
CHARACTERIZATION OF THE CMOS FINFET STRUCTURE ON

SINGLE-EVENT EFFECTS – BASIC CHARGE COLLECTION MECHANISMS

AND SOFT ERROR MODES

By

Patrick Nsengiyumva

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

May 11, 2018

Nashville, Tennessee

Approved:

Lloyd W. Massengill, Ph.D.

Michael L. Alles, Ph.D.

Bharat B. Bhuva, Ph.D.

W. Timothy Holman, Ph.D.

Alexander M. Powell, Ph.D.



© Copyright by Patrick Nsengiyumva 2018

All Rights Reserved



DEDICATION

In loving memory of my parents (Boniface Bimuwiha and Anne-Marie Mwavita),

my uncle (Dr. Faustin Nubaha), and my grandmother (Verediana Bikamenshi).

iii



ACKNOWLEDGEMENTS

This dissertation work would not have been possible without the support and

help of many people. First of all, I would like to express my deepest appreciation

and thanks to my advisor Dr. Lloyd Massengill for his continual support, wisdom,

and mentoring throughout my graduate program at Vanderbilt University. He has

pushed me to look critically at my work and become a better research scholar. I

would also like to thank Dr. Michael Alles and Dr. Bharat Bhuva, who have helped

me identify new paths in my research and have been a constant source of ideas. I am

also very grateful to Dr. W. T. Holman and Dr. Alexander Powell for serving on my

committee and for their constructive comments.

Special thanks go to Dr. Jeff Kauppila, Jeff Maharrey, Rachel Harrington, and

Tim Haeffner for their support with test IC designs and experiments. I would also

like to thank Dennis Ball (Scooter) for his tremendous help with TCAD models.

Additionally, I am thankful to the faculty members, staff, and fellow students of

the Vanderbilt University Radiation Effects and Reliability (RER) Group for their

enthusiastic support and helpful discussions. Special recognition also goes to the

following RER faculty members: Drs. Ronald Schrimpf, Robert Reed, Daniel

Fleetwood, and Kenneth Galloway – thank you for your encouragement and your

wise words of advice throughout my graduate journey at Vanderbilt University.

Thanks also go to Synopsys Inc. and Cadence Design Systems Inc., for the

educational use of the Sentaurus TCAD tool suite and Cadence Spectre tool suite,

respectively. Furthermore, I would like to thank The Boeing Company for the

internship/work experience. My work at Boeing has enhanced my understanding

iv



of the industries′ perspective on radiation effects on terrestrial, defense and space

electronics. The support of the managers and engineers at Boeing is deeply

appreciated. I would also like to acknowledge the financial support from the

Vanderbilt University Graduate School and other external sponsors for my graduate

research program. In particular, this work has been financially supported in part by

the Defense Threat Reduction Agency (DTRA) and the Soft Error Consortium.

Finally, I would like to thank my entire family, my host family (Gary and

Naomi Lawrence), and my friends (who are too many to list here) for their support,

encouragement, and understanding. Most importantly, I would like to express my

thanks and appreciation to Dr. Lea Nyiranshuti for her love and encouragement.

v



TABLE OF CONTENTS

Page

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . 5

II. RADIATION EFFECTS BACKGROUND . . . . . . . . . . . . . . . . 7

Radiation Environments . . . . . . . . . . . . . . . . . . . . . . . 7
Trapped Radiation Environment . . . . . . . . . . . . . . . 8
Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Solar Particle Events . . . . . . . . . . . . . . . . . . . . . 12

Basic Single-Event Mechanisms . . . . . . . . . . . . . . . . . . . 12
Charge Generation and Charge Deposition . . . . . . . . . 14
Charge Collection . . . . . . . . . . . . . . . . . . . . . . . 15

SEE Modeling and Simulation Tools . . . . . . . . . . . . . . . . 17
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

III. SPATIAL AND TEMPORAL CONSIDERATIONS FOR ANALYSIS
OF SINGLE-EVENT MECHANISMS IN FINFET TECHNOLOGIES . 19

TCAD SEE Simulations and Device Sensitive Area Trends . . . . 19
Effects of Ion Track Structure on SE Response . . . . . . . . . . . 22
Characteristic Switching Time Trends . . . . . . . . . . . . . . . 23
3D TCAD Models and Simulation Setup . . . . . . . . . . . . . . 24
3D TCAD SEE Simulation Results . . . . . . . . . . . . . . . . . 26

Impact of Ion Track Parameter Choice on Simulated SE
Response Predictions . . . . . . . . . . . . . . . . . . . . . 26
Impact of Track Radius on Inverter SET Simulation Results 27
Impact of Temporal Parameter on 14/16nm Bulk FinFET
Simulated SET . . . . . . . . . . . . . . . . . . . . . . . . 27
Evolution of Radiation-Generated Charge . . . . . . . . . . 29

vi



Impact of Spatial Track Parameter on 14nm SOI FinFET
SRAM Upset Response . . . . . . . . . . . . . . . . . . . . 31
Impact of Spatial Track Parameter on 14/16nm Bulk Fin-
FET Latch Upsets . . . . . . . . . . . . . . . . . . . . . . 32

Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . 32
Considerations for SE Simulations of Future Technology Nodes . . 35
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

IV. SEU RESPONSE TRENDS OF ADVANCED TECHNOLOGIES . . . 40

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Test Circuit Description and Experimental Setup . . . . . 41
Measured SEU Cross Section Trends . . . . . . . . . . . . 44

3D TCAD Simulations . . . . . . . . . . . . . . . . . . . . . . . . 46
3D TCAD Simulation Results . . . . . . . . . . . . . . . . 49

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

V. ANALYSIS OF BULK FINFET STRUCTURAL EFFECTS ON SINGLE-
EVENT CROSS SECTIONS . . . . . . . . . . . . . . . . . . . . . . . . 55

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Effect of Bulk FinFET Structure on Simulated SET Response . . 57
Simulation Setup and Analyses . . . . . . . . . . . . . . . . . . . 59
Single-Event Upset Criteria . . . . . . . . . . . . . . . . . . . . . 62
Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Simulated Inverter SE Cross Section . . . . . . . . . . . . 66
Simulated Inverter SET Pulse Widths . . . . . . . . . . . . 67

Calculated and Measured SE Cross Sections . . . . . . . . . . . . 69
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

VI. ANGULAR EFFECTS ON SINGLE-EVENT MECHANISMS IN BULK
FINFETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Angular SE Mechanisms in Bulk FinFETs . . . . . . . . . . . . . 77
Analysis of 0◦ Roll Angular SE Mechanisms . . . . . . . . . . . . 79

Mechanism (1): 0◦ ≤ θ ≤ θ1 (Fin/sub-fin Qdep) . . . . . . 81
Mechanism (2): θ1 ≤ θ ≤ θ2 (Reduced fin/sub-fin Qdep) . . 82
Mechanism (3): θ2 ≤ θ ≤ θ3 (2-fin Qdep & further reduced
sub-fin Qdep) . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Mechanism (4): θ ≥ θ3 (2-fin Qdep, but no sub-fin Qdep) . . 83

Analysis of 90◦ Roll Angular SE Mechanism . . . . . . . . . . . . 84
Analyses of Angled SEE Using TCAD Simulations . . . . . . . . 85

vii



Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . 87
Experimental Results and Discussions . . . . . . . . . . . . . . . 88

0◦ Roll FF SEU Cross Sections . . . . . . . . . . . . . . . 88
90◦ Roll FF SEU Cross Sections . . . . . . . . . . . . . . . 91

Impact of Supply Voltage on Angular SEU Cross Sections . . . . 97
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

VII. CONCLUSIONS AND COMMUNITY IMPACT . . . . . . . . . . . . . 100

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

viii



LIST OF TABLES

Table Page

III-1. Simulated upset response as a function of track radius value for a 3D
TCAD 14/16nm bulk FinFET latch circuit. For all these simulations,
the rise time was 0.5 ps. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

III-2. Ion beam details (16 MeV/u cocktail components [Lawr-18]) used for
experimental validation. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

III-3. Experimental versus simulated upset LET thresholds for 14/16nm bulk
FinFET DFF (using a rise time of 0.5 ps for all simulations). . . . . . . 34

IV-1. 16 MeV/u Cocktail Components [Lawr-18]. . . . . . . . . . . . . . . . . 43

IV-2. 10 MeV/u Cocktail Components [Lawr-18]. . . . . . . . . . . . . . . . . 43

V-1. CMOS inverter switching time for advanced technologies (without ac-
counting for the effect of full parasitic-extracted capacitances) . . . . . 64

ix



LIST OF FIGURES

Figure Page

I-1. Intel 22nm tri-gate transistors [Auth-12, Seif-12]. As shown in this figure,
the metal gate extends upwards from the substrate and wraps around
the channel region. In addition, the channel region connects the source
and drain fins of the FinFET. . . . . . . . . . . . . . . . . . . . . . . . 3

I-2. (a) A comparison of planar and tri-gate transistors. As shown in this
figure, the FinFET includes a substrate (i.e., silicon wafer) and a metal
gate, which extends upwards from the substrate. The metal gate also
wraps around a channel region, which connects the source and drain fins
of the FinFET. Shallow trench isolation (STI) regions are formed on or
in the substrate on either side of the metal gate. (b) Intel's FinFET
technology scaling from 22nm tri-gate to 14nm tri-gate transistor. As it
can be seen in this figure, the change from planar transistor structure to
3D tri-gate transistor structure impacts the sensitive charge collection
volume of tri-gate devices [Seif-15b]. . . . . . . . . . . . . . . . . . . . . 4

II-1. Motion of trapped charged particles in the Earth's magnetosphere [Stas-
88]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II-2. A depiction of Earth's Van Allen radiation belts. Normally only two Van
Allen belts (enhancements of charged particles as in the upper panel) are
trapped in Earth's magnetosphere. However, in September 2012, sensors
aboard NASA spacecraft also recorded a third belt (shown in the lower
panel of this figure) [Beat-13]. . . . . . . . . . . . . . . . . . . . . . . . 9

II-3. Proton and electron domains and boundaries within the two primary
Van Allen belts [Stas-88]. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II-4. Contour plot of proton fluxes > 10 MeV in the SAA at a 500 km altitude
during solar maximum [Xaps-06]. . . . . . . . . . . . . . . . . . . . . . 11

II-5. The largest solar flare ever recorded in the radiation effects history as
captured by the SOHO satellite [Nasa-18]. . . . . . . . . . . . . . . . . 13

II-6. Example curve for LET as a function of depth for a 210-MeV chlorine
ion in silicon. As shown in this figure, ion LET decreases drastically
after the Bragg peak [Dodd-99]. . . . . . . . . . . . . . . . . . . . . . . 15

II-7. (a) – (c) Charge generation and collection processes in a reverse biased
p-n junction and (d) typical shape of the resultant SET/SEU current
recorded at the junction. The total collected charge corresponds to the
area under the current curve [Mess-82, Baum-05]. . . . . . . . . . . . . 16

x



III-1. A comparison of SE sensitive area for planar technologies (i.e., red
diamond shaped data points) [Roch-03, Roch-13, Noh-15, Song-15,
Hube-15] and a bulk FinFET technology (i.e., blue triangular data point)
[Nsen-16, Maha-18]. As indicated in this figure, the sensitive area for
FinFET is reduced dramatically compared to that of planar technologies.
Active dimensions for FinFETs are on the order of 10 nm [Nsen-17b]. . 21

III-2. Example of CMOS inverter characteristic switching time as a function
of technology node (without parasitic capacitances). As shown in this
figure, FinFET technology nodes are characterized by relatively shorter
characteristic switching times than those of planar technology nodes. . 24

III-3. Three-dimensional TCAD 16nm bulk FinFET inverter with normal
incidence SE strikes at the OFF-state n-FinFET drain. . . . . . . . . . 25

III-4. Output transient voltage for the 14/16nm bulk FinFET inverter at a
particle (a) LET of 1 MeV-cm2/mg and (b) LET of 60 MeV-cm2/mg.
These simulations used a normal incidence strike at the OFF NMOS
drain and a rise time of 0.5 ps. As shown in this figure, the low-LET
SET pulse width increases with decreasing ion track radius for a fixed
rise time value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

III-5. Output transient voltage for the 14/16nm bulk FinFET inverter with ion
track radius of (a) R = 10 nm and (b) R = 50 nm. These simulations
used a normal incidence strike at the OFF NMOS drain and various rise
time values (i.e., 0.5 ps ≤ T ≤ 2.0 ps). It is also worth noting that
numerical convergence of existing device simulators can also limit the
minimum simulated rise time value. . . . . . . . . . . . . . . . . . . . . 28

III-6. Example of a 3D TCAD 14/16 nm bulk FinFET inverter with a normal
of time evolution (0 ps, 1 ps, and 5 ps after the ion hit) of the SE-induced
electron-hole pair (ehp) density as a function of distance. Simulations
were normal incidence hit at the OFF NMOS body of the 14/16nm bulk
FinFET inverter. The red curves used ion Track 1 (with rise time, T
= 0.5 ps and track radius R = 10 nm) and the blue curves represented
ion Track 2 (with rise time T = 0.5 ps and track radius R = 50 nm).
The double-ended arrows (black) are used to map the minimum NMOS
transistor widths on the spatial axis of the SE-induced carrier densities.
As shown in this figure, the spatial peak width of the initial ehp curve
(Track 1, 0 ps) is narrow and comparable to the FinFET fin width of
14 nm. Results also show that that the ehp density of Track 2 slightly
increases above the 0-ps ehp density level at 1 ps, but decreases below
that level at 5 ps after the ion hit. This behavior can be attributed to
the gradient background well doping densities used in FinFET devices
[Nsen-17b]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xi



III-7. Three-dimensional TCAD 14nm SOI SRAM single-event upset (SEU)
results for normal incidence strike at the OFF-NMOS MN2 drain. (a)
MN2 drain current (SEU-induced) and (b) Bit Line (BL) and Bit
Line Bar (BL Bar) voltages. Due to the assumed Gaussian temporal
waveforms, the rising and falling edges of the SEU current pulse exhibit
similar time constant profiles. For these simulations, all SRAM cross-
coupled inverter transistors used 3D TCAD devices. These simulations
show that the choice of SE model parameter values will determine
whether the circuit response effect due to the SEU-induced current is
properly accounted for (upset versus no upset) [Nsen-17b]. . . . . . . . 37

III-8. Simulated critical charge (Qcrit) and critical LET (LETcrit) as a function
of ion track radius for SEU characterization of the 14nm SOI FinFET
SRAM. Simulations were performed using normal incidence hit at the
OFF NMOS drain as shown by the inset SRAM circuit in Figure III-7
(a) [Nsen-17b]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

III-9. Example of a conventional edge-triggered transmission gate D flip-flop
(TG DFF) implemented in a master-slave configuration. The upset of
the TG DFF is due to the injected SET in the master stage latch. . . . 38

III-10. A schematic representation of the SEU test chip structure with the basic
concept of the CREST block level design used for evaluating flip-flop
SEU response. The test chip consists of several shift register chains with
on-chip error detection circuit on the output and a common input for
each chain [Mars-05]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

III-11. Comparison of simulated critical charge, Qcrit against historical scaling
trends of Qcrit as a function of feature size. As shown in this figure,
the simulated Qcrit value for the 14nm SOI FinFET SRAM using ion
track parameter values (i.e., R = 5 nm and T = 0.5 ps) suitable for
advanced (small and fast) digital circuits produces a better agreement
with historical Qcrit scaling trends. Plot courtesy L.W. Massengill et al.
[Mass-12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

IV-1. Example of a three-dimensional model for a bulk FinFET transistor
[Chat-13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

IV-2. Example of a conventional edge-triggered transmission gate DFF (TG
DFF) implemented in a master-slave configuration. The upset of the
TG DFF is due to the injected SET in the master stage latch. . . . . . 42

xii



IV-3. Experimental SEU response trend of 16nm bulk FinFET, 20nm bulk
planar, and 28nm bulk planar DFFs. Error bars are smaller than the
data points, except for the error bar of the FinFET SEU cross section
at the lowest LET particle. The inset figure is an example of the circuit
schematic for the standard transmission gate DFF (TG DFF). The ′φ′

parameter is the clock signal and the ′φb
′ is the inverted clock signal

[Nara-15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

IV-4. Example of layout structure used to demonstrate the geometric depen-
dence of radiation-induced response of these advanced technology nodes.
Note that the layout is not drawn to scale. (a) 28nm bulk planar NMOS;
(b) 20nm bulk planar NMOS; (c) 16nm bulk FinFET NMOS. The n-
FinFET and p-FinFET devices each consisted of two fins and one single
gate finger per device (NFIN = 2 and NF=1). . . . . . . . . . . . . . . 47

IV-5. Example of 3D TCAD simulated 20nm bulk planar inverter. . . . . . . 50

IV-6. Example of 3D TCAD 16nm bulk FinFET 2-fin NMOS/PMOS tran-
sistors wired in 3D TCAD inverter configuration. LG is the effective
channel length of the transistor. Heavy-ion strikes at a normal incidence
were carried out on the drain of the OFF-state n-FinFET transistor. . . 51

IV-7. Simulated inverter SET pulse widths versus LET at nominal supply
voltages (i.e., VDD of 900 mV for the 28nm bulk planar technology node,
850 mV for the 20nm bulk planar technology node, and 800 mv for the
16nm bulk FinFET technology nodes). . . . . . . . . . . . . . . . . . . 52

V-1. Comparison of 3D structures of (a) planar transistor and (b) one-fin
FinFET transistor [Lee-15]. . . . . . . . . . . . . . . . . . . . . . . . . 56

