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CHAPTER I 

 

INTRODUCTION 

 

Text adapted from:  

Kavanaugh, T. E.; Werfel, T. A.; Cho, H.; Hasty, K. A.; Duvall, C. L. Particle-based 

technologies for osteoarthritis detection and therapy. Drug Deliv Transl Res 2015. 

 

Overview of Osteoarthritis 

 

Osteoarthritis (OA) is a debilitating disease that affects joints and their surrounding tissues 

leading to pain and loss of mobility. While there are many factors involved in the initiation of OA, 

the full context is not thoroughly understood; it is considered to be a complex disease of the whole 

joint, rather than a specific cellular or matrix component.8 Many potential risk factors for OA such 

as genetic predisposition,9 aging,10 obesity,11 and joint trauma or misalignment12,13 have been 

investigated. While the mechanism of action and pathogenesis of the disease remains incompletely 

elucidated, it is clear that a combination of both mechanical and biological factors are involved.14, 

8,15 Figure 1 illustrates the multifaceted, negative impacts that arthritis can have on joints.   

Because OA is high prevalence and causes significant morbidity, an improved 

understanding of the pathogenesis of OA and development of improved OA therapies are 

significant medical needs. As of 2012, over 25% of the United States population over the age of 

45 was afflicted with OA.16 This number is expected to increase to almost 30% by the year 2032.16 

Not only is OA physically incapacitating, it causes a significant financial burden to patients and 
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the healthcare system. Healthcare costs related to OA totaled over $60 billion in 2007, and the 

aggregate cost of OA is expected to increase to $185.5 billion per year based on data from 2007.17  

Current treatments of OA are primarily focused on pain alleviation and the improvement 

of joint function and mobility.18 These treatments can be classified into three main categories: non-

pharmacological, pharmacological, and surgical. Non-pharmacological treatments include 

reduction of weight on the affected joint or braces that mechanically stabilize the joint. These 

treatments can be effective, but many patients find them difficult to implement for extended 

periods of time. Joint replacement surgeries are common in patients with severe symptoms and are 

generally very effective.19 However, surgery is often only utilized as a last resort after 

pharmacological treatments have failed and the patient has experienced debilitating pain for many 

years.20  

 

 

 

 

 

 

 

 

 

Figure 1: Schematic of a healthy (left) and osteoarthritic (right) knee joint. This schematic 

shows the detrimental effects caused by the presence of arthritis in a joint. Reproduced with 

permission from Elsevier. 6 



 3 

Unfortunately, no current treatments address the underlying molecular causes of the 

disease14,20 or are curative in nature.  Pharmacological treatments include the administration of 

analgesics such as non-steroidal anti-inflammatory drugs (NSAID) and in some cases analgesics 

such as opioids or narcotics.21 Intra-articular injections and systemic administration of long-acting 

glucocorticoids can also be effective during flares of inflammation, but these only work 

temporarily and can have negative consequences for long term use.22,23 Other current 

pharmaceuticals such as hyaluronic acid-based products rely on longitudinal intra-articular 

injections that each supply only 1-3 months of symptom relief. Injection directly into the joint 

enables control over dosing the target tissue, but most drugs are quickly cleared from the joint 

cavity, reducing any potential for long term benefits of treatment.24 Systemic administration of 

drugs for OA has been associated with severe side effects with little therapeutic benefit. NSAIDs 

are known to cause gastrointestinal complications in a significant population of patients and 

selective cyclooxygenase-2 (COX-2) inhibitors, another class of drug found to be moderately 

effective at treating symptoms of early-mid stage OA, have been associated with cardiovascular 

risks.6 The shortcomings of these conventional therapies motivate not only discovery of new 

therapeutics but also new delivery systems for targeted and prolonged pharmacological delivery 

that could lead to better compliance and improved outcomes for patients with OA. Recent studies 

suggest that inflammatory mediators, proteases, and signaling molecules such as NFĸB, ERK1/2, 

interleukin-1 receptor antagonist, and TLRs may be promising molecular targets for treatment of 

OA. Without delivery systems, these inflammatory mediators have minimal therapeutic potential 

because of their lack of persistence at the target site and act to broadly to be effective via oral 

administration.14  
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The most significant challenge that persists with drug delivery for OA is a lack of 

vasculature within synovial joints; this is a significant barrier to biodistribution of systemically 

delivered therapies to the target site. Another challenge is rapid clearance of locally delivered 

therapeutics due to synovial fluid exchange. The presence of synovial fluid makes the delivery of 

hydrophobic drugs difficult, as they lack the ability to disperse within the joint. However, 

hydrophilic therapeutics such as proteins are cleared from the joint via pressure gradients that 

cause flow of the synovial fluid. Fluid movement within joints is created by ultrafiltration of fluid 

from the capillaries into the joint cavity and drainage of fluid from the cavity, through the synovial 

membrane into the lymphatics.25 Repeated administration of locally-injected therapies on a regular 

basis is not desirable/feasible; thus this delivery route is not warranted if the benefit is relatively 

short-lived.26 The following text with summarize the utilization of polymeric drug delivery 

vehicles in the context of OA, including nano- and micro-scale materials. Many nano-scale 

polymeric materials have been investigated for intravenous delivery and preferential 

targeting/retention at pathological sites; for example, many of the platforms developed for 

anticancer agents,27 including polymeric micelles, liposomes, and dendrimers, may also be useful 

technologies for OA therapy.28 Micron-scale (microgels, microparticles, etc.) biomaterials made 

from synthetic and/or natural polymers are also useful for solubilizing and controlling the release 

of therapeutics for local delivery,29 and their larger size can be beneficial for reducing the 

diffusivity and rate of clearance from the joint.  These technologies enable specific biochemical 

interactions and/or physicochemical tuning (charge, size, etc) to be utilized to potentially yield 

longer-acting and more effective treatments for OA. Prior to reviewing specific OA applications 

of particulate systems, the general properties and formulation characteristics will be outlined for 

micelles, liposomes, and solid polymeric particles. 
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Particles for Drug Delivery 

 

Micelles  

 

Figure 2: Schematic illustrating the multifunctional components that can be utilized in micelle 

formations 5. 

 

Micelles are nanoscale materials comprising amphiphilic polymers that self-assemble in 

aqueous solvents (Figure 2).30 Micelle formation is driven by the entropic hydrophobic effect, 

wherein energetically unfavorable water-cages are excluded from the hydrophobic polymer 

blocks, followed by self-aggregation of these segments into hydrophobic compartments stabilized 

by a hydrophilic corona.31 In order for micelles to form, a critical concentration of the molecule 

must be present, known as the critical micelle concentration (CMC). For many amphiphilic diblock 

copolymers, the CMC is low enough to enable micelle stability under dilute conditions (~10-100 

µg/mL)26. However, a primary challenge in micelle research is reducing susceptibility to premature 

disassembly in vivo under dilute conditions and/or due to competing interactions with 

endogenously present serum proteins and cholesterol.32 Micelle core and shell crosslinking are 

especially promising for stabilization of these structures.33,34  

Importantly, the core of the micelles can be utilized to load and solubilize hydrophobic 

drugs or imaging agents.35 A primary shortcoming of micelles, on the other hand, is the inability 

to use hydrophilic drugs unless they are covalently tethered to the micelle. Solvent evaporation 
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methods, emulsion polymerizations, and nano-precipitation have been successfully utilized to 

encapsulate hydrophobic drugs within the micelle core and enhance colloidal stability of the poorly 

soluble drugs. Sizes of micelles are dependent on many factors including but not limited to: the 

polymer chemistry, degree of polymerization, ratio of hydrophobic to hydrophilic polymer block 

lengths, packing factor, and drug cargo and amount. The size of micelles ranges broadly, but it is 

generally accepted that sizes from 20-200nm in diameter are ideal for avoiding rapid renal 

clearance and passively targeting pathological tissues that have leaky vasculature.36 A smaller 

diameter facilitates entry into the lymphatic vessels and transport to lymph nodes and improves 

diffusivity from the vasculature and throughout target tissues. 

 In addition to core-loading of hydrophobic cargo, micelles can be designed with multiple 

functionalities. Micelles can also be targeted for preferential uptake by specific cell type through 

conjugation of peptides, proteins, antibodies, or other targeting ligands onto the hydrophilic corona 

of the polymer, which is often polyethylene glycol (PEG).37,5 PEG is most often employed because 

it provides micelle shielding or  “stealth” from the mononuclear phagocyte (MPS) system, reduces 

systemic toxicity, and prolongs blood circulation times.38-41  Even with a PEG corona, micelles, 

like all nanoparticles, remain susceptible to rapid clearance from the blood by the phagocytic cells 

of the liver and spleen; this limits the ability to achieve preferential accumulation at pathological 

sites. Micelles can also be endowed with environmentally-responsive functionalities tuned to 

trigger drug release or particle uptake in specific pathological environments27,37,42-48 or to provide 

endosomal escape functions.49-54,35 
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Liposomes 

 
Figure 3: Schematic diagram of various liposomal structures. (a) Illustrates the ability for 

liposomes to delivery both hydrophilic (green sphere) and hydrophobic (red sphere) drugs either 

solubilized in the core or embedded within the lipid bilayer. (b)-(d) Represent variations of the 

traditional liposomes to add targeting ligands or ‘stealth’ using poly(ethylene glycol). Concept of 

this figure is adapted from Nature Publishing Group.   

 

Liposomes are aqueous-core vesicles surrounded by a lipid bilayer; Figure 3 schematically 

illustrates the multifunctional components that can comprise liposomes. Unlike micelles, 

liposomes contain an aqueous core than can carry hydrophilic drug cargo. Similar to micelles, 

liposomes suffer from removal by the MPS following IV delivery, and this can be at least partially 

overcome by PEGylation, which can be used to increase stealth and/or provide chemical handles 

for functionalization with targeting ligands.55,56  Liposomes can be formulated using several 
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different techniques resulting in a wide range of sizes from ~ 50 nm up to 5000 nm depending on 

the buffer, lipid composition, filtration strategy, and number of lipid bilayers that are present. 57 

Formulation techniques for drug loaded liposomes can be broken down into passive and active 

loading techniques.58 Passive loading, which occurs during liposome formation, can be further 

divided into mechanical dispersion, solvent dispersion, and detergent removal methods. 

Mechanical dispersion can be performed via sonication, extrusion, freeze-thaw cycles, lipid film 

hydration, micro-emulsification, and membrane extrusion. Active loading of liposomes is 

performed after liposome formation. A common form of active loading utilizes pH gradients to 

drive water soluble drugs with protonatable amine functionalities into liposomes after formulation. 

