HAMILTONICITY AND STRUCTURE OF CLASSES OF MINOR-FREE GRAPHS

By

Emily A. Marshall

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in
MATHEMATICS

May, 2014
Nashville, Tennessee

Approved:
Dr. Mark Ellingham
Dr. Michael Mihalik
Dr. Denis Osin
Dr. Jeremy Spinrad
Dr. Xiaoya Zha

ACKNOWLEDGMENTS

First I would like to thank my adviser, Mark Ellingham, for all of his support and encouragement over the past four years. His time spent working with me and reading through my papers has truly made me a better mathematician. Next I would like to thank my fellow graduate students and friends who kept me sane and made my time in Nashville very enjoyable. Last I would like to thank my family for all of their love and support over the past five years and all the years before then.

Table of Contents

Chapter Page
I. INTRODUCTION 1
1.1. Definitions 1
1.2. Hamiltonicity Results for Graphs on Surfaces 3
1.3. Structural Results for $K_{2, t}$-minor-free Graphs 7
II. TOROIDAL RESULTS 10
III. GENERAL RESULTS FOR $K_{2, t}$ MINORS 34
IV. HAMILTONICITY OF 3-CONNECTED, PLANAR, $K_{2,5}$-MINOR- FREE GRAPHS 44
V. A CHARACTERIZATION OF $K_{2,4}$-MINOR-FREE GRAPHS 74
5.1. The 3-connected Case 74
5.1.1. A Class of Graphs $G_{n, r, s}^{(+)}$ 75
5.1.2. Small Cases 79
5.1.3. Main Theorem 81
5.2. The 2-connected Case 92
VI. FUTURE WORK 117
REFERENCES 119

Chapter I

INTRODUCTION

1.1 Definitions

The main results of this dissertation are Hamiltonicity and structural results for graphs on surfaces and graphs with certain forbidden minors. We begin in the first chapter by providing relevant definitions and describing related known results. This provides context for the main results that follow. In Chapters II and IV, we prove results concerning Hamiltonicity of graphs on surfaces. In Chapter III, we outline notation and structural lemmas concerning $K_{2, t}$ minors. In Chapter V, we provide a complete characterization for a class of minor-free graphs. In Chapter VI, we discuss directions for future work.

Throughout this dissertation, let $G=(V(G), E(G))$ be a finite simple graph. A path in a graph G is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{n}$ such that $v_{i} v_{i+1} \in E(G)$ for $1 \leq i \leq n-1$. A path on three or more vertices together with the edge $v_{n} v_{1}$ is called a cycle. A Hamilton cycle or path is a cycle or path that includes every vertex of the graph. Not every graph contains a Hamilton cycle, and the next section as well as Chapters II and IV deal with results about restrictions that can be placed on graphs to ensure the existence of such a cycle, perhaps satisfying special conditions. One restriction involves the connectivity of a graph, which is defined as follows. A graph is connected if there is a path between any two vertices in the graph. If the removal of one vertex v and all of its incident edges from a connected graph results in
a graph that is not connected, then v is a cutvertex. A set of vertices whose removal disconnects the graph is called a cutset. A graph is k-connected if the smallest cutset in a connected graph has size k or more, or if the graph is K_{k+1}. A graph is bipartite if its vertices can be divided into two disjoint parts, A and B, such that every edge in the graph is of the form $a b$ where $a \in A$ and $b \in B$. A graph is planar if it can be drawn on the plane such that no edges cross. The equivalent definitions hold for projective-planar graphs, toroidal graphs, and graphs on the Klein bottle. A graph is outerplanar if it has a plane embedding in which all vertices are on the outer face. For a graph embedded on a surface with no crossing edges, the face degree of each face of the graph is the number of edges in the closed walks of the graph that make up the boundary of the face.

Chapters III through V deal with minors of graphs. A graph H is a minor of a graph G if H is isomorphic to a graph formed from G by contracting and deleting edges of G and deleting vertices of G. Another way to think of a k-vertex minor H of G is as a collection of pairwise disjoint subsets of the vertices of $G,\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ where each V_{i} corresponds to a vertex $v_{i} \in V(H), G\left[V_{i}\right]$ (the subgraph of G induced by the vertex set V_{i}) is connected for $1 \leq i \leq k$, and for each edge $v_{i} v_{j} \in E(H)$ there is an edge between a vertex of V_{i} and V_{j} in G. We will often identify minors in graphs by describing the sets $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$. For each vertex $v \in V(H)$, the branch set of v is the set of vertices in G that contracts to v. A minor H of G is rooted at a vertex $x \in V(G)$ if x is in the branch set of a designated vertex of H. A graph is H-minor-free if it does not contain H as a minor.

1.2 Hamiltonicity Results for Graphs on Surfaces

We are now ready to look at results concerning Hamiltonicity of certain types of graphs. One of the earliest results of this kind is due to Whitney.

Theorem I. 1 (Whitney, 1931 [31]). Every 4-connected planar triangulation has a Hamilton cycle.

Whitney's result was not strengthened for over twenty years. In 1956, Tutte finally removed the triangulation condition and in 1977, he published another paper that reorganized the proof.

Theorem I. 2 (Tutte, 1956 [28]). Every 4-connected planar graph has a Hamilton cycle.

This result was later strengthened by Thomassen (with a minor correction by Chiba and Nishizeki [6]). A graph is Hamilton-connected if there is a Hamilton path between every two pair of vertices in the graph.

Theorem I. 3 (Thomassen, 1983 [27]). Every 4-connected planar graph is Hamiltonconnected.

Tutte's result in 1956 saw the introduction of what are now known as "Tutte cycles", structures within a graph that have many other useful applications. It is known that not all 3-connected planar graphs are Hamiltonian and even not all 3connected triangulations of the plane are Hamiltonian [31] and these results will be discussed later. Hence Tutte's result cannot be strengthened by simply weakening the connectivity condition. Restricting the vertex degrees so that every vertex has
degree three (cubic graphs) still does not guarantee Hamiltonicity for 3-connected planar graphs [29]. Barnette and Goodey are credited with conjectures that claim additional sufficient conditions for the Hamiltonicity of 3-connected, cubic, planar graphs.

Conjecture I. 4 (Barnette, see [18], and Goodey [15]). Every 3-connected, cubic, planar graph with all face degrees at most six is Hamiltonian.

Conjecture I. 5 (Barnette, see [16]). Every 3-connected, cubic, bipartite, planar graph is Hamiltonian.

In Chapter IV, we will see another condition on 3-connected planar graphs that guarantees Hamiltonicity. Now we consider graphs on other surfaces. Concerning graphs on the projective plane, Thomas and Yu have the following result:

Theorem I. 6 (Thomas and Yu, 1994 [25]). Every edge of a 4-connected projectiveplanar graph is contained in a Hamilton cycle.

It is not true, however, that every 3-connected cubic projective-planar graph with face degree ≤ 6 is Hamiltonian as Barnette and Goodey conjectured for the plane. As a counterexample, take the Petersen graph embedded in the projective plane. Its face degrees are all five but the graph is not Hamiltonian. However, it has been shown by Ellingham and Zha that every 3-connected cubic projective-planar graph with face degrees three or six is in fact Hamiltonian (personal communication).

For graphs on the torus, Brunet and Richter proved the following:

Theorem I. 7 (Brunet and Richter, 1995 [4]). Every 5-connected toroidal triangulation is Hamiltonian.

This result was later strengthened by Thomas and Yu.

Theorem I. 8 (Thomas and Yu, 1997 [24]). Every edge of a 5-connected toroidal graph is contained in a Hamilton cycle.

For 4-connected toroidal graphs, Thomas, Yu, and Zang proved the existence of a Hamilton path [26]. The result for Hamilton cycles is still unknown and is a leading open conjecture due to both Grünbaum and Nash-Williams:

Conjecture I. 9 (Grünbaum, 1970 [16], Nash-Williams, 1973 [21]). Every 4-connected toroidal graph is Hamiltonian.

If we place restrictions on the face and vertex degrees of toroidal graphs, then there are several Hamiltonicity results. A graph is k-regular if every vertex has degree k. The following three results are due to Altshuler.

Theorem I. 10 (Altshuler, 1971 [1]). Every 6-regular toroidal graph all of whose faces are triangles is Hamiltonian.

Theorem I. 11 (Altshuler, 1971 [1]). Every 4-regular toroidal graph all of whose faces are quadrilaterals is Hamiltonian.

Theorem I. 12 (Altshuler, 1971 [1]). Every cubic toroidal graph with an even number of faces all of which are hexagonal is Hamiltonian.

Bouwer and Chernoff proved a related result:

Theorem I. 13 (Bouwer and Chernoff, 1988 [2]). Every $\{6,3\}_{b, c}$ toroidal graph is Hamiltonian.

The $\{6,3\}_{b, c}$ toroidal graphs are a subclass of the cubic toroidal graphs with hexagonal faces. They satisfy certain symmetry conditions and include some graphs with an odd number of faces.

Another way to refer to a cubic toroidal graph all of whose faces are hexagons is as a "generalized honeycomb torus". Using this terminology, Yang et al. showed that Theorems I. 12 and I. 13 can be generalized.

Theorem I. 14 (Yang et al., 2008 [32]). Every cubic toroidal graph all of whose faces are hexagons is Hamiltonian.

The next result was shown by Nakamoto, Ozeki, and Fujisawa, building on earlier work by Nakamoto and Ozeki [20].

Theorem 1.15 (Nakamoto, Ozeki, Fujisawa [13]). Every 4-connected graph on the torus with toughness exactly 1 is Hamiltonian.

For graphs on the Klein bottle, Brunet, Nakamoto, and Negami proved the following result:

Theorem I. 16 (Brunet, Nakamoto, Negami, 1999 [3]). Every 5-connected triangulation on the Klein bottle is Hamiltonian.

For more general surfaces, Duke proved that if graphs on a given surface are sufficiently highly connected, then they are Hamiltonian [12]. No fixed connectivity works for all surfaces, however. Duke's proof uses a well-known sufficient condition for the Hamiltonicity of any graph, due to Dirac, that each vertex of an n-vertex graph has degree $\geq n / 2[11]$.

Instead of looking for Hamilton cycles in graphs, a related idea is to show that graphs have cycles of at least some minimum length. Chen and Yu proved that 3connected planar, projective-planar, and toroidal graphs as well as graphs embeddable on the Klein bottle have cycles of length at least $\mathrm{cn}^{\log _{3} 2}$ where n is the number of vertices [5].

In Chapter II, we discuss edge-Hamiltonicity for certain graphs on the torus, which is related to Conjecture I.9. The main result is Theorem II.1. Cases 2.2.4 and 2.2.5 are joint work with Mark Ellingham.

1.3 Structural Results for $K_{2, t}$-minor-free Graphs

The best-known result concerning minor-free graphs is Wagner's Theorem which was published in 1937.

Theorem 1.17 (Wagner, 1937 [30]). A graph G is planar if and only if G does not contain K_{5} or $K_{3,3}$ as a minor.

Another result of this type is Dirac's forbidden minor characterization of all $K_{4^{-}}$ minor-free graphs [11]. The forbidden minor characterization of outerplanar graphs is well-known and we provide a brief sketch of the proof here.

Theorem I.18. A graph G is outerplanar if and only if G does not contain K_{4} or $K_{2,3}$ as a minor.

Proof. A graph is outerplanar if and only if each of its connected components is outerplanar so without loss of generality, assume G is connected. Furthermore, because K_{4} and $K_{2,3}$ are 2-connected, if G contains either as a minor, then the minor would
have to be in a block of G. Thus without loss of generality, assume G is 2-connected. Let G^{\prime} be the graph formed from G by adding a vertex v adjacent to all vertices of G.

For the forward direction, assume G is outerplanar. Then G^{\prime} is planar and thus by Wagner's Theorem contains no K_{5} or $K_{3,3}$ minor. Therefore, it follows that G contains no K_{4} or $K_{2,3}$ minor because v could be added to such a minor to give a K_{5} or $K_{3,3}$ minor in G^{\prime}.

For the reverse direction, assume G contains no K_{4} or $K_{2,3}$ minor. If G^{\prime} contains a K_{5} or $K_{3,3}$ minor, then v must be in the minor. If we delete the branch set containing v, then the result is a K_{4} or $K_{2,3}$ minor in G. Thus G^{\prime} contains no K_{5} or $K_{3,3}$ minor and therefore is planar. Now it follows that G is outerplanar.

For graphs without rooted minors, Robertson and Seymour characterized all 3connected 3-terminal rooted $K_{2,3}$-minor-free graphs [23] while Lino Demasi characterized all 3-connected 4-terminal planar rooted $K_{2,4}$-minor-free graphs [8]. For 3connected graphs H with at most eleven edges, Ding and Liu describe the characterizations of all H-minor-free graphs [10].

In Chapter V, we will focus on $K_{2,4}$-minor-free graphs. There are several known structural results which apply specifically to these graphs. According to a result claimed by Dieng and Gavoille, every 2-connected $K_{2,4}$-minor-free graphs contains 2 vertices whose removal leaves the graph outerplanar [9]. Using this result, Streib and Young prove the following:

Theorem I. 19 (Streib and Young, 2010 [22]). Let G be a connected $K_{2,4}$-minor-free
graph. Then the dimension of the minor poset of G is polynomial in $|E(G)|$.

For more general $K_{2, t}$-minor-free graphs, Chudnovsky, Reed, and Seymour proved the following:

Theorem I. 20 (Chudnovsky, Reed, and Seymour, 2011 [7]). Let G be a $K_{2, t}$-minorfree graph with $|V(G)|=n$ and $t \geq 2$. Then $|E(G)| \leq(1 / 2)(t+1)(n-1)$.

In Chapter III, we prove some general results about $K_{2, t}$-minor-free graphs. In Chapter IV, we prove that 3 -connected, planar $K_{2,5}$-minor-free graphs are Hamiltonian. The main result is Theorem IV.3. In Chapter V, we provide a complete characterization of all $K_{2,4}$-minor-free graphs. The main results are Theorem V.7, Theorem V.11, and Theorem V.28. The work in these three chapters is joint with Mark Ellingham, Kenta Ozeki, and Shoichi Tsuchiya.

Chapter II

TOROIDAL RESULTS

We focus our attention now on Conjecture I.9, stating that all 4-connected toroidal graphs are Hamiltonian. As mentioned previously, Thomas and Yu showed that in the projective plane, there is a Hamilton cycle through any edge of a 4-connected graph in [25]. One might hope that this result could be extended to the torus, but in fact the statement is untrue for a general 4-connected toroidal graph. The Cartesian product of two even cycles embeds in the torus and gives a 4-connected quadrangulation. If you add an edge across one of the quadrangles, then you cannot find a Hamilton cycle through this edge. This example was observed by Thomassen in [27]. In fact, adding any number of edges to one side of the bipartition of this bipartite graph still yields no Hamilton cycle through these edges. This observation generalizes to any bipartite 4-regular quadrangulation of the torus. It is thus hard to extend the standard proof techniques, as used for example by Thomas and Yu [25], to show that 4-connected toroidal graphs are Hamiltonian.

One possible approach is to try to characterize situations where some edge is not on a Hamilton cycle. The following result is a step towards this. It shows that Thomassen's examples, and the generalizations using 4-regular bipartite quadrangulations, are critical in the sense that adding any edge on the other side of the bipartition restores the property that every edge is on a Hamilton cycle.

Theorem II.1. Let G be a 4-connected, 4-regular, bipartite graph on the torus with

Figure 2.1
partition sets of white and black vertices. Suppose one edge, e_{1}, is added between two black vertices across a face. Then for any additional edge e_{2} added between two white vertices and across a different face, there is a Hamilton cycle through e_{1} and e_{2}. Thus the new graph has the property that for every edge e in the graph, there is a Hamilton cycle through e.

Proof. By Euler's formula, we know that all 4-regular, bipartite graphs on the torus are quadrangulations. These graphs are characterized by three parameters when drawn on the standard representation of the torus with vertical sides identified in parallel and horizontal sides identified in parallel: the height of the grid, the length of the grid, and the size of the shift. The graph is described as a grid because it is the Cartesian product of an even cycle and a path as shown in Figure 2.1.

The cycle is vertical and uses an edge that wraps around the horizontal sides of the torus representation. One copy of it is denoted by the vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ in
the figure. The length of this cycle gives the height of the grid. The path is horizontal and one copy of it is denoted by the vertices $u_{0}, u_{1}, \ldots, u_{m-1}$ in the figure. The length of this path gives the length of the grid. We denote by $w_{0}, w_{1}, \ldots, w_{n-1}$ the rightmost copy of the cycle in the grid. Then the amount of the shift is q where v_{i} is connected to w_{i+q} for indices taken $\bmod n$. This characterization is suggested by Altschuler in [1] and further elaborated on by Nakamoto and Negami in [19]. Without loss of generality, we can place e_{1} in the bottom left corner of the grid because the grid can be shifted up or down or left or right without changing the parameterization. We next consider all possible placements of the edge e_{2} between white vertices. When we refer to rows and columns throughout the proof, we mean rows of faces and columns of faces, not vertices. Let g_{r} and g_{c} denote the total number of rows and columns respectively in the grid excluding the row and column that wrap around the diagram. For the graph in Figure 2.1, $g_{r}=n-1$ and $g_{c}=m-1$. With this notation, we consider all cases $g_{c} \geq 0$, and $g_{r} \geq 3$ and odd. Note that g_{r} must be odd because our graphs are bipartite and there is no shift in connecting vertices vertically through the horizontal sides. Also g_{r} must be greater than one because if $g_{r}=1$ then we have a multigraph. Number the rows from bottom to top starting at zero with the row that wraps around and the columns from left to right also starting at zero with the column that wraps around and includes a possible shift. Let e_{r} and e_{c} denote the row and column number respectively of the added edge e_{2} between white vertices. Then $0 \leq e_{r} \leq g_{r}, 0 \leq e_{c} \leq g_{c}$ and $\left(e_{r}, e_{c}\right) \neq(1,1)$ since then e_{2} would cross e_{1}. The proof is divided into two cases, each with two subcases. Case 1 restricts the placement of e_{2} to rows and columns within the grid and Case 2 allows e_{2} to be in the wraparound
row or column. The subcases first consider larger grids and then cover the smaller cases. We outline the cases here:

Case 1. $e_{r} \geq 1$ and $e_{c} \geq 1$ (therefore $g_{c} \geq 1$)

Case 1.1. $g_{r} \geq 3$ and $g_{c} \geq 3$

Case 1.1.1. $e_{r} \geq 3$

Case 1.1.2. $e_{r}=2$

Case 1.1.3. $e_{r}=1$

Case 1.2. $g_{r} \geq 3$ and $g_{c} \leq 2$

Case 1.2.1. $g_{c}=1$

Case 1.2.2. $g_{c}=2$

Case 2. $e_{r}=0$ or $e_{c}=0$ (or both)

Case 2.1. $g_{c} \geq 1$

Case 2.1.1. $e_{r}=0, g_{r} \geq 3$, and $e_{c} \geq 1$ and even

Case 2.1.2. $e_{r}=0, g_{r} \geq 3$, and $e_{c} \geq 1$ and odd

Case 2.1.3. $e_{c}=0$ and $g_{c}=1$

Case 2.1.4. $e_{c}=0$ and $g_{c} \geq 2$

Case 2.2. $g_{c}=0$

Case 2.2 also has several subcases but they use different parameters that will be introduced later.

Case 1. $e_{r} \geq 1$ and $e_{c} \geq 1$

Note that necessarily we have $g_{c} \geq 1$.

Case 1.1. $g_{r} \geq 3$ and $g_{c} \geq 3$

Case 1.1.1. $e_{r} \geq 3$

This situation is shown in Figure 2.2. The picture on the left in Figure 2.2 is for $e_{c}>1$ and odd while the picture on the right is for e_{c} even. The bold lines give the Hamilton cycle. Note that the scenario on the right still holds when $e_{c}=2$. When $e_{c}=g_{c}$, we have similar pictures except that for e_{c} odd, we use a wraparound edge to connect the top right vertex with the bottom right vertex, and when e_{c} is even, we no longer need to use a wraparound edge. For any $e_{r}>3$, the cycle follows the same up and down pattern through the columns starting at the left of the grid until it hits column e_{c}. It then follows the same back and forth pattern up the column for e_{c} odd and down the column for e_{c} even. Because g_{r} is always odd, the cycle will always reach every vertex in column e_{c} in this back and forth pattern. When $e_{c}=1$, we have the Hamilton cycle as shown in Figure 2.3. Note that the parity of e_{r} is unimportant here and the same is true for later arguments.

Case 1.1.2. $e_{r}=2$

If e_{c} is even, the picture on the right of Figure 2.2 also holds for $e_{r}=2$. For e_{c} odd, we have the picture in Figure 2.4. When $e_{c}=1$, we can extend the picture from Figure 2.3.

Case 1.1.3. $e_{r}=1$

Figure 2.2 Case 1.1.1

Figure 2.3 Case 1.1.1

Figure 2.4 Case 1.1.2

e_{c} even

Figure 2.5 Case 1.1.3

This case is shown in Figure 2.5. On the left, e_{c} is odd and on the right $e_{c}>2$ and even. Note that when $e_{c}=2$, the picture on the right still holds. We cannot have $e_{c}=1$ when $e_{r}=1$ because then e_{1} and e_{2} would cross.

In the next subcase, we consider smaller grids.

Case 1.2. $g_{c} \leq 2$

Case 1.2.1. $g_{c}=1\left(\right.$ and $\left.e_{c}=1\right)$

This case is shown in Figure 2.6.

Figure 2.6 Case 1.2.1

Case 1.2.2. $g_{c}=2$

This case is shown in Figure 2.7. On the left, $e_{c}=1$, in the middle $e_{c}=2$ and $e_{r}>1$, and on the right, $e_{c}=2$ and $e_{r}=1$.

Case 2. $e_{r}=0$ or $e_{c}=0$ (or both)

We will consider two subcases of Case 2. The first covers grids with at least one column while the second considers grids with zero columns (of faces). Recall that our grid must have at least three rows.

Case 2.1. $g_{c} \geq 1$

Case 2.1.1. $e_{r}=0, g_{r} \geq 3$, and $e_{c}>0$ and even

In this case, we can shift the grid up one so that $e_{r}=1$. Then we can shift to the right until $e_{c}=g_{c}$. Since $g_{r}>1, e_{1}$ is one row above e_{2} (not in the wraparound row or column) so reflecting this picture about a vertical line through the center of the grid and switching the colors of vertices reduces this situation to one already covered

Figure 2.7 Case 1.2.2
previously with $e_{r}=2$ and $e_{c} \geq 1$.

Case 2.1.2. $e_{r}=0, g_{r} \geq 3$, and $e_{c}>0$ and odd

This case is shown in Figure 2.8. The picture only holds when $3 \leq e_{c} \leq g_{c}-2$ or when $e_{c}=g_{c}$. In the latter case, the path just zigzags up the last column instead of going up and down and then back and forth through the columns after column e_{c}. Figure 2.9 shows the situation where $e_{c}=g_{c}-1$. Note that these pictures hold even when $g_{r}=3$. If $e_{c}=1$, then we can shift the grid up and to the right until the edge between black vertices is in the upper right corner of the grid and we have a situation symmetric to $e_{r}=2$ and $e_{c}=1$ and considered previously in Case 1 . Note that this translation and rotation works even for $g_{c} \leq 2$.

Case 2.1.3. $e_{c}=0, g_{c}=1$

This case is shown in Figure 2.10. There are two different pictures depending on

Figure 2.8 Case 2.1.2

Figure 2.9 Case 2.1.2

Figure 2.10 Case 2.1.3
the position of e_{2}. If $e_{2}=\left(v_{i}, w_{j}\right)$, then the picture on the left is for $i<j$ and the picture on the right is for $i>j>0$; note the picture on the left also works for $j=0$: treat this as $j=n$.

Case 2.1.4. $e_{c}=0$ and $g_{c} \geq 2$

When $g_{c} \geq 2$, the situation can be reduced to one already covered above. Shift the grid to the right until the edge between black vertices is in the last column before the wrap around column. Then shift up until the edge between black vertices is in the top row before the wrap around row. Now $e_{c}=g_{c}-1 \neq 0$ and rotating this picture 180° results in a situation considered previously in which $e_{c}=2$. If e_{r} is now zero, then this case is covered in Case 2 otherwise it is covered in Case 1.

Case 2.2. $g_{c}=0$

For this case it is difficult to use the standard representation. Figure 2.11 shows
an example of a cycle in this representation. With only one column of vertices, the cycle must use many of the shifted edges which makes it difficult to follow. Thus for this case we will use two different representations of our graph. An example of the first is shown in Figure 2.12. Instead of one column of vertices with the shifted edges connected around the horizontal sides of the standard torus representation, we draw two columns of vertices so now the shifted edges are the horizontal edges connecting the two columns. Note that now some vertices appear more than once in our drawing and not all edges are shown. Added edges e_{1} and e_{2} in the graph connect vertices at distance $q-1$ or $q+1(\bmod n)$ where q is the shift. Note that q must be odd and $n=g_{r}+1$ must be even since the graph is bipartite, and also $q \geq 3$ to avoid multiple edges. We will refer to an edge that connects vertices at a distance of $q+1$ or $q-1$ as a $q+1$ edge or a $q-1$ edge respectively. If we have at least one $q-1$ edge, without loss of generality we will label the vertices so that $e_{1}=(1, q)$ where vertices 1 and q are both black. Here and for the rest of this Chapter, we will use the notation (m, n) for the edge between vertices labeled m and n. If both edges are $q+1$ edges, then without loss of generality, we will draw e_{1} as connecting vertex 1 and vertex $q+2$ where again both are black.

In Figure 2.12 we have 16 vertices and $q=7$ so the vertex labeled 0 is connected to the vertex labeled 7. Observe that with these drawings, a grid with n vertices and a shift of q has the same underlying graph as a grid with n vertices and a shift of $n-q$. Thus without loss of generality, we will choose a shift of q where $q \leq n / 2-1$. Note that we cannot have $q=n / 2$ because then we would have multiple edges between the vertices labeled i and $i+n / 2$. In many situations, we can depict e_{1} and e_{2} in

Figure 2.11
the diagram without needing to repeat every vertex twice, so the top vertex in the column on the left is the vertex labeled $n-1$ for a graph with n vertices. Ending at this vertex ensures each vertex is shown at least once since $q \leq n / 2-1$. An example of this situation is shown on the left of Figure 2.12. If e_{2} is not in this drawing, then we can draw more vertices above the edge ($n-1, n-q-1$) until each vertex appears exactly twice and then every possible added edge will be in this column of faces, unless $e_{2}=(0, q-1)$ in which case we shift the picture as described later. For this case, we draw the section of the graph that extends above the edge ($n-1, n-q-1$) next to and on the right of the column of faces already present to make the drawings more compact. This situation is shown on the right of Figure 2.12. Note that by moving the top section of the column down and creating two columns of faces, we no longer have each vertex appearing twice. In particular, the vertices that are adjacent
to faces from both columns only appear once. Now we consider the location of e_{2}. Suppose the edge connects vertices v_{1} and v_{2}. Let $a=\min \left\{v_{1}, v_{2}\right\}$.

Case 2.2.1. $0<a<q$ and e_{2} connects a with the vertex labeled $a-(q \pm 1)(\bmod n)$

This is the situation where we need to draw each vertex twice to fit both e_{1} and e_{2} in the diagram. We draw two columns of faces as described previously. Figure 2.13 illustrates the situation with a $q-1$ edge e_{1} on the left and a $q+1$ edge in the middle. Note that the picture on the left requires $n-q-1 \geq q+1$ which is always true because n is even so $q \leq n / 2-1$. The picture in the middle requires $n-q-1 \geq q+2$. This inequality is true within our given constraints on n and q except when $n=2 q+2$, so the picture on the right shows this case. The pictures show e_{2} as a $q+1$ edge. If e_{2} is a $q-1$ edge, then the cycle follows a very similar pattern with the only difference being that the edge is angled the other way. Note that the picture holds even when $a=q-1$ or $a=2$. The situation where $0<a=q-1$ and a is the endpoint of a $q-1$ edge does not happen since if $(0, q-1)$ is an edge, then we would take $a=0$.

