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CHAPTER 1 

INTRODUCTION 

 

Value-Based Healthcare 

For decades, policy makers have been developing legislation in attempt to bend the 

healthcare cost curve to improve value while maintaining quality healthcare delivery.  The 

National Health Expenditure has grown steadily since the 1960s reaching 17.9% of the Gross 

Domestic Product (GDP) in 20161.    The Health Maintenance Act of 19732 promoted the 

formation of Health Maintenance Organizations (HMOs) and other managed care organizations 

which aimed to reduce healthcare costs through various techniques including capitation 

agreements for physicians, providing a set of services for fixed payment, restricting access 

outside of a preferred network and cost-sharing features such as copayments and coinsurance.  

The number of managed care organizations continued to grow in the 1980s and 1990s3.   

However, the quality of healthcare delivery in the United States began receiving intense 

scrutiny following the release of To err is human: Building a safe health system by the Institute 

of Medicine (IOM) in 19994.  In this report, the authors outline a healthcare system marred by 

preventable medical errors and patient safety concerns.  In their follow-up series, Crossing the 

Quality Chasm, the IOM raised awareness of the inherent disincentive of current healthcare 

payment policies to improve the value of healthcare delivery by reducing cost5.  In light of these 

two publications, policies supporting value based payment systems or “pay for performance” 

initiatives began to gain traction as a mechanism to support high quality care while also reducing 

cost6,7.   
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  The passage of the Affordable Care Act (ACA) in 2010 resulted in healthcare reform 

with the goal of reducing healthcare costs while enhancing the quality of care8.  Underlying this 

directive is a major transformation in the way healthcare is administered.  There is an ongoing 

transition from the traditional fee-for-service model of healthcare delivery in the United States to 

that of bundled payments and Accountable Care Organizations (ACOs).   With this, the 

reimbursement structure is changing such that the burden of providing high-quality, cost-

effective care falls on healthcare systems.  ACOs which meet established quality metrics become 

eligible for “incentive payments.8” Additionally, penalties in the form of reduction in payment 

will be imposed on systems which fail to meet accepted quality standards.  One such example, 

the Hospital Readmissions Reduction Program (HRRP), permits Centers for Medicare and 

Medicaid Services (CMS) to reduce reimbursement to hospitals with excess 30-day hospital 

unplanned readmissions8.   

The HRRP, established as a provision of the ACA, reflects the 2008 recommendations of 

the Medicare Payment Advisory Commission (MedPAC) in their report to Congress9.  In this 

report, MedPAC recognized that the current Medicare fee-for-service (FFS) payment model 

rewarded health care systems for increased volume.  They recommended a novel payment 

structure which would hold providers accountable for the delivery of high-quality care and 

incentivize providers to work together.  The proposed changes included public reporting of 

hospital readmission rates and a readmission reduction program, whereby Medicare would 

reduce payments to hospitals with excess readmissions.  With a 30-day readmission rate of 

approximately 20% (17.6%9, 19.6%10) among Medicare beneficiaries9,10, these changes were 

proposed to save Medicare as much as $12 billion on preventable readmissions while improving 

quality of care delivered9.   
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Since implementation of HRRP, penalties imposed on hospitals with excess readmissions 

increased from $290 million in 2013 to $528 million in 201711.  As additional medical conditions 

are added to the evaluation of the readmission penalty, the average hospital penalty and percent 

of hospitals receiving the maximum penalty continues to rise (table 1).  While these regulations 

resulted in significant savings for Medicare, the loss of revenue for hospitals has prompted them 

to focus attention on ways to reduce hospital readmissions and improve safety during transitions 

of care.   
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Table 1. Financial Summary from First Five Years of Hospital Readmission Reduction Program 

(Reproduced with permission11) 

 

Year penalties 

apply 
FY 2013 FY 2014 FY 2015 FY 2016 FY 2017 

Performance 

(measurement) 

period 

June 2008-

July 2011 

June 2009-

July 2012 

June 2010-

July 2013 

June 2011-

July 2014 

June 2012-

July 2015 

Diagnoses of 

initial 

hospitalization 

Heart attack 

Heart failure 

Pneumonia 

Heart attack 

Heart failure 

Pneumonia 

Heart attack 

Heart failure 

Pneumonia 

COPD 

Hip or knee 

replacement 

Heart attack 

Heart failure 

Pneumonia 

COPD 

Hip or knee 

replacement 

Heart attack 

Heart failure 

Pneumonia* 

(expanded) 

COPD 

Hip or knee 

replacement 

CABG 

Penalties: Percentage reduction in base payments on all Medicare inpatient admissions 

Maximum rate 

of penalty 
1% 2% 3% 3% 3% 

Average 

hospital 

payment 

adjustment 

(among all 

hospitals) 

-0.27% -0.25% -0.49% -0.48% -0.58% 

Average 

hospital 

penalty 

(among 

penalized 

hospitals only) 

-0.42% -0.38% -0.63% -0.61% -0.74% 

Percent of 

hospitals 

penalized 

64% 66% 78% 78% 79% 

Percent of 

hospitals at 

max penalty 

8% 0.6% 1.2% 1.1% 1.8% 

CMS estimate 

of total 

penalties 

$290 million $227 million $428 million $420 million $528 million 
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Diabetes in Hospitalized Patients 

The number of diabetes-related emergency department visits and hospitalizations has 

increased with the increasing prevalence of diabetes in the U.S12.  While only 9.4% of the U.S. 

population had diabetes in 201512,  25-30% of hospitalized patients have diabetes.13  Patients 

with diabetes incur higher hospital costs and longer lengths of stay compared with their non-

diabetic counterparts14.  They are also more likely to require hospitalization through the 

emergency department, another high-cost resource14. 

Several studies15–28 identify diabetes as an independent risk factor for hospital 

readmission.  These studies include a broad range of patient populations including those admitted 

for renal transplant15, vascular surgery29, coronary artery bypass graft (CABG) or other cardiac 

surgery16,17,21, congestive heart failure(CHF)22,23, acute myocardial infarction (AMI)24, any 

cardiovascular disease admission (AMI, CHF, ischemic heart disease, stroke)25, stroke26,27, liver 

disease28 and general medical patients19,20,30.  Compared to the general population whose 30-day 

readmission rate is 5-14%31–33, patients with diabetes have a 30-day readmission rate of 14.4-

22.7%31.  Anti-diabetic agents are some of the highest risk medications for causing emergency 

hospitalization for adverse drug events placing this patient population at even greater risk after a 

hospital discharge34. 

Inpatient diabetes education35, case management transition resources36 and inpatient 

medication adjustment to improve glycemic control37–39 may be effective interventions to reduce 

hospital readmission among patients with diabetes.  Understanding causes and trends of 

readmission in patients with type 2 diabetes (T2DM) has the potential to improve transition-of-

care strategies for this at-risk population.  Enhancing the quality of care delivery to patients with 
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diabetes during transitions of care has may reduce healthcare costs by avoiding preventable 

hospital readmissions.  

 

Predictive Analytics in Hospital Readmissions 

 As a result of regulations established through the HRRP, the literature abounds with 

strategies for reducing excess 30-day hospital readmission40,41.  In a review of the existing 

literature, Hanson et al established a terminology for classification of the types of interventions 

implemented based on the timing and setting of the interventions.  Under their model, 

interventions are classified as predischarge interventions, postdischarge interventions or bridging 

interventions.  Yet, given the heterogeneity of the patient populations, interventions and 

outcomes reviewed, they were unable to determine which individual components of an 

intervention were responsible for the desired effect41.  In the most comprehensive systematic 

review and meta-analysis of interventions to reduce 30-day readmissions to date, Leppin et al use 

the same classification framework and demonstrated that effective interventions are more 

complex, more comprehensive and increase a patient’s capacity for self-care40.  Higher 

complexity required more resources to implement the intervention and required a higher number 

of patient interactions.  Allocating these resource-intensive interventions to the highest-risk 

patients increases the effectiveness of readmission reduction programs42.   