The drug is precipitated out due to raised pH inside of the liposome.59 This approach enables very 

high loading efficiency in liposomal products for delivery of drugs such as doxorubicin (Doxil).60
 

 Liposomes have been the focus of several successful clinical trials, mostly for cancer 

applications. PEGylated liposomal doxorubicin (Doxil/Caelyx), nonPEGylated liposomal 

doxorubicin (Myocet), liposomal daunorubicin (DaunoXome), and liposomal cytarabine 

(Depocyte) are all FDA approved drugs, and there are numerous other anticancer liposomal drugs 

in advanced clinical development.61 Liposomes have also commonly been used for imaging 

applications, for example to encapsulate contrast agents such as In or Gd for MRI.62,57 Liposomes 

for rheumatoid arthritis (RA) have been investigated by Storm et al. concluding that liposomes can 

functionally improve the therapeutic performance of anti-inflammatory agents for RA through 

formation of a depot (local administration) or by attaining site specific drug targeting (IV 

administration). However, at the time of this thesis, no liposomal therapies for RA have been 

developed for clinically due to the lack of marketability that is perceived by industry. The benefits 

of using nanoscale drug delivery systems has not been estimated to outweigh the costs of 
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integrating these new therapies into the clinic for what is estimated to be of marginal benefit for 

delivery of the same anti-inflammatory compounds currently used. Liposomes would require IV 

or IA administration while current drugs are routinely delivered orally. In contrast, liposomal 

delivery of doxorubicin has proven effective for cancer therapies clinically due to the already 

invasive nature of previous cancer treatments. Although liposomes can supply a prolonged release 

of the drugs for the treatment of RA, there were not significant changes in the clinical outcome of 

particle based therapies compared to free drug therapies.63  

 

 Dendrimers 

Figure 4: Dendrimer schematic illustrating the well-defined structure that is defined by the 

number of generations. 4 Figure reproduced with permission from Elsevier. 

 

Dendrimers are repetitively branched molecules that consist of three components: the 

initiator core, branched interior, and shell, that latter of which provides surface groups that can be 

utilized for covalent attachment of cargo or targeting ligands (Figure 4). Dendrimers are formed 

by synthesis of multiple generations that radially branch in 3D from the initiator core. This can be 

achieved either from a convergent or divergent synthesis approach.64 The highly branched, 
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generational architecture makes dendrimers flexible platforms for incorporating different types of 

cargo. They can be readily designed to incorporate small molecule drugs, imaging agents, 

therapeutic proteins, peptides, or nucleic acids, and targeting agents.4,65-67 Moreover, combinations 

of multiple functionalities can be easily integrated into a single dendrimer design due to the 

uniqueness of each compartment (initiator, interior, shell) of the molecule.68  As a results of the 

sequential nature of dendrimer synthesis, the final product is highly monodispersed compared to 

many of the other nano- and micro-fabrication techniques used.69 The surface chemistry of 

dendrimers is also easily altered and can be optimized to provide ideal properties for a specific 

application. In a good example of the diversity achievable with dendrimer designs, Tyssen et al. 

recently performed a high-throughput screen of dendrimers with varying cores, branches, 

generation numbers, and surface chemistries. Through the screen, they were able to identify a 

subset of optimally balanced hydrophobic and anionic surface chemistries for the binding and 

neutralization of HIV-1. Their most promising dendrimer, VivaGel®, is currently in advanced 

clinical trials. 70 Thus, dendrimers are potentially unique in their ability to be used both as deliver 

systems and as therapeutics themselves for some select applications (i.e., VivaGel®).  

Polymeric materials are appealing for OA therapies for their ability to supply prolonged 

drug release. However, a disadvantage of classic dendrimer preparations is the burst release of the 

encapsulated drug. With dendrimers, upwards of 70% of the encapsulated drugs are often released 

within a few hours of being reconstituted into saline.71 This can be overcome by covalently 

bonding the drug to the dendrimer, or formation of a dendrimeric prodrug.26 Drug encapsulation 

within dendrimers has been successfully carried out for anticancer, anti-inflammatory, and anti-

microbial drugs by both physical encapsulation and chemical coupling.72  
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 The surface chemistry and/or charge of many dendrimers enable incorporation of 

mechanisms for cellular internalization. Although the mechanism is not entirely elucidated, it is 

generally thought that cationic nanoparticles bind negatively charged glycosaminoglycans (GAGs) 

of the cell surface in order to drive internalization.73 Further, dendrimers can be actively targeted 

for cell uptake by incorporating a ligand that binds the dendrimer to internalizing cell surface 

receptors. The ability to penetrate chondrocytes and the extracellular matrix would prove crucial 

for dendrimers for OA applications.4,74,75 

   

 

Polymeric Nano/Microspheres 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Graphical representation of polymeric nano- and microparticles, which can deliver 

both hydrophobic and hydrophilic compounds. 1 Figure reproduced with permission from 

ASPET. 
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Polymeric particles are a more generalized platform that can be formulated in both nano- 

and micro-scale size ranges and to encapsulate both hydrophilic and hydrophobic drugs, nucleic 

acids, and proteins. Sizing of these spheres can be tuned by the type of fabrication technique 

utilized. There are two main types of polymer spheres. The first is a capsule, or polymersome, 

which consists of a hydrophilic drug reservoir and a polymeric shell; these are analogous to 

liposomes but are polymer rather than lipid based. The second is solid spheres comprising a 

homogenous polymeric matrix loaded with dispersed/entrapped drug.  Release kinetics of both 

have been thoroughly studied and are also tunable depending of formulation technique and the 

chemical composition and molecular weight of the polymer and the drug.  

 Varying sizes of particles can be obtained depending on the formulation techniques used. 

Many nano-sized particles are accomplished through spontaneous assembly based on chemistry.76 

Other techniques for size control of these polymeric particles involve solvent and solute 

concentrations and volumes, emulsifying time, and solvent evaporation methods. A common 

method of making polymeric particles is the oil-in-water (O/W) emulsion method that utilizes an 

oil phase with a hydrophobic drug and polymer that is emulsified into a water phase; a surfactant 

is typically utilized to stabilize the emulsion. The oil phase solvent is then evaporated, trapping 

the drug inside of polymeric particles.77 A similar method can also be employed to encapsulate 

hydrophilic drugs. This method is known as a water-in-oil-in-water (W/O/W) emulsion. In the 

W/O/W method, a water phase containing the hydrophilic drug or protein is first emulsified into 

an oil phase containing the polymer. Then, that water and oil emulsification is dropped into a final 

water phase containing a surfactant and emulsified. The oil solvent is subsequently removed, 

leaving the hydrophilic therapeutic trapped within the polymeric sphere.78 Nano-precipitation is 

another common method for nanoparticle formulation. Nano-precipitation is accomplished 
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through rapid mixing under defined flow parameters. Polymer molecules will nucleate into 

nanoparticles until colloidal stability is reached during the controlled mixing of solvent and a non-

solvent. This transition is made with the use of different solvents dependent upon the polymer 

solubility.79,80 Nano-precipitation can be more elegantly accomplished under fluid control such as 

micromixers or the use of microfluidic devices. These approaches to nano-precipitation produce 

less polydispersed particles under more controlled batch conditions.81-85 Nano-sized particles can 

be used for systemic delivery via intravenous injection while micro-sized particles are typically 

only utilized for local delivery via injections directly into the target site. For nano-particles to 

maintain a longer circulation time, they are often surface-modified with functionalities such as 

PEG to increase hydrophilicity and provide stealth shielding.86 The vast variety of parameters that 

can be tuned to control the properties of polymeric micro- and nanospheres makes them a good 

approach for OA applications.  

 

Osteoarthritis Targeting and Drug Delivery 

 

The particle classes summarized above share common characteristics that make them 

advantageous for OA applications. Polymeric and liposomal particles commonly increase the 

circulation time and improve the pharmacokinetics of free drugs which can suffer from rapid 

clearance when delivered systemically. Increased circulation time and systemic persistence 

effectively increases the probability of targeted or nonspecifically-accumulating drug formulations 

to accumulate in the inflamed/damaged joints. Generally, polymeric and liposomal particles can 

be endowed with increased circulation time through surface modification and the addition of 

PEG.45,51,52,72,86-88 For targeting the cartilage matrix, micelles, polymeric nanoparticles, and 

dendrimers can infiltrate the pores within cartilage due to their nanoscale size; these classes of 
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delivery systems can also be synthesized to have positive surface charge to bind to the inherently 

negatively charged cartilage matrix. The ability to functionalize the surface of particulate systems 

with targeting ligands allows for collagen II-binding peptide sequences to be tethered to particles 

and increase their targeting to cartilage matrix.89 Polymeric particles also have the ability to target 

hydroxyapatite that is present in advanced cases of OA when subchondral bone is exposed; this is 

achieved through the attachment of targeting peptides and bisphosphonates.26,90 Polymeric systems 

can also be optimized for targeting the cartilage surface rather than the underlying matrix by 

conjugating peptides that bind to epitopes exposed following cartilage degradation such as 

VDIPEN and NITEGE.26,91  Beyond this more generalizable characteristics, the different classes 

of delivery systems also have unique characteristics that make them especially promising for 

overcoming different aspects of the delivery barriers present in OA; these more specific 

applications of each delivery technology are summarized below. 

 

Micelles 

Several applications of micelles have been explored for arthritis (both OA and RA) 

treatment.7,92-95 In these studies, several different hydrophobic, small molecule drugs 

(indomethacin, dexamethasone, camptothecin, and cyclosporin A) have been formulated into 

micelles and administered either locally92,93 or systemically.7 Zhang et al. formulated indomethacin 

into amphiphilic poly(N-isopropylacrylamide)-polyphosphazene micelles containing ethyl 4-

aminobenzoate side groups for enhanced loading efficiency of indomethacin.92 The micellar 

formulation of indomethacin had enhanced pharmacokinetics (e.g. longer circulation time in blood 

plasma96). Moreover, a single subcutaneous injection of the indomethacin-loaded micelles 

provided therapeutic efficacy in carrageenan-induced paw edema. In a second model, these 

micelles significantly reduced swelling of ankle arthritis induced with complete Freund’s adjuvant 
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(CFA) out to 15 days. In a similar approach, Yue Koo et al. developed targeted, sterically-

stabilized micelles consisting of a mixture of PEGylated lipids conjugated to the vasoactive 

intestinal peptide (VIP) targeting moiety.93 The VIP targets key effector cells, activated T cells, 

macrophages, and over-proliferating synoviocytes by their overexpression of VIP receptors, most 

predominately the VPAC2 receptor. The micelles were used to solubilize camptothecin, a drug 

that serves as a topoisomerase I inhibitor and is thought to be effective at treating arthritis by 

triggering apoptosis and cell proliferation of key effector cells in the arthritic joint. Camptothecin 

micelles abrogated collagen induced arthritis (CIA) in mice following a single subcutaneous 

administration at as little as 0.3 mg/kg dose, which is significantly lower than the usual anti-cancer 

dose of free camptothecin.  Notably, this dose of campothecin in the sterically stabilized micelles 

completely reversed paw thickening and decreased arthritis scores by half. A recent follow-up 

study has shown therapeutic efficacy of the sterically stabilized micelles delivering the VIP peptide 

alone as well.97 VIP acts therapeutically in the context of RA due to its anti-inflammatory action 

on T cells and macrophages. VIP causes a shift of the immune reaction toward an anti-

inflammatory Th2 type T cell response and the downregulation of pro-inflammatory Th17 subset 

of the immune response. In the study, VIP-loaded micelles administered intravenously had 13-fold 

higher uptake in arthritic limbs than free VIP. VIP-loaded micelles (5 nmol/animal) abrogated 

negative side effects of VIP such as myelosuppression, hematological toxicity, hemorrhagic renal 

cystitis, and elevations in liver function tests.  It also caused functional improvements in terms of 

decreasing paw thickness and arthritis score by 50% and 75%, respectively, and at the molecular 

level, this treatment also decreased inflammatory markers in the arthritic joints (TNF-α, IL-1, 