Case 2.2.2. $0<a<q$ and e_{2} connects a with the vertex labeled $a+(q \pm 1)$

This case is shown in Figure 2.14 (i) and (ii). Part (i) is when the e_{1} is $q-1$ edge and part (ii) is for a $q+1$ edge. We show e_{2} as a $q+1$ edge but a very similar cycle works when e_{2} is a $q-1$ edge. Notice that all pictures in this figure require $a+q \leq n-1$ but this is always true by the choice of a.

Case 2.2.3. $q<a<2 q$

This case is shown in Figure 2.14(iii) and (iv) for e_{2} as a $q-1$ edge again with

Figure 2.12

Figure 2.13

Figure 2.14
different cases depending on the type of e_{1}. When e_{2} is a $q+1$ edge, only minor changes are required.

For the two remaining cases we will use a new representation of the graph. We will draw the n vertices as points along a circle so the shifted edges are now chords of the circle. Every vertex is shown exactly once and only the chords used in the Hamilton cycle are drawn. The general pattern is to divide the vertices up into cycles by taking $q+1$ consecutive vertices along the circle and closing up the cycle with a chord. The added edges e_{1} and e_{2} give cycles of length $q+2$ or q for a $q+1$ edge or a $q-1$ edge respectively. Next these cycles are connected by choosing two consecutive vertices in one cycle, removing the edge between them from the cycle, and instead adding in the chords that connect these vertices to vertices in the next cycle. Figure 2.15 illustrates this process for a graph with 16 vertices, a shift of 5 , and two added $q-1$ edges.

We have three cycles here, say A, B, and C where A includes e_{2}, B includes e_{1}, and C is the third cycle. To describe this process of connecting cycles in detail, we begin with some notation. Let the edges $\left(v_{2 i+1}, v_{2 i+2}\right)$ in the graph be odd edges and the edges $\left(v_{2 i}, v_{2 i+1}\right)$ be even edges for $0 \leq i \leq(n-1) / 2$. Thus each edge is labeled by the parity of its lower numbered index. Suppose we start with an odd edge in A, say $\left(v_{i}, v_{i+1}\right)$. Then if we take chords from each of these vertices, we can reach the even edge $\left(v_{i+q}, v_{i+q+1}\right)$. If this even edge is in B, then we say the odd edge $\left(v_{i}, v_{i+1}\right)$ is a forwards-linking edge because we can use it to link cycle A forwards to cycle B by replacing the edges $\left(v_{i}, v_{i+1}\right)$ and $\left(v_{i+q}, v_{i+q+1}\right)$ with the appropriate chords. Similarly, we say the even edge $\left(v_{i+q}, v_{i+q+1}\right)$ in B is a backwards-linking edge.

Consider a general situation where we have a number of cycles formed by chords
of length $q-1, q$, or $q+1$, with no intervening vertices. Observe that in general the first two edges of every cycle R are always backwards-linking edges and the last two edges of R are always forwards-linking edges (these four edges are not necessarily distinct). To see this, consider a cycle $R=v_{i}, v_{i+1}, \ldots, v_{j}$. Then the vertex v_{i-q} must be in the cycle immediately prior to R because this cycle has length at least q so it at least contains vertices $v_{i-1}, v_{i-2}, \ldots, v_{i-q}$. It follows that $\left(v_{i}, v_{i+1}\right)$ and also $\left(v_{i+1}, v_{i+2}\right)$ are both backwards-linking edges. Similarly, the vertex v_{j+q} must be in the cycle immediately following R because this cycle has length at least q and thus contains at least the vertices $v_{j+1}, v_{j+2}, \ldots, v_{j+q}$. It follows that $\left(v_{j-1}, v_{j}\right)$ and also $\left(v_{j-2}, v_{j-1}\right)$ are both forwards-linking edges. These observations now ensure that every cycle has a backwards-linking edge and a forwards-linking edge of each parity.

In the example in Figure 2.15, the number of vertices is such that every vertex fits in a cycle with none left over. This will not always be the case, however, and we will have to connect vertices into the cycles in much the same way as we connect cycles to each other.

Case 2.2.4. $a=0$

We consider two additional subcases.

Case 2.2.4.1. $a=0$ is connected to the vertex labeled $-(q \pm 1)$

We have the situation shown in Figure 2.16 on the left. The example shown has 16 vertices, a shift of 5 , and one $q+1$ edge and one $q-1$ edge. Also there are only two cycles as the number of vertices between vertex $q+2$ and vertex $-(q-1)$ is less than $q+1$. Let S be this set of vertices outside of both cycles. Note that the number of

Figure 2.15
vertices in S must always be even since it is a path of vertices between a black vertex and a white vertex. If there are not enough vertices in S to create another cycle, then there are at most $q-1$ vertices, and this is the situation shown in the example. We have two cycles to start: C_{1} which connects vertices $0,-1,-2, \ldots,-(q-1)$ and C_{2} which connects vertices $1,2, \ldots, q+2$. To create a Hamilton cycle, we must connect C_{1} and C_{2} and also add in the vertices from S.

By the observation made earlier, we know that C_{1} has a forwards-linking edge and a backwards-linking edge of each parity. Let $\left(v_{i}, v_{i+1}\right)$ be an odd forwards-linking edge of C_{1}. Then $\left(v_{i+q}, v_{i+q+1}\right)$ is an even backwards-linking edge of C_{2}. We connect C_{1} and C_{2} by replacing the odd forwards-linking edge $\left(v_{i}, v_{i+1}\right)$ in C_{1} and the even backwards-linking edge $\left(v_{i+q}, v_{i+q+1}\right)$ in C_{2} with the chords used to join these edges. The picture on the left of Figure 2.16 illustrates this process. The odd edge and even edge we removed to connect the cycles are labeled as odd edge 1 and even edge 1
respectively. Now it remains to join the vertices of S into the cycle. The vertex v_{l} such that v_{l} is in S and v_{l-1} is in C_{2} has even index since e_{1} joins vertex 1 to either vertex q or $q+2$. Thus $\left(v_{l}, v_{l+1}\right)$ is an even edge and if we follow chords from its two endpoints back into C_{2}, we reach the endpoints of an odd edge. In particular we reach vertices 1 and 2 if e_{1} is a $q-1$ edge and vertices 3 and 4 if e_{1} is a $q+1$ edge. In either case, it is clear that we reach vertices in C_{2} and we can join v_{l} and v_{l+1} into C_{2} by removing the odd edge in C_{2} and replacing it with the appropriate chords and the even edge $\left(v_{l}, v_{l+1}\right)$. In Figure 2.16 on the left, the odd edge and even edge involved in this process are labeled as odd edge 2 and even edge 2 respectively. The remaining vertices of S are joined into the cycle pairwise in the same way. We take an even edge between two adjacent vertices in S, follow the chords back to an odd edge in C_{2}, and replace the odd edge with the two chords and the even edge. Because $|S| \leq q-1$, the vertex of highest index in S is always joined by a chord to a vertex in C_{2} so we can join in all vertices of S by this process. Note also that when picking up vertices of S, we only remove odd edges from C_{2} and when we joined C_{1} and C_{2}, we removed an even edge from C_{2} so these processes will not interfere with each other.

If $|S| \geq q+1$, then we have more than two cycles. We take vertex v_{l} in S such that v_{l-1} is in C_{2} and form the cycle $v_{l}, v_{l+1}, \ldots, v_{l+q}, v_{l}$. We continue forming cycles in this way with no intervening vertices until no more can be formed without intersecting C_{1}. Denote these new cycles in order $D_{1}, D_{2}, \ldots, D_{k}$. Now if cycles C_{1}, C_{2}, and D_{1} through D_{k} cover all vertices of the graph, then we can just join adjacent cycles by the process described previously and we are done. We use odd forwards-linking edges and even backwards-linking edges so that the process of linking a cycle with its forward
neighbor will not interfere with linking a cycle with its backwards neighbor. Now suppose the cycles C_{1}, C_{2}, and D_{1} through D_{k} do not cover all the vertices. Denote by S^{\prime} the set of all vertices not in C_{1}, C_{2}, or any of the D_{i}. To form a Hamilton cycle, we must join all of the cycles $C_{1}, C_{2}, D_{1}, D_{2}, \ldots, D_{k}$ and also join in the vertices of S^{\prime}. We join the cycles exactly as before. We use odd forwards-linking edges and even backwards-linking edges. Then we use the cycle D_{k} to pick up the vertices of S^{\prime}. Let v_{r} be such that $v_{r} \in S^{\prime}$ but $v_{r-1} \in D_{k}$. Observe that r must be even. Then $\left(v_{r}, v_{r+1}\right)$ is an even edge and we can follow chords backwards to D_{k} to get endpoints of an odd edge. We remove this odd edge and replace it with the chords and the edge $\left(v_{r}, v_{r+1}\right)$. The rest of the vertices of S^{\prime} are joined in pairwise in the exact same way. Each pair results in the removal of an odd edge from D_{k} and we know that D_{k} was joined to D_{k-1} by the removal of an even edge so these processes will not interfere. An example is shown on the right of Figure 2.16. Here, $k=2$ and $\left|S^{\prime}\right|=4$. Two odd edges of D_{k} are removed to join in the vertices of S^{\prime} and one even edge is removed to join D_{k} with D_{k-1}.

Case 2.2.4.2. $a=0$ is connected to the vertex labeled $q \pm 1$

This case can be reduced to one covered previously. If 0 is connected to $q+1$, then we must have $e_{1}=(1, q+2)$ so that e_{1} and e_{2} do not cross. Now if we renumber the vertices by adding one to every vertex, we now have $e_{1}=(1, q+2)$ and $e_{2}=(2, q+3)$ and switching the vertex colors gives a situation covered in Figure 2.14 (ii). If 0 is connected to $q-1$ then either $e_{1}=(1, q)$ or $e_{1}=(1, q+2)$. Again we can renumber the vertices by adding one so that now $e_{2}=(1, q)$ and $e_{1}=(2, q+1)$ or $(2, q+3)$ and

Figure 2.16
switching the vertex colors gives a situation covered in Figure 2.14 (i).

Case 2.2.5. $2 q \leq a$

The arguments used in this case apply for $a \geq q+3$ and since $q \geq 3$, this covers $a \geq 2 q$ for all possible values of q. We list the case as $2 q \leq a$ instead of $q+3 \leq a$ because we covered $q<a<2 q$ in a previous case. The situation in this case is very similar to Case 2.2.4 except now when we form C_{1} using the chord e_{2} and C_{2} using the chord e_{1}, C_{1} and C_{2} are no longer adjacent. We may have vertices in a set $S=\{q+1, q+2, \ldots, a\}$ (or $\{q+3, q+4, \ldots, a\}$ if e_{1} is a $q+1$ edge) and also in another set, say T where $T=\{a+q+2, a+q+3, \ldots, n-1,0\}$ if e_{2} is a $q+1$ edge and $\{a+q, a+q+1, \ldots, n-1,0\}$ if e_{2} is a $q-1$ edge. But now as before, we can form cycles from the vertices in T if $|T| \geq q+1$. Say we form cycles $E_{1}, E_{2}, \ldots, E_{p}$ starting immediately after C_{1}. Denote by T^{\prime} all remaining vertices of T that are not formed into cycles. Next we form as many cycles as we can with the vertices in S
without intersecting C_{1}, say $D_{1}, D_{2}, \ldots, D_{k}$ starting immediately after C_{2}. Denote by S^{\prime} all remaining vertices of S that are not formed into cycles.

Suppose first that $S^{\prime} \neq \emptyset$. To form a Hamilton cycle H, we must join the cycles $C_{1}, C_{2}, D_{1}, \ldots, D_{k}, E_{1}, \ldots E_{p}$ and also the vertices from T^{\prime} and S^{\prime}. We begin forming H by first joining cycles $C_{2}, D_{1}, D_{2} \ldots \quad D_{2}$, using odd forwards-linking edges and even backwards-linking edges. Now we add the vertices of S^{\prime} into H by joining them pairwise into the cycle D_{k}. Even edges are added between the vertices of S^{\prime} and odd edges of D_{k} are removed. The next step is to join C_{1} to H. We do this by taking chords from the vertices $a-1$ and $a-2$, which belong to S^{\prime}, into C_{1}. Note that $(a-2, a-1)$ is an even edge so chords from these vertices will join endpoints of an odd edge in C_{1}. The edge $(a-2, a-1)$ was added to our cycle when we joined vertices $a-1$ and $a-2$ into D_{k} so now we can remove this edge and also the odd edge $(a-2+q, a-1+q)$ in C_{1} and replace them by the appropriate chords to join C_{1} into H. Observe now that we have removed an odd edge of C_{1} to connect it backwards into H. Previously, odd edges were linked with chords going forwards. We want to maintain this reversal through the joining of cycles $C_{1}, E_{1}, \ldots, E_{p}$ because now the set T^{\prime} will begin with an odd vertex whereas S^{\prime} began with an even vertex. This means that we will need to remove even edges of E_{p} to join in vertices of T^{\prime} so we want to connect E_{p} to E_{p-1} with an odd backwards-linking edge and an even forwards-linking edge so the processes do not interfere. The vertices of T^{\prime} are joined pairwise into E_{p} in the same way S^{\prime} is joined into D_{k} except now we remove even edges of E_{p} and add in odd edges between consecutive vertices of T^{\prime}.

Now suppose S^{\prime} is empty. We first join the vertices of T^{\prime} into E_{p} as just described.

Then we join E_{p} to E_{p-1}, E_{p-1} to E_{p-2}, etc. by using odd backwards-linking edges and even forwards-linking edges. The difference is that we now continue this process all the way back through C_{2} instead of reversing the roles of odd and even edges.

Chapter III

GENERAL RESULTS FOR $K_{2, t}$ MINORS

In this chapter, we discuss the idea of a standard $K_{2, t}$ minor that will be used in the next two chapters. We also look at several results concerning rooted $K_{2,2}$-minorfree graphs and the interactions between $K_{2, t}$ minors and separations in graphs. To discuss these ideas, we also provide additional definitions.

Recall that one way to think of a k-vertex minor H of G is as a collection of pairwise disjoint subsets of the vertices of $G,\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ where each V_{i} corresponds to a vertex $v_{i} \in V(H), G\left[V_{i}\right]$ (the subgraph of G induced by the vertex set V_{i}) is connected for $1 \leq i \leq k$, and for each edge $v_{i} v_{j} \in E(H)$ there is an edge between a vertex of V_{i} and V_{j} in G. We call this an edge-based model of H in G. More generally, we may allow there to be a path $P_{i j}$ rather than an edge between V_{i} and V_{j} in G if $v_{i} v_{j} \in E(H)$. We then require that each path $P_{i j}$ be internally disjoint from all other such paths and from $V_{1}, \ldots V_{k}$. We call this a path-based model of H in G.

Let $\left\{a_{1}, a_{2}, b_{1}, b_{2}, \ldots, b_{t}\right\}$ be the vertex set of $K_{2, t}$ with $\operatorname{deg}\left(a_{1}\right)=\operatorname{deg}\left(a_{2}\right)=t, a_{1}$ not adjacent to a_{2}, and $\operatorname{deg}\left(b_{i}\right)=2$ for $1 \leq i \leq t$. In a graph G with $K_{2, t}$ as a minor, let R_{1} and R_{2} be the branch sets of a_{1} and a_{2} in an edge-based model of $K_{2, t}$. Suppose B is the branch set of b_{i} for some i. Then there is a path $v_{1} v_{2} \ldots v_{k}, k \geq 3$, with $v_{1} \in R_{1}, v_{k} \in R_{2}$, and $v_{i} \in B$ for $2 \leq i \leq k-1$. Let $B^{\prime}=\left\{v_{2}\right\}$ and let $R_{2}^{\prime}=R_{2} \cup\left\{v_{3}, \ldots, v_{k-1}\right\}$. We can replace B with B^{\prime} and R_{2} with R_{2}^{\prime} and still have an edge-based model of $K_{2, t}$. Note that if B includes vertices not in the path $v_{2} v_{3} \ldots v_{k-1}$,
replacing B with B^{\prime} still results in an edge-based model of $K_{2, t}$. Hence without loss of generality we may assume that every branch set of a vertex b_{i} for $1 \leq i \leq t$ is a single vertex. Let $S=\left\{s_{1}, s_{2}, \ldots, s_{t}\right\}$ be the set of such vertices in G. We say $\left(R_{1}, R_{2} ; S\right)$ represents a standard (edge-based) $K_{2, t}$ minor. Observe that G contains a $K_{2, t}$ minor if and only if G contains a standard $K_{2, t}$ minor. Note that the standard model also applies for $K_{2, t}$ minors rooted at two vertices in the branch sets of the vertices in the part of size two.

A k-separation in a graph G is a pair (H, K) of edge-disjoint subgraphs of G with $G=H \cup K,|V(H) \cap V(K)|=k, V(H)-V(K) \neq \emptyset$, and $V(K)-V(H) \neq \emptyset$.

Lemma III.1. Suppose (H, K) is a 2-separation in a graph G with $V(H) \cap V(K)=$ $\{x, y\}$. If G contains a $K_{2, t}$ minor $\left(R_{1}, R_{2} ; S\right)$ with $t \geq 3$, then one of the following holds:
(i) there exists a $K_{2, t}$ minor in $H+x y$
(ii) there exists a $K_{2, t}$ minor in $K+x y$
(iii) $x \in R_{1}$ and $y \in R_{2}$ (or vice versa)

Proof. Let $H^{\prime}=H-\{x, y\}$ and $K^{\prime}=K-\{x, y\}$. We consider the location of a minor with respect to x and y in G and assume we are not in the situation in (iii). We have some subset of $\{x, y\}$ either in R_{1} or in R_{2}; the situations are symmetric so we consider the former. Observe that because the subgraph induced by R_{i} is connected for $i=1,2$, if $x, y \notin R_{i}$, then either $R_{i} \subseteq V\left(H^{\prime}\right)$ or $R_{i} \subseteq V\left(K^{\prime}\right)$.

First suppose $x, y \in R_{1}$. Without loss of generality, assume $R_{2} \subseteq V\left(H^{\prime}\right)$; it follows that $S \subseteq V\left(H^{\prime}\right)$. Let $R_{1}^{\prime}=R_{1}-V\left(K^{\prime}\right)$; then $\left(R_{1}^{\prime}, R_{2} ; S\right)$ is a $K_{2, t}$ minor in $H+x y$
and we have (i).
Next assume $x \in R_{1}$ and $y \notin R_{1} \cup R_{2}$. Without loss of generality, assume $R_{2} \subseteq$ $V\left(H^{\prime}\right)$; it follows that $S \subseteq V\left(H^{\prime}\right) \cup\{y\}$. Let $R_{1}^{\prime}=R_{1} \cap V(H)$. Then $\left(R_{1}^{\prime}, R_{2} ; S\right)$ is a $K_{2, t}$ minor in $H+x y$ and we have (i).

Finally assume $x, y \notin R_{1} \cup R_{2}$. Without loss of generality, assume $R_{1} \subseteq V\left(H^{\prime}\right)$; it follows that $S \subseteq V(H)$ and thus $R_{2} \subseteq V\left(H^{\prime}\right)$. Now $\left(R_{1}, R_{2} ; S\right)$ is a $K_{2, t}$ minor in $H+x y$ and we have (i).

By a $K_{2, t}$ minor $\left(R_{1}, R_{2} ; S\right)$ rooted at x and y, we mean $x \in R_{1}$ and $y \in R_{2}$. If part (iii) of Lemma III. 1 holds, then the $K_{2, t}$ minor splits into two minors, $K_{2, t_{1}}$ and $K_{2, t_{2}}$, both rooted at x and y where $t_{1}+t_{2}=t$. In particular for $K_{2,4}$ and $K_{2,5}$ minors, we will be concerned with rooted $K_{2,2}$ minors; we will describe the structure of graphs without rooted $K_{2,2}$ minors. Lino Demasi provides a description of $K_{2,2}$-minor-free graphs with all four vertices rooted in terms of disjoint paths in Lemma 2.2.2 of his thesis [8].

An $x y$-outerplane embedding is an embedding of a connected graph G in a closed disk D such that a Hamilton $x y$-path is contained in the boundary of D for $x, y \in$ $V(G)$. The Hamilton $x y$-path is called the outer path. A graph is $x y$-outerplanar, or path-outerplanar, if it has an $x y$-outerplane embedding. Observe:
(1) Suppose G is $x y$-outerplanar, H is $y z$-outerplanar, and $V(G) \cap V(H)=\{y\}$. Then $G \cup H$ has an $x z$-outerplane embedding.
(2) If G has an $x y$-outerplane embedding, then $G+x y$ also has an $x y$-outerplane embedding.

A block of a graph G is a maximal connected subgraph of G without a cutvertex. Blocks are either 2-connected, K_{2}, or an isolated vertex. The block-cutvertex tree of G is a tree whose vertices are the blocks of G; two vertices are adjacent if the corresponding blocks in G intersect. We have the following lemmas:

Lemma III.2. Suppose $G^{\prime}=G+x y$ is a block. Then G has no $K_{2,2}$ minor rooted at x and y if and only if G is $x y$-outerplanar.

Proof. (\Leftarrow) : Assume an $x y$-outerplane embedding of G. Add a vertex z to G^{\prime} in the outer face and adjacent to x and y; the resulting graph $G^{\prime \prime}$ is still outerplanar. If G^{\prime} has a $K_{2,2}$ minor rooted at x and y, then $G^{\prime \prime}$ has a $K_{2,3}$ minor which is a contradiction since outerplanar graphs are $K_{2,3}$-minor-free.
(\Rightarrow) : Proceed by induction on $|E(G)|$. The base case for G is K_{2} which has no $K_{2,2}$ minor rooted at x and y and is clearly $x y$-outerplanar. Now assume the claim holds for all graphs on $m \geq 1$ edges and suppose $|E(G)|=m+1$ (and hence G^{\prime} is 2-connected).

First assume there is a cutvertex v in G. Then G must consist of more than one block and since G^{\prime} is 2 -connected, x and y must be in separate blocks. Furthermore, since G^{\prime} is 2-connected, the block-cutvertex tree of G must be a path $B_{1} v_{1} B_{2} v_{2} \ldots v_{k-1} B_{k}$ where each B_{i} is a block of G, each v_{i} is a cutvertex in G, and $x \in B_{1}, y \in B_{k}$. Define $v_{0}=x$ and $v_{k}=y$. Because G has no $K_{2,2}$ minor rooted at x and y, the block B_{i} of G has no $K_{2,2}$ minor rooted at v_{i-1} and v_{i} for $1 \leq i \leq k$. We thus can apply the inductive hypothesis to each block; each block B_{i} is $v_{i-1} v_{i}$-outerplanar. By Observation (1), the outerplane embeddings of the blocks can then be combined

Figure 3.1
in such a way as to create an $x y$-outerplane embedding of G (see Figure 3.1).
Now assume there is no cutvertex in G (G is 2-connected). We delete an edge $e=u_{1} u_{2}$ in $G, e \neq x y$. Without loss of generality, suppose $x \neq u_{1}$. The graph $G-e$ clearly still has no $K_{2,2}$ minor rooted at x and y. We consider three cases:

Case 1. The graph $G-e$ is 2-connected.

By induction, $G-e$ has an $x y$-outerplane embedding. If we cannot add e to an $x y$-outerplane embedding of $G-e$ and create an $x y$-outerplane embedding of G, then there must be some edge $w_{1} w_{2}$ such that $u_{1}, w_{1}, u_{2}, w_{2}$ occur in that order along the outer path of G^{\prime} (see Figure 3.2). This situation, however, yields the $K_{2,2}$ minor rooted at x and y and shown in Figure 3.2. Thus we can conclude G is $x y$-outerplanar.

Figure 3.2

Figure 3.3

Case 2. There is a cutvertex v in $G-e$ that separates x and y.

The cutvertex v must also separate u_{1} and u_{2} because otherwise it would also be a cutvertex in G which is a contradiction since G is 2-connected. Assume that in $G-e$,
x and u_{1} are in the same component and y and u_{2} are in the same component. In this situation we can find a rooted $K_{2,2}$ minor: we take $S=\left\{v, u_{1}\right\}$ (see Figure 3.3). Then $x \in R_{1}$ and $y \in R_{2}$. We know there is a path from x to v which does not include u_{1} in $G-e$ because otherwise u_{1} would be a cutvertex of G. This path is included in R_{1}.

Case 3. There is a cutvertex v in $G-e$ that does not separate x and y.

Because there is no cutvertex in G, the block-cutvertex tree of $G-e$ must again be a path $B_{1} v_{1} B_{2} v_{2} \ldots v_{k-1} B_{k}$ where each B_{i} is a block of $G-e$ and each v_{i} is a cutvertex in $G-e$. Note $k \geq 2$. Suppose $u_{1} \in B_{1}, u_{2} \in B_{k}$, and $x, y \in B_{a}$ for some $a \in\{2, \ldots, k\}$ (the situation $a=1$ is symmetric to $a=k$ so without loss of generality, we exclude it). Note $u_{1}, u_{2} \neq v_{i}$ for any i since then v_{i} would be a cutvertex in G. The block B_{a} is 2-connected with no $K_{2,2}$ minor rooted at x and y so B_{a} is $x y$-outerplanar; without loss of generality, suppose x, v_{a-1}, v_{a}, y occur in that order along the outer path of B_{a}. Then v_{a-1} and v_{a} are consecutive on the outer path because otherwise G has a $K_{2,2}$ minor rooted at x and y as shown in Figure 3.4. We have $x, v_{a-1} \in R_{1}$ and $y, v_{a} \in R_{2}$. The minor still exists even when $v_{a}=u_{2}$ (or symmetrically $v_{a-1}=u_{1}$) or $x=v_{a-1}$ (or symmetrically $y=v_{a}$). If B_{i} has a $K_{2,2}$ minor rooted at v_{i-1} and v_{i} for $i \in\{1,2, \ldots, k\}-\{a\}$ (where $v_{0}=u_{1}$ and $v_{k}=u_{2}$), then G has a $K_{2,2}$ minor rooted at x and y. Figure 3.5 illustrates the case with $i<a$, and $i>a$ is symmetric. Note the minor exists even when $a=k$ with u_{2} playing the role of v_{a}. We now can apply the inductive hypothesis to all of the blocks; each block B_{i} has an $v_{i-1} v_{i^{-}}$ outerplane embedding. Then we can position the blocks in such a way as to create
an $x y$-outerplane embedding of G as shown in Figure 3.6. Observation (1) allows us to arrange the blocks $B_{a-1} B_{a-2}, \ldots, B_{1} B_{k} B_{k-1} \ldots B_{a+1}$ appropriately.