V-2. Impact of transistor structure on low-LET 3D TCAD single-event
transient response – (a) 16nm bulk FinFET inverter and (b) 28nm bulk
planar inverter. All these simulations were normal (0◦) incidence strike.
The orange spots of the transistor layout (not drawn to scale) represent
the ion-hit location where the top layout shows the ion hit location #
1 for the planar transistor (or direct ion hit at the fin for the FinFET
transistor) and the bottom layout illustrates the ion hit location # 2
(or ion hit between two fins). As shown in this figure, the single-event
transient response is the same for both ion strike locations on the bulk
planar inverter due to substrate charge collection (Sub. Qcoll). . . . . . 60

xiii



V-3. Impact of transistor structure on high-LET 3D TCAD single-event
transient response (a) 16nm bulk FinFET inverter and (b) 28nm bulk
planar inverter. All these simulations were normal (0◦) incidence strike.
The orange spots of the transistor layout (not drawn to scale) represent
the ion-hit location where the top layout shows the ion hit location #
1 for the planar transistor (or direct ion hit at the fin for the FinFET
transistor) and the bottom layout illustrates the ion hit location # 2 (or
ion hit between two fins). It is worth noting that the high-LET single-
event transient response on both ion strike location is the same for either
bulk FinFET inverter or bulk planar inverter due to enhanced substrate
charge collection (Sub. Qcoll). . . . . . . . . . . . . . . . . . . . . . . . 61

V-4. DC Analysis – 16nm bulk FinFET Inverter Voltage Transfer Character-
istics (VTC). The VIL of 0.35 V is the input low voltage (maximum input
value that generates a valid high output voltage) while the VIH of 0.43
V is the input high voltage (minimum input value that generates a valid
low output voltage). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

V-5. An example of CMOS inverter input voltage (X) and output voltage
(Y) waveforms showing VIL and VIL levels for the 16nm bulk FinFET
technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

V-6. Simulated SE cross section as a function of particle LET for the bulk
FinFET inverter and bulk planar inverters. The SE cross section was
determined through X-Y single-event strikes scan of the 3D TCAD
inverter structure and based on the upset criteria. . . . . . . . . . . . . 67

V-7. FinFET inverter SET pulse width (in units of ts) as function of single-
event strike location for a particle LET of 1 MeV-cm2/mg. The
simulations presented here were normal incidence and the orange spots of
the transistor layout (not drawn to scale) represent the ion-hit location.
For these simulation results, the single-event hit location of '0 nm′ refers
to the center of the drain region for the OFF-state struck transistor. As
shown in this figure, the low-LET SET pulse width (in units of ts) of
the bulk FinFET inverter falls below the 2ts value (2 ps as shown by the
black dotted line) more rapidly than that of the bulk planar inverters.
Unlike planar inverters, FinFET SET region of influence is limited to
the fin region at low LET values. . . . . . . . . . . . . . . . . . . . . . 68

xiv



V-8. FinFET inverter SET pulse width (in units of ts) as function of single-
event strike location for a particle LET of 60 MeV-cm2/mg. The
simulations presented here were normal incidence and the orange spots of
the transistor layout (not drawn to scale) represent the ion-hit location.
For these simulation results, the single-event hit location of '0 nm′ refers
to the center of the drain region for the OFF-state struck transistor. As
shown in this figure, the high-LET SET pulse width (in units of ts) of
the bulk FinFET inverter crosses the 2ts (2 ps as shown by the black
dotted line) approximately the same way as the SET pulse width (in
units of ts) of the bulk planar inverters. These results show that high-
LET SET region of influence is larger than the drawn active region for
both FinFET and planar technologies. . . . . . . . . . . . . . . . . . . 70

V-9. A comparison of (a) calculated flip-flop SE cross sections and (b)
experimental SE cross sections for advanced planar and FinFET D flip-
flops [Nsen-16]. The calculated SE cross section was computed using
the simulated SE cross section per inverter (normalized to the drawn
drain area of the minimum size NMOS transistor) and the technology
logic area scaling of 0.49 per technology. As shown in this figure, low-
LET FinFET SE cross section shows a divergence from simple geometric
scaling (Moore's Law) predictions indicated by the black solid curve. . 72

VI-1. (a) Diagram of tilt and roll strikes on a 2-fin bulk FinFET. For a roll angle
incidence of 90◦, the ion tilt direction is parallel to the fins while the ion
tilt direction is perpendicular to the fins for a roll angle of 0◦. (b) Angular
upset measurements on 14/16nm bulk FinFET DFFs show SEU cross
section as a function of tilt angle at a 90◦ roll and at 0◦ roll angle. This
plot demonstrates the strong geometrical and orientation effects, due to
the structure of bulk FinFET devices, on SEU cross-section response.
This work elucidates and explains the mechanisms involved in this SEU
response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

VI-2. (a) Example of 3D view and (b) 2D cross section view for a 2-fin bulk
FinFET structure. Tfin is the top fin width and TS is the bottom fin
width. Hfin is the fin height, Xf the spacing between the nearest edges of
the two fins, and XS is the spacing between the nearest edges of the two
sub-fin structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xv



VI-3. Geometric analyses of charge deposition mechanisms as a function of tilt
angle in 14/16nm bulk FinFETs at a fixed 0◦ roll angle. Four different
charge deposition mechanisms are at play for this 0◦ roll angle – (a)
Mechanism (1): Fin/sub-fin Qdep; (b) Mechanism (2): Reduced fin/sub-
fin Qdep. The angle β is an intermediate angle used to calculate θ2;
(c) Mechanism (3): 2-fin Qdep and further reduced sub-fin Qdep. The
angle α is an intermediate angle used to calculate θ3; (d) Mechanism
(4): 2-fin Qdep, but no sub-fin Qdep. The angular distributions for these
mechanisms are (a) Mechanism (1): 0◦ ≤ θ ≤ 20◦; (b) Mechanism (2):
20◦ ≤ θ ≤ 50◦; (c) Mechanism (3): 50◦ ≤ θ ≤ 65◦; and (d) Mechanism
(4): θ ≥ 65◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

VI-4. (a) 3D view of a bulk FinFET showing the cut line. (b) 2D cross section
view of the bulk FinFET. Charge deposition mechanisms for 90◦ roll
angle. The 90◦ roll charge chord length continuously increases with tilt
angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

VI-5. Simulated SEU results for angled strikes on a full 3D TCAD 14/16nm
bulk FinFET (2-fin) latch at a fixed 0◦ roll angle and VDD of 0.65 V. The
blue-colored doping concentration of the 2D Qdep profiles corresponds to
the intrinsic doping concentration of the simulated bulk FinFET. As
shown in this figure, simulated angular upset responses correlate with
angular SE mechanisms elucidated by the developed geometric analysis
[Nsen-18]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

VI-6. The IC test structure used for angular irradiations. (a) The IC test
printed circuit board (PCB) showing no obstructions to beam path, for
high tilt angles of incidence from the top and left edges of the PCB. The
Teensy 3.2 microcontroller board is visible on the right edge of the PCB.
(b) A picture of the test chip elevated on gold spacers with bond wires on
only two sides of the die. The DUT was packaged on gold plate spacers,
which placed the DUT above the edge of the package cavity, providing
an unobstructed path on two sides for the ion beam at high tilt angles
of incidence [Kaup-18]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

VI-7. High-LET 0◦ roll SEU cross section per FF as a function of tilt angle.
As shown in this figure, the upset cross section as a function of incident
tilt angle does not change significantly from normal incidence up to 80◦.
The slight decrease in upset cross section from around 60◦ is attributed
to coupled mechanisms (3) & (4). At around 85◦, the distance through
the metallization overlayers is on the order of the ions penetration range
limiting the number of ions reaching the active silicon, which results in
a reduced SEU cross section measured at the 85◦ tilt angle. . . . . . . . 89

xvi



VI-8. Low-LET 0◦ roll SEU cross section per FF as a function of tilt angle
and a fixed 0◦ roll angle at VDD = 0.65 V and a particle LET of 1 MeV-
cm2/mg. The SEU cross section is the highest at normal incidence and
starts to decrease at around 20◦ due to mechanism (2). However, at
around 50◦, the SEU cross section starts to increase again due to strike
on two fins according to mechanism (3). At around 65◦, the SEU cross
section decreases due to mechanism (4), which is characterized by charge
deposition in two fins, but no charge deposition in the sub-fin region. . 92

VI-9. Normalized charge chord length as a function of tilt angle (with a fixed
0◦ roll angle) for the 14/16nm bulk FinFET in the angular region (3).
Calculated chord lengths in this figure are normalized to the chord length
value at 65◦ tilt angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

VI-10. Inverter FWHM SET pulse width as a function of tilt angle and a fixed
0◦ roll angle for the angular region (3). These SET results were obtained
from 3D TCAD simulations of the 14/16nm bulk FinFET inverter for a
particle LET of 1 MeV-cm2/mg. For these SET results, VDD was 0.65
V and the ion hit occurred at the drain of the OFF NMOS transistor of
the simulated full 3D inverter structure. . . . . . . . . . . . . . . . . . 94

VI-11. High-LET 90◦ roll SEU cross section per FF as a function of tilt angle.
As shown in this figure, the high-LET SEU cross section does not
change significantly across tilt angles, consistent with the observation
and mechanisms discussed in the fixed 0◦ roll angle case, shown in Figure
VI-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

VI-12. Low-LET 90◦ roll SEU cross section per FF as a function of tilt angle. As
shown in this figure, low-LET 90◦ roll angle upset cross section increases
with tilt angle due to an increase in charge chord length in the active Si
region of the bulk FinFET. . . . . . . . . . . . . . . . . . . . . . . . . . 96

VI-13. Impact of bias on angular alpha FF upset cross sections as function of
tilt angle. (a) Effect of bias on 0◦ roll FF SEU cross section. (b) Effect
of bias on 90◦ roll FF SEU cross section. As shown in both figures (a) &
(b), SEU cross section dependence on tilt angle decreases with reduced
voltage supply due to reduced critical charge, Qcrit. In addition, SEU
cross section at one tilt angle of incidence increases with reduced supply
voltage. This increase in SEU cross section per FF is attributed to an
increase in SET pulse width at a reduced supply voltage [Nsen-16]. . . 98

xvii



CHAPTER I

INTRODUCTION

Since the prediction of space-system upsets from ionizing particles by Wallmark

and Marcus [Wall-62] and the first report of experimentally observed upsets in

communication satellites by Binder et al. in 1975 [Bind-75], single-event effects (SEE)

have been an increasing concern for the reliable operation of space, military, and

ground-based electronic applications. The SEE occurrence is a random and localized

phenomenon due to the interaction of a highly energetic ionizing particle with circuit

materials. Generally, the result of a single event (SE) on the impacted circuit ranges

from the generation of a transient photocurrent/voltage pulse to the corruption of

data stored in struck memory elements. The SE-induced transient signal is typically

referred to as a single-event transient (SET) if it affects a combinational logic circuit,

whereas a single-event upset (SEU) occurs within a memory circuit element. However,

if a SET is latched by a memory element (e.g., D latch, flip-flop, register files, etc.),

then it is also treated as an upset (i.e., SEU) to the memory circuit.

For advanced integrated circuits (ICs), the increased susceptibility to SEE is

primarily attributed to factors associated with device scaling trends [John-98, Nsen-

16]. For example, some of these scaling factors include reduced transistor feature sizes,

higher packing densities, increased operating frequencies, and the change from planar

transistor structure to three-dimensional (3D) multi-gate transistor structure (e.g., fin

field-effect transistor or FinFET) [Seif-12, Seif-15b, Nsen-16, Zhan-17]. A depiction

of the 3D tri-gate transistors (FinFETs) is shown in Figure I-1 [Auth-12, Seif-12]
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and Figure I-2 [Seif-15b]. It is also worth mentioning that the change from planar

transistor structure to FinFET structure was motivated by the enhanced electrostatic

control from multiple gates and reduction in short-channel effects (SCEs) of FinFETs

compared to planar transistors.

However, while SE-induced mechanisms in planar complementary metal-oxide

semiconductor (CMOS) technologies are well understood, the structural modifications

associated with moving from planar transistors to FinFETs introduce new considera-

tions in terms of charge collection processes and SE sensitive area of FinFET circuits.

Thus, it is important to investigate the impact of FinFET transistor structure on SEE

response/mechanisms of FinFET based memory circuits used in both space-deployed

and terrestrial electronics applications.

The objective of this work is to fully characterize and quantify the impact of the

CMOS FinFET structure on physical SEU mechanisms and experimentally observed

SEU responses of bulk FinFET technologies. Both 3D technology computer-aided

design (TCAD) device simulations and experimental testing are used to study SE

failure mechanisms and upset error signatures in advanced bulk planar circuits and

bulk FinFET circuits. In order to fully understand the mechanisms that affect SE

responses in bulk FinFET technologies, this work examines a wide range of advanced

technologies, ranging from 28nm bulk planar technology node down to 16/14nm bulk

FinFET technology nodes.

In addition to experimental testing, circuit simulations also play an important role

in the SE characterization of any given technology node [Rain-14, Hazu-00, Lin-14,

Mars-05]. With technology scaling below 22 nm and circuit response times below 10

ps, the spatial and temporal model parameter values assumed when simulating device-
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Figure I-1: Intel 22nm tri-gate transistors [Auth-12, Seif-12]. As shown in this figure,
the metal gate extends upwards from the substrate and wraps around the channel
region. In addition, the channel region connects the source and drain fins of the
FinFET.
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Figure I-2: (a) A comparison of planar and tri-gate transistors. As shown in this
figure, the FinFET includes a substrate (i.e., silicon wafer) and a metal gate, which
extends upwards from the substrate. The metal gate also wraps around a channel
region, which connects the source and drain fins of the FinFET. Shallow trench
isolation (STI) regions are formed on or in the substrate on either side of the metal
gate. (b) Intel's FinFET technology scaling from 22nm tri-gate to 14nm tri-gate
transistor. As it can be seen in this figure, the change from planar transistor structure
to 3D tri-gate transistor structure impacts the sensitive charge collection volume of
tri-gate devices [Seif-15b].
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and circuit-level SE response using 3D TCAD simulations also show a significant

impact on the simulation results. Therefore, this work also investigates the sensitivity

of the simulation results to the choice of model parameter values, and appropriately

reflects the physics of the ion-induced charge-generation process in the choice of

parameters.

Additionally, novel SE analysis techniques and upset criteria for effectively

bridging transistor-level SE response to circuit-level upset cross section response

of advanced technologies are also developed. Moreover, angular effects (e.g., low-

and high-angle ion incidences) on FinFET SE mechanisms and SE responses are

characterized. Angular SE analyses are of utmost importance for these small-volume

geometry technologies (i.e., FinFETs) in order to (1) account for the effect of the

omnidirectional radiation space environment, (2) provide the basis for worst-case test

conditions, and (3) accurately predict soft error rates (SER) of bulk FinFET designs.

Dissertation Organization

The research work presented in this dissertation is organized as follows:

1) Chapter I introduces the motivation and organization of this work.

2) Chapter II provides a background on radiation effects including radiation

environments and single-event effects on digital electronic circuits. Charge generation

and charge collection mechanisms for SE responses are also discussed.

3) Chapter III presents new spatial and temporal considerations for analysis of

SE responses/mechanisms in sub-22nm technologies. This work is an expansion of

the study presented in [Nsen-17b]. In this work, sensitivity studies are carried out in

order to understand the sensitivity of the simulation results to the choice of model
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parameter values, and to appropriately reflect the physics of the ion-induced charge-

generation process in the choice of parameters.

4) Chapter IV presents a comparative study of SEU cross section response trends

of advanced bulk planar and bulk FinFET technologies. This work describes and

extends the research study in [Nsen-16].

5) Chapter V investigates and quantifies bulk FinFET structural effects on SE

cross sections. This work is an expansion of the study in [Nsen-17a].

6) Chapter VI characterizes angular effects on SE mechanisms in bulk FinFET

technologies. This work is an expansion of the research in [Nsen-18]. Through

a thorough characterization of unique geometric and orientation SEE dependences

of discrete FinFET structure, novel angular upset mechanisms are also discovered

and discussed in this work. The analysis of these failure mechanisms enables risk

reduction in radiation hardened by design (RHBD) design and allows accurate error

rate calculations of terrestrial and defense/space applications.

7) Chapter VII provides some concluding remarks regarding the presented

research. The impact of this work on the radiation effects community is also presented.
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CHAPTER II

RADIATION EFFECTS BACKGROUND

Electronic circuits are exposed to various radiation environments on earth and in

space. The exposure of electronics to radiation can lead to temporary perturbations

or permanent damage of semiconductor devices. Examples of radiation effects on

electronics include total-ionizing dose (TID), prompt dose (dose rate), displacement

damage (DD), and single-event effects (SEE). This chapter provides an overview

of radiation environments and the study of radiation effects on electronics circuits,

especially those of particular pertinence to the research presented in this work (i.e.,

SEE).

Radiation Environments

Both natural space and terrestrial radiation environments pose a reliability

concern for electronics ICs. The atmospheric radiation environment consists of non-

ionizing particles (e.g., neutrons) and ionizing particles (e.g., protons, heavy ions,

muons, etc.). The natural space radiation environment is most complex and dynamic

and will be the focus of this section. The space environment consists of a variety of

energetic particles with energies ranging from KeV to GeV and beyond. The main

contributors to space radiation environments are trapped particles, cosmic rays, and

solar flares.
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Trapped Radiation Environment

This radiation environment consists of a broad spectrum of energetic particles

that are trapped by the Earth's magnetic field. The charged particles in this

field follow relatively reliable trajectories and move in a spiral fashion around the

magnetic field lines, tightening as they approach the magnetic poles where the field

strength increases. Eventually the field strength becomes sufficient to compel the

particle to reverse direction, as shown in Figure II-1. In addition, the Earth's

trapping phenomenon leads to an accumulation of particles in specific areas of the

magnetosphere termed the Van Allen radiation belts [Alle-59]. The Van Allen belts

consist of two permanent belts, as shown in Figure II-2 and Figure II-3: (1) an

outer zone centered at approximately 6 Earth radii and (2) an inner zone centered

at approximately 2.5 Earth radii. The outer zone primarily consists of electrons and

some protons trapped from solar flare events, whereas the inner zone is comprised of

protons and some trapped electrons [Stas-88]. Electrons contribute to most radiation

events in the outer zone, whereas protons contribute to the majority of events in the

inner belt [Mazu-02].

