COMPUTER SCIENCE

CONFIGURATION AND DEPLOYMENT DERIVATION STRATEGIES FOR
DISTRIBUTED REAL-TIME AND EMBEDDED SYSTEMS

BRIAN PATRICK DOUGHERTY

Dissertation under the direction of Professor Douglas @Gn8dt and Aniruddha Gokhale

Distributed real-time and embedded (DRE) systems are ontet by allocating soft-
ware tasks to hardware. This allocation, calletkaloyment playpmust ensure that design
constraints, such as quality of service (QoS) demands @odiree requirements, are satis-
fied. Further, the financial cost and performance of thesesysmay differ greatly based
on software allocation decisions, auto-scaling strateggl,execution schedule.

This dissertation describes techniques for addressingttakkenges of deriving DRE
system configurations and deployments. First, we show hawidte algorithms can be
utilized to determine system deployments that meet QoS ddsnand resource require-
ments. Second, we use metaheuristic algorithms to optisyseem-wide deployment
properties. Third, we describe a Model-Driven Architeet(MDA) based methodology for
constructing a DRE system configuration modeling tool. Fgwre demonstrate a method-
ology for evolving DRE systems as new components becoméahl@i Next, we provide
a technique for configuring virtual machine instances t@atergreener cloud-computing
environments. Finally, we present a metric for assessidgrammeasing performance gains

due to caching.
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CHAPTER |

INTRODUCTION

Distributed real-time and embedded (DRE) systems are artet by determining an
allocation of software tasks to hardware, known ateployment plaror by configuring
commercial-off-the-shelf (COTS) components. In both sasgstems are subject to strict
resource requirements, such as memory and CPU utilizatimhstringent QoS demands,
such as real-time deadlines and co-location constrairdkjng DRE system construction
difficult. Further, intelligently constructing DRE systeroan result in significant perfor-
mance increases, reductions in financial cost and othefitsene

For example, minimizing the computing infrastructure (sas processors) in a DRE
system deployment helps reduce system size, weight, paweumption, and cost. To
support software components and applications on the congpunfrastructure, the hard-
ware must provide enough processors to ensure that alcappis can be scheduled with-
out missing real-time deadlines. In addition to ensurirtgesitling constraints, sufficient
resources (such as memory) must be available to the softWésdnard to identify the best
way(s) of deploying software components on hardware psmreto minimize computing
infrastructure and meet complex DRE constraints.

Often, it is desirable to optimize system-wide propertieBRE system deployments.
For example, a deployment that minimizes network bandwid#ly exhibit higher per-
formance and reduced power consumption. Intelligent élgyos, such as metaheuristic
techniques, can be used to refine system deployments toersglatem cost and resource
requirements, such as memory and processor utilizatioplyipm these algorithms to cre-
ate computer-assisted deployment optimization tools eamltrin substantial reductions of
processors and network bandwidth consumption requiresyénegacy DRE systems.

DRE systems are also being constructed with commerciahefishelf components to



reduce development time and effort. The configuration afeheomponents must ensure
that real-time quality-of-service (QoS) and resource tan#s are satisfied. Due to the
numerous QoS constraints that must be met, manual systeigweaion is hard. Model-
Driven Architecture (MDA) is a design paradigm that incaigtes models to provide visual
representations of design entities. MDA shows promiseddra@ssing many of these chal-
lenges by allowing the definition and automated enforcerokdésign constraints.

As DRE systems continue to become more widely utilized esystize and complexity
is also increasing. As a corollary, the design and configumadf such systems is becoming
an arduous task. Cost-effective software evolution iscalito many DRE systems. Select-
ing the lowest cost set of software components that meet REEm resource constraints,
such as total memory and available CPU cycles, is an NP-Haxlolgm. Therefore, in-
telligent automated techniques must be implemented tardate cost-effective evolution

strategies in a timely manner.

Overview of Research Challenges
Several inherent complexities, such as strict resourceineagents and rigid QoS de-
mands, make deriving valid DRE system deployments and amatigns difficult. This
problem is exacerbated by the fact that many valid deploysnend configurations may
exist that differ in terms of financial cost and performameaking some deployments and
configurations vastly superior to others. The following lldreges must be overcome to

discover superior DRE system deployments and configuristion

1. Strict Resource Requirements DRE system configurations and deployments must
adhere to strict resource constraints. If the resourceir@gents, such as memory
and CPU utilization, of software exceed the resource priccluof hardware, then

the software may fail to function or execute in an unprediigtananner.

2. QoS Guarantees. It is critical that DRE system configurations and deploymsent



ensure that rigorous QoS constraints, such as real-tindides, are upheld. There-
fore, for a deployment or configuration to be valid, a schiedubf software tasks
must exist that allows the software to execute without esticeegpredefined real-time

deadlines.

3. Co-location Constraints. To ensure fault-tolerance and other domain-specific con-
straints, DRE systems are often subject to co-locationtcainss. Co-location con-
straints require that certain software tasks or comporEnpdaced on the same hard-

ware while prohibiting others from occupying a common adltban.

4. Exponential Solution Space Given a set of software and hardware, there is an expo-
nential number of different deployments or configuratidret £xist. Strict resource
requirements and QoS constraints, however, invalidateakemajority of these de-
ployments, making manual derivation techniques obsolte.to the massive nature
of the solution space, automated exhaustive techniquekefermining deployments

or configurations of even relatively small systems may tadary to complete.

5. Variable Cost & Performance. Valid deployments and configurations may differ
greatly in terms of financial cost and performance. Theesftechniques must be
capable of discovering solutions that not only satisfy giesionstraints, but also

yield high performance while carrying a low financial cost.

Overview of Research Approach
To overcome the challenges of determining valid DRE systepiayments, configura-
tions and evolution strategies, we apply a combinationeéise heuristic algorithms (such
as bin-packing) metaheuristic algorithms (such as gemgiarithms and particle swarm
optimization techniques), and model-driven configuratiechniques. These techniques

are utilized as described below:

1. Automated Deployment Derivationuses heuristic bin-packing to allocate software



tasks to hardware processors while ensuring that resoarnsraints, such as mem-
ory and cpu cycles, real-time deadlines, and co-locatioistraints are satisfied. By
defining strict space constraints of bins based on the dlaitasources of hardware
nodes and schedulability analysis of software tasks, boking can be used to de-

termine deployments that satisfy all design constraingstimely manner.

2. Legacy Deployment Optimizationrequires that design constraints are satisfied while
also minimizing system-wide properties, such as networkliadth utilization. This
process is difficult since the impact on network bandwidthzation cannot be de-
termined by examining the allocation of a single softwasktdvietaheuristic tech-
niques, such as particle swarm optimization techniquesgenétic algorithms, can
be used in conjunction with heuristic bin-packing to dissoeptimized deployments
that would not be found with heuristic bin-packing aloner &w=ample, this technique
could be applied to a legacy avionics deployment to detegrisoftware tasks could
be allocated differently to create a deployment that coresuiess network bandwidth

and carries a reduced financial cost.

3. MDA Driven DRE System Configuration techniques allow designers to model
DRE system configuration design constraints, domain-ipemnstrains, and fa-
cilitate the derivation of low-cost, valid configuratioriSor example, designers can
use model-driven tools to represent the DRE system contraf a smatrt car, in-
vestigate the impact of adding a new component, such as etmal& control unit,
and automatically determine if a configuration exists thiéitsmpport the additional

component.

4. Automated Hardware/Software Evolution techniques allow designers to enhance
existing DRE system configurations by adding or removing S@dmponents rather
than constructing costly new DRE systems from scratch ltiegun increased sys-

tem performance and lower financial costs. For example, @msydesigner could



specify a set of legacy components that are eligible forasghent and a set of
potential replacement components. Automated evolutionbeaused to generate a
set of replacement components and a set of components toedhnt would yield

increased performance and/or reduced financial cost.

. Automated Virtual Machine Configuration & Cloud Auto-scali ng Optimization
can reduce power consumption in cloud computing environsey using virtual-
ized computational resources to allow an application’s matational resources to
be provisioned on-demand. Auto-scaling is an importanicdimomputing technique
that dynamically allocates computational resources ttieipns to precisely match
their current loads, thereby removing resources that wotlldrwise remain idle and
waste power. Applying automated configuration strategiesiinimizing operating
cost and energy consumption with auto-scaling can lead ¢éapmér, more energy-

efficient cloud computing environments.

. Predictive Cache Modeling & Analysisis a technique that can aid designers in ac-
curately predicting the performance gains of DRE systenesdyprocessor caching.
Utilizing a processor cache can greatly reduce system é&gectime. Several fac-
tors that vary between system implementations, such a®czh, data sharing of
software, and task execution schedule make it difficult emlfmt, quantify, and com-
pare the performance gains resulting from processor cgdbimmultiple potential
system implementations. Further, using the predictedgasar cache effects as a
heuristic for creating the software execution schedulgstesn execution time can
be reduced without violating QoS constraints, such astiesd-deadlines and safety

certifications.



Research Contributions

As a result of these research efforts, | have generatedadeehniques for DRE sys-
tem configuration and performance optimization. First, wednstrated the Bin-packing
Localizatlon Technique for processor Minimization (BLIfZNext we created ScatterD,
a hybrid technique for optimizing system deployments; dhwe constructed the Ascent
Modeling Platform (AMP) for modeling DRE system configueais; Fourth, we devised
the Software Evolution Analysis with Resources (SEAR) teghe for evolving legacy
DRE system configurations; Next, we created the Smart Clquidhv@zation for Resource
Configuration Handling (SCORCH) for reducing the energystonption and operating
cost of cloud computing environments; Finally, we devisesl$ystem Metric for Applica-
tion Cache Knowledge (SMACK) for predicting and optimizipgrformance gains due to

processor caching.

BLITZ
Research contributions:
1. We present the Bin-packing Localizatlon Technique focpssor minimiZation (BLITZ),

a deployment technique that minimizes the required numiyenoeessors, while ad-

hering to real-time scheduling, resource, and co-locat@mrstraints.

2. We show how this technique can be augmented with a harnpenicd heuristic to

further reduce the number of required processors.

3. We present empirical data from applying three differespildyment algorithms for

processor minimization to a flight avionics DRE system.
Conference Publications

1. Brian Dougherty, Jules White, Jaiganesh Balasubramaaris Thompson, and
Douglas C. Schmidt, Deployment Automation with BLITZ, 31rsiernational Con-
ference on Software Engineering, May 16-24, 2009 Vanco@eamnada.



ScatterD

Research contributions:

1. We present a heuristic bin-packing technique for satigfgeployment resource and

real-time constraints.

2. We combine heuristic bin-packing with metaheuristioalipms to create ScatterD,
a technique for optimizing system wide properties whileoecing deployment con-

straints.

3. We apply ScatterD to optimize a legacy industry flight aies DRE system and

present empirical results of network bandwidth and pramassiuctions.
Journal Publications

1. Jules White, Brian Dougherty, Chris Thompson, Douglass€hmidt, ScatterD:
Spatial Deployment Optimization with Hybrid Heuristic / &utionary Algorithms,
ACM Transactions on Autonomous and Adaptive Systems Spkssiae on Spatial

Computing
Submitted

1. Brian Dougherty, Jules White, Douglas C. Schmidt, JaraiVellons, Russell Keg-
ley, Deployment Optimization for Embedded Flight Avioni&gstems, STSC Crosstalk
(2010)

ASCENT Modeling Platform

Research contributions:
1. We present the challenges that make manual DRE systengeratfon infeasible.

2. We provide an incremental methodology for constructirmglating tools to alleviate

these difficulties.



3. We provide a case study describing the construction cAtieent Modeling Platform
(AMP), which is a modeling tool capable of producing neatiopl DRE system

configurations.
Journal Publications

1. Jules White, Brian Dougherty, Douglas C. Schmidt, ASCEAITAlgorithmic Tech-
nique for Designing Hardware and Software in Tandem, IEE&h3actions on Soft-
ware Engineering Special Issue on Search-based Softwajiedaning, December,

2009, Volume 35, Number 6

2. Jules White, Brian Dougherty, Douglas C. Schmidt, Salgdtighly Optimal Ar-
chitectural Feature Sets with Filtered Cartesian FlatignJournal of Systems and

Software, August 2009, Volume 82, Number 8, Pages 1268-1284
Book Chapters

1. Brian Dougherty, Jules White, Douglas C. Schmidt, Madtale Configuration of
Distributed, Real-time and Embedded Systems, Model-div@alysis and Software
Development: Architectures and Functions, edited by Jasis and Erika Asnina,

IGI Global, Hershey, PA, USA 2010

SEAR

Research contributions:

1. We present the Software Evolution Analysis with Resasi{&EAR) technique that
transforms component-based DRE system evolution aligesainto multidimen-

sional multiple-choice knapsack problems.

2. We compare several techniques for solving these knapzatitems to determine
valid, low-cost design configurations for resource comséicomponent-based DRE

systems.



3. We present a formal methodology for assessing the walidievolved system con-

figurations.

4. We empirically evaluate the techniques to determine tilicability in the context

of common evolution scenarios.

5. Based on these findings, we present a taxonomy of the galgahniques and the

evolution scenarios that best suit each technique.
Journal Publications

1. Jules White, Brian Dougherty, Douglas C. Schmidt, Selgdtighly Optimal Ar-
chitectural Feature Sets with Filtered Cartesian Flatigndournal of Systems and

Software, August 2009, Volume 82, Number 8, Pages 1268-1284

2. Jules White, Brian Dougherty, Douglas C. Schmidt, ASCEAITAlgorithmic Tech-
nique for Designing Hardware and Software in Tandem, IEEdh3actions on Soft-
ware Engineering Special Issue on Search-based Softwajiedaning, December,

2009, Volume 35, Number 6
Conference Publications

1. Brian Dougherty, Jules White, Chris Thompson, and Dai@laSchmidt, Automat-
ing Hardware and Software Evolution Analysis, 16th AnnUgaEE International
Conference and Workshop on the Engineering of ComputerdBagstems (ECBS),
April 13-16, 2009 San Francisco, CA USA.

Submitted

1. Brian Dougherty, Jules White, Douglas C. Schmidt, Auted&oftware and Hard-
ware Evolution Analysis for Distributed Real-time and Emided Systems, The Cen-

tral European Journal of Computer Science, 2011.



SCORCH

Research contributions:

1.

We show how virtual machine configurations can be captiwréshture models.

We describe how these models can be transformed intoraortatisfaction prob-

lems (CSPs) for configuration and energy consumption opétian.

We show how these models can be transformed into conssigtisfaction problems

(CSPs) for configuration and energy consumption optinmozrati

We present a case-study showing the energy consummigiriéduction produced

by this model-driven approach.

Submitted

1. Brian Dougherty, Jules White, Douglas C. Schmidt, Madléten Configuration of

Green Cloud Computing Auto-scaling Infrastructure, Thiedmational Journal of
Grid Computing and eScience Special Issue on Green Congp@il. (revisions

requested)

SMACK

Research contributions:

1. We present a heuristic-based scheduling techniquedtisties real-time scheduling

constraints and safety requirements while granting aregeeexecution time reduc-

tion of 2.4%.

We present a case study of an industry avionics systemmtbavates the need for

cache optimizations in which code-level software modifaat are prohibited.

. We present the System Metric for Application Cache Knolgée(SMACK), a formal

methodology for quantifying the expected performance benef a system due to

processor caching.
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4. We empirically evaluate the execution time, L1 cache esssd L2 cache misses of
44 simulated software systems with different data shariregacteristics and execu-

tion schedules.
5. We demonstrate the relationship between SMACK score wstdrs performance.

6. We examine the impact of using SMACK as a heuristic to a{estem execution

schedules to reduce system execution time.

Dissertation Organization

Each research topic is separated into a chapter descrimgngdvancements made in
each area. The remainder of this dissertation is organigddli@ws: Chapter Il show-
cases automated deployment derivation of DRE systems;t@hidppresents deployment
optimization techniques; Chapter V describes the creatfoa modeling tool for auto-
mated DRE system configuration; Chapter VI demonstratesthadelogy for automati-
cally evolving DRE systems configurations; Chapter VIl pras an automated virtual ma-
chine configuration technique for reducing operating codtenergy consumption in cloud
computing environments; Chapter VIl provides a methodyplimr assessing and optimiz-
ing performance benefits due to processor caching for DREemygs Finally, Chapter IX

presents concluding remarks and lessons learned.
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CHAPTER I

RESEARCH EVOLUTION

This chapter examines existing research for optimizing BR&Eem deployments and
configurations. The research is split into sections basednammizing the hardware nec-
essary to support a set of software components; techniguesiproving legacy system
deployments; model-driven techniques for configuring DREtems; DRE system con-
figuration evolution; optimization techniques for virtuabhchine configuration; processor

cache optimization techniques for increasing system padace.

DRE System Deployment Minimization

Devising system deployments that reduce the need for exedsardware is critical
to maximizing system value. DRE system deployment minitioraexamines software
component allocations and their effects on hardware rements. This section examines
existing research methods for miinmizing system hardwageirements through intelli-
gent allocation of software components.

Deployment Minimization. Burchard et al [72] describe several techniques that use
component partitioning and bin-packing to reduce totatnexgl processors. These tech-
niques use several different heuristics based on schedaharacteristics to determine
more efficient deployment plans. This work, however, doeasawoount for additional
resource constraints or co-location requirements. Nehnigaes must be developed that
enforce resource constraints and co-location requiresriergnsure system validity.

Task Allocation with Simulated Annealing. Tindell et al [112] investigate the use of
simulated annealing to generate deployments that optigyigem response time. Unlike
heuristic algorithms, such as heuristic bin-packing, $atad annealing does not require

designers to specify an intelligent heuristic to deternt@sk allocation.

12



Instead, simulated annealing only requires that a metdetsrmined to score a poten-
tial solution. After a potential allocation is examined awred, simulated annealing uses
an element of randomness to determine the next allocatibe tovestigated. This allows
multiple executions of the algorithm to potentially det@mendifferent deployment plans.
This application of simulated annealing, however, doedala into account resource con-
straints or co-location requirements. Therefore, thisimégue must be altered to ensure

that all DRE system constraints are satisfied.

Legacy DRE System Deployment Optimization

A number of prior research efforts are related to systenew&pbloyment optimization.
This section provides a taxonomy of these related works aathmes their effectiveness
for optimizing legacy DRE system deployments. The relatecke are categorized based
on the type of algorithm used in the deployment process.

Multi-processor scheduling. Bin-packing algorithms have been successfully applied
to the NP-Hard problem of multi-processor scheduling [2dLlti-processor scheduling
requires finding an assignment of real-time software taskatdware processors, such that
no tasks miss any deadlines. A number of bin-packing modidica are used to optimize
the assignment of the tasks to use as few processors aslp$26i29,30,33,64]. The chief
issue of using these existing bin-packing algorithms fatisppdeployment optimization to
minimize network bandwidth is that they focus on minimiztotal processors used.

Kirovski et al. [60] have developed heuristic techniquesassigning tasks to proces-
sors in resource constrained systems to minimize systeta-power consumption. Their
technique optimizes a combination of variations in proocepswer consumption and volt-
age scaling. These techniques, however, do not accoungfaork communication in the
power optimization process.

Hardware/software co-synthesisHardware/Software co-synthesis research has yielded
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techniques for determining the number of processing utask scheduling, and other pa-
rameters to optimize systems for power consumption whiletmg hard real-time con-
straints. Dick et al. [34, 35], have used a genetic algorifonthe co-synthesis problem.
As with other single-chip work, however, this research rectied towards systems that are
not spatially separated from one another.

Client/Server Task Partitioning for Power Optimization. Network power consump-
tion and processor power consumption have both been coadidework on partitioning
client/server tasks for mobile computing [24,71, 116].Histresearch, the goal is to deter-
mine how to partition tasks between a server and mobile dewieninimize power drain
on the device. This work, however, is focused only on how peétviandwidth and power

is saved by moving processing responsibilities betweenglesclient and server.

Model-driven DRE System Configuration

Modeling tools can facilitate the process of DRE system goméition. The model in-
stances that are created using these modeling tools refaira user manually constructs
model instances. For larger model instances, this may tékge amount of time. There-
fore, techniques are needed that facilitate model insteomstruction from existing model
instances.

Typically, system designers wish to construct a single rhiog¢éance from data spread
out over multiple model types. For example, a system desigiag have a UML diagram
for describing system software architecture, excel spateeets listing the cost and specifi-
cations of candidate components, and a Ptolemy model pnavidult tolerance require-
ments. To manually extract this information form multipledels would be laborious.

Model Management with Multi-Modeling Tools Multi-modeling tools are applica-
tions that allow the manipulation of multiple PSMs definedlifferent metamodels. Multi-
modeling tools could allow the automated aggregation o& diadm models of different

types. In future work the use of multi-models to collect abllity, fault-tolerance, and
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performance data from multiple disparate models will beegtigated and applied to the
evaluation of model instances of DRE system configurations.

The migration of a model instance defined by a certain metairtoch model instance
defined by a different metamodel is known as a model transftbam. Since these meta-
models define different rules for constructing PSMs, theas#in meaning of the model
that is migrated can be partially or entirely lost, resgjtin an incomplete transforma-
tion. In future work, procedures to transform models whil@imizing data loss will be
researched.

Using these techniques, models that contain addition&sysonfiguration data, such
as Ptolemy models, could be transformed into model instatiz can be used in concert
with AMP [38]. The Lockheed Martin Corporation is currendgnstructing NAOMI [32],
a multi-modeling environment that can be utilized to aggteglata from multiple models

of different types and perform complex multi-model tramsfations.

Evolving Legacy DRE System Configurations

The myriad of DRE system constraints, tightly coupled hanand software resource
requirements, and plentiful configuration options makesdwng legacy DRE system con-
figurations difficult. This section examines the use of (IJtdee models for software
product-lines, (2) architecture reconfigurations to $atisultiple resource constraints, and
(3) resource planning in enterprise organizations toitatél upgrades to determine if their
application can mitigate these difficulties.

Automated Software Product-line Configuration. Software product-lines (SPLs)
model a system as a set of common and variable parts. A compmoach to captur-
ing commonality and variability in SPLs is to use a featuredeld54], which describes
the points of variability using a tree-like structure. A noen of automated techniques have
been developed that model feature model configuration aollittan problems as con-

straint satisfaction problems [12] or SAT solvers to Bedasiet al. [12,121], satisfiability
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problems [78], or propositional logic problems [9]. Althgluthese techniques work well
for automated configuration of feature models, they havee&ly not been applied with
resource constraints, since they use exponential wosst-s@arch techniques.

Architectural considerations of embedded systemsMany hardware/software co-
design techniques can be used to analyze the effectivefiessledded system archi-
tectures. Slomka et al [104] discuss the development litdecgf designing embedded
systems. In their approach, various partitionings of safemonto hardware devices are
proposed and analyzed to determine if predefined perforenaaguirements can be met. If
the performance goals are not attained, the architectutteeaystem will be modified by
altering the placement of certain devices in the architectiven if a valid configuration
is determined, it may still be possible to optimize the perfance by moving devices.

However, these optimizations are achieved by altering yiseem architecture, which
may not be always desirable or possible. Architectural\Wward/software co-design deci-
sions traditionally do not consider comparative resouargstraints or financial cost opti-
mization.

Maintenance models for enterprise organizationsThe difficulty of software evolu-
tion is a common and significant obstacle in business org#oizs. Ng et al [85] discuss
the impact of vendor choice and hardware consumption to shewizable financial and
functional impact that results from installiegterprise resource planning&RP) software.
Other factors related to calculating evolution costs idelwendor technical support, the
difficulty of replacing the previous version of the softwaaed annual maintenance costs.
Maintenance models are used to predict and plan the effeptimhasing and utilizing
various software options on overall system value. Stepthtocreating maintenance mod-
els with increased accuracy for describing the ramificatiohan ERP decision are also
presented.

Currently, maintenance models require a substantial abfugffort to calculate the

overall impact of installing a single software package, mo€ which can not be done
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through computation. While maintenance models can be wseddgess the value of the
functionality and durability added by a certain softwarekze, they have not been used
to explore the hardware/software co-design space to detervalid configurations from

large sets of potential hardware devices and software coemgs. Instead, they are used

to define a process for analyzing and calculating the valyeeaafefined upgrades.

Virtual Machine Configuration Optimization

Optimizing system configurations can also yield great parémce benefits in other
computing environments, such as cloud computing infratitres. This section examines
techinques that can be applied to virtual machine configurab increase system perfor-
mance.

VM forking handles increased workloads by replicating VM instancés naw hosts
in negligible time, while maintaining the configuration mpts and state of the original
VM instance. Cavilla et al. [63] describe SnowFlock, whides virtual machine forking
to generate replicas that run on hundreds of other hosts @ssathan a second. This
replication method maintains both the configuration antésiathe cloned machine. Since
SnowFlock was designed to instantiate replicas on mulpplesical machines, it is ideal
for handling increased workload in a cloud computing enwinent where large amounts
of additional hardware is available.

SnowFlock is effective for cloning VM instances so that tlevrinstances have the
same configuration and state of the original instance. Asalttethe configuration and
boot time of a VM instance replica can be almost entirely Isgped. This technique, how-
ever, requires that at least a single virtual machine imgtanatching the configuration
requirements of the requesting application is booted.

Automated feature derivation. To maintain the service-level agreements provided by
cloud computing environments, it is critical that techr@gquor deriving VM instance con-

figurations are automated since manual techniques canppbodithe dynamic scalability
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that makes cloud computing environments attractive. Mankitiques [13,118-120] exist
to automatically derive feature sets from feature modetesg techniques convert feature
models to CSPs that can be solved using commercial CSP solBgr representing the
configuration options of VM instances as feature modelseghechniques can be applied
to yield feature sets that meet the configuration requirésnehan application. Existing
techniques, however, focus on meeting configuration requents of one application at a
time. These techniques could therefore be effective fardahing an exact configuration

match for a single application.

Optimizing Processor Cache Performance

DRE system performance can be vastly increased by efféctittdizing processor
caching. This section examines the impact of (1) softwacheaptimization techniques,
(2) hardware cache optimization techniques, and (3) otliEe Bystem performance opti-
mization techniques on the effectiveness of processoiirmgch

Software Cache Optimization Techniques. Many techniques exist to increase the
effectiveness of processor caches by altering softwateeatdde level to change the order
in which data is accessed. These optimizations, known asatatss optimizations [61],
focus on changing the manner in which loops are executedt&ghaique, known as Loop
Interchange, can be used to reorder multiple loops suchthleatiata access of common
elements in respect to time, referred tdesmporal localityis maximized [4,102,123,124].
Another technique, referred to as loop fusion, is often thpplied to further increase
cache effectiveness. Loop fusion is the process of merginlgpte loops into a single
loop and altering data access order to maximize temporalitpd17, 58,103, 114]. Yet
another technique for improving the cache effectivenessotifvare is to utilizeprefetch
instructions. A prefetch instruction is retrieves datarfrmemory and writes to the cache

before the data is requested by the application [61]. Riefeistructions can be inserted
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manually into software at the code level and have been showediice memory latency
and/or cache miss rate [25,41].

While these techniques have all been shown to increase fiietieéness of software
utilizing processor caches, they all require code-levéhagations of the software. Many
systems are safety critical and must be comprised of safétgal components. Any alter-
ation to these components can introduce unforeseen sigiet®tind invalidate the safety
certification. Further, developers may not have code-lgkagbrietary components that are
purchased. These restrictions prohibit the use of any tdd-modifications, such as those
used in loop fusion and loop interchange, as well as manadtiyng prefetch instructions.

