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Chapter I

INTRODUCTION

1.1 Definitions

The main results of this dissertation are Hamiltonicity and structural results for

graphs on surfaces and graphs with certain forbidden minors. We begin in the first

chapter by providing relevant definitions and describing related known results. This

provides context for the main results that follow. In Chapters II and IV, we prove

results concerning Hamiltonicity of graphs on surfaces. In Chapter III, we outline

notation and structural lemmas concerning K2,t minors. In Chapter V, we provide a

complete characterization for a class of minor-free graphs. In Chapter VI, we discuss

directions for future work.

Throughout this dissertation, let G = (V (G), E(G)) be a finite simple graph. A

path in a graph G is a sequence of distinct vertices v1, v2, ..., vn such that vivi+1 ∈ E(G)

for 1 ≤ i ≤ n − 1. A path on three or more vertices together with the edge vnv1 is

called a cycle. A Hamilton cycle or path is a cycle or path that includes every vertex

of the graph. Not every graph contains a Hamilton cycle, and the next section as

well as Chapters II and IV deal with results about restrictions that can be placed on

graphs to ensure the existence of such a cycle, perhaps satisfying special conditions.

One restriction involves the connectivity of a graph, which is defined as follows. A

graph is connected if there is a path between any two vertices in the graph. If the

removal of one vertex v and all of its incident edges from a connected graph results in
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a graph that is not connected, then v is a cutvertex. A set of vertices whose removal

disconnects the graph is called a cutset. A graph is k-connected if the smallest cutset

in a connected graph has size k or more, or if the graph is Kk+1. A graph is bipartite

if its vertices can be divided into two disjoint parts, A and B, such that every edge

in the graph is of the form ab where a ∈ A and b ∈ B. A graph is planar if it can

be drawn on the plane such that no edges cross. The equivalent definitions hold for

projective-planar graphs, toroidal graphs, and graphs on the Klein bottle. A graph

is outerplanar if it has a plane embedding in which all vertices are on the outer face.

For a graph embedded on a surface with no crossing edges, the face degree of each

face of the graph is the number of edges in the closed walks of the graph that make

up the boundary of the face.

Chapters III through V deal with minors of graphs. A graph H is a minor of a

graph G if H is isomorphic to a graph formed from G by contracting and deleting

edges of G and deleting vertices of G. Another way to think of a k-vertex minor H

of G is as a collection of pairwise disjoint subsets of the vertices of G, (V1, V2, ..., Vk)

where each Vi corresponds to a vertex vi ∈ V (H), G[Vi] (the subgraph of G induced

by the vertex set Vi) is connected for 1 ≤ i ≤ k, and for each edge vivj ∈ E(H)

there is an edge between a vertex of Vi and Vj in G. We will often identify minors in

graphs by describing the sets (V1, V2, ..., Vk). For each vertex v ∈ V (H), the branch

set of v is the set of vertices in G that contracts to v. A minor H of G is rooted at

a vertex x ∈ V (G) if x is in the branch set of a designated vertex of H. A graph is

H-minor-free if it does not contain H as a minor.
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1.2 Hamiltonicity Results for Graphs on Surfaces

We are now ready to look at results concerning Hamiltonicity of certain types of

graphs. One of the earliest results of this kind is due to Whitney.

Theorem I.1 (Whitney, 1931 [31]). Every 4-connected planar triangulation has a

Hamilton cycle.

Whitney’s result was not strengthened for over twenty years. In 1956, Tutte

finally removed the triangulation condition and in 1977, he published another paper

that reorganized the proof.

Theorem I.2 (Tutte, 1956 [28]). Every 4-connected planar graph has a Hamilton

cycle.

This result was later strengthened by Thomassen (with a minor correction by

Chiba and Nishizeki [6]). A graph is Hamilton-connected if there is a Hamilton path

between every two pair of vertices in the graph.

Theorem I.3 (Thomassen, 1983 [27]). Every 4-connected planar graph is Hamilton-

connected.

Tutte’s result in 1956 saw the introduction of what are now known as “Tutte

cycles”, structures within a graph that have many other useful applications. It is

known that not all 3-connected planar graphs are Hamiltonian and even not all 3-

connected triangulations of the plane are Hamiltonian [31] and these results will be

discussed later. Hence Tutte’s result cannot be strengthened by simply weakening

the connectivity condition. Restricting the vertex degrees so that every vertex has
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degree three (cubic graphs) still does not guarantee Hamiltonicity for 3-connected

planar graphs [29]. Barnette and Goodey are credited with conjectures that claim

additional sufficient conditions for the Hamiltonicity of 3-connected, cubic, planar

graphs.

Conjecture I.4 (Barnette, see [18], and Goodey [15]). Every 3-connected, cubic,

planar graph with all face degrees at most six is Hamiltonian.

Conjecture I.5 (Barnette, see [16]). Every 3-connected, cubic, bipartite, planar graph

is Hamiltonian.

In Chapter IV, we will see another condition on 3-connected planar graphs that

guarantees Hamiltonicity. Now we consider graphs on other surfaces. Concerning

graphs on the projective plane, Thomas and Yu have the following result:

Theorem I.6 (Thomas and Yu, 1994 [25]). Every edge of a 4-connected projective-

planar graph is contained in a Hamilton cycle.

It is not true, however, that every 3-connected cubic projective-planar graph with

face degree ≤ 6 is Hamiltonian as Barnette and Goodey conjectured for the plane. As

a counterexample, take the Petersen graph embedded in the projective plane. Its face

degrees are all five but the graph is not Hamiltonian. However, it has been shown by

Ellingham and Zha that every 3-connected cubic projective-planar graph with face

degrees three or six is in fact Hamiltonian (personal communication).

For graphs on the torus, Brunet and Richter proved the following:

Theorem I.7 (Brunet and Richter, 1995 [4]). Every 5-connected toroidal triangula-

tion is Hamiltonian.
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This result was later strengthened by Thomas and Yu.

Theorem I.8 (Thomas and Yu, 1997 [24]). Every edge of a 5-connected toroidal

graph is contained in a Hamilton cycle.

For 4-connected toroidal graphs, Thomas, Yu, and Zang proved the existence of a

Hamilton path [26]. The result for Hamilton cycles is still unknown and is a leading

open conjecture due to both Grünbaum and Nash-Williams:

Conjecture I.9 (Grünbaum, 1970 [16], Nash-Williams, 1973 [21]). Every 4-connected

toroidal graph is Hamiltonian.

If we place restrictions on the face and vertex degrees of toroidal graphs, then there

are several Hamiltonicity results. A graph is k-regular if every vertex has degree k.

The following three results are due to Altshuler.

Theorem I.10 (Altshuler, 1971 [1]). Every 6-regular toroidal graph all of whose faces

are triangles is Hamiltonian.

Theorem I.11 (Altshuler, 1971 [1]). Every 4-regular toroidal graph all of whose faces

are quadrilaterals is Hamiltonian.

Theorem I.12 (Altshuler, 1971 [1]). Every cubic toroidal graph with an even number

of faces all of which are hexagonal is Hamiltonian.

