
Balian-Low Type Results for Gabor Schauder Bases

By

Sara Jane Mota Leshen

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Mathematics

May 10, 2019

Nashville, Tennessee

Approved:

Alexander Powell, Ph.D.

Akram Aldroubi, Ph.D.

Doug Hardin, Ph.D.

Gieri Simonett, Ph.D.

David Smith, Ph.D.



ACKNOWLEDGMENTS

I would first like to thank my advisor, Alex Powell, for his support and guidance

throughout my graduate studies. I am also grateful to my committee members, to my

fellow graduate students, and to the Vanderbilt math department at large for creating such

a wonderful environment in which to study, research, and teach.

I would like to thank my parents, Gail and Joel, and my sister, Elizabeth, for instilling

in me a love of learning, and for loving and supporting me always. And most of all, thank

you to my husband Daniel, whose belief in me has been the best motivation, and without

whom I simply never would have gotten here.

ii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Balian-Low Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Schauder Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Schauder Bases in Relation to Other Spanning Structures . . . . . . . . 7

2.1.2 Density of Gabor Schauder Bases . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Enumerations and Schauder Bases of Type Λ . . . . . . . . . . . . . . 9

2.2 The Zak Transform and Muckenhoupt Weights . . . . . . . . . . . . . . . . . 11

2.3 Other Useful Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Balian-Low Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 History of the Balian-Low Theorem . . . . . . . . . . . . . . . . . . . 17

2.4.2 Balian-Low Type Results . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Proof of Theorem 1.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Window Function with Support on [−1,1] . . . . . . . . . . . . . . . . 20

3.1.2 Window Function with General Compact Support . . . . . . . . . . . . 24

3.2 Proof of Theorem 1.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Version 1 of Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Version 2 of Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2.1 Construction of the Zak Transform as an A2,R(T2) Weight . . . 33

iii



3.2.2.2 Localization of the Window Function . . . . . . . . . . . . . . 38

3.2.2.3 The Counterexamples . . . . . . . . . . . . . . . . . . . . . . 56

4 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iv



LIST OF FIGURES

Figure Page

2.1 A consecutive enumeration σ of R . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Partition of [−1
2 ,

1
2 ]× [0, 1

2 ] into V1∪V2∪V3∪V4 . . . . . . . . . . . . . . . 41

3.2 Partition of [−1
2 ,

1
2 ]× [−1

2 ,
1
2 ] into W1∪W2∪W3 . . . . . . . . . . . . . . . . 46

3.3 Partition of [−1
2 ,

1
2 ]× [−1

2 ,
1
2 ] into T1∪T2∪T3 . . . . . . . . . . . . . . . . . 51

3.4 Partition of [−1
2 ,

1
2 ]× [−1

2 ,
1
2 ] into S1∪S2 . . . . . . . . . . . . . . . . . . . 54

v



Chapter 1

Introduction

In this chapter, we introduce the Balian-Low theorem and our main results. In Section

1.1, we present some of the known versions of the Balian-Low theorem for orthonormal

bases, Riesz bases, and exact systems. In Section 1.2, we state and discuss our main results.

1.1 The Balian-Low Theorem

For x,ω ∈R, we define the translation operator Tx and the modulation operator Mω by

Txg(t) = g(t− x)

and

Mωg(t) = e2πiωtg(t).

Then given a window function g ∈ L2(R) and a,b > 0, gk,n(t) = MnbTkag(t) is called a

time-frequency shift of g, and the associated Gabor system G (g,a,b) is defined by

G (g,a,b) =
{

gk,n(t)
}

k,n∈Z = {MnbTkag(t)}k,n∈Z =
{

e2πinbtg(t− ka)
}

k,n∈Z
. (1.1.1)

Gabor systems are an important tool for providing signal expansions in the setting of time-

frequency analysis. A central problem is to understand how the triple (g,a,b) determines

spanning properties of G (g,a,b). This remains a challenging problem, and, despite a large

literature, there are relatively few window functions g for which the spanning structure of

G (g,a,b) is completely understood for general a,b > 0, e.g., [10, 16].

The Balian-Low theorem is a fundamental obstruction which shows that there are strong
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trade-offs between the spanning structure of a Gabor system and the time-frequency lo-

calization of the window function g. The Balian-Low theorem is a manifestation of the

uncertainty principle which says that if G (g,1,1) is an orthonormal basis for L2(R), then

either g or its Fourier transform ĝ(ξ ) =
∫

g(t)e−2πitξ dt must be poorly localized. Note that

throughout this thesis, we assume unless otherwise specified that we integrate over R.

We consider two examples to illustrate the aforementioned trade-offs before stating the

theorem.

Example 1.1.1. Recall that the Fourier series
{

e2πint}
n∈Z provides an orthonormal basis

for L2([0,1]). Consider the Gabor system G (g,1,1) with the window function g = χ[0,1],

the indicator function of [0,1]. Note gk,n(t) = e2πint χ[0,1](t− k), and thus G (g,1,1) is an

orthonormal basis for L2(R). However, g is poorly localized in frequency since |ĝ(ξ )| =∣∣∣ sin(πξ )
πξ

∣∣∣∼ 1
|ξ | .

Thus we have a Gabor system with strong spanning structure as an orthonormal basis,

but poor frequency localization.

Example 1.1.2. Let g(t) = e−πt2
. Suppose 0 < ab < 1 and consider G (g,a,b). Since

ĝ(ξ ) = e−πξ 2
, g is well-localized in time and frequency. However, g is not an orthonormal

basis for L2(R), and provides only redundant, or non-unique, signal expansions.

Here we have a Gabor system with weak spanning structure as the expansions are re-

dundant, but good time and frequency localization. We elaborate on the structure of this

Gabor system if a = b = 1 in Section 2.1.2.

The classical Balian-Low theorem dates back to [3, 23, 4], but it will be convenient to

consider the following non-symetrically weighted generalization from [14].

Theorem 1.1.3. Suppose that 1 < p,q < ∞ satisfy 1
p +

1
q = 1. If g ∈ L2(R) satisfies

∫
|t|p|g(t)|2dt < ∞ and

∫
|ξ |q|ĝ(ξ )|2dξ < ∞, (1.1.2)
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then G (g,1,1) is not an orthonormal basis for L2(R).

The classical Balian-Low theorem [3, 23, 4] addresses (p,q) = (2,2) in Theorem 1.1.3,

while the endpoint (p,q) = (∞,1) is addressed by the following theorem from [14], cf.

[6]. In particular, the endpoint weight |t|p with p = ∞ is replaced by a compact support

condition.

Theorem 1.1.4. If g ∈ L2(R) is compactly supported and

∫
|ξ ||ĝ(ξ )|2dξ < ∞,

then G (g,1,1) is not an orthonormal basis for L2(R). The same conclusion holds for g and

ĝ interchanged.

We have stated Theorems 1.1.3 and 1.1.4 for orthonormal bases, but both results remain

true for the more general class of Riesz bases [14], and both results are sharp [5]. Moreover,

if one moves to the even more general class of exact systems, then a different version of

the Balian-Low theorem holds. Recall that { fn}∞
n=1 ⊂ L2(R) is minimal if for every N, fN

is not in the L2(R)-closure of span{ fn : n 6= N}. The system { fn}∞
n=1 ⊂ L2(R) is exact if it

is both minimal and complete in L2(R).

The following version of the Balian-Low theorem for exact systems originates in [13]

for (p,q) = (4,4), and was later extended to general (p,q) in [21].

Theorem 1.1.5. Suppose that 3 < q≤ p < ∞ satisfy 1
p +

3
q = 1. If g ∈ L2(R) satisfies

∫
|t|p|g(t)|2dt < ∞ and

∫
|ξ |q|ĝ(ξ )|2dξ < ∞, (1.1.3)

then G (g,1,1) is not an exact system in L2(R). The same conclusion holds for p and q

interchanged.

Analogous to Theorem 1.1.4, the following result from [21] addresses the endpoint

(p,q) = (∞,3) in Theorem 1.1.5.
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Theorem 1.1.6. If g ∈ L2(R) is compactly supported and

∫
|ξ |3|ĝ(ξ )|2dξ < ∞,

then G (g,1,1) is not an exact system in L2(R). The same conclusion holds for g and ĝ

interchanged.

Motivated by a conjecture in [11], the work in [20] investigated the extent to which the

Balian-Low theorem holds for Schauder bases. It was constructively shown in [20] that

several versions of the Balian-Low theorem fail for the class of Schauder bases. In particu-

lar, if 1 < q < 2 < p < ∞ and 1
p +

1
q = 1, then there exists g ∈ L2(R) such that G (g,1,1) is

a Schauder basis for L2(R) and such that (1.1.2) holds. In other words, Theorem 1.1.3 fails

if “orthonormal basis” is replaced by “Schauder basis”. However, the counterexamples

from [20] were only valid for (p,q) 6= (2,2), and it remained open whether similar exam-

ples could address the validity of the classical Balian-Low theorem with (p,q) = (2,2) in

the setting of Schauder bases. Moreover, while [20] showed that certain existing Balian-

Low theorems do not extend to Schauder bases, it was not known if there exist distinct

new Balian-Low theorems that are specific to the class of Schauder bases. The results in

this thesis will resolve these issues by proving a new endpoint Balian-Low theorem for

Schauder bases, and by extending the counterexamples from [20] to (p,q) = (2,2).

1.2 Main Theorems

Our first main result provides a new endpoint Balian-Low theorem for Gabor systems

that form a certain type of Schauder basis.

Theorem 1.2.1. If g ∈ L2(R) is compactly supported and

∫
|ξ |2|ĝ(ξ )|2dξ < ∞,
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then G (g,1,1) is not a Schauder basis of type Λ for L2(R). The same conclusion holds for

g and ĝ interchanged.

See Section 2.1.3 for relevant technical background and the definition of Schauder basis

of type Λ. For now, it suffices to note that Schauder basis expansions can be conditionally

convergent, and hence the ordering of the system is important. Since G (g,1,1) is indexed

by Z2, one must discuss the manner in which Z2 is enumerated. We focus on a class

ΛR(Z2) of enumerations of Z2 introduced by K. Moen in [24]. We say G (g,1,1) is a

Schauder basis of type Λ if G (g,1,1) is a Schauder basis for L2(R) whenever Z2 is ordered

using an enumeration from ΛR(Z2), and with uniformly bounded basis constants.

It is interesting to compare Theorem 1.2.1 with the other endpoint results in Theorems

1.1.4 and 1.1.6. Theorem 1.1.4 uses the weaker weight |ξ | and involves the stronger span-

ning structure of orthonormal bases or Riesz bases. Theorem 1.1.6 uses the stronger weight

|ξ |3 and involves the weaker spanning structure of exact systems. Theorem 1.2.1 uses

the intermediate weight |ξ |2 and involves the intermediate spanning structure of Schauder

bases. In view of this, Theorem 1.2.1 addresses a phenomenon that occurs “between” The-

orems 1.1.4 and 1.1.6. These results illustrate a trade-off between the strength of the weight

and the strength of the spanning structure. Further trade-offs of this type have been shown

for (Cq)-systems in [28] and will be addressed in further detail in Section 2.4.

Theorem 1.2.1 is sharp in the sense that it fails if the weight |ξ |2 is replaced by |ξ |s

with s < 2. In particular, Theorem 6.1 in [20] constructs a compactly supported g ∈ L2(R)

such that G (g,1,1) is a Schauder basis for L2(R) and such that
∫
|ξ |s|ĝ(ξ )|2dξ < ∞ holds

whenever s < 2, and Theorem 4.3 in [24] shows that G (g,1,1) is in fact a Schauder basis

of type Λ.

Our second main result shows that if (p,q) = (2,2), then Theorem 1.1.3 fails when

“orthonormal basis” is replaced by “Schauder basis”. This closes an unresolved case from

[20].

Theorem 1.2.2. For every ε > 0, there exists g ∈ L2(R) such that G (g,1,1) is a Schauder
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basis of type Λ for L2(R) and

∫
|t|3−ε |g(t)|2dt < ∞ and

∫
|ξ |3−ε |ĝ(ξ )|2dξ < ∞. (1.2.1)

Theorem 1.2.2 shows that the weight parameter (p,q) = (2,2) is far from critical for

Gabor Schauder bases, and it is reasonable to ask if (p,q) = (3,3) is sharp.

Unlike the counterexamples for (p,q) 6= (2,2) in Theorem 6.1 in [21], the function g

in Theorem 1.2.2 cannot be compactly supported because of Theorem 1.2.1. In particular,

Theorem 1.2.1 provides a theoretical explanation for why the counterexamples in Theorem

6.1 in [20] were not able to address the case (p,q) = (2,2) for Schauder bases in Theorem

1.1.3. The key point is that the examples in [20] involved compactly supported window

functions.
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Chapter 2

Background

In this chapter, we collect definitions and background which will be used throughout

this thesis. In Section 2.1, we define Schauder bases and other spanning structures, review

their density properties, and introduce a class of enumerations of Z2. In Section 2.2, we

define the Zak transform and A2,R weights, and state results connecting these objects to

Schauder bases. In Section 2.3, we state several miscellaneous results that are used fre-

quently throughout Chapter 3. In Section 2.4, we provide a brief history of the Balian-Low

theorem and review some additional Balian-Low type results that are relevant to our work.