MMP-2, and MMP-9).  
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One promising approach to improving performance of micelles is to covalently crosslink 

them post-assembly in order to improve their stability. In a recent study by Storm et al, core-

crosslinked micelles were developed for delivery of the steroidal anti-inflammatory agent 

dexamethasone (DEX).  The authors validated their design in two animal models of arthritis.7 

Figure 6 highlights this micelle design and the results from this study. In this clever approach, 

thioether ester-containing DEX derivatives were developed in order to allow for core crosslinking 

within the micelles, which resulted in varying degrees of hydrolytic release based upon oxidation 

state of the DEX derivative (sulfide, sulfoxide, and sulfone). The sulfone-containing DEX 

derivative was chosen for evaluation in vivo since it had the fastest release profile; this lead 

formulation was chosen based on the acute inflammation response characteristic of the animal 

models tested. Importantly, mice treated with a single intravenous injection of 1, 5, and 10 mg/kg 

of the DEX-micelles showed significant, dose-dependent reductions in arthritis score and final 

disease score out to 25 days when compared to the saline control. Free DEX only showed 

significant reduction in disease score out to day 10 when compared to the saline treated control.  
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Figure 6: Results and micelle formulation from the study performed by Storm et Al. The top 

panel is a schematic representation of dexamethasone-loaded core-crosslinked polymeric 

micelles (DEX-PM). (a) Chemical structure of poly(ethylene glycol)-b-poly(N-

(2hydroxypropyl)-methacrylamide-lactate) (mPEG-b-pHPMAmLacn) block copolymers.  (b) 

Illustrates the preparation, degradation, and drug release of DEX-PM. The bottom panels (a-b) 

highlight the results of their study. (a) and (b) show arthritis score after treatment. The mice 

received an i.v. injection of DEX (a) or DEX-PM (b) dosed at 1 mg/kg (■), 5 mg/kg (▲), or 10 

mg/kg (▼). Control mice (●) received PBS or unloaded micelles. The disease load of each 

individual mouse upon treatment with free DEX (○) or DEX-PM (■). The disease load was 

defined as the area under the arthritis score curve from treatment (day 5) until the end of the 

To
p 

Botto
m 

Hydrophilic block 

Hydrophobic block 

Drug 



 18 

study (day 13). The DEX-PM micelles provided a significant therapeutic effect and reduced both 

arthritis score and disease load compared to free DEX. Figure reproduced with permission from 

Wiley. 7  

 

Liposomes 

Several reviews have discussed liposomal drug formulations in the context of OA and/or 

RA.6,25,98-101 A focus of these articles is the enhanced pharmacokinetics that liposomes can 

provide.25,98 However, at the time of these reviews, these liposomal drug formulations were first 

being developed solely as an encapsulation strategy and to increase the retention time of the drugs 

in the joint after IA injections. Gerwin at el. discusses many different polymer drug formulations 

for IA delivery specifically for osteoarthritis and concludes that sustained release of OA drugs is 

essential for seeing therapeutic outcomes. They argue that polymeric systems can provide this 

sustained release profile both with new OA drugs and current treatments standards.6 Hoven et al. 

focuses on liposomal drugs for the treatment of RA, which differs from OA, but can benefit from 

similar drug delivery technologies and inform the application of techniques toward OA treatment. 

Unlike some of the early reviews on this topic, Hoven discusses the benefits of targeting, both 

passive and active targeting, for liposomal delivery of therapeutics. Unfortunately, Hoven draws 

the conclusion that clinical development of these formulations may be limited due to the high 

barrier of entry of these types of drug formulations into the current market.101 This said, several 

advances in targeting and environmentally-responsive polymers have been made since the 

publication of these mentioned reviews. These advances in targeting could provide the benefits 

that are needed to move some of the liposomal technologies from pre-clinical testing to clinical 
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trials. The current text focuses on newer technologies which represent these advancements in 

targeting and environmental-responsiveness.  

Liposomes are particularly well suited for OA drug delivery to the cartilage surface, 

synovial membrane, and intra articular space. The size of liposomes can be tuned to be optimal for 

targeting these specific components of a joint. Liposomes can also be formulated from lipids that 

give them a positive surface charge and make them good candidates for targeting the anionic 

cartilage surface.26 Liposomes have also been preclinically tested and shown promise in OA 

applications.  For example, in a rat model of OA induced through intrapatellar ligament injection 

of monosodium iodoacetate, liposomes containing dexamethasone significantly reduced knee joint 

inflammation.102 The multilamellar liposomes used in this study were composed of soybean 

phosphatidylcholine and dipalmitoyl phosphatidylethanolamine at a molar ratio of 95:5. Local 

injections (dose: 1mg/kg of drug) of liposomal formulations for diclofenac and dexamethasone 

were administered to these rats. In the same study, the liposomes were given bioadhesive 

properties by surface functionalization with either hyaluronan or collagen. In all cases, the 

liposomal drug formulations decreased inflammation of the rat knee joints down to at least 20% 

of the initial inflammation volume. The best performing formulation was the bioadhesive 

hyaluronan-surface functionalized liposomes containing both diclofenac and dexamethasone. 

These liposomes delivered via local injections reduced injury-induced inflammation volume by 

12.9% at 17 days after a single injection of liposomes. Un-targeted liposome formulations were 

not investigated in this study.102 
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 Figure 7: (Top) Schematic diagram of theranostic approach for osteoarthritis-type II collagen 

antibodies-targeted fluorescent nanosomes. These nanosomes bind on damaged cartilage in an OA animal 

model, providing a traceable fluorescent signal and delivering therapeutic agents.2 (Bottom) In a 

spontaneous OA model in guinea pigs, older animal showed higher accumulation of immunoliposomes. 

Reproduced with permission from Elsevier. 3 

 

In a very recent study, targeted immunoliposomes (150-250nm in diameter) were 

developed for early clinical detection of OA.  This diagnostic reagent was loaded with a near 

infrared fluorophore and was surface functionalized with a monoclonal antibody that selectively 
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binds to collagen II (CII) after it is exposed in damaged cartilage.3 The immunoliposomes bound 

specifically to damaged cartilage ex vivo and, as detected by fluorescence imaging.  Importantly, 

after intravenous administration, these immunoliposomes also preferentially accumulated in vivo 

in a spontaneous OA model in guinea pigs at sites of arthritic cartilage. These liposomes, 

highlighted in Figure 7, show binding to the medial condyles of the older animals where OA 

initiates.  Theranostic liposomes have potential to aid evaluation of therapeutic drug development 

for OA with small animal models allowing longitudinal studies of individual animals. They have 

also been used in a mechanical overload in the mouse knee which is a useful model for study of 

post-traumatic osteoarthritis.2 The top panel in Figure 7 shows the general use of nanosomes for 

optical imaging of cartilage damage. Based on strong diagnostic performance in multiple, 

clinically-relevant OA models, these targeted liposomes show tremendous promise for extension 

into targeted drug delivery applications. 

Liposomes have also been investigated by other groups for applications in RA. Although 

RA has different pathogenesis from osteoarthritis, symptomatic treatment and delivery mechanism 

of drugs and therapeutics can be similar.101,103 Liposomes have shown very promising results for 

treatment of inflammation caused by OA through the delivery of drugs such as celecoxib104, 

methotrexate, and dexamethasone.101 Targeting liposomes to RA-damaged cartilage has also 

proven successful through use of targeting ligands such as, prednisolone phosphate103; this 

approach has promising for limiting drug off target side effects. Hofkens at el. investigates 

liposomal targeting of synovial lining macrophages using prednisolone phosphate. Liposomes 

were formulated using dipalmitoyl phosphatidylcholine (DPPC), PEG, and cholesterol. The lipid 

film was hydrated in prednisolone disodium phosphate (PLP), which served as the targeting agent. 

Free PLP was removed from the liposome solution before treatments were given. Mice were given 
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arthritis using an antigen-induction (AIA) model. The mice were treated 3 days post-induction via 

IV injection with liposomal PLP or free PLP (both 10mg/kg) or saline. A second mouse model 

used immune-complex arthritis (ICA) where mice were treated only with the liposomal PLP (10 

mg/kg) or saline. Knee joint swelling was measured 1 and 5 days post treatment for the AIA mouse 

model. Swelling with liposomal PLP decreased by 74% when compared to the saline control and 

decreased by 64% when compared to the free PLP treatment. By day 5, liposomal PLP almost 

completely suppressed knee joint swelling. To test the targeting ability of PLP to macrophages in 

the synovial intima layer, colloidal gold liposomes were injected IV. It was seen via histology that 

these liposomes were readily taken up by macrophages as they leave the bloodstream and were not 

taken up by type B synovial fibroblasts. This study then goes into further investigation about 

macrophage phenotypes in the presences of liposomal PLP.  They show that IA and IV injections 

of liposomal PLP is able to alter suppress M1 synovial macrophage without altering M2 phenotype 

within the inflamed synovium for both the AIA and ICA mouse models.  103  Thus, this targeting 

approach may be especially useful for targeting of immunomodulatory compounds. 

In addition to targeting macrophages, Vanniisinghe at el. developed a system for 

synovium-specific targeting that has utility for OA applications. This targeted liposomal drug 

delivery system was developed to deliver drug cargo to inflamed joints.105 In this study PEGylated 

liposomes composed of the lipid DPPC and cholesterol were functionalized with RGD or HAP-1 

(SFHQFARATLAS), which targets fibroblast-derived B synoviocytes. The drug cargo that was 

delivered in this study was a short immunosuppressive peptide (core peptide, CP). CP is a nine 

amino acid peptide (GLRILLLKV) that is an effective immunosuppressant. Arthritis was induced 

in rats then the rats were treated with untargeted, RGD, and HAP-1 liposome formulations. Rats 

were given two IV injections of liposomes two consecutive days (0.5mg drug/0.5 ml/250 g 
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rat/day). The targeted HAP-1 liposomes produced a 10-fold increase in accumulation in the 

arthritic rat joints compared to its contralateral unaffected joint. The untargeted liposome and the 

scrambled HAP-1 control only showed a 5-fold increase in fluorescence in the arthritic joint. The 

RGD targeted liposomes showed a higher fold increase (7-fold higher) than the non-targeted 

liposomes but this was lower than the HAP-1 targeted liposomes. The delivery of CP via the 

targeted HAP-1 liposomes significantly reduced paw swelling at day 7 compared to the control 

paw (>10% reduction in paw swelling) while the delivery in the RGD liposomes and non-targeted 

liposomes did not significantly decrease paw swelling.105 This study highlights the significance 

targeting ligand choice can have on drug delivery via liposomes and highlights the potential for 

HAP-1.  