Given the inability of health care providers to accurately anticipate patients with highest 

risk for readmission43, predictive analytics have been employed to aid in identification of highest 

risk patients.  Two systematic reviews44,45 describe 99 unique, published hospital readmission 

prediction models.  Using prediction models to target resources to high-risk patients has shown 
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benefit in heart failure patients where this approach significantly reduced readmissions from 

26.2% to 21.2%42.         

Before application in clinical practice, the quality of these predictions models must be 

assessed.  An evaluation of prediction models includes an assessment of various aspects of 

model performance, most commonly discrimination and calibration46.  Discrimination, how well 

the model separates those with the outcome from those without, is typically assessed using the 

concordance-statistic (c-statistic).  For a binary outcome, such as hospital readmission, this 

correlates to the area under the receiver operating characteristic (ROC) curve.  C-statistic values 

may range from 0.5 to 1.0, where 0.5 implies that the model’s ability to accurately discriminate 

is equivalent to chance and 1.0 implies perfect discrimination.  One proposed framework 

classifies a C-statistic of  >0.5 to <0.7 as poor discrimination,  ≥0.7 to <0.8 as acceptable 

discrimination,  ≥0.8 to <0.9 as excellent discrimination and ≥0.9 as outstanding 

discrimination47.  For calibration, the measure of agreement between observed and predicted 

outcomes, the evaluation method is more variable and not consistently reported in the biomedical 

literature44,45.   

Most of the studies describing readmission risk prediction models demonstrate only 

acceptable or poor discriminatory power.  In the systematic review of hospital readmission risk 

prediction models by Kansagara et al, 26 unique models were identified with c-statistic values 

ranging from 0.55 to 0.83.  However, only 6 models demonstrated a c-statistic greater than 

0.7044.  In a more recent systematic review by Zhou et al, 60 studies of 73 unique models 

reported a c-statistic range from 0.21 to 0.88.  Two studies reported a c-statistic of >0.8 

(excellent), 11 reported a c-statistic of ≥0.7 to <0.8 (acceptable) and all other studies 

demonstrated poor discrimination performance with a c-statistic <0.745.      
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In addition to their discriminatory performance, predictive models can be characterized 

by other features such as the development cohort, readmission outcome, variables included in the 

predictive model and the statistical algorithm(s) used to develop the model.   

Most commonly, the cohort is selected based on the diagnosis at index hospitalization, 

typically one or more of those penalized under the HRRP (i.e., CHF, pneumonia, COPD).  

Diagnosis-specific models are increasing in prevalence45 and demonstrate improved accuracy 

compared to models developed in more heterogeneous cohorts48.  Institution-specific risk 

readmission models are also common.  They may offer improved discrimination49 when 

compared with publically available models and those endorsed by CMS23,50 but suffer in the 

ability to generalize to other populations.       

Historically, there has been an overreliance on administrative billing data as features in 

readmission predictions models.  One significant limitation to that approach is the lack of the 

availability of that information at the time of hospital discharge limiting their use in real-time 

clinical decision-making.  The widespread implementation of electronic health records has 

increased electronic access to clinical data.   More recent literature has shown that clinical data 

and utilization history make the greatest contributions to predictive accuracy45,51 and improve 

model performance52.  

The majority of existing models tend to focus on risk of all-cause readmission for a pre-

selected cohort or for all patients hospitalized at the institution.  However, the discriminatory 

power of a predictive model can vary by more than 20% when the readmission diagnosis is 

changed51.  Models focusing on all-cause readmission are limited in their clinical utility to focus 

transition and post-discharge resources to patients who need them the most.  The ability to 
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predict the reason for readmission may guide more specific interventions by transition 

coordinators and population health managers.      

Despite the emergence of newer machine learning techniques, logistic regression remains 

the most common method for the development of readmission risk prediction models.  All 

models from the updated45 systematic review of hospital readmissions and all except one model49 

from the original systematic review44 continue to use logistic regression for model development.  

The most widely used models for readmission risk prediction in clinical practice are logistic 

regression models53, LACE54 and LACE+55.  LACE, developed in medical and surgical patients 

from 11 community hospitals in Ontario from 2004 to 2008, considers length of stay (L), acuity 

of the hospital admission (A), comorbidities (C) and emergency department visits in the previous 

6 months (E) to make a prediction.  During model evaluation, it demonstrated poor 

discrimination with a c-statistic of 0.684.  The acuity was determined by whether the admission 

was classified as emergent or elective.  Comorbidities were measured as the Charlson 

comorbidity index.  Charlson comorbidity index is a widely-used method for predicting mortality 

using weighted scoring of conditions56.  It includes weights for 17 conditions and has been 

validated across several clinical domains57–62.   It has also been adapted for use with ICD-9 

codes63.    The LACE+ model includes the predictors from the original LACE index and adds 

patient age and sex, teaching status of the discharge hospital, number of urgent admissions in 

previous year, number of elective admissions in previous year, case-mix group score and number 

of days on alternative level of care status.     

Newer machine learning algorithms have shown promise of improved performance 

compared with traditional logistic regression models, but have rarely been used in the evaluation 

of hospital readmissions.  Least absolute shrinkage and selection operator (LASSO), Random 
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Forest (RF) and Support Vector Machines (SVM) are novel machine learning techniques which 

are readily used in the biomedical literature across a wide array of clinical domains.  LASSO has 

been used to predict colon cancer diagnosis64, pancreatic cancer prognosis65, response to therapy 

in Schizophrenia patients66, mortality after violent crime67, hip fracture surgery68, sepsis69 cardiac 

procedures70, neurologic outcomes in pediatric intensive care unit patients71, pneumonia 

admissions in the general population72, infection after burn73 and hospital acquired pneumonia in 

stroke patient74 among others.  RF has seen application in non-small cell lung cancer response to 

chemotherapy75, infectious complications in combat casualties76, mortality in cholangitis77, 

sepsis78 and AMI79, Clostridium difficile recurrence80, severe Hand, Foot and Mouth disease81, 

cardiovascular event prediction82, extrauterine disease in patients with endometrial cancer 83 and 

relapse in childhood acute lymphoblastic leukemia (ALL)84.  Applications of SVM include 

prediction of post-operative sepsis and acute kidney injury (AKI)85, lung cancer86,  mortality 

after trauma87, sepsis88 and after cystectomy for bladder cancer89 and breast cancer survival90.     

Despite the promising results seen in other biomedical domains, there are few examples 

in the biomedical literature applying newer machine learning techniques to the prediction of 

unplanned hospital readmission.  Yu et al used an SVM framework to develop and evaluate 

institution-specific and diagnosis-specific readmission risk prediction models.  These were 

compared to a widely used logistic regression model, LACE91, and consistently demonstrated 

improved discrimination performance49.  Futoma et al directly compared the discrimination 

performance of logistic regression to several other commonly used statistical techniques 

including logistic regression with multi-step variable selection (LRVS), penalized logistic 

regression (PLR), RF and SVM.  The evaluation was performed across 280 cohorts as 

determined by the visit DRG and the same set of variable predictors was used in each.  RF and 
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PLR consistently outperformed all other techniques48.  Jamei et al analyzed several different 

methods including logistic regression, RF and artificial neural networks (ANN)92.  ANN 

demonstrated significantly greater performance than all other methods, including RF, the model 

with the second best performance.  Frizzell et al reported no difference in discrimination 

performance between naïve Bayesian network, RF, gradient-boosted logistic regression and 

LASSO models when applied to predict 30-day readmission in 56,477 Medicare patients with 

heart failure93.  In a study of short (30-day) and long-term (180-day) hospital readmission in 

patients with heart failure, Mortazavi et al demonstrated that RF and boosting improved 30-day 

all-cause and 30-day heart failure readmission, respectively, when compared to logistic 

regression94.   