Figure 3.4

Figure 3.5

Figure 3.6

At the end of Chapter IV, we use another result concerning $K_{2, t}$ minors and separations stated here:

Lemma III.3. Suppose (H, K) is a 3-separation in a graph G with $V(H) \cap V(K)=$ $\left\{x_{1}, x_{2}, x_{3}\right\}$. If G contains a standard $K_{2, t}$ minor $\left(R_{1}, R_{2}, S\right)$ with $t \geq 4$, then one of the following holds:
(i) There exists a $K_{2, t}$ minor in $H+x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}$
(ii) There exists a $K_{2, t}$ minor in $K+x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}$
(iii) $x_{i} \in R_{1}$ and $x_{j} \in R_{2}$ for some $i \neq j$

Proof. Let $H^{\prime}=H-\left\{x_{1}, x_{2}, x_{3}\right\}$ and $K^{\prime}=K-\left\{x_{1}, x_{2}, x_{3}\right\}$. We consider the location
of a minor with respect to x_{1}, x_{2} and x_{3} in G and assume we do not have the situation in (iii). Then one of $R_{1} \cap\left\{x_{1}, x_{2}, x_{3}\right\}$ or $R_{2} \cap\left\{x_{1}, x_{2}, x_{3}\right\}$ is empty. Without loss of generality, assume $R_{2} \cap\left\{x_{1}, x_{2}, x_{3}\right\}=\emptyset$. Then either $R_{2} \subseteq V\left(H^{\prime}\right)$ or $R_{2} \subseteq V\left(K^{\prime}\right)$ so without loss of generality, assume $R_{2} \subseteq V\left(H^{\prime}\right)$. It follows that $S \subseteq V(H)$. Now if $R_{1} \cap\left\{x_{1}, x_{2}, x_{3}\right\} \neq \emptyset$, then $\left(\left(R_{1} \cap V(H)\right) \cup\left(\left\{x_{1}, x_{2}, x_{3}\right\}-S\right), R_{2} ; S\right)$ is a $K_{2, t}$ minor in $H+x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}$ and we have (i). If $R_{1} \cap\left\{x_{1}, x_{2}, x_{3}\right\}=\emptyset$, then the original minor is a minor in H and we have (i) again.

In Chapter IV, the following results concerning Hamilton paths in outerplanar and path-outerplanar graphs will be helpful.

Lemma III.4. Let G be a 2-connected outerplanar graph. Let $x \in V(G)$ and let $x y$ be an edge on the outer cycle Z of G. Then for some vertex t with $\operatorname{deg}_{G}(t)=2$, there exists a Hamilton path xy...t in G.

Proof. Fix a forward direction on Z and denote by $v_{1} Z v_{2}$ the forward path from v_{1} to v_{2} on Z. Proceed by induction on $|V(G)|$. In the base case, $G=K_{3}$ and the result is clear. Now assume the lemma holds for all graphs with at most $n-1$ vertices and assume $|V(G)|=n \geq 4$. Assume y follows x on Z and let $w \neq y$ be the other neighbor of x on Z. If $\operatorname{deg}_{G}(w)=2$, then we take $t=w$ and $x Z w$ is a desired Hamilton path in G. Otherwise let v be a neighbor of w such that $v w \notin E(Z)$ (possibly $v=y$). Let G^{\prime} be the subgraph of G induced by $v Z w ; G^{\prime}$ is a 2-connected $v w$-outerplanar graph with $\left|V\left(G^{\prime}\right)\right| \leq n-1$. By the inductive hypothesis, there exists a Hamilton path $Q=v w \ldots t$ in G^{\prime} where $\operatorname{deg}_{G^{\prime}}(t)=\operatorname{deg}_{G}(t)=2$. Now $x Z v \cup Q$ is the desired path in G.

Corollary III.5. Let G be an $x y$-outerplanar graph with outer path $x=v_{1} v_{2} \ldots v_{n}=y$, $n \geq 2$. Let k be such that $1 \leq k \leq n-1$. Then there exist two vertex disjoint paths $P=x \ldots v_{s}$ and $Q=y \ldots v_{t}$ such that $V(G)=V(P \cup Q)$ and the following two symmetric conditions hold:
(i) $s \leq k$ and either $v_{s}=x$ or $\operatorname{deg}_{G}\left(v_{s}\right)=2$,
(ii) $t \geq k+1$ and either $v_{t}=y$ or $\operatorname{deg}_{G}\left(v_{t}\right)=2$.

Proof. Let ℓ be the largest integer such that $\ell \leq k$ and $\operatorname{deg}_{G}\left(v_{\ell}\right)=2$; if no such ℓ exists choose $\ell=1$. Let m be the smallest integer such that $m \geq k+1$ and $\operatorname{deg}_{G}\left(v_{m}\right)=2$; if no such m exists, choose $m=n$. Suppose $m=\ell+1$; then $P=v_{1} v_{2} \ldots v_{\ell}$ and $Q=v_{m} v_{m+1} \ldots v_{n}$ are desired paths. Now suppose $m \neq \ell+1$ and let $I=\{\ell+1, \ell+2, \ldots, m-1\}$. Note that $\operatorname{deg}_{G}\left(v_{i}\right) \geq 3$ for all $i \in I$. Suppose there is a vertex v_{i} with $i \in I$ such that v_{i} is adjacent to v_{j} with $j \in I$ and $j \neq i \pm 1$. Without loss of generality, assume $j>i$. Then the subgraph of G induced by $v_{i} v_{i+1} \ldots v_{j}$ is 2 -connected and outerplanar with $v_{i} v_{j}$ on the outer face so by Lemma III.4, there is a degree two vertex v_{r} with $\ell+1 \leq r \leq m$. Because G is planar, v_{r} must also be degree two in G. This contradicts the choice of v_{ℓ} and v_{m} however, so no such v_{i} and v_{j} exist. Hence for all $i \in I, v_{i}$ has a neighbor v_{j} with either $j \geq m+1$ or $j \leq \ell-1$.

Suppose all vertices v_{i} with $i \in I$ have a neighbor v_{j} with $j \geq m+1$. Then let r be such that v_{r} is a neighbor of $v_{\ell+1}$ and $r \geq m+1$. By Lemma III. 4 there is a path $R=v_{r} v_{\ell+1} \ldots v_{t}$ where v_{t} is a degree two vertex with $t \geq m \geq k+1$ and R includes all vertices v_{i} with $\ell+1 \leq i \leq r$. Then $P=v_{1} v_{2} \ldots v_{\ell}$ and $Q=v_{n} v_{n-1} \ldots v_{r} \cup R$ are the desired paths. Symmetrically if all vertices v_{i} with $i \in I$ have a neighbor v_{j} with
$j \leq \ell-1$, then we can find two desired paths.

Otherwise there is an integer $r \leq m-2$ such that $r=\max \left\{i \in I: v_{i}\right.$ is adjacent to v_{j} with $\left.j \leq \ell-1\right\}$. Now since G is planar, for all $i \in I$ with $i \geq r+1, v_{i}$ is adjacent to a vertex v_{j} where $j \geq m+1$. Let p be such that v_{p} is adjacent to v_{r} and $p \leq \ell-1$. By Lemma III.4, there is a path $R=v_{p} v_{r} \ldots v_{s}$ where v_{s} is a degree two vertex with $s \leq k$ and R includes all vertices v_{i} with $p \leq i \leq r$. Now $v_{1} v_{2} \ldots v_{p-1} R$ is a desired path P. Symmetrically, take a neighbor v_{q} of v_{r+1} with $q \geq m+1$ and apply Lemma III. 4 again to find a desired path Q.

Corollary III.6. Let G be an xy-outerplanar graph with $|V(G)| \geq 3$. Then for some vertex t with $\operatorname{deg}_{G}(t)=2$, there exists a Hamilton path $x \ldots t$ in $G-y$.

Proof. Let $k=n-1$ in Corollary III. 5 and the result follows.

Chapter IV

HAMILTONICITY OF 3 -CONNECTED, PLANAR, $K_{2,5}$-MINOR-FREE GRAPHS

In proving the main result of this chapter, the following results concerning 3connectivity will be helpful. The first is a consequence of Theorem 7.2 in the paper by Halin.

Theorem IV. 1 (Halin [17]). Let G be a 3-connected graph with $|V(G)| \geq 5$. Then for every $v \in V(G)$ with $\operatorname{deg}(v)=3$, there is an edge e incident with v such that G / e is 3-connected.

Lemma IV.2. Let G be a 3-connected graph and suppose (H, K) is a 3-separation in G with $V(H) \cap V(G)=\{x, y, z\}$. Suppose $K^{\prime}=K-V(H)$ is nonempty and connected, each of x, y, and z is adjacent to a vertex of K^{\prime}, and H is 2-connected. Let G^{\prime} be the graph formed from G by contracting K^{\prime} to a single vertex. Then G^{\prime} is 3-connected. Furthermore, for every cycle Z^{\prime} in G^{\prime} there is a cycle Z in G with $|V(Z)| \geq\left|V\left(Z^{\prime}\right)\right|$.

Proof. Let v be the vertex in G^{\prime} formed from contracting K^{\prime}. We claim that every pair of vertices in G^{\prime} has three vertex-disjoint paths between them. By Menger's Theorem, it will follow that G^{\prime} is 3-connected. We consider five different types of pairs of vertices.

First suppose $w_{1}, w_{2} \in V(H)-\{x, y, z\}$; there are three internally disjoint paths from w_{1} to w_{2} in $G: P_{1}, P_{2}$, and P_{3}. If $V\left(P_{i}\right) \cap V\left(K^{\prime}\right)=\emptyset$ for $i=1,2,3$, then
P_{1}, P_{2}, and P_{3} are the desired paths in G^{\prime}. If $V\left(P_{i}\right) \cap V\left(K^{\prime}\right) \neq \emptyset$ for some i, then $\left|V\left(P_{i}\right) \cap\{x, y, z\}\right| \geq 2$ since $\{x, y, z\}$ separates K^{\prime} from H. Thus $V\left(P_{i}\right) \cap V\left(K^{\prime}\right) \neq \emptyset$ for at most one i. Suppose $V\left(P_{1}\right) \cap V\left(K^{\prime}\right) \neq \emptyset$. Then all vertices of $V\left(P_{1}\right) \cap V\left(K^{\prime}\right)$ are in a single subpath of P_{1} which we replace by v to form a new path P_{1}^{\prime}. Now P_{1}^{\prime}, P_{2}, and P_{3} are the desired paths in G^{\prime}.

Second consider $w_{1} \in V(H)-\{x, y, z\}$ and $w_{2} \in\{x, y, z\}$, say $w_{2}=x$. If there are not three internally disjoint paths between w_{1} and x in G^{\prime}, then there is a 2 -cut $\left\{u_{1}, u_{2}\right\}$ that separates w_{1} and x. Since there is no 2 -cut in G, one of u_{1} and u_{2} must be v, say $u_{2}=v$. Now, however, u_{1} is a cutvertex in H which is a contradiction since H is 2-connected. Hence there are three internally disjoint paths between w_{1} and x.

Third consider $w_{1}, w_{2} \in\{x, y, z\}$, say $w_{1}=x$ and $w_{2}=y$. Because H is 2 connected, there are two internally disjoint paths P_{1} and P_{2} from x to y in H. Take $P_{3}=x v y$. Then P_{1}, P_{2}, and P_{3} are the desired paths in G^{\prime}.

Fourth consider $w_{1} \in V(H)-\{x, y, z\}$ and v. For any $w_{2} \in V\left(K^{\prime}\right)$, there are three internally disjoint paths P_{1}, P_{2}, and P_{3} from w_{2} to w_{1} in G. Without loss of generality, say $x \in V\left(P_{1}\right), y \in V\left(P_{2}\right)$, and $z \in V\left(P_{3}\right)$. Form P_{1}^{\prime} from P_{1} by replacing the subpath $w_{2} \ldots x$ with $v x$, form P_{2}^{\prime} from P_{2} by replacing the subpath $w_{2} \ldots y$ with $v y$, and finally form P_{3}^{\prime} from P_{3} by replacing the subpath $w_{2} \ldots z$ with $v z$. Now $P_{1}^{\prime}, P_{2}^{\prime}$, and P_{3}^{\prime} are the desired paths in G^{\prime}.

Finally consider $w_{1} \in\{x, y, z\}$, say $w_{1}=x$, and v. By a consequence of Menger's Theorem, there are internally disjoint paths from $\{y, z\}$ to x in H, say $P_{1}=y \ldots x$ and $P_{2}=z \ldots x$. Then $P_{1}^{\prime}=v P_{1}, P_{2}^{\prime}=v P_{2}$, and $P_{3}=v x$ are the desired paths in G^{\prime}.

Let Z^{\prime} be a cycle in G^{\prime}. If $v x, v y, v z \notin E\left(Z^{\prime}\right)$, then Z^{\prime} is also a cycle in G. If
$\{v x, v y, v z\} \cap E\left(Z^{\prime}\right) \neq \emptyset$, then $\left|\{v x, v y, v z\} \cap E\left(Z^{\prime}\right)\right|=2$ and without loss of generality, say $v x, v y \in E\left(Z^{\prime}\right)$. Then form Z from Z^{\prime} by replacing the subpath $x v y$ with a path from x to y via K^{\prime}; such a path necessarily exists because K^{\prime} is connected and each of x, y, and z is adjacent to a vertex of K^{\prime}. Now $|V(Z)| \geq\left|V\left(Z^{\prime}\right)\right|$.

For a proper subgraph H of G, an H-bridge is a subgraph of G induced by one of the following: all edges of a component C of $G-V(H)$ together with all edges connecting C to H, or an edge $x y$ with $x, y \in V(H)$.

We now state and prove the main theorem:

Theorem IV.3. Let G be a 3-connected, planar, $K_{2,5}$-minor-free graph. Then G is Hamiltonian.

Theorem IV. 3 is proved by assuming G is not Hamiltonian, taking a longest cycle C in G and finding a contradiction with either a longer cycle or a $K_{2,5}$ minor.

Proof. Assume that G is not Hamiltonian and assume G is represented as a plane graph. Let C be a longest non-Hamilton cycle in G. Fix a forward direction on C that will be shown as clockwise in the figures. Denote by x^{+}the vertex directly after the vertex x on C and by x^{-}the vertex directly before x. Define $C[x, y]$ to be the forward subpath of C from x to y which includes x and y. If $x=y$ then $C[x, y]=\{x\}$. Define $C(x, y)=C[x, y]-\{x, y\}, C(x, y]=C[x, y]-x$, and $C[x, y)=C[x, y]-y$. Define $[x, y]=V(C[x, y])$ and define (x, y) etc. similarly. Define $G[x, y]$ to be the subgraph of G induced by $[x, y]$ and define $G(x, y)$ etc. similarly. We say a vertex z is between x and y if $z \in(x, y)$. For any subpath P of C, we have an $x-v$ jump out of P if x is an internal vertex of $P, v \in V(C)-V(P)$, and there is a path from x to
v in G which intersects C only at x and v. Because G is 3 -connected, there must be at least one jump out of $C[x, y]$ whenever x and y are not consecutive on C. A jump out of $[x, y]$ is understood to mean a jump out of $C[x, y]$.

Let D be a component of $G-V(C)$ with the most neighbors on C. Let $U=$ $\left\{u_{0}, u_{1}, \ldots, u_{k-1}\right\}$ be the neighbors of D along C in forward order. Because G is 3 connected, $k \geq 3$. Let $S_{i}=C\left[u_{i-1}, u_{i}\right]$ with subscripts taken modulo k. We call these special paths sectors and a jump out of S_{i} for any i is called a sector jump; note that sector jumps do not intersect D. Let $U_{i}=\left(u_{i}, u_{i+1}\right)$. If $U_{i}=\emptyset$ for some i, then there is a cycle longer than C : replace S_{i} with a path from u_{i-1} to u_{i} through D. Thus $U_{i} \neq \emptyset$ for all i and there is a sector jump out of every sector.

For a vertex $x \in V(C)$, define $\sigma(x)$ as follows: $\sigma(x)=i$ when $x \in U_{i}$ and $\sigma(x)=i+\frac{1}{2}$ when $x=u_{i}$. Define the length of a sector jump $x-y$, as $\min \{\mid \sigma(x)-$ $\sigma(y)|, k-|\sigma(x)-\sigma(y)|\}$.

Claim 1. For every sector jump $x-y$ of length greater than 1 , there is a sector jump $x_{1}-y_{1}$ of length 1 with $x_{1}, y_{1} \in[x, y]$ and another sector jump $x_{2}-y_{2}$ of length 1 with $x_{2}, y_{2} \in[y, x]$.

For any sector jump $u-v$, define the linear length as $|\sigma(u)-\sigma(v)|$. We claim that for any jump $x^{\prime}-y^{\prime}$ of linear length $\ell^{\prime}>1$, there is a jump $x^{\prime \prime}-y^{\prime \prime}$ with $x^{\prime \prime}, y^{\prime \prime} \in\left[x^{\prime}, y^{\prime}\right]$ such that $x^{\prime \prime}-y^{\prime \prime}$ has linear length $\ell^{\prime \prime}<\ell^{\prime}$. There is a sector U_{j} such that $U_{j} \subset\left(x^{\prime}, y^{\prime}\right)$. Let $x^{\prime \prime}-y^{\prime \prime}$ be any jump out of U_{j}. If $x^{\prime \prime}-y^{\prime \prime}$ does not intersect $x^{\prime}-y^{\prime}$, then necessarily by planarity, $x^{\prime \prime}-y^{\prime \prime}$ has linear length $\ell^{\prime \prime}<\ell^{\prime}$. If $x^{\prime \prime}-y^{\prime \prime}$ intersects $x^{\prime}-y^{\prime}$, then $x^{\prime \prime}-y^{\prime}$ is a jump with linear length strictly less than ℓ^{\prime} and we take this one. We may repeat
this process until we reach a jump $x^{*}-y^{*}$ with $x^{*}, y^{*} \in\left[x^{\prime}, y^{\prime}\right]$ of linear length 1 , and hence also length 1 .

If we relabel $\left\{u_{0}, u_{1}, \ldots, u_{k-1}\right\}$ keeping the same cyclic order so that $x \in U_{0}$ and repeatedly apply the previous paragraph beginning with the jump $x-y$, we obtain the required jump $x_{1}-y_{1}$. Similarly, relabeling so that $y \in U_{0}$ yields the jump $x_{2}-y_{2}$. This completes the proof of Claim 1.

Claim 2. $k \leq 3$.

Assume that $k \geq 4$. If there is a bridge of C with attachments in the interiors of four or more sectors, then there is a $K_{2,5}$ minor similar to the one shown in Figure 4.1. When $k \geq 5$, there can be a bridge with attachments in the interior of three sectors that are not all in a row; then there is a $K_{2,5}$ minor similar to the one shown in Figure 4.2. If there are two bridges each with attachments in the interiors of three consecutive sectors, then there is a $K_{2,5}$ minor as shown in Figure 4.3.

Now suppose there is one bridge B with attachments in the interiors of three consecutive sectors, say $s_{1} \in S_{1}, s_{2} \in S_{2}$, and $s_{3} \in S_{3}$. Then since $k \geq 4, s_{1}-s_{3}$ is a jump of length greater than 1 . Therefore by Claim 1 , there is a sector jump $x-y$ of length 1 with endpoints between s_{3} and s_{1} along C, and with an endpoint in at most one of S_{1} or S_{3}. Now there is a $K_{2,5}$ minor as shown in Figure 4.4. Now all bridges have attachments in the interiors of at most two sectors and therefore jumps of length 1 cannot intersect jumps of length at least 2 , or any other jump of length 1 whose ends are not in the same two sectors.

Figure 4.1

Figure 4.2

Figure 4.3

Case 2.1. There is a jump of length at least 2.

Let $x-y$ be a jump of length ≥ 2. Then by Claim 1 , there is a sector jump of length $1, x_{1}-y_{1}$, between x and y and a sector jump of length $1, x_{2}-y_{2}$, between y and x. Let $x, x_{1}, y_{1}, y, y_{2}, x_{2}$ appear around C in that forward order. If x, x_{1}, and x_{2} are all in distinct sectors, then there is a $K_{2,5}$ minor as shown in Figure 4.5. If x, x_{1}, and x_{2} are all in the same sector, then there is a minor symmetric to the one shown in Figure 4.5; x, x_{1}, and x_{2} switch roles with y, y_{1}, and y_{2}. If exactly two of x, x_{1}, and x_{2} are in the same sector, say x and x_{1}, then we have the situation shown in Figure 4.6.

When $k \geq 5$, at least one of the vertices labeled u_{i}, u_{j}, and u_{m} must be present. With u_{i}, there is a $K_{2,5}$ minor as shown in Figure 4.7. With u_{m}, there is a $K_{2,5}$ minor symmetric to the one in Figure 4.7; $x_{1}-y_{1}$ and $x_{2}-y_{2}$ switch roles and u_{0}, u_{m} play the roles of u_{i}, u_{2}. With u_{j}, there is a $K_{2,5}$ minor as shown in Figure 4.8.

Figure 4.4

Figure 4.5

Figure 4.6

Now $k=4$, so $x-y$ is a sector jump of length two with $x \in U_{0}$ and $y \in U_{2}$. Then by Claim 1 there are sector jumps of length 1 out of both U_{1} and U_{3}, which cannot intersect the jump $x-y$. If these jumps both jump into U_{0} or symmetrically U_{2}, then there is a $K_{2,5}$ minor as shown in Figure 4.9. Hence without loss of generality, there must be a $U_{1}-U_{0}$ jump and a $U_{3}-U_{2}$ jump. Let $x_{1}-x_{0}$ be the $U_{1}-U_{0}$ jump with x_{0} closest to x (and possibly equal to x) and x_{1} closest to u_{1}. Let $x_{3}-x_{2}$ be the $U_{3}-U_{2}$ with x_{2} closest to y (and possibly equal to y) and x_{3} closest to u_{3}. If $\left(x_{0}, u_{0}\right)=\emptyset$ and $\left(x_{1}, u_{1}\right)=\emptyset$, then there is a longer cycle as in Figure 4.10. If $\left(x_{0}, u_{0}\right) \neq \emptyset$, then there is a $K_{2,5}$ minor as in Figure 4.11; hence $\left(x_{1}, u_{1}\right) \neq \emptyset$. Let $r-r^{\prime}$ be a jump out of $C\left[x_{1}, u_{1}\right]$. Because of the choice of $x_{1}-x_{0}, r^{\prime} \notin\left[x, x_{0}\right]$ and $r-r^{\prime}$ does not intersect $x_{1}-x_{0}$. Hence there are two options for $r^{\prime}: r^{\prime} \in U_{2}$ or $r^{\prime} \in\left[u_{0}, x_{1}\right)$. If $r^{\prime} \in U_{2}$, then there are three sector jumps of length 1 and a $K_{2,5}$ minor similar to the one shown in Figure 4.12 exists. Thus $r^{\prime} \in\left[u_{0}, x_{1}\right)$. By symmetric arguments, there is a jump $s-s^{\prime}$ with $s \in\left(x_{3}, u_{3}\right)$ and $s^{\prime} \in\left[u_{2}, x_{3}\right)$. Now there is a $K_{2,5}$ minor as shown in Figure 4.13; in the figure, $r^{\prime} \neq u_{0}$ and $s^{\prime} \neq u_{2}$ but a similar minor exists if $r^{\prime}=u_{0}$ or $s^{\prime}=u_{2}$.

Case 2.2. All jumps have length at most $1 \frac{1}{2}$.
Assume first that $k \geq 5$. Since all sector jumps have length at most $1 \frac{1}{2}$, by Claim 1
we can conclude there is a sector jump of length 1 out of every sector. Hence there are at least three sector jumps of length 1 no two of which have endpoints in the same two sectors and there is a $K_{2,5}$ minor similar to the one shown in Figure 4.12.

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.12

Figure 4.11

Figure 4.13

Now $k=4$. Without loss of generality, assume there are sector jumps $S_{0}-S_{1}$ and $S_{2}-S_{3}$. If there is a sector jump $S_{1}-S_{2}$ or $S_{3}-S_{0}$, then there is a $K_{2,5}$ minor similar
to the one shown in Figure 4.12, so there are no such jumps. Let $x_{0}-x_{1}$ be the sector jump $S_{0}-S_{1}$ such that x_{0} is closest to u_{3} and x_{1} is closest to u_{1}. Similarly, let $x_{2}-x_{3}$ be the sector jump $S_{2}-S_{3}$ such that x_{2} is closest to u_{1} and x_{3} is closest to u_{3}. If $\left(x_{0}, u_{0}\right)=\emptyset$ and $\left(x_{1}, u_{1}\right)=\emptyset$, then there is a longer cycle similar to the one shown in Figure 4.10. There are three additional possible longer cycles symmetric to the one shown and hence we consider four pairs of sets of vertices along $C: A_{0}=\left(x_{0}, u_{0}\right)$ and $B_{1}=\left(x_{1}, u_{1}\right), B_{0}=\left(u_{3}, x_{0}\right)$ and $A_{1}=\left(u_{0}, x_{1}\right), B_{2}=\left(u_{1}, x_{2}\right)$ and $A_{3}=\left(u_{2}, x_{3}\right)$, and $A_{2}=\left(x_{2}, u_{2}\right)$ and $B_{3}=\left(x_{3}, u_{3}\right)$. At least one set from each pair must be nonempty to avoid a longer cycle. If $A_{i} \neq \emptyset$ for at least three i, then there is a $K_{2,5}$ minor as shown in Figure 4.14 or symmetric to this one. Thus $A_{i} \neq \emptyset$ for at most two i and therefore $B_{j} \neq \emptyset$ for at least two j. Note that because of the choice of $x_{0}-x_{1}$, no jump out of B_{0} or B_{1} can intersect $x_{0}-x_{1}$ and similarly because of the choice of $x_{2}-x_{3}$, no jump out of B_{2} or B_{3} can intersect $x_{2}-x_{3}$.

If there is a $K_{2,2}$ minor in $G\left[u_{3}, u_{1}\right]$ rooted at u_{3} and u_{1} and another $K_{2,2}$ minor in $G\left[u_{1}, u_{3}\right]$ rooted at u_{1} and u_{3}, then there is a standard $K_{2,5}$ minor $\left(R_{1}, R_{2} ; S\right)$ in G : S consists of a vertex of D, two vertices reachable by both u_{3} and u_{1} in $G\left[u_{3}, u_{1}\right]$ and two vertices reachable by both u_{3} and u_{1} in $G\left[u_{1}, u_{3}\right]$. Any jump leaving one of the A_{i} or B_{j} that is inside C creates such a rooted $K_{2,2}$ minor. Hence if there is any such inside jump in either S_{0} or S_{1}, then there cannot be such an inside jump in S_{2} or S_{3} and vice versa. Let a bad pair of jumps be two inside jumps that create two rooted $K_{2,2}$ minors and hence a $K_{2,5}$ minor as just described.

Figure 4.14

Figure 4.15

Figure 4.16

Suppose there are sector jumps of length $1 \frac{1}{2}$ out of two nonempty B_{j}. Then by planarity of G, up to symmetry there are two options for the two jumps: $r_{1}-u_{1}$ and $r_{2}-u_{1}$ with $r_{1} \in B_{0}$ and $r_{2} \in B_{3}$ or $r_{1}-u_{1}$ and $r_{2}-u_{3}$ with $r_{1} \in B_{0}$ and $r_{2} \in B_{2}$. First suppose the former. Then there is a $K_{2,5}$ minor as shown in Figure 4.15. Next suppose the latter. Then if both B_{1} and B_{3} are nonempty, by planarity and the choice of $x_{0}-x_{1}$ and $x_{2}-x_{3}$, each must have an inside jump out of them; then there is a bad pair of jumps. Hence at most one is nonempty and therefore one of A_{0} and A_{2} is nonempty. Without loss of generality, suppose $A_{0} \neq \emptyset$; then there is a $K_{2,5}$ minor as shown in Figure 4.16. Now at most one B_{j} has jumps of length $1 \frac{1}{2}$ out of it.

Since $B_{j} \neq \emptyset$ for at least two j and at most one B_{j} has jumps of length $1 \frac{1}{2}$ out of it, some nonempty B_{j}, say B_{0}, has no jump of length $1 \frac{1}{2}$, and hence has an inside jump. Observe now that if $G\left[u_{3}, x_{0}\right]$ contains a $K_{2,2}$ minor rooted at u_{3} and x_{0}, then there is a $K_{2,5}$ minor as shown in Figure 4.17.

