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PREFACE 

 

The American Cancer Society was founded in 1913, and since that time, has 

promoted cancer awareness. Educational efforts began with medical professionals and 

later expanded to include the general public. Over the last century, their efforts, and 

others like theirs, have greatly improved public awareness of the disease, funding, and 

advocacy for cancer related programs.  There have been many advances in basic 

knowledge of most cancers.  Pioneering research in prostate cancer in 1941 by Huggins 

and Hodges demonstrated that castration caused cancer regression. Castration caused 

disease regression by removing androgens and therefore preventing the activation of the 

androgen receptor. This breakthrough provided a way to control tumor growth, but 

unfortunately they discovered that prostate cancer recurred independently of androgens.  

Although their work provided perhaps the biggest breakthrough in the prostate cancer 

field, earning them the Nobel Prize, the mechanisms by which prostate cancer and 

androgen-independent disease develops remains elusive some 66 years later. The 

androgen receptor remains a persistently pursued target in prostate cancer research today 

and anti-androgen therapy remains the most effective treatment. Laboratories throughout 

the world strive to understand how it is controlled in all stages of prostate development 

and cancer progression.  Our laboratory has developed the hypothesis that there is a sub-

set of anti-androgen-regulated genes that may allow the androgen receptor to escape anti-

androgen therapy and promote disease progression. This is a compelling idea – perhaps 

the treatment itself drives disease progression.  This research project specifically 

addresses this hypothesis by focusing on the oncogene DJ-1 in prostate cancer.  We 
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determined that DJ-1 is a novel androgen receptor binding partner regulated by androgens 

and anti-androgens and that DJ-1 expression increases in primary prostate cancer 

following androgen deprivation (anti-androgen) therapy. Thus, increased DJ-1 expression 

may promote androgen receptor activity and serve as a marker for the development of 

hormone-refractory prostate cancer. 
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CHAPTER I 

 

 INTRODUCTION 

 

Prostate Biology and Structure 

 The prostate is a male accessory reproductive gland found in all mammals that 

aids in liquefying the seminal fluid. Physiologic parallels are numerous between species, 

but there are few anatomic similarities. For example, in humans and dogs, the prostate is 

located at the bladder neck, while in mice and rats, the prostate is a combination of paired 

glandular organs (1).  Mouse and rat prostate is discussed in Chapter V. 

 

 

 

 

 

 

 

 

 

 

Figure 1. The adult prostate and surrounding structures.  The base of the 
prostate is located at the bladder neck.  The urethra bisects the prostate. Image 
taken from (1). 
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Figure 2: Prostatic Zones.  Lateral A) and Coronal B) views of the prostatic 
zones. The four histologically distinct zones are shown: anterior fibromuscular 
stroma, the central zone, the transitional zone, and the peripheral zone. Figure 
taken from (1). 

 

 

The human prostate changes little in size from birth until puberty.  At puberty, the 

prostate undergoes rapid growth and reaches an average adult weight of approximately 40 

grams.  Structurally, the human prostate resembles a truncated cone that is bisected by the 

urethra (Figure 1). Distinct anatomic lobes were not defined for the human prostate until 

1975.  Tissel and Salander described four anatomically distinct lobes that were arranged 

in an “onion” pattern.  The anatomical pattern they defined was confirmed by other 

investigators and is used today. The prostate is composed of the central, transition, 
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peripheral zones, and a region of anterior fibromuscular stoma (Figure 2).  As the name 

indicates, the anterior fibromuscular stroma is the most anterior prostatic structure. 

Posteriorly to the stromal region are the paired central zones. Interior to the central zones 

are the transition zones which are located on either side of the urethra. The transition 

zones represent the smallest zone in the normal prostate. Lastly, the peripheral zone is 

located on the posterior side of the prostate.  The peripheral zone is the largest region of 

the normal adult prostate (Figure 2) 

 

Histologically, prostatic glands are composed of several cell types (Figure 3).  The 

predominant cells are tall columnar luminal epithelial cells which are androgen-dependent 

and produce prostatic secretions (2, 3).  Luminal epithelial cells are characterized by 

expression of androgen receptor and cytokeratins 8 and 18. Basal cells are the second 

most abundant cell type.  Basal cells form a continuous layer between the luminal cells 

and the basement membrane/basal lamina (2).  Cytokeratins 4 and 14 as well as p63 are 

basal cell markers. The third prostatic epithelial cell type is neuroendocrine cells which 

are androgen-independent and are dispersed throughout the basal layer (4).  

Neuroendocrine cells are a minor population of cells in the normal prostate and express 

chromogranin A, serotonin, and neuropeptides.  A thick layer of stroma surrounds the 

epithelial glands and is composed primarily of smooth muscle but also contains 

fibroblastic, neuronal, vascular, and lymphatic cell types (5). Stromal markers include 

smooth muscle alpha-actin and vimentin. 
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Figure 3: Schematic Diagram of the Cell Types in an Adult Human Prostatic 
Duct. Relative abundance of epithelial cell types is depicted.  Figure from (2). 
 

 

In most mammals, the prostate is not of great pathological significance. For 

humans, this is not the case.  The human prostate is associated with a number of diseases 

which are discussed.   

 

Prostatic Diseases 

 Unlike most mammals, the human prostate is associated with both benign and 

malignant conditions. The presence of LUTS, or Lower Urinary Tract Symptoms, such as 

frequent urination, urgent need to urinate, and nocturia are common to all prostatic 

diseases and are typically the reason men see their doctor. These symptoms alone could 

be evidence of either a benign or a malignant condition.  Prostatitis and Benign Prostatic 
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Hyperplasia are two common non-malignant conditions that affect the prostate while 

adenocarcinoma is the most common malignant prostatic disease.  

 

Prostatitis 

Prostatitis is an inflammation of the prostate that encompasses four disorders: 

acute bacterial prostatitis, chronic bacterial prostatitis, chronic pelvic pain syndrome, and 

asymptomatic inflammatory prostatitis. Acute prostatitis is the least common of the four 

types.  It is caused by a bacterial infection that often results in fever, lower back pain, and 

a burning sensation during urination in addition to general LUTS symptoms.  Acute 

prostatitis is easily cured with antibiotics.  Chronic bacterial prostatitis is also relatively 

uncommon and is essentially acute prostatitis accompanied by an underlying problem in 

the prostate allowing chronic infection.  This type of prostatitis is treated with antibiotics, 

but may not be curable. The third, and most common, type of prostatitis is known as 

chronic pelvic pain syndrome.  It can be either inflammatory or non-inflammatory and 

symptoms often appear and disappear unexpectedly.  This type of prostatitis is the least 

well understood and the treatments vary between patients.  Asymptomatic inflammatory 

prostatitis is the fourth variety and occurs when the patient has no symptoms, but 

inflammatory cells are present in the semen.  

 

Prostatitis in itself is a relatively minor disorder of the prostate, but inflammatory 

markers have recently been correlated with cancer risk (6, 7).  However, other studies 

determined that clinical prostatitis did not increase occurrence of prostate cancer (8). 



 6 

These controversial results indicate that the effects of prostattis on prstate cancer risk or 

initiation require further investigation. 

 

Benign Prostatic Hyperplasia (BPH) 

BPH is another common disease of the prostate.  BPH occurs in the transitional 

zone resulting in an age-dependent enlargement of the gland. Early development of BPH 

usually occurs after age 40 with prevalence rising to over 50% by age 60, and may reach 

90% in men over 85 years  (9, 10).  Approximately 50% of men diagnosed have moderate 

to severe LUTS (9). Both stromal and epithelial hyperplasia have been documented in 

BPH, but it is typically accepted that the stromal:epithelial cell ratio is higher in BPH than 

normal prostate (9).  

 

BPH is diagnosed by testing the rate of urine flow, digital rectal examination, as 

well as prostate-specific antigen (PSA) levels.  Decreased urine flow rate may indicate 

that a patient has an enlarged prostate, which can be confirmed with a digital rectal 

examination. Blood tests are performed to determine the levels of PSA, a serine protease 

that functions to liquefy semen.  If the prostate is enlarged but PSA levels are normal 

(lower than 4 ng/mL), then BPH rather than prostate cancer is likely the cause of the 

patient’s LUTS.  
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Prostate Cancer 

The most common prostate malignancy is adenocarcinoma. Unlike BPH, prostate 

adenocarcinoma occurs primarily in the peripheral zone. Prostate Cancer (PCa) is the 

most prevalent cancer in males, affecting 1 in 9 men between 60 and 70 years old. There 

are multiple risk factors for the development of PCa, but age is the most significant.  

Other risk factors include race, family history, and environmental aspects such as diet 

(11). Studies of age-specific incidence have revealed that risk increases significantly after 

age 55 and peaks at age 70-74. Autopsy studies have revealed the long latency of PCa 

because lesions have been found in the prostates of men in their 20s and 30s (11). Race 

has been added to the risk factor list due to the 60% higher incidence in African-

Americans as compared to whites (11). Mortality rates are also higher in African-

Americans, although the causes are unclear (11).  Since the 1950s epidemiological studies 

determined that having a first-degree relative with PCa increased an individual’s risk of 

developing the disease by 2-3 fold, (reviewed in (11)). Further, epidemiology has 

determined that the prevalence of PCa is much higher in the United States than in other 

parts of the world.  In Asia for example, PCa rates are very low, but Asian men who 

immigrate to the United States have similar rates of PCa to American men, indicating that 

this difference is related to dietary and environmental differences rather than genetic ones 

(2). There is a genetic component to PCa risk, however.  Two familial susceptibility loci 

have been mapped to the X chromosome and to a region of chromosome 1q (2, 12, 13). 

The impact of these factors on the development and progression of PCa is currently an 

area of intense investigation. 
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Although controversy exists as to whether prostatitis or BPH increase PCa risk or 

the development of pre-neoplastic lesions, prostatic-intraepithelial neoplasia (PIN) has 

been accepted as a precursor to cancer (14).  PIN lesions can be described as either low-

grade (LGPIN) or high-grade (HGPIN) depending on the level of architectural 

abnormalities.  LGPIN resembles normal prostate, but tufting of the luminal epithelial 

cells exists. HGPIN is considered an immediate precursor to early invasive carcinoma. 

Figure 4 depicts the progression from normal prostate epithelium to metastatic cancer and 

well-defined architectural changes that occur during this progression. For example, there 

is typically a loss of basal cells in PIN, but the basal lamina/basement membrane is intact.  

Once epithelial cells invade the basal lamina, the lesion would be classified as invasive 

carcinoma.  Metastasis is defined by migration and growth of prostatic epithelial cells to 

distant sites in the body (Figure 4).   
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Figure 4: Pathway for Human PCa Progression. Stages of progression are 
correlated with specific changes such as loss of basal cells or invasion of the basal 
lamina. Candidate genes for the progression of PCa are shown. Figure taken from 
(2). 

 

 Although there are relatively clear guidelines for classification of PIN versus 

carcinoma, the heterogeneous and multi-focal nature of PCa provides a challenge to 

researchers. When PCa samples are examined histologically, there will typically be a 

combination of normal, pre-neoplastic, and neoplastic foci of varying severity throughout 

the tissue. In regards to multifocality, microdissection of adjacent neoplastic lesions are 

not genetically identical, indicating that multiple foci may emerge and evolve 

independently (15, 16). This phenomena has made PCa research difficult due to the 

difficulty of getting a homogeneous sample that is large enough to study at the molecular 

level.  Fortunately, new techniques such as cell sorting can now be used to isolate specific 

cell populations and many standard techniques have become more sensitive, allowing 

smaller samples to be examined. 
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In order to provide a standard pathological grading system despite the 

heterogeneous nature of PCa, Gleason developed a grading system that is the predominant 

one used by pathologists today.  The data leading to the development of the system was 

collected by studies of the Veterans Administration Cooperative Urological Research 

Group between 1960 and 1975.  The system was developed in the 1970s by Dr. D.F. 

Gleason by blindly correlating tumor histology with patient survival data to determine 

malignancy (17-20). The histological patterns were arranged into five groups (1-5), 

referred to as Gleason grades or patterns. To generate a score, the two most prevalent 

histologic patterns are evaluated and rated as Gleason pattern 1-5, with higher numbers 

representing more aggressive/advanced carcinoma.  These numbers are then added to give 

the Gleason score.  For example, if the most prevalent lesion is a Gleason pattern 4 and 

the second most prevalent is a Gleason pattern 3, then this is a Gleason (4 + 3), or 

Gleason score 7 (21). Each progressive Gleason pattern is represented by cellular and 

architectural changes as depicted in Figure 5.  Gleason score 2-4 is considered low-grade, 

5-7 is intermediate, and 8-10 is a high-grade tumor. 
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Figure 5: The Gleason Grading System.  Pathologic grading system used to 
grade the malignancy of adenocarcinoma. Gleason patterns range from 1, 
representing small, round, normal glands, to a 5, which corresponds to a complete 
loss of glandular architecture.  This figure represents Gleason’s original 
description of glandular architecture of each grade (19). 

 

 Multiple molecular events have been associated with the development of PCa, but 

only several will be described here.  One common early event in PCa progression is the 

loss of a region of chromosome 8p.  This chromosomal loss occurs in approximately 80% 

of tumors as well as in lung and colon cancers (22-24). One region of 8p that is frequently 
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lost early in PCa progression is 8p12-21. The candidate gene for this locus is the 

homeobox gene, Nkx3.1(25).  Nkx3.1 is required for normal prostate differentiation in 

mice, and deletion of one allele is sufficient to cause development of PIN lesions (26) 

(Figure 4).  

 

 Another step in prostate cancer progression occurs with the loss of chromosome 

10q and the tumor suppressor PTEN (Phosphatase and Tensin deleted on chromosome 

10).  Loss of 10q occurs in 50%-80% of prostate tumors and also occurs in breast cancer 

and glioblastoma (27). Loss of this region is thought to occur after 8q since it is observed 

more frequently in carcinoma than in PIN (Figure 4).  PTEN has been implicated in PCa 

due to frequent mutation in PCa cell lines and total loss in other cell lines and xenografts 

(28-30). Loss of PTEN activates the Akt signaling cascade and leads to increased cell 

proliferation (31).  Increased Akt activity has been observed in xenografts as well as 

primary tumors, supporting a role for PTEN in PCa progression (31).  

 

 A third common event in PCa progression that results in carcinoma is the loss of 

chromosome 13q which includes the Retinoblastoma (Rb) tumor suppressor gene.  This 

deletion occurs in at least 50% of prostate tumors (32-34). Rb mutations and loss of 

expression have been observed in localized and advanced carcinomas (35-38) (Figure 4).  

Rb plays an important role in PCa by regulating apoptosis in response to androgens (39-

41). Homozygous deletion of Rb is lethal, but tissue rescue of the Rb null prostates 

revealed dysplasia and invasive carcinoma, which is exacerbated by treatment with 

androgens (27). 
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 Deletion of chromosome 17p is a relatively late-stage event in the progression of 

PCa (42).  This region encodes the well characterized p53 tumor suppressor gene.  p53 

mutations occur infrequently in early invasive carcinoma (43) (44). Mutations of p53 

were identified in advanced carcinomas and metastatic lesions from 

immunohistochemical examination of accumulated protein and by direct mutational 

analyses (Figure 4) (2, 45-47). 

  

 Consistent with the heterogenous nature of PCa, there are many genes that have 

been implicated in the development and progression of PCa. A few of the most studied 

are listed and discussed briefly above.  One simil     arity in the molecular profile of PCa 

exists, however, the importance of the androgen receptor in prostate development and all 

stages of prostate cancer progression.  

 

Androgen Receptor Signaling 

Male steroid hormones 

   The androgen receptor (AR) is part of the superfamily of nuclear receptors 

which traditionally function by binding small cytoplasmic steroid or non-steroid ligands 

that enter cells through diffusion. The type-one receptors (androgen, progesterone, 

estrogen, glucocorticoid, and mineralcorticoid) share functional domains consisting of an 

N-terminal variable domain, a DNA binding domain, a hinge region, and a hormone 

binding domain. Type-one receptors are associated with heat shock proteins when 
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inactive, but upon ligand binding, the heat shock proteins are released, the receptor 

dimerizes, and translocates to the nucleus to activate transcription of target genes.  

 

Prostatic growth and function is regulated predominantly by testicular androgens 

via the androgen receptor, but to a lesser degree by adrenal androgens.  The endocrine 

pathway that ultimately results in synthesis of androgens begins in the hypothalamus. 

Lutenizing Hormone Releasing Hormone (LHRH) is synthesized and released from the 

hypothalamus which stimulates the pituitary to release lutenizing hormone (LH) and 

adrenocorticotropic hormone (ACTH).  LH stimulates the production of testosterone in 

the testis while ACTH stimulates the adrenal glands to synthesize the adrenal androgens 

dihydroepiandrosterone (DHEA), DHEA sulfate, and androstenedione. Both testicular 

and adrenal androgens stimulate the prostate, but testosterone is responsible for the 

majority of effects (Figure 6). Testosterone circulates through the bloodstream where it is 

bound to albumin or sex-hormone binding globulin, or it is free (un-bound). When free 

testosterone reaches the prostate it diffuses across the plasma membrane and is converted 

to the more potent androgen, dihydrotestosterone (DHT), by 5 alpha-reductase. DHT 

binds the androgen receptor, causing a release of heat shock proteins and recruitment of 

co-regulators.  Ligand-binding triggers AR dimerization and phosphorylation followed by 

translocation to the nucleus where AR binds the promoter regions of androgen-regulated 

genes, such as PSA, via an androgen responsive element (ARE) to activate transcription 

(Figure 7). 
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Figure 6: The Male Endocrine Pathway The hypothalamus releases LHRH 
stimulating the pituitary to generate LH and ACTH.  LH stimulates the synthesis 
of testosterone in the testis, while ACTH stimulates production of adrenal 
androgens.  Both testicular and adrenal androgens stimulate the prostate in the 
relative amount shown, 95% and 5% respectively. In addition to stimulating 
prostatic growth, androgens are also part of a negative feedback loop to the 
pituitary and hypothalamus to stop hormone production. Figure adapted from (1).  
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Figure 7: AR Action In the Prostate. Testosterone is released from sex-hormone 
binding globulin (SHBG) and diffuses into an androgen-responsive cell.  Once in 
the cytoplasm, testosterone is converted to DHT, binds AR which causes the 
release of heat shock proteins (HSP).  Ligand binding induces receptor 
dimerization and phosphorylation followed by translocation to the nucleus. 
Nuclear AR binds androgen-responsive elements in the promoter regions of 
androgen-regulated genes, recruits co-regulators such as ARA70, and the general 
transcription apparatus (GTA). Activation of target genes leads to biological 
responses such as production of PSA and promotion of growth and survival. 
Figure from (48). 

 

 

 



 17 

Androgen Receptor in Normal Prostate and Prostate Cancer 

Androgens and the AR are required for development and normal prostate function 

(2, 49-52). The prostates of AR knockout mice do not develop (52) nor do the prostates of 

testicular feminized (Tfm) mice or individuals with inactivating mutations of AR (49, 50, 

53, 54).  Once the prostate develops, androgens  are the primary regulators of epithelial 

cell proliferation and apoptosis (48-50). Androgens promote cell survival and inhibit 

apoptosis (Figure 7) (48, 49).  In the normal prostate, there is a balance between the 

number of cells proliferating and cells undergoing apoptosis resulting in maintenance of 

the size of the gland.  

 

Unlike the genes discussed previously that have been implicated at specific times 

in PCa development and progression, AR is important at all stages (2, 49). AR is required 

for normal prostate function and is expressed in PIN and early carcinoma, however it is 

also expressed in advanced and metastatic carcinoma.  Androgens regulate the 

proliferation rates of epithelial cells, the predominant cell type involved in 

adenocarcinoma, so increased androgen levels or AR activity could result in uncontrolled 

proliferation and cancer. This is one reason that PSA, an androgen-regulated gene, is used 

as a marker for PCa. Another mechanism by which PSA levels are increased in cancer is 

that abnormal ductal structures allow PSA to be secreted into the extra-cellular space, 

rather than prostatic lumens, resulting in increased PSA in the bloodstream (55, 56).   

 

In addition to regulation of PSA, AR regulates a number of other genes through 

numerous interactions with co-activators and co-repressors. Once AR translocates to the 
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nucleus, nuclear AR co-regulators facilitate interactions with DNA and with the general 

transcription initiation complex.   

 

Androgen Deprivation Therapy as a Treatment for PCa 

Prostate cancer is initially dependent upon androgens for growth and survival and 

when androgens are removed, massive apoptosis and tumor regression occurs. This 

observation was made by Huggins and Hodges in 1941 when they reported that castration 

caused prostate cancer regression (57). Huggins performed surgical castration to treat 

prostate cancer, and it was highly effective for a period of time, but eventually the tumors 

recurred independently of androgens. Androgen deprivation therapy (ADT) is still the 

most commonly used therapy for androgen-dependent (AD) prostate cancer (58, 59). 

Today’s physicians rely on chemical castration using mono- or combination therapy. 