 

Hospital Readmissions in Patients with Diabetes 

A review of existing literature reveals several studies describing independent risk factors 

for readmission in patients with diabetes.  Most of these studies use logistic regression to identify 

independent risk factors for readmission but do not assess the validity of the model or serve as a 

standalone tool.  Within a population of patients with diabetes, age95, race/ethnicity95–97, 

payer95,35, socioeconomic status95,97, source of admission98, comorbidities98–102, length of 

stay97,35, number of prescribers in previous year99, hospitalizations in the previous 6 months99, 

smoking status100, polypharmacy101, living in an urban setting103, presence of secondary 

hypoglycemia during admission104, and failure to record a diabetes diagnosis at discharge in 

patients with previous diabetes diagnosis105 are risk factors for 30-day hospital readmission.   

Three studies summarized in Table 2 present readmission risk prediction models developed in 

diabetes cohorts, evaluated in a separate validation sample and presented as standalone risk 
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prediction tools.  Their cohorts of study vary slightly but the features used to develop the 

algorithm are similar and they all evaluated the risk of all-cause readmission.  On internal 

validation, they each demonstrated acceptable or excellent discrimination but none of these used 

newer machine learning techniques which have shown promise to improve model performance in 

other readmission risk prediction models and other areas of study in biomedical literature.  

There are currently no published studies examining readmission risk in diabetes patients 

which use newer machine learning techniques or a diagnosis-specific readmission outcome 

to try to improve model performance and clinical utility. 

 

Table 2. Summary of Current, Internally Validated Readmission Risk Prediction Models in 

Patients with Diabetes 

 

Study Cohort Features Outcome Algorithm Internal  

Validation 

Rubin106 

2015 

 

DERRI 

Hospitalized 

patients with 

diabetes 

 

 Demographic 

 Laboratory 

 Medications 

 Microvascular 

complications 

 Utilization history 

30-day All-

Cause 

Logistic 

regression 

C-statistic 

0.69 

Rubin107 

2017 

 

DERRI-

CVD 

Patients 

with diabetes 

hospitalized for 

cardiovascular 

disease (CVD) 

 Comorbidities 

 Demographic 

 Laboratory 

 Medication 

 Microvascular 

complications 

 Visit utilization 

30-day All-

Cause 

Logistic 

regression 

C-statistic 

0.71 

 

 

Collins108 

2017 

Hospitalized 

Medicare 

patients with 

diabetes 

 Clinical 

conditions 

 Demographics 

 Utilization 

metrics 

*from claims data 

30-day All-

Cause 

Logistic 

regression 

C-statistic  

0.82 
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We hypothesize that a risk prediction model using novel machine learning techniques 

(LASSO, RF, SVM) to identify hospitalized patients with type 2 diabetes at highest risk of 

diagnosis-specific 30-day hospital readmission (DM and CHF) will outperform all-cause 

readmission, logistic regression-based prediction models.  First, we used LASSO, RF and SVM 

to develop and evaluate the validity of prediction models of hospitalized patients with type 2 

diabetes at risk for diagnosis-specific (DM, CHF, All-Cause) 30-day readmission.  Next, we 

compared these model performance metrics with the published and validated LACE all-cause 

readmission prediction tool.       
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CHAPTER 2 

 

METHODS 

 

Dataset 

We identified a retrospective cohort of inpatient admissions at Vanderbilt University 

Medical Center (VUMC) in Nashville, Tennessee, between October 1, 2010, and September 15, 

2015.  This time frame was selected to begin after the start of the initial HRRP benchmarking 

period to capture encounters over a relatively stable readmission reduction strategy.  The study 

population included adults aged 18 and older with type 2 diabetes (T2DM).  A diagnosis of 

T2DM was based on the presence of the PheWAS parent code 250.2 prior to the index 

encounter.  PheWAS is a research method which uses custom combinations of International 

Classification of Disease 9th edition (ICD-9) codes to describe phenotypes in electronic health 

record (EHR) data109,110.  Encounters for patients classified as “observation” status were 

excluded as only inpatient admissions are penalized under HRRP.         

Diagnosis Related Groups (DRG) and All Patient Refined Diagnosis Related Group 

(APR-DRG) were extracted for each inpatient encounter.  DRG is a framework for associating 

the types of conditions treated during a hospitalization with the costs associated with treating 

them.  APR-DRG is a proprietary classification scheme developed to enhance the traditional 

Diagnosis Related Group (DRG) classification of inpatient admissions by incorporating 

measures of severity of illness and risk of mortality111.  We used APR-DRG version 31112 to 

classify the reason for hospitalization and to define the diagnosis-specific 30-day readmission 

outcome.  All APR-DRGs except 693, chemotherapy, were included in the all-cause readmission 
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outcome.  Readmissions for chemotherapy were excluded from the outcome evaluation as these 

represent planned inpatient encounters which are not penalized under HRRP.   

While diabetes is a relatively less common reason for readmission among subjects in our 

cohort, it is a common chronic medical condition for which there are known strategies to reduce 

readmission.  Additionally, it is likely underrepresented as the primary reason for readmission 

due to its relatively lower service intensity weight.  Service intensity weight is a measure of cost 

or resources needed to treat an associated APR-DRG.  Given that the discriminatory power of a 

predictive model can vary significantly when the readmission diagnosis is changed51, we selected 

three readmission outcomes for which distinct models were developed.  In addition to predicting 

diabetes-specific readmissions, our original goal, we chose all-cause and heart failure APR-

DRGs as readmission outcomes of interest.  All-cause excluding chemotherapy was selected as 

this is the closest representation to the current HRRP implementation which penalizes all-cause 

unplanned readmissions for certain index admission diagnoses.  Heart failure is the most 

common reason for 30-day readmission in our population and is also one of the index 

hospitalizations penalized under HRRP. 

 Structured Query Language (SQL) was used to extract data from the 113, a database of 

clinical and related data derived from VUMC’s clinical systems and restructured for research.  

Data were preprocessed in Python114 before being imported into R115, an open-source software 

environment for statistical computing.  R was used for model development and internal 

validation.     

   

Feature Selection and Pre-Processing 

Features were selected based on domain expert opinion of those clinical variables 

relevant to the readmission risk of hospitalized patients with diabetes.  In order to support real-
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time application in a clinical setting, only those features that are available prior to discharge were 

included.  Features selected include demographic information, utilization history and laboratory 

results.  Table 3 describes features from each category used for training of all models. 

Demographic features include age, gender, race, insurance payer and area deprivation 

index.  Area of deprivation index is a geographically-based measure of socioeconomic 

deprivation associated with a 9-digit zip code116.  Because the full 9-digit zip code was not 

available for our cohort, we truncated area deprivation index 9-digit zip codes to include the first 

5 digits and assigned the median area deprivation index for each grouping.  Median, as opposed 

to mean, area deprivation index was chosen to reduce sensitivity to outliers.    

Utilization history included the length of stay (LOS) of the current admission, number of 

VUMC emergency department visits in the 6 months preceding admission, number of VUMC 

outpatient clinic visits in the 1 year preceding admission.  Six months was chosen as the 

lookback time for emergency department visits as this metric previously demonstrated validity in 

predicting hospital readmissions54.  In contrast, the cadence of many outpatient specialty 

appointments is less frequent so a longer lookback time of 1 year was used to capture outpatient 

utilization history. In addition, we chose to include active use of the locally-developed VUMC 

patient portal, My Health at Vanderbilt (MHAV), prior to the current admission as one of our 

utilization measures.  Patient portals are secure, internet-based platforms where patients may 

access their personal health information and communicate with health care providers.  Patient 

portal use has been associated with both no impact on117 and increased risk of118 30-day hospital 

readmission.   Utilization data for other hospitals were not available for inclusion.     

