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CHAPTER I 

INTRODUCTION 

Global and national impact of vision loss and blindness 

Studies of the impact of vision impairment and blindness in various countries are rapidly accruing, resulting 

in a clearer picture of how vision loss will burden future economies and quality of life for global citizens. 

The World Health Organization (WHO) annually collects health data from among 193 of the Member 

States. As of 2010, WHO estimates that 285 million people (i.e. ,4.25% of global population) are affected 

by some form of visual impairment(Pascolini and Mariotti, 2012) and that 80% of visual impairment is 

correctable or curable. Of those afflicted by visual impairment, fourteen percent are blind. Age-related eye 

diseases (e.g., cataracts, age-related macular degeneration, glaucoma, and diabetic retinopathy) account for 

the majority of vision loss/blindness. Populations in developing countries are rapidly expanding, but much 

of the developed economies are experiencing a general aging of their populations. With this trend, 27% of 

the expected 7.5 billion individuals from the global population are expected to be over the age of fifty years 

by 2019. As the population ages, the prevalence of vision loss/blindness will accordingly increase. 

In the United States, nearly 38 million Americans over the age of 40 are visually impaired or blind(National 

Alliance for Eye and Vision Research, 2006). Visual disability can drastically reduce an individual’s quality 

of life and increase the risk of mortality. Quality of life factors encompass wealth, employment, education, 

recreation, and physical and mental health. The effects on quality of life can be seen on a larger scale in the 

economic burden of lost worker productivity and medical treatment, approximately $35.4 billion in 

2004(Rein et al., 2006). In a survey conducted by the National Eye Institute, adults were asked to think 

about conditions that would affect their day-to-day life, on a scale of 1-10 with a 10 indicating the greatest 

impact. Seventy-one percent of surveyed adults answered that loss of vision would rank as a 10(Lions Clubs 

International Foundation, 2007). Some vision loss is not uncommon as part of the process of normal aging. 

Aging eyes take longer to adapt to changes in light and dark, glare, and distortion in distance and depth. 

These types of impairments have been found to be independent risk factors for falls among the 



2 

elderly(Freeman et al., 2007; Ivers et al., 1998), where a fall is an event defined in which an individual 

inadvertently comes to rest on the ground. Individuals over seventy years are at greatest risk of a fall-related 

mortality(Ivers et al., 1998). 

Physiology of the human eye 

The human eye is a sensory organ that allows for vision via the transmission of energy from photons to 

visual pigments contained in specialized photoreceptor cells. This process, called phototransduction, 

generates an electrical signal that is carried to the brain via the optic nerve where the image is interpreted. 

Still an active area of research, the complexity of the mechanical and biochemical processes of vision was 

noted early by scientists such as Charles Darwin, who noted in The Origin of Species, how “staggering” 

that “an organ so perfect as the eye could have been formed by natural selection.”(Darwin) 

 The eye (Figure 1) is composed of two primary structural units with the smaller frontal unit containing the 

components necessary for the entry and focusing of light rays into the larger structural globe. Light rays 

initially enter the eye via the cornea, a clear, curved lens responsible for nearly two-thirds of the eye’s 

refractive power(Cassin and Solomon) . The cornea is a fixed structure that covers the lens, iris, and pupil 

and is composed of a matrix of collagen fibers(Nejad et al., 2014) that maintains its clarity due to a lack of 

blood vessels. Oxygen is supplied to the cells via two mechanisms: dissolved oxygen from the environment 

that comes in contact with the cornea via the tear film layer and from the aqueous humor behind the cornea. 

As light enters the cornea, it is focused by changes in the geometry of the corneal walls.  

Light focused by the cornea then passes through the pupil, a hole located in the center of the iris. Pupil size 

determines the quantity of light that can enter the inner globe of the eye. Size is controlled by dilator and 

sphincter muscles of the iris (i.e., colored structure of the eye) which react to increase pupil size in the dark 

or to decrease in response to bright light. After light has passed through the pupil it subsequently must pass 

through the crystalline lens, a biconvex structure that provides roughly a third of the eye’s refractive power, 

and separates the two chambers of the eye. Similar to the cornea, the crystalline lens is flexible and 
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facilitates the focusing of light. Ciliary muscles bend and contract through a process called accommodation 

that alters the shape and thickness of the lens and brings into focus images at varying distances(Schachar, 

2006). 

 

The globe of the eye maintains its shape in large part by the pressurization of the vitreous humor, a clear 

gelatinous substance composed of ~98% water, sugar, inorganic salts, collagen, and proteins(Angi et al., 

2012; Ulrich et al., 2008). The vitreous is mainly stagnant and as such does not refresh itself over the course 

of an individual’s lifetime. In healthy eyes it maintains contact with retina but is physiologically only 

attached to the head of the optic nerve. The retina is the light-sensing tissue that lines the inner surface of 

the eye responsible for transmitting incoming images to the brain through a series of chemical and electrical 

signals. It is composed of photoreceptor cells (e.g. rods and cones). Rods and cones are highly specialized 

neurons responsible for triggering phototransduction. Rods are efficient at absorbing photons allowing them 

to function in low light. A rod contains only one type of light-sensitive pigment and as such contributes to 

black and white vision. Cones require a higher concentration of photons to trigger transduction but respond 

to changing images more readily and work best in bright light. Cones are composed of three light-sensitive 

pigments that respond to short, medium, and long wavelengths of light respectively (i.e., 1) 564-580 nm, 

 

Figure 1: Diagram of the major structural features of the human eye. 

Taken from the National Eye Institute, National Institutes of Health. Website accessed December 

17, 2014. http://www.flickr.com/photos/nationaleyeinstitute/7544457228/in/photostream/ 
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2) 534-545 nm, and 3) 420-440 nm). Due to variation in the sensitivity and pigment composition of cones 

in an individual eye, the brain is able to interpret a spectrum of colors. Cone density is greatest in the center 

of the retina, a region called the macula, which generates sharp central vision. The periphery of the retina 

is composed predominately of rods which correspond to grainier/peripheral vision. 

Lastly, the photoreceptor cells transmit electrical information through retina bipolar cell that converge 

below the retinal tissue to be transmitted to retinal ganglion cells (RGC). These RGC form the optic nerve 

which exit from the back of the eye and continue to the image centers of the brain. 

Major contributors to vision loss and blindness 

 Vision loss and blindness are multifactorial conditions whose definitions can range between institutions, 

organizations, and countries. Complete blindness, a condition in which an individual sees no light, occurs 

rarely. In the United States,” legal blindness” is defined by the Social Security Administration as a visual 

impairment of 20/200 or worse in an individual’s better eye after correction with refractive lenses or a visual 

field limitation in the better eye that subtends at less than a 20 degree angle at the widest diameter of the 

visual field(OCOMM.OCPT). Causes of vision loss/blindness encompass a wide range of diseases, 

environmental factors, accidents, and simple access to health care. 

Perhaps the greatest contributors to vision impairment are refractive errors (RE). A RE occurs when an 

eye’s ability to focus light is reduced or impeded. A typical RE occurs when light that enters the eye is 

focused to a point in front of the retina, instead of directly on the retina, resulting in myopia (i.e., 

nearsightedness). In this state an individual is capable of clearly seeing objects up close while those at a 

distance are blurred. Myopia can be caused by one of three conditions. Either the cornea or crystalline lens 

is too curved or the length of the eye globe exceeds 26.5mm(Friedman and Kaiser, 2007). All of these 

conditions can result in the focused beams of light falling short of the retina. In contrast, hyperopia occurs 

when the cornea or lens is too flat or else the globe of the eye is too short, thus resulting in light rays being 

focused ‘behind’ the retina. Individuals with hyperopia see distant objects clearly while those up close are 
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blurred. A third form of RE is called astigmatism. Astigmatism results from variation in the curvature of 

either the lens or cornea in one location in comparison to the rest of the structure. This optical defect leads 

to blurring of the vision at any distance as light is focused differently through the various reflective planes 

in the cornea/lens. Together RE are the greatest form of correctable vision impairment, constituting 43% of 

total global visual impairment cases as of 2010(Pascolini and Mariotti, 2012). In the United States it is 

estimated that myopia and astigmatism affect 33.1% and 36.2% of the general population over twenty years 

of age, with hyperopia occurring less frequently at 3.6%(Vitale S, 2008). 

Four primary causes of vision impairment and blindness in the elderly are cataracts, age-related macular 

degeneration (AMD), glaucoma, and diabetic retinopathy (Figure 2). Collectively these conditions 

contribute to nearly 75% of total cases of blindness and 81% of total cases of low vision in the United 

States(Congdon et al., 2004). Cataracts form through the gradual opacification of the eye’s crystalline lens 

and are the leading cause of reversible blindness(Asbell et al., 2005) accounting for 51% of global cases of 

 

 
 

Figure 2: Prevalence rates of major ocular diseases in United States adults over the age of 40 years. 

Estimates were taken from the publication The Vision Problems in the U.S. 
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blindness(Brian and Taylor, 2001). Cataracts commonly forms due to normal aging with cataractogenesis 

taking place in the nucleus of the lens (i.e., nuclear cataract), at the back of the lens (i.e., subcapsular 

cataract), or at the periphery of the lens’ outer layer (i.e., cortical cataract). Absolute clouding of the lens 

prevents light from entering the eye. Currently the only available treatment option is for surgical extraction 

of the deteriorated lens and implantation of a new artificial lens. 

AMD is the third leading cause of visual impairment worldwide,(Resnikoff et al., 2004) commonly 

affecting seniors more than any other form of blindness. AMD is often a bilateral condition involving the 

destruction of photoreceptors in the macula that leads to loss of central vision. Typically AMD presents on 

a disease continuum from mild, to intermediate, and then severe. Intermediate AMD is defined as the 

presence of either many medium-sized drusen or at least one large drusen in one or both eyes. Severe AMD 

is referred to as “late” AMD and presents as either atrophic (dry) or neovascular (wet) AMD. Symptoms of 

dry AMD include the formation of drusen deposits, pigment disruption, and geographic atrophy. Wet AMD 

is a severe condition resulting from the neovascularization of the choriorcapillaris. These aberrant blood 

vessels are fragile and can rupture leading to blood and/or fluids entering the extracellular space between 

the retina and the retinal pigment epithelium (RPE). AMD affects over 1.8 million adults over the age of 

40 years in the U.S. As the baby boomer generation enters retirement and life expectancy continues to 

increase, the incident number of AMD cases is expected to grow from 11 million today to approximately 

22 million by the year 2050(David S. Friedman (last) et al., 2012). 

As the second leading cause of blindness in the United States(Resnikoff et al., 2004), glaucoma is a driving 

force behind vision disability. Glaucoma is a heterogeneous group of eye diseases that are characterized by 

chronic degeneration of the optic nerve. Glaucoma is distinguishable from other conditions of optic 

neuropathy via the presentation of the optic-nerve tissue (pink versus loss of color) and formation of optic-

nerve cup (present versus not present)(Kwon et al., 2009). Cupping occurs due to loss of retinal ganglion 

cells axons and the support vasculature. Individuals with glaucoma gradually lose peripheral vision and, if 
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left untreated, the disease can result in blindness. As a whole, glaucoma is responsible for approximately 

130,000 cases of blindness in the United States as of 2000(Quigley and Vitale, 1997). 

 Diabetic retinopathy (DR) is the leading cause of blindness in working age adults (i.e., 20-74 years 

old) in the United States(Klein and Klein, 1995). DR is caused by abnormalities in the microvasculature of 

the retina and is present in 82% of type 1 diabetes (T1D)(Roy et al., 2004) and 40% of type 2 diabetes 

(T2D)(The Eye Diseases Prevalence Research Group, 2004) patients in the United States. DR is 

traditionally classified according to the absence or presence of new blood vessel growth within the retina: 

non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR), respectively. 

Early stages of DR are characterized by little vision loss, which are the most effective times at which to 

treat. Early intervention of glycemic control has been shown to delay progression of retinopathy. Late stages 

of DR are often accompanied by irreversible, severe vision loss or blindness.  

 Racial/ethnic differences in risk of common ocular diseases 

Over time trends in vision disease and impairment have fluctuated with rates for AMD declining in recent 

decades from 9.4% in U.S. adults in the Third (III) National Health and Nutrition Examination Survey 

(NHANES) conducted between 1988 and 1994 to 6.5% in the NHANES 2005-2008 cohorts(Klein R, 2011).  

Simultaneously rates for myopia have surged in developed and Asian countries affecting 20-40% of 

Table 1: Prevalence rates of common ocular diseases in adults within the United States 

by race/ethnicity 

 AMD DR* Glaucoma Myopia 

Populations >40 yrs >40 yrs >40 yrs >20 yrs 

European American 7.3% 24.8% 5.6% 35.2% 

African American 2.4% 36.7% 12% 28.6% 

Hispanics 5.1% 37.4% 6.5% 25.1% 

Asian Americans 6.8% 25.7% 6.5% - 

Estimates were obtained from published NHANES estimates.  

*Percentage rates are based on the proportion of the population over 40 years with diabetes. 
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surveyed populations(Rosman et al., 2012; Schache and Baird, 2013; Vitale S, 2009). Hypotheses 

concerning the causality of the these changes in incidence vary from access to better health care, changes 

in clinical ascertainment(Klein R, 2011; Vitale S, 2009), changes in life-style factors (i.e., reduction in 

smoking rates), and even variations in the racial/ethnic make-up of nations. Understanding the role of 

race/ethnicity in disease susceptibility may provide a better understanding of the risk factors and etiology 

disease as well as affected biological pathways of disease states.  

Prevalence rates of AMD vary by race and ethnicity with non-Hispanic whites (7.3%) experiencing a higher 

burden than non-Hispanic blacks (2.4%), and Mexican Americans (5.1%) in a study of the U.S. population 

over the age of 40(Klein R, 2011). The prevalence of AMD in Asian populations has been found to be 

similar to that seen in European-descent populations at approximately 6.8%(Kawasaki et al., 2010). 

Although prevalence rates are similar between Asians and European populations, there are differences in 

the rate and risk of AMD sub-types by specific Asian ethnicity. For example, in one study, Chinese 

Americans and Pakistani Americans had an increased risk, as calculated by hazards ratio, for dry AMD 

compared to European-descent populations but Japanese Americans had comparatively less risk for 

developing wet AMD(Stein et al., 2011a). 

The racial/ethnic disparities in prevalence and progression of DR have been noted by multiple studies but 

little has been done to better understand these differences. Surveys have shown that the prevalence of DR 

is higher in African Americans (36.7%) and Hispanics (37.4%) compared to European Americans (24.8%) 

with diabetes(WONG et al., 2006) (Table 1). This difference may be explained, in part, by the higher rates 

of diabetes in these two racial/ethnic groups compared with European Americans, but the overall trend is 

higher even after accounting for differences in risk factors, suggesting that other population-specific 

variables are at play. In studies comparing phenotypic differences between African Americans and Latinos, 

it was found that Latinos on average suffer from a greater number of intraretinal hemorrhages and typically 

experience a faster and more severe progression of the disease(Chen et al., 2009). Other differences in DR 

initiation and progression have been observed in a cross-sectional study utilizing the NHANES 2005-2006 
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database where differences in the prevalence of DR between European Americans and Africans Americans 

were observed dependent on glycated hemoglobin levels (HbA1c)(Cheng et al., 2009). The International 

Expert Committee proposed in 2010 to establish the diabetes HbA1c diagnostic criteria threshold at 6.5% 

(HbA1c/HbA). This threshold was based on the prevalence of DR, an accepted early indicator of diabetes 

complication, in a European-descent cohort. Screening based on this criterion identified African Americans 

as having a crude prevalence of DR at 13.1% versus 6.3% in European Americans(Tsugawa et al., 2012). 

These differences suggest that ancestry-specific guidelines may need to be developed in order to accurately 

screen and diagnose individuals of non-European descent. 

Glaucoma is the leading cause of blindness in African Americans(Congdon et al., 2004) with prevalence 

rates approximately double that observed in European-descent populations(Congdon et al., 2004; Friedman 

et al., 2004a; Stein et al., 2011b) (Table 1). The rates of glaucoma have been found to be similar between 

European, Japanese, and Indian populations with rates approaching those observed in African descent 

populations in China in the oldest age categories(Quigley and Broman, 2006). Although African Americans 

comprise the group of highest risk of developing glaucoma-related vision problems, many cases remain 

undiagnosed until later stages of disease. Previous studies have suggested that nation-wide implementation 

of screening middle aged African Americans could decrease the rate of undiagnosed glaucoma from 50% 

to 27%(Ladapo et al., 2012). Earlier screening and diagnosis enables patients to more effectively leverage 

current treatment options to reduce the risk of bilateral blindness later in life(Ladapo et al., 2012). 

Globally, myopia is the most common eye problem afflicting upwards of 80 million children(Siatkowski et 

al., 2008). Previous epidemiological studies have suggested that it affects more than 70% of inhabitants in 

some Asian populations(Lin et al., 2004; Wong et al., 2000; Woo et al., 2004). In the United States, 25-

30% of the population experiences some level of myopia. In children, myopia afflicts more Hispanic and 

Asian children than their European-descent peers (13.2% and 18.5% versus 4.4%)(Kleinstein et al., 2003). 

This difference is reversed in adults with Hispanics experiencing the lowest levels of myopia while 

Europeans and Asians experience the highest rates (14.2% vs 31.0% and 37.2%, respectively)(Pan et al.).  
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Evidence for the role of genetics in common, complex ocular disease 

Genetics plays an integral role in the evolution of diverse human populations. As a discipline, human 

genetics is relatively young compared with other disciplines in the natural sciences. Gregor Mendel was the 

first to publish on the concept of discrete traits in 18651, which is the passing on of a heritable unit from 

parent to offspring. Mendel’s work was all but unknown and forgotten until the 1890s. Spurred in part by 

the re-discovery of Mendel’s work, quantitative genetics germinated and began to flourish in the early 20th 

century despite few or no natural datasets available apart from phenotypic collections.  In this period, 

methods were developed to describe and measure heritability(Visscher et al., 2008) (the variability in 

phenotype attributable to a genetic component), epistasis(Norton and Pearson, 1976) (departure from 

additivity), and linkage(Bateson et al.). The advancement of genetic knowledge would gain speed with the 

elucidation of the DNA molecule in 19442, to the discovery of the DNA structure by Watson, Crick, and 

Franklin in 19533. Irrefutably the most publicized advancement was the race to complete the first draft of 

the human genome sequence in 2000(Lander et al., 2001; Venter et al., 2001). This milestone coupled with 

the International HapMap Project(International HapMap Consortium, 2005) is the foundation on which 

current genome-wide association studies (GWAS) are based  

GWAS is a study design that interrogates common genetic variation across the genome for associations 

with a disease or trait of interest and is currently the study design of choice for common, complex 

diseases(Hirschhorn and Daly, 2005). In the past decade, both candidate gene studies and GWAS have 

identified over 14,000 genomic loci associated with upwards of 5,000 quantitative traits and 

diseases(Welter et al., 2014). As detailed below, candidate gene studies and GWAS have been performed 

for diseases of vision loss with varying success. 

Diabetic retinopathy 

It is well established that diabetes, necessary for the development of diabetic retinopathy, is heritable. 

Multiple populations have been utilized in the study of the heritability of diabetes(WONG et al., 

2006),(Leslie and Pyke, 1982). As estimated in a Finnish twin study(Hyttinen et al., 2003), the broad sense 



11 

heritability for T1D was high as 88%. Other studies including twin and familial aggregation studies have 

calculated heritability estimates for T2D in the range of 0.31-0.69(Das and Elbein, 2006) dependent on 

race/ethnicity and age-of-onset.  

It is well understood that risk and development of diabetes has a genetic component in conjunction with 

strong environmental influences, but other evidence suggests DR has additional independent genetic 

components unrelated to exposure to diabetes.  The Diabetes Control and Complication Trial 

(DCCT)(1987), a multicenter, clinical study of the effects of intensive blood glucose control on progression 

of diabetes, identified novel risk factors for DR as well as validated important known risk factors. Major 

risk factors include male sex, duration of diabetes, glycemic control, hypertension, hyperlipidemia, type of 

diabetes (T1D versus T2D), age, and race/ethnicity. Data from the DCCT suggest that by maintaining tight 

glycemic control, it is possible to both reduce the risk of developing DR (by 76%) and slow progression of 

pre-existing DR (by 54%). Other studies determined that glycemic control and duration of diabetes only 

account for approximately 11% of the variation(Lachin et al., 2008) in retinopathy risk, which suggests that 

other factors play a role. Family studies of the relative risk of severe DR (sDR), as defined by the presence 

of diabetic macular edema or proliferative DR, have shown that family members of an individual with sDR 

were three times more likely to develop the condition(Arar et al., 2008). Other studies calculated heritability 

(h2) for proliferative diabetic retinopathy at h2=0.520.31(Hietala et al., 2008). Collectively, these family 

studies suggest that while diabetes is a major risk factor for the development of DR, it is not deterministic.  

Indeed, in some clinical cohorts diabetic patients have suffered from diabetes and other diabetic 

complications for upwards of twenty years without presentation of retinal disease(Kullberg and Arnqvist, 

1995).  

Age-related macular degeneration 

Genetic factors may contribute anywhere from 46% to 71% of the variability see in AMD 

pathology(Seddon et al., 2005), exceeding the contribution of environmental risk factors to variation in 

AMD susceptibility and clinical severity. Heritability estimates of AMD have been determined from male 
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twins registered in the World War II Veterans Twin database with an overall AMD heritability of 46%, 

67% in intermediate AMD cases, and 71% in advanced AMD(Seddon et al., 2005). Recently, the 

heritability of advanced AMD subtypes (geographic atrophy or choroidal neovascularization) was assessed 

in siblings recruited from a multitude of clinical practices across the United States and found to be 

concordant between sibs and clinical subtypes(Sobrin et al., 2012). Quantitative traits associated with 

clinical manifestations of the disease, such as the size and coverage of drusen deposits, in particular contain 

a strong genetic component that influences the biological variability of these traits. The variation in the 

presence of small hard drusen, a precursor of early AMD,  was 63% heritable in a young adult twin pairs 

study(Munch et al., 2007).   

The genetics of AMD has been extensively explored in numerous cohorts over the last few decades, but 

before the successful identification of genetic factors, studies of epidemiological risk variables for AMD 

consistently found that specific groups demarcated by demographics and/or environmental exposures 

experience a greater burden of disease. Those at an increased risk are women(Smith et al., 1997), older 

individuals, smokers, and individuals of European descent(Chakravarthy et al., 2010; 2000a). Several 

studies have identified hypertension, increased body-mass-index, and poor lipid profiles as environmental 

modifiers of AMD risk. A substantial body of research has implicated lipid levels as a major risk factor in 

AMD, particularly low high density lipoprotein (HDL)-cholesterol, though the relationship between serum 

HDL-C levels and AMD risk is inconsistent(Klein et al., 2003a; van Leeuwen et al., 2004; Reynolds et al., 

2010; Tomany et al., 2004). Cigarette smoking is perhaps the greatest contributor to modifiable 

environmental risk factors. Individuals with bilateral AMD were found to be more likely to have been heavy 

smokers (odds ratio 5.1) than with those who presented with unilateral AMD(Chakravarthy et al., 2007).  

Glaucoma 

Studies of glaucoma have been complicated by the heterogeneous nature of the disease with family history 

inconsistently being identified as a risk factor(Budde, 2000)(Tielsch et al., 1994)(Leske et al., 1995). Given 

the difficulties of phenotypic heterogeneity in glaucoma, most heritability studies available are based on 
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more easily-measured glaucoma endophenotypes. The following are the heritability estimates for 

quantitative traits reproducibly found to be associated with glaucoma: central corneal thickness ranges from 

0.35-0.72%(Charlesworth et al., 2010; Freeman et al., 2013; van Koolwijk et al., 2007), intraocular pressure 

(IOP) 0.35– 0.94%(Charlesworth et al., 2010; Freeman et al., 2013), and cup-to-disc ratio 0.56-

0.66%(Chang et al., 2005; Freeman et al., 2013). Pulsatility of choroidal blood flow and velocity are 

additional quantitative traits whose variation from normal parameters has been seen in individuals with 

glaucoma(Findl et al., 2000; Fontana et al., 1998), yet heritability studies have found no significant genetic 

contribution to their variability(Freeman et al., 2013).   

Evidence suggests that specific non-modifiable and environmental factors drive the emergence and 

progression of the disease, such as African ancestry(Tielsch et al., 1994), age(Leske et al., 1995), 

myopia(Pan et al., 2013), and high intraocular pressure(Chandrasekaran et al., 2006; Jiang et al., 2012; 

Leske et al., 1995).  

Primary open-angle glaucoma (POAG) is the most prevalent clinical subtype of glaucoma in the United 

States. Early linkage and family-based genetic association studies identified the MYOC (myocilin), OPTN 

(optineurin), and WDR36 (WD repeat domain 36)(Monemi et al., 2005; Rezaie et al., 2002; Stone et 

al., 1997) genes as susceptibility loci for POAG. Mutations in MYOC are known to cause hereditary early-

onset POAG in multiple populations(Adam et al., 1997; Stone et al., 1997; Suzuki et al., 1997). MYOC 

is expressed in several tissues  including the trabecular meshwork(Polansky et al., 1997) where it is 

hypothesized that mutated versions of the protein are not being adequately secreted into the aqueous 

humor(Jacobson et al., 2001). In a study of African Americans, the frequency of myocilin mutations was 

comparably lower (~1.4%) than in other populations (~2-4%)(Liu et al., 2012). This suggests that other 

genetic loci are driving risk in this group.  
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Summary 

In summary, common ocular diseases are multifaceted conditions driven in part by both environmental 

influences and genetics. Separately age-related macular degeneration, primary open-angle glaucoma, and 

diabetic retinopathy afflict unique structural attributes of the vision pathway, and together they are the 

driving cause of vision loss and blindness across the globe. Additional research is necessary to understand 

the genetic and epidemiologic architecture of these disease states in diverse populations; knowledge of 

which may lead to a better understanding of ancestry-specific etiologies and development of targeted 

screening programs. Genetic association studies, such as the ones outlined here in subsequent chapters, may 

provide new insights into the genetic epidemiology of common, ocular diseases and further our 

understanding of the biological processes inherent to disease risk and prevention. Briefly, here is an outline 

of the work contained in the following chapters. 

In Chapter II, I take a candidate gene approach to determine if variants previously identified as risk loci for 

AMD in European-descent populations also contribute to risk in non-European populations. To-date, most 

genetic association studies have been performed in European-descent and Asian populations. A meta-

analysis was performed on samples with targeted genotyping data for known AMD and lipid trait-associated 

SNPs from the Population Architecture using Genomics and Epidemiology (PAGE) study. Populations 

included in this study were European Americans, African Americans, Mexican Americans, and 

Singaporeans. Furthermore, I explore whether mitochondrial genetic variants affect risk of AMD in a subset 

of NHANES III and NHANES 2007-2008 samples. Additionally, I explore the role of gene x environment 

interactions in risk of AMD as single SNP associations are known to account for only a portion of the risk.  

In Chapter III, I pursue strategies to extract ocular phenotypes and traits from the Vanderbilt University 

Medical Center DNA repository linked to de-identified medical records (i.e., the Synthetic Derivative 

(SD)). The SD contains over 1.4 million records with the average patient’s record containing 6.5 years of 

medical history and an average of 8 prescriptions. These records consist of both inpatient and outpatient 

records. I developed phenotyping algorithms to identify DR and POAG cases and controls via a 
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combination of International Classification of Disease (ICD-9) billing codes, Current Procedural 

Terminology (CPT) procedural codes, and free text searches.  

The work in Chapter IV and V explores the role of common genetic variation in risk of POAG and DR, 

respectively, in African Americans that were extracted from the SD in Chapter III.  In chapter IV, I utilized 

both a candidate gene approach and a hypothesis-free analyses to jointly identify whether previously 

identified risk loci contribute to risk of POAG in this population and whether novel loci could be discovered. 

Similarly in Chapter V, I explored the role of common genetic variation in risk of DR in African Americans 

from the Vanderbilt University Medical Center SD. Limited progress has been made in identifying 

susceptibility variants for DR and given that mitochondria are known to play a pathological role in DR, I 

additionally performed a meta-analysis of mitochondrial variants genotyped in a diverse set of NHANES 

populations to ascertain their potential contribution to DR risk.  

Finally in Chapter VI, I will summarize the work present in Chapters II through V for each ocular phenotype 

presented. I will also discuss future directions for the field and a potential new project.   
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CHAPTER II 

INVESTIGATION OF THE GENETIC ARCHITECTURE OF AGE-RELATED 

MACULAR DEGENERATION IN DIVERSE POPULATIONS 

Introduction 

Age-related macular degeneration (AMD) is a bilateral, multifactorial condition of the retina and the retinal 

support system leading to gradual deterioration of photoreceptor cells and subsequent loss of central vision. 

The fundamental mechanics of vision loss of AMD is the painless destruction of highly specialized 

photoreceptor “cone” cells packed within the macula which is located in the central region of the retina 

(Figure 3).  Cones are comprised of three visual pigments termed opsins, which are light-sensitive G 

protein-coupled receptors. These G protein-coupled receptors absorb light at various wavelengths and give 

the perception of trichromatic vision. L-cones absorb wavelengths in the range of 564-580 nm (i.e. long), 

which correspond with the color red in the electromagnetic spectrum. M-cones (i.e. medium) respond to 

wavelengths in the range of 534-545 nm for green, and S-cones (i.e. short) absorb wavelengths in the blue 

region at 420-440 nm. Together these three types of cones, when stimulated by light to varying degrees, 

create the perception of a color spectrum in the brain. The fovea, a small pit in the center of the macula, 

contains the greatest density of cones. 

---------------------------- 

(Restrepo et al., 2014, 2015) Adapted from: Restrepo NA, Spencer KL, Goodloe R, Garrett TA, Heiss G, Buzkova P, 

Jorgensen N, Jensen RA, Matise TC, HIndorff LA, Klein R, Wong TY, Cheng CY, Cornes BK, Tai ES, Ritchie MD, 

Haines JL, Crawford DC. Genetic determinants of age-related macular degeneration in diverse populations from the 

PAGE Study. Investigative Ophthalmology & Visual Sciences 10, 6839-6850 (2014).  

Restrepo, NA, Mitchell SL, Goodloe RJ, Murdock DG, Haines JL, Crawford DC. Mitochondrial variation and the risk 

of age-related macular degeneration across diverse populations. Pacific Symposium Biocomputing. Pac. 20, 243–254 

(2015). 
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The fovea, which is located at the very center of the macula encompassing a diameter of approximately 1.5 

mm, is responsible for high-acuity vision. Although the fovea comprises but a small portion of the retina, 

it contains roughly half of the nerve fiber cells contained in the optic nerve bundle(Curcio and Allen, 1990). 

Photoreceptors each contain an outer segment structure (i.e. photopigment), a nucleus, synaptic terminal, 

an inner fiber, and an inner segment composed of the endoplasmic reticulum, ribosomes, and 

mitochondria(Hildebrand and Fielder, 2003). The outer and inner segments are connected by series of 

plasma membrane discs that contain rhodopsin, photopigment essential in phototransduction, and these 

discs are shed and replenished every ten days(Chuang et al., 2007).   

In healthy eyes, the retina is supported by a unique vascular network made up in large part by the choroid 

which is a layer of connective tissue positioned between the sclera, the hard outer layer of the eyeball, and 

 

Figure 3: Simple diagram of the human retina;  

Visualizing the location of the macula and fovea as would be seen from a funduscopic image.  
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the retina. Retinal oxygen demand exceeds almost all other tissues in the body(Yu and Cringle, 2001), and 

this demand is met in large part by the ophthalmic artery. The ophthalmic artery provides approximately 

80% of total ocular blood flow to the choroid(Hildebrand and Fielder, 2003). The choroidal network in turn 

supplies nutrients, oxygen, and glucose to the retinal pigment epithelium (RPE) and photoreceptors and 

acts as a conduit for disposal of cellular waste. RPE is the pigmented cell layer situated between the retina 

and the choroid and acts as the outer layer of the blood-retina barrier, preventing molecules from leaky 

choriocapillaries from crossing into the retinal tissue. RPE cells are tightly compacted in the fovea (i.e. 

7,500 cells/mm2) versus the peripheral macula (5,000 cells/mm2)(Ach et al., 2014). The RPE plays an 

integral role in the phagocytosis of shed photoreceptor outer-segment discs. Perturbations in the 

macula/fovea region can have devastating consequences for visual integrity and health. 

Clinical features and diagnosis of age-related macular degeneration cases and controls 

In studies that follow, controls were at least 60 years old with gradable retinal photographs showing an 

absence of hallmark AMD features. AMD cases were classified by two clinical subtypes termed early and 

late AMD according to a modified version of the Wisconsin Age-related Maculopathy Scale.(Klein et al., 

1991) Early AMD cases were at least 60 years of age and included participants with: 1) soft drusen, 2) 

depigmentation of the retinal pigment epithelium in the presence of soft and/or hard drusen, or 3) 

hyperpigmentation in the presence of soft and/or hard drusen (Figure 4).  

Drusen (Figure 4.B) are extracellular deposits that occur between the basement membrane of the RPE and 

the inner layer of Bruch’s membrane. Drusen occur as part of the normal aging process but are also 

important early signs of AMD pathology. The presence of small hard drusen is observed in elderly 

individuals over the age of 60 years. In comparison, soft drusen, which mark early pathological changes in 

the retina, are larger and have soft indistinct edges.  

Pigmentary abnormalities of the retina, such as hypopigmentation, result as a consequence of RPE cell loss. 

The loss of RPE increases the visualization of the underlying choroidal vasculature. Hyperpigmentation 
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inversely is the result of over proliferation of RPE cells(de Jong, 2006). Patients that present with only soft 

drusen are less likely to progress to late-stage AMD over the course of 5 years(van Leeuwen et al., 2003) 

versus those that contain soft/hard drusen in conjunction with pigmentary abnormalities(Klein et al., 1997). 

 

Late AMD cases included individuals 60 years of age and older with geographic atrophy, sub-retinal 

hemorrhage, sub-retinal fibrous scarring, or sensory serous sub-retinal detachments. Geographic atrophy is 

 

Figure 4: ocular tissue overview 

A) Diagram of the primary ocular tissues which make up the retina and the retinal support systems in a 

human eye. B) The 3D structure and placement of a drusen deposit located between the Bruch’s 

membrane and the retinal pigment epithelium layer. Drusen appear as a yellow/white deposit of 

extracellular waste products containing apoE, CFH, and lipids. C) Accumulation of drusen deposits in 

the subretinal space can trigger an inflammatory response and recruitment of inflammatory cytokines 

which in turn can trigger over expression of VEGF. D) Over expression of VEGF protein triggers 

angiogenesis and the formation and growth of new blood vessels into Bruch’s membrane. These fragile 

new vessels can easily break and leak blood and plasma fluids into the subretinal space.    
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the hallmark of advanced dry AMD, which begins with demarcated areas of hypopigmentation situated 

around severe regions of atrophy whereby large choroidal blood vessels are visible. Neovascular AMD 

occurs, in part, as the result of overexpression of the vascular endothelial growth factor (VEGF) protein, 

which signals a cascade response for the growth and proliferation of new blood vessel growth (Figure 4. 

C)(Rudolf et al., 2008). Fragile growth of new blood vessels in the choroid can lead to inflammation and 

disposition of the RPE and damage to the macula.   

Epidemiology of age-related macular degeneration 

The epidemiology of AMD risk involves several modifiable and non-modifiable factors.  One recently 

described modifiable risk factor is HDL-C. The relationship between serum HDL levels and AMD risk, 

however, is inconsistent in the literature.(van Leeuwen et al., 2004; Reynolds et al., 2010) Reynolds and 

colleagues found a protective effect of higher HDL-C levels and AMD. Conversely, the Rotterdam Study 

found that higher levels of HDL-C increased the risk (OR=1.20 per standard deviation increase) of incident 

AMD.(van Leeuwen et al., 2004) Other lipid trait studies have observed a greater level of lipoproteins in 

AMD patients along with an increase in serum C-reactive protein(Colak et al., 2011) compared to age-

matched controls. The exact role that lipids play in AMD pathology is still unknown; however, genetic 

association studies have found evidence of a correlation between lipid-trait genes and AMD risk. These 

studies have led to increased efforts to study the effect of lipid-lowering drugs (e.g. statins) on the 

progression and treatment of AMD with conflicting results(Gehlbach et al., 2009; Shalev et al., 2011). 

While there is currently a lack of strong evidence to suggest that statins can prevent AMD, statin use in one 

study appears to protect against soft drusen, which is a precursor to late AMD(Tan et al., 2007a).  

Genetics of age-related macular degeneration 

Substantial progress has been made in identifying susceptibility variants for AMD (Table 2). The most 

widely replicated loci are Complement Factor H (CFH) and the Age-related Maculopathy Susceptibility-2 

(ARMS2)/HTRA1 complex. (Edwards et al., 2005; Haines et al., 2005; Jakobsdottir et al., 2005; Klein et al., 

2005; Rivera et al., 2005)  Multiple polymorphisms within the chromosome 10q26 region have been 
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proposed as the functional variation including ARMS2 A69S, the HTRA1 promoter variant rs11200638 

adjacent to ARMS2,(Dewan et al., 2006; Yang et al., 2006) and a complex insertion/deletion variant in the 

untranslated region (UTR) of ARMS2.(Fritsche et al., 2008; Wang et al., 2010)  

Lipid levels and lipid metabolism have been associated with susceptibility and progression of AMD in 

various populations(Gemmy Cheung et al., 2012; Klein et al., 2007a; van Leeuwen et al., 2004; Tomany et 

al., 2004).  As a result, numerous studies have been conducted to determine if genetic variants associated 

with lipid levels and lipid metabolism also impact risk of AMD.  Indeed, the results of a targeted genotyping 

study suggested that the minor (T) allele for LIPC rs10468017 is associated with an increase of HDL and a 

subsequent lower risk of developing AMD(Reynolds et al., 2010). Recently, a meta-analysis(Fritsche et al., 

2013) of over 17,000 advanced AMD cases confirmed the findings of genetic variants previously associated 

with HDL cholesterol on susceptibility to AMD that had been observed in two previous GWAS(Chen et 

al., 2010; Neale et al., 2010).  

The association between lipid levels (and the genetic variants associated with these levels) makes biological 

sense.  For example, genetic variants in the cholesteryl ester transfer protein (CETP) have been consistently 

associated with HDL-C levels in multiple populations(Dumitrescu et al., 2011; Kathiresan et al., 2009; 

Willer et al., 2008a). The product of CETP is a plasma glycoprotein involved in the reverse cholesterol 

transport pathway known to transport and remove lipoproteins from blood circulation. CETP has been 

found to cause an increase or decrease in blood lipid levels with  corresponding high or low blood levels of 

CETP(Chang et al., 2011; Ridker et al., 2009). A study utilizing monkey retinas has shown that CETP 

localizes to the lipid rich, photoreceptor outer segment (POS)(Tserentsoodol et al., 2006).  POS are recycled 

by the RPE several thousands of times a day to replenish vital components for the creation of new 

photoreceptor cells in a process that maintains visual integrity(Ebrahimi and Handa, 2011). Disruption in 

this process is hypothesized to leads to a buildup of lipid peroxidation products that ultimately leads to 

apoptosis of RPE and release of inflammatory factors into the Bruch’s membrane where inflammation leads 

to the formation of drusen. 
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Studies of the genetic architecture of AMD have progressed rapidly in European-descent and Asian 

populations with much success in identifying GWAS-significant associations (Table 2). However, 

accounting for intra- and inter-population determinants of AMD are necessary for better understanding the 

pathophysiology of the condition and for targeted treatment options. Furthermore, the modifying effect of 

environmental factors and the role that gene x environment interactions play has not been fully realized. 

Genetic association studies, such as the ones outlined in this chapter can help to identify these differences 

and could further our understanding of the complex interplay between genes and the environment.    

 

Table 2: Variants published in the scientific literature that have been associated with 

AMD.  