 

Dendrimers 

Dendrimers, similar to micelles and liposomes, have the ability to target the major 

components of healthy and arthritic joints. Sizes of dendrimers span a broad range from tens of 

nanometers to hundreds of nanometers in size when complexed with one another or with drugs. 

The smaller diameter dendrimers can target the cartilage matrix and subchondral bone. The end 

group functionality of dendrimers can be harnessed to tether a targeting ligand or peptide which 

allows for long retention and greater accumulation of the dendrimers in the joint, leading to 

prolonged and local drug release. Larger generation dendrimers can also be used for targeting 

cartilage surface, synovial membranes, and intra articular space, similar to liposomes.26 

Hayder et al. showed the efficacy of using dendrimers for RA treatment after IV injections. 

They showed that azabisphosphonate (ABP)-capped dendrimers selectively target monocytes and 

modulate them toward a more anti-inflammatory phenotype. Intravenous injection (10mg/kg) of 
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these dendrimers inhibited the development of inflammatory arthritis in two mouse models 

indicated by a reduction in inflammatory cytokines and absence of cartilage destruction. The first 

mouse model was an IL-1ra knockout mouse that spontaneously develops arthritis. Treatment with 

ABP dendrimers reduced the arthritic score by 80% compared to untreated mice. The second 

mouse model was a K/BxN serum transfer model, which involves transferring serum from an 

autoimmune K/BxN mouse to a BALB/c A mouse, resulting in an inflammatory immune response 

and arthritis. With the treatment of ABP, there was a significant decrease in paw swelling and 

arthritic score compared to the control. Paw swelling decreased by about 30% and arthritic score 

decrease by almost 70%. It was also shown that ABP dendrimers do not cause off target effects; 

this was determined though IV injections of ABP once per week for 8 weeks. Histology was 

performed on the spleen, kidney, lung, liver, and aorta showing no differences between dendrimer 

treated mice and non-treated mice. The dendrimer treatments also did not cause changes in body 

weight of treated mice.90 In this case, the dendrimer itself has inherent therapeutic/anti-

inflammatory and targeting capabilities without requiring loading of any additional drug; this and 

other studies have shown that screening of dendrimer chemistries can uncover entities with 

desirable function, yielding simpler, more translational systems.74,90,106  

 

Polymer Nano/Microspheres 

Polymeric particles are generally thought to be better suited for targeting the cartilage 

surface, synovial membrane, and intra articular space.26 The ability to synthesize polymeric 

particles with larger sizes gives them an advantage over smaller particles, as they are not as easily 

cleared from the intra-articular space since their diffusion is more limited. A study by Singh et al. 

demonstrated that larger particles of approximately 900nm were retained locally for a significantly 
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longer time than comparable smaller particles.107 In this study, poly(2-hydroxyethyl methacrylate)-

pyridine (pHEMA-pyridine) was used to create polymeric microspheres at 500nm and 900nm 

containing fluorescent bovine serum albumin (BSA). In healthy rats, these particles were injected 

IA, and particle retention over time was measure via fluorescence. The half-life of the 500nm 

(1.9d) and 900nm particles (2.5d) was significantly higher than the free protein (0.63d). The 

plateau, measured out to 14 days for the 900nm (30% at 14d) particles was significantly higher 

than both the retention by the 500nm particles (~5% at 14d) and the free protein (<5% at 14d).  

 Both natural and synthetic polymers have been used in the creation of spherical polymeric 

particles. Natural polymers are more disposed towards being immunogenic, which is especially 

undesirable for OA which is exacerbated by local inflammation. It is also more difficult to achieve 

reproducibility in production of particles made from natural polymers.108 Chitosan and gelatin have 

shown the most promise for drug delivery in OA models and have produced desirable outcomes.109 

For example, chitosan has been used to incorporate Flurbiprofen and extend its time in the joint, 

leading to extended release locally for more than 24 hours.110 Gelatin has also been used to deliver 

many nonsteroidal anti-inflammatory drugs and proteins such as anti-TNF to reduce 

inflammation.111,112 

Synthetic polymeric particles are one of the most commonly utilized delivery technologies 

due to their lack of immunogenicity, tunability, and ability to synthesize them reproducibly.  The 

most widely used synthetic polymer is poly(lactic-co-glycolic acid) (PLGA). PLGA has been used 

to fabricate particles for delivery of many types of drugs.  PLGA has a history of use in FDA-

approved systems because it degrades into naturally existing metabolites (lactic and glycolic acid) 

and is fully resorbable, although lactic acid can be toxic at high levels. One such technology is 

Lupron®, which is used currently used to deliver drugs such as testosterone, clarithromycin, 
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lovastatin, and progesterone long term, up to 6 months, to treat prostate cancer, endometriosis, 

fibroids, and central precocious puberty. Flexion Therapeutics is another company that specialized 

in the use of PLGA microspheres for OA therapy. They have developed three formulations of 

PLGA microspheres for OA treatment and therapy, FX006, FX007, and FX005. All formulations 

are intended for IA injection or local delivery. FX006 is a sustained release steroid injectable in 

phase 3 development for patients with severe OA pain.113 FX007 is a PLGA formulation for local 

administration of TrkA receptor antagonist intended for post-operative pain. FX005, like FX006 

is intended for late or end stage OA patients. This formulation is an IA, sustained release particle 

that delivers p38 MAP kinase inhibitor. This company has seen very promising pre-clinical and 

clinical results from these formulations for extended pain relief. FX006 (0.28mg) was able to 

almost completely eliminate painful gait in a rat arthritis model out to day 32. The free drug 

(Kenalog-40®) reduced painful gait, but not to the extent of the PLGA formulation and at day 32, 

the gait analysis score for the free drug was ~3x higher than FX006. 

Almost all PLGA particles experience an initial burst release of the drug, which is an 

important dosing consideration for sustained release formulations in order to be sure local drug 

toxicity does not occur. Other synthetic polymers have also been extensively tested for sustained 

and targeted drug release. By tailoring the polymer composition, microspheres have been 

developed that are responsive to a variety of stimuli.  For example, polypropylene sulfide (PPS) is 

responsive to reactive oxygen species (ROS) (undergoes a phase change from hydrophobic to 

hydrophilic) and was recently utilized for the first time to form microparticles that enabled “on 

demand” release of antioxidants.77 OA is a disease associated with inflammation. Reactive oxygen 

species are major mediators of the inflammatory cycle. By introducing stimuli responsive particles, 

such as PPS polymeric particles, “environmentally responsive” drug release can be achieved. PPS 
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has a unique ability to become hydrophilic when exposed to ROS such as hydrogen peroxide, 

triggering the release of hydrophobic encapsulated drugs. Since ROS triggers the release of the 

drug, these particles provide local, sustained therapy which is activated “on-demand” during cycles 

of oxidative stress.  

Polymer microparticles have been utilized to deliver a variety of therapeutic cargo relevant 

to reduction of inflammation in the setting of OA.  Interluekin-1 (IL-1) is a positive regulator of 

inflammation and can be inhibited to stop or slow the progression of OA symptoms. Interleukin-1 

receptor antagonist (IL-1Ra) is a natural protein inhibitor of IL-1 and has been one of the most 

thoroughly investigated biologic drugs for treatment of OA. One model of arthritis, discussed 

above, involves the spontaneous onset of arthritic symptoms in mice lacking the IL-1Ra gene. 

Because this gene is an important regulator of RA and OA, IL-1Ra is a widely studied therapeutic 

for arthritis. Whitmire et al. used self-assembling nanoparticles to deliver IL-1Ra to rat knee joints 

and showed prolonged retention over free IL-1Ra. The nanoparticles are formed from a block co-

polymer consisting of a hydrophobic block (cyclohexyl methacrylate, CHM) and a hydrophilic 

block (tetraethylene glycol methacrylate, TEGM) with a tethering moiety, paranitrophenol (pNP) 

used to attached the IL-1Ra protein. The nanoparticle delivery system retained 20% of the 

delivered IL-1Ra at day 10 which is significantly higher than the free IL-1Ra that remained in the 

joint at day 10. The half-life of the IL-1Ra nanoparticles was significantly higher at 3.01 +/- 0.09 

days compared to the soluble IL-1Ra at only 0.96 +/- 0.08 days. 114 This study highlights the ability 

of polymeric particles to supply a local depot of drug that is less readily cleared from arthritic 

joints.  

While larger particles have been used to enhance pharmacokinetics through physical size, 

more convention nanoparticle sizes (i.e., 100-200 nm) have also shown promise, especially when 



 28 

used in conjunction with targeting ligands that improve binding and retention within OA joints.  

In a study conducted by Rothenfluh at el., bio-functional polymeric nanoparticles were used to 

target arthritis and increase retention in cartilage. 89 In this study, PPS nanoparticles are 

synthesized using PEG-PPS-PEG block copolymers. These nanoparticles were surface 

functionalized with a peptide (WYRGRL) that targets collagen 1. In healthy mice, fluorescent 

nanoparticles were injected IA. The particles were tracked via fluorescence to monitor cell 

invasion and ability to infiltrate the cartilage. The WYRGRL-PPS nanoparticles were able to 

infiltrate both the cartilage and chondrocytes. The WYRGRL-PPS particles compared to a control 

peptide were also retained within the ECM at higher concentrations than the non-targeted PPS 

particles. A 44.8 fold increase and a 71.7 fold increase at 24 and 48hrs respectively was seen in 

the ratio of ECM to intracellular fluorescence of the targeted particles compared to the non-targeted 

particles.89 This study specifically highlights the functional benefits of incorporating appropriate 

targeting ligands into polymer drug delivery systems.  

There is an abundance of studies that have used polymeric microparticles for arthritis drug 

delivery. Rather than summarize every study in text, the following table highlights some of the 

more recent studies of polymer-drug systems and their outcomes in various arthritis models.  
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Table 1: This table highlights some of the polymer-drug combinations as they have been applied to OA 

and their results. 

POLYMER 
TYPE 

DRUG MODEL/ROUTE 
OF DELIVERY 

OUTCOME REFERENCE 

POLY(L-
LACTIC ACID) 

(PLA) 

Paclotaxel carrageenan 
induced rabbit 

model of 
arthritis/IA 
Injections 

20% paclitaxel loaded 
PLA microspheres in the 

35-100 um size range 
delivered intra-articularly 

reduced all measure of 
inflammation 

115 

PLA Methotrexate 
(MTX) 

Rabbit induced 
arthritis 

model/IA 
Injections 

10 fold increase in MTX 
retention in joint 

compared to free MTX 
after intra articular 

injection 

116 

PLGA-PEG methacrylic 
derivative of 

ibuprofen 

Ex vivo sheep 
joints 

Decreased burst release 
of drug and prolonged 

sustained release for up 
to 3 months 

117 

PLGA Clonidine In vitro drug 
release 

Achieves controlled 
release for up to 30 days 

of hydrophilic drug 

118 

PLGA Lornoxicam Rat induced 
arthritis 

model/IA 
Injections 

Reduced drug plasma 
levels compared to free 

drug, retention time 
increased after intra-

articular injections 

119,120 

PLGA Naproxen 
Sodium 

Rabbit induced 
arthritis model 

via intra-
articular 

injection of 
ovalbumin and 

Freud's 
Complete 

Adjuvant/IA 
Injection 

Improved cure of 
articular arthritis when 

treated with PLGA 
loaded particles 

compared to BSA 
microspheres. 