Maximum androgen blockade has been initiated when anti-androgens were administered 

along with gonadotropin-releasing hormone (GnRH)  to simultaneously block adrenal as 

well as testicular androgens or with LHRH analogs to block the synthesis of either 

testicular or adrenal androgens (60, 61).  As with physical castration, the tumor initially 

responds to androgen deprivation but will eventually recur as an androgen-independent 

tumor.  The mechanisms behind the progression from androgen-dependency to androgen-

independency have been studied in depth, but appear to vary from patient to patient and 

thus remain difficult to study.  
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Mechanisms for the Development of AIPC 

Feldman and Feldman have complied and discussed additional hypotheses for the 

development of androgen-independent disease (48).  Their hypotheses focus on AR since 

it is likely at the center of the development of androgen-independent prostate cancer 

(AIPC).  Their hypotheses include the hypersensitive AR pathway, the promiscuous AR, 

the outlaw AR, the AR bypass, and lurker cells (Figure 8).  The hypersensitive and 

promiscuous AR hypotheses will be discussed in the most detail as they are closely 

related to this research, but all hypotheses have primary research supporting them which 

is discussed by Feldman (48). 
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Figure 8: Hypotheses for the development of androgen-independent prostate 
cancer. Multiple mechanisms exist for a cancer cell to escape ADT and become 
androgen-independent.  Several of these mechanisms involve AR. A) The 
hypersensitive pathway occurs when AR is amplified or is more sensitive to low 
androgen levels. B) In the promiscuous pathway, AR can be activated by steroids 
or anti-androgens typically due to mutations allowing these agents to act as 
agonists. C) Receptor Tyrosine Kinases (RTKs) can activate AR in the Outlaw 
pathway by phosphorylating AR in the absence of ligand D) The bypass pathway 
does not involve AR, but rather other pro-survival genes like bcl-2 stimulate the 
cell to survive in the absence of AR signaling E) The lurker cell hypothesis relies 
on the possibility that androgen-independent cells always exist in the prostate and 
are selected for by androgen-deprivation therapy (48).   
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Hypersensitive AR 

The hypersensitive AR hypothesis is one possible mechanism for prostate cancer 

to circumvent ADT.  If the tumor increases sensitivity to androgens it would be able to 

take advantage of the small amounts of androgens present after ADT. These tumors 

would not strictly be androgen-independent because they would still rely on androgens, 

just in much lower amounts than normal prostate.  For a prostate tumor to become 

hypersensitive to androgens one of two things (or both) must occur. AR must either be 

amplified or become more sensitive to low levels of androgens (Figure 8a). If AR is 

amplified, there is an increase in the percentage of ligand-bound receptor even though 

androgen levels are low. Studies have indicated that approximately 30% of androgen-

independent tumors after ADT have AR amplification, whereas none of them had AR 

gene amplification before androgen-ablation (62-64). 

An alternate mechanism for prostate tumors to become hypersensitive to low-

levels of androgens is through increased AR sensitivity. This mechanism was documented 

in an animal model for PCa where tumor cells exhibited increased expression of AR, 

increased stability, and enhanced nuclear localization of AR (65). These cells were more 

sensitive to DHT than expected: the growth-promoting concentration was 4-fold lower 

than the regular androgen-dependent LNCaP cells. Further, Balk (66) reported that AR 

mRNA levels rose up to 70-fold in metastatic AI compared to primary prostate cancer and 

that AR immunostaining was nuclear in androgen-independent (AI) prostate cancer cells, 

even in patients undergoing ADT/bicalutamide treatment. Examples of increased AR 
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expression and sensitivity demonstrate that these situations occur in vivo and that the 

hypersensitive AR pathway contributes to promotion of androgen-independence. 

 

Promiscuous AR 

A second hypothesis for tumor cells to escape ADT is through a promiscuous AR.  

This hypothesis is based upon the fact that most androgen-independent tumors express 

AR. It seems that many androgen-independent tumors do not arise from loss of androgen 

signaling, but rather from genetic changes that cause divergent activation of the AR 

signaling pathway (67).  These changes are typically missense mutations of AR resulting 

in decreased ligand specificity allowing other non-androgen steroids or androgen-

antagonists to activate AR (Figure 8b).  The rate of AR somatic mutations in PCa has 

been debated in the literature, but seems that most mutations occur in metastatic samples 

(68). Further analysis revealed the mutation rate increased after androgen deprivation (58, 

62, 69-71). It seems logical that gain-of-function mutations would be selected for in order 

to provide a growth advantage. There are many mutations that have been characterized 

and are reviewed thoroughly elsewhere (48, 49). Importantly, most somatic AR mutations 

discovered in AI prostate tissue localize to discrete regions of the receptor and suggest 

that altered androgen signaling provides a potential mechanism for the re-emergence of 

tumor growth during the course of ADT (67). 

 

One of the most well known AR mutations is the T877A substitution mutation 

found in the LNCaP human PCa cell line (72). This mutation allows progestins, estrogens, 

and anti-androgens to act as agonists (48, 73, 74).  Studies of primary prostate tumors 
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revealed that this mutation was present in 6 of 24 metastatic prostate cancer samples, 

indicating that it occurs relatively frequently in AIPC patients (75).  AR mutations that 

allow anti-androgens to gain agonist function could explain the clinically observed 

phenomenon of  “anti-androgen withdrawl syndrome” where patients worsen clinically 

with flutamide treatment, but improve when it is withdrawn (76-78). These patients 

experience rising PSA levels when treated with flutamide and seems to be due to selection 

of cells expressing a promiscuous AR. When flutamide treatment is withdrawn, PSA 

levels decrease as well as other parameters such as acid and alkaline phosphatases. In 

these studies, it seems that flutamide drives selection of cells expressing mutant ARs. The 

T877A mutation was documented in the bone marrow metastases of 5 out of 16 patients 

who had received flutamide treatment (69).  As expected, these cells exhibited growth 

stimulation from flutamide treatment. Tumors in other patients who did not receive 

flutamide treatment had different mutations and did not grow in response to flutamide 

treatment.  This suggests that flutamide treatment provided selective pressure for 

mutations resulting in a promiscuous AR.  

 

A different mechanism whereby flutamide or other anti-androgens could result in 

promiscuous AR activity is through alterations to AR co-regulators.  There are numerous 

co-activators and co-repressors of AR that have been described (49, 79). Studies have 

identified alterations in expression of AR co-regulators when there is no apparent 

mutation of AR (44). An increase in AR activity could be the result of increased 

expression of co-activators, or by decreased expression of co-repressors. Several AR co-

regulators have been specifically linked to advanced and androgen-independent prostate 



 24 

cancers. Two AR co-activators, steroid receptor co-activator 1 (SRC1) and transcriptional 

intermediary factor 2 (TIF2), are over-expressed in several prostate cancer cell lines and 

in some recurrent prostate cancers (80-82). These changes allowed activation of AR at 

physiologic (low) levels of adrenal androgens indicating that these co-activators could 

promote promiscuous AR activity in vivo. Nuclear accumulation of another AR co-

activator, Tat interactive protein, 60kDa (Tip60), was increased in biopsies from patients 

with AIPC (83).  Additionally, Tip60 expression was increased by androgen deprivation 

in the LNCaP and CWR22 xenograft models (82, 83) indicating that Tip60 may be part of 

a family of co-activators that are regulated by ADT to promote development of AIPC. 

The structurally similar AR co-activators, p300 and CBP (CREB binding protein), 

enhance ligand-independent activation of AR in the presence of interleukin 6 (IL-6) (82).  

IL-6 and other cytokines activate multiple signaling cascades, such as the JAK/STAT and 

MAPK pathways that have been identified in the outlaw receptor hypothesis (Figure 8c) 

(48, 82). The role of AR co-repressors in the development of AIPC is less well 

documented, but at least one example has been documented. The AR co-repressor, 

nuclear receptor co-repressor (NCoR), has been shown to differentially repress AR 

activity in the presence of different agonistic and antagonistic ligands. In LNCaP cells 

that express the T877A mutant AR, NCoR was unable to repress the agonistic activity of 

the anti-androgens flutamide and cyproterone acetate (84).  This indicates that AR 

mutations can modify the effectiveness of AR co-repressors.  The expression pattern of 

NCoR and other AR co-repressors has not been evaluated in androgen-independent 

disease, however, decreased expression of NCoR in breast cancer correlated with 

tamoxifen (an ER antagonist) resistance (85). Breast cancer patients that lacked functional 
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NCoR, tamoxifen became an ER agonist and led to the activation of ER responsive genes 

(85).  These examples of nuclear receptor co-activators and co-repressors highlight the 

importance of these proteins in both normal tissues and in the development of hormone 

refractory cancers. 

 

 Finally, there are additional ligand-independent mechanisms involving receptor 

tyrosine kinases, anti-apoptotic genes like bcl-2,  (48, 86, 87) or growth factors such as 

insulin-like growth-factor-1 (IGF-1), keratinocyte growth factor (KGF) and epidermal 

growth factor (EGF) (88, 89) that could alter AR activity in the absence of androgen, 

thereby facilitating progression towards androgen resistant disease (Figure 8C and D). A 

final hypothesis for the development of AIPC is known as the lurker cell. Some believe 

that androgen-independent cells always exist in small numbers in the prostate, potentially 

as prostate stem cells or cancer stem cells, and that ADT provides a growth advantage to 

these cells (Figure 8E) (48) (71).  

 

DJ-1 

Human DJ-1 is located in at 1p36.33-1p36.12 and is composed of 7 exons 

encoding a 20 kilo-Dalton protein (NCBI accession numbers: mRNA D61380, protein 

BAA09603). DJ-1 is a ubiquitous cytoplasmic and nuclear oncogene also known as 

PARK7 (90-92). DJ-1 was initially identified by Nagakubo and colleagues in a yeast two 

hybrid screen for c-myc binding partners (93).  Although a portion of the DJ-1 cDNA 

was identified as a putative c-myc binding protein in this assay, they ultimately 

determined that DJ-1 does not interact with c-myc.  Instead, it was determined to be a 
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false positive because only a small non-coding region of DJ-1 interacted with the c-myc 

fusion protein (93). Although it did not interact with c-myc, the group was still interested 

in the DJ-1 cDNA because it was previously uncharacterized. They determined that 

increased DJ-1 expression is capable of transforming NIH-3T3 cells either alone or, to a 

greater extent, in conjunction with c-myc or H-ras over-expression, thus giving DJ-1 the 

oncogene moniker (93). Since this initial discovery and characterization, DJ-1 has been 

associated with multiple signaling pathways and human diseases, as well as being 

characterized in multiple model systems (90-92, 94-99). 

  

The crystal structure of DJ-1 was determined by several groups, revealing that the 

mature protein exists as an obligate dimer (Figure 9) (100, 101). However, even the 

elucidation of the structure and analysis of the protein sequence was unable to determine 

the function of DJ-1.  There were no known protein domains that were identified in the 

human DJ-1 sequence. Rather, the protein sequence and structure resembled domains 

required for thiamine synthesis and chaperone activity in bacteria (100-102). Since there 

were no exact matches for known protein domains, determination of the crystal structure 

seemed to raise more questions than it answered by providing a potential role for DJ-1 as 

a protein chaperone. 
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Figure 9: Crystal Structure of Human DJ-1. DJ-1 is an obligate dimer. One 
monomer is shown in blue and the second in green. Bottom view is rotated 90 
degrees from the top view. Leucine 166 which is mutated in Parkinson’s disease 
is shown in red.  Figure modified from (100). 
 

 

Since the initial discovery, over-expression of DJ-1 has been associated with a 

number of human diseases including Parkinson’s disease (90, 92) and carcinomas of the 

lung, breast, and prostate  (95, 99).  In Parkinson’s disease research, DJ-1 is referred to as 

PARK7.  Many research groups study the role of DJ-1 in Parkinson’s disease, and have 

discovered multiple functions that may contribute to disease onset and progression.  

Bonifati and associates were among the first to link DJ-1 to autosomal recessive early on-

set Parkinson’s (91) (103). Mapping of the DJ-1 (PARK7) locus in several genetically 

isolated families with this form of Parkinson’s revealed the L166P DJ-1 mutation (103).  
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Bonifati and others determined that this mutation destabilized the protein leading to rapid 

turnover by the proteasome and affected oligomerization and sub-cellular localization 

(91) (90) (104) (105).  Further, Yokota and colleagues determined that down regulation 

of DJ-1 in neuronal cells increased cell death from oxidative stress, ER stress, and 

inhibition of the proteasome, but not by pro-apoptotic stimulation (105). Cell death from 

hydrogen peroxide treatment was rescued by wild-type DJ-1 but not by the L166P mutant 

DJ-1 (105). Additional research in neuroblastoma cell lines (106), Drosophila (107) (108) 

and DJ-1 mutant mice (109) (110) confirmed the role of DJ-1 in oxidative stress and in 

normal function of dopaminergic neurons. Taira and co-workers demonstrated that DJ-1 

expression increased after hydrogen peroxide treatment and that treatment caused a shift 

in the isoelectric point of DJ-1 (106).  Oxidative damage to DJ-1 has been reported in the 

brains of sporadic Parkinson’s disease and Alzheimer’s disease patients (111).  Ten 

isoforms of DJ-1 were identified in Parkinson’s and Alzheimer’s patients with isoelectric 

points ranging from 5.5 to 8.4 (111).   

 

Although mutations in DJ-1 were associated with Parkinson’s disease and 

oxidative stress, the role of DJ-1 in degeneration of dopaminergic neurons was unclear 

until the interaction between DJ-1 and protein-associated splicing factor (PSF) was 

discovered (112).  DJ-1 inhibited the transcriptional-silencing activity of PSF and wild-

type DJ-1 prevented PSF-induced neuronal apoptosis, but mutated DJ-1 was less 

effective (112).  Zhong and colleagues demonstrated that down-regulating DJ-1 

expression using siRNA decreased tyrosine hydroxylase expression (113). Tyrosine 

hydroxylase (TH) is an enzyme critical in the synthesis of dopamine, a pathway targeted 



 29 

in the treatment regimen for Parkinson’s patients. Chromatin immunoprecipitation assays 

determined that DJ-1 bound and transcriptionally-activated the promoter region of TH. 

However, they did not perform gel-shifts to confirm a direct interaction between DJ-1 

and the TH promoter, indicating the interaction could be indirect.  Further, they showed 

that DJ-1 inhibited the sumoylation of PSF and PSF-induced inhibition of TH, providing 

a second mechanism for DJ-1 regulation of TH (113). These results identified a novel 

function for DJ-1 as a transcription factor.  Proteomics suggested that DJ-1 might act a 

transcription factor since it is a dimer, but until recently, there were no known DJ-1 

regulated genes.  

 

In addition to Parkinson’s disease, DJ-1 has been implicated in adenocarcinomas 

of the lung, breast, and prostate (95, 99). Increased DJ-1 expression in lung cancer 

correlates with poor clinical prognosis (95).  Further, increased expression of DJ-1 in 

breast cancer is associated with decreased expression of the tumor suppressor PTEN, 

(95). Despite the oncogenic properties of DJ-1, its functional significance in prostate 

cancer development and progression is not well understood. The importance of PTEN in 

PCa is well documented (27, 30, 114-117) and although it is likely that DJ-1 antagonizes 

PTEN in prostate cancer as in breast cancer, this interaction has not yet been defined in 

prostate. Another  potential link between DJ-1 and prostate cancer was reported by 

Takahashi and colleagues who determined that DJ-1 positively regulates AR (98).   They 

demonstrated that DJ-1 bound the AR-binding-region of PIASx-alpha, a known co-

repressor of AR, thereby releasing and allowing AR to become transcriptionally active 

(98).   Further, Niki and associates demonstrated a second mechanism for activation of 
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AR by DJ-1.  They showed that DJ-1 bound and sequestered DJ-1-Binding-Protein also 

resulting in activation of AR (118). One recent study investigating the role of AR in the 

activation of TH found that DJ-1 inhibited, rather than activated, AR in a neuronal cell 

line, which suggests that the function of DJ-1 likely varies between cell-types (119). 

These data indicated that DJ-1 could function as a co-activator or a co-repressor of AR in 

PCa.  Since the role of AR co-regulators in AIPC has been established, this provided a 

potential role for DJ-1 in androgen-independent disease. Despite the diverse DJ-1 

literature however, there was a lack of research pertaining to the importance of DJ-1 in 

PCa, on the transcriptional regulation of DJ-1, downstream targets, and DJ-1 binding 

proteins.   
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Figure 10: DJ-1 Indirectly Activates AR. DJ-1 binds and inhibits PIASx-alpha 
preventing it from binding AR. DJ-1 also binds DJ-1 Binding Protein (DJBP) and 
a multi-protein HDAC co-repressor complex resulting in AR activation. Figure 
modified from (98).  
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Construction of Viral Constructs 

 The androgen responsive 5'-flanking region [(-244/-96)(-286/+28) bp] of the rat 

PB gene designated ARR2PB was linked to the chloramphenicol acetyl transferase (CAT) 

reporter gene (120) and subcloned into the XhoI/BglII restriction sites of pAdBN 

(AdenoQuest Quantum Biotechnology, Montreal, Canada) to create pPB-CAT/Ad. Viral 

particles were generated in 293 cells according to the manufacturer’s protocol and titrated 

in LNCaP cells. Only those clones which resulted in high levels of CAT gene expression 

in response to androgen treatment were selected and amplified for the HPE cell TIGR 

assay. The negative control plasmid contained a promoterless CAT gene (pCAT/Ad). 

 

 To generate DJ-1 shRNA, appropriate oligos were designed using the online tools 

at www.Genscript.com.  Briefly, the full-length human DJ-1 cDNA sequence was 

inserted into the online system which generates several potential hairpin sequences using 

a proprietary algorithim.  One of these sequences was chosen by comparing the generated 

sequences to published reports for known DJ-1 siRNA/shRNA sequences that had been 

effective.  Once an oligo was chosen, a control shRNA sequenced was generated by 

scrambling the DJ-1 shRNA sequence to generate a non-targeting shRNA. (performed by 

Genscript online tools) The control sequence was checked for potential off-target effects 

by BLASTing the sequence against the human genome (performed through Genscript 
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website). The oligonucleotides contained overhangs complimentary to BamHI and XhoI 

sites to be used to clone the oligos into pRNATi/Lenti plasmid (Genescript).  Oligos were 

ordered from www.IDT.com and PAGE purified.  To anneal the oligos and generate 

double-stranded products, 1ug of each oligo was combined in a total volume of 20 ul IX 

SSC and heated at 95°C for 10 minutes and then incubated at room-temperature for one 

hour. The annealed oligos were then cloned into the pRNATi/Lenti plasmid (Genescript).  

Oligos for DJ-1 shRNA were: top strand – 5’- 

GATCCCGTCTCAGAGTAGGTGTAATGACTTGAT-3’ and bottom strand – 5’- 

TCGAGTTGGAAAAAATCTCAGAGTAGGTGTAAT-3’.  Scrambled (non-targeting) 

control shRNA oligos were: top strand – 5’-

GATCCCGTACCAATACTACCATTCGAGTTTGAT-3’  and bottom strand – 5’-

TCGAGTTGGAAAAAAGTACCAATACTACCATTC-3’.   Plasmids were transfected 

into 293FT cells (Invitrogen) to generate lentiviral particles according to manufacturer’s 

protocols.  Viral supernatant was used to infect LNCaP-TET-ON cells which were 

obtained from Dr. Renjie Jin in the Matusik laboratory at Vanderbilt.  Infected cells were 

isolated by FACS sorting for GFP positive cells, and grown to confluency.  DJ-1 was 

knocked down by treating cells with the indicated dose of doxycycline for 24 hours. 

 

HPE Cell Culture 

 A total of 40, two to four millimeter (mm3) specimens were obtained from radical 

retropubic prostatectomy, with 30 specimens composed of histologically normal, non-

tumor tissue and 10 specimens composed of 5 to 95 % PCa (Gleason Score 3+3). Since 

one or two specimens were obtained per patient, the 40 specimens represent 28 
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individuals. Two to four mm3 prostatic tissue fragments were just sufficient to generate 

HPE cells to perform the bioassay and isolate protein and RNA for a limited number of 

Westerns and RT-PCR reactions presented in this study. Primary HPE cells were isolated 

and cultured according to the method of Hayward and colleagues (121). Briefly, punch 

biopsies of prostate tissue were minced, tissue fragments were plated on Primaria plates 

(Falcon, Phoenix, AR) and HPE cells were cultured in epithelial cell selective medium 

(RPMI 1640 medium supplemented with 2.5 % charcoal stripped, heat-inactivated FBS, 

20 mM HEPES buffer, 100 units/ml penicillin, 100 µg/ml streptomycin, 0.25 µg/ml 

amphotericin B, 50 µg/ml gentamycin, 56 µg/ml bovine pituitary extract, 1x insulin-

transferrin-selenium, 10 ng/ml epidermal growth factor, and 50 ng/ml cholera toxin) and 

maintained in 5 % CO2 at 37o C. The medium was changed every 2 to 4 days and HPE 

cells from individual prostatectomy specimens were maintained and passaged for a 

maximum of 4 passages. 

 

TIGR (transiently infected gene reporter) assay 

 The LNCaP and PC-3 human prostate cancer cell lines were purchased from the 

American Type Culture Collection (Rockville, MD) and served as controls in this study. 

Cells were plated in 24-well plates at a density of 105cells/well and upon reaching 80% 

confluence, were infected with 108 plaque forming units (pfu) adenoviral particles 

containing pCAT/Ad or pPB-CAT/Ad and treated with anti-androgen (flutamide, 10-5 M) 

or androgen (10-8 M R1881) with/without flutamide (10-5 M) in the presence of 2.5% 

charcoal-stripped fetal bovine serum. The concentration of 10-5 M flutamide was selected 

since it inhibited greater than 99.5% of androgen-induced activity in LNCaP cells                                       
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. Forty eight hours later, cells were harvested, lysed in passive lysis buffer (Promega, 

Madison, WI), protein concentrations were determined using the Bio-Rad Protein Assay 

and 20 µg protein per sample were used to determine CAT activity as described 

previously (122). At least three separate experiments (each treatment in triplicate) were 

carried out. 