Bouwer and Chernoff proved a related result:

Theorem I.13 (Bouwer and Chernoff, 1988 [2]). Every {6, 3}b,c toroidal graph is

Hamiltonian.
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The {6, 3}b,c toroidal graphs are a subclass of the cubic toroidal graphs with

hexagonal faces. They satisfy certain symmetry conditions and include some graphs

with an odd number of faces.

Another way to refer to a cubic toroidal graph all of whose faces are hexagons is

as a “generalized honeycomb torus”. Using this terminology, Yang et al. showed that

Theorems I.12 and I.13 can be generalized.

Theorem I.14 (Yang et al., 2008 [32]). Every cubic toroidal graph all of whose faces

are hexagons is Hamiltonian.

The next result was shown by Nakamoto, Ozeki, and Fujisawa, building on earlier

work by Nakamoto and Ozeki [20].

Theorem I.15 (Nakamoto, Ozeki, Fujisawa [13]). Every 4-connected graph on the

torus with toughness exactly 1 is Hamiltonian.

For graphs on the Klein bottle, Brunet, Nakamoto, and Negami proved the fol-

lowing result:

Theorem I.16 (Brunet, Nakamoto, Negami, 1999 [3]). Every 5-connected triangula-

tion on the Klein bottle is Hamiltonian.

For more general surfaces, Duke proved that if graphs on a given surface are

sufficiently highly connected, then they are Hamiltonian [12]. No fixed connectivity

works for all surfaces, however. Duke’s proof uses a well-known sufficient condition

for the Hamiltonicity of any graph, due to Dirac, that each vertex of an n-vertex

graph has degree ≥ n/2 [11].

6



Instead of looking for Hamilton cycles in graphs, a related idea is to show that

graphs have cycles of at least some minimum length. Chen and Yu proved that 3-

connected planar, projective-planar, and toroidal graphs as well as graphs embeddable

on the Klein bottle have cycles of length at least cnlog32 where n is the number of

vertices [5].

In Chapter II, we discuss edge-Hamiltonicity for certain graphs on the torus, which

is related to Conjecture I.9. The main result is Theorem II.1. Cases 2.2.4 and 2.2.5

are joint work with Mark Ellingham.

1.3 Structural Results for K2,t-minor-free Graphs

The best-known result concerning minor-free graphs is Wagner’s Theorem which

was published in 1937.

Theorem I.17 (Wagner, 1937 [30]). A graph G is planar if and only if G does not

contain K5 or K3,3 as a minor.

Another result of this type is Dirac’s forbidden minor characterization of all K4-

minor-free graphs [11]. The forbidden minor characterization of outerplanar graphs

is well-known and we provide a brief sketch of the proof here.

Theorem I.18. A graph G is outerplanar if and only if G does not contain K4 or

K2,3 as a minor.

Proof. A graph is outerplanar if and only if each of its connected components is out-

erplanar so without loss of generality, assume G is connected. Furthermore, because

K4 and K2,3 are 2-connected, if G contains either as a minor, then the minor would
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have to be in a block of G. Thus without loss of generality, assume G is 2-connected.

Let G′ be the graph formed from G by adding a vertex v adjacent to all vertices of

G.

For the forward direction, assume G is outerplanar. Then G′ is planar and thus

by Wagner’s Theorem contains no K5 or K3,3 minor. Therefore, it follows that G

contains no K4 or K2,3 minor because v could be added to such a minor to give a K5

or K3,3 minor in G′.

For the reverse direction, assume G contains no K4 or K2,3 minor. If G′ contains a

K5 or K3,3 minor, then v must be in the minor. If we delete the branch set containing

v, then the result is a K4 or K2,3 minor in G. Thus G′ contains no K5 or K3,3 minor

and therefore is planar. Now it follows that G is outerplanar.

For graphs without rooted minors, Robertson and Seymour characterized all 3-

connected 3-terminal rooted K2,3-minor-free graphs [23] while Lino Demasi charac-

terized all 3-connected 4-terminal planar rooted K2,4-minor-free graphs [8]. For 3-

connected graphs H with at most eleven edges, Ding and Liu describe the character-

izations of all H-minor-free graphs [10].

In Chapter V, we will focus on K2,4-minor-free graphs. There are several known

structural results which apply specifically to these graphs. According to a result

claimed by Dieng and Gavoille, every 2-connected K2,4-minor-free graphs contains 2

vertices whose removal leaves the graph outerplanar [9]. Using this result, Streib and

Young prove the following:

Theorem I.19 (Streib and Young, 2010 [22]). Let G be a connected K2,4-minor-free
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graph. Then the dimension of the minor poset of G is polynomial in |E(G)|.

For more general K2,t-minor-free graphs, Chudnovsky, Reed, and Seymour proved

the following:

Theorem I.20 (Chudnovsky, Reed, and Seymour, 2011 [7]). Let G be a K2,t-minor-

free graph with |V (G)| = n and t ≥ 2. Then |E(G)| ≤ (1/2)(t+ 1)(n− 1).

In Chapter III, we prove some general results about K2,t-minor-free graphs. In

Chapter IV, we prove that 3-connected, planar K2,5-minor-free graphs are Hamil-

tonian. The main result is Theorem IV.3. In Chapter V, we provide a complete

characterization of all K2,4-minor-free graphs. The main results are Theorem V.7,

Theorem V.11, and Theorem V.28. The work in these three chapters is joint with

Mark Ellingham, Kenta Ozeki, and Shoichi Tsuchiya.
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Chapter II

TOROIDAL RESULTS

We focus our attention now on Conjecture I.9, stating that all 4-connected toroidal

graphs are Hamiltonian. As mentioned previously, Thomas and Yu showed that in the

projective plane, there is a Hamilton cycle through any edge of a 4-connected graph in

[25]. One might hope that this result could be extended to the torus, but in fact the

statement is untrue for a general 4-connected toroidal graph. The Cartesian product

of two even cycles embeds in the torus and gives a 4-connected quadrangulation. If

you add an edge across one of the quadrangles, then you cannot find a Hamilton cycle

through this edge. This example was observed by Thomassen in [27]. In fact, adding

any number of edges to one side of the bipartition of this bipartite graph still yields

no Hamilton cycle through these edges. This observation generalizes to any bipartite

4-regular quadrangulation of the torus. It is thus hard to extend the standard proof

techniques, as used for example by Thomas and Yu [25], to show that 4-connected

toroidal graphs are Hamiltonian.

One possible approach is to try to characterize situations where some edge is

not on a Hamilton cycle. The following result is a step towards this. It shows that

Thomassen’s examples, and the generalizations using 4-regular bipartite quadrangula-

tions, are critical in the sense that adding any edge on the other side of the bipartition

restores the property that every edge is on a Hamilton cycle.