SNP CHR Closest Gene Population PMID 

rs10033900 4 CFI European 20385826 

rs10468017 15 LIPC European 20385826 

rs10490924 10 ARMS2 European 

Asian 

20385826 

23455636 

rs1061170 1 CFH European 20385826 

rs10737680 1 CFH European 20385819 

rs11200638 10 HTRA1 Asian 17053108 

rs11755724 6 RREB1 European 20385826 

rs13081855 3 COL8A1 European 

Asian 

23455636 

 

rs13095226 3 COL8A1 European 20385826 

rs13278062 8 TNFRSF10A European 

Asian 

21909106 

23455636 

rs1329424 1 KCNT2 European 

Asian 

20385819 

23326517 

rs1410996 1 CFH European 20385826 

rs1864163 16 CETP European 

Asian 

23455636 

 

rs2230199 19 C3 European 

Asian 

20385819 

20385826 

rs2285714 4 CFI European 20385819 

rs3130783 6 TRNAI25 European 

Asian 

23455636 

 

rs334353 9 TGFBR1 European 

Asian 

23455636 

 

rs3764261 16 CETP European 20385819 

rs3793917 10 ARMS2 European 

Asian 

20385819 

23326517 

rs380390 1 CFH European 15761122 

rs429608 6 CFB European 

Asian 

20385819 

23455636 
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rs4420638 19 APOE European 

Asian 

23455636 

 

rs4698775 4 CFI European 

Asian 

23455636 

 

rs493258 15 RPL28P4 European 20385819 

rs5749482 22 TIMP3 European 

Asian 

23455636 

 

rs641153 6 CFB European 20385826 

rs8135665 22 SLC16AB European 

Asian 

23455636 

 

rs920915 15 LIPC European 

Asian 

23455636 

 

rs9380272 6 C2 European 20385819 

rs943080 6 VEGFA European 

Asian 

23455636 

 

rs8017304 14 RAD51B European 

Asian 

23455636 

 

rs6795735 3 ADAMTS9 European 

Asian 

23455636 

 

rs3812111 6 COL10A1 European 

Asian 

23455636 

 

rs9542236 13 B3GALTL European 

Asian 

23455636 

 

Variants are listed for SNPs found to be associated with AMD and deposited in the NHGRI 

GWAS catalog as of January 1st, 2015. 
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Meta-analysis of known and novel age-related macular degeneration loci in diverse /racial 

ethnic populations 

 

The prevalence of AMD varies across ancestral populations. I hypothesize that this is due to differences in 

genetic architecture and environmental exposures across these diverse populations. I will statistically 

ascertain the genetic architecture of AMD in non-European populations beginning with replicating and/or 

generalizing previously identified GWAS variants discovered primarily in European Americans to the 

minority populations ascertained by EAGLE. Results between European Americans and the diverse 

populations will be compared to determine if trends/differences in risk and allele frequencies exist between 

the various populations.  

The Population Architecture using Genomics and Epidemiology (PAGE) I study is a consortium of four 

projects representing eight population-based studies in different regions of the United States. It was 

established by the National Human Genome Research Institute (NHGRI) to address a deficiency in genetic 

research in ethnically diverse populations. The PAGE initiative is to study the genetic architecture of 

common, complex diseases across diverse populations, identify genetic and environmental modifiers of 

disease, and to study associations within novel phenotypes. With more than 121,000 DNA samples from 

African American, Hispanic, Native American, European American, and other populations for use in large 

scale meta-analyses of several phenotypes, PAGE I is uniquely poised to address the questions of 

replication and generalization of genotype-phenotype associations in ethnic minorities(Matise et al., 

2011a).  
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Methods 

Study Populations 

Participants from three PAGE study sites are included in this study:  the Atherosclerosis Risk in 

Communities (ARIC) study, the Cardiovascular Health Study (CHS), and Epidemiologic Architecture for 

Genes Linked to Environment (EAGLE) study accessing the Third National Health and Nutrition 

Examination Survey (NHANES III).  In addition to data from the PAGE study sites, additional data are 

presented from the Singapore Prospective Study Programme (SP2) and the Singapore Malay Eye Study 

(SiMES).  Brief descriptions of each study are given below in Table 3. The original phenotypic focus of 

each study varies from cardiovascular traits (ARIC and CHS), type 2 diabetes and cardiovascular diseases 

(SP2), ocular traits (SiMES), and a representative sample of the United States regardless of health status 

(EAGLE).  

The Atherosclerosis Risk in Communities Study (ARIC) is a population-based cohort study that included 

15,792 women and men between 45 and 64 years of age at recruitment in 1987 through 1989.(1989) The 

participants were selected by probability sampling from four U.S. communities: suburbs of Minneapolis, 

Minnesota; Washington County, Maryland; Jackson, Mississippi; and Forsyth County, North Carolina. 

Retinal photographs were taken at the third visit, allowing inclusion of a subset of participants in this study 

of AMD.(Klein R et al., 1999) A digitized, 45° color fundus photograph was taken of one eye from 

participants between 48-72 years of age. AMD was graded according to a modified version of the Wisconsin 

Age-Related Maculopathy Grading System.(Klein et al., 1991)   Current smoking was defined by “Do you 

now smoke cigarettes?”  After the institutional review board at every participating university approved the 

ARIC Study protocol, written informed consent was obtained from each participant. 

The Cardiovascular Health Study (CHS) is a population-based longitudinal study of risk factors for 

cardiovascular disease in adults 65 years of age or older, recruited at four field centers (Forsyth County, 

North Carolina; Sacramento County, California; Washington County, Maryland; Pittsburgh, 

Pennsylvania).(Fried et al., 1991) Overall, 5,201 predominantly white individuals were recruited in 1989-
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1990 from random samples of Medicare eligibility lists, followed by an additional 687 African Americans 

recruited in 1992-1993. Starting in 1989 participants underwent standardized clinical exams at enrollment, 

which included blood pressure, lipid profiles, echocardiography of the heart, carotid ultrasound, cranial 

magnetic-resonance imaging (MRI), and fundus photography. Retinal photographs were taken with a 45-

degree nonmydriatic camera of one randomly selected eye from participants.(Klein et al., 2003b; Klein R 

et al., 1999) AMD status was graded according to the modified Wisconsin Age-relate Maculopathy 

classification scheme.(Klein et al., 1991) The main outcomes are coronary heart disease (CHD), angina, 

heart failure (HF), stroke, transient ischemic attack (TIA), claudication, and mortality.  Current smoking 

status was self-reported at baseline. 

The National Health and Nutrition Examination Surveys (NHANES), conducted by the National Center for 

Health Statistics (NCHS) at the Centers for Disease Control and Prevention (CDC), are U.S. population-

based, cross-sectional surveys collected without regard to health status and include detailed demographic, 

health, lifestyle, laboratory, clinical, and physical examination data for study participants.  NHANES III 

was conducted in two phases between 1988-1994, and DNA samples were collected in the second phase 

(1991-1994).(2004, 1996) Genetic NHANES III consists of 7,159 DNA samples, and the method of 

collection has been previously described.(Chang et al., 2009; Steinberg et al., 1997) We used study 

participant data from NHANES III, of which 3,131 had available fundus photographs and laboratory 

measurements of serum cotinine (ng/mL). Participants over the age of 40 were selected to have a non-

stereoscopic, 45° color fundus photograph taken of one randomly selected eye. AMD was graded according 

to the Wisconsin Age-Related Maculopathy Grading System.(Klein et al., 1991) Current smokers were 

defined using “yes” to the question “do you smoke cigarettes now?” or cotinine levels > 15ng/ml. All 

procedures were approved by the CDC Ethics Review Board and written informed consent was obtained 

from all participants. Because no identifying information is available to the investigators, Vanderbilt 

University’s Institutional Review Board determined that this study met the criteria of “non-human 

subjects.” 
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The Singapore Prospective Study Programme (SP2) is a population-based cohort consisting of Singaporean 

Chinese participants aged between 40 and 80 years.(Nang et al., 2009) Initially, 10,747 subjects were 

invited from four population-based cross-sectional surveys conducted in Singapore (1982–1998) to 

participate in a repeat examination from 2004 to 2007. (Cutter et al., 2001; Hughes et al., 1990, 1997; Tan 

et al., 1999) Participants who were successfully re-contacted and completed a questionnaire (n=7,744; 

76.8% response rate) were then invited to attend a clinic health examination that included physicals and 

ocular assessment, retinal photography, and collection of biologic specimens, of which 5,163 (66.7% of 

those who completed the questionnaire or 51.2% of all eligible subjects) attended. Retinal photographs 

were taken of both eyes with a 45 digital retinal camera and are available for 4,110 participants.(Jeganathan 

et al., 2009) AMD was graded according to the Wisconsin Age-Related Maculopathy Grading 

System.(Cheung et al., 2012) A structured interviewer-administered questionnaire was used to collect 

information about smoking status.  Current smoking status was self-reported. 

The Singapore Malay Eye Study (SiMES) is a population-based cross-sectional study of urban Singaporean 

Malay adults, conducted to assess prevalence, risk factors, and the public health impact of common age 

related eye diseases.(Foong et al., 2007) An age-stratified (by 10-year age group) random sample of the 

Malay population residing in 15 residential districts in Southwestern Singapore age 40 to 80 years was 

drawn from the computer-generated random list of 16,069 Malay names provided by the Ministry of Home 

Affairs.  Of 4,168 eligible participants, 3,280 (overall response rate 78.7%) participated in the study, 

conducted from August 2004 through June 2006. Retinal photographs were taken of both eyes in 

participants with a digital retinal camera and AMD was graded according to the Wisconsin Age-Related 

Maculopathy Grading System.(Kawasaki et al., 2008) A questionnaire was used to collect information 

about smoking status, with participants self-reporting current smoking status.     
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Phenotyping 

At all study sites, fundus photographs were graded according to a modified version of the Wisconsin Age-

related Maculopathy Scale.(Klein et al., 1991) AMD cases and controls were at least 60 years of age with 

gradable retinal photographs.  

SNP selection and genotyping 

As part of the PAGE study, SNPs were selected for genotyping based on previous GWAS and candidate 

gene studies for a variety of common human diseases and traits including AMD, lipid-traits (HDL-C, LDL-

C, and triglycerides), body mass index/obesity, type 2 diabetes, hypertension, and inflammation (C-reactive 

protein), to name a few. For this study, we included both AMD and lipid-trait associated SNPs reported in 

genome-wide association studies or the National Human Genome Research Institute’s GWAS Catalog as 

of 2009(Welter et al., 2014). Previously, a total of 57 SNPs were selected for analysis and included the two 

primary AMD variants (CFH rs1061170 and ARMS2 rs10490924), other variants involved in the 

complement system pathway (CFH rs800292, rs1065489, rs3753394, rs3766404, rs6677604, rs800292; 

CFI rs10033900, rs11726949; C2 rs547154), and variants associated with lipid-related traits 

(Supplementary Table 1).  As described in Matise et al, genotyping in the PAGE Study was performed at 

each PAGE study site independently using a variety of genotyping assays and platforms.(Matise et al., 

2011a) Not all 57 SNPs were genotyped in each study site (Supplementary Table 2).  For quality control, 

all PAGE study sites genotyped 360 DNA samples (CEU, YRI, CHB, JPN, and MEX) from the 

International HapMap Project, including 77 parent-child trios.(2003) 

In ARIC, the CFH Y402H variant (rs1061170) was previously genotyped in a candidate gene study using 

the TaqMan assay and polymerase chain reaction amplification (Applied Biosystems, Foster City, 

CA).(Volcik et al., 2008) Genotypes were called using the ABI 7900HT and the Sequence Detection System 

software (Foster City, CA). DNA genotyping for the ARMS2 A69S variant (rs10490924) was part of a 

GWAS using the Affymetrix GeneChip SNP Array 6.0 (Santa Clara, CA).(Psaty et al., 2009) The HDL-

associated SNPs used in this study were genotyped as previously described.(Dumitrescu et al., 2011) 
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In CHS, CFH Y402H and ARMS2 were not genotyped. Genotyping data for other variants were obtained 

from two sources.  First, SNP genotyping was conducted in the Houston central lab using TaqMan (see 

details above for ARIC). The second source of genotyping data from CHS was performed at the General 

Clinical Research Center's Phenotyping/Genotyping Laboratory at Cedars-Sinai using the Illumina 

370CNV BeadChip system. Genotypes were called using the Illumina BeadStudio software.(Psaty et al., 

2009)  

In EAGLE, CFH Y402H (rs1061170) and ARMS2 A69S (rs10490924) were genotyped by the Center for 

Human Genetics Research DNA Resources Core in NHANES III using Sequenom iPLEX® Gold assay 

(San Diego, California) according to the manufacturer’s instructions. Blinded duplicates were genotyped 

as required by CDC, and both SNPs passed quality control metrics required by CDC.  The following lipid 

trait-associated SNP data were accessed from existing genotype data in Genetic NHANES, a collection of 

DNA samples collected from the NHANES III and Continuous NHANES (1999+) surveys:  rs3890182 

(ABCA1), rs3135506 (APOA5), rs1800775 (CETP), rs1323432 (GRIN3A), rs1800588 (LIPC), and rs328 

(LPL).(Keebler et al., 2009) The remaining lipid trait-associated SNPs were genotyped using either 

Sequenom or the Illumina BeadXpress.  All genotype data reported here were deposited into the NHANES 

III Genetic database and are available for secondary analysis through CDC. 

In SP2, Chinese samples were previously genotyped as controls for a type 2 diabetes case control study 

which used either the Illumina HumanHap 610 Quad or 1MDuo-v3 BeadChips and as part of a psoriasis 

case control study which used the Illumina HumanHap 550 BeadChip. Genotyping details have been 

published elsewhere.(Sim et al., 2011) 

SiMES genotyping methods followed those of the SP2 cohort as previously described.(Sim et al., 2011) 

Genotyping for any given SNP, in a particular population, was not always available across all study sites. 

Therefore we provide the following maximum and minimum ranges which include cases and controls for 
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genotyping data by population: European Americans (N = 4546 – 6540), African Americans (N = 796 – 

1267), Mexican Americans (N = 275 – 317), and Asians (N = 972 – 1197).  

Statistical methods 

Each study site performed tests of association locally using a common analysis protocol prior to meta-

analysis. Early and late cases of AMD were combined for analyses to increase power.  Each genetic variant 

was tested for association with AMD using logistic regression assuming an additive genetic model stratified 

by self-described race/ethnicity (e.g. European American, African American, Mexican American, and 

Asian). SNPs available for analysis by study site are given in Supplementary Table 2.  All models were 

adjusted for site of ascertainment (Model 1, minimally adjusted). Models 2 and 3 were adjusted for age, 

sex, body mass index (BMI), smoking status (current versus ever/never), and high density lipoprotein 

(HDL) cholesterol, fasting (8 hours) (Model 2) or regardless of fasting status (Model 3). Participants on 

lipid-lowering medications were excluded in both Models 2 and 3. Asians were represented by the SP2 

cohort only in Model 2 given the lack of fasting HDL-C in the SiMES cohort. 

Local analyses were conducted using Stata 9.0 (ARIC), SAS v9.3 (CHS), SAS v9.2 (by EAGLE using the 

Analytic Data Research by Email (ANDRE) portal of the CDC Research Data Center in Hyattsville, MD), 

and PLINK v1.06 (SP2/SiMES).  

After analyses were conducted locally at each site, meta-analyses using summary statistics were carried out 

in the Crawford lab by Robert Goodloe using a fixed-effects, inverse-variance weighted approach 

implemented in METAL.(Willer et al., 2010)  Between study heterogeneity was tested for in METAL with 

the Cochran’s Q-test. Genomic control was applied on the combined meta-analysis and not each specific 

cohort analysis to avoid overcorrection of population stratification. Meta-analysis results were plotted using 

Synthesis-View.(Pendergrass et al., 2010)  

All p-values listed in the manuscript and tables are uncorrected for multiple hypothesis testing. The 

following Bonferroni corrected thresholds were calculated by population based on the number of available 
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SNPs in that population across all study sites regardless of whether the SNP was available at each study 

site: European Americans (0.05/49 SNPs) = 0.0010; African Americans (0.05/47 SNPs) = 0.0010; Mexican 

Americans (0.05/31 SNPs) = 0.0016; and Asians (0.05/43 SNPs) = 0.0012. 

Ethics statement 

This research adhered to the tenets of the Declaration of Helsinki. Approval for the study was obtained 

from the appropriate institutional review boards at all participating institutions, and all study participants 

gave informed consent where appropriate.  All work for studies conducted in the United States was Health 

Insurance Portability and Accountability Act - compliant. 

Results 

Population characteristics 

The meta-analysis is composed of multiple studies within the PAGE study (ARIC, CHS, and EAGLE) and 

Asian cohorts comprised of SP2 and SiMES. Combined, this meta-analysis includes various racial/ethnic 

groups: European Americans (830 cases and 5,710 controls), African Americans (95 cases and 1,172 

controls), Mexican Americans (47 cases and 270 controls), Singaporean Chinese (21 cases and 206 

controls), and Singaporean Malays (107 cases and 863 controls). All study sites ascertained both men and 

women. Smoking status was defined as current vs. ever/never smoker and varied across studies (Table 3). 

The average BMI was greater than 25 kg/m2 across all studies regardless of case status, except in the SP2 

dataset. 
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Table 3: Description of study participants, by study site 

 
ARIC CHS EAGLE SP2 SiMES 

 
European American African American European American African American European American African American Mexican American Asian Asian 

 Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls 

N 
289 3128 34 582 351 1918 31 381 190 664 30 209 47 270 21 206 107 863 

Age 

65.1 

(3.1) 

64.3 

(3.0) 

63.9 

(3.1) 

64.0 

(3.1) 

72.4 

(4.6) 

70.7 

(4.2) 

72.4 

(4.4) 

71.5 

(4.7) 

76.4 

(8.1) 

71.2 

(7.5) 

70.2 

(7.5) 

68.5 

(6.9) 

69.3 

(7.0) 

67.2 

(6.3) 

69.3 

(5.3) 

67.1 

(4.9) 

71.3 

(5.4) 

69.0 

(5.6) 

Body Mass 

Index 

27.8 

(4.6) 

27.7 

(4.8) 

29.1 

(3.9) 

29.8 

(5.9) 

26.1 

(4.2) 

26.5 

(4.2) 

28.9 

(6.0) 

28.7 

(4.8) 

26.8 

(5.7) 

27.1 

(4.7) 

31.0 

(6.3) 

28.2 

(6.2) 

28.6 

(5.3) 

28.4 

(5.3) 

 

21.3 

(3.3) 

 

23.2 

(3.1) 

 

25.5 

(5.8) 

 

26.2 

(5.0) 

Total 

Fasting 

Cholesterol 

209.6 

(35.0); 

n=249 

208.8 

(36.7); 

n=2647 

210.9 

(31.6); 

n=30 

209.3 

(38.4); 

n=501 

210.0 

(36.7) 

213      

(39.0) 

198.9 

(29.2) 

210.1 

(35.9) 

230.0 

(79.5) 

228.6    

(76.0) 

235.7 

(56.2) 

229.9 

(104.5) 

256.6 

(145.9) 

222.1 

(70.9) 

197.2 

(30.9) 

208.8 

(34.8) 

220.4  

(42.5)* 

224.2  

(46.4)* 

Fasting 

HDL 

Cholesterol 

50.0 

(16.5) 

51.5 

(18.4) 

53.1 

(20.0) 

55.4 

(18.1) 

56.0 

(16.6) 

54.3 

(15.4) 

59.4 

(14.4) 

58.8 

(15.0) 

52.7 

(15.5) 

66.7 

(113.9) 

63.2 

(19.5) 

71.2 

(116.8) 

84.6 

(180.0) 

53.9 

(71.6) 

54.1 

(11.6) 

54.1 

(11.6) 

54.1 

(11.6)* 

50.2 

(11.6)* 

% female 
49.1 51.3 44.1 63.6 57.0 60.0 74.2 65.1 66.8 54.5 60.0 47.4 44.7 44.1 19.05 46.60 29.91 51.68 

% current 

smokers 
61.6 60.1 58.8 50.5 9.6 8.7 12.9 13.3 44.2 52.0 50.0 58.9 53.2 54.8 38.10 22.82 48.57 36.74 

Atherosclerosis Risk in Communities (ARIC) Study; Cardiovascular Health Study (CHS); Epidemiologic Architecture for Genes Linked to Environment 

(EAGLE); Singapore Prospective Study Programme (SP2); Singapore Malay Eye Study (SiMES) 

Means and standard deviations (SD) are given unless otherwise noted. 

* Study site did not collect fasting data; statistics are shown for non-fasting data. 
 



33 

Replication and generalization of known age-related macular degeneration risk variants 

We meta-analyzed tests of associations for up to 19 SNPs previously associated with AMD. Among 

European Americans, 13 AMD SNPs were tested, and 7/13 (54%) were significant at an uncorrected p< 

0.05 in Model 1 (Table 4 and Supplementary Table 1; Figure 6).  As expected, both CFH rs1061170 

(OR=1.55; p=3.05x10-8) and ARMS2 rs10490924 (OR=1.55; p=6.36x10-6) were strongly associated with 

AMD risk (Table 4) at a Bonferroni corrected p-value (p< 0.001).  The genetic effect sizes estimated here 

were smaller for these variants compared with previous reports with other studies estimating risk between 

2.7 and 4.6 for heterozygotes (Figure 5).(Despriet et al., 2006; Haines et al., 2005; Klein et al., 2005; Yu et 

al., 2011) Three additional CFH SNPs were associated with AMD risk at p<0.05 in European Americans:  

missense rs800292 (OR=0.58; p=3.80x10-5), intergenic rs3753394 (OR=1.25; p=0.03), and intronic 

rs6677604 (OR=0.77; p=0.04).    The remainder of the Complement Factor SNPs that were tested failed to 

replicate at this liberal significance threshold. Two lipid-related variants previously associated with 

AMD(Chen et al., 2010; Neale et al., 2010; Yu et al., 2011) were nominally associated with AMD in 

European Americans: CETP rs3764261 (OR=1.14; p=0.04) and ABCA1 rs1883025 (OR=0.82; p=0.03). 

After adjustment for age, sex, BMI, smoking status, and HDL-C (Model 3), only CFH rs1061170, ARMS2 

 

Figure 5: Forest plots with odds ratios and confidence intervals for previously reported associations. 

CFH rs1061170 and ARMS2 rs10490924 are compared to results for current study for European-descent 

populations. 
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rs10490924, and CFH rs800292 remained significant at a Bonferroni corrected p-value (Supplementary 

Table 3; Supplementary Figure 1).   

 

Table 4: Significant AMD meta-analysis association results.  

Each study site performed tests of association using logistic regression assuming an additive genetic model.  

Data were meta-analyzed using a fixed-effects inverse-variance weighted approach.  Results are shown for 

nominally significant tests at an uncorrected threshold (p<0.05) adjusted for site of ascertainment (Model 

1). 

    
 

  
 

 

Rsid Gene Chr OR (95% CI) 
Direction of 

Effect * P-value 
Coded 
Allele CAF Race/Ethnicity 

    
 

    

rs1061170 CFH 1 1.55 (1.34 – 1.78)  
+,.,+ 

3.05x10-8 C 0.37 European American 

   1.36 (0.91 – 2.04) 
+,.,+ 

0.13  0.38 African American 

   1.22 (0.70 – 2.13) 
₳ 

0.47  0.20 Mexican American 

   4.43 (0.35 – 55.29) 
₳ 

0.24  0.04 Asian 

    
 

    

rs800292 CFH 1 0.59 (0.47 – 0.74) 
₳ 

3.80x10-5 A 0.24 European American 

   0.55 (0.29 – 1.03) 
₳ 

0.06  0.69 African American 

   0.89 (0.68 – 1.15) 
-,-,-,+ 

0.36  0.42 Asian 

    
 

    

rs3753394 CFH 1 1.25 (1.03 – 1.51) 
₳ 

0.03 T 0.29 European American 

   1.45 (0.60 – 3.53) 
₳ 

0.41  0.08 African American 

   0.97 (0.75 – 1.25) 
+,-,+,- 

0.80  0.54 Asian 

    
 

    

rs6677604 CFH 1 0.77 (0.61 – 0.97) 
₳ 

0.04 A 0.22 European American 

   0.63 (0.31 – 1.28) 
₳ 

0.20  0.37 African American 

   0.97 (0.54 – 1.75) 
-,-,+,+ 

0.92  0.05 Asian 

    
 

    

rs328 LPL 8 0.95 (0.79 – 1.14) 
-,-,+ 

0.60 G 0.10 European American 

   1.75 (1.06 – 2.91) 
+,+,+ 

0.03  0.07 African American 

   1.30 (0.55 – 3.08) 
₳ 

0.53  <0.01 Mexican American 

    
 

    

rs6987702 TRIB1 8 1.01 (0.87 – 1.17) 
-,+,. 

0.93 T 0.73 European American 

   1.61 (1.03 – 2.52) 
+,+,. 

0.04  0.29 African American 

   1.20 (0.90 – 1.58 
+,+,+,+ 

0.21  0.43 Asian 

    
 

    

rs1883025 ABCA1 9 0.82 (0.69 – 0.96) 
-,.,- 

0.03 A 0.26 European American 

   0.87 (0.57 – 1.33) 
-,.,- 

0.52  0.35 African American 

   0.93 (0.57 – 1.54) 
₳ 

0.78  <0.01 Mexican American 

   0.40 (0.08 – 1.91) 
.,-,.,. 

0.25  0.23 Asian 

    
 

    

rs10490924 ARMS2 10 1.55 (1.29 – 1.81) 
+,.,+ 

6.36x10-6 T 0.22 European American 

   0.83 (0.51 – 1.33) 
+,.,- 

0.43  0.24 African American 
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   1.63 (1.02 – 2.60) 
₳ 

0.04  0.26 Mexican American 

    
 

    

    
 

    

rs2338104 KCTD10 12 1.05 (0.92 – 1.20) 
.,-,+ 

0.50 G 0.53 European American 

   0.86 (0.61 – 1.22) 
-,-,+ 

0.40  0.74 African American 

   1.69 (1.08 – 2.64) 
₳ 

0.02  0.45 Mexican American 

    
 

    

rs261332 LIPC 15 0.77 (0.60 – 0.98) 
₳ 

0.05 A 0.20 European American 

   1.11 (0.57 – 2.18) 
₳ 

0.75  0.25 African American 

   0.39 (0.05 – 3.45) 
.,-,.,. 

0.40  0.12 Asian 

    
 

    

rs1800775 CETP 16 1.00 (0.87 – 1.16) 
-,.,+ 

0.98 C 0.52 European American 

   1.57 (1.03 – 2.38) 
+,.,+ 

0.04  0.42 African American 

   1.13 (0.70 – 1.83) 
₳ 

0.59  0.46 Mexican American 

   1.03 (0.79 – 1.34) 
+,+,+,- 

0.84  0.51 Asian 

    
 

    

    
 

    

rs3764261 CETP 16 1.14 (1.01 – 1.28) 
+,+,- 

0.04 T 0.33 European American 

   0.99 (0.71 – 1.40) 
-,+,- 

0.96  0.33 African American 

   0.78 (0.46 – 1.32) 
₳ 

0.37  0.31 Mexican American 

   1.07 (0.74 – 1.53) 
+,-,+,+ 

0.73  0.17 Asian 

    
 

  
 

 

* Direction of effect is given for ARIC, CHS, and EAGLE for EA, AA, and MA if data are available. Direction of effect is given for 

Asians for SiMES and SP2 1M, 550, and 610 platforms. Otherwise, the study site is set to missing (“.”). 

₳ Only a single study site is represented. 

Bold p-values are those that met strict Bonferroni correction 
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Figure 6: Meta-analysis association results 

Synthesis view plot of nominally significant (p < 0.05) meta-analysis association results for Model 1 which 

is minimally adjusted only for site of ascertainment, for all race/ethnicities. P- values are represented by 

the colored arrows and are transformed by the –log10, with the threshold of p = 0.05 marked by the red 

line. Colored arrows also show the direction of effect (beta). P-values, beta’s, and coded allele frequencies 

(CAF) are plotted by race/ethnicity. 
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Generalization of previously associated AMD variants to diverse populations 

We consider a previously associated AMD variant to have generalized if the same variant was associated 

in a different population with the same direction of effect as observed in the original population (in this 

case, European-descent populations).  For Mexican Americans, only one study contributed data toward 

generalization:  EAGLE accessing NHANES III, which included 47 cases and 270 controls. Among tests 

of association for variants previously associated with AMD, 1/8 (12%) in Model 1 was significant at an 

uncorrected p<0.05 in Mexican Americans. The association between ARMS2 rs10490924 (OR=1.63; 

p=0.04) and AMD in Mexican Americans has been previously reported for EAGLE accessing NHANES 

III.(Spencer et al., 2012a)  The association between ARMS2 rs10490924 and AMD in Mexican Americans 

is still significant (p=0.05) in this study after adjustment for Model 3 covariates (Supplementary Table 3).  

However, after strict correction for multiple testing, none of the SNPs tested in Mexican Americans was 

associated with AMD. 

Among African Americans, none of the 13 previously associated SNPs were associated with AMD in 

Model 1 in this population at the liberal significance threshold of p<0.05.  Of note is the test of association 

between AMD and ARMS2 rs10490924.  A previous report accessing only NHANES III data consisting of 

30 cases and 209 controls suggested this variant was marginally associated with AMD in the opposite 

direction compared with European Americans.(Spencer et al., 2012a)  In this meta-analysis, the test of 

association was expanded to include an additional 34 cases and 582 controls from ARIC.  The resulting 

point estimate of the genetic effect size (OR=0.83; 95% CI:  0.51-1.33) was consistent with the original 

report by Spencer et al(Spencer et al., 2012a), but the test of association was no longer significant (p=0.43). 

Similar to African Americans, in Asians none of the previously associated AMD variants were associated 

with AMD in Model 1 in this population at a liberal significance of p<0.05.  While CFH rs1061170 failed 

to generalize in terms of statistical significance (p=0.24), the point estimate of the genetic effect (OR=4.43; 
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95% CI: 0.35-55.29) was in the same direction as the effect sizes observed for European-descent 

populations (Table 4; Figure 6). 

Lipid-associated SNPs and age-related macular degeneration 

Given that recent GWAS have highlighted the association of genes traditionally involved in lipid pathways 

as mediators of AMD risk, we tested an additional 44 lipid-trait variants in these diverse populations for 

association with AMD. (Fritsche et al., 2013; Neale et al., 2010; Yu et al., 2011) Among the variants 

associated with lipid traits that were not previously associated with AMD in European-descent populations, 

only LIPC rs261332 (Model 1) was marginally associated with AMD in European Americans at p=0.052 

(Table 3; Figure 4). LIPC rs261332 (OR=0.77) was only tested in ARIC with a total of 289 cases.     

In non-European-descent populations, several lipid-associated SNPs were associated with AMD.  Among 

95 and 1,172 African American cases and controls, respectively, 3/41 (7%) SNPs that were previously 

associated with a lipid trait were associated with AMD at the uncorrected threshold of p<0.05 in Model 1. 

These SNPs include LPL rs328 (OR=1.75; p=0.03), TRIB1 rs6987702 (OR=1.61; p=0.04), and CETP 

rs1800775 (OR=1.57; p=0.04) (Table 4 and Supplementary Table 1; Figure 6).  In Mexican Americans, 

1/29 (3%) lipid-related SNPs tested reached significance at an uncorrected p<0.05 (Model 1). This variant 

was rs2338104 (KCTD10/MVK), previously associated with HDL cholesterol, associated here with AMD 

(OR=1.69; p=0.02).(Kathiresan et al., 2009; Willer et al., 2008a) The associations observed for LPL rs328 

and TRIB1 rs6987702 in African Americans and KCTD10/MVK rs2338104 in Mexican Americans 

remained significant after adjusting for covariates including fasting HDL-C (Supplementary Table 3). Of 

the 35 lipid-associated SNPs tested in the SP2 and SiMES meta-analysis of Asians, none of the association 

tests reached significance at an uncorrected p<0.05.  After strict correction for multiple testing none of the 

lipid-associated SNPs were associated with AMD in any population. 
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Discussion 

We tested up to 57 SNPs representing 19 previously associated AMD variants and 38 previously associated 

lipid trait variants for association with AMD in European Americans, African Americans, Mexican 

Americans, and Asians.  At an uncorrected p-value for multiple testing (p<0.05), we replicated up to 54% 

(7/13) of the previously reported associations for AMD tested here in European Americans.  Only one 

previously reported AMD association (ARMS2 rs10490924) generalized to Mexican Americans (Model 1; 

Table 4) whereas none generalized to African Americans and Asians.  In contrast, several associations were 

observed between lipid trait-associated variants and AMD in African Americans and Mexican Americans.  

Factors that impact generalization of AMD-associated variants 

The lack of replication and/or generalization could be due to power.  Indeed, sample sizes for non-European 

descent populations were limited.  For the two most strongly associated variants observed in European 

Americans (rs1061170 CFH and rs10490924 ARMS2), we had greater than 90% power to detect published 

effect sizes of 2.41 and 2.94 in African Americans and Mexican Americans, assuming an additive genetic 

model at a p-value of 0.05.(Yu et al., 2011) Therefore, compared to the effect sizes described in the literature 

for European Americans (Figure 5), we were generally well powered to detect previously reported 

associations with these two SNPs in African Americans and Mexican Americans. In the present study, the 

direction of effect for CFH rs1061170 (OR=1.36) in African Americans was the same as that previously 

reported in European Americans (OR=1.80-4.60; Figure 6); however, the direction of effect for ARMS2 

rs10490924 (OR=0.83) was opposite that of published studies of European Americans. In Mexican 

Americans, the direction of effect was the same for both variants as that observed in European Americans. 

The consistent direction of effect observed in Mexican Americans may represent European admixture at or 

surrounding this genomic region. However, due to the limited genetic data available in the present study, 

we could not explicitly test this hypothesis. In the Asian population, we were underpowered to detect an 

association for CFH rs1061170 due to the limited number of cases (n=8) genotyped for this particular 

variant. ARMS2 rs10490924 was not genotyped in this Asian population. Although our study was powered 
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to detect published effect sizes in African Americans and Mexican Americans, these previous estimates 

were based on studies of European-descent individuals and may not be representative of the risk of AMD 

in diverse populations explored here.  

Differences in linkage disequilibrium could also have adversely affected our ability to generalize 

associations originally identified in European-descent populations.  In this study, we only tested the index 

variants reported in the literature.  The index variants are often not the causal or functional variant; rather, 

the index variant is in linkage disequilibrium (LD) or “tags” the unknown functional variant. Failure to 

genotype or target the functional or causal variant can potentially reduce power to detect the association if 

the genotyped variant is not in perfect LD with the true functional or causal variant.   

GWAS or fine-mapping data are not available for this study; therefore, LD patterns cannot be directly 

compared across the study populations described here. However, examination of linkage disequilibrium 

(LD) patterns in HapMap III for Europeans (CEU), African Americans (ASW), Mexican Americans 

(MEX), and Han Chinese (CHB) suggests that LD differs in AMD-associated genomic regions across 

populations as expected.(Gabriel et al., 2002; Jakobsson et al., 2008)  For example, in the region of ARMS2 

(rs10490924), Haploview(Barrett et al., 2005) plots of Europeans (CEU) (Figure 7) show rs10490924 in 

perfect LD (r2=1) or near perfect LD (r2>0.90) with four intronic SNPs (rs3750848, rs3750847, rs2284665, 

rs932275) in an approximately 17 kb region. These SNPs are also in perfect/near perfect LD with 

rs10490924 in HapMap Mexicans (MEX) (Figure 9). However in HapMap African ancestry in Southwest 

United States (ASW) (Figure 8), neither rs2284665 nor rs932275 are in perfect LD although they are still 

correlated to rs10490924 (r2=0.47 and r2=0.70, respectively). In HapMap Han Chinese in Beijing (CHB) 

(Figure 10), rs10490924 is again in perfect LD with rs3750848 and rs3750847 and high LD with rs2284665 

and rs932275 (r2=0.86 and r2=0.63, respectively). Many other variants upstream of rs10490924 are in 

moderate LD (r2 >0.25) in CEU and MEX. There is less evidence of LD present in ASW and CHB. 

Generalization of rs10490924 in Mexican Americans (Table 4) but not in African Americans in our study 
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coupled with LD patterns suggest that rs10490924 may not be a major factor behind AMD susceptibility in 

African Americans.   

 

 

 

 

 

 

Figure 7: Haploview (v. 4.2) LD plot of Chromosome 10q26 in HapMap III CEU population.  

Plot generated for an approximately 80kb window around rs10490924 (positions 124150 through 124230). 

Displayed are SNP rs numbers listed 5` to 3`. Tiled blocks represent pairwise tests of LD. The linkage score 

measured by the correlation coefficient (r2) of each pairwise comparison is displayed in the block with white 

blocks representing r2 = 0, shades of gray representing 0 <r2 < 1, and black representing r2 = 1. The arrow 

denotes the location of rs10490924. 
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Figure 8: Haploview (v. 4.2) LD plot of Chromosome 10q26 in HapMap III ASW population.  

Plot generated for an approximately 80kb window around rs10490924 (positions 124150 through 

124230). Displayed are SNP rs numbers listed 5` to 3`. Tiled blocks represent pairwise tests of LD. 

The linkage score measured by the correlation coefficient (r2) of each pairwise comparison is 

displayed in the block with white blocks representing r2 = 0, shades of gray representing 0 <r2 < 1, 

and black representing r2 = 1. The arrow denotes the location of rs10490924. 
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Figure 9: Haploview (v. 4.2) LD plot of Chromosome 10q26 in HapMap III MEX population.  

Plot generated for an approximately 80kb window around rs10490924 (positions 124150 through 124230). 

Displayed are SNP rs numbers listed 5` to 3`. Tiled blocks represent pairwise tests of LD. The linkage score 

measured by the correlation coefficient (r2) of each pairwise comparison is displayed in the block with 

white blocks representing r2 = 0, shades of gray representing 0 <r2 < 1, and black representing r2 = 1. The 

arrow denotes the location of rs10490924. 
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Power in this study could have also been affected by differences in allele frequencies between populations.  

In a comprehensive review of estimates of CFH Y402H frequency, four studies of CFH Y402H in African-

descent populations were identified.(Grassi et al., 2006; Volcik et al., 2008; Ziskind et al., 2008) The allele 

frequency estimates from these four studies range from 0.34 to 0.43, in line with our estimate of 0.38. It is 

intriguing that despite a high frequency of the risk allele similar to European-descent populations, the 

prevalence of AMD in African and African-descent populations is much lower.(Klein et al., 2008) This 

suggests that other genetic and/or environmental factors are at play. Of the four race-ethnicities represented, 

Mexican-Americans and Asians had the lowest frequency of Y402H (0.20 and 0.04, respectively). The 

 

Figure 10: Haploview (v. 4.2) LD plot of Chromosome 10q26 in HapMap III CHB population.  

Plot generated for an approximately 80kb window around rs10490924 (positions 124150 through 124230). 

Displayed are SNP rs numbers listed 5` to 3`. Tiled blocks represent pairwise tests of LD. The linkage score 

measured by the correlation coefficient (r2) of each pairwise comparison is displayed in the block with white 

blocks representing r2 = 0, shades of gray representing 0 <r2 < 1, and black representing r2 = 1. The arrow 

denotes the location of rs10490924. 
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lower frequency of this variant may account for at least some of the difference in prevalence of AMD in 

Hispanics compared with European-descent populations.(Klein et al., 2008)  

CETP variant rs3764261, which has been associated with HDL levels and AMD in European-descent 

populations, was replicated in our European American analyses (uncorrected p<0.05).(Chen et al., 2010; 

Sabatti et al., 2009; Willer et al., 2008b; Yu et al., 2011) The allele frequency for this SNP was 0.33 in our 

European Americans, similar to the 0.32 and 0.31 in the African Americans and Mexican Americans, 

respectively. A study by Chen et al found that rs3764261 trended toward significance in a Japanese 

population with a frequency of 0.2225.  In the present study the Singaporean population had a similar 

frequency of 0.17 but was not associated with AMD.  As with CFH Y402H, the frequency of the rs3764261 

allele is similar across diverse populations but does not appear to contribute to AMD risk in all populations 

suggesting that this variant may only be “tagging” the casual variant.  

AMD risk and lipid trait-associated variants 

Lipid levels and lipid metabolism have been associated with susceptibility and progression of AMD in 

various populations.(Gemmy Cheung et al., 2012; van Leeuwen et al., 2004; Tomany et al., 2004)  The 

cholesteryl ester transfer protein (CETP) is a plasma glycoprotein involved in the transport and removal of 

lipoproteins from blood circulation and as a component of the reverse cholesterol transport pathway.  