121 

PLGA ibuprofen/ 
Labrafil 

In vitro drug 
release 

Prolonged drug release 
with addition of labrafil 

122 
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PLGA Methylprednis
olone (MP) 

Rat induced 
arthritis 

model/IA 
Injection 

Rapid increase in MP 
concentration in plasma 
at 30 minutes compared 

to MP suspension 

123 

PLGA Dexamethason
e 

mouse dorsal 
air pouch 

model/local 
Injection 

Similar DXM release with 
varying polymer 

molecular weights 

99 

PLGA Betamethason
e sodium 

phosphate 
(BSP) 

rat air-pouch 
model/antigen-

induced 
arthritic rabbit 
model/local or 

IA Injection 

joint swelling 
significantly decreased at 

21 days with 
administration of PLGA 
drug loaded particles 

124 

PLA AND 
PLGA 

hyaluronate Arthritis and 
osteoarthritis 
rat models/IA 

Injection 

administration of 
particles did not worsen 
already altered articular 
tissues and did not cause 
inflammation in healthy 

rat knees 

125 

PLGA PTH(1-34) Papain-induced 
OA rat model/IA 

Injection 

Effect of PTH/PLGA 
microspheres on 

suppressing the OA 
progression was similar 
to that of a once-every-

three-day injections 

126 

PLGA Sulforaphane 
(SFN) 

Surgically 
induced OA 

(ACL 
transection) in 

rats/local 
delivery (or 
injection) 

Treatment with SFN-
PLGA microspheres 

inhibited the mRNA and 
protein expression of 

COX-2, ADAMTS-5 and 
MMP-2 induced by LPS in 

articular chondrocytes. 
Intra-articular SFN-PLGA 

microspheres delayed 
the progression of 

surgically induced OA in 
rat. 

127 

PLGA siRNA against 
TNF-a 

preclinical 
model of 
RA/local 
injection 

PLGA microspheres 
slowly released siRNAs 
effectively inhibited the 
expression of TNF-a in 

arthritic joints 

128 
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CHITOSAN Flurbiprofin Rat knee 
joints/IA 
Injection 

significant extended 
release of flurbiprofen 
from microspheres in 
comparison with its 

solution 

109 

 

 

Overview of Post-Traumatic Osteoarthritis 

 Post-traumatic osteoarthritis (PTOA) is OA that occurs following an injury to the joint. 

These injuries can be traumatic injury to the bone or the surrounding soft tissue and include 

ligament or meniscal tears, fractures, or dislocations. People who suffer from PTOA are largely 

much younger, healthier, and generally more active than general idiopathic OA patients. 129 

Because there are currently no disease modifying OA drugs, these younger patients require 

surgical intervention 7 to 9 years earlier than idiopathic OA. 130 PTOA account for almost 12% 

of all OA cases in the United States which is a population of roughly 12 million people, making 

PTOA a huge financial and physical burden, totally healthcare cost close to $3 billion annually in 

the US. 131  

 Following a joint injury, chemical and mechanical stimulators activate chondrocytes, the 

primary cell type that comprises the articular cartilage. These activated chondrocytes propagate 

inflammation through the production of inflammatory cytokines that cause heightened local 

inflammation that affects surrounding soft tissue and synoviocytes. Chondrocytes also increase 

production of matrix metalloproteases (MMPs) which directly contribute to matrix disruption 

and cartilage breakdown. 132,133 Early intervention after a joint injury to disrupt this inflammatory 

process could prevent early onset of PTOA. Such intervention can be accomplished through the 

use of the various drug delivery systems listed previously. By targeting sites of early cartilage 
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degradation, a disease modifying OA drug can be delivered locally, avoiding systemic 

complications.  

 

Role of Reactive Oxygen Species in Inflammatory Disease  

Reactive oxygen species (ROS) are an important aspect of normal cell growth and 

metabolism, but when oxidant levels exceed that of cellular antioxidant potential, tissue-damaging 

oxidative stress occurs.134 Some key ROS are hydrogen peroxide (H2O2), hydroxyl radicals (OH˙), 

hypochlorous acid (HOCl), and superoxide anions (O2
-). Reactive nitrogen species such as nitric 

oxide (NO˙) and highly reactive peroxynitrite anion (ONOO-) are also important reactive species 

that impact pathogenesis of chronic inflammatory diseases. Oxidants can be generated 

exogenously (i.e. by ultraviolet light or chemotherapeutics) or produced intracellularly through 

cytosolic enzyme systems such as NADPH oxidases (NOX) and uncoupled nitric oxide synthase 

(NOS), and through normal metabolism in mitochondria and peroxisomes. ROS levels are kept in 

balance through an enzymatic antioxidant defense system composed of superoxide dismutase, 

catalase, glutathione peroxidase, and peroxiredoxins in combination with non-enzymatic 

scavengers such as flavonoids and glutathione. If ROS levels are too low, cellular proliferation 

and host defense against microbial invasion are impaired. Conversely, excessive ROS can damage 

proteins, lipids, and DNA, as well as activate redox-sensitive signaling pathways with potentially 

damaging downstream effects. OH˙ is capable of oxidizing most biological molecules, and O2
- can 

either react directly with biomolecules or produce other ROS (H2O2 and OH˙).135 H2O2 is not 

highly reactive itself, but it is an intermediate to both OH˙ and hypochlorite radical production.136 

Similarly, NO˙ alone is not very reactive to non-radical species, but it can generate other reactive 
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nitrogen species or combine with O2
- to form ONOO-, which strongly oxidizes DNA, proteins, and 

lipids. Furthermore, ONOO- can nitrosylate tyrosine residues in proteins, a marker of cell damage.   

Oxidative stress exacerbates many inflammation-associated diseases through DNA 

damage, protein modification, lipid peroxidation, and disruption of cell signaling. Lipid 

peroxidation products from the reaction of hydroxyls with lipids in cell membranes can accumulate 

in cells and cause cell death through direct membrane damage or through apoptosis induced by 

caspase activation.136 DNA damage also promotes apoptosis, alters gene expression, and causes 

mutations in expressed proteins. Modification of proteins can lead to dysregulation of transcription 

factors such as nuclear factor kappa B (NF-κB), resulting in propagation of pro-inflammatory 

signaling cascades, and other transcription factors that induce pro-inflammatory adhesion 

molecule, cytokine, and chemokine expression.136 These consequences of oxidative stress make 

ROS a potentially valuable therapeutic target for osteoarthritis and post-traumatic osteoarthritis 

(PTOA) whose progression is tightly tied to oxidative stress.137-142  

 

Conclusion 

 As surveyed herein, particle based drug delivery systems show promise for improving the 

pharmacokinetic and pharmacodynamics of OA drugs, including providing means for sustained 

therapeutic action with fewer side effects and longer-term benefits. Materials that have made it to 

clinical trial are of particular interest for future studies. Many uses of liposomes for human 

application in other fields such as cancer treatment have been highlighted.61 Due to their high 

biocompatibility, development of liposomes for OA applications looks very promising not only 

for drug delivery but also for OA detection and targeting.2,3 Polymeric nano- and microparticles 

have high potential for development for use in OA applications. Several of the common polymers 
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used for the production of these particles are FDA approved for other biomedical applications, so 

the potential for these particles to progress into clinical trial is high. Polymeric delivery systems 

have the capacity to provide much needed extension for targeted delivery and prolonged release 

of drugs for OA prevention, treatment, and detection. However, significant challenges remain for 

clinical translation of these polymeric delivery vehicles within the pharmaceutical industry. Many 

of the drug delivery systems pair drugs that are already on the market or in use for treatment of 

OA with new polymers to improve either route of delivery or reduce off target side effects. 

Marketing these polymeric drugs delivery systems remains a challenge for the OA industry. 

Continued evaluation of advanced, targeted polymeric drug delivery systems through robust 

preclinical studies will be necessary to optimizing their ability to improve pharmacokinetics and 

reduce side effects.  These studies will be key for justifying the progression of these technologies 

from pre-clinical testing to clinical trials and bringing them to market. ROS are a target of interest 

for the prevention of PTOA following joint injury. ROS regulate many downstream inflammatory 

mediators and pathways. By controlling ROS through the use of antioxidant therapy delivery by a 

local drug delivery system, there is strong evidence that OA progression can be slowed or even 

stopped.  
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CHAPTER II 

DRUG FREE ROS SPONGE POLYMERIC MICROSPHERES REDUCE ARTICULAR 

DAMAGE FOLLOWING MECHANICAL INJURY 

 

Text adapted from:  

O’Grady, K.P.*; Kavanaugh, T. E.*; Cho, H*.; Ye, H.; Gupta, M.K.; Madonna, M.C.; Lee, J.; 

O’Brien, C.M.; Skala, M.C.; Hasty, K. A.; Duvall, C. L. Drug Free ROS Sponge Polymeric 

Microspheres Reduce Tissue Damage from Ischemic and Mechanical Damage. ACS Biomat. 

Sci. & Eng. Revisions Under Review. 

 

Introduction 

 In PTOA, osteoarthritis develops following joint injuries such as dislocation, 

ligament/meniscal tears, and fractures that trigger inflammation. The presence of lipid 

peroxidation products and nitrotyrosine in biological fluids and tissue of patients with OA suggests 

that ROS play a role in cartilage degradation and may be a viable therapeutic target.143,144 The role 

of ROS in PTOA progression is also supported by the observation that chondrocytes, the primary 

cell type that comprise articular cartilage, produce abnormal levels of ROS in response to 

mechanical stress and to stimulation with inflammatory cytokines and chemokines, such as 

interleukins and monocyte chemoattractant protein-1, as well as lipid-derived inflammatory 

mediators including prostaglandins and leukotrienes.145,146 In addition to classical signaling 

molecules, chondrocytes produce inflammation-propagating ROS such as nitric oxide and 

superoxide.147 While NO˙ and O2
- are the primary ROS produced by chondrocytes, these radicals 

generate derivative radicals including ONOO-, H2O2, and hypochlorite (OCl).138 Recent studies 
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highlight the importance of H2O2 in the onset of OA148, where high levels of H2O2 cause the 

hyperoxidation of peroxiredoxins. Peroxiredoxins are major intracellular antioxidants, and their 

oxidation by H2O2 leads to inactivation and inhibition of peroxidase function. This loss of function 

allows H2O2 to accumulate, further exacerbating ROS-induced tissue damage and inflammation. 