Theorem II.1. Let G be a 4-connected, 4-regular, bipartite graph on the torus with

10



v0=u0

v1

v2

vn-1

u1 u2 um-1=  w0
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w2
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Figure 2.1

partition sets of white and black vertices. Suppose one edge, e1, is added between two

black vertices across a face. Then for any additional edge e2 added between two white

vertices and across a different face, there is a Hamilton cycle through e1 and e2. Thus

the new graph has the property that for every edge e in the graph, there is a Hamilton

cycle through e.

Proof. By Euler’s formula, we know that all 4-regular, bipartite graphs on the torus

are quadrangulations. These graphs are characterized by three parameters when

drawn on the standard representation of the torus with vertical sides identified in

parallel and horizontal sides identified in parallel: the height of the grid, the length

of the grid, and the size of the shift. The graph is described as a grid because it is

the Cartesian product of an even cycle and a path as shown in Figure 2.1.

The cycle is vertical and uses an edge that wraps around the horizontal sides of

the torus representation. One copy of it is denoted by the vertices v0, v1, ..., vn−1 in
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the figure. The length of this cycle gives the height of the grid. The path is horizontal

and one copy of it is denoted by the vertices u0, u1, ..., um−1 in the figure. The length

of this path gives the length of the grid. We denote by w0, w1, ..., wn−1 the rightmost

copy of the cycle in the grid. Then the amount of the shift is q where vi is connected

to wi+q for indices taken mod n. This characterization is suggested by Altschuler

in [1] and further elaborated on by Nakamoto and Negami in [19]. Without loss of

generality, we can place e1 in the bottom left corner of the grid because the grid can

be shifted up or down or left or right without changing the parameterization. We

next consider all possible placements of the edge e2 between white vertices. When we

refer to rows and columns throughout the proof, we mean rows of faces and columns

of faces, not vertices. Let gr and gc denote the total number of rows and columns

respectively in the grid excluding the row and column that wrap around the diagram.

For the graph in Figure 2.1, gr = n − 1 and gc = m − 1. With this notation, we

consider all cases gc ≥ 0, and gr ≥ 3 and odd. Note that gr must be odd because our

graphs are bipartite and there is no shift in connecting vertices vertically through the

horizontal sides. Also gr must be greater than one because if gr = 1 then we have

a multigraph. Number the rows from bottom to top starting at zero with the row

that wraps around and the columns from left to right also starting at zero with the

column that wraps around and includes a possible shift. Let er and ec denote the row

and column number respectively of the added edge e2 between white vertices. Then

0 ≤ er ≤ gr, 0 ≤ ec ≤ gc and (er, ec) 6= (1, 1) since then e2 would cross e1. The proof

is divided into two cases, each with two subcases. Case 1 restricts the placement of

e2 to rows and columns within the grid and Case 2 allows e2 to be in the wraparound
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row or column. The subcases first consider larger grids and then cover the smaller

cases. We outline the cases here:

Case 1. er ≥ 1 and ec ≥ 1 (therefore gc ≥ 1)

Case 1.1. gr ≥ 3 and gc ≥ 3

Case 1.1.1. er ≥ 3

Case 1.1.2. er = 2

Case 1.1.3. er = 1

Case 1.2. gr ≥ 3 and gc ≤ 2

Case 1.2.1. gc = 1

Case 1.2.2. gc = 2

Case 2. er = 0 or ec = 0 (or both)

Case 2.1. gc ≥ 1

Case 2.1.1. er = 0, gr ≥ 3, and ec ≥ 1 and even

Case 2.1.2. er = 0, gr ≥ 3, and ec ≥ 1 and odd

Case 2.1.3. ec = 0 and gc = 1

Case 2.1.4. ec = 0 and gc ≥ 2

Case 2.2. gc = 0

Case 2.2 also has several subcases but they use different parameters that will be

introduced later.
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Case 1. er ≥ 1 and ec ≥ 1

Note that necessarily we have gc ≥ 1.

Case 1.1. gr ≥ 3 and gc ≥ 3

Case 1.1.1. er ≥ 3

This situation is shown in Figure 2.2. The picture on the left in Figure 2.2 is for

ec > 1 and odd while the picture on the right is for ec even. The bold lines give the

Hamilton cycle. Note that the scenario on the right still holds when ec = 2. When

ec = gc, we have similar pictures except that for ec odd, we use a wraparound edge to

connect the top right vertex with the bottom right vertex, and when ec is even, we

no longer need to use a wraparound edge. For any er > 3, the cycle follows the same

up and down pattern through the columns starting at the left of the grid until it hits

column ec. It then follows the same back and forth pattern up the column for ec odd

and down the column for ec even. Because gr is always odd, the cycle will always

reach every vertex in column ec in this back and forth pattern. When ec = 1, we have

the Hamilton cycle as shown in Figure 2.3. Note that the parity of er is unimportant

here and the same is true for later arguments.

Case 1.1.2. er = 2

If ec is even, the picture on the right of Figure 2.2 also holds for er = 2. For ec

odd, we have the picture in Figure 2.4. When ec = 1, we can extend the picture from

Figure 2.3.

Case 1.1.3. er = 1
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ec > 1, odd ec > 0, even

Figure 2.2 Case 1.1.1

ec = 1

Figure 2.3 Case 1.1.1
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ec > 3, odd

Figure 2.4 Case 1.1.2

ec odd ec even

Figure 2.5 Case 1.1.3

This case is shown in Figure 2.5. On the left, ec is odd and on the right ec > 2

and even. Note that when ec = 2, the picture on the right still holds. We cannot

have ec = 1 when er = 1 because then e1 and e2 would cross.

In the next subcase, we consider smaller grids.

Case 1.2. gc ≤ 2

Case 1.2.1. gc = 1 (and ec = 1)

This case is shown in Figure 2.6.
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Figure 2.6 Case 1.2.1

Case 1.2.2. gc = 2

This case is shown in Figure 2.7. On the left, ec = 1, in the middle ec = 2 and

er > 1, and on the right, ec = 2 and er = 1.

Case 2. er = 0 or ec = 0 (or both)

We will consider two subcases of Case 2. The first covers grids with at least one

column while the second considers grids with zero columns (of faces). Recall that our

grid must have at least three rows.

Case 2.1. gc ≥ 1

Case 2.1.1. er = 0, gr ≥ 3, and ec > 0 and even

In this case, we can shift the grid up one so that er = 1. Then we can shift to the

right until ec = gc. Since gr > 1, e1 is one row above e2 (not in the wraparound row

or column) so reflecting this picture about a vertical line through the center of the

grid and switching the colors of vertices reduces this situation to one already covered
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ec = 1 ec = 2, er >1 ec = 2, er = 1

Figure 2.7 Case 1.2.2

previously with er = 2 and ec ≥ 1.

Case 2.1.2. er = 0, gr ≥ 3, and ec > 0 and odd

This case is shown in Figure 2.8. The picture only holds when 3 ≤ ec ≤ gc − 2

or when ec = gc. In the latter case, the path just zigzags up the last column instead

of going up and down and then back and forth through the columns after column ec.