Figure II-1: Motion of trapped charged particles in the Earth's magnetosphere [Stas-
88].
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Figure II-2: A depiction of Earth's Van Allen radiation belts. Normally only two Van
Allen belts (enhancements of charged particles as in the upper panel) are trapped
in Earth's magnetosphere. However, in September 2012, sensors aboard NASA
spacecraft also recorded a third belt (shown in the lower panel of this figure) [Beat-13].
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Figure II-3: Proton and electron domains and boundaries within the two primary
Van Allen belts [Stas-88].
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Coupled with the proton belt is the South Atlantic Anomaly (SAA), shown in

Figure II-4. This anomaly results from the tilt of the Earth's magnetic pole from the

geographic pole and the displacement of the magnetic field from the center, causing

a dip in the Earth's magnetic field over the South Atlantic Ocean. This dip creates

a bulge at the underside of the inner belt [Bart-03], allowing cosmic rays and other

charged particles to reach lower into the atmosphere. The SAA is located off the

coast of South America and displays a large increase in proton flux (> 30 MeV) at

altitudes less than 1000–2000 km [Baze-97], and can cause significant SEE issues for

satellites, aircrafts, and space shuttles operating in the region.

Figure II-4: Contour plot of proton fluxes > 10 MeV in the SAA at a 500 km altitude
during solar maximum [Xaps-06].

Cosmic Rays

There exist three main sources of cosmic rays: galactic cosmic rays (GCR), solar

cosmic rays (SCR), and terrestrial cosmic rays (TCR). While the exact source of
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GCRs is still unknown, they are believed to originate somewhere outside of our solar

system and are postulated to be remnants from supernovae (exploding stars). These

GCRs are comprised of most elements of the periodic table with energies ranging

from 109 eV up to 1020 eV [Bird-95]. The composition of these GCRs is estimated

to be 85% protons (hydrogen nuclei), 14% alpha particles (helium nuclei), and 1%

heavy ions.

Solar Particle Events

An additional source of space irradiation is the Sun. Sporadic and rapid bursts

of radiation called solar flares are emitted by the Sun. The largest solar flare ever

recorded occurred on April 2, 2001 and was captured by the Solar and Heliospheric

Observatory (SOHO) satellite, as shown in Figure II-5. The Sun's solar cycle averages

a span of 11 years with 7 years of high activity and 4 years of relative inactivity within

the 11-year solar cycle.

Basic Single-Event Mechanisms

Radiation-induced effects can lead to a variety of device- and circuit-level responses

such as displacement damage (DD), total-ionizing dose (TID), prompt dose (dose

rate), and single-event effects (SEE). This section focuses on basic SEE mechanisms

since they are the most dominant SE failure modes in modern digital circuits (e.g.,

FinFETs) [Seif-15b, Nsen-16].
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Figure II-5: The largest solar flare ever recorded in the radiation effects history as
captured by the SOHO satellite [Nasa-18].
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Charge Generation and Charge Deposition

The initial process for charge generation from a SE irradiation is the ionization

of carriers. There are two main types of ionization: (1) indirect ionization and (2)

direct ionization [Pete-81]. Indirect ionization is a result of the nuclear interaction

between an energetic incident particle (e.g., neutron) and a semiconductor target

device, thereby creating secondary particles that then generate electron-hole pairs

in the struck material. However, direct ionization occurs when a highly energetic

charged particle (e.g., a heavy ion) traverses through a semiconductor material and

frees electron-hole pairs along its path as it loses energy. Direct ionization will be the

focus of this section as it is the most dominant SEE mechanism for heavy ion strikes.

It is worth noting that a heavy ion particle is any ion with an atomic number (Z)

greater than or equal to two (i.e., particles other than protons, electrons, neutrons,

or pions).

Furthermore, direct ionization mechanism is typically associated with a fairly

constant linear energy transfer (LET) over short distances (e.g., 10 nm < distance <

1 µm) [Dodd-99], but can sometimes be accurately estimated over greater distances.

This term LET (measured in MeV-cm2/mg) is typically used to describe the energy

loss per unit path length of a particle as it passes through the semiconductor material

[Mass-93]. The energy loss per unit length (in MeV/cm) is usually normalized by the

density of the target material (in mg/cm3). Thus, LET is roughly independent of the

target material. In silicon, the average energy required to produce an electron-hole

pair is 3.6 eV. For example, with silicon density of 2328 mg/cm3 [Sze-81], an LET of

97 MeV-cm2/mg is approximately equivalent to charge deposition of 1 pC/µm.

Moreover, as the incident particle penetrates deeper into the semiconductor
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material it slows down, thereby allowing for a more effective interaction with the

bound electrons and the LET gradually increases. The maximum energy loss by the

incident particle occurs close to the particle's resting point when the remaining energy

is released into target material. This maximum point (peak of curve) is called the

Bragg peak and an example of the Bragg peak for a chlorine ion is shown in Figure

II-6 [Dodd-99]. Such information can be very important for device- and circuit-level

SEE modeling and simulations.

Figure II-6: Example curve for LET as a function of depth for a 210-MeV chlorine
ion in silicon. As shown in this figure, ion LET decreases drastically after the Bragg
peak [Dodd-99].

Charge Collection

When excess carriers generated from a SE strike are collected near a sensitive p-n

junction (i.e., typically OFF-state condition or reverse biased p-n junction), they can
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cause a change in state for the struck circuit. Shown in Figure II-7 are the three main

mechanisms governing the charge collection process: (1) drift – is the charge transport

in response to an applied or a built-in electric field in the device junction depletion

region; (2) diffusion – is the charge transport due to carrier concentration gradients

within the device; and/or (3) recombination – corresponds to the annihilation of two

oppositely charged carriers by recombining with each other.

Figure II-7: (a) – (c) Charge generation and collection processes in a reverse biased
p-n junction and (d) typical shape of the resultant SET/SEU current recorded at the
junction. The total collected charge corresponds to the area under the current curve
[Mess-82, Baum-05].

The shape of the radiation-induced current pulse can be related to the dynamics
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of charge collection (Qcoll) and the resulting current can be expressed as

I(t) =
dQcoll

dt
(II-1)

where I(t) is the radiation-induced current, Qcoll is the collected charge, and t is the

elapsed time after the onset of the ion hit. It is worth noting that the collected

charge is less than a femtocoulomb for modern technologies [Seif-15b, Nsen-16], and

the drift current can be limited by the saturation velocity of the carriers (e.g., Vsat

107 cm2/s for electrons in silicon). As a result, the resulting transient current in

advanced circuits is typically on the order of picoseconds.

SEE Modeling and Simulation Tools

Device- and circuit-level SE modeling and simulation can provide important

insights into physical upset mechanisms in struck circuits. Typical tools used for SE

modeling and simulation analyses include TCAD (e.g., Synopsys Sentaurus TCAD

tools [Syno-18], Silvaco TCAD tools [Silv-18]), Monte Carlo simulation tools [Tylk-

97, Well-09, Well-10, Rain-11b, Mend-12, Reed-13, Adam-18, Gean-18], and circuit

simulators (e.g., Cadence Virtuoso tools [Cade-18]). It is worth mentioning that

circuit simulators are typically used to simulate more complex circuit designs such

as D flip-flops as TCAD simulations of such complex circuits may require huge

computation resources and extremely long time periods.

Conclusions

This chapter presents an overview of radiation environments that are of par-

ticular concern for SEE analysis of advanced digital circuits. Charge generation

17



and collection mechanisms after an ion hit on a semiconductor material are also

discussed. Existing simulation tools needed for device- and circuit-level SE modeling

for digital circuits are also discussed. The understanding of radiation environments,

charge generation/collection mechanisms, and accurate prediction of error rates is

very important to the mission success of space-deployed and terrestrial electronics

systems.
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CHAPTER III

SPATIAL AND TEMPORAL CONSIDERATIONS FOR ANALYSIS OF

SINGLE-EVENT MECHANISMS IN FINFET TECHNOLOGIES

The spatial and temporal model parameter values assumed when simulating

device- and circuit-level single-event effects using 3D TCAD have a significant impact

on the simulation results. Characteristic active-region dimensions of modern CMOS

devices are now ≤ 20 nm, and circuit-switching times are below 10 ps. It is important

to understand the sensitivity of the simulation results to the choice of model parameter

values, and to appropriately reflect the physics of the ion-induced charge-generation

process in the choice of parameters.

TCAD SEE Simulations and Device Sensitive Area Trends

As a highly energetic charged particle penetrates through the semiconductor

materials, it produces a large density of electron-hole pairs near the particle trajectory.

The electron-hole pairs created by the incident particle can be collected via drift and

diffusion processes and cause the occurrence of a soft error.

TCAD simulation tools are used to simulate the transient response of electronic

devices to energy (converted to charge) deposited by an ionizing particle in the

semiconductor material regions [Duss-93, Muss-98, Benn-12, Nsen-16]. Typical

models used in TCAD tools to represent the charge generated by an ion are based

upon Gaussian spatial and temporal representations. The Gaussian model and basis

for model parameter values such as the spatial radius of the assumed Gaussian charge
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track, and the temporal time profile have generally been based upon the assumption

that the charge-generation time (based on the velocity of the ion traversing a sensitive

region) is very short compared to the response time of the devices being studied

[Duss-93, Muss-98]. Depending on the mass and energy of the specific ions, these

assumptions tend to produce very dense initial charge cores along with some number

of secondary electrons having larger ranges [Weed-14]. These fast electrons are the

agents by which the energy of the primary ions is distributed locally around the track

[Koba-04]. It is worth noting that the track evolution process starts much earlier (in

the femtosecond range) as observed in the study of Schiewietz et al. [Schi-04].

The assumed Gaussian spatial distribution for the charge generated by a single

particle can also be thought of as averaging a large number of individual events at

some time after the initial impulse function of the ion strike. This representation

neglects nuclear and secondary-electron events, which can result in discrete reactions

at relatively large distances. Historically, a value of 50 nm has often been assumed

for the characteristic length of the spatial parameter, and a number on the order

of picoseconds for the temporal (rise time) parameter in the single-event charge

generating models used in 3D TCAD simulations [Benn-13, Ferl-05, Arto-10, Hoot-

13]. With technology dimensions well below 50 nm (as shown in Figure III-1), and

circuit response times reduced to well below 10 ps [Nsen-17a], these assumptions

invite re-evaluation. Results in Figure III-1 demonstrate that the relevant region

of influence for sub-22nm devices (i.e., the sensitive area) is much smaller than the

spatial extent of an ion interaction.

In addition, the metrics for characterizing single-event sensitivity of specific digital

circuits include critical charge, Qcrit (the minimum charge required to cause a bit flip
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Figure III-1: A comparison of SE sensitive area for planar technologies (i.e., red
diamond shaped data points) [Roch-03, Roch-13, Noh-15, Song-15, Hube-15] and
a bulk FinFET technology (i.e., blue triangular data point) [Nsen-16, Maha-18].
As indicated in this figure, the sensitive area for FinFET is reduced dramatically
compared to that of planar technologies. Active dimensions for FinFETs are on the
order of 10 nm [Nsen-17b].
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in a memory circuit) and SET pulse widths [Mass-93, Baum-05b, Nara-07, Gadl-10].

These values are compared to the perturbations induced by a given ion under given

conditions (bias, strike location, angle of strike, etc.), which are characterized by

collected charge, Qcoll at a node (for which some integration time must be chosen) or

the voltage transient observed at a node. Often, 3D TCAD simulations are performed

on fixed-biased transistors in order to determine the collected charge or the transient

pulse width [Gadl-10, Baum-05a, Baum-05b]. However, with circuit response times

comparable to the charge deposition and collection times, and the spatial extent of

the induced perturbations capable to impact multiple devices simultaneously, it has

become challenging to connect a simulated single-device SE response to circuit upset

response. The dynamic transient loads must also be included in transient simulations.

Increased computational capabilities, along with the use of combined TCAD and

compact-model approaches, have been adopted to address these issues. One of the

key considerations, however, in such simulations is the appropriate representation

of the initial stimulus in the context of sub-22nm device dimensions with sub 10-ps

switching times.

Effects of Ion Track Structure on SE Response

Previous studies have examined the effects of ion track structure on SE response

using different track structure formulations [Kobe-68, Duss-93, Fage-94, Akke-05],

and Monte Carlo simulations [Akke-05, Mura-08, Rain-11a, Rain-12, Weed-14, Rain-

14]. However, these references mainly focus on planar Silicon-On-Insulator (SOI)

technologies (from 1 µm to 24 nm technology nodes [Rain-14]) and SOI FinFET

technologies (e.g., 20nm SOI nanowire FinFET [Rain-14] and 14nm SOI FinFET
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[Weed-14]). Recent studies of bulk FinFETs indicate that charge deposition/collec-

tion processes, sensitive area (Adiff), and the resulting upset rate of advanced bulk

technologies exhibit a strong dependence on bulk FinFET structure [Nsen-17a]. This

observation is very important as soft error rate (SER) for a given technology depends

exponentially on the ratio of the critical charge (Qcrit) to collected charge (Qcoll)

[Hazu-00]:

SER ∼ Adiff · exp(−
Qcrit

Qcoll

) (III-1)

Thus, it is necessary to examine the sensitivity of radiation-generated charge-track

model parameters to transistor structure for highly scaled CMOS technologies.

Characteristic Switching Time Trends

Figure III-2 shows a comparison of CMOS inverter characteristic switching time

values as a function of technology node. The inverter characteristic switching time

is the time required for a valid input signal to propagate through the inverter

gate until it has become a valid output signal (i.e., the time to switch a logic

'0′ to a logic '1′ or vice-versa). These switching time results were obtained using

Cadence SPICE inverter simulations with minimum size transistors designed using

the indicated process nodes (from 130nm planar technology node down to 14/16nm

FinFET technology nodes). As indicated in Figure III-2, the 14/16nm FinFET

technology nodes exhibit relatively shorter characteristic switching times than those

of planar technology nodes. These simulations demonstrate that modern circuit

response times can undercut a conventional ion charge generation Gaussian profile

used in simulation. The important impact of this temporal characteristic parameter
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on SE responses is discussed in a later section of this Chapter III (Section III-5).

Figure III-2: Example of CMOS inverter characteristic switching time as a function
of technology node (without parasitic capacitances). As shown in this figure, FinFET
technology nodes are characterized by relatively shorter characteristic switching times
than those of planar technology nodes.

3D TCAD Models and Simulation Setup

3D TCAD simulations using the Synopsys Sentaurus TCAD tool suite [Syno-12]

were performed on 14/16nm bulk FinFET inverter, 14nm SOI FinFET SRAM, and

D latch structures. Transistor models and parameters for the 14nm SOI FinFET

technology were similar to those reported in [Lin-14]. Both 14/16nm bulk n-channel

FinFET (n-FinFET) and p-channel FinFET (p-FinFET) devices had an effective

channel length, LG of 14/16 nm and each consisted of two fins and one single gate

finger per device (NFIN = 2 and NF = 1). An example of a two-fin 3D TCAD

14/16nm bulk FinFET inverter used in this work is shown in Figure III-3.

Impact ionization, concentration-dependent Schockley-Read-Hall (SRH) and Auger

recombination models, and field and concentration-dependent mobility models were
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Figure III-3: Three-dimensional TCAD 16nm bulk FinFET inverter with normal
incidence SE strikes at the OFF-state n-FinFET drain.
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also utilized in all simulations. Electrical parameters such as drain current-gate

voltage (ID-VG) drain current-drain-source voltage (ID-VDS) curves for the 16nm

bulk FinFET transistors were calibrated using the Arizona State University (ASU)

14/16nm bulk FinFET Predictive Technology Models (PTM) [Ariz-18]. The particle

LET was converted into SE charge deposition in terms of pC/µm. This conversion

from pC/µm to LET accounts for both the ionization energy and the density of

the material traversed by the particle [Mass-93]. Photogenerated carriers were also

distributed according to a Gaussian function of radius, R. All simulated heavy ion

strikes were at normal incidence and the hit transistor was in the OFF-state condition,

as this is the single-event sensitive state of the device.

3D TCAD SEE Simulation Results

Impact of Ion Track Parameter Choice on Simulated SE Response Predictions

An extensive sensitivity simulation study was carried out using 14/16m bulk

FinFET inverters, 14nm SOI FinFET SRAM, and 14/16nm conventional unhardened

D latch [Ball-18] in order to investigate the sensitivity of SE simulation results to the

choice of SE model parameter values, and to appropriately reflect the physics of

the ion-induced charge-generation process in the choice of parameters. The nominal

supply voltage (i.e., VDD = 800 mV) was used and the assumed Gaussian ion track

radius (denoted, R) values ranged from 5 nm up to 80 nm for all reported simulations

of this work. The rise time (denoted, T) for the Gaussian heavy ion model was varied

between 0.5 ps and 2 ps.
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Impact of Track Radius on Inverter SET Simulation Results

Shown in Figure III-4 (a) are low-LET simulated SET responses for various track

radius values. The SET pulse width of the 14/16nm bulk FinFET inverter increases

with the decreasing ion track radius for low-LET particle strikes (e.g., LET of 1 MeV-

cm2/mg). These SET pulse widths have a significant dependence on the ion spatial

parameter choices. These simulated SET results show that the impact of track radius

is most evident at low-LET particles and are very important for estimating upset

LET threshold of FinFET memory circuits.

However, the high-LET SET pulse widths (e.g., LET of 60 MeV-cm2/mg) as shown

in Figure III-4 (b), are approximately similar regardless of the track radius value,

due to the enhanced FinFET substrate charge collection [Nsen-17b]. These high-

LET SET pulse widths are wide compared to the feedback loop delay of advanced

memory circuits (e.g., unhardened DFF [Nsen-16]) and will likely cause observable

soft errors at the output of the memory circuit. These results are also consistent

with experimental and simulated FinFET SE response trends reported in [Nsen-17a,

Nsen-17b, Nsen-18, Ball-18].