In addition to causing cell death, oxidative stress can contribute to the breakdown of extracellular 

components such as proteoglycans and collagens by increasing production of proteases145,146 as 

well as the direct de-polymerization of hyaluronic acid. In the setting of OA, ROS are also utilized 

as a “secondary messenger” in pro-inflammatory signaling pathways involving receptor tyrosine 

kinases, MAP kinase (ERK1/2, JNK, p38), lipid pathways (PI3-kinase/Akt), and transcription 

factors (NF-κB, p53, and AP-1). Redox signaling from excessive ROS, in particular H2O2, can 

result in the formation of cysteine sulfenic acid residues (Cys-SOH) as the ROS species react with 

protein thiols. Cys-SOH can directly regulate the activity of signaling molecules such as the protein 

kinase C family. Similar redox signaling has been confirmed in the production pathway for matrix 

metalloproteinase (MMP)-13 through the oxidation/reduction of cysteines involved in the MAP 

kinase JNK-2 pathway.147 The role of ROS in many inflammatory pathways that propagate PTOA 

has been confirmed, which indicates the potential for therapeutic scavenging of ROS to halt PTOA 

progression.  

Previously, we demonstrated the utility of an ROS-responsive, H2O2-scavenging 

microsphere system for delivery of hydrophobic drugs such as the anti-inflammatory and 

antioxidant molecule curcumin from a local depot. 149 This system is based on poly(propylene 

sulfide) (PPS), which undergoes a phase change from a hydrophobic to a hydrophilic state upon 

oxidation,76 permitting on-demand release of encapsulated drug.150,151 Blank PPS microspheres 

(PPS-MS) containing no drug scavenged ROS in vitro and in ischemic muscle, although unloaded 
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PPS-MS did not functionally improve the vascular response to ischemia in young mice with short-

term hyperglycemia.149 The antioxidant properties of PPS have also been explored in a hydrogel 

formulation, where PPS served as an ROS sink and protected cells from cytotoxic levels of 

H2O2.
151 In the present work, we more comprehensively define the antioxidant properties of PPS 

for a range of ROS types and therapeutically test blank PPS-MS in a model of mechanically 

induced PTOA.   

Materials and Methods 

Materials 

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) except the following. 

Propylene sulfide (>96%) was purchased from Acros Organics through Fisher Scientific 

(Pittsburgh, PA, USA) and was purified by distillation over CaH2 powder just before 

polymerization. Amplex Red Hydrogen Peroxide/Peroxidase Assay kit was purchased from 

Thermo Fisher Scientific (Molecular Probes, Waltham, MA, USA). Peroxynitrite was purchased 

as a solution in 0.3 M sodium hydroxide from Cayman Chemical (Ann Arbor, MI, USA). Amplite 

Fluorimetric Hypochlorite Assay kit was purchased from AAT Bioquest (Sunnyvale, CA 94085). 

Hypochlorite Detection Kit was purchased from Cell Technology (Fremont, CA 94538).  

 

Microsphere Synthesis 

     Synthesis of poly(propylene sulfide) (PPS) 

PPS was prepared as previously described151 by anionic ring opening polymerization of 

propylene sulfide using DBU/1-buthane thiol. Briefly, in a hot air dried and nitrogen flushed 100 

mL flask, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (4.5 mmol, 0.673 mL) in dry tetrahydrofuran 

(THF) (25 mL) was degassed for 30 minutes, and the reaction mixture was cooled to 0°C. To this 
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flask, a previously degassed solution (30 minute) of 1-butane thiol (1.5 mmol, 0.161 mL) in THF 

(20 mL) was added drop wise and allowed to react for 30 minutes. Later, freshly distilled and 

degassed propylene sulfide (120 mmol, 9.39 mL) was added to the reaction mixture, and the 

temperature was maintained at 0°C for 30 minutes. The polymerization was carried out for another 

1.5 h at room temperature and quenched by addition of 2-iodoethanol (2 mmol, 0.40 g). On the 

next day, the polymerization mixture was filtered to remove precipitated salt, and the filtered 

polymer solution was concentrated under vacuum. The crude polymer in dichloromethane (5 mL) 

was purified by three precipitations into cold methanol and dried under high vacuum to yield a 

colorless viscous polymer. 1H NMR (400 MHz; CDCl3, δ): = 1.3-1.4 (s, CH3), 2.5-2.8 (s, -CH), 

2.8-3.1 (s, CH2), 3.72 (t, CH2-OH). 

 

Characterization of PPS 

PPS was characterized for structure, molecular weight, and polydispersity as described 

previously.149,151 The number average molecular weight (Mn) and polydispersity (PDI) of PPS 

were assessed by gel permeation chromatography (GPC, Agilent Technologies, Santa Clara, CA, 

USA) using dimethylformamide (DMF) + 0.1 M lithium bromide mobile phase at 60°C through 

three serial Tosoh Biosciences TSKGel Alpha columns (Tokyo, Japan). An Agilent refractive 

index (RI) and Wyatt miniDAWN TREOS light scattering (LS) detector (Wyatt Technology Corp., 

Santa Barabara, CA, USA) were used to calculate absolute molecular weight based on dn/dc values 

experimentally determined through offline injections into the RI detector. The chemical structure 

of the PPS was confirmed by 1H nuclear magnetic resonance (NMR) recorded in CDCl3 with a 

Brüker 400 MHz spectrometer.  
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Microsphere fabrication and characterization 

PPS-MS were prepared using the oil-in-water (O/W) emulsion solvent evaporation 

method152,153 as described previously.149 Briefly, PPS (60 mg) was ultrasonicated (Cole-Parmer, 

USA) in chloroform (1 mL) until completely dissolved to form the oil (O) phase. The O phase was 

then added drop-wise into 1% (w/v) aqueous poly(vinyl alcohol) (PVA) solution (7 ml) and 

emulsified using an Ultra-Turrax TP 18-10 homogenizer (Janke and Kunkel KG, IKA-WERK) at 

20,000 rpm for 1 minute. The emulsion was transferred to a round-bottom flask and subjected to 

high vacuum (~635 mm Hg) using a rotary evaporator (Rotavapor RII, BUCHI, Switzerland) for 

one hour to remove the chloroform. Microspheres were then recovered by centrifuging the 

remaining aqueous solution at 7500xg for 8 minutes. The microspheres were then washed once 

with deionized water to remove excess PVA. Lastly, the microspheres were lyophilized (Labconco 

Freezone 4.5, USA) prior to storage. Microspheres were characterized for size and morphology by 

scanning electron microscopy (SEM, Hitachi S-4200, Hitachi Ltd, Tokyo, Japan). The 

microspheres were suspended in a water drop and placed on a double sided carbon tape attached 

to an aluminum stub, air dried, then sputter-coated with gold for 60 s. Microsphere size was 

quantified from SEM images using ImageJ 1.43u software (Freeware, NIH, Bethesda, MD) to 

measure diameters of >600 microspheres.  

 

Degradation and ROS Scavenging Activity of PPS In Vitro 

 

PPS degradation by ROS in vitro 

The degradation of PPS with various ROS was characterized using GPC. PPS was 

dissolved in DMF + 0.1M lithium bromide at a concentration of 10 mg/mL. Hypochlorite and 
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H2O2 were added to polymer solutions at 1, 2, and 5 equivalents of total sulfur molecules. 10 mM 

SIN-1 was added at 5, 10, and 15 µL per mL solution. ROS-treated PPS samples were incubated 

24 hours on a shaker and then filtered and assessed by GPC using the system described above. 

 

PPS-MS degradation by ROS in vitro 

Degradation of PPS-MS with exposure to different ROS was visualized using microscopy. 

PPS-MS were suspended at a concentration of 1 mg/mL in PBS in chambered cover glass. 

Microsphere samples were incubated with PBS, 15% H2O2, 15 µL 30% NaOCl, or 5 mM SIN-1 

for 24 hours. Following this incubation, microspheres were visualized using microscopy on a 

Nikon Eclipse Ti inverted microscope (Nikon Instruments Inc., Melville, NY). Further 1H-NMR 

characterization of the treated PPS-MS samples was performed with a Brüker 400 MHz 

spectrometer after the samples were lyophilized and reconstituted in CDCl3.  

 

Hydrogen peroxide scavenging in vitro 

H2O2-scavenging activity of the PPS-MS was verified in vitro using an Amplex Red 

Hydrogen Peroxide/Peroxidase Assay kit from Thermo Fisher Scientific (Molecular Probes, 

Waltham, MA, USA) according to the manufacturer’s instructions. 100 µM H2O2 was prepared as 

the reaction solution. H2O2 was added to wells in a black-walled, 96-well plate containing either 

PBS or PPS-MS (final PPS concentration of 1 mg/mL). The samples were incubated at 25˚C for 1 

week. The Amplex Red working solution was freshly prepared as described by the manufacturer 

using the included Amplex Red, horseradish peroxidase, and 1x reaction buffer. The working 

solution was added to the wells and fluorescence was measured in a plate reader at 30 minutes 

with an excitation of 530 nm and an emission of 590 nm.  
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Peroxynitrite scavenging in vitro 

The ability of PPS-MS to scavenge peroxynitrite was tested in vitro using a Pyrogallol Red 

(PGR) bleaching assay.154 Treatment groups consisting of PBS, PPS-MS (0.5-1.5 mg/mL), and 

ascorbic acid (positive control, pH adjusted to 7.4) were prepared in a 48-well plate with 500 µL 

volume per well. A PGR stock solution was prepared in PBS (0.025 µM), and 10 µL was added to 

each well. Peroxynitrite stock solution was thawed on ice and diluted to a concentration of 1 mM 

in 0.3 M NaOH. After baseline absorbance of the dye was measured in a plate reader at 540 nm, 5 

µL of peroxynitrite was added to each well (final concentration of 10 µM) and absorbance 

measurements were collected for one hour.  

 

Hypochlorite scavenging in vitro 

PPS-MS scavenging of hypochlorite was measured in vitro using a fluorimetric 

hypochlorite assay kit. 100 µL of PPS-MS in PBS were added to a 96-well plate at various 

concentrations ranging from 0.25-1 mg/mL. 100 µL of 10 mM NaOCl was added to wells 

containing PPS-MS or PBS. The plate was incubated for 10 minutes at 25˚C on a shaker. Following 

the incubation, 50 µL of each solution was transferred to a black-walled 96-well plate. 50 µL of 

hypochlorite assay mixture (200 x OxiriteTM Hypochlorite Sensor + 5 mL Assay Buffer) was added 

to each well. Fluorescence intensity in the wells was measured in a plate reader with an excitation 

of 540 nm and an emission of 590 nm.  