 

 The length of time required to transfect primary HPE cells was determined by 

utilizing adenoviral particles containing pCMV-EGFP. HPE cells were faintly green 3 

days post infection and EGFP expression increased up to 4 days when intensity stabilized 

and did not change thereafter (data not shown). Therefore, 4 days post infection was 

selected as the time point to harvest HPE cells and determine reporter gene activity. The 

TIGR assay was carried out as described above. Since prostatectomy material was rate 

limiting (only two to four mm3), each of the 40 assays was performed one to two times 

and each treatment group was analyzed in quadruplicate.  

  

Western Blot Analysis 

 HPE cell proteins were isolated according to TRI REAGENT™ protocol (Sigma, 

St. Louis, MO). Protein concentrations were determined by the Bradford Protein Assay 

(Bio-Rad). Thirty micrograms of total protein were separated on precast 4-12 % 

NuPAGE® Novex polyacrylamide gels (Invitrogen, Carlsbad, CA) and transferred onto 

Hybond™ ECL™ Nitrocellulose membranes (Amersham Pharmacia Biotech, Uppsala, 

Sweden). Only 50 ng LNCaP protein was loaded per lane, since LNCaP AR 

concentrations were higher (see Figure 4C, real-time RT-PCR data) and did not facilitate 
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the longer exposure time required to visualize the HPE AR. After blocking with 5 % Skim 

Milk (BD, Sparks, MD) membranes were incubated with a 1:1000 dilution of rabbit 

polyclonal anti-AR antibody (Santa Cruz Biotechnology, Santa Cruz, CA), washed and 

subjected to 1:10,000 dilution of horseradish peroxidase linked anti-rabbit IgG 

(Amersham Pharmacia Biotech, Uppsala, Sweden). Proteins were visualized by ECLplus 

Solution (Amersham Pharmacia Biotech, Uppsala, Sweden) and exposure to Hyperfilm™ 

ECL™ (Amersham Pharmacia Biotech, Uppsala, Sweden) for 1 to 2 minutes. For 

subsequent β-actin detection, the membrane was stripped [100 mM 2-mercaptoethanol, 2 

% SDS, 62.5 mM Tris-HCl for 30 min at 70oC], washed, blocked, and subjected to 

immunodetection as outlined above utilizing rabbit polyclonal anti-actin (1:200 dilution) 

as primary antibody (Santa Cruz Biotechnology, Santa Cruz, CA). 

 

 For DJ-1 analysis, 20 µg total protein was separated on precast Ready gel 4-20% 

polyacrylamide (BioRad) and transferred onto PVDF membrane (BioRad). Nonspecific 

binding and washes were performed as described above and membranes were incubated 

with 0.5 µg/µl of mouse anti-DJ-1 antibody (Stressgen Biotechnologies Corp., San Diego, 

CA) and simultaneously probed with 1:5,000 dilution of mouse anti-beta-actin antibody 

(Sigma), washed, and then incubated with 1:10,000 dilution of horseradish peroxidase 

linked anti-mouse IgG (Amersham Pharmacia Biotech, Uppsala, Sweden). Proteins were 

visualized as described above.  

 

For Western analysis in Chapter IV the following antibodies were used:  1:1000 

dilution of goat anti-DJ-1 antibody was used  (Abcam, Cambridge, MA), 1:1000 dilution 
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of rabbit anti-AR (N-20) antibody (Santa Cruz Biotechnology, Santa Cruz, CA), 1:5000 

dilution mouse anti-GAPDH (Imgenex, San Diego, CA), 1:1000 dilution mouse anti-Rho 

A (Santa Cruz Biotechnology, Santa Cruz, CA), 1:1000 dilution (in 2% BSA) of mouse 

anti-Histone H1 (Abcam, Cambridge, MA).  Membranes were washed and subjected to 

1:5000 dilution of horseradish peroxidase (HRP) linked anti-goat IgG (Santa Cruz 

Biotechnology, Santa Cruz, CA), 1:10,000 dilution of HRP-anti-rabbit IgG, or 1:10,000 

HRP-anti-mouse IgG (Amersham Pharmacia Biotech, Uppsala, Sweden). Proteins were 

visualized as described above. 

 

Reverse transcriptase-polymerase chain reaction (RT-PCR) 

 Total cellular RNA from primary HPE cultures, LNCaP, and DU-145 cell lines 

was extracted using TRI® Reagent (Sigma, St. Louis, MO) according to the 

manufacturer’s instructions. Two µg total RNA for all cell lines was utilized to generate 

cDNA (RT-PCR Access System, Promega, Madison, WI) and the cDNA was subjected to 

PCR analysis with gene specific primers for AR, PSA, and 18S for 35 cycles as indicated 

below. The PCR products were analyzed by electrophoresis on 1.5% agarose gels. 
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Table 1: RT-PCR primer pairs.  Forward primer is listed on top, followed by 
reverse primer. All primer pairs target human sequence unless otherwise specified. 
 

Gene 
Name Primers 

Product 
Length 

(bp) 

Annealing 
Temp. 
(OC) 

AR 5’-AGCCCCACTGAGGAGACAACC-3’ 
5’-ATCAGGGGCGAAGTAGAGCAT-3’ 350 60 

PSA 5’-CCTCACACCTAAGGACAAAGG-3’ 
5’-CATTGAACCAGAGGAGTTCTTG-3’ 414 60 

18S 5’-CAAGAACGAAAGTCGGAGGTTC-3’ 
5’-CTGTGATGCCCTTAGATGTCC-3’ 488 60 

DJ-1 
(DJ1Cf) 5’-ATGGCTTCAAAAAGAGCTCTGG-3’ 

(DJ1CR) human 5’-CTAGTCTTTAAGAACAAGTGGA-3’ 
(mDJ1R) mouse 5’-CTAGTCTTTGAGAACAAGCGGT -3’ 

569 56 

FKBP9 5’-GTACTTCTGATGGATATTTGG-3’ 
5’-GTTGTGGAAGTCGATCACAT-3’ 670 50 

P-cadherin 5’-GATGCCATCTACACCTACAAT-3’ 
5-CATGATAAGGTAGGTGGCAC-3’ 380 50 

PLOD-1 5’-TTCAAGCGCTCAGCTCAGTTC-3’ 
5—CTTGAGCACGACCTCATCCA-3’ 530 54 

 

 

Real-time RT-PCR analysis 

 AR concentrations in cultured HPE cells were determined by real-time RT-PCR, 

utilizing 2 µg HPE total RNA to generate cDNA which was subsequently used in PCR 

reactions with the primers described above [icycler iQ Real-Time PCR Detection System 

(Bio-Rad, Hercules, CA)]. LNCaP cells (2 µg total RNA) served as a positive control. 

The AR standard curve was generated using serial dilutions of the human pSVAR0 

expression vector. The human 18S gene was subcloned into pGEM-T easy (Promega, 

Madison, WI) and served as an internal standard. PCR amplification was performed using 

SYBR Green PCR Core Reagent (Applied Biosystems, Foster City, CA), followed by 

analysis of melting curves to validate the real-time RT-PCR data and agarose gel 

electrophoresis of an aliquot from each RT-PCR product to monitor purity of the specific 
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RT-PCR product. AR concentrations (in µM) were determined and standardized to the 

18S product from the same sample.   

DJ-1 expression in CD-1 and 12T-7f mice was determined using 2ug total pooled 

RNA that was used for generation of cDNA as described (123). cDNA was used for 

subsequent real-time RT-PCR using DJ-1 primers:  for mouse DJ-1 amplification, DJ1CF 

primer + mDJ1-R primers were used, while human DJ-1 is amplified with DJ1CF and 

DJ1CR primers. DJ-1 expression was normalized to 18S rRNA as described above.  The 

standard curve was generated using serial dilutions of full-length human DJ-1-TEasy 

plasmid.   

 

AR mutational analysis 

 The HPE AR was screened for potential somatic mutations. PCR amplification of 

six targeted areas in which most of the prostate cancer somatic mutations co-localize [2 in 

the AR-NTD [aa 54-92; 253-282;] and 4 in the AR-HBD [aa 654-689; 688-721; 723-738; 

867-917] was performed on genomic DNA. The following primer pairs were designed to 

encompass the targeted areas. 
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Table 2: Primers Used in AR Mutational Analysis Forward primer listed on top, 
followed by reverse primer. Exonic/Intronic location and amino acids are given. 
 

Target Name Primers Primer 
Location Amino Acid Range Annealing 

Temp. (OC) 

AR-I 5' CTT TCC AGA ATC TGT TCC AGA G 3' 
5' CCT CAT CCA GGA CCA GGT AGC C 3' 

Exon 
Exon Leu54 to Ser92 55 

AR-II 5' GTG TGG AGG CGT TGG AGC AT 3' 
5' GAA CCT TTG CAT TCG GCC AA 3' 

Exon 
Exon Leu253 to Pro282 48 

AR-IV 5' ACC AGC CCC ACT GAG GAG ACA A 3' 
5' TGC AAA GGA GTC GGG CTG GT 3' 

Exon 
Exon Thr654 to Asn689 62 

AR-V4 5' AGG TGT AGT GTG TGC TGG AC 3' 
5' CCA CTT CCC TTT TCC TTA CC 3' 

Exon 
Intron Asp688 to Pro721 53 

AR-V5 5' TAC CCA GAC TGA CCA CTG CC 3' 
5' AAA CAC CAT GAG CCC CAT CC 3' 

Intron 
Exon Phe723 to Ser738 61 

AR-VI 5' GAG GCC ACC TCC TTG TCA ACC CTG 3' 
5' GGG GTG GGG AAA TAG GGT TT 3' 

Intron 
Intron Ile867 to End917 53 

 
 

 

The PCR products were sequenced utilizing an Applied Biosystems ABI Prism 377 DNA 

Sequencer at the Norris Cancer Center Genomics Core facility (UCS/Norris, LA) and the 

resulting data aligned to the AR sequence (124) using Sequence Navigator software. 

  

Electron microscopy 

 HPE cells cultured in 6 well culture plates were fixed in 2% glutaraldehyde in 

PBS for 5 minutes at room temperature. Cells were scraped, pelleted and further fixed for 

60 minutes at room temperature. The pellets were processed for electron microscopy by 

standard techniques and thin and semi-thin sections were cut and stained with uranyl 

acetate and lead citrate and photographed on a Joel X100 microscope. 
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Two-Dimensional gel electrophoresis and mass spectrometry 

 Samples were individually solubilized in lysis buffer (7M urea, 2M thiourea, 4% 

CHAPS, 30 mM Tris, 5 mM magnesium acetate) prior to labeling with 200 picomoles of 

either Cy2, Cy3 or Cy5 (Amersham Biosciences, Piscataway, NJ) for 30 min on ice in the 

dark. Reactions were quenched with 2 µl of 10 mM lysine for 10 min on ice in the dark, 

combined and added to an equal volume of 2x rehydration buffer (7M urea, 2M thiourea, 

4% CHAPS, 4 mg/mL DTT) supplemented with 0.5% IPG (Immobilized pH gradient) 

buffer 4-7. Combined samples (Cy2/3/5) were co-resolved by standard 2D gel 

electrophoresis using an IPGphor first-dimension isoelectric focusing unit and 24 cm 4-7 

immobilized pH gradient (IPG) strips (Amersham Biosciences, Piscataway, NJ), followed 

by second-dimension 12% SDS-PAGE using an Ettan DALT 12 unit (Amersham 

Biosciences, Piscataway, NJ). The samples were reduced and alkylated with 1% DTT and 

2.5% iodoacetamide in equilibration buffer (6M Urea, 30% glycerol, 2% SDS, 50mM 

Tris pH 8.8) between the first- and second-dimensional separations. Second-dimension 

SDS PAGE gels were hand-cast using low-fluorescence glass plates, with one glass plate 

pre-silanized (bind-silane, Amersham Biosciences, Piscataway, NJ) to affix the 

polymerized gel to only one of the glass plates.  

 

  CyDye-specific images were acquired using mutually-exclusive 

excitation/emission wavelengths using 2D 2920 Master Imager (Amersham Biosciences, 

Piscataway, NJ). Individual protein spot-features were co-detected and analyzed using 

DeCyder Differential In-gel Analysis software (Amersham Biosciences, Piscataway, NJ), 

where individual spot volume ratios were calculated for each protein-pairs. Two standard 
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deviations of the mean, calculated from a modeled normal distribution of all spot volume 

ratios, was used to identify those protein spot features that exhibited significant 

abundance changes within the 95th percent confidence level. 

 

  The 2D gels were subsequently stained with Sypro Ruby (Molecular Probes, 

Eugene, OR) according to the manufacturer’s instructions, to allow for accurate robotic 

protein excision. Proteins of interest were robotically excised and processed for digestion 

in-gel with trypsin protease (Promega) using Ettan Spot Picker and Digester workstations 

(Amersham Biosciences, Piscataway, NJ) Peptides were reconstituted in 10 µl of 0.1% 

triflouroacetic acid, and manually de-salted/concentrated into 2 µl of 60% acetonitrile, 

0.1% triflouroacetµic acid using C18 ziptip pipette tips (Millipore, Billerica, MA). The 

peptide eluate (0.5 µl) was applied to a sample target and overlaid with 0.5 µl of α-cyano 

4-hydroxycinnamic acid matrix (10 mg/ml in 60% acetonitrile, 0.1% triflouroacetic acid). 

Matrix-assisted laser desorption/ionization, time-of-flight (MALDI-TOF) mass 

spectrometry was performed on a Voyager 4700 (Applied Biosystems, Foster City, CA). 

Peptide mass maps were acquired in reflectron mode averaging 2000 laser shots per 

spectrum, and internally calibrated to within 20 ppm mass accuracy using trypsin 

autolytic peptides (m/z = 842.51, 1045.56 and 2211.10). Ions specific for each sample 

(discrete from background and trypsin-derived ions) were used to interrogate human 

sequences entered in the SWISS-PROT and NCBInr databases using the MASCOT 

(www.matrixscience.com) and ProFound (prowl.rockefeller.edu) database search 

algorithms, respectively. Protein identifications from MALDI-TOF peptide mass maps 

are based on the masses of the tryptic peptides (125-127). Searches were performed 
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without constraining protein molecular weight or isoelectric point, and allowed for 

carbamidomethylation of cysteine, partial oxidation of methionine residues, and one 

missed trypsin cleavage.  

 

Northern Blot Analysis 

 LNCaP cells were cultured in normal growth media (RPMI 1640, 10% FBS, 1X 

penicillin/streptomycin, 0.25% glucose, 1mM Na Pyruvate) until 70% confluent when 

media was changed for growth media containing 10% charcoal-stripped FBS for 

overnight. The next day, cells were treated with 10-8M DHT, 10-5M OH-Flutamide, 10-5M 

Casodex, or ethanol (vehicle control) for the following times: 15 minutes, 30 minutes, 45 

minutes, 1, 2, 4, 8, 12, 16, or 24 hours. Cells were harvested in 1 ml Trizol (Invitrogen) 

and RNA was extracted following manufacturer’s instructions. 20 micrograms of total 

RNA was loaded per lane on a 1% formaldehyde-agarose gel and transferred overnight in 

6X SSC by upward capillary transfer to positively charged nylon membrane. For probe 

synthesis, full length human DJ-1 cDNA was cloned into pGEM-Teasy (Promega). The 

plasmid was linearized with Sac II (NEB) and single stranded antisense RNA probes for 

DJ-1 were transcribed in vitro using Megascript SP6 RNA Polymerase transcription kit 

(Ambion). To label the probe, the reaction was supplemented with 3000 Ci/mmol alpha-

P32-UTP (Amersham Biosciences). The membrane was hybridized overnight with 106 

counts in buffer containing (0.2M NaPO4, 7% SDS, 100 µg/ml sheared herring sperm 

DNA, and 2X Denhardt’s solution (Sigma)) at 65 degrees. The membrane was washed in 

2X SSC, 1X SSC, and 0.5X SSC containing 0.1%SDS and then exposed overnight to a 

phosphor imager.  
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Cyclohexamide Assay 

 LNCaP cells were cultured to 70-80% confluency in normal growth media as 

described above when media was changed to media containing 10% charcoal stripped 

FBS for overnight after which cells were pretreated with one of the following: 10-8M 

DHT, 10-5M OH-Flutamide, or an equal volume of 100% ethanol (vehicle control) 30 

minutes before the addition of 75 µg/ml cycloheximide for the following times: 24 hours, 

48 hours, and 72 hours. Cells were harvested in 300 µl of lysis buffer (25mM HEPES [pH 

7.5], 5 mM MgCl2, 300 mM NaCl, 1 mM EDTA, 0.2 mM EGTA, 1mM DTT, 10% 

glycerol, 1% TritonX 100, 0.1% Na-deoxycholate, 0.1% SDS, 20 mM p-

nitrophenylphosphate, 20 mM β-glycerolphosphate, 2 mM Na-pyrophosphate, 1 mM 

PMSF, 10 µg/ml Aprotinin, and 10 µg/ml Leupeptin), briefly sonicated, and clarified by 

centrifugation. Twenty µg total protein was separated on a denaturing 12% acrylamide 

gel, transferred to PVDF membrane and DJ-1 and GAPDH were visualized as described 

above. 

 
Yeast Two-Hybrid Assay  

Yeast Two-Hybrid Assay was performed using the Matchmaker System 

(Clontech, Mountain View, CA) following manufacturer’s protocols. A cDNA library 

was generated from primary Human Prostate Epithelial cells that exhibited AR activation 

via TIGR assay (128) were harvested, total RNA was extracted (Trizol, Invitrogen, 

Carlsbad, CA) and used for reverse-transcriptase PCR using Oligo dT primers. cDNAs 

were cloned into the pGADT7 plasmid (Clontech, Mountain View, CA) where they were 

expressed as fusion proteins to the GAL4 Activation Domain. For the bait protein, full-
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length human DJ-1 cDNA was cloned into the pGBKT7 plasmid and expressed as a 

fusion to GAL4 DNA Binding Domain. Plasmids were transformed into AH109 yeast 

strain and positive clones were selected on high stringency dropout plates (-Leu/-Trp/-

His/-Ade) containing X-alpha-Galactose. Plasmid DNA was extracted, transformed into 

DH5-alpha competent E. Coli, and sequenced using T7 promoter. 

 

Cell Culture and Transfection of LNCaP and LAPC4 Cell Lines  

The LNCaP human prostate carcinoma cell line was obtained from American 

Type Culture Collection (Manassas, VA).  LNCaP cells were cultured as described (128).  

The LAPC4 human prostate carcinoma cell line was a gift from Dr. Charles Sawyers 

(Memorial Sloan-Kettering Cancer Center, New York).  LAPC4 cells were cultured in 

IMDM media (Gibco, Carlsbad, CA) containing 10% FBS,  2 mM L-Glutamine, with 1X 

Penicillin/Streptomycin.  

 

Immunoprecipitation 

Cells were lysed in 300 µl cold lysis buffer (1% Triton X-100, 150 mM NaCl, 10 

mM NaHPO4 pH 7.2, 5 mM NaF, 2 mM EDTA, 1X HALT Protease Inhibitor cocktail 

(Pierce Biotechnology. Rockford, IL)) in the cold room and allowed to rock for 15-20 

minutes. Lysates were cleared by centrifugation and 400-500 micrograms of total protein 

was immunoprecipitated overnight at 4°C using 10µg rabbit anti-AR antibody or 5µg 

mouse anti-HA antibody (Santa Cruz Biotechnology, Santa Cruz, CA).  Complexes were 

pulled down using ImmunoPureTM Immobilized Protein G beads (Pierce Biotechnology, 
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Rockford, IL) Immunoprecipitates were washed 4 times in 1X PBS, re-suspended in 1X 

Lammeli buffer and subjected Western analysis. 

 

Luciferase Assays 

LAPC4 cells were plated in 24-well plates (Falcon, Phoenix, AZ) and allowed to 

attach overnight. Cells were transfected with androgen-responsive luciferase reporter, 

ARR2PB-luciferase. Firefly luciferase is driven by the androgen-responsive region of the 

rat probasin promoter similar to the ARR2PB-CAT reporter (128, 129). Media was 

changed to IMDM containing 10% charcoal-stripped FBS, 2 mM L-Glutamine, 1X 

Penicilin/Streptomycin, and supplemented with 10-9M DHT. 48 hours post-transfection, 

cells were lysed in 1X Passive Lysis Buffer (Promega, Madison, WI) and frozen at -80°C 

until subsequent luciferase assay.  Lysate was cleared by centrifugation and protein 

concentration was determined as described above. 20µl of lysate was loaded into 96-well 

plates (Corning, Corning, NY) and luciferase activity was determined using the 

Luciferase Assay System (Promega, Madison, WI) and a LUMIstar luminometer (BMG 

Lab. Technologies, Inc. Durham, NC). Firefly luciferase activity was normalized to 

protein concentration and expressed as fold change over non-transfected controls.  Each 

bar represents the mean of at least three replicates +/- SEM and each experiment was 

repeated at least twice. 
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Nuclear and Cytoplasmic Extracts 

Cells were plated in 6-well plates (Falcon, Phoenix, AZ) and allowed to attach 

overnight.  On the second day, cells were washed in Hank’s buffer and changed to media 

containing 10% charcoal-stripped FBS.  On the third day, media was again replaced for 

fresh media containing 10% charcoal-stripped FBS and the following treatments: ethanol 

(vehicle control), 10-8M DHT (LNCaP), 10-9M DHT (LAPC4), 10-5M OH-flutamide 

(LNCaP), 10-6M OH-flutamide (LAPC4), 10-5M bicalutamide (LNCaP), or 10-6M 

bicalutamide (LAPC4). Optimal concentrations of androgens and anti-androgens for 

LNCaP cells were experimentally determined previously (128) while concentrations for 

LAPC4 cells were communicated from Dr. Sawyers’ lab.  24 hours after treatment, cells 

were  harvested by trypsinization, washed in PBS, and lysed for cytoplasmic and nuclear 

fractions using the NEPER Kit and HALT Protease Inhibitors according to 

manufacturer’s protocol.  