Figure 2.9 shows the situation where ec = gc − 1. Note that these pictures hold even

when gr = 3. If ec = 1, then we can shift the grid up and to the right until the edge

between black vertices is in the upper right corner of the grid and we have a situation

symmetric to er = 2 and ec = 1 and considered previously in Case 1. Note that this

translation and rotation works even for gc ≤ 2.

Case 2.1.3. ec = 0, gc = 1

This case is shown in Figure 2.10. There are two different pictures depending on

18



Figure 2.8 Case 2.1.2

Figure 2.9 Case 2.1.2
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Figure 2.10 Case 2.1.3

the position of e2. If e2 = (vi, wj), then the picture on the left is for i < j and the

picture on the right is for i > j > 0; note the picture on the left also works for j = 0:

treat this as j = n.

Case 2.1.4. ec = 0 and gc ≥ 2

When gc ≥ 2, the situation can be reduced to one already covered above. Shift

the grid to the right until the edge between black vertices is in the last column before

the wrap around column. Then shift up until the edge between black vertices is in

the top row before the wrap around row. Now ec = gc − 1 6= 0 and rotating this

picture 180◦ results in a situation considered previously in which ec = 2. If er is now

zero, then this case is covered in Case 2 otherwise it is covered in Case 1.

Case 2.2. gc = 0

For this case it is difficult to use the standard representation. Figure 2.11 shows
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an example of a cycle in this representation. With only one column of vertices, the

cycle must use many of the shifted edges which makes it difficult to follow. Thus for

this case we will use two different representations of our graph. An example of the

first is shown in Figure 2.12. Instead of one column of vertices with the shifted edges

connected around the horizontal sides of the standard torus representation, we draw

two columns of vertices so now the shifted edges are the horizontal edges connecting

the two columns. Note that now some vertices appear more than once in our drawing

and not all edges are shown. Added edges e1 and e2 in the graph connect vertices at

distance q − 1 or q + 1 (mod n) where q is the shift. Note that q must be odd and

n = gr + 1 must be even since the graph is bipartite, and also q ≥ 3 to avoid multiple

edges. We will refer to an edge that connects vertices at a distance of q+1 or q−1 as

a q + 1 edge or a q − 1 edge respectively. If we have at least one q − 1 edge, without

loss of generality we will label the vertices so that e1 = (1, q) where vertices 1 and q

are both black. Here and for the rest of this Chapter, we will use the notation (m,n)

for the edge between vertices labeled m and n. If both edges are q + 1 edges, then

without loss of generality, we will draw e1 as connecting vertex 1 and vertex q + 2

where again both are black.

In Figure 2.12 we have 16 vertices and q = 7 so the vertex labeled 0 is connected

to the vertex labeled 7. Observe that with these drawings, a grid with n vertices and

a shift of q has the same underlying graph as a grid with n vertices and a shift of n−q.

Thus without loss of generality, we will choose a shift of q where q ≤ n/2− 1. Note

that we cannot have q = n/2 because then we would have multiple edges between

the vertices labeled i and i + n/2. In many situations, we can depict e1 and e2 in
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Figure 2.11

the diagram without needing to repeat every vertex twice, so the top vertex in the

column on the left is the vertex labeled n− 1 for a graph with n vertices. Ending at

this vertex ensures each vertex is shown at least once since q ≤ n/2− 1. An example

of this situation is shown on the left of Figure 2.12. If e2 is not in this drawing, then

we can draw more vertices above the edge (n− 1, n− q− 1) until each vertex appears

exactly twice and then every possible added edge will be in this column of faces,

unless e2 = (0, q − 1) in which case we shift the picture as described later. For this

case, we draw the section of the graph that extends above the edge (n− 1, n− q− 1)

next to and on the right of the column of faces already present to make the drawings

more compact. This situation is shown on the right of Figure 2.12. Note that by

moving the top section of the column down and creating two columns of faces, we no

longer have each vertex appearing twice. In particular, the vertices that are adjacent
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to faces from both columns only appear once. Now we consider the location of e2.

Suppose the edge connects vertices v1 and v2. Let a = min {v1, v2}.

Case 2.2.1. 0 < a < q and e2 connects a with the vertex labeled a− (q± 1) (mod n)

This is the situation where we need to draw each vertex twice to fit both e1 and

e2 in the diagram. We draw two columns of faces as described previously. Figure 2.13

illustrates the situation with a q−1 edge e1 on the left and a q+1 edge in the middle.

Note that the picture on the left requires n−q−1 ≥ q+1 which is always true because

n is even so q ≤ n/2− 1. The picture in the middle requires n− q − 1 ≥ q + 2. This

inequality is true within our given constraints on n and q except when n = 2q+ 2, so

the picture on the right shows this case. The pictures show e2 as a q + 1 edge. If e2

is a q − 1 edge, then the cycle follows a very similar pattern with the only difference

being that the edge is angled the other way. Note that the picture holds even when

a = q − 1 or a = 2. The situation where 0 < a = q − 1 and a is the endpoint of a

q − 1 edge does not happen since if (0, q − 1) is an edge, then we would take a = 0.

Case 2.2.2. 0 < a < q and e2 connects a with the vertex labeled a+ (q ± 1)

This case is shown in Figure 2.14 (i) and (ii). Part (i) is when the e1 is q − 1

edge and part (ii) is for a q + 1 edge. We show e2 as a q + 1 edge but a very similar

cycle works when e2 is a q − 1 edge. Notice that all pictures in this figure require

a+ q ≤ n− 1 but this is always true by the choice of a.

Case 2.2.3. q < a < 2q

This case is shown in Figure 2.14(iii) and (iv) for e2 as a q − 1 edge again with
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different cases depending on the type of e1. When e2 is a q + 1 edge, only minor

changes are required.

For the two remaining cases we will use a new representation of the graph. We will

draw the n vertices as points along a circle so the shifted edges are now chords of the

circle. Every vertex is shown exactly once and only the chords used in the Hamilton

cycle are drawn. The general pattern is to divide the vertices up into cycles by taking

q+ 1 consecutive vertices along the circle and closing up the cycle with a chord. The

added edges e1 and e2 give cycles of length q+ 2 or q for a q+ 1 edge or a q− 1 edge

respectively. Next these cycles are connected by choosing two consecutive vertices in

one cycle, removing the edge between them from the cycle, and instead adding in the

chords that connect these vertices to vertices in the next cycle. Figure 2.15 illustrates

this process for a graph with 16 vertices, a shift of 5, and two added q − 1 edges.

We have three cycles here, say A, B, and C where A includes e2, B includes e1,

and C is the third cycle. To describe this process of connecting cycles in detail, we

begin with some notation. Let the edges (v2i+1, v2i+2) in the graph be odd edges and

the edges (v2i, v2i+1) be even edges for 0 ≤ i ≤ (n− 1)/2. Thus each edge is labeled

by the parity of its lower numbered index. Suppose we start with an odd edge in A,

say (vi, vi+1). Then if we take chords from each of these vertices, we can reach the

even edge (vi+q, vi+q+1). If this even edge is in B, then we say the odd edge (vi, vi+1)

is a forwards-linking edge because we can use it to link cycle A forwards to cycle B by

replacing the edges (vi, vi+1) and (vi+q, vi+q+1) with the appropriate chords. Similarly,

we say the even edge (vi+q, vi+q+1) in B is a backwards-linking edge.