2.1 Schauder Bases

2.1.1 Schauder Bases in Relation to Other Spanning Structures

A sequence { fn}∞
n=1 ⊂ L2(R) is a Schauder basis for L2(R) if for every f ∈ L2(R),

there exist unique scalars cn( f ) such that

f =
∞

∑
n=1

cn( f ) fn, (2.1.1)

with (possibly conditional) convergence in L2(R). It is well-known that cn( f ) = 〈 f ,gn〉 for

the unique {gn}∞

n=1 that is biorthogonal to { fn}∞
n=1. Recall that {gn}∞

n=1 is biorthogonal to

{ fn}∞
n=1 if 〈 fm,gn〉 = δm,n, where δm,n is the Kronecker delta. For our purposes, it will be

useful to consider the following equivalent characterization of Schauder bases, e.g., [18].

Theorem 2.1.1. A sequence { fn}∞
n=1 is a Schauder basis for L2(R) if and only if the fol-

lowing both hold:

• There exists a unique sequence {gn}∞

n=1 ⊂ L2(R) biorthogonal to { fn}∞
n=1, and
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• The partial sum operators SN f = ∑
N
n=1 〈 f ,gn〉 fn are uniformly bounded in operator

norm, i.e., supN‖SN‖< ∞.

For perspective, recall that { fn}∞
n=1 ⊂ L2(R) is a Riesz basis if it is a bounded uncon-

ditional Schauder basis. In other words, for a Riesz basis the expansions (2.1.1) converge

unconditionally and there exist 0 < A≤ B < ∞ such that A≤ ‖ fn‖2 ≤ B for all n. A Riesz

basis can also be defined as the image of an orthonormal basis under an invertible linear

transformation. That is, there is an orthonormal basis {en}∞
n=1 for L2(R) and an invertible

transformation T such that Ten = fn for all n. The class of Schauder bases for L2(R) is

strictly larger than the class of Riesz bases for L2(R).

On the other hand, the class of Schauder bases for L2(R) is strictly smaller than the

class of exact systems in L2(R). It is well-known that { fn}∞
n=1 ⊂ L2(R) is exact if and

only if there is a unique system {gn}∞
n=1 ⊂ L2(R) that is biorthogonal to { fn}∞

n=1, e.g.,

[18]. Unlike a Schauder basis, an exact system does not guarantee signal expansions for

the elements of L2(R).

We also recall the following related structure. A sequence { fn}∞
n=1⊂ L2(R) is a frame if

there exist 0 < A≤ B < ∞ such that A‖ f‖2
2 ≤∑

∞
n=1 |〈 f , fn〉|2 ≤ B‖ f‖2

2 for all f ∈ L2(R). A

frame has an associated operator S, defined by S f = ∑
∞
n=1 〈 f , fn〉 fn, that yields expansions

of the form f = ∑
∞
n=1

〈
f , f̃n

〉
fn, where f̃n = S−1 fn. Note that a Riesz basis can also be

defined as an exact frame.

In the context of the Balian-Low theorem, a non-exact frame represents a total trade-

off in the direction of localization. We can now point out that in Example 1.1.2, we have a

Gabor system which is a non-exact frame. The system provides non-unique representations

but good time-frequency localization.

2.1.2 Density of Gabor Schauder Bases

We now move to the specific setting of Gabor systems that form a Schauder basis for

L2(R). Note that every Schauder basis is exact. It therefore follows from standard Gabor
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density theorems that G (g,a,b) can only be a Schauder basis for L2(R) when ab = 1.

Lemma 2.1.2. Let g ∈ L2(R) and a,b > 0. If G (g,a,b) is exact, then ab = 1.

Proof. Since G (g,a,b) is complete, ab ≤ 1 (see [19] for a history of this result). Since

G (g,a,b) is minimal, it is `2-linearly independent. Thus by [8], G (g, 1
b ,

1
a) is complete and

so 1
ab ≤ 1.

So, Lemma 2.1.2, together with the unitary dilation Da f (t) =
√

a f (at) which maps

G (g,a, 1
a) to G (Dag,1,1), allows us to restrict our attention to Gabor systems G (g,1,1)

with a = b = 1.

We also have the following density result for frames, see [2] and Chapter 7.5 of [15].

Lemma 2.1.3. Let a,b > 0.

1. Let g ∈ L2(R). If G (g,a,b) is a frame, then ab≤ 1.

2. Let g(t) = e−πt2
. Then G (g,a,b) is a frame if and only if ab < 1.

We again return to Example 1.1.2 of a non-exact frame. If we consider the same Gaus-

sian window function but let a = b = 1, the system now has a chance to be exact due to

Lemma 2.1.2. However, the system is actually not minimal. If we remove one element,

we do have an exact system, see [2]. But by Lemma 2.1.3, if a = b = 1, the Gaussian-

windowed system is no longer a frame and so the Gaussian-windowed system with a single

element removed is also not a frame.

2.1.3 Enumerations and Schauder Bases of Type Λ

Schauder basis expansions may converge conditionally and are dependent on ordering.

Since Gabor systems G (g,1,1) are indexed by Z2, Gabor Schauder bases are sensitive to

the manner in which Z2 is enumerated. In other words, a Gabor system G (g,1,1) is a

9



Gabor Schauder basis for L2(R) if for every f ∈ L2(R), there exist unique scalars ck,n( f )

such that

f = ∑
k,n∈Z

ck,n( f )gk,n

with convergence in L2(R) for at least one enumeration of Z2.

Given g ∈ L2(R) and an enumeration σ of Z2, we let {gσ( j)}∞
j=1 denote the corre-

sponding enumeration of G (g,1,1) = {gk,n}k,n∈Z. If G (g,1,1) is exact, then it has a unique

biorthogonal system which is of the form G (h,1,1) for some h ∈ L2(R), e.g., see [13, 20].

So, if {gσ( j)}∞
j=1 is a Schauder basis for L2(R), Theorem 2.1.1 gives that the partial sum

operators

Sσ
N f =

N

∑
j=1
〈 f ,hσ( j)〉gσ( j)

are uniformly bounded in operator norm, i.e., supN ‖Sσ
N‖< ∞.

Let ΛR(Z2) be the special class of enumerations of Z2 that is defined by Definition 3.4

in [24]. Roughly speaking, ΛR(Z2) consists of enumerations of Z2 that are, in some sense,

analogous to the manner in which 0,1,−1,2,−2,3,−3, · · · enumerates Z. The enumera-

tions in ΛR(Z2) are based on building up increasingly large rectangular sub-blocks of Z2

in a controlled manner, with technical restrictions on how elements of Z2 are added along

the edges of a rectangular block to create larger rectangular blocks.

More precisely, we say an enumeration σ is consecutive to a rectangle R⊂ Z2 if σ fills

out each element of the 1-dimensional hyperplanes of R consecutively, while filling out the

hyperplanes in a consecutive manner. We say σ is adapted to R if there exists a sequence

of rectangles in Z2 such that R = R(0) ⊂ R(1) ⊂ R(2) · · · ,
⋃

i R(i) = Z2, and R(i+1)\R(i) is a

rectangle that σ is consecutive to. Then ΛR(Z2) is the set of enumerations that are adapted

to any rectangle in Z2.

Below we illustrate one possible consecutive enumeration σ of the horizontal hyper-

planes of a rectangle R⊂ Z2.
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σ(1) σ(2) σ(3) σ(4) σ(5)

σ(7) σ(6) σ(8) σ(9) σ(10)

σ(19) σ(18) σ(17) σ(16) σ(20)

σ(15) σ(14) σ(11) σ(12) σ(13)

Figure 2.1: A consecutive enumeration σ of R

Definition 2.1.4. Given g ∈ L2(R), we say that G (g,1,1) is a Schauder basis of type Λ

if for every σ ∈ ΛR(Z2), {gσ(k)}∞
k=1 is a Schauder basis for L2(R), and the partial sum

operators Sσ
N satisfy

sup
σ∈ΛR(Z2)

(
sup

N
‖Sσ

N‖
)
< ∞.

The examples in [24, 20] show that the class of Schauder bases of type Λ is strictly

larger than the class of Riesz bases.

2.2 The Zak Transform and Muckenhoupt Weights

The Zak transform is an important tool for characterizing spanning properties of Gabor

systems. Given g ∈ L2(R), its Zak transform Zg is defined by

∀(t,ξ ) ∈ R2, Zg(t,ξ ) = ∑
k∈Z

g(t− k)e2πikξ .

The Zak transform is quasiperiodic, i.e.,

∀(t,ξ ) ∈ R2, Zg(t,ξ +1) = Zg(t,ξ ) and Zg(t +1,ξ ) = e2πiξ Zg(t,ξ ).

Quasiperiodicity implies that |Zg| is Z2-periodic, and that Zg is fully determined by its

values on the cube Q = [0,1)2. The Zak transform is also a unitary operator, mapping

L2(R) to L2(Q), see Theorem 8.2.3 in [15].

The following topological result plays an important role in the proof of the Balian-Low
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theorem. Due to its importance, we include the proof for the reader, also see Lemma 8.4.2

in [15] or Theorem 11.25 in [18].

Lemma 2.2.1. If G : R2→ C is quasiperiodic and continuous then G has a zero.

Proof. We proceed by contradiction, and assume that G(t,ξ ) 6= 0 for all (t,ξ ) ∈ R2.

Since G is continuous and R2 is simply connected, we can apply general topological

lifting principles to show that there exists a continuous function ϕ : R2→ R such that

G(t,ξ ) = |G(t,ξ )|e2πiϕ(t,ξ ), (t,ξ ) ∈ R2. (2.2.1)

By (2.2.1) and since G is quasiperiodic, for k,n ∈ Z and t,ξ ∈ R, we have

G(t + k,ξ +n) = e2πikξ G(t,ξ ) = e2πikξ |G(t,ξ )|e2πiϕ(t,ξ )

and

G(t + k,ξ +n) = |G(t + k,ξ +n)|e2πiϕ(t+k,ξ+n) = |G(t,ξ )|e2πiϕ(t+k,ξ+n).

Thus there exists an integer κ(k,n) such that

ϕ(t + k,ξ +n) = ϕ(t,ξ )+ kξ +κ(k,n).

Then

ϕ(1,1) = ϕ(0,1)+1+κ(1,0)

= ϕ(0,0)+κ(0,1)+1+κ(1,0),
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and

ϕ(1,1) = ϕ(1,0)+κ(0,1),

= ϕ(0,0)+κ(1,0)+κ(0,1).

This gives the contradiction 1 = 0; thus G must have a zero.

The Zak transform maps the translation and modulation operators to multiplication

operators, diagonalizing time-frequency shifts, see Theorem 11.29 in [18]. Let En,k(t,ξ ) =

e2πinte−2πikξ .

Theorem 2.2.2. Let g ∈ L2(R) and k,n ∈ Z. Then for a.e. t,ξ ∈ R,

Z(MnTkg)(t,ξ ) = En,k(t,ξ )Zg(t,ξ )

The next result uses Theorem 2.2.2 to give Zak transform characterizations of spanning

properties of Gabor systems, see Theorem 3.1 in [7].

Theorem 2.2.3. Let g ∈ L2(R).

1. G (g,1,1) is complete if and only if Zg 6= 0 a.e.

2. G (g,1,1) is exact if and only if 1/Zg ∈ L2(Q).

3. G (g,1,1) is a Riesz basis for L2(R) if and only if there exist 0 < A≤ B < ∞ such that

A≤ |Zg|2 ≤ B a.e.

4. G (g,1,1) is an orthonormal basis for L2(R) if and only if |Zg|2 = 1 a.e.

The work in [24] extends Theorem 2.2.3 to provide a characterization of when G (g,1,1)

is a Schauder basis of type Λ, but the statement requires some background on Muckenhoupt

weights, specifically rectangular A2 weights, on the d-dimensional torus Td .
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Definition 2.2.4. An a.e. positive function v ∈ L1(Td) is a rectangular A2 weight on Td ,

denoted v ∈A2,R(Td), if

[v]A2,R(Td) = sup
R

(
1
|R|

∫
R

v(t)dt
)(

1
|R|

∫
R

1
v(t)

dt
)
< ∞, (2.2.2)

where R is any rectangle contained in Td with sides parallel to the axes.

In dimension d = 1, A2,R(T) coincides with the traditional class of Muckenhoupt

weights where the averages in (2.2.2) are taken over squares or balls (instead of rectan-

gles), but this is not the case in higher dimensions.

The next result gives two alternate characterizations of A2,R(T2), one in terms of one-

dimensional sections and one in terms of the boundedness of the rectangular partial sum

operators, e.g., see Theorem 2.2 in [24]. We will use the one-dimensional characteriza-

tion explicitly in the following chapters. The partial sum characterization is used to prove

Theorem 2.2.6 and is thus useful to be aware of.

Given a function v(t,ξ ) of two variables, if ξ is fixed, vξ (t) = v(t,ξ ) denotes the asso-

ciated one-dimensional section of v. Likewise, if t is fixed, vt(ξ ) = v(t,ξ ).

Theorem 2.2.5. Let v(t,ξ ) be an a.e. positive integrable function defined for (t,ξ ) ∈ T2.

The following statements are equivalent:

1. v ∈A2,R(T2).

2. The functions vt and vξ are uniformly in A2,R(T) for a.e. t,ξ ∈ T. In other words,

esssup
ξ∈T

[vξ ]A2,R(T) < ∞ and esssup
t∈T

[vt ]A2,R(T) < ∞.