Variants in CETP have been found to cause an increase or decrease in blood lipid levels with  corresponding 

high or low blood levels of CETP.(Chang et al., 2011; Ridker et al., 2009) This gene has been identified in 

various studies as a modifier of AMD susceptibility.(Chen et al., 2010; Yu et al., 2011) Our study found 

nominally significant associations with CETP variants, rs1800775 and rs3764261, in European Americans 

and African Americans. These CETP variants, along with other lipid-related genes in our study, were found 

to be nominally significant [rs328 (LPL) and rs6987702 (TRIB1)] in African Americans; and rs2338104 

(KCTD10/MVK) in Mexican Americans. We observed more of these lipid-related associations in diverse 

populations than the European American population supporting the role of lipids in disease susceptibility 
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across diverse populations. Still, more studies are needed to elucidate the role they play in risk of AMD due 

to limited sample size. 

 

Overall limitations and strengths 

The major limitation for the PAGE study of age-related macular degeneration was small sample size. As 

expected, the European-descent samples (~6,500) constitute the largest population. Sample sizes for 

African Americans, Mexican Americans, and Asians were smaller, which adversely impacted power to 

detect associations.  Sample size was further impacted by the fact that not all SNPs were genotyped or 

available in all study populations.  Also, as already emphasized, only the index variant was genotyped in 

PAGE.  The lack of GWAS-level or fine-mapping data abolished our ability to examine differences in LD 

in these study populations. 

Despite the small sample sizes, a major strength of the present study is the diversity of populations included. 

Several large-scale studies have examined the genetic risk variants associated with AMD in European-

descent,(Cipriani et al., 2012; Fritsche et al., 2013; Holliday et al., 2013; Naj et al., 2013; Yang et al., 2006; 

Yu et al., 2011) Japanese,(Arakawa et al., 2011; Chen et al., 2010; Goto et al., 2009; Tanaka et al., 2011) 

and Chinese populations.(Liu et al., 2013a; Ng et al., 2008; Tian et al., 2012; Wu et al., 2013) Indeed, some 

of these previous GWAS for AMD have included many of the same European American and Singaporeans 

examined here.  In contrast, only a handful of limited genotyping studies have examined various Hispanic 

and African American groups in association  with AMD and complement factor genes, APOE, and 

ARMS2/HTRA1.(Klein et al., 2008; Nonyane et al., 2010; Spencer et al., 2012a; Tedeschi-Blok et al., 2007; 

Tikellis et al., 2007) Compared to previous publications, this study contributes new data beyond CFH and 

ARMS2/HTRA1in African Americans and Mexican Americans. These new data, coupled with the 

cumulative data collected in European American and Asian populations, highlight shared as well as unique 

associations for AMD across diverse populations.  
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Association of mitochondrial variants and haplogroups in diverse populations 

In European Americans over the age of 80, nearly 1 out of 10 is likely to be diagnosed with some form of 

AMD.(Friedman et al., 2004b) Major genetic risk loci include CFH,(Edwards et al., 2005; Haines et al., 

2005; Klein et al., 2005) ARMS2,(Jakobsdottir et al., 2005; Rivera et al., 2005) and C2/C3(Gold et al., 2006) 

which account for most of the known heritable risk of AMD. In all, 20 risk loci have been associated with 

risk of AMD accounting for upwards of 60% of the heritable risk.(Fritsche et al., 2014) Nearly all of these 

loci are located within the nuclear genome as there have been few studies investigating the potential role 

that mitochondrial genetic variation plays in the development of AMD.  

------------------------- 

(Restrepo et al., 2015)Adapted from: Restrepo, NA, Mitchell SL, Goodloe RJ, Murdock DG, Haines JL, 

Crawford DC.. Mitochondrial variation and the risk of age-related macular degeneration across diverse 

populations. Pacific Symposium Biocomputing. Pac. 20, 243–254 (2015). 

 

In vitro studies have found that mitochondrial DNA (mtDNA) variants can affect the replication rate of the 

mitochondrial genome and thus mtDNA copy number.(Kenney et al., 2014) Mitochondria are both 

particularly sensitive to and a major contributor of cellular reactive oxygen species (ROS), which are a 

byproduct of oxidative phosphorylation. These free radicals play a large role in chronic inflammation, the 

complement system pathways, and cardiovascular disease.(Cristina Kenney et al., 2014) Exposure to 

excessive oxidative stress can lead to mitochondrial dysfunction in the RPE layer,(Cano et al., 2014; Liang 

and Godley, 2003) a decrease in cellular bioenergetics imperative to photoreceptor 

initiation/maintenance,(Kenney et al., 2013, 2014; Sheu et al., 2013a) and susceptibility to apoptosis. 

Additionally, mitochondrial genetic variation has been associated with AMD risk in European Americans. 

MtDNA variants on mitochondrial haplogroup H, the most common European haplogroup, have been 

associated with decreased risk of AMD,(Jones et al., 2007; SanGiovanni et al., 2009; Udar et al., 2009) 



50 

while mitochondrial haplogroups J(Mueller et al., 2012) and T(Canter et al., 2008) are associated with 

increased risk. Collectively, these data suggest that the health of ocular mitochondria may play a role in 

AMD pathology.    

Determining the role that mitochondrial genetic variation plays in AMD risk across populations may 

provide new insights into the underlying disease pathology. This study explores the contribution of 

mitochondrial genetic variation to AMD risk in European Americans, African Americans, and Mexican 

Americans. 

Methods 

Study populations 

We accessed study participant data from NHANES III and NHANES 2007-2008 with the exclusion of 

NHANES 1999-2002 which did not collect ophthalmologic data. NHANES III, of which 3,131 participants 

had available fundus photographs and laboratory measurements of serum cotinine (ng/mL), oversampled 

non-Hispanic blacks and Mexican-Americans. NHANES 2007-2008 oversampled Mexican Americans and 

other-Hispanic blacks and had a total of 3,172 participants who completed the fundus exam. Current 

smokers were defined as those responding “yes” to the question “do you smoke cigarettes now?” or those 

with serum cotinine levels > 15ng/ml.  

SNP selection and genotyping 

The method of collection for NHANES III and Genetic NHANES has been previously described.138,139 

We targeted a total of 63 mitochondrial SNPs for genotyping using Sequenom iPLEX® Gold MassArray 

as previously described.(Mitchell et al., 2014a) 

Phenotyping 

Participants over the age of 40 were selected to have a non-stereoscopic, 45° color fundus photograph taken 

of one randomly selected eye in NHANES III and a 45° non-mydriatic digital photo taken of both eyes in 

NHANES 2007-2008. Fundus photographs were graded according to a modified version of the Wisconsin 
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Age-related Maculopathy Scale.(Klein et al., 1991) AMD cases and controls were at least 60 years of age 

with gradable retinal photographs. Controls were not excluded if they presented with another retinal disease. 

Statistical methods 

We tested for an association between each individual mtSNP and mitochondrial haplogroups J, T, and U 

with AMD. Given that AMD largely occurs on a disease spectrum, data for early and late AMD were pooled 

for analyses to increase power to detect an association.  Each mitochondrial variant was tested for an 

association with AMD using logistic regression assuming a dominant genetic model stratified by self-

described race/ethnicity (e.g. non-Hispanic white, non-Hispanic black, and Mexican American). Of the 

SNPs that passed quality control (QC) standards (call rate >95%), a total of 55 SNPs were included in 

analyses for NHANES III, and 60 SNPs were analyzed in NHANES 2007-2008. A total of 50 SNPs were 

available for meta-analysis. Haplogroups were assigned to each NHANES participant as previously 

described.(Mitchell et al., 2014a)   Haplogroup analyses were conducted in the same manner as the 

individual mtSNPs but with participants identified as having either haplogroup J, T, and U each being 

compared to participants in all other haplogroups. All models were adjusted for age, sex, BMI, and smoking 

status (current versus ever/never). Analyses were conducted using SAS v9.2 via the Analytic Data Research 

by Email (ANDRE) portal of the CDC Research Data Center in Hyattsville, MD. All p-values presented 

are uncorrected for multiple testing.   

Ethics statement 

All procedures were approved by the CDC Ethics Review Board and written informed consent was obtained 

from all participants. Because no identifying information is available to the investigators, Vanderbilt 

University’s Institutional Review Board determined that this study met the criteria of “non-human 

subjects.”  
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Results 

Population characteristics 

The study population consisted of a total of 416 AMD cases (312 non-Hispanic whites, 37 non-Hispanic 

blacks, and 67 Mexican Americans) and 2,200 controls (1,349 non-Hispanic whites, 430 non-Hispanic 

blacks, and 421 Mexican Americans) 60 years or older at the time of examination (Table 5). In the combined 

NHANES III/2007-2008 dataset, cases were generally female, except in Mexican Americans (49% female), 

and overweight defined as BMI >25 kg/m2. Non-Hispanic black cases were nearly twice as likely to be 

smokers (62% smokers) compared to non-Hispanic white (29% smokers) and Mexican American (36%) 

cases. On average, controls were younger compared to cases across all race/ethnicities and were nearly as 

likely to be smokers compared to cases with the exception of non-Hispanic black cases (62% smokers) 

versus controls (50% smokers). 

 

 

 

 

Mitochondrial SNP associations with age-related macular degeneration 

A total of 50 mitochondrial SNPs passed QC and were tested across the three race/ethnicities in NHANES 

III and NHANES 2007-2008.  Not all SNPs were available across each population as some SNPs were 

monomorphic in one population or did not pass QC. Of these 50 SNPs, 41 were available for analysis in 

non-Hispanic whites, 44 in non-Hispanic blacks, and 42 Mexican Americans (Figure 11).  

In Mexican Americans, five mtSNPs were associated with AMD at p < 0.05 (Table 6). Of these, three are 

located in the mitochondrial control region, the non-coding region responsible for the initiation of 

transcription of the MT-genome:  mt16111 (p = 0.005; OR = 2.90; 95% CI 1.38 – 6.11), mt16362 (p = 

Table 5: Combined NHANES III and 2007-2008 study population demographics 

listed by case/control status and race/ethnicity 

 non-Hispanic whites non-Hispanic blacks Mexican Americans 

 Case Control Case Control Case Control 

N 312 1349 37 430 67 421 

Age (years) 76.0 71.0 69.2 67.8 69.0 67.1 

% Female 60 51 57 49 49 48 

% Smoker 29 30 62 50 36 31 

BMI (kg/m2) 27.2 27.8 31.1 29.0 29.2 28.9 

Means are presented unless otherwise noted. 
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0.007; OR = 2.80; 95% CI 1.32 – 5.95), and mt16319 (p = 0.01; OR = 2.59; 95% CI 1.24 – 5.42). A 

synonymous variant, mt12007, located within the NADH dehydrogenase subunit 4 (MT-ND4) gene, was 

also found to increase risk of AMD in Mexican Americans (p = 0.018; OR = 2.47; CI 1.18 – 5.18). Lastly, 

mt1736 located in the mitochondrial 16S ribosomal RNA (MT-RNR2) gene, was found to be protective (p 

= 0.01; OR = 0.40; CI 0.19 – 0.83) in this population.  

In non-Hispanic blacks and non-Hispanic whites, no test of association was significant at p < 0.05 in the 

adjusted model following inclusion of individual study results into the meta-analysis.   

Table 6: Mitochondrial genetic variants associated with AMD risk in Mexican Americans     

SNPID Gene OR lower CI upper CI p-value CA 

CAF 

(%) Race/Ethnicity 

mt16111 control region 2.90 1.38 6.11 0.005 A 0.31 Mexican American 

  — — — 0.98 A 0.01 non-Hispanic white 

  — — — 0.98 A 0.02 non-Hispanic black 

         

mt16362 control region 2.80 1.32 5.95 0.01 C 0.42 Mexican American 

  1.70 0.93 3.10 0.08 C 0.08 non-Hispanic white 

  2.29 0.84 6.27 0.10 C 0.13 non-Hispanic black 

         

mt16319 control region 2.59 1.24 5.42 0.01 A 0.34 Mexican American 

  0.42 0.05 3.52 0.43 A 0.01 non-Hispanic white 

  3.23 0.33 31.60 0.31 A 0.02 non-Hispanic black 

         

mt1736 MT-RNR2 0.40 0.19 0.83 0.01 A 0.65 Mexican American 

  — — — 0.98 A 0.99 non-Hispanic white 

  — — — 0.99 A — non-Hispanic black 

         

mt12007 MT-ND4 2.47 1.18 5.18 0.01 A 0.34 Mexican American 

  1.18 0.31 4.50 0.81 A 0.02 non-Hispanic white 

  0.91 0.11 7.50 0.93 A 0.06 non-Hispanic black 

         

Most significant meta-analysis results for the model adjusted by age, sex, body mass index, and smoking status. 

Results are listed for tests with the smallest p-value 

Abbreviations: Odds Ratio (OR), confidence interval (CI), coded allele (CA), coded allele frequency (CAF) 

“—“ denotes genetic association tests with uninterpretable results due to very few case counts or monomorphic allele 
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Figure 11: Meta-analysis single SNP association results by race/ethnicity.  

Log(p) values were plotted using R. The outer blue ring represents a significance threshold of p = 0.05. 

SNPs are color coded by mitochondrial gene/regions as denoted in the legend. Cases/controls for the 

three populations are as follows: non-Hispanic whites (case = 312, control = 1,349), non-Hispanic blacks 

(case = 37, control = 430), and Mexican Americans (case = 67, control = 421).  
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Mitochondrial haplogroup analysis 

Previous studies have suggested that mitochondrial haplogroups J, T, and U are associated with 

AMD.(Canter et al., 2008; Jones et al., 2007; Mueller et al., 2012; SanGiovanni et al., 2009; Udar et al., 

2009) In NHANES III, none of the three haplogroups was associated with AMD at p < 0.05 although 

haplogroup J was associated in non-Hispanic whites at p = 0.057 (OR = 2.03; 95% CI 0.98 – 4.20). In 

NHANES 2007-2008, only haplogroup T was significantly associated at p < 0.05 in non-Hispanic whites 

(OR = 2.50; 95% CI 1.17 – 5.33). No haplogroup was found to be associated with AMD at p < 0.05 in any 

of the racial/ethnic groups in the NHANES III/2007-2008 meta-analysis.   

 

Table 7: Haplogroup frequencies in the combined NHANES study populations 

NHANES III, NHANES 1999-2002, and NHANES 2007-2008 as previously published(Mitchell et al., 

2014a) 

Haplogroup non-Hispanic whites non-Hispanic blacks Mexican Americans 

J 9.2 % 0.4% 1.4% 

T 9.6% 0.4% 0.9% 

U 13.6% 1.4% 1.6% 

 

Discussion 

In this study, haplogroup analyses did not replicate previous associations of the European haplogroups J, 

T, and U with risk of AMD in non-Hispanic whites.(Canter et al., 2008; Mueller et al., 2012; Udar et al., 

2009) Other studies have not always replicated these associations,(Jones et al., 2007; Tilleul et al., 2013) 

which may be due in part to heterogeneity across these studies or else suggesting a weak role of 

mitochondrial variation in the risk of AMD. However, we did observe that individual variants on the T 

haplogroup in the NHANES 2007-2008 non-Hispanic whites were associated with AMD risk in this 

population. Unsurprisingly, neither individual variants nor haplogroups that were previously associated 

with AMD in European-descent populations generalized to non-Hispanic blacks.  African-descent 

populations suffer from a lesser burden of AMD, and previous studies have suggested that African-descent 

populations may have a different genetic architecture contributing to AMD etiology(Friedman et al., 1999; 

Klein et al., 2007b; Sadigh et al., 2014; Spencer et al., 2012b) compared with other populations. We 
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observed that mitochondrial variants mt16111, mt16362, mt16319, mt1736, and mt12007 were associated 

with AMD risk within the meta-analyzed Mexican American population after adjusting for well-known 

non-modifiable factors and environmental modifiers. The direction of the genetic effect was the same across 

the individual NHANES analyses for these SNPs in the Mexican American populations as follows: 

mt16111 OR = 2.90 and 2.33; mt16362 OR = 2.49 and 3.35; mt16319 OR = 2.17 and 3.72; mt1736 OR = 

0.55 and 0.22; mt12007 OR = 1.83 and 4.26 in NHANES III and NHANES 2007-2008 respectively.  

Limited studies have been performed to assess the genetic factors of AMD in Mexican or Latino 

populations. A handful of studies have examined whether CFH, ARMS2, and C2/C3, strong risk loci in 

European populations, contribute to risk of AMD in Mexican-descent populations.(Buentello-Volante et 

al., 2012; Contreras et al., 2014; Spencer et al., 2012b) These studies, although limited in case size, did find 

a correlation between these European-derived variants and risk of advanced AMD in Mexicans and Latinos, 

suggesting that risk of AMD is being driven in part by European risk variants in these admixed populations.  

All five of the mtSNPs associated with AMD in Mexican Americans in this study are located on the A-A2 

haplogroup background. Haplogroup A developed in Asia over 30,000 years ago and occurs most 

frequently in the Indigenous peoples of the Americas, with its subgroup A2 found to be the most common 

haplogroup in many of the indigenous ethnic groups of Central and North America.(Fagundes et al., 2008) 

In the combined NHANES III, 1999-2002, and 2007-2008 populations, haplogroup A is the most prevalent 

among Mexican Americans(Mitchell et al., 2014a) with a frequency of 34.2% while composing less than 

1% in non-Hispanic whites and non-Hispanic blacks. This observation is interesting given that Mexican 

Americans, who experience similar rates of AMD as that observed in European-descent groups (5.1% vs 

7.3%),(Klein et al., 2011) may contain a set of genetic risk factors on this haplogroup that are driving AMD 

risk in addition to or in combination with the already known European-derived variants.   

Three of the significant mtSNPs (mt1611, mt16362, and mt16319) are located within the control region of 

the mitochondrial genome containing the origin of replication and the origin of transcription. These SNPs 

have not previously been associated with AMD but have been identified as contributors to various forms 
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of cancer.  A high load of somatic mtSNPs in the mitochondrial control region (i.e. mt16111) was found in 

patients suffering from prostate cancer.(Chen et al., 2002) In a study examining the effect of mtSNPs 

located more specifically within the D-loop of the control region on risk for renal cell carcinoma, mt16319 

was specifically found to be reduced in cases of clear cell renal cell carcinoma.(Zhang et al., 2013)  Lastly, 

mt16362 was found to be a risk factor associated with familial breast cancer.(Cheng et al., 2014) 

Strengths of this study include the systematic fashion in which all participants over the age of 40 years were 

included in ophthalmologic exams to ascertain eye health and AMD status. This ensures a strong degree of 

homogeneity in case and control status across the various NHANES cohorts and minimizes between study 

heterogeneity. Over sampling of minority groups also likely increased the number of cases available for 

study in these underrepresented groups. Limitations include differences in data collection between 

NHANES III and NHANES 2007-2008, as NHANES III only performed fundus photography on one 

randomly selected eye whereas NHANES 2007-2008 performed fundus photography on both eyes. Other 

limitations include low statistical power and lack of correction for multiple hypothesis testing. When 

considering a significance threshold for mitochondrial variation analyses it should be noted that 

independence of each test is questionable as all variation is inherited as a whole.  Statistical power was a 

limitation for generalizing previously reported variants to the NHANES African Americans and Mexican 

Americans. A number of variants in the T1 and T2 haplogroups were identified by SanGiovanni et al in a 

Caucasian population as being associated with advanced AMD(SanGiovanni et al., 2009) with strong ORs 

ranging from 3.0 – 10. Our study did not genotype the exact variants reported in this study, but a number 

of variants were genotyped nearby. Variants such as mt11812 had an allele frequency of ~23% and an OR 

of 10 in the SanGiovanni study. In our study, if we assume a MAF of 25%, case:control of 1:3, a dominant 

genetic mode of inheritance, and a two-sided t-test then we had 80% power to detect an association with an 

OR = 1.50 in NHANES European Americans, OR = 3.0 in African Americans, and an OR = 2.30 in Mexican 

Americans. We likely did not find similar associations for a number of reasons, one of the least of which is 

differences between inclusion criteria of cases between our study and SanGiovanni study. Our study 
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included both early and late/advanced AMD cases. Late AMD cases make up only a fraction of total AMD 

cases (i.e., ~8-12%). Also, the frequency of the T-haplogroup in NHANES African Americans and Mexican 

Americans is a scarce 0.4% and 0.9%, respectively. Lastly, we relied on self-reported race/ethnicity as 

opposed to genetic ancestry of the mitochondrial genome which may lead to false positive associations that 

are in actuality identifying differences in haplogroup ancestry. Future studies are needed to validate the 

results of the present study. 

Despite limited sample sizes available for AMD analyses, NHANES is one of only a few surveys to include 

ophthalmologic exams of minority populations. As large scale epidemiology surveys become more cost 

prohibitive, a stronger emphasis on the utilization of electronic medical records (EMR) to identify cases 

and controls for inclusion in future studies will become more pronounced. Given that many of these EMR 

systems are still predominately composed of European-descent patients, a concerted effort must be made 

to increase the number of minorities with access to routine, continuous health care. 
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Gene x Environmental interaction effects on risk of age-related macular degeneration in 

diverse populations 

Environmental factors such as smoking and BMI are well known to influence AMD risk. While these 

environmental factors may increase the odds of developing AMD, other environmental factors such as 

vitamin supplementation may indeed protect against disease onset, slow progression, or limit severity of 

AMD. Previous studies from the NIH-sponsored Age-Related Eye Disease Study (AREDS) group have 

suggested that vitamin supplementation could provide a potential treatment option for AMD. AREDS 

enrolled participants from 1992-1998 for a prospective study of AMD and cataracts(Age-Related Eye 

Disease Study Research Group, 1999) which included a double-masked clinical control study of high dose 

supplementation with varying formulations of vitamin C, vitamin E, beta-carotene, and zinc(Age-Related 

Eye Disease Study Research Group, 2001).  A collaboration with Bausch and Lomb Pharmaceuticals later 

paved the way for additional clinical trials to begin to rigorously test the hypothesis that antioxidants could 

treat AMD. Eventually, AREDS would develop their patented formula consisting of zinc, Vitamin E, 

Lutein, Zeaxanthin, and copper which was found to slow progression of AMD in patients with intermediate 

disease severity. AREDS intermediate AMD was defined as the presence of several medium-sized drusen 

or one or more large druse. AREDS trials along with other studies have set a strong precedent that 

antioxidants play a strong role in retinal health(Age-Related Eye Disease Study Research Group et al., 

2007; Chong et al., 2007; Tan et al., 2008; 2000a).   

As previously established in this chapter, specific genetic variants contribute to susceptibility to AMD; 

however, neither the collective known genetic factors nor the collective known environmental factors 

explain all of the risk for AMD(Buitendijk et al., 2013; Fritsche et al., 2014).  Indeed, this observation is a 

common one for complex diseases where multiple common genetic variants have been identified and 

replicated by GWAS and subsequent studies but collectively the variants do not account for the majority of 

the genetic component estimated in heritability studies(Manolio et al., 2009).  It has been postulated that 

the “missing heritability(Maher, 2008)” can be found, in part, within gene-environment interactions not 

tested in GWAS(Eichler et al., 2010).  
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Gene-environment studies in AMD have been mostly limited to candidate gene studies.  Previous studies 

have described an interaction effect between smoking and a rare haplotype variant in CFH(Biswas et al., 

2014).  Other studies have identified potential interactions between smoking and the APOE E2 

allele(Eichler et al., 2010), variants in ARMS2(Schmidt et al., 2006), and variants in NOS2A(Ayala-Haedo 

et al., 2010).  However, these potential interactions have either failed to replicate(Conley et al., 2006; 

DeAngelis et al., 2007; Hughes et al., 2007) or have yet to be replicated in subsequent studies.    

Beyond smoking, very few studies have tested the potential modifying effects of other environmental risk 

factors.  In the following study, the hypothesis that carotenoids, organic plant-based pigments, interact with 

strong AMD risk variants to further influence risk of disease was tested. Additionally, BMI which has been 

inconsistently associated with AMD(Chakravarthy et al., 2010; Goldberg et al., 1988; Tan et al., 2007b) 

was tested as a surrogate for visceral fat. Increasing evidence suggests that the pro-inflammatory effects of 

visceral fat may play a role in AMD pathogenesis(Haas et al., 2015; Howard et al., 2014).   Gene x 

environment interaction analyses were conducted for three of the preeminent AMD risk variants (i.e. 

rs10490924 ARMS2, rs1061170 CFH, and rs547154 C2) in combination with serum carotenoid levels and 

BMI across the NHANES III populations.   

Methods 

Study populations and SNP selection and genotyping 

We accessed study participant data from NHANES III which was described in greater detail in the previous 

methods section for the Association of mitochondrial variants and haplogroups in diverse populations. 

Details of the genotyping are also available in the previous section. 

Collection of quantitative traits 

Blood samples were obtained for all NHANES III participants over the age of one year at the mobile 

examination center. Carotenoids (e.g. lutein/zeaxanthin, alpha carotene, beta carotene) and vitamin A were 

analyzed via isocratic high performance liquid chromatography (HPLC) at three different wavelengths 
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within designated sites(Gunter et al., 1996). Test detection limits are as follows: lutein (0.43 µg/dL); 

vitamin A (0.5 µg/dL); alpha carotene (0 µg/dL); beta carotene (0.67 µg/dL). Testing sites set the following 

reference ranges as normal serum concentration levels of the following: lutein/zeaxanthin (5-65 µg/dL); 

vitamin A (25-115 µg/dL); alpha carotene (1-15 µg/dL); beta carotene (2-80 µg/dL).  

Statistical methods 

We tested for an association with AMD and each quantitative trait using linear regression adjusting for age, 

sex, BMI, and smoking status (Supplementary Table 5). Each genetic variant was tested for association 

with AMD using logistic regression assuming an additive genetic model adjusting for age, sex, BMI, and 

smoking status. Quantitative traits without a normal distribution were log transformed (i.e., vitamin A and 

alpha carotene).  Exhaustive pairwise SNP x quantitative trait interactions were modeled using an 

interaction term (SNPxtrait). Gene–environment interactions were modeled using a multiplicative 

interaction term between the environmental variable and the additively encoded SNP. All models were 

adjusted for the main effect of the SNP and the environmental variable, along with age, sex, BMI, and 

smoking status. 

Results 

Population characteristics 

The study population consisted of a total of 190 non-Hispanic Whites (NHW), 30 non-Hispanic Blacks 

(NHB), and 47 Mexican American (MA) AMD cases from the NHANES III (Table 8). As expected, cases 

were older than controls in all three populations.  However, NHB and MA cases were on average younger 

than NHW cases (70.2 and 69.3 years vs 76.4 years). NHB cases were more likely to be obese (BMI > 30 

kg/m2) and smokers compared to NHW and MA cases. Serum concentration of carotenoids for all 

populations, regardless of case status, were within normal limits as described below. 
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Overall, CFH rs1061170 (C) occurred less frequently in Mexican American controls (0.19) compared with 

non-Hispanic whites (0.34) and non-Hispanic blacks (0.37). Conversely, the total ARMS2 rs10490924 (T) 

frequency was similar across the three groups (not shown):  0.22 (non-Hispanic white), 0.24 (non-Hispanic 

black), and 0.26 (Mexican American). C2 was more frequent in non-Hispanic blacks 0.21 compared with 

non-Hispanic whites 0.11 and Mexican Americans 0.11.  

Table 8: EAGLE AMD study population demographics and mean values for NHANES III 

 Non-Hispanic White Non-Hispanic Black Mexican American 

 case control case control case  control 

N 190 664 30 209 47 270 

% females 66.8 54.5 60.0 47.4 44.7 44.1 

Age  76.4 71.2 70.2 68.5 69.3 67.2 

BMI (kg/m2) 26.8 27.1 31.0 28.2 28.6 28.4 

% Current Smokers 46.3 53.5 70.0 65.1 53.2 55.9 

Serum vitamin A (ug/dL ) 65.4 63.9 59.9 61.8 54.3 56.3 

Serum lutein/zeaxanthin 

(ug/dL ) 23.2 23.4 28.6 30.4 25.3 25.6 

Serum alpha carotene 

(ug/dL) 6.8 5.7 4.2 4.5 4.9 4.7 

Serum beta carotene  32.2 26.3 30.5 28.9 19.8 18.2 

(ug/dL)       

Table 9: Allele frequencies of AMD SNPs in NHANES III, stratified by race/ethnicity and AMD case/control 

status. 

  

  Non-Hispanic 

White 

Non-Hispanic 

Black 

Mexican 

American 

SNP Gene CAF case control case Control case Control 

rs10490924 ARMS2 T 0.30 0.19 0.13 0.26 0.35 0.25 

rs1061170 CFH C 0.41 0.34 0.48 0.37 - 0.19 

rs547154 C2 T 0.03 0.11 - 0.20 0.11 - 

“-“denotes cells in which the number of individuals included would be less than five. These numbers 

were excluded to prevent potential re-identification of individuals. 
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Replication and Generalization of AMD variants 

 As previously reported in the PAGE meta-analysis, CFH rs1061170 (OR =1.32; p=0.02) and ARMS2 

rs10490924 (OR = 1.88; p=0.0001) were associated with AMD in non-Hispanic whites. As previously 

reported by Spencer et al(Spencer et al., 2012b), ARMS2 rs10490924 was also associated with AMD in 

Mexican Americans (OR =1.64; p=0.03) and non-Hispanic blacks (OR = 0.43; p=0.04) at p < 0.05 but for 

non-Hispanic blacks the association is in the opposite direction. It should also be noted that the (T) allele is 

also noticeably less frequent in non-Hispanic black cases (0.13) vs. non-Hispanic white cases (0.30) and 

Mexican American cases (0.35). We found no association between C2 rs547154 and risk of AMD in any 

of the populations.  

 

 

 

 

 

 

Table 10: Replication and generalization results of AMD variants across racial/ethnic populations in 

NHANES III 

SNP 

 

Gene 

Coded 

Allele Ethnicity OR CI p-value 

rs10490924 ARMS2 T Non-Hispanic White 1.88 1.42-2.50 0.0001 

   Non-Hispanic Black 0.43 0.19-0.97 0.04 

   Mexican American 1.64 1.03-2.60 0.03 

       

rs1061170 CFH C Non-Hispanic White 1.32 1.03-1.69 0.02 

   Non-Hispanic Black 1.61 0.89-2.88 0.11 

   Mexican American 1.26 0.72-2.21 0.42 

       

rs547154 C2 T Non-Hispanic White 0.82 0.54-1.23 0.34 

   Non-Hispanic Black 1.17 0.62-2.24 0.60 

   Mexican American 1.07 0.52-2.20 0.85 
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Gene x Environment associations with age-related macular degeneration 

 We found that AMD risk was modified by an interaction between C2 rs547154 and BMI (betainteraction = 

0.85; p = 0.0004) in non-Hispanic whites. Results suggest that vitamin A modifies CFH in Mexican 

Americans (betainteraction = 9.48; p = 0.02) and ARMS2 in non-Hispanic blacks (betainteraction = 11.35; p = 

0.04). Carotenoids (i.e., alpha-carotene, beta-carotene, and lutein/zeaxanthin) did not appear to modify the 

effect of AMD SNPS in any population. Lastly, we did not find a significant interaction (p < 0.05) that 

generalized across all three populations.  

 

Discussion 

We set out to determine whether carotenoids, vitamin A, or BMI modify the effect of major AMD index 

SNPs across diverse populations. In the interaction model adjusted for age, sex, BMI, and smoking status, 

BMI modified C2 rs547154 to reduce the risk of AMD in non-Hispanic whites. In addition, we find a 

significant interaction effect between serum Vitamin A levels in conjunction with CFH and ARMS2 variants 

for AMD risk in Mexican Americans and non-Hispanic Blacks, respectively. We did not identify an 

interaction between lutein/zeaxanthin or alpha- and beta- carotene with AMD index SNPs in any of the 

three NHANES III populations.  

Lack of evidence for modification by antioxidant exposures is corroborated by the larger AREDS study. In 

the 2nd AREDS trial addition of lutein/zeaxanthin did not appreciably alter reduction in the risk of advanced 

Table 11. Environmental modifiers of AMD-associated genetic variants in NHANES III populations 

 with p < 0.05. Model adjusted for the main effect of the SNP, the environmental variable, and covariates: 

age, sex, BMI, and smoking status.  

SNP Gene 

Coded 

Allele Ethnicity Interaction OR SE p - value 

rs547154 C2 T Non-Hispanic White SNP x BMI 0.85 0.04 0.0004 

rs1061170 CFH C Mexican American SNP x VAP 9.48 0.96 0.02 

rs10490924 ARMS2 T Non-Hispanic Black SNP x VAP 11.35 1.19 0.04 

BMI = body mass index kg/m2 

VAP = serum Vitamin A (ug/dL) 



65 

AMD, although the trial results were suggestive that lutein/zeaxanthin could prove more beneficial than 

beta-carotene(Age-Related Eye Disease Study 2 (AREDS2) Research Group et al., 2013). Similarly, an 

AREDS study testing whether rs1061170 and rs10490924 interacted with the AREDS supplement 

(containing vitamin C, vitamin E, beta-carotene, zinc, and copper) to alter progression from intermediate 

to late AMD found no association(Chew et al., 2014). A joint Blue Mountains Eye Study and Rotterdam 

Study investigation examined dietary intake of lutein/zeaxanthin, beta carotene, and vitamin C from food 

frequency questions and AMD genetic risk as defined by the number of rs1061170 and rs10490924 alleles. 

They identified a positive interaction effect between lutein/zeaxanthin intake and genetic risk(Wang et al., 

2013). There are a number of differences between our studies which may explain lack of replication. The 

largest difference is sample size with our study containing 190 non-Hispanic white cases in comparison to 

1,327 cases in the joint study. Additionally, the manner in which each study assessed lutein/zeaxanthin (i.e., 

blood sample measurement versus food frequency questionnaires) may have contributed to differences in 

analysis outcomes.   

It is interesting to note that our study did not find a significant association for a main effect in non-Hispanic 

Whites with either the C2 SNP. Previous work has repeatedly identified rs547154 as a protective variant 

for AMD(Kaur et al., 2010; Richardson et al., 2009; Spencer et al., 2007; Thakkinstian et al., 2012) and 

polypoidal choroidal vasculopathy(Nakata et al., 2012) (PCV). The minor allele frequency of 11% in non-

Hispanic white controls is similar with the HapMap CEU estimates of 6-9%, but given our limited sample 

sizes and a minor allele frequency of 3% in non-Hispanic white cases, we were underpowered to detect the 

previously reported association. Lack of replication may also be due to differences in study design, 

population ascertainment, and heterogeneity.  

NHANES III is a cross-sectional survey that measured blood serum vitamin levels at one time point in 

contrast to other studies which collect food questionnaires. A major strength of the NHANES III design is 

that it provides a quantitative measurement of vitamin exposure as opposed to food questionnaires which 
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rely on an individual’s recollection of what they ate in the past days or months. Subsequently, a single time 

point estimate does not allow for studies to look at long-term exposure variables.     

Due to limited statistical power, we did not adjust for multiple testing which is a major limitation of this 

study. Had we taken into account the fifteen tests performed for each population (i.e. 3 SNPs x 5 traits), our 

Bonferroni threshold would be p < 0.003. Excitingly, the interaction for C2 x BMI in non-Hispanic whites 

surpasses this threshold (p = 0.0004). Replication in other datasets is necessary to determine if this is a true 

effect. The interaction observed here between vitamin A levels and CFH in Mexican Americans and ARMS2 

in non-Hispanic blacks also requires additional testing but provides an attractive opportunity to further 

assess antioxidants role in AMD pathology. 

Although underpowered, the present study suggests quantitative traits known to be associated with AMD 

risk may further modify genetic risk. Further studies are needed to determine if lack of generalization is 

due to statistical power or differences in allelic distribution across these diverse populations.  

Summary 

In summary, we have contributed to the characterization of the genetic architecture of AMD in diverse 

populations. We performed a meta-analysis of known AMD-related variants and variants in cholesterol 

pathways in the three major race-ethnicities in the United States, and Chinese and Malay individuals from 

Singapore. Additionally, we identified potential novel associations between mitochondrial variants and risk 

of AMD in the NHANES Mexican Americans. All of the associated mitochondrial variants are found on 

the A-A2 haplogroup which is common among this racial/ethnic group and varies from the haplogroups 

previously reported to influence risk in European-descent populations. Future studies in larger Mexican-

descent datasets may clarify some of these findings. Lastly in a study to assess whether antioxidants or 

body-mass-index modify the effect of prominent AMD risk variants, we identified a significant interaction 

effect of body-mass-index on the C2 SNP rs547154 in NHANES III non-Hispanic whites.  
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Although limited in scope, the work presented in this chapter has identified potential genetic factors 

influencing the risk of AMD in diverse populations. The potential exists for elucidating inter- and intra- 

population causative pathways as highlighted by the presence or lack of an association of CFH Y402H and 

ARMS2 A69S across populations.  These new findings may offer insight into the cellular mechanics 

underlying the etiology of AMD. 
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CHAPTER III 

UTILIZATION OF ELECTRONIC MEDICAL RECORD SYSTEMS FOR GENETIC 

ASSOCIATION STUDIES  

Introduction 

The use of electronic medical records (EMR) in biomedical research has gained traction in recent years, 

driven in part by the large-scale collection of biospecimens associated with EMRs. When linked to 

extensive biobanks, these large, data-dense resources can be utilized in large-scale genetic and genomic 

studies(Kohane, 2011). Compared to traditional epidemiological cohorts, which are expensive and can take 

years to decades to collect, EMRs are a relatively cost efficient alternative with years of medical information 

immediately accessible. These medical records can be interrogated for a range of phenotypes often not 

available or included in epidemiological cohorts. Also, large sample sizes can be acquired from the 

development of phenotype algorithms standardized for use across multiple institutions(Kho et al., 2012; 

Newton et al., 2013).  

Here we introduce two algorithms to extract cases and controls of primary open-angle glaucoma (POAG) 

and diabetic retinopathy (DR) from a single institution’s EMR among for genetic association studies. POAG 

is a clinical subtype of glaucoma, a heterogeneous group of eye diseases characterized by chronic 

degeneration of the optic nerve and gradual vision-loss. As the second leading cause of blindness in the 

United States(Resnikoff et al., 2004), glaucoma is a leading cause of vision disability. The most common 

form of glaucoma is POAG which disproportionately afflicts African Americans. The prevalence of POAG 

in African Americans is nearly double that observed in European-descent populations(Congdon et al., 2004; 

Friedman et al., 2004a; Stein et al., 2011b) with rates as high as 5.6% vs. 1.7%, respectively, in individuals 

over the age of 40 years(Vajaranant et al., 2012a). Likewise, DR, another driving cause of blindness and 

vision loss, occurs more predominately in African Africans with diabetes (36.7%) in comparison to 

European Americans (24.8%) (Table 1: Chapter 1). Unfortunately few studies focus on African American 

patients, which may be due in part to the perception that African Americans are less willingly to participate 
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in research and clinical trials.(Corbie-Smith et al., 1999, 2002; Freimuth et al., 2001) Though this perception 

persists, epidemiological study surveys find that African Americans are equally interested in participating 

in research trials as their European American peers(Brown and Topcu, 2003; Katz et al., 2007; Wendler et 

al., 2006).  

In general, participation rates in epidemiology studies have declined in the last 30 years. Participation rates 

in clinical trials have been harder to ascertain due to a lack of a centralized repository for participation. This 

decline may be due to many factors, a few of which include feelings of exploitation by medical institutions 

and pharmaceutical companies and the time commitment needed for a series of assessments and lengthy 

follow-up appointments(Galea and Tracy, 2007). It is also possible  that with the increase in the total 

number of clinical and research trials being carried out by government agencies, medical/academic 

institutions, and pharmaceutical companies, people are experiencing volunteer burnout(Galea and Tracy, 

2007). The use of EMRs not only limits the commitment burden of an active participant population, 

assuming permission has already been granted for research use of biomedical data, but may completely 

eliminate the onus if patient data has been de-identified. With the de-identification of personal information, 

researchers have the opportunity to quickly accrue data and pursue studies with the approval of an 

Institutional Review Board (IRB).  