Consider a general situation where we have a number of cycles formed by chords
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of length q − 1, q, or q + 1, with no intervening vertices. Observe that in general

the first two edges of every cycle R are always backwards-linking edges and the last

two edges of R are always forwards-linking edges (these four edges are not necessarily

distinct). To see this, consider a cycle R = vi, vi+1, ..., vj. Then the vertex vi−q must

be in the cycle immediately prior to R because this cycle has length at least q so it at

least contains vertices vi−1, vi−2, ..., vi−q. It follows that (vi, vi+1) and also (vi+1, vi+2)

are both backwards-linking edges. Similarly, the vertex vj+q must be in the cycle

immediately following R because this cycle has length at least q and thus contains

at least the vertices vj+1, vj+2, ..., vj+q. It follows that (vj−1, vj) and also (vj−2, vj−1)

are both forwards-linking edges. These observations now ensure that every cycle has

a backwards-linking edge and a forwards-linking edge of each parity.

In the example in Figure 2.15, the number of vertices is such that every vertex fits

in a cycle with none left over. This will not always be the case, however, and we will

have to connect vertices into the cycles in much the same way as we connect cycles

to each other.

Case 2.2.4. a = 0

We consider two additional subcases.

Case 2.2.4.1. a = 0 is connected to the vertex labeled −(q ± 1)

We have the situation shown in Figure 2.16 on the left. The example shown has

16 vertices, a shift of 5, and one q+1 edge and one q−1 edge. Also there are only two

cycles as the number of vertices between vertex q+ 2 and vertex −(q− 1) is less than

q + 1. Let S be this set of vertices outside of both cycles. Note that the number of
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vertices in S must always be even since it is a path of vertices between a black vertex

and a white vertex. If there are not enough vertices in S to create another cycle, then

there are at most q − 1 vertices, and this is the situation shown in the example. We

have two cycles to start: C1 which connects vertices 0,−1,−2, ...,−(q − 1) and C2

which connects vertices 1, 2, ..., q + 2. To create a Hamilton cycle, we must connect

C1 and C2 and also add in the vertices from S.

By the observation made earlier, we know that C1 has a forwards-linking edge

and a backwards-linking edge of each parity. Let (vi, vi+1) be an odd forwards-linking

edge of C1. Then (vi+q, vi+q+1) is an even backwards-linking edge of C2. We connect

C1 and C2 by replacing the odd forwards-linking edge (vi, vi+1) in C1 and the even

backwards-linking edge (vi+q, vi+q+1) in C2 with the chords used to join these edges.

The picture on the left of Figure 2.16 illustrates this process. The odd edge and even

edge we removed to connect the cycles are labeled as odd edge 1 and even edge 1
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respectively. Now it remains to join the vertices of S into the cycle. The vertex vl

such that vl is in S and vl−1 is in C2 has even index since e1 joins vertex 1 to either

vertex q or q + 2. Thus (vl, vl+1) is an even edge and if we follow chords from its

two endpoints back into C2, we reach the endpoints of an odd edge. In particular we

reach vertices 1 and 2 if e1 is a q− 1 edge and vertices 3 and 4 if e1 is a q+ 1 edge. In

either case, it is clear that we reach vertices in C2 and we can join vl and vl+1 into C2

by removing the odd edge in C2 and replacing it with the appropriate chords and the

even edge (vl, vl+1). In Figure 2.16 on the left, the odd edge and even edge involved

in this process are labeled as odd edge 2 and even edge 2 respectively. The remaining

vertices of S are joined into the cycle pairwise in the same way. We take an even edge

between two adjacent vertices in S, follow the chords back to an odd edge in C2, and

replace the odd edge with the two chords and the even edge. Because |S| ≤ q − 1,

the vertex of highest index in S is always joined by a chord to a vertex in C2 so we

can join in all vertices of S by this process. Note also that when picking up vertices

of S, we only remove odd edges from C2 and when we joined C1 and C2, we removed

an even edge from C2 so these processes will not interfere with each other.

If |S| ≥ q+1, then we have more than two cycles. We take vertex vl in S such that

vl−1 is in C2 and form the cycle vl, vl+1, ..., vl+q, vl. We continue forming cycles in this

way with no intervening vertices until no more can be formed without intersecting

C1. Denote these new cycles in order D1, D2, ..., Dk. Now if cycles C1, C2, and D1

through Dk cover all vertices of the graph, then we can just join adjacent cycles by the

process described previously and we are done. We use odd forwards-linking edges and

even backwards-linking edges so that the process of linking a cycle with its forward
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neighbor will not interfere with linking a cycle with its backwards neighbor. Now

suppose the cycles C1, C2, and D1 through Dk do not cover all the vertices. Denote

by S ′ the set of all vertices not in C1, C2, or any of the Di. To form a Hamilton

cycle, we must join all of the cycles C1, C2, D1, D2, ..., Dk and also join in the vertices

of S ′. We join the cycles exactly as before. We use odd forwards-linking edges and

even backwards-linking edges. Then we use the cycle Dk to pick up the vertices of

S ′. Let vr be such that vr ∈ S ′ but vr−1 ∈ Dk. Observe that r must be even. Then

(vr, vr+1) is an even edge and we can follow chords backwards to Dk to get endpoints

of an odd edge. We remove this odd edge and replace it with the chords and the edge

(vr, vr+1). The rest of the vertices of S ′ are joined in pairwise in the exact same way.

Each pair results in the removal of an odd edge from Dk and we know that Dk was

joined to Dk−1 by the removal of an even edge so these processes will not interfere.

An example is shown on the right of Figure 2.16. Here, k = 2 and |S ′| = 4. Two odd

edges of Dk are removed to join in the vertices of S ′ and one even edge is removed to

join Dk with Dk−1.

Case 2.2.4.2. a = 0 is connected to the vertex labeled q ± 1

This case can be reduced to one covered previously. If 0 is connected to q+1, then

we must have e1 = (1, q + 2) so that e1 and e2 do not cross. Now if we renumber the

vertices by adding one to every vertex, we now have e1 = (1, q+ 2) and e2 = (2, q+ 3)

and switching the vertex colors gives a situation covered in Figure 2.14 (ii). If 0 is

connected to q − 1 then either e1 = (1, q) or e1 = (1, q + 2). Again we can renumber

the vertices by adding one so that now e2 = (1, q) and e1 = (2, q+ 1) or (2, q+ 3) and

30



0

1

q+2

-(q-1)
vl

vl+1

C2

C1

D1

Dk

0 1

S'

S

even edge 1 

odd edge 1

odd edge 2

even edge 2

e1

e2

e1

e2

odd edge

even edge

even edge

odd edge

odd edge

even edge
odd edgeodd edge

Figure 2.16

switching the vertex colors gives a situation covered in Figure 2.14 (i).