Hardware Cache Optimization Techniques. Several techniques also exist for alter-
ing systems at the hardware level to increase the effe@ssnf processor caches. One
technique is to alter theache replacement polidhiat is used by the processor to determine
which line of cache is replaced when new data is written tochehe. Several policies
exist, such as Least Recently Used (LRU), Least FrequersgdLRU), First In First Out
(FIFO), and random replacement [2, 45, 46].

Which policy is used can substantially influence the pertoroe of a system. For
example, LRU is effective for systems in which the same dsitékely to be accessed
again before enough data has been written to the cache tdetetypmverwrite the cache.
However, if enough new data is written to the cache that preshy cached data is always
overwritten before it can be accessed then performances géalhbe minimal. In these
cases, a random replacement policy will probably yieldeased cache effectiveness.

Further, certain policies are shown to work better for défe cache levels [2], with
LRU performing well for L1 cache levels, but not as well forda data sets that may
completely exhaust the cache. Unfortunately, it is veryidift and often impossible to
alter the cache policy of existing hardware. Thereforeheaeplacement policies should
be taken into account when choosing hardware so that theteié cache optimizations

made at the software or execution schedule level will be mepad.
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DRE System Configuration Optimization. While techniques such heuristic-based
scheduling with SMACK can be applied to increase the praresache effects of existing
systems, other techniques focus on increasing perfornthrmagh intelligent system con-
struction. Constructing valid DRE system implementatibpsconfiguring prefabricated
COTS components is non-trivial due to several constrasuish as real-time requirements,
budgetary limitations, and strict resource constrainteweler, substantial reductions in
execution time, financial cost, and resource requiremeaarisbe realized by intelligently
configuring DRE systems [37, 37].

Other techniques, such as Software Product Lines (SPLayiexe points of variability
in the hardware and software of the system to determine iicevariants offer superior
performance [12,121]. These techniques are appropria@ftstructing new system im-
plementations or evolving existing system implementaiemthat all DRE constraints are
met. However, these techniques do nothing to further opgraystem performance after a

valid configuration has been determined.
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CHAPTER IlI

AUTOMATED DEPLOYMENT DERIVATION

Challenge Overview

This chapter provides motivation for automated deployntamivation techniques to
determine valid DRE system deployments. We introduce aisteutechnique for pro-
cessor minimization of a legacy flight avionics system. Wewshow the application of
this technique can substantially reduce the hardware rements and cost of deployments

while satisfying additional DRE system constraints.

Introduction

Software engineers who develop distributed real-time andeglded (DRE) systems
must carefully map software components to hardware. Thafé@aye components must
adhere to complex constraints, such as real-time schepddéadlines and memory limita-
tions, that are hard to manage when planning deploymentsrthga the software compo-
nents to hardware [10]. How software engineers choose toswidyare to hardware has a
direct impact on the number of processors required to impfegra system.

Ideally, software components for DRE systems should beogeplon as few processors
as possible. Each additional processor used by a deployadeist size, weight, power
consumption, and cost to the system [81]. For example, itble@s estimated that each
additional pound of computing infrastructure on a comnaraircraft results in a yearly
loss of $200 per aircraft in fuel costs [109]. Likewise, eaclind of processor(s) requires
four additional pounds of cooling, power supply, and othgyport hardware. Naturally,
reducing fuel consumption also reduces emissions, bergeftltie environment [109].

Several types of constraints must be considered when deiegra validdeployment
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plan, which allocates software components to processors., Bofitvare components de-
ployed on each processor must not require more resouragsasumemory, than the pro-
cessor provides. Second, some components may have c@focanstraints, requiring
that one component be placed on the same processor as arath@snent. Moreover, all
components on a processor must be schedulable to assuragleegritical deadlines [98].

Existing automated deployment techniques [16, 20, 65)&yed by software engineers
do not handle all these constraints simultaneously. Famei@ Rate Monotonic First-Fit
Scheduling [16] can guarantee real-time scheduling caims; but does not guarantee
memory constraints or allow for forced co-location of coments. Co-location of com-
ponents is a critical requirement in many DRE systems. Mageaf deploying a set of
components on a processor results in CPU over-utilizatiatical tasks performed by a
software component may not complete by their deadline, kvimay be catastrophic. DRE
software engineers must therefore identify deploymerasrtteet these myriad constraints
andminimize the total number of processors [33].

We provide three contributions to the study of software congmt deployment opti-

mizations for DRE systems that address the challengesedtibove.

1. We present thBin packing Locatlon Technique for processor minimiZa{i®hlTZ),
which uses bin packing to allocate software applicatiorssrtonimal number of pro-
cessors and ensure that real-time scheduling, resourdesalocation constraints

are simultaneously met.

2. We describe a case study that motivates the minimizafipnogessors in a produc-

tion flight avionics DRE system.

3. We present empirical comparisons of minimizing proces$or deployments with
BLITZ for three different scheduling heuristics versus simaple bin-packing of one

component per processor used in the avionics case study.
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Challenges of Component Deployment Minimization

This section summarizes the challenges of determiningtavatd component deploy-
ment that minimizes the number of processors in a DRE system.

Rate-monotonic scheduling constraints To create a valid deployment, the mapping
of software components to processors must guarantee that afathe software compo-
nents’ tasks misses its deadline. Even if rate monotonieduding is used, a series of
components that collectively utilize less than 100% of acpssor may not be schedula-
ble. It has been shown that determining a deployment of plalsoftware components to
multiple processors that will always meet real-time schiedwconstraints is NP-Hard [20].

Task co-location constraints In some cases, software components must be co-located
on the same processor. For example, variable latency of comneation between two com-
ponents on separate processors may prevent real-timea@otsfrom being honored. As
a result, some components may require co-location on the pameessor, which precludes
the use of bin-packing algorithms that treat each softwareponent to deploy as a sepa-
rate entity.

Resource constraints To create a validate deployment, each processor mustdaovi
the resources (such as memory) necessary for the set obseft@mponents it supports to
function. Developers must ensure that components deployegdrocessor do not consume
more resources than are present. If each processor doesowatepa sufficient amount
of these resources to support all tasks on the processoskanith not be able execute,

resulting in a failure.

Deployment Derivation with BLITZ
TheBinpacking Localizatlon Technique for processor mininti@a(BLITZ) is a first-
fit decreasing bin-packing algorithm we developed to (ligagsrocessor utilization values
that ensure schedulability if not exceeded and (2) enhaxisgrey techniques by ensuring

that multiple resource and co-location constraints areisaneously honored.
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BLITZ Bin-packing

The goal of a bin packer is to place a set of items into a minsaabf bins. Each item
takes up a certain amount of space and each bin has a limitedrdraf space available
for packing. An item can be placed in a bin as long as its pla#ndoes not exceed
the remaining space in the bin. Multi-dimensional bin pagkéextends the algorithm by
adding extra dimensions to bins and iteragy( length, width, and height) to account for
additional requirements of items. For example, an item neselneight corresponding to
its CPU utilization and width corresponding to consumed migm

BLITZ uses an enhanced multi-dimensional bin packing allgor to generate valid
deployments that honor multiple resource constraints arld@ation constraints as well as
the standard real-time scheduling constraints. In BLITaheprocessor is modeled as a
bin and each independent component or co-located groupngbaoents is modeled as an
item. Each bin has a dimension corresponding to the avail@BlUJ utilization. Each item
has a dimension that represents the CPU utilization it requas well as a a dimension cor-
responding to each resource, such as memory, that it cossutaeh bin’s size dimension
corresponding to available CPU utilization is initializ&80%. The resource dimensions
are set to the amount of each resource that the processms. offe

To pack the items, they are first sorted in decreasing ordetilafation. Next, BLITZ
attempts to place the first item in the first bin. If the placahdd the item does not exceed
the size of the bin (available resources and utilizationthefbin (processor), the item is
placed in the bin. The dimensions of the items are then sttettdrom the dimensions of
the bin to reflect the addition. If the item does not fit, BLITZeanpts to insert the item
into the next bin. This step is repeated until all items arekpd into bins or no bin exists
that can contain the item.

Burchard et al [72] describe several techniques that useponant partitioning and
bin-packing to reduce total required processors. This whdwever, does not account

for additional resource constraints, such as memory. Eurtbre, these techniques do not
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allow for co-location constraints that require specific paments to reside on the same

processor.

Utilization Bounds

Conventional bin-packing algorithms assume that each &sralstatic series of dimen-
sions corresponding to available resources. For exampearmount of RAM provided
by the processor is constant. Applying conventional biokpay algorithms to software
component deployment is a challenge since it is hard to s&te $in dimension that
guarantees the components are schedulable. Schedulimmnlyabe modeled with a con-
stant bin dimension of utilization if a worst-case scheuybf the system is assumed. Liu-
Layland [74] have shown that a fixed bin dimension of 69.4%guihrantee schedulability
but in many cases, tasks can have a higher utilization athteschedulable.

The Liu-Layland equation states that the maximum procadsiration that guarantees
schedulability is equal to'?* — 1, where x is the total number of components allocated to
the processor. With BLITZ, each bin has a scheduling dinment$iat is determined by the
Liu-Layland equation and the number of components curyeagsigned to the bin. Each
item will represent at least one but possibly multiple coali@d components. Each time an
item is assigned to a bin, BLITZ uses the Liu-Layland formaalynamically resize the
bin’s scheduling dimension according to the number of camepts held by the items in
the bin.

If the frequency of execution, or periodicity, of the compats’ execution require-
ments is known, higher processor utilization above thellaytand bound is also possible.
Components with harmonic periodsg, periods that can be repeatedly doubled or halved
to equal each other) can be allocated to the same procedbosckiedulability ensured, as
long as the total utilization is less than or equal to 100%.

Unlike other deployment algorithms [31, 72], BLITZ uses titgstage packing to ex-

ploit harmonic periods. In the first stage, components wémionic periods are grouped
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together. In each successive stage, the components frogndabp with the largest aggre-
gate processor utilization are deployed to the processing @& first-fit packing scheme.
If not all periods of the components in a bin are harmonic (iplgs of one another), an
item is allocated to a bin only if the utilization of its comuents fits within the dynamic
scheduling Liu-Layland dimension and all other resourgeettisions. If all component
periods within a bin are harmonic, the utilization dimemsi® not dynamically calculated

with Liu-Layland and a fixed value of 100% is used.

Co-location Constraints

To allow for component co-location constraints, BLITZ gpsicomponents that require
co-location into a single item. Each item has utilization @aesource consumption equal
to that of the component(s) it represents. Each item remesthe components associ-
ated with it. The Liu-Layland and harmonic calculations peeformed on the individual

components associated with the items in a bin and not eachaisea whole.

Empirical Results
This section presents the results of applying BLITZ to a fliaNionics case study pro-
vided by Lockheed Martin Aeronautics through the SPRUCEgb¢mwv. sprucecommuni ty.
or g), which provides a web-accessible tool that pairs acadessiearchers with industry
challenge problems complete with representative projata.dThis case study comprised
14 processors, 89 total components, and 14 co-locatiortreams. \We compared 2 differ-
ent bin-packing strategies against both BLITZ and the lr@seeployment of this avionics

system, produced by the original avionics domain experts.

Experimental Platform

All algorithms were implemented in Java and all experimemse conducted on an

Apple MacbookPro with a 2.4 GHz Intel Core 2 Duo processorjgalgytes of RAM,
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running OS X version 10.5.5, and a 1.6 Java Virtual MachivM)run in client mode.

All experiments required less than 1 second to complete @dtih algorithm.

Processor Minimization with Various Scheduling Bounds

This experiment compared the following bin-packing sgas against BLITZ and
the baseline deployment of the avionics system: (1) a weasé multi-dimensional bin-
packing algorithm that uses 69.4% as the utilization bowrdefch bin, (2) a dynamic
multi-dimensional bin-packing algorithm that uses the-Leyland equation to recalculate
the utilization bound for each bin as components are addetl(3 our BLITZ technique
that combines dynamic utilization bound recalculationhwttte harmonic period multi-

stage packing. We used each technique to generate a depibglae for the avionics sys-
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Figure 111.1: Deployment Plan Comparison

tem described in the introduction of this chapter. Figutd Ishows the original avionics
system deployment, as well as deployment plans generatdtelworst-case bin-packing
algorithm, dynamic bin-packing algorithm, and BLITZ.

The BLITZ technique required 6 less processors than thenadigleployment plan, 3
less processors than the worst-case bin-packing algagrigimeh 1 less processor than the
dynamic bin-packing algorithm.

Figure 1.2 shows the total reduction of processors fromahginal deployment plan
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Processor Reduction
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Figure I11.2: Scheduling Bound vs Number of Processors Redu ced

for each algorithm. The deployment plan generated by thestagase bin-packing algo-
rithm reduces the required number of processors by 3 or 24..Zhe dynamic bin-packing
algorithm yields a deployment plan that reduces the numbegquired processors by 5,
or 35.71%. BLITZ reduces the number of required processazn &urther, generating a

deployment plan that requires 6 less processors, a 43.8®636tren.
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CHAPTER IV

LEGACY DEPLOYMENT OPTIMIZATION

Challenge Overview
This chapter presents the motivation for the optimizatibeystem-wide deployment
properties to create new cost effective, efficient DRE systieployments or to enhance
existing legacy deployments. To showcase the potentiahiprovement in this area, we
apply our technique to a legacy flight avionics system. We alestrate how combining
heuristic algorithms with metaheuristic techniques cagldyconsiderable reductions in

computational requirements.

Introduction

Current trends and challenges.Several trends are shaping the development of embed-
ded flight avionics systems. First, there is a migration afn@y olderfederated computing
architecturesvhere each subsystem occupied a physically separate h@demponent to
integrated computing architecturegere multiple software applications implementing dif-
ferent capabilities share a common set of computing platsoiSecond, publish/subscribe
(pub/sub)-based messaging systems are increasinglgieplthe use of hard-coded cyclic
executives.

These trends are yielding a number of benefits. For exammiegrated computing
architectures create an opportunity for system-wide agttion of deployment topolo-
gies which map software components and their associated tasiedware processors as
shown in Figure IV.1.

Optimized deployment topologies can pack more softwarepamants onto the hard-
ware, thereby optimizing system processor, memory, andifil@ation [70, 99, 111]. In-

creasing hardware utilization can decrease the total lemlpwrocessors that are needed,
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lowering both implementation costs and maintenance caoxitpléMoreover, reducing the

required hardware infrastructure has other positive sifiets, such as reducing weight
and power consumption. Decoupling software from specifid\ware processors also in-
creases flexibility by not coupling embedded software a&ailbn components with specific
hardware processing platforms. It is estimated that eadngof processor savings on a
plane results in $200 in decreased fuel costs and a decregseenhouse gas production

from less burned fuel [109].

| How do you map DRE
software components to the
hardware platform without
violating DRE constraints?
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Figure IV.1: Flight Avionics Deployment Topology

Open problems. The explosion in the size of the search space for large-soaltedded
deployment topologies makes it hard to optimize them witltomputer-assisted methods
and tools to evaluate the schedulability, network bandwadinsumption, and other char-
acteristics of a given configuration. Developing compuaissisted methods and tools to
deploy software to hardware in embedded systems is har@2] @ue to the number and
complexity of constraints that must be addressed.

For example, developers must ensure that each softwarecr@mpis provided with

sufficient processing time to meet any real-time schedutmgstraints [108]. Likewise,
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resource constraints (such as total available memory dm g@cessor) must also be re-
spected when mapping software components to hardware cwni[28, 108]. Compo-
nents may also have complex placement or colocation cantstyguch as requiring the
deployment of specific software components to processoasnainimum distance from
the engine of an aircraft to provide survivability in caseaof engine malfunction [28].
Moreover, assigning real-time tasks in multiprocessof@nglngle-processor machines is
NP-Hard[20], which means that such a large number of potential depémts exist that it
would take years to investigate all possible solutions.

Due to the complexity of finding valid deployment topologiss difficult for develop-
ers to evaluate system-wide design optimization altereatihat may emphasize different
properties, such as fault-tolerance, performance, ordissipation.

Current algorithmic deployment techniques are largelgtas heuristic bin-packing [16,
20, 65], which represents the software taskgexasthat take up a set amount of space and
hardware processors bhmsthat provide limited space. Bin-packing algorithms try lage
all the items into as few bins as possible without exceediuegspace provided by the bin
in which they are placed.

Solution approach = Computer-assisted deployment optimization. This chap-
ter describes and validates a method and tool c&leatterDthat we developed to per-
form computer-assisted deployment optimization for fligvbnics systems. The ScatterD
model-driven engineering [97] deployment tool implemehtsScatter Deployment Algo-
rithm, which combines heuristic bin-packing with optimizatidgaithms, such as genetic
algorithms [40] or particle swarm optimization techniqy89] that use evolutionary or
bird flocking behavior to perform blackbox optimization. i§kthapter shows how flight
avionics system developers have used ScatterD to automateduction of processors

and network bandwidth in complex embedded system deploignen

31



Background — Generalized Mission Computer

Single Core CPU Node

Multiprocessor Network

Figure IV.2: An Integrated Computing Architecture for Embe dded Flight Avionics

Modern Embedded Flight Avionics Systems: A Case Study

Over the past 20 years, flight avionics systems have becarnesisingly sophisticated.
Modern aircraft now depend heavily on software executiog atcomplex embedded net-
work for higher-level capabilities, such as more sophagéd flight control and advanced
mission computing functions.

The increased weight of the embedded computing platformsimed by a modern
fighter aircraft incurs a multiplier effect [109,g, roughly four pounds of cooling, power
supply, and other supporting hardware are needed for eagidpaf processing hardware,
reducing mission range, increasing fuel consumption, amghcting aircraft responsive-
ness.

To accommodate the increased amount of software requikgohies systems have
moved from older federated computing architectures tagnatied computing architectures
that combine multiple software applications together omgle computing platform con-

taining many software components.
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The class of flight avionics system targeted by our work isevakked parallel message-
passing architecture containing many computing nodeshawrsin Figure 1V.2. Each
node is built from commercially available components pgekhin hardened chassis to
withstand extremes of temperature, vibration, and acatber.

At the individual node level, ARINC 653-compliant time angbse partitioning sepa-
rates the software applications into sets with compatitetg and security requirements.
Inside a given time partition, the applications run withimead real-time deadline scheduler
that executes the applications at a variety of harmoniogeri

The integrated computing architecture shown in Figure W2 benefits and challenges.
Key benefits include better optimization of hardware resesirand increased flexibility,
which result in a smaller hardware footprint, lower energg,udecreased weight, and en-
hanced ability to add new software to the aircraft withoudating the hardware. The key
challenge, however, is increased system integration aaxitpl In particular, while the
homogeneity of processors gives system designers a graabfdecedom allocating soft-
ware applications to computing nodes, optimizing thisatmn involves simultaneously
balancing multiple competing resource demands.

For example, even if the processor demands of a pair of atits would allow them
to share a platform, their respective 1/0 loads may be suahwlorst-case arrival rates
would saturate the network bandwidth flowing into a singldendrl' his problem is compli-
cated for single-core processors used in current intedjmputing architectures. More-
over, this problem is being exacerbated with the adoptiahfeatding of multi-core pro-
cessors, where competition for shared resources expandsltoe internal buses, cache

memory contents, and memory access bandwidth.
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Deployment Optimization Challenges

While the case study shows many benefits of deployment aiion, developers of
embedded flight avionics systems face a daunting seriesndlictong constraints and op-
timization goals when determining how to deploy softwardaodware. For example, it
is hard to find a valid solution for a single deployment coaist;, such as ensuring that all
of the tasks can be scheduled to meet real-time deadlinésylation using conventional
techniques, such as bin-packing. It is even harder, morgtmvénd a valid solution when
considering many deployment constraints, such as satgsfgisource requirements of soft-
ware tasks in addition to ensure schedulability. Optingzime deployment topology of a
system to minimize consumed network bandwidth or other dyogroperties is harder
still since communication between software tasks must kenténto account, instead of
simply considering each software task as an independaht.ent

This section describes the challenges facing developezs atiempting to create a de-
ployment topology for a flight avionics system. The discasdielow assumes a networked
parallel message-passing architecture (such as the ocréxbesin the case study).The goal
is to minimize the number of required processors and thénetaork bandwidth resulting

from communication between software tasks.

Challenge 1: Satisfying Rate-monotonic Scheduling Constints Efficiently
In real-time systems, such as the embedded flight avionsms staidy, either fixed pri-

ority scheduling algorithms, such as rate-monotonic (Réhesluling, or dynamic priority

scheduling algorithms, such as earliest-deadline-firBtH)E: control the execution order-
ing of individual tasks on the processors. The deploymgmbltgy must ensure that the
set of software components allocated to each processoclaeedable and will not miss

real-time deadlines. Finding a deployment topology for reseof software components
that ensures schedulability of all tasks is called “mutiggssor scheduling” and is NP-

Hard [20].
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A variety of algorithms, such as bin-packing algorithm a#ions, have been created
to solve the multiprocessor scheduling problem. A key katign of applying these algo-
rithms to optimize deployments is that bin-packing doesailmw developers to specify
which deployment characteristics to optimize. For exambpie-packing does not allow
developers to specify an objective function based on theativeetwork bandwidth con-
sumed by a deployment. We describe how ScatterD ensuredwdabéity in Section IV

and allows for complex objective functions, such as netviiaikdwidth reduction.

Challenge 2: Reducing the Complexity of Memory, Cost, and Qter Resource Con-

straints

Processor execution time is not the only type of resourcenthist be managed while
searching for a deployment topology. Hardware nodes ofé&e bther limited but critical
resources, such as main memory or core cache, necessahg feettof software compo-
nents it supports to function. Developers must ensure beatdmponents deployed to a
processor do not consume more resources than are present.

If each processor does not provide a sufficient amount olress to support all tasks
on the processor, a task will not execute properly, reggiitina failure. Moreover, since
each processor used by a deployment has a financial costiaedowith it, developers
may need to adhere to a global budget, as well as schedulisgramts. We describe how

ScatterD ensures that resource constraints are satisfgstiion IV.

Challenge 3: Satisfying Complex Dynamic Network Resource ral Topology Con-

straints

Embedded flight avionics systems must often ensure thatmptppocessor resource

limitations are adhered to, but network resources (suchmdwidth) are not over-consumed.
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For example, catastrophic failure could occur if two caticeal-time components commu-
nicating across a high-speed bus, such as a controller ateank (CAN) bus, fail to send
a required message due to network saturation [76].

The consumption of network resources is determined by thebeu of interconnected
components that are not colocated on the same processax&mople, if two components
are colocated on the same processor, they do not consumetanyrk bandwidth.

Adding the consideration of network resources to deploytrsabstantially increases
the complexity of finding a software-to-hardware deploytiepology mapping that meets
requirements.

With real-time scheduling and resource constraints, tipogenent of a component to
a processor has a fixed resource consumption cost that caatcdodated in isolation of the
other components.

The impact of the component’s deployment on the network,dvew cannot be calcu-
lated in isolation of the other components. The impact igmheined by finding all other
components that it communicates with, determining if they@located, and then calcu-
lating the bandwidth consumed by the interactions with ¢hthsit are not colocated. We
describe how ScatterD helps minimize the bandwidth reduisea system deployment in

the following section.

ScatterD: A Deployment Optimization Tool to Minimize Bandwidth and Processor
Resources
Heuristic bin-packing algorithms work well for multipragsor scheduling and resource
allocation. As discussed in the "Deployment Optimizatidrallznges” section, however,
heuristic bin-packing is not effective for optimizing dgss for certain system-wide proper-
ties, such as network bandwidth consumption, and hards@te/are costMetaheuristic
algorithms [40, 89] are a promising approach to optimizeéesyiswide properties that are

not easily optimized with conventional bin-packing algloms. These types of algorithms
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evolve a set of potential designs over a series of iteratisigy techniques, such as simu-
lated evolution or bird flocking. At the end of the iteratiptige best solution(s) that evolved
out from the group is output as the result.

Although metaheuristic algorithms are powerful, they hhistorically been hard to
apply to large-scale production embedded systems singeytpeally perform poorly on
problems that are highly constrained and have few corrdatisns. Applying simulated
evolution and bird flocking behaviors for these types of pgots tend to randomly mutate
designs in ways that violate constraints. For example,guam evolutionary process to
splice together two deployment topologies is likely to gii@ new topology that is not
real-time schedulable.

To overcome these limitations, this section presents &&ativhich is a tool that uti-
lizes a “hybrid” method that combines the two approachesedenefits of each can be
obtained with a single tool.

Below we explain how ScatterD integrates the ability of &g bin-packing algo-
rithms to generate correct solutions to scheduling anduresaconstraints with the ability
of metaheuristic algorithms to flexibly minimize networknoavidth and processor utiliza-

tion and address the challenges in the “Deployment Optitoiz&hallenges” section.

Satisfying Real-time Scheduling Constraints with ScatteD

ScatterD ensures that the numerous deployment constfsiiats as the real-time schedu-
lability constraints described in Challenge 1) are satidbi using heuristic bin-packing to
allocate software tasks to processors. Conventional &akipg algorithms for multipro-
cessor scheduling are designed to take as input a seriesnas .9, tasks or software
components), the set of resources consumed by each égmprocessor and memory),
and the set of binse(g, processors) and their capacities. The algorithm outputsaign-
ment of items to binsg.g, a mapping of software components to processors).

ScatterD ensures schedulability of the flight avionicseystliscussed in the case study
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by using response-time analysis. The response time meguftom allocating a software
task of the avionics system to a processor is analyzed todigte if a software component
can be scheduled on a given processor before allocatingstemted item to a bin.

Before placing an item in a bin, ScatterD analyzes the resptime that would result
from allocating the software task to the given processahdfresponse time is fast enough
to meet the real-time deadlines of the software task, thsvaoé task can be allocated to

the processor. If not, then the item must be placed in andiher
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Figure IV.3: ScatterD Deployment Optimization Process

Satisfying Resource Constraints with ScatterD

To ensure that other resource constraints (such as menguirements described in
Challenge 2) of each software task are met, we specify a itgf@ceach bin that is defined
by the amount of each computational resource provided bgdhesponding processor in
the avionics hardware platform. Similarly, the resourcamdeds of each avionics software
task define the resource consumption of each item. Beforeeandan be placed in a bin,
ScatterD verifies that the total consumption of each resoutitized by the corresponding
avionics software component and software componentsdgirpiaced on the processor

does not exceed the resources provided.
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Minimizing Network Bandwidth and Processor Utilization with ScatterD

To address deployment optimization issues (such as thissalrim Challenge 3), Scat-
terD uses heuristic bin-packing to ensure that schedithalbihd resource constraints are
met. If the heuristics are not altered, bin-packing will ajg yield the same solution
for a given set of software tasks and processors. The nunflooessors utilized and
the network bandwidth requirements will therefore not defrom one execution of the
bin-packing algorithm to another. In a vast deployment thotuspace associated with a
large-scale flight avionics system, however, there may beynagher deployments that
substantially reduce the number of processors and netvasrévioidth required, while also
satisfying all design constraints.