Vanderbilt University Medical Center de-identified electronic medical records systems 

One such EMR resource available for research is the Vanderbilt University Medical Center (VUMC) 

Synthetic Derivative (SD). The SD is a de-identified version of Vanderbilt’s institutionally developed EMR 

system StarChart and contains inpatient and outpatient medical records collected at VUMC and affiliated 

clinics. Patient records consist of both structured (e.g., billing codes, procedure codes, laboratory values) 

and unstructured (e.g., clinical free text) data. To date, the Vanderbilt EMR contains over 2.2 million 

records with each record containing on average 6.5 years of medical history and an average of eight 

prescriptions. The SD is linked with VUMC’s DNA repository known as BioVU(Roden et al., 2008). These 

DNA samples are extracted from discarded blood samples collected from outpatient clinical laboratories. 
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The SD in conjunction with BioVU has been used recently in several genetic association studies to identify 

genetic variants associated with a range of phenotypes such as multiple sclerosis(Ritchie et al., 2010), type-

2 diabetes(Long et al., 2012), cancer(Cheng et al., 2013; Kocarnik et al., 2014), electrocardiographic 

traits(Denny et al., 2010; Jeff et al., 2013; Ritchie et al., 2013), pharmacogenomic-related 

outcomes(Delaney et al., 2012; Oetjens et al., 2014; Ramirez et al., 2012), clinical quantitative 

traits(Crosslin et al., 2012, 2013; Ding et al., 2013; Gong et al., 2013; Rasmussen-Torvik et al., 2012), and 

hypothyroidism(Denny et al., 2011). As part of the PAGE I study(Matise et al., 2011a), we as the 

Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study accessed ~15,000 DNA 

samples of non-European descent individuals in BioVU (EAGLE BioVU) to perform genetic association 

studies in diverse populations.  

A major challenge associated with use of the Vanderbilt EMR for ocular research is that the specialty eye 

clinic (the Vanderbilt Eye Institute or VEI) currently lacks an interface to digitally upload forms into the 

broader EMR. Due to this lack of interface, digital photographs are not readily available for research use in 

the SD.  Given these limitations, we sought to develop a phenotype algorithms using searchable and 

parsable elements available in the SD. With this goal in mind, we have 1) developed and implemented a 

data-mining algorithm to classify individuals as POAG and DR cases or controls; and 2) manually verified 

the case/control status of individuals to evaluate the algorithm’s performance. 

Methods 

Ethics Statement 

BioVU is an opt-out biorepository.  DNA is collected from discarded blood samples remaining after routine 

clinical testing and is linked to de-identified medical records. According to the Vanderbilt Institutional 

Review Board (IRB) and the Federal Office of Human Research Protections provisions, the Vanderbilt 

protocol is considered nonhuman subjects research (The Code of Federal Regulations, 45 CFR 46.102 (f)).  

The IRB at Vanderbilt University approved this research. 
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Population 

The EAGLE Study, as part of the PAGE I Study(Matise et al., 2011a), accesses clinical and epidemiological 

collections with racially/ethnically diverse populations. These collections are used to perform and 

generalize genetic association studies for common human diseases, including common ocular diseases such 

as POAG. As part of PAGE I, EAGLE genotyped all DNA samples in BioVU from non-European-descent 

individuals as of 2011 (EAGLE BioVU; n=15,863). All DNA samples were genotyped on the Illumina 

Metabochip by the Vanderbilt University Center for Human Genetics Research DNA Resources Core.  The 

Metabochip is a custom array designed for replication and fine mapping of genome-wide association study 

(GWAS)-identified variants for metabolic and cardiovascular traits(Voight et al., 2012).  The data described 

here will be available through the database of Genotypes and Phenotypes (dbGaP). 

Calculation of PPV, NPV, Sensitivity, Specificity, and Accuracy 

The performance of the case and control algorithms were calculated as follows: PPV was calculated as the 

ratio of true positives (TP) over TP + false positive (FP) [PPV = TP/(TP + FP)]. A TP was an individual 

who was identified by the case algorithm as a case and was then confirmed by manual review to be a true 

case. A FP in turn was an individual identified as a case that was determined not to be a case during manual 

review. NPV is the ratio of true negative (TN) (i.e. a control who was confirmed as a control) over TN and 

FN [NPV = TN/(TN + FN)]. Sensitivity was calculated as the ratio of TP over TP and false negatives (FN) 

[Sensitivity = TP/(TP + FN)]. A FN was an individual identified by the control algorithm as a control who 

then by manual review was determined not to be a control. Specificity was calculated as the ratio of the TN 

over TN and FP [Specificity = TN/(TN +FP)]. Lastly, Accuracy was calculated as the ratio of the sum of 

TP and TN over the sum of all positives and all negatives [Accuracy = (TP + TN)/(Positives (TP + FP) + 

Negatives (TN + FN))].   

Extraction and calculation of individual demographic elements 

Demographic data and laboratory measurements were extracted and calculated with an emphasis for use in 

future case/control studies. For cases, age at POAG diagnosis was determined by the date in the records for 
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the first mention of a POAG ICD-9 (365.11). For controls, age at last clinic visit (LCV) was taken as the 

date of the last CPT mentioned in the records. An individual, regardless of case/control status, was classified 

as a hypertensive if he/she met one of three criteria: 1) systolic blood pressure > 140 mm/Hg, 2) diastolic 

blood pressure > 90 mm/Hg, or 3) mention of a hypertension medication within a two year window of when 

an individual was diagnosed with POAG for cases or within a two year window of their LCV date for 

controls. Median values were calculated for the following laboratory measurements within a two year 

window of an individual’s POAG diagnosis or LCV for controls: blood pressure (systolic and diastolic), 

lipids (total cholesterol, high-density cholesterol, low-density cholesterol, and triglycerides), and body mass 

index (height and weight).   

Algorithm development for primary open-angle glaucoma 

Briefly, we developed an algorithm designed to identify POAG cases and controls from EAGLE BioVU, a 

subset of records and DNA samples from the larger Vanderbilt SD and BioVU, using a combination of 

International Classification of Diseases (ICD-9) diagnostic codes for glaucoma, Current Procedural 

Terminology (CPT) billing codes for ophthalmology/general clinic, and free text searches (Figure 12 A, B, 

and C). Digital photographs are the gold standard for diagnosing ocular diseases such as POAG; however 

these are not readily available in the SD for research as the VEI currently uses a manual/paper process for 

storing patient data, with most forms being scanned and uploaded into the EMR as portable document 

format (PDF) forms. Because it is difficult to de-identify and parse PDF forms, this POAG case/control 

algorithm targeted structured and easily parsed unstructured data and was designed to maximize the number 

of individuals eligible for manual review to confirm case/control status. 

Initial screening criteria for POAG study population 

Individuals included for this POAG study were African American adults over the age of 20 years as of 

March 20, 2013. We excluded pediatric glaucoma cases because it is a separate condition caused by 

developmental issues prior to birth and/or by a very rare genetic mutation. The genetics of pediatric 

glaucoma are likely to be fundamentally different from the genetics of glaucoma in older adults, and this 
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genetic heterogeneity would result in lower power to detect genetic associations for adult POAG. The final 

inclusion criteria required that an individual’s medical records include either one mention of a CPT code 

for ophthalmology or a CPT code for general clinic procedures (Figure 12 C). 
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Figure 12: Flow diagram of POAG case/control algorithm 
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Primary open-angle glaucoma cases 

POAG cases were identified as individuals with at least one ICD-9 code for POAG (365.11). Cases were 

not excluded if they contained an additional ICD-9 code for another sub-type of glaucoma (list of glaucoma 

ICD-9 codes included in Figure 12 B). It is not uncommon for patients to experience different sub-types of 

glaucoma bilaterally or within the same eye which is also known as mixed- or combined- mechanism 

glaucoma. Also, over the course of a lifetime a patient may progress from one form to another such as 

closed-angle glaucoma to open-angle glaucoma.  

Primary open-angle glaucoma controls 

Controls were defined as individuals whose records were devoid of any glaucoma ICD-9 code. If the 

algorithm identified “glaucoma”, “glaucome”, “glocoma”, “gloucoma”, “gluacoma”, “glucoma”, or 

“glycoma” in a free text search of problems lists and clinical notes, the individual was excluded. We 

excluded individuals under the age of 40 years, as calculated from a given birth-date, to reduce 

contamination of controls with future cases.  

Manual review of primary open-angle glaucoma 

The SD records of all EAGLE BioVU POAG cases and a random sample of controls identified by the 

algorithm were manually reviewed by myself to verify POAG case/control status. Sensitivity, specificity, 

positive predictive value (PPV), negative predictive value (NPV), and accuracy were then calculated to 

evaluate the algorithm’s performance. Of the 267 individuals identified as cases, 138 were determined to 

be definite cases based on records retrieved from the SD. The records accessed for verification of case 

status were primarily composed of but not limited to surgical reports, optometry, and ophthalmology clinic 

notes. Other data that was taken into account were medication lists, general and specialty clinic reports, 

clinical communications, and problems lists.  An individual was classified as a definite case if they met one 

of two criteria: 1) a written diagnosis by a Vanderbilt ophthalmologist/optometrist as pertained to a patient’s 

exact clinical sub-type of glaucoma (An example of this is seen in Figure 13) and 2)  the patient’s medical 

record contained all of the following: at least two independent mentions of the POAG ICD-9 code (365.11), 
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a glaucoma medication (Table 12), and a surgical procedure for treatment of POAG complications as 

identified by a surgical report. Surgical procedures for treatment of POAG may include argon laser 

trabeculoplasty, selective laser trabeculoplasty, MicroPulse laser trabeculoplasty, and Ex-Press Mini 

Glaucoma Shunt. Previous studies which successfully developed phenotype algorithms with high PPV for 

ocular traits found that CPT codes for surgical procedures were sufficient for positively identifying 

individuals with cataracts(Peissig et al., 2012).    We classified individuals whose records were positive for 

glaucoma case status but lacked sufficient clinical records to determine the sub-type of glaucoma as 

“potential cases”. The criteria for potential cases includes all of the following: at least one mention of 

POAG ICD-9 (365.11), an ophthalmology/fundus CPT code (i.e. 92012, 92014, or 92250), glaucoma 

medication, and a text mention of “POAG” or “glaucoma” in a clinic note or problems history.  Of the 

records reviewed, we identified 67 potential cases. Sixty-two individuals were determined to be false 

positives. Upon examination of the records, 28 of the 62 false positives were found to be diagnosed with 

another clinical sub-type of glaucoma, such as uveitic glaucoma (n=6), chronic angle closure (n=11), 

pediatric (n=2), neovascular (n=6), or glaucoma steroid responder (n=3). Reviews of other false positives 

lacked sufficient records or communications to determine glaucoma/POAG status. Ambiguous notes would 

state that a patient had “advanced glaucoma”,  

 “ocular hypertension”, or was a “glaucoma suspect”. These individuals were excluded from case status as 

we could not reasonably verify a diagnosis.   
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Table 12:  List of glaucoma medications used in validation of primary open-angle glaucoma cases 

Drug name(s) Generic drug name/active 

ingredient 

Indications* 

Diamox Acetazolamide Some types of glaucoma, epilepsy, and cardiac 

edema 

Alphagan Brimonidine Prevention of elevated intraocular pressure 

(IOP)post operatively in individuals undergoing 

argon laser trabeculoplasty (ALT) 

Iopidine Apraclonidine Prevention of elevated IOP post operatively in 

individuals undergoing ALT, argon laser 

iridotomy, or Nd:YAG posterior capsulotomy 

Azopt Brinzolamide Treatment of elevated IOP for individuals with 

open angle glaucoma and ocular hypertension 

Betoptic Betaxolol Treatment of elevated IOP for individuals with 

chronic open angle glaucoma and ocular 

hypertension 

Cosopt  Dorzolamide and  Timolol Treatment for elevated IOP in individuals with 

open angle glaucoma or ocular hypertension 

Trusopt Dorzolamide Treatment for elevated IOP in individuals with 

open angle glaucoma or ocular hypertension 

Latanoprost/ 

Xalatan 

Latanoprost Treatment for elevated IOP in individuals with 

open angle glaucoma or ocular hypertension 

Lumigan Bimatoprost Treatment for elevated IOP in individuals with 

open angle glaucoma or ocular hypertension 

Timoptic(-xe)/ 

Betimol/ Istalol/ 

Blocadren 

Timolol maleate Treatment for elevated IOP in individuals with 

open angle glaucoma or ocular hypertension 

Travatan Travoprost Treatment for elevated IOP in individuals with 

open angle glaucoma or ocular hypertension 
Indications is a limited list of FDA approved uses as stated on the Drugs@FDA website as of October 4th, 2014: 

http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ 
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Figure 13: Screen shots of clinic notes from the Vanderbilt Synthetic Derivative as pertains to 

patients’ glaucoma status. 
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Cup-to-disc ratio (CDR) 

As mentioned, ocular phenotypes are difficult to extract from the VUMC EMR due to the lack of a 

structured electronic interface with VEI. Extracting quantitative phenotypes such as cup-to-disc ratios, the 

ratio of optic cup diameter to optic disc diameter, proved particularly challenging as there is not a uniform 

field or manner in which ophthalmologists report these data. We have found, however, that these data can 

be extracted via expression matching from referral letters and clinic notes sent between ophthalmologists 

and clinicians in the process of patient care (Figure 13). The following key word phrases were included in 

the search in reference to the right eye (O.D.) and left eye (O.S.): CDR, cup-to-disc ratio, cup-to-disk, and 

cup-to-disk ratio. Upon manual review of the results it became apparent that a more sophisticated approach 

was necessary to differentiate whether the numbers recorded were for the horizontal optic cup ratio, the 

vertical optic cup ratio, or the quotient of the horizontal-to-vertical CDR which ophthalmologists report 

interchangeably. When multiple measures of CDR were available for a patient, the most recent 

measurement was taken.   

 

Figure 14: Histogram plots of the distribution of CDR (A – left eye, B – right eye) in EAGLE BioVU African 

American POAG cohort 
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A total of 132 POAG case records were positive for a CDR key word phrase, and all were manually 

reviewed for CDR. Only 9 of the 132 records (7 %) were missing a measure for CDR. The median values 

for CDR in this study are 0.7 (SD 0.22) in the right eyes and 0.7 (SD 0.23) in the left eyes (Figure 14 A and 

B).  

Algorithm development for diabetic retinopathy 

Similar to the development of the POAG case/control algorithms, the DR algorithms relied on the use of 

ICD-9, CPT, and free text searches to discriminate between cases and controls. The exception between the 

two is that we applied a previously vetted algorithm to first identify type-2 diabetics from among the African 

Americans included in the EAGLE Metabochip disease. The type 2 diabetes algorithm was developed as 

part of the Electronic Medical Records and Genomics (eMERGE) Network(Kho et al., 2012). The 

eMERGE Network utilized the clinical diagnostic criteria set forth by the American Diabetes Association 

and categorized individuals based on data extracted from an EMR. In brief, the eMERGE Network excluded 

individuals with ICD-9 codes for type 1 diabetes.  For individuals with ICD-9 codes for type 2 diabetes, 

cases were required to have 1) a prescription for insulin or 2) a prescription for a type 2 diabetes medication 

and then in conjunction with either insulin/T2D medications the individual must have EITHER 1) more 

than two clinic visits with a recorded T2D diagnosis or 2) a prescription of type 2 diabetes medication prior 

to the insulin prescription.  Cases were also identified among individuals without a prescription for insulin 

but with a prescription for type 2 diabetes medications, among individuals without prescriptions for either 

insulin or type 2 diabetes medications but who have abnormal glucose or glycated hemoglobin levels, and 

among those individuals without an ICD-9 code for type 2 diabetes but who are taking medication for type 

2 diabetes and have abnormal glucose or glycated hemoglobin levels. Pregnant women were excluded as 

these patients may have developed gestational diabetes a condition separate from T2D (Supplementary 

Figure 2) 

After the initial evaluation of African Americans in EAGLE Metabochip, 630 cases of T2D were identified. 

These individuals were then included in the following study for the identification of DR cases and controls.   
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Initial screening criteria for DR study population 

As part of the eMERGE Network algorithm for T2D, individuals were excluded if medical records 

contained an ICD-9 for T2D (250.xx) before the age of twenty years as it is more likely this individual was 

a T1D. 

Diabetic retinopathy cases 

DR cases were individuals identified as having T2D as defined by the eMERGE Network and at least one 

mention of a DR ICD-9 code, excluding ICD-9 362.01, in conjunction with at least one mention of a clinic 

or ophthalmology CPT code (Figure 15 A and B). ICD-9 362.01 was excluded from the case definition 

given that background diabetic retinopathy, the presence of microaneurisms and hemorrhages, resolves on 

its own and does not impede vision.  

 

 

 

 

Table 13: International Classification of Disease (ICD-9) Codes for diabetic retinopathy 

DR ICD-9 codes   

362.0 Diabetic retinopathy 

362.02 Proliferative diabetic retinopathy 

362.03     Nonproliferative diabetic retinopathy 

362.04 Mild nonproliferative diabetic retinopathy NOS 

362.05 Moderate nonproliferative DR 

362.06 Severe nonproliferative DR 

ICD-9 362.01 was excluded from the case definition, as patients with background retinopathy 

typically see it resolve without treatment 
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Diabetic retinopathy controls 

Initially, controls were cases of T2D whose medical records included a CPT code for clinic/ophthalmology 

visit (Figure 12 C) but did not include any of the three following: any ICD-9 for DR (Table 13), any CPT 

code for treatment procedures commonly used in the treatment of DR (Table 14), and any text mention of 

“diabetic retinopathy” or “retinopathy” in the problems lists. Lastly, controls with T2D duration of less than 

two years were removed as potential future incident cases. It should be noted that in the case of 

ophthalmology visit CPT codes it cannot be presumed that patients had a dilated fundus examination nor 

that physicians looked for or made note of the presence of any retinopathy.  

After the initial review of controls, it was noted that many were being excluded. Part of the T2D routine 

medical plan at Vanderbilt includes an annual eye exam to screen for potential development of DR. As 

such, compliant T2D cases will have DR ICD-9 codes in their records marking these annual eye exams 

regardless of DR diagnosis. After additional review, we adjusted the inclusion/exclusion criteria for controls 

to allow for the inclusion of ICD-9 codes for background diabetic retinopathy (362.01) and mild 

nonproliferative DR (362.04). These two codes were selected based on initial case chart reviews that were 

determined to be false positives. DR controls with ICD-9 codes (362.01 and 362.04) were flagged for 

additional screening. Inclusion of ICD-9 codes 362.01 and 362.04 result in an additional 15 individuals 

meeting control criteria. 
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Manual review of diabetic retinopathy cohort 

Review procedures followed those set forth in the manual review of the primary open-angle glaucoma 

cohort. Verification of case/control status was carried out utilizing a combination surgical reports, 

optometry, and ophthalmology clinic notes. Other data that was taken into account were medication lists, 

general and specialty clinic reports, clinical communications, and problems lists.  DR cases were classified 

Table 14: Current procedural terminology codes for common  treatment options for diabetic 

retinopathy 

Procedures CPT 

Codes 

Impltj Intravitreal Drug Dlvr Sys Rmvl Vts 

Implantation of intravitreal drug delivery system (eg, ganciclovir implant), includes 

concomitant removal of vitreous 

67027 

Vtrc Mchnl Pars Plna 

Vtrc Mchnl Pars Plna Focal Endolaser Pc 

Vtrc Mchnl Pars Plna Endolaser Panrta Pc 

Vitrectomy Pars Plana Remove Preretinal Membrane 

Vitrectomy, mechanical, pars plana approach; 

Vitrectomy, mechanical, pars plana approach; with epiretinal membrane stripping 

Vitrectomy, mechanical, pars plana approach; with focal endolaser photocoagulation 

Vitrectomy, mechanical, pars plana approach; with endolaser panretinal 

photocoagulation 

Vitrectomy, mechanical, pars plana approach; with removal of preretinal cellular 

membrane (eg, macular pucker) 

Repair of retinal detachment; with vitrectomy, any method, with or without air or gas 

tamponade, focal endolaser photocoagulation, cryotherapy, drainage of subretinal 

fluid, scleral buckling, and/or removal of lens by same technique 

Repair of complex retinal detachment (eg, proliferative vitreoretinopathy, stage C-1 

or greater, diabetic traction retinal detachment, retinopathy of prematurity, retinal tear 

of greater than 90 degrees), with vitrectomy and membrane peeling, may include air, 

gas, or silicone oil tamponade, cryotherapy, endolaser photocoagulation, drainage of 

subretinal fluid, scleral buckling, and/or removal of lens 

  

67039 

67040 

67041 

67113 

Dstrj Loclzd Les Retina 1+ Sess Crtx Dthrm 

Destruction of localized lesion of retina (eg, macular edema, tumors), 1 or more 

sessions; cryotherapy, diathermy 

  

67208 
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as either a definite or potential case. Definite DR cases met one of two criteria: 1) a written diagnosis by a 

Vanderbilt ophthalmologist/optometrist as pertained to a patient’s exact diabetic retinopathy status (An 

example of this is seen in Figure 15 A and B) or 2) the patient’s medical record contained both of the 

following: at least three independent mentions of a DR ICD-9 code and a surgical procedure for treatment 

of DR complications as identified by a surgical report. Surgical procedures for treatment of DR 

complications may include membrane peel, pars plana vitrectomy, scleral buckle, laser/photo coagulation, 

silicone oil, and intraocular/expanding gas.  We classified individuals whose records were positive for text 

mention of DR case status but lacked surgical notes or ophthalmology clinic notes as “potential cases.” The 

criteria for potential cases include at least one of the following: at least three mentions of DR ICD-9 with 

text mention of “diabetic retinopathy”, text mention(s) for “surgery for diabetic retinopathy” in a clinic note 

or problems history, or thorough ophthalmology/optometry notes with diagnosis of background DR.  Of 

the records reviewed, we identified 119 definite cases and 26 potential cases. Thirteen individuals were 

determined to be false positives. False positives tended to be T2D cases with thorough 

ophthalmology/optometry notes that explicitly state an individual was clear of signs of DR at the time of 

last visit (n = 7), records which lacked sufficient data to determine a diagnosis (n = 2), T1D (n = 1), or 

individuals diagnosed with other clinical forms of retinopathy such as “hypertensive” or “herpes retinitis” 

(n = 3).  

Four-hundred and seventy-three individuals met DR control criteria. Of these, 100 controls were randomly 

selected for manual chart review. Each record was searched for text mention of “diabetic retinopathy” in 

all clinic notes and problems lists. Of these 100, all were clear of either a text mention of DR or else 

contained an ophthalmology/optometry report with negative findings for DR. 
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Figure 15 A: Screen shot of a clinic note from the Ophthalmology Clinic at Vanderbilt University 

Medical Center, as seen in the Synthetic Derivative. Notes pertain to a patient’s retinal eye exam 

and diagnosis. 

 

Figure 15 B: Screen shot of a brief clinic note as seen in the Synthetic Derivative and pertains to 

a patient’s retinal eye exam. 

 

 



86 

Results 

Performance of primary open-angle glaucoma algorithms 

 For the POAG case algorithm, we determined that the PPV for definite cases was 51.6% with a sensitivity 

of 96.5% and accuracy of 76.3% (Table 15). When including potential cases, PPV was 76.7% with a 

sensitivity of 97.6% and an accuracy of 83.1% (Table 15).We manually reviewed the SD medical records 

of 300 randomly selected controls identified by the algorithm to calculate NPV, specificity, and accuracy. 

Of the 300 individuals identified as controls with this algorithm, five showed evidence of glaucoma at the 

time of review or else had mention of glaucoma in their records. As an additional review function, we 

performed a free-text search in all available documents for mention of the following words and 

abbreviations: glaucoma, fundus, opth, ophth, and vision. The shorthand identifiers such as fundus, opth, 

ophth [i.e. funduscopic eye exam, ophthalmology clinic, and opth (common abbreviation for 

ophthalmology)] are used throughout the clinical records especially within communications across clinics. 

This function was performed to ensure that algorithm-identified controls without qualifying ICD-9 or CPT 

codes also did not have evidence of POAG in the free clinical text. Performance of the POAG control 

algorithm was found to have a NPV of 98.3% with a specificity of 69.6% (Table 15). 

Table 15: Evaluation of primary open-angle glaucoma phenotype algorithm in African Americans from 

EAGLE BioVU 

 

 
Sample 

Size 

Manually 

reviewed 
PPV NPV Sensitivity Specificity Accuracy 

Cases 267 267 - - - - - 

-Definite  138 51.6% - 96.5% - 76.3% 

-Potential  67 76.7% - 97.6% - 83.1% 

Controls 4813 300 - 98.3% - 69.6% - 

Definite cases were individuals whose POAG status could be determined with high likelihood. 

Potential cases were individuals whose medical records lacked sufficient information to make a definitive decision. 

Potential case results were calculated by including both potential and definite case numbers. 
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POAG study characteristics for African Americans  

Of the 11,521 African Americans, 9,441 were over the age of 20 years and considered for downstream 

genetic association studies of POAG. Of these adults, 267 were identified as POAG cases (2.82%) and 

4,813 as POAG controls. As might be expected for an age-related ocular disease, the median age of cases 

was older than controls (62 versus 54 years; Table 16).  More than half of the cases and controls were 

female; and approximately half were hypertensive.  On average, both cases and controls were obese (median 

body mass index > 30.0 kg/m2). 

 

Table 16: Study population characteristics of POAG definite cases and controls among African Americans 

in EAGLE BioVU 

 

 

Definite Cases > 20 yrs 

(SD) 

Controls >40 yrs 

(SD) 

N 138 4813 

Age at Diagnosis (years) 62.0 (12.0) -- 

Age at Last Clinic (years) -- 54 (11.7) 

Sex (% female) 63.7 60 

Hypertensive (%) 55.1 46.6 

BMI (kg/m2) 30.1 (6.7) 30.1 (8.0) 

Diastolic (mm/Hg) 74.5 (8.1) 80 (33.6) 

Systolic (mm/Hg) 134.5 (14.1) 124 (26.2) 

Cholesterol (mg/dL) 183 (40.6) 161 (65.2) 

HDL (mg/dL) 52.5 (25.0) 53 (38.6) 

LDL (mg/dL) 103 (42.9) 99 (50.7) 

Triglycerides (mg/dL) 125 (76.3) 98 (67.8) 
Median values were calculated for the following: Age at POAG diagnosis was determined by the date of when 

POAG ICD-9 (365.11) was first mentioned in the records. Age at last clinic visit (LCV) was taken as the date of the 
last CPT mentioned in the records for controls. An individual was classified as hypertensive if he/she met one of 
three criteria: systolic blood pressure > 140 mm/Hg, diastolic blood pressure > 90 mm/Hg, or on hypertension 
medications all within a two year window of when they were diagnosed with POAG in cases and a two year window 
of their LCV date for controls.  Blood pressure (systolic and diastolic), lipids (total cholesterol, high-density 
cholesterol, low-density cholesterol, and triglycerides), and body mass index (height and weight) were calculated 
from labs or measurements within two years of POAG diagnosis or LCV.  Abbreviations:  standard deviation (SD) 
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Performance of diabetic retinopathy algorithms 

The PPV for definite DR cases was 75.3% with a sensitivity of 1.0% and accuracy of 84.8% (Table 17). 

With the inclusion of potential cases, PPV increased to 91.7% with a sensitivity of 1.0% and an accuracy 

of 94.9% (Table 17).We manually reviewed the SD medical records of 100 randomly selected controls 

identified by the algorithm to calculate NPV, specificity, and accuracy. Performance of the DR control 

algorithm was found to have a NPV of 1.0% with a specificity of 71.9% (Table 17).   

Table 17: Evaluation of diabetic retinopathy phenotype algorithm in African Americans from 

EAGLE BioVU 

 
Sample 

Size 

Manually 

reviewed 
PPV NPV Sensitivity Specificity Accuracy 

Cases 158 158 - - - - - 

-Definite  119 75.3% - 1.0% - 84.8% 

-Potential  26 91.7% - 1.0% - 94.9% 

Controls 473 100 - 1.0% - 71.9% - 

 

DR study characteristics for African Americans  

Of the 1,672 African Americans screened for T2D, 145 were identified as DR cases (i.e. definite and 

potential) (30.6%) and 473 as DR controls. The median age of cases was older than controls (62.2 versus 

49.8 years; Table 18).  Controls were predominately female and tended to have better control of their 

diabetes (HbA1c = 6.7%) compared with cases.  On average, both cases and controls were obese (median 

body mass index > 30.0 kg/m2). 
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Table 18: Median demographics of EAGLE BioVU Metabochip African 

Americans with diabetic retinopathy 

  Diabetic retinopathy 

  cases controls 

N 145 473 

Age (yrs) 62.2 49.8 

% female 57% 66% 

BMI 32.7 30.4 

Systolic (mmHg) 140.1 127.9 

Diastolic (mmHg) 77.1 77.4 

Cholesterol (mg/dL) 221.1 208.2 

Glucose (mg/dL) 187 100.2 

LDL (mg/dL) 95 91.3 

HbA1c  9.5 6.7 

For Controls, anyone under 40 years of age were excluded. Cases include individuals 

ascertained as definite and potential 

 

Discussion and Summary 

Overall, the POAG algorithm identified 267 cases and 4813 controls among African Americans from 

EAGLE BioVU. After manual review we determined that the algorithm only had a positive predictive value 

of 51.6% to identify definite POAG cases with a sensitivity of 96.5% and an accuracy of 76.3%. The control 

algorithm demonstrated a high performance with a negative predictive value of 98.3% and a specificity of 

69.6%. Despite the limited positive predictive value of the algorithm in defining POAG case status, our 

strategy overall provides a starting point in the absence of digital photographs to identify definitive cases 

of POAG from amongst over 10,000 African American adults. Manual review of these records would be 

prohibitively time- and resource-consuming.  An alternative strategy to triaging records for manual review 

is the requirement of a single ICD-9 code for POAG.  Based on these relaxed criteria, we identified 309 

African Americans in EAGLE BioVU whose EMR contained an ICD-9 code for POAG. After review of 

these additional individuals for definite POAG case status, we determined that all measures of performance 

were lower (PPV = 47.2%, specificity = 64.4%, and accuracy = 72.4%) compared with the algorithm 

developed here. 
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The age and gender composition of the EAGLE BioVU definite POAG cases (Table 16) and controls differ 

when compared with other clinical and epidemiologic cohorts. More than half of EAGLE BioVU definite 

POAG cases (63.7%) and controls (60%) are female. In contrast, the International Consortium of African 

Ancestry Research in Glaucoma (ICAARE-Glaucoma; n=2,150) study identified fewer female cases and 

controls(Liu et al., 2013b): African American cases (49.5%), African American controls (54.6%), Ghanaian 

cases (43.9%), and Ghanaian controls (57.3%). Also, the mean age at diagnosis for ICAARE-Glaucoma 

African American cases (57.0 yrs) is younger than EAGLE BioVU POAG cases (62.0 years) while the 

ICAARE-Glaucoma control group (59.4 yrs) is older compared with EAGLE BioVU POAG controls (54 

yrs). These demographic differences are likely the result of differences in recruitment or ascertainment of 

African Americans within their respective communities, which can potentially introduce heterogeneity in 

downstream studies.  

As evident by this study, broad phenotyping of a disease cohort is well within the capabilities of an EMR, 

even one with limited access to clinical data, through the use of simple text-mining techniques incorporating 

pattern matching and structured data from the EMR. The algorithm designed here for POAG is stringent 

yet the PPV (51.6%) of this POAG algorithm for definite case status is well below the threshold of 95% 

adopted by consortia such as the eMERGE network(McCarty et al., 2011) for use in large-scale genetic 

association studies(Kho et al., 2012; Peissig et al., 2012). However, the addition of potential cases 

substantially increases the PPV to 76.7%.  If we had designed the algorithm to merely detect an individual 

with a “general” glaucoma classification, the PPV increased to 87.2%. Furthermore, we have developed a 

highly discriminatory algorithm (NPV 98.3%) that can identify ocular controls. In the development of 

phenotype algorithms there is the constant tradeoff between overly strict or vague criteria resulting in loss 

of cases or misclassification of subjects, both of which will lead to a loss in statistical power in downstream 

genetic association studies.  

The DR case/control algorithms notably exceeded the performance of the POAG case/control algorithms. 

Under definite case status, the DR case algorithm had a PPV = 75.3%, accuracy = 84.8 %, and sensitivity 



91 

= 1.0. The DR control algorithm had a NPV on par with the POAG control algorithm (1.0% vs 98.3%) and 

a specificity of 71.9% versus 69.65, respectively. The marked increase in performance between the two can 

reasonably be attributed to the disparity in health care and counseling provided to diabetics in comparison 

to non-diabetics. As mentioned previously, when a patient is diagnosed with diabetes in the Vanderbilt 

health care system they are advised to seek the attention of health care providers at the diabetes clinic and 

subsequently to seek annual eye exams for the assessment of diabetes-related eye changes (e.g. diabetic 

retinopathy and diabetic macular edema). Irrespective of compliance, diabetics are closely monitored and 

followed for the duration of a patient’s life. In contrast, fifty percent of African American glaucoma patients 

go undiagnosed in the United States(Ladapo et al., 2012).  

Although most clinics within a health care organization that maintain an EMR adopt the digital system, 

occasionally a clinic may be excluded from converting to an all-digital interface or choose to opt out. The 

reasons for these exclusions may vary, but the results of missing data can impact a study in many ways.  

Evaluation of the algorithms was limited by the lack of available funduscopic images (i.e. the “gold 

standard”) for validation, a limitation of this study. Missing data limited our ability to identify definite cases 

of POAG and DR.  Several cases identified here could only be classified as potential cases given the lack 

of sufficient clinical records to determine the sub-type of glaucoma. This limitation underscores the need 

for better implementation of EMRs across healthcare organizations for use in biomedical research.  

Missing data can also introduce misclassification bias into studies. The control algorithms developed here 

were designed around the concept that an individual is free of DR/POAG. However, without a complete 

medical work-up, there is the potential that a control is an undiagnosed case. Misclassification and potential 

ascertainment bias is also possible in case identification where cases are only those individuals who have 

been evaluated by a specialist and are therefore potentially extreme or overly symptomatic cases. A well-

known barrier for individuals seeking medical attention is low socioeconomic status which 

disproportionally affects African Americans(Anderson et al., 2004). This may in part explain the limited 

number of African American POAG cases (n=267) representing only 2.82% of African Americans in 
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EAGLE BioVU.  Given the expected prevalence of POAG at 4-5% among African Americans (Friedman 

et al., 1999, 2004a), presumably the cases in EAGLE BioVU are only being diagnosed once vision loss 

becomes severe. The same can be said for DR cases (n=119) which at a rate of 21.6% of the EAGLE BioVU 

T2D population over 40 years (n=431) is notably lower than would be expected in the general U.S. African 

American population of diabetics over 40 years (36.7%). 

Limitations and Conclusions 

Our study has a number of limitations. The algorithms were developed at VUMC under the restrictions of 

a de-identified EMR, which limits access to certain data types, and the SD, which does not currently contain 

all pertinent medical records such as digital fundus photographs. As mentioned before, the VEI does not 

utilize an electronic interface with structured fields. Lack of these structured data makes it impossible to 

search the SD for ophthalmology exam results. Without the actual exam results it is not possible for 

researchers to definitively ascertain an individual’s ocular disease status without a clinician’s explicit note 

detailing a patient’s results in writing. Due to these limitations it is unclear if our algorithms can be exported 

for use in the EMRs of other medical institutions. Also, only one investigator performed the manual review 

making it impossible to assess intra- or inter-grader variability. This investigator was aware of the 

algorithm’s determination of case and control status, which may have introduced bias. However, we 

modeled our algorithm development process after the electronic Medical Records and Genomics 

(eMERGE) Phenotype Working Group workflow(Kho et al., 2011; Newton et al., 2013). In the eMERGE 

Network, algorithm development and assessment are an iterative process.  That is, content experts design 

the initial algorithm and deploy it.  After a round of manual reviews and performance calculations, the 

algorithm is altered, re-deployed, and re-evaluated.  There is potential bias in reviewing and assessing the 

performance of the algorithm when adopting the eMERGE workflow.    

Additional complications in utilizing EMRs is that a scarcity of notes or large time gaps between exams for 

the identification of cases and controls may lead to incident cases or false negatives. In the instance of DR 

cases, patients with mild to moderate non-proliferative DR have been shown to see their DR resolve on its 
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own with little to no medical intervention. So depending on time between exams, incident cases may 

develop.  

Utilizing clinic notes to extract CDR measurements introduces a number of biases, most notably human 

error. In ophthalmology clinics, current clinical practice involves a manual examination of the optic nerve 

head and the screener’s subsequent assessment or perception of the CDR. The accuracy of the CDR will 

rely on the screener’s experience and examination conditions (e.g., monoscopic versus stereoscopic 

conditions). The assessment of CDR also varies across examiners. Intra- and inter- reader variation can 

reach as much as 0.2 disc diameters(Arthur et al., 2006; Varma et al., 1992). Therefore, the interpretation 

of CDR measurements extracted from clinical notes in an EMR system should be approached with a bit of 

skepticism.  

Despite the limitations in portability and data access, we were able to define primary open-angle glaucoma 

and diabetic retinopathy from the VUMC’s SD. We have a diverse population connected to a depth of 

medical data, even if not all of it is easily searchable. Our study has made available more case counts for 

African Americans with ocular disease. And, BioVU continues to accrue samples as well as update the 

medical records associated with samples already collected; therefore, the accrual of additional cases is 

anticipated. The ability to extract ocular phenotypes from EMRs will provide researchers with previously 

unaccessed datasets to further advances in ocular genetic research and vision-loss prevention.  
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CHAPTER IV 

THE ASSOCIATION OF COMMON GENETIC VARIATION IN PRIMARY OPEN-

ANGLE GLAUCOMA IN AFRICAN AMERICANS 

Introduction 

Primary open-angle glaucoma (POAG) is the most common form of glaucoma and a major driver of 

irreversible vision loss (Figure 16). Understandably the loss of vision impacts an individual’s quality of life 

through loss of independence, income, and mobility. Less tangible indicators of life quality include mental 

health with depression occurring more frequently in the elderly with glaucoma(Wang et al., 2012). Research 

by the Salisbury Eye Evaluation group has even suggested that visual field loss, a defining component of 

glaucomatous disease, is the fundamental vision component responsible for falls in older adults(Freeman 

et al., 2007). This is in comparison to visual acuity, contrast sensitivity or stereoacuity. The visual field is 

the spatial array of visual sensations available for observation(Smythies, 1996) which in humans includes 

a field 60° nasally, 60° superiorly, 70° inferiorly, and 100° temporally(Anderson and Patella, 1998). The 

 

Figure 16: Pie graphs of the approximate breakdown of major glaucoma types in European Americans 

and African American within the United States5–7. 
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visual field can be altered by disease onset in the vision pathway (i.e. retina, optic nerve, brain) or 

physiologic trauma. Typical forms of field loss are altitudinal field defects affecting vision above or below 

the horizons, bitemporal hemianopia involving loss of peripheral vision, or scotomas which are regions of 

vision loss affecting the central vision.  

Clinical features and diagnosis of primary open-angle glaucoma 

Glaucomatous eye changes may be diagnosed in multiple ways, one of which includes testing for loss of 

visual fields. Visual field testing can be carried out manually (i.e. confrontation visual field) or by 

automated or frequency doubling perimetry, whereby the extent of a patient’s visual field can be measured 

and potential blind-spots identified. Blind spots in the visual field can be indicative of eye disease. In the 

case of glaucoma, visual field deficits occur in a particular pattern and location(Asman and Heijl, 1992). 

Most glaucoma patients suffer some visual field loss within the central 24-30°(Ballon et al., 1992).  

Additionally, an optometrist or ophthalmologist may perform a visual examination of the optic cup-to-disc 

ratio (CDR), a measurement used to assess the thickness of the nerve fiber layer. In a healthy eye (Figure 

17, far left), the optic disc is the physiological location where the retinal ganglion cell axons, forming the 

optic nerve bundle, and ocular blood vessels exit the retina. The nerve fibers are visualized as the pink rim 

of the disc, while the central white cup is an area lacking any nerve fibers. Healthy eyes maintain a CDR 

 

Figure 17: Funduscopic image of the optic nerve head  

in a healthy eye (far left) as it progresses to glaucoma (far right) as shown by signs of physiological 

cupping. This image was adapted from the website of the Glaucoma Associates 

(http://www.glaucomaassociates.com) accessed February 4, 2015. 