Laboratory tests included pre-admission and admission values.  Laboratory data ranges 

were reviewed and discarded where not physiologically possible.  We noted this systematic error 
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in point of care (POC) A1C values.  These likely represent transcription errors where laboratory 

equipment was not integrated with the EHR.  A1C values <2% and >25% were discarded as 

spurious, representing 0.03% of A1C readings.   

 

Table 3. Demographic, Utilization History, and Laboratory Results Used as Features in Model 

Training 

 

Feature 

Class 

Features 

Demographic o Age 

o Gender 

o Race 

o Insurance payer 

o Area deprivation index116 

Utilization 

History 

o Length of Stay 

o # VUMC emergency department visits in 6 months 

o # VUMC outpatient clinic visits in 1 year 

o Active use of VUMC patient portal  

Laboratory 

Results 

o Admission glucose 

o Admission bicarbonate 

o Maximum A1C in last 1 year 

o Boolean value representing if blood glucose checked on day of admission 

o Absolute value of difference between maximum and minimum creatinine 

during admission 

o Absolute value of difference between maximum and minimum sodium 

during admission 

o Absolute value of difference between maximum and minimum blood 

glucose during last 24 hours of the admission 

o Median number of blood glucose readings per day during the admission 

 

 

 

We evaluated candidate features for missingness.  For blood glucose, missing values may 

indicate patient or provider-specific characteristics related to the likelihood of hospital 

readmission.  For example, forgetting to check a blood glucose in a patient with diabetes could 

indicate substandard care delivery increasing the risk for readmission.  Alternatively, lack of 

blood glucose data on the day of admission may indicate that the patient has well-controlled 
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diabetes and admitted for routine hospital services with low risk of complication and 

readmission.  To address informative missingness, a Boolean variable was created to indicate 

whether or not blood glucose was measured on the day of admission.  All other missing data 

were assumed to be missing at random.   

Where data were missing at random, multiple imputation was used to replace missing 

values.  Multiple imputation uses bootstrapping, sampling with replacement from original non-

missing data, to replace missing values.  Then, using all cases from the imputed dataset, 

nonparametric regression is used to generate variable coefficients.  Using this model, predicted 

values are generated for all cases of the variable, missing and non-missing.  Last, predictive 

mean matching is used to fill in the original missing values.  With predictive mean matching, a 

missing value is filled from among the original non-missing values of that variable. Variables are 

randomly selected from cases where the regression-predicted values of the missing variables are 

closest to the regression-predicted value for the non-missing variables based on the simulated 

regression model.  We used the “Hmisc” package in R to generate 5 complete datasets119.  

 

Statistical Modeling  

A wide range of machine learning methods have been studied in the biomedical literature.  

Logistic regression remains a commonly used technique.  As a parametric method, it assumes the 

form of the unknown target function which offers both advantages and disadvantages.  Because 

the form and complexity of the target function are assumed, parametric methods require less 

computational time and less data to generate predictions.  However, they may suffer in accuracy 

if the assumptions do not match the underlying data.  Alternatively, nonparametric methods do 

not constrain the form of the target function.  As a result, the target function will change in shape 
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and complexity to best fit the underlying data.  This flexibility may offer improved accuracy 

compared to parametric methods but also increases the risk of overfitting.  Additionally, they 

may suffer from high computational time as they have more parameters to train.  We studied the 

behaviors of different machine learning techniques in current biomedical literature as discussed 

in Introduction.  Modern predictive studies should include both techniques in order to determine 

the optimal approach for the given problem.  In designing a data-driven model, it’s challenging 

to know which approach will best fit the problem a priori.  Based on methods used in prior 

readmission work, we selected one parametric and 2 nonparametric methods to study.    

LASSO is a form of penalized logistic regression where regularization parameters are 

used to reduce the magnitude of regression coefficients to avoid overfitting.  LASSO tends to 

select one predictor out of multiple correlated predictors and discards the others resulting in 

feature selection120.  An additional tuning parameter, λ, controls the overall strength of the 

penalty.  10-fold cross validation was used with each imputed dataset to select the shrinkage 

parameter λ.  LASSO was performed using the “glmnet” package in R.   

Unlike LASSO which assumes a constrained form of the mapping function, SVM with a 

radial kernel and RF are non-parametric methods.  RF uses bagging, selection of a random subset 

of observations and a random subset of features, to develop an ensemble of decision trees before 

polling the trees to create a ranking of classifiers121.  The use of bagging and random selection of 

features allow RF to overcome limitations such as sparse and missing data.  Our random forest 

models used 500 trees and were developed using the “ranger” package in R122.  We used 4 

variables available for splitting at each node, the default setting of the “ranger” package, 

determined as the rounded down square root of the number of predictor variables. 
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SVM attempts to find a hyperplane which separates observations of different classes123.  

Support vectors are the observations from each class closest to the hyperplane.  The best SVM 

model leaves the largest margin between support vectors of different classes and, thus, reduces 

overfitting.  Model margin of error and complexity are modified with two parameters, cost and γ.  

Lower cost values increase the margin to allow for incorrect classification.  The value of γ 

determines the complexity of the curve that best separates observations of different classes.  

When the value of γ is too large, overfitting will result.  For our model, we used γ = 1 and cost = 

1.25.  We used a radial kernel to develop a nonlinear classifier of the input data.  The “e1071” 

package in R was used to develop an SVM model for diabetes-specific readmission outcome124.   

For each of three readmission APR-DRGs, we developed prediction models using 

LASSO and RF.  SVM was also used for the development of a third model for diabetes-specific 

readmission (APR-DRG 420).  Due to high computational time and inferior performance as 

discussed in Results, we did not develop an SVM model for HF and all-cause readmission 

outcomes.   

In order to compare our models to the widely used LACE algorithm, we developed a 

univariate regression model with LACE score as the feature.  We evaluated the performance of 

this model across all three readmission outcomes studied. 

 

Internal Validation 

Internal validation involves using available data to estimate how well a given model will 

perform in a new dataset125.  Several strategies exist for performing internal validation.  In split-

sample validation, the observations are randomly divided into two sets, the training set and the 

testing set.  The training set is used to develop the model which is then evaluated in the testing 
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set.  While it benefits from computational simplicity, split-sample validation has several 

disadvantages.  First, the trained model may vary significantly depending on the split of the data, 

particularly if the predictors or outcome are skewed.  Similarly, because the evaluation is 

performed on a relatively small subset of the larger population, it may not provide a reliable 

estimate of how the model will perform in practice.    

Cross-validation is a variation on split-sample validation which can be used to yield a 

more consistent model.  To perform cross-validation, the data set is divided into some number of 

equally sized subsets.  One of the subsets is held out to serve as the test set while the remaining 

subsets serve as the training set for model development.  This approach of holding out one subset 

and training an all of the others is continued until each subset serves as the testing set one time.  

The average error across each of the testing sets is calculated.  This approach is less sensitive to 

variation based on the splitting of the data since all subsets serve as the test set once.  Because 

the final model has learned from all of the available data, the result demonstrates improved 

performance compared to split-sample validation.  However, it can be computationally intensive 

due to the need to repeatedly train the model125.       

Another approach is bootstrap validation126.  With this approach, the data are sampled 

with replacement to create subsets that are equal in size to the original data.  Prediction models 

are developed in each bootstrap subset and on the original data.  An evaluation of the difference 

in performance between them gives an estimate of accuracy.  Compared with split-sample and 

cross-validation, the estimate of model performance demonstrates less variability because the 

sizes of the subsets are equal to the size of the original.  Like cross-validation, it allows the 

model to train on all available data yielding a more accurate estimate.  Because of the need to 

repeatedly train models on bootstrapped subsets that are as large as the original data, it is more 
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computationally complex than split-sample and cross-validation.  Additionally, bootstrap 

validation has been demonstrated to work well in high-dimensional datasets where the number of 

predictors is much larger than the number of cases.  