 

Immunofluorescence and Confocal Microscopy 

Prostate specimen fragments were formalin-fixed and paraffin-blocked. Tissue 

sections (5 microns) were deparaffinized and antigen retrieval was performed by 

immersing the slides in citric buffer (pH 6.0), microwaving for 10 min and allowing the 

slides to cool to room temperature in the buffer. The slides were washed twice in distilled 

water prior to immunohistochemical analysis. For cultured HPE cells, the cells were 

harvested by trypsinization and allowed to attach to glass slides (VWR) overnight at 

37°C. Slides were fixed in 4% paraformaldehyde/phosphate buffed saline (PBS) for 

15 min, washed three times in PBS, permeabilized on ice in PBS + 0.1% Triton X-100 for 
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5 min and blocked in PBS with 3% BSA and 3% donkey serum for 30 min at room 

temperature. Slides were incubated with rabbit polyclonal antibody against human p63 

(Santa Cruz), mouse monoclonal antibody against human CK8 or CK18 (Sigma), rabbit 

polyclonal antibody against human AR, goat polyclonal antibody against human PSA 

(Santa Cruz), monoclonal mouse anti-human Adipophilin or CD59 for 1 h at room 

temperature, and subsequently incubated with Alexa Fluor 594 and/or Alexa Fluor 488-

conjugated donkey anti-rabbit, mouse or goat secondary antibody (Molecular Probes) for 

1 h at room temperature. The slides were washed in PBS and mounted using Vectashield 

mounting medium containing 4,6-diamidino-2-phenylindole (DAPI) to counter-stain 

nuclei (Vector Laboratories). Images were captured with a Zeiss fluorescence microscope 

equipped with a digital camera. To demonstrate specificity of staining, either the primary 

antisera or secondary antibodies were omitted from control slides.  

 

LNCaP and LAPC4 cells were harvested by trypsinization and allowed to attach 

to glass chamber slides (Lab-Tek Products Naperville, IL) overnight at 37°C. Cells were 

treated as described in nuclear/cytoplasmic extract section. 24 hours after treatment, 

slides were fixed, permeabilized, and blocked as described above. Slides were incubated 

with 1:1000 dilution anti-DJ-1, 1:500 dilution (for LNCaP) or 1:100 dilution (for 

LAPC4) anti-AR, and 1:2500 dilution of mouse anti-SC-35 (Sigma, St. Louis, MO) 

antibody overnight at 4°C, and subsequently incubated with Alexa Fluor 594-conjugated 

donkey anti-rabbit, Alexa Fluor 488-conjugated donkey anti-goat, and Alexa Fluor 654-

conjugated donkey anti-mouse secondary antibody (Molecular Probes, Eugene, OR) for 

1 h at room temperature. The slides were washed in PBS and mounted in 50% glycerol 
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and imaged with a Zeiss LSM510 Meta Laser Scanning microscope.   Stacks were 

acquired with LSM510 software, Z-projections and merged images were made with NIH 

ImageJ.  All confocal images were acquired with a Plan-Apochromat 63x/1.4 oil DIC 

objective at the following settings: wavelength 488nm 5%, 543 nm 37%, 633 nm 10%; 

filters: Ch2-1: BP5050-550, Ch3-2:BP 560-615; and ChS1-3: 649-756 with a pinhole of 

281 micrometers. Images have identical microscope settings between treatment groups. 

Image brightness/contrast was not altered between treatment groups so intensity 

comparisons could be made. Quantification and images of co-localization were obtained 

using MetamorphTM software. 

 

Human Tissue Arrays and Immunohistochemistry 

Tissue microarrays (TMA) were generated using H&E slides from 112 radical 

prostatectomy specimens (from 1989 to 2003) obtained from the Vancouver General 

Hospital.  Benign and cancer sites were identified and marked in donor paraffin blocks 

using matching H&E reference slides.  TMA was constructed using a manual tissue 

micro-arrayer (Beecher Instruments, Silver Springs, MD).  Each marked block for benign 

and cancer was sampled 4 times with a core diameter of 0.6 mm arrayed in rectangular 

pattern with 1 mm between the centers of each core creating a quadruplicate TMA layout 

and ordered by histopathology and tumor Gleason grade.  The Gleason TMA contains 

336 tissue cores representing 84 patients.  The second TMA represents patients who 

received either no androgen deprivation therapy (ADT), less than 3 months ADT, 3-6 

months ADT, or more than 6 months ADT.  These patients received with mono- or 

combination therapy with the LHRH antagonists Lupron or Zoladex, and the anti-
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androgens flutamide or cyproterone acetate. The second TMA was generated in a similar 

manner and tissue cores were arranged based upon treatment group.  The ADT TMA 

contains 294 cores representing 98 patients.  DJ-1 immunohostochemistry was performed 

using 1:1000 dilution of goat anti-DJ-1 antibody (Abcam, Cambridge, MA) and 

visualized using DAB and standard techniques. 

 

Hormones 

DHT is commercially available and was purchased from Sigma.  OH-flutamide 

was purchased from LKT Laboratories, Inc. (St. Paul, MN). bicalutamide was provided 

by Astrazeneca, Inc. (Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK). 

 

 
Plasmids and siRNA 

DJ-1 was  cloned into pCruz-HA plasmid (Santa Cruz Biotechnology, Santa Cruz, 

CA) and transiently transfected into LAPC4 cells using Lipofectamine 2000 and 

following manufacturer’s protocol (Invitrogen, Carlsbad, CA).  Cells expressing N-

terminal HA-tagged DJ-1 were selected using 400 µg/ml G418.  Western Blot confirmed 

expression of tagged DJ-1. To knockdown DJ-1 expression, pooled  siGENOME 

SMARTpool siRNAs (Dharmacon catalog #M-005984-00 Lafayette, CO) directed 

against DJ-1 were transfected (200 picomoles/well of 6 well plate) into LAPC4 cells 

using Lipofectamie 2000.  Cells were harvested 48 hours post-transfection for Western 

Blot or luciferase assay.  To ensure specificity of the chosen siRNA pool, a pool of 

nonspecific siRNAs  (200 picomoles/well of 6 well plate) was used as a control 

(Dharmacon Non-targeting  siRNA #1 catalog # D-001210-01).   
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Statistical Analysis 

 For the cell lines, statistical analyses were performed on at least three separate 

experiments (in triplicate or quadruplicate) and represent the mean +/- SD. For HPE CAT 

assays, measurements were carried out in quadruplicate and represent the mean +/- SD. 

These assays were performed up to two times per specimen depending on the size of the 

prostatectomy specimen acquired from Surgical Pathology.  

 For luciferase assays and real-time RT-PCR, bars represent mean values +/- SEM.  

P-values were determined using Student’s t-test and each experiment was repeated at 

least twice. 
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CHAPTER III  
 
 

ANDROGEN AND ANTI-ANDROGEN TREATMENT MODULATES AR 
ACTIVITY AND DJ-1 STABILITY 

 

Introduction 

 Currently, there are no markers that identify patients who may exhibit adverse 

responses to ADT. The agonistic effects of anti-androgens have been extensively studied 

in prostate cancer cell lines such as LNCaP and DU-145 as well as in cell lines derived 

from African green monkey kidney such as COS-1, COS-7 and CV-1. However, these 

cell lines are far removed from the patient and do not represent the early changes that 

occur while the disease is primarily organ confined. The TIGR (Transiently Infected Gene 

Reporter) assay was specifically developed to analyze the effects of androgen and anti-

androgen treatment on the endogenous AR by culturing primary HPE cells directly from 

patient biopsy specimens. 

 

 Primary HPE cells were grown out of biopsy specimens from radical retropubic 

prostatectomy samples as described (121, 128). Once luminal epithelial cells were 

isolated, they were infected with an androgen-responsive reporter gene. The androgen-

responsive 5'-flanking region [(-244/-96)(-286/+28) bp] of the rat Probasin (PB) gene 

designated ARR2PB was linked to the chloramphenicol acetyl transferase (CAT) reporter 

gene (120) and subcloned into the pAdBN plasmid (AdenoQuest Quantum 

Biotechnology, Montreal, Canada) to create pPB-CAT/Ad.  After HPE cells were infected 

with this plasmid, endogenous AR activity was determined following androgen and anti-

androgen treatment. 
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We determined that treatment with the anti-androgen flutamide increased CAT 

reporter gene activity in 2/10 (20%) of tumor and 12/30 (40%) of non-tumor HPE cell 

cultures derived from radical prostatectomy specimens. This agonistic activity occurred in 

the absence of any apparent AR mutations. Interestingly, flutamide treatment appeared to 

increase DJ-1 levels through protein stabilization in a similar manner to that for AR (130). 

DJ-1 functions as an indirect positive modulator of AR activity by allowing AR to 

become transcriptionally active (98). The stabilization of AR and DJ-1 may provide HPE 

cells with a transcriptional advantage that permits them to progress further along the 

pathway of prostate carcinogenesis during ADT.  

 

Results 

 

HPE Cells are Morphologically and Phenotypically Epithelial 

 Histologically, benign human prostatic glands are composed of a layer of 

differentiated secretory luminal cells and a small subpopulation of neuroendocrine cells 

surrounded by a layer of basal epithelial cells (3, 4). Human biopsy fragments from 30 

non-tumor and 10 PCa (Gleason Score 3+3) prostatectomy specimens were placed into 

cell culture under conditions favoring epithelial cell growth as described above. HPE cells 

were passaged for further analysis while the remaining tissue fragments were harvested 

after two weeks for immunohistochemical analysis. A representative immunohistological 

analysis of benign prostate glands in radical prostatectomy specimens before and after 

culture is shown in Figure 1. Before culture, hematoxylin and eosin (H&E) analysis 
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clearly indicated that the basal cell layer was circumferentially intact, surrounding a 

stratified or pseudostratified layer of secretory luminal epithelial cells (Figure 11A). This 

histology was confirmed by double immunofluorescence staining with p63 (a basal 

epithelial cell marker) and cytokeratins 8 and 18 (luminal epithelial cell markers, Figure 

11 B). Both luminal and stromal cells expressed AR, with luminal cells also expressing 

PSA (Figure 11C). In contrast, basal cell hyperplasia was evident after 2 weeks in culture 

(Figure 11D) and this was again confirmed by double immunofluorescence staining with 

p63, CK8 and CK18 (Figure 11E). AR expression was observed in both stromal and 

epithelial cells and often appeared more strongly expressed in hyperplastic basal epithelial 

compared to luminal epithelial cells. Low PSA expression was evident in luminal 

epithelial cells (Figure 11 F).  
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Figure 11: Immunohistochemical analysis of benign prostate glands in radical 
prostatectomy specimens before and after 2 weeks in culture. A to C represent 
the tissue fragments before culture and D to F represent the tissue fragments after 
culture. (A) and (D). Hematoxylin and Eosin stain; basal epithelial cell layer 
(●─●); luminal epithelial cell layer (↔). (B) and (E). Basal epithelial cell marker 
p63 (green); Luminal epithelial cell markers CK8 or CK18 (red). (C) and (F). 
Tissue sections were stained using rabbit polyclonal antibody against human AR 
or goat polyclonal antibody against human PSA. AR (red); PSA (green). 

 

 

Cultured HPE cells were double-stained with immunofluorescence antibodies to 

CK8/CK18 and p63 to determine which cell type was predominant in the bioassay. 

Initially, 100% of the cells were p63 positive, indicating that they were basal epithelial 
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cells (data not shown). With passage number, the number of CK8/CK18 positive cells 

increased and the number of p63 positive cells decreased, suggesting that they had 

undergone differentiation.  Recently, Dalrymple et al reported that the level of calcium in 

tissue culture media affects the population of cells that grow out of cultured tissue 

fragments (131).  They report that high calcium containing medium selects against p63 

positive basal cells allowing luminal epithelial cells to predominate.  We commonly see 

basal cell proliferation in tissue fragments and as the first cells to grow out of the tissue in 

vitro, however determining whether the loss of p63 positive cells with passage number 

was due to differentiation or selection was beyond the scope of this project.   

 

The TIGR assays were performed at passage 3 (unless otherwise stated) since this 

number of passages was required to generate sufficient cells for the TIGR assay. Six 

separate areas per slide were analyzed and the number of CK8/CK18- and p63-expressing 

cells tabulated (Figure 12A-C). Surprisingly, nearly 100% of HPE cells expressed 

CK8/CK18 and 56% of HPE cells co-expressed p63, suggesting that by passage 3, basal 

epithelial cells had differentiated into cells with more luminal epithelial cell 

characteristics (Figure 12C). Further analysis indicated that all HPE cells expressed AR 

and that this expression was primarily nuclear (Figure 12D) whether DHT or the synthetic 

androgen R1881 were present or absent in the cell culture medium. 
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Figure 12: Immunohistochemical analysis of cultured HPE cells. HPE Cells 
were allowed to attach to glass slides and were stained using rabbit polyclonal 
antibody against human p63, mouse monoclonal antibody against human CK8 or 
CK18, rabbit polyclonal antibody against human AR, goat polyclonal antibody 
against human PSA, and monoclonal mouse anti-human adipophilin or CD59. (A) 
Cultured HPE cells derived from prostatectomy fragments in organ culture. (B) 
Expression of p63 (green) or CK8/CK18 (red) at passage 3. (C) The table 
summarizes a representative experiment (HPE 10072, passage 3). Six separate 
areas (i through vi) per section were analyzed for the number of p63 and 
CK8/CK18 positive cells. The DAPI stain represented the number of nuclei and 
therefore, the number of cells per area. Therefore, it was set at 100%. (D) 
Expression of AR (red) and PSA (green) at passage 3. (E) Adipophilin (red) 
expression in primary cultured HPE cells at passage 3. Nuclei were counterstained 
with 4,6-diamidino-2-phenylindole (DAPI) (blue). (F) CD59 expression (red) in 
primary cultured cells at passage 3. Nuclei were counterstained with DAPI (blue). 
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In short-term culture, HPE cells maintained a secretory phenotype. 

Immunofluorescence analysis indicated that within a subpopulation of HPE cells, PSA 

staining appeared typically granular within the cytoplasm (Figure 12D). This pattern of 

expression was similar to that seen in other culture systems (132). Adipophilin, a protein 

component of lipid storage droplets, is associated with cellular differentiation and 

secretion (133, 134). Immunoreactivity to adipophilin was localized in vacuolar, 

intracellular compartments of HPE cells, consistent with lipid droplets (Figure 12E). 

Prostasomes are stored in membrane-bound storage vesicles in prostatic acinar epithelial 

cells and secreted through exocytosis or diacytosis into the glandular lumen (132). HPE 

CD59 immunolocalization determined extracellular, granular and intracellular granular 

staining as seen in prostasomes (Figure 12F). Thus HPE cells in short term culture were 

primarily prostatic epithelial cells which synthesized AR and limited PSA and maintained 

a secretory phenotype as seen by prostasome and adipophilin production. 
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Figure 13: Ultrastructural analyses of HPE cells. HPE cells were analyzed by 
electron microscopy. (A) Large secretory body (**) filled with multiple tightly 
packed concentric membrane lamellae. (B) Smaller secretory bodies (*) 
containing loosely organized membranes. (C) Numerous secretory granules (*) 
released at the apical brush borders between 2 adjacent HPE cells. (D) 
Desmosomes containing attachment plaques with tonofilaments radiating from 
these plagues (<) and brush border vesicle (→). 
 

 

Electron microscopy (EM) analysis of HPE cells further demonstrated their 

epithelial cell characteristics. HPE cells contained numerous larger and smaller secretory 

bodies filled with multiple tightly packed concentric membrane sheets or lamellae (Figure 

13A). Smaller secretory bodies contained loosely organized membranes, suggesting that 
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these represented an early stage in lamellar body formation (Figure 13B). Of particular 

interest was that HPE cells did not lose their brush borders which are essential for the 

processes of exo- and endocytosis. Secretions appeared to be released at the apical brush 

borders as seen by the numerous secretory granules between two adjacent cells (Figure 

13C). Brush border vesicles were also observed (Figure 13D). Neighboring epithelial 

cells are characteristically connected through desmosomes which form focal points of 

cell-cell contact to provide resilience and tensile strength to the epithelial monolayer. 

Desmosomes, containing characteristic attachment plaques with tonofilaments radiating 

from these plagues, formed between adjacent HPE cells (Figure 13D). 

 

HPE Cells Express Endogenous AR 

To analyze the responsiveness of HPE cells to androgen and anti-androgen 

treatment, it was essential that HPE cells express AR. Immunohistochemical analysis 

indicated that HPE cells expressed AR and this was confirmed by Western blot analysis 

(Figure 14A), RT-PCR (Figure 14B), and real-time (RT)-PCR (Figure 14C). Since AR 

protein levels in LNCaP cells were greater compared to those in HPE cells, only 50 ng 

LNCaP protein was run as a positive control. DU-145 cells provided a negative AR 

control. Two µg total RNA for HPE and LNCaP cells were analyzed by real-time RT-

PCR analysis. As predicted, AR levels were greatest in LNCaP cells at 1.5x10-20 µM 

(Figure 14C). In comparison, AR mRNA levels in HPE cell cultures (from 7 different 

representative individuals) ranged from 8.3x10-22 µM to 1.44x10-22 µM.  All HPE cells 

cultured to date have expressed AR, although HPE AR levels were 18 to 104-fold lower 

than those measured in LNCaP cells. Variability of AR expression is a common 
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occurrence in cultured primary HPE cells as well as commercially available, 

immortalized, prostate cancer cell lines (131, 132, 135). Importantly however, most 

prostate adenocarcinomas express AR both in the androgen-responsive and the androgen-

independent stages of the disease; thus, the study of AR in all stages of prostate cancer 

progression is important (48, 62, 64-66, 88). Since all HPE cell cultures express 

endogenous AR, they can be utilized in TIGR assays to characterize the responsiveness of 

primary HPE cells cultured from prostatectomy specimens to androgen and anti-androgen 

treatment.  

 

PSA expression is variable in primary cultured prostate epithelial cells (132). This 

was confirmed in our HPE cell cultures where PSA expression was observed in one of 

seven representative HPE cell cultures derived from tumor specimens (Figure 14B). The 

status of AR affects PSA expression, so it is expected for AR negative cells to lose PSA. 

The reason for PSA and AR expression variability remains largely unclear, although 

culture conditions likely play a role. In order to efficiently grow HPE cells out of tissue 

fragments, androgens must be omitted from the media. Inclusion of androgens prevents 

cell outgrowth from the tissue fragment greatly limiting cell number. Another important 

consideration that partially explains AR variability in the 1980’s literature to that of 

today, is improved sensitivity of techniques used.  Initially, detection of AR protein was 

difficult due to lack of antibodies.  Further, detection of extremely low mRNA species 

was not possible before the advent of RT-PCR. Another aspect of cell culture which 

likely affects expression of differentiation markers is the change in morphology, from a 

tall columnar phenotype adapted to secrete markers into a lumen to a squamous 
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phenotype adapted to cover a tissue culture plate which a cell likely perceives as a wound 

(136). These points highlight the importance of culture conditions and specific starting 

material for establishing primary cell cultures or maintaining existing lines.  