 

http://www.glaucomaassociates.com/
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of 0.3. As nerves in the optic bundle begin to atrophy and die, the pink rim decreases in size. The subsequent 

increase in the central cup is a typical sign of glaucomatous changes. CDRs greater than 0.7 (the third and 

fourth pane of Figure 17) are clinically significant indications of glaucoma.   

Lastly, elevated IOP or ocular hypertension (i.e. 21 mmHG ≥ IOP) may be used as part of a glaucoma 

diagnosis. Its utilization in diagnosing POAG has waned in part because it is not an independent predictor 

of POAG(Dielemans et al., 1994; Levine et al., 2006; Shah et al., 1999; Wolfs et al., 2000). Individuals 

with ocular hypertension do not definitively go on to develop glaucoma; inversely, individuals with normal 

IOP are still at risk of developing POAG. The presence of OAG in the absence of elevated IOP is commonly 

referred to as normal tension glaucoma (NTG). Previously NTG and POAG were considered two separate 

clinical subtypes of glaucoma, but the current consensus wavers as to whether they are separate entities or 

else IOP dependent/independent ends of a spectrum.   IOP is the only known modifiable factor for POAG 

with viable treatment options shown to slow disease progression(Heijl et al., 2002; Kass et al., 2002; 

2000b). 

Epidemiology of primary open-angle glaucoma 

The risk factors and mechanisms underlying POAG risk and progression have been studied extensively 

across populations. Yet for each new risk variable that these studies identify, the question emerges as to 

how these factors are biologically impacting disease. To recapitulate, African ancestry(Tielsch et al., 1994), 

age(Leske et al., 1995), myopia(Pan et al., 2013), and IOP(Chandrasekaran et al., 2006; Jiang et al., 2012; 

Leske et al., 1995) are well established risk factors for POAG. IOP in particular is such a strong modifier 

of POAG risk that some clinicians still use it as a diagnostic criterion. Mechanistically high IOP can damage 

the optic nerve and retina by inflicting structural damage at the optic nerve head, reducing retinal blood 

flow, and increasing the expression of cytokines(Morrison et al., 2005). Part of this mechanical theory of 

POAG involves the lamina cribrosa, a mesh-like network of collagen fibers located at the optic nerve head. 

It is through the lamina cribrosa that the retinal ganglion cell axons pass before forming the optic nerve 

bundle. The lamina cribrosa forms a barrier between the inside of the eye and the surrounding 
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tissue(Morgan-Davies et al., 2004). Changes in IOP have been hypothesized to lead to structural changes 

in the lamina cribrosa that in turn pinch and damage the optic nerve fiber tendrils and blood vessels. 

Correlations between myopia and POAG risk observed in epidemiologic studies may in fact represent the 

mechanical properties of myopia, such as an increase in axial length of the ocular globe.  Axial length has 

been independently associated with an increase in risk of OAG, which is postulated to occur as a result of 

increased stress on the sclera. As IOP rises the mechanical stress is greater in axially longer eyes(Kuzin et 

al., 2010). In the prospective Los Angeles Latino Eye study (LALES), individuals with axial myopia had a 

higher incidence of developing OAG particularly with higher baseline levels of IOP(Jiang et al., 2012).  

Additional predictors of POAG include lack of vision insurance, waist to hip ratio (WHR), female gender, 

and thinner central corneal thickness (CCT)(Gordon MO et al., 2002; Jiang et al., 2012). The role of general 

obesity or BMI in POAG is questionable(Jiang et al., 2012; Leske et al., 1995) but evidence supports that 

abdominal obesity or WHR may be a more substantial predictor of POAG risk in women compared with 

men(Jiang et al., 2012). The total number of women affected by POAG exceeds that of men in the 

U.S.(Vajaranant et al., 2012b). Yet as POAG is an age-related disease, these gender trends can be explained 

somewhat by women’s longer life spans compared with men. The life expectancy in the U.S. for women is 

currently 81.0 years vs. men at 76.2 years.  POAG rates by gender vary from study to study(Dielemans et 

al., 1994; Leibowitz et al., 1980; Leske et al., 1994; Reidy et al., 1998) yet some find that male sex increases 

risk of POAG after adjusting for age(Rudnicka et al., 2006). Female sex hormones may be protective against 

the onset of POAG.  Oestrogens regulate signaling pathways involved with neuronal differentiation, 

synaptic plasticity of neurons and cell migration/survival and death(Arevalo et al., 2011). Estrogen and/or 

progesterone receptor mRNAs are found in numerous ocular tissues such as the bulbar conjunctivae, cornea, 

RPE, lens, retina, and iris(Gupta et al., 2005; Wickham et al., 2000). Current research is delving into the 

use of hormone therapy replacement (HTR) in elderly women to ascertain efficacy in treating and 

preventing eye disease. Use of estrogen/progestin in postmenopausal women before onset of visual field 

loss reduced the risk of POAG in the Nurse’s Health Study(Pasquale et al., 2007).  
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Pathogenicity of glaucoma has also been postulated to occur, not as a consequence of the accumulation of 

specific mechanical or vascular stressors, but as a result of axonopathy in RGC (i.e., the disruption of 

normal axon function)(Calkins, 2012). Classically, glaucoma associated vision loss is attributed to 

degeneration and apoptosis of RGCs and their axons, which form the optic nerve bundle, due to IOP-

dependent or IOP-independent stressors on a background of age-related factors. Currently, mouse and rat 

models of glaucoma provide evidential support that glaucomatous optic neuropathy occurs primarily as a 

result of axonal transport deficits in the presence of varying levels of IOP “sensitivity”(Buckingham et al., 

2008; Danias et al., 2003; Vidal-Sanz et al., 2012). These transportation deficits affect the movement of 

mitochondria to and away from areas of the axon requiring greater availability of ATP for 

hydrolyzation(Hollenbeck and Saxton, 2005). With the accumulation of mitochondria in key points of the 

axon, reactive oxygen species may build up and incur damage to the axonal milieu triggering Wallerian-

like degeneration at distal points(Calkins, 2012, 2013).      

Genetics of primary open-angle glaucoma 

The genetics of POAG is a complicated domain, lacking a clear Mendelian mode of inheritance, and further 

muddled by clinical terminology and diagnostic criteria. It can be argued that this optic neuropathy is a 

singular disease of complex, multifactorial etiology of which science and medicine have yet to completely 

tease apart the particulars or else it is the result of multiple diseases being classified under one heading. 

Either way, genetic studies to-date have only had limited success, the majority of which stemmed from the 

study of the quantitative traits associated with general glaucomas as discussed in Chapter 1.  Still, early 

genetic studies identified MYOC ,OPTN, and WDR36(Monemi et al., 2005; Rezaie et al., 2002; Stone et al., 

1997) as genes linked to susceptibility of POAG. The myocilin gene (MYOC), which was originally named 

the Trabecular Meshwork-Inducible Glucocorticoid Response Protein gene (TIGR), was discovered in 

1997(Polansky et al., 1997). MYOC is expressed in several ocular tissues including the sclera, choroid, 

cornea, and the trabecular meshwork(Adam et al., 1997; Ortego et al., 1997; Tamm et al., 1999) where it is 

hypothesized that mutated versions of the protein are not being adequately secreted into the aqueous 
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humor(Jacobson et al., 2001). This buildup of mutated MYOC proteins can prevent the flow of fluids 

through the trabecular meshwork and increase IOP resulting in damage to the optic nerve. The pathological 

severity of MYOC mutations likely differ from one to another. Some MYOC mutations are found to 

segregate with juvenile glaucoma under a Mendelian mode of inheritance in families of varying ethnic and 

racial origins(Braghini et al., 2013; Geyer et al., 2011; Mimivati et al., 2014; Waryah et al., 2013) 

suggesting these variants evoke a greater loss in protein stability. Mutations of a lesser deleterious nature 

likely account for the population-based studies that have found that MYOC mutations contribute to risk of 

POAG in a small subset of patients (3-4%) whose conditions are not solely explained by MYOC 

variants(Alward et al., 2002; Fingert et al., 2002). In the last decade, large-scale GWAS studies exploring 

associations with smaller effect sizes have reproducibly found that variants in the CAV1/CAV2, CDKN2B-

AS1 and SIX1/SIX6I genes influence POAG risk in European-descent and Japanese populations(Nakano et 

al., 2012; Osman et al., 2012; Thorleifsson et al., 2010; Wiggs et al., 2012).  

This evidence supports that genetic variation drives, in part, POAG pathology in an additive fashion but 

much remains to be determined. Additional genetic factors that have yet to be discovered are hypothesized 

to drive POAG risk.  And, the factors that drive POAG incidence differences observed across racial/ethnic 

groups have yet to be determined.  One hypothesis is that there are population-specific genetic associations 

in addition to trans-population association that contribute to POAG risk.  To identify these population-

specific and trans-population genetic factors, we conducted hypothesis-testing and hypothesis-generating 

genetic association studies in African Americans with and without POAG drawn from a clinical cohort in 

Nashville, Tennessee. 
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Replication and generalization of published POAG risk variants in primary open-angle 

glaucoma risk in an African American population 

African Americans experience a greater burden of risk for development of POAG compared to European 

Americans. We hypothesize that this due, in part, to a combination of greater prevalence of common and 

rare interpopulation risk variants and population-specific variation.  To test this hypothesis, we will first 

test directly highly replicated nuclear variants for an association with POAG in the EAGLE BioVU 

dataset(Crawford et al.). It is expected that trans-population risk SNPs discovered in Europeans or Asians 

may generalize or be associated with POAG in African Americans.  However, because GWAS variants 

often are tags or surrogates as opposed to the true causal or functional variant, I will also test gene regions 

fine-mapped by the Metabochip to identify the most strongly associated SNPs for POAG in African 

Americans.  African Americans are an ideal population for fine-mapping given the lower levels of linkage 

disequilibrium (statistical correlation between SNPs) compared with European-descent populations(Teo et 

al., 2010).  Finally, I will also perform a hypothesis-generating experiment where I test all genotyped SNPs 

for an association with POAG.  

The EAGLE BioVU dataset includes African Americans that have been genotyped on the Metabochip, a 

custom array of ~200,000 SNPs commonly used for genetic studies of metabolic and cardiovascular 

traits(Buyske et al., 2012a; Crawford et al., 2013). Metabochip contains variants known to be associated 

with optic traits, such as vertical cup-to-disc ratio (MTAP rs1063192) and optic cup size (ATOH7 

rs3858145). There are ~55 variants known to be associated with various ocular diseases and ocular 

quantitative traits that are directly genotyped on the chip or amicable to imputation. Case-control tests of 

genetic association will be performed on select SNPs and gene regions on Metabochip that have been 

previously identified as risk modifiers in POAG. 

CDKN2B-AS1 is a gene famously associated with cardiovascular disease which has also shown 

pleiotropy with other conditions such as cancer(Chen et al., 2013, 2014), T2D(Scott et al., 2007; Zeggini et 

al., 2007), endometriosis(Buggio et al., 2014), and notably glaucoma(Burdon et al., 2011a; Liu et al., 2013b; 
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Nakano et al., 2012). Primary analyses for common variants in POAG will focus on the CDKN2B-AS1 gene 

region which multiple studies have found harbors SNPs that reproducibly contribute to risk of POAG, cup-

to-disk ratios, and NTG. The Metabochip array targeted the CDKN2B-AS1 region for fine-mapping with 

459 SNPs that were selected based on the first iteration of the 1000 Genomes dataset which included 

African-descent reference samples. Additional analyses will include the SIX6 gene variant (i.e. rs10483727) 

that has also been repeatedly implicated in POAG risk.  

Methods 

Metabochip Genotyping of BioVU African American Samples  

As part of the PAGE I study(Buyske et al., 2012a; Matise et al., 2011b), EAGLE selected all non-European 

Americans from BioVU as of 2011 for genotyping on the Metabochip.  A total of 11,521 African 

Americans, 1,714 Hispanics, and 1,122 Asian samples in BioVU were genotyped(Crawford et al.). The 

Metabochip is a custom array from Illumina designed for replication and fine mapping of metabolic and 

cardiovascular traits. Many of these traits are related to T2D, and genotypes are available for variants that 

were found to be of genome-wide significance of any phenotype deposited in the National Human Genome 

Research Institute (NHGRI) GWAS Catalog as of 2009. This includes several ocular related SNPs 

(Supplemental Table 1). Metabochip also contains common and rare variants selected from HapMap and 

the 1000 Genomes project. Fine mapping regions cover 257 loci selected from SNPs that reached genome-

wide significance from select consortium meta-analyses. This chip has proven effective in identifying 

causal variants of lipid traits in African Americans(Buyske et al., 2012b) that were previously missed in 

GWAS studies that used genotyping chips designed for European Americans. Advantages of the 

Metabochip over other GWAS chips are the areas of fine mapping mentioned above (Figure 18). These 

areas include variants that are uncommon or not present in Europeans and get around part of the problem 

of differences in linkage disequilibrium architecture between populations. Fine-mapping in diverse 

populations allows researchers to narrow the risk interval in association studies and to discover population 

specific putative, causal variants.  
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Figure 18: Phenogram of the genomic location of the Metabochip SNPS that passed quality control.  

Each SNP is represented by a line with fine mapped regions appearing as heavier bands of black. 

Not shown are the mitochondrial variants. 
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Samples were genotyped using the Metabochip following the manufacturer’s protocol (Illumina, Inc; San 

Diego, CA.), and 360 HapMap samples, including YRI samples, were genotyped for PAGE-wide cross-

study QC standards(Crawford et al., 2013). A description of the genotyping protocols and quality control 

measures has been previously published (Buyske 2012). In brief, genetic variants were evaluated for 

deviations from Hardy Weinberg Equilibrium, which may be a result of poor genotyping. Variants with a 

genotyping call rate < 95% were removed from further analysis. Principal components (PC) were calculated 

using EIGENSOFT(Patterson et al., 2006). At the sample level, DNA samples with poor sample call rate 

(<95%), sex discordance, or evidence of cryptic relatedness (based on identify-by-descent; Figure 19) were 

removed from analyses. For cryptic relatedness we drop the individual with the lowest genotyping rate. 

Before quality control, 459 SNPs and 138 case samples with DNA were available for study. Post quality 

control, 286 SNPs (with HWE p > 0.001 and minor allele frequency >5%) and 130 case samples remained 

for analysis. 
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Study Population and Phenotyping 

The study population and phenotyping of POAG cases and controls have been described in detail in Chapter 

3: Utilization of Electronic Medical Records systems for ascertainment of case/control cohorts in genetic 

association studies. Briefly, 138 African Americans POAG cases and 4,813 African American POAG 

controls were identified in the Vanderbilt SD that were genotyped on the Metabochip. These individuals 

were further evaluated for inclusion in the following genetic association analysis.  

 

Figure 19: Rplot of the identity-by-descent (IBD) estimation results for pairwise interactions 

 with a phi-hat greater than 0.25 in EAGLE BioVU African Americans (N=11,014). Each dot represents 

an individual. We identified 17 pairs of monozygotic twins (duplicates in the teal circle), 385 pairs of 

parent-offspring marked by the red circle, 209 pairs of full siblings, and 289 pairs of half siblings. Full 

sibling, half sibling, and others fall within the purple circle. 
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Statistical methods 

We tested for an association between POAG and 286 SNPs in the CDKN2B-AS1 region of chromosome 14 

in African Americans and then additionally for all common variants (MAF > 0.05) on the Metabochip that 

passed quality control. Individuals included in this analysis were those identified as “definite” POAG cases 

over the age of 20 years and POAG controls over the age of 60 years. Age was defined as age at diagnosis 

in cases and age at last clinical exam in controls.  

Each SNP was tested for an association using logistic regression assuming a log-additive genetic model 1) 

adjusted by age, sex, and the first three principal components (PC) (Supplementary Figure 3) and 2) age, 

sex, first three PCs, and median diastolic blood pressure (Supplementary Figure 5).  Analyses were 

conducted using PLINKv1.90(Purcell et al., 2007).   

Ethics statement 

BioVU follows an opt-out model for DNA sample acrrual(Roden et al., 2008).  That is, DNA is collected 

from discarded blood samples remaining after routine clinical testing and is linked to de-identified medical 

records. According to the Vanderbilt IRB and the Federal Office of Human Research Protections 

provisions, the Vanderbilt protocol is considered nonhuman subjects research (The Code of Federal 

Regulations, 45 CFR 46.102 (f)).  The IRB at Vanderbilt University approved this research. 

Results 

Population characteristics 

A total of 138 African American POAG cases and 1,376 controls EAGLE BioVU for analysis. In general, 

cases were more likely to be female and tended to have a higher BMI and elevated cholesterol levels in 

comparison to controls. The cases also tended to be younger on average (62 years) compared with controls 

(67.3 years), which was not unexpected given that controls were limited to individuals >60 years of age in 

EAGLE BioVU (Table 19). 
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Table 19: Study population characteristics of POAG definite cases and controls over 60 years among African 

Americans in EAGLE BioVU 

 

 Definite Cases > 20 yrs (SD) Controls >60 yrs (SD) 

N 138 1376 

Age at Diagnosis (years) 62.0 (12.0) -- 

Age at Last Clinic (years) -- 67.3 (7.8) 

Sex (% female) 63.7 56.5 

Hypertensive (%) 55.1 52.5 

BMI (kg/m2) 30.1 (6.7) 28.8 (7.35) 

Diastolic (mm/Hg) 74.5 (8.1) 76.0 (8.8) 

Systolic (mm/Hg) 134.5 (14.1) 135 (14.6) 

Cholesterol (mg/dL) 183 (40.6) 169 (46.7) 

HDL (mg/dL) 52.5 (25.0) 49 (17.8) 

LDL (mg/dL) 103 (42.9) 93 (37.4) 

Triglycerides (mg/dL) 125 (76.3) 97 (68.1) 

Median values were calculated for the following: Age at POAG diagnosis was determined by the date of when 

POAG ICD-9 (365.11) was first mentioned in the records. Age at last clinic visit (LCV) was taken as the date of 

the last CPT mentioned in the records for controls. An individual was classified as hypertensive if he/she met one 

of three criteria: systolic blood pressure > 140 mm/Hg, diastolic blood pressure > 90 mm/Hg, or on hypertension 

medications all within a two year window of when they were diagnosed with POAG in cases and a two year window 

of their LCV date for controls.  Blood pressure (systolic and diastolic), lipids (total cholesterol, high-density 

cholesterol, low-density cholesterol, and triglycerides), and body mass index (height and weight) were calculated 

from labs or measurements within two years of POAG diagnosis or LCV.  Abbreviations:  standard deviation (SD) 

 

Generalization of known primary open-angle glaucoma risk variants 

We consider a previously associated POAG variant to have generalized if the same variant was associated 

in a different population with the same direction of effect as observed in the original population (in this 

case, European-descent and Japanese populations).   

In this analysis of African American adults from EAGLE BioVU, POAG cases and controls were tested for 

an association with 286 common variants (MAF > 5%) in the CDKN2B-AS1 region using a logistic 

regression model 1) adjusted for age, sex, and PCs (Supplementary Table 9) and 2) age, sex, PCs, and 

median diastolic blood pressure (Table 2). Although some SNPs were associated at p < 0.05 (Figure 5), 
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none passed a strict Bonferroni correction (p < 0.0001). Nine SNPs were marginally significant at a p < 

0.05: rs77728904, rs80166549, rs1333049, rs79985856, rs79182326, rs77920300, rs77284052, 

rs10757277, and rs10757279 (Table 2). In the next study, we aimed to explore whether potential novel 

variants, available on the Metabochip, modify POAG risk in this population.  

 

Table 20: Results for genetic association analysis of CDKN2B-AS1 region in African Americans 

 cases (n=138) and controls (n=1,376) adjusted for age, sex, PC, and median diastolic blood pressure. 

Shown are the ten most significant tests.  

SNP Allele MAF Function Class OR CI p-value 

rs77728904 C 0.09 Intron 0.40 0.18-0.89 0.03 

rs80166549 G 0.10 Intron 0.43 0.20-0.92 0.03 

rs1333049 G 0.24 upstream intergenic 0.62 0.40-0.96 0.03 

rs79985856 A 0.10 Intron 0.44 0.21-0.94 0.03 

rs79182326 A 0.10 Intron 0.44 0.21-0.94 0.03 

rs77920300 A 0.10 Intron 0.45 0.21-0.95 0.04 

rs77284052 A 0.10 Intron 0.45 0.21-0.95 0.04 

rs10757277 G 0.20 upstream intergenic 0.63 0.40-1.00 0.05 

rs10757279 G 0.20 upstream intergenic 0.63 0.40-1.00 0.05 

rs10738609 G 0.21 Intron 0.65 0.41-1.01 0.06 

rs2383206 G 0.41 Intron 0.72 0.51-1.01 0.06 

rs17694493 G 0.11 Intron 0.52 0.27-1.02 0.06 

rs2069422 C 0.10 Intron 0.50 0.24-1.03 0.06 

rs10738610 C 0.21 upstream intergenic 0.65 0.41-1.02 0.06 

rs10965234 A 0.47 Intron 1.37 0.98-1.91 0.06 

rs77563194 A 0.05 Intron 1.77 0.96-3.27 0.07 

rs10965235 A 0.47 Intron 1.37 0.98-1.91 0.07 

rs1333046 T 0.25 upstream intergenic 0.68 0.45-1.03 0.07 

rs10217426 C 0.47 Intron 1.36 0.98-1.90 0.07 

rs12347950 G 0.10 Intron 1.55 0.96-2.50 0.07 

MAF = minor allele frequency 

OR = odds ratio 

CI = confidence interval 
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Figure 20 Locus Zoom regional association plot for POAG in African Americans for CDKN2B-AS1. 

 Vertical axis is –log10 of the p-value, the horizontal axis is the chromosomal position. Each dot represents 

a SNP tested for association with POAG in 138 cases and 1,376 controls. Approximate linkage 

disequilibrium between the most significant SNP and the other SNPs in the plot is shown by the r2 legend 

with LD calculations from 1000 Genomes YRI. 
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Genetic discovery for primary open-angle glaucoma in African Americans 

To reiterate, much of the population-based genetic association studies in POAG have been carried out in 

European and Asian-descent populations. While these studies have had some success in identifying genetic 

modifiers of POAG risk, the studies generalizing these associations in African Americans, the population 

most at risk for POAG, have been limited. The studies that have been published thus far sought to determine 

whether European index variants generalized to African American and African population. In a study of 

African American women from the Women’s Health Initiative (WHI)(Hoffmann et al., 2014) there was no 

association between European-index variants and their population, while additional work by Liu et al found 

an association with single variants in the CDKN2B-AS1 and SIX1/SIX6 gene regions in subgroup analyses 

of normal tension and high pressure POAG(Liu et al., 2013b). These conflicting results do not yet provide 

strong evidence to suggest that European index variants are driving risk in African Americans. By only 

focusing on genomic locations identified in other populations the scientific community leaves open a huge 

gap in the knowledge of POAG genetics.  

 The Metabochip provides an interesting opportunity to explore known cardiovascular and metabolic –

associated regions in the genome. The vascular theory of glaucoma hypothesizes that systemic irregularities 

in the cardiovascular pathways lead to pathogenesis of glaucomatous optic neuropathy via a mechanism of 

reduced blood supply to the eye. This can result in starving retinal ganglion cells of prerequisite oxygen 

and nutritents(Flammer, 1994; Flammer et al., 2002). Whether or not systemic blood pressure (bp) is 

involved in glaucoma pathology has been up for debate(Bonomi et al., 2000; Leske et al., 2007, 2008; 

Quigley et al., 2001). The correlation between bp and glaucoma found in some studies can perhaps be better 

explained by ocular perfusion pressure (OPP) and its effect on optic nerve health. OPP is calculated by 

taking the difference between the arterial and venous blood pressure. Low OPP has been repeatedly 

associated with glaucoma and glaucoma progression(McGlynn et al., 2013; de Oliveira and Kasahara, 

2014). At a molecular level it is hypothesized that low OPP or fluctuations in OPP lead to ischemia in the 

optic nerve(Cherecheanu et al., 2013).  
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We under took to investigate whether gene regions associated with cardiovascular and metabolic traits 

might be driving POAG risk in African Americans by performing a genetic association analysis of all SNPs 

available on the Metabochip. Although it should be noted that many of these SNPs were associated with 

other traits not related to cardiovascular or metabolic phenotypes.  

Results 

We tested all SNPs genotyped on the Metabochip for an association with POAG 1) adjusted for age, sex, 

first three PCs, and 2) adjust for age, sex, PCs, and median diastolic blood pressure. The 100 most 

significant results for each model can be found in the appendix (Supplemental Table 3 and Supplemental 

Table 4, respectively). No SNP was significantly associated with POAG after adjusting for a strict 

Bonferroni correction (p < 4.04 x 10-7) in either model (Table 21 and Supplementary Table 12). The two 

most significant associations in the model adjusted for age, sex, PC, and median diastolic blood pressure 

(chr1:228347779 and chr1:228354829) are located within the protein coding gene for iron-sulfur cluster 

assembly homolog (IBA57), which is a component of the biosynthesis pathway for mitochondrial 4Fe-4S 

proteins and clinical implications in severe myopathy(Ajit Bolar et al., 2013). A small number of SNPs met 

our suggestive threshold of p < 10-4 (Figure 21).  

Table 21: Ten most significant results for POAG African American Metabochip genetic association. 

Logistic regression assuming an additive genetic model was performed for 138 cases and 1,376 

controls adjusted by age, sex, principal components, and median diastolic blood pressure.  

CHR SNP Gene Allele MAF OR 95% CI p-value 

1 chr1:228347779 IBA57 A 0.11 2.37 1.56-3.60 5.00 x10-5 

1 chr1:228354829 IBA57 C 0.15 2.09 1.44-3.02 8.73 x10-5 

21 rs9982695 C21orf33 A 0.24 2.09 1.44-3.02 8.74 x10-5 

4 rs3775202 VEGFC G 0.43 1.92 1.38-2.66 9.70 x10-5 

2 rs13423742 FN1 C 0.06 3.04 1.73-5.36 1.14 x10-4 

6 rs7454156 BMP6 G 0.18 2.08 1.42-3.02 1.37 x10-4 

6 rs9479726 RGS17-OPRM1 A 0.24 0.41 0.25-0.64 1.54 x10-4 

19 rs1671152 GP6 A 0.32 1.91 1.36-2.68 1.60 x10-4 

10 rs286489 LOC101929727 A 0.28 1.90 1.35-2.66 1.80 x10-4 

5 rs4336354 HTR4 G 0.09 2.51 1.54-4.07 1.86 x10-4 

MAF = minor allele frequency 

OR = odds ratio 

CI = confidence interval 
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Discussion and Summary 

Generalization of previously identified CDKN2B-AS1 and SIX6 variant 

This study did not find a significant association in the CDKN2B-AS1 region for POAG in African 

Americans after adjusting for multiple testing. These results are not entirely surprising given the differences 

in susceptibility and linkage disequilibrium between European and African-descent populations 

(Supplementary Figure 7 and Supplementary Figure 8). Most of the significant associations between this 

gene and POAG were discovered in European and Japanese populations (Table 22). Of these SNPs, five 

were available on the Metabochip but were not found to be associated with POAG in this study. Our results 

are somewhat consistent with Liu et al(Liu et al., 2013b) who investigated known European POAG risk 

 

Figure 21: Manhattan plot of EAGLE BioVU African American POAG genetic association results. 

Logistic regression assuming an additive genetic model was performed for 138 cases and 1,376 controls 

adjusted by age, sex, principal components, and median diastolic blood pressure. P-values (-log10) on 

the y-axis) for each test of association are plotted by chromosome (x-axis).  The blue line depicts a 

suggestive significance threshold of p =10-4. 
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loci in both an African American and Ghanaian population. Liu et al failed to replicate many of the 

European risk loci in their African populations, but they did identify one SNP (rs10120688) in CDKN2B-

AS1 significantly associated with POAG with an OR of 1.21. This SNP is available on the Metabochip but 

the association was not replicated in our dataset (OR = 1.01 p = 0.93) nor did we have the power to detect 

this association (Supplemental Figure 5). CDKN2B-AS1 rs1333049 was available for analysis in this study, 

and interestingly, our results (OR = 0.72; p = 0.06) were similar to that reported Liu et al for the same SNP 

(OR = 0.89; p = 0.07). Increasing our power with additional samples may resolve this test.  

 

Table 22: Published index variants for the CDKN2B-AS1 region associated with POAG 

 or POAG associated trait and availability of these variants on the Metabochip. 

rs# Gene population OR p-value Discovery study 

Current   

Study           

OR      p-value 

rs7865618 CDKN2B-AS1 Japanese 1.78 9x10-11 

Nakano et 

al(Nakano et al., 

2012) 1.01 0.96 

rs1063192 CDKN2B Japanese 1.33 5x10-10 

Osman et 

al(Osman et al., 

2012) 0.92 0.75 

rs2157719 CDKN2B-AS1 

European 

American 1.45 2x10-18 

Wiggs et 

al(Wiggs et al., 

2012) 0.97 0.92 

rs4977756 CDKN2B-AS1 European 1.50 4.7x10-9 

Burdon et 

al(Burdon et al., 

2011b) 1.05 0.72 

rs10120688 CDKN2B-AS1 

African 

American 1.21 0.002 

Liu et al(Liu et 

al., 2013b) 1.01 0.93 
Shown are significant index variants which are listed on the NHGRI GWAS catalog and within PubMed as of 2014. Included 

is the availability of the index variants on the Metabochip and summary results for the current studies association analysis of 

African Americans with POAG in the CDKN2B-AS1 region.   

A previously identified SNP (rs10483727), located upstream of SIX6, associated with POAG and 

quantitative glaucoma traits(Macgregor et al., 2010; Osman et al., 2012; Ramdas et al., 2010; Wiggs 

et al., 2012) in separate European and Japanese population studies did not generalize in our study. In 

EAGLE BioVU African American POAG cases, rs10483727 (p = 0.42) had a genetic effect size (OR) of 

1.25 which is on par with the published effect size (1.27-1.32). The A-allele frequency in HapMap CEU 
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and JPT is approximately 0.38 and 0.74, respectively, while in the EAGLE BioVU African Americans the 

A-allele was present with a frequency of 0.86. Our study was underpowered to detect a significant 

association with a genetic effect size smaller than 1.50. Within HapMap ASW, the rs10483727 variant does 

not appear to be in LD with other SNPs in the region (Supplemental Figure 6) while even in HapMap CEU 

there is little LD (r2 < 50) to suggest tagging of another SNP (Supplementary Figure 9).  

Discovery 

In the discovery phase of our study, no SNP reached Bonferroni-corrected significance. However, the 

POAG analysis identified several interesting SNPs (n = 80) at a p < 10-4 to be followed up on in future 

studies (Supplemental Table 4). The most significant of these associations involve SNPs located within 

genes involved in the mitochondria, angiogenesis, and serotonin and collagen receptors. Of particular 

interest for future studies is rs1671152 (OR=1.96; p = 1.60x0-4), a known missense variant in the 

glycoprotein VI (GP6) gene. GP6, a collagen receptor, is involved in platelet aggregation but is expressed 

in the eye and brain.   Potential implications may include scleral collagen organization and integrity of the 

blood-retinal barrier in glaucoma susceptibility. 

Abnormalities in the vascularization of ocular tissues and subsequently the deprivation of oxygen and 

nutrients to these tissues are known to lead to eye disease such as age-related macular degeneration, diabetic 

retinopathy, and neovascular glaucoma.  Hypoxia-induced ischemia can lead to over expression of pro-

angiogenic factors such as the proteins in the VEGF family. Vascular endothelial growth factor C (VEGFC) 

and serotonin receptor 4 (HTR4) genes promote angiogenesis in endothelial cells(Profirovic et al., 2013) 

and are expressed in retinal and central nervous system tissues(Zarkada et al., 2015). Our top results 

highlight a potential role for angiogenesis (i.e. VEGFC and HTRA) in POAG risk for African Americans.  

Strengths and Limitations 

This study has a number of strengths and limitations. Perhaps its greatest strength is the pursuit of 

knowledge in African Americans, a population far too often underrepresented in biomedical research. As 
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the population at greatest risk of POAG, the work performed here has the potential to offer the greatest 

impact to those at risk. Studies like ours can help to determine to what extent allele frequency differences 

are contributing to variation in disease risk and subsequently to ascertain whether population specific 

factors are at work. Additional strengths involve the utilization of an EMR as a cost efficient and data-dense 

resource for studies.  

A major limitation of our study is the limited number of cases for inclusion in the genetic association 

studies, which reduces our statistical power to identify moderate to smaller genetic effects (Supplemental 

Figure 5). Even at a moderate allele frequency of 25%, our study had only 80% power to detect an 

association with an OR of 1.60. Power is further exasperated by incomplete data in patient’s medical charts 

in the Vanderbilt de-identified medical records (BioVU). We lost twenty-one cases for analysis when 

incorporating diastolic blood pressure into our model resulting in a total case reduction of 18.4%. Despite 

limited samples sizes, these samples could be included in a meta-analysis of POAG in African Americans 

which would increase power.  

Because of these strengths, and despite these limitations, we have contributed to the sparse knowledge of 

the genetic architecture of POAG in a diverse population. One of the findings in our study is that metabolic 

and cardiovascular risk loci may be contributing to POAG risk in African Americans while known loci 

discovered in European and Japanese populations do not explain genetic risk in this population.  
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CHAPTER V 

GENETIC DETERMINANTS OF DIABETIC RETINOPATHY IN AFRICAN 

AMERICANS  

Introduction 

The American Diabetes Association defines “diabetes” as a group of metabolic diseases typically 

characterized by high blood sugar and defects in the body’s ability to produce and/or use insulin (Figure 

22). As of 2014, 9.3% of the United States population was affected by diabetes with estimates predicting 

that nearly one third of the population will be afflicted by 2050(Antonetti et al., 2012) driven by an increase 

in incident T2D cases.  

Type-1 diabetes (T1D) is an insulin-dependent diabetes that is caused by a lack of insulin production in the 

body. T1D occurs in youths before the age of 25, with an average diagnosis around12 years of age. 

Prevalence rates are predicted to be 0.26 to 1.5% in youths < 20 yrs. This insulin deficiency results from 

the destruction of beta cells in the pancreas due to autoimmune assault. Approximately 80-90% of new 

diagnoses have anti-islet cell antibodies(Steck et al., 2015) which are thought to be triggered by viral 

infection or other environmental insult. Classic symptoms include: polyuria, polydipsia, increased hunger, 

fatigue, and weight loss.  

Our study focuses on individuals who suffer from the non-insulin dependent form or type 2 (T2D) which 

results from complications of insulin resistance on top of an insulin deficiency background. Insulin 

resistance is the result of the body’s inability to efficiently use insulin for the uptake of glucose into tissues 

such as muscle and the liver. This inability results in high glucose levels that can trigger an increase in 

glycogen synthesis in liver cells and a failure to suppress glucose production. Chronic elevated basal levels 

of insulin down regulate insulin receptors and thereby increase insulin resistance. Currently it is estimated 

that people living with T2D will lose up to 10 years of life expectancy and up to 20 years for 

T1D(Livingstone et al., 2015; Writing Group for the DCCT/EDIC Research Group et al., 2015). 
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Figure 22: Diagram of the biological pathways involved in the control of blood glucose levels.  

This figure is adapted from the work of Dr. Craig Fruedenrich at 

http://science.howstuffworks.com/environmental/life/human-biology/diabetes1.htm. 
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From the original coining of the term “diabetes” by the Greek Aretaeus, to the discovery of insulin in 1921 

by the Canadian surgeon Frederick Banting, the clinical and genetic knowledge of diabetes and diabetic 

complications has exploded in recent decades. The advent of medical technology has opened up the ability 

of clinicians to monitor, regulate, and treat the many metabolic dysfunctions of the disease. This has led to 

a drastic increase in the longevity of patients from an original mortality prognosis of one year before the 

discovery of insulin, to the ability of most diabetics to live full lives. Greater longevity of today’s diabetic 

patients has also led to the presentation and study of complications that arise from long term experience 

with the disease. One such complication is the initiation and progression of diabetic retinopathy (DR). 

Individuals with DR present with a variety of morphological lesions in the retina. This abnormality in the 

microvasculature condition of the retina is present in 82% of type 1 diabetes (T1D)(Roy et al., 2004) and 

40% in type 2 diabetes (T2D)(The Eye Diseases Prevalence Research Group, 2004) patients in the United 

States with prevalence rates increasing drastically 15 years after diagnosis to nearly 100% in T1D and 80% 

in T2D patients(Fong et al., 2004; Klein et al., 1984). In 2007 approximately 4.4% of individuals with 

diabetes had advance DR putting them at risk for severe vision loss and blindness. 

Clinical features and diagnosis of diabetic retinopathy 

Diabetic retinopathy is traditionally viewed as one disease that occurs on a spectrum of severity. It is 

classified as two clinical subtypes according to the absence or presence of new blood vessel growth within 

the retina: non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR), 

respectively. Each sub-type is further broken down into severity levels (i.e. mild, moderate, severe) based 

upon the presence and type of microvascular damage, such as, microaneurisms, cotton wool spots, venous 

beading, or neovascularization (Figure 23). Early stages of DR are characterized by little vision loss and 

are the most effective time at which to treat. Early intervention of glycemic control has been shown to delay 

progression of retinopathy. Late stages of DR are often accompanied by irreversible, severe vision loss or 

blindness and accounts for the number one cause of blindness in working age Americans (i.e. 20-74 years 

of age) (Figure 24).  
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Screening for DR is typically carried out through the use of a dilated eye exam with fundus photography 

for visualization of the retina. Exams look for the presence and/or absence of cataract, abnormal blood 

vessels, blood or swelling in retina, scar tissue, neovascularization, blood in vitreous humor, and retinal 

detachment(s). Diagnosis is determined by the Airlie House Classification Scheme. Additional tests include 

the fluorescein angiogram and optical coherence tomography (OCT).  

An angiogram is a picture of the inside or lumen of blood vessels to determine if blood vessels in the retina 

are leaking (i.e. aneurysms and hemorrhages). During the procedure for a fluorescein angiogram, the patient 

is injected with sodium fluorescein and a picture of the retina is captured, via fluorescence emitted after 

illumination of the retina with blue light at a wavelength of 490 nm, to obtain an angiogram. OCT is a 

noninvasive optical signal acquisition and procession method that captures 3D images of slices of the retina. 

An OCT can measure the thickness of the retinal tissue, determine if fluid is accumulating within the retina, 

oxygenation levels of retinal tissue, retinal swelling, and retinal detachment. OCT is more sensitive than 

fundus photography, which requires skilled personnel for both the imaging and is a qualitative versus a 

quantitative analysis. 
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Figure 23 Representation of the vision loss associated with diabetic retinopathy 

 in comparison to normal vision. Images are adapted from the National Eye Institute’s 

webpage:https://www.nei.nih.gov/photo/eye-diseases-and-vision-disorders. 

 

 

Figure 24: Funduscopic image of the stages of diabetic retinopathy severity start from the publication of 

El-Bab et al8. 
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Etiology and pathogenesis of diabetic retinopathy 

The retina is a unique organ within the body that is protected by the blood-ocular barrier which isolates the 

retina from the body and most other parts of the eye. This barrier acts as protection from immunological 

attacks and prevents substances such as viruses and drugs from readily crossing over. Retinal tissue also 

exceeds most other tissues in the body for metabolic energy needs but, interestingly, the inner retina 

possesses few mitochondria. It requires glycolysis to meet these needs instead of the more common 

oxidative phosphorylation mode of ATP production(Antonetti et al., 2006). Mitochondria-enriched Muller 

cells are found in the outer retina following along an inherent oxygen tension gradient that is highest in the 

outer regions and decreases to an almost hypoxic state in the inner regions. The cycle of energy acquisition 

(Figure 25) (Antonetti et al., 2006) illustrates that cells in the outer retina (i.e. Muller cells and astrocytes) 

and neurons can take up glucose from diffusion at the capillaries, but only the neuron can oxidize glucose. 