Impact of Temporal Parameter on 14/16nm Bulk FinFET Simulated SET

The impact of the SE temporal parameter (i.e., rise time, T) on simulated SET

response of 14/16nm bulk FinFET inverter is shown for both R = 10 nm and R =

50 nm in Figure III-5. These simulations are for normal incidence strikes at the OFF

NMOS drain with a rise time of 0.5 ps. Simulated results show minimal difference in

simulated inverter SET pulse width at nominal supply voltage of 0.8 V for 0.5 ps ≤ T

≤ 2 ps. Although these results do not indicate drastic effects due to temporal track
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Figure III-4: Output transient voltage for the 14/16nm bulk FinFET inverter at
a particle (a) LET of 1 MeV-cm2/mg and (b) LET of 60 MeV-cm2/mg. These
simulations used a normal incidence strike at the OFF NMOS drain and a rise time
of 0.5 ps. As shown in this figure, the low-LET SET pulse width increases with
decreasing ion track radius for a fixed rise time value.

parameter variation, the mechanisms and significance of this temporal parameter need

to be well understood as future promising candidates for highly scaled technologies

(i.e., nanowire FinFET technologies) are expected to exhibit characteristic switching

times on the order of less than a picosecond [Ball-18].

Figure III-5: Output transient voltage for the 14/16nm bulk FinFET inverter with
ion track radius of (a) R = 10 nm and (b) R = 50 nm. These simulations used a
normal incidence strike at the OFF NMOS drain and various rise time values (i.e.,
0.5 ps ≤ T ≤ 2.0 ps). It is also worth noting that numerical convergence of existing
device simulators can also limit the minimum simulated rise time value.
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Evolution of Radiation-Generated Charge

One noteworthy observation for SE simulations of advanced technologies is the

time at which the SE-induced electron-hole pair (ehp) density using appropriate ion

track parameter values (e.g., R = 10 nm and T = 0.5 ps, based on small device size and

circuit switching characteristics of advanced technologies) matches with radiation-

generated ehp density using the traditional spatial SE parameter assumption (i.e., R

= 50 nm), as shown in Figure III-6. The generated ehp density profile is shown for

the onset of the ion hit (0 ps), 1 ps, and 5 ps after an ion hit at the OFF-NMOS body

of the 14/16nm bulk FinFET inverter cell. It is worth noting that the illustrative

notation of the SE onset ('0 ps') for the TCAD simulations does not precisely equal

'zero time′ for the ion event. For these simulations, 'zero time′ refers to a start

time immediately following the thermalization of the initially generated hot carriers

(approximately less than one picosecond after the ion strike). The red curves and blue

curves of Figure III-6 represent the simulated SE ehp densities using the ion Track

1 (with a rise time of 0.5 ps and a small track radius of 10 nm) and the ion Track 2

(with a small rise time of 2 ps and a large track radius of 50 nm), respectively.

Simulation results in Figure III-6 show that the initial charge core (related to

SE-induced ehp density) is very dense and localized in the very small active volume

of the FinFET device (as indicated by the double-ended arrow of the FinFET fin

width). In addition, the onset peak ehp density of Track 1 matches that of Track 2

at around 5 ps after the ion strike, as depicted in Figure III-6. However, at times

less than 5 ps, the peak ehp density of Track 1 and Track 2 are very different. If

the impacted circuit responds fast enough to collect and integrate this charge on this

time scale, then the induced nodal currents for the two track examples would be
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Figure III-6: Example of a 3D TCAD 14/16 nm bulk FinFET inverter with a normal
of time evolution (0 ps, 1 ps, and 5 ps after the ion hit) of the SE-induced electron-
hole pair (ehp) density as a function of distance. Simulations were normal incidence
hit at the OFF NMOS body of the 14/16nm bulk FinFET inverter. The red curves
used ion Track 1 (with rise time, T = 0.5 ps and track radius R = 10 nm) and the
blue curves represented ion Track 2 (with rise time T = 0.5 ps and track radius R
= 50 nm). The double-ended arrows (black) are used to map the minimum NMOS
transistor widths on the spatial axis of the SE-induced carrier densities. As shown in
this figure, the spatial peak width of the initial ehp curve (Track 1, 0 ps) is narrow
and comparable to the FinFET fin width of 14 nm. Results also show that that the
ehp density of Track 2 slightly increases above the 0-ps ehp density level at 1 ps, but
decreases below that level at 5 ps after the ion hit. This behavior can be attributed
to the gradient background well doping densities used in FinFET devices [Nsen-17b].
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very different. As a result, latch-type circuit response perhaps even upset versus no

upset – in each case would be distinct. This observation is very important for SE

simulations of advanced FinFET technology nodes, which are characterized by small

sensitive volumes and fast switching characteristic times (i.e., one picosecond for a

14/16nm FinFET inverters). These simulation results also demonstrate that for sub-

22nm devices, the relevant region of influence - the volume where energy deposition

impacts a node is much smaller than the spatial extent of an ion interaction.

Impact of Spatial Track Parameter on 14nm SOI FinFET SRAM Upset Response

3D TCAD simulation results of the 14nm SOI FinFET SRAM show that the

appropriate temporal track parameter (rise time, T) for FinFET technologies is less

than two picoseconds and the spatial track parameter (radius, R) is ∼ 5 - 10 nm, as

shown in Figure III-7. For example, SE simulations using an ion track rise time, T of

0.5 ps with a radius, R of 5 - 10 nm result in the critical SEU current necessary to

upset the 14nm SOI FinFET SRAM cell at a particle LET of 1 MeV-cm2/mg. This

SEU current for R = 5 nm is more than twice than that of R = 80 nm for the same

particle LET of 1 MeV-cm2/mg, as shown in Figure III-7.

The use of a wide track radius of 80 nm and a rise time of 0.5 ps also overestimates

the radiation hardness of the 14nm SOI SRAM cell since the SEU current model

upsets the SRAM cell at a very high critical LET (LETcrit) of ∼ 17 MeV-cm2/mg (or

at a very high critical charge, Qcrit of ∼ 4.25 fC), as shown in Figure 8. However, with

appropriate SEU current model parameter values (i.e., the same T value of 0.5 ps,

but with any R in the range of 5–10 nm) that are consistent with the switching time
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characteristics of the 14nm SOI SRAM and the physics of the ion-induced charge-

generation process, the same SRAM SE simulations result in a critical LET (LETcrit)

of ∼ 0.6 MeV-cm2/mg (a critical charge of ∼ 0.15 fC), as illustrated in Figure III-8.

These simulation results demonstrate a likely scenario where contradicting radiation

hardness reports of a particular circuit part may emerge due to the use of different

simulation SE model parameter values.

Impact of Spatial Track Parameter on 14/16nm Bulk FinFET Latch Upsets

In order to understand the implications of spatial track parameter effects on

the upset response of latch-type circuits, a full 3D TCAD latch structure based on

14/16nm bulk 2-fin FinFET transistors was developed and simulated. For all latch

SEU simulations reported in this section, simulation conditions were normal (0◦)

incidence, room temperature and nominal supply voltage of 0.8 V. Simulated results

in Table III-1 show that the track radius effect is evident at low-LET values and the

TCAD latch does not upset at a particle LET of 1 MeV-cm2/mg and for track radius

values greater than 10 nm. These simulation upset results are very important for

estimating critical latch upset parameters such as the latch upset LET threshold and

critical charge values.

Experimental Validation

Experimental and simulated upset thresholds are used to validate ion track

parameter choices suitable for SEE modeling and prediction in sub-22nm FinFET

technologies. For IC test chip details, conventional unhardened 14/16nm bulk

FinFET D flip-flop (DFF) cells from the same manufacturer were used to characterize
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Table III-1: Simulated upset response as a function of track radius value for a 3D
TCAD 14/16nm bulk FinFET latch circuit. For all these simulations, the rise time
was 0.5 ps.

R (nm) \ LET (MeV-cm2/mg) 1 2 4 10

5 Upset Upset Upset Upset

10 Upset Upset Upset Upset

20 No Upset Upset Upset Upset

30 No Upset Upset Upset Upset

50 No Upset Upset Upset Upset

80 No Upset No Upset Upset Upset

single-event upsets for the 14/16nm bulk FinFET technology node. The DFF circuits

were designed using inverters and transmission gates, as shown in Figure III-9. The

analyzed flip-flops were similar with optimized layout area. In addition, the custom-

designed test IC chip for this experiment comprised of multiple shift registers with a

total of 128,000 stages, and the test chip implementation (illustrated in Figure III-10)

used a Circuit for Radiation Effect Self Test (CREST) configuration [Mars-05]. The

CREST configuration contains on-chip error detection circuit and is used for direct

measurement of upsets.

These test ICs were irradiated with heavy ion particles at normal (0◦) incidence

and room temperature. These experiments were performed at the Lawrence Berkeley

National Laboratory (LBNL) 88′′ Cyclotron using the 16 MeV/u cocktail. The ion

responsible for the upset threshold of the test designs was the Nitrogen ion, N, with

an LET value of 1 MeV-cm2/mg, as shown in Table III-2 [Lawr-18].

Table III-3 shows a comparison of experimental and simulated upset thresholds of

the conventional unhardened master-slave 14/16nm bulk FinFET D flip-flop (DFF).

For simulated upset thresholds, different SE model parameter values (varying R, but
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Table III-2: Ion beam details (16 MeV/u cocktail components [Lawr-18]) used for
experimental validation.

Ion Energy LET Rangefinal

(MeV) (MeV-cm2/mg (µm)
14N+5 234 1 508

the same Gaussian rise time of 0.5 ps) were used. Results show that the use of a wide

ion track radius, R (i.e., the conventional 3D TCAD assumption of R = 50 nm for

single-event simulations) overestimates the simulated upset threshold (i.e., 3.4 MeV-

cm2/mg) compared to the experimental upset LET threshold of 1.16 MeV-cm2/mg,

as shown in Table III-3. However, the use of a small ion track radius (i.e., R ≤ 20

nm) resulted in upset LET thresholds that are approximately the same as that of

experimental data [Nsen-16].

Table III-3: Experimental versus simulated upset LET thresholds for 14/16nm bulk
FinFET DFF (using a rise time of 0.5 ps for all simulations).

Type of results Upset LET threshold
(MeV-cm2/mg)

Experimental data [Nsen-16] 1.16

Simulated w/R = 5 nm 1.10

Simulated w/R = 10 nm 1.16

Simulated w/R = 20 nm 1.40

Simulated w/R = 30 nm 3.10

Simulated w/R = 50 nm 3.40

Moreover, unlike simulated Qcrit based on a large R value (i.e., R = 80 nm), the

14nm SOI FinFET SRAM SE simulations using a small ion track radius of 5 nm

indicate a critical charge, Qcrit of 0.15 fC that is in a better agreement with historical

SRAM Qcrit scaling trends, as demonstrated in Figure III-11. These results show that
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inaccurate choices of simulated SE ion track spatial and temporal parameter values

can yield misleading SE characterization information (for advanced circuits) that is

far different from experimental data.

Considerations for SE Simulations of Future Technology Nodes

3D TCAD simulations have generally assumed that the starting point of SE-

induced mechanisms (that are critical to the switching and performance of digital

circuits) occur after thermalization of the carriers (i.e., the carrier energies relax to

the values determined by the equilibrium distribution function). This thermalization

of initially generated carriers in a semiconductor device by a highly energetic ion is a

relatively fast process and only lasts for a very short time (on the order of less than one

picosecond) after the ion strike. So far, for technology nodes down to 14/16nm, the

judicious use of existing SE simulation models has been able to match experimentally

measured SE responses, indicating that the processes that occur on the thermalization

time scale are not of first-order significance. However, as semiconductor devices

continue to get smaller and achieve faster circuit switching speeds, the sensitivity

of simulation results to spatial and temporal parameters will be important and will

have to be accounted for (in simulation tools and SEE analyses) in order to accurately

calculate error rates of terrestrial and space electronic systems.

Conclusions

With technology scaling below 22nm, and circuit response times below 10 ps, the

spatial and temporal model parameter values assumed when simulating device- and

circuit-level single-event effects using 3D TCAD simulations show a significant impact
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on the simulated SE results. Thorough SE sensitivity study cases using 14nm SOI

FinFET SRAM cells, 14/16nm bulk FinFET inverter, and 14/16nm bulk FinFET D

latch/flip-flop circuits showed that the use of a small ion track radius (R ≤ 20 nm)

and a short rise time (T < 2 ps) is necessary to produce simulation results that are

in agreement with historical critical charge scaling trends and measured upset LET

thresholds. For example, the use of a track radius, R, on the order of R ≥ 50 nm (a

historically used value) predicts an upset LET threshold of 17 MeV-cm2/mg (a critical

charge of over 4 fC), which would make the SRAM cell difficult to write electrically.

The use of R = 5 nm results in a predicted upset LET threshold of 0.6 MeV-cm2/mg

(∼ 0.15 fC) a value much more consistent with the expectation based on well-known

technology scaling trends. The suggested SE model parameter values are consistent

with the physics of ion-induced charge-generation processes, focusing on the dense

charge tracks that are created at early times (on the order of < 1 ps). The dimension

of the dense tracks are on the order of key dimensions of the active devices (channel

lengths and fin widths), and the time frame is on the order of switching time of

advanced digital circuits. The findings of this work can be useful to device/circuit

designers and the radiation-induced effects community in general, for accurate error

rate calculations of bulk FinFET-based digital circuits used in terrestrial and space

applications.
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Figure III-7: Three-dimensional TCAD 14nm SOI SRAM single-event upset (SEU)
results for normal incidence strike at the OFF-NMOS MN2 drain. (a) MN2 drain
current (SEU-induced) and (b) Bit Line (BL) and Bit Line Bar (BL Bar) voltages.
Due to the assumed Gaussian temporal waveforms, the rising and falling edges of the
SEU current pulse exhibit similar time constant profiles. For these simulations, all
SRAM cross-coupled inverter transistors used 3D TCAD devices. These simulations
show that the choice of SE model parameter values will determine whether the circuit
response effect due to the SEU-induced current is properly accounted for (upset versus
no upset) [Nsen-17b].
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Figure III-8: Simulated critical charge (Qcrit) and critical LET (LETcrit) as a function
of ion track radius for SEU characterization of the 14nm SOI FinFET SRAM.
Simulations were performed using normal incidence hit at the OFF NMOS drain
as shown by the inset SRAM circuit in Figure III-7 (a) [Nsen-17b].

Figure III-9: Example of a conventional edge-triggered transmission gate D flip-flop
(TG DFF) implemented in a master-slave configuration. The upset of the TG DFF
is due to the injected SET in the master stage latch.
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Figure III-10: A schematic representation of the SEU test chip structure with the
basic concept of the CREST block level design used for evaluating flip-flop SEU
response. The test chip consists of several shift register chains with on-chip error
detection circuit on the output and a common input for each chain [Mars-05].

Figure III-11: Comparison of simulated critical charge, Qcrit against historical scaling
trends of Qcrit as a function of feature size. As shown in this figure, the simulated
Qcrit value for the 14nm SOI FinFET SRAM using ion track parameter values (i.e.,
R = 5 nm and T = 0.5 ps) suitable for advanced (small and fast) digital circuits
produces a better agreement with historical Qcrit scaling trends. Plot courtesy L.W.
Massengill et al. [Mass-12].
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CHAPTER IV

SEU RESPONSE TRENDS OF ADVANCED TECHNOLOGIES

Introduction

In 2012, Seifert et al. [Seif-12] reported measured cosmic ray and alpha particle-

induced soft error rates (SER) for digital products fabricated in Intel's first generation

22nm tri-gate process. Seifert et al.'s results demonstrate a 10× reduction of SEU

cross sections relative to 32nm planar devices [Seif-12]. This work extends the SER

study down to the 14/16nm bulk FinFET technology node. We report measured

SEU cross sections for heavy-ion exposures for 16nm bulk FinFET DFF circuits as

compared to identical DFF circuits in 20nm and 28nm bulk planar technologies from

the same foundry.

Figure IV-1: Example of a three-dimensional model for a bulk FinFET transistor
[Chat-13].

3D TCAD modeling and simulations of devices are useful in providing insight into
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physical mechanisms and failure modes due to single-event effects [Akti-11, Chen-

12]. In this work, 3D TCAD simulations were used to investigate charge collection

mechanisms and SET pulse widths at the advanced nanoscale fabrication nodes

analyzed in this Chapter IV. Given the smaller size and higher drive current of the

16nm bulk FinFETs compared to planar nodes, it can be hypothesized that SET pulse

widths for the 16nm bulk FinFET for low LET particles will be relatively shorter

than those of their planar counterparts. For high LET particles, however, both bulk

FinFET and bulk planar advanced technology nodes are expected to exhibit similar

radiation-induced transients due to the increased substrate charge collection [El-Ma-

11b]. In addition, the effect of well debiasing on the p-FinFET could also be a

major factor, where the well/substrate junction plays an important role in the charge

collection mechanisms of bulk FinFETs.

Experiments

Test Circuit Description and Experimental Setup

Conventional DFFs at three different advanced technology nodes, but from the

same manufacturer, were designed using inverters and transmission gates as shown

in Figure IV-2. All the analyzed D flip-flops were similar with optimized layout area.

The flip-flop cells were used in a shift register. For 28nm and 20nm test ICs, the shift

register was 8K stages long. For the 16nm test IC, one shift register with a total of

128,000 stages was used.