Metaheuristic algorithms, such as genetic algorithms artighe swarm optimization
techniques, can be used to explore other areas of the depiysulution space and dis-
cover deployment topologies for avionic systems that meet tequirements, but which
need fewer processors and less network bandwidth to opéFate problem, however, is
that that the deployment solution space is vast and only dl greecentage of potential
deployments actually satisfy all avionics system desigmstraints. Since metaheuristic
algorithms strive to reduce bandwidth and the number ofiredurocessors without di-
rectly accounting for design constraints, using theserdlgos alone would result in the
exploration of many invalid avionics deployment topolagie

To search for avionics deployment topologies with minimagessor and bandwidth
requirements—while still ensuring that other design c@msts are met—ScatterD uses
metaheuristic algorithms tseedthe bin-packing algorithm. In particular, metaheuristic
algorithms are used to search the deployment space and aedebset of the avionics
software tasks that must be packed prior to the rest of thisvamd tasks. By forcing
an altered bin-packing order, new deployments with difieteandwidth and processor
requirements are generated. Since bin-packing is stildtivng force behind allocating

software tasks, design constraints have a higher probabilbeing satisfied.
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As new valid avionics deployments are discovered, they eweesl based on network
bandwidth consumption and the number of processors theyresig the underlying avion-
ics hardware platform. Metaheuristic algorithms use theresc of these deployments to
determine which new packing order would likely yield a mopimized deployment. By
using metaheuristic algorithms to search the design spaoe-then using bin-packing to
allocate software tasks to processors—ScatterD can gerdgployments that meet all de-
sign constraints while also minimizing network bandwidémsumption and reducing the

number of required processors in the avionics platformhasva in Figure 1V.3.

Empirical Results

This section presents the results of configuring the Sé&atsol to combine two meta-
heuristic algorithms (particle swarm optimization and agjee algorithm) with bin-packing
to optimize the deployment of the embedded flight avionictesy described in the case
study. We applied these techniques to determine if (1) aogepdnt exists that increases
processor utilization to the extent that legacy processotdd be removed and (2) the
overall network bandwidth requirements of the deploymeatenreduced due to colocat-
ing communicating software tasks on a common processor.

The first experiment examined applying ScatterD to minintiee number of proces-
sors in the legacy flight avionics system deployment, whiggimally consisted of soft-
ware tasks deployed to 14 processors. Applying ScatterDpeitticle swarm optimization
techniques and genetic algorithms resulted in increasédation of the processors, re-
ducing the number of processors needed to deploy the seftwaright in both cases. The
remaining six processors could then be removed from theogie@nt without affecting
system performance, resulting in the 42.8% reduction shioagure IV.4.

The ScatterD tool was also applied to minimize the bandwidthisumed due to com-
munication by software tasks allocated to different preoesin the legacy avionics system

described in the case study. Reducing the bandwidth regaines of the system leads to
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Figure IV.4: Network Bandwidth and Processor Reduction in O ptimized Deployment

more efficient, faster communication while also reducingi@oconsumption. The legacy
deployment consumed@3- 10°8 bytes of bandwidth. Both versions of the ScatterD tool
yielded a deployment that reduced bandwidth b§9410°" or 24%, as shown in Fig-
ure IV.4.
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CHAPTER V

MODEL DRIVEN CONFIGURATION DERIVATION

Challenge Overview
This chapter describes the need for model-driven toolscidatiure the myriad of DRE
system design constraints to simplify DRE system configomaderivation. We motivate
the need for tools to facilitate configuration by providingexample of a satellite imaging
system. We demonstrate how the model-driven tool can beempp aid developers in
defining DRE system configuration scenarios and to autoaibtiderive valid configura-

tions.

Introduction

Distributed real-time embedded (DRE) systems (such asmdawsystems, satellite
imaging systems, smart cars, and intelligent transporaystems) are subject to stringent
requirements and quality of service (QoS) constraints. éxample, timing constraints
require that tasks be completed by real-time deadlineseviige, rigorous QoS demands
(such as dependability and security), may require a systeracover and remain active
in the face of multiple failures [117]. In addition, DRE sgsts must satisfy domain-
specific constraints, such as the need for power managememlbedded systems. To
cope with these complex issues, applications for DRE systeawe traditionally been built
from scratch using specialized, project-specific softvam@mponents that are tightly cou-
pled with specialized hardware components [96].

New DRE systems are increasingly being developed by coifig@pplications from
multiple layers of commercial-off-the-shelf (COTS) hamate, operating systems, and mid-
dleware components resulting in reduced development ¢yuke and cost [115]. These

types of DRE systems require the integration of 100’s-1900software components that
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provide distinct functionality, such as I/O, data manipiolia, and data transfer. This func-
tionality must work in concert with other software and haadg/«components to accomplish
mission-critical tasks, such as self-stabilization, enatification, and power management.
The software configuration of a DRE system thus directly iotp@s performance, cost,

and quality.

Traditionally, DRE systems have been built completely aus$e from scratch. These
design techniques are based on in-house proprietary cotistr techniques and are not de-
signed to handle the complexities of configuring systemsfexisting components [43].
The new generation of configuration-based approachesraehRE systems by deter-
mining which combination of hardware/software componentwide the requisite QoS [5,
26,82]. In addition, the combined purchase cost of the carapts cannot exceed a prede-
fined amount, referred to as the project budget.

A DRE system can be split into a software configuration andrdvare configura-
tion. Valid software configuration must meet all real-tinenstraints, such as minimum
latency and maximum throughput, provide required fun&iityy meet software architec-
ture constraints, such as interface compatibility, and s#gisfy all domain-specific design
constraints, such as minimum power consumption Moreokiercost of the software con-
figuration must not exceed the available budget for purdgesdftware components. Sim-
ilarly, the hardware configuration must meet all constsamithout exceeding the available
hardware component budget. At the same time, the hardwarsaftware configuration
must be aligned so that the hardware configuration providfgignt resources, such as
RAM, for the chosen software configuration. Additional coamts may also be present
based on the type and application of the DRE system beinggroefi.

Often, there are multiple COTS components that can meet eaxtional require-
ment for a DRE system. Each individual COTS component differQoS provided, the
amounts/types of computational resources required, anguhchase cost. Creating and

maintaining error-free COTS configurations is hard due ®l#ige number of complex
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configuration rules and QoS requirements. The complexgg@ated with examining the
tradeoffs of choosing between 100’s to 1,000’s of COTS camepts makes it hard to deter-
mine a configuration that satisfies all constraints and isiaetllessly expensive or resource
intensive.

Solution approach-> Model-driven automated configurationtechniques This chap-
ter presents techniques and tools that leverage the ModetmArchitecture (MDA)
paradigm [80], which is a design approach for specifyingesysconfiguration constraints
with platform-independent models (PIMs). Each PIM can beduss a blueprint for con-
structing platform-specific models (PSM)s [90]. In this ptea, MDA is utilized to con-
struct modeling tools that can be used to create model iostaof potential DRE system
configurations. These tools are then applied in a motivagxample to determine valid
DRE system configurations that fit budget limits and ensunsistency between hardware
and software component selections.

To simplify the DRE system configuration process, desigoansuse MDA to construct
modeling tools that visualize COTS component options fy@onfiguration validity, and
compare potential DRE system configurations. In partici?&®Ms can be used to deter-
mine DRE system configurations that meet budgetary consérhy representing compo-
nent selections in modeling environments. Modeling toloéd titilize these environments
provide a domain-centric way to experiment with and expfmtential system configura-
tions. Moreover, by constructing PSMs with the aid of maagliools, many complex con-
straints associated with DRE system configuration can beresd automatically, thereby
preventing designers from constructing PSMs that violgséesn configuration rules.

After a PSM instance of a DRE system configuration is congtydt can be used as
a blueprint to construct a DRE system that meets all desigistcaints specified within
the metamodel [59]. As DRE system requirements evolve addiadal constraints are

introduced, the metamodel can be modified and new PSMs cotetic Systems that are
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constructed using these PSMs can be adapted to handlecaddlitbnstraints and require-
ments more readily than those developed manually using-feneration languages, such

as C++, Java, or C#.

Large-scale DRE System Configuration Challenges

This section describes some key constraints that DRE sgstenst adhere to, sum-
marizes the challenges that make determining configusatiand, and provides a survey
of current techniques and methodologies for DRE system guraiion. A DRE system
configuration consists of a valid hardware configuration zaldtl software configuration
in which the computational resource needs of the softwanéiguration are provided by
the computational resources produced by the hardware coafign. DRE system soft-
ware and hardware components often have complex interdepeies on the consumption
and production of resources (such as processor utilizati@mory usage, and power con-
sumption). If the resource requirements of the softwardigoration exceed the resource
production of the hardware configuration, a DRE system vatl fuinction correctly and

will thus be invalid.

Challenge 1: Resource Interdependencies

Hardware components provide the computational resouhegsbftware components
require to function. If the hardware does not provide an adegamount of each com-
putational resource, some software components cannotidancAn overabundance of
resources indicates that some hardware components hamnepheshased unnecessarily,
wasting funds that could have been spent to buy superiovamdtcomponents or set aside
for future projects.

Figure V.1 shows the configuration options of a satelliteging system. This DRE
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system consists of an image processing algorithm and s@&ftinat defines image resolu-
tion capabilities. There are multiple components thatd e used to meet each functional
requirement, each of which provides a different level oVmer.

For example, there are three options for the image resolationponent. The high-
resolution option offers the highest level of service, bgbaequires dramatically more
RAM and CPU to function than the medium or low-resolutioniops. If the resource
amounts required by the high-resolution option are not keghthen the component cannot
function, preventing the system from functioning corngectf RAM or CPU resources are

scarce the medium or low-resolution option should be chosen

. - S Image Resolution Options
e N :ﬁm’ Ram Consumption | CPU Consumption
Ram Consumption CPU Consumption e 20 20
Algorithm 1 80 400 =
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Algorithm 2 10 700
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CPU 3 | 2000 / ’ ‘\ Ram3 | 2048
Ram4 | 4096

CPU 4 | 2200

Figure V.1: Configuration Options of a Satellite Imaging Sys tem

Challenge 2: Component Resource Requirements Differ

Each software component requires computational resotod¢esction. These resource
requirements differ between components. Often, compsradfering higher levels of ser-
vice require larger amounts of resources and/or cost mopeitchase. Designers must
therefore consider the additional resulting resource irements when determining if a

component can be included in a system configuration.
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For example, the satellite system shown in Figure V.1 hasetbptions for the image
resolution software component, each of which providesfardift level of performance. If
resources were abundant, the system with the best perfoewawuld result from selecting
the high-resolution component. In most DRE systems, sushtadlite systems, resources
are scarce and cannot be augmented without great cost anid @fhile the performance of
the low-resolution component is less than that of the hegelution component, it requires
a fraction of the computational resources. If any resouecgliirements are not satisfied,
the system configuration is considered invalid. A valid agufation is thus more likely to

exist by selecting the low-resolution component.

Challenge 3: Selecting Between Differing Levels of Service

Software components provide differing levels of serviceor Example, a designer
may have to choose between three different software conmpetieat differ in speed and
throughput. In some cases, a specific level of service magdpgned, prohibiting the use
of certain components.

Continuing with the satellite configuration example showirigure V.1, an additional
functional constraint may require that a minimum of mediomage resolution. Inclusion of
the low-resolution component would therefore invalid&ie dverall system configuration.
Assuming sufficient resources for only the medium and logeh&tion components, the
only component that satisfies all constraints is the medaage resolution option.

Moreover, the inclusion of a component in a configuration qahibit or require the
use one or more other components. Certain software comoneay have compatibil-
ity problems with other components. For example, each ofrttege resolution compo-
nents may be a product of separate vendors. As a result,gheahd medium-resolution
components may be compatible with any image processing aoem, whereas the low-

resolution component may only be compatible with image @ssimg components made by
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the same vendor. These compatibility issues add anothelrdédifficulty to determining

valid DRE system configurations.

Challenge 4: Configuration Cannot Exceed Project Budget

Each component has an associated purchase cost. The cdrpbimbase cost of the
components included in the configuration must not exceeprtject budget. Itis therefore
possible for the inclusion of a component to invalidate thefiguration if its additional
purchase cost exceeds the project budget regardless ofutatiopal resources existing
to support the component. Moreover, if two systems havehiyutdpe same resource re-
guirements and performance the system that carries a srpaliehase cost is considered
superior.

Another challenge of meeting budgetary constraints isradeteng the best way to al-
locate the budget between hardware purchases and softwanrtegges. Despite the pres-
ence of complex resource interdependencies, most teadmigguire that the selection of
the software configuration and hardware configuration oseparately. For example, the
hardware configuration could be determined prior to thenso# configuration so that the
resource availability of the system is known prior to sofyfor a valid software config-
uration. Conversely, the software configuration could bereined initially so that the
resource requirements of the system are known prior torsphiar the hardware configu-
ration.

To solve for a hardware or software configuration individigdhe total project budget
must be divided into a software budget for purchasing seve@mponents and a hard-
ware budget for purchasing hardware components. Dividiadptidget evenly between the
two configuration problems may not produce a valid configanat Uneven budget divi-
sions, however, may result in valid system configurationsltigle budget divisions must

therefore be examined.
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Challenge 5: Exponential Configuration Space

Large-scale DRE systems require hundreds of componentsttidn. For each com-
ponent there may be many components available for inclusithre final system configura-
tion. Due to the complex resource interdependencies, aggeonstraints, and functional
constraints it is hard to determine if including a single pament will invalidate the system
configuration. This problem is exacerbated enormouslysigtesrs are faced with the tasks
of choosing from 1,000’s of available components. Even raated techniques require
years or more to examine all possible system configuratmrsuich problems. Large-scale
DRE systems often also consist of many software and hardveem@onents with multiple
options for each component, resulting in an exponentialbarraf potential configurations.
Due to the multiple functional, real-time, and resourcestrints discussed earlier, arbi-
trarily selecting components for a configuration is inefifez For example, if there are 100
components to choose from then there a@2676506&10°C unique potential system con-
figurations, the vast majority of which are invalid configiwas. The huge magnitude of
the solution space prohibits the use of manual techniquatomated techniques, such as
Constraint Logic Programming (CLP), use Constraint Satigdn Problems (CSPs) to rep-
resent system configuration problems [14,94]. These tgalesiare capable of determining
optimal solutions for small-scale system configurationisrbguire the examination of all
potential system configurations. Techniques utilizing €8k ideal, however, for system
configuration problems involving a small number of compdses they can determine an
optimal configuration (should one exist) in a short amourtiroé.

The exhaustive nature of conventional CSP-based techsiidnosvever, renders them
ineffective for large-scale DRE system configuration. \Withtools to aid in large-scale
DRE system configuration, it is hard for designers to deteerany valid large-scale system
configuration. Even if a valid configuration is determinethgy valid system configurations

may exist with vastly superior performance and dramatdals financial cost. Moreover,
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with constant development of additional technologiesatggtechnologies becoming un-
available, and design objectives constantly in flux, vatidfggurations can quickly become
invalid, requiring that new configurations be discoverqudly. It is thus imperative that
advanced design techniques, utilizing MDA, are developeehhance and validate large-
scale DRE system configurations.

Subsequent sections of this chapter demonstrate how MDAeartilized to mitigate
many difficulties of DRE system configuration that resultfrthe challenges described in

this section.

Applying MDA to Derive System Configurations

System configuration involves numerous challenges, agitdedan the previous sec-
tion. Constructing MDA tools can help to address these ehgkts. The process of creating
a modeling tool for determining valid DRE system configuras is shown in Figure V.2.

Figure V.2. Creation Process for a DRE System Configuratiaaéling Tool. This

process is divided into four steps:
1. Devise a configuration language for capturing complexigaration rules,
2. Implement a tool for manipulating instances of configors,

3. Construct a metamodel to formally define the modeling laigg used by the tool,

and
4. Analyze and interpret model instances to determine disalu

By following this methodology, robust modeling tools candomstructed and utilized
to facilitate the configuration of DRE systems. The remairdéhis section describes this

process in detail.
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Devising a Configuration Language

DRE system configuration requires the satisfaction of mpldtconstraints, such as re-
source and functional constraints. The complexity of antiog for such a large number
of configuration rules makes manual DRE system configurdtaod. Configuration lan-
guages exist, however, that can be utilized to representafaice such constraints. By
selecting a configuration language that captures systefrgaoation rules, the complexity

of determining valid system configurations can be reduagaifstantly.
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Figure V.2: Creation Process for a DRE System Configuration M odeling Tool

Feature models are a modeling technique that have beenas®satiel Software Prod-
uct Lines (SPLs) [52], as well as system configuration pnoisle SPLs consist of inter-
changeable components that can be swapped to alter systetiofality. Czarnecki et al.
use feature models to describe the configuration optiongsiéms [27]. Feature mod-
els are represented using tree structures with lines @eptieg configuration constraints)
connecting candidate components for inclusion in an SPawknas features. The feature
model uses configuration constraints to depict the effletisselecting one or more features
has on the validity of selecting other features. The featuvdel serves as a mechanism to

determine if the inclusion of a feature will result in an ildasystem configuration.

51



Czarnecki et al. also present staged-configuration, aenmental technique for manu-
ally determining valid feature selections. This work, hgete cannot be directly applied to
the configuration of large-scale DRE system configurati@mabse it doesn’t guarantee cor-
rectness or provide a way of handling resource constradifdseover, it takes a prohibitive
amount of time to determine valid system configurationsesstaged-configuration is not
automated.

Benavides et al. introduce the extended feature model, gmeanted feature model
with the ability to more articulately define features andesent additional constraints [14].
Additional descriptive information, called attributesncbe added to define one or more
parameters of each feature. For example, the resourceroptisn and cost of a feature
could be defined by adding attributes to the feature. Eacbuati lists the type of resource
and the amount consumed or provided by the feature. Additimnstraints can be defined
by adding extra-functional features. Extra-functionatéees define rules that dictate the
validity of sets of attributes. For example, an extra-fumeal feature may require that the
total cost of a set of features representing componentssstlean that of a feature that
defines the budget. Any valid feature selection would thuisfyahe constraint that the

collective cost of the components is less than the totakptdjudget.

Implementing a Modeling Tool

Designers using manual techniques often unknowingly coaisinvalid system con-
figurations. Even if an existing valid system configuratistkmown, the introduction of a
single component can violate one or more of these constrahereby invalidating the en-
tire configuration. Modeling tools allow designers to mangbe problem entities and com-
pare potential solutions in an environment that ensureéswsidesign rules are enforced
that are not accounted for in current third-generation @ogning languages, such as Java

and C++. Automated correctness checking allows desigefgcus on other problem
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dimensions, such as performance optimization or mininoradf computational resource
requirements.

One example of a modeling tool is the Generic Modeling Emuinent (GME) com-
posing domain-specific design environments [67]. GME is efiod platform for building
MDA based tools that can then be used to create model ingantlee two principles
components of GME are GMeta and GModel, which work togetbgarovide this func-
tionality. GMeta is a graphical tool for constructing metadels, which are discussed in
the following section. GModel is a graphical editor for consting model instances that

adhere to the configuration rules.
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Figure V.3: GME Model of DRE System Configuration

For example, a user could construct a system configuratiatehtleat consists of hard-
ware and software components as shown in Figure 3 V.3. Byubkagraphical editor, the
user can manually create multiple system configuratioraiss. If the user attempts to
include a component that violates a configuration rule, G&adll disallow the inclusion
of the component and explain the violation. Since GModeégponsible for enforcing all
constraints, the designer can rapidly create and expetimigm various models without

the overhead of monitoring for constraint violations.
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Constructing a Metamodel

Metamodels are used to formally define the rules that areegddoy modeling tools [68].
This collection of rules governs the entities, relatiopshand constraints of model in-
stances constructed. After constructing a metamodels user define modeling tools that
are capable of creating model instances that enforce tlee mrid constraints defined by
the metamodel.

Most nontrivial problems require multiple modeling ergsj types of relationships be-
tween entities, and complex constraints. As a result, cocishg metamodels can be a
confusing, arduous task. Fortunately, metamodeling texist that provide a clear and
simple procedure for creating metamodels. Tools for geimgranetamodels provide sev-
eral advantages over defining them manually. For exampl@amualeling tools can prevent
defining rules, such as defining nameless entities, thatareaclictory or inappropriate.
Likewise, by using a metamodeling tool, metamodels caryebsiaugmented or altered
should the domain or other problem parameters change.

Moreover, the same complexities inherent to creating PSidsalso present in the
construction of metamodels, and often amplified by the &aftht abstraction required for
their creation. Metamodeling tools use an existing languhgt defines the rules for creat-
ing metamodels, thereby enforcing the complex constraimtisfacilitating quick, accurate
metamodel design.

To create a metamodel for describing system configuratieettities that are involved
in DRE system configuration must first be defined. For exangiléhe most basic level,
DRE system configuration consists of hardware and softwargonents. The manner in
which these entities interact must then be defined. For ebantps specified that hard-
ware components provide computational resources anddftatesse components consume
computational resources.

Also, a way is needed to define the constraints that must betanaed as these entities
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interact for a system configuration to be valid. For examplaay be specified that a soft-
ware component that interacts with a hardware componentimeysrovided with sufficient
computational resources to function by the hardware compmon

After all the necessary entities for the modeling tool aeated the rules that govern
the relationships of these entities must be defined. For pbarthe relationship between
hardware nodes and software components in which the s@&fteeaanponents consume re-
sources of the hardware nodes must be defined. Before we ¢hisdoowever, an attribute
must be defined that specifies the resource production vafules hardware nodes and the
resource consumption values of the software nodes. Ondleuddt has been defined and
associated it with a class, we can include the attributearreékationship definition.

A relationship between two model entities is defined by agldinconnection to the
metamodel. The connection specifies the rules for conrggetitities in the resulting PSM.
Within the connection, we can define additional constraima$ must be satisfied for two
classes to be connected. For example, for a software comptaniee connected to a hard-
ware node the resource consumption attribute of the saftwamponent can not exceed
the attribute of the hardware node that defines the amouesotirce production.

GME provides GMeta, a graphical tool for constructing metdeils. GMeta divides
metamodel design into four separate sub-metamodels: s Cliagram, Visualization,
Constraints, and Attributes. The Class Diagram defines tiigies within the model,
known as models, atoms, and first class objects as well asotingections that can be
made between them. The Visualization sub-metamodel defiifffesent aspects, or fil-
ters, for viewing only certain entities within a model insta. For example, if defining
a metamodel for a finite state machine, an aspect could beedeiinthe Visualization
sub-metamodel that would only display accepting statesfinii® state machine model
instance.

The Constraints sub-metamodel allows the application gé@ITConstraint Language

(OCL) [92] constraints to metamodel entities. Continuinghwhe finite state machine
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metamodel example, a constraint could be defined that onhgéesstarting state may exist
in the model. To do this, users would add a constraint in thes@aints sub-metamodel,
add the appropriate OCL code to define the constraint, anddbenect it to the entity to
which it applies. Finally, the Attributes sub-metamodébak additional data, known as
attributes, to be defined and associated with other metdmeatées defined in the Class
Diagram.

After the metamodel has been constructed using GMeta, thgneter must be run to
convert the metamodel into a GME paradigm. This paradigniteambe loaded with GME
and used to created models that adhere to the rules defin@d thié metamodel. User may
then create model instances with the assurance that thgndesges and domain specific
constraints defined within the metamodel are satisfied.dhgtpoint the domain or design
constraints of the model change, the metamodel can be edpadtered and interpreted
again to change the GME paradigm appropriately. As a regegigners can easily examine

scenarios in which constraints differ, giving a broademessv of the design space.

Analyzing and Interpreting Model Instances

After a configuration language is determined, a modelinbitoplemented, and a meta-
model constructed, designers can rapidly construct mogéhmces of valid DRE system
configurations. There is no guarantee, however, that thegtwations constructed with
these tools are optimal. For example, while a configuratistieince may be constructed
that does not violate any design constraints, other cordigurs may exist that provide
higher QoS, have a lower cost, or consume fewer resourcesy Blaomated techniques,
however, exist for determining system configurations tipdinaize these attributes.

Benavides et al. provide a methodology for mapping the elddrieature models de-
scribed earlier onto constraint satisfaction problemsR€314]. A CSP is a set of vari-

ables with multiple constraints that define the values that/ariables can take. Attributes
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and extra-functional features, such as a project budgetriseare maintained in the map-
ping. As a result, solutions that satisfy all extra-funotbfeatures and basic functional
constraints can be found automatically with the use of coror@eCSP solvers.

Moreover, these solvers can be configured to optimize onease rattributes, such
as the minimization of cost. Additionally, these technigjuequire the examination of
all potential solutions, resulting in a system configunatibat is not only valid, but also
optimal. Benavides et al. present empirical results showhat CSPs made from feature
models of 23 features require less than 1,800 millisecamdslive.

While extended feature models and their associated autoht@thniques for deriving
valid configurations by converting them to CSPs can accaumlsource and budget con-
straints, the process is not appropriate for large-scale B\®tem configuration problems.
The exhaustive nature of CSP solvers often require thatoadintial solutions to a prob-
lem are examined. Since the number of potential system agafigns is exponential in
regards to the number of potential components, the solspane is far too vast for the use
of exhaustive techniques as they would require a prohédiwmount of time to determine a
solution.

To circumvent the unrealistic time requirements of exhaastearch algorithms, White
et al. have examined approximation techniques for detengivalid feature selections that
satisfy multiple resource constraints [118]. Approximatiechniques do not require the
examination of all potential configurations, allowing daus to be determined with much
greater speed. While the solutions are not guaranteed tptbeal, they are often optimal
or extremely near optimal. White et al. present Filteredt€aan Flattening (FCF), an
approximation technique for determining valid featureesgbns.

FCF converts extended feature models into Multiple-chdcdti-dimensional Knap-
sack Problems (MMKP). MMKP problems, as described by Akhal.eare an extension
of the Knapsack Problem (KP), Multiple-Choice Knapsacki®rm (MCKP) and Multi-

Dimensional Knapsack Problem (MDKP) [3]. Akbar et al. pawimultiple heuristic
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algorithms, such as I-HEU and M-HEU for rapidly determinimgar optimal solutions to
MMKP Problems.

With FCF, approximation occurs in two separate steps. ,Raitspotential configura-
tions are not represented in the MMKP problems. For exanifiieere is an exclusive-or
relationship between multiple features, then only a subtite potentially valid relation-
ships may be included in the MMKP problem. This pruning tegha is instrumental in
restricting problem size so that solving techniques canpteta rapidly.

Second, heuristic algorithms, such as M-HEU can be usedi¢éordime a near-optimal
system configuration. M-HEU is a heuristic algorithm thaéslmot examine all potential
solutions to an MMKP problem, resulting in faster solve tjriiis allowing the examina-
tion of considerably larger problems. Due to these two axpration steps, FCF can be
used for problems of considerably larger size compared thade utilizing CSPs. This
scalability is shown in Figure V.4 in which a feature modethwd 0,000 features is exam-

ined with 90% of the solutions resulting in better than 90%roplity.
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Figure V.4: FCF Optimality with 10,000 Features

While FCF is capable of determining valid large-scale DREtem configurations, it
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still makes many assumptions that may not be readily knowsysyem designers. For
example, FCF requires that the project budget allocatiopdiochasing hardware and the
project budget allocation for purchasing software comptsikbe known ahead of time. The
best way to split the project budget between hardware andad purchases, however, is
dictated by the configuration problem being solved.

For example, if all of the hardware components is cheap aodge huge amounts of
resources while the software components are expensivepidmot make sense to devote
half of the project budget to hardware and half to softwardiefter system configuration
may result from devoting 1% of the budget to hardware and 99%6ftware.