Muller cells and astrocytes convert glucose to lactate that is then taken up by neurons for oxidation. The 

constant production of ATP is vital for cell signaling. It is believed that this high demand for energy but 

minimal vascular supply of nutrients predisposes the retina to diabetes-induced damage via chronic 

inflammation. 

 Current hypotheses suggest that the inflammation is triggered by constant levels of high blood 

glucose which directly or indirectly leads to cellular apoptosis in retinal pericytes. The pericytes make up 

a component of the retinal capillary walls that helps regulate blood flow and removal of cellular debris. 

High levels of glucose are believed to lead to increased levels of advanced glycation end products (AGE) 

which are presumed to accumulate in the pericytes(Hammes, 2005). The build-up of these toxic components 

then leads to apoptosis and the formation of microaneurisms and hemorrhages(Geraldes et al., 2009), early 

signs of DR.  
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Pericytes interact with endothelial cells and contribute to the homeostasis of the blood-retinal barrier by a 

complex interplay of cell signaling (Figure 26). Endothelial cells secrete PDGF-B to recruit and maintain 

pericytes through the activation of protein kinase B (Akt). Akt activity is central to cell survival pathways 

by inhibiting apoptotic events. Additionally, Pericytes produce molecules that contribute to the endothelial 

barrier and junctional complexes such as the platelet-derived growth factor (PDGFR) and the PDGF 

receptor. In diabetes, hyperglycemia destabilizes the interaction between pericytes and the endothelium and 

can lead to pericytes cell death. An increase in the expression of VEGF and a decrease in pericytes leads to 

permeability in the vascular system and contributes to angiogenesis. These fragile new blood vessels are 

prone to breakage and leaking of blood and cellular fluids under the retinal tissue or into the vitreous 

humour.  

 

Figure 25: Adapted from Antonetti, et al (2006): Diagram of the flow of glucose utilization by retinal 

tissue cells 
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Genetics and epidemiology of diabetic retinopathy 

 The genetics of DR are complicated by conflicting results in association studies, but 

epidemiological studies have been fairly consistent in regards to the environmental risks that play a role in 

disease susceptibility and intermediate phenotypes. Briefly, primary risk factors include male sex, duration 

of diabetes, glycemic control, hypertension, hyperlipidemia, type of diabetes (T1D versus T2D), age, and 

race. The prevalence of DR varies in T2D differs across populations (Figure 27) with African Americans 

and Hispanics experiencing the greatest level of burden. Evidence from heritability studies supports that 

genetic factors play a role in this disease. The predisposition to diabetes is the first necessary factor for 

development of DR. Multiple heritability studies of diabetes have been carried out in different 

populations(WONG et al., 2006),(Leslie and Pyke, 1982). It is well understood that diabetes has a genetic 

component but other studies have also shown evidence for a genetic component to DR beyond the risk of 

disease due to exposure of diabetes.   

 

Figure 26: Diagram of pericyte cell death as mediated by diabetic complications. Adapted from the 

publication of Dr. David Antonetti9.  

 

 



123 

Beyond heritability studies, the identification of genes that play a direct or indirect role in DR has been 

limited. This may be explained partially in that family based linkage studies of common, complex diseases 

such as diabetes are difficult for a number of reasons including identification of multiplex family pedigrees 

and genetic heterogeneity across families. Regardless, some studies have been successful in identifying 

genomic loci and variants correlated with DR. In a modified sibpair study of Pima Indians, a weak linkage 

peak (LOD = 1.36 - 1.46) with DR was found on chromosome 3 and chromosome 9(Imperatore et al., 

1998). Larger GWAS studies have had limited success. One GWAS of severe diabetic retinopathy (sDR) 

was performed in 973 cases of European-descent individuals with T1D(Grassi et al., 2011). Though this 

study did not find genome-wide significant (p < 10-8) associations for DR in a T1D cohort(Grassi et al., 

2011), it did identify 19 variants with suggestive significance (p < 1x10-7). One nominally associated variant 

(rs476141) was located near the AKT3 gene which is a member of the serine/threonine protein kinase 

family. This kinase and others in the family are known regulators in cell signaling, insulin, and glucose 

uptake and suggest a biological link to DR. A study in a Han Chinese population found associations (p < 

10-7) in intergenic regions of TBC1D4-COMMD6-UCHL3 and ARL4C-SH3BP4(Sheu et al., 2013b). 

Interestingly, a Taiwanese T2D GWAS(Huang et al., 2011) found a significant association in the heparin 

sulfate 6-O-sulfotransferase 3 gene (HS6ST3) which is known to play a role in lipid metabolism and 

inflammation, two factors which are thought to contribute to the etiology of DR. 

To recapitulate, the etiology of DR is complex and complicated further by shared genetic and 

epidemiological risk factors of diabetes, such as African ancestry. For nearly every study that identifies 

ancestry as a risk variable another study does not(Ojaimi et al., 2011; WONG et al., 2006). After accounting 

for traditional risk factors(Emanuele et al., 2005), African Americans from the Veterans Affairs Diabetes 

Trial had a higher frequency of severe DR a greater risk (OR = 2.30) of macular edema(Emanuele et al., 

2009) compared to their European American counterparts .  Still, the question remains whether 

race/ethnicity plays a significant role in DR and more specifically whether this differentiation is due to 

unique genetic determinants or disparities in health care and additional socioeconomic factors. 
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Figure 27: Prevalence rates of diabetic retinopathy in U.S. adults with diabetes as determined by published 

NHANES data.  
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Generalization of published diabetic retinopathy risk variant(s) in an African American 

population 

The impact of the obesity epidemic sweeping across developed countries is driving development of T2D 

and the suite of diabetic comorbidities, such as extreme fatigue, frequent infections, impaired healing 

ability, and ocular complications that can hinder and reduce the quality of life of individuals in the diabetes 

community(Narayan K, 2003). Furthermore, this burden is heaviest on individuals of low socioeconomic 

status who are disproportionately affected by this disease. As the incidence of T2D increases it is expected 

that the incidence of DR will increase proportionally without appropriate interventions. Therefore, it is 

important to determine the genetic and environmental factors that play a role in disease onset and 

progression. Our study proposes to explore the genetic architecture of diabetic retinopathy in African 

Americans, prior studies of which are altogether missing or uninformative. This knowledge is important 

for determining potential screening programs and may lead to a better understanding of the underlying 

etiology specific to African Americans and to identifying potential pathways for pharmacology targets in a 

population vastly underrepresented in the medical research field. 

Here I will present my primary analyses for DR common variants in the advanced glycation end product 

receptor (AGER) gene and the transcription factor 7-like 2 (TCF7l2) gene. AGER, which is expressed in the 

retina, is known to interact with molecules involved in homeostasis and inflammation. Nonsynonymous 

AGER rs2070600 (Gly82Ser) is one of a very few polymorphisms that have been found to correlate with 

DR risk(Balasubbu et al., 2010), although inconsistently(Kang et al., 2012). The association studies for 

AGER rs2070600 and DR thus far have been limited to populations of Asian-descent.  AGER rs2070600 

has also been associated with T2D risk, but this association has also been inconsistent across 

studies(Goulart et al., 2008; Kang et al., 2012) and the association has yet to be identified at genome-wide 

levels.  The associations between AGER rs2070600 and T2D have been conducted in mostly in populations 

of European and Asian-descent(Kang et al., 2012). 



126 

Unlike AGER rs2070600, polymorphisms within and around TCF7L2 (such as rs7903146) have been 

consistently associated with type 2 diabetes in both candidate gene and GWAS conducted primarily in 

European-descent populations(Morris et al., 2012; Scott et al., 2007; Voight et al., 2010; Zeggini et al., 

2007).  TCF7L2 SNPs have also recently been associated with T2D in African Americans(DIAbetes 

Genetics Replication And Meta-analysis (DIAGRAM) Consortium et al., 2014; Haiman et al., 2012; Kho 

et al., 2012; Ng et al., 2014; Palmer et al., 2012), suggesting that this association for T2D generalizes to 

multiple ancestral populations.  Like AGER rs207600, TCF7L2 rs7903146 has been inconsistently 

associated with diabetic retinopathy(Sudchada and Scarpace, 2014) and has yet to be associated with DR 

at genome-wide significance. 

As part of the PAGE I study, EAGLE genotyped nearly 16,000 DNA samples from non-European 

Americans in BioVU using the Illumina Metabochip, an array designed to replicate and fine-map previously 

associated genomic regions that impact type 2 diabetes and cardiovascular disease risk.  The Metabochip 

and DR phenotype algorithm have been previously described in Chapter 3.  With 119 DR cases and 473 

diabetes controls drawn from a clinical population, I test here whether or not AGER rs2070600 and TCF7l2 

rs7903146 are risk factors for DR in African Americans.  I also test for the best associated SNPs in these 

gene regions in African Americans.  Finally, I test all SNPs targeted on the Metabochip for an association 

with DR among African Americans as a hypothesis generating experiment.  Overall, I did not identify a 

significant association with DR in this moderately-sized clinically-derived dataset, highlighting the 

challenges of performing genetic association studies for a complex disease in minority populations.  

Methods 

Study Population and Phenotyping 

The study population and phenotyping of DR cases and controls have been described in detail in Chapter 

3: Utilization of Electronic Medical Records systems for genetic association studies. Briefly, 119 African 

Americans DR cases and 473 African American T2D controls were identified in the Vanderbilt SD that 
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were genotyped on the Metabochip. These individuals were further evaluated for inclusion in the following 

genetic association analysis.  

Statistical methods 

SNP rs2070600 was genotyped on Metabochip with an additional 27 variants genotyped in a 30 kbp region. 

After filtering for MAF > 0.05,we tested for an association between DR and 13 SNPs in the AGER region 

of chromosome 6 and 148 SNPs in the TCF7L2 region of chromosome 10 in EAGLE BioVU African 

Americans. We also performed tests of association for all variants on the Metobochip as a hypothesis-

generating exercise.  Individuals included in this analysis were those identified as “definite” DR cases over 

the age of 20 years and DR controls over the age of 60 years  

Each SNP was tested for an association with DR using logistic regression assuming a log-additive genetic 

model. We performed tests of association adjusted by 1) age and sex and 2) age, sex, and mean serum 

glucose levels. For definite DR cases (n=119), this study has 80% power to detect an OR of 2.0 at an allele 

frequency of 0.20 or an OR of 1.80 at MAF 0.40. This assumes a Bonferroni corrected p-value of 0.0018 

and a log-additive genetic model. For TCF7L2 rs7903146, I assumed an allele frequency of 0.30, a 

published odds ratio of 1.58, sample size of 100 cases, and a Bonferroni corrected p-value of 0.0003.  Figure 

28 shows this association is adequately powered in our study at a significance threshold of p=0.05. Analyses 

were conducted using PLINKv1.90(Purcell et al., 2007) and results were plotted using Synthesis 

View(Pendergrass et al., 2010). Power calculations were performed in Quanto®(Wang and Li, 2004).    
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Within our diabetic retinopathy study, we have the power to replicate associations found previously in 

European descent population studies, such as rs7903146 (TCF7L2) which is located with a fine mapped 

region of Metabochip. Power calculations were run in Quanto®(Wang and Li, 2004) and Figure 28 shows 

an example of variant rs7903146 with an allele frequency of 0.30, a published odds ratio of 1.58, and a 

sample size of 100, which is adequately powered in our study at a significance threshold of p=0.05. 

Results 

Population characteristics 

After final quality control, we calculated the demographics for the EAGLE BioVU African American DR 

cases and T2D controls. In general cases were older, more likely to be male, and had been diagnosed with 

 

Figure 28: Power curve of the number of cases necessary to identify an association with SNP rs7903146 at 

a specified odds ratios with 80% power.  

Power Calculations determined in Quanto for the EAGLE BioVU African American diabetic retinopathy 

cases with a case: control ratio of 1:3, log-additive model, and a 2-sided t-test. The color coded lines 

represented the varying allele frequencies tested for in these power calculations. 
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T2D earlier compared to controls (Table 23). As expected, controls had better control of their diabetes as 

determined by their blood glucose and glycated hemoglobin levels. Controls were also more likely to have 

healthier blood cholesterol levels than their case counterparts. 

 

Table 23: Demographics of EAGLE BioVU Metabochip 

African Americans with diabetic retinopathy 

  Diabetic retinopathy 

  cases controls 

N 119 434 

Age (years) 65 63.5 

% female 39% 61% 

BMI 31.1 32.4 

Age T2D diagnosis 52.9 59.9 

T2D duration (years) 9 5 

Age DR diagnosis 56 - 

Systolic (mmHg) 139.1 132.7 

Diastolic (mmHg) 76.3 77.9 

Cholesterol (mg/dL) 194.5 165 

Glucose (mg/dL) 222 117 

Triglycerides 

(mg/dL) 140 101 

LDL (mg/dL) 111 91 

HbA1c (%) 10.6 6.7 

Values shown are for the medians 

Generalization of known diabetic retinopathy risk variants 

After quality control and MAF frequency cutoffs, we tested a total of 13 SNPs in the AGER gene and a total 

of 148 SNPs in TCF7L2.  We did not identify an association between DR and the EAGLE BioVU African 

American cases and controls for either the AGER or the TCF7L2 gene regions. As can be seen in the 

Synthesis View plots (Figure 29and Figure 30) no SNP was significantly associated with DR at a 

significance threshold of p < 0.05. 
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Figure 29: Synthesis view plot of association results for 13 common variants(MAF > 0.05) in the AGER 

gene region.  

The model was adjusted for age, sex, and mean blood serum glucose levels. P-values are represented by the 

blue arrows and are transformed by the –log10, with the threshold of p = 0.05 marked by the red line. 

Colored arrows also show the direction of effect (beta).  
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Figure 30: Synthesis view plot of association results for the top 25 common variants (MAF > 0.05) in the 

TCF7L2 gene region 

The model was adjusted for age, sex, and mean blood serum glucose levels. P-values are represented by the 

blue arrows and are transformed by the –log10, with the threshold of p = 0.05 marked by the red line. 

Colored arrows also show the direction of effect (beta).  
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Discovery study of novel risk loci correlated with diabetic retinopathy in African 

Americans 

Results 

We tested for an association between DR and all SNPs available on the Metabochip with a MAF > 0.05 

under two models (Figure 31 and Figure 32). In the model adjusted for age and sex, there were few variants 

that were nominally associated at p <10-4 (Supplementary Table 13). 

In the model adjusted for age, sex, and mean blood serum glucose levels, again no SNP met Bonferroni 

significance for multiple testing adjustment. One SNP (rs7076968) on chromosome 10, located within the 

intergenic region of ZCCHC24-EIF5AL1 had a p - value of 7.60E-06 (Table 8). In the general EAGLE 

BioVU African American population (n=11,521), this SNP has a MAF of 5.5%. The MAF was lower in 

T2D controls (MAF = 3.5%) and notably higher in DR cases (MAF = 9.7%).   

 

Figure 31: Manhattan plot of EAGLE BioVU African American DR genetic association results.  

Logistic regression assuming an additive genetic model was performed for 119 cases and 434 controls adjusted 

by age and sex. P-values (-log10) on the y-axis) for each test of association are plotted by chromosome (x-axis).  

The blue line depicts a suggestive significance threshold of p =10-4.    
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Figure 32: Manhattan plot of EAGLE BioVU African American DR genetic association results.  

Logistic regression assuming an additive genetic model was performed for 119 cases and 434 controls 

adjusted by age, sex, and mean blood glucose levels. P-values (-log10) on the y-axis) for each test of 

association are plotted by chromosome (x-axis).  The blue line depicts a suggestive significance threshold of 

p =10-4. 
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Table 24: Twenty most significant results for diabetic retinopathy African American Metabochip genetic 

association.  

Logistic regression assuming an additive genetic model was performed for 119 cases and 434 controls adjusted 

by age, sex, and mean blood serum glucose levels.   

CHR SNP Gene Allele OR CI P 

10 rs7076968 ZCCHC24-EIF5AL1 A 5.54 2.62-11.71 7.60E-06 

1 rs820626 KAZN C 2.28 1.53-3.41 5.11E-05 

7 rs7790518 C1GALT1 C 2.86 1.71-4.77 6.12E-05 

4 rs6849073 upstream-NDST3 A 0.49 0.33-0.72 2.97E-04 

20 rs6038207 GPCPD1 A 0.46 0.31-0.68 1.41E-04 

10 rs4253162 ERCC6 A 2.13 1.42-3.17 2.25E-04 

14 rs3917187 TGFB3 G 0.47 0.31-0.70 2.68E-04 

20 rs3830064 PDYN C 2.16 1.42-3.28 3.01E-04 

6 rs2076310 RXRB G 2.09 1.40-3.13 3.20E-04 

9 rs17062682 TJP2 A 2.12 1.41-3.19 3.12E-04 

18 rs1529220 downstream-GTSCR1 G 0.44 0.29-0.67 1.14E-04 

1 rs12090545 FAF1 G 2.30 1.46-3.62 3.14E-04 

1 rs12086130 FAF1 A 2.46 1.56-3.89 1.13E-04 

4 rs10516865 CCSER1 A 2.35 1.48-3.74 2.88E-04 

4 hg18_4_6916470 - G 2.99 1.65-5.43 3.11E-04 

8 chr8:126581940 - G 2.48 1.52-4.05 2.85E-04 

6 chr6:25835975 - G 2.14 1.44-3.17 1.61E-04 

6 chr6:25826741 - T 2.12 1.43-3.14 1.78E-04 

6 chr6:25820412 - A 2.17 1.46-3.23 1.35E-04 

15 chr15:55827973 - G 0.39 0.24-0.64 1.84E-04 

OR = odds ratio 

CI = confidence interval 

 

 

 

 

 

 

 



135 

Role of Mitochondrial variation in risk of diabetic retinopathy in diverse populations 

ascertained in NHANES 

Limited progress has been made in identifying susceptibility variants for diabetic retinopathy (DR). To 

date, most genetic studies have focused on the nuclear genome and excluded analysis of the mitochondrial 

genome (mtDNA), regardless that mitochondria are known to play a pathological role in DR. 

Hyperglycemia-induced oxidative stress has been shown to impair mitochondrial function, damage 

mtDNA, and increase apoptosis of retinal capillary cells resulting in damage to the retinal microvasculature 

and development of DR. Here we performed a meta-analysis with mitochondrial variants genotyped in a 

diverse set of NHANES populations to ascertain their potential contribution to DR risk.  

Methods 

Study populations 

Individuals with T2D were collected from the NHANES III and NHANES 2007-2008. The NHANES 

surveys were described in greater detail in Chapter 2: Association of mitochondrial variants and 

haplogroups with AMD in diverse populations. In our study, diabetes was defined by a combination of 

glycated hemoglobin levels (>6.5%) and an answer of “Yes” to questions of “Have you ever been diagnosed 

with diabetes” and “Are you currently being treated for diabetes” in NHANES III/2007-2008. Fasting 

plasma glucose and glucose tolerance tests are only available for morning participants in NHANES 2007-

2008. In NHANES III these test results are questionable as a number of participants failed to fast before 

the test. NHANES III did not differentiate between T1D and T2D. “Age at diagnosis” was utilized to 

remove any cases/controls that were diagnosed with diabetes before 30 years to avoid potential confounding 

by T1D patients. DR cases were identified from adults greater than 40 years of age with T2D and gradable 

fundus photographs. Diagnosis criteria were set according to the Airlie House Classification Scheme at the 

Wisconsin-Madison University, Ocular Epidemiology Grading Center.  Controls are individuals greater 

than 40 years at the time of survey participation that were diagnosed with T2D years yet showed no sign of 

diabetic retinopathy upon funduscopic exam. Race was collected by self-identifying surveys in NHANES 

and verified via Ancestry Informative Markers (AIMs).  
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Statistical Methods 

Individual SNPs and haplogroups were tested for association with DR using logistic regression assuming a 

dominant genetic model in each NHANES dataset separately.  Models were adjusted for age, sex, body 

mass index, and glycated hemoglobin levels (HbA1c). NHANES analyses were conducted in SAS v9.2 

(SAS Institute, Cary, NC) using the Analytic Data Research by Email (ANDRE) portal of the CDC 

Research Data Center in Hyattsville, MD. Individual NHANES survey results were then meta-analyzed 

using a fixed-effects inverse-variance weighted approach in METAL(Willer et al., 2010).  

Results 

Study Population 

In NHANES III, African American DR cases were younger on average in comparison to European 

American and Mexican Americans (Table 3) while in NHANES 2007-2008, the average age of cases was 

similar for African American and Mexican Americans (Table 4). NHANES 2007-2008 participants were 

generally obese (BMI > 30 kg/m2) regardless of race/ethnicity or case/control status and tended to have 

better control of his/her diabetes. On average, the duration of T2D for African American cases and controls 

were similar (less than 2 years) across both surveys. Participants within a particular population were less 

likely to female and had lower HbA1c in the 2007-2008 versus NHANES III.  

The NHANES III surveys collected funduscopic images in a randomly selected eye for each participant 

over the age of 40 years, while the NHANES 2007-2008 ocular examination component performed 

funduscopic imaging on both eyes. In order to determine the amount of potential discordancy in diabetic 

retinopathy assessment across the two NHANES collections, we calculated the percent of individuals with 

varying diabetic retinopathy severity scores in NHANES 2007-2008 populations. Diabetic severity scores 

were numerated 1-4. The scores were coded as follows: 1 = no retinopathy, 2 = mild non-proliferative 

retinopathy, 3 = moderate to severe non-proliferative retinopathy, and 4 = proliferative retinopathy. 

Participants with missing scores were removed from the calculations.  
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Table 25: NHANES III Type 2 diabetes and diabetic retinopathy population demographics 

 European American African American Mexican American 

Variable Case Control Case Control Case Control 

N 26 68 26 40 31 51 

Age at interview 64.2 (12.4) 72.5 (7.0) 57.9 (10.5) 68.1 (6.0) 63.6 (10.3) 67.5 (6.7) 

BMI (kg/m2) 29.5 (4.7) 28.9 (5.2) 32.5 (6.1) 30.5 (6.8) 29.5 (5.3) 29.3 (4.8) 

Duration T2D 14.8 (9.3) 8.2 (6.5) 12.0 (8.3) 11.3 (9.5) 14.3 (8.3) 8.1 (6.1) 

HbA1c (%) 8.3 (1.4) 8.1 (1.4) 8.9 (2.3) 8.2 (1.6) 9.1 (1.8) 8.6 (2.3) 

% Female 65.4 48.5 57.7 47.5 51.6 52.9 

% Poorly controlled T2D 23.1 2.6 42.3 30 41.9 29.4 

Values shown are the means and standard deviations unless otherwise stated 

Duration of T2D was calculated as the difference in age at time of interview to the survey question of “age at diagnosis” 

An individual with poorly controlled T2D is defined as having a HbA1c greater than 9%  
 

 

Table 26: NHANES 2007-2008 Type 2 diabetes and diabetic retinopathy population demographics 

 European American African American Mexican American 

Variable Case Control Case Control Case Control 

N 51 122 50 61 29 45 

Age at interview 66.1 (11.3) 70.9 (5.9) 62.6 (9.7) 68.4 (6.6) 61.8 (9.5) 69.2 (6.5) 

BMI (kg/m2) 31.5 (6.5) 31.1 (5.3) 32.7 (8.3) 31.4 (6.3) 30.8 (4.7) 31.6 (5.6) 

Duration T2D 12.3 (7.8) 9.6 (12.2) 13.8 (9.2) 11.9 (11.4) 10.5 (5.5) 7.1 (4.8) 

% Female 37.2 34.4 50 55.7 48.3 51.1 

HbA1c (%) 7.6 (1.6) 6.7 (1.0) 7.8 (1.6) 7.2 (1.7) 8.4 (1.8) 7.01 (1.4) 

% Poorly controlled T2D 23.5 4.9 16.3 11.8 24.1 8.9 

Values shown are the means and standard deviations unless otherwise stated 

Duration of T2D was calculated as the difference in age at time of interview to the survey question of “age at diagnosis” 

An individual with poorly controlled T2D is defined as having a HbA1c greater than 9% 

 

Our results suggest that on average 8 to 10% of participants (Table 5), regardless of race/ethnicity, have 

some asymmetry in retinopathy severity between both eyes. This difference can occur at any point of the 

spectrum. For example a participant might present with mild retinopathy in one eye while the other is free 

of disease or else have disease present in both eyes at varying stages of the disease. Cases in which the 

severity levels were more than one step removed in a participant’s two eyes occurred only nominally, 

occurring in only one European American, in three African American, two Mexican Americans, and one 

Hispanic.   
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Table 27: The percentage of diabetic retinopathy asymmetry in NHANES 2007-2008 

NHANES  European American African American Mexican American Hispanics 

2007-2008 7.8% 11.4% 8.2% 8.5% 

Diabetic retinopathy asymmetry was determined by counting the number of individuals within a 

racial/ethnic population whose diabetic retinopathy severity score (1-4) differed between their two eyes. 

 

Figure 33: Mitochondrial Solar Plots representing single SNP associations by race/ethnicity in adjusted 

models.  

Log(p) values were plotted with the outer brown circle representing a significance threshold of p=0.05. 

SNPs are color coordinated by mitochondrial gene/region as denoted in the legend.  
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Mitochondrial genetic association results 

We did not find an association with DR in any of the populations tested (Figure 33) at a significance 

threshold of p < 0.05 in single variant tests nor in haplogroup analyses.  

Discussion and Summary 

In our study of the genetic architecture of diabetic retinopathy in African Americans, we performed directed 

tests of association for AGER rs2070600 and TCF7L2 rs7903146 as well as tested over 126,000 SNPs on 

the Metabochip loci previously associated with cardiovascular and metabolic traits. In our hypothesis-

driven study of the AGER and TCF7L2 regions, our analyses did not generalize previous associations from 

European-descent or Indian population studies at a liberal significance threshold of p < 0.05. Although, we 

did not generalize these associations our results did trend in the same direction of effect for both variants. 

Also, our study did not find an association with DR in our hypothesis-generating study of the variation 

covered by the Metabochip at a significance threshold corrected for multiple testing (p <10-7). However, 

we did identify a few variants at a suggestive threshold of p <10-4 that warrant further study in future work. 

Lastly, in our exploration of potential mitochondrial genetic variants we identified rs2853520 (A) was 

borderline associated with DR in African Americans at a p=0.052 in NHANES III/2007-2008.  

Generalization of previously identified diabetic retinopathy variants 

Briefly, we tested 13 common SNPs in the advanced glycosylation end product specific receptor (AGER) 

gene on chromosome six, which spans 3.3 kbp and 148 common SNPs in the Transcription Factor 7-like 2 

(TCF7L2) gene on chromosome 10 spanning 217.4 kbp.  Our study had sufficient case/control numbers to 

generalize previously associated variants with odds ratios greater than 1.70 or inversely 0.60(Balasubbu et 

al., 2010; Fu et al., 2010; Grassi et al., 2011) at common allele frequencies. Still, we did not generalize 

these associations in our study. One reason is that previously identified SNPs such as rs7903146 in TCF7L2 

had allele frequencies below 5%. In our study rs7903146 had an odds ratio of 1.12 with p = 0.49. The lack 
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of generalization could be due to major differences in LD across racial/ethnic populations as observed in 

the TCF7L2 region. AGER SNP rs2070600 was associated with a decreased risk of DR (OR = 0.49) in an 

Indian population(Balasubbu et al., 2010). In the Indian population the minor allele frequency (A) ranged 

from 3.5-5%, while in the EAGLE BioVU African Americans it occurred at only 1%, which dropped it 

from our final study. When testing without the minor allele frequency cutoff, rs2070600 has an odds ratio 

of 0.44 and a p = 0.44 in our study.  AGER is a relatively small gene with few if any variants in strong LD 

with rs2070600 in either the HapMap III GIH, CEU, or YRI populations.  The low minor allele frequency 

coupled with its presumed function as a nonsynonymous variant suggested that AGER rs2070600 may in 

fact be a casual variant.   

 Discovery 

This study considered how previously GWAS-identified ocular variants and loci associated with 

cardiovascular and metabolic traits might be associated with DR in African Americans. Not unexpectedly, 

we failed to identify a significant association after correction for multiple testing (p <10-7). Interestingly, 

we did identify several variants nominally associated at a p <10-4 which are located in genes known to play 

a role in epithelial and endothelial tight cellular junctions, wound healing, familial hypercholanemia, and 

the brain’s reward center. At a molecular and biochemical level, these pathways are potentially important 

in development of diabetes and ocular health. For instance, the SNP rs820626 (OR = 2.28; p = 5.11x10-5) 

and rs17062682 (OR = 2.12; p = 3.2x10-4) are located in the kazrin, periplakin interacting protein (KAZN) 

and the tight junction protein 2 (TJP2) genes, respectively. Both genes are involved in the assembly and 

maintenance of the endothelial and epithelial cellular tight junction complexes. The tight junction 

complexes are integral to forming barriers to protect the body from immunological attacks and mechanical 

stress. The TJP2 protein is a component of the tight junction complex. Mutations in TJP2 were found to 

cause familial Hypercholanemia in the Lancaster County Old Order Amish(Carlton et al., 2003). 

Hypercholanemia is a liver disease characterized by a decrease in bile acid, resulting in malabsorption of 

fat and consequently severe vitamin K and D deficiency. This mutation is thought to cause leaks in the tight 
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junction complexes of the liver and lead to loss of bile acid through drainage into the plasma. Additionally, 

kazrin encoded by KAZN co-localizes with desmoplakin and periplakin in the assembly of 

desmosomes(Groot et al., 2004; Nachat et al., 2009). Desmosomes form cellular adhesion complexes that 

link to filaments of the intracellular keratin cytoskeleton. Studies have found that kazrin interacts with BAC, 

ARC, and Bax where it may be regulating cellular apoptosis(Wang et al., 2009). As discussed in the 

introduction of this chapter, hyperglycemia can disrupt cell survival pathways that inhibit apoptotic events. 

Release of cellular debris from apoptosed cells causes inflammation in the ocular environment, which can 

damage pericytes. Pericytes form part of the blood-retinal barrier and contribute to the junctional complexes 

with endothelial cells. Permeability in the ocular vasculature can trigger angiogenesis which leads to the 

hallmark signs of diabetic retinopathy.   

Mitochondrial contribution to diabetic retinopathy in diverse populations 

Mitochondria are important for the production of cell energy and regulation of cellular apoptosis. 

Degradation and mutations in the mitochondrial genome can lead to Alzheimer’s disease, various cancers, 

and age-related macular degeneration. Recently, a mitochondrial phenome-wide association study found 

additional evidence that supports the hypothesis that mitochondria impact risk of cholesterol levels and 

T2D(Mitchell et al., 2014b).  

Given the elevated energy needs of retinal tissue, mitochondria become absolutely vital in the maintenance 

and functional mechanics of the visual pathway. Therefore, we tried to determine whether mitochondrial 

variation specifically contributed to risk of DR in a diverse population of NHANES participants. We 

performed a meta-analysis to test for an association with 60 mitochondrially encoded variants and DR from 

the NHANES III and NHANES 2007-2008 European American, African American, and Mexican American 

populations.  

We did not find an association with DR in any of the populations tested (Figure 33). The variant rs2853520 

(A) found in the mitochondrially encoded 12s RNA gene, was found to trend towards significance in this 
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African American DR case-control study at p=0.052. In the individual NHANES III analysis, rs2853520 

was found to be significant at p=0.047. Notably, the ancestral allele frequency (A) is 14.5 % in the general 

HapMap Yoruba (YRI) population but was approximately 22% in this NHANES African American 

populations (23.5% and 21.7%, NHANES III & 2007-2008). 

Strengths and Limitations 

Beyond limited sample size, a significant limitation of this study is trait heterogeneity and phenotypic 

variability, known confounders in genetic studies. These confounders may be minimized by the 

stratification of DR cases into severity levels or subcategories classified by environmental confounders 

such as income, education, and access to health care. Unfortunately, study power would be detrimentally 

reduced by the restricted number of subgroup cases. Still, incorporating a variable to model access to health 

care in future studies may provide us with a clearer image of the underlying genetic architecture of DR 

given that strict control of a patient’s diabetes can drastically delay or prevent progression of DR. 
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CHAPTER VI 

SUMMARY AND FUTURE DIRECTIONS 

The impact of vision impairment and blindness on the daily life of individuals will continue to grow as 

populations age. With aging comes a greater risk of developing age-related ocular diseases such as age-

related macular degeneration, glaucoma, and diabetic retinopathy. While a substantial body of research has 

continued to improve screening regimens and treatment options for these conditions, much of the genetic 

etiology has yet to be determined. Genetic studies have aided in the identification of biologically actionable 

targets. Treatment options have been successfully developed for patient’s suffering from neovascular age-

related macular degeneration by pharmacological targets inhibiting VEGF production, but the neovascular 

subtype only accounts for 10 to 15% of age-related macular degeneration cases. Similarly, pharmaceuticals 

are available to protect against vision loss in glaucoma patients who suffer from IOP-dependent forms of 

the condition while options for normal tension glaucoma remain elusive. Limitations in the current field of 

medicine can also be seen in patient’s suffering from diabetes that despite strict adherence to diabetes 

treatment regimens are eventually blinded by diabetic retinopathy.  

The scientific community strives to elucidate the genetic and molecular etiology of common disease which 

can lead to new therapies and risk reduction. Indeed this is the objective of personalized medicine, whereby 

through the understanding of the genetic architecture and molecular constituents of disease in larger 

populations it is possible to distill this knowledge down into targeted treatment options to meet the needs 

of unique patients. 

One step toward explaining the role of genetic variation in complex ocular phenotypes is the identification 

of shared and population-specific variants in disease risk. In this body of work, I assessed the role of 

previously identified variants on disease risk for age-related macular degeneration, primary open-angle 

glaucoma, and diabetic retinopathy in diverse populations. I began by determining whether variants strongly 

associated with age-related macular degeneration in European-descent populations, similarly drove risk of 
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disease in African Americans, Mexican Americans, and Singaporeans from the Population Architecture 

using Genomics and Epidemiology (PAGE) Study. Differences in disease prevalence and severity range 

across racial/ethnic populations, with individuals of European ancestry being at greatest risk while those of 

African ancestry are at the lowest risk for age-related macular degeneration. This study was a meta-analysis 

of targeted genotyping variants including CFH rs1061170, ARMS2 rs10490924, C2 rs547154, additional 

complement system, and lipid-related variants. We replicated up to 54% (7/13) of the previously reported 

associations for age-related macular degeneration in European Americans including CFH rs1061170 and 

ARMS2 rs10490924. We additionally replicated an association with ARMS2 rs10490924 that generalized 

to Mexican Americans in this study, which had already been reported in NHANES III(Spencer et al., 

2012b). None of the complement system or ARMS2 variants generalized to African Americans or Asians.  

This study did identify several associations between age-related macular degeneration and lipid trait-

associated variants in LPL and CETP in African Americans and Mexican Americans. The effect sizes for 

CFH rs1061170 and ARMS2 rs10490924 in European populations were large. If the effect of these variants 

on disease risk had been equally as strong in African Americans and Singaporeans, we should have been 

able to detect the associations despite the small sample sizes available for the non-European populations. 

Lack of generalization in non-European populations suggests that other genetic or environmental variables 

may be driving risk in these populations.  

Nearly all of the age-related macular degeneration risk loci are located within the nuclear genome and 

account for more than 60% of the heritable risk(Fritsche et al., 2014). A number of large-scale GWAS 

studies have been carried out which have identified new risk loci with ever decreasing effect sizes that do 

not account for the remainder of the heritability. I therefore set out to determine whether part of the 

remaining heritability might be explained in part by mitochondrial variation and interaction effects between 

environmental factors and strong age-related macular degeneration variants. To do this, we accessed 

NHANES III and NHANES 2007-2008 participant data and genotyping information from the 

Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study which genotyped 63 
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mitochondrial variants in European Americans, , and Mexican Americans.  We performed tests of 

association between age-related macular degeneration and previously associated haplogroups J, T, and U. 

Tests of association were also performed between each mitochondrial variant and age-related macular 

degeneration. We failed to replicate previous associations of the European haplogroups J, T, and U with 

risk of age-related macular degeneration in NHANES European Americans nor did we find an association 

in African Americans. Interestingly we observed several mitochondrial variants that were associated with 

age-related macular degeneration risk within the meta-analyzed Mexican American population after 

adjusting for well-known modifiers. Mexican Americans experience prevalence rates of age-related 

macular degeneration similarly to those of European-descent populations, yet we did not observe a strong 

association with European-identified risk variants from the specific nuclear genome variants also genotyped 

in Mexican Americans. The results of the mitochondrial analyses suggest that risk may be driven by 

variation in the mitochondrial genome within this population.   

The study of main effects in genetic association analyses relies on the premise that genetic variants 

singularly act in an additive or Mendelian fashion. Yet the current state of the field acknowledges that the 

sum of all known additive variants in non-Mendelian disease do not add up to the whole of the heritability.  

We therefore further explored whether age-related macular degeneration risk is additionally modified by 

interactions between environmental factors such as blood serum carotenoid levels and strong European 

index variants rs10490924 ARMS2, rs1061170 CFH, and rs547154 C2. This study was performed in the 

NHANES III populations where in a model adjusted for age, sex, BMI, and smoking status the variant 

rs547154 C2 interacted with body-mass-index to significantly modify risk of age-related macular 

degeneration in European Americans.  

Assessing the effects of highly impactful risk loci across population can provide important insights into 

common disease pathways. These pathways may then become relevant for future work targeting expression 

of these genes or gene products. Still, inconsistencies in the associations of these variants across 

populations, after taking into account allele frequencies, may suggest that the fundamental etiology varies 
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based on differences in environmental influences or genetic background. Age-related macular degeneration 

only occurs in 2.4% of African American adults and yet the primary CFH and ARMS2 variants occur with 

a MAF of over 10%. These variants are not rare in African Americans, but they do not appear to confer 

strong risk similar to that observed in European-descent populations. Studies addressing heritability of age-

related macular in African Americans and the contribution of age and smoking to risk of disease are also 

lacking.  

Large-scale genetic association studies are primarily being carried out in European and Asian descent 

populations with little effort being made to elucidate the role of genetics in underrepresented populations. 

Narrowing this deficit may lead to new insights in diseases that occur predominantly in these 

underrepresented populations such as diabetes, obesity, and glaucoma. A major hurdle in the study of 

minority populations is ascertainment of cases and controls which can be a lengthy and expensive process. 

To rapidly accrue data in a cost-effective manner, I accessed de-identified patient medical information from 

the Vanderbilt University Medical Center (VUMC) electronic medical records. EMRs are becoming a vital 

resource for research studies given the dense clinical data potentially available on tens of thousands of 

patients. My goal was to develop an efficient method for identifying diabetic retinopathy and primary open-

angle glaucoma cases and controls for inclusion in genetic association studies, as outlined in Chapter 3. 

VUMC’s EMR available for research does not currently make available the gold-standard clinical exams 

and records necessary for the definitive diagnosis of either diabetic retinopathy or primary open-angle 

glaucoma.  Lack of access to records from the Vanderbilt Eye Clinic proved to be a challenge. To address 

this issue, I created a set of phenotype algorithms incorporating International Classification of Diseases 

codes 9th revision (ICD-9), Current Procedural Terminology (CPT) codes, and free text searches to identify 

African Americans with and without diabetic retinopathy and primary open-angle glaucoma. These 

algorithms, when coupled with manual-review follow-up, allowed me to identify high-quality cases and 

controls for each study despite the lack of gold-standard data available in the EMR for research. Our work 

further explored common genetic variants in relation to risk of diabetic retinopathy and primary-open angle 



147 

glaucoma in African Americans, which is discussed in more detail within Chapters 4 and 5. I performed 

hypothesis-driven studies targeting SNPs that were previously associated with diabetic retinopathy and 

primary open-angle glaucoma. Previously identified SNPs did not generalize in our study. Lack of 

generalization can be due to low statistical power or difference in linkage disequilibrium across populations. 

These studies highlight many of the challenges faced when working with small sample sizes and multiple 

populations.  

Nominally significant, we identified rs3775202 in VEGFC associated with an increased risk of primary 

open-angle glaucoma (odds ratio = 1.92; p = 9.70 x10-5) in EAGLE BioVU African Americans. This SNP 

in conjunction with other potential associations suggests a role for angiogenesis (i.e. VEGFC and HTRA) 

and ATP/energy mediation via mitochondria homeostasis (C21orf33 and IBA57).  