These flip-flops were irradiated with heavy-ion particles at normal (0◦) incidence

and room temperature in order to investigate the SEU response. The test IC chips
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Figure IV-2: Example of a conventional edge-triggered transmission gate DFF (TG
DFF) implemented in a master-slave configuration. The upset of the TG DFF is due
to the injected SET in the master stage latch.

were operated at the nominal supply voltages (i.e., VDD of 900 mV for the 28nm

bulk planar technology node, 850 mV for the 20nm bulk planar technology node, and

800 mv for the 16nm bulk FinFET technology nodes). Experiments for the 16nm

bulk FinFET circuits were performed at the Lawrence Berkeley National Laboratory

(LBNL) 88′′ Cyclotron using the 16 MeV/u cocktail with seven different ions (N, Ne,

Si, Ar, Cu, Kr, and Xe) and a range of particle LETs of 1 to 49 MeV-cm2/mg, as

shown in Table IV-1 [Lawr-18]. The 20nm and 28nm bulk planar circuits were also

tested at the LBNL 88′′ Cyclotron using the 10 MeV/u cocktail beam with eight

different ions (B, O, Ne, Ar, V, Cu, Kr, and Xe) as indicated in Table IV-2. It is

worth noting that the effect of the ion energy difference on SEU cross sections was

not significant and did not affect the comparison presented in this work.
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Table IV-1: 16 MeV/u Cocktail Components [Lawr-18].

Ion Energy LET Rangefinal

(MeV) (MeV-cm2/mg (µm)
14N+5 234 1 508
20Ne+7 321 2.4 348
29Si+10 452 4.4 274
40Ar+14 642 8 256
63Cu+22 1007 16.5 190
78Kr+27 1226 25 163
124Xe+43 1955 49 147

Table IV-2: 10 MeV/u Cocktail Components [Lawr-18].

Ion Energy LET Rangefinal

(MeV) (MeV-cm2/mg (µm)
11B+3 108 0.89 306
18O+5 184 2.19 226
22Ne+6 216 3.49 175
40Ar+11 400 9.74 130
51V+14 508 14.59 113
65Cu+18 659 21.17 108
84Kr+24 886 30.23 113
124Xe+34 1330 58.78 97
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Measured SEU Cross Section Trends

Experimental heavy-ion data for both 28/20nm bulk planar and 16nm bulk

FinFET flip-flops are reported. In all depicted data plots, error bars were calculated

using the standard error, and are smaller than the data symbols. Heavy-ion

experimental measurements are shown in Figure IV-3. These measurements show

that the SEU cross sections per FF decrease with technology scaling, as expected.

A similar trend of decreasing SEU cross sections with technology scaling has been

reported in [Gasp-13]. The improvement in SEU cross section between 28nm and

20nm was not significant. The 20nm planar DFF exhibited cross section values

approximately 2× lower than those of the 28nm planar DFFs across all LET values

as illustrated in Figure IV-3.

Figure IV-3: Experimental SEU response trend of 16nm bulk FinFET, 20nm bulk
planar, and 28nm bulk planar DFFs. Error bars are smaller than the data points,
except for the error bar of the FinFET SEU cross section at the lowest LET particle.
The inset figure is an example of the circuit schematic for the standard transmission
gate DFF (TG DFF). The ′φ′ parameter is the clock signal and the ′φb

′ is the inverted
clock signal [Nara-15].

44



The improvement between the 20nm planar technology node and the 16nm

FinFET node was more pronounced, especially for low LET particles. For particles

with very low LET, around 1 MeV-cm2/mg, the improvement in SEU cross section is

orders of magnitude better for 16nm FinFET node over 20nm planar node, while only

2× SEU improvement is observed between 28nm planar and 20nm planar technology

nodes. The observed improvement of the 16nm bulk FinFET over planar technologies

can be explained by the highly scaled feature sizes of the 16nm FinFET technology

node. Only direct hits to the drain node by low LET particles can cause an upset

in 16nm FinFET technology node. These results clearly demonstrate the superior

performance of FinFET technology node for low-LET particles. For the terrestrial

environment where low-LET particles dominate the soft error rates (SER), such an

improvement will significantly lower the overall SE error rates for FinFET circuits.

However, for the particles with high LET values, above 20 MeV-cm2/mg, the

advantage of FinFET technology disappears. Between 28nm planar node and 20nm

planar node, the difference in cross section for high LET particles is not significant.

Unexpectedly, the same is seen between the 20nm planar node and 16nm FinFET

technology node.

These results clearly demonstrate the advantage of fin structure against charge

collection after an ion hit. The thin drain region and the narrow connection to the

substrate reduce the total volume that is sensitive to an ion hit as shown in Figure

IV-4. For low LET particles, only those particles that directly hit a drain region

can cause an upset. The probability of a direct hit on a drain region is much lower

for FinFET than that for a planar transistor drain region, resulting in significant

reduction in cross section for low LET particles.
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For high LET particles, there is significant charge collection from the bulk/sub-

strate region [Tam-15]. As a result, the heavy-ion cross section of the 16nm DFF for a

high LET particle is very similar to those for 20nm and 28nm DFFs. This observation

is important for the potential application of FinFET technologies in space deployment.

3D TCAD Simulations

3D TCAD SE simulations were performed for all three analyzed technologies. In

all TCAD analyses, Synopsys Sentaurus tools [Syno-12] were used in the modeling

and simulations of SEE. The dimensions and transistor feature sizes of the simulated

devices were informed based on data from commercial process design kits (PDKs),

the International Technology Roadmap for Semiconductors (ITRS) [ITRS-15], and the

Predictive Technology Model (PTM) from Arizona State University (ASU) [Ariz-18].

The ASU PTM provides predictive model files for future transistor and interconnect

technologies that are compatible with industry standard circuit simulator, such as

SPICE, and are scalable with a wide range of process variations.

3D TCAD simulations of the struck inverter (shown Figure IV-5 and Figure IV-6)

were used to explore charge collection mechanisms and SET pulse widths. Although

the entire DFF was not simulated due to the unavailability of the 16nm bulk FinFET

PDK, 3D TCAD devices developed for this study are capable of yielding accurate

results for predictive analysis. The simulated inverter shown in Figure IV-5 and

Figure IV-6 constitutes the basic building block of the tested TG DFF circuit and is

part of the sensitive feedback loop of the same flip-flop as shown in Figure IV-2.

The simulated 16nm bulk n-FinFET and p-FinFET devices had an effective

channel length LG of 16nm as depicted in Figure IV-6. Moreover, both 16nm bulk
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Figure IV-4: Example of layout structure used to demonstrate the geometric
dependence of radiation-induced response of these advanced technology nodes. Note
that the layout is not drawn to scale. (a) 28nm bulk planar NMOS; (b) 20nm bulk
planar NMOS; (c) 16nm bulk FinFET NMOS. The n-FinFET and p-FinFET devices
each consisted of two fins and one single gate finger per device (NFIN = 2 and NF=1).
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n-FinFET and p-FinFET devices each consisted of two fins and one single gate finger

per device (NFIN = 2 and NF = 1). The equivalent gate oxide thickness of 1.0 nm

and a high-k dielectric material with a gate work function ΦG of 4.7 V were used in

all 16nm bulk FinFET simulations.

Impact ionization, concentration dependent Schockley-Read-Hall (SRH) and

Auger recombination models, field and concentration dependent mobility models

were utilized in all simulations. Electrical parameters such as drain current-gate

voltage (ID-VG) drain current and drain-source voltage (ID-VDS), and threshold

voltage (VT) for the 20/28nm bulk planar transistors were calibrated against I-V

data from commercial PDKs. The I-V curves for the 16nm bulk FinFET transistors

were calibrated against the ASU PTM 16nm bulk FinFET model curves because the

PDK I-V data were not available. Simulated I-V curves for all three technologies were

in good agreement with the PDK and ASU PTM I-V curves. In addition, 3D TCAD

calibrated I-V curves supported the applicability of the chosen models and structural

approximations.

Photo-generation was used to model the effect of a heavy-ion strike. Carriers

were distributed according to a Gaussian function with the characteristic radius of

10 nm. Heavy ions with different track radii (large or small track radius) exist in

space environments. These ions can also impinge upon the sensitive region of a

nanoscale electronic circuit and cause different soft error responses for a FinFET

circuit depending on whether the radiation-induced charge is collected by one fin or

more fins. The effect of ion track radius on charge deposition, charge collection, and

the resulting single event (SE) response has been substantially studied in [Duss-

93, Benn-12, Hoot-13, Rain-14, Arto-15] and presented in an earlier chapter of
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this dissertation (i.e., Chapter III). The choice of the track radius has become

an important step in the modeling process of single event hits in current nanoscale

technologies because the radial energy deposition distribution is of the same order as

the size of the struck device [Rain-14, Arto-15].

Moreover, photo-carrier generation was modeled only in the drain region of a p-

type or n-type Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). For

all simulated heavy-ion strikes presented in this Chapter IV, only normal incidence

strikes were carried out and the hit transistor was in the OFF-state condition as this

is the single-event sensitive state of the device.

Figure IV-5 shows an example of a 3D TCAD simulated 20nm bulk planar inverter

used in this study. The 3D TCAD simulation approach for the 28nm bulk planar

technology node is analogous to that of the 20nm bulk planar inverter. Similarly,

Figure IV-6 depicts a 3D TCAD model for the simulated 16nm two-fin bulk FinFET

inverter used in this chapter. In all reported inverter simulations, both the n-channel

and p-channel transistors were full 3D TCAD transistors.

3D TCAD Simulation Results

To investigate charge collection mechanisms and SET pulse width trends for the

16nm bulk FinFET compared to SETs in 20/28nm bulk planar technologies, 3D

TCAD simulations were conducted and simulation results are discussed in this section.

Figure IV-7 shows 3D TCAD heavy-ion SET pulse widths as a function of LET value

for the 16nm bulk FinFET and 20/28nm planar technology nodes. The 16nm bulk

FinFET resulted in shorter SET pulse widths as opposed to longer SET pulse widths

for the 20/28nm planar technologies when heavy-ion particle LET was varied from 1
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Figure IV-5: Example of 3D TCAD simulated 20nm bulk planar inverter.
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Figure IV-6: Example of 3D TCAD 16nm bulk FinFET 2-fin NMOS/PMOS
transistors wired in 3D TCAD inverter configuration. LG is the effective channel
length of the transistor. Heavy-ion strikes at a normal incidence were carried out on
the drain of the OFF-state n-FinFET transistor.
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MeV-cm2/mg to 60 MeV-cm2/mg.

Figure IV-7: Simulated inverter SET pulse widths versus LET at nominal supply
voltages (i.e., VDD of 900 mV for the 28nm bulk planar technology node, 850 mV
for the 20nm bulk planar technology node, and 800 mv for the 16nm bulk FinFET
technology nodes).

Discussion

Experimental results show orders of magnitude lower cross sections for the 16nm

FinFET DFF than those of planar DFFs at LET < 10 MeV-cm2/mg as shown in

Figure IV-3. The observed SEU improvement of FinFET DFFs over planar flip-

flops is associated with the limited volume of silicon active body-region available for

charge collection in FinFET devices for lightly ionizing particles, as demonstrated

in the layout topology of Figure IV-4. Due to reduced sizes of the 16nm FinFET

technology node, only direct hit to drain node can cause an upset.

52



Simulated SET pulse widths for the 16nm bulk FinFET and 20/28nm bulk

planar technologies increase with LET value for nominal supply voltages of 900

mV as shown Figure IV-7. The 16nm bulk FinFET technology has shorter SET

pulse widths (3 ps – 27 ps) compared to longer SET pulse widths for the 20/28nm

planar technologies which range from 27 ps to 146 ps when the particle LET was

varied from 1 MeV-cm2/mg to 60 MeV-cm2/mg. Such an observation confirms the

improved SET response for the 16nm bulk FinFET, mostly below the threshold LET.

However, FinFET SET improvement vanishes for LET ≥ 10 MeV-cm2/mg because

the enhanced substrate charge collection at high-LET values.

Conclusions

This chapter presents a comparison of SEU response trends among 16nm bulk

FinFET, 20nm bulk planar, and 28nm bulk planar D flip-flops. Results show that

SEU cross sections do not reduce significantly with scaling for high-LET values. SEU

cross sections for the 16nm bulk FinFET flip-flops at a particle LET ≥ 10 MeV-

cm2/mg show only a 2× improvement compared to 20/28nm planar technologies. The

relatively small difference between FinFET SEU cross sections and those of planar

technology nodes for high LET values presents a radiation-induced SEE concern for

bulk FinFET circuits used in space and defense digital systems. In light of these

observations, it is recommended that radiation-hardening techniques be taken into

consideration for bulk FinFET-based circuits used in space and defense applications.

However, experimental data show orders of magnitude lower cross sections for the

16nm bulk FinFET D flip-flops than those of bulk planar D flip-flops at LET < 10
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MeV-cm2/mg. For example, the SEU cross section for the 16nm bulk FinFET D flip-

flops is two orders of magnitude lower than that of 20nm bulk planar D flip-flops at

a particle LET of 1 MeV-cm2/mg. 3D TCAD simulations of the 16nm bulk FinFET

inverter also showed shorter SET pulse widths and lower collected charge compared

to SETs of 20/28nm planar inverters for LET below 10 MeV-cm2/mg. The observed

single-event improvement for low-LET particles is related to the threshold LET and

the relatively smaller hit drain area for the 16nm bulk FinFET technology node.

This observation is important for designers of modern electronic circuits intended to

perform in terrestrial environment where low LET particles dominate the single-event

error rates. Such an improvement will significantly lower the overall single-event error

rates for bulk FinFET designs.

Moreover, the insights of this work suggest that circuits exhibiting a low-LET

threshold (i.e., bulk FinFET circuits) are possibly sensitive to direct ionization

from singly-charged particles such as muons and protons. Recent studies of muon-

induced effects in bulk FinFET SRAM memory cells [Seif-15a, Infa-17] show that

the introduction of 3D tri-gate transistors reduced the susceptibility to muons by

approximately two orders of magnitude relative to the SEU cross section response

of a 32nm planar design [Seif-15a]. However, a thorough characterization of the

sensitivity of bulk FinFET logic devices (e.g., flip-flops, latches, and register files)

to protons is also recommended because of the abundance of these particles in both

terrestrial and space radiation environments.
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CHAPTER V

ANALYSIS OF BULK FINFET STRUCTURAL EFFECTS ON SINGLE-EVENT

CROSS SECTIONS

Introduction

For a given storage cell design, the area over which critical charge (or more)

is collected at a circuit node is defined as the sensitive area for that node [Mavi-

07, Mass-93, Baum-05a, Baum-05b]. Charge collection processes and the resulting

sensitive area for individual transistors are integral to SEE modeling and predictive

analysis for advanced digital circuits.

A depiction of planar transistor structure versus FinFET structure is shown in

Figure V-1. Measured FF SEU cross-section data comparing similar FF cells at 28nm

bulk planar, 20nm bulk planar, and 16nm bulk FinFET technologies were presented

in Figure IV-3 (i.e., Chapter IV). The supporting simulation analyses in Chapter IV

demonstrated that the trends of the simulated SET pulse widths as function of particle

LET were consistent with the observed measured SE cross section data. However,

the analysis in Chapter IV did not produce a more quantitative agreement with

the measured FF SEU cross section data, and the key question of upset criteria to

bridge transistor-level SE response to circuit-level SE cross-section values remained.

For example, what is the proper integration time of the collected charge? Is the full

width at half maximum (FWHM) SET pulse width the appropriate upset criteria for

advanced (small and fast) digital circuits?
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Figure V-1: Comparison of 3D structures of (a) planar transistor and (b) one-fin
FinFET transistor [Lee-15].

In this work, a set of upset criteria based on the short-time switching charac-

teristics and the drive current capability of advanced transistors is developed and

proven to be very useful for relating transistor-level SE response to circuit-level SE

cross-section values. The sensitive area (or SE cross section) of advanced circuits

as a function of transistor structure is also characterized using the developed upset

criteria. The 3D TCAD simulated results demonstrated and quantified the effect

of the disruptive nature of FinFET structure on the FF SE response. The results

also explain the differences between the measured FF SE cross-sections at FinFET

and planar technology nodes. These results provide valuable insight and advance the

understanding of the SE response of FF cells fabricated using FinFET technologies.

Results presented here also explain in a quantitative manner, why the observed SE

cross sections for FF cells fall off more rapidly for FinFET technology at low particle

LET values than might be predicted by simple geometric scaling. Results also explain

why saturated SE cross sections for the same FF cells show less difference at higher

LET values for all technology nodes (planar and FinFET).
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Background

A comparison of SE cross section trends between 16nm bulk FinFET D flip-

flop (DFF) and 28/20nm bulk planar DFFs [Nsen-16] was provided in Figure IV-

3. The custom-designed ICs for these experiments comprised of 8K stage shift

registers designed using conventional DFFs (16nm bulk FinFET technology node and

28/20nm bulk planar technology nodes). These test ICs were irradiated with heavy

ion particles at normal incidence and room temperature at the Lawrence Berkeley

National Laboratory (LBNL).

Results in Figure IV-3 show orders of magnitude lower cross sections for the

16nm FinFET DFF than those of planar DFFs for low LET particles (LET below

10 MeV-cm2/mg). However, for higher LET values, SEU cross section per FF do

not reduce with scaling (e.g., ∼ 2× lower SE cross section per FF for the 16nm bulk

FinFET DFF compared to bulk planar 20nm and 28nm DFFs at a particle LET of 60

MeV-cm2/mg). These measured results demonstrate the disruptive nature of FinFET

transistor structure on low-LET SE response, which may affect the prediction and

mitigation of the observed radiation failure signatures in advanced circuits.

Effect of Bulk FinFET Structure on Simulated SET Response

Since the announcement that the mainstream semiconductor industry would adopt

FinFET technology as a means to advance transistor scaling (Moore's Law), various

reports on SE response of FinFET transistors have emerged in the literature [El-

Ma-11a, El-Ma-11b, Fang-11, Seif-12, Nsen-16, Lee-15]. The shared observation

among these studies is that semiconductor regions in FinFET technologies collect

significantly less charge than that for conventional planar technologies. TCAD
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simulations are used to indicate that the charge collection for semiconductor regions

in FinFET technologies is approximately reduced by 70% compared to that of planar

technologies [Fang-11]. Others investigated charge collection for FinFET technology

using laser and heavy ion irradiation tests, and demonstrated that the FinFET

sensitive area is mostly dominated by the drain diffusion area [El-Ma-11a, El-Ma-

11b].