3. The rectangular partial sum operators defined by

SR,(K,N) f = ∑
|k|≤K

∑
|n|≤N

〈
f ,En,k

〉
En,k
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are uniformly bounded on L2(T2,v). That is,

sup
K,N
‖SR,(K,N)‖L2(T2,v) < ∞.

The next result characterizes when G (g,1,1) is a Schauder basis of type Λ, see Theo-

rem 4.3 in [24], cf. [20, 25, 26, 27] for related work. We identify Td with any translate

of [0,1)d and identify L1(Td) with the integrable Zd-periodic functions on Rd . With these

identifications, note that by quasiperiodicity of Zg and recalling that Zg is a unitary op-

erator, and by Theorem 2.2.3, if g ∈ L2(R) and G (g,1,1) is complete then |Zg|2 may be

identified with an a.e. positive element of L1(T2).

Theorem 2.2.6. Let g ∈ L2(R). The Gabor system G (g,1,1) is a Schauder basis of type Λ

if and only if |Zg|2 ∈ A2,R(T2).

Theorem 2.2.6 can be used to give simple examples of Gabor systems G (g,1,1) that

are Schauder bases of type Λ, but are not Riesz bases. For example, let χ[0,1](t) denote

the indicator function of [0,1], and let g(t) = tsχ[0,1](t), for any fixed −1/2 < s < 1/2. It

can be verified that G (g,1,1) is a Schauder basis of type Λ, but it is not a Riesz basis, cf.

[24, 20].

2.3 Other Useful Results

We begin with a fact which we will apply in Chapter 3 often (and without reference),

see (22) in [28].

Fact 2.3.1. For β > 0, x≥ 0, and y≥ 0, there exist constants cβ > 0 and Cβ > 0 such that

cβ (x+ y)β ≤ xβ + yβ ≤Cβ (x+ y)β .

The following result was proved in Lemma 5 of [28]. Let ΓhF(t,ξ ) = F(t,ξ + h)−
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F(t,ξ ) and Γ2
hF = ΓhΓhF . Similarly, let ∆hF(t,ξ ) = F(t + h,ξ )− F(t,ξ ) and ∆2

hF =

∆h∆hF .

Lemma 2.3.2. For 0 < ε < 4,

∫
R
|t|4−ε |g(t)|2dt < ∞ ⇐⇒

∫
R

∫∫
[0,1]2

∣∣Γ2
hZg(t,ξ )

∣∣2
|h|5−ε

dtdξ dh < ∞

and

∫
R
|ξ |4−ε |ĝ(ξ )|2dξ < ∞ ⇐⇒

∫
R

∫∫
[0,1]2

∣∣∆2
hZg(t,ξ )

∣∣2
|h|5−ε

dtdξ dh.

We end this section with another result from Nitzan and Olsen, see Lemma 3(c) of [28]

which can be extended to the two-variable case below.

Lemma 2.3.3. If f is a function on R2, h≥ 0 and f ∈Ck ([x,x+ kh]× [y,y+ kh]), then

∣∣∣∆k
h f (x,y)

∣∣∣≤ |h|k sup
β∈[x,x+kh]

∣∣∣∣∂ k f (β ,y)
∂xk

∣∣∣∣
and

∣∣∣Γk
h f (x,y)

∣∣∣≤ |h|k sup
β∈[y,y+kh]

∣∣∣∣∂ k f (x,β )
∂yk

∣∣∣∣ .
For h < 0, the same estimates hold over the rectangle [x+ kh,x]× [y+ kh,y].

2.4 Balian-Low Literature

In Section 2.4.1, we state and provide a brief history of the classical Balian-Low theo-

rem. In Section 2.4.2, we provide an overview of some relevant versions of the Balian-Low

theorem. Comprehensive surveys on Balian-Low type results were published in 1995 and

2006, see [7], [9].
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2.4.1 History of the Balian-Low Theorem

In general, an uncertainty principle is any result that places restrictions on the local-

ization of a function and its Fourier transform. The classical uncertainty principle is often

referred to as the Heisenberg-Pauli-Weyl inequality, see Theorem 2.2.1 in [15] for a proof.

Theorem 2.4.1. If f ∈ L2(R) and a,b ∈ R, then

(∫
(t−a)2| f (t)|2dt

) 1
2
(∫

(ξ −b)2| f̂ (ξ )|2dξ

) 1
2

≥ 1
4π
‖ f‖2

2.

The classical Balian-Low theorem is an uncertainty principle that constrains the time

and frequency localization of the generator of a Gabor orthonormal basis. It was stated

separately by Balian in [3] and Low in [23].

Theorem 2.4.2. If g ∈ L2(R) satisfies

∫
|t|2|g(t)|2dt < ∞ and

∫
|ξ |2|ĝ(ξ )|2dξ < ∞,

then G (g,1,1) is not an orthonormal basis for L2(R).

Both Balian and Low’s proofs contained the same gap, assuming that the time and fre-

quency localization of g would give a continuous Zg. Corrected proofs were subsequently

independently given by Battle in [4] and Daubechies, Coifman, and Semmes in [12]. Bat-

tle’s proof was entirely new, while Daubechies, Coifman, and Semmes directly filled in the

gap from Balian and Low.

2.4.2 Balian-Low Type Results

In Section 1.1, we stated versions of the Balian-Low theorem for orthonormal bases,

Riesz bases, and exact systems, as well as results from [20] relating to Schauder bases.

We collectively refer to these and other uncertainty principles that constrain the time and
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frequency localization of the generator of a Gabor structured spanning system as Balian-

Low theorems or Balian-Low type results.

The classical Balian-Low theorem considers Gabor systems with a single generating

function. In [33], Zibuski and Zeevi address whether a Gabor system generated by multiple

functions would allow for better localization. Below we present Theorem 7 from [33].

Theorem 2.4.3. Let R > 0 and G = {gr}R
r=1 ⊂ L2(R). Let a > 0 and R(ab)−1 = 1. If for

1≤ r ≤ R, gr satisfies

∫
|t|2|gr(t)|2dt < ∞ and

∫
|ξ |2|ĝr(ξ )|2dξ < ∞,

then G (G,a,b) =
{

gr
k,n(t)

}
1≤r≤R,k,n∈Z

is not a Riesz basis for L2(R).

In other words, they find that if all the generating functions are well-localized, the

corresponding Gabor system cannot be a Riesz basis.

In addition to the results on exact systems in [28], Nitzan and Olsen provide Balian-

Low theorems that deal with the full range of spanning structures “between” exact systems

and Riesz bases, called (Cq)-systems. Given q ≥ 2, a system { fn}∞

n=1 is a (Cq)-system for

L2(R) if and only if for every f ∈ L2(R), c‖ f‖ ≤ (∑∞
n=1 |〈 f , fn〉|p)

1
p , where c = c(p) is a

positive constant independent from f and 1
p +

1
q = 1, see [28]. Exact (Cq)-systems provide

a continuous scale between exact systems, with q = ∞, and Riesz bases, with q = 2. We

state below the symmetric Balian-Low result for (Cq)-systems, Theorem 1(a) from [28]; see

Theorem 2(a) in [28] for a non-symmetric version. Further, [28] proves that both results

are sharp.

Theorem 2.4.4. Fix q > 2. Let g ∈ L2(R) and r > 4(q−1)/q. If g satisfies

∫
|t|r|g(t)|2dt < ∞ and

∫
|ξ |r|ĝ(ξ )|2dξ < ∞,

then G (g,1,1) is not an exact (Cq)-system in L2(R).
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There have been several papers published with subspace Balian-Low type theorems,

specifically in the setting of shift-invariant spaces. Let g ∈ L2(Rd) and define the in-

teger translates of g as T (g) = {g(t− k)}k∈Zd . Then V (g), the closed linear span of

T (g) in L2(Rd), is said to be the principal shift-invariant space generated by g. We will

consider shift-invariant spaces with some type of additional invariance. Let Γ be a lat-

tice with Zd ⊂ Γ and
[
Γ : Zd] > 1. We say V (g) is Γ-invariant if h ∈ V (g) implies that

{h(t− γ)}
γ∈Γ
⊂ V (g). Note that we have stated the definition for a shift-invariant space

with a single generator; one could also consider shift-invariant spaces with multiple gener-

ators.

Shift-invariant space results by Aldroubi, Sun, and Wang in [1] and by Tessera and

Wang in [31] were improved upon by Hardin, Northington, and Powell in [17]. We state a

simplified version of Corollary 1.4 in [17] below.

Theorem 2.4.5. If g ∈ L2(R) satisfies V (g) is Γ-invariant and

∫
|t||g(t)|2dt < ∞,

then T (g) does not form a Riesz basis for V (g).

This result is sharp.

There is a sharp version of Theorem 2.4.5 for exact systems, see Theorem 1.2.8 in [29].

Theorem 2.4.6. If g ∈ L2(R) satisfies V (g) is Γ-invariant and

∫
|t|2|g(t)|2dt < ∞,

then T (g) does not form an exact system for V (g).
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Chapter 3

Proofs of Theorems

Throughout the following chapter, we use the notation A . B to mean that there exists

a constant C > 0 (that may vary from one usage to another) such that A≤CB. We use the

notation A� B to mean that A . B and B . A.

3.1 Proof of Theorem 1.2.1

In this section we will prove Theorem 1.2.1. For fixed t, let (Zg)t be the function

defined by (Zg)t(ξ ) = Zg(t,ξ ).

3.1.1 Window Function with Support on [−1,1]

We first prove the following intermediate theorem, which concretely shows how Theo-

rem 1.2.1 operates on the interval [−1,1] for a real-valued window function g.

Theorem 3.1.1. If g ∈ L2(R) is real-valued, supported on [−1,1], and satisfies

∫
|ξ |2|ĝ(ξ )|2dξ < ∞,

then G (g,1,1) is not a Schauder basis for L2(R).

Proof. Since g is supported on [−1,1], the Zak transform Zg satisfies

∀(t,ξ ) ∈ [0,1)2, Zg(t,ξ ) = g(t)+g(t−1)e2πiξ .

Since
∫
|ξ |2|ĝ(ξ )|2dξ < ∞, the Sobolev embedding theorem (see Theorem 8.4 in [22])
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gives that g is continuous and

∀x,y ∈ R, |g(x)−g(y)|. |x− y|
1
2 . (3.1.1)

Since g is continuous and supported on [−1,1], the Zak transform Zg is continuous on R2.

Since Zg is continuous and quasiperiodic, Lemma 2.2.1 shows that Zg has a zero in the unit

square Q = [0,1)2. Namely, there exists (t0,ξ0) ∈ [0,1)2 such that Zg(t0,ξ0) = 0. Note that

g(t0) 6= 0 implies g(t0−1) 6= 0, and g(t0) = 0 implies g(t0−1) = 0.

Case 1: Assume g(t0) 6= 0 6= g(t0− 1). By Theorems 2.2.6 and 2.2.5, to show that

G (g,1,1) is not a Schauder basis of type Λ, it suffices to show that esssupt∈[0,1)[|(Zg)t |2]A2,R(T)=

∞.

Since g is real-valued and g(t0−1) 6= 0, (Zg)t0(ξ0) = 0 implies that sin(2πξ0) = 0, or

that ξ0 = 0 or ξ0 =
1
2 . Note that

|(Zg)t(ξ )|2 = g2(t)+g2(t−1)+2g(t)g(t−1)cos(2πξ ). (3.1.2)

Subcase 1: Assume ξ0 = 0. Then (Zg)t0(0) = 0, so g(t0) = −g(t0− 1). Since g is

continuous, there exists δ1 such that |t− t0|< δ1 implies

|g(t)||g(t−1)|=−g(t)g(t−1). (3.1.3)

Then by (3.1.2) and (3.1.3), for t such that |t− t0|< δ1,

|(Zg)t(ξ )|2 = g2(t)+g2(t−1)−2 |g(t)| |g(t−1)|cos(2πξ ). (3.1.4)

Note that for sufficiently small u, the Taylor approximation for cosine yields

1− cos(2πu)� u2. (3.1.5)
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Fix 0 < ∆ < 1 sufficiently small. Then using (3.1.4) and (3.1.5), we find

1
∆

∫
∆

0
|(Zg)t(ξ )|2 dξ =

1
∆

∫
∆

0

(
g2(t)+g2(t−1)−2 |g(t)| |g(t−1)|cos(2πξ )

)
dξ

=
1
∆

∫
∆

0

(
(|g(t)|− |g(t−1)|)2 +2 |g(t)| |g(t−1)|(1− cos(2πξ ))

)
dξ

&
1
∆

∫
∆

0

(
(|g(t)|− |g(t−1)|)2 + |g(t)| |g(t−1)|ξ 2

)
dξ

= (|g(t)|− |g(t−1)|)2 + |g(t)| |g(t−1)|∆2, (3.1.6)

and

1
∆

∫
∆

0

1

|(Zg)t(ξ )|2
dξ =

1
∆

∫
∆

0

1
g2(t)+g2(t−1)−2 |g(t)| |g(t−1)|cos(2πξ )

dξ

=
1
∆

∫
∆

0

1

(|g(t)|− |g(t−1)|)2 +2 |g(t)| |g(t−1)|(1− cos(2πξ ))
dξ

&
1
∆

∫
∆

0

1

(|g(t)|− |g(t−1)|)2 + |g(t)| |g(t−1)|ξ 2
dξ

=
1
∆
· 1

(|g(t)|− |g(t +1)|)2 ·
||g(t)|− |g(t−1)||√
|g(t)| |g(t−1)|

· arctan

( √
|g(t)| |g(t−1)|

||g(t)|− |g(t−1)||
∆

)
. (3.1.7)

Let A =

√
|g(t)||g(t+1)|

||g(t)|−|g(t+1)||∆. Then by (3.1.6) and (3.1.7),

(
1
∆

∫
∆

0
|(Zg)t(ξ )|2 dξ

)(
1
∆

∫
∆

0

1

|(Zg)t(ξ )|2
dξ

)
&

1
A

arctan(A)+Aarctan(A). (3.1.8)

Using (3.1.8), and since |g(t0)|= |g(t0 +1)| and g is continuous,

lim
t→t0

(
1
∆

∫
∆

0
|(Zg)t(ξ )|2 dξ

)(
1
∆

∫
∆

0

1

|(Zg)t(ξ )|2
dξ

)
= ∞.