Case 2.2.5. 2q ≤ a

The arguments used in this case apply for a ≥ q + 3 and since q ≥ 3, this covers

a ≥ 2q for all possible values of q. We list the case as 2q ≤ a instead of q + 3 ≤ a

because we covered q < a < 2q in a previous case. The situation in this case is

very similar to Case 2.2.4 except now when we form C1 using the chord e2 and C2

using the chord e1, C1 and C2 are no longer adjacent. We may have vertices in a

set S = {q + 1, q + 2, ..., a} (or {q + 3, q + 4, ..., a} if e1 is a q + 1 edge) and also in

another set, say T where T = {a + q + 2, a + q + 3, ..., n − 1, 0} if e2 is a q + 1 edge

and {a + q, a + q + 1, ..., n − 1, 0} if e2 is a q − 1 edge. But now as before, we can

form cycles from the vertices in T if |T | ≥ q + 1. Say we form cycles E1, E2, ..., Ep

starting immediately after C1. Denote by T ′ all remaining vertices of T that are not

formed into cycles. Next we form as many cycles as we can with the vertices in S
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without intersecting C1, say D1, D2, ..., Dk starting immediately after C2. Denote by

S ′ all remaining vertices of S that are not formed into cycles.

Suppose first that S ′ 6= ∅. To form a Hamilton cycle H, we must join the cycles

C1, C2, D1, ..., Dk, E1, ...Ep and also the vertices from T ′ and S ′. We begin forming

H by first joining cycles C2, D1, D2... D2, using odd forwards-linking edges and

even backwards-linking edges. Now we add the vertices of S ′ into H by joining them

pairwise into the cycle Dk. Even edges are added between the vertices of S ′ and odd

edges of Dk are removed. The next step is to join C1 to H. We do this by taking

chords from the vertices a − 1 and a − 2, which belong to S ′, into C1. Note that

(a − 2, a − 1) is an even edge so chords from these vertices will join endpoints of

an odd edge in C1. The edge (a − 2, a − 1) was added to our cycle when we joined

vertices a−1 and a−2 into Dk so now we can remove this edge and also the odd edge

(a−2 + q, a−1 + q) in C1 and replace them by the appropriate chords to join C1 into

H. Observe now that we have removed an odd edge of C1 to connect it backwards

into H. Previously, odd edges were linked with chords going forwards. We want to

maintain this reversal through the joining of cycles C1, E1, ..., Ep because now the set

T ′ will begin with an odd vertex whereas S ′ began with an even vertex. This means

that we will need to remove even edges of Ep to join in vertices of T ′ so we want to

connect Ep to Ep−1 with an odd backwards-linking edge and an even forwards-linking

edge so the processes do not interfere. The vertices of T ′ are joined pairwise into Ep

in the same way S ′ is joined into Dk except now we remove even edges of Ep and add

in odd edges between consecutive vertices of T ′.

Now suppose S ′ is empty. We first join the vertices of T ′ into Ep as just described.
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Then we join Ep to Ep−1, Ep−1 to Ep−2, etc. by using odd backwards-linking edges

and even forwards-linking edges. The difference is that we now continue this process

all the way back through C2 instead of reversing the roles of odd and even edges.
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Chapter III

GENERAL RESULTS FOR K2,t MINORS

In this chapter, we discuss the idea of a standard K2,t minor that will be used in

the next two chapters. We also look at several results concerning rooted K2,2-minor-

free graphs and the interactions between K2,t minors and separations in graphs. To

discuss these ideas, we also provide additional definitions.

Recall that one way to think of a k-vertex minorH ofG is as a collection of pairwise

disjoint subsets of the vertices of G, (V1, V2, ..., Vk) where each Vi corresponds to a

vertex vi ∈ V (H), G[Vi] (the subgraph of G induced by the vertex set Vi) is connected

for 1 ≤ i ≤ k, and for each edge vivj ∈ E(H) there is an edge between a vertex of

Vi and Vj in G. We call this an edge-based model of H in G. More generally, we

may allow there to be a path Pij rather than an edge between Vi and Vj in G if

vivj ∈ E(H). We then require that each path Pij be internally disjoint from all other

such paths and from V1, ...Vk. We call this a path-based model of H in G.

Let {a1, a2, b1, b2, ..., bt} be the vertex set of K2,t with deg(a1) = deg(a2) = t, a1

not adjacent to a2, and deg(bi) = 2 for 1 ≤ i ≤ t. In a graph G with K2,t as a

minor, let R1 and R2 be the branch sets of a1 and a2 in an edge-based model of K2,t.

Suppose B is the branch set of bi for some i. Then there is a path v1v2...vk, k ≥ 3,

with v1 ∈ R1, vk ∈ R2, and vi ∈ B for 2 ≤ i ≤ k − 1. Let B′ = {v2} and let

R′2 = R2 ∪ {v3, ..., vk−1}. We can replace B with B′ and R2 with R′2 and still have an

edge-based model of K2,t. Note that if B includes vertices not in the path v2v3...vk−1,
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replacing B with B′ still results in an edge-based model of K2,t. Hence without loss of

generality we may assume that every branch set of a vertex bi for 1 ≤ i ≤ t is a single

vertex. Let S = {s1, s2, ..., st} be the set of such vertices in G. We say (R1, R2;S)

represents a standard (edge-based) K2,t minor. Observe that G contains a K2,t minor

if and only if G contains a standard K2,t minor. Note that the standard model also

applies for K2,t minors rooted at two vertices in the branch sets of the vertices in the

part of size two.

A k-separation in a graph G is a pair (H,K) of edge-disjoint subgraphs of G with

G = H ∪K, |V (H) ∩ V (K)| = k, V (H)− V (K) 6= ∅, and V (K)− V (H) 6= ∅.

Lemma III.1. Suppose (H,K) is a 2-separation in a graph G with V (H)∩ V (K) =

{x, y}. If G contains a K2,t minor (R1, R2;S) with t ≥ 3, then one of the following

holds:

(i) there exists a K2,t minor in H + xy

(ii) there exists a K2,t minor in K + xy

(iii) x ∈ R1 and y ∈ R2 (or vice versa)

Proof. Let H ′ = H − {x, y} and K ′ = K − {x, y}. We consider the location of a

minor with respect to x and y in G and assume we are not in the situation in (iii).

We have some subset of {x, y} either in R1 or in R2; the situations are symmetric

so we consider the former. Observe that because the subgraph induced by Ri is

connected for i = 1, 2, if x, y /∈ Ri, then either Ri ⊆ V (H ′) or Ri ⊆ V (K ′).

First suppose x, y ∈ R1. Without loss of generality, assume R2 ⊆ V (H ′); it follows

that S ⊆ V (H ′). Let R′1 = R1 − V (K ′); then (R′1, R2;S) is a K2,t minor in H + xy
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and we have (i).

Next assume x ∈ R1 and y /∈ R1 ∪ R2. Without loss of generality, assume R2 ⊆

V (H ′); it follows that S ⊆ V (H ′) ∪ {y}. Let R′1 = R1 ∩ V (H). Then (R′1, R2;S) is a

K2,t minor in H + xy and we have (i).