 

Superoxide scavenging in vitro 

In vitro superoxide scavenging activity of the PPS-MS was evaluated using a 

dihydroethidium (DHE) fluorescence assay. The scavenging of superoxide by PPS-MS (1, 0.5, 
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and 0.1 mg/mL) was investigated using a superoxide-generating, cell-free enzymatic system 

containing 0.046 U/ml xanthine oxidase and 0.2 mM xanthine in a black-walled, 96-well plate 

containing 10 µM DHE (final concentration). The fluorescence intensity was measured in a plate 

reader (Tecan Group Ltd., Mannedorf, Switzerland) over a time frame of 1 hour with an excitation 

of 405 nm and an emission of 570 nm. The reaction of DHE with superoxide forms a specific 

fluorescent product, 2-OH-ethidium (2OH-E), and the selected excitation/emission wavelengths 

provide optimal specificity for measuring superoxide.155,156 Specificity of the assay for superoxide 

detection was confirmed using bovine SOD (20 U/ml) as a positive control treatment in a well 

containing xanthine / xanthine oxidase and DHE. 

 

PPS-MS Scavenging of ROS In Vitro in LPS-Stimulated Macrophages  

 

PPS-MS scavenging of cellular H2O2 

RAW 264.7 cells were seeded at 500,000 cells/well in 24-well plates in phenol red-free 

DMEM supplemented with 10% FBS and ciprofloxacin and were allowed to adhere overnight. 

Cells were treated for 1 h with PPS-MS in fresh DMEM, and 1 µg/mL of LPS was then added 

prior to an additional 24 h of incubation. Control groups consisted of cells without LPS stimulation 

and stimulated cells with no microsphere treatment. After 24 h of stimulation, 50 µL of cell 

supernatant was collected and H2O2 levels were measured with an Amplex Red assay using the 

manufacturer’s instructions as described above.  
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PPS-MS scavenging of cellular hypochlorite, hydroxyl radicals, and peroxynitrite  

RAW 264.7 cells were seeded at 50,000 cells/well in 96-well plates in phenol red-free 

DMEM supplemented with 10% FBS and ciprofloxacin and were allowed to adhere overnight. 

Cells were treated for 1 h with PPS-MS in fresh DMEM, and 1 µg/mL of LPS was added prior to 

an additional 24 h of incubation. Control groups consisted of cells without LPS stimulation and 

stimulated cells with no microsphere treatment. After 24 h of stimulation, cells were washed with 

PBS and then incubated with 5 mM Aminophenyl fluorescein (APF) in phenol red-free, serum-

free DMEM for 25 min. Cells were washed with PBS, and fresh phenol red-free, serum-free 

DMEM was added to the cells. APF intracellular fluorescence (linked with presence of 

hypochlorite, hydroxyl radicals, and peroxynitrite) was measured on a plate reader at 30 minutes 

following media exchange (Ex/Em 488/550 nm).  

 

PPS-MS scavenging of multiple cellular ROS 

RAW 264.7 cells were seeded at 75,000 cells/well in 12-well plates in DMEM 

supplemented with 10% FBS and ciprofloxacin and were allowed to adhere overnight. Cells were 

treated for 1 h with PPS-MS in fresh DMEM medium, and 1 µg/mL of LPS was then added prior 

to an additional 24 h of incubation. Control groups consisted of cells without LPS stimulation and 

stimulated cells with no microsphere treatment. After 24 h of stimulation, cells were washed with 

PBS and then incubated with 5 μM H2-DCFDA in phenol-red free, serum-free DMEM for 25 min. 

Cells were washed with PBS and harvested in PBS. Intracellular fluorescence, which corresponds 

to levels of peroxynitrite, hydroxyl radicals, and several other ROS,157 was measured via flow 

cytometry (FACSCalibur, BD Biosciences) and analyzed using FlowJo software.  
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In Vivo Experiments 

 

Post-traumatic osteoarthritis model 

For PTOA experiments, 6 C57BL/6 mice (Jackson Laboratory) at 9-10 weeks of age were 

divided into two different treatment groups: Saline control and PPS-MS (n=3). Animals received 

an intra-articular injection of 10 µL of Saline or PPS-MS suspension (1 mg/mL) in both knee 

joints. The injections were given 24 h prior to exposure to mechanical loading. The PTOA model 

of noninvasive repetitive joint loading was induced by subjecting the both knee joints of mice 

(anesthetized with 3% isoflurane) to 50 cycles of compressive mechanical loading at 9 N. This 

procedure was repeated three times per week over a period of two weeks using conditions adapted 

from previous studies.158,159 All procedures in this PTOA study were performed according to 

protocols and experimental procedures approved by the Institutional Animal Care and Use 

Committee of Vanderbilt University. 

 

ROS measurement in knee joints in OA model 

The Amplex Red assay was used to confirm the presence of oxidative stress (specifically 

H2O2) in the PTOA model in 6 C57BL/6 mice. Three mice received mechanical loading on both 

knees, and three mice received no loading. After 14 days, the knee joint was excised immediately 

post-mortem and excess muscle was removed (6 knee joints per group). The joint was cut at the 

distal femur and proximal tibia to yield ~200 mg of tissue. Upon excision, knee joints were placed 

in Kreb’s HEPES Buffer (pH 7.35) on ice until assayed. Amplex Red working solution was 

prepared as described above (2.5.3). Knee joints were transferred into the Amplex Red solution 

(500 µL of working solution per well) and incubated in the dark for 1 hour at 37 °C. A series of 
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dilutions of hydrogen peroxide from 15 µM to 0 µM was prepared in a black-walled 96-well plate 

at the same time that the tissue incubation began. After 1 hour, 150 µL of solution from each 

sample was transferred to the black 96-well plate and Amplex Red fluorescence was measured on 

an IVIS imaging system (Lumina Series III, PerkinElmer) with 530/590 nm excitation/emission 

filters.  

 

Assessment of cartilage damage and matrix metalloproteinase (MMP) activity in PTOA 

At the completion of the two-week loading period, mice in the PTOA experimental groups 

were injected I.V. (tail vein) with a 100 µL composite mixture of 50 µL of monoclonal antibody 

to type II collagen (MabCII680) labeled with XenoFluor 680 fluorescent dye (XF680; Perkin-

Elmer, Waltham, MA), and 50 µL of 1 nM MMPSense® 750 FAST Fluorescent Imaging Agent 

(MMP750) (Perkin-Elmer, Waltham, MA), a substrate that fluoresces when enzymatically cleaved 

by MMPs. After 24 hours, the mice were imaged for MabCII and MMP750 fluorescence using an 

In Vivo Imaging System (IVIS) (Perkin Elmer, Waltham, MA). MabCII680 detects cartilage 

damage due to selective binding to exposed CII (which is not accessible in healthy articular 

surfaces), and MMP750 was used to assess MMP activity in vivo.160 The fluorescence in each knee 

joint was quantified using Living Image 4.0 software to calculate the region of interest (ROI) and 

graphed as radiant efficiency (photons/sec/cm2/str)/(µW/cm2). Previously, our collaborators have 

shown that ROIs measured with this method also correspond to the histological score for OA.159 
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Statistical Analysis 

All data are reported as mean ± standard error of the mean (SEM). An Analysis of Variance 

(ANOVA) with a post-hoc Tukey test for multiple comparisons was used to determine treatment 

effects for comparisons between three groups (PTOA model).  

 

Results 

 

H2O2 is Elevated in Mechanically-Induced PTOA 

Oxidative stress was confirmed in the PTOA model using the Amplex Red assay. Tissue 

H2O2 was measured in excised knee joints with and without OA. In the PTOA model, H2O2 is 

significantly increased in injured knees after 2 weeks of loading compared to control knees (Fig. 

8). 
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Figure 8: H2O2 is elevated in a mechanical model of PTOA. Tissue H2O2 levels in knee joints 

from mice with and without osteoarthritis. H2O2 levels were significantly elevated in knees with 

OA compared to healthy knees. n=6 knees/group (3 mice), mean ± SD, **p<0.01 for OA vs. 

healthy knees.  

 

Microsphere Synthesis and Characterization 

 

Synthesis and characterization of PPS 

PPS was synthesized by anionic polymerization of propylene sulfide as described 

previously151 and depicted in Fig. 9A. The polymer structure was confirmed by 1H NMR spectra 

recorded in CDCl3 (Fig. 2B): 1.3-1.4 (s, CH3), 2.5-2.8 (s, -CH), 2.8-3.1 (s, CH2), 3.72 (t, CH2-OH). 

The molecular weight and polydispersity of PPS as determined by GPC were Mn = 6700 g/mol 

and PDI = 1.1, respectively (Fig. 9C). 
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Figure 9: Characterization of the PPS polymer and microspheres. A) Synthesis of poly(propylene 

sulfide) by anionic polymerization. B) 1H NMR spectrum for PPS polymer. C) The average 

molecular weight (Mn = 6700 g/mol) and polydispersity (PDI = 1.1) of the PPS were assessed by 

GPC. D) The size distribution of the PPS-MS was measured with SEM, and the mean diameter 

and diameter range were 1.09 ± 0.46 µm and 0.30 – 5.27 µm, respectively. 

Microsphere characterization 

PPS-MS were characterized for size and morphology by SEM (Fig. 9D). Measurements of 

microsphere diameters in SEM images resulted in an average diameter of 1.09 ± 0.46 µm (mean ± 

SD, n > 600) and a diameter range of 0.30 to 5.27 µm.  
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Oxidative Degradation of PPS and ROS-Scavenging In Vitro 

 

PPS-MS are degraded by multiple ROS in vitro 

The degradation of PPS-MS was assessed upon exposure to H2O2, hypochlorite, and 

peroxynitrite (SIN-1) (Fig. 10A-B). Compared to a control microsphere sample (Fig. 10A i), H2O2 

and hypochlorite cause complete dissolution of the microspheres (Fig. 10A ii-iii). Peroxynitrite 

also significantly disrupts the microsphere structure, but what appear to be highly swollen 

microspheres or aggregates of the polymeric byproduct remain visually apparent in the samples 

(Fig. 10A iv). These observations were complemented with 1H-NMR analysis (Fig. 10B). 1H-

NMR of PPS-MS exposed to H2O2 shows a shift in PPS peaks that correlates with oxidized PPS 

(Fig. 10B ii). Hypochlorite completely degrades PPS and no PPS peaks remain in the NMR 

spectrum (Fig. 10B iii). SIN-1 does not shift NMR peaks for PPS to the oxidized peaks of PPS 

(Fig 10B iv).  

 

PPS polymer is oxidized by H2O2, hypochlorite, and peroxynitrite in vitro 

The oxidation of PPS in polymer form was observed using GPC to detect changes in 

molecular weight and polydispersity after incubation of the polymer with H2O2, hypochlorite, and 

peroxynitrite (generated by SIN-1). The chromatograms in Figure 10C show shifts in the molecular 

weight of PPS incubated with these ROS in comparison to a control polymer sample (Fig. 10C i). 

H2O2 oxidizes PPS to form sulfoxides and sulfones, thereby increasing the overall molecular 

weight (left shift, Fig. 10C ii). Hypochlorite breaks sulfur-carbon bonds in the PPS, resulting in a 

disappearance of larger PPS polymer chains visualized by a lack of elution peak at high equivalents 

of hypochlorite (Fig. 10C iii). However, at lower equivalents of hypochlorite, there is a decrease 
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in molecular weight and an increase in polydispersity of the polymer chains (data not shown).  