 

Figure 14: Primary HPE cells express AR. HPE primary cultures from 7 
representative patients were analyzed for AR expression. (A) Western blot 
analyses for AR. DU-145 prostate cancer cells served as a negative control. Thirty 
micrograms of HPE or DU145 protein was loaded per lane. Please note that due to 
the greater AR concentration in LNCaP compared to HPE cells, only 50 ng/lane 
LNCaP protein was loaded as a positive control for the purpose of identifying the 
band corresponding to AR. (B) RT-PCR for AR and PSA for the same HPE 
samples as in 4A. DU-145 cells served as negative controls for AR and PSA 
expression. Two µg total RNA were analyzed in each RT-PCR reaction. (C) Real-
time RT-PCR analyses of AR levels in HPE cells. LNCaP served as a positive 
control. 
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Figure 15: Androgen and anti-androgen activity in LNCaP cells. LNCaP cells 
were infected with 108 pfu ARR2PB-CAT/AdBN viral particles. (A) Cells were 
treated with increasing concentrations of R1881 (10-12 to 10-6M) to determine the 
effect of androgen treatment on CAT gene expression. Error bars +/- SD. To 
generate p values, pPB-CAT/Ad and R1881 treatments were compared to pPB-
CAT/Ad alone. ×, p>0.05; ××, p<0.05; ×××, p<0.001. (B) LNCaP cells were 
treated with10-8 M DHT and increasing concentrations of the anti-androgen 
flutamide (10-8 to 10-5M) To generate p values, pPB-CAT/Ad, R1881, and 
flutamide treated samples were compared to pPB-CAT/Ad and R1881 treated 
sample. ×, p>0.05; ××, p<0.05; ×××, p<0.001.  
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AR-regulated Transcription is Activated by flutamide in a Subgroup of HPE cells 

 ADT is still one of the most common strategies for treating prostate cancer. The 

goal of the TIGR assay was to characterize the response of endogenous AR to androgen 

and anti-androgen treatment to determine whether anti-androgen could stimulate AR-

regulated transcription. To achieve this, primary HPE cells were infected with adenoviral 

particles containing the CAT reporter gene linked to the prostate-specific probasin 

promoter (pPB-CAT/Ad) (120). Initially, all adenoviral particles were titrated and 

characterized in the androgen-dependent LNCaP human prostate cancer cell line. No 

difference in basal CAT activity was seen with/without pPB-CAT/Ad, determining that 

these adenoviral particles had no intrinsic biological activity in the absence of androgen 

(Figure 15A). In the presence of pPB-CAT/Ad and increasing concentrations of R1881, 

near maximal CAT activity was observed at 10-8 M R1881 and greater than >99.5% of 

this activity was inhibited at 10-5 M flutamide (Figure 15B). Once the adenoviral particles 

were characterized in LNCaP cells, they were used to compare AR activity in primary 

HPE cells. Due to high levels of endogenous AR in LNCaP cells as compared to HPE 

cells (Figure 14), the absolute value of CAT activity was much lower in HPE cells 

(Figure 16) than that in LNCaP cells (Figure 15). Therefore, the absolute values between 

these cells could not be compared directly; instead they were grouped based upon the 

pattern of activity in response to hormonal treatment. 

 

 The responses of HPE cells to androgen and anti-androgen treatment separated 

into four groups. In the first group, androgen treatment induced CAT gene expression 

11,000-fold and this activity could be blocked nearly 100% by the addition of flutamide, 
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implying that anti-androgen activity was antagonistic on AR-regulated transcription 

(Figure 16A). Thus, these HPE cells were designated as androgen responsive/flutamide 

suppressed (AR/FS).  

 

 In a second group of HPE cells (Figure 16B), basal CAT gene expression 

increased 195-fold in the absence of hormonal treatment. This observation was surprising 

since CAT activity did not increase above basal levels in LNCaP, PC-3 or AR/FS HPE 

cells under similar culture conditions. Flutamide treatment was still antagonistic, resulting 

in the partial suppression (57%) of this basal activity, suggesting that the increase in CAT 

activity was, at least in part, due to transactivation of the AR signaling pathway. 

Furthermore, the addition of 10-8 M R1881 had little effect; however the addition of 

flutamide alone still inhibited 52% of CAT activity in the presence of androgen. These 

HPE cells were therefore designated as androgen independent/flutamide suppressed 

(AI/FS). 

 

 In group 3 (Figure 16C), elevated CAT activity (42-fold) was again observed in 

the absence of hormonal treatment and this activity was not increased by the addition of 

androgen, suggesting that these HPE cells produced factors which could stimulate AR-

regulated transcription. Furthermore, flutamide treatment was agonistic, increasing CAT 

activity a further 2.2-fold and in combination with androgen, an additional 4-fold, 

indicating that the effects of androgen and anti-androgen treatment on AR-regulated CAT 

gene expression were additive. Since androgen treatment alone had little effect and 

flutamide activated AR-regulated transcription (through an androgen responsive 
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promoter) in the absence and presence of androgen, these HPE cells were designated as 

androgen independent/flutamide activated (AI/FA). 

 

 In Group 4 (Figure 16D), increased levels of CAT activity (12-fold) were 

determined in the absence of androgen and the addition of androgen or flutamide did no                                                                                                                                                                                

t alter this activity. Thus, these HPE cells were categorized as non-responsive (NR) to 

androgen or anti-androgen treatment. Table 3 summarizes the response of HPE cells to 

androgen or anti-androgen treatment.  

 

 Table 3: Summary of the Agonist and Antagonist Activities of Flutamide on 
 Androgen Receptor-Induced Signaling in the TIGR assay. A total of 40 
 primary HPE cell cultures were analyzed in this study. Ten specimens were PCa 
 tissue (Gleason score 3+3) and 30 specimens were non-tumor tissue obtained from 
 areas adjacent to the PCa lesion. This table summarizes the data obtained from the 
 TIGR assays.  

HPE cell 
response 

Description of response to androgen and  
antiandrogen treatment  

Gleason 
score 3+3 

non-
tumor 
tissue 

 
AR/FS 

- Androgen Responsive/Flutamide Suppressed  
  - androgen treatment induces CAT activity 
  - flutamide inhibits androgen-induced CAT activity 

0/10 4/30 

 
AI/FS 

- Androgen Independent/Flutamide Suppressed 
  - androgen treatment does not induce CAT activity 
  - flutamide inhibits AR-regulated CAT activity 

7/10 10/30 

 
AI/FA 

 

- Androgen Independent/Flutamide Activated 
  - androgen treatment does not induce CAT activity 
  - flutamide is agonistic, promoting AR-regulated 
  CAT activity 

2/10 12/30 

 
NR 

- Non-Responsive 
  - androgen or flutamide treatment do not induce or 
  inhibit CAT reporter gene expression 

1/10 4/30 
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HPE cells from passage 2 were compared with those from passage 4 (derived from 

the same specimen) to determine whether passage number influenced response to 

flutamide treatment. As seen in Figure 17, the agonistic activity of flutamide induced 

CAT gene expression at both passage 2 (3.5-fold) and passage 4 (2-fold), indicating that 

the response to anti-androgen treatment was not dependent on passage number. 

Furthermore, HPE cells cultured from the transitional zone (TZ) responded in a similar 

manner to flutamide (2.6-fold increase) as those from the peripheral zone (PZ). The same 

response, whether flutamide activation or flutamide suppression, was observed in 60% of 

TIGR assays where PZ and TZ HPE cells were derived from the same prostate, 

suggesting that the antagonist or agonist activity of flutamide on AR-regulated 

transcription appeared to be an inherent response of HPE cells within that prostate. 
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Figure 16: Androgen and anti-androgen activity in HPE cells. 1 x 105 HPE 
cells/well were plated in quadruplicate in 24 well plates and the cells were 
infected with 108 pfu pPB-CAT/Ad viral particles. The cells were treated with 
ethanol, 10-8M R1881, or with 10-5M flutamide as indicated and CAT activity was 
determined as described previously [23]. Error bars, +/- SD. The asterisk indicates 
p values of pPB-CAT/Ad and ethanol compared to ethanol alone. *, p<0.007; **, 
p<0.001; *** p<0.0001. The ^ symbol indicates p values of pPB-CAT/Ad and 
R1881 or flutamide treatment compared with pPB-CAT/Ad and ethanol treatment. 
^, p<0.016. 
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Figure 17: Comparison of HPE cells cultured from different passage numbers 
or prostate regions to androgen and anti-androgen treatment. HPE cells from 
passage 2 (P2) were compared with those from passage 4 (P4) (derived from the 
same prostatectomy specimen) or from peripheral (PZ) or transitional (TZ) zones 
of the prostate to determine whether passage number or location influenced 
response to flutamide treatment. CAT assays were performed as describes 
elsewhere [23]. (A) HPE cells from P2 were plated in quadruplicate at 1 x105 HPE 
cells/well, infected with 108 pfu pPB-CAT/Ad viral particles and treated with 10-

8M R1881 or with 10-5M flutamide as indicated. (B) HPE cells from P4. (C) HPE 
cells from the prostate TZ. Error bars, +/- SD values. The asterisk indicates p 
values of pPB-CAT/Ad and ethanol compared to ethanol alone. *, p<0.0001. The 
^ symbol indicates p values of pPB-CAT/Ad and flutamide treatment compared 
with pPB-CAT/Ad and ethanol. ^, p< 0.007; ^^. p<0.0006; ^^^, p<0.0001. The + 
symbol indicates p values of pPB-CAT/Ad, R1881 and flutamide treatment 
compared with pPB-CAT/Ad and ethanol. +, p<0.09; ++, p<0.02; +++, p<0.003. 
The ○ symbol indicates p values of pPB-CAT/Ad, R1881 and flutamide treatment 
compared with pPB-CAT/Ad and R1881. ○, p<0.019; ○○, p<0.001; ○○○, 
p<0.0002. 
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Mutational analysis of AR in HPE cells where AR-regulated signaling was activated 
by flutamide 
 
 AR mutations may allow transactivation of AR signaling through other steroid 

hormones and ligands such as corticoids and flutamide (72, 137). Thus, AR in AI/FA 

HPE cells was analyzed for somatic mutations. Genomic DNA was extracted from 

cultured HPE cells and PCR amplification was performed on six targeted areas in which 

most of the prostate cancer somatic mutations co-localized. These areas include 2 in the 

AR-NTD [amino acids (aa) 54-92; 253-282;] and 4 in the AR-HBD [aa 654-689; 688-

721; 723-738; 867-917] (67). No point mutations, insertions or deletions in these 6 areas 

were identified. These observations do not exclude the possibility that mutations could 

have been present outside of these common regions.  

 

Identification of DJ-1 in HPE cells treated with flutamide 

 Difference gel electrophoresis was used to flag DJ-1 as a protein that underwent a 

change in expression level upon hormonal treatment. Briefly, HPE cells were treated with 

ethanol, 10-8 M R1881, or 10-5 M flutamide, harvested and lysed as described in materials 

and methods. One hundred µg of each whole cell lysate was labeled with Cy2, Cy3, or 

Cy5 respectively, recombined and subjected to 2D gel electrophoresis (Figure 18A). The 

resulting 2D gel was visualized under the appropriate wavelengths and protein spots that 

increased with flutamide treatment relative to the ethanol control (Figure 18B) were 

excised, treated with trypsin, and analyzed by mass spectrometry (Figure 18C). DJ-1, a 

positive regulator of AR activation (98), was identified as increasing 1.44-fold (44%) with 

flutamide treatment. The ion signals at m/z = 1158.62, 1286.70, 1707.79, 1920.99, and 

2584.36 were used to identify DJ-1 using a peptide mass mapping strategy (Materials and 
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Methods), yielding statistically-significant search scores, 37% protein coverage, and a 

database-predicted MW and isoelectric point (20,100 kDa and 6.3 pI) that were consistent 

with the gel region. This preliminary finding was validated in the following experiments. 

 

 

 

 

Figure 18: Identification of DJ-1, a flutamide-regulated protein, in HPE cells. 
(A) Total protein stain image of the 2D-gel used for the difference gel 
electrophoresis analysis, wherein separately-labeled total protein extracts from 
HPE cells treated with ethanol, R1881, or flutamide were co-resolved. The arrow 
indicates the protein spot-of-interest that was determined to be DJ-1. (B) The 
boxed region from panel A is enlarged and Cy2 and Cy5 are individually imaged 
to show the increase in protein expression between the ethanol and flutamide 
treated samples. Below each gel is a graphical representation of increase in protein 
levels. (C) Protein profile of the tryptic peptides which identified the protein as 
DJ-1.  
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Flutamide and androgen regulate DJ-1 and AR expression 

 Due to limited tissue fragments and the short lifespan of HPE cells in culture, it 

was important to identify an immortalized cell line expressing DJ-1 to confirm the 

primary culture data. Therefore LNCaP, PC-3, DU-145, and NIH-3T3 cells were analyzed 

for DJ-1 expression (data not shown). Although all cell lines tested expressed DJ-1, 

LNCaP cells were selected since they also expressed endogenous AR which could be 

transactivated by hydroxyflutamide (OHF), albeit through a T877A substitution mutation. 

LNCaP cells were deprived of androgens and treated with different activators of 

transcriptional regulation including 10-8M DHT, 10-8M R1881, 10-5 hydroxyflutamide 

(OHF), 10-5 M Forskolin, or 10-6M TPA, for 48 hours. The vehicle (ethanol) served as a 

control. Forskolin and TPA were included to determine whether DJ-1 expression was 

modulated by other transcriptional regulators such as adenylate cyclase or AP1 

respectively. Western blot analysis demonstrated that DJ-1 protein levels increased up to 

6-fold with R1881 and OHF treatment (Figure 19A). DJ-1 expression also increased in 

LNCaP cells that were deprived of androgens for 24 hours (CSS) and then returned to 

media containing 10% FBS (CSS+FBS). Forskolin and TPA treatment had limited effect, 

increasing DJ-1 expression only 2-fold (Figure 19B). Thus, DJ-1 expression appeared to 

be primarily modulated by R1881 or OHF treatment. AR expression also increased or 

decreased in parallel with DJ-1 in all treatment groups. 
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Figure 19: Androgens and anti-androgens increase protein levels of DJ-1 and 
AR. (A) LNCaP cells were grown to 70% confluency and changed to media 
containing 10% charcoal stripped fetal calf serum (CSS). After 24 hours of 
androgen depletion, cells were treated with the indicated agents for 48 hours. CSS 
alone served as a negative control (lane 7), while CSS for 24 hours followed by 24 
hours with 10% FBS served as a positive control (lane 8). (B) AR and DJ-1 
protein levels are represented as a histogram after normalization to GAPDH 
loading control. 
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DJ-1 protein is stabilized in response to androgen and anti-androgen treatment 

 LNCaP cells were treated with ethanol, 10-8 M DHT, or 10-5 M OHF for 24 hours, 

total RNA was extracted and Northern blot analysis was performed to determine whether 

the increase in DJ-1 protein levels was due to increased DJ-1 gene transcription. A 

riboprobe to full-length human DJ-1 was labeled with 32P. Unlabeled antisense RNA 

served as a negative control and DJ-1 plasmid as a positive control. No change in DJ-1 

mRNA levels was observed at all time points tested (Figure 20A).  

 

 Since androgen and anti-androgen treatment did not appear to regulate DJ-1 gene 

expression, LNCaP cells were treated with the translation inhibitor cyclohexamide (CHX) 

to test whether hormone treatment stabilized DJ-1 protein. After 30 minutes of 

pretreatment with ethanol, DHT, or OHF, CHX was added and cells were harvested at 24, 

48, and 72 hours and processed for Western blot analysis (Figure 20B and 20C). DJ-1 

protein levels remained unchanged even up to 72 hours after OHF treatment whereas DJ-

1 protein was reduced by 60% with ethanol treatment. DHT stabilized DJ-1 slightly as 

compared to ethanol control which correlates with the greater increase of DJ-1 following 

OHF treatment (Figure 19A). These results imply that the increase in DJ-1 protein levels 

is due to increased protein stability during androgen and anti-androgen treatment. 
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Figure 20: Increased DJ-1 Protein Expression after OH-Flutamide Treatment 
Results from Protein Stabilization. (A) Northern blot analysis of DJ-1 using 
total RNA from LNCaP cells. Cells were treated either with ethanol, DHT, or OH-
Flutamide (OHF) for the amount of time indicated above each lane. DJ-1 plasmid 
was used as a positive control (+). Unlabeled antisense RNA was used as a 
negative control (-). (B) Cyclohexamide Stabilization Assay for DJ-1. LNCaP 
cells were again deprived of androgens and then were pretreated either with 
ethanol, DHT, or OHF for 30 minutes prior to treatment with cyclohexamide 
(CHX). Cells cultured in CSS media and were not treated with CHX serve as 
controls at 0 and 72 hours. (C) Densitometry shows that treatment with OHF 
stabilizes DJ-1 protein for 72 hours after addition of CHX, whereas approximately 
50 % degrades with DHT treatment, and 60% by 72 hours in the EtOH treated 
sample. Values for DJ-1 were normalized to the GAPDH loading control. 
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Discussion 

Anti-androgens such as flutamide and bicalutamide have been used in 

combination with ADT for PCa. The HPE TIGR assay was developed to study the effects 

of androgen and anti-androgen treatment in primary HPE cells since these cells most 

closely represent those from the patient. Unlike other PCa cell lines which were derived 

from metastatic lesions or from virally transformed cell cultures, HPE cells were cultured 

from biopsy material only up to passage 4 to capture the early responses of AR-regulated 

transcription to hormone therapy. These cells were typically epithelial and expressed 

prostatic secretory proteins. A further advantage of HPE cell cultures was that the assay 

measured endogenous AR responses to androgen and anti-androgen treatment. 

Endogenous AR activity was significantly lower than that observed in studies where 

exogenous AR was transfected into cells to promote high levels of reporter gene activity 

(138). The lower levels of CAT activity most likely reflect the physiological levels of 

AR-regulated signaling in the prostatic epithelium.  

 

The most surprising observation was that flutamide promoted AR-regulated 

transcription in HPE cells derived from 2/10 (20%) tumor and 12/30 (40%) nontumorous 

biopsy specimens. These observations suggested that transcriptional activation by 

flutamide occurred in cells derived from histologically normal prostate tissue. Flutamide 

promotes androgen-independent transcriptional activation and proliferation through the 

well-characterized AR T877A substitution mutation in LNCaP cells (72, 137). This 

mutation was detected in 5 of 16 metastatic lesions obtained from patients who received 

combined androgen blockade with flutamide (69). We analyzed this region in the AR 
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from AI/FA HPE cells. No mutations, including the T877A mutation, were identified, 

demonstrating that the agonist activity of flutamide occurred through a wild-type AR 

(130). In a similar study, hydroxyflutamide treatment increased reporter gene activity in 

DU-145 transfected with wild-type AR. Our analysis does not eliminate the possibility 

that as yet unidentified mutations may have occurred outside the common areas analyzed. 

 

 Difference gel electrophoresis analysis of HPE cells identified the oncogene DJ-1 

as a protein whose expression was increased by anti-androgen treatment. PIASxα [protein 

inhibitor of activated STAT (signal transducer and activator of transcription)] interacts 

with the DNA-binding domain/zinc finger region of AR and suppress AR-activated 

transcription (139). DJ-1 was identified as a PIASxα binding partner, interacting directly 

with the AR-binding region of PIASxα to remove it from AR and restore AR 

transcriptional activity (98).  

 

In our study, DJ-1 protein levels increased in parallel with AR in response to 

flutamide as well as to R1881. In addition, DJ-1 protein levels were stabilized by 

flutamide similar to that observed for AR (130). Thus, it is possible that stabilization of 

AR and DJ-1 allowed flutamide to gain agonist activity. This mechanism may account, in 

part, for the anti-androgen withdrawal syndrome. 

 

 In addition to PIASxα, DJ-1 interacts with the death protein DAXX, sequestering 

it in the nucleus and inhibiting apoptosis signal-regulating kinase 1 activity to promote 

cell survival (94). DJ-1 binding protein (DJBP) binds to the DNA binding domain to AR 
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and negatively regulates AR by recruiting histone deacetylase complex, including 

HDAC1 and mSin3 (118). DJ-1 restores AR activity by interacting with DJBP (118). 

Thus, DJ-1 appears to play a major role in AR function. 

 

 The ARR2PB promoter contains two androgen responsive regions, each containing 

two androgen receptor binding sites ARBS1 and ARBS2 (120). This reporter is 

exquisitely sensitive to androgen and anti-androgen treatment. Low/no CAT activity was 

observed in the untreated control groups in AR/FS HPE, LNCaP, and PC-3 cells. This 

was in contrast to HPE cells in the AI/FS, AI/FA, and NR groups which all demonstrated 

high basal levels of CAT activity in the absence of hormonal treatment. Flutamide could 

still suppress 57% of this activity, implying that this activity was, in part, promoted 

through the AR signaling pathway. Since this blockade was not 100%, it is possible that 

HPE cells produce factors in addition to DJ-1 that promote AR-regulated promoter 

activity in the absence of androgen. 

 

 Stabilization of AR and positive regulators such as DJ-1 may partially explain the 

progression from anti-androgens functioning as AR antagonists to agonists. This 

stabilization may provide the double-edged sword for cancer progression. Not only is AR 

protein itself stabilized, similar to the hypersensitivity hypothesis whereby increased 

levels of AR allow the cell to respond to extremely low androgen levels (48), but also DJ-

1 and other AR co-regulators are stabilized which promote transcriptional activation of 

AR. Taken together these changes could provide the transcriptional advantage that allows 

hormone responsive cancers to escape ADT. 
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 Our study using primary cultured HPE cells suggests that anti-androgens can 

become agonists by stabilizing DJ-1 and increasing DJ-1 and AR protein levels. The 

agonistic activity of flutamide was already observed in histologically normal HPE cells, 

suggesting that these cells had a transcriptional advantage for survival and that these 

changes may occur before the disease is clinically diagnosed. Thus, the HPE TIGR cell 

assay provides a mechanism for studying the early molecular changes which allow anti-

androgens to acquire agonistic properties and highlights the importance of utilizing cells 

derived from radical prostatectomy specimens in determining these mechanisms. 
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CHAPTER IV 

 

DJ-1 BINDS ANDROGEN RECEPTOR DIRECTLY AND MEDIATES ITS 
ACTIVITY IN HORMONALLY TREATED PROSTATE CANCER CELLS 
 
 
 
Introduction 

Multiple molecular events are involved in prostate cancer (PCa) initiation, 

growth, invasion, and metastasis.  Despite the diverse etiology, there is at least one 

universal similarity to the disease – the requirement of androgens and AR for tumor 

progression (49, 140-145). Androgen deprivation therapy (ADT, also known as neo-

adjuvant hormone therapy), is initially effective to treat prostate cancer and remains the 

most common treatment regimen for advanced disease. Although androgen deprivation 

therapy initially causes tumor regression, the eventual evolution of PCa from an 

androgen-dependent to an androgen-independent phenotype allows continuation of tumor 

progression (reviewed in (146)).  There are many hypotheses for the development of 

androgen-independent prostate cancer. Some of these involve increased cellular 

proliferation/decreased apoptosis and, in some patients, increased serum prostate-specific 

antigen (PSA) corresponding with promiscuous or increased AR activity (48, 116). 