Future Directions 

The work presented here is a small milestone in the larger work needed to uncover the genetic architecture 

of common, complex ocular disease. While my work has highlighted that African American genetic risk 

factors for age-related macular degeneration, primary open-angle glaucoma, and diabetic retinopathy may 

differ from European-descent populations, much work is left to determine whether these differences are 

due to differences in genetic architecture, environmental factors, or socioeconomic conditions.  Additional 

studies to determine the role of common genetic variants in African Americans would involve ascertaining 

new cases and genotyping them on a GWAS chip and/or collaborating with other researchers to increase 

our study size.  

Indeed, the PAGE I Study, which included Atherosclerosis Risk in Communities (ARIC), the 

Cardiovascular Health Study (CHS), and EAGLE NHANES III, only had up to 95 African American cases 

of age-related macular degeneration.  The addition of NHANES 2007-2008 would only increase the case 

sample size by seven.  To date, only one GWAS in the NHGRI GWAS catalog for age-related macular 

degeneration includes African American cases(Ryu et al., 2010).The lower prevalence of age-related 
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macular degeneration makes increasing the sample size for GWAS and other genomic studies challenging.  

The challenge is further compounded by the fact that there are only a limited number of cohorts with African 

American participants and DNA samples available for research.   Thus, for more prevalent diseases such 

as primary open-angle glaucoma and diabetic retinopathy, sample size and power are still very much real 

issues for non-European descent populations.   

I have attempted to address this issue using electronic medical records linked to DNA samples as a source 

for new cases and controls for study.   Although successful, additional EMRs linked to biobanks will be 

needed to amass sufficient sample sizes for powerful genomic studies.  Therefore, future directions should 

include collaborations with biobanks such as Northwestern University and Mt. Sinai, both members of the 

eMERGE Network, to identify additional non-European cases and controls for these common ocular 

diseases.  Previous studies have suggested that algorithms to extract cases and controls are portable(Denny 

et al., 2011), so it is reasonable to expect that my algorithm can be deployed by these other study sites to 

identify additional cases and controls.  Beyond eMERGE, other sources of new cases could include the 

Veterans Affairs Million Veteran Project, a research program funded by the Department of Veterans Affairs 

Office of Research Development, as well as new cohorts resulting from the new Precision Medicine 

initiative proposed in early 2015 by President Barack Obama(Kaiser and Servick, 2015). Regardless of the 

source of data, a concerted effort will be needed to ensure there are sufficient sample sizes of non-European-

descent participants to conduct properly powered discovery studies for ocular diseases. 

 Gender disparity is one area of research I would like to explore in future work. In 1993 congress passed 

the National Institutes of Health Revitalization Act of 1993 mandating that NIH funded studies include 

women and minorities. Blatant gaps still persist in research and clinical trials that proactively determine 

gender differences in disease risk and treatment efficacy of pharmaceuticals and surgical intervention 

outcomes(Institute of Medicine (US) Committee on Women’s Health Research, 2010). Cardiovascular 

disease is the number one killer in women across all race/ethnicities and while women are now included in 

cardiovascular studies, they are either underrepresented or studies fail to examine gender differences in 
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treatment outcomes. For example, a clinical trial studied the safety and efficacy of a defibrillator implant 

in a cohort of men and women(Moss et al., 2002), where women comprised 15% of the cohort. The device 

was later approved by the FDA but was subsequently found not to offer the same protective effect in 

women(Ghanbari et al., 2009). Strong gender differences also occur in ocular disease.   

In age-related macular degeneration, epidemiology studies have suggested  that women are at greater risk 

than men(Chakravarthy et al., 2010; Cheung et al., 2012; Tomany et al., 2004) for development of disease. 

The life expectancy of a woman is greater than a man’s in developed countries which may explain the 

difference in risk for age-related diseases. Yet genetic, biochemical, and life style contrasts between the 

sexes is often ignored. Only within the last few years have age-related macular degeneration researchers 

pursued the cause of this gender disparity in genetic association studies. Female-specific susceptibility loci 

and pathways have been identified in the death-associated protein-like 1 (DAPL1) on chromosome 

2(Grassmann et al., 2015) and the VEGF pathway for women with neovascular age-related macular 

degeneration(Courtenay et al., 2014). Gender studies of ocular blood flow suggest that female sex hormones 

are protective in diseases that affect the ocular vasculature(Schmidl et al., 2015) providing further incentive 

to studying the effects of gender on common, complex ocular diseases. Similarly a role for female sex 

hormones in glaucoma is supported by the expression of estrogen receptors in retinal ganglion cells(Munaut 

et al., 2001) and reduced risk for women who enter menopause after age fifty-four(Pasquale et al., 2007). 

The Glaucoma Genes and Environment study and the National Eye Institute Glaucoma Human Genetics 

Collaboration consortium found an association in estrogen pathways for total and high pressure open-angle 

glaucoma risk in women, which was notably absent in men(Pasquale et al., 2013). 

Future studies could assess gender differences in disease risk by stratifying cases and controls by sex. The 

decrease in sample size can be mitigated by actively recruiting women from local communities or hospital 

databases. Assessing long term effects of female sex hormone exposure on risk of AMD or POAG is 

possible by modeling age at menopause and age at menarche from EMRs(Malinowski et al., 2014) in 

conjunction with use of hormone therapy and birth control.  
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Further extensions for studying the effect of gender on genetic models is the incorporation of female specific 

environmental exposures. Females differ from males, beyond differences in estrogen and androgenic 

hormone levels, in key behavioral ways. Women significantly spend more and consume more personal care 

and cosmetic products then men. Spending differences occur by birth cohort and by economic influences, 

notably the “lip stick effect(Hill et al., 2012).” The infamous “lip stick effect” is the hypothesis that when 

faced with an economic crisis consumers, notably women, reduce their discretionary spending by 

purchasing less costly luxury goods. A prime example is the purchase of a high-end tube of lipstick versus 

a new leather jacket.  Spending patterns on personal care products, which include lotions, cosmetics, 

bathing, and shaving products, varied by age and sex in a United Kingdom study of consumer 

spending(Twigg and Majima, 2014). In the 1960s young women shopped more frequently than older 

women over the age of seventy-five. This trend was reversed by 2011. These patterns for consumption of 

personal care products extend to other European countries. In the Netherlands, women on average used 

seventeen personal care products a day while men used six(Biesterbos et al., 2013). Of most interest is the 

use of cosmetics particularly cosmetics applied to the area on or immediately surrounding the eye.  

The eyelid performs a number of biological functions that include creating a physical barrier between the 

anterior surface of the eye globe, tear generation, and light regulation. At less than 1mm, the skin of the 

eyelid is one of the thinnest in the body. Absorption of chemicals, such as corticosteroids, through the eyelid 

may lead to increased risk of eye disease such as glaucoma(Cubey, 1976).     

I would like to explore the potential consequences to ocular health when individuals are exposed to known 

toxic chemicals commonly found in cosmetics. Endocrine disruptors bisphenol A(Steinmetz et al., 1997), 

phthalates(Harris et al., 1997), and parabens(Okubo et al., 2001) and antimicrobial compounds (i.e., 

Triclosan) are present in many cosmetics. These chemicals are routinely found in urine samples of adults 

and children in the United States(Calafat et al., 2008). In a Swedish study of mothers and children, paraben 

metabolites were found in greater concentrations in women who used more personal care products(Larsson 

et al., 2014). The Scientific Committee on Consumer Safety in Europe initially set daily allowances for 
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Triclosan exposure at 17.4g/day(Scientific Committee on Consumer Safety Europe, 2010) but due to toxic 

side effects and over exposure Triclosan was banned from use in products distributed in member countries.  

In summary, the work presented here contributes data towards the genetic architecture of age-related 

macular degeneration, primary open-angle glaucoma, and diabetic retinopathy in non-European descent 

populations.  Larger samples sizes, however, are essential to catalogue the complete genetic architecture of 

these ocular diseases in African American and Mexican Americans.  Future work is needed to identify cases 

as well as the additional environmental data needed to identify all risk factors that lead to the development 

and perhaps clues to the prevention of these leading causes of vision loss in the United States. 
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APPENDIX 

 

Chapter 2 Appendix 

Supplemental 

Supplementary Table 1: All Model 1 results for AMD meta-analysis association tests. Results are shown for model 

adjusted for site of ascertainment. Coded Allele frequency is shown for combined case/control. 

SNP ID Gene Chr OR 
lower 

CI 
upper 

CI 
p-value CA 

CAF 
(%) 

Race 

rs1061170 CFH 1 1.550 1.340 1.780 
3.05X10-

8 
C 0.372 European American 

   1.360 0.911 2.040 0.135 C 0.382 African American 

   1.220 0.702 2.131 0.479 C 0.200 Mexican American 

   4.430 0.350 55.291 0.248 C 0.036 Asian 

          

rs203674 CFH 1 0.226 0.018 2.819 0.248 T 0.961 Asian 

          

rs3753394 CFH 1 1.251 1.034 1.514 0.034 T 0.294 European American 

   1.451 0.596 3.528 0.412 T 0.083 African American 

   0.968 0.747 1.254 0.805 T 0.542 Asian 

          

rs3753396 CFH 1 0.692 0.245 1.955 0.487 A 0.493 Asian 

          

rs3766404 CFH 1 1.014 0.586 1.756 0.960 T 0.922 Asian 

          

rs529825 CFH 1 0.914 0.328 2.541 0.863 A 0.415 Asian 

          

rs6677604 CFH 1 0.767 0.608 0.967 0.039 A 0.217 European American 

   0.628 0.308 1.280 0.200 A 0.366 African American 

   0.974 0.543 1.747 0.930 A 0.054 Asian 

          

rs800292 CFH 1 0.587 0.465 0.741 
3.80X10-

5 
A 0.237 European American 

   0.552 0.295 1.033 0.063 A 0.692 African American 

   0.886 0.680 1.153 0.366 A 0.422 Asian 

          

rs6754295 APOB 2 1.107 0.952 1.288 0.225 T 0.751 European American 

   0.879 0.450 1.716 0.705 T 0.728 African American 

   1.058 0.808 1.386 0.682 T 0.289 Asian 

          

rs11726949 CFI 4 1.043 0.764 1.424 0.791 T 0.165 Asian 
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rs10033900 CFI 4 0.969 0.811 1.158 0.753 T 0.475 European American 

   1.754 0.939 3.278 0.078 T 0.385 African American 

   1.043 0.799 1.362 0.754 T 0.608 Asian 

          

rs547154 C2 6 0.688 0.393 1.206 0.192 T 0.058 Asian 

          

rs12678919 LPL 8 0.745 0.507 1.095 0.168 A 0.904 European American 

   0.733 0.335 1.604 0.437 A >0.99 African American 

   0.583 0.220 1.538 0.276 A >0.99 Mexican American 

   0.990 0.599 1.637 0.970 A 0.893 Asian 

          

rs10503669 LPL 8 1.041 0.813 1.333 0.770 A 0.096 European American 

   1.503 0.721 3.135 0.277 A 0.06 African American 

   1.078 0.406 2.857 0.880 A >0.99 Mexican American 

          

rs2083637 LPL 8 0.927 0.802 1.071 0.346 T 0.717 European American 

   0.916 0.447 1.879 0.811 T 0.781 African American 

   1.043 0.720 1.512 0.823 T 0.795 Asian 

          

rs2197089 LPL 8 0.961 0.840 1.098 0.587 T 0.542 European American 

   0.945 0.653 1.368 0.764 T 0.785 African American 

   0.906 0.575 1.426 0.669 T 0.498 Mexican American 

   1.632 0.568 4.688 0.363 T 0.329 Asian 

          

rs328 LPL 8 0.950 0.791 1.140 0.607 G 0.100 European American 

   1.750 1.060 2.910 0.030 G 0.071 African American 

   1.309 0.556 3.081 0.537 G <0.01 Mexican American 

          

rs6586891 LPL 8 1.052 0.915 1.210 0.511 A 0.652 European American 

   0.922 0.617 1.378 0.693 A 0.838 African American 

   1.028 0.659 1.601 0.902 A 0.537 Mexican American 

          

rs6987702 TRIB1 8 1.007 0.869 1.166 0.932 T 0.728 European American 

   1.610 1.027 2.524 0.038 T 0.288 African American 

   1.196 0.904 1.581 0.210 T 0.434 Asian 

          

rs1883025 ABCA1 9 0.818 0.694 0.964 0.027 A 0.26 European American 

   0.871 0.569 1.334 0.526 A 0.35 African American 

   0.934 0.568 1.535 0.787 A <0.01 Mexican American 

   0.403 0.085 1.909 0.252 A 0.231 Asian 

          

rs1323432 GRIN3A 9 0.831 0.581 1.187 0.348 T 0.893 European American 

   0.888 0.326 2.420 0.817 T 0.97 African American 
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   0.886 0.400 1.959 0.764 T <0.01 Mexican American 

          

rs3890182 ABCA1 9 0.942 0.762 1.165 0.612 A 0.117 European American 

   1.041 0.669 1.622 0.857 A 0.124 African American 

   0.901 0.373 2.181 0.817 A >0.99 Mexican American 

          

rs3905000 ABCA1 9 0.980 0.830 1.157 0.825 A 0.132 European American 

   1.036 0.612 1.753 0.895 A 0.169 African American 

   0.782 0.323 1.890 0.586 A >0.99 Mexican American 

   0.816 0.489 1.363 0.437 A 0.066 Asian 

          

rs4149268 ABCA1 9 1.047 0.902 1.216 0.575 A 0.365 European American 

   0.880 0.568 1.363 0.567 A 0.684 African American 

   1.495 0.881 2.535 0.136 A 0.341 Mexican American 

   0.669 0.394 1.134 0.902 A 0.298 Asian 

          

rs4149274 ABCA1 9 1.072 0.810 1.419 0.625 A 0.293 Asian 

          

rs471364 TTC39B 9 0.964 0.770 1.206 0.767 A 0.878 European American 

   0.935 0.622 1.405 0.746 A 0.815 African American 

   0.989 0.425 2.302 0.979 T <0.01 Mexican American 

          

rs10490924 ARMS2 10 1.526 1.289 1.807 
6.36X10-

6 T 0.217 European American 

   0.825 0.512 1.330 0.430 T 0.24 African American 

   1.634 1.025 2.606 0.039 T 0.262 Mexican American 

          

rs964184 ZNF259/APOA1 11 1.254 0.901 1.746 0.217 C 0.837 European American 

   1.223 0.650 2.302 0.533 C 0.766 African American 

   1.441 0.911 2.279 0.118 G 0.267 Mexican American 

   0.890 0.666 1.189 0.429 C 0.786 Asian 

          

rs174547 FADS1 11 1.038 0.808 1.335 0.786 T 0.656 European American 

   0.878 0.529 1.458 0.615 T 0.911 African American 

   1.138 0.687 1.884 0.617 T 0.427 Mexican American 

   1.272 0.393 4.118 0.688 T 0.377 Asian 

          

rs28927680 BUD13 11 0.871 0.705 1.075 0.237 C 0.072 European American 

   0.845 0.550 1.297 0.441 C 0.167 African American 

   0.742 0.401 1.373 0.342 G 0.867 Mexican American 

          

rs3135506 APOA5 11 0.869 0.696 1.084 0.252 C 0.064 European American 

   0.719 0.340 1.519 0.387 C 0.059 African American 
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   0.883 0.465 1.674 0.702 G 0.873 Mexican American 

          

rs7120118 NR1H3 11 1.086 0.940 1.253 0.302 T 0.713 European American 

   1.075 0.696 1.660 0.746 T 0.526 African American 

   1.285 0.968 1.705 0.082 T 0.237 Asian 

          

rs7395662 MADD 11 1.036 0.906 1.184 0.637 A 0.353 European American 

   1.116 0.614 2.027 0.720 A 0.545 African American 

   0.783 0.598 1.026 0.076 A 0.551 Asian 

          

rs2338104 KCTD10 12 1.050 0.920 1.200 0.505 G 0.532 European American 

   0.860 0.610 1.220 0.403 G 0.740 African American 

   1.695 1.085 2.647 0.020 G 0.452 Mexican American 

          

rs10468017 LIPC 15 1.050 0.896 1.231 0.579 T 0.282 European American 

   0.752 0.349 1.624 0.469 T 0.182 African American 

   1.44 0.848 2.445 0.176 T 0.173 Mexican American 

   0.918 0.643 1.309 0.635 T 0.19 Asian 

          

rs1800588 LIPC 15 0.830 0.691 0.998 0.068 T 0.223 European American 

   0.971 0.650 1.450 0.884 T 0.505 African American 

   1.082 0.696 1.683 0.727 T 0.504 Mexican American 

          

rs261332 LIPC 15 0.767 0.599 0.982 0.052 A 0.2 European American 

   1.112 0.566 2.182 0.758 A 0.25 African American 

   0.395 0.045 3.452 0.401 A 0.119 Asian 

          

rs757200 CACNG3 16 0.977 0.804 1.187 0.831 T 0.298 European American 

   2.270 0.875 5.887 0.092 T 0.068 African American 

   1.077 0.808 1.436 0.612 T 0.377 Asian 

          

rs3764261 CETP 16 1.138 1.014 1.278 0.043 T 0.327 European American 

   0.993 0.706 1.397 0.968 T 0.33 African American 

   0.787 0.467 1.329 0.371 T 0.31 Mexican American 

   1.066 0.741 1.534 0.730 T 0.169 Asian 

          

rs9989419 CETP 16 0.970 0.867 1.086 0.629 A 0.394 European American 

   0.990 0.714 1.372 0.951 A 0.565 African American 

   0.754 0.464 1.223 0.253 A 0.282 Mexican American 

      1.327 0.817 2.153 0.610 A 0.251 Asian 

          

rs1864163 CETP 16 1.017 0.827 1.251 0.881 A 0.25 European American 

   0.796 0.414 1.530 0.493 A 0.3 African American 
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   1.041 0.719 1.509 0.831 A 0.137 Asian 

          

rs711752 CETP 16 1.101 0.914 1.326 0.353 A 0.43 European American 

   0.665 0.315 1.405 0.285 A 0.26 African American 

          

rs7205804 CETP 16 0.258 0.053 1.252 0.093 A 0.316 Asian 

          

rs1566439 CETP 16 1.021 0.911 1.144 0.742 A 0.61 European American 

   0.958 0.592 1.550 0.861 A 0.76 African American 

   1.144 0.748 1.748 0.534 A 0.545 Mexican American 

   1.038 0.793 1.358 0.788 A 0.4 Asian 

          

rs1800775 CETP 16 1.00 0.870 1.160 0.986 C 0.519 European American 

   1.570 1.030 2.380 0.037 C 0.415 African American 

   1.130 0.700 1.830 0.597 C 0.464 Mexican American 

   1.030 0.790 1.340 0.841 C 0.508 Asian 

          

rs1800777 CETP 16 0.996 0.600 1.654 0.990 A 0.03 European American 

          

rs255049 DPEP3 16 0.852 0.678 1.072 0.208 T <0.010 European American 

   1.047 0.655 1.672 0.849 T 0.891 Asian 

          

rs12596776 SLC12A3 16 1.083 0.840 1.396 0.572 C 0.909 European American 

   1.187 0.399 3.529 0.758 C >0.99 African American 

   1.014 0.442 2.330 0.974 G <0.01 Mexican American 

          

rs2217332 HERPUD1 16 1.124 0.927 1.362 0.274 T 0.148 European American 

   0.936 0.372 2.354 0.888 T 0.114 African American 

   1.108 0.725 1.694 0.634 T 0.071 Asian 

          

rs2271293 NUTF2 16 1.144 0.921 1.421 0.263 A 0.115 European American 

   0.946 0.487 1.835 0.869 A 0.073 African American 

   1.242 0.683 2.256 0.477 A 0.147 Mexican American 

   0.959 0.506 1.816 0.898 A 0.016 Asian 

          

rs9891572 METTL16 17 1.120 0.938 1.338 0.248 T 0.15 European American 

   1.488 0.746 2.965 0.259 T 0.182 African American 

   0.978 0.749 1.277 0.872 T 0.356 Asian 

          

rs2156552 LIPG 18 0.957 0.798 1.148 0.662 A 0.841 European American 

   1.396 0.547 3.562 0.485 A ₲ African American 

   0.972 0.381 2.477 0.952 T <0.01 Mexican American 

   1.445 0.462 4.517 0.527 A 0.176 Asian 
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rs4939883 LIPG 18 0.997 0.857 1.159 0.967 T 0.165 European American 

   1.100 0.718 1.685 0.662 T 0.435 African American 

   0.880 0.433 1.789 0.725 T <0.01 Mexican American 

   1.163 0.819 1.651 0.400 T 0.18 Asian 

          

rs2304130 ZNF101 19 0.967 0.677 1.381 0.866 A 0.924 European American 

   1.050 0.481 2.295 0.902 A 0.811 African American 

   0.751 0.532 1.061 0.104 A 0.861 Asian 

          

rs2967605 RAB11B 19 0.936 0.784 1.118 0.500 A 0.172 European American 

   1.192 0.829 1.713 0.344 A 0.137 African American 

   0.768 0.447 1.321 0.34 A <0.01 Mexican American 

   0.992 0.751 1.311 0.955 A 0.587 Asian 

          

rs1800961 HNF4A 20 0.642 0.394 1.046 0.102 T 0.028 European American 

   4.973 0.795 31.118 0.086 T 0.008 African American 

   1.138 0.370 3.502 0.822 T <0.01 Mexican American 

   1.184 0.346 4.049 0.788 T 0.015 Asian 

          

rs7679 PCIF1 20 1.014 0.757 1.359 0.931 T 0.819 European American 

   0.868 0.474 1.590 0.647 T 0.952 African American 

   1.276 0.663 2.453 0.466 T 0.857 Mexican American 

   0.869 0.526 1.435 0.584 T 0.972 Asian 

          

₲ Allele frequencies genotyped across more than one study were found to be greatly different  
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Supplementary Table 2: Genotyped SNPs by study site    

SNP ID Alleles Chromosome 
Nearest gene 

(location) 

Previous 
association 

(PubMed ID) Data available by study site 

     ARIC CHS EAGLE SiMES SP2 

rs1061170 C/T 1 CFH AMD  
(15761120; 
15761122; 
16849663; 
22705344; 
21665990; 
20385826) 

X - X - X 

rs203674 G/T 1 CFH AMD  
(18541031; 
18043728) 

- - - - X 

rs3753394 T/C 1 CFH AMD  
(22035603; 
21111031; 
18421087; 
17167412) 

- X - X X 

rs3753396 A/G 1 CFH AMD 
 (18421087; 
20157618; 
18162041) 

- - - - X 

rs3766404 C/T 1 CFH AMD  
(18043728; 
15870199) 

- - - X X 

rs529825 A/G 1 CFH AMD  
(21882633; 
18043728) 

- - - - X 

rs6677604 A/G 1 CFH AMD  
(23103884; 
16998489; 
18162041) 

- X - X X 

rs800292 A/G 1 CFH AMD  
(23289807; 
23260260; 
23233260; 
22618592; 
22065928; 
21909106) 

- X - X X 

rs6754295 T/G 2 APOB Lipids 
 (19060911; 
19951432) 

X X - X X 

rs11726949 T/C 4 CFI AMD  - - - X X 



159 

(19603066; 
18685559) 

rs10033900 T/C 4 CFI AMD  
(22705344; 
21665990; 
20385826; 
20087399; 
23326517) 

- X - X X 

rs547154 T/G 6 C2 AMD  
(16936732; 
16518403; 
20157352; 
19259132; 
18493315) 

- - - X X 

rs12678919 A/G 8 LPL    AMD 
(22815349; 
20385819) 
Lipids 
(20686565; 
19060906) 

- - X X X 

rs10503669 A/C 8 LPL Lipids  
(18193043; 
21909109; 
20370913) 

X - X - - 

rs2083637 T/C 8 LPL Lipids  
(19060911; 
18454146; 
20160193) 

X X - X X 

rs2197089 T/C 8 LPL Lipids  
(23344322; 
21738485) 

- X X - X 

rs328 C/G 8 LPL Lipids 
(22171074; 
18193044; 
17463246; 
21738485; 
21840003; 
21316679; 
20150529) 

X X X - - 

rs6586891 A/C 8 LPL Lipids  
(21738485) 

- X X - - 

rs6987702 T/C 8 TRIB1 Lipids  
(19060911) 

X X - X X 

rs1883025 A/G 9 ABCA1 AMD  
(20385826; 
20385819) 
Lipids  

X - X - X 
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(20686565; 
19060906) 

rs1323432 T/C 9 GRIN3A Lipids  
(18193043) 

- - X - - 

rs3890182 A/G 9 ABCA1 Lipids  
(20864672; 
18193044; 
21738485) 

- X X - - 

rs3905000 A/G 9 ABCA1 Lipids  
(19060911;  
21347282)  

X X X X X 

rs4149268 A/G 9 ABCA1 Lipids  
(18193043; 
19802338)  

X - X X X 

rs4149274 A/G 9 ABCA1 Lipids  
(18193043) 

- - - X X 

rs471364 A/G 9 TTC39B Lipids  
(19060906)  

- X X - X 

rs10490924 T/G 10 ARMS2 AMD  
(22705344; 
22694956; 
21665990;  
20861866; 
20385826; 
16080115) 

X - X - - 

rs964184 C/G 11 ZNF259/APOA1 AMD  
(20385819) 
Lipids  
(19060906; 
20657596; 
20686565; 
20864672; 
22359512) 

- - X X X 

rs174547 T/C 11 FADS1 AMD  
(20385826) 
Lipids  
(19060906; 
21829377; 
20972250; 
20364269; 
21738485) 

- - X - X 

rs28927680 C/G 11 BUD13 Lipids  
(18193044; 
23634756; 
21738485; 
20018036) 

X X X - - 

rs3135506 C/G 11 APOA5 Lipids  X X X - - 
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(18596051; 
19018513; 
20395964; 
20429872; 
21738485) 

rs7120118 T/C 11 NR1H3 Lipids  
(19060910) 

X X - X X 

rs7395662 A/G 11 MADD Lipids  
(19060911) 

X X - X X 

rs2338104 C/G 12 KCTD10/MVK Lipids  
(19060906; 
18193043; 
19060910; 
21738485) 

- X X - - 

rs10468017 T/C 15 LIPC AMD  
(20385826; 
21665990; 
23348725) 
Lipids  
(19060906; 
21943158; 
22359512) 

X - X X X 

rs1800588 T/C 15 LIPC Lipids  
(18193044; 
21347282; 
21149302; 
19802338) 

X - X - - 

rs261332 A/G 15 LIPC Lipids  
(21738485; 
21283740; 
18193043) 

X - - - X 

rs757200 T/C 16 CACNG3 AMD  
(21169531) 

- X - X X 

rs3764261 T/G 16 CETP AMD  
(20385819; 
21665990; 
20385826) 
Lipids  
(21738485; 
18193043; 
19060910; 
19359809; 
20686565; 
23118302 ) 

X X X X X 

rs9989419 A/G 16 CETP Lipids  
(18193043; 
20031538; 

X X X X X 
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20864672; 
21738485) 

rs1864163 A/G 16 CETP Lipids  
(18193043; 
20031564) 

X - - X X 

rs711752 A/G 16 CETP Lipids  
(23675527; 
20570915; 
18193046) 

X - - - - 

rs7205804 A/G 16 CETP Lipids  
(23675527; 
18660489) 

- - - - X 

rs1566439 A/G 16 CETP Lipids  
(18078817; 
21738485; 
18193043) 

X X X X X 

rs1800775 A/C 16 CETP Lipids  
(17463246; 
18193044; 
20031564; 
23675527; 
20370913; 
19197348) 

X - X X X 

rs1800777 A/G 16 CETP Lipids  
(18660489; 
20031564) 

X - - - - 

rs255049 T/C 16 DPEP3 Lipids  
(19060910) 

X - - X X 

rs12596776 C/G 16 SLC12A3 Lipids  
(21738485; 
18193043) 

X - X - - 

rs2217332 T/C 16 HERPUD1 Lipids  
(20694148) 

X X - X X 

rs2271293 A/G 16 NUTF2 Lipids  
(19060911; 
19060906; 
21738485) 

- X X X X 

rs9891572 T/C 17 METTL16 Lipids  
(19060910) 

X X - X X 

rs2156552 A/T 18 LIPG Lipids  
(18193043; 
18193044; 
20864672; 
19148283; 
19060910; 
21738485) 

- X X - X 

rs4939883 T/C 18 LIPG Lipids  X X X X X 
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(19060906; 
19060911; 
19802338; 
20031538) 

rs2304130 A/G 19 ZNF101 Lipids  
(19060911; 
20864672; 
22359512) 

- X - X X 

rs2967605 A/G 19 RAB11B Lipids  
(19060906; 
21738485) 

- X X X X 

rs1800961 T/C 20 HNF4A Lipids  
(19060906; 
20686565; 
21738485) 

- X X X X 

rs7679 T/C 20 PCIF1 Lipids  
(19060906; 
21738485) 

- - X X X 
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Supplementary Table 3. Model 3 significant AMD meta-analysis association results.   Each study site performed tests of 

association using logistic regression assuming an additive genetic model.  Data were meta-analyzed using a fixed-effects 

inverse-variance weighted approach.  Results are shown for nominally significant tests (p<0.05) adjusted for age, sex, body 

mass index, smoking status (ever/never), and HDL cholesterol (mg/dL) regardless of fasting status (Model 3). 

         

SNP ID Gene Chr OR (95% CI) 
Direction 
of Effect₴ P-value 

Coded 
Allele CAF Race/Ethnicity 

         

rs1061170 CFH 1 1.62 (1.39-1.88) +,.,+,. 4.9x10-10 C 0.37 European American 

   1.46 (0.80-2.69) ₳ 0.21  0.38 African American 

   1.12 (0.48-1.60) ₳ 0.67  0.20 Mexican American 

         

rs800292 CFH 1 0.57 (0.45-0.72) ₳ 9.2x10-6 A 0.24 European American 

   0.54 (0.29-1.02) ₳ 0.06  0.69 African American 

   0.78 (0.57-1.06) -,-,-,+ 0.11  0.42 Asian 

         

rs3753394 CFH 1 1.25 (1.02-1.51) ₳ 0.02 T 0.29 European American 

   1.52 (0.61-3.74) ₳ 0.36  0.08 African American 

   1.17 (0.85-1.59) +,+,+,- 0.32  0.54 Asian 

         

rs328 LPL 8 0.96 (0.79-1.16) -,-,+,. 0.70 G 0.10 European American 

   1.96 (1.17-3.25) +,+,+,. 0.01  0.07 African American 

   1.26 (0.50-3.16) ₳ 0.62  <0.01 Mexican American 

         

rs6987702 TRIB1 8 1.01 (0.84-1.15) -,+,.,. 0.89 T 0.73 European American 

   1.62 (1.02-2.53) +,+,.,. 0.04  0.29 African American 

   1.12 (0.89-1.42) -,+,+,+ 0.49  0.43 Asian 

         

rs1883025 ABCA1 9 0.82 (0.68-0.98) -,.,-,. 0.04 A 0.26 European Americans 

   0.91 (0.57-1.44) -,.,-,. 0.68  0.35 African Americans 

   0.89 (0.53-1.50) ₳ 0.68  <0.01 Mexican American 

         

rs10490924 ARMS2 10 1.49 (1.25-1.77) +,.,+,. 2.1x10-5 T 0.22 European American 

   0.47 (0.20-1.07) ₳ 0.07  0.24 African American 

   1.62 (1.00-2.62) ₳ 0.05  0.26 Mexican American 

         

rs964184 ZNF259/APOA1 11 0.76 (0.53-1.09) ₳ 0.15 G 0.84 European American 

   0.80 (0.40-1.59) ₳ 0.53  0.77 African American 

   1.47 (0.92-2.37) ₳ 0.10  0.27 Mexican American 

   1.43 (1.03-1.98) -,-,.,+ 0.03  0.79 Asian 
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rs2338104 KCTD10 12 1.01 (0.88-1.16) .,-,+,. 0.80 G 0.53 European American 

   0.88 (0.61-1.25) -,-,+,. 0.49  0.74 African American 

   1.60 (1.01-2.54) ₳ 0.04  0.45 Mexican American 

         

rs1800775 CETP 16 1.03 (0.88-1.21) -,.,+,. 0.66 C 0.52 European American 

   1.82 (1.16-2.85) +,.,+,. 9.8x10-3  0.42 African American 

   1.24 (0.75-2.05) ₳ 0.38  0.46 Mexican American 

   0.95 (0.70-1.30) -,+,-,+ 0.76  0.51 Asian 

         

rs1800961 HNF4A 20 0.65 (0.39-1.06) .,-,-,. 0.09 T 0.03 European American 

   8.24 (1.23-55.2) .,-,+,. 0.03  0.01 African American 

   0.94 (.026-3.38) ₳ 0.93  <0.01 Mexican American 

   1.31 (0.36-4.77) ₳ 0.68  0.02 Asian 

         

₴ Direction of effect is given for ARIC, CHS, and EAGLE for EA, AA, and MA if data are available. Direction of effect is given 
for Asians for SiMES and SP2 1M, 550, and 610 platforms. Otherwise, the study site is set to missing (“.”). 
₳ Only a single study site is represented. 
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Supplementary Figure 1: Synthesis view plot of nominally significant (p < 0.05) meta-analysis association results 

for Model 3 which is adjusted for site of ascertainment, age, sex, BMI, smoking status, and HDL cholesterol 

regardless of fasting status. Included are the results of SNPs that were nominally significant in Model 2, but not in 

Model 3, for ease of comparison. The two models differed in HDL status (regardless of fasting vs. fasting) and use 

of Asian cohort (SiMES only vs. SiMES/SP2). P- values are represented by the colored arrows and are transformed 

by the –log10, with the threshold of p = 0.05 marked by the red line. Colored arrows also show the direction of 

effect (beta). P-values, beta’s, and coded allele frequencies (CAF) are plotted by race/ethnicity. 
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Supplementary Table 4: Mitochondrial genetic association results for model adjusted by age, sex, BMI, and smoking 

status. 

SNPID Gene OR lower CI upper CI p-value CA CAF (%)  Race 

mt10115 ND3 8.33 1.11 62.57 0.0393 C 0.004 Non-Hispanic White 

  1.01 0.40 2.55 0.9917 C 0.298 Non-Hispanic Black 

  — — — 0.9821 C 0.034 Mexican American 

         

mt1018 MTRNR1 8.37 1.11 62.82 0.039 A 0.005 Non-Hispanic White 

  0.72 0.31 1.68 0.451 A 0.515 Non-Hispanic Black 

  — — — 0.9811 A 0.038 Mexican American 

         

mt10400 ND3 0.44 0.03 5.66 0.5289 C 0.994 Non-Hispanic White 

  0.34 0.03 3.45 0.3621 C 0.989 Non-Hispanic Black 

  1.50 0.61 3.71 0.3748 C 0.731 Mexican American 

         

mt10550 NDL4 1.14 0.60 2.15 0.6934 A 0.906 Non-Hispanic White 

  — — — 0.9926 A — Non-Hispanic Black 

  — — — 0.983 A 0.970 Mexican American 

         

mt11177 ND4 1.01 0.41 2.50 0.9837 C 0.818 Mexican American 

         

mt11251 ND4 0.68 0.44 1.04 0.0719 A 0.804 Non-Hispanic White 

  — — — 0.9898 A — Non-Hispanic Black 

  — — — 0.9916 A 0.985 Mexican American 

         

mt11719 ND4 1.14 0.79 1.64 0.4887 A 0.534 Non-Hispanic White 

  0.33 0.09 1.31 0.1158 A 0.949 Non-Hispanic Black 

  1.03 0.22 4.86 0.9671 A 0.936 Mexican American 

         

mt11947 ND4 0.51 0.18 1.46 0.2112 A 0.981 Non-Hispanic White 

  — — — 0.9936 A — Non-Hispanic Black 

  — — — 0.9909 A — Mexican American 

         

mt12007 ND4 1.18 0.31 4.50 0.8104 A 0.017 Non-Hispanic White 

  0.91 0.11 7.50 0.9312 A 0.062 Non-Hispanic Black 

  2.47 1.18 5.18 0.0169 A 0.347 Mexican American 

         

mt12414 ND5 1.05 0.35 3.16 0.931 C 0.022 Non-Hispanic White 

  — — — 0.9902 C — Non-Hispanic Black 

  — — — 0.9875 C 0.032 Mexican American 

         

mt12705 ND5 1.09 0.56 2.11 0.8042 C 0.915 Non-Hispanic White 
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  1.71 0.45 6.41 0.429 C 0.084 Non-Hispanic Black 

  0.87 0.40 1.91 0.73 C 0.321 Mexican American 

         

mt13263 ND5 0.54 0.05 6.37 0.6231 A 0.995 Non-Hispanic White 

  — — — 0.9937 A — Non-Hispanic Black 

  2.26 0.75 6.84 0.1496 A 0.784 Mexican American 

         

mt13506 ND5 1.57 0.51 4.82 0.4291 C 0.789 Non-Hispanic Black 

  — — — 0.9911 C — Mexican American 

         

mt13789 ND5 0.54 0.15 1.95 0.3502 C 0.159 Non-Hispanic Black 

         

mt14178 CYTB — — — 0.9784 C — Non-Hispanic White 

  0.57 0.16 2.03 0.3849 C 0.158 Non-Hispanic Black 

         

mt14318 CYTB 2.98 0.18 50.27 0.449 C 0.004 Non-Hispanic White 

  0.46 0.15 1.39 0.1671 C 0.210 Mexican American 

         

mt1438 MTRNR1 0.61 0.18 2.11 0.434 A 0.025 Non-Hispanic White 

  1.19 0.32 4.48 0.7932 A 0.084 Non-Hispanic Black 

  — — — 0.9911 A — Mexican American 

         

mt14470 ND6 0.63 0.14 2.81 0.5447 C 0.023 Non-Hispanic White 

  — — — 0.9929 C — Non-Hispanic Black 

         

mt14560 CYTB — — — 0.9856 A — Non-Hispanic White 

  0.56 0.16 1.98 0.3645 A 0.157 Non-Hispanic Black 

         

mt14668 CYTB 0.12 0.01 2.18 0.1522 C — Non-Hispanic White 

  — — — 0.9899 C — Non-Hispanic Black 

  0.38 0.09 1.62 0.1905 C 0.955 Mexican American 

         

mt14766 CYTB 0.86 0.60 1.24 0.4241 C 0.472 Non-Hispanic White 

  3.27 0.83 12.98 0.0914 C 0.051 Non-Hispanic Black 

  0.82 0.18 3.81 0.8039 C 0.068 Mexican American 

         

mt14905 CYTB 2.49 1.17 5.32 0.0185 A 0.104 Non-Hispanic White 

  2.16 0.22 21.39 0.5114 A 0.121 Non-Hispanic Black 

         

mt15043 CYTB 0.91 0.33 2.51 0.8549 A 0.036 Non-Hispanic White 

  1.50 0.17 13.54 0.7158 A 0.018 Non-Hispanic Black 

  0.68 0.27 1.68 0.3975 A 0.271 Mexican American 
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mt15326 CYTB 0.35 0.04 2.85 0.3277 A 0.010 Non-Hispanic White 

  — — — 0.9911 A — Mexican American 

         

mt15452 CYTB 1.47 0.96 2.24 0.0778 A 0.197 Non-Hispanic White 

  — — — 0.9898 A — Non-Hispanic Black 

  — — — 0.9874 A 0.015 Mexican American 

         

mt15535 CYTB 1.01 0.41 2.50 0.9837 C 0.818 Mexican American 

         

mt16111 HVCR — — — 0.9822 A 0.009 Non-Hispanic White 

  — — — 0.9846 A 0.018 Non-Hispanic Black 

  2.90 1.38 6.11 0.0052 A 0.309 Mexican American 

         

mt16189 HVCR 0.90 0.52 1.56 0.7108 C 0.148 Non-Hispanic White 

  0.58 0.22 1.53 0.2723 C 0.356 Non-Hispanic Black 

  0.86 0.38 1.95 0.7116 C 0.260 Mexican American 

         

mt16271 HVCR — — — 0.9852 C — Non-Hispanic White 

  — — — 0.993 C — Non-Hispanic Black 

         

mt16319 HVCR 0.42 0.05 3.52 0.4266 A 0.014 Non-Hispanic White 

  3.23 0.33 31.60 0.3135 A 0.016 Non-Hispanic Black 

  2.59 1.24 5.42 0.0117 A 0.348 Mexican American 

         

mt16362 HVCR 1.70 0.93 3.10 0.084 C 0.085 Non-Hispanic White 

  2.29 0.84 6.27 0.106 C 0.130 Non-Hispanic Black 

  2.80 1.32 5.95 0.0074 C 0.424 Mexican American 

         

mt16390 
Non-
coding 1.15 0.22 5.94 0.8646 A 0.016 Non-Hispanic White 

  1.79 0.28 11.31 0.5385 A — Non-Hispanic Black 

  — — — 0.9807 A 0.054 Mexican American 

         

mt1736 HVCR — — — 0.9857 A 0.997 Non-Hispanic White 

  — — — 0.9906 A — Non-Hispanic Black 

  0.40 0.19 0.83 0.0147 A 0.657 Mexican American 

         

mt2092 MTRNR2 — — — 0.987 C — Non-Hispanic White 

  — — — 0.9931 C — Non-Hispanic Black 

  0.49 0.12 1.94 0.3079 C 0.949 Mexican American 

         

mt3505 ND1 0.88 0.29 2.68 0.8243 A 0.978 Non-Hispanic White 

  0.47 0.05 4.40 0.5058 A 0.985 Non-Hispanic Black 
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  — — — 0.9911 A — Mexican American 

         

mt3552 ND1 — — — 0.9862 A — Non-Hispanic White 

  — — — 0.991 A — Mexican American 

         

mt3594 ND1 0.12 0.02 0.89 0.0376 C 0.996 Non-Hispanic White 

  1.38 0.60 3.19 0.4466 C 0.490 Non-Hispanic Black 

  — — — 0.9808 C 0.962 Mexican American 

         

mt4769 ND2 1.06 0.22 5.15 0.9423 A 0.010 Non-Hispanic White 

  — — — 0.9887 A — Non-Hispanic Black 

  — — — 0.9911 A — Mexican American 

         

mt4883 ND2 — — — 0.987 C — Non-Hispanic White 

  — — — 0.993 C — Non-Hispanic Black 

  0.54 0.14 2.11 0.3769 C 0.947 Mexican American 

         

mt4977 ND2 — — — 0.9931 C — Non-Hispanic Black 

  0.83 0.32 2.16 0.7001 C 0.180 Mexican American 

         

mt5178 ND2 — — — 0.987 A — Non-Hispanic White 

  — — — 0.993 A — Non-Hispanic Black 

  1.85 0.47 7.20 0.3769 A 0.053 Mexican American 

         

mt5442 ND2 0.92 0.11 7.53 0.936 C 0.060 Non-Hispanic Black 

  — — — 0.991 C — Mexican American 

         

mt6371 CO1 1.42 0.31 6.44 0.6476 C 0.980 Non-Hispanic White 

         

mt825 MTRNR1 0.62 0.20 1.90 0.4004 A 0.214 Non-Hispanic Black 

  — — — 0.991 A — Mexican American 

         

mt8414 ATP8 — — — 0.987 C — Non-Hispanic White 

  — — — 0.9931 C — Non-Hispanic Black 

  0.54 0.14 2.11 0.3769 C 0.947 Mexican American 

         

mt8468 ATP8 — — — 0.9869 C — Non-Hispanic White 

  — — — 0.9599 C 0.793 Non-Hispanic Black 

  — — — 0.9853 C — Mexican American 

         

mt8703 ATP6 — — — 0.9857 C — Non-Hispanic White 

  — — — 0.9895 C — Non-Hispanic Black 
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mt9042 ATP6 1.08 0.13 8.97 0.9423 C 0.940 Non-Hispanic Black 

  — — — 0.991 C — Mexican American 

         

mt9347 COX3 1.02 0.12 8.42 0.9889 A 0.943 Non-Hispanic Black 

  — — — 0.9909 A — Mexican American 

         

mt9950 COX3 — — — 0.9843 C — Non-Hispanic White 

  0.92 0.11 7.53 0.9388 C 0.046 Non-Hispanic Black 

  0.81 0.31 2.11 0.665 C 0.181 Mexican American 

“—“ denotes genetic association tests with uninterruptable results due to very few case counts 
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Supplementary Table 5: Complete results for association testing between AMD variants and quantitative traits.  