Finally assume x, y /∈ R1 ∪ R2. Without loss of generality, assume R1 ⊆ V (H ′);

it follows that S ⊆ V (H) and thus R2 ⊆ V (H ′). Now (R1, R2;S) is a K2,t minor in

H + xy and we have (i).

By a K2,t minor (R1, R2;S) rooted at x and y, we mean x ∈ R1 and y ∈ R2. If

part (iii) of Lemma III.1 holds, then the K2,t minor splits into two minors, K2,t1 and

K2,t2 , both rooted at x and y where t1 +t2 = t. In particular for K2,4 and K2,5 minors,

we will be concerned with rooted K2,2 minors; we will describe the structure of graphs

without rooted K2,2 minors. Lino Demasi provides a description of K2,2-minor-free

graphs with all four vertices rooted in terms of disjoint paths in Lemma 2.2.2 of his

thesis [8].

An xy-outerplane embedding is an embedding of a connected graph G in a closed

disk D such that a Hamilton xy-path is contained in the boundary of D for x, y ∈

V (G). The Hamilton xy-path is called the outer path. A graph is xy-outerplanar, or

path-outerplanar, if it has an xy-outerplane embedding. Observe:

(1) Suppose G is xy-outerplanar, H is yz-outerplanar, and V (G) ∩ V (H) = {y}.

Then G ∪H has an xz-outerplane embedding.

(2) If G has an xy-outerplane embedding, then G+ xy also has an xy-outerplane

embedding.
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A block of a graph G is a maximal connected subgraph of G without a cutvertex.

Blocks are either 2-connected, K2, or an isolated vertex. The block-cutvertex tree

of G is a tree whose vertices are the blocks of G; two vertices are adjacent if the

corresponding blocks in G intersect. We have the following lemmas:

Lemma III.2. Suppose G′ = G + xy is a block. Then G has no K2,2 minor rooted

at x and y if and only if G is xy-outerplanar.

Proof. (⇐): Assume an xy-outerplane embedding of G. Add a vertex z to G′ in the

outer face and adjacent to x and y; the resulting graph G′′ is still outerplanar. If G′

has a K2,2 minor rooted at x and y, then G′′ has a K2,3 minor which is a contradiction

since outerplanar graphs are K2,3-minor-free.

(⇒): Proceed by induction on |E(G)|. The base case for G is K2 which has no

K2,2 minor rooted at x and y and is clearly xy-outerplanar. Now assume the claim

holds for all graphs on m ≥ 1 edges and suppose |E(G)| = m + 1 (and hence G′ is

2-connected).

First assume there is a cutvertex v in G. Then G must consist of more than

one block and since G′ is 2-connected, x and y must be in separate blocks. Fur-

thermore, since G′ is 2-connected, the block-cutvertex tree of G must be a path

B1v1B2v2...vk−1Bk where each Bi is a block of G, each vi is a cutvertex in G, and

x ∈ B1, y ∈ Bk. Define v0 = x and vk = y. Because G has no K2,2 minor rooted at x

and y, the block Bi of G has no K2,2 minor rooted at vi−1 and vi for 1 ≤ i ≤ k. We thus

can apply the inductive hypothesis to each block; each block Bi is vi−1vi-outerplanar.

By Observation (1), the outerplane embeddings of the blocks can then be combined
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in such a way as to create an xy-outerplane embedding of G (see Figure 3.1).

Now assume there is no cutvertex in G (G is 2-connected). We delete an edge

e = u1u2 in G, e 6= xy. Without loss of generality, suppose x 6= u1. The graph G− e

clearly still has no K2,2 minor rooted at x and y. We consider three cases:

Case 1. The graph G− e is 2-connected.

By induction, G − e has an xy-outerplane embedding. If we cannot add e to

an xy-outerplane embedding of G − e and create an xy-outerplane embedding of G,

then there must be some edge w1w2 such that u1, w1, u2, w2 occur in that order along

the outer path of G′ (see Figure 3.2). This situation, however, yields the K2,2 minor

rooted at x and y and shown in Figure 3.2. Thus we can conclude G is xy-outerplanar.

x

y

u1
w1

u2
w2

Figure 3.2

e

u1
u2

x y
v

Figure 3.3

Case 2. There is a cutvertex v in G− e that separates x and y.

The cutvertex v must also separate u1 and u2 because otherwise it would also be a

cutvertex in G which is a contradiction since G is 2-connected. Assume that in G−e,
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x and u1 are in the same component and y and u2 are in the same component. In

this situation we can find a rooted K2,2 minor: we take S = {v, u1} (see Figure 3.3).

Then x ∈ R1 and y ∈ R2. We know there is a path from x to v which does not include

u1 in G− e because otherwise u1 would be a cutvertex of G. This path is included in

R1.

Case 3. There is a cutvertex v in G− e that does not separate x and y.

Because there is no cutvertex in G, the block-cutvertex tree of G−e must again be

a path B1v1B2v2...vk−1Bk where each Bi is a block of G− e and each vi is a cutvertex

in G−e. Note k ≥ 2. Suppose u1 ∈ B1, u2 ∈ Bk, and x, y ∈ Ba for some a ∈ {2, ..., k}

(the situation a = 1 is symmetric to a = k so without loss of generality, we exclude

it). Note u1, u2 6= vi for any i since then vi would be a cutvertex in G. The block Ba

is 2-connected with no K2,2 minor rooted at x and y so Ba is xy-outerplanar; without

loss of generality, suppose x, va−1, va, y occur in that order along the outer path of

Ba. Then va−1 and va are consecutive on the outer path because otherwise G has

a K2,2 minor rooted at x and y as shown in Figure 3.4. We have x, va−1 ∈ R1 and

y, va ∈ R2. The minor still exists even when va = u2 (or symmetrically va−1 = u1)

or x = va−1 (or symmetrically y = va). If Bi has a K2,2 minor rooted at vi−1 and

vi for i ∈ {1, 2, ..., k} − {a} (where v0 = u1 and vk = u2), then G has a K2,2 minor

rooted at x and y. Figure 3.5 illustrates the case with i < a, and i > a is symmetric.