Thus limt→t0[|(Zg)t |2]A2,R(T) = ∞, and G (g,1,1) is not a Schauder basis of type Λ.

Subcase 2: Assume ξ0 =
1
2 . Then (Zg)t0(

1
2) = 0, so g(t0) = g(t0− 1). Since g is con-
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tinuous, there exists δ2 such that |t− t0|< δ2 implies

|g(t)||g(t−1)|= g(t)g(t−1). (3.1.9)

Then by (3.1.2) and (3.1.9), for t such that |t− t0|< δ2,

|(Zg)t(ξ )|2 = g2(t)+g2(t−1)+2 |g(t)| |g(t−1)|cos(2πξ ). (3.1.10)

Fix 0 < ∆ < 1 sufficiently small. Using (3.1.10), we find

1
∆

∫ 1
2+∆

1
2

|(Zg)t(ξ )|2 dξ =
1
∆

∫ 1
2+∆

1
2

(
g2(t)+g2(t−1)+2 |g(t)| |g(t−1)|cos(2πξ )

)
dξ

=
1
∆

∫
∆

0

(
g2(t)+g2(t−1)−2 |g(t)| |g(t−1)|cos(2πu)

)
du,

(3.1.11)

and

1
∆

∫ 1
2+∆

1
2

1

|(Zg)t(ξ )|2
dξ =

1
∆

∫ 1
2+∆

1
2

1
g2(t)+g2(t−1)+2 |g(t)| |g(t−1)|cos(2πξ )

dξ

=
1
∆

∫
∆

0

1
g2(t)+g2(t−1)−2 |g(t)| |g(t−1)|cos(2πu)

du.

(3.1.12)

We can now apply (3.1.5) and continue as in (3.1.6) and (3.1.7) in Subcase 1.

Case 2: Assume g(t0) = 0 = g(t0−1). This implies that Zg(t0,ξ ) = 0 for all ξ ∈R. We

will show that G (g,1,1) is not exact in L2(R), by using a similar argument as for Theorem

5.1 in [21]. By (3.1.1), we have

|Zg(t,ξ )|= |Zg(t,ξ )−Zg(t0,ξ )| ≤ |g(t)−g(t0)|+ |g(t−1)−g(t0−1)|. |t− t0|
1
2 ,
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and hence

∫ 1

0

∫ 1

0

1

|Zg(t,ξ )|2
dtdξ &

∫ 1

0

∫ 1

0

1
|t− t0|

dtdξ = ∞.

By Theorem 2.2.3, this shows that G (g,1,1) is not exact, and hence is not a Schauder basis.

3.1.2 Window Function with General Compact Support

We now prove Theorem 1.2.1: If g ∈ L2(R) is compactly supported and

∫
|ξ |2|ĝ(ξ )|2dξ < ∞,

then G (g,1,1) is not a Schauder basis of type Λ for L2(R).

Without loss of generality, we assume that g is supported on [−N,1] for some N ∈ N.

So, the Zak transform Zg satisfies

∀(t,ξ ) ∈ [0,1)2, Zg(t,ξ ) =
N

∑
n=0

g(t−n)e2πinξ .

Since
∫
|ξ |2|ĝ(ξ )|2dξ < ∞, the Sobolev embedding theorem (see Theorem 8.4 in [22])

gives that g is continuous and

∀x,y ∈ R, |g(x)−g(y)|. |x− y|
1
2 . (3.1.13)

Since g is continuous and compactly supported, the Zak transform Zg is continuous on

R2. Since Zg is continuous and quasiperiodic, Lemma 2.2.1 shows that Zg has a zero in

the unit square Q = [0,1)2. Namely, there exists (t0,ξ0) ∈ [0,1)2 such that Zg(t0,ξ0) = 0.
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For each fixed t ∈ R, it will be convenient to consider the polynomial Pt defined by

∀z ∈ C, Pt(z) =
N

∑
n=0

g(t−n)zn. (3.1.14)

Note that Pt(e2πiξ ) = (Zg)t(ξ ) = Zg(t,ξ ). In particular, the polynomial Pt0(z) has a root at

z = e2πiξ0; let m0 denote the multiplicity of this root.

We collect here some notation about Pt that will be used throughout the proof. For

t ∈ R, let 0 ≤ dt ≤ N denote the degree of the polynomial Pt , and when dt ≥ 1 label the

(possibly non-distinct) roots of Pt(z) as {rk(t)}dt
k=1. Moreover, when t = t0, we shall assume

that Pt0(z) has its roots {rk(t0)}
dt0
k=1 ordered so that rk(t0) = e2πiξ0 for 1≤ k ≤ m0.

Case 1: Suppose the degree of the polynomial Pt0 satisfies 1≤ dt0 ≤ N and that Pt0 has

at least two distinct roots. By Theorems 2.2.6 and 2.2.5, to show that G (g,1,1) is not a

Schauder basis of type Λ, it suffices to show that esssupt∈[0,1)[|(Zg)t |2]A2,R(T) = ∞. Since

the coefficient functions of Pt are continuous, we may use results on the continuity of roots

of polynomials to relate the roots of Pt to the roots of Pt0 when |t− t0| is sufficiently small.

Given arbitrary ε > 0, by Theorem 1 of [32] there exists δ = δε > 0 such that if |t−t0|<

δ , then there exists an ordering of the roots of Pt(z) such that

∀ 1≤ k ≤ dt0, |rk(t)− rk(t0)|< ε, (3.1.15)

and

∀ dt0 < k ≤ dt , |rk(t)|>
1
ε
. (3.1.16)

The existence of large roots of Pt as in (3.1.16) only occurs when Pt has larger degree

than Pt0 , i.e., dt > dt0 . For perspective, since the leading coefficient of Pt0 is g(t0−dt0) 6= 0

and g is continuous, there exists δ1 > 0 such that |t− t0|< δ1 implies dt ≥ dt0.

Let β0 > 0 be the smallest distance between distinct roots of Pt0 . By (3.1.15) and

(3.1.16), there exists δ2 > 0 such that |t−t0|< δ2 implies |rk(t)−rk(t0)|< β0/4 for 1≤ k≤
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dt0, and |rk(t)|> 2 for dt0 < k≤ dt . We shall assume henceforth that |t− t0|< min{δ1,δ2}.

Fix 0 < ∆ < 1 sufficiently small so that ξ ∈ [ξ0,ξ0 +∆] implies |e2πiξ −e2πiξ0| ≤ β0/4.

We will next estimate the integral

I1 =
1
∆

∫
ξ0+∆

ξ0

|(Zg)t(ξ )|2dξ =
1
∆

∫
ξ0+∆

ξ0

|Pt(e2πiξ )|2dξ . (3.1.17)

Before bounding I1 from below, we require some preliminary estimates. It will be conve-

nient to write the polynomial Pt in factored form, so that

Pt(e2πiξ ) = g(t−dt)
m0

∏
j=1

(e2πiξ − r j(t))
dt0

∏
k=m0+1

(e2πiξ − rk(t))
dt

∏
l=dt0+1

(e2πiξ − rl(t)).

(3.1.18)

If m0 +1≤ k ≤ dt0 and ξ ∈ [ξ0,ξ0 +∆], then

∣∣∣e2πiξ − rk(t)
∣∣∣≥ ∣∣∣e2πiξ0− rk(t0)

∣∣∣− ∣∣∣e2πiξ0− e2πiξ
∣∣∣−|rk(t0)− rk(t)|

> β0−
β0

4
− β0

4
=

β0

2
. (3.1.19)

If dt0 +1≤ l ≤ dt , then (here recall that |rl(t)|> 2) one has

∣∣∣e2πiξ − rl(t)
∣∣∣≥ ∣∣|e2πiξ |− |rl(t)|

∣∣= |rl(t)|−1. (3.1.20)

Combining (3.1.17), (3.1.18), (3.1.19) and (3.1.20) gives

I1 ≥
|g(t−dt)|2(β 2

0 /4)(dt0−m0)∏
dt
l=dt0+1 (|rl(t)|−1)2

∆

∫
ξ0+∆

ξ0

m0

∏
j=1

∣∣∣e2πiξ − r j(t)
∣∣∣2 dξ .

(3.1.21)

To estimate the integral in (3.1.21), recall from (3.1.5) that |e2πiu− 1| � |u| holds for
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sufficiently small |u|. So

1
∆

∫
ξ0+∆

ξ0

m0

∏
j=1

∣∣∣e2πiξ − r j(t)
∣∣∣2 dξ ≥ 1

∆

∫
ξ0+∆

ξ0

m0

∏
j=1

(∣∣∣e2πiξ − e2πiξ0
∣∣∣− ∣∣∣e2πiξ0− r j(t)

∣∣∣)2
dξ

=
1
∆

∫
∆

0

m0

∏
j=1

(∣∣e2πiu−1
∣∣− ∣∣∣e2πiξ0− r j(t)

∣∣∣)2
du

&
1
∆

∫
∆

0

m0

∏
j=1

(
u−
∣∣∣e2πiξ0− r j(t)

∣∣∣)2
du. (3.1.22)

Expanding the product in (3.1.22) gives the following form for suitable An(t)

m0

∏
j=1

(
u−
∣∣∣e2πiξ0− r j(t)

∣∣∣)2
= u2m0−

2m0

∑
n=1

u2m0−nAn(t). (3.1.23)

By (3.1.15), we have limt→t0

∣∣∣e2πiξ0− r j(t)
∣∣∣ = 0 for each 1 ≤ j ≤ m0. Thus, taking limits

of both sides of (3.1.23) implies that limt→t0 An(t) = 0 for each 1≤ n≤ 2m0.

Combining (3.1.22) and (3.1.23) gives

1
∆

∫
ξ0+∆

ξ0

m0

∏
j=1

∣∣∣e2πiξ − r j(t)
∣∣∣2 dξ &

(
∆

2m0−
2m0

∑
n=1

∆
2m0−nAn(t)

)
. (3.1.24)

So, (3.1.21) together with (3.1.24), and absorbing the constant (β 2
0 /4)(dx0−m0), gives a

lower bound on the integral I1 in (3.1.17)

I1 & |g(t−dt)|2
 dt

∏
l=dt0+1

(|rl(t)|−1)2

(∆
2m0−

2m0

∑
n=1

∆
2m0−nAn(t)

)
. (3.1.25)

We next estimate the integral

I2 =
1
∆

∫
ξ0+∆

ξ0

1
|(Zg)t(ξ )|2

dξ =
1
∆

∫
ξ0+∆

ξ0

1
|Pt(e2πiξ )|2

dξ . (3.1.26)

Before bounding I2 from below, we again require some preliminary estimates.
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If m0 +1≤ k ≤ dt0 and M0 = maxm0+1≤k≤dt0

∣∣∣e2πiξ0− rk(t0)
∣∣∣ and ξ ∈ [ξ0,ξ0 +∆], then

∣∣∣e2πiξ − rk(t)
∣∣∣≤ ∣∣∣e2πiξ − e2πiξ0

∣∣∣+ ∣∣∣e2πiξ0− rk(t0)
∣∣∣+ |rk(t0)− rk(t)|

<
β0

4
+M0 +

β0

4
= M0 +

β0

2
. (3.1.27)

If dt0 +1≤ l ≤ dt , we will use the bound

∣∣∣e2πiξ − rl(t)
∣∣∣≤ ∣∣∣e2πiξ

∣∣∣+ |rl(t)|= |rl(t)|+1. (3.1.28)

Using (3.1.18), (3.1.26), (3.1.27), (3.1.28), and proceeding similarly as for (3.1.21), we

have

I2 ≥
(M0 +β0/2)−2(dt0−m0)

|g(t−dt)|2∆∏
dt
l=dt0+1 (|rl(t)|+1)2

∫
ξ0+∆

ξ0

m0

∏
j=1

1∣∣e2πiξ − r j(t)
∣∣2 dξ . (3.1.29)

To estimate the integral in (3.1.29), let R(t) = max1≤ j≤m0 |e2πiξ0− r j(t)|, and note that

limt→t0 R(t) = 0 because of (3.1.15). Since 0 < ∆ < 1 is sufficiently small we have

∫
ξ0+∆

ξ0

m0

∏
j=1

1∣∣e2πiξ − r j(t)
∣∣2 dξ &

∫
ξ0+∆

ξ0

m0

∏
j=1

1∣∣e2πiξ − e2πiξ0
∣∣2 + ∣∣e2πiξ0− r j(t)

∣∣2 dξ

≥
∫

∆

0

m0

∏
j=1

1
|e2πiu−1|2 +R2(t)

du

&
∫

∆

0

1
(u2 +R2(t))m0 du

&
∫

∆

0

1
u2 +R2m0(t)

du

=
1

Rm0(t)
arctan

(
∆

Rm0(t)

)
. (3.1.30)

Combining (3.1.29) and (3.1.30), and absorbing the constants (M0 +β0/2)−2(dt0−m0) and
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∆, gives a lower bound for the integral I2

I2 &
1

|g(t−dt)|2 ∏
dt
l=dt0+1 (|rl(t)|+1)2

(
1

Rm0(t)

)
arctan

(
∆

Rm0(t)

)
. (3.1.31)

By (3.1.25) and (3.1.31),

(
1
∆

∫
ξ0+∆

ξ0

|(Zg)t(ξ )|2 dξ

)(
1
∆

∫
ξ0+∆

ξ0

1

|(Zg)t(ξ )|2
dξ

)
(3.1.32)

&

 dt

∏
l=dt0+1

(|rl(t)|−1)2

(|rl(t)|+1)2

(∆
2m0−

2m0

∑
n=1

∆
2m0−nAn(t)

)(
1

Rm0(t)

)
arctan

(
∆

Rm0(t)

)
.