SNP CA CAF Trait race_ethnicity Beta SE CI 

lower 

CI 

upper 

p-

value 

rs1061170 C 0.37 BMI Non-Hispanic 

Black 

-1.20 0.51 -2.21 -0.19 0.02 

rs547154 T 0.08 BMI Mexican American -1.18 0.61 -2.37 0.02 0.05 

rs10490924 T 0.22 Lutein Non-Hispanic 

White 

-1.12 0.63 -2.36 0.13 0.08 

rs547154 T 0.09 Lutein Mexican American 3.11 1.83 -0.48 6.71 0.09 

rs547154 T 0.11 LN Vitamin A Non-Hispanic 

White 

0.03 0.02 -0.01 0.07 0.09 

rs547154 T 0.11 Lutein Non-Hispanic 

White 

1.19 0.86 -0.50 2.88 0.17 

rs1061170 C 0.37 LN Vitamin A Non-Hispanic 

Black 

0.04 0.03 -0.02 0.10 0.17 

rs547154 T 0.21 β-carotene Non-Hispanic 

Black 

-4.42 3.33 -10.97 2.13 0.19 

rs1061170 C 0.36 LN  α-carotene Non-Hispanic 

White 

0.04 0.03 -0.03 0.10 0.27 

rs547154 T 0.08 LN  α-carotene Mexican American 0.09 0.08 -0.08 0.26 0.28 

rs1061170 C 0.36 LN Vitamin A Non-Hispanic 

White 

0.01 0.01 -0.01 0.04 0.30 

rs10490924 T 0.25 BMI Non-Hispanic 

Black 

-0.59 0.57 -1.72 0.54 0.30 

rs547154 T 0.21 LN  α-carotene Non-Hispanic 

Black 

-0.08 0.09 -0.25 0.09 0.35 

rs547154 T 0.21 Lutein Non-Hispanic 

Black 

-1.41 1.54 -4.44 1.63 0.36 

rs10490924 T 0.25 LN  α-carotene Non-Hispanic 

Black 

0.08 0.08 -0.09 0.24 0.37 

rs10490924 T 0.25 LN  α-carotene Non-Hispanic 

Black 

0.07 0.08 -0.09 0.23 0.38 

rs10490924 T 0.26 LN Vitamin A Mexican American 0.02 0.02 -0.03 0.07 0.45 

rs1061170 C 0.36 β-carotene Non-Hispanic 

White 

-0.87 1.18 -3.17 1.44 0.46 

rs1061170 C 0.21 BMI Mexican American 0.34 0.46 -0.58 1.25 0.47 

rs547154 T 0.11 β-carotene Non-Hispanic 

White 

1.35 1.89 -2.36 5.07 0.48 

rs10490924 T 0.25 LN Vitamin A Non-Hispanic 

Black 

0.02 0.03 -0.04 0.09 0.48 

rs10490924 T 0.26 BMI Mexican American 0.28 0.40 -0.50 1.06 0.48 

rs1061170 C 0.36 Lutein Non-Hispanic 

White 

0.37 0.57 -0.76 1.49 0.52 

rs1061170 C 0.37 LN  α-carotene Non-Hispanic 

Black 

0.04 0.07 -0.10 0.19 0.55 

rs1061170 C 0.36 BMI Non-Hispanic 

White 

-0.12 0.23 -0.56 0.32 0.60 

rs1061170 C 0.21 β-carotene Mexican American -0.80 1.73 -4.21 2.60 0.64 

rs1061170 C 0.37 β-carotene Non-Hispanic 

Black 

-1.32 2.87 -6.98 4.33 0.65 

rs10490924 T 0.22 β-carotene Non-Hispanic 

White 

0.62 1.36 -2.05 3.28 0.65 
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rs10490924 T 0.26 Lutein Mexican American -0.51 1.19 -2.85 1.83 0.67 

rs547154 T 0.11 LN  α-carotene Non-Hispanic 

White 

0.02 0.05 -0.09 0.13 0.70 

rs10490924 T 0.25 β-carotene Non-Hispanic 

Black 

-1.07 3.21 -7.38 5.24 0.74 

rs10490924 T 0.22 LN Vitamin A Non-Hispanic 

White 

0.00 0.01 -0.02 0.03 0.75 

rs1061170 C 0.21 LN  α-carotene Mexican American 0.02 0.06 -0.10 0.14 0.75 

rs547154 T 0.08 LN Vitamin A Mexican American -0.01 0.04 -0.09 0.06 0.75 

rs547154 T 0.21 BMI Non-Hispanic 

Black 

0.18 0.59 -0.99 1.34 0.77 

rs10490924 T 0.22 BMI Non-Hispanic 

White 

0.08 0.26 -0.43 0.58 0.77 

rs10490924 T 0.22 LN  α-carotene Non-Hispanic 

White 

-0.01 0.04 -0.09 0.07 0.78 

rs10490924 T 0.26 LN  α-carotene Mexican American 0.02 0.06 -0.09 0.12 0.78 

rs10490924 T 0.26 LN  α-carotene Mexican American 0.01 0.06 -0.10 0.12 0.80 

rs10490924 T 0.26 β-carotene Mexican American 0.32 1.55 -2.72 3.36 0.84 

rs10490924 T 0.25 Lutein Non-Hispanic 

Black 

-0.29 1.48 -3.21 2.63 0.84 

rs1061170 C 0.21 LN Vitamin A Mexican American 0.01 0.03 -0.05 0.06 0.86 

rs1061170 C 0.37 Lutein Non-Hispanic 

Black 

-0.20 1.28 -2.72 2.33 0.88 

rs547154 T 0.21 LN Vitamin A Non-Hispanic 

Black 

0.00 0.03 -0.06 0.07 0.90 

rs10490924 T 0.22 LN  α-carotene Non-Hispanic 

White 

0.00 0.04 -0.08 0.07 0.92 

rs547154 T 0.11 BMI Non-Hispanic 

White 

0.02 0.36 -0.68 0.73 0.95 

rs1061170 C 0.21 Lutein Mexican American -0.05 1.43 -2.86 2.76 0.97 

rs547154 T 0.08 β-carotene Mexican American -0.04 2.40 -4.76 4.68 0.99 

CA = coded allele 

CAF = coded allele frequency 

CI = confidence interval 

SE = standard error 

LN = natural log 
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Chapter 3 Appendix 

 

 

Supplementary Table 6:  List of diabetic retinopathy/diabetes medications 

 

Drug name(s) Generic drug name/active 

ingredient 

Indications* 

Avastin Bevacizumab Metastatic colorectal cancer, non-squamous non-

small cell lung cancer, glioblastoma, metastatic 

renal cell carcinoma, and cervical cancer 

Ozurdex (implant) Dexamethasone Macular edema following branch retinal vein 

occlusion or central retinal vein occlusion. Non-

infectious uveitis and diabetic macular edema 

Retisert (implant) Fluocinolone acetonide Non-infectious uveitis affecting posterior segment 

of eye 

Iluvien (implant) Fluocinolone acetonide Diabetic macular edema 

   

Zestril Lisinopril Hypertension, heart failure, acute myocardial 

infarction 

Prinivil Lisinopril Hypertension, heart failure, acute myocardial 

infarction 

Lucentis Ranibizumab Neovascular age-related macular degeneration, 

macular edema following retinal vein occlusion, 

diabetic macular edema 
Indications is a limited list of FDA approved uses as stated on the Drugs@FDA website as of January 25th, 2014: 

http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ 
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Supplementary Figure 2: Flow diagram of the decision tree involved in determining Type-2 diabetes in 

EAGLE BioVU African Americans (n=1,672). 
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Supplementary Table 7:  Study population characteristics of total POAG cases and controls among African Americans in 

EAGLE BioVU 

 
Total Cases        

> 20 yrs (SD) 
Definite Cases Potential Cases 

Controls             

> 40 yrs (SD) 

N 268 138 67 4813 

Age (years) 71 (12.9) --  57 (11.7) 

Age at 

Diagnosis 

(years) 

62 (12.5) 62.0 (12.0) 62.9 (12.7) -- 

Age at Last 

Clinic (years) 
-- -- -- 54 (11.7) 

Sex (% female) 61.6 63.7 65.6 60 

Hypertensive 

(%) 
48.3 55.1 59.7 46.6 

BMI (kg/m2) 30.1 (7.0) 30.1 (6.7) 29.0 (6.1) 30.1 (8.0) 

Diastolic 

(mm/Hg) 
76 (8.9) 74.5 (8.1) 77.7 (10.3) 80 (33.6) 

Systolic 

(mm/Hg) 
135 (14.2) 134.5 (14.1) 134 (14.7) 124 (26.2) 

Cholesterol 

(mg/dL) 
182 (48.2) 183 (40.6) 187 (58.0) 161 (65.2) 

HDL (mg/dL) 52 (25.5) 52.5 (25.0) 58 (29.7) 53 (38.6) 

LDL (mg/dL) 99 (49.3) 103 (42.9) 94.5 (45.7) 99 (50.7) 

Triglycerides 

(mg/dL) 
112 (70.8) 125 (76.3) 107 (65.8) 98 (67.8) 

 

Median values were calculated for the following: Age was calculated from a given birth year. Age at POAG diagnosis was 

determined by the date of when POAG ICD-9 (365.11) was first mentioned in the records. Age at last clinic visit (LCV) was 

taken as the date of the last CPT mentioned in the records for controls. An individual was classified as hypertensive if he/she 

met one of three criteria: systolic blood pressure > 140 mm/Hg, diastolic blood pressure > 90 mm/Hg, or on hypertension 

medications all within a two year window of when they were diagnosed with POAG in cases and a two year window of their 

LCV date for controls.  Blood pressure (systolic and diastolic), lipids (total cholesterol, high-density cholesterol, low-density 

cholesterol, and triglycerides), and body mass index (height and weight) were calculated from labs or measurements within two 

years of POAG diagnosis or LCV.  Abbreviations:  standard deviation (SD) 
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Chapter 4 Appendix  

Supplementary Table 8: Ocular-related SNPs directly genotyped on the Metabochip 

SNP CHR Closest 

Gene 

Trait PMID 

rs994767 1 ZC3H11B Ocular axial length TBD 

rs11755724 6 RREB1 AMD 20385826 

rs2070600 6 AGER Diabetic retinopathy 21067572 

rs730497 7 GCK HbA1c 19096518 

rs10237118 7 TRIM24 Optic disc size (cup) 20395239 

rs13266634 8 EIF3H HbA1c 19734900  

rs564398 9 CDKN2B POAG 22428042 

rs523096 9 CDKN2B NT-Glaucoma 22792221 

rs3217992 9 CDKN2B NPG 22570617 

rs2157719 9 CDKN2B POAG 22570617 

rs1412829 9 CDKN2B NPG 22570617 

rs1063192 9 CDKN2B POAG 22419738 

rs1063192 9 CDKN2B POAG and CTD ratio 22419738 

22570617 

rs7894966 10 GAS7 IOP 22570627 

rs7072268 10 HK1 HbA1c 19096518 

rs3858145 10 ATOH7 Optic disc size (cup) 20395239  

rs3793917 10 ARMS2 AMD 20385819 

rs10490924 10 ARMS2 AMD 20385826 

rs11812882 10 CISD1 Diabetic retinopathy 20871662 

rs5742629 12 IGF1 Myopia (extreme) 22509095 

rs10858945 12 LOC338758 Optic disc size (cup) 20395239 

rs10483727 14 AKR1B1P5 POAG and Optic disc size (rim) 20548946 22419738 

22570617 

rs493258 15 RPL28P4 AMD 20385819 

rs10468017 15 LIPC AMD 20385826 

rs3764261 16 CETP AMD 20385819  

rs10521145 16 CCDC101 Diabetic retinopathy 22427569 

rs151227 16 NUPR1 Diabetic retinopathy 21441570 

rs151230 16 CCDC101 Diabetic retinopathy 21441570 

rs151229 16 CCDC101 Diabetic retinopathy 21441570 

rs10521145 16 CCDC101 Diabetic retinopathy 21441570 

rs11641853 16 CCDC101 Diabetic retinopathy 21441570 

rs11074904 16 SULT1A1 Diabetic retinopathy 21441570 

rs1109739 16 16q12 POAG  22661486 

rs134173 22 CHEK2 CTD ratio 22570617 
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Supplementary Table 9: Twenty Most significant results for genetic association analysis of 

CDKN2B-AS1 region in African Americans cases (n=138) and controls (n=1,376).  Logistic 

regression assuming an additive genetic model was performed for adjusted for age, sex, and PC. 

SNP Allele MAF Function Class OR 95% CI p-value 

rs2065504 C 0.37 upstream intergenic 1.42 1.06-1.89 0.02 

rs6475610 G 0.37 upstream intergenic 1.41 1.05-1.88 0.02 

rs111690485 A 0.05 upstream intergenic 1.93 1.08-3.44 0.03 

rs10217426 C 0.47 Intron 1.36 1.01-1.82 0.04 

rs2383206 G 0.41 Intron 0.74 0.55-1.00 0.05 

rs10965234 A 0.46 Intron 1.34 0.99-1.80 0.05 

rs1537376 G 0.41 Intron 0.74 0.55-1.01 0.06 

rs10965235 A 0.47 Intron 1.33 0.99-1.79 0.06 

rs77728904 C 0.09 Intron 0.56 0.30-1.03 0.06 

rs80166549 G 0.10 Intron 0.57 0.32-1.04 0.06 

rs2383208 G 0.18 upstream intergenic 1.41 0.98-2.03 0.07 

rs80202680 A 0.06 upstream intergenic 1.66 0.96-2.89 0.07 

rs79985856 A 0.10 Intron 0.58 0.32-1.05 0.07 

rs79182326 A 0.10 Intron 0.58 0.32-1.05 0.07 

rs944797 G 0.41 Intron 0.76 0.56-1.03 0.08 

rs77284052 A 0.10 Intron 0.59 0.33-1.06 0.08 

rs77920300 A 0.10 Intron 0.59 0.33-1.06 0.08 

rs17694493 G 0.11 Intron 0.62 0.36-1.07 0.09 

rs17694572 A 0.10 Intron 0.61 0.35-1.08 0.09 

rs2065505 G 0.25 upstream intergenic 1.32 0.95-1.82 0.09 

MAF = minor allele frequency 

OR = odds ratio 

CI = confidence interval 
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Supplementary Figure 4: Quantile-Quantile plots graphed in STATA 12.0 of p-values in the 

CDKN2B-AS1 association analyses of logistic regression model adjusted by age, sex, and first three 

PC. 

 

 

Supplementary Figure 3: Quantile-Quantile plots graphed in STATA 12.0 of p-values in the 

CDKN2B-AS1 association analyses of logistic regression model adjusted by age, sex, and median 

diastolic blood pressure. 
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Supplementary Figure 6: Quantile-Quantile plots graphed in STATA 12.0 of p-values in the 

CDKN2B-AS1 association analyses of logistic regression model adjusted by age, sex, first 3 PC, and 

median diastolic blood pressure. 

 

 

Supplementary Figure 5: Power Calculations determined in Quanto for the EAGLE BioVU African 

American POAG cohort assuming 135 cases with a case: control ratio of 1:3, log-additive model, and 

a 2-sided t-test. The color coded lines represented the varying allele frequencies tested for in these 

power calculations. 
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Supplementary Table 10: The one hundred most significant results for the genetic 

association analysis of the Metabochip and African Americans POAG cases (n=138) and 

controls (n=1,376).  Logistic regression assuming an additive genetic model was 

performed for adjusted for age, sex, and PC. 

CHR SNP 

Coded 

Allele OR 95% CI-L 95% CI-U P-value 

3 rs4678836 A 1.96 1.42 2.70 4.31E-05 

19 rs1671152 A 1.88 1.39 2.54 4.53E-05 

21 rs9982695 A 2.01 1.44 2.82 4.59E-05 

6 rs9479660 G 1.88 1.39 2.55 4.72E-05 

6 rs11155927 G 1.93 1.41 2.66 5.28E-05 

6 rs10456759 C 1.91 1.39 2.62 7.01E-05 

6 rs9479657 G 1.81 1.35 2.44 9.21E-05 

6 rs9479726 A 0.44 0.29 0.67 1.01E-04 

4 rs3775202 G 1.75 1.31 2.35 1.82E-04 

1 rs1572151 G 2.51 1.55 4.07 2.00E-04 

6 chr6:25793471 C 1.75 1.30 2.37 2.71E-04 

19 rs2910368 G 2.13 1.42 3.21 2.81E-04 

16 chr16:52509162 A 1.99 1.37 2.89 3.04E-04 

16 rs7190904 A 2.11 1.41 3.15 3.10E-04 

15 rs11639241 C 1.76 1.29 2.39 3.21E-04 

1 chr1:11778484 C 2.44 1.50 3.99 3.64E-04 

1 rs17421462 A 2.44 1.50 3.99 3.64E-04 

5 rs7714384 A 1.71 1.27 2.31 3.89E-04 

13 rs449674 A 0.43 0.27 0.69 4.01E-04 

6 chr6:25814153 A 1.84 1.31 2.57 4.07E-04 

9 rs7863513 A 0.55 0.40 0.77 4.19E-04 

19 chr19:19633722 A 0.51 0.35 0.74 4.39E-04 

13 chr13:109680753 A 2.15 1.40 3.30 4.53E-04 

5 rs4336354 G 2.21 1.42 3.45 4.64E-04 

6 rs7454156 G 1.84 1.31 2.59 4.81E-04 

17 rs9675320 A 0.58 0.43 0.79 4.82E-04 

4 rs17028407 A 2.45 1.48 4.06 4.88E-04 

16 chr16:52507417 A 1.85 1.31 2.62 4.89E-04 

4 chr4:88283455 G 1.73 1.27 2.36 5.12E-04 

19 rs2967732 C 1.90 1.32 2.74 5.15E-04 

8 rs2158588 A 2.55 1.50 4.34 5.31E-04 

16 chr16:52496582 A 1.79 1.29 2.49 5.44E-04 

21 rs2832227 G 1.66 1.24 2.21 6.00E-04 

13 rs17591848 G 1.83 1.29 2.60 6.51E-04 

2 rs1370919 C 1.67 1.24 2.24 6.56E-04 

6 chr6:25818066 G 0.59 0.44 0.80 6.75E-04 
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12 rs10860451 G 0.58 0.42 0.79 7.02E-04 

11 chr11:72150910 G 1.67 1.24 2.25 7.04E-04 

13 rs1322379 G 1.79 1.28 2.50 7.23E-04 

6 chr6:25522825 A 0.58 0.42 0.80 7.46E-04 

4 chr4:88242323 G 1.76 1.27 2.45 7.59E-04 

6 chr6:25833213 A 0.60 0.44 0.81 7.68E-04 

5 rs17066506 A 1.90 1.31 2.76 7.74E-04 

16 rs4786689 A 0.56 0.40 0.79 7.74E-04 

1 rs12119433 C 1.68 1.24 2.28 7.88E-04 

22 rs9608416 A 1.80 1.28 2.55 8.19E-04 

16 chr16:28662185 A 1.70 1.25 2.33 8.24E-04 

19 chr19:19449565 A 2.22 1.39 3.56 8.87E-04 

18 rs1786162 A 0.59 0.44 0.81 9.05E-04 

16 chr16:28769235 C 1.66 1.23 2.23 9.22E-04 

18 rs1786153 A 1.65 1.23 2.21 9.61E-04 

16 chr16:28290744 A 1.70 1.24 2.33 9.77E-04 

6 chr6:160868393 A 1.67 1.23 2.26 9.88E-04 

6 rs6455482 G 1.77 1.26 2.48 9.90E-04 

6 rs7774579 A 1.68 1.23 2.28 9.92E-04 

2 chr2:21284826 G 2.29 1.40 3.76 1.03E-03 

2 chr2:21292690 G 2.29 1.40 3.76 1.03E-03 

19 chr19:19345008 G 1.96 1.31 2.94 1.05E-03 

16 rs2008514 A 1.64 1.22 2.20 1.05E-03 

16 chr16:28733454 G 1.64 1.22 2.20 1.08E-03 

1 chr1:109506916 G 1.84 1.28 2.65 1.10E-03 

5 rs1529707 A 0.60 0.44 0.81 1.10E-03 

4 chr4:88259933 A 1.68 1.23 2.29 1.11E-03 

2 rs3097385 G 1.85 1.28 2.67 1.12E-03 

5 rs4700135 G 0.58 0.42 0.80 1.13E-03 

19 chr19:19468633 G 2.18 1.36 3.50 1.15E-03 

3 rs11916892 G 0.30 0.14 0.62 1.15E-03 

2 chr2:21259122 A 2.29 1.39 3.76 1.16E-03 

5 rs159584 A 2.46 1.43 4.23 1.19E-03 

16 chr16:52499785 G 1.74 1.25 2.44 1.19E-03 

17 rs11653150 A 1.63 1.21 2.19 1.20E-03 

6 rs4713691 A 0.55 0.39 0.79 1.23E-03 

16 chr16:28780899 A 1.64 1.21 2.21 1.25E-03 

16 chr16:28772543 G 1.64 1.21 2.21 1.26E-03 

6 rs11964613 A 0.55 0.38 0.79 1.27E-03 

16 chr16:28779361 G 1.64 1.21 2.21 1.28E-03 

2 rs11127229 A 1.90 1.29 2.82 1.29E-03 

16 chr16:28782623 C 1.64 1.21 2.21 1.29E-03 

2 chr2:21250393 G 2.26 1.37 3.73 1.33E-03 
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16 chr16:28775305 A 1.63 1.21 2.20 1.33E-03 

2 rs6759676 G 0.61 0.45 0.82 1.33E-03 

16 chr16:28770952 A 1.63 1.21 2.20 1.33E-03 

5 rs9885411 G 2.53 1.43 4.46 1.34E-03 

16 chr16:52499369 A 1.75 1.24 2.47 1.37E-03 

16 chr16:28798966 A 1.63 1.21 2.20 1.37E-03 

7 rs2041562 C 2.43 1.41 4.18 1.38E-03 

1 chr1:62672716 A 2.05 1.32 3.17 1.38E-03 

16 chr16:28790742 G 1.63 1.21 2.19 1.39E-03 

7 rs17837626 C 2.09 1.33 3.28 1.39E-03 

11 rs17197116 G 0.26 0.11 0.59 1.39E-03 

16 rs3888190 A 1.63 1.21 2.19 1.40E-03 

3 chr3:15794966 C 2.48 1.42 4.32 1.40E-03 

5 rs10063054 C 1.60 1.20 2.14 1.41E-03 

16 chr16:28788703 C 1.63 1.21 2.19 1.43E-03 

16 chr16:28797632 A 1.63 1.21 2.19 1.43E-03 

5 rs974359 A 1.65 1.21 2.25 1.44E-03 

16 chr16:28776196 A 1.63 1.21 2.19 1.44E-03 

16 chr16:28797209 C 1.63 1.21 2.19 1.46E-03 

6 rs2524118 A 2.10 1.33 3.32 1.46E-03 

6 chr6:25818742 C 1.63 1.21 2.19 1.47E-03 

OR = odds ratio 

CI-L = lower confidence interval 

CI-U = upper confidence interval 
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Supplementary Table 11: The one hundred most significant results for the genetic 

association analysis of the Metabochip and African Americans POAG cases (n=138) and 

controls (n=1,376).  Logistic regression assuming an additive genetic model was performed 

for adjusted for age, sex, PC, and median diastolic blood pressure. 

CHR SNP 

Coded 

Allele OR 95% CI-L 95% CI-U P-value 

1 chr1:228347779 A 2.373 1.563 3.603 5.00E-05 

1 chr1:228354829 C 2.094 1.447 3.028 8.73E-05 

21 rs9982695 A 2.09 1.446 3.02 8.74E-05 

6 chr6:25793471 C 1.943 1.392 2.714 9.64E-05 

4 rs3775202 G 1.921 1.383 2.666 9.70E-05 

2 rs13423742 C 3.048 1.73 5.369 0.000115 

6 rs7454156 G 2.078 1.427 3.026 0.000138 

6 rs9479726 A 0.405 0.2536 0.6469 0.000155 

19 rs1671152 A 1.916 1.367 2.686 0.000161 

10 rs286489 A 1.901 1.358 2.66 0.00018 

5 rs4336354 G 2.511 1.549 4.07 0.000187 

16 rs7190904 A 2.293 1.483 3.546 0.000192 

16 chr16:52507417 A 2.022 1.395 2.931 0.000202 

5 rs7714384 A 1.858 1.336 2.584 0.000232 

7 chr7:14708236 G 0.3397 0.1908 0.6047 0.000243 

16 rs1424077 G 2.259 1.461 3.492 0.000246 

6 rs6929849 A 0.5075 0.3532 0.7293 0.000246 

4 rs17028407 A 2.735 1.596 4.688 0.000252 

4 chr4:88283455 G 1.876 1.338 2.63 0.000266 

19 rs2910368 G 2.299 1.468 3.602 0.000276 

4 chr4:88259933 A 1.875 1.336 2.631 0.000279 

13 rs1547918 G 2.302 1.468 3.609 0.00028 

1 rs649214 G 1.848 1.326 2.577 0.000291 

13 chr13:109680753 A 2.368 1.482 3.784 0.000314 

16 chr16:52509162 A 2.085 1.398 3.111 0.000317 

5 rs17066506 A 2.118 1.408 3.187 0.000319 

4 rs6832117 A 1.809 1.306 2.505 0.00036 

8 rs10956525 G 3.112 1.667 5.813 0.000368 

1 chr1:109506916 G 2.062 1.384 3.072 0.000377 

4 rs1408 G 1.854 1.317 2.611 0.000409 

8 rs6415517 A 2.693 1.554 4.664 0.000411 

4 chr4:88242323 G 1.915 1.335 2.747 0.000415 

5 chr5:157782818 A 2.403 1.477 3.91 0.000418 

3 rs4647226 A 3.01 1.629 5.559 0.000433 

2 rs11127229 A 2.118 1.394 3.218 0.000439 

4 chr4:88259209 A 1.85 1.313 2.607 0.00044 
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2 rs3768641 G 2.022 1.362 3 0.000472 

13 rs449674 A 0.3867 0.227 0.6587 0.000473 

22 rs9608416 A 2.001 1.355 2.953 0.000483 

4 chr4:88272109 G 1.834 1.304 2.579 0.000491 

6 rs241407 A 2.215 1.416 3.465 0.000494 

8 rs2158588 A 2.755 1.552 4.891 0.000536 

19 chr19:19449565 A 2.478 1.478 4.154 0.000579 

15 rs11639241 C 1.815 1.29 2.553 0.000614 

7 chr7:14720840 A 0.3619 0.2021 0.6479 0.000625 

5 rs1529707 A 0.5403 0.3796 0.769 0.00063 

13 rs1322379 G 1.902 1.315 2.75 0.000634 

11 chr11:10305291 G 2.244 1.411 3.568 0.000635 

2 rs1357011 C 2.641 1.51 4.617 0.000658 

19 rs2967732 C 1.99 1.339 2.959 0.000669 

5 rs10063054 C 1.758 1.27 2.434 0.00068 

1 rs2422286 A 1.93 1.32 2.82 0.000688 

6 rs12215670 G 2.639 1.505 4.628 0.000706 

5 rs9885411 G 2.933 1.573 5.472 0.000716 

7 rs4720833 A 0.4503 0.2836 0.715 0.000721 

3 rs4678836 A 1.872 1.301 2.693 0.00073 

5 chr5:157674339 A 1.777 1.273 2.481 0.000737 

6 chr6:25818742 C 1.773 1.271 2.474 0.000748 

6 rs3869129 A 0.5399 0.377 0.7733 0.000773 

19 chr19:19468633 G 2.423 1.446 4.061 0.00078 

2 rs3097385 G 2.002 1.335 3.003 0.000792 

16 rs237174 A 1.925 1.313 2.822 0.000793 

6 rs10456759 C 1.83 1.284 2.607 0.000823 

10 rs11196187 A 2.694 1.506 4.819 0.000838 

5 chr5:157668311 G 1.757 1.261 2.448 0.000874 

4 rs223482 A 1.748 1.258 2.429 0.000886 

13 rs3924002 G 2.137 1.365 3.346 0.000897 

11 chr11:2876684 A 1.994 1.327 2.998 0.000902 

17 rs2659015 A 2.046 1.341 3.124 0.000908 

14 rs10135856 A 0.5781 0.4181 0.7993 0.000917 

5 chr5:157767459 A 0.5537 0.3903 0.7857 0.000928 

13 rs17591848 G 1.908 1.302 2.797 0.000929 

5 chr5:157760095 G 0.5543 0.3907 0.7864 0.000945 

5 chr5:157766571 G 0.5543 0.3907 0.7864 0.000945 

5 chr5:157758859 A 0.5545 0.3909 0.7866 0.000948 

15 chr15:73056964 A 2.521 1.457 4.362 0.00095 

5 chr5:157758831 A 0.5554 0.3917 0.7877 0.000972 

12 chr12:48529939 G 1.748 1.254 2.436 0.000975 

9 rs7863513 A 0.54 0.3744 0.7789 0.000977 
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10 rs4347309 G 1.792 1.266 2.536 0.000989 

6 chr6:25818066 G 0.5682 0.4058 0.7957 0.001001 

8 rs11863 A 1.767 1.258 2.48 0.001009 

5 rs4700135 G 0.5332 0.3661 0.7765 0.001043 

10 rs853928 A 0.4842 0.3138 0.7472 0.001049 

5 chr5:157736208 A 0.5515 0.386 0.7879 0.001077 

5 chr5:157759964 A 0.5573 0.3925 0.7913 0.001079 

1 rs11810369 A 1.726 1.244 2.395 0.001081 

6 rs9479660 G 1.752 1.252 2.453 0.001087 

18 rs1786153 A 1.723 1.243 2.389 0.001103 

17 rs16956560 G 1.754 1.251 2.457 0.001104 

5 chr5:157764878 G 0.5579 0.3928 0.7924 0.001115 

6 rs3201892 C 0.5271 0.3585 0.7749 0.001126 

2 rs13394146 A 1.738 1.246 2.425 0.001141 

2 rs4849816 A 1.734 1.245 2.417 0.001145 

6 rs6455482 G 1.851 1.277 2.682 0.001149 

2 rs12613548 A 0.4604 0.2884 0.7351 0.001158 

1 rs2039988 A 2.045 1.327 3.15 0.001176 

12 chr12:48488687 A 1.76 1.251 2.476 0.001182 

6 chr6:25833213 A 0.5745 0.4109 0.8031 0.001185 

8 rs11784268 C 1.871 1.281 2.734 0.001203 

OR = odds ratio 

CI-L = lower confidence interval 

CI-U = upper confidence interval 
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Supplementary Table 12: The ten most significant results for the genetic association analysis of the Metabochip 

and African Americans POAG cases (n=138) and controls (n=1,376).  Logistic regression assuming an additive 

genetic model was performed for adjusted for age, sex, and PC. 

CHR SNP Gene 

Coded 

Allele 

MAF 

OR 95% CI p-value 

3 rs4678836 ARPP21-STAC A 0.25 1.95 1.41-2.70 4.31x10-5 

19 rs1671152 GP6 A 0.32 1.87 1.38-2.53 4.53 x10-5 

21 rs9982695 C21orf33 A 0.24 2.01 1.43-2.81 4.59 x10-5 

6 rs9479660 RGS17-OPRM1 G 0.26 1.88 1.38-2.54 4.72 x10-5 

6 rs11155927 RGS17-OPRM1 G 0.21 1.93 1.40-2.66 5.28 x10-5 

6 rs10456759 

LINC01108-

intergenic C 0.26 1.90 1.38-2.62 7.01 x10-5 

6 rs9479657 RGS17-OPRM1 G 0.31 1.81 1.34-2.44 9.21 x10-5 

6 rs9479726 RGS17-OPRM1 A 0.24 0.44 0.29-0.66 1.01 x10-4 

4 rs3775202 VEGFC G 0.43 1.75 1.30-2.34 1.80 x10-4 

1 rs1572151 MTHFR G 0.05 2.50 1.54-4.07 2.00 x10-4 

MAF = minor allele frequency 

OR = odds ratio 

CI = confidence interval 
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Supplementary Figure 7: Locus Zoom regional association plot for POAG in African Americans for 

CDKN2B-AS1. Vertical axis is –log10 of the p-value, the horizontal axis is the chromosomal position. Each 

dot represents a SNP tested for association with POAG in 138 cases and 1,376 controls. Approximate 

linkage disequilibrium between the most significant SNP and the other SNPs in the plot is shown by the r2 

legend with LD calculations from 1000 Genomes CEU. 
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Supplementary Figure 8: Haploview (v. 4.2) LD plot of the Chromosome 14 SIX6 (rs10483727) region 

in HapMap III ASW population.  Plot generated for an approximately 100kb window around 

rs10483727. Displayed are SNP rs numbers listed 5` to 3`. Tiled blocks represent pairwise tests of LD. 

The linkage score measured by the correlation coefficient (r2) of each pairwise comparison is displayed 

in the block with white blocks representing r2 = 0, shades of gray representing 0 <r2 < 1, and black 

representing r2 = 1. 
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Supplementary Figure 9: Haploview (v. 4.2) LD plot of the Chromosome 14 SIX6 (rs10483727) region in 

HapMap III CEU population.  Plot generated for an approximately 100kb window around rs10483727. 

Displayed are SNP rs numbers listed 5` to 3`. Tiled blocks represent pairwise tests of LD. The linkage score 

measured by the correlation coefficient (r2) of each pairwise comparison is displayed in the block with white 

blocks representing r2 = 0, shades of gray representing 0 <r2 < 1, and black representing r2 = 1. 



191 

 

 

 

 

 

  

 

Supplementary Figure 10: Manhattan plot of EAGLE BioVU African American POAG genetic 

association results.  Logistic regression assuming an additive genetic model was performed for 138 

cases and 1,376 controls adjusted by age, sex, and principal components. P-values (-log10) on the y-

axis) for each test of association are plotted by chromosome (x-axis).  The blue line depicts a suggestive 

significance threshold of p =10-4. 
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Chapter 5 Appendix  

 

Supplementary Table 13: Twenty most significant results for diabetic retinopathy African 

American Metabochip genetic association.  Logistic regression assuming an additive genetic 

model was performed for 119 cases and 434 controls adjusted by age and sex.   

CHR SNP Gene Allele OR CI_L CI_U p-value 

8 rs1487170 SNTB1-HAS2 G 2.71 1.66 4.42 6.37E-05 

4 rs11732574 CYTL1-STK32B G 2.23 1.50 3.32 7.35E-05 

12 rs12309053 SPATS2 A 0.53 0.38 0.73 1.27E-04 

4 rs12506426 LDB2 A 0.47 0.31 0.69 1.47E-04 

11 rs1991320 PARVA G 1.85 1.34 2.55 1.66E-04 

1 rs1329817 POU3F1-RRAGC A 1.83 1.33 2.53 2.24E-04 

5 rs7723568 IRX1-LINCO1020 C 0.55 0.40 0.76 2.45E-04 

2 chr2:28459238 - G 1.82 1.32 2.51 2.52E-04 

7 rs7790518 C1GALT1 C 2.23 1.45 3.44 2.69E-04 

4 rs228618 MANBA A 1.77 1.30 2.41 2.74E-04 

10 rs2483769 

CXCL12-TMEM72-

AS1 G 1.94 1.36 2.79 2.92E-04 

3 chr3:38767092 - A 1.83 1.32 2.54 2.94E-04 

8 rs7831823 SLC26A7 A 2.80 1.60 4.90 3.09E-04 

3 rs6792467 ITGA9 A 0.41 0.26 0.67 3.22E-04 

3 rs3792426 SLITRK3 G 0.52 0.36 0.74 3.49E-04 

3 rs9846696 SGOL1-ZNF385D C 2.54 1.52 4.24 3.83E-04 

2 rs7591633 LINC01122 A 1.78 1.29 2.44 3.89E-04 

9 rs7873748 DENND4C A 1.99 1.36 2.91 4.12E-04 

9 rs2815175 CNTLN G 1.92 1.34 2.77 4.13E-04 

6 rs6935299 CASC6-EPHA7 A 1.89 1.33 2.69 4.21E-04 
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