 

We hypothesized that identification of proteins that increase following androgen 

deprivation therapy would modulate molecular changes that promote and/or maintain 

AIPC. To this end, we performed proteomic analysis of primary HPE cells after treatment 

with the anti-androgen flutamide (128). We identified DJ-1 as one protein that increased 

following flutamide treatment. Western blot analysis confirmed this result, demonstrating 
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that DJ-1 and AR protein levels increased following treatment with dihydrotestosterone 

(DHT), the synthetic androgen R1881, or the anti-androgen hydroxy-flutamide (OH-

flutamide) in LNCaP cells. Blocking protein synthesis with cycloheximide revealed the 

increase in DJ-1 was due to increased protein stability (128). This indicates DJ-1 and AR 

expression are regulated by both androgens and anti-androgen therapy and could play a 

role in AIPC.  

 

 In order to elucidate the DJ-1 pathway in PCa, we sought to identify DJ-1 

binding proteins in prostate epithelial cells. To address this, primary HPE cells were 

derived from a punch biopsy of human prostate and the androgen-responsiveness of these 

cells was determined using the TIGR assay as described (128). Briefly, this assay utilizes 

an androgen-responsive reporter to determine whether primary HPE cells are androgen 

responsive, androgen independent, or flutamide activated. Since we previously 

demonstrated that DJ-1 increases after flutamide treatment, we used flutamide activated 

HPE cells to generate a novel cDNA library. This library was screened using DJ-1 and 

identified AR as a DJ-1 binding partner. Previously, DJ-1 was thought to control AR 

activity through an indirect mechanism, although these studies were performed after 

transient transfection of AR and DJ-1 in non-prostate cell lines (98, 118). This is the first 

evidence that endogenous DJ-1 directly binds AR, and that the sub-cellular localization 

and protein-protein interaction is hormonally regulated.  Further, we analyzed two 

prostate cancer tissue arrays providing the first large-scale expression analysis for DJ-1 in 

PCa. The first of the two arrays is arranged by Gleason pattern, and the second is 

arranged by length of time of ADT.  DJ-1 immunohistochemical staining on these arrays 
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demonstrates for the first time that DJ-1 is expressed in benign as well as high Gleason 

pattern regions.  Interestingly, DJ-1 expression increased significantly in patients 

receiving greater than 6 months of ADT, indicating that DJ-1 may contribute to the 

development of AIPC. Taken together, these data provide a new mechanism for 

regulation of AR in androgen independent prostate epithelial cells.  

 

 

Results 
 

 
DJ-1 Binds the Androgen Receptor 

 In order to identify DJ-1 binding partners in PCa we generated a cDNA library 

from primary human prostate epithelial cells where flutamide treatment activated AR 

signaling in an androgen-independent manner. This unique library was generated because 

our previous studies indicated that DJ-1 expression increased in HPE and LNCaP cells 

following anti-androgen treatment.  Screening the flutamide-activated library allows 

identification of DJ-1 binding partners that may contribute to the development or 

maintenance of AIPC. Therefore, full length DJ-1 cDNA was used to screen the library 

and identified a region of AR (Figure 21B). The AR fragment contains a region of the N-

terminal activation domain, the entire DNA Binding Domain, and a portion of the Ligand 

Binding Domain (Figure 21A). 

 

The DJ-1:AR interaction was confirmed using AR immunoprecipitation (IP) in 

the LAPC4 cell line. These androgen-dependent cells were derived from a lymph node 

metastasis and retain wild-type AR and PSA expression, unlike most PCa cell lines that 
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have lost AR expression or have AR mutations (147).  IP of endogenous AR pulls down 

DJ-1 (Figure 21C).  The reciprocal IP was performed in LAPC4 cells expressing a N-

terminal HA-tagged DJ-1.  IP using anti-HA antibody co-immunoprecipitated HA tagged 

DJ-1, endogenous DJ-1, and AR. DJ-1 exists as an obligatory dimer (100). Therefore, we 

postulate that HA-DJ-1 binds endogenous DJ-1, explaining the precipitation of both 

tagged and un-tagged DJ-1 (Figure 21D).  
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Figure 21: AR Binds DJ-1 in the Yeast Two-Hybrid System and LAPC4 Cell 
Line 
A) The fragment of AR identified spans the C-terminal region of the Activation 
Domain, the DNA Binding Domain, and a portion of the Ligand Binding Domain.  
B) High                                                                                                                   
stringency selection demonstrates that neither the bait (DJ-1) nor prey (AR) 
plasmid are capable of activating reporter genes individually, but the combination 
produces an interaction and activation of the reporters. 
C) Immunoprecipitation (IP) of AR in LAPC4 cells pulls down DJ-1 confirming 
the interaction.  D) Reciprocal IP was performed using LAPC4 cells that express 
HA-tagged DJ-1. Input lane contains total protein, mock IP was performed with 
anti-IgG antibody to demonstrate specificity. 
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Hormonal Treatment Increases The Interaction Between DJ-1 and AR 

 We performed IPs following hormonal treatment in LAPC4 and LNCaP cells to 

determine if these treatments regulated the DJ-1:AR interaction.  LAPC4 and LNCaP 

cells were serum starved overnight and then treated with ethanol, 10-8M DHT (LNCaP), 

10-9M DHT (LAPC4), 10-5M OH-flutamide (LNCaP), 10-6M OH-flutamide (LAPC4), 10-

5M bicalutamide (LNCaP), or 10-6M bicalutamide (LAPC4) for 24 hours. In both LAPC4 

and LNCaP cells, anti-androgen treatment with either OH-flutamide or bicalutamide 

increased the amount of DJ-1 bound to AR (Figure 22).  DHT treatment appeared to 

increase the DJ-1:AR interaction in LNCaP cells more so than in LAPC4 cells (Figure 

22).  
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Figure 22: Hormonal Treatment Increases DJ-1:AR Interaction in LAPC4 
and LNCaP Cell Lines 
AR immunoprecipitation following treatment of LAPC4 and LNCaP cell lines 
with ethanol, DHT, OH-flutamide, and bicalutamide.  Input lanes contain 5 
micrograms of total protein lysate from DHT treated sample.  Mock IP was 
performed with anti-IgG.   

 

 

 

Androgen and Anti-Androgens Increase DJ-1 Nuclear Localization 

In order to determine localization of DJ-1 in the prostate cancer cell lines LAPC4 

and LNCaP, nuclear and cytoplasmic extracts were prepared. Cells were treated as 

described above.  Twenty-four hours after treatment, cells were harvested and 

cytoplasmic and nuclear extracts were prepared using the NEPER kit (Pierce).  Western 

Blot analysis of the resultant extracts revealed that DJ-1 is predominantly cytoplasmic, 

but both androgen (DHT) and anti-androgen (OH-flutamide and bicalutamide) treatment 
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increases DJ-1 expression in the nuclear fraction (Figure 23A).  As expected, AR 

expression was very low in the absence of androgens, but when treated with DHT, AR 

expression is increased and predominantly nuclear (Figure 23A).  Histone H1 and Rho A 

were used as nuclear and cytoplasmic controls, respectively, and to show equal loading 

between lanes (Figure 23A) (148).  The same experiment was performed in LNCaP cells, 

where an increase in DJ-1 after hormonal treatment was previously documented (128). 

The LNCaP cell line also showed increased nuclear DJ-1 after hormonal treatment, with a 

greater increase in nuclear DJ-1 with DHT than in the LAPC4 cell line (Figure 23B). AR 

is predominantly nuclear in all treatment groups, consistent with previous reports (65, 

149, 150).  Histone H1 and Rho A demonstrate clear separation between the subcellular 

compartments (Figure 23B). 

 

 Immunofluorescence and confocal microscopy were used to confirm the presence 

of DJ-1 in both nuclear and cytoplasmic compartments.  LAPC4 and LNCaP cells were 

plated on chamber slides, allowed to attach overnight, then treated in the same manner as 

cells used for nuclear/cytoplasmic extracts.  Cells were stained for DJ-1, AR, and SC-35 

and visualized with appropriate secondary antibodies.  SC-35 is a nuclear speckle marker, 

and was included to identify sites of active transcription (151).  As with nuclear and 

cytoplasmic extracts, DJ-1 (green) is predominantly cytoplasmic, but is also present in 

the nucleus in both LAPC4 and LNCaP cell lines (Figure 23C). AR (red) localization also 

confirms results from nuclear and cytoplasmic extracts, in that AR expression was low in 

the absence of androgens in LAPC4 cells, but driven to the nucleus upon treatment with 

DHT (Figure 23C).  Further, AR positive nuclei were observed regardless of treatment in 
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LNCaP cells, confirming our observations from Western blot analyses (Figure 23C).  The 

merged images show co-localization between DJ-1 and AR, indicated by yellow in 

merged images (Figure 23C, white arrows) but these areas appear distinct from nuclear 

speckles and active sites transcription (Figure 23C, white *). Low-magnification images 

of individual channels are shown in inset areas (Figure 23C).  

 

Yellow pixels, from the LNCaP images in Figure 3C, were displayed alone and 

indicate DJ-1:AR co-localization increases following hormonal treatment (Figure 23D). 

White dashed lines outline nuclei (Figure 23D). Co-localization of DJ-1 and AR was 

quantified by determining the percentage of co-localized pixels per image (Figure 23D). 

DJ-1:AR co-localization was greatest with DHT treatment followed by OH-flutamide and 

then bicalutamide treatment. Each treatment demonstrated a distinct pattern. DHT and 

bicalutamide treatment resulted in similar co-localization throughout the nucleus, 

whereas DJ-1:AR with OH-flutamide treatment appeared to concentrate just within the 

nuclear perimeter. DJ-1:AR co-localization was not quantified in LAPC4 cells due to low 

AR levels except after DHT treatment. 
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Figure 23: Androgens and Anti-androgens Increase DJ-1 Nuclear 
Localization in LAPC4 and LNCaP Cells   
Nuclear and cytoplasmic extracts were prepared from A) LAPC4 cells and B) 
LNCaP cells indicated treatments. C) Immunofluorescence for DJ-1 (green), AR 
(red), and SC-35 (blue) in LAPC4 and LNCaP cells following treatment. Merged 
high-magnification images show co-localization between DJ-1 and AR (yellow 
spots) indicated by white arrows.  Co-localization between AR and SC-35 
(pink/purple spots) indicated by white asterisk mark active sites of transcription. 
Scale bar equals 5 microns. D) Images and quantification of co-localization 
between DJ-1 and AR.  Yellow pixels indicate co-localization between DJ-1 and 
AR in LNCaP cells.  White dashed lines outline several nuclei. The percent of 
pixels that co-localize between DJ-1 and AR channels was determined in multiple 
optical slices for each treatment in LNCaP cells and is represented as mean +/- 
SEM. Scale bar equals 5 microns. 

 
 

 

DJ-1 Regulates AR Transcriptional Activity 

 We used an androgen-responsive luciferase reporter to determine how modulation 

of DJ-1 expression affected AR activity.  A region of the probasin promoter, termed 

(ARR2PB), containing two androgen responsive regions, was cloned upstream of the 

Firefly luciferase gene resulting in the ARR2PB-luc reporter (128, 129). Over-expression 

of DJ-1 (HA-DJ-1 + luc) increased AR activity approximately 10-fold (p<0.001) 

compared to parental LAPC4 cells transfected with the luciferase reporter and to cells 

transfected with reporter and an empty plasmid control (Figure 24A). Western Blot 

analysis demonstrates that transfection with pCruz-HA-DJ-1 plasmid doubles the 

expression level of DJ-1, but does not change the expression level of AR (Figure 24B).   

 

 Similarly to over-expression, knockdown of DJ-1 expression influences AR 

regulated-transcription.  Pooled siRNAs were co-transfected into LAPC4 cells along with 
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the ARR2PB-luc reporter. Knockdown of DJ-1 expression decreased AR activity 5-10 

fold compared to LAPC4 cells with reporter alone (p<0.01) (Figure 24C). The decrease 

in DJ-1 expression after transfection of siRNAs resulted in approximately 50% decrease 

in DJ-1 protein level compared to GAPDH loading control (Figure 24D). Transfection of 

nonspecific (NS) siRNA served as a control and did not change DJ-1 expression 

compared to nontransfected LAPC4 cells.  Knockdown of DJ-1 did not change AR 

expression, indicating that AR expression is not regulated by DJ-1 (Figure 24D).  
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Figure 24: DJ-1 Regulates AR Transcriptional Activity in LAPC4 Cells 
A) Overexpression of DJ-1 (HA-DJ-1) increases AR transcriptional activity using 
the ARR2PB-luciferase (luc) reporter compared to reporter alone. Each bar 
represents the mean of three samples +/- SEM after normalization to protein 
concentration and expressed as fold change compared to nontransfected control.  
This experiment was repeated 3 times with the same result. B) Western blot of 
LAPC4 cells transfected with HA-DJ-1 plasmid compared to parental LAPC4 
cells. AR expression level does not change with overexpression of DJ-1.  GAPDH 
was included as a loading control.  C) Knockdown of DJ-1 expression using 
siRNA decreases AR activity as compared to reporter alone. Nonspecific siRNA 
(NS) indicates that the effect is specific.  Samples are presented in the same 
manner as in panel A. D) Western blot of LAPC4 cells transfected with siRNAs 
shows that DJ-1 siRNA decreases expression by 50%. AR expression does not 
change after knockdown of DJ-1. The percent knockdown of DJ-1 compared to 
NS siRNA was determined by densitometric analysis using ImageJ software. 
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DJ-1 Expression Does Not Increase With Gleason Pattern 
 

Prostate samples from patients who underwent radical prostatectomy between 

1989 to 2003 were obtained from Vancouver General Hospital.  These patients received 

no treatment prior to surgery. The samples were grouped based upon Gleason score and 

arranged on the slide based upon predominant Gleason pattern for each tissue core in the 

following groups: Benign, Gleason 2, Gleason 3, Gleason 4, and Gleason 5. Figure 25A 

indicates the number of patients represented by each group. 

 

DJ-1 immunohistochemical staining was performed on this array and quantitated 

based on intensity.  Four areas per tissue core were evaluated using the following scale:  

“0” indicates no staining of any cells, “1” indicates a faint stain, “2” indicates a moderate 

intensity stain, and “3” indicates intense staining.  DJ-1 was present in all 5 sample 

groups at moderate intensity, but no statistically significant change was observed, 

indicating that DJ-1 does not increase with Gleason pattern (Figure 25B).  Figure 25C 

shows representative areas from each group at low and high magnifications (scale bars 

equal 20 microns).  DJ-1 is predominantly expressed in luminal epithelial cells and is 

both cytoplasmic and nuclear.   
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Figure 25:  DJ-1 Expression Does Not Increase With Gleason Pattern 
A) The number of patients represented per group on the TMA.  B) Quantification 
of DJ-1 staining intensity on the Gleason TMA.  Staining intensity was evaluated 
on a 4 point scale, with “0” indicating no positive cells, and “3” indicating 
intensely positive cells.  DJ-1 is moderately expressed in all groups and does not 
increase with Gleason pattern.  Bars represent mean +/- SEM. C) Representative 
immunohistochemistry images from each of the groups on the array at low and 
high magnification.  DJ-1 is expressed predominantly in the luminal epithelial 
cells and is both cytoplasmic and nuclear. Scale bars equal 20 microns. 
 

 

DJ-1 Expression Increases in Human Prostates with Androgen Deprivation Therapy 
(ADT):  
 

The second tissue array was generated identically to the first.  This array was 

composed of samples from patients who received either no ADT, less than 3 months 

ADT, 3-6 months ADT, or greater than 6 months ADT before undergoing radical 

prostatectomy surgery at Vancouver General Hospital.  The samples were evaluated 
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histologically and arranged based upon duration of treatment. Figure 26A indicates the 

number of patients per group (unshaded boxes). 

 

DJ-1 staining intensity was evaluated in the same manner as on the Gleason tissue 

array. DJ-1 expression increased significantly in the greater than 6 months ADT group as 

compared to the untreated group (p<0.01) (Figure 26B). Figure 26B shows representative 

tissue cores from each treatment group at low and high magnification (scale bars equal 20 

microns).  DJ-1 is expressed in both the cytoplasm and nuclei of luminal epithelial cells. 

The increase in the intensity of DJ-1 staining after prolonged ADT treatment suggests 

that DJ-1 may be involved in the emergence of AIPC as our previous data suggested. 
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Figure 26:  DJ-1 Expression Increases Following Prolonged Androgen 
Deprivation Therapy (ADT) 
A) The number of patients represented per group on the TMA.  B) Quantification 
of DJ-1 staining intensity on the ADT TMA. Samples are grouped by amount of 
time of ADT and DJ-1 staining intensity was evaluated on a 4 point scale, with 
“0” indicating no positive cells, and “3” indicating intensely positive cells.  DJ-1 
expression increases significantly in the greater than 6 months ADT group 
(p<0.01). Bars represent mean +/- SEM.  B) Representative 
immunohistochemistry images from each of the groups on the array. Scale bars 
equal 20 microns. 
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Discussion 

DJ-1 is a diverse signaling protein that appears to have multiple roles that may 

largely depend on cell type and cellular environment (91, 93-95, 97-99). DJ-1 was 

initially thought to activate AR through indirect mechanisms, for example, by interacting 

with the AR binding region of PIASx-alpha (Protein Inhibitor of Activated STAT-alpha) 

and preventing it from binding and inhibiting AR (98). However, it has also been 

reported that DJ-1 represses AR activity in the SK-N-BE(2)C neuroblastoma cell line 

(119). From these conflicting reports, it appears that DJ-1 regulation of AR may be cell 

type dependent.  We demonstrate that DJ-1 directly interacts with AR and that DJ-1 

functions as a positive regulator of AR signaling in two PCa cell lines, possibly through 

multiple mechanisms. 

 

Direct interaction between DJ-1 and AR was determined using a yeast two-hybrid 

screen of a cDNA library generated from flutamide-activated HPE cells (Figure 21). The 

interaction was confirmed in LAPC4 cells via co-IP showing that the endogenous 

proteins interact (Figure 21C-D). Multiple yeast two-hybrid screens have been performed 

to identify DJ-1 binding partners, but AR has never been reported among them (94, 96-

98, 118). DJ-1 was shown to interact with the apoptotic protein Daxx when a human 

brain cDNA library was screened using this technique.   This interaction was confirmed 

and demonstrated to prevent cellular apoptosis following apoptotic stimuli in neuronal 

cells (94). DJ-1 interacts with PIASx-alpha and DJ-1 Binding Protein (DJBP) (98, 118).  

Both of these proteins are co-repressors of AR.  DJ-1 was shown to interact with both 

proteins in mammalian cells resulting in increased AR transcriptional activity.  Our 
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screen did not identify DJBP or PIASx-alpha, however, this may be due to differences in 

the cDNA libraries and cell lines used. Previous studies were performed in COS and 293 

cells and relied on transient transfection into these AR negative cell lines, while our 

experiments were carried out with prostate cell lines and largely examined endogenous 

proteins.  

 

We demonstrate that the DJ-1:AR interaction is hormonally regulated in both 

LNCaP and LAPC4 cell lines.  Specifically, anti-androgen treatment increases the DJ-

1:AR interaction in both cell lines to a greater extent than DHT (Figure 22).  

Immunofluorescence also demonstrates that hormonal treatment increases the co-

localization between DJ-1 and AR in LNCaP cells (Figure 23C and D).  Co-localization 

was not quantified from immunofluorescent images in LAPC4 cells due to low AR levels 

except after DHT treatment.   

 

Further, both androgens and anti-androgens increased nuclear localization of DJ-

1, providing a potential mechanism for DJ-1 regulation of AR in the nucleus. 

Interestingly, increased nuclear DJ-1 is observed after androgen and anti-androgen 

treatment in both LAPC4 and LNCaP cell lines (Figure 23A-C). Nuclear/cytoplasmic 

extracts and immunofluorescence demonstrate the increase in DJ-1 and AR expression 

(Figure 23A-C) and co-localization (Figure 23D) following treatment. In LAPC4 cells, 

DHT, OH-flutamide, and bicalutamide treatment result in approximately equal levels of 

nuclear DJ-1 (Figure 23A).  However, in LNCaP cells, DHT treatment results in higher 

levels of nuclear DJ-1 than either OH-flutamide or bicalutamide (Figure 23B-D). 
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Additionally, DHT and bicalutamide treatment resulted in DJ-1:AR co-localization 

throughout the nucleus, whereas DJ-1:AR appeared to concentrate just inside the nuclear 

perimeter after OH-flutamide treatment. These differences may be due to the well 

characterized AR T877A substitution mutation in LNCaP cells (137) (72) (84). This 

mutation allows flutamide to exhibit agonist activity, however, since this mutation causes 

an AR conformational change, it could inhibit the interaction with DJ-1.  Alternatively, 

the differences between the LNCaP and LAPC4 cells may be due to differences in 

signaling pathways between the cell lines.  For example, DJ-1 has been shown to 

antagonize the tumor suppressor, PTEN (95).  LNCaP cells lack functional PTEN (30) 

while the PTEN pathway is intact in the LAPC4 cell line (27).  Since the exact role of 

DJ-1 in the PTEN pathway remains unclear, it is possible that loss or inactivation of 

members of this pathway alter the function of DJ-1. 