Now recall that |rl(t)|> 2 when dt0 +1≤ l ≤ dt , and dt ≤ N, and that limt→t0 An(t) = 0 for

1≤ n≤ 2m0 and limt→t0 R(t) = 0. This, together with (3.1.32), implies that

lim
t→t0

(
1
∆

∫
ξ0+∆

ξ0

|(Zg)t(ξ )|2 dξ

)(
1
∆

∫
ξ0+∆

ξ0

1

|(Zg)t(ξ )|2
dξ

)
= ∞. (3.1.33)

Thus limt→t0[|(Zg)t |2]A2,R(T) = ∞, and G (g,1,1) is not a Schauder basis of type Λ.

Case 2: Suppose the degree of the polynomial Pt0 satisfies 1≤ dt0 ≤N and that all roots

of Pt0 are the same. The proof of this case is similar to Case 1, except that we now have

m0 = dt0, and instead of (3.1.18) we have the simpler factorization

Pt(e2πiξ ) = g(t−dt)
m0

∏
j=1

(e2πiξ − r j(t))
dt

∏
l=dt0+1

(e2πiξ − rl(t)). (3.1.34)

Then combining (3.1.17), (3.1.34), and (3.1.20) gives

I1 ≥
|g(t−dt)|2 ∏

dt
l=dt0+1 (|rl(t)|−1)2

∆

∫
ξ0+∆

ξ0

m0

∏
j=1

∣∣∣e2πiξ − r j(t)
∣∣∣2 dξ ,
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and combining (3.1.26), (3.1.34), and (3.1.28) gives

I2 ≥
1

|g(t−dt)|2∆∏
dt
l=dt0+1 (|rl(t)|+1)2

∫
ξ0+∆

ξ0

m0

∏
j=1

1∣∣e2πiξ − r j(t)
∣∣2 dξ .

Thus the same arguments as in Case 1 show that the estimates (3.1.32) and (3.1.33)

both still hold, so that G (g,1,1) is not a Schauder basis of type Λ.

Case 3: Suppose that the polynomial Pt0 has degree dt0 = 0. Since Pt0(e
2πiξ0) = 0, this

means that Pt0 must be identically zero. So, g(t0− n) = 0 for all n ∈ {0,1, · · · ,N}. This

implies that Zg(t0,ξ ) = 0 for all ξ ∈ R.

We will show that G (g,1,1) is not exact in L2(R), by using a similar argument as for

Theorem 5.1 in [21]. By (3.1.13), we have

|Zg(t,ξ )|= |Zg(t,ξ )−Zg(t0,ξ )| ≤
N

∑
n=0
|g(t−n)−g(t0−n)|. |t− t0|

1
2 ,

and hence

∫ 1

0

∫ 1

0

1

|Zg(t,ξ )|2
dtdξ &

∫ 1

0

∫ 1

0

1
|t− t0|

dtdξ = ∞.

By Theorem 2.2.3, this shows that G (g,1,1) is not exact, and hence is not a Schauder

basis.

Recall that in the original statement of Theorem 1.2.1, we claimed that the conclu-

sion held for g and ĝ interchanged. We have the identity Zĝ(t,ξ ) = e2πitξ Zg(−ξ , t), see

Proposition 8.2.2 in [15]. Thus we have the following extensions of the Zak transform

characterizations of spanning properties of Gabor systems in Theorem 2.2.3 and Theorem

2.2.6

1. G (g,1,1) is exact if and only if 1/Zĝ ∈ L2(Q).

2. G (g,1,1) is a Schauder basis of type Λ if and only if |Zĝ|2 ∈ A2,R(T2).
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This allows for the interchange of g and ĝ in the statement of Theorem 1.2.1.

3.2 Proof of Theorem 1.2.2

In this section we will prove Theorem 1.2.2. We first require the following lemma.

Lemma 3.2.1. Fix 0 < α < 1
2 and γ > 0. If f is the Z2-periodic function defined by

f (t,ξ ) = (|t|
α

γ + |ξ |
α

γ )2γ

for (t,ξ ) ∈ [−1
2 ,

1
2)

2, then f ∈A2,R(T2).

Proof. For fixed ξ , let fξ be the function defined by fξ (t) = f (t,ξ ). By Theorem 2.2.5 and

by the symmetry of f (t,ξ ), it suffices to show that

esssup
ξ∈T

[
fξ

]
A2,R(T) < ∞.

Given an interval I ⊂ T, we must bound the quantity

J =

(
1
|I|

∫
I
(|t|

α

γ + |ξ |
α

γ )2γdt
)(

1
|I|

∫
I

1

(|t|
α

γ + |ξ |
α

γ )2γ
dt

)
.

Since α,γ > 0, we have

J .

(
1
|I|

∫
I
|t|2αdt + |ξ |2α

)(
1
|I|

∫
I

1

(|t|
α

γ + |ξ |
α

γ )2γ
dt

)

≤
(

1
|I|

∫
I
|t|2αdt

)(
1
|I|

∫
I

1
|t|2α

dt
)
+

(
1
|I|

∫
I

|ξ |2α

(|t|
α

γ + |ξ |
α

γ )2γ
dt

)

≤ [|t|2α ]A2,R(T)+1.

Remark 3.8 and Example 3.11 from [24] show that |t|2α ∈A2,R(T), since 0 < α < 1/2. It

follows that esssupξ∈T
[

fξ

]
A2,R(T) . [|t|2α ]A2,R(T)+1 < ∞, as required. So f ∈A2,R(T2).
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3.2.1 Version 1 of Proof

We are now ready to prove Theorem 1.2.2. We first provide a proof relying on the con-

struction from Section 6.1 of [28], with some detail omitted.

Proof of Theorem 1.2.2 (Version 1) Fix 0 < ε < 1/2, and let g ∈ L2(R) be the function

given by part (b) of Theorem 1 in [28] when r = 3− 2ε and q > 4
1+ε

. Equivalently, let

g ∈ L2(R) be the function given by part (b) of Theorem 2 in [28] when r = s = 3−2ε and

q > 4
1+ε

. Note that q > 4
1+ε

> 4
1+2ε

, and that q > 4
1+2ε

is equivalent to r < 4(q−1)
q . Hence,

the hypotheses of Theorem 1(b) and Theorem 2(b) in [28] hold, and g satisfies

∫
|t|3−2ε |g(t)|2dt < ∞ and

∫
|ξ |3−2ε |ĝ(ξ )|2dξ < ∞.

It remains to show that G (g,1,1) is a Schauder basis of type Λ. Since (48) in [28] holds,

Section 6.1 of [28] shows that the Zak transform G = Zg satisfies:

• G is quasiperiodic. In particular, |G| is Z2-periodic.

• |G| is continuous and bounded on R2.

• There exist δ ,η > 0 such that if (t,ξ ) /∈ (−η ,η)2 +Z2, then δ < |G(t + 1
2 ,ξ + 1

2)|.

• There exist parameters α,β ,γ > 0 such that if (t,ξ ) ∈ (−η ,η)2 then

|G(t +1/2,ξ +1/2)|=
(
|t|

α

γ + |ξ |
β

γ

)γ

. (3.2.1)

The condition (3.2.1) follows from (54) in [28], together with the expression for Φ(x,y)

on page 596 in [28]. The parameters α,β > 0 in (3.2.1) are defined as follows. Since

r = s = 3−2ε , we may define r′ = s′ = 3−ε as in equation (51) in [28], and note that (52)

in [28] holds because q > 4
1+ε

. Now, equation (53) in [28] gives α = β = r′
2

(
1− 2

r′
)
= 1−ε

2 .
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By Theorem 2.2.6, it suffices to show that |G|2 = |Zg|2 ∈A2,R(T2). Recall, by (3.2.1),

that if (t,ξ )∈ (−η ,η)2, then
∣∣G(t + 1

2 ,ξ + 1
2

)∣∣2 =(|t|
α

γ + |ξ |
α

γ )2γ . Also
∣∣G(t + 1

2 ,ξ + 1
2

)∣∣2
is bounded away from 0 and ∞ when (t,ξ ) /∈ (−η ,η)2+Z2. Therefore, to show that |G|2 ∈

A2,R(T2), it suffices to show that if f is the Z2-periodic function defined by f (t,ξ ) =

(|t|
α

γ + |ξ |
α

γ )γ for (t,ξ ) ∈ [−1
2 ,

1
2)

2, then f 2 ∈A2,R(T2). Since 0 < α < 1/2, Lemma 3.2.1

shows that f 2 ∈A2,R(T2). This completes the proof of Theorem 1.2.2.

3.2.2 Version 2 of Proof

We now provide a complete proof with full detail. We recreate the construction from

Section 6.1 of [28] to build a function G = Zg with |G|2 = |Zg|2 ∈ A2,R(T2), which by

Theorem 2.2.6 implies G (g,1,1) is a Schauder basis of type Λ. We then determine when

the window function g has the required time and frequency localization.

3.2.2.1 Construction of the Zak Transform as an A2,R(T2) Weight

For (t,ξ ) ∈ R2, define

G(t,ξ ) = Ga(t,ξ ) = Φ(t− 1
2
,ξ − 1

2
)e2πiΨ(t− 1

2 ,ξ−
1
2 ),

where Φ and Ψ are defined as follows:

1. Fix 0 < η < 1
4 and let ρ ∈C∞(R) be an even function that satisfies

• ρ(x) = 1 for |x| ≤ η ,

• ρ(x) = 0 for |x| ≥ 2η , and

• 0≤ ρ(x)≤ 1 for η < |x|< 2η .

2. Let φ(x) be a C∞(R) function that satisfies

• φ(x) =−1 for x≤ 0,
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• φ(x) = 0 for x≥ 1, and

• −1≤ φ(x)≤ 0 for 0 < x < 1.

3. Define the function H : R2→ R by

H(t,ξ ) =


φ

(
ξ

t

)
, t > 0 and 0≤ ξ ≤ t

0, else.

4. Fix 0 < a < 1 and define Φ(t,ξ ) on
[
−1

2 ,
1
2

)2
by

Φ(t,ξ ) = ρ(ξ )
(

ρ(t)
(
t2 +ξ

2) a
2 +1−ρ(t)

)
+1−ρ(ξ ).

Extend Φ to R2 as a Z-periodic function. Note lim
t→ 1

2
−Φ(t,ξ ) = 1 = Φ(−1

2 ,ξ ) and

lim
ξ→ 1

2
−Φ(t,ξ )= 1=Φ(t,−1

2). Thus Φ(t,ξ ) is continuous on R2, in C2(R2\{(0,0)}),

and equal to 0 only on Z2.

5. Define Ψ(t,ξ ) on
[
−1

2 ,
1
2

)
× [0,1) by

Ψ(t,ξ ) =


0, t ∈

[
−1

2 ,0
]

ρ(t)H(t,ξ )+(1−ρ(t))
(
ξ − 1

2

)
, t ∈

[
0, 1

2

)
.

Extend Ψ to the plane by

Ψ(t +1,ξ ) = Ψ(t,ξ )+ξ − 1
2
, if t ∈ R and ξ ∈ [0,1) , (3.2.2)

and

Ψ(t,ξ +1) = Ψ(t,ξ ), if (t,ξ ) ∈ R2. (3.2.3)
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We verify that e2πiΨ(t,ξ ) is continuous on R2\Z2. Since Ψ is continuous on
[
−1

2 ,
1
2

)
×

[0,1), we note that by (3.2.2),

lim
t→ 1

2
−

Ψ(t,ξ ) = lim
t→ 1

2
−

ρ(t)H(t,ξ )+(1−ρ(t))
(

ξ − 1
2

)
= ξ − 1

2

= Ψ

(
−1

2
,ξ

)
+ξ − 1

2

= Ψ

(
1
2
,ξ

)
,

and by (3.2.3),

lim
ξ→1−

Ψ(t,ξ ) =


limξ→1− 0, t ∈

[
−1

2 ,0
]

limξ→1− ρ(t)H(t,ξ )+(1−ρ(t))
(
ξ − 1

2

)
, t ∈

(
0, 1

2

)
=


Ψ(t,0), t ∈

[
−1

2 ,0
]

Ψ(t,0)+1, t ∈
(
0, 1

2

)
.

The fact that e2πiΨ(t,ξ ) is C∞ on R2\Z2 is verified in [5].