For each model, we used Harrell’s algorithm127 for estimating optimism to calculate the 

optimism-adjusted performance of the model.  This method relies upon bootstrapping to quantify 

model optimism.   For each of 5 imputed complete datasets, models are developed and 

performance metrics calculated.  Each of the 5 datasets is then sampled with replacement 100 

times to create 100 new bootstrapped datasets for each.  Models developed and evaluated on 

bootstrapped samples are then evaluated on the imputed dataset from which they were derived.  

The difference in performance between the original dataset and bootstrapped datasets determines 

the degree of overfitting.  We followed Rubin’s rules for pooling results for combining results 

into an overall multiple imputation estimate128.  However, our results were not normally 

distributed based on an evaluation using the Kolmogorov-Smirnoy Goodness-of-fit test129  so we 

reported the median value of the performance metric.     

 

Model Performance Evaluation 

For each model, we report discrimination, calibration and a precision-recall curve.  

Discrimination, how well the model separates those with the outcome from those without, was 

assessed using the c-statistic.  For our binary outcome of hospital readmission within 30 days, 

this correlates to the area under the receiver operating characteristic (ROC) curve.  An ROC 

curve plots true positive rate (sensitivity) by false positive rate (1-specificity) over the range of 

possible cutoffs for classifying observations as positive or negative.  The c-statistic then 

represents the probability that a random observation with the outcome was given a higher score 
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than a random observation without the outcome.  C-statistic values may range from 0.5 to 1.0, 

where 0.5 implies that the model’s ability to accurately discriminate is equivalent to random 

chance and 1.0 implies perfect discrimination.  The “ROCR” package in R was used to generate 

ROC curves130.  Standard error was used to generate confidence intervals around the c-statistic 

for each test.   

For calibration, we report a calibration plot with its slope and intercept values.  The 

calibration plot is a graphical representation of predicted probability compared to observed 

probability.  For binary outcomes, where the observed probability is either 0 or 1, this plot was 

generated by binning observations into equal size groups based on an ordered list of predicted 

probabilities and plotting the proportion of outcomes per bin.  The “rms” package in R was used 

to create a calibration plot for one imputed dataset for each model126.  The calibration intercept 

measures the extent to which predictions are consistently too low or high using a comparison of 

the mean of all predicted risks to the mean observed risk46.  Calibration slope represents the 

degree of overfitting or underfitting by the regression coefficients where a slope less than 1 

suggests overfitting.131  A perfectly calibrated model is represented by a diagonal with slope = 1 

and an intercept = 0.  Calibration plots were made and slope and intercept values calculated 

using the val.prob function from the “rms” package in R126.                     

When evaluating a dataset with heavily imbalanced classes, additional measures are 

needed to present an accurate view of the model’s performance.  In this setting, ROC curves tend 

to present overly optimistic results132,133 as a high number of false positive have only a minimal 

effect on false positive rate.  Precision-recall curves can present a more accurate representation 

of model performance by accounting for the inappropriate labeling of false positive observations.  

This penalty for mislabeling negative outcomes is primarily accounted for in precision which 
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represents the fraction true positive cases out of all cases with a positive label (true positives plus 

false positives).  We used the “ROCR” package in R to create precision-recall curves for each of 

our models in order to present a more informative representation of our models’ performance in 

the setting of class imbalance.   

 

Feature Importance 

Feature selection is inherent to the LASSO algorithm but there may be inconsistency 

when evaluating models over several bootstraps.  We used the Bolasso algorithm to pool these 

results over 500 bootstraps (100 bootstraps for each of the 5 imputed datasets) 134.  Bolasso is a 

variable selection algorithm which finds the intersection of all features with non-zero weights in 

all bootstraps.  To calculate odds ratio and confidence intervals, we performed unregularized 

logistic regression using the Bolasso-selected features for each model and outcome.     

For each branch in a decision tree, RF uses Gini impurity to select the variable that 

provides the best split of the remaining observations122.  This method seeks the variable that 

accounts for the greatest variance in the data at each step.  For example, a feature which is 

present for 90% of the observations and not for 10%, has a higher Gini impurity than one present 

in 50% of observations.  We obtained the Gini impurity for all variables for each model and 

calculated the median Gini impurity across all imputed datasets to report these results.   

 

Clinical Application 

 

 In addition to considering performance evaluation metrics such as discrimination, 

calibration and precision, we want to know how best to apply the model in clinical practice.  We 

need to determine the optimal threshold for predicted probability.  Cases with a predicted 
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probability above that threshold are classified as having the outcome and cases with a predicted 

probability below that threshold are classified as not having the outcome.  We selected RF, the 

model with the best performance metrics, and created a confusion matrix at various outcome 

thresholds based on 30-day readmission for diabetes.  We randomly selected 112 encounters 

from our population.  None of those encounters were associated with a 30-day readmission for 

diabetes.  We also selected 3 observations with the outcome for a total of 115 patients.  This is 

equivalent to the average number of unique patients seen by the diabetes consult services in one 

week at VUMC.  Using this approach, the outcome prevalence for this subset of our population 

was 2% compared to the true outcome prevalence in our total population of 0.3%.  While we 

acknowledge this difference in outcome prevalence will impact our results, this exercise has 

utility in the demonstration of how to implement this model in clinical practice.  We also include 

a discussion of the limitations to this approach.            

We calculated the sensitivity, specificity and precision at various cutoffs.  Because 

hospital readmission for diabetes is a rare but serious event, we prioritized sensitivity over 

specificity and precision when selecting the ideal threshold.  Whereas sensitivity and specificity 

indicate a test’s ability to properly detect or reject cases, respectively, precision indicates the 

likelihood of the outcome given a positive test rest.  Unlike sensitivity and specificity, precision 

is affected by the prevalence of the outcome in the population.  With a lower outcome 

prevalence, we expect to see lower precision.  As such, we use this method to demonstrate how 

to apply this model in clinical practice but would need to evaluate prospectively to verify the 

validity. 
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CHAPTER 3 

 

RESULTS 

 

We identified 56,258 inpatient encounters for patients with type 2 diabetes admitted 

between October 1, 2010, and September 15, 2015.  The dataset included 29,013 unique patient 

identifiers of which 10,660 had more than one inpatient encounter during the study period.  

Table 4 presents the 10 most common 30-day readmission APR-DRGs in this cohort.  Although 

our population demonstrated a 17% rate of all-cause readmission within 30-days, our diagnosis-

specific readmissions had a low prevalence.  Heart failure was the single most common 

readmission diagnosis in our population and only accounted for 1% of the 30-day readmissions.  

While diabetes may have been a factor in many of the hospital readmissions, for reasons 

previously discussed, only 0.3% of the readmissions were coded with diabetes as the readmission 

diagnosis. 
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Table 4.  Summary of the 10 Most Common Readmission APR-DRGs for a Cohort of 56,258 

Inpatient Encounters of Adults with Type 2 Diabetes Over the Study Period Excluding APR-

DRG 693, Chemotherapy 

 

Readmission Reason 

(APR-DRG) 

Number of 30-day 

Readmissions 

(% of encounters) 

Number of unique patient 

identifiers 

All-Cause 9,762 

(17.4%) 

5,293 

Heart Failure 

(194) 

531 

(0.94%) 

394 

Septicemia and Disseminated 

Infections (720) 

440 

(0.78%) 

388 

Renal Failure 

(460) 

348 

(0.62%) 

311 

Post-operative, Post-traumatic or 

other device infections 

(721) 

344 

(0.61%) 

310 

Malfunction, Reaction & 

Complications of Genitourinary 

Device Or Procedure 

 (466) 

226 

(0.40%) 

182 

Diabetes 

(420) 

191 

(0.34%) 

133 

Cardiac Arrhythmia & 

Conduction Disorder 

(201) 

186 

(0.33%) 

162 

Other Pneumonia 

(139) 

171 

(0.30%) 

157 

Kidney & urinary tract infection 

(463) 

144 

(0.26%) 

131 

Percutaneous cardiovascular 

procedures without AMI 

(175) 

121 

(0.22%) 

116 

 

 

 The absence of a blood glucose check on day of admission may represent data which are 

missing not at random according to domain expert opinion.  To manage informative missingness, 

we added a Boolean variable to indicate whether or not the test was performed.  For all other 

features, we performed a missingness analysis with results as summarized in Table 5.     