Consider the structure of the A_{i}. If A_{0} is empty, then all jumps from B_{0} must to go u_{0}. If A_{1} is also empty, then apply Corollary III. 6 to $G\left[u_{3}, x_{0}\right]$ to get a path $P=x_{0} \ldots t$ such that $V(P)=\left(u_{3}, x_{0}\right]$ and t is a degree two vertex in $G\left[u_{3}, x_{0}\right]$. Because
all jumps from B_{0} go to u_{0}, t must be adjacent to u_{0}. Now using P, there is a longer cycle shown in Figure 4.18. The thick shaded line between u_{3} and x_{0} in the figure represents the path P. Hence either A_{0} or A_{1} is nonempty.

Figure 4.17

Figure 4.18

Figure 4.19

Because at most two A_{i} are nonempty and at least one of A_{0} and A_{1} is nonempty, at most one of A_{2} and A_{3} is nonempty. Therefore at least one of B_{2} and B_{3} is nonempty. Because there is an inside jump in S_{0}, there cannot be an inside jump in S_{2} or S_{3} else there would be a bad pair of jumps. Hence there must be a sector jump of length $1 \frac{1}{2}$ out of either B_{2} or B_{3}.

Suppose first there is a sector jump $r_{3}-u_{1}$ with $r_{3} \in B_{3}$. There cannot be an inside jump out of B_{2} and there cannot be another jump of length $1 \frac{1}{2}$ out of B_{2} hence $B_{2}=\emptyset$ and therefore $A_{3} \neq \emptyset$. If $A_{0} \neq \emptyset$, then there is a $K_{2,5}$ minor as shown in Figure 4.19. If $A_{1} \neq \emptyset$, then there is a $K_{2,5}$ minor as shown in Figure 4.20.

Next suppose there is a sector jump $r_{2}-u_{3}$ with $r_{2} \in B_{2}$. Then since the minors in Figures 4.19 and 4.20 do not use the edge $r_{0} u_{0}$, symmetric minors exist in this situation when either A_{0} or A_{1} is nonempty. This ends the proof of Claim 2.

Henceforth we assume $k=3$.

Figure 4.20

Figure 4.21

Claim 3. Without loss of generality, we may assume all bridges of C other than the bridge containing D are single edges, and D is a single degree three vertex.

Let $D=D_{0}, D_{1}, D_{2}, \ldots, D_{\alpha}$ be the components of $G-V(C)$ and denote by D_{i}^{+}the bridge of C corresponding to D_{i} for each $i, 0 \leq i \leq \alpha$. Because G is 3 -connected and D is a component of $G-V(C)$ with the most neighbors along $C,\left|V\left(D_{i}^{+}\right) \cap V(C)\right|=3$ for all i. Let $G=G_{0}$ and let $H_{0}=G_{0}-V\left(D_{0}\right)$. If H_{0} is not 2-connected, then there is a cutvertex u. Now $u \notin V(C)$ and $V(C)$ must be entirely in one component of $H_{0}-u$. Since the attachment vertices of D_{0}^{+}are all on C, vertices of D_{0}^{+}are only adjacent to vertices on one side of the cut. Hence u is also a cutvertex in $G_{0}=G$, which is a contradiction. Thus H_{0} is 2-connected. Now let $G_{1}=G_{0} / E\left(D_{0}\right)$. Then by Lemma IV.2, G_{1} is 3 -connected.

Repeat this process for $i=0,1, \ldots, \alpha$. For each i, form G_{i+1} from G_{i} by contracting D_{i}^{+}to a single vertex d_{i}. Let $G^{\prime}=G_{\alpha+1}$ which is 3 -connected. At each step, apply the second part of Lemma IV. 2 to conclude that any cycle Z^{\prime} in G^{\prime} corresponds to a cycle Z in G with $|V(Z)| \geq\left|V\left(Z^{\prime}\right)\right|$.

By Theorem IV.1, there is an edge e_{1} incident with d_{1} such that the graph formed
from G^{\prime} by contracting e_{1} is 3 -connected. Let G_{1}^{\prime} be this graph. Any cycle $Z^{\prime \prime}$ in G_{1}^{\prime} corresponds to a cycle Z^{\prime} in G^{\prime} with $\left|V\left(Z^{\prime}\right)\right| \geq\left|V\left(Z^{\prime \prime}\right)\right|$. To see this, let x, y, and z be the neighbors of d_{1} in G^{\prime} and suppose $e_{1}=d_{1} z$. Call the vertex that results from the contraction z. If $x z, y z \notin E\left(Z^{\prime \prime}\right)$, then take $Z^{\prime}=Z^{\prime \prime}$. If $\left|\{x z, y z\} \cap E\left(Z^{\prime \prime}\right)\right|=1$, say $x z \in E\left(Z^{\prime \prime}\right)$, form Z^{\prime} from $Z^{\prime \prime}$ by replacing $x z$ with the path $x d_{1} z$. If $x z, y z \in$ $E\left(Z^{\prime \prime}\right)$, form Z^{\prime} from $Z^{\prime \prime}$ by replacing the subpath $x z y$ with $x d_{1} y$. Note in all cases, $\left|V\left(Z^{\prime}\right)\right| \geq\left|V\left(Z^{\prime \prime}\right)\right|$. Apply Theorem IV. 1 repeatedly to find contractible edges e_{i+1} incident with d_{i+1}, and continue this process of forming new graphs by contracting these edges. For $1 \leq i \leq \alpha-1$, let G_{i+1}^{\prime} be the graph formed from G_{i}^{\prime} by contracting the edge e_{i+1} incident with d_{i+1}. Now any cycle W in G_{α}^{\prime} corresponds to a cycle Z^{\prime} in G^{\prime} and hence a cycle Z in G with $|V(Z)| \geq\left|V\left(Z^{\prime}\right)\right| \geq|V(W)|$. Furthermore, since G_{α}^{\prime} is a minor of G, any $K_{2,5}$ minor in G_{α}^{\prime} corresponds to a $K_{2,5}$ minor in G. Thus without loss of generality, take $G=G_{\alpha}^{\prime}$; this proves Claim 3 .

We are now in the general situation an example of which is shown in Figure 4.22. There are three sectors labeled S_{0}, S_{1}, and S_{2}. Let $t_{0}-t_{1}$ be the $S_{0}-S_{1}$ sector jump (if any $S_{0}-S_{1}$ sector jump exists) with t_{0} closest to u_{2} and t_{1} closest to u_{1}. Similarly let $t_{2}=t_{3}$ be the $S_{1}-S_{2}$ sector jump (if any $S_{1}-S_{2}$ sector jump exists) with t_{2} closest to u_{0} and t_{3} closest to u_{2}. Use $t_{4}-t_{5}$ for $S_{2}-S_{0}$ sector jumps. Because every sector must have a jump out of it, there are at least two sector jumps; without loss of generality, assume there are sector jumps $t_{0}-t_{1}$ and $t_{2}-t_{3}$. Define $X_{0}=\left(t_{0}, u_{0}\right)$, $X_{1}=\left(u_{0}, t_{1}\right), X_{2}=\left(t_{2}, u_{1}\right), X_{3}=\left(u_{1}, t_{3}\right), X_{4}=\left(t_{4}, u_{2}\right)$, and $X_{5}=\left(u_{2}, t_{5}\right)$. Note these sets are not defined when the necessary t_{i} vertices do not exist.

Figure 4.22

Figure 4.23

Figure 4.24

Claim 4. There are no sector jumps $u_{2}-x$ where $x \in\left(t_{1}, t_{2}\right)$.

Let $u_{2}-x$ be a sector jump with $x \in\left(t_{1}, t_{2}\right)$. If $\left(u_{0}, t_{1}\right) \neq \emptyset$ and $\left(t_{2}, u_{1}\right) \neq \emptyset$, then there is a $K_{2,5}$ minor as shown in Figure 4.23 . Now at least one of $\left(u_{0}, t_{1}\right)$ and $\left(t_{2}, u_{1}\right)$ is empty and without loss of generality, assume $\left(u_{0}, t_{1}\right)=\emptyset$. If there is a $K_{2,2}$ minor in $G\left[u_{2}, u_{0}\right]$ rooted at u_{2} and u_{0}, then there is a $K_{2,5}$ minor as shown in Figure 4.24. Now all jumps out of $\left(u_{2}, u_{0}\right)$ must go to t_{1}. Apply Corollary III. 6 to $G\left[u_{2}, u_{0}\right]$ to find a path $P=u_{0} \ldots t$ such that $V(P)=\left(u_{2}, u_{0}\right]$ and t is a degree two vertex in $G\left[u_{2}, u_{0}\right]$ and hence must be adjacent to t_{1}. Now using P, there is a longer cycle as shown in Figure 4.25 . This completes the proof of Claim 4.

Figure 4.25

Figure 4.26

Claim 5. Either $t_{0} \neq u_{0}^{-}$or $t_{3} \neq u_{1}^{+} \quad\left(X_{0}\right.$ and X_{3} cannot both be empty).

Assume that $t_{0}=u_{0}^{-}$and $t_{3}=u_{1}^{+}$. Consider the representation of the graph shown in Figure 4.26 and focus on the portion of the graph in the shaded region $R=G\left[t_{0}, t_{3}\right]$. If either $u_{0} u_{1}$ or $t_{0} t_{3}$ exist, remove them. The graph is still 3 -connected because u_{0} and u_{1} and t_{0} and t_{3} each have three vertex disjoint paths between them without these edges as can be seen in the figure and hence we have not created a 2-cut. Let P be the path from u_{0} to u_{1} along the outer face of R and Q be the path from t_{0} to t_{3} along the outer face of R; note all vertices of R are enclosed by these paths together with $u_{0} t_{0}$ and $u_{1} t_{3} . P$ and Q are both paths, without repeated vertices, because any repeated vertex would be a cutvertex in G but G is 3-connected. Additionally, $|V(P)| \geq 3$ because we have removed the edge $u_{0} u_{1}$ if it existed and $|V(Q)| \geq 3$ because $t_{1}, t_{2} \in V(Q)$ (and possibly $t_{1}=t_{2}$).

The paths P and Q may intersect but only in limited ways. If P and Q intersect at two non-consecutive vertices on C, then using Claim 4 these two vertices would form a 2-cut in G. Hence there are three possibilities for P and $Q: V(P) \cap V(Q)=\left\{x, x^{+}\right\}$, $V(P) \cap V(Q)=\{x\}$, or $V(P) \cap V(Q)=\emptyset$.

First assume $V(P) \cap V(Q)=\left\{x, x^{+}\right\}$. We will show that there is a longer cycle as shown in Figure 4.27. Let $R_{1}=G\left[t_{0}, x\right]$ and $R_{2}=G\left[x^{+}, t_{3}\right]$. Note that since $t_{0} t_{1}, t_{2} t_{3} \in E(G), t_{1} \in V\left(R_{1}\right)$ and $t_{2} \in V\left(R_{2}\right)$. We will construct two paths P_{1} and Q_{1} such that $P_{1}=u_{0} \ldots x$ and $Q_{1}=t_{0} \ldots x, V\left(P_{1} \cup Q_{1}\right)=V\left(R_{1}\right)$, and $V\left(P_{1}\right) \cap V\left(Q_{1}\right)=x$. Represent the portion of P in R_{1} as $\left(u_{0}=p_{0}\right) p_{1} \ldots p_{r-1}\left(p_{r}=x\right)$ and similarly represent the part of Q in R_{1} as $\left(t_{0}=q_{0}\right) q_{1} \ldots q_{s-1}\left(q_{s}=x\right)$. If $s=1$ (i.e. $\left.t_{0} x \in E(G)\right)$, then let $P_{1}=t_{0} x$ and $Q_{1}=C\left[u_{0}, x\right]$. Hence assume $s \geq 2$.

Now let $P_{1}=u_{0} \ldots x$ and $Q_{1}=t_{0} \ldots x$ be paths in R_{1} disjoint except at x, such
that $\left|V\left(Q_{1}\right)\right| \geq 3$ and $t_{1} \in V\left(Q_{1}\right)$. Such paths necessarily exist since we can take $P_{1}=p_{0} \ldots p_{r}$ and $Q_{1}=q_{0} \ldots q_{s}$. Additionally assume $\left|V\left(P_{1}\right) \cup V\left(Q_{1}\right)\right|$ is maximum. Suppose $V\left(P_{1} \cup Q_{1}\right) \neq V\left(R_{1}\right)$ and let K be a component of $R_{1}-V\left(P_{1} \cup Q_{1}\right)$. Because G is 3 -connected, K must have three neighbors. By planarity of G, K must have three neighbors in $V\left(P_{1} \cup Q_{1}\right) \cup\left\{u_{2}\right\}$. By Claim 4, there is no sector jump from u_{2} to any vertex of R except possibly t_{1} or t_{2} and $t_{1}, t_{2} \notin V(K)$ so K has three neighbors in $V\left(P_{1}\right) \cup V\left(Q_{1}\right)$. If either t_{1} or t_{2} is in K, while they may be adjacent to u_{2}, they each have three additional neighbors in R, hence K must have three neighbors in $V\left(P_{1} \cup Q_{1}\right)$. Furthermore, K must have two neighbors in one of P_{1} or Q_{1}. Suppose K is adjacent to w_{1} and w_{2} on either P_{1} or Q_{1}. If w_{1} and w_{2} are consecutive on either P_{1} or Q_{1}, then there is a longer path P_{1} or Q_{1} : replace the edge $w_{1} w_{2}$ with a path from w_{1} to w_{2} through K. Hence w_{1} and w_{2} are not consecutive.

Suppose $w_{1}, w_{2} \in V\left(Q_{1}\right)$ and let w_{3} be a vertex between them along Q_{1}. The vertex w_{3} together with a vertex from K form a $K_{2,2}$ minor in R_{1} rooted at t_{0} and x and hence there is a $K_{2,5}$ minor in G as shown in Figure 4.28. Now suppose $w_{1}, w_{2} \in V\left(P_{1}\right)$ and let w_{3} again be a vertex between them. The vertex w_{3} together with a vertex from K form a $K_{2,2}$ minor in R_{1} rooted at u_{0} and x. Now take an interior vertex of Q_{1}, which exists because $\left|V\left(Q_{1}\right)\right| \geq 3$, to form a $K_{2,3}$ minor in R_{1} rooted at x and t_{0} and hence a $K_{2,5}$ minor in G similar to the one shown in Figure 4.28. Thus no such component K exists, $V\left(P_{1} \cup Q_{1}\right)=V\left(R_{1}\right)$, and P_{1} and Q_{1} are desired paths in R_{1}.

By symmetric arguments, there is a path $P_{2}=u_{1} \ldots x^{+}$in R_{2} and a path $Q_{2}=$ $t_{3} \ldots x^{+}$in R_{2} such that $V\left(P_{2} \cup Q_{2}\right)=V\left(R_{2}\right)$ and $V\left(P_{2}\right) \cap V\left(Q_{2}\right)=x^{+}$and hence there
is a longer cycle as shown in Figure 4.27.

Figure 4.27

Figure 4.28

Figure 4.29

Now assume $V(P) \cap V(Q)=\{x\}$. We will show that this case can be reduced to the previous one in which $V(P) \cap V(Q)=\left\{x, x^{+}\right\}$. First assume $x^{+}=u_{1}$. Then there is a longer cycle similar to the one shown in Figure 4.27: the subpath from u_{1} to t_{3} through x^{+}becomes the edge $u_{1} t_{3}$ since $u_{1}=x^{+}$. Now let $R_{1}=G\left[t_{0}, x\right]$ and $R_{2}=G\left[x^{+}, t_{3}\right]$. Then $t_{1} \in V\left(R_{1}\right)$ and $t_{2} \in V\left(R_{2}\right) \cup\{x\}$. We claim there are internally vertex-disjoint paths $x^{+} \ldots u_{1}$ and $x^{+} \ldots t_{3}$ in R_{2}, namely segments of the outer face of R_{2}. Suppose not and assume v is the first intersection vertex along C from x^{+}of the two paths along the outer face of R_{2}. Since t_{2} is adjacent to $t_{3}, t_{2} \notin\{x, v\}$; also $t_{2} \notin V\left(R_{2}\right)$ so by Claim 4, $\{v, x\}$ is a 2-cut in G separating x^{+}and $C(v, x)$. Delete all edges $x z$ where $z \in V\left(R_{2}\right)-\left\{x^{+}\right\}$, and now we can apply the arguments of the previous case with $V(P) \cap V(Q)=\left\{x, x^{+}\right\}$. (If $t_{2}=x$, we drop the condition $t_{2} \in V\left(Q_{2}\right)$ which just ensures that any component K of $R_{2}-V\left(P_{2} \cup Q_{2}\right)$ does not have a jump from u_{2}.)

Finally suppose $V(P) \cap V(Q)=\emptyset$. Let P^{\prime} and Q^{\prime} be disjoint paths in R from u_{0} to u_{1} and from t_{0} to t_{3} respectively such that $\left|V\left(P^{\prime}\right)\right|,\left|V\left(Q^{\prime}\right)\right| \geq 3$. Such paths necessarily exist because we can take $P^{\prime}=P$ and $Q^{\prime}=Q$. Assume additionally
that $\left|V\left(P^{\prime}\right) \cup V\left(Q^{\prime}\right)\right|$ is maximum. Suppose $V\left(P^{\prime}\right) \cup V\left(Q^{\prime}\right) \neq V(R)$ and let K be a component of $R-V\left(P^{\prime} \cup Q^{\prime}\right)$. Because G is 3-connected, K has three neighbors. Furthermore, because G is planar, K must have three neighbors in $V\left(P^{\prime} \cup Q^{\prime}\right) \cup\left\{u_{2}\right\}$. By Claim 4, there are no jumps from u_{2} to any vertex of R except possibly t_{1} and t_{2}, and $t_{1}, t_{2} \notin K$. Hence K must have three neighbors in $V\left(P^{\prime} \cup Q^{\prime}\right)$. Without loss of generality, suppose K is adjacent to w_{1} and w_{2} where $w_{1}, w_{2} \in V\left(P^{\prime}\right)$. If w_{1} and w_{2} are consecutive along P^{\prime}, then there is a path longer than P^{\prime} from u_{0} to u_{1} : replace $w_{1} w_{2}$ on P^{\prime} with a path from w_{1} to w_{2} through K. Hence w_{1} and w_{2} are not consecutive and there is a vertex w_{3} between them on P^{\prime}. Now there is a $K_{2,5}$ minor in G as shown in Figure 4.29; the vertex on Q^{\prime} is necessarily there because $\left|V\left(Q^{\prime}\right)\right| \geq 3$. Hence $V\left(P^{\prime}\right) \cup V\left(Q^{\prime}\right)=V(R)$.

Now we construct a longer cycle using P^{\prime} and Q^{\prime}. If $\left(u_{2}, t_{0}\right)=\emptyset$ or symmetrically $\left(t_{3}, u_{2}\right)=\emptyset$, then there is a longer cycle as shown in Figure 4.30; hence $\left(u_{2}, t_{0}\right) \neq \emptyset$ and $\left(t_{3}, u_{2}\right) \neq \emptyset$. If there is a $K_{2,2}$ minor in $G\left[u_{2}, t_{0}\right]$ rooted at u_{2} and t_{0}, then there is a $K_{2,5}$ minor as shown in Figure 4.31. Suppose that all jumps out of $\left[u_{2}, t_{0}\right]$ go to u_{0}. Then apply Corollary III. 6 to $G\left[u_{2}, t_{0}\right]$ to find a path $P=t_{0} \ldots t$ such that $V(P)=\left(u_{2}, t_{0}\right]$ and t is a degree two vertex in $G\left(u_{2}, t_{0}\right)$ and hence must be adjacent to u_{0} by our assumption. Now using P there is a longer cycle similar to the one shown in Figure 4.30: replace $t_{0} u_{0}$ by $P \cup t u_{0}$. Now all jumps out of $\left[u_{2}, t_{0}\right]$ do not all go to u_{0} and there is a jump $x_{1}-x_{2}$ with $x_{2} \in\left[t_{3}, u_{2}\right)$; without loss of generality, let $x_{1}-x_{2}$ be the $\left[u_{2}, t_{0}\right]-\left[t_{3}, u_{2}\right)$ jump with x_{1} closest to but not equal to t_{0} and x_{2} closest to (and possibly equal to) t_{3}.

If there is a jump out of $\left[u_{2}, x_{1}\right]$ to $\left(x_{1}, u_{0}\right]$, then there is a $K_{2,5}$ minor as shown
in Figure 4.32. A symmetric minor exists if there is a jump out of $\left[x_{2}, u_{2}\right]$ to $\left[u_{1}, x_{2}\right.$). Hence the only vertex that is the endpoint of a jump out of $C\left[x_{2}, x_{1}\right]$ is u_{2}. If there is a $K_{2,2}$ minor in $G\left[x_{2}, x_{1}\right]$ rooted at x_{2} and x_{1}, then there is a $K_{2,5}$ minor as shown in Figure 4.31. Furthermore, $G\left[x_{2}, x_{1}\right]$ is 2-connected because it is a circuit graph in a 3 -connected graph. Now apply Lemma III. 4 to $G\left[x_{2}, x_{1}\right]$ to find a path $P_{1}=x_{2} x_{1} \ldots t$ where $V\left(P_{1}\right)=\left[x_{2}, x_{1}\right]$ and t is a degree two vertex in $G\left(x_{2}, x_{1}\right)$ and hence must be u_{2}. If there is a $K_{2,2}$ minor in $G\left[x_{1}, t_{0}\right]$ rooted at x_{1} and t_{0}, then there is a $K_{2,5}$ minor similar to the one shown in Figure 4.31. Now apply Corollary III. 6 to $G\left[x_{1}, t_{0}\right]$ to find a path $P_{2}=t_{0} \ldots s$ where $V\left(P_{2}\right)=\left(x_{1}, t_{0}\right]$ and s is a degree two vertex in $G\left[x_{1}, t_{0}\right]$ and hence must be adjacent to u_{0}. Using P_{1} and P_{2}, there is a longer cycle as shown in Figure 4.33.

Figure 4.30

Figure 4.32

Figure 4.31

Figure 4.33

Figure 4.34

This completes the proof of Claim 5.

Claim 6. Either $t_{1}=u_{0}^{+}$or $t_{2}=u_{1}^{-}$(at least one of X_{1} and X_{2} is empty).

Assume that $t_{1} \neq u_{0}^{+}$and $t_{2} \neq u_{1}^{-}$. By Claim 5, either $t_{0} \neq u_{0}^{-}$or $t_{3} \neq u_{1}^{+}$. Without loss of generality, suppose $t_{0} \neq u_{0}^{-}$. Then there is a $K_{2,5}$ minor shown in Figure 4.34.

Claim 7. At most two pairs of sectors have jumps between them.

Assume that there are three sector jumps $t_{0}-t_{1}, t_{2}-t_{3}$, and $t_{4}-t_{5}$ where possibly $t_{0}=t_{5}, t_{1}=t_{2}$, or $t_{3}=t_{4}$. By Claim $5, X_{0}$ and X_{3} cannot both be empty and symmetrically, X_{1} and X_{4} cannot both be empty and X_{2} and X_{5} cannot both be empty. Hence $X_{i} \neq \emptyset$ for at least three i. By Claim 6, at least one of X_{1} and X_{2} is empty and symmetrically, at least one of X_{3} and X_{4} is empty and at least one of X_{5} and X_{0} is empty. Hence $X_{i} \neq \emptyset$ for exactly three i. Furthermore, the nonempty X_{i} must be rotationally symmetric about C. Without loss of generality, suppose X_{0}, X_{2}, and X_{4} are nonempty and X_{1}, X_{3}, and X_{5} are empty.

Figure 4.35

Figure 4.36

Figure 4.37

If $t_{1}=t_{2}$, then there is a longer cycle as shown in Figure 4.36. A symmetric longer
cycle exists if $t_{3}=t_{4}$ or if $t_{5}=t_{0}$ hence these vertices must be distinct. Now consider a jump $r_{0}-r_{0}^{\prime}$ out of X_{0}. There are three options for $r_{0}^{\prime}: r_{0}^{\prime} \in\left[t_{5}, t_{0}\right), r_{0}^{\prime}=t_{1}$, or $r_{0}^{\prime}=u_{2}$. Suppose first that $r_{0}^{\prime} \in\left[t_{5}, t_{0}\right)$. Since $t_{1} \neq t_{2}$, there is a $K_{2,5}$ minor as shown in Figure 4.37.

Figure 4.38

Figure 4.39

Figure 4.40

Now r_{0}^{\prime} is either t_{1} or u_{2} and symmetrically for a jump $r_{2}-r_{2}^{\prime}$ out of X_{2}, r_{2}^{\prime} is either u_{0} or t_{3} and for a jump $r_{4}-r_{4}^{\prime}$ out of X_{4}, r_{4}^{\prime} is either u_{1} or t_{5}. If at least two of $r_{0}^{\prime}, r_{2}^{\prime}$ and r_{4}^{\prime} are u_{i}, then there is a $K_{2,5}$ minor similar to the one shown in Figure 4.38. If only one of $r_{0}^{\prime}, r_{2}^{\prime}$, and r_{4}^{\prime} is a u_{i}, then there is a $K_{2,5}$ minor shown in Figure 4.39. Hence all three jumps must be outside $C: r_{0}^{\prime}=t_{1}, r_{2}^{\prime}=t_{3}$, and $r_{4}^{\prime}=t_{5}$. If there is a $K_{2,2}$ minor in $G\left[t_{0}, u_{0}\right]$ rooted at t_{0} and u_{0}, then there is a $K_{2,5}$ minor as shown in Figure 4.40. Hence there is no such rooted $K_{2,2}$ minor and symmetrically, there are no rooted $K_{2,2}$ minors in $G\left[t_{2}, u_{1}\right]$ or $G\left[t_{4}, u_{2}\right]$. Because all jumps from X_{4} go to t_{5}, we can apply Corollary III. 6 to $G\left[t_{4}, u_{2}\right]$ and find a path $P=t_{4} \ldots t$ where t is adjacent to t_{5} and $\left[t_{4}, u_{2}\right)=V(P)$. Now if $\left(t_{5}, t_{0}\right)=\emptyset$, then there is a longer cycle similar to the one shown in Figure 4.35: replace the edge $t_{5} t_{4}$ by $P \cup t t_{5}$. Hence $\left(t_{5}, t_{0}\right) \neq \emptyset$ and symmetrically $\left(t_{1}, t_{2}\right) \neq \emptyset$ and $\left(t_{3}, t_{4}\right) \neq \emptyset$.

Let $y-y^{\prime}$ be a jump out of $\left[t_{5}, t_{0}\right]$. There are three possibilities for $y^{\prime}: y^{\prime} \in\left(t_{0}, u_{0}\right)$,
$y^{\prime}=u_{0}$, or $y^{\prime}=u_{2}$. If $y^{\prime} \in\left(t_{0}, u_{0}\right)$, then there is a $K_{2,5}$ minor similar to the one shown in Figure 4.37. If $y^{\prime}=u_{0}$, there is a $K_{2,5}$ minor shown in Figure 4.41; a similar minor exists when $y^{\prime}=u_{2}$ (replacing edge $y u_{0}$ by $y u_{2}$). This completes the proof of Claim 7.

Henceforth we assume there are jumps $t_{0}-t_{1}$ and $t_{2}-t_{3}$, but not $t_{4}-t_{5}$.

Figure 4.41

Figure 4.42

Figure 4.43

The graph in Figure 4.43 shows a longer cycle that exists if $t_{0}=u_{2}^{+}$and t_{0} is adjacent to u_{0}^{+}. There is a symmetric longer cycle if $t_{3}=u_{2}^{-}$, and t_{3} is adjacent to u_{1}^{-}.

Claim 8. Either $t_{1} \neq u_{0}^{+}$or $t_{2} \neq u_{1}^{-}$(at most one of X_{1} and X_{2} is empty).