It seems clear from these prior works that the reduced FinFET charge collection

efficiency can be explained by the FinFET transistor structure. This work also reveals

that the fin body area is the most sensitive region for SEE and the SE vulnerability

diminishes quickly as the ion particle strike location moves outside the active fin

region. As a result, a thorough analysis of the SE response due to the FinFET

transistor structural effect on charge collection processes is necessary.

Figure V-2 and Figure V-3 show a comparison of the SET response of an inverter

cell for 16nm bulk FinFET and 28nm bulk planar technologies using 3D TCAD

simulations for a normally incident particle. For low-LET particle strike (i.e., LET

of 1 MeV-cm2/mg), the SET response of the bulk FinFET inverter has a very strong

dependence on the ion strike location as shown in Figure V-2 (a). Results show that a

direct ion strike at the fin produces an observable single-event transient while an ion

strike between two fins results in a very small voltage perturbation. Unlike FinFET

technologies, the SE response of planar inverter shows little or no dependence on

strike location for low LET particles. For example, the ion strikes within the drain

region or in the vicinity of the drain region for the 28nm bulk planar MOSFET result

in the same SET response for a particle with LET of 1 MeV-cm2/mg. These effects

are attributable to the enhanced substrate charge collection of planar transistors
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[Fang-11].

For strikes by particles with high-LET values, the FinFET SE response depen-

dence on the strike location diminishes due to the enhanced substrate (diffusion)

charge collection [Fang-11, El-Ma-11a]. Consequently, both direct hit at the fin and

hit between two fins result in the same SET response for particles with high-LET

values (i.e., LET of 60 MeV-cm2/mg), as shown in Figure V-3 (a).

The 28nm planar inverter also shows similar response to strikes by a high-LET

particle for all strike locations, as shown in Figure V-3 (b). These results provide

valuable insight and advance the understanding of SE response for FinFET technology

across a wide range of particle LET values. Results presented here also explain why

the observed SE cross sections of FinFET FF circuits decrease more quickly at low-

LET values than might be predicted by simple geometric scaling. These results also

illustrate why the saturated (or high-LET) SE cross sections of the same FF circuits

are consistent with simple area scaling across planar and FinFET technologies.

Simulation Setup and Analyses

Circuit-level simulations (using Cadence tool suite [Cade-18] and the SEE bias-

dependent model [Kaup-09]) and 3D TCAD simulations (using Synopsys Sentaurus

TCAD tools [Syno-12]) were performed for SE characterization and comparison of

16nm bulk FinFET technology node and 28/20nm bulk planar 28/20nm technology

nodes. The analyzed circuits consist of full 3D TCAD inverter structure and

conventional unhardened DFFs. Device drain current – gate voltage (ID–VG) curves

for both bulk planar transistors and bulk FinFET transistors were calibrated against

the I–V data from commercial PDKs and the Arizona State University Predictive
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Figure V-2: Impact of transistor structure on low-LET 3D TCAD single-event
transient response – (a) 16nm bulk FinFET inverter and (b) 28nm bulk planar
inverter. All these simulations were normal (0◦) incidence strike. The orange spots of
the transistor layout (not drawn to scale) represent the ion-hit location where the top
layout shows the ion hit location # 1 for the planar transistor (or direct ion hit at the
fin for the FinFET transistor) and the bottom layout illustrates the ion hit location
# 2 (or ion hit between two fins). As shown in this figure, the single-event transient
response is the same for both ion strike locations on the bulk planar inverter due to
substrate charge collection (Sub. Qcoll).
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Figure V-3: Impact of transistor structure on high-LET 3D TCAD single-event
transient response (a) 16nm bulk FinFET inverter and (b) 28nm bulk planar inverter.
All these simulations were normal (0◦) incidence strike. The orange spots of the
transistor layout (not drawn to scale) represent the ion-hit location where the top
layout shows the ion hit location # 1 for the planar transistor (or direct ion hit at the
fin for the FinFET transistor) and the bottom layout illustrates the ion hit location
# 2 (or ion hit between two fins). It is worth noting that the high-LET single-event
transient response on both ion strike location is the same for either bulk FinFET
inverter or bulk planar inverter due to enhanced substrate charge collection (Sub.
Qcoll).
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Technology Model (PTM) [Ariz-18], respectively.

Moreover, the transistor width ratio (Wp/Wn) of 1.5 was used to obtain a matched

drive current for both planar PMOS and planar NMOS transistors. For the 16nm

bulk FinFET, the n-channel FinFET (n-FinFET) and p-channel FinFET (p-FinFET)

devices each consisted of two fins and one single gate finger per device (NFIN = 2 and

NF = 1). These n-FinFET and p-FinFET transistors were not drive-matched, but

were designed as minimum size transistors according to the design rules of the 16nm

bulk FinFET technology node. The 3D TCAD heavy ion model used in this work is

similar to the one discussed in [Nsen-16]. In addition, all of the reported simulations

here are for normal incidence and nominal supply voltages (VDD of 800 mV for the

16nm bulk FinFET technology node, 850 mV for the 20 nm bulk planar technology

node, and 900 mV for the 28 nm bulk planar technology node). The parameter

values of the charge track generated by a heavy ion model were a Gaussian charge

distribution with a track radius of 10 nm and a short rise time of 0.5 ps for all 3D

TCAD simulations. It should be noted that the appropriate choice of these spatial and

temporal model parameter values is important because they can significantly affect

the simulated results as discussed in Chapter III of this dissertation and [Nsen-17b].

Single-Event Upset Criteria

One of the fundamental logic building blocks in typical memory circuits (for

example, the TG DFF shown in Figure IV-2) is a CMOS inverter structure. The

switching behavior and the drive current capability of this basic logic gate (inverter)

play an important role in the SE response of digital memory circuits. Figure V-4

shows an example of the CMOS inverter voltage transfer characteristics (VTC) curve
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for the 16nm bulk FinFET technology node. The VTC curve indicates the inverter

critical voltages, such as the input low voltage, VIL and the input high voltage, VIH.

The VIL voltage of an inverter is the maximum input value that generates a valid

high output voltage while the VIH voltage is the minimum input value that generates

a valid low output voltage. VIL and VIH voltages were estimated on the inverter

VTC curve where the slope of the inverter VTC curve is -1, as shown in Figure V-

4. These critical voltages were also verified using appropriate technology parameter

values (i.e., transistor transconductance value) by solving analytical expressions, as

stated in most digital circuit design texts [Uyem-02].

The voltage difference between VIH and VIL constitutes the transition width of

the CMOS inverter. An important parameter is the switching time (denoted here as

'ts
′ of the CMOS inverter. The ts value is essentially the time difference of VIH and

VIL (i.e., ts = ∆Time (VIH, VIL)) in response to a step input. Figure V-5 shows an

example of the inverter waveforms with annotations of VIL, VIH, and ts values for the

16nm bulk FinFET inverter. The ts values for 20nm bulk planar inverter and 28nm

bulk planar inverter were extracted using SPICE simulation curves that are similar

to Figure V-5. In addition, Table V-1 shows the ts values for all three analyzed

technology nodes (i.e., 1 ps for the 16nm bulk FinFET node, 1.5 ps for the 20nm

bulk planar technology node, and 2 ps for the 28nm bulk planar technology node).

These results demonstrate that modern digital circuits are relatively very fast (where

the characteristic switching time, ts, is on the order of 1–2 ps) and their response

times are becoming comparable to the SE-induced charge deposition and collection

times [Nsen-17b]. The important impact of this temporal characteristic on simulated

SE results was discussed in Chapter III of this dissertation.
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With the understanding of switching behavior and drive current capability of

advanced circuits, the upset criteria for bridging transistor-level SE response to

circuit-level SE upset cross section values for advanced digital circuits were developed.

An upset in a storage cell is assumed to have occurred if (1) the SET-induced current

at the struck node exceeds the ON-PMOS resupply current (source/sink current)

in order to cause an observable soft error and (2) the output voltage of the struck

transistor must go lower (or higher) than the VIL (or VIH) voltage for the duration

of 2ts (where 2ts = 2 ps for the 16nm bulk FinFET, 3 ps for the 20nm bulk planar

and 4 ps for the 28nm bulk planar technology nodes). The first criterion is necessary

because the restoring transistor sources the current in an attempt to balance the ion-

induced current [Dodd-03]. The net result from these two competing current sources

will determine the voltage perturbation characteristics at the struck node. If the

hit current is lower than the restoring current, the voltage perturbation will be very

small and may not meet the second condition. Due to the active feedback loop in the

cross-coupled inverter pair (as shown in Figure III-2 circuit schematic), the temporal

window of 2ts is a necessary condition for a SET pulse to propagate through without

attenuation and be latched by the memory circuit.

Table V-1: CMOS inverter switching time for advanced technologies (without
accounting for the effect of full parasitic-extracted capacitances)

Technology node ts (ps)

16nm bulk FinFET 1.0

20nm bulk FinFET 1.5

28nm bulk FinFET 2.0

It is important to note that the ts values also depend on parasitic elements

64



Figure V-4: DC Analysis – 16nm bulk FinFET Inverter Voltage Transfer Charac-
teristics (VTC). The VIL of 0.35 V is the input low voltage (maximum input value
that generates a valid high output voltage) while the VIH of 0.43 V is the input high
voltage (minimum input value that generates a valid low output voltage).

Figure V-5: An example of CMOS inverter input voltage (X) and output voltage (Y)
waveforms showing VIL and VIL levels for the 16nm bulk FinFET technology.
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(e.g., parasitic capacitances and parasitic resistances) of the analyzed circuits.

The feedback-loop delays in bulk FinFET flip-flops are significantly impacted by

the inherent parasitic capacitances such as back-end-of-line (BEOL) interconnect

capacitances [Ball-18]. Due to limited access to the 14/16nm bulk FinFET PDKs,

full parasitic-extracted capacitances were not available when the ts values used in this

work were estimated. However, recent collaborative studies using improved/revised

PDK versions of the 14/16nm bulk FinFET technologies account for the effect of

full parasitic-extracted capacitances on the ts parameter and detailed discussions of

these studies are presented in [Ball-18, Harr-18]. Nonetheless, the SET/SEU analysis

methods developed in this work are important for the understanding of the FinFET

structure impact on the SEU response of these advanced (fast and small) circuits,

especially when considering SEU mitigation schemes (e.g., RHBD techniques such as

SET/SEU filter designs) for bulk FinFET technologies.

Simulation Results

Simulated Inverter SE Cross Section

3D TCAD simulations and the upset criteria are used to determine the SE cross

section per inverter (bulk FinFET and bulk planar inverters). The SE cross section

per inverter was determined through X-Y single-event strike scan of the 3D TCAD

simulated inverter structure. Figure V-6 shows the simulated inverter SE cross section

as a function of particle LET value. For these results, the particle LET ranged from

as low as 1 MeV-cm2/mg to 60 MeV-cm2/mg. As expected, the SE cross section per

inverter increases with particle LET value and it is larger for planar technologies than
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FinFET technology, as shown in Figure V-6.

Figure V-6: Simulated SE cross section as a function of particle LET for the bulk
FinFET inverter and bulk planar inverters. The SE cross section was determined
through X-Y single-event strikes scan of the 3D TCAD inverter structure and based
on the upset criteria.

Simulated Inverter SET Pulse Widths

A very interesting consideration for advanced digital circuits is the SET pulse

width evaluated in terms of ts. Figure V-7 shows the SET pulse width (in units of ts)

as a function of the SE strike location distance to the drain center for a particle LET of

1 MeV-cm2/mg. For low-LET particles (i.e., LET of 1 MeV-cm2/mg in Figure V-7),

the SET pulse width decreases much more quickly over distance from the drain center

for the 16nm bulk FinFET technology node than 20/28nm bulk planar technology

nodes. For example, the SET pulse width (in terms of ts) for the 16nm bulk FinFET

inverter falls below the 2ts value (black dotted line) around 35 nm compared to 200

nm for 20/28nm bulk planar inverters. These results clearly show that for a particle
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strike at a distance of 100 nm from the drain center may result in an upset for a DFF

at 20/28nm planar technology nodes, but will not result in an upset at the 16nm

FinFET technology node.

Figure V-7: FinFET inverter SET pulse width (in units of ts) as function of single-
event strike location for a particle LET of 1 MeV-cm2/mg. The simulations presented
here were normal incidence and the orange spots of the transistor layout (not drawn
to scale) represent the ion-hit location. For these simulation results, the single-event
hit location of '0 nm′ refers to the center of the drain region for the OFF-state struck
transistor. As shown in this figure, the low-LET SET pulse width (in units of ts) of
the bulk FinFET inverter falls below the 2ts value (2 ps as shown by the black dotted
line) more rapidly than that of the bulk planar inverters. Unlike planar inverters,
FinFET SET region of influence is limited to the fin region at low LET values.

These simulation results can also be used to extract, on a first-order approxima-

tion, the SE sensitive area of the analyzed inverter structures at low particle LET

values. As indicated by the crossover point between the SET pulse width (ts) and

the 2ts value dotted line, it can be noted that the estimated SE sensitive area for the

16nm bulk FinFET technology node is relatively very small (the FinFET sensitive

area is on the order of ∼ 35 nm × 35 nm) compared to that of 20/28nm bulk planar
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technology nodes (which is on the order of ∼ 200 nm × 200 nm) for a particle LET

of 1 MeV-cm2/mg.

For high-LET particles, however, both planar and FinFET technologies exhibit

the same SE spatial sensitivity. For example, both planar and FinFET SET pulse

widths (ts) approach their respective 2ts values approximately at the same hit location

distance from the drain center (where a value of ∼ 240 nm is the estimated

intersection point of the SET pulse width curve and the 2ts dotted line), as shown

in Figure V-8. These high-LET simulation results show that the extracted inverter

SE sensitive area is on the order of ∼ 200 nm × 200 nm for all these advanced

technology nodes. The SE response behavior of planar and FinFET circuits at high

LET values is attributed to the increased charge collection (Qcoll) from the substrate.

The results shown here demonstrate why the observed SE cross sections for low-LET

particles for FinFET technology fall off more rapidly than might be predicted by

simple geometric scaling and why high-LET (saturated) FinFET single-event cross

sections are consistent with simple geometric area scaling (Moore's Law).

Calculated and Measured SE Cross Sections

The upset criteria and simulation results are used to relate transistor-level

SE response to circuit-level SEU cross section values. A comparative analysis of

calculated and measured SE cross sections per flip-flop for both FinFET and planar

technologies is also provided. For all of these simulations, the particle LET was

changed from as low as 1 MeV-cm2/mg to 60 MeV-cm2/mg and normal incidence

particle strikes were performed. The SE hit location was incrementally moved from

the center of the drain region ('0 nm′ location) to outside of the drain region of the
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Figure V-8: FinFET inverter SET pulse width (in units of ts) as function of single-
event strike location for a particle LET of 60 MeV-cm2/mg. The simulations presented
here were normal incidence and the orange spots of the transistor layout (not drawn
to scale) represent the ion-hit location. For these simulation results, the single-event
hit location of '0 nm′ refers to the center of the drain region for the OFF-state struck
transistor. As shown in this figure, the high-LET SET pulse width (in units of ts)
of the bulk FinFET inverter crosses the 2ts (2 ps as shown by the black dotted line)
approximately the same way as the SET pulse width (in units of ts) of the bulk planar
inverters. These results show that high-LET SET region of influence is larger than
the drawn active region for both FinFET and planar technologies.
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OFF-state struck transistor until the SET-induced pulse width (in units of ts) and

the ion hit current value were reduced below the threshold values predefined by the

upset criteria (i.e., the 2ts value and the restoring transistor drive current).

In order to compare 3D TCAD simulation results and experimental data (i.e.,

SE cross section values per FF), the calculated SE cross section of the analyzed FF

circuits are estimated using the inverter sensitive area and the technology area-scaling

factor. Typically, the logic circuit area-scaling factor has been ∼ 0.53 per generation

[Bohr-18]. However, due to the constraints imposed by BEOL scaling (for example,

the metal interconnect scaling of ∼ 0.7 per technology), and the size of I/O pads,

which typically do not scale [Bohr-18, Hoen-15], an area-scaling factor of ∼ 0.49 per

technology node (that is, the area-scaling factor of 0.7 × 0.7 = 0.49 per technology

node) is used in this work. Figure V-9 shows the calculated SE cross sections and

measured SE cross sections for conventional unhardened D flip-flops. The calculated

SE cross section per FF was normalized to the drawn drain area of the minimum size

NMOS transistor. Calculated SE cross sections in Figure V-9 (a) show trends that are

consistent with experimental data in Figure V-9 (b). As a result, the upset criteria

and simulation approaches used here can be helpful to designers and single-event

researchers for the prediction and analysis of SEU cross sections of both advanced

planar and FinFET memory circuits used in space or terrestrial electronics systems.

These SE cross section results also indicate potential charge collection from the

neck region (i.e., sub-fin region) of the FinFET, and even some reduced charge

collection from the silicon substrate region at particle LET between 2.4 MeV-

cm2/mg and LET of 10 MeV-cm2/mg. This charge collection response mechanism

differentiates bulk and SOI FinFET technologies [Ball-10, Roch-13, Ball-18].
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Figure V-9: A comparison of (a) calculated flip-flop SE cross sections and (b)
experimental SE cross sections for advanced planar and FinFET D flip-flops [Nsen-
16]. The calculated SE cross section was computed using the simulated SE cross
section per inverter (normalized to the drawn drain area of the minimum size NMOS
transistor) and the technology logic area scaling of 0.49 per technology. As shown
in this figure, low-LET FinFET SE cross section shows a divergence from simple
geometric scaling (Moore's Law) predictions indicated by the black solid curve.