 



35 
 

Table 5.  Summary of Missing Data 

Feature Number of missing values Proportion of encounters 

missing data 

Age 0 0 

Sex 0 0 

Race 0 0 

Payer 0 0 

ED visit count 0 0 

Outpatient Visit Count 0 0 

Glucose checked day of 

admission (yes/no) 

0 0 

MHAV Use (yes/no) 0 0 

LOS 5 0.001% 

Median BG readings per day 1839 3.3% 

Admission Glucose (1st day) 3464 6.2% 

Change in blood glucose last 24 

hours 

5917 10.5% 

Change in creatinine during 

admission 

6083 10.8% 

Change in sodium during 

admission 

6448 11.5% 

Area deprivation index 21511 38.2% 

A1C max (in last year) 21753 38.6% 

Admission bicarbonate 28217 50.2% 

Note. BG = blood glucose. ED = emergency department, MHAV = My Health at Vanderbilt 

patient portal, LOS = length of stay, A1C max = maximum A1C in the last year. 

 

 

 

 Predictive performance varied across readmission outcomes and statistical models.  

Optimism-adjusted discrimination results are presented in Table 6.  Across all readmission 

outcomes, RF demonstrated significantly better discriminatory performance than LASSO or 

SVM.  For diabetes-specific readmission, SVM had the lowest discriminatory performance and 

highest computational time and, therefore, was not used to develop models for heart failure and 

all-cause readmission.  LASSO performed significantly better for both diagnosis-specific 

readmission outcomes than for all-cause readmission.  While there was less variation in the 

discriminatory performance of RF across readmission outcomes, RF did demonstrate a 
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statistically significant improvement in performance for diabetes-specific readmission when 

compared to all-cause or heart failure readmissions.    

LACE demonstrated inferior discriminatory performance in predicting all-cause 

readmission in our population than it did at model development54.  While developed to predict 

all-cause readmission, LACE demonstrated its best discriminatory performance when predicting 

heart failure readmission in our external validation.  It was no better than chance at predicting 

readmission for diabetes.  Across all readmission outcomes, LACE demonstrated inferior 

discriminatory performance in this external validation when compared to our models. 

 

Table 6. Discriminatory Performance of Each Statistical Model Across all Readmission 

Outcomes 

 

Statistical Model 

Readmission Outcome 

ROC (95% CI) 

Diabetes Heart Failure All-Cause 

LASSO 0.85 

(0.849-0.850) 

0.71 

(0.709-0.710) 

0.64 

(0.648- 0.648) 

RF 0.95 

(0.949-0.951) 

0.93 

(0.929-0.931) 

0.94 

(0.939-0.940) 

SVM 0.84 

(0.838-0.842) 
--- --- 

LACE  0.477 0.670 0.594 

 

 

 

   To assess calibration, we measured calibration slope and intercept and examined a 

calibration plot for each model.   Optimism-adjusted calibration performance metrics for slope 

and intercept are summarized in Table 7.  LASSO demonstrated the most consistent and well-

calibrated models with slope near 1 and intercept near 0 for all models.  SVM demonstrated poor 

calibration with a slope indicating the model underfit the data and an intercept indicating 

predictions are systematically too high.  RF tended to underfit data, more for all-cause 
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readmission than for diagnosis-specific readmission.  RF also demonstrated a slight tendency for 

high predictions, particularly in heart failure and all-cause readmission outcomes, when 

compared with LASSO.       

 

Table 7. Calibration Performance of Each Statistical Model Across all Readmission Outcomes 

Statistical 

Model 

Readmission Outcome 

Diabetes Heart Failure All-Cause 

Slope Intercept Slope Intercept Slope Intercept 

LASSO 0.9924598 -0.0423310 0.97364 -0.1168155 1.000334 -0.0015909 

RF 3.273016 0.5016695 2.679752 2.71451577 7.267741 2.2598 

SVM 14.5954 70.4701 --- --- --- --- 

 

 

  

Whereas slope and intercept rely on a single value to describe model fit and systemic 

tendency for high or low predictions, calibration plots show cases where the model calibration 

may vary across the distribution of observations.  A single, representative calibration plot for 

each model is shown below in Figure 1.  For each plot, a gray, shaded line along the diagonal 

represents ideal calibration.  A darker, solid, gray line plots the logistic calibration curve.  The 

logistic calibration curve represents the proportion of outcomes per bin when observations are 

grouped into equal size bins based on an ordered listed of predicted probabilities.  This is useful 

when plotting calibration for a binary outcome.  LASSO demonstrates good calibration across all 

readmission outcomes.  Compared to LASSO, RF demonstrated inferior calibration across all 

models, particularly for all-cause readmission.  However, the calibration plots show that the RF 

models for diabetes and heart failure readmission outcomes demonstrated reasonable calibration 

at low outcome probabilities.  SVM demonstrated poor calibration at all outcome probabilities 
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when evaluated for diabetes readmission.  Given these results and SVM’s inferior discriminatory 

performance, we did not use SVM to develop CHF or all-cause readmission models.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

Figure 1. LASSO, RF and SVM Calibration Plots for Diabetes, Heart Failure and All-Cause 

Readmission Outcomes 

 

A.  Diabetes—LASSO         B.  Diabetes—RF  
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Note. 1A, 1B and 1C demonstrate a representative calibration curve from a single bootstrap for 

LASSO, RF and SVM, respectively, when evaluated for diabetes-specific readmission.  1D and 

1E show representative plots for LASSO and RF, respectively, for heart failure readmission.  1F 

and 1G display a representative calibration plot for LASSO and RF when evaluated for all-cause 

readmission.  For each plot, the light gray, shaded line along the diagonal represents ideal 

calibration.  The darker, solid gray line plots the logistic calibration curve in which we are most 

interested.  
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 To evaluate the calibration of LACE, we used the univariate logistic regression model 

with LACE score as the variable to plot the mean predicted probability at each LACE score 

against the outcome proportion at each LACE score.  These plots are shown in Figure 2 below.  

The maximum outcome proportion for diagnosis-specific readmission outcomes is much lower 

than for all-cause readmission as reflected by variation in the y-axis scale on these figures.  This 

reflects the overall low prevalence of diabetes and heart failure-specific readmission outcomes in 

our population.  For all-cause readmission, this model demonstrated good calibration, 

particularly at lower LACE scores where there were more observations.  For the diagnosis-

specific readmission outcomes, the calibration is not as good but is difficult to evaluate given the 

low prevalence of the outcome at some LACE scores.   
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Figure 2. Calibration Plots for LACE Score Univariate Regression Model for Each Readmission 

Outcome 
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 In a skewed dataset where the number of outcomes is rare, precision can give a more 

accurate representation of model performance by accounting for the number of false positives.  

With a rare outcome, a model may demonstrate excellent discrimination simply with a base-rate 

classifier which has a high true positive rate but also a high number of false positive results.  

Figure 3 illustrates precision-recall curves for each readmission outcome.  LASSO demonstrates 

poor precision across all models, particularly for diagnosis-specific readmission outcomes.  