The Allocation baSed Configuration ExploratioN Technigd&CENT) presented by
White et al. is capable of determining valid system configars while also providing
DRE system designers with favorable ways to divide the ptdjadget [122]. ASCENT
takes an MMKP hardware problem, MMKP software problem anbgpt budget amount
as input. Due to the speed and performance provided by theeM-&lgorithm, ASCENT
can examine many different budget allocations for the sanméiguration problem. AS-
CENT has been used for configuration problems with 1000’gafures and is over 98%
optimal for problems of this magnitude, making it an ideaht@que for large-scale DRE
system configuration.

To take advantage of these techniques, however, modehoetamust be converted
into a form that these techniques can utilize. Interpreteescapable of parsing model
instances and creating XML, source code, or other outputigerwith external program-
matic methods. For example, GME model instances can easdgapted to be parsed with
Builder Object Network (BONZ2) interpreters. These intetprs are capable of examining
all entities included in a model instance and convertingrtheto C++ source code, thus
allowing the application of automated analysis technigaash as the use of CSP solvers

or ASCENT [14,122].
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Case Study

The background section discussed the challenges of DREmsysbnfiguration. For
problems of non-trivial size, these complexities proveal ltard to overcome without the
use of programmatic techniques. The section entitled “Blegia Configuration Language”
describes how configuration languages can be utilized t@sept many of the constraints
associated with DRE system configuration. That section dészribed how modeling
tools can enforce complex design rules. The section esti@®nstructing a Metamodel”
described the construction of a metamodel to formalize tresiraints to be enforced in
the modeling tool. The section entitled “Analyzing and Ipteting Model Instances” in-
troduced several automated techniques for determiningd {dRE system configurations,
such as ASCENT, that provide additional design space irdtion, such as how to allo-
cate a project budget, which is extremely valuable to desgynrhis section describes the
process of creating the Ascent Modeling Platform (AMP) towalrapid DRE system con-
figuration, while also addressing the challenges desciibéte background section. The

target workflow of AMP is shown in Figure V.5.

Designing a MDA Configuration Language for DRE Systems

ASCENT was originally implemented programmatically indaso constructing an en-
tire configuration problem (including external resouraesstraints, software components
and hardware components along with their multiple unigeeuece requirements) required
writing several hundred lines of complex code. As a resiit dreparation time for a single
configuration problem took a considerable amount of timeedfait. Moreover, designers
could not easily manipulate many of the problem parameteexamine "what if" scenar-
ios. To address these limitations with ASCENT, Ascent ModgPlatform (AMP) tool
was constructed that could be used to construct DRE systafigacation problems for

analysis with ASCENT.
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Implementing a Modeling Tool

GME was selected to model DRE system configuration and usegahnadigm to ex-
periment with AMP. The following benefits were observed agsult of using GME to

construct the AMP modeling tool for DRE system configuration
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Figure V.5: AMP Workflow Diagram

* Visualizes complex configuration rules. AMP provides augisrepresentation of
the hardware and software components making it signifigaedbier to grasp the

problem, especially to users with limited experience in DFgEtem configuration.

» Allows manipulation of configuration instances. In addlitito visually representing
the problem, by using AMP designers are able to quickly asilyeahange config-
uration details (budget, constraints, components, resa@quirements etc.) makes

the analysis much more powerful.

» Provides generational analysis. Models produced with AWWEY be fed a previous
solution as input, enabling designers to examine possjieade paths for the next

budget cycle. These upgrade paths can be tracked for neudfgrierations, meaning
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that the analysis can determine the best long-term sokitidrhis capability was
not previously available with ASCENT and would have beensaderably harder to

implement without the use of GME.

» Can easily be extended. It is simple to add additional nedetl constraints to the
existing AMP metamodel. As DRE system configuration dompet#ic constraints
are introduced, the AMP metamodel can be altered to enfbesetadditional con-
straints in subsequent model instances. Since most DREmsysinfiguration prob-

lems only slightly differ, existing metamodels can be relaed augmented.

» Simplifies problem creation. AMP provides a drag and drdpriace that allows
users to create problem instances instead of writing 30Qdired lines of complex
java code. The advantages of using a simple graphical usefdoe are (1) designers
do not have to take the time to type the large amount of codembald be required
and (2) in the process of typing this large amount of codegiess will likely make
mistakes. While the compiler may catch many of these mistaikes also likely
domain specific constraints that the compiler may overlookb& inadvertently vi-
olated. Since GME enforces the design rules defined witl@mthtamodel, it is not
possible for the designers using AMP to unknowingly makehsaienistake while

constructing a problem instance.

To expand the analytical capabilities of ASCENT, GME wadizéd to provide an
easily configurable, visual representation of the problémtive AMP tool. Using these
new features, it is possible to see a broader, clearer pictuthe total design process as

well as the global effects of even minor design decisions.
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Constructing a Metamodel

A metamodel is created for DRE system configuration usingak38iE. Figure V.6
shows the Class Diagram portion of the AMP metamodel. Themmalel is labeled as As-
centRoot and contains two models: AscentProblem and ASoéutton. The configuration
problems are defined within AscentProblem. The configunatietermined by interpret-
ing the AscentProblem model and applying the ASCENT tealig represented as the

AscentSolution.
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Figure V.6: GME Class View Metamodel of ASCENT

Within the AscentProblem, there is MMKPproblem models ariResources model.
The MMKPproblems are used to represent the componentsahbiaifor inclusion in the
configuration. Also included in the MMKPproblem is a booladinibute for setting whether
or not an MMKPproblem is a hardware problem. A constraintss a@efined that requires
the definition of twvo MMKPproblems, one of which contains tierdware components
while the other represents the software components.

The components shown in Figure V.6 contain the resource atadiiat they consume
or produce, based on whether they are members of a hardwat¢RViivbblem or a soft-
ware MMKP problem. The common resources model contains #s®fRce atoms, which
represents the external resources of the problem that avmoa to both the hardware and

software MMKPproblems, such as available project budgepanver. The AscentSolution
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model contains a Deployment model, as well as atoms thagsept the total cost and total
value of the configuration determined by analyzing the Adeesblem. The Deployment
model contains SoftwareComponents that represent thea@ftomponents, HardwareN-
odes that represent the hardware components, as well asayBeéPn connection that is
used to connect the software components with the hardwanp@oeents on which they are

deployed.

Analyzing and Interpreting

A BONZ2 interpreter was written in C++ to analyze model ins&s This interpreter
traverses the AscentRoot model and creates an XML repedgendf the models, atoms
and connections contained within. An XML representatiothef model instance is then
written to a file. This XML file matches a previously defined ecta for use with the Cas-
tor XML binding libraries, a set of libraries for demarsltadl XML data into Java objects.
The ASCENT technique is defined within a Java jar file calledCESITGME.jar. Once
the XML data is generated, the interpreter makes a systelnbtocekecute the ASCENT-
GME.jar, passing in the XML file as an argument. Within ASCEBMIE .jar, several things
happen. First, the XML file is demarshaled into Java obje&t3ava class then uses these
objects to create two complex MMKPProblem instances. Tiwseproblem instances,
along with a total budget value, are passed to ASCENT as.input

When ASCENT executes it returns the best DRE system configardetermined,
as well as the cost and value of the configuration. A First Ftieasing (FFD) Bin-
packer then uses these solutions along with their reso@ag@rements to determine a
valid deployment. This deployment data, along with theltotet, total value, hardware
solution and software solution, is then written to a confagion file. The interpreter, having
halted until the system call to execute the jar file termisgparses this configuration file.
Using this data, the ASCENT solution and deployment aretevriback into the model,

augmenting the model instance with the system configuration
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The system configurations created by ASCENT can be examime:draalyzed by de-
signers. Designers can change problem parameters, exielteerpreter once again, and
examine the effects of the changes to the problem on themsystafiguration generated.
This iterative process allows designers to rapidly examinoétiple DRE system configu-
ration design scenarios, resulting in substantially iasesel knowledge of the DRE system

configuration design space.

Motivating Example

AMP can be applied to determine valid configuration for thielite imaging system
shown in Figure V.1. Not only should the resulting configimatbe valid, but should
also maximize system value. For example, a satellite intgagystem that produces high-
resolution images has higher inherent value than an imagyistgm that can only produce
low-resolution images. In addition, the collective costltd hardware and software com-
ponents of the system must not exceed the project budget.

To create an AMP problem instance representing the satetidiging system described
in Figure V.1, several GME models must be created. First, B&BNT Problem instance
is added to the project. ASCENT Problem instances contaeetmodels: A hardware
MMKP Problem representing the hardware component opt@ssftware MMKP Prob-
lem representing the software component options and Resgwepresenting the external
resources, such as power and cost, that are consumed bypeshdf components.

A hardware MMKP problem instance is added to represent thdwsae components.
Within the hardware MMKP instance, Set model instances eaadaed. Each Set repre-
sents a set of hardware components that provide a commourcesd-or example, there
are two types of hardware components, Memory and CPU alail@abconsumption in the
satellite system shown in Figure V.1. To represent theseqramtities, two Set instances
are added with one instance representing CPU options aratliekeMemory Options.

Within each Set instance, the available options are reptedas instances of Iltems.
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Item instances are added within the CPU option set to repteseh of the available CPU
options. Within each Item, a Resource instance is addedlicate the production amounts
of the Item. For example, within the Item instance repraagr@PU 1, a Resource instance
would be added that has a value of 1200, to represent the C&duigtion of the option.
The instances representing the other CPU options and Meapmtigns are constructed in
the same manner, concluding the construction of the HaelWAIKP problem.

Now that the hardware options are represented, a softwar&RIMroblem instance
must be prepared to represent the software component espimmtinuing with the satellite
imaging system shown in Figure V.1, model representatidtissosoftware options for the
Image Resolution component and Image Processing Algonthst be constructed. Inside
of the software MMKP instance, a Set instance is added fdr seicof component options,
in this case a set for the Image Resolution component optiodsa set for the Image
Processing Algorithm options. Similarly to the hardware MRIproblem, each software
component option is represented as an Item. So within then&anhce of Image Resolution
options, three Item models are added to represent the Isglution, medium-resolution,
and high-resolution options.

Unlike the hardware MMKP Problem, however, a value attebuiust be assigned to
represent the desirability of including the option. For raxée, it is more desirable to
provide high-resolution image processing rather than oraeiesolution or low-resolution
image properties. Therefore, the value attribute higleltg®n option would be set to
a higher number than the other resolution options. Once #hgevis set, the resource
consumption of each option can be set within each item reptason of the software
component options in the same manner as described for tevager MMKP Problem.
Once the hardware MMKP Problem, software MMKP Problem, aesidRrces are set, the
model can be interpreted.

After the interpreter executes, a Deployment Plan modé&hnt® is created. Within the

Deployment Plan the selected hardware components andsefa@mponents can be seen.
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In this case, the deployment plan consists of the CPU 1, RAMrdvaare components and
Algorithm 4, high-resolution software components. Furteeamination shows that both

of the software components can be supported by the hardwarpanents selected.
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CHAPTER VI

AUTOMATED HARDWARE AND SOFTWARE EVOLUTION ANALYSIS

Challenge Overview

This chapter provides a motivation for the creation of alwdted techniques to evolve
legacy DRE system configurations. We present a scenarioighvain avionics system must
be evolved as new components become available to providduretionality while con-
tinuing to satisfy strict resource requirements and QoSiramts. We demonstrate how
automated hardware and software evolution can allow DREeBysto maintain usability

as new technology becomes available.

Introduction

Current trends and challenges. Distributed real-time and embedded (DRE) sys-
tems (such as automotive, avionics, and automated manufagisystems) are typically
mission-critical and often remain in production for yearsdecades. As these systems
age, however, the software and hardware that comprise teeonie increasingly obsolete
as new components with enhanced functionality are devdloles time consuming and
expensive to completely re-build new systems from scradcim¢orporate new technol-
ogy. Instead of building replacement systems from the gitaym legacy systems can be
evolvedto include new technology by replacing older, obsolete comemts with newer,
cutting-edge components as they become available. Thisitewo accounts for a large
portion of the cost of supporting DRE systems [95].

Software evolution is particularly vital to ensure DRE &yt continue to meet the
changing needs of customers and remain relevant as mavidts eFor example, in the au-

tomotive industry, each year the software and hardware frenprevious year's model car
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must be upgraded to provide new capabilities, such as at¢onparking or wireless con-
nectivity. In the avionics industry, new flight controlletargeting computers, and weapons
systems are constantly being developed. DRE systems am adisigned to squeeze the
most resources out of the latest hardware and may not be c¢ihepaith hardware that is
only a few years old. Many avionics systems have a lifespavef 20 years, making this
problem particularly daunting.

Software evolution analys|56] is the process of updating a system with new software
and hardware so that new technology can be utilized as ihes@vailable. Each compo-
nent provides its own distinct functionality and affects tiverall value of the system. Each
component also generates various amounts of heat, consan®ss amounts of resources
(such as weight, power, memory, and processor utilizatenmj incurs a financial cost.

This analysis involves several challenges, including (&atting a model for produc-
ing a cost/benefit analysis of different evolution path3,d@termining the financial cost
of evolving a particular software component [85], and (3he@ating an evolved system
configuration that satisfies multiple resource constraiitde maximizing system value.
This chapter examines software evolution analysis teclasdor automatically determin-
ing valid DRE system configurations that support required napabilities and increase
system value without violating, cost constraints resowestraints, or other domain-
specific constraints, such as weight, heat generation, avdipconsumption.

As shown in prior work [36, 69], the cost/benefit analysisdoftware evolution is par-
tially simplified by the availability of commercial-off-tishelf (COTS) software/hardware
components. For example, automotive manufacturers knannimach it costs to buy wind-
shield wiper hardware/software components, as well adreldc control units (ECUS)
with specific memory and processing capabilities/costkewise, avionics system devel-

opers know the precise weight of hardware components, gwirees they provide, the
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power they consume, and the amount of heat they generatemip@nents are custom-
developed i(e., non-COTS), profiling and analysis can be used to deterntieecost/-
benefits and resource requirements of utilizing a compdi&ht

Even if the impact of including a component in an evolving D&fStem is known, de-
ciding which components would yield the best overall systane, is an NP-Hard prob-
lem [44]. Theknapsack problerfB3] can be used to model the simplest type of evolution
problem. In this well-known problem, items of discrete siwel value are selected to fill
a knapsack of finite size, so that the collective value of thens in the knapsack is maxi-
mized.

This chapter uses a variation of the knapsack problem tesept DRE system configu-
ration evolution options. In particular, items are usecfresent the components available
to evolve the system. The goal is to determine the best solb$etrdware and software
components to include in the final DRE system configuratidhavit exceeding the project
budget while maximizing the system value [79]. In the simsptgpe of evolution problem,
there are no restrictions concerning which components eansbd to evolve the system,
and thus no additional restrictions on which items can begulan the knapsack. Since the
knapsack problem is NP-Hard, an exponential amount of timelavbe required to deter-
mine the optimal set of components to evolve the system evdreisimplest scenario.

Unfortunately, this type of component evolution problenois simplistic to represent
actual DRE system evolution scenarios adequately. Inquaati, it may not be appropriate
to augment DRE system configurations with components th#télsame basic need. For
example, if the goal is to evolve the DRE system configuratiba smart car, it would
usually not make sense to purchase and install two autorpar&thg components. While
installing a single automated parking component wouldaase the value of the system, a
second would be superfluous and consume additional systuarees without providing
benefits.

To prevent adding excessive, repetitive components, eashpotential DRE system
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capability is modeled as a point design variabilitywith several potential implementa-
tions, each incurring a distinct cost and value [113]. Modgthe option of adding an
automated parking system as a point of variability prokibultiple components that per-
form the same function from being implemented. It also sifigsl cost/benefit analysis
between potential candidate components that provideuhigtionality.

DRE systems are also subject to tight resource constraikgsa result, a tight cou-
pling often exists between software and hardware, creaipgpducer/consumer interac-
tion [107]. Each piece of hardware provides resources (asaghemory, CPU, power, and
heat dissipation) required for the software of a DRE systenumn. One naive approach is
to purchase superfluous hardware to ensure that the rescamsamption needs of soft-
ware are satisfied. Unfortunately, additional hardware akries additional weight and
cost that may make a DRE system infeasible. For example, xanmze flight distance and
speed, avionics systems must attempt minimize size andhtveidthough adding super-
fluous hardware can ensure that more than enough resouisefesoftware to function,
the additional weight and cost resulting from its implenagioin can render a system infea-
sible.

As a result, it is critical that sufficient resources existstgport any software vari-
ability selected for inclusion in the evolved DRE systemhwiit consuming unnecessary
space, weight, and cost. Determining the subset of softa@mgponents that maximize
system value—while concurrently selecting the subset afare components to provide
the necessary computational resources to support them-eigtamization problemCost
constraints specifying that the total cost of all composentist also not exceed that total
financial exacerbates this problem.

Due to these constraints, the knapsack problem representdtcomponent evolution
problems must be augmented with hardware/software capdesstrictions that realisti-
cally represent actual DRE systems. Since there are an erpahnumber of hardware

and software component subsets that could be used in theefiolsled configuration, this
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type of hardware/software co-design problem is NP-Har@[1®&here the vast solution
space prohibits the use of exhaustive state space explofatinon-trivial DRE systems.

For example, consider an avionics system with 20 points fifveoe variability with
10 component options at each point. Assume only the flighk @ézctronic control unit
hardware can be replaced with one of 20 candidate compométhtifferent resource
production values, heat generation, weight and power e¢opsan. To determine the op-
timal solution by exhaustively searching every possibl@on configuration would re-
quire examining 28 evolution configurations. This explosion in solution spsize would
therefore require years to solve with exhaustive seardiniqaes.

Solution approach — System evolution with heuristic optimization techniques.
This chapter presents and evaluates a methodology for ifjinglthe evolution of DRE
systems based anultidimensional multiple-choice knapsack probléM&KP) [73]. MMKP
problems extend the basic knapsack problem by adding eomisty such as multiple re-
source and cross-tree constraints, Similarly to the basap&ack problem, items of dif-
ferent value and size are chosen for the knapsack to maxiotizievalue. Two additional
constraints are added to create an MMKP problem. First, @éaoh consumesnultiple
resources (such as weight, power consumption, processingrpprovided by the “knap-
sack” instead of space alone. Second, the items are dividedsets from which only a
single item can be chosen.

For example, assume an MMKP problem in which the goal is tlllthe best home en-
tertainment system, while not exceeding a given budgetithdase, the items are various
types of televisions, game systems, and surround souneinsys$t would not make sense
to choose two surround systems and a game system as thaembent system requires
a television and an extra surround system would be effdgtiveeless. To represent this
scenario as an MMKP problem, the items would be divided intetaof game systems, a

set of surround sound systems, and a set of televisions. Aliy solution to this MMKP
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problem would enforce the constraints that exactly oneviglen, game system, and sur-
round system would be chosen and that the collective costeotdmponents would be
under budget.

MMKP problems are appropriate for representing softwaodgion analysis problems

for the following reasons:

* MMKP problem constraints are appropriate for enforcing mhultiple resource and

functional constraints of software evolution problems.

» Extensive study of MMKP problems has yielded approximatdgorithms that can

be applied to determine valid near-optimal solutions irypomial time [49].

» Multiple MMKP problems can been used to represent the cermgsource consumption/-

production relationship of tightly coupled hardware/fienms [122].

These problems can also be extended to include additiondiviage restrictions, such as
power consumption, heat production and weight limits.

Transforming software evolution analysis scenarios intddHP problems, however, is
neither easy nor intuitive. This challenge is exacerbayszbmplex production/consumption
relationships between hardware and software componertis chapter illuminates the
process of using MMKP problem instances to represent sodterolution analysis prob-

lems with the following contributions:

» We present th&oftware Evolution Analysis with Resour¢8&AR), which is a tech-
nique that represents multiple software evolution analgsienarios with MMKP

problems,

» We provide heuristic approximation techniques that caafygied to these MMKP

problems to yield valid, high-value evolved system confagions,

* We provide a formal methodology for assessing the validitgomplex, evolved

DRE system configurations,
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» We present empirical results of comparing the solve tinmelssalution value of three

algorithms for solving MMKP representations of softwareletion scenarios,

* We analyze these results to determine a taxonomy for chgalse best technique(s)

to use based on system size.

Motivating Case Study

It is hard to upgrade the software and hardware in a DRE sy&iesapport new soft-
ware featuresand adhere to resource constraints. For example, avionicermsystanu-
facturers that want to integrate new targeting systemsantaircraft must find a way to
upgrade the hardware on the aircraft to provide sufficiesdueces for the new software.
Each targeting system software package may need a diséhof sontrollers for image
processing and camera adjustment as well as one or moredfliectControl Units (ECU).
ECUs are hardware that provide processing capabilitiesh(as memory and processing
power) to support the software of a system [48].

Figure VI.1 shows a segment of an avionics software and hemelwesign that we

use as a motivating case study example throughout the ¢hajtis legacy configuration

Legacy Avionics System Evolved Avionics System

Flight Controller
Legacy FCImpl. ECU
FCImpl. A Legacy ECU Impl.

Flight Controller
Legacy FCImpl. ECU
FCImpl. A Legacy ECU Impl.
FCImpl. B Targeting System ECU Impl. A FCImpl. B Targeting System ECU Impl. A
FCImpl. C Legacy TS Impl. ECUImpl. B FCImpl. C Legacy TS Impl. ECUImpl. B
TS Impl. A FCImpl. C TS Impl. A ECU Impl. C
TSImpl. B JSImpl. B
FClmpl. C FC Impl. C
Hardware Resource Production Hardware Resource Production
Component Cost Memory CPU Wﬂlh( Value Component Cost Memory CPU Weight Value
Legacy ECU Impl. | 0 | 75 | 50 | -5 10 EcUlmpl.C | 200 1 125 | 100 | -3 25
Software Resource Consumption Software Resource Consumption
Legacy FC Impl. 0 20 15 0 20 FC Impl. A 150 55 45 0 40

Legacy TS Impl. | 0 | 30 | 25 | 0 [ 25 TS Impl. B | 150 | 60 | 40 | 0 | 55

Figure VI.1: Software Evolution Progression

contains two software components: a targeting system anidha @ontroller as shown
in Figure VI.1. In addition to an associated value and pweheost, each component

consumes memory and processing power to function. Thesarnes are provided by the
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hardware component¢., the ECU). This configuration is valid since the ECU produces
more memory and processing resources than the compondetgively require.

Evolving the targeting system of the original design showRigure V1.1 may require
software components that are more recent, more powerfyhyaride more functional-
ity than the original software components. For example,née targeting system may
require a flight controller with advanced movement capaédito function. In this case
study, the original controller lacked this functionalitychmust be upgraded with a more
advanced implementation. The implementation optionsHerflight controller are shown
in Figure VI.1.

Figure VI.1 shows potential flight controller and targetisygstem evolution options.
Two implementations are available for each controller. @epers installing an advanced
targeting system must upgrade the flight controller via drite@two available implemen-
tations.

Given a fixed software budgee.g, $500), developers can purchase any combination
of controllers and targeting systems. If developers wantuchase both a new flight
controlleranda new targeting system, however, they must purchase anaddiECU to
provide the necessary resources. The other option is topwade the flight controller,
thereby sacrificing additional functionality, but savingmey in the process.

Given a fixed total hardware/software budget of $700, theeld@ers must first divide
the budget into a hardware budget and a software budget.xBorme, they could divide
the budget evenly, allocating $350 to the hardware budg#$850 to the software bud-
get. With this budget developers can afford to upgrade thhtftontroller software with
Implementation A and the targeting system software withlémgntation B. The legacy
ECU alone, however, does not provide enough resources po#ditpese two devices. De-
velopers must therefore purchase an additional ECU to geothie necessary additional
resources. The new configuration for this segment of thenawibile with upgraded con-

trollers and an additional ECU (with ECU1 Implementationc@n be seen in Figure VI.1.
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Our motivating example above focused on 2 points of softwlasegn variability that
could be implemented using 6 different new components. blae 4 different potential
hardware components could be purchased to support thesseft@mponents. To derive
a configuration for the entire avionics system, an additidBasoftware components and
20 other hardware components must be examined. Each catfgguiof these compo-
nents could be a valid configuration, resulting in{§2inique potential configurations. In
general, as the quantity of software and hardware optiacre@se, the number of possi-
ble configurations grows exponentially, thereby rendermanual optimization solutions

infeasible in practice.

Challenges of DRE System Evolution Decision Analysis

Several challenges must be addressed when evolving sefeavat hardware compo-
nents in DRE systems. For example, developers must detergh)nwhat software and
hardware components to buy and/or build to implement the feature, (2) how much
of the total budget to allocate to software and hardwarg@es/ely, and (3) whether the
selected hardware components provide sufficient resotocdse chosen software compo-
nents. These issues are related, developers can either choose the software and hardware
components to dictate the allocation of budget to softwacehtardware or the budget dis-
tributions can be fixed and then the components chosen. Meretdevelopers can either
choose the hardware components and then select softwaueefedhat fit the resources
provided by the hardware or the software can be chosen tondiet what resource re-
qguirements the hardware must provide. This section de=tislveral upgrade scenarios

that require developers to address the challenges outipede.

Challenge 1: Evolving Hardware to Meet New Software Resoue Demands

This evolution scenario has no variability in implementieyv functionalityj.e., the set

of software resource requirements is predefined. For ex@ni@n avionics manufacturer
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has developed an in-house implementation of a new targeystgm, the manufacturer will
know the new hardware resources needed to support the sgatemust determine which
hardware components to purchase from vendors to satistyetvéhardware requirements.
The exact budget available for hardware is known since ttye murchases that must be
made are for hardware. The problem is to find the least-casiwsae design that can
provide the resources needed by the software.

The difficulty of this scenario can be shown by assuming thate are 10 different
hardware components that can be evolved, resulting in ftpof hardware variability.
Each replaceable hardware component has 5 implementatiimme from which the single
upgrade can be chosen, thereby creating 5 options for eaielibNidy point.

To determine which set of hardware components yield themaph value ie., the
highest expected return on investment) or the minimum ¢@st hinimum financial bud-
get required to construct the system), 9,765,265 configuraiof component implemen-
tations must be examined. Even after each configurationnstoected, developers must
determine if the hardware components provides sufficiesdurses to support the chosen
software configuration. The section entitled “Mapping Heade Evolution Problems to
MMKP” describes how SEAR addresses this challenge by usiedgfined software com-

ponents and replaceable hardware components to form & $gKP evolution problem.

Challenge 2: Evolving Software to Increase Overall Systemalue

This evolution scenario preselects the set of hardware ooes and has no variability
in the hardware implementation. Since there is no varigbilithe hardware, the amount of
each resource available for consumption is fixed. The soffe@amponents, however, must
be evolved. For example, a software component on a commoelrobdircraft has been
found to be defective. To avoid the cost of a recall, the mactufer can ship new software
components to local airbases, which can replace the defesiftware components. The

local airbases lack the capabilities required to add harels@amponents to the aircraft.
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Since no new hardware is being purchased, the entire budgebe devoted to soft-
ware purchases. As long as the resource consumption of tseilsoftware component
configuration does not exceed the resource production efiegihardware components,
the configuration can be considered valid. The difficultyta$ tthallenge is similar to the
one described in the section entitled “Mapping Softwareliian Problems to MMKP”,
where 10 different types of software components with 5 deffié available selections per
type required the analysis of 9,765,265 configurationss Shction describes how SEAR
addresses this challenge by using the predetermined haadwenponents and evolution

software components to create a single MMKP evolution mobl

Challenge 3: Unrestricted Upgrades of Software and Hardwag in Tandem

Yet another challenge occurs when both hardware compoaedtsoftware compo-
nents can be added, removed, or replaced. For exampledeomasi avionics manufacturer
designing the newest model of its flagship aircraft. Thisrait could either be similar
to the previous model with few new software and hardware aorapts or it could be
completely redesigned, with most or all of the software aaditvare components evolved.