Finally, one can directly observe the disruptive nature of FinFET structure on SE

sensitivity for low particle LET values (LET below 10 MeV-cm2/mg). A reduced SE

response is observed for the FinFET structure that outpaces raw geometric charge

collection area scaling; this disruptive response may impact radiation failure modes

in many small-volume, 1D layout, and multi-fin FinFET ASIC designs. For example,

experimental SEU data of Figure V-9 (b) show a FinFET SEU cross section smaller

than the actual fin body area (fin body area of ∼ 2.56 × 10−12 cm2) for the lowest

particle LET of 1 MeV-cm2/mg. This implies that, for low-energy ionizing radiation

particles impinging upon the FinFET region, the sensitive region is smaller than

might be expected based on the transistor geometry alone or strict planar scaling

assumptions.
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Conclusions

Upset criteria based on the intrinsic switching behavior of inverter circuits have

been developed in this work. Using these upset criteria and simulated inverter SE

cross section results, experimentally observed trends for SEU cross sections have been

explained and quantified for FF designs fabricated at advanced technology nodes.

This work also quantified the manifestation of the disruptive nature of FinFET

transistor structure on SE sensitivity for low LET values (LET below 10 MeV-

cm2/mg).

In this work, 3D TCAD simulations show a significant reduction of low-LET

FinFET inverter SE cross section (i.e., the inverter SE cross section is on the order of

∼ 35 nm × 35 nm) relative to the SE cross section of a comparable planar inverter

(i.e., the inverter SE cross section is on the order of ∼ 200 nm × 200 nm); explaining

observed experimental data in 16nm FinFET DFF testing. Further, for higher LET

values, the simulated results in this work also explain a lack of reduction of SEU

cross sections with scaling (e.g., ∼ 2× lower SE cross section per FF for the 16nm

bulk FinFET technology compared to bulk planar 20nm and 28nm technologies at a

particle LET of 60 MeV-cm2/mg).

The understanding of the mechanisms leading to a precipitous fall-off of observed

SEU cross-sections for bulk FinFET geometries at low particle LET from that

predicted by simple Moore's Law geometric scaling is particularly important for

accurate prediction of error rates, since circuit error rates are often governed by the

distribution of low LET particles that dominate the space environment. Furthermore,

the upset criteria and analysis methods developed in this work can provide IC

designers with new insights to quickly assess the sensitivity of bulk FinFET circuits
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to radiation-induced effects and ultimately design better radiation-hardened circuits.
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CHAPTER VI

ANGULAR EFFECTS ON SINGLE-EVENT MECHANISMS IN BULK FINFETS

Introduction

The discrete structure of FinFETs introduces unique geometric and orientation

dependences for angular single-event mechanisms and single-event upset responses of

FinFET circuits. While SEE-induced failure mechanisms (including both normal

incidence and angular effects) in planar technologies are well understood [Reed-

02, Buch-04, Schw-06, Amus-07, Baze-08, Tipt-08a, Tipt-08b, Amus-09, Nsen-16,

Nsen-17a, Zhan-17], the structure of FinFETs introduces unique geometric and

orientation dependences for angular SE mechanisms and SE responses of FinFET

circuits. Previous work on 14/16nm bulk FinFET designs has shown that the SE

response of bulk FinFET circuits at normal (0◦) incidence strongly depends on the

FinFET structure [Seif-12, Nsen-16, Nsen-17a, Zhan-17]. A detailed discussion of the

impact of FinFET structure on normal incidence SE response of 14/16 bulk FinFETs

is also provided in Chapter V. In addition, Zhang et al. explored the effect of low-tilt-

angle heavy ion incidences on 16nm bulk FinFET D flip-flops (DFFs) [Zhan-17]. The

supporting analysis of [Zhan-17] indicates that angular single-event upset (SEU) cross

section as a function of incident tilt angle (for particle incidences parallel to the fins)

for the 16nm bulk FinFET DFFs follows a similar trend as that of planar technologies.

This SEU response behavior for angled incidences parallel to the fins is attributed

to the increased SE charge chord length in the active Si region as the ion tilt angle

increases [Zhan-17]. However, the understanding and quantification of angular effects
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at low- and high-angle particle incidences perpendicular to the fins on single-event

mechanisms in bulk FinFET technologies have not yet been developed. Low- and

high-angle SE analyses are of utmost importance for these small-volume geometry

technologies (FinFETs) in order to – (1) account for the effect of the omnidirectional

radiation space environment, (2) provide the basis for worst-case test conditions, and

(3) accurately predict SE error rates (SER) of bulk FinFET circuits used in terrestrial,

defense, and space applications.

In this work, SE mechanisms due to angular ion strikes are investigated using a

geometric analysis, 3D TCAD simulations, and recent angular FF SEU cross section

measurements at various test conditions (e.g., tilt/roll angles and supply voltage,

VDD). Angular FF SEU experiments at various supply voltages (i.e., from the nominal

supply voltage of 800 mV down to 400 mV) were conducted in order to investigate

any bias dependence effect on the angular SE response of bulk FinFETs. Angular

FF SEU data at various VDD values are shown in a later section. The SEU cross

section per FF increases with decreasing supply voltage for each tested tilt angle.

This increase in SEU cross section per FF is attributed to an increase in SET pulse

width at a reduced supply voltage, as discussed in [Nsen-16, Gadl-07, Maha-13]. In

addition, due to reduced critical charge (Qcrit), the angular FF SEU cross section

dependence on tilt angle diminishes at operating voltages lower than 500 mV (for

example, VDD = 400 mV) [Maha-13].

Figure VI-1 (a) shows tilt/roll angle orientation with respect to a strike on a 2-fin

bulk FinFET and Figure VI-1(b) shows the measured angle-dependent SEU cross

sections of an unhardened DFF fabricated in a 14/16nm bulk FinFET technology.

For a roll angle incidence of 90◦, the ion tilt direction is parallel to the fins, while
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a roll angle of 0◦ provides an ion tilt direction that is perpendicular to the fins, as

indicated in Figure VI-1(a). The 90◦ roll upset cross section, as a function of tilt

angle, agrees with the supporting analysis provided in [Zhan-17]. The 90◦ roll upset

response behaves like that of planar technologies, where the 90◦ roll cross section

increases with tilt angle due to increased charge chord length in the active silicon

regions.

However, the upset data at a roll angle of 0◦, as shown by the experimentally

observed SEU cross section response in Figure VI-1 (b), clearly shows that there are

different geometrical SE mechanisms at play. This work elucidates these geometric

effects on angular SE mechanisms in bulk FinFET circuits. The geometric effects dis-

cussed in this work are attributed to distinctive structural characteristics of the bulk

FinFET device that can lead to angular dependence in charge deposition/collection

processes and the resulting SEU cross-section responses.

It is also worth noting that this SE angular behavior parallels earlier observations

in bulk silicon germanium (SiGe) heterojunction bipolar transistors (HBTs) [Mars-

00]. While the technology and mechanisms differ, Marshall et al.'s investigations of

bulk SiGe HBTs also show the same type of SE angular asymmetry [Mars-00, Mars-

05]. This observation of the angular SE response is important because of its impact

on error rates [Pete-93, Conn-95, Mars-00, Mars-05].

Angular SE Mechanisms in Bulk FinFETs

A geometric analysis of angular SE mechanisms has been developed and is

demonstrated using a 2-fin bulk FinFET structure. While a 2-fin bulk FinFET

structure, shown in Figure VI-1 (a), is used to illustrate the underlying angular
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Figure VI-1: (a) Diagram of tilt and roll strikes on a 2-fin bulk FinFET. For a
roll angle incidence of 90◦, the ion tilt direction is parallel to the fins while the ion
tilt direction is perpendicular to the fins for a roll angle of 0◦. (b) Angular upset
measurements on 14/16nm bulk FinFET DFFs show SEU cross section as a function
of tilt angle at a 90◦ roll and at 0◦ roll angle. This plot demonstrates the strong
geometrical and orientation effects, due to the structure of bulk FinFET devices,
on SEU cross-section response. This work elucidates and explains the mechanisms
involved in this SEU response.
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mechanisms, extension to a bulk FinFET structure with more than two fins is straight-

forward. In this analysis, the 2-fin bulk FinFET structure is appropriate because the

integrated circuit (IC) designs used to corroborate these angular mechanisms utilize

2-fin FinFET devices. Figure VI-2 (a) depicts a 3D view of the 2-fin bulk FinFET.

A two-dimensional (2D) cut from the top fin surface down to the substrate of the

transistor results in the 2D transistor cross-section view shown in Figure VI-2 (b).

Some of the critical FinFET dimensions required for the geometric analysis are shown

on the 2D cut view in Figure VI-2 (b).

The parameter, Tfin is the top fin width, TS is the bottom fin width (i.e., the

silicon interface of the fin body with the sub-fin bulk structure), respectively. For a

rectangular shaped fin, Tfin ≈ TS. However, if a nonrectangular fin (e.g., a trapezoidal

fin or tri-gate [Seif-12]) is considered, top and bottom fin width dimensions are

unequal and usually, Tfin < TS. The fin height (Hfin), the spacing between the nearest

edges of the two fins (Xf), as well as the spacing between the nearest edges of the

two sub-fin structures (XS) are also shown in Figure VI-2 (b). Reasonable estimates

of these dimensions can be obtained from the Arizona State University predictive

technology model [Ariz-18].

Analysis of 0◦ Roll Angular SE Mechanisms

When an energetic ionizing particle penetrates any semiconductor material, it

liberates an ionizing trail of free electron-hole pairs in the target material. Under

certain conditions (i.e., bias, strike location, angle of incidence, etc.), the extraneous

SE-induced charge can lead to the disturbance of the normal IC operation and cause a

soft error. Whether a particle deposits enough charge to cause an upset is dependent
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Figure VI-2: (a) Example of 3D view and (b) 2D cross section view for a 2-fin bulk
FinFET structure. Tfin is the top fin width and TS is the bottom fin width. Hfin is
the fin height, Xf the spacing between the nearest edges of the two fins, and XS is the
spacing between the nearest edges of the two sub-fin structures.
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on both linear energy transfer (LET) of the particle and its particular path length

(i.e., SE charge chord length) through the sensitive volume [Mass-93]. In this work,

SE-induced deposited charge (or the SE charge chord length) in the active Si regions

of the bulk FinFETs is used to explain and compare SE mechanisms for angular

effects in bulk FinFETs. A geometric analysis utilizing the amount of deposited

charge, Qdep in the fin structure and/or sub-fin structure, as a critical parameter,

elucidates four separate charge deposition mechanisms, as illustrated in Figure VI-3.

The angle θi (with i, being an integer 1 ≤ i ≤ 4) represents the upper-bound angle

or the tilt angle for transitioning from one Qdep region to another. The angles α and

β are intermediate angles used to calculate θi. While the upper-bound angle (θi) is

fairly well defined by the incident particle, the intermediate angles can move quite a

bit depending on the vertical entry location of the incident particle. As a result, only

values of θi are shown in Figure VI-3.

Mechanism (1): 0◦ ≤ θ ≤ θ1 (Fin/sub-fin Qdep)

This is the most straightforward case for angular SE mechanisms in bulk FinFETs

and is characterized by combined charge deposition in both fin structure and sub-fin

structures. The maximum charge deposition in both fin and sub-fin regions occurs

at normal (0◦) incidence, where the particle charge chord length equals the sum of

the fin height and the sub-fin height. Figure VI-3 (a) highlights this mechanism (1).

Additionally, this mechanism corresponds to very low tilt angles of incidence (from 0◦

incidence up to a tilt angle, θ1). The angle θ1 is the upper-bound angle or the tilt angle

at which the deposited charge in the fin and sub-fin regions starts to decrease due

to a reduction in particle chord length inside the active Si. Utilizing the previously
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discussed geometrical parameters, θ1 has been calculated to be approximately 20◦.

Mechanism (1) implies that the angular SEU cross-section response of bulk FinFETs is

the highest at normal incidence and starts to decrease at a tilt angle of approximately

20◦.

Mechanism (2): θ1 ≤ θ ≤ θ2 (Reduced fin/sub-fin Qdep)

The chord length inside the fin structure and the sub-fin structure reduces as the

tilt angle of incidence increases beyond θ1. With a reduction in chord length, Qdep is

also reduced in this region. The upper-bound angle for this mechanism, θ2, is defined

as the angle where the ion passes through the maximum distance in one fin but does

not pass through the second fin. This angle has been calculated to be approximately

50◦, as shown in Figure VI-3 (b). The reduction of Qdep in this mechanism (2)

elucidates the reduction in SEU cross section observed over this tilt angle range, as

seen in Figure VI-1 (b).

Mechanism (3): θ2 ≤ θ ≤ θ3 (2-fin Qdep & further reduced sub-fin Qdep)

Contrary to mechanism (2), the angular range of mechanism (3) is associated

with an increase in Qdep. While the sub-fin Qdep is further reduced, this reduction

is compensated by the charge deposition in the second fin, as shown in Figure VI-3

(c). In this region the SEU cross section shows gradual increase with tilt angle. The

upper-bound angle for this mechanism, θ3, has been calculated to be approximately

65◦.
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Mechanism (4): θ ≥ θ3 (2-fin Qdep, but no sub-fin Qdep)

This mechanism corresponds to a very high tilt angle of incidence, which is

characterized by Qdep in both fins, but the ion path no longer traverses the sub-fin

region. This mechanism is characterized by charge deposition only in the fin structure.

If the deposited charge is greater than the critical charge of the circuit under test, an

upset will occur. However, for ions with a low LET value it is conceivable that the

charge deposited in the fins only is too small to cause an upset.

Figure VI-3: Geometric analyses of charge deposition mechanisms as a function of
tilt angle in 14/16nm bulk FinFETs at a fixed 0◦ roll angle. Four different charge
deposition mechanisms are at play for this 0◦ roll angle – (a) Mechanism (1): Fin/sub-
fin Qdep; (b) Mechanism (2): Reduced fin/sub-fin Qdep. The angle β is an intermediate
angle used to calculate θ2; (c) Mechanism (3): 2-fin Qdep and further reduced sub-fin
Qdep. The angle α is an intermediate angle used to calculate θ3; (d) Mechanism (4):
2-fin Qdep, but no sub-fin Qdep. The angular distributions for these mechanisms are
(a) Mechanism (1): 0◦ ≤ θ ≤ 20◦; (b) Mechanism (2): 20◦ ≤ θ ≤ 50◦; (c) Mechanism
(3): 50◦ ≤ θ ≤ 65◦; and (d) Mechanism (4): θ ≥ 65◦.
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Analysis of 90◦ Roll Angular SE Mechanism

The 90◦ roll angle (i.e., ion trajectory is parallel to the fins for non-normal angles

of incidence) follows a similar charge deposition mechanism as observed in planar

technologies, where the deposited charge increases with tilt angle of incidence. This

implies that the 90◦ roll charge chord length continuously increases with tilt angle

(with the limitation that the tilt angle induced ion path remains within the fin/sub-fin

regions), as shown in Figure VI-4. This 90◦ roll mechanism will result in an increase

in angular upset cross section data for bulk FinFET designs irradiated at a 90◦ roll

angle.

Figure VI-4: (a) 3D view of a bulk FinFET showing the cut line. (b) 2D cross section
view of the bulk FinFET. Charge deposition mechanisms for 90◦ roll angle. The 90◦

roll charge chord length continuously increases with tilt angle.
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Analyses of Angled SEE Using TCAD Simulations

3D TCAD simulations were performed to investigate the impact of the angle of

incidence on the SE response of the D-latch in a 14/16nm bulk FinFET technology.

TCAD models were calibrated to SPICE models for a 14/16nm bulk FinFET

commercially available process, both DC and transient characteristics. The n-FinFET

and p-FinFET TCAD models were both designed as minimum size transistors

according to the design rules for the technology. The TCAD heavy ion model used

in this work follows the methods discussed in [Nsen-16]. The parameter values of the

charge track generated bu a heavy ion model were a Gaussian charge distribution

with a track radius of 10 nm and a short rise time of 0.5 ps. These values are based

on experimentally validated TCAD sensitivity studies and are appropriate for SE

simulations of advanced (small and fast) technologies, as discussed in [Nsen-17b].

Moreover, impact ionization, concentration-dependent Schockley-Read-Hall (SRH)

and Auger recombination models were also used. Additional physical models used

in these TCAD simulations follow the methods and recommendations in [Nsen-16,

Nsen-17a].

The D-latch design was built, in 3D TCAD, using two cross-coupled inverters

to form an active feedback loop of the standard DFF [Ball-18]. Simulations of this

latch were run at 0.65 V for tilt angles of incidence ranging from 0◦ (normal) to 80◦.

The value of the simulated LET was ∼ 1 MeV-cm2/mg. The voltage perturbations

at the two internal nodes of the latch were monitored and the erroneous change in

state at these nodes was determined as a latch upset due to the single-event strike.

Simulation results of this D latch show that upsets occur at each simulated angle

(from normal until a high angle of 80◦), as shown in Figure VI-5. A 2D cross-section
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plot of carrier distribution, after the single event, clearly highlights the effect of a

singly angled ion as it passes through one fin to another fin/neck (sub-fin) region,

depositing charge only in the active silicon region. The geometric analysis described

in this chapter shows good agreement with the results of the TCAD simulations. The

simulated charge chord length (i.e., the SE-induced chord length indicated by the

carrier distribution region other than the blue-colored intrinsic doping concentration

in Figure VI-5) correlates with the Qdep regions predicted by the geometrical analysis

in earlier section of this work. Moreover, TCAD simulations of the D latch circuit

resulted in an upset response at simulated tilt angles (i.e., 0◦, 30◦, and 60◦), except

at a tilt angle of 80◦. For the 80◦ tilt angle, the charge deposited in the fins only is

too small to cause an upset. However, for TCAD simulation analyses, the ion entry

location can be varied vertically in order to explore the minimum Qdep required to

cause an upset at very high tilt angles.

