter 3 provided the formulation and implementation for reduced order model using

eigendeformation based reduced order homogenization for modeling the failure of hetero-

geneous materials with overlapping failure paths. The macroscale and microscale boundary

value problems were expanded using asymptotics and the system is evaluated in terms of

transformation influence functions. The evaluation of the influence functions are dependent

on the micro-structural partition, hence the problem may be posed as a system of nonlinear

equations and is solved. Issues due to stress inclusion locking are alleviated by enhancing

the constitutive laws which define the microphase reduced order model. First order (zero

mode eigenstrains) coefficient tensors were generated for the analysis. The above idea is

generalized to account for multiple sets of newly generated coefficient tensors (i.e., second

order, and higher order) based on the combination of activated potential failure crack paths

for a given loading condition. Computational efficiency is gained by allowing the potential

failure paths to overlap. This effect results in a small number of a nonlinear system of
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equations to be solved. Numerical verification experiments were conducted to access the

capability of the RVE and a large scale beam problem was investigated.

4.2 Future Work

This dissertation focused on the computational framework for the formulation and im-

plementation of an eigendeformation-based reduced order homogenization for characteriz-

ing the inelastic and failure response of composite materials. The main focus of future work

will be the development and natural extension of this application using eigendeformation-

based reduced order homogenization for modeling the failure of heterogeneous materials

with overlapping failure paths in three dimensions. The development of the three dimen-

sional framework will provide a more realistic approach to model laminate composites and

analyze the response of the system. There are some conceptual difficulties that will arise

when applying the proposed methodology, one major issue is upon failure of the material

the crack has an infinite amount of degrees of freedom in which it can grow. Although it

is impossible to capture all the different combinations of the crack growth throughout the

constituent material, the problem will be limited to investigating dominate loading modes.

Also these predictive failure models are particularly of interest because a lot of different

failure mechanisms can occur within the microstructure of the composite material. There

are several different failure mechanism and these include fiber buckling, fiber fracture, ma-

trix failure and fiber matrix debonding [8].

The multiscale finite element analysis will be conducted using the commercial available

finite element software Abaqus and the solution to the coupled microscale and macroscale

problem will be calculated using a user material (UMAT) subroutine. The numerical in-

vestigations will be conducted on various composite laminates which have different orien-

tations. Above in Fig. 4.1 is a schematic showing a sample laminate layup with the mesh

aligned with the fiber direction of each ply. The nominal characteristic length for each ply
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(b) (c) (d) (e)(a)

Figure 4.1: (a) Composite laminate lay-up with aligned mesh for the laminate plies
oriented at [0,45,90,−45]2s, which is (b-e), respectively.

is 1 mm in the in-plane direction of the ply and with one element per thickness of each

layer. The laminate plies will be tied together using surface displacement constraints to

ensure the composite deforms as a uniform structure.

The calculation of the nonlocal weights will take place during the pre-processing stage

before numerical finite simulations are conducted to determine the laminate composite fail-

ure paths for the reduced order model. Careful consideration must be taken into account

when determining these nonlocal weights because periodicity of the structure needs to be

maintained when loading the microstructure. Since the microstructure is assumed to be

locally periodic, this assumption must be validated.

Numerical verification analyses will be conducted by considering a unidirectional rein-

forced matrix microstructure with geometry, the discretization and the loading conditions

are shown in Fig. 4.2. The finite element discretization of the unit cell consists of 351

tetrahedra. The matrix and the reinforcements are discretized using 251 and 98 elements,

respectively. A unit cube discretized using a single hexahedral finite element constitutes

the macroscale domain. The volume fraction of the reinforcement within the unit cell is

40%.

The unit cell will be subjected to range of loading conditions, some of which are shown
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Figure 4.2: Geometry and discretization of the numerical example. (a) Microstructure;
(b) Macrostructure subjected to biaxial tensile loading; (c) Macrostructure subjected to
combined biaxial tensile and shear loading.

in Fig. 4.2 to determine the overlapping failure paths. Predictive failure models for this

particular laminate will be of interest because multifaceted failure mechanisms can occur

due to the complex interactions between the microconstituents. There are several different

failure mechanisms which can occur as noted earlier. The investigation of these various

failure modes will be extremely insightful and will provide predictive capabilities of how

the particular microstructure will perform under these loading conditions. The understand-

ing of these interactions will be key and it will be a challenge but a fun challenge none the

less.