Despite demonstrating poor discrimination and calibration, compared with LASSO, SVM more 

accurately labeled negative outcomes resulting in better precision.  RF demonstrated excellent 

precision and recall for all models.   
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Figure 3. Precision-Recall Curves for LASSO, RF and SVM Models for Each Readmission 

Outcome 
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Because the precision of RF appears to be spuriously high, we examined it more closely 

at low thresholds near the outcome prevalence for diabetes.  These results can be seen in Figure 

4.  At low thresholds, the precision for RF is very low but it rises quickly with increasing 

threshold.  Choosing the threshold based on outcome prevalence alone will result in a model with 

low precision due to a high number of false positives.  This could lead to misallocation of 

resources to patients who have low risk of readmission.  As a result, we will want to select the 

predicted risk threshold at which we would implement the model in clinical practice based on 

optimizing sensitivity, specificity and precision.     

 

 

 

 

 

--- LASSO 
--- RF 
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Figure 4.  Plots of Precision Versus Threshold for RF Model on DM Outcome 

 
Note. Precision is poor at low thresholds, including the outcome prevalence of 0.3%, but rises 

quickly with increasing threshold. 

 

 

 

The features selected by the Bolasso algorithm for each readmission outcome are shown 

in table 8 below.  All selected features were statistically significant with p-value <0.001 except 

race in the heart failure readmission model.  Of the 17 features included in model development, 

12 were selected after Bolasso evaluation for at least one readmission outcome.  Payer, length of 

stay, area deprivation index, change in creatinine during admission and use of the patient portal 

did not appear in any model.  Only two features (age and number of emergency department visits 

in previous 6 months) were selected by the Bolasso for all 3 readmission outcomes.     

In all 3 models, more emergency department visits were associated with an increased risk 

of readmission.  Compared with the heart failure readmission model where higher age increased 

the risk of readmission, increasing age was associated with a slightly reduced risk for 

readmission in diabetes-specific and all-cause readmission models.  While this counterintuitive 

to clinical intuition, the odds ratio in both of these models was very close to 1.  One other 
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consideration to explain this result is death as a competing risk with increasing age.  While we 

considered the impact of death on readmission risk, it was not directly modeled.     

 For diabetes-specific readmission, 2 other features were associated with a reduced risk of 

readmission.  These included blood glucose being checked on day of admission and increasing 

admission bicarbonate.  Both are clinically plausible.  Monitoring blood glucose upon admission 

indicates and awareness of and attention to diabetes management by the clinician.  Low 

bicarbonate values indicate acidosis, a serious condition associated with some diabetes-related 

conditions.  Elevated A1C indicates poorly controlled diabetes which increases risk of 

cardiovascular disease and stroke as well as numerous other diabetes-related conditions135 so it is 

not unexpected to see that as one of the strongest predictors of hospital readmission in patients 

with diabetes.     

 Some of the same features present in the diabetes-specific model were also present in the 

heart failure model, but a few new features also emerged.  A larger change in sodium during the 

hospital admission was associated risk of readmission.  Sodium alterations can exist in a number 

of complex medical conditions including diabetes, renal failure, liver failure, nutritional 

deficiency and heart failure among others.  Heart failure is the only Bolasso model selecting race 

as a feature.  While none reach statistical significance in the unregularized regression model, 

black, other, and unknown race were associated with higher risk of readmission compared to 

white race.  The effect of race on heart failure prognosis is mixed in reported literature136–139.   

 The Bolasso all-cause model is the only one to select sex as a feature with male sex 

indicating an 11% increased risk of readmission compared to female.  Two measures of 

utilization history, emergency department visits in 6 months and outpatient visits in 1 year, 

appear in the all-cause readmission model.  Several of the laboratory values present in either the 
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diabetes or heart failure models appear in the all-cause model including change in blood glucose 

in last 24 hours of admission, change in sodium during admission and admission glucose.  All 

are likely markers of disease severity and complexity.     

 

Table 8. Features Selected from LASSO Models Using Bolasso Algorithm With OR and P-value   

Features 
Readmission Diagnosis 

DM HF All-Cause 

A1c max (in last 

year) 

1.2752145* 1.096570*  

Age 0.9729791* 1.039310* 0.9924642* 

Median BG readings 

per day 

1.1663328*   

Admission 

bicarbonate 

0.8061060*   

Change in BG (in last 

24 hours) 

1.0041854*  1.0008262* 

Change in sodium 

during admission 

 1.054966* 1.0390031* 

ED visit count (in 6 

months) 

1.1070867* 1.132465* 1.1618994* 

Admission Glucose 

(1st day) 

  0.9991449* 

Glucose checked day 

of admission (yes/no) 

0.1758684*  1.4191464* 

Outpatient Visit 

Count (in last year) 

 1.015681* 1.0143048* 

Race  Black 3.508632  

(p= 0.0789) 

Other 3.610592 

(p=0.1626) 

Unknown 3.828665  

(p=0.3380) 

White 2.165657 

(p=0.2772) 

 

Sex   Male 1.1130738* 

Note. All features selected demonstrate statistical significance except race in the LASSO heart 

failure model. *p-value <0.001. BG = blood glucose, ED = emergency department, A1C max = 

maximum A1C in the last year. 
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 Random forest evaluates the amount of variance explained by a variable with each split 

of the decision tree.  This is reported as importance.  Table 9 summarizes the feature importance 

results from all three random forest models.  It is notable that age is reported as the most 

important feature in all 3 RF models and admission glucose is the 2nd.  Age was one of only two 

features selected in all 3 Bolasso evaluations.   

Whereas no markers of socioeconomic status appeared in any of the final Bolasso 

models, area deprivation index appeared in the top 5 importance for all 3 RF models.  This 

supports prior work140,141 which found that low socioeconomic status was associated with an 

increased risk for readmission likely due related to low self-efficacy, low health literacy and 

limited access to healthcare resources142.     

Laboratory values including admission glucose, change in creatinine during admission, 

change in blood glucose in last 24 hours of admission and max A1C in last year make up the 

remainder of the top 5 across all RF models.  Variation in blood glucose and creatinine during 

the admission reflect the severity and lability of the underlying disease.  Alterations in kidney 

function, as reflected by changes in serum creatinine, directly impact glycemic control due to the 

role kidneys play in the metabolism of insulin.  Labile renal function can cause a broad range of 

glycemic excursions which may include hypoglycemia with impaired renal function due to 

reduced insulin degredation or hyperglycemia if renal function improves and insulin metabolism 

is increased.  Additionally, if glycemic control is highly labile in the hospital where dietary 

choices and physical activity are often more consistent than what patients experience when not 

hospitalized, it is clinically plausible that diabetes will also be difficult to control after discharge, 

placing the patient at increased risk for readmission.  Admission glucose and maximum A1C in 

the last year are more likely to reflect a patient’s capacity for self-care.  The goal of many care 
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transition programs is to increase the patient’s capacity for self-care, however, these are time and 

resource-intensive efforts which are often difficult to sustain.  

The 5 least important variables were the same across all 3 RF models.  These are payer, 

race, use of the patient portal MHAV and whether or not blood glucose was checked on 

admission.  With the exception of race, which did appear in the Bolasso model for heart failure 

readmission but did not reach statistical significance on unregularized regression, these are the 

same features that did not appear in the final Bolasso model for any outcome.   The inclusion and 

exclusion of many of the same features between LASSO and RF supports the validity of their 

findings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

Table 9.  Random Forest Feature Importance for Diabetes, Heart failure, and All-Cause 

Readmission Models 

 

Importance Diabetes Heart Failure All-Cause 

1 Age Age Age 

2 Admission Glucose Admission Glucose Admission Glucose 

3 A1C Max Change in Blood 

Glucose 

Area deprivation 

index 

4 Change in Blood 

Glucose 

Change in creatinine A1C Max 

5 Area deprivation 

index 

Area deprivation 

index 

Change in creatinine 

6 Change in creatinine A1C Max Outpatient visit count 

7 Median BG readings 

per day 

Outpatient visit count Change in Blood 

Glucose 

8 Outpatient visit count LOS LOS 

9 Admission 

bicarbonate 

Admission 

bicarbonate 

Admission 

bicarbonate 

10 ED visit count Change in sodium Change in sodium 

11 Change in sodium ED visit count ED visit count 

12 LOS Median BG readings 

per day 

Median BG readings 

per day 

13 Payer Payer Payer 

14 Race Race Race 

15 MHAV Use Sex Sex 

16 Sex MHAV Use MHAV Use 

17 Glucose checked day 

of admission 

Glucose checked day 

of admission 

Glucose checked day 

of admission 

Note. Features with higher importance measures explain greater variance in the data.  BG = 

blood glucose.    