Assume that $t_{1}=u_{0}^{+}$and $t_{2}=u_{1}^{-}$. If $t_{0}=u_{2}^{+}$, then there is a longer cycle as shown in Figure 4.43. Symmetrically, if $t_{3}=u_{2}^{-}$, there is a longer cycle. Hence $t_{0} \neq u_{2}^{+}$and $t_{3} \neq u_{2}^{-}$. If there is a $K_{2,2}$ minor in $G\left[u_{2}, t_{0}\right]$ rooted at u_{2} and t_{0}, then there is a $K_{2,5}$ minor shown in Figure 4.42; hence $G\left[u_{2}, t_{0}\right]$ is $u_{2} t_{0}$-outerplanar. If there is a $K_{2,2}$ minor in $G\left[t_{0}, u_{0}\right]$ rooted at t_{0} and u_{0}, then there is a $K_{2,5}$ minor as shown in Figure 4.44; hence $G\left[t_{0}, u_{0}\right]$ is $t_{0} u_{0}$-outerplanar. All jumps out of $C\left[u_{2}, t_{0}\right]$ must go to either $C\left(t_{0}, u_{0}\right)$ or to u_{0}.

Suppose first that all jumps go to u_{0}. Then all jumps out of $C\left[t_{0}, u_{0}\right]$ must go to t_{1} since jumps to u_{2} are blocked by planarity. By Corollary III. 6 applied to $G\left[u_{2}, t_{0}\right]$, there is a path $P_{1}=t_{0} \ldots t$ such that $V\left(P_{1}\right)=\left(u_{2}, t_{0}\right]$ and t is a degree two vertex in $G\left[u_{2}, t_{0}\right]$ and therefore is adjacent to u_{0}. Similarly if $\left(t_{0}, u_{0}\right) \neq \emptyset$ by Corollary III.6, there is a path $P_{2}=t_{0} \ldots s$ such that $V\left(P_{2}\right)=\left[t_{0}, u_{0}\right)$ and s is a degree two vertex in $G\left[t_{0}, u_{0}\right]$ or $s=t_{0}$ and therefore is adjacent to t_{1}. Using P_{1} and P_{2}, there is a longer cycle as shown in Figure 4.45.

Now there is some jump out of $C\left[u_{2}, t_{0}\right]$ that goes to $C\left(t_{0}, u_{0}\right)$. All jumps out of $C\left[t_{3}, u_{2}\right]$ must go to $C\left[u_{1}, t_{3}\right)$ and there is a $K_{2,5}$ minor similar to the one shown in Figure 4.46. This concludes the proof of Claim 8.

Figure 4.44

Figure 4.45

Now by Claims 6 and 8, exactly one of X_{1} and X_{2} is empty. Without loss of generality, assume $X_{1}=\emptyset$ and $X_{2} \neq \emptyset$. Hence $t_{1}=u_{0}^{+}$and $t_{2} \neq u_{1}^{-}$. If $t_{0}=u_{2}^{+}$, then there is a longer cycle as in Figure 4.43; hence $t_{0} \neq u_{2}^{+}$. As in the proof of Claim 8, we can show that there are no rooted $K_{2,2}$ minors along $C\left[u_{2}, t_{0}\right]$ or $C\left[t_{0}, u_{0}\right]$ using Figures 4.42 and 4.44. Hence if all jumps out of $C\left[u_{2}, t_{0}\right]$ go to u_{0}, then we again get a longer cycle as in Figure 4.45.

Thus there is a jump $r-r^{\prime}$ with $r \in\left(u_{2}, t_{0}\right)$ and $r^{\prime} \in X_{0}$. We now focus on
the structure of the other two sectors. If there is a $K_{2,2}$ minor in $G\left[t_{1}, u_{2}\right]$ rooted at t_{1} and u_{2}, then there is a $K_{2,5}$ minor as shown in Figure 4.46. It follows that if $[a, b] \subseteq\left[t_{1}, u_{2}\right]$, then $G[a, b]$ has no $K_{2,2}$ minor rooted at a and b, so is $a b$-outerplanar. Suppose $\left(t_{3}, u_{2}\right) \neq \emptyset$ and let $s-s^{\prime}$ be a jump out of $C\left[t_{3}, u_{2}\right]$. By Claim $7, s^{\prime} \notin\left(u_{2}, t_{0}\right]$ hence $s \in\left[u_{1}, t_{3}\right)$. Now there is a $K_{2,5}$ minor similar to the one shown in Figure 4.46. Thus $\left(t_{3}, u_{2}\right)=\emptyset$ and $t_{3}=u_{2}^{-}$.

Figure 4.46

Figure 4.47

If there is a jump from $C\left(u_{1}, t_{3}\right)$ to u_{2}, then the minor similar to the one in Figure 4.46 still exists so all jumps out of $C\left[u_{1}, t_{3}\right]$ must go to $C\left[t_{2}, u_{1}\right)$. We now focus on jumps out of X_{2}. Let Y be the set of vertices in X_{2} that jump to $X_{3} \cup\left\{t_{3}\right\}$ and Z be the set of vertices in X_{2} that jump to $\left[u_{0}, t_{2}\right)$. We consider three cases: $Z=\emptyset, Y \subseteq Z$, and $Z \neq \emptyset$ and $Y-Z \neq \emptyset$.

First suppose $Z=\emptyset$ so all jumps out of X_{2} go to $X_{3} \cup\left\{t_{3}\right\} . G\left[t_{2}, t_{3}\right]$ is $t_{2} t_{3^{-}}$ outerplanar. Furthermore $G\left[t_{2}, t_{3}\right]$ is 2-connected because it is the graph inside a cycle in a 3-connected planar graph; see Lemma 2 of [14]. Hence apply Lemma III. 4 to $G\left[t_{2}, t_{3}\right]$ to find a path $P=t_{2} t_{3} \ldots t$ such that $V(P)=\left[t_{2}, t_{3}\right]$ and t is degree two in $G\left[t_{2}, t_{3}\right] ; t=u_{1}$ because u_{1} is the only degree two vertex in $G\left[t_{2}, t_{3}\right]$ besides possible t_{2} and t_{3}. Now using P, there is a longer cycle as shown in Figure 4.47.

Second suppose $Y \subseteq Z$ so every vertex with a jump out of X_{2} jumps to $\left[u_{0}, t_{2}\right)$. If $t_{1} \neq t_{2}$, then there is a $K_{2,5}$ minor shown in Figure 4.48; hence $t_{1}=t_{2}$ and therefore all jumps from X_{2} to $\left[u_{0}, t_{2}\right)$ go to u_{0}. Now by Corollary III. 6 applied to $G\left[t_{2}, u_{1}\right]$, there is a path $P=t_{2} \ldots t$ such that $V(P)=\left[t_{2}, u_{1}\right)$ and t is degree two in $G\left[t_{2}, u_{1}\right]$, therefore has a jump out of X_{2}, and therefore is adjacent to u_{0}. Now using P, there is a longer cycle shown in Figure 4.49.

Finally suppose $Z \neq \emptyset$ and $Y-Z \neq \emptyset$. Note the minor in Figure 4.48 exists here as well if $t_{1} \neq t_{2}$ so $t_{1}=t_{2}$ and there are jumps from Z to u_{0}. Let y be the first vertex of $Y-Z$. If there is a vertex $z \in\left(y, u_{1}\right) \cap Z$, then there is a $K_{2,5}$ minor shown in Figure 4.50. Otherwise there is $z \in\left(t_{2}, y\right) \cap Z$. If y jumps to $\left(u_{1}^{+}, t_{3}\right]$, then there is a $K_{2,5}$ minor shown in Figure 4.51 ; hence y jumps to u_{1}^{+}. Now apply Corollary III. 6 to $G\left[t_{2}, y\right]$ to find a path $P=t_{2} \ldots t$ such that $V(P)=\left[t_{2}, y\right)$ and t is degree two in $G\left[t_{2}, y\right]$ or $t=t_{2}$ and hence is adjacent to u_{0}. Now using P, there is a longer cycle shown in Figure 4.52.

Figure 4.48

Figure 4.49

Figure 4.50

There are no remaining possibilities for X_{1} and X_{2} and hence the proof is complete.

A natural next step is to consider the same result for $K_{2,6}$-minor-free graphs. It is not true, however, that all 3-connected planar $K_{2,6}$-minor-free graphs are Hamiltonian. In fact, we can construct an infinite family of 3-connected planar $K_{2,6}$-minor-free graphs.

Lemma IV.4. The graph shown in Figure 4.53 is a 3-connected, planar, non-Hamilton, $K_{2,6}$-minor-free graph for all values of $k \geq 1$.

Figure 4.53

Proof. Let G be the graph in Figure 4.53. Then the graph formed from G by contracting all of the vertices labeled v_{i} to a single vertex v is known as the Herschel
graph, the smallest 3-connected, planar, non-Hamiltonian graph. Suppose G has a Hamilton cycle C. If $v_{1}, v_{2}, \ldots, v_{k}$ appear consecutively along C, then we can form a Hamilton cycle in the Herschel graph by contracting this portion of C to a single vertex v. If $v_{1}, v_{2}, \ldots, v_{k}$ do not appear consecutively, then since y is the only neighbor of v_{2}, \ldots, v_{k-1} outside of the other vertices v_{i}, there must be some $j, 1 \leq j \leq k-1$, such that $x, v_{1}, \ldots, v_{j}, y, v_{j+1}, \ldots, v_{k}, z$ appear in that consecutive order in C. We consider the location of u_{2} along C. Since $\operatorname{deg}\left(u_{2}\right)=3$ and the edge $u_{2} y$ is not in C, we must have u_{5}, u_{2}, x appearing in that consecutive order along C. Similarly for the vertex u_{7}, we can conclude that u_{5}, u_{7}, z must appear in that consecutive order along C. But now $C=z u_{7} u_{5} u_{2} x v_{1} \ldots v_{j} y v_{j+1} \ldots v_{k} z$ and C is not Hamiltonian. Thus G has no Hamilton cycle C.

To see that G is $K_{2,6}$-minor-free, we observe that (H, K) is a 3 -separation in G where H is the graph on the left of Figure 4.54 and K is the graph on the right.

Figure $4.54 \quad H$ and K

We prove several claims.

Claim 1. The graph $\bar{H}=H+x y+y z+x z$ has no $K_{2,6}$ minor.

Suppose $\left(R_{1}, R_{2}, S\right)$ is a $K_{2,6}$ minor in \bar{H}. Then since $|V(\bar{H})|=10$ and no vertex
has degree six, we must have $\left|R_{1}\right|=\left|R_{2}\right|=2$. Then R_{1} and R_{2} must consist of either two adjacent vertices of degree at least four or contain a vertex of degree five. Suppose to start that $x \in R_{1}$; then the other vertex of R_{1} must be a neighbor of x. If $R_{1}=\left\{x, u_{3}\right\}, R_{1}=\left\{x, u_{2}\right\}$, or $R_{1}=\{x, y\}$, then R_{1} does not have six distinct neighbors and hence we cannot form R_{1} with $\left|R_{1}\right|=2$. If $R_{1}=\left\{x, u_{1}\right\}$, then $S=\left\{u_{4}, u_{5}, u_{3}, u_{2}, y, z\right\}$ and $R_{2}=\left\{u_{6}, u_{7}\right\}$ but neither u_{6} nor u_{7} has degree at least four. If $R_{1}=\{x, z\}$, then $S=\left\{u_{3}, u_{1}, u_{2}, u_{6}, u_{7}, y\right\}$ and $R_{2}=\left\{u_{4}, u_{5}\right\}$ but now u_{4} and u_{5} are not adjacent and hence R_{2} is not connected. Thus $x \notin R_{1}$ and hence symmetrically $x \notin R_{2}$. By symmetric arguments, $z \notin R_{i}$ for $i=1,2$. The vertices x and z are the only degree five vertices so now R_{1} and R_{2} must both consist of adjacent degree four vertices. There are only two degree four vertices, however, $\left(y\right.$ and $\left.u_{5}\right)$ so we cannot form R_{1} and R_{2}. Thus \bar{H} is $K_{2,6}$-minor-free.

Claim 2. The graph $\bar{K}=K+x y+y z+x z$ has no $K_{2,6}$ minor.

The graph $\bar{K}-y$ is outerplanar and thus contains no $K_{2,3}$ minor (and hence no $K_{2,6}$) minor. Therefore if \bar{K} contains a $K_{2,6}$ minor, then y must be in the minor. If $y \in S$, then $\bar{K}-y$ must contain a $K_{2,5}$ minor but again $\bar{K}-y$ is outerplanar and contains no $K_{2,3}$ and hence no $K_{2,5}$ minor. If $y \in R_{i}$ for $i=1$ or 2 , then $\bar{K}-y$ must contain a $K_{1,6}$ minor but $\bar{K}-y$ is a cycle and hence contains no $K_{1,6}$ minor. Thus \bar{K} is $K_{2,6}$-minor-free.

Now by Lemma III.3, Claim 1, and Claim 2, if G contains a $K_{2,6}$ minor $\left(R_{1}, R_{2} ; S\right)$, then we must have one of x, y, and z in R_{1} and one of x, y, and z in R_{2}. Without loss of generality, suppose $x \in R_{1}$.

First assume $y \in R_{2}$. Since \bar{H} is $K_{2,6}$-minor-free, $v_{i} \in S$ for at least one i. Suppose to start $v_{i} \in S$ for only one i. Then there must be a $K_{2,5}$ minor $\left(R_{1}^{\prime}, R_{2}^{\prime} ; S^{\prime}\right)$ in $H+y z$ rooted at x and y. Since $|V(H)|=10$ and no vertex of $H+y z$ has degree five or more, both $\left|R_{1}^{\prime}\right| \geq 2$ and $\left|R_{2}^{\prime}\right| \geq 2$ and thus either $\left|R_{1}^{\prime}\right|=2$ or $\left|R_{2}^{\prime}\right|=2$. Without loss of generality, suppose $\left|R_{1}^{\prime}\right|=2$. In order to have at least five neighbors, R_{1}^{\prime} must contain a degree four vertex and since $\left(R_{1}^{\prime}, R_{2}^{\prime} ; S^{\prime}\right)$ is rooted at x and y, either $x \in R_{1}^{\prime}$ or $y \in R_{1}^{\prime}$, say $y \in R_{1}^{\prime}$. The degree four vertices are u_{5} and z and since u_{5} is not adjacent to either y or x, we must have $R_{1}^{\prime}=\{z, y\}$. Now, however, R_{1}^{\prime} does not have five distinct neighbors in $H+y z$ and there is no $K_{2,5}$ minor $\left(R_{1}^{\prime}, R_{2}^{\prime} ; S^{\prime}\right)$.

Now $v_{i}, v_{j} \in S$ for $i \neq j$. In order to have R_{1} adjacent to v_{i} and $v_{j}, z \in R_{1}$. Now there must be a $K_{2,4}$ minor $\left(R_{1}^{\prime}, R_{2}^{\prime} ; S^{\prime}\right)$ in $H+x z$ with $x, z \in R_{1}^{\prime}$ and $y \in R_{2}^{\prime}$. Because $v_{i}, v_{j} \in S$ and $y \in R_{2}, x$ and z are not connected in R_{1} using a path in K, thus $\left(R_{1}^{\prime}, R_{2}^{\prime} ; S^{\prime}\right)$ must exist in H alone. Since $\operatorname{deg}_{H}(y)=2$ and y is not adjacent to a degree four vertex, $\left|R_{2}^{\prime}\right| \geq 3$ in order to ensure R_{2}^{\prime} has at least four neighbors. Since $x, z \in R_{1}^{\prime}$ and x and z are not adjacent, $\left|R_{1}^{\prime}\right| \geq 3$. Since $|V(H)|=10$ and $\left|S^{\prime}\right|=4$, $\left|R_{1}^{\prime}\right|=\left|R_{2}^{\prime}\right|=3$. Thus $R_{1}^{\prime}=\left\{x, z, u_{3}\right\}$ and therefore S contains four of $u_{1}, u_{2}, u_{4}, u_{6}$, and u_{7} and $u_{5} \notin S$ so $u_{5} \in R_{2}^{\prime}$. S cannot contain both u_{2} and u_{7} since one of these vertices must be in R_{2}^{\prime} thus $\left\{u_{1}, u_{4}, u_{6}\right\} \subset S$. But now R_{2}^{\prime} does not reach u_{4}. Thus there is no $K_{2,4}$ minor $\left(R_{1}^{\prime}, R_{2}^{\prime} ; S^{\prime}\right)$. We cannot have $v_{i} \in S$ for three distinct i since then one v_{i} would be reachable from y but not from x or z.

Now we must have $z \in R_{2}$ (and $y \notin R_{2}$ and symmetrically, $y \notin R_{1}$). Again since \bar{H} is $K_{2,6}$-minor-free, $v_{i} \in S$ for at least one i. At most one v_{i} is reachable by both x and z without using y, however, so there is exactly one v_{i} in S. Hence there must
be a $K_{2,5}$ minor $\left(R_{1}^{\prime}, R_{2}^{\prime} ; S^{\prime}\right)$ in $H+x y+y z$ rooted at x and z with $y \notin R_{1}^{\prime} \cup R_{2}^{\prime}$. Since $|V(H)|=10$ and no vertex of H has degree five or more, either $\left|R_{1}^{\prime}\right|=2$ or $\left|R_{2}^{\prime}\right|=2$. Without loss of generality, suppose $\left|R_{1}^{\prime}\right|=2$ and further suppose $x \in R_{1}^{\prime}$. Then the other vertex in R_{1}^{\prime} must be a neighbor of x and the two vertices together must have five distinct neighbors in $H+x y+y z$ other than z. None of the pairs x and u_{3}, x and u_{2}, and x and y together have five such neighbors. If $R_{1}^{\prime}=\left\{x, u_{1}\right\}$, then $S^{\prime}=\left\{u_{3}, u_{4}, u_{5}, u_{2}, y\right\}$ and $R_{2}^{\prime} \subseteq\left\{z, u_{6}, u_{7}\right\}$ but then R_{2}^{\prime} is not adjacent to u_{2}. Thus we cannot form R_{1}^{\prime} and there is no $K_{2,5}$ minor $\left(R_{1}^{\prime}, R_{2}^{\prime} ; S^{\prime}\right)$.

Chapter V

A CHARACTERIZATION OF $K_{2,4}$-MINOR-FREE GRAPHS

In this chapter, we provide a complete characterization of all $K_{2,4}$-minor-free graphs. We start by defining a class of graphs and describing several small examples which together make up all 3-connected $K_{2,4}$-minor-free graphs. We begin with 3 -connected graphs because all 4-connected graphs on at least six vertices have a $K_{2,4^{-}}$ minor. This is obvious for complete graphs. Otherwise, a pair of nonadjacent vertices and the four internally disjoint paths between them guaranteed by Menger's Theorem yield a $K_{2,4}$ minor. In Section 2 we extend the characterization to 2-connected graphs. The generalization to all graphs follows because a graph that is not 2-connected is $K_{2,4}$-minor-free if and only if each of its blocks is $K_{2,4}$-minor-free.

5.1 The 3-connected Case

All graphs G with $|V(G)|<6$ are trivially $K_{2,4}$-minor-free; the 3-connected ones are $K_{5}, K_{5}-e, K_{5}-2 K_{2}$, and K_{4}. To describe the graphs with $|V(G)| \geq 6$, first we define a class of graphs and identify those that are 3-connected and $K_{2,4}$-minor-free. We then look at some small graphs that do not fit into this class. Finally, we show that every 3-connected $K_{2,4}$-minor-free graph is one of these we have described.

5.1.1 A Class of Graphs $G_{n, r, s}^{(+)}$

For $n \geq 3,0 \leq r, s \leq n-3$, let $G_{n, r, s}$ consist of a spanning path $v_{1} v_{2} \ldots v_{n}$ which we call the spine and edges $v_{1} v_{n-i}$ for $1 \leq i \leq r$ and $v_{n} v_{1+j}$ for $1 \leq j \leq s$. The graph $G_{n, r, s}^{+}$is $G_{n, r, s}+v_{1} v_{n}$; we call $v_{1} v_{n}$ the plus edge. Examples are shown in Figures 5.1 and 5.2. Note $G_{n, r, s}^{(+)} \cong G_{n, s, r}^{(+)}$. Hence, for simplicity we assume $r \leq s$ throughout unless otherwise stated.

Figure 5.1

Figure 5.2

Consider $G_{n, r, s}$ with $n \geq 4$. Observe that $G_{n, 1, s}$ and symmetrically $G_{n, r, 1}$ are not 3-connected. We claim the following:

Lemma V.1. For $n \geq 4, G_{n, r, s}^{(+)}$is 3-connected if and only if (i) $r=1, s \geq n-3$, and the plus edge is present (or symmetrically $s=1, r \geq n-3$, and the plus edge is present) or (ii) $r, s \geq 2$ and $r+s \geq n-2$.

Proof. To prove the forward direction, assume G is 3 -connected and first suppose $r=1$. Then if the plus edge is not present, then v_{1} has degree two and $\left\{v_{2}, v_{n-1}\right\}$ is a 2-cut. Similarly if $s \leq n-4$, then v_{n-2} has degree two and $\left\{v_{n-3}, v_{n-1}\right\}$ is a 2-cut. Next suppose $r, s \geq 2$. If $r+s \leq n-3$, then there is necessarily a degree two vertex v_{i} with $4 \leq i \leq n-3$ and hence a 2 -cut in G.

To prove the reverse direction, assume G is not 3-connected and consider a possible 2 -cut. The vertices v_{1} and v_{2} do not form a 2 -cut because $G-\left\{v_{1} v_{2}\right\}$ is a
path. Similarly, v_{n-1} and v_{n} and v_{1} and v_{n} do not form 2-cuts. The vertices v_{1} and v_{i} with $2<i<n$ do not form a 2-cut because $G-\left\{v_{1}, v_{i}\right\}$ contains a path $v_{i+1} v_{i+2} \ldots v_{n} v_{2} v_{3} \ldots v_{i-1}$. Similarly, v_{i} and v_{n} do not form a 2 -cut for $1<i<n-1$.

Finally consider two vertices v_{i}, v_{j}, with $1<i<j<n$. First assume $j=i+1$. If $n=4$, then $i=2, j=3$ and $r=s=1$ and therefore the plus edge $v_{1} v_{4}$ is present; hence $G-\left\{v_{2}, v_{3}\right\}$ is connected and $\left\{v_{2}, v_{3}\right\}$ is not a 2-cut. Now $n \geq 5$ so either $j \neq n-1$ or $i \neq 2$. Without loss of generality, say $j \neq n-1$; then $v_{1} v_{2} \ldots v_{i-1}$ and $v_{j+1} v_{j+2} \ldots v_{n}$ are connected because v_{1} is adjacent to v_{n-1}. Next assume $j \neq i+1$. Then there is a vertex between v_{i} and v_{j} and since $r+s \geq n-2$, all vertices between v_{i} and v_{j} must be adjacent to v_{1} or v_{n}. In particular, $v_{i+1} \neq v_{j}$ must be adjacent to either v_{1} or v_{n}. The two situations are similar, so without loss of generality, assume v_{i+1} is adjacent to v_{1}. When $i \neq 2, v_{1} v_{2} \ldots v_{i-1}, v_{i+1} v_{i+2} \ldots v_{j-1}$, and $v_{j+1} v_{j+2} \ldots v_{n}$ are all connected because v_{n} is adjacent to v_{2}. When $i=2$, then $v_{1} v_{2} \ldots v_{i-1}, v_{i+1} v_{i+2} \ldots v_{j-1}$, and $v_{j+1} v_{j+2} \ldots v_{n}$ are all connected because either v_{n} is adjacent to v_{1} or v_{n} is adjacent to v_{i+1} (since either $s=1$ forcing the plus edge or $s \geq 2$).

Lemma V.2. Let $G=G_{n, r, s}^{(+)}$with $n \geq 6$ and $r+s \leq n-1$. If G has a standard $K_{2,4}$ minor $\left(R_{1}, R_{2} ; S\right)$, then $v_{1} \in R_{1}$ and $v_{n} \in R_{2}$ (or vice versa).

Proof. The graph $G-v_{1}$ is outerplanar and thus has no $K_{2,3}$ minor. Therefore, if G has a $K_{2,4}$ minor, then v_{1} must be included in the minor. By symmetry, v_{n} must also be included in the minor. We cannot have $v_{1} \in S$ because then the outerplanar graph $G-v_{1}$ would have a $K_{2,3}$ minor. Symmetrically, $v_{n} \notin S$. If $v_{1}, v_{n} \in R_{i}$, then $G-\left\{v_{1}, v_{n}\right\}$ must have a $K_{1,4}$ minor, but $G-\left\{v_{1}, v_{n}\right\}$ is a path and there is no $K_{1,4}$
minor in a path. The only remaining possibility is $v_{1} \in R_{1}$ and $v_{n} \in R_{2}$ (or vice versa).

Lemma V.3. For $n \geq 6, G_{n, r, s}^{(+)}$is $K_{2,4}$-minor-free if and only if $r+s \leq n-1$.

Proof. To prove the forward direction, suppose $r+s \geq n$. Then there are vertices v_{i} and v_{i+1} such that both v_{1} and v_{n} are adjacent to both v_{i} and v_{i+1} and $3 \leq i \leq v_{n-3}$. Then there is a $K_{2,4}$ minor $\left(R_{1}, R_{2} ; S\right)$ in G : let $S=\left\{v_{2}, v_{i}, v_{i+1}, v_{n-1}\right\}, R_{1}=v_{1}$, and $R_{2}=v_{n}$.

Now suppose that $r+s \leq n-1$. Let $A=\left\{v_{n-r}, v_{n-r+1}, \ldots, v_{n-1}\right\}=N\left(v_{1}\right)-v_{2}$ and $B=\left\{v_{2}, v_{3}, \ldots, v_{s+1}\right\}=N\left(v_{n}\right)-v_{n-1}$ (which intersect only if $v_{n-r}=v_{s+1}$). Suppose G has a $K_{2,4}$ minor $\left(R_{1}, R_{2} ; S\right)$. Then by Lemma V.2, $v_{1} \in R_{1}$ and $v_{n} \in R_{2}$. We consider the makeup of S. Suppose $\left\{s_{1}, s_{2}, s_{3}\right\} \subseteq S \cap A$, in that order along the spine. Now since $\left\{v_{1}, s_{1}, s_{3}\right\} \subseteq R_{1} \cup\left\{s_{1}, s_{3}\right\}$ separates s_{2} and v_{n}, and $v_{n} \in R_{2}$, we cannot have R_{2} adjacent to s_{2}, which is a contradiction. Thus $|S \cap A| \leq 3$. Symmetrically, $|S \cap B| \leq 3$. We must have $s_{1}, s_{2} \in S \cap A$ and $s_{3}, s_{4} \in S \cap B$ in the order $s_{4}, s_{3}, s_{2}, s_{1}$ along the spine. Since $v_{n} \in R_{2}$, there must be a $v_{n}-s_{2}$ path in $G-\left\{v_{1}, s_{1}, s_{3}, s_{4}\right\}$. Then since v_{s+1} is a cutvertex separating v_{n} and s_{2} in $G-\left\{v_{1}, s_{1}, s_{3}, s_{4}\right\}$, we have $v_{s+1} \in R_{2}$. Now there must also be an $v_{1}-s_{3}$ path in $G-\left\{v_{n}, v_{s+1}, s_{4}\right\}$ but no such path exists. Thus there is no $K_{2,4}$ minor.

All graphs on fewer than six vertices are necessarily $K_{2,4}$-minor-free. The 3connected ones are $K_{5}, K_{5}-e, K_{5}-2 K_{2}$, and K_{4}. Three of these graphs are isomorphic to graphs in the family $G_{n, r, s}^{(+)}: K_{5}-e \cong G_{5,2,2}^{+}, K_{5}-2 K_{2} \cong G_{5,1,2}^{+}$, and $K_{4} \cong G_{4,1,1}^{+}$.