Now, consider Φ(t,ξ )e2πiΨ(t,ξ ). This function is in C2(R2\Z2), has bounded modulus,

and is equal to 0 only on Z2. Further, for any (t,ξ ) ∈ (−η ,η)2,

Φ(t,ξ )e2πiΨ(t,ξ ) =
(
t2 +ξ

2) a
2 e2πiH(t,ξ )

Thus

G(t,ξ ) = Φ

(
t− 1

2
,ξ − 1

2

)
e2πiΨ(t− 1

2 ,ξ−
1
2)
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is quasiperiodic, as verified below:

G(t,ξ +1) = Φ

(
t− 1

2
,ξ +

1
2

)
e2πiΨ(t− 1

2 ,ξ+
1
2)

= Φ

(
t− 1

2
,ξ − 1

2

)
e2πiΨ(t− 1

2 ,ξ−
1
2)

= G(t,ξ ),

and

G(t +1,ξ ) = Φ

(
t +

1
2
,ξ − 1

2

)
e2πiΨ(t+ 1

2 ,ξ−
1
2)

= Φ

(
t− 1

2
,ξ − 1

2

)
e2πi(Ψ(t− 1

2 ,ξ−
1
2)+ξ− 1

2−
1
2)

= G(t,ξ )e2πiξ .

Moreover, since G ∈ L∞(T2) ⊂ L2(T2), and since the Zak transform Z : L2(R)→ L2(Q)

is a unitary operator on the cube Q = [0,1)2, there exists g = ga ∈ L2(R) such that Zga =

Ga = G.

Now, we will show that G (ga,1,1) is a Schauder basis of type Λ for 0 < a < 1
2 . Since

|G(t,ξ )|2 =
∣∣Φ(t− 1

2 ,ξ −
1
2)
∣∣2, and translating |Φ(t,ξ )|2 does not affect its A2,R weight

properties, it suffices to show that |Φ(t,ξ )|2 ∈ A2,R(T2) for 0 < a < 1
2 . That is, given a

rectangle R⊂ T2 and letting R1 = R∩ (−η ,η)2 and R2 = R\R1, we must uniformly bound

the quantity

H =

(
1
|R|

∫∫
R
|Φ(t,ξ )|2dtdξ

)(
1
|R|

∫∫
R

1
|Φ(t,ξ )|2

dtdξ

)
= H1 +H2 +H3 +H4,

where

H1 =

(
1
|R|

∫∫
R1

|Φ(t,ξ )|2dtdξ

)(
1
|R|

∫∫
R1

1
|Φ(t,ξ )|2

dtdξ

)
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H2 =

(
1
|R|

∫∫
R1

|Φ(t,ξ )|2dtdξ

)(
1
|R|

∫∫
R2

1
|Φ(t,ξ )|2

dtdξ

)
,

H3 =

(
1
|R|

∫∫
R2

|Φ(t,ξ )|2dtdξ

)(
1
|R|

∫∫
R1

1
|Φ(t,ξ )|2

dtdξ

)
,

and

H4 =

(
1
|R|

∫∫
R2

|Φ(t,ξ )|2dtdξ

)(
1
|R|

∫∫
R2

1
|Φ(t,ξ )|2

dtdξ

)
.

We first consider H1. If (t,ξ ) ∈ (−η ,η)2, then ρ(t) = ρ(ξ ) = 1, so

Φ(t,ξ ) =
(
t2 +ξ

2) a
2 . (3.2.4)

So since R1 ⊆ (−η ,η)2, we refer to Lemma 3.2.1 with γ = a
2 and α = a to see that H1 is

uniformly bounded above.

We next consider H4. If (t,ξ ) ∈ T2\(−η ,η)2, then since Φ = 0 only on Z2 and Φ is

continuous on R2, there are positive constants C1 and C2 such that

1
C1
≤ |Φ(t,ξ )|2 ≤C2. (3.2.5)

Thus since R2 ⊂ T2\(−η ,η)2, H4 is uniformly bounded above.

We proceed to H2. Note that by (3.2.4) and (3.2.5),

H2 ≤
(

1
|R|

∫∫
R1

(t2 +ξ
2)adtdξ

)(
1
|R|

∫∫
R2

C1dtdξ

)
.

(
1
|R|

∫∫
R

η
2adtdξ

)(
1
|R|

∫∫
R

C1dtdξ

)
=C1η

2a.
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We finish with H3. Note that since ρ(t) ∈ [0,1],

|Φ(t,ξ )|2 = |ρ(t)(t2 +ξ
2)

a
2 +1−ρ(t)|2 ≤

(
(t2 +ξ

2)
a
2 +1

)2
. (3.2.6)

Also note that if η ≤ |t|, ηa ≤ (t2 +ξ 2)
a
2 , so

1≤ (t2 +ξ 2)
a
2

ηa . (3.2.7)

Thus by (3.2.6) and (3.2.7),

H3 ≤

(
1
|R|

∫∫
R2

(
t2 +ξ

2)a
(

1+
1

ηa

)2

dtdξ

)(
1
|R|

∫∫
R1

1
(t2 +ξ 2)

a dtdξ

)
.

(
1
|R|

∫∫
R

(
t2 +ξ

2)a
dtdξ

)(
1
|R|

∫∫
R

1
(t2 +ξ 2)

a dtdξ

)
,

which is again uniformly bounded above by Lemma 3.2.1 with γ = a
2 and α = a.

Thus H is uniformly bounded above for any R, and G (ga,1,1) is a Schauder basis of

type Λ.

3.2.2.2 Localization of the Window Function

It remains to determine for which values of a the function ga has the required time and

frequency localization. We will prove the following result:

Theorem 3.2.2. The function ga(t) has

∫
R
|t|4−ε |ga(t)|2dt < ∞ and

∫
R
|ξ |4−ε |ĝa(ξ )|2dξ < ∞

for ε ∈ (0,2] and 1− ε

2 < a < 1.

We first prove two intermediate results, recalling Lemma 2.3.2.

38



Lemma 3.2.3. If f is the Z2-periodic function defined by

f (t,ξ ) = (t2 +ξ
2)

a
2

for (t,ξ ) ∈ [−1
2 ,

1
2)

2, then

∫
R

∫∫
[− 1

2 ,
1
2 ]

2

∣∣Γ2
h f (t,ξ )

∣∣2
|h|5−ε

dtdξ dh < ∞

and

∫
R

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∆2
h f (t,ξ )

∣∣2
|h|5−ε

dtdξ dh < ∞

for ε ∈ (0,2] and 1− ε

2 < a < 1.

Proof. By symmetry of f , it suffices to consider only

I =
∫
R

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∆2
h f (t,ξ )

∣∣2
|h|5−ε

dtdξ dh = I1 + I2, (3.2.8)

where

I1 =
∫
R\[− 1

6 ,
1
6 ]

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∆2
h f (t,ξ )

∣∣2
|h|5−ε

dtdξ dh, (3.2.9)

and

I2 =
∫
[− 1

6 ,
1
6 ]

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∆2
h f (t,ξ )

∣∣2
|h|5−ε

dtdξ dh. (3.2.10)

We begin with I1. Note that

∆
2
h f (t,ξ ) =

(
(t +2h)2 +ξ

2
) a

2 −2
(
(t +h)2 +ξ

2
) a

2
+
(
t2 +ξ

2) a
2 , (3.2.11)
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so

∣∣∆2
h f (t,ξ )

∣∣2 . ((t +2h)2 +ξ
2
)a

+2
(
(t +h)2 +ξ

2
)a

+
(
t2 +ξ

2)a
. t2a +h2a +ξ

2a.

(3.2.12)

Thus

I1 .
∫
R\[− 1

6 ,
1
6 ]

∫∫
[− 1

2 ,
1
2 ]

2

t2a +h2a +ξ 2a

|h|5−ε
dtdξ dh

which is finite if and only if −1
2 < a < 2− ε

2 , which is satisfied.

By symmetry of ξ in (3.2.11), in order to bound I2 it suffices to show that

J =
∫ 1

2

0

∫ 1
2

− 1
2

∣∣∆2
h f (t,ξ )

∣∣2 dtdξ . h2a+2, (3.2.13)

since 2a+2−5+ ε > 2
(

1− ε

2

)
−3+ ε =−1. Without loss of generality, it suffices to

consider only h > 0.

We can partition [−1
2 ,

1
2 ]× [0, 1

2 ] into V1∪V2∪V3∪V4, where

V1 = [−3h,3h]× [0,3h] ,

V2 = [−3h,3h]×
[

3h,
1
2

]
,

V3 =

[
3h,

1
2

]
×
[

0,
1
2

]
, and

V4 =

[
−1

2
,−3h

]
×
[

0,
1
2

]
.

Then J = J1 + J2 + J3 + J4, where

Ji =
∫∫

Vi

∣∣∆2
h f (t,ξ )

∣∣2 dtdξ

for i ∈ {1,2,3,4}.
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3h−3h

3h

1
2−1

2

1
2

0

V1

V2
V3V4

Figure 3.1: Partition of [−1
2 ,

1
2 ]× [0, 1

2 ] into V1∪V2∪V3∪V4

Using (3.2.12),

J1 .
∫∫

V1

t2a +h2a +ξ
2adtdξ .

∫∫
V1

h2adtdξ . h2a+2.

To estimate J2, we note that f ∈C2(R2\{(0,0)}) and apply Lemma 2.3.3 to get

∣∣∆2
h f (t,ξ )

∣∣≤ h2 sup
β∈[t,t+2h]

∣∣∣∣∂ 2 f (β ,ξ )
∂ t2

∣∣∣∣ . (3.2.14)

On V2, β ∈ [−3h,5h] and ξ ∈
[
3h, 1

2

]
so β . ξ , and since a < 1,

∣∣∣∣∂ 2 f (β ,ξ )
∂ t2

∣∣∣∣= ∣∣∣a(β 2 +ξ
2) a

2−1
+a(a−2)β

2 (
β

2 +ξ
2) a

2−2
∣∣∣. ξ

a−2. (3.2.15)

Thus by (3.2.14) and (3.2.15), and since 2a−3 <−1 implies 1
2a−3 < 0,

J2 .
∫∫

V2

h4
ξ

2a−4dtdξ . h5
(

h2a−3− 1
22a−3

)
≤ h2a+2.

To estimate J3, we use the same technique as in evaluating J2 and note that t + 2h <
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t +3h≤ 2t. Thus using Lemma 2.3.3,

∣∣∆2
h f (t,ξ )

∣∣≤ h2 sup
β∈[t,2t]

∣∣∣∣∂ 2 f (β ,ξ )
∂ t2

∣∣∣∣ . (3.2.16)

Since β ∈ [t,2t] and a < 1,

∣∣∣∣∂ 2 f (β ,ξ )
∂ t2

∣∣∣∣= ∣∣∣a(β 2 +ξ
2) a

2−1
+a(a−2)β

2 (
β

2 +ξ
2) a

2−2
∣∣∣

.
(
t2 +ξ

2) a
2−1

+ t2 (t2 +ξ
2) a

2−2

. (t +ξ )a−2 + t2 (t +ξ )a−4 . (3.2.17)

Then by (3.2.16) and (3.2.17), and since 1
2a−7 < 0,

J3 .
∫∫

V3

h4
(
(t +ξ )2a−4 + t4 (t +ξ )2a−8

)
dξ dt (3.2.18)

.
∫ 1

2

3h
h4

(
t2a−3 + t4x2a−7−

(
t +

1
2

)2a−3

− t4
(

t +
1
2

)2a−7
)

dt

. h4
(

h2a−2− 1
22a−2

)
≤ h2a+2.

Lastly, we estimate J4 in the exact same manner as J3, except that t +2h≤ t− 2
3t = t

3 .

Thus by Lemma 2.3.3,

∣∣∆2
h f (t,ξ )

∣∣≤ h2 sup
β∈[t, t

3 ]

∣∣∣∣∂ 2 f (β ,ξ )
∂ t2

∣∣∣∣ . (3.2.19)

Since β ∈
[
t, t

3

]
and a < 1,

∣∣∣∣∂ 2 f (β ,ξ )
∂ t2

∣∣∣∣= ∣∣∣a(β 2 +ξ
2) a

2−1
+a(a−2)β

2 (
β

2 +ξ
2) a

2−2
∣∣∣

.
(
t2 +ξ

2) a
2−1

+ t2 (t2 +ξ
2) a

2−2

. (|t|+ |ξ |)a−2 + t2 (|t|+ |ξ |)a−4 .
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Thus by a simple change of variable, J4 . (3.2.18), and thus J4 . h2a+2.

Lemma 3.2.4. Let f be defined as in Lemma 3.2.3. Then the function F(t,ξ )= f (t,ξ )e2πiH(x,ξ )

has

∫
R

∫∫
[− 1

2 ,
1
2 ]

2

∣∣Γ2
hF(t,ξ )

∣∣2
|h|5−ε

dtdξ dh < ∞

and

∫
R

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∆2
hF(t,ξ )

∣∣2
|h|5−ε

dtdξ dh < ∞

for ε ∈ (0,2] and 1− ε

2 < a < 1.