Though the total budget is predefined for this scenario, itaspartitioned into in-
dividual hardware and software budgets, thereby greatseasing the magnitude of the
problem. Since neither the total provided resources n@l tminsumable resources are
predefined, the software components depend on the hardwargiahs and vice versa,
incurring a strong coupling between the two seemingly ireejlgnt MMKP problems.

The solution space of this problem is even larger than tharo8ection VI. Assuming
there are 10 different types of hardware options with 5 atioer type, there are 9,765,265
possible hardware configurations. In this case, howeverydype of software is eligible
instead of just the types that are to be upgraded. If therdargpes of software with

5 options per type, therefore, 30,516,453,125 softwar@atians can be chosen. Each
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variation must be associated with a hardware configuratotest validity, resulting in
30,516,453,125 * 9,765,265 tests for each budget allacatio

In these worst case scenarios, the staggering size of tHgetion space prohibits
the use of exhaustive search algorithms for anything ofen trivial design problems.
The section entitled “Hardware/Software Co-Design withOENT” describes how SEAR
addresses this challenge by combining all software andA@elcomponents into a spe-

cialized MMKP evolution problem.

Evolution Analysis via SEAR

This section describes the procedure for transforming\ibkiBon scenarios presented
in the previous section into evolutidviultidimensional Multiple-choice Knapsack Prob-
lems(MMKP) [3]. MMKP problems are appropriate for representeglution scenarios
that comprise a series of points of design variability that @onstrained by multiple re-
source constraints, such as the scenarios described iliB&dt In addition, there are
several advantages to mapping the scenarios to MMKP prablem

MMKP problems have been studied extensively and severginpatial time algo-
rithms [3, 50, 51, 100] can provide near-optimal solutiombis chapter uses the M-HEU
approximation algorithm described in [3] for evolution plems with variability in either
hardware or software, but not both. The M-HEU approximaélgorithm finds a low value
solution. This solution is refined by incrementally selegtitems with higher value using
resource consumption levels as a heuristic.

The multidimensional nature of MMKP problems is ideal forfaning multiple re-
source constraints. The multiple-choice aspect of MMKRams make them appropriate
for situations (such as those described in challenge 2pwiely a single software compo-
nent implementation can be chosen for each point of desigabikbty.

MMKP problems can be used to represent situations whereipteutiptions can be

chosen for implementation. Each implementation optionsaomes various amounts of
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resources and has a distinct value. Each option is placedaidistinct MMKP set with

other competing options and only a single option can be chéreen each set. A valid
configuration results when the combined resource consompfithe items chosen from
the various MMKP sets does not exceed the resource limits. value of the solution is

computed as the sum of the values of selected items.

Mapping Hardware Evolution Problems to MMKP

Below we show how to map the hardware evolution problem desdrin challenge 1
to an MMKP problem. This scenario can be mapped to a single MNMkKoblem represent-
ing the points of hardware variability. The size of the kraagssis defined by the hardware
budget. The only additional constraint on the MMKP solutisthat the quantities of re-
sources provided by the hardware configuration exceedgs¢aefined consumption needs
of software components.

To create the hardware evolution MMKP problem, each hardwamponent is con-
verted to an MMKP item. For each point of hardware variapibin MMKP set is created.
Each set is then populated with the MMKP items correspontbritpe hardware compo-
nents that are implementation options for the set’s comegimg point of hardware vari-
ability. Figure VI.2 shows a mapping of a hardware evolugiwoblem for an ECU to an

MMKP.

Hardware Evolution Problem

Flight Controller
Legacy FCImpl.

ECU
Legacy ECU Impl.
ECU Impl. A
ECU Impl. B
FCImpl. C

Hardware Resource Production

Cost Memory | CPU |
0 I 75 | 50 [
|

|

Component
Legacy ECU Impl.

Software Resource Consumption
0 20 | 15
0 | 30 | 25

Legacy FC Impl.
|_Legacy TS Impl.

Figure VI.2: MMKP Representation of Hardware Evolution Pro  blem
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In Figure V1.2 the software does not have any points of vditglthat are eligible
for evolution. Since there is no variability in the softwatiee exact amount of each re-
source consumed by the software is known. The M-HEU appratian algorithm (or an
exhaustive search algorithm, such as a linear constralverdaises this hardware evolu-
tion MMKP problem, the predefined resource consumption, taedpredefined external
resource (budget) requirements to determine which ECUsitthase and install. The so-
lution to the MMKP is the hardware components that shouldHmesen to implement each

point of hardware variability.

Mapping Software Evolution Problems to MMKP
We now show how to map the software evolution problem deedrib challenge 2to
an MMKP problem. In this case, the hardware configuratiomotibe altered, as shown

in Figure VI.3. The hardware thus produces a predeterminsaliat of each resource.

Software Evolution Probelm

[“Fiight Controller ]
Legacy FCImpl. -~
FC Impl. A
FCImpl. B Targeting System
FClmpl.C Legacy TS Impl.
TS Impl. A

TSImpl. B
FC Impl. C

Legacy ECU Impl.

Hardware Resource Production

Component I Cost Memory | CPU
Legacy ECU Impl. | 0 | 75 | 50
|
|

Value
10

Weight
-5

] I
| |
Software Resource Consumption

0 20 | 15 | 0 |20
0 | 30 | 25 | 0 |25

Legacy FC Impl.
Legacy TS Impl.

Figure VI.3: MMKP Representation of Software Evolution Pro blem

Similar to the previous section. the fiscal budget availétesoftware purchases is also
predetermined. Only the software evolution MMKP problemsirtherefore be solved to
determine an optimal solution.

As shown in thesoftware problenportion of Figure VI.3, each point of software vari-

ability becomes a set that contains the correspondingaimtimplementations. For each
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set there are multiple implementations that can serve aotiteoller. This software evolu-
tion problem—along with the software budget and the ressiavailable for consumption
as defined by the hardware configuration—can be used by an Madig@?ithm to deter-

mine a valid selection of throttle and brake controllers.

Hardware/Software Co-Design with ASCENT

Several approximation algorithms can be applied to solglsiMMKP problems, as
described in the previous two sections. These algorithmsgetier, cannot solve cases in
which there are points of variability in both hardware anttvgare that have eligible evo-
lution options. In this situation, the variability in theqatuction of resources from hard-
ware and the consumption of resources by software requoteing two MMKP problems
simultaneously, rather than one. In prior work we develgbedhllocation-baSed Config-
uration Exploration TechniqueASCENT) to determine valid, low-cost solutions for these
types of dual MMKP problems [122].

ASCENT is a search-based, hardware/software co-designxppation algorithm that
maximizes the software value of systems while ensuringtttgatesources produced by the
hardware MMKP solution are sufficient to support the sofevdiMKP solution [122]. The
algorithm can be applied to system design problems in witiehetare multiple producer/-
consumer resource constraints. In addition, ASCENT caareafexternal resource con-
straints, such as adherence to a predefined budget.

The software and hardware evolution problem describedataige 4 must be mapped
to two MMKP problems so ASCENT can solve them. The hardwacksamftware evolu-
tion MMKP problems are prepared as shown in Figure VI.4. Bwslution differs from
the problems described in the section entitled “MappingidMare Evolution Problems to
MMKP”, since all software implementations are now eligilide evolution, thereby dra-
matically increasing the amount of variability. These twolgems—along with the total

budget—are passed to ASCENT, which then searches the catf@uspace at various
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Unlimited Evolution Problem

Flight Controller
Legacy FCImpl.
FCImpl. A

FCImpl. B Targeting System
FCImpl. C Legacy TS Impl.
TSImpl. A

TSImpl. B
FClmpl. C

ECU
Legacy ECU Impl.
ECU Impl. A
ECU Impl. B
ECU Impl. C

Hardware Resource Production
Cost Memory | CPU I I
200 | 125 100 | 3 [ 25
| |
| |

Component
ECU Impl. C

I
I
Software Resource Consumption
FC Impl. A 150 | 55 | 45
TS Impl. B | 150 | 60 | 40

Figure VI.4: MMKP Representation of Unlimited Evolution Pr  oblem

budget allocations to determine a configuration that og@sia linear function computed
over the software MMKP solution. Since ASCENT utilizes ampr@gximation algorithm,
the total time to determine a valid solution is usually sm&tl addition, the solutions it

produces average over 90% of optimal [122].

Formal Validation of Evolved DRE Systems

There are many complex constraints that make it hard to mi@terthe validity of a
DRE system configuration. These constraints include thaures production/consumption
relationship of tightly coupled hardware/software, thegagnce of multiple external re-
source constraints (such as component cost and power cptisnjnconsumed by hard-
ware and/or software components, and functional conssrdivat restrict which compo-
nents are required/disallowed for implementation due h@iotomponent selections.

This section presents a formal model that can be used taxiethe validity of a sys-
tem based on the selection of hardware and software comfsridre model takes into ac-
count the presence of external resources, such as totakphmjdget, power consumption,
and heat production, the complex hardware/software resqanoduction/consumption re-
lationship, and functional constraints between multiglmyponents. The empirical results
section uses thismodel to define experiment parametersedachdne the validity of gen-

erated final system configurations.
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Top-Level Definition of an Evolved DRE System
A goal of evolving DRE systems is often to produce a new systenfiguration that
meets all system-wide constraints and increases systera.vahe final system configura-

tion produced by software evolution analysis can be desdrés a 4-tuple:

F=<H,SB,\V >

where

e H is a set of variables describing the hardware portion of ted 8ystem configura-
tion, including the set of hardware components selecteik, &@xternal resource consump-
tion and computational resource production.

e Sdefines the software portion of the systems consisting o&thet of software com-
ponents, their total cost, and the total value added to thesy.

e B represents the total project budget of evolving a systeme fAroject budget is
the total funding available for purchasing hardware antissot components. If the total
project budget is exceeded, then system designers will @athile to purchase required
components resulting in an incomplete final system conftgura

e V is the total value of the hardware and software componentguasing the final

system configuration.

Definition of Hardware Partition

The hardware partition of system provides the computati@smurces, such as mem-
ory and processing power, to support the software comperwdrihe system. To provide
these resources, the hardware of the system must also cemdwsical resources, such as
weight, power, and heat. Unlike software components, hewesome hardware compo-
nents can increase the availability of these resourceshaitsvare partition of a system is

represented by the following 5-tuple:
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H =< HC,a(HC),p(HC),ExV(HC) >

where

e HC is the set of hardware components that make up the hardwtre system. These
components support one or more software components or aittbadl resources, such as
power, to support other hardware components.

e a(HC) is a tuple containing the total resource consumption vabdfiise set of hard-
ware componentslC.

e p(HC) defines the total hardware resources, such as power andissiaation, pro-
duced by the set of hardware compondh@&

e Exspecifies the predetermined hardware resource limitgtsoes as available weight
capacity and power, provided by the system environmentommescases purchasing hard-
ware components can increase these values, as defirdHiB). For example, purchasing
a battery can increase the power availability of the systeihmay increase system cost,
weight, and heat generation.

¢ V(HC) is the total value added to the system by the set of hardwan@aoentdHC.

External Resource Limitations

The hardware patrtition of a system must meet several exteasaurce constraints that
are predetermined based on the application of the systenmexample, avionics systems,
such as unmanned aerial vehicles, do not remain perpetadhyected to an external power
source. Instead, on-board batteries provide a finite poarce. The following 4-tuple

represents the external resources available for consamipyi the hardwaréi :

EX=<Bu, P4, HhWH >

where
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e By is the hardware budget, which is the maximum amount of monaiedole to pur-
chase Hardware components. Omgeis exhausted, no additional hardware components
can be added to the system. No hardware components can lapeddo augmersy .

e B is the total amount of external power available to the syst&wor systems in
which power is unlimited, this value can be setdoSome evolution scenarios may allow
the purchase of batteries or other hardware to increasevétilatale power paddy, though
this is usually at the expense Bf;, Wy, and/orHy.

e Hy defines the maximum amount of heat that can be generated thatbe/areH
of the system. In certain applications, such as automateudifacturing systems, exceed-
ing predefined temperature limits can cause hardware tofrfaibrrupt the product being
manufactured. Additional hardware components, such assiies, can be purchased to
counteract heat produced by hardware and thereby increadeetit capacity of they sys-
tem.

e W represents the weight limit of the final system configuraéisa result oH. Each
additional hardware component increases the weight ofytkem by a distinct amount.
Many DRE systems have strict requirements on the total weighe system. For example,
each pound of hardware added to avionics systems requurghlgo4 additional supporting
pounds of infrastructure and fuel. No hardware componemgtsapable of reducing the

weight capacity of a system.

Hardware Components

The hardware component selectid@ of the hardware partition determines the com-
putational resources, such as memory and processor titihizahat are available to sup-
port the software partition of the system. Hardware comptsean also produce other
resources (such as power and heat dissipation) to validategiection of additional hard-
ware and increase elements Bk beyond their initial capacities. The set of N chosen

hardware components is by the following N-tuple:
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HC =< Hcp,Hcy.....Hch >

where
e Hc is a hardware component included in the final configuratioachEhardware
component consumes multiple external resources. The reegalurce consumption of a

hardware componeiitc is defined by the following 4-tuple:

RqHc) =< Cost(Hc),Pow(Hc),W(Hc),He(Hc), >

where

e Cost(Hc) is the cost of purchasing hardware comporié¢at

e Pow(Hc) is the power consumed Byc.

e W(Hc) is the weight added to the final configuration by includkhg

e He(Hc) is the heat generated bic.

Hardware components will either support one or more so#wamponents or add
additional hardware resources, such as power to the sy$tearfollowing equation defines

the set of software components that are deployed to hardweanponentc:

Dep(Hc) =< S, Sg.....SG >

Hardware components (such as heat sinks and batteriesyipradditional resources
(such as heat capacity and power) to the system. These cemisprinowever, do not
produce any computational resources and may consume offeen& resources (such as
project budget and weight). The total resource productidmaodware componertic is

defined by the following tuple:

Rp(Hc) =< ro,rq,ra,...r >
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wherer; is a resource produced by componkiat
Hardware components must also consume several resoutsss s project budget

and weight capacity) to function. The resource consumpifdrardware componeiicis

defined as:

RC(HC) =<T9,l1,l2....1H >

wherer; represents a distinct hardware resource (such as powerstr cbhe total

resource consumption of all hardware componeét@iss defined by the following 4-Tuple:

a(HC) =< B(HC),5(HC), T7(HC),m(HC) >

where

¢ (3 is the total cost of all hardware componeHitS.

e J is the total power consumption of all hardware compongl@s

e T is the total weight of all hardware componeRt€§.

e Mis the total heat consumption of hardware componkiiis

The total resource consumption of each type of resouraeisrdetermined by the sum-
mation of each type of resourceacross all hardware componeii€. If we assume that
ro is the cost of a hardware componentrepresents the power consumptionthe weight
of the component, ang; the heat generation of the component, the resource consumpt
totals is given by the following equations:

IHC|

B(HC) = ; RAHCi)o

IHC|

8(HC) = § RAHC:

IHC|

T(HC) = Z) RoHC )2
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IHC|
m(HC) = i; RAQHCi)3

Finally, each hardware component adds a discrete amourawé ¥o the system. The
amount of value added to the system by hardware compohidis defined by the fol-
lowing equation:

IHC|
V(HC) = i; V(HC))
wherev(HG;) gives the value of including hardware compond@; in the final system

configuration.

Definition of Software Partition

The software partition consists of software componentsphavide functionality and
add value to the system. The software partition is comprideadset of software compo-
nents that consume the computational resources of the he@components to which they
are deployed. Each software component consumes multipbeirees, carries a purchase
cost, and adds a discrete amount of value to the system. Tiweas® partitionS of a final

configuration is defined by the follow 3-tuple:

S=< 6(SC),V(SC),SC>

where

e 6(SC) is the total cost of the software compone8€of the final configuration.

¢ V(SQ is the total value of the software componeBtcomprising the final system
configurations.

e SCis the set of software components that make up the final sysbefiguration.

The set of software componer8€consists of one or more individual software compo-

nents, each costing different amounts of money to purchageadding distinct amounts of
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value to the system. The total cost of the software compar&Ddis determined by taking
the sum of the values of all software components in the system

1SG
6(SC) = Z) RASG)o

The value added by all component§SC), is calculated with the following equation:

IS
V(SQ = %V(S@
i=
Each software component also consumes one or more congmaiatesources. These
resources (such as memory and processing power) are pddwdke hardware component
to which the software component(s) are deployed. A softwansponent that consumas

resources is defined by the following n-tuple:

RASQ =< ro,r1,r2,...rh >

wherer; is the amount of the resource consumed.

Determining if a Final System Configuration is Valid

The hardwareH and softwareS for are selected for a final system configuration
must satisfy several constraints to be considered vali@. fifst constraint is that external
resources, such as weight and power, must not be over codduntiee hardware. Second,
the purchase price of all components must not exceed thieptafact budget. Finally, no
set of software components can consume more resources tinadegul by the hardware

component to which they are deployed.

External Resource Consumption Does Not Exceed Production

The following equation determines if the total externabrgse consumption exceeds

external resource availability:
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IHC| IHC|
o(HC) = ( % Rp(HCi) + Ex) — % Rp(HG)
i= =

This equation adds the total hardware resource produabidhet predefined external
resource limits to give the total external resource avditgbThe total resource consump-
tion of the hardware componenitiC is then subtracted from the total external resource
availability. If no elements i are negative the external resources are not over consumed
by the hardware. This constraint is violated, however, & fbllowing equation yields a

negative value:

ExCon(F) =min(0,0(HC))

If ExCon is less than zero the available external resouneesat sufficient to support

the external resource consumption of the hardware.

Project Budget Exceeds Component Costs

Each final system configuratiéhhas a project budg&defining the maximum amount
of money that can be spent purchasing hardware and softwarpanents. If this amount
is exceeded, however, sufficient funds will not be availablpurchase alHC and SC of
H andS thereby invalidating the final configuratién The total cost of the system can be

calculated with the following equation:

TotCostHC,SC) = B(HC) + 8(SCO

CostCorfF) = min(0,B— TotCostHC, SC))

If the value ofCostCoriF) is less than zero, then insufficient funds are available to

purchase componenitfC andSC
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Hardware Resource Production Exceeds Software Resource @sumption

In a final configuratior, the software componeng&C are deployed to the hardware
component$iC. Each software componeStconsumes computational resourceéuch
as memory and processing power) provided by the hardwarp@oemtHc to which it is
deployed. The sum of the consumption of each resource obtare components allo-
cated to a hardware component must not exceed the resowaection of each resource
produced. The following equatio,(HC) determines the resource consumption of the
software components deployed to hardware comporé¢@ts

|Dep(HC)|
A(HC) = VHC,vr € Rp(HG), 1 — ( Z) RgDep(Hc);))
=

HSRCoIiF) = min(0,A (HC))

The final hardware/software resource constrattBRFCoItF ), determines if the re-
source production of any hardware componerti® is over consumed by the software it
supports. IIHSRFCofiF) is less than 0 the constraint is violated and the final corditim

F is invalid.

Validating a Final System Configuration
The following three constraints must be satisfied to endweealidity of a final system

configurationF:
» Resource availability must exceed consumption as detexrbyExCor(F),
« Component costs must be less than the project budget aslgiveostCoriF ), and

* The resource production of the hardware componkEi@snust exceed the resource

consumption of the software compone8tas given byHRSCon fF).

The validity of the final system configuratiénis conveyed by the following equation:

92



Validity(F) = ExCor(F) + CostCortF) + HSRCon fF)

A final system configuratioR is considered valid i¥/alidity(F) is equal to zero.

Empirical Results

This section determines valid, high-value, evolution agunfations for the scenarios de-
scribed in the section entitled “Challenges of DRE Systerliion Decision Analysis”
using empirical data obtained from three different aldwniic techniques: (1) exhaustive
search techniques, (2) the M-HEU algorithm for solving #igMKP problem instances,
and (3) the ASCENT technique for solving unlimited evolatfroblems, all of which are
described in the previous solution sections. These redeitsonstrate that each algorithm
is effective for certain types of MMKP problems. Moreovenear-optimal solution can be
found if the correct technique is used. Each set represguisaof design variability and
problems with more sets have more variability. Moreovex AISCENT and M-HEU algo-
rithms can be used to determine solutions for large-scalel@ms that cannot be solved in

a feasible amount of time with exhaustive search algorithms

Experimentation Testbed

All algorithms were implemented in Java and all experimemse conducted on an
Apple MacbookPro with a 2.4 GHz Intel Core 2 Duo processorjgalgytes of RAM,
running OS X version 10.5.5, and a 1.6 Java Virtual MachivM)Jrun in client mode.
For our exhaustive MMKP solving technigue—which we call limear constraint solver
(LCS)—we used a branch and bound solver built on top of tha &#wco Constraint
Solver ¢hoco. sour cef or ge. net). The M-HEU heuristic solver was a custom im-
plementation that we developed with Java. The ASCENT dlgoriwas also based on a

custom implementation with Java.
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Simulation MMKP problems were randomly generated. In thiscpss, the number
of sets, the minimum and maximum number of items per set, themam and maximum
resource consumption/production per item, and the minimodmaximum value per item,
are the inputs to the MMKP problem generator. The generatatyces an MMKP problem
consisting of the specified number of sets. The number ofsteneach set, the resource
consumption/production of each item, and the value of eth,iare randomly selected
within the specified bound for each parameter. This germrgtiocess is described further

in [122].

Hardware Evolution with Predefined Resource Consumption
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Figure VI.5: Hardware Evolution Solve Time vs Number of Sets

This experiment investigates the use of a linear constsahver and the use of the
M-HEU algorithm to solve the challenge described in chakerl, where the software
components are fixed. This type of system based on the forgfaditibn of a system
configurationF.In this type of evolution problem, th® of the F tuple is fixed. For ease
of explanation, we also assumed that with the exception d§etB, all values ofEx are
abundantly available.

We first tested for the total time needed for each algorithmutoto completion. We
then examined the optimality of the solutions generatedamhelgorithm. We ran these
tests for several problems with increasing set countsebyeshowing how each algorithm

performed with increased design variability.
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Figure V1.5 shows the time required to generate a hardwanégroation if the soft-
ware configuration is predefinédSince only a single MMKP problem must be solved,
we use the M-HEU algorithm. As set size increases, the timeired for the linear con-
straint solver increases rapidly. If the problem consi$twore sets, the time required for
the linear constraint solver becomes prohibitive. The McH&pproximation algorithm,
however, scaled much better, finding a solution for a probAetin 1,000 sets inv15 sec-

onds. Figure V1.6 shows that both algorithms generatedtisols with 100% optimality

Optimality
o e o
S

4
Sets

Figure VI.6: Hardware Evolution Solution Optimality vs Num ber of Sets

for problems with 5 or less sets.

Regardless of the number of sets, the M-HEU algorithm coteglaster than the linear

constraint solver without sacrificing optimality.
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Figure VI.7: Software Evolution Solve Time vs Number of Sets

Time is plotted on a logarithmic scale for all figures thatwsisolve time.
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Software Evolution with Predefined Resource Production

This experiment examines the use of a linear constrainesalnd the M-HEU algo-
rithm to solve evolution scenarios in which the hardware gonents are fixed, as described
in challenge 2. In this type of problem, tkeof the configuratiorF is predefined. We test
for the total time each algorithm needs to run to completimh @xamine the optimality of
solutions generated by each algorithm.

Figure V1.7 shows the time required to generate a softwanéiguration generated if
the hardware configuration is predetermined. As with Chake2, the M-HEU algorithm
is used since only a single MMKP problem must be solved. Ogeaéna LCS’s limited
scalability is demonstrated since the required solve tirakems its use prohibitive for prob-
lems with more than five sets. The M-HEU solver scales considg better and can solve
a problem with 1,000 sets in less than 16 seconds, whichtssfiai®r all problems.

Figure V1.8 shows the optimality provided by each solver.this case, the M-HEU

T~

Optimality

4
Sets

Figure VI.8: Software Evolution Solution Optimality vs Num ber of Sets
solver is only 80% optimal for problems with 4 sets. Fortehatthe optimality improves

with each increase in set count with a solution for a problath W sets being 100% opti-

mal.
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Unrestricted Software Evolution with Additional Hardware

This experiment examines the use of a linear constrainesalnd the ASCENT algo-
rithm to solve the challenge described in challenge 4, inctvimo hardware or software
components are fixed. We first test for the total time needeédoh algorithm to run to
completion and then examine the optimality of the solutigeserated by each algorithm.
Unrestricted evolution of software and hardware compakeas similar solve times to the
previous experiments.

Figure VI.9 shows that regardless of the set count for the MIMifoblems, the AS-

CENT solver derived a solution much faster than LCS. Thisrégaiso shows that the
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Figure VI.9: Unrestricted Evolution Solve Time vs Number of Sets

Optimality
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Figure VI.10: Unrestricted Evolution Solution Optimality vs Number of Sets

required solve time to determine a solution with LCS incesaspidlye.g, problems that
have more than five sets require an extremely long solve tifite ASCENT algorithm

once again scales considerably better and can even sobiepr®with 1,000 or more sets.
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Figure VI.11: LCS Solve Times vs Number of Sets

In this case, the optimality of the solutions found by ASCENTow for problems with 5
sets, as shown in Figure VI.10.
Fortunately, the time required to solve with LCS is not phitiwe in these cases, so it

is still possible to find a solution with 100% optimality in@asonable amount of time.

Comparison of Algorithmic Techniques
This experiment compared the performance of LCS to the pedoce of the M-HEU
and ASCENT algorithms for all challenges. As shown in Figutell, the characteris-

tics of the problem(s) being solved have a significant impacsolving duration. Each
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Figure VI.12: M-HEU & ASCENT Solve Times vs Number of Sets

challenge has more points of variability than the previdualenge. The solving time for
LCS thus increases as the number of the points of varialmdseases. For all cases, the
LCS algorithm requires an exorbitant amount of time for peais with more than five

sets. In contrast, the M-HEU and ASCENT algorithms show rsecefinable correlation
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Figure VI.13: Comparison of Solve Times for All Experiments

between the amount of variability and the solve time. In seases, problems with more

sets require more time to solve than problems with less agtshown in Figure VI.12.
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Figure VI.14: Comparison of Optimalities for All Experimen ts

Figure VI.13 compares the scalability of the three algonish

Solver Variability in Either Variability in Both
Hardware or Software Hardware and Software
Sets > 8 Sets < 8 Sets > 6 Sets < 6

LCS X X

M-HEU X

ASCENT X

Figure VI.15: Taxonomy of Techniques

This figure shows that LCS requires the most solving time licades. Likewise, the
ASCENT and M-HEU algorithms scale at approximately the seatesfor all problems and
are far superior to the LCS algorithm. The optimality of thE@ENT and M-HEU algo-
rithms is near-optimal only for problems with five or moressets shown in Figure VI.14.