Exploration of the different mesh densities of the ROM must be taken into account,

perhaps the microstructure consisting of 351 tetrahedra element is too coarse and a finer

mesh will be needed. Failure paths in three-dimension are already complex, so having an

extremely fine mesh will perhaps lead to more computational effort during the calculation

of the nonlocal weights and the determination of failure paths.

Development of a reduced order model for laminated reinforced composite as shown in

Fig. 4.1, will be investigated. In laminated composites, the plies are typically subjected to a

combined state of normal stresses along the reinforcement and transverse directions as well

as shear stresses that develop due to the mismatch between neighboring ply orientations.

An in-depth assessment of the performance of the ROM will be investigated and compared
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to the response of the direct numerical finite element analysis.
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Appendix A

Details regarding damage model

To investigate the behavior of k in the damage model (i.e., Sparks model), a simple

two-dimensional Mohrs Circle is drawn to show its geometric significance, for more infor-

mation regarding the derivation of the modified principal strain definition details are given

below.

From the numerical experiments it was observed that the material failure associated with

the shearing strains failed at an axes that was not the principal axes, hence the need to mod-

ify the damage model to capture this effect. The model is limited to plane strain and it is

assumed that the deformations occur within the planes, thus, εz = γxz = γyz = 0. From any

theory of elasticity book, when deriving the strain components, εx, εy, γxy and θ in terms of

the reference x′y′ rotated through angle, θ , εx′ , εy′ , γx′y′ can be obtained. A square element

is assumed with sides ∆s, when the element is deformed then the respective sides are equal

to ∆s(1+ εx) and ∆s(1+ εy), respectively and the angle formed is π

2 − γxy and π

2 + γxy. The

angles formed in the deformed configuration are assumed to be a function of a material

parameter, k then the deformed angles that element make are π

2 − kγxy and π

2 + kγxy. When

k=1, then the general angles formed as a result of the deformation in the element are recov-

ered. Utilizing the deformed element and applying algebraic and trigonometric identities,

the expression below for the strain can be derived as,

ε(θ) = εx cos2
θ + εy sin2

θ + kγxy cosθ sinθ (A.1)
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The main purpose of this section is to get an expression of the strain components in terms

of the rotated frame of reference, thus below the equations are given

εx′ =
εxx + εyy

2
+

εxx− εyy

2
cos2θ + k

γxy

2
sin2θ (A.2)

εy′ =
εxx + εyy

2
−

εxx− εyy

2
cos2θ + k

γxy

2
sin2θ (A.3)

γx′y′

2
=−(

εxx− εyy

2
)sin2θ + k

γxy

2
cos2θ (A.4)

The above equations may be written in a more succinct form which describes the modified

plane strain transformation as shown below:

εx′,y′ =
εxx + εyy

2
±

√(
εxx− εyy

2

)2

+(kεxy)
2 (A.5)

where γxy
2 = εxy and the modified angles from the principal orientations given as a function

of the strain state:

tan2θ
′
=

2kεxy

εxx− εyy
(A.6)

θ
′
=

1
2

tan−1 ( 2kεxy

εxx− εyy

)
(A.7)

The modified angles from the principal orientations given as a function of the strain state:

θ
′
=

1
2

tan−1 ( 2kεxy

εxx− εyy

)
(A.8)

When exploring the effect of material parameter k on the model it is noted that there is a

change in the Mohr’s Circle and the corresponding axes of strain. When the use of k 6= 1,

the equations for the transformation of plane strain are no longer representing the maximum

and minimum normal and shearing strains and their corresponding principal orientations.

Instead, according to Fig A.1, a reduction in the max in-plane strain state corresponding to

a different orientation at an angle, α , from the principal orientation of θp is noticed. For a
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Figure A.1: Mohrs Circle with principal strains and scaled Mohrs Circle.

given strain state, εx = 400 µ , εy = 0, and γxy = 200 µ , the Mohr’s Circle can be drawn as

shown in Fig A.1. The blue line shows the original Mohr’s Circle (when k = 1) and the red

line shows (when k 6= 1) a reduction in the shear strain state and the Mohr’s Circle exhibits

an ellipse. This effect is evident when some experimental specimens are studied. When a

specimen is loaded in shear, there is a reduction in the strength of the material and it fails

before other specimens are loaded in a uniaxial fashion.
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