 

Modulation of DJ-1 expression regulates AR transcriptional activity in LAPC4 

cells suggesting that over-expression of DJ-1 could facilitate AR activation in the absence 

of androgens (Figure 24A and C). We previously identified DJ-1 as a protein which is up-

regulated with anti-androgen treatment in primary HPE and LNCaP cells. Currently, 

TMA analysis of DJ-1 expression demonstrates that DJ-1 does not change with Gleason 

pattern, but increases significantly after 6 months of ADT (Figures 25 and 26). This 

correlates with our previous data and is the first reported large scale evaluation of DJ-1 

expression in PCa. Additionally, the importance of this study should be emphasized, due 

to the difficulty in obtaining tissue samples from patients who received ADT prior to 

surgery. However, the current study did not evaluate DJ-1 staining intensity in relation to 
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the patient’s overall PCa risk which is determined by clinical parameters such as PSA and 

total Gleason score.  This is a potential future direction as well as determining whether 

DJ-1 staining intensity correlates with PCa recurrence or time-to-recurrence.  

 

Current and previous data demonstrate that anti-androgens stabilize DJ-1, increase 

nuclear localization, and increase the interaction between DJ-1 and AR. Further, DJ-1 

expression increases in patients who received more than 6 months ADT providing 

clinical evidence that DJ-1 is involved in AIPC. Taken together, these data demonstrate 

that DJ-1 is a novel AR binding protein that may be part of a group of genes regulated by 

anti-androgens. Factors, such as DJ-1, that are regulated by anti-androgens may increase 

following anti-androgen therapy to activate AR in the absence of androgens. Future 

studies are needed to identify other anti-androgen regulated genes and to better 

understand the role they play in PCa progression and activation of AR signaling in the 

absence of ligand. 
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CHAPTER V 

ADDITIONAL STUDIES TO DETERMINE THE FUNCTION OF DJ-1 

 

Introduction 

 

 The following sections provide additional data that was generated during the 

course of the DJ-1 study.  These observations could potentially be developed into studies 

that investigate the regulation of DJ-1 expression and function in prostate cancer.  

Furthermore, the yeast two-hybrid system identified other putative DJ-1 binding proteins 

which could provide novel insights into the role of DJ-1 in prostate cancer. 

 

DJ-1 Promoter 

 One unexplored area of the DJ-1 field is transcriptional regulation of this multi-

functional protein.  A 2kb region of the human DJ-1 promoter was entered into the NCBI 

database (accession number AB045294) but has not been characterized fully.  The 

transcription initiation site was identified and it was determined that DJ-1 expression is 

dependent on the Sp-1 transcription factor in HeLa cell extracts (152). However, other 

transcription factor binding sites were  not identified.  We performed sequence analysis to 

identify potential transcription factor binding sites that are known to be important in PCa.  

We included the consensus binding sites for AR, Androgen Responsive Elements (ARE), 

AP-1, Foxa1, and NF-1 in the initial search of the promoter sequence. 
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Prostate Cell Lines  

Over the last several decades, multiple PCa cell lines have been generated.  These 

cell lines vary between site of origin and molecular characteristics.  For example, some 

cells retain AR expression, but most lose AR and PSA expression after being cultured in 

vitro. Further, some cell lines will grow in a mouse host, while others either do not grow, 

or grow so quickly that in vivo studies are difficult.  Each cell line has pros and cons 

depending on the question under study, and for these reasons most labs have multiple cell 

lines that are used for experiments.  DU145 cells were one of the first PCa cell lines 

generated and are still used today.  DU145 cells originated from a brain metastasis and 

were first published in 1977 (135, 153).  Several years later, the LNCaP and PC3 cell 

lines were generated from a lymph node and brain metastasis, respectively (135, 153-

155).  While DU145 and PC3 cells do not express AR at the protein level, LNCaP cells 

were unique at the time because they retained AR expression (153, 154) (155). Further 

study of the LNCaP cell line revealed that although they are AR-positive and androgen-

responsive, they harbor a well characterized mutation in the ligand binding domain, 

T877A, which was discussed previously (Chapters III and IV) (72, 73, 135, 137, 156).  

Since the late-seventies and early-eighties, many more PCa cell lines have been derived.  

The LAPC4 cell line is a more recent addition to the available PCa cell lines.  This cell 

line was discussed previously (Chapter IV) and has been used in recent years by several 

groups studying AR.  LAPC4 is one of the few PCa cell lines that is androgen-dependent 

and expresses wild-type AR (135, 147).  Our lab utilizes the above PCa cell lines as well 
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as several other non-prostate cell lines that were screened for DJ-1 expression.  Table 3 

summarizes some of the important characteristics of these cell lines. 

 

 

Table 4:  Cell Lines That Express DJ-1.  

Cell Line Site of origin Year 
published 

AR status Androgen 
Regulation 

References 

DU145 PCa brain 
metastasis 

1977 (-) Androgen-
independent 

(153, 154) 

PC3 PCa bone 
metastasis 

1978 (-) Androgen-
independent 

(155) 

LNCaP PCa lymph 
node 
metastasis 

1980 (+) 
T887A 

Androgen-
responsive 

(157, 158) 

LAPC4 PCa lymph 
node 
metastasis 

1997 (+) wild-
type 

Androgen-
dependent 

(147) 

BPH-1 Benign 
prostate 

1995 (-) Androgen-
independent 

(159) 

HPET Primary PCa 
tumor 

2007 (-) Androgen-
independent 

(160) 

HeLa Cervical 
cancer 

1951 (-) Androgen-
independent 

 

HeLa 
AR 

Cervical 
cancer 

 (+) 
exogenous 

Androgen-
independent, 
androgen-
responsive 

(161) 

NIH-3T3 Mouse 
fibroblast 

1969 (-) Androgen-
independent 

(162) 

 

 

Mouse Prostate and Lady Mouse Model for Prostate Cancer 

Although far from identical, the mouse prostate and urogenital system is similar 

enough to humans to make it a convenient model system. Both species have prostates 

surrounding the urethra that function similarly to contribute fluid to semen. After birth, 



 104 

mouse epithelial/stromal cellular differentiation occurs in the first 2-3 weeks when 

distinct populations of secretory luminal epithelial cells, basal epithelial cells, and 

stromal cells are formed (5).  Briefly, in addition to cellular differentiation, branching 

morphogenesis occurs after birth whereby the prostatic ducts proliferate at the distal tips. 

During branching morphogenesis, the once solid epithelial cords branch to form the 

complex network of glands (reviewed in (5)).  By 5 weeks of age prostatic differentiation 

is complete, resulting in the adult mouse prostate and mice are sexually mature at 6 

weeks of age. Unlike human prostate, the adult mouse prostate is composed of multiple 

lobes – the dorsal (DP), lateral (LP), ventral (VP), and anterior (AP).  The dorsal and 

lateral lobes are connected and surround the urethra (Figure 27) and are sometimes 

experimentally examined as a single lobe which is referred to as the dorso-lateral prostate 

or DLP. Due to lobe-specifc patterns of branching, each lobe has a distinct shape (Figure 

27).  In addition to shape, there are differences in gene expression, morphology, 

epithelial-infolding, and secretory-activity between prostatic lobes (5).  
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Figure 27: Urogenital System of the Adult Male Mouse Two views are shown. 
The four lobes of the prostate are shown which are located adjacent to the bladder 
and surrounding the urethra.  Other male urogenital glands include the seminal 
vesicles, ductus deferens, ampullary gland, epididymus, testis, and bulbourethral 
gland. Figure from (50). 

 

 

There are multiple mouse models available to study human PCa progression 

(reviewed in (115)).  Due to the heterogeneous nature and multi-step progression of PCa, 

it has been difficult to generate a single mouse model that covers all aspects of disease 

progression.  Many PCa models have been generated by over-expression, loss, or 

mutation of a single gene, but another widely studied series of models was generated by 

the introduction of the Simian Virus 40 (SV40).  The Large-T and small t-antigens are the 

two most studied viral proteins that compose SV40. Although each protein has multiple 

functions, a major function of Large-T is inactivation of the tumor suppressors p53 (163) 

and Rb (164) in order to promoter viral replication and cellular transformation (165).  
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Small-t antigen has mitogenic activity that facilitates transformation such as activation of 

the Wnt and MAP Kinase pathways (165).  

 

 

 

Figure 28 The Lady Mouse Model for Prostate Cancer Progression The large 
probasin promoter targets the SV40 Large-T antigen to the mouse prostate 
resulting in inhibition of p53 and Rb and development of localized PCa.  The 
normal mouse prostate and a transgenic prostate are shown with different 
prostatic lobes and urogenital organs identified. BL=bladder, UR= urethra, AP 
=anterior prostate, VP=ventral prostate, LP=lateral prostate, DP=dorsal prostate, 
SV=seminal vesicles . 
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Several mouse models have been generated using the SV40 Large-T and small-t 

antigens.  The Lady model was generated by targeting the Large-T antigen to the CD-1 

mouse prostate using the probasin promoter (LPB-TAg) (Figure 28) (166, 167).  Multiple 

LPB-TAg lines were generated and characterized (166), but this project utilized only the 

12T-7f line. The 12T-7f transgenic line has been extensively characterized and the 

prostates of these mice develop multifocal lesions that express TAg.  12T-7f tumors 

progress to resemble human low-grade PIN (LGPIN), marked by areas with mild nuclear 

atypia, and later progress to more pronounced nuclear atypia which resembles human 

high-grade PIN (166).  These tumors do not metastasize to distant sites, although 

localized invasion has been reported (166). Figure 28 demonstrates the size of the 12T-7f 

tumors as compared to age-matched wild-type prostate, indicating the location of seminal 

vesicles (SV), AP, DP, LP, VP, urethra (UR), and bladder (BL). These tumors are 

androgen-dependent demonstrated by tumor regression following castration, and 

exogenous androgen treatment that causes tumor re-growth (166).   Although these 

tumors remain androgen-dependent today and the molecular characteristics are similar to 

those originally reported, there have been noticeable changes to the line over time.  

Multiple labs have seen an increase in tumor on-set and more rapid tumor growth.  For 

example, when the line was originally characterized, male mice would routinely live past 

20 weeks of age before the tumor-burden was life threatening, but today, tumor growth 

has increased and mice are euthanized at 15 weeks of age before they succumb to tumor-

burden due to bladder and bowel obstruction (unpublished observations, Kasper and 

Matusik laboratories).  The reasons behind this increase in tumor growth are unknown, 

but could be due epigenetic events. For the purposes of this study, it should be noted that 
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all 12T-7f male mice have large prostate tumors by 10-11 weeks of age, while the 

prostates of mice younger than 6 weeks are closer to phenotypically normal prostates. 

 

Yeast Two-Hybrid System to Identify DJ-1 Binding Partners 

The MatchMaker™ System from Clontech was used to identify novel DJ-1 

binding partners in PCa.  This screen was described previously (Chapters II and IV).   

Full-length DJ-1 was used to screen a cDNA library generated from flutamide-activated 

primary HPE cells. AR was identified as a novel DJ-1 binding partner, which was 

confirmed and became the major focus of this research project because of the essential 

role of AR and androgen signaling in PCa (Chapter IV).  In addition to AR, 18 other 

genes were identified as putative DJ-1 binding partners.  There is a lack of information on 

the DJ-1 signaling pathway in PCa, and future research is required to verify the 

interaction between DJ-1 and these potential binding partners to better elucidate the DJ-1 

signaling pathway. 

 

 

Results 

 

Transcriptional Regulation of DJ-1 

Currently there is no published literature on factors that transcriptionally regulate 

DJ-1. We performed a sequence-based analysis of the human DJ-1 promoter region 

(NCBI accession number AB045294) using the web-based programs, Transcription 

Factor Search (TF SEARCH) (http://www.cbrc.jp/research/db/TFSEARCH.html) and 
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Basic Local Alignment Search Tool (BLAST) (http://www.ncbi.nlm.nih.gov/BLAST/), in 

order to determine putative transcription factor binding sites. Using these programs, we 

identified multiple putative binding sites, but no exact matches to consensus sequence 

binding sites.  Imperfect sites include AP-1 (binding sites also known as phorbol 12-O-

tetradecanoate-13-acetate (TPA) response elments), NF1, HNF-alpha, and multiple 

Androgen Recognition Elements (ARE)/Androgen Receptor Binding Sites (ARBS). 

Figure 29 illustrates the 2119 base pairs of the DJ-1 promoter examined.  The percent 

homology is indicated for potential binding site.  The top sequence is the consensus 

binding site and the bottom sequence is the DJ-1 promoter. Identical pairing is indicated 

in red. These potential binding sites were of interest for a number of reasons.  AP-1 is a 

well known transcription factor that is composed of Jun and Fos (168) and is involved in 

multiple aspects of tumor progression including proliferation and inflammation (169) 

(168). Nuclear Factor-1 (NF-1) is part of a heterogeneous family of transcription factors 

that range in size and function (170-174).  We included the well-conserved NF-1 binding 

site in this analysis because it has been shown to regulate milk proteins in mammary 

gland and is associated with hormonal regulation (170, 175, 176).  Since mammary tissue 

is hormonally regulated through nuclear receptor action, there are many parallels to 

hormonal regulation and signaling cross-talk between breast and prostate (177, 178). 

FoxA1 is also known as hepatocyte nuclear factor 3 alpha, and is a member of the 

forkhead class of DNA-binding proteins.  FoxA1 and other Fox proteins were originally 

described in development of endodermally derived tissues and in the regulation of liver-

specific transcripts such as albumin (179).  A member of our group discovered that 

FoxA1 is required for AR-mediated gene activation and that FoxA binding sites flank 
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AREs in the promoter region of PSA and probasin (180). Further, FoxA1 was expressed 

in human adenocarcinoma regardless of Gleason score, while FoxA2 was found only in 

neuroendocrine PCa (181).  FoxA consensus binding sites were included in this analysis 

because at the time it was unknown whether DJ-1 was an androgen regulated gene. If 

FoxA binding sites flanked AREs as in PSA and probasin, it would add confidence that 

the sites were functional.   

 

Figure 29: The Human DJ-1 Promoter Potential transcription factor binding 
sites were identified based upon sequence similarity.  The percent homology is 
shown for each site.  Top line of sequence is the consensus/published site and the 
bottom line is the DJ-1 sequence.  Identical base pair matches are in red.  Known 
Sp-1 and CAP sites are listed. 
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In order to determine whether any of the putative sites are functional, we planned 

to make truncations of the DJ-1 promoter region and clone the fragments upstream of the 

luciferase reporter.  These reporter plasmids would be used to determine which region of 

the promoter was required for activity.  Once identified, the region of interest could be 

used for band-shift assays with the appropriate purified transcription factors to determine 

an interaction. Transfection assays would be utilized to determine the effects of these 

transcriptional regulators on DJ-1 expression. However, due to difficulties cloning the 

region of the DJ-1 promoter, and a change in the direction of the project, these 

experiments were not completed. 

 

Characterization of DJ-1 Expression in Prostate Cancer Model Systems  

 

Expression in human PCa cell lines 

 Initially, there was little information on the expression pattern of DJ-1 in model 

systems for PCa including established human PCa cell lines and mouse models.  Our lab 

uses a variety of cell lines, and it was important to determine the DJ-1 expression pattern 

in these cell lines.   

 

 The cell lines commonly used in our laboratory include: NIH 3T3, LNCaP, 

DU145, PC3, BPH1, LAPC4, HeLa, HeLa AR, and HPET (primary HPE cells 

immortalized with human Telomerase Reverse Transcriptase (hTERT)). Total protein 

was extracted from each of these cell lines at low and high confluency and used for 

Western Blot.  This experiment revealed that DJ-1 is expressed in all cell lines currently 
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available to our laboratory and that increased confluency appeared to increase DJ-1 

expression (Figure 30).  Human beta-actin was used as a loading control, but after this 

experiment we determined that the levels of beta-actin vary between cell lines and is not 

a suitable loading control for this type of experiment.  Nevertheless, we demonstrate that 

DJ-1 is widely expressed in available cell lines. 

 

 

Figure 30: DJ-1 Expression in Available Cell Lines  Western blot for DJ-1 
expression in cell lines at high and low confluency.  Human beta-actin used as a 
loading control. 

 

 

Over-expression of DJ-1 Does Not Affect Growth or Motility of LNCaP and 
DU145 Cells 
 

 Based upon previous published data identifying DJ-1 as an oncogene, we over-

expressed DJ-1 in the LNCaP and DU145 cell lines using the ViraPower lentiviral 
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expression system (Invitrogen). Increased expression of DJ-1 transformed both cell lines 

to some degree, as seen by formation of small colonies (Figure 31), However, it did not 

alter motility or proliferation in either cell line (data not shown).  This experiment was 

repeated using a higher multiplicity of infection (MOI) in an attempt to over-express DJ-

1 by 50 and 100 fold the endogenous level.  This experiment was performed in LNCaP 

cells since they express endogenous AR.  For an unknown reason, the transgene was 

expressed, but not at 50 or 100 fold as expected (Figure 32).  This could be due to 

toxicity from using this level of virus, and only those cells infected with less DJ-1 virus 

survived. Even though these cells did not express higher levels of DJ-1 than observed 

with the initial experiments, proliferation assays were performed, but showed no 

difference between vector control and DJ-1 over-expressing cells. These experiments 

imply that in LNCaP cells DJ-1 could potentially function as an oncogene to transform 

cells, but that DJ-1 does not play a role in cell migration or invasion. 
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Figure 31: Over-expression of DJ-1 Causes Colony Formation in LNCaP and 
DU145 cells. Overexpression of DJ-1 in LNCaP and DU145 cells causes colony 
formation consistent with published reports in NIH 3T3 cells (93). 

 

 

 

 

 

 

 
Figure 32: Expression of V5-tagged DJ-1 in LNCaP cells.  LNCaP cells were 
infected at 50 and 100 MOI concentration of virus with either an empty vector 
(V50  and V100) or V5-DJ-1 plasmid (D50 and D100).  Anti-DJ-1 antibody 
recognizes both tagged and un-tagged DJ-1.  
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Development of a Tetracycline (TET) Inducible DJ-1 shRNA Cell Line 

 DJ-1 is a highly conserved ubiquitiously expressed protein.  Throughout the 

course of this research project, a DJ-1 negative cell line or tissue could not be found.  

Therefore, we sought to generate a human prostate cancer cell line that stably expressed a 

shRNA targeted against DJ-1.  These cells could then be xenografted into SCID mice and 

compared to the parental cell line to determine the effect of DJ-1 on tumor growth in 

vivo.   

 

 LNCaP TET-ON cells that stably express the Tetracycline Repressor and 

Tetracycline Operon were obtained from Dr. Renjie Jin in Dr. Robert Matusik’s 

laboratory at Vanderbilt.  A viral mediated TET-inducible DJ-1 shRNA plasmid was 

purchased from Genscript.  Figure 33 illustrates the features of this plasmid.  When 

LNCaP TET-ON cells are infected with the TET-inducible DJ-1 shRNA plasmid, and 

treated with doxycycline, shRNA expression is induced, and DJ-1 expression should be 

knocked-down.  After infection, cells expressing the DJ-1 shRNA plasmid were FACS 

sorted using the GFP marker.  These cells were then treated with doxycycline (Dox) to 

induce shRNA expression, harvested, and analyzed by Western Blot.  Treatment with 10 

ug/ml doxycyline knocked-down DJ-1 expression to approximately 50% of the non-

targeting control shRNA.  AR expression did not change with modulation of DJ-1, which 

is consistent with previous data (Figure 34 and Figure 24, chapter IV).  Although these 

cells were not used further in the present study, they are an available tool for future DJ-1 

research. 
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Figure 33: Tetracycline-inducible shRNA system. A Tet-inducible shRNA 
plasmid purchased from Genescript and a cartoon describing the Tet-inducible 
expression system. 

 



 117 

 

Figure 34: Knockdown of DJ-1 Using a Tet-Inducible shRNA in LNCaP 
Cells  LNCaP TET-ON cells were stably infected with a cassette for either an 
inducible control shRNA or inducible DJ-1 shRNA. Cells were treated with two 
concentrations of doxycycline (dox) to induce shRNA expression.  DJ-1 
expression decreases following a high dose of dox, while AR is unchanged.  
GAPDH loading contol. 

 

 

Expression in CD-1 and 12T-7f mice 

 To determine whether DJ-1 was expressed in mouse prostate, total RNA was 

extracted from 6 week and 15 week wild-type (CD-1) and LADY 12T-7f dorsal prostates, 

reverse transcribed, and used for RT-PCR.  cDNA from LNCaP cells was used as a 

positive control for the PCR reaction.  DJ-1 was expressed at the mRNA level at both 

time points in CD-1 and 12T-7f mice (Figure 35).  Western Blot of total protein from 3 

and 15 week CD-1 dorsal prostates and 13 week 12T-7f  mice confirmed this expression 

at the protein level (Figure 35).  In addition to dorsal prostates, the NeoTAg 1 and 2 cell 
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lines were included in this analysis.  These cell lines were generated and obtained from 

Dr. Yongquing Wang in the Matusik laboratory at Vanderbilt. The NeoTAg cell lines 

were derived from the 12T-7f prostate tumors and have been previously described (182). 