The exception to this trend occurs if there are few pointsaoiability, e.g, when there
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are few sets and the software is predetermined. These fsadmgivate the taxonomy
shown in Figure VI.15 that describes which algorithm is naggtropriate, based on prob-

lem size and variability.
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CHAPTER VII

MODEL-DRIVEN AUTO-SCALING OF GREEN CLOUD COMPUTING
INFRASTRUCTURE

Challenge Overview
This chapter presents an application of automated modaed+dconfiguration to cloud
computing paradigms. We demonstrate how the auto-scabligigs of cloud comput-
ing environments can be augmented with automated configaregchniques to meet the
dynamic configuration requirements of application demarakther, we show that these
techniques can be used to generate configurations withesttadly reduced operating cost

and emissions while ensuring that Service Level Agreem@&itas) are upheld.

Introduction

Current trends and challenges.By 2011, power consumption of computing data cen-
ters is expected to exceed 100,000,000,00 kilowatt-hkwhk] and generate over 40,568,000
tons of CQ emissions [1,23,93]. Since data centers operate at onBO20-utilization,
70-80% of this power consumption is lost due to over-pravisd idle resources, resulting
in roughly 29,000,000 tons of unnecessary@missions [1, 23, 93]. Applying new com-
puting paradigms, such as cloud computing with auto-sgalmincrease server utilization
and decrease idle time is therefore paramount to createngr computing environments
with reduced power consumption and emissions [8,11, 1531,

Cloud computing is a computing paradigm that uses virtedlizerver infrastructure
and auto-scaling to provision virtual OS instances dynaityid86]. Rather than over-
provisioning an application’s infrastructure to meet pksd demands, an application can
auto-scaldy dynamically acquiring and releasing virtual machine (Mhstances as load

fluctuates. Auto-scaling increases server utilization@exteases idle time compared with
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over-provisioned infrastructures, in which superfluoustesn resources remain idle and
unnecessarily consume power and emit superfluous. Q@breover, by allocating VMs
to applications on demand, cloud infrastructure users e@gnfer servers incrementally
rather than investing the large up-front costs to purcha&se servers, reducing up-front
operational costs.

Although cloud computing can help reduce idle resourcesnagative environmental
impact, running with less instantly available computingaeity can impact quality-of-
service (QoS) as load fluctuates. For example, a prime-talevision commercial ad-
vertising a popular new product may cause a ten-fold iner@agraffic to the advertisers
website for about 15 minutes. Data centers can use existlagesources to handle this
momentary increase in demand and maintain QoS. Without theditional resources, the
website’s QoS would degrade, resulting in an unacceptad#e experience. If this com-
mercial only airs twice a week, however, these additionsbueces might be idle during
the rest of the week, consuming additional power withoutdeitilized.

Devising mechanisms for reducing power consumption angl@mwental impact through
cloud auto-scaling is hard. Auto-scaling must ensure thds\¢an be provisioned and
booted quickly to meet response time requirements as loadges. If auto-scaling re-
sponds to load fluctuations too slowly applications may erpee a period of poor re-
sponse time awaiting the allocation of additional compatetl resources. One way to
mitigate this risk is to maintain an auto-scaling queue aimig prebooted and preconfig-
ured VM instances that can be allocated rapidly, as showigur€& VII.1.

When a cloud application requests a new VM configuration ftbenauto-scaling in-
frastructure, the auto-scaling infrastructure first afiesrio fulfill the request with a pre-
booted VM in the queue. For example, if a VM with Fedora CoréBxss, and MySQL is
requested, the auto-scaling infrastructure will atteragirtd a matching VM in the queue.
If no match is found, a new VM must be booted and configured ttcimthe allocation

request.
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Figure VII.1: Auto-scaling in a Cloud Infrastructure

Open problem — determining green settings such as the size and properties of the
auto-scaling queue shared by multiple applications witleint VM configurations [19].
The chosen configurations must meet the configuration rexpeints of multiple applica-
tions and reduce power consumption without adversely inp@&oS. For example, a
web application may request VM instances configured as daglmiddle-tier Enterprise
Java Beans (EJB), or front-end web servers. Determiningtb@apture and reason about
the configurations that comprise the auto-scaling queuaris ¢ue to the large number of
configuration options (such as MySQL and SQL Server databak®intu Linux and Win-
dows operating systems, and Apache HTTP and IIS/Asp.Nethests) offered by cloud
infrastructure providers.

It is even harder to determine the optimal queue size andstgpb®M configurations
that will ensure VM allocation requests can be servicediduienough to meet a required
auto-scaling response time limit. Cost optimization isliemaing because each configu-
ration placed into the queue can have varying costs baseldeomardware resources and
software licenses it uses. Energy consumption miniminasaalso hard since hardware
resources can consume different amounts of power.

Solution approach — Auto-scaling queue configuration derivation based on fea-

ture models. This chapter presents a model-driven engineering (MDE)agmh called
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theSmart Cloud Optimization for Resource Configuration Hamg{iSCORCH). SCORCH
captures VM configuration options for a set of cloud appiars and derives an optimal
set of virtual machine configurations for an auto-scalingugito provide three green com-
puting contributions:

e An MDE technique for transforming feature model represiona of cloud VM con-
figuration options into constraint satisfaction proble@SPs) [53,62], where a set of vari-
ables and a set of constraints govern the allowed valueofahables.

e An MDE technique for analyzing application configuratioqueements, VM power
consumption, and operating costs to determine what VM imgt&onfigurations an auto-
scaling queue should contain to meet an auto-scaling resgone guarantee while mini-
mizing power consumption.

e Empirical results from a case study using Amazon’s EC2 ctmrdputing infrastruc-
ture @ws. amazon. cont ec?2)that shows how SCORCH minimizes power consumption

and operating cost while ensuring that auto-scaling resptime requirements are met.

Challenges of Configuring Virtual Machines in Cloud Environments
Reducing unnecessary idle system resources by applyingsaating queues can po-
tentially reduce power consumption and result®@, emissions significantly. QoS de-
mands, diverse configuration requirements, and othereaigdls, however, make it hard to
achieve a greener computing environment. This sectiorritbescthree key challenges of
capturing VM configuration options and using this configuratinformation to optimize

the setup of an auto-scaling queue to minimize power consamp

Challenge 1: Capturing VM Configuration Options and Constraints

Cloud computing can yield greener computing by reducing ggosonsumption. A
cloud application can request VMs with a wide range of comfigan options, such as

type of processor,
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OS, and installed middleware, all of which consume diffé@nounts of power. For
example, the Amazon EC2 cloud infrastructure supportsfereifit types of processors, 6
different memory configuration options, and over 9 différ@$ types, as well as multiple
versions of each OS type [47]. The power consumption of theségurations range from
150 to 610 watts per hour.

The EC2 configuration options cannot be selected arbigrantl must adhere to myriad
configuration rules. For example, a VM running on Fedora Gof@S cannot run MS
SQL Server. Tracking these numerous configuration optiadscanstraints is hard. The
sections entitled “SCORCH Cloud Configuration Models” asCORCH Configuration
Demand Models” describe how SCORCH uses feature model$etoak the complexity

of capturing and reasoning about configuration rules for Vistances.

Challenge 2: Selecting VM Configurations to Guarantee Autcscaling Speed Require-

ments

While reducing idle resources results in less power consismpnd greener computing
environments, cloud computing applications must also reggigent QoS demands. A
key determinant of auto-scaling performance is the typegMfconfigurations that are
kept ready to run. If an application requests a VM configoratatnd an exact match is
available in the auto-scaling queue, the request can béddlfiearly instantaneously. If
the queue does not have an exact match, it may have a runningovifiguration that can
be modified to meet the requested configuration faster trangponing and booting a VM
from scratch. For example, a configuration may reside in theuq that has the correct
OS but needs to unzip a custom software package, such ascardfigured Java Tomcat
Web Application Server, from a shared file system onto the ¥X\to-scaling requests can
thus be fulfilled with both exact configuration matches anokssti configurations that can
be modified faster than provisioning a VM from scratch.

Determining what types of configurations to keep in the adaling queue to ensure

105



that VM allocation requests are serviced fast enough to mdwtrd allocation time con-

straint is hard. For one set of applications, the best giyatgay be to fill the queue with

a common generic configuration that can be adapted quicldgtiefy requests from each
application. For another set of applications, it may bedfatst fill the queue with the virtual

machine configurations that take the longest to provisiomfscratch. Numerous strate-
gies and combinations of strategies are possible, makimgyd to select configurations to
fill the queue that will meet auto-scaling response time irequents. The section entitled
“Runtime Model Transformation to CSP and Optimization™sisthow SCORCH captures
cloud configuration options and requirements as cloud cor#tgn feature models, trans-
forms these models into a CSP, and creates constraintsuceghsit a maximum response

time limit on auto-scaling is met.

Challenge 3: Optimizing Queue Size and Configurations to Mimmize Energy Con-

sumption and Operating Cost

A further challenge for developers is determining how tofme the auto-scaling
gueue to minimize the energy consumption and costs reqgianacintain it. The larger the
gueue, the greater the energy consumption and operatingMoseover, each individual
configuration within the queue varies in energy consumpéind cost. For example, a
“small” Amazon EC2 VM instance running a Linux-based OS conss 150W and costs
$0.085 per hour while a "Quadruple Extra Large" VM instanétwindows consumes
630W and costs $2.88 per hour.

It is hard for developers to manually navigate tradeoffsvieeh energy consumption,
operating costs, and auto-scaling response time of diffeyeeue sizes and sets of VM
configurations. Moreover, there are an exponential numbeossible queue sizes and
configuration options that complicates deriving the midip@ver consumption/operating
cost queue configuration that will meet auto-scaling spegdirements. The section enti-

tled “Runtime Model Transformation to CSP and Optimizatidascribes how SCORCH
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uses CSP objective functions and constraints to derive @ege@nfiguration that minimizes

power consumption and operating cost.

The Structure and Functionality of SCORCH

This section describes how SCORCH resolves the challemgggiprevious section
by using (1) models to capture virtual machine configuratiptions explicitly, (2) model
transformations to convert these models into CSPs, (3)t@nssolvers to derive the
optimal queue size, and (4) contained VM configuration opito minimize energy con-

sumption and operating cost while meeting auto-scalingaese time requirements.

Catalog of Options and Requirements Cost and Configuration Time Data

1-2.

3. Feature Add 4. VM/Feature 5. VM/Feature
Remove Time Power Cost

@ @ @ @ E
>| 6. Auto-scaling Queue
Instance Type Instance Type Instance Type

v | wmz )| wmr |

CS P Software Software Software
Apa;\h:O/I:rJ:oss > [ apache | [ tomcat || |[ Apache |
JBoss [ oss J||[ mysa |
[

[ sotaris || || Fedora || |[ windows |

Figure VII.2: SCORCH Model-Driven Process

The SCORCH MDE process is shown in Figure VII.2 and descrijedow:

1. Developers use a SCORCtloud configuration modelo construct a catalog of
configuration options that are available to VM instances.

2. Each application considered in the auto-scaling queue gunafiion optimization
provides aconfiguration demand modéhat specifies the configuration for each type of
virtual machine instance the application will request dgiits execution lifecycle.

3. Developers provide aonfiguration adaptation time mod#iat specifies the time
required to add/remove a feature from a configuration.

4. Developers provide aenergy modethat specifies the power consumption required
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to run a VM configuration with each feature present in the SCERIloud configuration
model.

5. Developers provide aost modethat specifies the cost to run a VM configuration
with each feature present in the SCORCH cloud configuratiodeh

6. The cloud configuration model, configuration demand modweld,load estimation
model are transformed into a CSP and a constraint solvered tesderive the optimal
auto-scaling queue setup.

The remainder of this section describes the structure amctiinality of each model

defined and used by SCORCH.

SCORCH Cloud Configuration Models

A key consideration in SCORCH is modeling the catalog of VMfoguration options.
Amazon EC2 offers many different options, such as Linux v&idéws operating systems,
SQL Server vs. MySQL databases, and Apache HTTP vs. ISNetpvebhosts. This
model provides developers with a blueprint for construg@inrequest for a VM instance
configuration and checking its correctness. The queue agafign optimization process
also uses this model to ensure that valid configurationsteyeen to fill the queue.

To manage the complexity of representing VM instance cordigon options, SCORCH
usesfeature model$53], which describe commonality and variability in a coniigble
software platform via an abstraction calleteature Features can describe both high-level
functional variations in the software,g, whether or not the underlying software can load
balance HTTP requests. A feature can also represent imptatien-specific detail€.g,
whether or not Ubuntu 9.10 or Fedora is used.

Feature models use a tree structure to define the relatsbbiween the various fea-
tures and encode configuration rules into the moelgl, a VM configuration can include

only a single operating system, such as Ubuntu 9.10 or Fe8orae features may require

108



other features to be present to functi@ng, the JBOSS v6 feature cannot be chosen
without also selecting th@BOSS feature.

A configuration of the software platform is defined by a setecof features from
the feature model. The most basic rule of configuration ctmess is that every selected
feature must also have its parent feature selected. Thasatsb implies that every correct
feature selection must include the root feature. Moredkerfeature selection must adhere
to the constraints on the parent-child relationships eedanto the feature model.

Developers use the SCORCH cloud configuration model to sgpfee available con-
figuration options for VM instances as a feature model. Thdigaration adaption time
model’s information is captured as attributes of the fezdum the SCORCH cloud configu-
ration model. Each feature can be annotated with an intétydgmade that specifies the time
in milliseconds to add/remove the given feature from a coméijon.

The energy model and cost model are also captured usinguaétsiin the SCORCH
cloud configuration model. Each feature impacting the gneajnsumption or operating
cost of a configuration is annotated with an energy attritheé specifies the energy con-
sumption per hour and cost attribute that specifies the tpgraost per hour to have a
booted VM configuration in the queue with that feature. Faregle, these attributes can
be used to model the cost of the “Small” vs. “Quadruple Extegke” computing node size

features of an Amazon EC2 VM configuration.

SCORCH Configuration Demand Models

Applications are auto-scaled at runtime by dynamicallyuesging and releasing VM
instances. When a new VM instance is requested, the desindidjaration for the instance
is provided. SCORCH requires each application to provideodehof the VM instance
configurations that it will request over its lifetime.

Developers construct SCORCH configuration demand modelistate what VM con-

figurations an application will request. The configuratiemménd models use a textual
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domain-specific language to describe each configuratiomestgd as a selection of fea-

tures from the SCORCH cloud configuration model.

Runtime Model Transformation to CSP and Optimization

Using feature models to capture VM configuration optionsvedl the use of constraint
solvers to select a group of features to optimize an objedtimction. In the context of
SCORCH, the cloud configuration model and configuration aehmaodels are converted
into a CSP where a solution is a valid set of configurationgfe’lVM instances in the auto-
scaling queue. The objective function of the CSP attempdetive a mix of configurations
that minimizes the energy consumption and cost of maintgitiie queue while ensuring
that any hard constraints on the time to fulfill auto-scaleguests are met.

The conversion of feature selection problems into CSPs kas described in prior
work [14,119]. Feature configuration problems are conddri®n CSPs where the selection
state of each feature is represented as a variable with dof@ddi}. The constraints are
designed so that a valid labeling of these variables yielddid feature selection from the
feature model.

A CSP for a feature selection problem can be described asipl@-t

P=<FC,y>

where:

e [ is a set of variables describing the selection state of ezatuife. For each feature,
fi € F, if the feature is selected in the derived configurationnthe= 1. If the it feature
is not selected, thef) = 0.

e C captures the rules from the feature model as constraintseowariables irk-. For
example, if tha'" feature requires thgh feature C would include a constraintfi=1) =

(fj=1).
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e y is an optional objective function that should be maximizedninimized by the
derived configuration.

Building a CSP to derive a set of configurations for an audisg queue uses a similar
methodology. Rather than deriving a single valid confignrathowever, SCORCH tries to
simultaneously derive both the size of the auto-scalingigued a configuration for each
position in the auto-scaling queue. If SCORCH derives afsizehe queue oK, therefore,
K different feature configurations will be derived for tieVM instances that need to fill
the queue.

The CSP for a SCORCH queue configuration optimization psocas be described
formally as the 8-tuple

P:< S)Q7C7D7 E7L7T7M7y>

, Where:

e Sis the auto-scaling queue size, which represents the nuail@ebooted VM in-
stances available in the queue. This variable is deriveahaatically by SCORCH.

e Qs a set of sets that describes the selection state of eacm$ftisince configuration
in the queue. The size  is Z if there areZ distinct types of configurations specified in
the configuration demand models. Each set of varialides, Q, describes the selection
state of features for one VM instance in the queue. For eagabla,gjj € Q;, if gjj = 1in
a derived configuration, it indicates that tjt feature is selected by th& VM instance
configuration.

e C captures the rules from the feature model as constrainth@wadriables in all
setsQ; € Q. For example, if the kth feature requires tfB feature,C would include a
constraintvQ; € Q, (gik =1) = (gjj =1).

¢ D contains the set of configuration demand models contriboyeithe applications.
Each demand mod®&; € D represents a complete set of selection states for the ésatur

in the feature model. If thg'" feature is requested by tti® demand model, thedj €
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Di,dij = 1. The demand models can be augmented with expected loadpigguration,
which is a focus of future work.

e E is the cost model that specifies the energy consumptiontiggditom including
the feature in a running VM instance configuration in the aadaling queue. For each
configurationD; € D a variableE; € E specifies the energy consumption of that feature.
These values are derived from annotations in the SCORCHI dounfiguration model.

e L is the cost model that specifies the cost to include the featua running VM
instance configuration in the auto-scaling queue. For eanfigurationD; € D a variable
Li € L specifies the cost of that feature. These values are dengaddnnotations in the
SCORCH cloud configuration model.

e T is the configuration time model that defines how much time &sded to add/-
remove a feature from a configuration. The configuration timelel is expressed as a set of
positive decimal coefficients, whetie= T is the time required to add/remove tifefeature
from a configuration. These values are derived from the atioois in the SCORCH cloud
configuration model.

e yis the cost minimization objective function that is desedlin terms of the variables
in D, Q, andL.

e M is the maximum allowable response time to fulfill a requestikncate a VM with

any requested configuration from the demand models to aicapph.

Response Time Constraints and CSP Objective Function

SCORCH defines an objective function to attempt to minimeedost of maintaining
the auto-scaling queue, given a CSP to derive configuratmfil the queue. Moreover,
we can define constraints to ensure that a maximum respanedtiund is adhered to by

the chosen VM queue configuration mix and queue size thatigade
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We describe the expected response tiRig, to fulfill a requesiDy from the configura-
tion demand model as:

Rty =min(CTp...CTy,, boot(Dy)) (VI1.1)

Vaij € Qi, gij = dyj0 (a),
CT = (VII.2)

Jaij € Qi, gij! = dxj Y tj(|aij — dxjl) (b)

where:

Rty is the expected response time to fulfill the request.

nis the total number of features in the SCORCH cloud configamanodel

CT; is the expected time to fulfill the request if th& VM configuration in the queue

was used to fulfill it.

boot(Dy) is the time to boot a new VM instance to sati€fy and not use the queue

to fulfill it.

The expected response tinkei, is equal to the fastest time available to fulfill the re-
guest, which will either be the time to use a VM instance indqeueCT; or to boot a
completely new VM instance to fulfill the requédstot(Dy). The time to fulfill the request
is zero (or some known constant time) if a configuration existthe queue that exactly
matches request (a). The time to fulfill the request with tmaifiguration is equal to the
time needed to modify the configuration to match the reqdestafiguratiorDy if a given
VM configuration is not an exact match (b). For each featrén the configuration that
does not match what is requested in the configuratjas the time incurred to add/remove
the feature. Across th&distinct types of configuration requests specified in thdigara-
tion demand models we can therefore limit the maximum alldeseesponse time with the

constraint:
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¥Dy € D, M > Rt (VI.3)

With the maximum response time constraint in place, the SC&Rhodel-to-CSP
transformation process then defines the objective fund¢tianinimize. For each VM in-

stance configuratior®;, in the queue we define its energy consumption as:

EnergyQi) = ) qijE;
1;) iEj

. The overall energy consumption minimization objectivadion, ¢, is defined as the

minimization of the variabl& nergy where:

¢ = Energy= Energy(Qp) + EnergyQ1) + - - - + Energy(Qy)

Similarly, the cost of each VM instance is defined as:

Cost(Q) = ¥ gL
,é iki

. The overall cost minimization objective functiop,is defined as the minimization of the

variableCost where:

y = Cost=Cost(Qp) + Cost(Q1) + - - - + Cost(Qy)

The final piece of the CSP is defining the constraints attatthéte queue size variable

S. We defineS as the number of virtual machine instance configurationsithee at least
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one feature selected:

Vaij € Qi, ¢ij = 00,
5 — (VIL.4)

Jgij € Qi, gj =11

z
TS

Once the CSP is constructed, a standard constraint solras the Java Choco con-
straint solver ¢hoco. sour cef or ge. net ), can be used to derive a solution. The fol-
lowing section presents empirical results from applyingd&RCH with Java Choco to a
case study of an ecommerce application running on Amaza@2 &oud computing in-

frastructure.

Empirical Results

This section presents a comparison of SCORCH with two otppraaches for provi-
sioning VMs to ensure that load fluctuations can be met witklegradation of QoS. We
compare the energy efficiency and cost effectiveness of @&agtoach when provisioning
an infrastructure that supports a set of ecommerce apiplisat We selected ecommerce
applications due to the high fluctuations in workload thatur@ue to the varying seasonal
shopping habits of users. To compare the energy efficiend\ycast effectiveness of these
approaches, we chose the pricing model and available VNmgsttypes associated with
Amazon EC2.

We investigated three-tiered ecommerce applicationsistimg of web front end, mid-
dleware, and database layers. The applications requiretiffedent distinct VM config-
urations. For example, one VM required JBOSS, MySql, andA8f.Net while another
required Tomcat, HSQL, and Apache HTTP. These applicatasis utilize a variety of
computing instance types from EC2, such as high-memory-6igU, and standard in-
stances.

To model the traffic fluctuations of ecommerce sites acclyrate extracted traffic
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information from Alexa ywwv. al exa. con) for newegg.comr{iewegg. com), which is
an extremely popular online retailer. Traffic data for thetailer showed a spike of three
times the normal traffic during the November-December lagigeason. During this period
of high load, the site required 54 VM instances. Using theipg model provided by
Amazon EC2, each server requires 515W of power and costd &h.#our to support the

heightened demanays. anazon. com economni Ccs).

Experiment: VM Provisioning Techniques

Static provisioning. The first approach provisions a computing infrastructarggped
to handle worst-case demand at all times. In this approdich¥ aervers run continuously
to maintain response time. This technique is similar to aating environments that permit
no auto-scaling. Since the infrastructure can always suppe worst-case load, we refer
to this technique astatic provisioning

Non-optimized auto-scaling queue The second approach augments the auto-scaling
capabilities of a cloud computing environment with an astaling queue. In this ap-
proach, auto-scaling is used to adapt the number of resotoaeeet the current load that
the application is experiencing. Since additional resesiigan be allocated as demand in-
creases, we need not run all 54 servers continuously. bhséeaauto-scaling queue with
a VM instance for each of ten different application configiaras must be allocated on
demand. We refer to this technique ra@n-optimized auto-scaling quesace the auto-
scaling queue is not optimized.

SCORCH. The third approach uses SCORCH to minimize the number of M¥ainces
needed in the auto-scaling queue, while ensuring that nsgpiime is met. By optimizing
the auto-scaling queue with SCORCH, the size of the queubeaaduced by 80% to two

VM instances.
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Power Consumption & Cost Comparison of Techniques

The maximum load for the 6 month period occurred in Novembdrraquired 54 VM
instances to support the increased demand, decreasingéo\@8s in December and finally
18 servers for the final four months. The monthly energy consion and operational

costs of applying each response time minimization techenan be seen in Figure VI1.3
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Figure VI1.3: Monthly Power Consumption
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Figure VII.4: Monthly Cost

Since the maximum demand of the ecommerce applicationgreep4 VM instances,
the static provisioning technique consumed the most powemnas the most expensive,
with 54 VM instances prebooted and run continuously. The-otimized auto-scaling
gueue only required ten pre-booted VM instances and thereéaluced power consump-
tion and cost. Applying SCORCH yielded the most energy effitand lowest cost infras-
tructure by requiring only two VM instances in the auto-stglqueue.

Figures VII.5 and VII.6 compares the total power consumpéind operating cost of ap-
plying each of the VM provisioning techniques for a six mopétiod. The non-optimized

auto-scaling queue and SCORCH techniques reduced the pegu@rements and price
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of utilizing an auto-scaling queue to maintain responses timcomparison to the static

provisioning technique.
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Figure VII.6: Total Cost

Figure VII.7 compares the savings of using a non-optimiagd-acaling queue versus
an auto-scaling queue generated with SCORCH. While botimtques reduced cost by
more than 35%, deriving an auto-scaling queue configuratitim SCORCH yielded a
50% reduction of cost compared to utilizing the static psaning technique. This result

reduced costs by over $165,000 for supporting the ecomnagmiécations for 6 months.
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Figure VII.7: Power Consumption/Cost Reduction

More importantly than reducing cost, however, applying &OB also reduced CO
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of CO2
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Figure VII.8: C02 Emissions

emissions by 50%, as shown in Figure VII.8. According to ntcudies, a power plant
using pulverized coal as its power source emits 1.753 pooi@€, per each kilowatt hour
of power produced [93]. Not using an auto-scaling queueetbes results in an emission of
208.5 tons of CQ per year, as shown in Figure VII.8. Applying the SCORCH ojxed
auto-scaling queue, however, cuts emissions by 50% reguitian emission reduction of

104.25 tons per year.
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CHAPTER VIII

PREDICTIVE PROCESSOR CACHE ANALYSIS

Challenge Overview

This chapter presents a metric for measuring the predigddnmance benefits of DRE
systems that can be realized with processor caching. Weras avionics industry case
study in which code and hardware level cache optimizatisaspaohibited to motivate
the need for this metric. We demonstrate how this metric camded as a heuristic to
alter system execution schedules to increase processioe téicrate and reduce system

execution time without violating these constraints.

Introduction

Current trends and challenges.Distributed Real-time and Embedded (DRE) systems,
such as integrated avionics systems, are subject to sttimgal-time constraints. These
systems require that execution time be minimized to endiakthese real-time deadlines
are met. Fortunately, processor caches can be utilizedaimatically increase system
performance and reduce execution time.

For example, Bahar et al examine several different cacheigaes and the trade off
between increases in performance and power requiremgdnasdi/saw enhancements as
high as 24%. Manjikian et al demonstrate a performance aser®f 25% using cache
partitioning and code-level modification techniques [77].

Many techniques exist to increase the effectiveness ofggsmr caches through code-
level optimizations [61, 77, 84,91, 105]. Techniques, sasHoop interchange and loop
fusion, require modifying software applications at the &delvel to change the order in

which data is written to and read from the processor cachesd lechniques have been
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shown to increase performance by increasing amount of dldata that remains in the
cache between multiple task executions, knownexaporal locality[61].

Open problem. Prior work has investigated source-code level modificatitmnsingle
applications instead of integrated applications. Integtaystem designers, face two prob-
lems that prohibit the use of code-level cache optimizateahniques for individual appli-
cations. First, integrated systems are composed from pheiitidividual applications that
are provided by several sub contractors. Since these afiphs are usually proprietary,
system designers may not have access at the code-level expibéise required to make
these modifications. Second, integrated systems are stbjegid safety requirements.