Proof. First we consider

∫
R

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∆2
hF(t,ξ )

∣∣2
|h|5−ε

dtdξ dh. (3.2.20)

Note that

∆
2
hF(t,ξ ) = e2πiH(t,ξ )

∆
2
h f (t,ξ )+2∆

1
he2πiH(t,ξ )

∆
1
h fh(t,ξ )+∆

2
he2πiH(t,ξ ) f2h(t,ξ ),

where fnh(t,ξ ) = f (t +nh,ξ ). Thus

∣∣∆2
hF(t,ξ )

∣∣2 . ∣∣∣e2πiH(t,ξ )
∆

2
h f (t,ξ )

∣∣∣2 + ∣∣∣∆1
he2πiH(t,ξ )

∆
1
h fh(t,ξ )

∣∣∣2 + ∣∣∣∆2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2 .
By Lemma 3.2.3, to show that (3.2.20) is bounded above, it suffices to consider only

K1 =
∫
R

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣∆1
he2πiH(t,ξ )∆1

h fh(t,ξ )
∣∣∣2

|h|5−ε
dtdξ dh = K1

1 +K1
2 (3.2.21)
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and

K2 =
∫
R

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣∆2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2
|h|5−ε

dtdξ dh = K2
1 +K2

2 , (3.2.22)

where

K1
1 =

∫
R\[− 1

10 ,
1

10 ]

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣∆1
he2πiH(t,ξ )∆1

h fh(t,ξ )
∣∣∣2

|h|5−ε
dtdξ dh, (3.2.23)

K1
2 =

∫
[− 1

10 ,
1
10 ]

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣∆1
he2πiH(t,ξ )∆1

h fh(t,ξ )
∣∣∣2

|h|5−ε
dtdξ dh, (3.2.24)

K2
1 =

∫
R\[− 1

10 ,
1

10 ]

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣∆2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2
|h|5−ε

dtdξ dh, (3.2.25)

and

K2
2 =

∫
[− 1

10 ,
1
10 ]

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣∆2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2
|h|5−ε

dtdξ dh. (3.2.26)

We bound K1
1 and K2

1 as we did I1 in Lemma 3.2.3. Note that

∣∣∣∆1
he2πiH(t,ξ )

∆
1
h fh(t,ξ )

∣∣∣2 . (∣∣∣e2πiH(t+h,ξ )
∣∣∣2 + ∣∣∣e2πiH(t,ξ )

∣∣∣2)(| f (t +2h,ξ )|2 + | f (t +h,ξ )|2
)

. t2a +h2a +ξ
2a (3.2.27)
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and

∣∣∣∆2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2 . (∣∣∣e2πiH(t+2h,ξ )
∣∣∣2 + ∣∣∣e2πiH(t+h,ξ )

∣∣∣2 + ∣∣∣e2πiH(t,ξ )
∣∣∣2) | f (t +2h,ξ )|2

. t2a +2h2a +ξ
2a (3.2.28)

so we proceed with the same argument that follows (3.2.12).

In order to bound K1
2 and K2

2 , it suffices to show that

L1 =
∫∫

[− 1
2 ,

1
2 ]

2

∣∣∣∆1
he2πiH(t,ξ )

∆
1
h fh(t,ξ )

∣∣∣2 dtdξ . h2a+2 (3.2.29)

and

L2 =
∫∫

[− 1
2 ,

1
2 ]

2

∣∣∣∆2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2 dtdξ . h2a+2. (3.2.30)

Without loss of generality, it suffices to consider only h > 0. Then we can partition

[−1
2 ,

1
2 ]× [−1

2 ,
1
2 ] into W1∪W2∪W3, where

W1 = [−3h,3h]× [0,5h] ,

W2 =

[
3h,

1
2

]
×
[

0,
1
2

]
, and

W3 = [−1
2
,
1
2
]2\(W1∪W2) .

Then L1 = L1
1 +L1

2 +L1
3 and L2 = L2

1 +L2
2 +L2

3, where

L1
i =

∫∫
Wi

∣∣∣∆1
he2πiH(t,ξ )

∆
1
h fh(t,ξ )

∣∣∣2 dtdξ ,

and

L2
i =

∫∫
Wi

∣∣∣∆2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2 dtdξ
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3h−3h

5h

1
2−1

2

1
2

−1
2

W1
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W3

Figure 3.2: Partition of [−1
2 ,

1
2 ]× [−1

2 ,
1
2 ] into W1∪W2∪W3

for i ∈ {1,2,3}.

Using (3.2.27) and (3.2.28), we find that

L1
1 .

∫∫
W1

t2a +h2a +ξ
2adtdξ .

∫∫
W1

h2adtdξ . h2a+2,

and

L2
1 .

∫∫
W1

t2a +h2a +ξ
2adtdξ .

∫∫
W1

h2adtdξ . h2a+2.

To estimate L1
3 and L2

3, note that if (t,ξ ) ∈W3 and t ′ ∈ [t, t +2h], then either t ′ ≤ 0,

ξ < 0, or t ′ < ξ . So H(t ′,ξ ) = 0 and e2πiH(t ′,ξ ) = 1. Thus, ∆n
he2πiH(t,ξ ) = 0 for n ∈ {1,2}

and L1
3 = L2

3 = 0.

We will now estimate L1
2 and L2

2. First, consider when (t,ξ ) ∈W2 and ξ > 2t. Since

t > 3h, for t ′ ∈ [t, t +2h], ξ > t ′. So H(t ′,ξ ) = 0, e2πiH(t ′,ξ ) = 1, and ∆n
he2πiH(t,ξ ) = 0 for
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n ∈ {1,2}.

Now assume that ξ ≤ 2t. Recall that e2πiH(t,ξ ) ∈C∞(R2\Z2) and f (t,ξ )∈C2(R2\{(0,0)}).

So by applying Lemma 2.3.3, we see that on W2, since h < t,

∣∣∣∆1
he2πiH(t,ξ )

∆
1
h fh(t,ξ )

∣∣∣≤ h2

(
sup

β∈[t,2t]

∣∣∣∣∣∂e2πiH(β ,ξ )

∂ t

∣∣∣∣∣
)(

sup
β∈[t,2t]

∣∣∣∣∂ f (β ,ξ )
∂ t

∣∣∣∣
)
. (3.2.31)

Since φ ∈C∞(R),

∣∣∣∣∣∂e2πiH(β ,ξ )

∂ t

∣∣∣∣∣≤
∣∣∣∣−2πiφ

′
(

ξ

β

)
ξ

β 2 e2πiH(β ,ξ )

∣∣∣∣. ξ

t2 . (3.2.32)

Since a < 1,

∣∣∣∣∂ f (β ,ξ )
∂ t

∣∣∣∣= ∣∣∣aβ (β 2 +ξ
2)

a
2−1
∣∣∣. ta−1. (3.2.33)

Thus by (3.2.31), (3.2.32), and (3.2.33), and since 1
2a−2 < 0,

L1
2 .

∫ 1
2

3h

∫ 2t

0
h4

ξ
2t2a−6dξ dt .

∫ 1
2

3h
h4t2a−3dt . h4

(
h2a−2− 1

22a−2

)
≤ h2a+2.

We again apply Lemma 2.3.3 to see that on W2, for ξ ≤ 2t and since 2h < t,

∣∣∣∆2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣≤ h2

(
sup

β∈[t,2t]

∣∣∣∣∣∂ 2e2πiH(β ,ξ )

∂ t2

∣∣∣∣∣
)

f (t +2h,ξ ). (3.2.34)

Since φ ∈C∞(R) and ξ ≤ 2t,

∣∣∣∣∣∂ 2e2πiH(β ,ξ )

∂ t2

∣∣∣∣∣≤
∣∣∣∣∣2πie2πiH(β ,ξ )

(
2πiξ 2

β 4

(
φ
′
(

ξ

β

))2

+
2ξ

β 3 φ
′
(

ξ

β

)
+

ξ 2

β 4 φ
′′
(

ξ

β

))∣∣∣∣∣
.

ξ

t3 . (3.2.35)
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Since ξ ≤ 2t, and since 3h < t on W2,

f (t +2h,ξ ) =
(
(t +2h)2 +ξ

2) a
2 . ta. (3.2.36)

Thus by (3.2.34), (3.2.35), and (3.2.36), and since 1
2a−2 < 0,

L2
2 .

∫ 1
2

3h

∫ 2t

0
h4

ξ
2t2a−6dξ dt . h2a+2.

Now consider

∫
R

∫∫
[− 1

2 ,
1
2 ]

2

∣∣Γ2
hF(t,ξ )

∣∣2
|h|5−ε

dtdξ dh. (3.2.37)

We show (3.2.37) is bounded above in a completely analogous manner as we showed that

(3.2.20) is bounded above.

Note that

Γ
2
hF(t,ξ ) = e2πiH(t,ξ )

Γ
2
h f (t,ξ )+2Γ

1
he2πiH(t,ξ )

Γ
1
h fh(t,ξ )+Γ

2
he2πiH(t,ξ ) f2h(t,ξ ),

now letting fnh(t,ξ ) = f (t,ξ +nh). Thus

∣∣Γ2
hF(t,ξ )

∣∣2 . ∣∣∣e2πiH(t,ξ )
Γ

2
h f (t,ξ )

∣∣∣2 + ∣∣∣Γ1
he2πiH(t,ξ )

Γ
1
h fh(t,ξ )

∣∣∣2 + ∣∣∣Γ2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2 .
Again by Lemma 3.2.3, it suffices to consider only

M1 =
∫
R

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣Γ1
he2πiH(t,ξ )Γ1

h fh(t,ξ )
∣∣∣2

|h|5−ε
dtdξ dh = M1

1 +M1
2 (3.2.38)
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and

M2 =
∫
R

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣Γ2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2
|h|5−ε

dtdξ dh = M2
1 +M2

2 , (3.2.39)

where

M1
1 =

∫
R\[− 1

10 ,
1

10 ]

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣Γ1
he2πiH(t,ξ )Γ1

h fh(t,ξ )
∣∣∣2

|h|5−ε
dtdξ dh, (3.2.40)

M1
2 =

∫
[− 1

10 ,
1
10 ]

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣Γ1
he2πiH(t,ξ )Γ1

h fh(t,ξ )
∣∣∣2

|h|5−ε
dtdξ dh, (3.2.41)

M2
1 =

∫
R\[− 1

10 ,
1
10 ]

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣Γ2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2
|h|5−ε

dtdξ dh, (3.2.42)

and

M2
2 =

∫
[− 1

10 ,
1

10 ]

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣Γ2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2
|h|5−ε

dtdξ dh. (3.2.43)

We bound M1
1 and M2

1 as we did K1
1 and K2

1 , as well as I1 in Lemma 3.2.3. Note that

∣∣∣Γ1
he2πiH(t,ξ )

Γ
1
h fh(t,ξ )

∣∣∣2 . (∣∣∣e2πiH(t,ξ+h)
∣∣∣2 + ∣∣∣e2πiH(t,ξ )

∣∣∣2)(| f (t,ξ +2h)|2 + | f (t,ξ +h)|2
)

. t2a +h2a +ξ
2a (3.2.44)
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and

∣∣∣Γ2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2 . (∣∣∣e2πiH(t,ξ+2h)
∣∣∣2 + ∣∣∣e2πiH(t,ξ+h)

∣∣∣2 + ∣∣∣e2πiH(t,ξ )
∣∣∣2) | f (t,ξ +2h)|2

. t2a +2h2a +ξ
2a (3.2.45)

so we proceed with the same argument that follows (3.2.12).

In order to bound M1
2 and M2

2 , it suffices to show that

N1 =
∫∫

[− 1
2 ,

1
2 ]

2

∣∣∣Γ1
he2πiH(t,ξ )

Γ
1
h fh(t,ξ )

∣∣∣2 dtdξ . h2a+2 (3.2.46)

and

N2 =
∫∫

[− 1
2 ,

1
2 ]

2

∣∣∣Γ2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2 dtdξ . h2a+2. (3.2.47)

Without loss of generality, it suffices to consider only h > 0. Then we can partition

[−1
2 ,

1
2 ]× [−1

2 ,
1
2 ] into T1∪T2∪T3, where

T1 = [0,h]× [−3h,3h] ,

T2 =

[
h,

1
2

]
×
[
−3h,

1
2

]
, and

T3 = [−1
2
,
1
2
]2\(T1∪T2) .

Then N1 = N1
1 +N1

2 +N1
3 and N2 = N2

1 +N2
2 +N2

3 , where

N1
i =

∫∫
Ti

∣∣∣Γ1
he2πiH(t,ξ )

Γ
1
h fh(t,ξ )

∣∣∣2 dtdξ ,

and

N2
i =

∫∫
Ti

∣∣∣Γ2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣2 dtdξ
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h

3h

−3h

1
2−1

2

1
2

−1
2

T1

T2

T3

Figure 3.3: Partition of [−1
2 ,

1
2 ]× [−1

2 ,
1
2 ] into T1∪T2∪T3

for i ∈ {1,2,3}.

Using (3.2.44) and (3.2.45), we find that

N1
1 .

∫∫
T1

t2a +h2a +ξ
2adtdξ .

∫∫
T1

h2adtdξ . h2a+2,

and

N2
1 .

∫∫
T1

t2a +h2a +ξ
2adtdξ .

∫∫
T1

h2adtdξ . h2a+2.

To estimate N1
3 and N2

3 , note that if (t,ξ ) ∈ T3 and ξ ′ ∈ [ξ ,ξ +2h], then either t ≤ 0,

ξ ′ < 0, or t < ξ ′. So H(t,ξ ′) = 0 and e2πiH(t,ξ ′) = 1. Thus, Γn
he2πiH(t,ξ ) = 0 for n ∈ {1,2}

and N1
3 = N2

3 = 0.