Denote by \mathcal{G} the set of all graphs $G_{n, r, s}$ or $G_{n, r, s}^{+}$that are 3 -connected and $K_{2,4^{-}}$
minor-free. Then by Lemmas V. 1 and V. 3 and the discussion of 3-connected $K_{2,4}$ -minor-free graphs on fewer than six vertices:
$\mathcal{G}=\left\{G_{n, 1, n-3}^{+}: n \geq 4\right\} \cup\left\{G_{n, r, s}^{(+)}: n \geq 5,2 \leq r \leq s \leq n-3, r+s=n-1\right.$ or $\left.n-2\right\}$

There are some isomorphisms between graphs in \mathcal{G} and also symmetries within certain graphs of the class. The graph $G_{n, 1, n-3}^{+}=K_{1}+C_{n-1}$ is a wheel with hub v_{n} and has the obvious symmetries. In $G_{n, 2, n-4}$, there is an automorphism that swaps v_{1} and v_{n-2} and fixes v_{n}. To see this, consider Figure 5.3. The graph in the figure without the dotted edges e_{1} and e_{2} is $G_{9,2,5}$. Define a mapping σ (corresponding to reflection about a vertical axis in the figure) such that σ fixes v_{n-1} and v_{n} and $\sigma\left(v_{i}\right)=v_{n-1-i}$ for $1 \leq i \leq n-2$. In general, the map σ is an involution and an automorphism of $G_{n, 2, n-4}$.

With the edge e_{1}, the graph is $G_{9,2,5}^{+}$and with e_{2}, the graph is $G_{9,2,6}$. Thus in general, σ is an isomorphism from $G_{n, 2, n-4}^{+}$to $G_{n, 2, n-3}$ which maps e_{1} to e_{2}. With both edges e_{1} and e_{2}, the graph is $G_{9,2,6}^{+}$and hence in general σ is an automorphism of $G_{n, 2, n-3}^{+}$. Now in general σ maps the spine $P=v_{1} v_{2} \ldots v_{n}$ to the path $\sigma(P)=$ $v_{n-2} v_{n-3} \ldots v_{2} v_{1} v_{n-1} v_{n}$. When $r=2$, we call this the second spine. In $G_{n, 2, n-4}$ and $G_{n, 2, n-3}^{+}$, the second spine is the image of the spine under an automorphism, and in one of $G_{n, 2, n-4}^{+}$and $G_{n, 2, n-3}$, it is the image under an isomorphism of the spine in the other graph.

Finally, $G_{6,2,2}$ is vertex-transitive and is isomorphic to the triangular prism. These symmetries and isomorphisms will be important later on, particularly in Section 5.2
when we discuss which edges of $G \in \mathcal{G}$ can be subdivided without creating a $K_{2,4}$ minor.

Up to isomorphism, \mathcal{G} contains one graph with $n=4$ and $2 n-8$ graphs for each $n \geq 5$.

5.1.2 Small Cases

There are nine examples of small graphs $G, G \notin \mathcal{G}$, that are 3-connected and $K_{2,4}$-minor-free. They are shown in Figure 5.6. The first is K_{5} which is the final 3connected graph that has less than six vertices and so is necessarily $K_{2,4}$-minor-free.

Lemma V.4. The graph C^{+}is $K_{2,4}$-minor-free.

Figure 5.3

Figure $5.4 \quad C^{+}$

Figure $5.5 \quad D$

Proof. Consider C^{+}with vertices labeled as in Figure 5.4. $\left|V\left(C^{+}\right)\right|=8$. Suppose there is a $K_{2,4}$ minor $\left(R_{1}, R_{2} ; S\right)$ in C^{+}and suppose $\left|R_{1}\right|=1$. Then R_{1} must be either v_{4} or v_{5} since these are the only vertices of degree four. Say, without loss of generality, $R_{1}=\left\{v_{4}\right\}$. Then $S=\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$, and R_{2} must be a subset of $\left\{v_{1}, v_{2}, v_{3}\right\}$. None of these three vertices are adjacent to v_{5}, however, so we cannot have R_{2} adjacent to
v_{5} and thus we cannot have $\left|R_{1}\right|=1$, or symmetrically, $\left|R_{2}\right|=1$. Thus $\left|R_{1}\right| \geq 2$ and $\left|R_{2}\right| \geq 2$ and since $|C|=8,\left|R_{1}\right|=\left|R_{2}\right|=2$.

Let T be a triangle with a set N of neighbors with $|N|=3$. Suppose $R_{1} \subseteq$ $V(T)$. Then we would have $N \subseteq S$ along with the third vertex t of T, but N separates t from the rest of the graph so R_{2} cannot be adjacent to t. Thus R_{1} (or symmetrically R_{2}) cannot consist of two vertices in a triangle with only three neighbors. In C^{+}, we have the following triples of vertices which form such triangles: $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{4}, v_{5}, v_{6}\right\},\left\{v_{4}, v_{5}, v_{7}\right\}$, and $\left\{v_{4}, v_{5}, v_{8}\right\}$. The only remaining pairs of adjacent vertices that could make up R_{1} or R_{2} are $\left\{v_{3}, v_{6}\right\},\left\{v_{2}, v_{8}\right\}$, and $\left\{v_{1}, v_{7}\right\}$ where all three cases are symmetric. If $R_{1}=\left\{v_{3}, v_{6}\right\}$, then R_{2} must be $\left\{v_{7}, v_{8}\right\}$ but this set is not an option for R_{2}.

Corollary V.5. All minors of C^{+}are $K_{2,4}$-minor-free.

The graphs C, B^{+}, B, A^{+}(contract $v_{1} v_{7}$ and $v_{2} v_{8}$), A, and $K_{3,3}$ in Figure 5.6 are minors of C^{+}and hence are all $K_{2,4}$-minor-free.

Consider D with vertices labeled as shown in Figure 5.5.

Lemma V.6. The graph D is $K_{2,4}$-minor-free.

Proof. Suppose there is a $K_{2,4}$ minor $\left(R_{1}, R_{2} ; S\right)$ in D. Since $|V(D)|=7$, at least one of R_{1} or R_{2} must consist of a single vertex of degree four. There are three degree four vertices: v_{1}, v_{3}, and v_{6}. Suppose $R_{1}=\left\{v_{6}\right\}$; then $S=\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ and $R_{2}=\left\{v_{2}, v_{4}\right\}$. But neither v_{2} nor v_{4} is adjacent to v_{5}. By symmetric arguments, $R_{1} \neq\left\{v_{3}\right\}$ and $R_{1} \neq\left\{v_{1}\right\}$ and thus there is no $K_{2,4}$ minor.

Figure 5.6

5.1.3 Main Theorem

Theorem V.7. Let G be a 3-connected graph. Then G is $K_{2,4}$-minor-free if and only if $G \in \mathcal{G}$ or G is one of the nine small exceptions shown in Figure 5.6.

Our original proof of this theorem examined the structure of 3 -connected $K_{2,4^{-}}$ minor-free graphs relative to a longest non-Hamilton cycle in the graph. We constructed a case analysis based on possible structures and either derived a contradiction with a longer non-Hamilton cycle or a $K_{2,4}$ minor, or found a desired graph. Recent results of Ding and Liu [10] shorten our proof, so we present the new shorter version here. First we explain their notation. Denote by Oct $\backslash e$ the graph obtained from the octahedron by removing one edge, and denote the cube by Q_{3}, shown in Figure 5.8. Denote by V_{8} the graph shown in Figure 5.7. A 3-sum of two 3-connected graphs G_{1} and G_{2} is a graph G obtained by identifying a triangle of G_{1} with a triangle of G_{2} and possibly deleting some of the edges of the common triangle as long as no degree two vertices are created. Any 2 -cut in G would lead to a 2 -cut in either G_{1} or G_{2} so
G is 3 -connected. An example is the graph denoted K_{5}^{Δ} shown in Figure 5.9 which is a 3-sum of K_{5} and a triangular prism. A common 3-sum of three or more graphs is formed by specifying one triangle in each graph and identifying all as a single triangle called the common triangle; again edges of the common triangle may be deleted as long as no degree two vertices are created. Let \mathcal{S} be the set of all graphs formed by taking common 3 -sums of wheels and triangular prisms. Note that all graphs in \mathcal{S} are 3-connected. We have the following result due to Ding and Liu.

Figure 5.7

Figure 5.8

Figure $5.9 \quad K_{5}^{\Delta}$

Theorem V. 8 (Ding, Liu [10]). The family of 3-connected Oct $\backslash e$-minor-free graphs consists of graphs in \mathcal{S} and 3-connected minors of V_{8}, Q_{3}, and K_{5}^{Δ}.

Oct $\backslash e$ contains $K_{2,4}$ as a minor so all 3-connected $K_{2,4}$-minor-free graphs must lie inside the family described in Theorem V.8. In particular, we must consider 3connected minors of V_{8}, Q_{3}, and K_{5}^{Δ} and also members of \mathcal{S}.

Proof of Theorem IV.3. Lemmas V.3, V.4, V.5, and V. 6 give the reverse direction of the proof so it remains to show the forward direction. In particular, we show that the graphs listed are the only $K_{2,4}$-minor-free graphs that are 3 -connected minors of V_{8}, Q_{3}, and K_{5}^{Δ} or are members of \mathcal{S}.

We begin by determining which members of \mathcal{S} are $K_{2,4}$-minor-free. Any common 3 -sum of four wheels contains a $K_{3,4}$ minor (the three vertices of the common triangle
form the part of size three). In fact any common 3-sum of any four or more graphs contains a $K_{3,4}$ minor. Thus we consider common 3 -sums of at most three graphs. We begin by looking at how many wheels can be in the common 3-sum. Denote by W_{n} the wheel on n vertices.

First consider a common 3 -sum of three wheels, W_{k}, W_{ℓ}, and W_{m}. For $k=\ell=5$ and $m=4$, since all vertices of $W_{4}=K_{4}$ are equivalent, there are two ways up to symmetry to form a common 3-sum (disregarding the possible existence of the edges of the common triangle): the centers of the two wheels are either identified or not identified. Both ways result in a $K_{2,4}$ minor; Figure 5.10 shows the minor for each case. The dotted edges are the edges of the common triangle which may or may not be present in the common 3 -sum. Since graphs with $k \geq 5, \ell \geq 5$, and $m \geq 4$ all have one of these two graphs as a minor, these graphs also have $K_{2,4}$ minors and hence only one of k, ℓ, m can be greater than 4 . When $k=6, \ell=m=4$, there is again a $K_{2,4}$ minor shown in Figure 5.11. All graphs with $k>6$ and $\ell=m=4$ have this graph as a minor and hence also have a $K_{2,4}$ minor. For $k=5, \ell=m=4$, we have the graphs shown in Figure 5.12. With none of the dotted edges of the common triangle, this graph is $K_{2,4}$-minor-free and is isomorphic to the graph B. With e_{1} (or symmetrically e_{2}), the graph has the $K_{2,4}$ minor shown on the left of the figure. With e_{3}, the graph has the $K_{2,4}$ minor shown on the right of the figure. Hence $k, \ell, m \leq 4$. For $k=\ell=m=4$, we have the graph shown in Figure 5.13. With any two of the dotted edges, the graph has the $K_{2,4}$ minor shown in the figure for e_{1} and e_{2}. With none of the edges, the graph is isomorphic to $K_{3,3}$. With any one dotted edge, the graph is isomorphic to A. Henceforth we can consider common 3 -sums with at most
two wheels.

Figure 5.10

Figure 5.12

Figure 5.11

Figure 5.13

Next consider common 3-sums with two wheels and begin with a common 3-sum of two wheels and a prism. If the wheels are W_{k} and W_{4} with $k \geq 5$, then all common 3 -sums have the $K_{2,4}$ minor shown in Figure 5.14. If both wheels are W_{4}, then we have the graph shown in Figure 5.15 . With the edge labeled e_{1} (or symmetrically e_{2} or e_{3}), we have the $K_{2,4}$ minor shown in the figure. With none of the dotted edges, the graph is isomorphic to C.

Now consider a common 3 -sum of two wheels W_{k} and W_{ℓ} in which the centers of the wheels are not identified (and $k, \ell \geq 5$). The case in which either k or ℓ is 4 is also covered here because in W_{4}, any vertex can be considered as a center or non-center as appropriate. We have the graph shown in Figure 5.16. At least one of the edges labeled e_{1} and e_{2} must be present in the common 3 -sum to ensure there are no degree two vertices. Let $n=k+\ell-3$. With e_{1} and e_{2}, the graph is isomorphic to $G_{n, k-2, \ell-2}$. With e_{1} (or symmetrically e_{2}), the graph is isomorphic to either $G_{n, k-3, \ell-2}$ or $G_{n, k-2, \ell-3}$. In all cases e_{3} is the optional plus edge. The spine
is shown in the figure as the thick, highlighted path. Hence we have all graphs in \mathcal{G} with at least five vertices.

Figure 5.14

Figure 5.15

Figure 5.16

Now suppose the centers of W_{k} and W_{ℓ} are identified in the common 3-sum. For $k, \ell=5$, we have the graph shown in Figure 5.17; a common 3-sum of any two wheels with $k, \ell \geq 5$ have this graph as a minor. With the edge labeled e_{1}, the graph has the $K_{2,4}$ minor shown. Without e_{1}, both e_{2} and e_{3} must be present to ensure there are no vertices of degree two. Then the graph is a wheel. In W_{4}, all vertices are symmetric so a common 3 -sum of W_{k} and W_{4} for any $k \geq 4$ was considered in the previous case in which the centers of the wheels were not identified. Henceforth we consider common 3 -sums with at most one wheel.

Now consider common 3-sums that include two prisms and begin with a common 3 -sum of two prisms and one wheel. We have the graph in Figure 5.18 with the $K_{2,4}$ minor shown; the figure shows the minor for W_{4}, and a common 3-sum of two prisms and any larger wheel has this graph as a minor. Now consider a common 3-sum of two prisms. We have the graph in Figure 5.19. At least two of the three dotted edges are needed to ensure there are no degree two vertices and so we have the $K_{2,4}$ minor shown. In a common 3-sum of three prisms, the dotted edges do not need to be
present to ensure 3-connectivity. However, instead of using one of the dotted edges in the $K_{2,4}$ minor as in Figure 5.19, we can use a path between these two vertices through the third prism. Hence a $K_{2,4}$ minor similar to the one shown in Figure 5.19 exists in a common 3-sum of three prisms. Henceforth we consider common 3-sums with at most one prism.

Figure 5.17

Figure 5.18

Figure 5.19

Consider a common 3-sum of a wheel W_{k} and a prism. Up to symmetry, there is one common 3 -sum for $k \geq 5$, shown in Figure 5.20 for $k=5$; any common 3 -sum of W_{k} and a prism with $k \geq 6$ has this graph as a minor. At least one of the edges e_{1} and e_{2} must be present to ensure there are no vertices of degree two so we have the $K_{2,4}$ minor shown. When $k=4$, we have the graph shown in Figure 5.21. Two of the three dotted edges must be present to ensure there are no degree two vertices. With all three edges, the graph is isomorphic to D. With any two of the three, the graph is isomorphic to $G_{7,3,2}$.

Finally, consider common 3 -sums of a single graph. The wheel $W_{k}(k \geq 4)$ is isomorphic to the graph $G_{k, 1, k-3}^{+}$and the triangular prism is isomorphic to the graph $G_{6,2,2}$.

Figure 5.20

Figure 5.21

Next we look at 3 -connected minors of V_{8}. Once we obtain a minor that has six vertices, we do not need to consider further minors formed by edge contraction because all graphs on fewer than six vertices are trivially $K_{2,4}$-minor-free. Furthermore, if no set of edges and vertices can be deleted to form a 3 -connected $K_{2,4}$-minor-free graph, then any minor of interest involves at least one edge contraction so without loss of generality, we will first consider edge contractions followed by either additional edge contractions or deletions.
V_{8} itself has a $K_{2,4}$ minor $\left(R_{1}, R_{2} ; S\right)$: take two adjacent vertices that are not consecutive on the outer cycle in Figure 5.7 as R_{1} and their four neighbors as S. The graph is 3 -regular so the deletion of any set of edges or vertices results in a graph that is not 3 -connected. Thus any 3 -connected, $K_{2,4}$-minor-free minor of V_{8} must result from at least one edge contraction so first we consider edge contractions. Up to symmetry, there are two contractions to consider. The first is shown in Figure 5.22 and is isomorphic to the graph B. We further consider minors of this graph. The deletion of any edge results in a graph that is not 3-connected since all edges are incident with a degree three vertex. Up to symmetry, there are six edge contractions to consider: $v_{1} v_{5}, v_{1} v_{7}, v_{6} v_{7}, v_{5} v_{6}, v_{3} v_{7}$, and $v_{4} v_{5}$. Contracting $v_{1} v_{5}$ or $v_{4} v_{5}$ both result in a vertex of degree two so the graph is not 3-connected; the graphs also have six
vertices so we do not consider further minors. Contracting $v_{1} v_{7}$ results in a graph isomorphic to $W_{6}=G_{6,1,3}^{+}$, and deleting any edge of $G_{6,1,3}^{+}$results in a graph that is not 3 -connected. Contracting $v_{6} v_{7}$ or $v_{3} v_{7}$ both result in graphs isomorphic to $G_{6,2,2}^{+}$. The edge corresponding to the plus can be deleted to give $G_{6,2,2}$. Finally contracting $v_{5} v_{6}$ results in a graph isomorphic to A. Only one edge can be deleted from A and the result is $K_{3,3}$.

The second edge contraction up to symmetry in V_{8} results in the graph shown in Figure 5.23 and contains a $K_{2,4}$ minor so we must further consider minors of this graph. Every edge is adjacent to a degree three vertex so the deletion of any edge results in a 2-connected graph. Hence we first consider contracting edges. Up to symmetry, there are four edge contractions to consider: $v_{1} v_{2}, v_{3} v_{4}, v_{2} v_{6}$, and $v_{3} v_{7}$. Contracting $v_{3} v_{4}$ results in a graph that are not 3 -connected; the graphs also have six vertices so we do not need to consider further minors.

Figure 5.22

Figure 5.23

Figure 5.24

Contracting the edge $v_{1} v_{2}$ results in a graph isomorphic to $G_{6,2,2}^{+}$. The edge corresponding to the plus can be deleted to result in $G_{6,2,2}$. Contracting $v_{3} v_{7}$ results in a graph isomorphic to $G_{6,2,2}$; deleting any edge of this graph results in a graph that is not 3 -connected. Contracting $v_{2} v_{6}$ yields a graph with a $K_{2,4}$ minor as shown in Figure 5.24. Deleting any edge from this graph results in a graph that is not

3 -connected.

Now consider 3-connected minors of $Q_{3} . Q_{3}$ itself has a $K_{2,4}$ minor $\left(R_{1}, R_{2} ; S\right)$: take any two adjacent vertices as R_{1} and their four neighbors as S. The graph is 3-regular so the deletion of any edge results in a graph that is not 3-connected. Hence any 3-connected $K_{2,4}$-minor-free minor of Q_{3} must come from at least one edge contraction so we first consider edge contractions. However, all edges are symmetric and the contraction of any edge results in a graph isomorphic to the one shown in Figure 5.23 . This graph was already fully analyzed so we are done with Q_{3}.

Finally we consider K_{5}^{Δ} as in Figure 5.9. This graph is isomorphic to C^{+}so it is $K_{2,4}$-minor-free. Deleting the edge $v_{7} v_{8}$ results in the graph C. Up to symmetry, there are four edge contractions of K_{5}^{Δ} to consider: $v_{1} v_{2}, v_{3} v_{5}, v_{4} v_{8}$, and $v_{7} v_{8}$. Contracting $v_{1} v_{2}$ results in a degree two vertex; contracting an edge incident with this vertex results in a graph isomorphic to A. Only one edge can be deleted from A without creating a 2 -connected graph and the result is $K_{3,3}$. Contracting $v_{7} v_{8}$ results in a graph with three degree two vertices; at least three edge contractions are needed to yield a 3-connected graph but then the graph will have fewer than six vertices. Contracting the edge $v_{3} v_{5}$ results in the graph B^{+}. Contracting the edge $v_{4} v_{8}$ results in the graph $G_{7,2,3}$. Hence we consider further minors of these three graphs: C, B^{+}, and $G_{7,2,3}$.

First consider $G_{7,2,3}$ with spine $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7}$. Deletion of any edge results in a graph that is not 3 -connected. Contraction of any edge not on the spine or the edge $v_{5} v_{6}$ results in a degree two vertex and hence a graph that is not 3 -connected; these graphs have six vertices so we do not consider further minors. Graphs in \mathcal{G}
are closed under contracting spine edges. We look at the graphs resulting from these contractions. Contracting $v_{6} v_{7}$ results in a graph isomorphic to $G_{6,1,3}^{+}$; deleting any edge of this graph results in a graph that is not 3 -connected. Contracting $v_{4} v_{5}$ results in a graph isomorphic to $G_{6,3,2}$; deleting any edge of this graph results in a graph that is not 3 -connected. Contracting $v_{3} v_{4}$ or $v_{2} v_{3}$ result in graphs isomorphic to $G_{6,2,2}$; deleting any edge of this graph results in a graph that is not 3 -connected. Finally, contracting $v_{1} v_{2}$ results in a graph isomorphic to $G_{6,2,2}^{+} ;$the edge corresponding to the plus can be deleting resulting in $G_{6,2,2}$.

Now consider B^{+}with vertices labeled as in Figure 5.25. Deleting the edge $v_{6} v_{7}$ results in a graph isomorphic to B. We already considered minors of B when it occurred as a minor of V_{8}. Deleting the edge $v_{3} v_{6}$ (or symmetrically $v_{3} v_{7}$) results in a graph isomorphic to $G_{7,3,2}$ and we have already considered further minors of this graph. Up to symmetry, there are six edge contractions to consider: $v_{1} v_{2}, v_{1} v_{3}$, $v_{1} v_{4}, v_{3} v_{6}, v_{4} v_{6}$, and $v_{6} v_{7}$. Contracting $v_{1} v_{3}$ or $v_{6} v_{7}$ all result in graphs that are not 3 -connected. Contracting $v_{1} v_{2}$ results in a graph isomorphic to A and contracting $v_{1} v_{4}$ results in a graph isomorphic to the graph A^{+}. One edge can be deleted from A^{+}to result in A and one edge can be deleted from A to result in $K_{3,3}$. Contracting $v_{3} v_{6}$ results in a graph isomorphic to $W_{6}=G_{6,1,3}^{+}$; deleting any edge of this graph results in a graph that is not 3 -connected. Finally, contracting $v_{4} v_{6}$ results in a graph isomorphic to $G_{6,2,2}^{+}$. The edge corresponding to the plus can be deleted resulting in $G_{6,2,2}$.

Figure 5.25

Figure 5.26

Finally, consider C with vertices labeled as in Figure 5.26. Deleting any edge of C results in a graph that is not 3 -connected. Up to symmetry, there are three edge contractions to consider: $v_{1} v_{2}, v_{1} v_{4}$, and $v_{4} v_{7}$. Contracting $v_{1} v_{2}$ results in a graph with a degree two vertex; contracting an edge incident with this vertex results in a graph isomorphic to $K_{3,3}$. Contracting $v_{1} v_{4}$ results in a graph isomorphic to B; further minors of B have already been considered. Contracting $v_{4} v_{7}$ results in a graph isomorphic to $G_{7,3,2}$; further minors of $G_{7,3,2}$ have already been considered.

We have now shown that all 3-connected $K_{2,4}$-minor-free graphs that are in \mathcal{S} or are minors of V_{8}, Q_{3}, or K_{5}^{δ} are all members of \mathcal{G} or are the small cases in Figure 5.6. Thus the proof is complete.

In the same paper, Ding and Liu prove the following result where $K_{3,3}^{\ddagger}$ is the graph $K_{3,3}$ with two additional edges added on the same side of the bipartition:

Theorem V. 9 (Ding and Liu [10]). The family of all 3-connected $K_{3,3}^{\ddagger}$-minor-free graphs consists of 3-connected planar graphs and 3-connected minors of the three graphs shown in Figure 5.27.

Figure 5.27

It is worthwhile to observe that because $K_{2,4}$ is a minor of $K_{3,3^{\ddagger}}, K_{2,4}$-minor-free graphs must be a subset of the graphs described in Theorem V.9. This theorem can be combined with Theorem V. 8 to conclude that for large enough graphs, all $K_{2,4^{-}}$ minor-free graphs must be planar and members of \mathcal{S} and hence only common 3 -sums of two wheels or just one wheel or just one prism are possible. The analysis required for the small cases is not simplified by using this theorem, however, so we provide the full analysis using only Theorem V.8.

5.2 The 2-connected Case

In order to describe the structure of 2-connected $K_{2,4}$-minor-free graphs, we need the following lemma:

Lemma V.10. Let z be a degree two vertex in a graph G with neighbors x and y. Let G^{\prime} be the graph formed from G by replacing the path $x z y$ with an xy-outerplanar graph on at least 3 vertices. Then G is $K_{2, t}$-minor-free if and only if G^{\prime} is $K_{2, t}$-minor-free, for $t \geq 3$.

Proof. $(\Leftarrow): G$ is a minor of G^{\prime} so if G^{\prime} is $K_{2, t}$-minor-free then so is G.
(\Rightarrow) : Let $H=G-z$. Let K be the $x y$-outerplanar graph in G^{\prime}. Then (H, K) is a 2separation in G^{\prime} with $V(H) \cap V(K)=\{x, y\}$. Because G is $K_{2, t}$-minor-free, we know that $H+x y$ is $K_{2, t}$-minor-free and also there is no $K_{2,3}$ minor in H rooted at x and y. Because $K+x y$ is outerplanar, $K+x y$ is $K_{2, t}$-minor-free. Thus by Lemma III.1, if G^{\prime} has a $K_{2, t}$ minor, then $x \in R_{1}$ and $y \in R_{2}$. If $|S \cap V(K)| \geq 2$, then K has a $K_{2,2}$ minor rooted at x and y which contradicts Lemma III.2. Thus $|S \cap V(H)| \geq 3$ but
now we have a $K_{2,3}$ minor rooted at x and y in H which is a contradiction. Hence G^{\prime} is $K_{2, t}$-minor-free.

We can now describe the structure of 2-connected $K_{2,4}$-minor-free graphs. Let G be a 2 -connected graph with a 2 -cut $\{x, y\}$. If $G-\{x, y\}$ has four or more components, then G has a $K_{2,4}$ minor: let $x \in R_{1}, y \in R_{2}$, and let S consist of one vertex from each of the four components. Thus we assume $G-\{x, y\}$ has at most three components. A set of edges F in a $K_{2,4}$-minor-free graph G is subdividable if the graph formed from G by subdividing all edges of F is $K_{2,4}$-minor-free.

Theorem V.11. Let G be a 2-connected graph. Then G is $K_{2,4}$-minor-free if and only if G is one of the following:
(i) an outerplanar graph,
(ii) three nontrivial xy-outerplanar graphs joined together at the vertices x and y, with or without the edge $x y$,
(iii) a 3-connected $K_{2,4}$-minor-free graph G^{\prime} with each edge $x_{i} y_{i}$ in a subdividable set of edges $\left\{x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{k} y_{k}\right\}$ replaced by an $x_{i} y_{i}$-outerplanar graph.