Peroxynitrite has little detectable effect on PPS molecular weight as measured by GPC (Fig. 10C 

iv). 

 

 

Figure 10: PPS is oxidized and degraded in the presence of various ROS species. A) Visualized 

degradation of PPS-MS in the presence of H2O2, hypochlorite (NaOCl), and peroxynitrite (SIN-

1). Scale bar = 10 um. B) 1H-NMR of oxidized PPS-MS. C) GPC traces of oxidized PPS polymer. 

For columns A-C, row (i) represents PBS control, (ii) is treatment with H2O2, (iii) is treatment with 

hypochlorite, and (iv) is treatment with peroxynitrite. 
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      PPS-MS scavenge H2O2, peroxynitrite, and hypochlorite but not superoxide in vitro 

The H2O2-scavenging activity of PPS-MS was confirmed using Amplex Red as a hydrogen 

peroxide reporter molecule. Treatment of a 100 µM H2O2 solution with PPS-MS (1.5, 1.0, 0.5, and 

0.25 mg/mL) significantly reduces Amplex Red fluorescence (Fig. 11A) (one-way ANOVA, 

p<0.001). Pyrogallol Red is bleached in the presence of peroxynitrite, and this bleaching effect 

can be reduced or inhibited by antioxidant compounds such as ascorbic acid.154 In the presence of 

PPS-MS, PGR is protected from bleaching in a dose-dependent manner (Fig. 11B, one-way 

ANOVA p<0.0001). Ascorbic acid was tested as a positive control and resulted in only 2% relative 

bleaching (nearly complete protection for PGR from peroxynitrite) (data not shown). The 

hypochlorite-scavenging activity of PPS-MS was confirmed using a fluorimetric hypochlorite 

assay. Treatment with PPS-MS significantly reduces hypocholorite levels in vitro after 10 minutes 

of incubation (Fig. 11C, p<0.001). A DHE assay was used to determine whether PPS-MS scavenge 

superoxide. The assay results show no change in DHE fluorescence with PPS treatment in 

comparison to an untreated superoxide solution (Fig. 11D). A decrease in DHE fluorescence was 

observed with treatment with SOD as a positive control, confirming the veracity of the assay and 

that superoxide is not scavenged by PPS. 
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Figure 11: PPS-MS exhibit antioxidant properties for multiple, but not all, types of ROS. A) PPS-

MS significantly reduce Amplex Red fluorescence following incubation with 100 µM H2O2 

(unpaired t-test, p<0.0001). B) PPS-MS protect PGR from bleaching by peroxynitrite in a dose-

dependent manner (one-way ANOVA p<0.0001, *significant post-hoc comparisons). C) PPS-MS 

scavenge hypochlorite dose-dependently (one-way ANOVA p<0.001, *significant post-hoc 

comparisons). D) PPS-MS do not scavenge superoxide produced by a xanthine/xanthine oxidase 

system. Data presented as mean ± SD. 
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PPS-MS Reduces ROS in LPS-activated Macrophages In Vitro 

 

PPS-MS reduce H2O2 levels in activated macrophages 

An Amplex Red assay was used to measure extracellular H2O2 secreted by RAW cells 

activated with LPS. Treatment of activated RAW cells with PPS-MS significantly reduces H2O2 

levels at doses ranging from 100 to 400 µg/mL (p<0.001) relative to activated, untreated cells (Fig. 

12A). Furthermore, the H2O2 levels in PPS-treated cells are statistically equivalent to ROS levels 

in non-activated RAW cells (p>0.05).  

 

Measurement of PPS-MS effects on cellular hypochlorite, hydroxyl radicals, and 

peroxynitrite 

APF, a derivative of fluorescein that is sensitive to hypochlorite, hydroxyl radicals, and 

peroxynitrite, was used to measure the effect of PPS-MS on intracellular ROS. PPS-MS doses 

ranging from 100-400 µg/mL significantly reduced APF fluorescent signal compared to the LPS 

stimulated, no treatment control (Fig. 12B, p<0.001).  

 

PPS-MS effects on multiple ROS 

Flow cytometry quantification of general ROS detected by the DCFDA dye confirmed that 

PPS-MS reduce intracellular ROS levels in activated RAW cells (Fig. 12C). DCFDA fluorescence 

was significantly reduced in activated RAW cells treated with PPS-MS in a dose-dependent 

manner for doses of 200 to 400 µg/mL (p<0.05). DCFDA reacts with a variety of ROS, including 

peroxynitrite and hydroxyl radicals.157  
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Figure 12: PPS-MS reduce ROS in LPS-stimulated RAW macrophages. A) PPS-MS significantly 

reduce excreted H2O2 in stimulated RAW macrophages measured by Amplex Red (one-way 

ANOVA p<0.05, *significant post-hoc comparison). B) PPS-MS scavenge intracellular 
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hypochlorite and other ROS in a dose-dependent manner (one-way ANOVA p<0.05, *significant 

post-hoc comparisons). C) PPS-MS reduce multiple ROS species as measured by DCFDA and the 

response is dose dependent (one-way ANOVA p<0.05, *significant post-hoc comparisons). Data 

presented as mean ± SD. 

PPS-MS treatment reduces MMP activity in PTOA 

IVIS imaging was used to analyze the effects of PPS-MS treatment on the PTOA mouse 

model as the fluorescence signal for MabCII680 and MMP750 correspond directly to cartilage 

damage and MMP activity, respectively (Fig. 13A). MMPSense is an MMP cleavable probe that 

uses a quenched fluorophore that emits fluorescence after cleavage. MabCII is a collagen II-

specific, fluorescently tagged antibody that preferentially binds to exposed collagen II on damaged 

articular cartilage. No fluorescence signal was observed for the normal animals without 

mechanical loading (Fig. 13A&C). Intense fluorescence signal from both reporters was observed 

for mice that received mechanical loading and treatment with saline. Significant decreases in 

fluorescence signal MMP750 (Fig. 13D) was observed for the mechanically loaded mice treated 

with PPS-MS (p<0.05). No significant decrease in MabCII680 was observed, however, the data 

trend to show decreased MabCII680 binding, suggesting a larger sample size may result in 

significant differences. These results suggest treatment of mice with PPS-MS attenuated MMP 

activity as compared with the group treated with saline alone. 
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Figure 13: PPS-MS reduce MMP activity in PTOA. Mice were mechanically loaded both knees 

and then imaged in vivo for binding of MabCII680 and evaluation of MMP activity. A) MabCII680 

imaging of normal control mice and PTOA mice. B) Quantified MabCII680 signal bound to 

damaged cartilage. C) MMPSense 750 imaging of normal control mice and PTOA mice. D) 

Quantified MMPSense 750. MMP activity significant decreases with PPS-MS treatment. (Data is 

expressed as mean ± SD, *p<0.05, n=6/group.)  
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Discussion 

 

Transient or low levels of ROS contribute to cell signaling that promotes both homeostasis 

under normal conditions and repair following injury. However, chronic or high levels of ROS can 

be detrimental to vascular function163-165 and preservation of tissue such as articular cartilage 

following injury.145,166 Therefore, we have explored the therapeutic effects of a local depot of 

antioxidant PPS-based microspheres in a mechanical model of PTOA. PPS was selected as the 

polymer for the microspheres because it scavenges H2O2 (Fig. 11A), peroxynitrite (Fig. 11B), and 

hypochlorite (Fig. 11C), protects cells from H2O2-induced toxicity,149,151 and can be used to deliver 

hydrophobic therapeutic molecules via ROS-responsive drug release.149 PPS-MS treatment also 

reduces H2O2 secretion (Fig. 12A) and intracellular hypochlorite, hydroxyl radicals, and 

peroxynitrite (Fig. 12B-C) in LPS-stimulated macrophages. The concept of targeting multiple 

ROS has been previously demonstrated in vitro in a hybrid polymer-enzyme nanocarrier system.167 

However, micron-sized particles are large enough to form a stable depot that is retained in the joint 

without significant diffusion away from the injection site. Furthermore, targeting a particle size of 

approximately 1 m enables preferential uptake by phagocytic immune cells, targeting the 

antioxidant effect to the relevant inflammation-associated cells.149 Therefore, fabrication of 

particles in this size range was targeted in order to achieve a combination of both intracellular and 

extracellular ROS scavenging, which is important for optimal cell and tissue protection from 

oxidative stress.168 Additionally, as we have previously established, PPS-MS can also be extended 

to achieve locally-sustained drug release.149 

PPS-MS have promise for localized oxidative stress reduction in PTOA. OA is a complex 

disease process that occurs over a long period of time, but it begins with early focal, superficial 
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lesions in the articular cartilage followed by the loss of proteoglycans and breakdown of cartilage 

collagen. Type II collagen is present in meniscal and articular cartilages but is inaccessible to 

antibodies in the normal, healthy joint. Therefore, IVIS imaging of the binding of type II collagen 

antibody in the mechanically loaded knee confirms that significant degradation of knee joint 

cartilage occurs in the context of mechanical loading, leading to the unmasking of the type II 

collagen (Fig. 13A). This is in agreement with our previous observations that MabCII680 binding 

correlates with the histological score for OA.159 The presence of active MMP levels in the joint is 

suggestive that the MMP enzymes secreted by the synovium or the chondrocytes themselves might 

play a role in this unmasking. A member of the MMP family, MMP-13 (collagenase-3), is the 

primary enzyme responsible for the degradation of type II collagen in the cartilage matrix in 

osteoarthritic cartilage.169  

The ROS generated in response to mechanical injury regulate expression of numerous 

genes involved in immune and inflammatory responses including MMP-13.166 Our results showed 

that mechanical loading causes cartilage destruction, increased MMP activity (Fig. 13), and 

oxidative stress (Fig. 1). These results show that treatment of knee joints with an intra-articular 

injection of PPS-MS significantly reduced MMP activity in the PTOA model (Fig. 13D). Impeding 

OA at its early stages is crucial in building an effective therapeutic regime against OA,170 and the 

results of this study suggest that targeting early oxidative stress in PTOA with a local depot of 

chondroprotective PPS-MS can attenuate further cartilage degradation by decreasing MMP 

activity. 
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Conclusions 

 

There is a significant need for long-lasting and well-controlled therapies for inflammatory 

diseases such as PTOA. There are currently no pharmacological treatments for OA that treat the 

underlying molecular cause of disease.171 In this work, oxidation-sensitive PPS was used to 

formulate microspheres for local antioxidant therapy. The microspheres are capable of scavenging 

multiple ROS including H2O2, hypochlorite, and peroxynitrite which are implicated in disease 

progression. In vivo studies demonstrated that PPS-MS impede progression of cartilage damage in 

a PTOA model. These collective results suggest that targeting ROS in these models is an effective 

therapeutic strategy. In sum, the results establish PPS-MS as a promising stand-alone therapy or 

as a drug delivery vehicle that may synergize with PTOA. 
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