 

 

 

Clinical Application 

In order to simulate a population of patients seen by the Endocrinology consultation 

service at VUMC in 1 week, we identified a subset of our population containing 115 

observations.  Of those, 112 were randomly chosen and included no cases.  Three cases were 

randomly selected for inclusion in order to enable us to perform the evaluation.  This outcome 

prevalence of 2% is much greater than 0.3%, the true outcome prevalence in our population.   
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While this difference will impact our results, we will discuss these limitations and recognize the 

value of this exercise in demonstrating how we could implement our model in clinical practice.   

We evaluated sensitivity, specificity and precision of the classification at various 

predicted probability thresholds.  Results of the evaluation are summarized in table 10.  This 

model suffers from poor precision at our true outcome threshold of 0.3% but improves with 

increasing cutoffs for the threshold.  For this rare but serious outcome, we prioritize sensitivity to 

ensure all at risk patients receive the intervention.  Based on these results, we can achieve ideal 

sensitivity, specificity and precision at a threshold of 0.075 (or 7.5% risk of readmission) 

allowing us to match our resources with the highest-risk patients.  Using this example, we would 

recommend the intervention for a patient with a predicted probability of readmission 7.5% or 

greater.   

Given that the outcome prevalence of 2% in our example is much greater than that of the 

underlying population, this evaluation likely overestimates the true precision and needs 

prospective, external validation.  As demonstrated in Figure 4 above, precision across the entire 

population from a 5 year period is poor at low threshold values, including the outcome 

prevalence of 0.3%, but becomes 1 at a threshold of 35% where sensitivity and specificity are 

also calculated to be 1.     
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Table 10.  Sensitivity, Specificity, and Precision Evaluation of 115 Observations, Including 3 

Cases of Diabetes-Specific Readmission 

        

Threshold FN FP TN TP 

Precision 

(PPV) 
Sensitivity 

(Recall) Specificity 

0.002 0 16 96 3 0.16 1.00 0.86 

0.003 0 9 103 3 0.25 1.00 0.92 

0.005 0 6 106 3 0.33 1.00 0.95 

0.007 0 4 108 3 0.43 1.00 0.96 

0.008 0 4 108 3 0.43 1.00 0.96 

0.009 0 4 108 3 0.43 1.00 0.96 

0.01 0 4 108 3 0.43 1.00 0.96 

0.015 0 4 108 3 0.43 1.00 0.96 

0.02 0 3 109 3 0.50 1.00 0.97 

0.03 0 3 109 3 0.50 1.00 0.97 

0.05 0 1 111 3 0.75 1.00 0.99 

0.075 0 0 112 3 1.00 1.00 1.00 

0.1 0 0 112 3 1.00 1.00 1.00 
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CHAPTER 4 

 

CONCLUSIONS 

 

 This study presents the performance of three machine learning methods to predict three 

different 30-day readmission outcomes.  We used LASSO, RF and SVM to predict unplanned 

30-day readmission for diabetes.  Due to the inferior performance and high computational time 

associated with SVM, we used only LASSO and RF to predict unplanned readmission for heart 

failure and all-cause readmission.   

RF offered the best discriminatory performance among all models across all three 

readmission outcomes.  While it was not as well-calibrated as LASSO, next steps would include 

the implementation of techniques such as binning, Platt scaling or isotonic regression to improve  

calibration143.  Additionally, many of our performance metrics for RF seem high.  While there is 

literature supporting similar behavior of these methods in other settings, given our great class 

imbalance, we are concerned that our results may represent overfitting.  Future work should also 

include other methods such as oversampling and undersampling in attempt to avoid overfitting in 

a highly imbalanced dataset.   

While LASSO’s discriminatory performance was not as high as RF, it demonstrated 

excellent discrimination for diabetes-specific readmission and acceptable discrimination for heart 

failure-specific readmission.  Its discriminatory performance is also superior to the readmission 

prediction models most commonly used in clinical practice91.  LASSO benefits from low 

computational time.   Additionally, LASSO is well-calibrated for all outcomes so it would not 

require recalibration methods which may impact discriminatory performance.  Lastly, the 
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features selection aspect of LASSO improves the interpretability of the results.  These 

advantages of LASSO make it an important model to consider, possibly in combination with 

other methods, for future application.                  

The informatics contribution of this work is the application of newer machine learning 

techniques to a novel population and evaluating the performance while varying the outcome of 

interest.  It also demonstrated the value of using domain knowledge in the development pipeline 

and not solely relying upon available structured data.  This builds on the large body of 

readmission prediction model literature which consists mostly of logistic regression models with 

an overemphasis on administrative billing data to predict all-cause readmission.  

  Clinically, there has been little work predicting readmission in patients with diabetes.  Of 

the three published studies, none use novel machine learning approaches and none are 

considering outcomes other than all-cause readmission which limits their utility and impacts their 

model performance.  We expand that body of knowledge by adding new methods to the approach 

of hospital readmission risk prediction for patients with diabetes.  Additionally, by predicting 

diagnosis-specific readmission, our results are directly actionable by a diabetes, or other disease-

specific, service line.       

 There are several strengths to our approach.  One is the use of both parametric and 

nonparametric methods applied to our population of interest.  It’s difficult to know a priori which 

method will best suit the problem and this approach enables comparison across methods while 

maintaining consistency of the underlying data.  Another is the use of domain expertise to select 

and transform data for inclusion as features in our study.  This, in combination with presentation 

of selected features and feature importance from LASSO and RF, respectively, leads to models 

which are clinically meaningful and more likely to be accepted by end users.  It may also explain 
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why our models performed so well with relatively few features.  Because we are predicting the 

specific reason that the patient is returning to the hospital, a disease-specific service line can 

target disease-specific interventions to highest-risk patients in attempt to prevent the 

readmission.  Unlike some all-cause readmission prediction models, the output is focused and 

actionable related to a specific condition.     

 One of the limitations of our study is an academic medical center as the single source of 

data which may impact the generalizability of the results.  Additionally, we did not have data 

regarding utilization history and readmissions to other facilities which could skew our results and 

underestimate the outcome prevalence.  Another important limitation to our study is the use of 

APR-DRG to define readmission diagnosis, particularly for the diabetes outcome.  In the current 

reimbursement structure, APR-DRG is used to determine payment for a hospitalization based on 

service intensity weight.  Medical coders will look for criteria to assign the APR-DRG with the 

highest possible service intensity weight to the admission in order to maximize reimbursement.  

Because the service intensity weight for diabetes is low, medical coders will look for almost any 

other APR-DRG to define the hospitalization even if diabetes is or is not directly related to the 

true reason for admission.  Lastly, while we consider it a strength to use domain expertise in the 

pre-selection of model features, one could consider an argument for allowing the models to use 

as much available clinical data as possible.                  

 Future work must include a prospective evaluation of performance validity in order to 

address the above limitations and understand the degree of overfitting of the results.  Future 

research should also include enhancement of the methods used to assign readmission for 

diabetes.  This could include natural language processing to evaluate documentation during the 

admission as well as other tools to develop a phenotype based on any available EHR data.      
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