Proof. (\Leftarrow) : All outerplanar graphs are $K_{2,4}$-minor-free since they are $K_{2,3}$-minorfree. To show that a graph G in (ii) is $K_{2,4}$-minor-free, we use Lemma V.10. G is $K_{2,4}$-minor-free if the graph formed from G by replacing each of the three outerplanar pieces with a single vertex is $K_{2,4}$-minor-free. This graph is either $K_{2,3}$ or $K_{1,1,3}$ and is thus $K_{2,4}$-minor-free. We use Lemma V. 10 again to show that graphs in (iii) are $K_{2,4^{-}}$ minor-free. Let G^{\prime} be a graph formed from a 3 -connected $K_{2,4}$-minor-free graph by subdividing some set of subdividable edges. G^{\prime} is still $K_{2,4}$-minor-free by the definition
of subdividable edges. Now replace the degree two vertex in each subdivided edge $x y$ with an $x y$-outerplanar graph and by Lemma V.10, the resulting graph is still $K_{2,4}$-minor-free.
(\Rightarrow) : We proceed by induction on $|V(G)|$. If G is 3 -connected, then (iii) holds so suppose G is K_{3} or has a 2 -cut $\{x, y\}$. For the base case, take $n=3$ or 4 ; a connectivity $2 K_{2,4}$-minor-free graph on three or four vertices is $K_{3}, K_{1,1,2}$ or C_{4} all of which are outerplanar and thus are in (i). As discussed above, we know that $G-\{x, y\}$ has at most three components. Suppose there are exactly three components. If some $\{x, y\}$-bridge is not $x y$-outerplanar, then we have a $K_{2,4}$ minor: by Lemma III.2, there is a $K_{2,2}$ minor rooted at x and y in this bridge to which we may add one vertex from each of the two remaining components of $G-\{x, y\}$. Thus all three $\{x, y\}$-bridges must be $x y$-outerplanar and we have (ii).

Now assume $G-\{x, y\}$ consists of two components. If neither $\{x, y\}$-bridge is $x y$ outerplanar, then G contains a $K_{2,4}$ minor. If both $\{x, y\}$-bridges are $x y$-outerplanar then the whole graph is outerplanar and we have (i). Hence one bridge, H, is not $x y$-outerplanar and one bridge, K, is $x y$-outerplanar. Now form a graph G^{\prime} from G by replacing K with a single edge $x y .\left|V\left(G^{\prime}\right)\right|<|V(G)|$ and thus by induction, G^{\prime} is either in (i), (ii), or (iii). Because $G^{\prime}=H+x y$ and H is not $x y$-outerplanar, G^{\prime} is not outerplanar and hence not in (i). If G^{\prime} is in (ii), then there is a 2-cut $\{u, v\}$ in G such that $G-\{u, v\}$ consists of three components and thus G is also in (ii) by the argument above.

Now assume G^{\prime} is in (iii); G^{\prime} is a 3-connected $K_{2,4}$-minor-free graph with subdividable edges replaced by path-outerplanar pieces. Suppose first that $x y$ is not part of
one of the path-outerplanar pieces. Because G is $K_{2,4}$-minor-free, the graph formed by contracting $K-\{x, y\}$ to a single vertex adjacent to both x and y is also $K_{2,4}$-minorfree. This graph is isomorphic to the one formed from G^{\prime} by subdividing $x y$. Hence $x y$ is a subdividable edge in G^{\prime}. Now by Lemma V.10, replacing this subdivided edge with an $x y$-outerplanar graph results in a graph that is still $K_{2,4}$-minor-free. Hence G is in (iii).

Next suppose $x y$ is part of one of the outerplanar pieces, say a $u v$-outerplanar graph F. Then we need to look at where the edge $x y$ lies in F. If $x y$ is on the outer path of F, then replacing $x y$ with an $x y$-outerplanar graph results in a new graph that is still $u v$-outerplanar. Thus G is again in (iii). If $x y$ is not on the outer path of F, then we can show $G-\{x, y\}$ consists of three components which will be a contradiction since we are assuming $G-\{x, y\}$ consists of two components. Since F is $u v$-outerplanar, all of its vertices are on the outer path. Order the path from u to v so that u, x, y, v appear in that forward order. Then since $x y$ is not on the outer path, there must be a vertex w between x and y along the path. Because $x y \in E(F)$, w cannot be adjacent to any vertex before x along the path including u or any vertex after y along the path including v. Thus w is in a separate component from u and v in $G^{\prime}-\{x, y\}$. These two components are both distinct from $K-\{x, y\}$ in G so $G-\{x, y\}$ has three components which is a contradiction.

To complete the 2-connected case, it remains to find all sets of subdividable edges F in part (iii) of Theorem V. 11 for each 3-connected $K_{2,4}$-minor-free graph. Note that if a set of edges is subdividable, then all subsets of that set are also subdividable. In
proving that sets are subdividable, the following lemma will be helpful.

Lemma V.12. Let G be a $K_{2, t}$-minor-free graph with $t \geq 3$. Let G^{\prime} be the graph formed from G by subdividing an edge with a vertex x. Then if G^{\prime} has a $K_{2, t}$ minor, $x \in S$.

Proof. Because G is $K_{2, t}$-minor-free, if G^{\prime} has a $K_{2, t}$ minor, then x must be in the minor. Suppose $\left(R_{1}, R_{2} ; S\right)$ is a $K_{2, t}$ minor in G^{\prime} and suppose $x \in R_{1}$. Then since $\operatorname{deg}(x)=2$ and $t \geq 3$, we cannot have $R_{1}=\{x\}$. One or both of the neighbors of x must also be in R_{1}. Then $\left(R_{1}-\{x\}, R_{2} ; S\right)$ is a $K_{2, t}$ minor in G which is a contradiction. Symmetrically $x \notin R_{2}$ and thus $x \in S$.

We will state the maximal subdividable sets of edges in each graph. We start with graphs in \mathcal{G} with $n \geq 6$. Recall the spine is the path $v_{1} v_{2} \ldots v_{n}$ and when $r=2$, the second spine is $v_{n-2} v_{n-3} \ldots v_{1} v_{n-1} v_{n}$.

Theorem V.13. Consider $G_{n, r, s}^{(+)}$with $r \leq s$ and $n \geq 6$.
(i) $r=1$: The wheel $G_{n, 1, n-3}^{+}$has $n-1$ maximal subdividable sets of edges. Each one includes all edges of the rim as well as one of the spokes.
(ii) $r=2$: For $G_{6,2,2}$, there are six maximal subdividable sets of edges. All are symmetric and correspond to the edge set of the spine under an automorphism of $G_{6,2,2}$, the triangular prism.

For $G_{7,2,3}$, there are three maximal subdividable sets of edges: the set $\left\{v_{1} v_{2}, v_{4} v_{5}, v_{6} v_{7}, v_{3} v_{7}\right\}$, the edge set of the spine, and the edge set of the second spine.

For $G_{6,2,3}$, there are three maximal subdividable sets of edges: the edge set of the path $v_{4} v_{3} v_{6} v_{5} v_{1} v_{2}$, the edge set of the spine, and the edge set of the second spine. Under
the isomorphism σ, these correspond to three maximal subdividable sets of edges in $G_{6,2,2}^{+}$, namely the edge set of the path $v_{1} v_{2} v_{6} v_{5} v_{4} v_{3}$, the edge set of the second spine, and the edge set of the spine, respectively.

For $G_{n, 2, s}^{(+)}$with $n \geq 8$ and $G_{7,2,3}^{+}$, there are two maximal subdividable sets of edges: the edge set of the spine and the edge set of the second spine.
(iii) $r \geq 3$: The edge set of the spine $v_{1} v_{2} \ldots v_{n}$ is the only maximal subdividable set of edges.

Symmetric sets of edges in $G_{n, r, s}^{(+)}$with $r>s$ are also maximal subdividable sets.

Proof. We first show that the graph formed by subdividing all of the edges in each claimed subdividable set of edges is $K_{2,4}$-minor-free. For the wheel $G_{n, 1, n-3}^{+}$, subdividing all edges of the rim and one spoke results in a graph which is a subgraph of $G_{2 n, 2,2 n-4}$ and hence $K_{2,4}$-minor-free. Note that the graph formed by subdividing all edges of the spine in $G_{n, r, s}^{(+)}$is a subgraph of another graph in \mathcal{G} with $2 n-1$ vertices and thus is $K_{2,4}$-minor-free. This observation holds even when $r=2$. Recall for $G_{n, 2, n-4}$ and $G_{n, 2, n-3}^{+}$, there is an automorphism σ that reverses the path $v_{1} v_{2} \ldots v_{n-2}$ and fixes v_{n-1} and v_{n}. The spine maps to the second spine $v_{n} v_{n-1} v_{1} v_{2} \ldots v_{n-2}$. Hence for these graphs, the edge set of the second spine is a subdividable set of edges. Recall also that $G_{n, 2, n-4}^{+}$is isomorphic to $G_{n, 2, n-3}$; the spine in $G_{n, 2, n-4}^{+}$maps to the second spine in $G_{n, 2, n-3}$ and vice versa. Hence for graphs of the form $G_{n, 2, n-4}^{+}$or $G_{n, 2, n-3}$, the edge set of the second spine is subdividable. Note that because of the symmetry of $G_{6,2,2}^{+}$, there are two isomorphisms from it to $G_{6,2,3}$: one maps the spine to the second spine in $G_{6,2,3}$ and the other maps the spine to $v_{4} v_{3} v_{6} v_{5} v_{1} v_{2}$. Hence $G_{6,2,3}$ has two sets of
subdividable edges in addition to the spine.
All sets listed in the statement of the theorem have now been covered except for the set $\left\{v_{1} v_{2}, v_{4} v_{5}, v_{6} v_{7}, v_{3} v_{7}\right\}$ in $G_{7,2,3}$. Let G^{\prime} be the graph formed from $G_{7,2,3}$ by subdividing all edges of this set. Denote by $x_{i j}$ the vertex subdividing the edge $v_{i} v_{j}$. Then $V\left(G^{\prime}\right)=V(G) \cup\left\{x_{12}, x_{45}, x_{67}, x_{37}\right\}$. Note that $G^{\prime}-x_{37}$ is a subgraph of a graph in \mathcal{G} and thus is $K_{2,4}$-minor-free. Therefore, by Lemma V.14, if G^{\prime} has a $K_{2,4}$ minor $\left(R_{1}, R_{2} ; S\right)$, then $x_{37} \in S$. Without loss of generality, assume $v_{3} \in R_{1}$ and $v_{7} \in R_{2}$. We consider the makeup of R_{1}. Suppose first that $v_{4} \in R_{1}$ and $v_{2} \notin R_{1}$. Because the vertices of R_{1} must have at least four distinct neighbors, we must also have $x_{45}, v_{5} \in R_{1}$. Now $G^{\prime}-\left\{v_{3}, v_{4}, x_{45}, v_{5}, x_{37}\right\}$ is a cycle and thus R_{2} can have at most two additional neighbors which implies $|S| \leq 3$, a contradiction. Next suppose $v_{2} \in R_{1}$ and $v_{4} \notin R_{1}$. Again because the vertices of R_{1} must have at least four distinct neighbors, $x_{12}, v_{1} \in R_{1}$. Now $G^{\prime}-\left\{v_{3}, v_{2}, x_{12}, v_{1}, x_{37}\right\}$ is again a cycle and thus R_{2} can have at most two additional neighbors which implies $|S| \leq 3$, a contradiction. Finally suppose $v_{2}, v_{4} \in R_{1}$. Then we must have either $v_{2}, x_{12} \in R_{1}$ or $x_{45}, v_{5} \in R_{1}$. In either case the graph without $\left\{v_{2}, v_{3}, v_{4}, x_{37}\right\}$ and these vertices is a path and again we cannot form S of size four. Hence there is no $K_{2,4}$ minor.

Now we show that the sets of edges listed are maximal and are the only subdividable sets. Begin with the wheel $G_{n, 1, n-3}^{+}$. All edges of the rim are in each set so we consider the spokes. If we subdivide two adjacent spokes, we have the $K_{2,4}$ minor shown in Figure 5.28. A similar minor exists if we subdivide nonadjacent spokes as long as $n \geq 6$. Hence we cannot divide two spokes and the sets listed are maximal and are the only subdividable sets of edges.

Figure 5.28

Now assume $r, s \geq 2$. For this portion of the proof, we remove the assumption that $r \leq s$. We then consider the subdivision of edges of the form $v_{1} v_{n-i}$ for $0 \leq i \leq r$, and edges $v_{n} v_{1+j}$ for $0 \leq j \leq s$ are handled similarly. Denote by $G_{n, r, s}^{(+)} \circ v_{i} v_{j}$ the graph formed from $G_{n, r, s}^{(+)}$by subdividing the edge $v_{i} v_{j}$ with the vertex $x_{i j}$. We consider two cases. The first, Case A, is shown in Figure 5.29. The graph is $G_{5,2,2}^{+} \circ v_{1} v_{5}$ and has the $K_{2,4}$ minor shown. Because all graphs $G_{n, r, s}^{(+)}$with $n \geq 6$ and $r, s \geq 2$ except for $G_{6,2,2}$ have $G_{5,2,2}^{+}$as a minor, this $K_{2,4}$ minor exists in general for other members of \mathcal{G} with subdivided edges. In particular, the minor exists in $G_{n, r, s}^{(+)} \circ v_{1} v_{n-i}$ for $0 \leq i \leq r-2$, provided $s \geq 2$. We form $G_{5,2,2}^{+} \circ v_{1} v_{5}$ as a minor from $G_{n, r, s}^{(+)} \circ v_{1} v_{n-i}$ so that the $K_{2,4}$ minor shown exists by contracting all edges of the paths $v_{3} v_{4} \ldots v_{n-i-3}$ and $v_{n-i} v_{n-i+1} \ldots v_{n}$ and deleting multiple edges.

The second case, Case B, is shown in Figure 5.30. The graph is $G_{5,2,2}^{+} \circ v_{1} v_{3}$ and has the $K_{2,4}$ shown. Note that the minor does not use the edge $v_{2} v_{5}$. As with Case A, this minor exists in many larger graphs that have $G_{5,2,2}^{+}$as a minor. We list them here:
(B1) in $G_{n, r, s}^{+} \circ v_{1} v_{n-i}$ with $s \geq 2$ and $2 \leq i \leq r$
(B2) in $G_{n, r, s} \circ v_{1} v_{n-i}$ with $s \geq 2$ and $3 \leq i \leq r$
(B3) in $G_{n, r, s} \circ v_{1} v_{n-2}$ with $s \geq 3$
For graphs in (B1), form $G_{5,2,2}^{+} \circ v_{1} v_{3}$ as a minor from $G_{n, r, s}^{+} \circ v_{1} v_{n-i}$ so that the $K_{2,4}$ minor shown still exists by contracting all edges of the paths $v_{3} v_{4} \ldots v_{n-i}$ and $v_{n-i+1} v_{n-i+2} \ldots v_{n-1}$ and deleting multiple edges as well as the edge $v_{1} v_{3}$ if it is present after contraction. Similarly for graphs in (B2), contract all edges of the paths $v_{3} v_{4} \ldots v_{n-i}$ and $v_{n-i+2} v_{n-i+3} \ldots v_{n}$ and delete multiple edges and $v_{1} v_{3}$. For graphs in (B3), contract $v_{1} v_{2}$ and all edges of the path $v_{4} v_{5} \ldots v_{n-2}$ and delete multiple edges and $v_{1} v_{3}$. By symmetry, Case B covers the subdivision of $v_{n} v_{1+i}$ in situations symmetric to those described.

Figure 5.29 Case A

Figure 5.30 Case B

For $G_{n, r, s}^{(+)}$with $r, s \geq 3$, Case A covers the subdivision of the edges $v_{1} v_{n}, v_{1} v_{n-1}, \ldots$, $v_{1} v_{n-r+2}$ and Case B covers subdivision of the edges $v_{1} v_{n-r}, v_{1} v_{n-r+1}, \ldots, v_{1} v_{n-2}$. Symmetrically all edges adjacent to v_{n} that are outside the spine are covered and hence the spine is the only maximal subdividable set of edges.

Now either $r=2$ or $s=2$. Suppose to start that $r \geq 3$ and $s=2$ and consider $G_{n, r, 2}^{(+)}$. Then Case A covers subdivision of the edges $v_{1} v_{n}, v_{1} v_{n-1}, \ldots, v_{1} v_{n-r+2}$ and Case B covers $v_{1} v_{n-r}, v_{1} v_{n-r+1}, \ldots, v_{1} v_{n-2}$ in $G_{n, r, 2}^{+}$, and $v_{1} v_{n-r}, v_{1} v_{n-r+1}, \ldots, v_{1} v_{n-3}$ (and also $v_{1} v_{n-2}$ using B3 if $s \geq 3$) in $G_{n, r, 2}$. All nonspine edges $v_{1} v_{j}$ are covered except for $v_{1} v_{n-2}$ when $r=3$ and $s=2$ and there is no plus edge. We consider these edges separately. By symmetry, in $G_{n, 2, s}^{(+)}$with $r=2$ and $s \geq 3$, this argument covers all
nonspine edges $v_{n} v_{j}$ except for $v_{n} v_{3}$ when $r=2$ and $s=3$ (so $n=6$ or 7) and there is no plus edge.

Now suppose $r=2$ and $s \geq 3$ and consider $G_{n, 2, s}^{(+)}$. Case A covers subdivision of $v_{1} v_{n}$ and Case B covers $v_{1} v_{n-r}, \ldots, v_{1} v_{n-2}$ (use B3 if there is no plus edge). The edge $v_{1} v_{n-1}$ is subdividable in $G_{n, 2, s^{*}}^{(+)}$. It can be subdivided along with all edges of the spine except for $v_{n-2} v_{n-1}$. Subdividing $v_{1} v_{n-1}$ and $v_{n-2} v_{n-1}$ in $G_{n, 2, s}^{(+)}$with $r, s \geq 2$ and $n \geq 6$ results in the $K_{2,4}$ minor shown in Figure 5.31 (contract $v_{n} v_{n-1}$, and all edges of $v_{3} v_{4} \ldots v_{n-3}$ when $n \geq 7$).

At this point we reinstate the assumption that $r \leq s$. If we do not have $(r, s)=$ $(2,2)$ or $(2,3)$, the previous arguments show that the only subdividable edge not on the spine is $v_{1} v_{n-1}$, and this edge cannot be subdivided along with $v_{n-2} v_{n-1}$. Hence the edge set of the spine and the edge set of the second spine are maximal subdividable sets of edges in $G_{n, 2, s}^{(+)}$and are the only ones.

Next we examine the small cases. We only need to look at graphs with $r=2$ and $s=3$ and no plus edge, and with $r=s=2$.

Start with $G_{7,2,3}$. From above, the nonspine edges that are subdividable are $v_{3} v_{7}$ and $v_{1} v_{6}$. We know $v_{3} v_{7}$ is subdividable along with $v_{6} v_{7}, v_{4} v_{5}$, and $v_{1} v_{2}$. We claim that $v_{3} v_{7}$ is not subdividable together with any of the other spine edges, $v_{5} v_{6}, v_{3} v_{4}$, and $v_{2} v_{3}$. Subdividing $v_{5} v_{6}$ and $v_{3} v_{7}$ creates a $K_{2,4}$ minor as shown in Case B. Case B shows the minor in $G_{7,3,2}$ when $v_{2} v_{3}$ and $v_{1} v_{5}$ are subdivided: contract $v_{1} v_{2}$ and both edges of the path $v_{3} v_{4} v_{5}$ and delete multiple edges. A symmetric minor exists in $G_{7,2,3}$ when $v_{5} v_{6}$ and $v_{3} v_{7}$ are subdivided. Subdividing $v_{3} v_{4}$ and $v_{3} v_{7}$ creates a $K_{2,4}$ minor as shown in Figure 5.31. The figure shows a minor in $G_{7,3,2}$ when $v_{4} v_{5}$ and $v_{1} v_{5}$ are
subdivided: contract both edges of $v_{5} v_{6} v_{7}$ and delete multiple edges. A symmetric minor exists in $G_{7,2,3}$ when $v_{3} v_{4}$ and $v_{3} v_{7}$ are subdivided. Finally subdividing $v_{2} v_{3}$ and $v_{3} v_{7}$ creates a $K_{2,4}$ minor as shown in Figure 5.32. The figure shows a minor in $G_{7,3,2}$ when $v_{1} v_{5}$ and $v_{5} v_{6}$ are subdivided: contract $v_{3} v_{4}$ and delete the edge $v_{1} v_{3}$ after contraction. A symmetric minor exists in $G_{7,2,3}$ when $v_{2} v_{3}$ and $v_{3} v_{7}$ are subdivided. We have shown which edges of the spine $v_{1} v_{6}$ is subdividable with, namely the edges of the second spine. Hence it remains to show that we cannot subdivide $v_{3} v_{7}$ and $v_{1} v_{6}$ at the same time. Doing so results in the $K_{2,4}$ minor shown in Figure 5.33. Hence $\left\{v_{1} v_{2}, v_{3} v_{4}, v_{6} v_{7}, v_{1} v_{5}\right\}$ and the edge set of the spine and second spine are maximal subdividable set of edges and are the only ones in $G_{7,2,3}$.

Figure 5.31

Figure 5.32

Figure 5.33

Next consider $G_{6,2,3}$. The nonspine edges that are subdividable are $v_{1} v_{5}$ and $v_{3} v_{6}$. We know $v_{3} v_{6}$ is subdividable along with $v_{3} v_{4}, v_{5} v_{6}, v_{1} v_{5}$, and $v_{1} v_{2}$. We claim that $v_{3} v_{6}$ is not subdividable together with the other spine edges, $v_{2} v_{3}$ and $v_{4} v_{5}$. Subdividing $v_{4} v_{5}$ and $v_{3} v_{6}$ creates a $K_{2,4}$ minor as in Case B. Case B shows a minor in $G_{6,3,2}$ when $v_{2} v_{3}$ and $v_{1} v_{4}$ are subdivided: contract $v_{1} v_{2}$ and $v_{3} v_{4}$. A symmetric minor exists

Figure 5.34
in $G_{6,2,3}$ when $v_{4} v_{5}$ and $v_{3} v_{6}$ are subdivided. Subdividing $v_{2} v_{3}$ and $v_{3} v_{6}$ creates a $K_{2,4}$ minor as shown in Figure 5.32. The figure shows a minor when $v_{1} v_{4}$ and $v_{4} v_{5}$ are subdivided in $G_{6,3,2}$ and a symmetric minor exists in $G_{6,2,3}$ when $v_{2} v_{3}$ and $v_{3} v_{6}$ are subdivided. We have already shown which spine edges $v_{1} v_{5}$ can be subdivided with, namely the edges of the second spine. We may subdivide both $v_{1} v_{5}$ and $v_{3} v_{6}$; then we get the maximal set already analyzed above. Hence the edge set of the path $v_{4} v_{3} v_{6} v_{5} v_{1} v_{2}$ and the edge set of the spine and second spine are the maximal subdividable sets of edges in $G_{6,3,2}$.

Because $G_{6,2,2}^{+}$is isomorphic to $G_{6,2,3}$, we do not need to analyze this graph separately. The result follows from the analysis just completed for $G_{6,2,3}$.

Finally consider $G_{6,2,2}$; Cases A and B do not cover any edges as every edge is subdividable in this graph. From Figure 5.34, we can see there are two sets of similar edges: $E_{1}=\left\{v_{2} v_{3}, v_{3} v_{6}, v_{2} v_{6}, v_{1} v_{4}, v_{4} v_{5}, v_{1} v_{5}\right\}$ and $E_{2}=\left\{v_{1} v_{2}, v_{3} v_{4}, v_{5} v_{6}\right\}$. Each of the six symmetric subdividable sets of edges contains all edges of E_{2} and two nonadjacent edges of E_{1}. If three edges of E_{1} are subdivided, then necessarily two are adjacent and we have a $K_{2,4}$ minor symmetric to the one shown in Figure 5.34. Hence the subdividable sets given are maximal and are the only subdividable sets for $G_{6,2,2}$.

It remains to describe the maximal subdividable sets of edges in the small cases. The following lemma and corollary will be helpful.

Lemma V.14. Let G be a graph and let G^{\prime} be the graph formed from G by subdividing an edge uv with a vertex x. If G^{\prime} has a standard $K_{2, t}$ minor $\left(R_{1}, R_{2} ; S\right)$ with $x \notin S$ where $t \geq 3$, then G also has a $K_{2, t}$ minor.

Proof. If $x \notin R_{i}$ for $i=1,2$, then $\left(R_{1}, R_{2} ; S\right)$ is a $K_{2, t}$ minor in G. If $x \in R_{i}$ for some i, then without loss of generality, say $x \in R_{1}$. Let $R_{1}^{\prime}=R_{1}-\{x\}$. Now $\left(R_{1}^{\prime}, R_{2} ; S\right)$ is a $K_{2, t}$ minor in G.

Corollary V.15. Let G be a $K_{2, t}$-minor free graph for $t \geq 3$. Let G^{\prime} be the graph formed from G by subdividing an edge with a vertex x. If G^{\prime} has a standard $K_{2, t}$ minor $\left(R_{1}, R_{2} ; S\right)$, then $x \in S$.

Throughout the proofs we will frequently use the fact that in a standard $K_{2,4}$ minor, R_{i} must contain either a vertex of degree at least four, or two vertices of degree three. We will consider graphs formed from 3-connected graphs by subdividing edges. Call the vertices of the 3-connected graph original vertices and the vertices of the subdivided edges new vertices.

Lemma V.16. The set $\left\{b_{1} c_{1}, b_{2} c_{2}, b_{3} c_{3}\right\}$ is a subdividable set of edges in C^{+}and C where vertices are labeled as in Figure 5.35.

Figure 5.35

Figure 5.36

Proof. Consider the embedding of C^{+}shown in Figure 5.35 with the edges of $\left\{b_{1} c_{1}, b_{2} c_{2}\right.$, $\left.b_{3} c_{3}\right\}$ subdivided. Let x_{i} be the vertex subdividing the edge $b_{i} c_{i}$ for $i=1,2,3$. Let G^{\prime} be the graph with these three edges subdivided. Then because C^{+}is $K_{2,4}$-minor free and by repeated applications of Corollary V.15, if G^{\prime} has a $K_{2,4}$ minor and thus a standard $K_{2,4}$ minor, then one of x_{1}, x_{2}, or x_{3} must be in S. Suppose $x_{1} \in S$ and without loss of generality, suppose $b_{1} \in R_{1}$ and $c_{1} \in R_{2}$. Then since R_{2} must contain at least two vertices of degree three, one of c_{2} and c_{3} must be in R_{2}. The vertices c_{1}, c_{2}, and c_{3} form a triangle, however, so in order to form an R_{2} with four distinct neighbors, we must additionally have at least one of b_{2} or b_{3} in R_{2}. Without loss of generality, assume $b_{2} \in R_{2}$. Then without loss of generality, either $c_{3}, x_{3}, b_{3}, a_{2} \in R_{2}$ or $c_{2}, x_{2} \in R_{2}$. If the former holds, then $\left|R_{2}\right| \geq 6$ and since $\left|R_{1}\right| \geq 2$, we cannot form S of size four. Hence $c_{2}, x_{2} \in R_{2}$. Now we must have at least two vertices in R_{1} as well; one of a_{1} and a_{2} must be in R_{1}. Hence, $\left\{c_{1}, c_{2}, x_{2}, b_{2}\right\} \subseteq R_{2}$ and if $\left\{c_{1}, c_{2}, x_{2}, b_{2}\right\}=R_{2}$, then R_{2} no longer has four distinct neighbors in $G^{\prime}-\left(R_{1} \cup R_{2}\right)$ so we must have $\left|R_{2}\right| \geq 5$. Now with $\left|R_{1}\right| \geq 2$, we have $\left|V\left(G^{\prime}\right)-\left(R_{1} \cup R_{2}\right)\right|=4$ and hence $b_{3}, x_{3} \in S$. But since $\operatorname{deg}\left(x_{3}\right)=2$ and one of its neighbors is in S, then we cannot form R_{1} and R_{2} both adjacent to $x_{3} \in S$. Thus we have no $K_{2,4}$ minor with

Figure 5.37
$x_{1} \in S$. From the graph in Figure 5.35, we can see that the situations with $x_{2} \in S$ and $x_{3} \in S$ are symmetric and thus G^{\prime} is $K_{2,4}$-minor free.

Lemma V.17. The set $\left\{b_{1} c_{1}, b_{2} c_{2}, b_{3} c_{3}\right\}$ is a maximal set of subdividable edges in C^{+} and C and is the only one.