Designers of integrated systems, such as avionics systaost,provide strict safety
guarantees to ensure the system will behave in a prediatadoi@er. To guarantee that this
type of behavior will not occur, components and systems mndergo a rigorous safety
inspection process. Once this process is completed, hoyayealteration to a component
will invalidate the certification. Therefore, safety reqments prohibit the use of cache
optimization techniques that require the code-level atiens of certified components.

Altering the execution schedule of the tasks of an appbceits another technique for
increasing processor effectiveness and reducing exectitiee. Since altering the exe-
cution order of tasks does not require code-level modiboati integrated system design-
ers can apply this technique without needing code-levehsoé permissions or violating
safety certifications.

While modifying the execution schedule of the applicatiehsllowed, ensure that
the resulting schedule will uphold the real-time schedyulonstraints of the system is
difficult. Priority-based scheduling techniques, such ags-monotonic scheduling, can
be used to ensure that the software of a system completeatexewithout exceeding
predefined real-time deadlines. These techniques, howeust be modified to take into
account the impact of changing the application executidieioon temporal locality so that

performance gains due to processor caching can be maximized
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Further, other system specific properties can influence tengal for performance
benefits of altering the execution schedule. The effecégsrof processor caching of a
system is dependent upon hardware properties, such as saehand replacement pol-
icy, and software properties such as data sharing chaistaierand task execution sched-
ule [55, 61, 66, 88,91, 106]. These properties must be takenaiccount when applying
cache optimization techniques such as execution scheltetatan.

Solution approach — Heuristic Driven Scheduling Integration for Cache Opti-
mization with SMACK. This article presents a heuristic driven scheduling irgegn for
cache optimization approach to increase the performanaagegrated applications. Al-
tering the execution schedule of integrated applications executing tasks impacts the
data that is stored in the cache at a given point in time, piadgnincreasing temporal lo-
cality. Further, modifying the execution schedule of tad&ss notequire any code-level
alterations.

To predict the system performance of integrated applinagiecution schedules and
guide the schedule modification process, we have create8ytstem Metric for Applica-
tion Cache Knowledge(SMACK). SMACK considers severaldest such as cache size,
data sharing, and software execution schedule to prediceffiectiveness of the proces-
sor cache. By calculating and comparing the SMACK score dfiple systems, system
designers can make more informed design decisions thantgao the construction of
systems with enhanced performance. This article providegsdilowing contributions to
predictive performance evaluation and optimization of Déy&tems:

e We present a heuristic-based scheduling technique thatisatreal-time scheduling
constraints and safety requirements while granting anegeeexecution time reduction of
2.4%.

e \We motivate the need for a predictive performance metrib ait avionics industry
case study of an integrated system in which modification®toponents are prohibited

due to safety certification requirements.
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¢ We provide a formal methodology for calculating the SMACK i for integrated
avionics systems that satisfy the constraints defined icdke study.

e We analyze empirical results of the performance of 44 sitedlantegrated systems
with different data sharing characteristics and execwredules.

¢ \We demonstrate the correlation between SMACK score anésygerformance.

¢ We show that system execution time can be reduced by altéregxecution schedule

to optimize SMACK score.

DRE System Integration Example
This section describes how multiple applications are irategl in avionics platforms
such the system shown in Figure VIII.1. It presents a detatdeduling approach to inte-
grating application components while guaranteeing sai@tgtraints and priority-scheduling
requirements are upheld. Later, we will modify this apptoaxincrease the cache effec-

tiveness of the integrated application execution schetthisgorocess yields.

1.) Safety Partitions

3.) Periodic Avionics
Tasks

Figure VIII.1: Example of an Integrated Avionics System

System Integration Architecture
The system is physically expressed as a set of computingsnamenected by one or

more networks as shown in Figure VIII.2. Each node contaissigle core computing
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element consisting of a COTS processor (typically PowerR@it@cture, but this is not

essential) with main memory and a two-level cache.

. ﬁ
Network B

Figure VIII.2: Notional System Physical Architecture

This section lays out an structure that prevents interadigiween integrated software
components which are assumed to operate at different dafetls by partitioning space
(memory) and execution time by safety criteria. Applicaiavith lower safety levels are
not allowed integrated in the same partition as those wihdui levels.

For the notional system under study, we assume that mutiipkeand space partitions
execute on each node in the network. Figure VIII.3 shows amgxe system structure

with three partitions, in which seven different softwar@lagations are implemented.

Partition1 | Partition 2 Partition3
[ #ovteations [ Aoreations [ asvestions
I Application 2 D Apphcation 4 D Applhcation 7
D Apphcation S

Multiple applications are grouped by sof ely ossuronce
fevelinto sepacale time and space partitions

Figure VIII.3: Time & Space Partitioned System Architectur e

Each patrtition is allocated a fixed time duration over whidlyats applications can

be executed. The sum of the partition durations usually g the base frame duration
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discussed in the next section. The real-time operatingesy$RTOS) “activates™ parti-
tions in the specified sequence, allowing the integratetiGgtjipns inside each partition to

execute in turn, then repeats the sequence.

Runtime Integration Architecture

Each node executes its own system scheduler, which is paritledr the operating
system or system middleware, to integrate the applicattenwion. The system scheduler
on each node implements a rate-based pattern for integratifiware execution, which

breaks time into a series of numbered frames of equal darasshown in Figure VIII.4.

2 S 6 7 8§ 9 10 11 12 13 14 1§

Rael N [N [N NININTIN]INTINT NN NN NTN]

released| N/2 N2 | In22 N2 N2 n/2 |

N/& N/4 N/e Nf&
N/8 N/S

Frame 0 1

Figure VIIl.4: Periodic Scheduler Interleaves Callback Ex  ecution

Each base frame, the software that executes at that rategdded to run, plus another
rate of lower frequency. This pattern continues as showngnrg VIIl.4 until the low-
est rate software in the system has completed; the pattpeat®indefinitely. All of the
scheduling of application avionic software in the systeruos in this manner.

Reuvisiting Figure VIII.3 from above, Figure 4 illustratdset effect of priority-based
interleaving of callback from multiple applications in arfi@gon. As shown, multiple call-
backs from Applicationl in Partition 1 may execute in a roelldwed by one or more
callbacks from Application 2, and so on. For the baselinéesgunder study, we assume
that there is no construct for integrated applications lo@mce the interleaved order other
than specifying priority, which is determined by executfoequency. This pattern is re-
peated in all of the partitions in the system.

Taking a deeper look inside only Partition 1, Figure VllliBustrates the notional

scheduler architecture, and illuminates some other inapbtharacteristics. Applications
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Time Partition 1 Time Partition 2 | Time Partition 3

D Applcation 1 The execution sequence of callbacks in applicotionsis
interleaved by priority

l Applation 2

Figure VIII.5: Execution Interleaving inside Time Partiti  on

1 and 2 both have callbacks that execute at rates N, N/2, ahdlKé rate N callbacks from
both applications will always execute before any of the pttadlbacks in a given frame;
however, it is not necessarily the case that all the rate Maeks from Application 1 will
be run before the rate N callbacks from Application 2.

However, for the notional system under study we define thdsioto be repeatable; that
is, the interleaving A1 / B2 / A2 will not change from frame tarne once established at
system start-up. We define data structures as being dyni@madlacated, but practically
static once allocated.

The overwhelming practice is for each object to allocatéhalidata structures it intends
to use during system start-up. After that time, data strastare neither released nor moved
in the address space. Similarly, program text (instrusi@me statically linked and do not
move once loaded into main memory. Message buffers are bdeated at system start-up
and do not move thereafter. In addition, if two or more olgewt a given node subscribe

to a received message, the two objects share a single réadeqy of the message.

Challenges of Analyzing and Optimizing Integration Architectures for Cache Effects

Accurately predicting and quantifying the performance ofemtial implementations
for integrated system such as the avionics system deschib#te previous section, is
critical for making intelligent design decisions. If a pieit/e metric can be devised that
accurately reflects post-implementation performancesrial alterations to the system can

be tested without the time and expense required for actyalementation. Determining
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Figure VIII.6: Interleaved Execution Order is Repeatable

which alterations should be performed to optimize this mt@ee metric is paramount for
maximizing system performance.

Mission-critical systems, however, are often subject tdtiple design constraints, such
as safety requirements and real-time deadlines that mayctebe optimizations that can
be applied. In the case of the system described in the preweation, several factors,
such as system recertification, unknown data coupling clexniatics, and strict scheduling
requirements make it difficult to construct optimizationtieiques for integrated systems.
This section describes three challenges that must be awertar a technique to be appli-

cable for safety-critical DRE systems.

Challenge 1: Existing Software/Hardware Specific Optimizéion Techniques Require
System May Invalidate Safety Certification

Integrated systems, such as the avionics system descrilibd previous section, are
safety-critical. While software crashes may cause mincomweniences for most system
users, unpredictable system behavior in integrated ass@yistems can lead to catastrophic
system failure. For example, an exception that forces a wordessor to close unexpect-

edly may cause mild frustration or minor data loss whereasiiyf system flight controller
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could cause a passenger plane to crash. To ensure that #t@steaphes will not occur, the
software and hardware components of safety-critical nattegl avionics must be certified.
This certification guarantees that as long as the softwadtéhardware are not modified,
the system will execute in a safe, predictable manner.

Existing cache optimization techniques such as loop fuaiwh data padding require
modifications to the components to increase cache utihizedaind performance [58, 87].
Modifications of system components, however, may void amyipus safety certifica-
tions. Re-certification of system components can be a pitdraly slow and expensive
process, potentially resulting in dramatically increasgstem cost and considerable devel-
opment delays. Therefore, techniques should be develbpedlter the system to optimize
a predictive performance metric while leaving the hardveare software of the system un-
modified. These techniques could increase system perfaeranough better cache uti-
lization, resulting in decreased system runtime while @wvg the need for costly system

recertification.

Challenge 2: Data Sharing Characteristics of Software Compnents May Be Un-
known

As opposed to small, stand-alone software applicatioriegiated systems are com-
prised of several systems made up of many components waidgegher in concert. Sys-
tem developers usually work on a small portion of the comptsef a single system and
are unaware of the inner-workings of components develogesther manufacturers. For
example, the software that controls the system flight cdlietrmmay consist of components
developed by a group in California and another in Texas, emtié stabilizer may be de-
veloped by a different group exclusively in New Jersey. €fae, system designers are
usually ignorant of amount of the implementation detailshef software components that

may comprise the final system.
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The data sharing characteristics of software can have a iargact on system perfor-
mance due to processor caching. However, system size may dad& coupling analysis
excessively cumbersome and time consuming. Thereforeanization techniques should
be developed to increase performance without requiringttfeaamount of data shared
between software be known a priori. These techniques cbeld be applied to systems
where the data coupling profile is unknown to increase thdigtige performance metric

and ultimately reduce system execution time.

Challenge 3: Optimization Techniques Must Satisfy Real-the Scheduling Constraints

Safety-critical systems such as the avionics system destin the previous section
are subject to strict scheduling constraints. These systemmmonly use a priority based
scheduling method, such as rate monotonic scheduling,dorerthat the software tasks
execute in a predictable manner [42,110]. For example,aék A is assigned a priority of
rate N/2 and task B is assigned a priority of rate N, then tagkuBt execute twice before
task A executes a second time. This ensures that tasks oérhgylority will execute
without causing tasks of lower priority to completely sedue to continuous preemption.

Any optimization technique must result in a schedule thasdwot violate any of these
scheduling restrictions. This constraint prohibits mainyme solutions that would greatly
increase the cache utilization but would also cause thesysi behave in an unpredictable
and potentially catastrophic manner. This difficulty is gmunded by the fact that the
priority of system tasks may fluctuate during system lifetinOptimization techniques
should be developed that can be applied and re-applied wkesssary to increase the
predictive performance metric and decrease system egectitne for any set of system

task priorities.
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Using SMACK to Evaluate and Adapt Integration Architecture s to Improve Cache

Performance

Each node of the system described in the case study conkistsltiple partitions of
executing applications. The tasks that comprise thesacapiphs, as described in Sec-
tion VIII, are scheduled for execution with a priority-bdsgcheduler that is specific to
each node. As tasks execute, cache hits may occur betwdentlat share a common
partition. These cache hits can yield substantial redaostio the required execution time
of the partition.

Each of the partitions described in the case study is sete@oute for a fixed-time
duration determined by the expected execution time foraks of the partition. This fixed-
time duration, however, does not take into account caclse 8ihce execution time can be
substantially reduced if multiple cache hits occur, a segnoé the fixed-time duration
of the partition could be spent idle, leading to wasted CPtlasyand decreased system

performance.

Goal: A Cache Hit Characterization Metric for Software Deployments

We propose the System Metric for Application Cache Knowie§MACK), for pre-
dicting the performance that a specific task schedulingyelld. SMACK can be used to
predict the performance for multiple execution scheduhekta determine which schedule
will result in the greatest reduction of required executione. Further, using SMACK
can provide a much more accurate prediction of total exenutme than techniques that

ignore potential cache hit benefits, leading to more effiquamtition fixed-time durations.

SMACK Hypothesis

We expect that by profiling the data sharing of software taskicreating an execution
schedule that decreases the occurrences of task exectitairdo not share data between

the execution of tasks that share data will increase terhfmmality. We hypothesize that
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altering the execution schedule of the software tasks efjnatted applications to increase
temporal locality will result in increased cache hits andueed system execution time

without violating real-time constraints.

How Real-time Schedules can Potentially Impact Cache Hits

As described in the case study, the physical structure afttiem consists of multiple,
separate nodes. Each node is divided into separate pastitiavhich applications execute.
Each application executing in a partition is made up of taskgous rates and priorities.
Each node is equipped with a priority-based scheduler tt@trohines the execution order
of these tasks. Different execution schedules can lead te nrdess cache hits. While the
reduction in system execution time resulting from a sudoésache hit may differ from
node to node, we assume it is the same for applications ergart a common node.

A task execution schedule is divided into frames and supends. A frame is a subset
of tasks that execute before the next set of tasks are alltoviedgin executing. A super-
frame is the set of frames that must execute before all tafski$ @tes will have executed.
For example, Figure VIII.6 shows an execution for a set dksadrasks Al through B1
execute in the same frame. The super-frame is the executi@htasks from frame 0 to

frame 7.

Intra-frame Transitions

Transitioning between tasks executing in one or more frasaagotentially result in a
cache hit. For example, Figure VIII.7 shows a scheduling oftiple tasks with six tasks
scheduled to execute in the same frame. Task Al executetiandask B2 is scheduled
to execute next. Since task A1 and B2 share the same framealivbe transition from
Al executing to B2 executing an intra-frame transitionaks A1 and B2 share common

require common data, then there is the potential for a caithe h
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Figure VIII.7: Scheduling with Intra-Frame Transitions

Extra-frame Transitions

Tasks may also be scheduled to execute in separate frameach®& it may result
from a transition from the final task to execute in one frame tre first task to execute
in the next frame. We call this type of this transition betweeparate frames an extra-
frame transition. For example, Figure VIII.8 shows two s#ttasks executing in separate
frames. An extra-frame transition exists between Task BlLAh The probability of a
cache hit occurring due to extra-frame and intra-framesiteoms, however, differs based

on the cache contention factor.

Extra-Frame Transitions
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Figure VIII.8: Scheduling with Extra-Frame Transition
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Cache Contention Factor

Transitioning a new task onto the processor as describecdtidds VIII and VIII
can result in a cache hit. However, the likelihood of a cadb@dturring as a result of
transition is based on the cache contention factor. Theecaghtention factor is defined as
the memory usage of the software, the size of the cache, archtiihe replacement policy.
The cache contention factor determines how many differansttions can occur before all
the data written to the cache by a task is invalidated, redyitie probability of a cache hit
to 0.

For example, assume there are 5 applications consistingask®, each of which con-
sumes 2 kilobytes of memory of a 64k cache. The hardware ukeast Recently Used
(LRU) replacement policy in which the cache line that hasae®d the longest without
being read is replaced when new data is written to the cackecuiing the tasks will re-
quire writing 20 kilobytes to memory. Since the cache cames6a kilobytes of data, all
data from all applications can remain in the cache. The cach&ention factor in this case
would be 10 since the last of the 10 tasks executed in the fsaper could utilize the data
stored by the first task to execute in the superframe.

Now consider a system in which the total cache is only 2 kitebyExecuting a task of
Application A would write 2 kilobytes of cache to memory, téby filling the cache. Next,
a task of Application B executes writing 2 kilobytes of newalto the cache. Since the
cache is only 2 kilobytes, the cached data from the first tallbeinvalidated. Executing
a task from Application A will not result in cache hit sinceettache data from the first task
was invalidated by the data of Application B written by the@ad task. In this case, two
tasks of the same application must execute consecutiv@sotiuce cache hits. Therefore,

this set system would have a cache contention factor of 1.
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Determining Total Cache Hits

Each intra-frame and extra-frame transition yields a pibdiya of a cache hit based on
the contention factor of the system. Each of these cachaHliteduce the execution time
of the system. The total probabilistic expected cache hiéstd these transitions yields the
expected cache hits for this set of tasks. Adding the exdexztehe hits for all set of tasks
in all partitions of a given node will yield the total expedteache hits for the node.

The total execution time reduction for a node due to cachmng lme determined by
multiplying the total number of expected cache hits by the@ant of time saved due to
successful cache hit, which may differ between nodes. Firthe execution time reduc-
tion for a system can be determined by taking the sum of ekmttitne reductions of all
nodes. In the following section, we formally define a metHody for determining the

total execution time savings due to caching of system depdoys.

Defining and Calculating SMACK Cache Metric
Section VIII describes a high-level methodology for ca#tirlg the cache metric of a
system deployment. In this section, we will formally defihestcalculation. Please refer

to Section VIII for a higher level explanation as needed.

Calculating the Cache Contention Factor

The cache contention factdCCF, determines how many consecutive transitions can
potentially lead to a cache hit before all cached data froenottiginal task is invalidated.
CCF is calculated by dividing the size of the cacls by the average amount of data
written per task. To determine the average amount of dateenwnper task, the total amount
of data written DW is divided by the number of task¥|, and multiplied by the percent of
task data shared between tadBs,

CS

O = (OWm)/T)* (- DS) VLY
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F i +k<M(SF)

FR(Fj, k) = i +k>M(SF)

i— KDY ((j+k)%
(-1 ) (k)% (VIIL.4)
i+

\
(i=2)+ (| LD ) (((j+k)-M(SP) %l )

Determining if Tasks Overlap

In the integrated avionics system described in the case,stud stated that tasks of
different applications do not share any data. Thereforehe&dits can only occur if two
tasks share the same application. Equation VIII.2 returhenvb tasks are a part of the

same application and 0O if they are not.

1 t==t;
Oft,t)) = ’ (VII1.2)

0 t!=t;

Quantifying Cache Hits for Variable Size Tasks

Software tasks of the same application may not read the saroard of memory. As
a result, the number of cache hits that result from a taskugxerwill differ based on the
amount of common data read. Equation VIII.3 defines the maminsache hits that can
be expected if a task of an application executes after antdkk of the same application.
The maximum cache hits is equal to the percentage of datagdbarthe tasks multiplied

by the amount of data read by the task executing later.

CHit(t(R);,t(Fx)y) = DS* DR(t(Fy)y (VII1.3)

Cache Hits due to Intra-frame & Extra-frame Transitions

We must calculate the cache hit probability "CHit" for altrexframe and exta-frame
transitions in the superframe SF. The total set of transstfor a frame "F" is given by t(F).

Once atask executes, the number of transitions that cam betare all data written by the
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|[SH-1|F|-1CcCF-1

TTot(SF) = Zy Z) k% (CHit(t(R);,FR(t(F);,k)))
i=0 = =
*O(t(R)j, FR(t(F)j,k)) (VIIL.5)

task to the cache is invalidated is determined by the CCHefbee, each transition that
occurs before the CCF is reached can potentially yield aechittand must be investigated.

Determining which task execut&gransitions from a task is shown in Equation VIi1.4.
We defineM(SF) as the number of tasks that execute in a given superframe.c@aes
must be considered: First, a task may exedusgeps ahead of a task, but in the same
superframe. This is shown in the first case of Equation VII&écond, incrementing by
transitions may exceed the boundary of the superframeiditéise, the task is determined
by wrapping back to the beginning of the superframe and merging any remaining
transitions as shown in the second case of Equation VIII.4.

Equation VIIL.5 accounts for all cache hits due to all tréiosis in the superframe.
The first summation in Equation VIII.5 accounts for all frasmia the superframe. The
second summation examines all frame transitions in theentiframe. The innermost
summation in Equation VIII.5 sums the expected cache hitg @ tasks that share the

same application, as given by O.

Total Cache Hits of a Partition

Each partition consists of one or more executing applioatiolo determine the total
expected cache hits for a given partition "(p)", the totglented cache hits of each appli-
cation "(a)" for each application "a" in the set of all applions "A" executing on partition
"p" must be summed as shown in Equation VIII.6.

IAl-1

0(p) = kzo B(ax) (VI11.6)
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However, all tasks for a given partition will be executinglie same super-frame "SF".
Therefore, the total number of caches hits due to all treomsitin a super-frame will yield

the total cache hits for the set of applications in a partitess shown in Equation VIII.7.

IA-1
0(p) = Z B(ax) = T Tot(SF) (VIIL7)
K=0
Total Cache Hits of a Node
|P[-1
Cm(n) =Cc(n) * Z) B(pj) (VIIL8)
j:

Each node consists of one or more executing partitions. [bolkede the cache benefits
"Cm(n)" of a single node "n", we must first determine the sunthef cache hits "(p)"
for each partition "p" from the set of all partitions "P" ex#iog on node "n" as shown
in Equation VIII.8. This sum reflects the total probabilistiumber of cache hits of the

partitions executing on the node.

Total Execution Time Reduction of a Node

The overhead execution time reduction resulting from aessfal cache hit may differ
from node to node. We define this reduction as the Cache QurmtaCc(n)". This value
must be supplied by the system designer or determined thrprafiling. Once we have
calculated the total number of cache hits on the node asidedan 5.5 we multiply this
value by the Cc(n) to determine the total average overhahdttion (ms) for the node as

shown in Equation VII1.8.

Total Execution Time Reduction of a System

Finally, the physical structure of the system consists oftipla, separate nodes. To

guantify the total cache benefits (the total reduction ofesyisoverhead due to successful
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cache hits) of the system, the cache benefits of each nodeoeuasatculated and summed.
This process is described in Equation VII1.9, which defiies$SMACK metric "SMACK"

of a total set of nodes "N".

IN-1

SMACK(N) = % cmn) (VII1.9)

Notation Quick Reference Guide

* Cm(N) is the Cache Metric, or the expected probabilistioant of time(ms) saved

through cache effects for all N.
* N is the set of hardware processing nodes.
* SMACK(N) predicts the performance of the set of processiodes N.
* O(tj,tj) returns 1 if the tasks are of the same application and 0 if not.
* M(SF) as the number of tasks that execute in a given superframe.

» Cm(n) is the expected probabilistic amount of time savedufh cache effects for a

single node n.

« Cc(n) is the amount of time(ms) that each cache hit savesgivea node n. AS P

is the set of partitions for a given node n.
* O(p) total number of expected cache hits for all applicatidnis a given partition p.

* B(a) is the total number of expected cache hits for all tasks & given application

a.
* Fi € Fis the set of tasks that execute in the ith frame.
e CHit(Ti, Tj) returns the probabilistic number of cacheshihat will occur when exe-

cuting Ti immediately before Tj.
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» SF, called a super-frame, is the set of frames that exeaftedthe last task of
the lowest priority executes. This set includes the franag tihe last task of lowest

priority executes in.
» CS, is the size of the processor cache.
e T is the set of all software tasks to execute.

» DS is the average percentage of application member vasakeld that are shared

between tasks, i.e. if all tasks read the same variabledBes 1.
* DW(T) is the total amount of data written to the cache byadks.
* CCC, called the Cache Contention Metric, uses the cacke SR, number of tasks,

» TTot(SF) is the total number of cache hits due to extra-&amd intra-frame transi-

tions for super-frame SF.

Applying the SMACK Metric to Increase System Performance

This section describes how SMACK can be applied to potdpiiatrease cache hit rate
while resolving the challenges described in the sectioiledt'‘Challenges of Predictive
Performance Analysis of Integrated Systems”. The SMACKrimét used as a heuristic
to determine the “score” of potential system configuratioRer instance, if calculating
the SMACK metric for system A yields a higher score than ddahmgsame for system B,
then we assume that executing system A will result in a fastecution time due to more
efficient data caching.

To determine if SMACK can be applied to reduce the runtimentégrated systems
by increasing the cache hit rate, we examine an instancesa\onics system described
in the case study. Due to the challenges described in thesemttitled “Challenges of
Predictive Performance Analysis of Integrated SystempécHically Challenge 1, cache

optimization techniques that alter the software of theesystannot be applied. Therefore,
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we must determine if there are other ways to optimize the SKA@GIue of the system
without modifying the underlying software, altering theaaoupling characteristics of the
software, and while meeting all real-time scheduling rezjaients.

As discussed in the case study, multiple tasks schedulss &t satisfy real-time
scheduling requirements. As stated in Section VIII, manigteng cache optimization
methods require altering the software, which then requexpensive and time consuming
recertification. Changing the execution ordering of thé&satoweverdoes notactually
alter the software and therefore does not require recatibic. The SMACK score of one
task ordering may be greater than that of others, therebyatidg a faster runtime.

Fortunately, it is extremely unlikely that the SMACK scordive the same for all
task schedules. As specified in the system defined in the tadg sasks of different
applications do not share data. The Cache Contention Fg2&¥) determines how many
task executions of other applications can occur after a ¢askutes before the cache is
potentially completely invalidated.

As a result, executing tasks of the same application cotisetyuwill lower the SMACK
metric and therefore execution time, despite having lichite no knowledge of the data
coupling between tasks, as stated in Challenge 2. If moneawk about the data coupling
characteristics of the tasks between common applicattbesnore accurate the SMACK
value will be.

Finally, reordering the tasks to attempt to increase the SMAalue of the system
cannot be done in a haphazard fashion. Any execution ordst aalere to the real-time
scheduling constraints defined in Challenge 3. This greatyricts the total potential
execution orders that satisfy all system constraints. @divegy techniques, such as rate

monotonic scheduling, can be applied to create schedwdésnliforce real-time constraints.
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Empirical Results

This section presents an analysis of the performance ofptauttystems with different
SMACK values. These systems differ in task execution sclescand the amount of mem-
ory shared between tasks. For each system, we investigegetiab correlations between
the SMACK score and L1 cache misses, L2 cache misses, antheurgductions.