We will now estimate N1
2 and N2

2 . First, consider when (t,ξ ) ∈ T2 and ξ > t. Then for

ξ ′ ∈ [ξ ,ξ +2h], ξ ′ > t. So H(t,ξ ′) = 0, e2πiH(t,ξ ′) = 1, and Γn
he2πiH(t,ξ ) = 0 for n ∈ {1,2}.
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Now assume that ξ ≤ t. Recall that e2πiH(t,ξ ) ∈C∞(R2\Z2) and f (t,ξ )∈C2(R2\{(0,0)}).

So by applying Lemma 2.3.3, we see that on T2, since h < t,

∣∣∣Γ1
he2πiH(t,ξ )

Γ
1
h fh(t,ξ )

∣∣∣≤ h2

(
sup

β∈[ξ ,2t]

∣∣∣∣∣∂e2πiH(t,β )

∂ξ

∣∣∣∣∣
)(

sup
β∈[ξ ,2t]

∣∣∣∣∂ f (t,β )
∂ξ

∣∣∣∣
)
. (3.2.48)

Since φ ∈C∞(R),

∣∣∣∣∣∂e2πiH(t,β )

∂ξ

∣∣∣∣∣≤
∣∣∣∣2πiφ

′
(

β

t

)
1
t

e2πiH(t,β )
∣∣∣∣. 1

t
. (3.2.49)

Since a < 1,

∣∣∣∣∂ f (t,β )
∂ξ

∣∣∣∣= ∣∣∣aβ (t2 +β
2)

a
2−1
∣∣∣. ta−1. (3.2.50)

Thus by (3.2.48), (3.2.49), and (3.2.50), and since 1
2a−3 < 0,

N1
2 .

∫ 1
2

h

∫ t

−3h
h4t2a−4dξ dt

.
∫ 1

2

3h
h4t2a−3 +h5t2a−4dt

. h4
(

h2a−2− 1
22a−2

)
+h5

(
h2a−3− 1

22a−3

)
≤ h2a+2.

We again apply Lemma 2.3.3 to see that on T2, for ξ ≤ t,

∣∣∣Γ2
he2πiH(t,ξ ) f2h(t,ξ )

∣∣∣≤ h2

(
sup

β∈[ξ ,ξ+2h]

∣∣∣∣∣∂ 2e2πiH(t,β )

∂ξ 2

∣∣∣∣∣
)

f (t,ξ +2h). (3.2.51)

Since φ ∈C∞(R),

∣∣∣∣∣∂ 2e2πiH(t,β )

∂ξ 2

∣∣∣∣∣≤
∣∣∣∣∣2πie2πiH(t,β )

(
2πi
t2

(
φ
′
(

β

t

))2

+
1
t2 φ

′′
(

β

t

))∣∣∣∣∣. 1
t2 . (3.2.52)
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Since ξ ≤ t, and since h < t on T2,

f (t,ξ +2h) =
(
t2 +(ξ +2h)2) a

2 . ta. (3.2.53)

Thus by (3.2.51), (3.2.52), and (3.2.53), and since 1
2a−3 < 0,

L2
2 .

∫ 1
2

h

∫ t

−3h
h4t2a−4dξ dt . h2a+2.

This completes the proof.

We are now ready to prove Theorem 3.2.2:

The function ga(t) has

∫
R
|t|4−ε |ga(t)|2dt < ∞ and

∫
R
|ξ |4−ε |ĝa(ξ )|2dξ < ∞

for ε ∈ (0,2] and 1− ε

2 < a < 1.

Proof. By Lemma 2.3.2, it suffices to consider

∫
R

∫∫
[0,1]2

∣∣∆2
hGa(t,ξ )

∣∣2
|h|5−ε

dtdξ dh =
∫
R

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣∆2
h(Φ(t,ξ )e2πiΨ(t,ξ ))

∣∣∣2
|h|5−ε

dtdξ dh (3.2.54)

and

∫
R

∫∫
[0,1]2

∣∣Γ2
hGa(t,ξ )

∣∣2
|h|5−ε

dtdξ dh =
∫
R

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣Γ2
h(Φ(t,ξ )e2πiΨ(t,ξ ))

∣∣∣2
|h|5−ε

dtdξ dh. (3.2.55)

Choose δ > 0 such that [−5δ ,5δ ]⊂ (−η ,η). Note that Φ(t,ξ )e2πiΨ(t,ξ ) has bounded

modulus, so
∣∣∣∆2

h(Φ(t,ξ )e2πiΨ(t,ξ ))
∣∣∣2 and

∣∣∣Γ2
h(Φ(t,ξ )e2πiΨ(t,ξ ))

∣∣∣2 are bounded above. Thus,
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since ε < 2,

∫
R\[−δ ,δ ]

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣∆2
h(Φ(t,ξ )e2πiΨ(t,ξ ))

∣∣∣2
|h|5−ε

dtdξ dh < ∞

and

∫
R\[−δ ,δ ]

∫∫
[− 1

2 ,
1
2 ]

2

∣∣∣Γ2
h(Φ(t,ξ )e2πiΨ(t,ξ ))

∣∣∣2
|h|5−ε

dtdξ dh < ∞.

Let S1 = [−3δ ,3δ ]2 and S2 =
[
−1

2 ,
1
2

]2 \S1.

3δ−3δ

3δ

−3δ

S1

S2

Figure 3.4: Partition of [−1
2 ,

1
2 ]× [−1

2 ,
1
2 ] into S1∪S2

It remains to consider

D1 =
∫

δ

−δ

∫∫
S1

∣∣∣∆2
h(Φ(t,ξ )e2πiΨ(t,ξ ))

∣∣∣2
|h|5−ε

dtdξ dh, (3.2.56)
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D2 =
∫

δ

−δ

∫∫
S2

∣∣∣∆2
h(Φ(t,ξ )e2πiΨ(t,ξ ))

∣∣∣2
|h|5−ε

dtdξ dh, (3.2.57)

G1 =
∫

δ

−δ

∫∫
S1

∣∣∣Γ2
h(Φ(t,ξ )e2πiΨ(t,ξ ))

∣∣∣2
|h|5−ε

dtdξ dh, (3.2.58)

and

G2 =
∫

δ

−δ

∫∫
S2

∣∣∣Γ2
h(Φ(t,ξ )e2πiΨ(t,ξ ))

∣∣∣2
|h|5−ε

dtdξ dh. (3.2.59)

Without loss of generality, let h > 0.

Since for h < δ , [−3δ ,3δ +2h]⊂ [−5δ ,5δ ]⊂ (−η ,η),

D1 =
∫

δ

−δ

∫∫
S1

∣∣∆2
hF(t,ξ )

∣∣2
|h|5−ε

dtdξ dh

and

G1 =
∫

δ

−δ

∫∫
S1

∣∣Γ2
hF(t,ξ )

∣∣2
|h|5−ε

dtdξ dh,

which are finite by Lemma 3.2.4.

To show that D2 and G2 are finite, it suffices to show that

D
′
2 =

∫∫
S2

∣∣∣∆2
h(Φ(t,ξ )e2πiΨ(t,ξ ))

∣∣∣2 dtdξ . h4,

and

G
′
2 =

∫∫
S2

∣∣∣Γ2
h(Φ(t,ξ )e2πiΨ(t,ξ ))

∣∣∣2 dtdξ . h4,

since ε > 0 implies 4−5+ ε = ε−1 >−1 .
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Since Φ(t,ξ )e2πiΨ(t,ξ ) is in C2(R2\Z2), we find that on S2 and for h < δ , by applying

Lemma 2.3.3,

∣∣∣∆2
h(Φ(t,ξ )e2πiΨ(t,ξ ))

∣∣∣≤ h2 sup
β∈[t,t+2δ ]

∣∣∣∣∣∂ 2(Φ(β ,ξ )e2πiΨ(β ,ξ ))

∂ t2

∣∣∣∣∣
≤ h2 sup

(t,ξ )∈S2

sup
β∈[t,t+2δ ]

∣∣∣∣∣∂ 2(Φ(β ,ξ )e2πiΨ(β ,ξ ))

∂ t2

∣∣∣∣∣ ,
and

∣∣∣Γ2
h(Φ(t,ξ )e2πiΨ(t,ξ ))

∣∣∣≤ h2 sup
β∈[ξ ,ξ+2δ ]

∣∣∣∣∣∂ 2(Φ(t,β )e2πiΨ(t,β ))

∂ξ 2

∣∣∣∣∣
≤ h2 sup

(t,ξ )∈S2

sup
β∈[ξ ,ξ+2δ ]

∣∣∣∣∣∂ 2(Φ(t,β )e2πiΨ(t,β ))

∂ξ 2

∣∣∣∣∣ ,
where the suprema are finite and independent of h.

Thus

D
′
2 ≤

∫∫
S2

h4

(
sup

(t,ξ )∈S2

sup
β∈[t,t+2δ ]

∣∣∣∣∣∂ 2(Φ(β ,ξ )e2πiΨ(β ,ξ ))

∂ t2

∣∣∣∣∣
)2

dtdξ . h4,

and

G
′
2 ≤

∫∫
S2

h4

(
sup

(t,ξ )∈S2

sup
β∈[ξ ,ξ+2δ ]

∣∣∣∣∣∂ 2(Φ(t,β )e2πiΨ(t,β ))

∂ξ 2

∣∣∣∣∣
)2

dtdξ . h4.

3.2.2.3 The Counterexamples

Proof of Theorem 1.2.2 (Version 2) In Section 3.2.2.1, we construct G = Ga = Zga and

show that G (ga,1,1) is a Schauder basis of type Λ for 0 < a < 1
2 . In Theorem 3.2.2, we
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show that

∫
R
|t|4−ε |ga(t)|2dt < ∞ and

∫
R
|ξ |4−ε |ĝa(ξ )|2dξ < ∞

for ε ∈ (0,2] and 1− ε

2 < a < 1.

Thus for ε ∈ (0,1], there exists a value of a such that G (ga,1,1) is a Schauder basis of

type Λ,

∫
R
|t|3−ε |ga(t)|2dt < ∞, and

∫
R
|ξ |3−ε |ĝa(ξ )|2dξ < ∞,

as required.
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Chapter 4

Questions

In this chapter, we discuss some questions for further work. First, it would be interest-

ing to understand if the compact support condition in Theorem 1.2.1 can be relaxed. For

perspective, Theorem 1.1.4 remains true if the assumption that g is compactly supported is

replaced by the assumption that g is in the Wiener amalgam space W (`1,L∞), see Section

5 in [14]. Here, g ∈W (`1,L∞) if ∑n∈Z ‖χ[n,n+1]g‖∞ < ∞.

Question 4.0.1. Suppose that g ∈W (`1,L∞) and
∫
|ξ |2|ĝ(ξ )|2dξ < ∞. Is it possible for

G (g,1,1) to be a Schauder basis of type Λ?

We would also like to understand if one can relax the assumption ε > 0 in Theorem

1.2.2. If Theorem 1.2.2 fails when ε = 0, then this would provide a new symmetrically

weighted (3,3) version of the Balian-Low theorem for Schauder bases of type Λ, and would

complement the endpoint result in Theorem 1.2.1.

Question 4.0.2. Suppose that g ∈ L2(R) and

∫
|t|3|g(t)|2dt < ∞ and

∫
|ξ |3|ĝ(ξ )|2dξ < ∞.

Is it possible for G (g,1,1) to be a Schauder basis of type Λ?

Finally, we would like to relate our results to some of the existing literature discussed in

Section 2.4. It would be interesting to use matrix valued Muckenhoupt weights to look at

the multi-generated case, where a Gabor system is generated by multiple window functions

instead of a single window function, as in [33].

Question 4.0.3. Let R > 0 and G = {gr}R
r=1 ⊂ L2(R). Let a > 0 and R(ab)−1 = 1. Suppose

that for 1 ≤ r ≤ R, gr is compactly supported and
∫
|ξ |2|ĝr(ξ )|2dξ < ∞. Is it possible for

G (G,a,b) =
{

gr
k,n(t)

}
1≤r≤R,k,n∈Z

to be a Schauder basis of type Λ?
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As Schauder bases are also an intermediate spanning structure between Riesz bases and

exact systems, it is natural to wonder what the connection is between Gabor Schauder bases

and (Cq)-systems. It is known that every Schauder basis is a (Cq)-system for some q, see

Theorem 2.4 of [30]. However, there is no known equivalence between Schauder bases

and any particular q, making our results independent and unique. It is possible that the fact

that the dual of a Schauder basis is also a Schauder basis may illuminate the relationship

between Schauder bases and Cq-systems, see Corollary 5.22 in [18].

We also consider the possibility of Schauder basis results for shift-invariant spaces with

extra-invariance. For d = 1, we consider the examples on p. 72 and Lemma 6.1.1 in

[29] which show that Theorem 2.4.6 is sharp. Since Example 3.11 from [24] shows that

|x|α ∈A2,R(T) for 0 < α < 1, we can use an analogous result to Theorem 2.2.6 for shift-

invariant spaces, see Theorem 4.2 in [24], to show that the examples are Schauder bases of

type Λ.

Thus we have no distinction between Schauder bases and exact systems in the singly-

generated shift-invariant space case for d = 1. It is not yet known whether for higher

dimensions, or for multiply generated shift-invariant spaces, there is a distinction between

Schauder bases and exact systems.
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