Proof. By Lemma V.16, the set is subdividable so it remains to show it is maximal and the only one. If we subdivide $a_{1} b_{1}$, then there is a $K_{2,4}$ minor as shown in the left of Figure 5.37. The edges $a_{i} b_{j}$ are symmetric for $i=1,2$ and $j=1,2,3$ so subdividing any one results in a minor symmetric to the one shown. If we subdivide the edge $c_{1} c_{2}$, then there is a $K_{2,4}$ minor as shown in the middle of Figure 5.37. The edges $c_{i} c_{j}$ are all symmetric for $i \neq j$ so subdividing any one results in a minor symmetric to the one shown. Finally subdividing the edge $a_{1} a_{2}$ in C^{+}results in the $K_{2,4}$ minor shown on the right in Figure 5.37. Thus no set containing $a_{1} a_{2}, c_{i} c_{j}$ for $i \neq j$, or $a_{i} b_{j}$ for $i=1,2, j=1,2,3$ is subdividable. The only set excluding all of these edges is $\left\{b_{1} c_{1}, b_{2} c_{2}, b_{3} c_{3}\right\}$ and hence it is maximal and is the only subdividable set.

Lemma V.18. The set $\left\{b_{1} c_{1}, b_{3} c_{3}\right\}$ is the only maximal set of subdividable edges in
B^{+}and B where vertices are labeled as in Figure 5.36.

Proof. Contracting the edge $b_{2} c_{2}$ in C^{+}or C results in the graph B^{+}or B, respectively. Hence since $b_{1} c_{1}$ and $b_{3} c_{3}$ are subdividable in C^{+}, they are also subdividable in B^{+} and B. To show that the set is maximal, consider subdivision of other edges. Here we can extend the minors found in Figure 5.37 to find a standard $K_{2,4}$ minor in B^{+} or B. In B^{+}and B, the vertices b_{2} and c_{2} are replaced by a single vertex d. Thus for the minor on the left of Figure 5.37, d replaces c_{2} in S and for the minor on the right, d replaces b_{2} in S. For the minor in the middle, $R_{i}=\left\{b_{2}, c_{2}\right\}$ is replaced by $V\left(R_{i}^{\prime}\right)=\{d\}$ which covers subdividing $c_{1} d$ or $c_{3} d$; for subdividing $c_{1} c_{3}$ swap the roles of b_{2}, c_{2} with b_{3}, c_{3} before contracting $b_{2} c_{2}$. Thus no edges other than $b_{1} c_{1}$ and $b_{3} c_{3}$ are subdividable in B^{+}and B and $\left\{b_{1} c_{1}, b_{3} c_{3}\right\}$ is a maximal set of subdividable edges and is the only one.

Lemma V.19. The three symmetric sets $\left\{v_{1} v_{2}, v_{3} v_{4}, v_{6} v_{7}, v_{5} v_{6}\right\},\left\{v_{1} v_{2}, v_{3} v_{4}, v_{6} v_{7}, v_{3} v_{5}\right\}$, and $\left\{v_{1} v_{2}, v_{3} v_{4}, v_{6} v_{7}, v_{1} v_{5}\right\}$ are subdividable sets of edges in D.

Proof. Let D^{\prime} be the graph formed from D by subdividing each edge of the set $\left\{v_{1} v_{2}, v_{3} v_{4}, v_{6} v_{7}, v_{5} v_{6}\right\}$ with the vertices $x_{1}, x_{2}, x_{3}, x_{4}$, respectively. Suppose D^{\prime} has a $K_{2,4}$ minor $\left(R_{1}, R_{2} ; S\right)$. Since D is $K_{2,4}$-minor free, at least one of the vertices x_{i} must be in the minor. If none of the x_{i} are in S, then by repeated applications of Lemma V.14, there is a $K_{2,4}$ minor in D which is a contradiction. Thus at least one x_{i} must be in S.

Suppose first that $x_{1} \in S$; without loss of generality, $v_{1} \in R_{1}$ and $v_{2} \in R_{2}$. Then $D-x_{1}$ must contain a standard $K_{2,3}$ minor $\left(R_{1}, R_{2} ; S-x_{1}\right)$ rooted at v_{1} and v_{2}. We
consider the location of the three vertices of $S^{\prime}=S-x_{1}$. Let $P_{1}=v_{5} x_{4} v_{6} x_{3} v_{7}$ and $P_{2}=v_{3} x_{2} v_{4}$. If $\left|S^{\prime} \cap V\left(P_{1}\right)\right| \geq 2$, then since $v_{2} \in R_{2}$ and v_{2} is only adjacent to v_{7} in P_{1}, in order to reach all vertices of S^{\prime}, R_{2} must contain all of P_{2}. Hence $S^{\prime} \cap V\left(P_{2}\right)=\emptyset$ and therefore $\left|S^{\prime} \cap V\left(P_{1}\right)\right|=3$. Now in order for R_{1} to reach all vertices of S^{\prime}, R_{1} must contain at least one vertex of P_{1}; in particular, for R_{1} to have three distinct neighbors on $P_{1}, v_{6} \in R_{1}$. Now, however, R_{2} can no longer have three neighbors on P_{1} and hence cannot reach all of S^{\prime}. Thus $\left|S^{\prime} \cap V\left(P_{1}\right)\right| \leq 1$ and therefore $\left|S^{\prime} \cap V\left(P_{2}\right)\right| \geq 2$. In order for R_{1} to reach two vertices of P_{2}, R_{1} must contain $\left\{v_{6}, x_{3}, v_{7}\right\}$. Now, however, R_{2} cannot reach two vertices of P_{2}. Thus we cannot have $\left|S^{\prime} \cap V\left(P_{2}\right)\right| \geq 2$ and there is no $K_{2,3}$ minor in $D-x_{1}$ rooted at v_{1} and v_{2}. Hence we cannot form a $K_{2,4}$ minor with $x_{1} \in S$ or symmetrically $x_{2} \in S$.

Now suppose $x_{3} \in S$; without loss of generality, $v_{7} \in R_{1}$ and $v_{6} \in R_{2} . R_{1}$ must contain at least two original vertices and since v_{2}, v_{7}, and v_{4} are all of degree three and form a triangle, it must contain one of v_{1} or v_{3}. Assume without loss of generality $v_{3} \in R_{1}$. Then R_{2} must contain another original vertex since v_{6} no longer has four neighbors outside of R_{1}. With $v_{3} \in R_{1}$, there must be a $v_{7} \ldots v_{3}$ path in R_{1} and hence either $v_{2}, v_{1} \in R_{1}$ or $v_{4} \in R_{1}$. If $v_{2}, v_{1} \in R_{1}$, then $v_{5} \in R_{2}$ but now R_{2} does not have four neighbors in $V\left(D^{\prime}\right)-\left(R_{1} \cup R_{2}\right)$. Thus we must have $v_{4} \in R_{1}$ (and hence $\left.x_{2} \in R_{1}\right)$. If $v_{2} \in R_{2}$, then v_{1} and x_{1} must also be in R_{2} and now $\left|V\left(D^{\prime}\right)-\left(R_{1} \cup R_{2}\right)\right|=3$ so we cannot form S. If $v_{1} \in R_{2}$ then necessarily $S=\left\{x_{4}, v_{5}, x_{3}, v_{2}\right\}$ since we know $x_{1} \notin S$, but now R_{1} cannot be adjacent to x_{4} since its two neighbors are in R_{2} and S. Hence we cannot form a $K_{2,4}$ minor with $x_{3} \in S$.

Finally suppose $x_{4} \in S$. Then $D^{\prime}-x_{4}$ must contain a $K_{2,3}$ minor $\left(R_{1}, R_{2} ; S-x_{4}\right)$
rooted at v_{5} and v_{6}. Without loss of generality, suppose $v_{5} \in R_{1}$ and $v_{6} \in R_{2}$. We know that D^{\prime} does not contain a $K_{2,4}$ minor with x_{1}, x_{2}, or x_{3} in S and thus $D^{\prime}-x_{4}$ does not contain a $K_{2,3}$ minor rooted at v_{5} and v_{6} with x_{1}, x_{2}, or x_{3} in $S^{\prime}=S-x_{4}$. We consider the location of S^{\prime}. If $v_{1}, v_{3} \in S^{\prime}$, then since $v_{5} \in R_{1}, R_{1}$ cannot be connected and adjacent to the third vertex of S^{\prime}. Thus at most one of v_{1} and v_{3} can be in S^{\prime} and therefore at least two of v_{2}, v_{4}, and v_{7} are in S^{\prime}.

If $v_{2}, v_{4} \in S^{\prime}$, then since $v_{6} \in R_{2}$ and $v_{5} \in R_{1}$, in order for R_{1} to reach v_{2} and v_{4}, we must have $v_{1}, v_{3} \in R_{1}$. Then in order for R_{2} to reach v_{2} and v_{4}, we must have $x_{3}, v_{7} \in R_{2}$. Now, however, we cannot form S^{\prime} with three vertices. If $v_{2}, v_{7} \in S^{\prime}$, then in order for R_{2} to reach v_{2} and v_{7}, we must have either $v_{1}, x_{1} \in R_{2}$ or $v_{3}, x_{2}, v_{4} \in R_{2}$. The former forces $v_{3}, x_{2}, v_{4} \in R_{1}$ but then we cannot form S^{\prime} of size three. In the latter case, we cannot form a connected R_{1} adjacent to $v_{7} \in S^{\prime}$. The situation with $v_{4}, v_{7} \in S^{\prime}$ is symmetric to the one just considered and hence there is no $K_{2,3}$ minor in $D^{\prime}-x_{4}$ rooted at v_{5} and v_{6}. Therefore there is no $K_{2,4}$ minor in D^{\prime} with $x_{4} \in S$. Thus D^{\prime} is $K_{2,4}$-minor free.

The sets $\left\{v_{1} v_{2}, v_{3} v_{4}, v_{6} v_{7}, v_{3} v_{5}\right\}$ and $\left\{v_{1} v_{2}, v_{3} v_{4}, v_{6} v_{7}, v_{1} v_{5}\right\}$ are symmetric to $\left\{v_{1} v_{2}\right.$, $\left.v_{3} v_{4}, v_{6} v_{7}, v_{5} v_{6}\right\}$ so they are also subdividable by symmetric arguments.

Lemma V.20. The three symmetric sets $\left\{v_{1} v_{2}, v_{3} v_{4}, v_{6} v_{7}, v_{5} v_{6}\right\},\left\{v_{1} v_{2}, v_{3} v_{4}, v_{6} v_{7}, v_{3} v_{5}\right\}$, and $\left\{v_{1} v_{2}, v_{3} v_{4}, v_{6} v_{7}, v_{1} v_{5}\right\}$ are maximal sets of subdividable edges in D and are the only maximal subdividable sets.

Proof. By Lemma V.19, the sets are subdividable so it remains to show they are maximal and are the only ones. If we subdivide $v_{1} v_{3}$, then there is a $K_{2,4}$ minor as

Figure 5.38
shown on the left in Figure 5.38. Symmetric minors exist if we subdivide $v_{1} v_{6}$ or $v_{3} v_{6}$ hence no subdividable set can include any of these edges. If we subdivide $v_{2} v_{4}$, then there is a $K_{2,4}$ minor as shown in the middle of Figure 5.38. Symmetric minors exist if we subdivide $v_{2} v_{7}$ or $v_{4} v_{7}$ hence no subdividable set can include any of these edges. Finally, if we subdivide two edges incident with v_{5}, then there is a $K_{2,4}$ minor as shown on the right of Figure 5.38. Therefore no subdividable set can include two of the edges $v_{1} v_{5}, v_{5} v_{6}$, and $v_{3} v_{5}$. There are three symmetric sets which include only one of these three edges and none of the edges $v_{1} v_{3}, v_{1} v_{6}, v_{3} v_{6}, v_{2} v_{4}, v_{2} v_{7}$, and $v_{4} v_{7}$ and they are precisely the sets listed in the statement of the lemma. Thus these sets are maximal and are the only such sets.

Lemma V.21. The set $\left\{d e, b_{1} e, b_{3} e\right\}$ is the only set of maximal subdividable edges in A where vertices are labeled as in Figure 5.39.

Proof. First we show the set is subdividable. Let G^{\prime} be the graph formed from A by subdividing $d e, b_{1} e$, and $b_{3} e$. Then if G^{\prime} has a standard $K_{2,4}$ minor, R_{1} and R_{2} must consist of a degree four vertex or two degree three vertices. Suppose $R_{1}=\left\{a_{1}\right\}$. Then $S=\left\{b_{1}, d, a_{2}, b_{3}\right\}$ but now e is the only remaining original vertex for R_{2} so we cannot have R_{1} or R_{2} consisting of a single degree four vertex (the situation with a_{2} is
symmetric to this one). Hence R_{1} and R_{2} must contain at least two original vertices. All three new vertices are adjacent to e so e must be in R_{1} or R_{2}, say R_{1}, and then one of b_{1}, d, b_{3} must also be in R_{1}. Thus one of the new vertices is also in R_{1} so now we must have exactly two new vertices in S, two original vertices in S, and hence $\left|R_{1}\right|=\left|R_{2}\right|=2$. The only pairs of adjacent original vertices that are adjacent to two new vertices, however, all include e so we cannot form two such pairs and hence we cannot form R_{1} and R_{2}. Thus G^{\prime} is $K_{2,4}$-minor-free.

If we subdivide $a_{1} a_{2}$, then there is a $K_{2,4}$ minor as shown on the left in Figure 5.40. If we subdivide $a_{1} b_{1}$, then there is a $K_{2,4}$ minor as shown on the right in Figure 5.40. Symmetric minors exist if we subdivide $a_{1} d, a_{1} b_{3}, a_{2} b_{1}, a_{2} d$, or $a_{2} b_{3}$. Thus no subdividable set of edges can contain any of these edges and the only set that excludes all of them is $\left\{d e, b_{1} e, b_{3} e\right\}$. Hence this set is maximal and is the only one.

Figure 5.39

Figure 5.40

Lemma V.22. The edge de is the only subdividable edge in A^{+}where edges are labeled as in Figure 5.41.

Proof. Let G^{\prime} be the graph formed from A^{+}by subdividing the edge $d e$ with a vertex x. Then since $\left|V\left(G^{\prime}\right)\right|=7$, if G^{\prime} has a standard $K_{2,4}$ minor, either R_{1} or R_{2} must
be a single vertex of degree four; without loss of generality let $R_{1}=\left\{a_{1}\right\}$. Then $S=\left\{b_{1}, d, a_{2}, b_{3}\right\}$ and hence $R_{2}=\{x, e\}$ but $\left(R_{1}, R_{2} ; S\right)$ is not a $K_{2,4}$ minor. Hence R_{1} and R_{2} cannot consist of a single vertex so there is no $K_{2,4}$ minor in G^{\prime}.

Because A is a minor of A^{+}, a spanning subgraph in fact, the $K_{2,4}$ minors shown in Figure 5.40 exist in A^{+}as well. Thus $a_{1} a_{2}, a_{1} b_{1}, a_{1} d, a_{1} b_{3}, a_{2} b_{1}, a_{2} d$, and $a_{2} b_{3}$ cannot be subdivided in A^{+}. Edges $b_{1} e$ and $b_{3} e$ are similar to $a_{1} d$ in A^{+}so they also cannot be subdivided. Hence $d e$ is the only subdividable edge in A^{+}.

Figure 5.41

Figure 5.42

Lemma V.23. Up to symmetry, the set $\left\{a_{1} b_{1}, a_{1} b_{2}, a_{1} b_{3}\right\}$ is the only maximal subdividable set in $K_{3,3}$.

Proof. $K_{3,3}$ is a minor of the graph A; delete the edge $a_{1} a_{2}$ and relabel e as a_{3} and d as b_{2}. By Lemma V.21, the edges $a_{1} b_{1}, a_{1} d$, and $a_{1} b_{3}$ are subdividable in A. These edges correspond to the ones labeled $a_{1} b_{1}, a_{1} b_{2}$, and $a_{1} b_{3}$ in $K_{3,3}$ in Figure 5.42 so they are also subdividable. If we subdivide two edges not incident with the same vertex, then there is a $K_{2,4}$ minor similar to the one shown in Figure 5.42. Hence no subdividable set can contain two edges incident with the same vertex so up to symmetric, $\left\{a_{1} b_{1}, a_{1} b_{2}, a_{1} b_{3}\right\}$ is maximal and is the only one.

Figure 5.43

For the graph $K_{5}-e$, we consider the picture on the left in Figure 5.43.

Lemma V.24. The sets $\{a d, a e, b d, c d\}$ and $\{a d, a e, b d, c e\}$ are subdividable sets of edges in $K_{5}-e$.

Proof. Observe that $K_{5}-e$ is isomorphic to $G_{5,2,2}^{+}$. We can label the vertices so that the spine is $b d a e c$. Hence $\{a d, a e, b d, c e\}$ is a subdividable set of edges. $K_{5}-e$ is also a minor of D : contract the triangle $\left(v_{2} v_{4} v_{7}\right)$ to the vertex d. Now the set $\{a d, a e, b d, c d\}$ corresponds to the set $\left\{v_{6} v_{7}, v_{5} v_{6}, v_{1} v_{2}, v_{3} v_{4}\right\}$ in D and thus is subdividable.

Lemma V.25. Up to symmetry, the sets $\{a d, a e, b d, c d\}$ and $\{a d, a e, b d, c e\}$ are maximal sets of subdividable edges in $K_{5}-e$ and are the only ones.

Proof. By Lemma V.24, the sets are subdividable so it remains to show they are maximal. If we subdivide the edge $b c$ with a vertex x we have a $K_{2,4}$ minor with $R_{1}=\{b\}, R_{2}=\{c\}$ and $S=\{x, e, a, d\}$. Thus $b c, a b$, and symmetrically $a c$ cannot be subdivided. Each of the six other edges is individually subdividable so we consider combinations of subdivisions. There are three symmetric 4-cycles that do not contain any of the edges $a b, b c$, and $a c$: adbea, adcea, and $b d c e b$. If we subdivide all edges of a 4 -cycle, then there is a $K_{2,4}$ minor as shown in Figure 5.44. The six individually subdividable edges form a $K_{2,3}$ and it can be seen that the maximal sets that do not

Figure 5.44
contain a 4-cycle are precisely the sets symmetric to those in Lemma V.24. Therefore these sets are exactly the maximal subdividable sets.

Lemma V.26. In $K_{5}-2 K_{2}$, the sets $\{a d, a e, b d, c d\},\{a d, a e, b d, c e\}$, and $\{a d, b d, c d, c e, b e\}$ are the only maximal subdividable sets up to symmetry.

Proof. By Lemma V.24, $\{a d, a e, b d, c d\}$ and $\{a d, a e, b d, c e\}$ are subdividable sets in $K_{5}-e$ so because $K_{5}-2 K_{2}$ is a minor of $K_{5}-e$, the sets are also subdividable in $K_{5}-2 K_{2} . K_{5}-2 K_{2}$ is a wheel so by the same arguments as in Theorem V. 13 (i), the set $\{a d, b d, c d, c e, b e\}$ and three symmetric copies of this set are subdividable because they correspond to all edges of the rim and one spoke.

The minor shown in Figure 5.44 when all edges of the 4-cycle adbea are subdivided exists in $K_{5}-2 K_{2}$ as well since it does not use the edge $b c$. Hence we cannot subdivide all edges of the 4-cycles adbea, abeca, aecda, and $a c d b a$. If we subdivide two consecutive edges incident with a, then there is a $K_{2,5}$ minor as shown in Figure 5.45. So we may use at most two edges incident with a. If we use only one edge incident with a then we may use all other edges as in the third set. If we use two edges incident with a, then they must be opposite, say $a d$ and $a e$, and we can add any edges not incident with a as long as they do not complete a second path from d to e; this gives
the first two sets.

Figure 5.45

Figure 5.46

Lemma V.27. In K_{4}, the set of four edges, three incident with a single vertex and one additional edge, is a maximal subdividable set. There are 12 such symmetric sets in K_{4}.

Proof. Let G^{\prime} be the graph formed from K_{4} by subdividing all four edges in one of the symmetric sets listed in the lemma. If there is a standard $K_{2,4}$ minor in G^{\prime}, then R_{1} and R_{2} must each consist of two original vertices and S must consist of the four new vertices. One original vertex is only adjacent to new vertices, however, so this vertex cannot be paired with another original vertex to form an R_{i} without also including a new vertex. Hence there is no $K_{2,4}$ minor.

Figure 5.46 shows a $K_{2,4}$ minor when all edges of a 4 -cycle are subdivided. Hence the only way to avoid taking four edges of a 4 -cycle is to take three edges incident with a single vertex and any additional edge as stated in the lemma. Thus these sets are maximal and are the only ones.

As mentioned earlier, a graph G is $K_{2,4}$-minor-free if and only if each of its blocks is $K_{2,4}$-minor-free, so we can state our overall result as follows.

Theorem V.28. A graph is $K_{2,4}$-minor-free if and only if each of its blocks is de-
scribed by Theorem V.11, where for Theorem V. 11 (iii), the 3-connected graphs are given in Theorem V. 7 and the subdividable sets are described in Theorem V. 13 and Lemmas V.17, V.18, V.20, V.21, V.22, V.23, V.25, V.26, and V.27.

Chapter VI

FUTURE WORK

One possible future direction is to extend the result of Theorem II. 1 to graphs on the Klein bottle. There are classifications of 4-connected, 4-regular graphs on the Klein bottle and although they are more complicated than those of the torus, they might be useful for proving a similar result.

The results for minor-free graphs in Chapters IV and V lead to several future directions. One idea is to provide a complete characterization for $K_{2,5}$-minor-free graphs. If this proves too difficult, then characterizing planar $K_{2,5}$-minor-free graphs is perhaps more feasible. Presumably, this proof would be aided by a characterization of rooted 2-terminal $K_{2,3}$-minor-free graphs which is another result to consider.

Another idea is to characterize all H-minor-free graphs for other small graphs H of connectivity 2 in addition to $K_{2,4}$. The results of Ding and Liu in [10] characterize H-minor-free graphs for many small 3 -connected graphs H so this idea is a natural next step.

In regards to Hamiltonicity, we may be able to show that 3-connected planar $K_{2,6}$-minor-free graphs are Hamiltonian except for a family of well-characterized exceptions. One family of exceptions is described in Lemma IV.4, and based on computer results by Gordon Royle, it appears that all other exceptions may be related to these (private communication).

One final problem concerning forbidden minors and suggested by David Wood
involves a class of graphs called subhamiltonian planar graphs. These graphs are planar graphs in which every minor of the graph is a subgraph of a Hamiltonian planar graph. The class of graphs is minor-closed and thus by the Robertson and Seymour Graph Minor Theorem has a forbidden minor characterization. The question then is to determine the forbidden minor characterization.

References

[1] Amos Altshuler, Hamiltonian circuits in some maps on the torus, Discrete Math. 1, (1972) 299-314.
[2] I. Z. Bouwer and W. W. Chernoff, The toroidal graphs $6,3_{b, c}$ are Hamiltonian, Eleventh British Combinatorial Conference (London, 1987), Ars Combin. 25A, (1988) 179-186.
[3] Richard Brunet, Atsuhiro Nakamoto, and Seiya Negami, Every 5-connected triangulations of the Klein bottle is Hamiltonian. Proceedings of the 10th Workshop on Topological Graph Theory (Yokohama, 1998). Yokohama Math. J. 47, (1999), Special Issue, 239-244.
[4] Richard Brunet and R. B. Richter, Hamiltonicity of 5-connected toroidal triangulations, J. Graph Theory 20, (1995) 267-286.
[5] Guantao Chen and Xingxing Yu, Long cycles in 3-connected graphs, J. Combin. Theory Ser. B 86, (2002) 80-99.
[6] Norishige Chiba and Takao Nishizeki, A theorem on paths in planar graphs, J. Graph Theory 10, (1986) 267-286.
[7] Maria Chudnovsky, Bruce Reed, and Paul Seymour, The edge-density for $K_{2, t}$ minors. J. Combin. Theory Ser. B 101, (2011) 18-46.
[8] Lino Demasi, Rooted minors and delta-wye transformations. Ph.D. Thesis, Simon Fraser University, Fall 2012.
[9] Y. Dieng and C. Gavoille, La structure des graphes sans mineur $K_{2,4}$. 10èmes Journées Graphes et Algorithms, November 2008. http://wwwsop.inria.fr/mascotte/seminaires/JGA08/pdf/youssou.pdf
[10] Guoli Ding and Cheng Liu, Excluding a small minor. Discrete Applied Mathematics 161, (2013), 355-368.
[11] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2, (1952) 69-81.
[12] Richard A. Duke, On the genus and connectivity of Hamiltonian graphs, Discrete Math. 2, (1972) 199-206.
[13] Jun Fujisawa, Atsuhiro Nakamoto, and Kenta Ozeki, Hamiltonian cycles in bipartite toroidal graphs with a partite set of degree four vertices, J. Combin. Theory Ser. B 103, (2013) 46-60.
[14] Zhicheng Gao and R. Bruce Richter, 2-walks in circuit graphs, J. Combin. Theory Ser. B 62, (1994) 259-267.
[15] P. R. Goodey, A class of Hamiltonian polytopes, J. Graph Theory 1, (1977) 181-185.
[16] B. Grünbaum, Polytopes, graphs and complexes, Bull. Amer. Math. Soc. 76, (1970) 1131-1201.
[17] R. Halin, Zur Theorie der n-fach zusammenhängenden Graphen. Abh. Math. Sem. Univ. Hamburg, 33, (1969) 133-164.
[18] Joseph Malkevitch, Polytopal graphs, in "Selected topics in graph theory 3," Academic Press, San Diego, CA (1988) 169-188.
[19] Atsuhiro Nakamoto and Seiya Negami, Full-symmetric embeddings of graphs on closed surfaces, Mem. Osaka Kyoiku Univ. 49, (2000) 1-15.
[20] Atsuhiro Nakamoto and Kenta Ozeki, Hamiltonian cycles in bipartite quadrangulations on the torus, J. Graph Theory 69, (2012) 143-151.
[21] C. St. J. A. Nash-Williams, Unexplored and semi-explored territories in graph theory, in "New Directions in the Theory of Graphs," edited by Frank Harary, (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971), Academic Press, New York (1973) 149-186.
[22] Noah Streib and Stephen J. Young, Dimension and structure for a poset of graph minors. University of Louisville Department of Mathematics Homepage of Stephen J. Young. Web 4 March 2013. <http://www.math.louisville.edu/~syoung/research/papers/ DimensionMinorPoset.pdf>
[23] Neil Robertson and P. D. Seymour, Graph minors. IX. Disjoint crossed paths. J. Combin. Theory Ser. B 49, (1990), no. 1, 40-77.
[24] Robin Thomas and Xingxing Yu, Five-connected toroidal graphs are Hamiltonian, J. Combin. Theory Ser. B 69, (1997) 79-96.
[25] Robin Thomas and Xingxing Yu, 4-connected projective-planar graphs are Hamiltonian, J. Combin. Theory Ser. B 62, (1994) 114-132.
[26] Robin Thomas, Xingxing Yu, and Wenan Zang, Hamilton paths in toroidal graphs, J. Combin. Theory Ser. B 94, (2005) 214-236.
[27] Carsten Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7, (1983) 169-176.
[28] W. T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82, (1956) 99-116.
[29] W. T. Tutte, On Hamiltonian circuits, J. London Math. Soc. 21, (1946) 98-101.
[30] K. Wagner, Über eine Eigenschaft der ebenen Komplexe. (German) Math. Ann. 114, (1937), no. 1, 570-590.
[31] H. Whitney, A theorem on graphs, Ann. Math. 32, (1931) 378-390.
[32] Xiaofan Yang, David J. Evans, Hongjian Lai, and Graham M. Megson, Generalized honeycomb torus is Hamiltonian, Inform. Process. Lett. 92, (2004) 31-37.