As expected, DJ-1 is expressed in these mouse PCa cell lines as well as in the primary 

12T-7f tumors.  

 

 

Figure 35: DJ-1 Expression in Mouse Dorsal Prostates and Cell Lines. A) RT-
PCR shows that DJ-1 is expressed in wild-type and 12T-7f prostates. B) Western 
blot analysis confirms DJ-1 expression and demonstrated an increase in 12T-7f 
dorsal prostate. NeoTAg 1 and 2 are cell lines that are derived from 12T-7f 
prostate tumors. LNCaP human PCa cell line was used as a positive control.  The 
larger bands at 80 and 50 kDa have not been observed in human cells or tissues 
and may represent mouse-specific post-translationally modified forms of DJ-1. 

 

 

In order to complete the expression profile for DJ-1 in both developing prostate 

and in tumorigenesis, total RNA was extracted from dorsal prostates CD-1 and 12T-7f 

mice at 2, 3, 4, 5, 6, 10, and 15 weeks of age.  Each sample represents a pool of total 

RNA from the individual age group as described (123).  cDNA was prepared and used for 
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quantitative realtime RT-PCR. DJ-1 was expressed at all ages in both CD-1 and 12T-7f 

mice (Figure 36).  Interestingly, DJ-1 expression is higher at all ages in the 12T-7f mice.  

Further, DJ-1 expression peaks at 3-4 weeks in both wild-type and 12T-7f mice during 

prostate differentiation and at 15 weeks in the 12T-7f tumors.   

 

 

 

Figure 36: Real-time RT-PCR Analysis of DJ-1 Expression in CD-1 and 12T-
7f Mouse Dorsal Prostates. Realtime RT-PCR analysis of DJ-1 expression at 
different aged CD-1 and 12T-7f mice. DJ-1 relative expression was determined by 
normalization to 18S rRNA control.  CD-1 solid blue bars, 12T-7f hatched bars.  
Each bar represents mean +/- SEM. 

 

 

Immunohistochemical analysis of 3- and 15-week CD-1 and 15-week 12T-7f 

dorsal prostates confirmed the real-time RT-PCR results indicating that DJ-1 expression 

was higher in 12T-7f tumors than in wild-type adult prostate (Figure 37).  Additionally, 

DJ-1 subcellular localization changes from predominantly cytoplasmic in the 3-week old 

CD-1 dorsal prostate to nuclear in the 15-week adult growth-quiescent prostate.  DJ-1 
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was highly expressed and mainly cytoplasmic in the adult 12T-7f prostate. Additional 

experiments determined that DJ-1 was cytoplasmic regardless of age in the 12T-7f mice 

(data not shown). 

 

 

Figure 37: Immunohistochemical Analysis of DJ-1 Expression and Sub-
cellular Localization in CD1 and 12T-7f Mouse Dorsal Prostates.  
Immunohistochemical staining for DJ-1 on dorsal CD1 and 12T-7f prostate lobes 
shows increased DJ-1 expression in the 3 wk developing prostate and in the 12T-
7f prostate tumors. Subcellular DJ-1 localization changes from  predominantly 
cytoplasmic in the  3 wk CD-1 prostate to predominantly nuclear in the 15 wk 
adult prostate.  Interestingly DJ-1 is predominantly cytoplasmic regardless of age 
in 12T-7f prostates.  Low (top) and high  (bottom) magnifications for each sample 
are shown. 
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Hormonal Regulation of DJ-1 Expression in 12T-7f Mice 

 Total RNA was extracted from the dorsal prostates of CD-1 and 12T-7f mice that 

had been surgically castrated for 1, 2, 4, or 12 weeks and used for realtime RT-PCR 

analysis of DJ-1 expression.  After castration, DJ-1 expression is maintained in both CD-

1 and 12T-7f mice (Figure 38).  DJ-1 expression peaked after 2 weeks of castration in the 

12T-7f prostates, and returned to basal levels by 4 weeks post-castration.  Error bars 

represent the mean +/-SEM between samples from different mice.  For intact mice and 

the 12-week post-castration sample, there are no error bars because only one sample was 

available.  However, this experiment was repeated twice with the same trend.  

 
Figure 38: Real-time RT-PCR Analysis of DJ-1 Expression After Castration 
in CD-1 and 12T-7f Dorsal Prostates Real-time RT-PCR analysis of DJ-1 
expression in the dorsal prostates post-castration.  Sample and time after 
castration is indicated on the x-axis.  Relative DJ-1 expression afer normalization 
to 18S rRNA in micromoles on the y-axis. DJ-1 expression increases in 12T-7f 
mice 2 weeks after castration before falling to basal levels at 4 weeks post-
castration. 
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Table 5:  Putative DJ-1 Binding Partners from Yeast Two-Hybrid Screen The gene 
name is listed along with NCBI protein accession number. The number of times the gene 
was represented in the screen is listed as the number of “clones” identified. The length of 
the exact alignment between the experimental sequence and the published sequence is 
listed in base pairs (bp). Any known interesting functions that might be relevant in PCa 
are listed on the right. 
 

Gene NCBI protein  clones bp Interesting Functions 

Enolase 1 NP_001419 1 893 Tumor suppressor, perturbs cell 
proliferation by inhibtion of cyclinA 

and B1 (183) 
Carcinoembryonic antigen-

related cell adhesion 
molecule 5 (CEACAM5) 

NP_004354 2 362 Cell adhesion; inhibition in colon 
cancer increases metastasis (184) 

P-cadherin NP_001784 8 823 Associated with aggressiveness in 
breast cancer (185) 

NOL1/Sun domain 
member 5 (NSUN5) 

NP_060514 1 647 Uncharacterized, has similarity to 
p120(NOL1) 

Procollagen-lysine, 2-
oxoglutarate 5-dioygenase 

1 (PLOD-1) 

NP_000293.2 1 211 Membrane-bound in endoplasmic 
reticulum; hydroxylation of collagen-

like peptides 
Carboxypeptidase D NP_001295.2 1 829 metallopeptidase 

Myosin 1C NP_001074248 1 397 Non-conventional myosin isoform 

Makorin 2 NP_054879.3 1 441 Uncharacterized ring-finger protein 

Sirtuin 7 NP_057622.1 1 273 Unknown function, increased in 
breast cancer (186) 

Ubiquitin-specific Protease 
15 

NP_006304.1 3 804 Degradation of ubiquitin 

LDL related protein 1 
(LDP1)/ApoE Receptor 

NP_002323.1 1 466 Apolipoprotein E receptor 

Solute Carrier Family 3, 
member 2 (SLC3A2) 

NP_001012679.1 2 549 Membrane bound, regulates integrin-
dependent signaling  

Filamin B NP_001448.2 1 232 Cell adhesion/Actin-binding protein 
NADH-Ubiquinone 
Oxidoreductase Fe-S 

NP_002487.1 1 797 unknown 

FK506 BP9 NP_009201.2 1 397 unknown 

Co-stimulatroy B7 
molecule CD276 

NP_001019907.1 1 468 Signaling  

ADAM15 NP_003806 1 760 Cell adhesion, associated with 
aggressive prostate and breast cancer 

(187) 
Plexin A1 NP_115618 1 801 Impairs chemotaxis (188) 

 

 

 



 123 

Additional Putative DJ-1 Binding Partners in Prostate Cancer Epithelial Cells 

 

 After sequence analysis, multiple putative DJ-1 binding proteins were identified. 

In addition to AR, 18 other proteins were identified in the screen. Table 4 lists the genes 

identified, the NCBI accession number, the number of times identified in the screen, the 

length of the exact alignment with the published gene sequence in base pairs, and known 

functions of the protein.  Several proteins were previously implicated in cancer.  For 

example, inhibition of Carcinoembryonic antigen (CEA) in colon cancer inhibits 

apoptosis and increases metastasis (reviewed in (189)).  ADAM 15 (A Disintegrin and 

Metallopeptidase 15) is a transmembrane glycoprotein that is involved in cell adhesion.  

ADAM 15 is over-expressed in breast and prostate adenocarcinoma and may play a role 

in metastasis (187). P-cadherin is another cell adhesion molecule that has been implicated 

in PCa.  P-cadherin expression has been correlated with breast cancer aggressiveness 

(185). Other potential DJ-1 binding partners may be important in PCa, but have not been 

studied in prostate. PLOD 1 (Procollagen-lysine 1,2 oxoglutarate 5-dioxygenase 1) was 

identified as a potential AR binding protein in an independent yeast two hybrid screen 

performed in our laboratory (unpublished data).  Currently, the role of PLOD 1 in PCa is 

unknown, but it could mediate AR signaling and form a heterotrimeric complex with DJ-

1 and AR.  Finally, there were several proteins identified that have not been characterized 

including Sirtuin and FK506 binding protein 9 (FKBP9).  Interestingly, another protein in 

the FK506 binding protein family, FKBP52, is a heat-shock binding protein implicated in 

regulation of GR and AR. Male FKBP52 null mice exhibit dysgenic prostates and 
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ambiguous external genitalia. (190, 191).  The FK506BP family is large and diverse, so it 

is unknown at this time whether FKBP9 plays a role in PCa or AR signaling. 

 

 Initial experiments were performed to determine the expression of several genes 

of interest from the yeast two hybrid screen.  Genes were chosen based upon available 

reagents and interest to existing projects in the laboratory.  Based upon these criteria, AR, 

PLOD-1, P-cadherin, and FKBP9 were examined.  Expression profiles for these genes 

were determined in cell lines available in our lab. RT-PCR was performed using cDNA 

from the prostate derived LNCaP, DU145, BPH1, PC3 cell lines as well as the cervical 

cancer cell line HeLa AR.  HeLa AR cells have a stably integrated human AR and have 

been used for many years to study AR signaling.  Figure 39 shows that P-cadherin is 

expressed at the mRNA level in all cell lines tested.  FKBP9 was present in all cell lines 

except LAPC4. PLOD-1 is expressed in all cell lines tested except for DU145. As 

expected, AR was expressed more highly in LNCaP, HeLa AR, and LAPC4 cells which 

express functional AR protein.  PC3, DU145, and BPH1 cells were weakly positive at the 

mRNA level for AR, but these cell lines do not have functional protein (135). DJ-1 was a 

positive control since it was known to be expressed in all of the cell lines examined.  
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Figure 39: Expression of Genes of Interest From DJ-1 Yeast Two-Hybrid 
Screen RT-PCR of the indicated cell lines for several of the genes of interest.  A) 
1= FKBP9, 2=P-cadherin, 3=DJ-1, 4=PLOD-1 (upper band in LNCaP and HeLa 
AR cells is expected size), 5=AR, 6= negative control.  B) Loading order is 
different than A.  Here, 1=PLOD-1, 2=AR, 3=FKBP9, 4=P-cadherin, 5=PSA 
(control), 6= negative control. Annealing temperatures for some primer pairs are 
not optimized, which resulted in multiple bands. 

 

 After expression analysis was performed for the genes of interest, we wanted to 

determine whether modulation of expression of the genes of interest affected AR 

transcriptional activity since DJ-1 interacts with AR.   To address this, commercial 

pooled siRNAs directed against PLOD-1 and FKBP9 were purchased from Dharmacon to 

knockdown expression of these genes and perform androgen-regulated luciferase assays 

(described in chapter IV).  Initial transfections of siRNAs into LNCaP and HeLa AR cells 

demonstrated that both siRNA pools were moderately effective in knocking down PLOD-

1 and FKBP9 at the mRNA level, but luciferase assays after down-regulation of PLOD-1  

and FKBP9 showed very low AR activity, even in the positive control samples. For this 

reason, no conclusions can be drawn from this data (data not shown).  At the time these 

experiments were performed, pooled siRNAs for P-cadherin were not available.  These 
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experiments could be completed in the future to determine whether these are true DJ-1 

binding partners and whether or not they affect AR transcriptional activity.  

 

The list of putative DJ-1 binding partners is varied and includes proteins involved 

in cellular adhesion, signal transduction, and enzymatic reactions.  Although the list of 

potential binding partners is diverse, this was expected based upon the heterogeneous DJ-

1 literature.  DJ-1 has been implicated in multiple diseases and signaling pathways.  The 

interaction between DJ-1 and AR was confirmed (Chapter IV), but 19 other putative 

binding partners must be studied further. Future research should validate the potential 

binding partners and better define the precise role of DJ-1 in the pathways identified. 

 

Discussion 

 Currently, there are still many aspects of the role of DJ-1 in PCa that are not 

understood.  This project has provided information in multiple areas relating to DJ-1: 

potential transcriptional regulation of DJ-1, DJ-1 expression and regulation in PCa model 

systems, and additional putative binding partners.   

 

 Transcriptional regulation of DJ-1 is a completely novel area of research in the 

DJ-1 field.  We used sequence analysis programs to identify potential transcrition factor 

binding sites in a 2kb region of the human DJ-1 promoter.  This analysis identified 

multiple putative sites, but none with exact homology to the published binding site.  

Additional analysis is required to determine whether any of these putative sites are 

functional.  Based upon data presented in previous chapters, however, it is unlikely that 
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the androgen receptor binding sites are functional.  Specifically, the increase in DJ-1 

expression after treatment with androgens and anti-androgens is due to protein 

stabilization rather than increased transcription of DJ-1 (Figure 20).  Furthermore, 

treatment with TPA, which activates AP-1, did not increase DJ-1 protein levels in LNCaP 

cells. This result may indicate that DJ-1 is not regulated by the AP-1 transcription factor, 

however, AP-1 activation often requires other factors, so there is still a possibility that 

AP-1 regulates DJ-1. A complete analysis after TPA treatment was not performed, nor 

were additional experiments to confirm the NF-1 binding sites. Based upon the multiple 

roles of DJ-1 in different tissues, it is likely that transcriptional regulation varies between 

tissues, and that there are additional unidentified binding sites in the promoter region.  

 

 Multiple research groups have identified DJ-1 in different model systems and 

tissues.  In accordance with this, we discovered that DJ-1 is widely expressed in PCa 

model systems.  Using RT-PCR, Western Blotting analysis, and Immunohistochemistry, 

we showed that DJ-1 is expressed in multiple human and mouse cell lines as well as in 

normal mouse prostate and in the 12T-7f mouse model (Figures 30, 35-38).  Quantitative 

realtime-RT-PCR determined that DJ-1 is expressed at higher levels in 12T-7f dorsal 

prostate as compared to wild-type prostate.  Further, expression peaks during prostate 

differentiation and tumorigenesis, implying that DJ-1 is involved in both processes 

(Figure 36) corresponding to our data on DJ-1 in human PCa.  Interestingly, DJ-1 is 

differentially expressed in the cytoplasm and nucleus of wild-type CD-1 dorsal prostates 

(Figure 37).  DJ-1 was predominantly cytoplasmic in 3 week-old developing prostate, but 

was mainly nuclear in the 15 week old growth quiescent gland.  DJ-1 was predominantly 
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cytoplasmic regardless of age in the 12T-7f dorsal prostate.  This  suggests that DJ-1 may 

function similarly during prostate differentiation and tumorigenesis and that sub-cellular 

localization may determine or affect DJ-1 activity.  Currently it is unknown what factors 

regulate DJ-1 sub-cellular localization.  We have observed differential localization in the 

LNCaP and LAPC4 cell lines following hormonal treatment (Figure 23).  It is possible 

that DJ-1 is transported between sub-cellular compartments as part of a multi-protein 

complex.  We showed that DJ-1 binds AR, which translocates to the nucleus after 

hormonal treatment.  Since DJ-1 binds AR and DJ-1:AR co-localization increases after 

hormonal treatment, it is possible that DJ-1 is complexed with AR during nuclear 

translocation. Another important aspect of DJ-1 differential sub-cellular localization is 

that location may determine which proteins DJ-1 interacts with, and subsequently, what 

pathways/cellular processes DJ-1 regulates. 

 

 The DJ-1 yeast two-hybrid identified multiple putative DJ-1 binding partners.  

Since DJ-1 is differentially expressed in the nucleus and cytoplasm, it could interact with 

proteins in both cellular compartments.  Several cell adhesion proteins were identified in 

the yeast two-hybrid screen, including ADAM 15 and P-cadherin.  Both proteins are 

membrane bound, but it is possible that DJ-1 binds the intracellular portion.  PLOD1 is 

also membrane bound, but is localized to the ER.  DJ-1 is expressed throughout the 

cytoplasm, so PLOD1 is a potential cytoplasmic DJ-1 binding partner. The majority of 

the proteins identified in this screen have not been studied in PCa, and some have not 

been studied at all.  Determining the number of real binding partners from this list was 
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beyond the scope of this research project, but hopefully will be a useful starting point for 

future DJ-1 research. 

 

The initial experiments performed to investigate DJ-1 in PCa were varied because 

of the initial lack of published data on DJ-1.  Multiple small projects were started in an 

attempt to elucidate the function of this protein. The role of DJ-1 in modulating AR 

signaling became my project of interest. However, the preliminary data presented in this 

section can be utilized to begin elucidating the regulation of DJ-1 expression in prostate 

cancer. Furthermore, the interaction of DJ-1 with novel binding proteins and the effects 

of DJ-1 sub-cellular localization could provide new insight and avenues of research into 

the functions of this diverse protein.  
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CHAPTER VI 

FUTURE DIRECTIONS AND CONCLUDING REMARKS 

 

 This research project determined that some primary HPE cells from moderately 

differentiated prostate tumors have molecular changes that allowed the anti-androgen 

flutamide to act as an AR agonist.  We found increased levels of DJ-1 and AR after 

flutamide treatment in primary HPE and LNCaP cells and further determined that this 

increase was due to protein stabilization. These results supported known hypotheses for 

mechanisms that would promote androgen-independent disease. Upon further 

investigation, we determined that DJ-1 directly bound the AR and modulated its 

transcriptional activity in prostate cancer cells providing a new mechanism for DJ-1 to 

regulate AR.  The DJ-1:AR interaction was hormonally regulated in two PCa cell lines 

and hormonal treatment increased DJ-1 nuclear localization. The most compelling 

evidence that DJ-1 is involved in PCa progression is that DJ-1 expression increases after 

prolonged ADT in primary tumor samples.  These results provide evidence that DJ-1 may 

play an important role in the progression of PCa to an androgen-independent status and 

fit with previously published accounts of AR co-regulators allowing epithelial cells to 

gain a growth advantage in the presence of low-levels of androgens (48). 

  

 Many aspects of the precise role of DJ-1 in PCa remain unclear.  Although DJ-1 

expression was increased after ADT in primary tumors, this study did not address 

whether the increase in DJ-1 correlated with PCa recurrence or time-to-recurrence. This 

will be an interesting future direction, but unfortunately, may be very difficult to address 
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since the types of samples needed are very hard to obtain, especially in large enough 

numbers to be statistically significant.  Another future direction that will be easier to 

address is whether or not DJ-1 correlates with PCa risk.  This type of study could be 

performed by comparing DJ-1 expression to PSA level, tumor volume, tumor stage, etc. 

This study could be completed more easily because it does not involve samples from 

patients who received therapy or metastatic samples.   

 

 Although we determined that DJ-1 and AR directly interact, we did not determine 

what other proteins are in the complex. There are many known AR-binding proteins, so 

this will likely be a long term project, but one that may elucidate the precise function of 

DJ-1 regulation of AR. Further, there were other proteins identified in the DJ-1 yeast 

two-hybrid that may be important in PCa and AR signaling, but the interaction between 

these putative binding proteins must first be confirmed. This could lead to identification 

of multiple other pathways in PCa that are affected by DJ-1.  Beyond protein-protein 

interactions, DJ-1 acts as a transcription factor in neuronal cells, it is possible that there 

are DJ-1 regulated genes in prostate epithelial cells (113). This will be an interesting 

project, but to date there are no known DJ-1 target genes in prostate. Tyrosine 

hydroxylase, which was identified as the DJ-1 target gene in neuronal cells, is involved in 

dopamine synthesis and is neuron specific so it is unlikely to be expressed in prostate 

cancer.  

 

 Finally, multiple preliminary experiments were performed in mouse prostates 

which may provide interesting future research projects.  DJ-1 expression was increased in 
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12T-7f prostate tumors as compared to wild-type prostates, and also was differentially 

expressed. DJ-1 was cytoplasmic in the 3 week old wild-type prostate and in the 12T-7f 

tumors, but was predominantly nuclear in the 15 week old growth quiescent wild-type 

prostate.  We demonstrated that hormonal treatment changed DJ-1 subcellular 

localization in human PCa cell lines, but it is unknown whether changing hormone levels 

affect the localization of mouse DJ-1.  Since DJ-1 was cytoplasmic regardless of age in 

the 12T-7f mice, it seems more likely that transformation with SV40 Large-TAg affects 

DJ-1 sub-cellular localization. SV40 TAg inhibits p53 (163) and Rb (164), and it is 

possible that alterations in one or both of these signaling pathways affects/regulates DJ-1 

sub-cellular localization.    

 

 This research began to elucidate the role of DJ-1 in PCa. When this project was 

started there were no reports of DJ-1 in prostate, nor was there any indication that DJ-1 

directly interacted with AR. This project shed some light on the potential important role 

of DJ-1 in AIPC or as a marker of PCa risk. Obviously future research will be required in 

order to conclusively answer the questions raised by this research. However, this project 

answered several fundamental questions regarding the function of DJ-1 and provided 

ample preliminary data for future DJ-1 research in PCa.  Therefore, this project 

represents a first-step in the ongoing process of unraveling the multiple functions of 

human DJ-1 in prostate.   
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