To examine the relationship between SMACK score and systfonmance, we were
required to create multiple software systems to mimic treesexecution schedule and
data sharing of the system described in the case study. Ebrsyatem, we specified the
number of applications, number of tasks per applicatioa,distribution of task priority,
and the maximum amount of memory shared between each taskreated a Java based
code generator to create C++ system code that possessedtiaeacteristics. Rate mono-
tonic scheduling was used to create a deterministic pyibesed schedule for the generated

tasks that adheres to rate monotonic scheduling requirtsmen

Instruction Profiled Semantic Meaning

MEM_LOAD_RETIRED.L1D_MISS An attempted data retrieval from L1
cache that results in a L1 cache miss

MEM_LOAD_RETIRED.L2_MISS An attempted data retrieval from L2
cache that results in a L2 cache miss

Figure VIII.9: Processor Instructions Profiled with VTune

Experimental Platform

The systems were compiled and executed on a Dell LatitudedDd8th a 2.16Ghz
Intel Core 2 processor with 2 x 32kb L1 instruction caches, 22xkb write-back data
caches, a 4 MB L2 cache and 4GB of RAM running Windows Vistar €ach experi-
ment, each system was executed 50 times to obtain an avensiyee. These executions

were profiled using the Intel VTune Amplifier XE 2011. VTuneaiprofiling tool that is
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capable of calculating the total number of times an insioacts executed by a proces-
sor. For example, to determine the L2 cache misses of SysierSystem 'A’ is com-

piled and then executed with VTune configured to return tked tones that the instruction
MEM_LOAD_REQUIRED.L2_MISS is called. Figure VIII.9 shovise instructions that

were profiled in the following experiments as well as themaatic meanings.

Creation Process of Simulated Systems

To test the SMACK based schedule modification technique reated a software suite
for generating the C++ code of mock integrated avionicsesystthat behave as specified in
the case study. As shown in Figure VIII.10, these systemadieca priority based scheduler
and multiple sample avionics applications consisting cdudable number periodic avionic

tasks.

Data Sharin Number of Memory \umber of Schedul
g Tasks Usage Applications Heuristic
P

System
Generator

Jy—,*‘_—ir

System Impl. A System Impl. B System Impl. C

Figure VII1.10: System Creation Process

Together, these components comprise a full test aviongtesy The data sharing and
memory usage of these applications as well as the schedelmgique are all parame-
terized and varied to generate a range of test systems. Whese simulated systems to
validate the SMACK metric by showing that a higher SMACK atorrelates with better

performance in terms of execution time and cache misses.
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Data Sharing Characteristics

The data shared between applications and shared betwé&srofdlse same application
can greatly impact the cache effectiveness of a system.Xeonge, the more data that is
shared between two applications, the more likely that thia ohethe cache can be utilized
by tasks of the applications, resulting in reduced cacheesigand system runtime. The
integration architecture described in the case study pitshdata sharing between tasks of
different applications. Therefore, all systems profiledhis section are also restricted to

sharing data between tasks of the same application.

Task Execution Schedule

The execution schedule of the software tasks of the systampatantially affect system
performance. For example, assume there are two applisatemed Appl and App2 that
do not share data. Each application contains 1000 task m&thdth tasks of the same
application sharing a large amount of data. The executica gihgle task stores enough
memory to completely overwrite any data in the cache, regulh a Cache Contention
Factor of 1. A task from Appl executes, completely filling taehe with data that is only
used by Appl. If the same or another task from Appl executes data could reside in
the cache that could potentially result in a cache hit. Smzelata is shared with App2,
however, executing a task from App2 could not result in a edghand would overwrite all
data used by App1l in the class. Therefore, multiple exenstibedules effect performance

differently and produce different SMACK scores.

Experiment 1: Variable Data Sharing

As stated in the section entitled “Data Sharing Charadtesis the amount of data
shared between multiple tasks can potentially have a langadt on the performance of a
system in terms of cache misses and system runtime. To egdhereffect of data sharing

between tasks of common applications, we constructed 1@a systems. Each of these
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systems contained 5 separate applications consistinghdhgks each. The body of the
tasks consisted of floating and integer addition operati®hg total number of operations

of the tasks was constant across all applications.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Data Shared

Figure VIII.11: Amount of Data Shared vs Runtime.

The amount of data shared between the same tasks, howewemavapulated. For
example, if the data sharing between tasks was set to 20%,etheh tasks shared ap-
proximately 20% of the variables used in operations witlotler tasks. After generating
these ten software systems, we executed each system SCatimieetermined an average
runtime of each system.

As can be seen in Figure VII1.11, as the amount of data shaw®dden tasks of a single
application, the faster the system can execute. In this shseing 100% of data resulted in
an execution time of 2572.58 milliseconds, where as a shafino data between tasks, or
0%, resulted in an execution time of 3704.85 millisecondsctvis a difference of 30.56%.
It is important to note, however, that the curve shown in Fegulll.11 is non-linear, with
only an additional reduction of 9.40% occurring as a restiihoreasing the shared data
amount from 50% to 100%.

Increasing the amount of shared data between tasks als® tie@ddecrease in cache

misses. As described in the section entitled “ExperimeRtatform” VTune Amplifier
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Figure VIII.12: Amount of Data Shared vs L2 Cache Misses

XE 2011 was used to determine the total number of L2 and L1leaaisses by moni-
toring for MEM_LOAD_RETIRED.L2_MISS”and MEM_LOAD_RETIRD.L1D_MISS
instructions. It is important to note that these instrutsi@nly take into account cache
misses due to data write-back and do not include cache nrigsekling from instruction
fetching.

Figure VIII.12 shows the number of L2 cache misses as datanghbetween tasks
increases. As the data sharing increases the number of It caisses decrease at an
exponential rate. In this case froml3210® to 1.6x10° a reduction of 99.69%. As with
runtime, the vast majority of L2 cache miss reductions aszliby increasing the amount
of shared data from 0 %to 50% or greater, resulting in an 83.B8 cache miss reduc-
tion. Figure VIII.13 shows the number of L1 cache missesekes® as data between tasks
increases. In contrast to runtime and L2 cache misses, tirea® in L1 cache misses is

considerably more linear.

Experiment 2: Execution Schedule Manipulation

As discussed in the section entitled “Task Execution Scleédilne execution schedule
of tasks can potentially impact both the runtime and numbernohe misses of a system.

In this experiment, we manipulated the execution order ahgle software system with
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20% shared data probability between 5 applications cangist 10 tasks each to create 4

new execution schedules.
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Figure VIII.13: Amount of Data Shared vs L1 Cache Misses

First, stride scheduling was used to create an executiarioglthat meets all schedul-
ing constraints. This schedule was then permuted to chdmeg®tal number of instances
in which the execution of two tasks from a common applicagarcuting could poten-
tially cause a cache hit, referred to as "overlaps". The rarmboverlaps that exist in an
execution schedule is effected by the number of task exataithat must occur before the
amount of data written to the cache exceeds the size of tHeecaefined by the Cache
Contention Factor. For example, if each task writes 30k tonorg and the cache size is
50k, then most data written to the cache by the first task exerwould persist through
the execution of two more tasks. Therefore, the Cache CbateRactor for this system
would be two.

The original execution schedule generated by Stride Sdimgdig referred to as "Un-
optimized”. The Cache Contention Factor for the experiralgolatform was 15, thereby
yielding 655 overlaps for the Unoptimized schedule. Thisesitle was then permuted
to increase the number of overlaps while satisfying piyositheduling constraints. This
schedule is referred to as the "Optimized" ordering andntaioed 801 overlaps.

We also created two execution schedules that do not satisfyptiority scheduling
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Figure VIII.14: Runtimes of Various Execution Schedules

requirement to maximize and minimize the number of overld@sminimize the number
of overlaps, we permuted the execution order such that ntesks of the same application

executed consecutively, resulting in the "Worst" case @txec order with 732 overlaps.
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Figure VIII.15: Cache Contention Factor vs Overlaps

We refer to this execution order as the Worst execution oadeit yields O overlaps
when the Cache Contention Factor is one. As shown in Figuhel$8| as cache size in-
creases, the Worst execution order may result in more @&ethean other execution orders.
Finally we maximized the number of overlaps by executingasks of each application
consecutively, resulting in 1743 overlaps. We refer to éxiscution ordering as the "Best"

execution schedule.

The average runtimes for the different execution schediae®e seen in Figure VIII.14.
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Figure VIII.16: Execution Schedules vs L1 Cache Misses

As can be seen, the task execution order can have a largetiompaantime. In this case,
the Best execution schedule, consisting of 1743 overlxesuted in 2790 milliseconds on
average. The Optimized execution schedule completed i@ B#2iiseconds, an 18.24% in-
crease from the Best execution schedule. The Unoptimizéanst execution schedules
executed in 3337 and 3329 milliseconds respectively.

Execution order was also shown to impact the number of cacbses Figure VIII.16
shows the L1 cache misses for all execution schedules. Qage, @ahe execution schedule
with the most overlaps, Best, performed the best of all execwrders, resulting in only
3.2584x10° cache misses. The Optimized execution schedule, corgisti®01 overlaps,
generated 384x10° cache misses, an increase of 6.47% from the L1 cache missies of
Best execution order. Next, the Unoptimized execution dalee consisting of 655 over-
laps, resulted in 3076«10° L1 cache misses. Finally, the Worst execution order regulte
in 3.5336x10° L1 cache misses, the most of all execution orders.

The impact of execution order on L2 cache misses can be séggure VIII.17. Simi-
larly to L1 cache misses and runtime, the execution schedtiethe most overlaps, Best,
produced the lowest results with5B&10° L2 cache misses. The Worst case execution
schedule generated less L2 cache misses than the Unoptisaizedule which in turn gen-

erated less L2 cache misses than the Optimized schedule.
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Experiment 3: Dynamic Execution Order and Data Sharing

The section entitled “Data Sharing Characteristics” angdfxnent 2 demonstrate the
effects of the data sharing characteristics of applicatiamd execution order of tasks on
runtime and cache misses. These sections, however, doamoirex the impact of altering
both of these aspects concurrently. In this section we examultiple execution orders
for multiple systems with different data sharing charastms. For example, the reduction
in system cache misses could be substantially differenttbyirag the execution order of a
system with 80% shared data than a system with only 10% sliated

The number of L1 cache misses also decreases as the numbverlafps in the execu-
tion order and/or the amount of shared data increases asishdvigure VIII.19. Again,
the Best execution order consisting of the most overlapdtesbin the fewest L1 cache
misses for all software systems. Unlike runtime, howeVer,fumber of L1 cache misses
are only slightly less than those of the other executionmstdeurther, L1 cache misses for
all execution orders decreased at near-linear rate.

As can be seen in Figure VIII.20, however, L2 cache missesdsed at an exponential
rate. Once again, the Best execution order resulted in thesbnumber of cache misses
for almost all trials, with the exception of the system withP® data sharing in which the
number of L2 cache misses were comparably negligible. Tipereantial nature of the

decrease in cache misses show that the greatest reducti@rcache misses can be made
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by altering increasing the total amount of shared data & tean 50% of data is shared.
For example, increasing the amount of data shared from 099% for the Optimized
execution order resulted in an L2 cache miss reduction @4®3. Increasing data sharing
from 50% to 90%, however, does not yield as extreme benefitse&sing the amount of
data shared from 50% to 90% for the Optimized execution arelarlted in an additional
reduction of only 21.18%.
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Figure VIII.18: Runtime vs Data Shared and Execution Order

As can be seen in Figure VIII.18, system execution time dsae as the amount of
shared data increases. However, the decrease in runtiraedemstant across all execution
orders. For example, the Best execution order decreases2884 milliseconds when 0%
of data is shared to 2398 milliseconds when 100% of data i®dha total decrease of 486
milliseconds or 16.85%. The Optimized execution order ei@ses from 3592 milliseconds
to 2582 milliseconds as the shared data increase from 0%0G0%0,16r a total runtime
decrement of 1010 milliseconds or 28.12%. Altering the amba@d data shared reduced
the system runtime of the Optimized execution order by 12%.&ore than the same data
alteration with the Best optimized execution order. Tharefit can be seen that altering
the amount of data shared has a larger impact on runtime &tersyg with less efficient
execution orders.

While adjusting the data sharing characteristics of a aystay be acceptable at design
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time, safety certification and other factors may prohilgahg the data sharing character-
istics of a system. Manipulating the execution order of tbitvgare tasks, however, is
permitted. Figure VIII.18 shows the potential benefits eéiahg system order for systems
with different data sharing characteristics.

As can be seen, altering the execution order leads to a gnestaction in system
runtime for systems that share less data between tasks.tAsldaring increases, this re-
duction is not as great. It should also be noted that for tleew@ion orders that satisfy
scheduling constraints, the Optimized execution ordsylted in faster runtimes than the
Unoptimized execution order. Therefore, runtime redungican be realized by manipulat-

ing execution order without violating priority schedulingnstraints.
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Experiment 4: Predicting Performance with SMACK

The previous experiments demonstrate the impact of the sketeng and execution
schedule of several different systems. This section exasrime correlation between the
SMACK score and actual runtime for a system. As describeldearsection entitled “Eval-
uating Systems for Expected Cache Hits with SMACK”, SMACkKsishe execution order
and data sharing characteristics in conjunction with a €acbntention Factor to score
systems in terms of expected performance. SMACK providessglfor comparing mul-
tiple systems in terms of expected performance. For exanfpBystem 'A" produces a
higher SMACK score than System 'B’ then System 'A’ is expédi@have a faster runtime

for System 'B'.
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Figure VIII.21: Smack Score vs Data Shared and Execution Ord  er

Experiment 3 presents 44 different systems with data spaanging from 0%-100%
and four different execution schedules for each. Each systas executed on the same
hardware, thereby producing the same value for the cootefactor. The SMACK value is
calculated for each system taking into account the corteiféictor, the execution schedule,
and data sharing characteristics.

Figure VIII.21 presents the SMACK values for each system.tiesamount of data
sharing increases, the SMACK score increases, indicatiaduction in runtime. Compar-

ing the SMACK scores shown in Figure VI111.21 to the actualteysexecution times shown
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in Figure VI11.18 shows that the a higher SMACK score doesalates with a decrease in
execution time. Similarly to runtime, optimizing the exéon schedule of a system is
also shown to reduce the SMACK score. Therefore, the SMACKIimes effective for
predicting and comparing the performance of multiple safensystems.

Experiment 2 presents four different execution schedudesl tio execute the software
systems tested. Of these execution schedules, only thetidripgd and Optimized exe-
cution schedules satisfy priority based scheduling caimds. The Unoptimized schedule
was built without taking into account the effect of overlapssystem performance. The
Optimized execution order is created by reordering thestaglkecutions such that overlaps
are increased without violating priority scheduling coastts.

Figure VII1.22 shows the percentage reduction in runtimelgnging the unoptimized
execution order to increase overlaps and create the Ogitiheizecution order. Altering the
execution order resulted in an average runtime reductié4sf6 though was shown to be
as high as 4.34%. This reduction can be realized withoutiadfe¢he underlying hardware
or software executing on the system. Therefore, optimizygiem execution schedules
to minimize SMACK scores can lead to substantial reductiansystem execution time
without requiring extensive knowledge of the software esscto the code, recertification,

or alterations to the hardware.
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Figure VIII.22: Percent Runtime Reduction vs Data Shared

153



It should be noted that the Optimized execution order ptesemere is not theptimal
execution order that would lead to the maximum smack scoven Eor systems with the
same software, the hardware can have a large impact on the Cantention Factor, which
is an integral part of the SMACK score calculation. Expemtn2 demonstrates that the
Cache Contention Factor of a system changes the effectigarfean execution schedule.
In future work, we investigate creating an algorithmic t@cue that takes into account
the Cache Contention Factor of a system to maximize the SMa€e and performance

gains.
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CHAPTER IX

CONCLUDING REMARKS

This chapter presents lessons learned from our work in DREBydeployment and
configuration derivation. Chapter 2 presents our findingsmfconstructing an automated
technique for deriving deployments with reduced processguirements. Chapter 3 show-
cases conclusions drawn from creating a tool to optimiztegsysvide deployment proper-
ties. Chapter 4 describes lessons learned from creatinglalrdoiven tool for DRE system
configuration. Chapter 5 presents our discoveries frontiaggan automated technique for
evolving DRE systems. Chapter 6 provides a model-drivenrtiggie for reducing oper-
ating cost and emissions of cloud computing environmentsallly, Chapter 7 presents
the SMACK metric for assessing and predicting the perforreagains of systems due to

processor caching.

Automated Deployment Derivation

Determining component deployments that minimize the nurabeequired processors
is hard. This problem is exacerbated by proving that softvegaplications are schedula-
ble for a chosen deployment. Using bin packing algorithrashsas first-fit decreasing,
the entire deployment space need not be searched. By usimi) 6LiZ algorithm (which
combines first-fit decreasing bin packing with proven wifian bounds based on data char-
acteristics), valid and near minimal deployments can berdehed.

Based on our work with BLITZ thus far, we learned the follogilessons pertaining to

deployment for DRE systems:

» Grouping based on harmonic periods improves packing tightess BLITZ com-

bines the Liu-Layland equation with the increased utilamabound of components
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with harmonic execution periods to maximize the utilizataf each processor dur-
ing deployment. As a result, tasks can be clustered on feseepsors, reducing the

processors required.

* Processor minimization depends on real-time benchmarks BLITZ has been
shown to greatly reduce the required processors of a DREmyst an extensively
benchmarked real-time system. Without knowledge of péeityd resource con-
straints, and co-location constraints, BLITZ cannot béyfutilized. It is essential
to develop tools that effectively simulate and thoroughiywéhmark DRE systems

before they are deployed so that the full capabilities of EL_tan be applied.

The current version of BLITZ with example code is availalleopen-source form at
ascent - desi gn- st udi 0. googl ecode. com The industry challenge problem that

is the basis for this chapter can be foundvatv. spr uceconmuni ty. or g.

Legacy Deployment Optimization
Optimizing deployment topologies on legacy embedded fhgkdnics system can yield
substantial benefits, such as reducing hardware costs avet ponsumption. By combin-
ing the efficiency of metaheuristic optimization technigsuch as particle swarm opti-
mization) with other heuristic algorithms (such as bin¥pag) legacy deployments can be
evolved and optimized in a matter of seconds.
The following are a summary of the lessons we learned applyur ScatterD tool for

deployment optimization to a legacy flight avionics system:

* Multiple constraints make deployment planning hard. Avionics deployments
must adhere to a wide range of strict constraints, such aanmes, colocation, schedul-
ing, and network bandwidth. Deployment optimization towlgst account for all

these constraints when determining a new deployment.
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* A Huge deployment space requires intelligent search techques. The vast ma-
jority of potential deployments that could be created w®lane or more design con-
straints. Intelligent and automated techniques, such basdyeuristic bin-packing,

should therefore be applied to discover valid “near-opkirdeployments.

» Substantial processor and network bandwidth reductions ae possible Applying
hybrid-heuristic bin-packing to the flight avionics systessulted in 42.8% proces-
sor reduction and 24% bandwidth reduction. Our future werkpplying hybrid-
heuristic bin-packing to other embedded system deployh@miains, such as auto-

mobiles, multi-core processors, and tactical smartphppéaations.

The ScatterD tool is available in open-source form in theel$®esign Studiodscent - desi gn- s
googl ecode. com). A document describing the flight avionics system caseysaisdvell
as additional information on ScatterD, can be found at thRIBPE web portal imwv.
sprucecomruni ty. or g), which pairs open industry challenge problems with cgttin

edge methods and tools from the research community.

Model Driven Configuration Derivation

Determining valid configurations for distributed real-6rand embedded (DRE) sys-
tems is hard. Designers must take into account a myriad aftints including resource
constraints, real-time constraints, QoS constraints,ahdr functional constraints. The
difficulty of this task is exacerbated by the presence of thpla of potential COTS com-
ponents for inclusion in the configuration, with each pravigvarying quality of service,
functionality, resource requirements and financial coghis high availability of COTS
components results in an exponential number of potentid By&stem configurations.

As a result, manual techniques for determining valid DREeysconfigurations are
far too cumbersome. Even exact automated techniques, sutie aise of CSPs, require

a prohibitive amount of time to execute. Approximation taéciues, such as ASCENT,
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however, do not require an exhaustive search of the vasgrdegiace allowing a much
more rapid execution while often resulting in solutionshwaver 95% optimality.

The use of complex programmatic techniques in approximaechniques like AS-
CENT often have a steep learning curve and require large arsa@f coding to construct
a problem for execution. Due to the complex coding involuedse techniques carry the
added burden of being error prone when defining problemnicsta To address these chal-
lenges, an MDA-based tool called the Ascent Modeling Ptatf(AMP) that utilized GME
to construct problem instances and display valid solutfton®RE system configurations

was utilized. The following are lessons learned during eaation and use of AMP:

» Modeling tools provide rapid problem construction. Through the use of GME,
problems could be constructed in a fraction of the time ofggirogrammatic tech-

niques.

 Utilizing MDA reduces human error. AMP utilizes a GME metamodel that en-
forces the many complex design constraints associated®iE system configu-
ration. As a result, users of AMP are prevented from consitrg@ configuration

problem that is invalid.

* Modeling tools facilitate design space exploration.Solutions are posted directly
back into the model for analysis by system designers. Dessgcan then change
problem parameters within the model and execute the irgpto explore multiple

configuration scenarios, resulting in an increased unaiedgtg of the design space.

» Multiple execution options still needed.Currently ASCENT is the only technique
that is executed upon interpreting models in AMP. Othernegles, such as the use
of CSP solvers, should be implemented to determine solit@problems with an

appropriately reduced number of candidate components.

The current version of AMP with example code is available jrem-source form at

ascent-design-studio.googlecode.com.
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Automated Hardware and Software Evolution Analysis

It is hard to determine valid DRE system evolution configiors that increase DRE
system value. The exponential number of possible configurathat stem from the mas-
sive variability in these problems prohibit the use of exdtae search algorithms for non-
trivial problems. This chapter presented Beftware Evolution Analysis with Resources
(SEAR) technique, which converts common evolution prolslento multi-dimensional
multiple-choice knapsack problerfdMKP). We also empirically evaluated three differ-
ent algorithms for solving these problems to compare thgctveness in providing valid,
high-value evolution configurations.

From these experiments, we learned the following lessortaipeng to determine valid

evolution configurations for hardware/software co-desigstems:

» Approximation algorithms scale better than exhaustive algrithms. Exhaustive
search technigues, such as the linear constraint solverithign, cannot be applied to
non-trivial problems. The determining factor in the effeehess of these algorithms
is the number of problem sets. To solve problems with reakstt counts in feasible
time, approximation algorithms, such as the M-HEU algaonitbr the ASCENT al-
gorithm must be used. These techniques can solve even lesgiems in seconds,

with minimal impact on optimality.

» Extremely small or large problems yield near-optimal solutons. For non-trivial
problems, the ASCENT algorithm and M-HEU algorithm can bedu® determine
near-optimal evolution configurations. For tiny probleths LCS algorithm can be
used to determine optimal solutions. Given that these tioplpms have few points

of variability, optimal solutions can be determined rapid|

» Problem size should determine which algorithm to applyBased on problem char-
acteristics, it can be highly advantageous to use one #igaic technique versus

another, which can result in faster solving times or highgimoality. Figure VI.15
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shows the problem attributes that should be examined wheididg which algo-
rithm to apply. It also relates the algorithm that is bestesiifor solving these evo-

lution problems based on the number of sets present.

* No algorithm is universally superior. The analysis of empirical results indicate
that all three algorithms are superior for different typégwlution problems. We
have not, however, discovered an algorithm that performis faeevery problem
type. To determine if other existing algorithms performtéetor one or all types
of evolution problems, further experimentation and arialigsnecessary. Our future
work will therefore examine other approximation algorigynsuch as evolutionary
algorithms [6, 39] and particle swarm techniques [57, 1@dJetermine if a single

superior algorithm exists.

The current version of ASCENT with example code that utdiZ=AR is available in

open-source form ascent - desi gn- st udi 0. googl ecode. com

Virtual Machine Configuration & Auto-scaling Optimization

Auto-scaling cloud computing environments helps minintgponse time during pe-
riods of high demand, while reducing cost during periodsigtittdemand. The time to
boot and configure additional VM instances to support appbas during periods of high
demand, however, can negatively impact response time. chapter describes how the
Smart Cloud Optimization of Resource Configuration Harg 8CORCH) MDE tool uses
feature models to (1) represent the configuration requinésred multiple software applica-
tions and the power consumption/operational costs otutdidifferent VM configurations,
(2) transform these representations into CSP problems(3rahalyze them to determine
a set of VM instances that maximizes auto-scaling queuealtst rThese VM instances
are then placed in an auto-scaling queue so that responseduirements are met while

minimizing power consumption and operational cost.
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The following are lessons learned from using SCORCH to caosauto-scaling queues
that create greener computing environments by reducingsoms resulting from super-

fluous idle resources:

» Auto-scaling queue optimization effects power consumptioand operating cost.
Using an optimized auto-scaling queue greatly reducesdta power consump-
tion and operational cost compared to using a staticallyipi@aned queue or non-
optimized auto-scaling queue. SCORCH reduced power coptsomand operating
cost by 50% or better.

» Dynamic pricing options should be investigatedCloud infrastructures may change
the price of procuring VM instances based on current ovelalld demand at a given
moment. We are therefore extending SCORCH to incorporateratoring system

that considers such price drops when appropriate.

* Predictive load analysis should be integrated.The workload of a demand model
can effect application resource requirements drastic#ly are therefore extending
SCORCH to use predictive load analysis so auto-scalingepiean cater to specific

application workload characteristics.

SCORCH is part of the ASCENT Design Studio and is availabtepi@n-source format

from code. googl e. cont p/ ascent - desi gn- st udi o.

Predictive Processor Cache Analysis

Processor data caching can substantially increase DRé&sysrformance and reduce
system runtime. Several factors, such as task executi@uatdy data sharing characteris-
tics, and system hardware can influence the caching effeatsystem, making it difficult
to predict performance gains. Without a formal methodoltayypredicting performance
gains due to the processor caching behavior of a systengxtrismely difficult to compare

multiple potential system implementations or apply perfance optimizations.
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This paper presents the System Metric for Application Ca&ahawvledge (SMACK) for
guantifying the performance gains of processor cachingsyséem. System performance
of multiple system implementations can be assessed andasethfpased on SMACK
score. The system with the lowest SMACK score will betteliagithe processor cache
than other system implementations, resulting in decreagsgt@m execution time. Further,
certain aspects of the systems could potentially be altestgch as execution schedule, to
optimize the SMACK score and decrease system execution tie empirically evalu-
ated applying the SMACK metric to 44 different simulatedustty avionics system to
determine if a correlation exists between the SMACK metnd euntime reductions due
to processor caching.

As a result of these efforts, we learned the following lesdoom predicting the impact
of processor caching on system performance

¢ Both hardware and software design decisions effect the SMAKC score of a sys-
tem. The processor cache size, data sharing characteristidasidxecution have a large
impact on the SMACK score. The SMACK score tends to improwa wicreases in cache
size and data sharing. The execution order of system tasttefihe SMACK score differ-
ently based on the cache contention factor.

e Decreases in the SMACK score correlates with increased sysh performance
and decreased system execution timelncreasing the data sharing and/or altering the
execution order of a system leads to a decreased SMACK s&wéucing the SMACK
score correlated with an average runtime reduction of 2.4%erefore, multiple system
implementations can be compared based on their SMACK scores

e Effects of other cache replacement policies should be invégated. The SMACK
metric does not take into account the cache replacemerypailia system and was only
tested with random replacement policy. The effectivené<SMACK should be investi-
gated for other cache policies, such as Least Recently Ugeld)(and First In First Out

(FIFO).
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e Algorithmic techniques to maximize SMACK should be developd. The execution
order of tasks was shown to have a large impact on systenrpaifce and SMACK score.
Further, the performance of execution schedules diffeaeskton the Cache Contention
Factor. In future work, we will examine the development gfalthmic techniques that
use SMACK and the Cache Contention Factor as a heuristicsetermining the optimal

execution order for the tasks of specific systems.
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