Figure VI-5: Simulated SEU results for angled strikes on a full 3D TCAD 14/16nm
bulk FinFET (2-fin) latch at a fixed 0◦ roll angle and VDD of 0.65 V. The blue-
colored doping concentration of the 2D Qdep profiles corresponds to the intrinsic
doping concentration of the simulated bulk FinFET. As shown in this figure, simulated
angular upset responses correlate with angular SE mechanisms elucidated by the
developed geometric analysis [Nsen-18].
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Experimental Details

Heavy-ion broadbeam measurements of 14/16nm bulk FinFET unhardened D flip-

flops (comprised of 8,000 flip-flops in a shift register design) were performed at room

temperature at the Lawrence Berkeley National Laboratory (LBNL) 88′′ Cyclotron

[Lawr-18]. The 10 MeV/nucleon cocktail was used with eight different ions (B, O,

Si, Ar, V, Cu, Kr, and Xe) and particle LET values ranged from 0.9 MeV-cm2/mg

to 59 MeV-cm2/mg. In order to obtain enough range, the 16 MeV/nucleon cocktail

was also used with eight different ions (N, O, Ne, Si, Cl, Ar, V, Cu, Kr, and Xe) and

particle LET values ranged from 1 MeV-cm2/mg to 49 MeV-cm2/mg. The details of

the 10 MeV/nucleon cocktail and 16 MeV/nucleon cocktail are shown in Table IV-2

and Table IV-1, respectively [Lawr-18]. It is important to note that the effect of the

ion energy difference on SEU cross sections is not significant and does not affect the

comparison presented in this work.

The 14/16nm bulk FinFET Technology Characterization Vehicle (TCV) and

design infrastructure utilized in this work were optimized for efficient SEU testability

over multiple voltage supply levels and high tilt/roll angles of incidence [Kaup-18].

Heavy-ion irradiation was performed at different tilt and roll angles – i.e., tilt angles

from normal (0◦) incidence up to 85◦ and two roll angles (i.e., 0◦ and 90◦), as shown

in Figure VI-1 (a). Moreover, the test chips were also operated at the nominal supply

voltage of 800 mV and at reduced supply voltages down to 400 mV to elucidate any

bias dependence effect on the angular SE response of bulk FinFETs. Figure VI-6

shows the test chip mounted on the printed circuit board (PCB) utilized for the

experimental testing. Board components, such as decoupling capacitors on power

lines, level shifters, and cable connections, were placed in a manner that provided a
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clear beam path at high angles of incidence, corresponding to the clear paths on the

TCV [Kaup-18].

Figure VI-6: The IC test structure used for angular irradiations. (a) The IC test
printed circuit board (PCB) showing no obstructions to beam path, for high tilt angles
of incidence from the top and left edges of the PCB. The Teensy 3.2 microcontroller
board is visible on the right edge of the PCB. (b) A picture of the test chip elevated
on gold spacers with bond wires on only two sides of the die. The DUT was packaged
on gold plate spacers, which placed the DUT above the edge of the package cavity,
providing an unobstructed path on two sides for the ion beam at high tilt angles of
incidence [Kaup-18].

Experimental Results and Discussions

0◦ Roll FF SEU Cross Sections

The analysis of 0◦ roll SEU cross section shows that high-LET (i.e., Cu ion with

LET of 21 MeV-cm2/mg) SEU cross section as a function of incident tilt angle does

not change significantly, as shown in Figure VI-7. This upset cross section behavior at
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high LET values is due to the overwhelming charge deposition in the sensitive volumes

of bulk FinFETs (i.e., fin and sub-fin regions). However, the decreasing upset cross

section from around 60◦ in Figure VI-7 is attributed to coupled mechanisms (3) and

(4), characterized by Qdep in both fins and a reduction in sub-fin Qdep contribution,

as shown in Figs. 3 (c) and (d). The reduction in FF SEU cross section at the

tilt angle of 85◦ is not a function of the mechanisms presented in this chapter. At

around 85◦ the distance through the metallization overlayers is on the order of the

ion's penetration range limiting the number of ions reaching the active silicon, which

results in a reduced cross section measured at the 85◦ tilt angle.

Figure VI-7: High-LET 0◦ roll SEU cross section per FF as a function of tilt angle.
As shown in this figure, the upset cross section as a function of incident tilt angle
does not change significantly from normal incidence up to 80◦. The slight decrease
in upset cross section from around 60◦ is attributed to coupled mechanisms (3) &
(4). At around 85◦, the distance through the metallization overlayers is on the order
of the ions penetration range limiting the number of ions reaching the active silicon,
which results in a reduced SEU cross section measured at the 85◦ tilt angle.
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The low-LET SEU cross sections, as a function of tilt angle and a fixed 0◦ roll

angle for a particle LET of 1 MeV-cm2/mg (i.e., N ion), are shown in Figure VI-

8. In addition to the SEU cross section curve, the geometrical representations and

transition angles from the geometric analysis are provided for reference. The low-LET

SEU cross section, as a function of tilt angle and a fixed 0◦ roll angle, demonstrate the

proposed strong dependence on the FinFET geometry. In Figure VI-8, it is evident

that the upset cross section per FF is the highest at normal incidence and starts to

decrease at around 20◦ due to mechanism (2), which is characterized by a reduction

in fin/sub-fin Qdep.

At around 50◦ tilt angle, the alpha particle SEU cross section starts to increase

again due to mechanism (3), which is characterized by the ion charge chord length

through two fins of the bulk FinFET device and some charge deposition in the sub-

fin/bulk region. No alpha particle upsets were observed at a tilt angle greater than 60◦

because the alpha particle nears its end of range at around 60◦ tilt angle. However, for

heavy ion SEU measurements, the change in SEU cross section for this angular region

(3) is within the error bars. It is worth noting that the plotted error bars in Figure

VI-8 represent 95% Poisson confidence interval of the recorded SEU measurements

[Gehr-86]. The disparity between alpha particle SEU cross section and heavy ion

SEU cross section trends as a function of tilt angle is attributed to poor statistics of

heavy ion SEU measurements as indicated by the long heavy ion error bars in this

angular region (3). Further analysis and additional heavy ion SEU test data with

better statistics are recommended in order to fully understand the SEU cross section

behavior in this angular region (3). Nonetheless, the geometric analysis in Figure VI-

3 (c) and calculated charge chord length values in Figure VI-9 show that the charge
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chord length increases with tilt angle within this angular region (3). For example,

the charge chord length increases by 33% when the tilt angle changes from 50◦ to

65◦, as shown in Figure VI-9. Consequently, 3D TCAD simulated SET results of the

14/16nm bulk FinFET inverter also show a similar 33% increase in SET pulse width

from 50◦ tilt angle to 65◦ tilt angle, as shown in Figure VI-10. Since the 14/16nm

bulk FinFET has raised source/drain areas as shown in Figure VI-1 (a), the increase

in SET pulse width (i.e., increase in charge chord length in the angular region (3)) is

attributed to additional radiation-induced charge in the raised drain silicon volume

of the second bulk FinFET when the incident ion angle varies from 50◦ tilt angle to

65◦ tilt angle. The raised source/drain regions of the 14/16nm bulk FinFETs were

removed for simplicity and clarity of the geometric analysis illustrated in Figure VI-3.

Moreover, upset cross sections at angles above 65◦ decrease and are attributed

to mechanism (4), which is characterized by charge deposition in two fins, but no

charge deposition in the sub-fin region. As shown by Figure VI-8, the geometric

analysis and test data show consistent trends. The strong angular dependence on the

upset mechanisms in bulk FinFET technologies will significantly impact error rate

calculation and prediction.

90◦ Roll FF SEU Cross Sections

Figure VI-11 shows upset cross section as a function of incident tilt angle at a

particle LET of 21 MeV-cm2/mg for a fixed 90◦ roll angle. The high-LET upset cross

section does not change significantly across tilt angles, consistent with the observation

and mechanisms discussed in the fixed 0◦ roll angle case, shown in Figure VI- 7.

However, the low-LET upset cross section (using alpha particles or heavy ions with
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Figure VI-8: Low-LET 0◦ roll SEU cross section per FF as a function of tilt angle
and a fixed 0◦ roll angle at VDD = 0.65 V and a particle LET of 1 MeV-cm2/mg. The
SEU cross section is the highest at normal incidence and starts to decrease at around
20◦ due to mechanism (2). However, at around 50◦, the SEU cross section starts
to increase again due to strike on two fins according to mechanism (3). At around
65◦, the SEU cross section decreases due to mechanism (4), which is characterized by
charge deposition in two fins, but no charge deposition in the sub-fin region.
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Figure VI-9: Normalized charge chord length as a function of tilt angle (with a fixed
0◦ roll angle) for the 14/16nm bulk FinFET in the angular region (3). Calculated
chord lengths in this figure are normalized to the chord length value at 65◦ tilt angle.

an LET of approximately 1 MeV-cm2/mg) at a 90◦ roll angle increases with tilt angle,

as shown in Figure VI-12. The increase in upset cross section is due to an increase

in the distance traversed by the ion, and therefore the deposited charge, when the

particle hits the bulk FinFET at an angle parallel to the fins, as explained in Figure

VI-4. The 90◦ roll angle upset cross section behavior is similar to that of planar

technologies, as discussed in [Zhan-17].
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Figure VI-10: Inverter FWHM SET pulse width as a function of tilt angle and a
fixed 0◦ roll angle for the angular region (3). These SET results were obtained from
3D TCAD simulations of the 14/16nm bulk FinFET inverter for a particle LET of
1 MeV-cm2/mg. For these SET results, VDD was 0.65 V and the ion hit occurred at
the drain of the OFF NMOS transistor of the simulated full 3D inverter structure.
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Figure VI-11: High-LET 90◦ roll SEU cross section per FF as a function of tilt angle.
As shown in this figure, the high-LET SEU cross section does not change significantly
across tilt angles, consistent with the observation and mechanisms discussed in the
fixed 0◦ roll angle case, shown in Figure VI-7.
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Figure VI-12: Low-LET 90◦ roll SEU cross section per FF as a function of tilt angle.
As shown in this figure, low-LET 90◦ roll angle upset cross section increases with tilt
angle due to an increase in charge chord length in the active Si region of the bulk
FinFET.
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Impact of Supply Voltage on Angular SEU Cross Sections

As device dimensions and operating voltage for modern technologies are reduced,

the sensitivity to SE radiation can increase dramatically [Maha-13]. Therefore, it is

important to investigate the effect of supply voltage on the angular effects of FF upset

cross section. Figure VI-13 (a) shows alpha SEU cross section for a fixed 0◦ roll angle

and Figure VI-13 (b) shows alpha SEU cross section for a fixed 90◦ roll angle, over

a range of tilt angles, from 0◦ to 70◦. For both roll angle conditions, four different

supply voltages (i.e., 0.4 V, 0.5 V, 0.65 V, and nominal voltage or 0.8 V) were applied

to examine the impact of supply voltage on the angular response. As shown in Figure

VI-13 (a) and (b), the SEU cross section dependence on tilt angle decreases with

reduced voltage supply due to reduced critical charge, Qcrit [Maha-13]. In addition,

SEU cross section at one tilt angle of incidence increases with reduced supply voltage,

as shown in Figure VI-13. For example, the upset cross section at the lower supply

voltage (i.e., VDD = 0.4 V) shows a SEU cross-section increase of more than one order

of magnitude compared to the upset cross section at the nominal supply voltage of

0.8 V. This increase in SEU cross section per FF is due to an increase in SET pulse

width at a reduced supply voltage [Gadl-07, Maha-13, Nsen-16, Nsen-18].
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Figure VI-13: Impact of bias on angular alpha FF upset cross sections as function of
tilt angle. (a) Effect of bias on 0◦ roll FF SEU cross section. (b) Effect of bias on
90◦ roll FF SEU cross section. As shown in both figures (a) & (b), SEU cross section
dependence on tilt angle decreases with reduced voltage supply due to reduced critical
charge, Qcrit. In addition, SEU cross section at one tilt angle of incidence increases
with reduced supply voltage. This increase in SEU cross section per FF is attributed
to an increase in SET pulse width at a reduced supply voltage [Nsen-16].
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Conclusions

Angular SEU testing of 14/16nm bulk FinFET D-flip-flops exhibits strong geomet-

ric and orientation dependences, with normal incident strikes being the worst case.

Geometric analyses and 3D TCAD simulation results of bulk FinFETs effectively

explain upset mechanisms behind experimentally observed angular upset cross-section

responses, and the difference in response for 0◦ and 90◦ roll angles, for conventional

unhardened DFFs. The results show that angular upset cross section characteristics

can be attributed to different charge deposition regions in the fin and the sub-fin bulk

structures. Insights of this study advance the understanding of the overall angular

upset behavior of bulk FinFETs and accounting for these angular effects is critical

when calculating/predicting error rates of bulk FinFETs circuits.
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CHAPTER VII

CONCLUSIONS AND COMMUNITY IMPACT

The change from planar transistor structure to FinFET structure has introduced

new considerations in terms of radiation-induced charge collection processes and

the resulting single-event response of modern circuits. This work characterized the

impact of bulk CMOS FinFET structure on physical SEU mechanisms and effectively

explained experimentally observed SEU responses of bulk FinFET circuits. 3D TCAD

simulations and experimental data were used to analyze SE failure mechanisms and

soft error modes of advanced bulk planar circuits and bulk FinFET circuits.

The use of 3D TCAD tools for single-event simulation analyses of advanced bulk

CMOS technologies has been re-examined. The dimension of the dense tracks are on

the order of key feature sizes of the active devices (channel lengths and fin widths),

and the time frame is on the order of switching time of advanced digital circuits. This

work demonstrated the sensitivity of simulation results to spatial and temporal model

parameters. Simulated upset thresholds using single-event model parameter values

suitable for 14/16nm bulk FinFETs produced a good agreement with experimental

upset thresholds. For example, a thorough SE sensitivity study case using 3D TCAD

14/16nm bulk FinFET inverter and 14/16nm bulk FinFET D latch circuit showed

that the use of a small ion track radius (i.e., the spatial parameter, R) on the order of

R ≤ 20 nm and a short rise time (i.e., the temporal parameter, T) on the order of T

< 2 ps is crucial to resulted in simulation results that are in agreement with historical

critical charge scaling trends and measured upset LET thresholds. The insights of this
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work will allow RHBD design engineers to quickly assess the single-event sensitivity

of their designs to spatial and temporal model parameters in order to make better

SEE mitigation decisions and accurately calculate error rates.

Moreover, the SEU cross section response of advanced bulk planar technologies

(e.g., 20nm and 28nm technology nodes) and 14/16nm bulk FinFET technologies

have been compared in this work. Simulation analyses and heavy-ion broadbeam

measurements indicate minimal difference in SEU cross sections between 14/16nm

bulk FinFET flip-flops and 20/28nm planar flip-flops for high LET particles. However,

the SEU cross section improvement of bulk FinFET technologies is most evident at

low LET values. Results show that 14/16nm bulk FinFET flip-flops have considerably

lower SEU cross sections than their sub-32nm planar counterparts for particle LET

values less than 10 MeV-cm2/mg. The understanding of this divergence of low-LET

FinFET cross sections from simple geometric scaling predictions is very important for

accurate determination of the contribution of low-LET particles to the overall error

rate of bulk FinFET designs.

A set of upset criteria based on circuit characteristic switching time frame was

also developed and used to bridge transistor-level TCAD simulations to circuit-level

single-event upset cross sections of advanced digital circuits. Interpretation of the

measured and calculated SEU cross section responses of bulk planar circuits and

bulk FinFET circuits using the developed upset criteria quantitatively explained the

observed divergence of low-LET FinFET cross sections from simple geometric scaling

predictions. Comparisons of measured single-event cross sections and computed

single-event cross section responses at normal incidence showed excellent agreement.

Furthermore, angular effects on single-event mechanisms in 14/16nm bulk FinFET
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technologies have been characterized. Geometric analyses and 3D TCAD simulation

results of bulk FinFETs effectively explain upset mechanisms behind experimentally

observed angular upset cross-section responses, and the difference in response for

0◦ and 90◦ roll angles, for conventional unhardened flip-flops. The results show

that angular upset cross section characteristics can be attributed to different charge

deposition regions in the fin and the sub-fin bulk structures. Insights of this study

advance the understanding of the overall angular upset behavior of bulk FinFETs

and accounting for these angular effects is critical when calculating/predicting error

rates of bulk FinFETs circuits.

The following are important contributions provided by this dissertation:

1) New spatial and temporal considerations for analysis of SE mechanisms in bulk

FinFET technologies have been identified. Physically based arguments and sensitivity

study analyses were presented for justification of appropriate model parameter

choices.

2) The SEU responses of advanced bulk planar and bulk FinFET technologies

have been compared. The manifestation of the disruptive nature of FinFET transistor

structure on SE sensitivity for low LET values (LET below 10 MeV-cm2/mg) has also

been quantified.

3) Bulk FinFET structural effects on SE cross sections for normal incident particles

have been investigated and quantified.

4) A set of upset criteria, which bridge transistor-level SE response to circuit-level

upset cross section response has been developed. The upset criteria and 3D TCAD

simulations methods were utilized to explain SE response of bulk FinFET compared

to bulk planar technologies.
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5) Angular dependence (up to 90◦ roll angle and up to 85◦ tilt angle) of SEU re-

sponses of 14/16nm bulk FinFETs have been characterized and analyzed. The unique

geometric and orientation dependence of angular single-event mechanisms/single-

event responses of bulk FinFETs have also been analyzed and quantified.

The research presented in this dissertation directly impacts SEE circuit qual-

ification and analysis techniques for advanced technologies. The findings of this

work can be useful to device/circuit designers and the radiation-induced community

in general, for accurate SE characterization and prediction of bulk FinFET digital

circuits intended to perform in terrestrial and space radiation environments. Insights

of this study are applicable to other advanced technologies characterized by discrete

structural features (e.g., 32nm PDSOI, 22nm FDSOI, 7nm bulk FinFETs, nanowires,

etc.). The understanding of these soft error modes and mechanisms discussed in this

dissertation also enables risk reduction in RHBD design and allows accurate error

rate calculations of terrestrial and defense/pace applications.
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