Note the minor exists even when a = k with u2 playing the role of va. We now

can apply the inductive hypothesis to all of the blocks; each block Bi has an vi−1vi-

outerplane embedding. Then we can position the blocks in such a way as to create
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an xy-outerplane embedding of G as shown in Figure 3.6. Observation (1) allows us

to arrange the blocks Ba−1Ba−2, ..., B1BkBk−1...Ba+1 appropriately.

e

x y

va
u1 u2va-1

Figure 3.4

e

x y
u1 u2vi vava-1

Figure 3.5

Figure 3.6

At the end of Chapter IV, we use another result concerning K2,t minors and

separations stated here:

Lemma III.3. Suppose (H,K) is a 3-separation in a graph G with V (H)∩ V (K) =

{x1, x2, x3}. If G contains a standard K2,t minor (R1, R2, S) with t ≥ 4, then one of

the following holds:

(i) There exists a K2,t minor in H + x1x2 + x2x3 + x1x3

(ii) There exists a K2,t minor in K + x1x2 + x2x3 + x1x3

(iii) xi ∈ R1 and xj ∈ R2 for some i 6= j

Proof. Let H ′ = H−{x1, x2, x3} and K ′ = K−{x1, x2, x3}. We consider the location
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of a minor with respect to x1, x2 and x3 in G and assume we do not have the situation

in (iii). Then one of R1 ∩ {x1, x2, x3} or R2 ∩ {x1, x2, x3} is empty. Without loss of

generality, assume R2 ∩ {x1, x2, x3} = ∅. Then either R2 ⊆ V (H ′) or R2 ⊆ V (K ′) so

without loss of generality, assume R2 ⊆ V (H ′). It follows that S ⊆ V (H). Now if

R1 ∩ {x1, x2, x3} 6= ∅, then ((R1 ∩ V (H)) ∪ ({x1, x2, x3} − S), R2;S) is a K2,t minor

in H + x1x2 + x2x3 + x1x3 and we have (i). If R1 ∩ {x1, x2, x3} = ∅, then the original

minor is a minor in H and we have (i) again.

In Chapter IV, the following results concerning Hamilton paths in outerplanar

and path-outerplanar graphs will be helpful.

Lemma III.4. Let G be a 2-connected outerplanar graph. Let x ∈ V (G) and let xy

be an edge on the outer cycle Z of G. Then for some vertex t with degG(t) = 2, there

exists a Hamilton path xy...t in G.

Proof. Fix a forward direction on Z and denote by v1Zv2 the forward path from v1

to v2 on Z. Proceed by induction on |V (G)|. In the base case, G = K3 and the result

is clear. Now assume the lemma holds for all graphs with at most n− 1 vertices and

assume |V (G)| = n ≥ 4. Assume y follows x on Z and let w 6= y be the other neighbor

of x on Z. If degG(w) = 2, then we take t = w and xZw is a desired Hamilton path

in G. Otherwise let v be a neighbor of w such that vw /∈ E(Z) (possibly v = y). Let

G′ be the subgraph of G induced by vZw; G′ is a 2-connected vw-outerplanar graph

with |V (G′)| ≤ n − 1. By the inductive hypothesis, there exists a Hamilton path

Q = vw...t in G′ where degG′(t) = degG(t) = 2. Now xZv ∪Q is the desired path in

G.
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Corollary III.5. Let G be an xy-outerplanar graph with outer path x = v1v2...vn = y,

n ≥ 2. Let k be such that 1 ≤ k ≤ n − 1. Then there exist two vertex disjoint paths

P = x...vs and Q = y...vt such that V (G) = V (P∪Q) and the following two symmetric

conditions hold:

(i) s ≤ k and either vs = x or degG(vs) = 2,

(ii) t ≥ k + 1 and either vt = y or degG(vt) = 2.

Proof. Let ` be the largest integer such that ` ≤ k and degG(v`) = 2; if no such

` exists choose ` = 1. Let m be the smallest integer such that m ≥ k + 1 and

degG(vm) = 2; if no such m exists, choose m = n. Suppose m = ` + 1; then

P = v1v2...v` and Q = vmvm+1...vn are desired paths. Now suppose m 6= `+ 1 and let

I = {`+ 1, `+ 2, ...,m− 1}. Note that degG(vi) ≥ 3 for all i ∈ I. Suppose there is a

vertex vi with i ∈ I such that vi is adjacent to vj with j ∈ I and j 6= i± 1. Without

loss of generality, assume j > i. Then the subgraph of G induced by vivi+1...vj is

2-connected and outerplanar with vivj on the outer face so by Lemma III.4, there is

a degree two vertex vr with ` + 1 ≤ r ≤ m. Because G is planar, vr must also be

degree two in G. This contradicts the choice of v` and vm however, so no such vi and

vj exist. Hence for all i ∈ I, vi has a neighbor vj with either j ≥ m+ 1 or j ≤ `− 1.

Suppose all vertices vi with i ∈ I have a neighbor vj with j ≥ m + 1. Then let r

be such that vr is a neighbor of v`+1 and r ≥ m+ 1. By Lemma III.4 there is a path

R = vrv`+1...vt where vt is a degree two vertex with t ≥ m ≥ k + 1 and R includes

all vertices vi with ` + 1 ≤ i ≤ r. Then P = v1v2...v` and Q = vnvn−1...vr ∪ R are

the desired paths. Symmetrically if all vertices vi with i ∈ I have a neighbor vj with
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j ≤ `− 1, then we can find two desired paths.

Otherwise there is an integer r ≤ m−2 such that r = max{i ∈ I : vi is adjacent to

vj with j ≤ `− 1}. Now since G is planar, for all i ∈ I with i ≥ r + 1, vi is adjacent

to a vertex vj where j ≥ m+ 1. Let p be such that vp is adjacent to vr and p ≤ `− 1.

By Lemma III.4, there is a path R = vpvr...vs where vs is a degree two vertex with

s ≤ k and R includes all vertices vi with p ≤ i ≤ r. Now v1v2...vp−1R is a desired path

P . Symmetrically, take a neighbor vq of vr+1 with q ≥ m+ 1 and apply Lemma III.4

again to find a desired path Q.

Corollary III.6. Let G be an xy-outerplanar graph with |V (G)| ≥ 3. Then for some

vertex t with degG(t) = 2, there exists a Hamilton path x...t in G− y.

Proof. Let k = n− 1 in Corollary III.5 and the result follows.

43



Chapter IV

HAMILTONICITY OF 3-CONNECTED, PLANAR, K2,5-MINOR-FREE GRAPHS

In proving the main result of this chapter, the following results concerning 3-

connectivity will be helpful. The first is a consequence of Theorem 7.2 in the paper

by Halin.

Theorem IV.1 (Halin [17]). Let G be a 3-connected graph with |V (G)| ≥ 5. Then

for every v ∈ V (G) with deg(v) = 3, there is an edge e incident with v such that G/e

is 3-connected.

Lemma IV.2. Let G be a 3-connected graph and suppose (H,K) is a 3-separation

in G with V (H) ∩ V (G) = {x, y, z}. Suppose K ′ = K − V (H) is nonempty and

connected, each of x, y, and z is adjacent to a vertex of K ′, and H is 2-connected.

Let G′ be the graph formed from G by contracting K ′ to a single vertex. Then G′

is 3-connected. Furthermore, for every cycle Z ′ in G′ there is a cycle Z in G with

|V (Z)| ≥ |V (Z ′)|.

Proof. Let v be the vertex in G′ formed from contracting K ′. We claim that every

pair of vertices in G′ has three vertex-disjoint paths between them. By Menger’s

Theorem, it will follow that G′ is 3-connected. We consider five different types of

pairs of vertices.

First suppose w1, w2 ∈ V (H)− {x, y, z}; there are three internally disjoint paths

from w1 to w2 in G: P1, P2, and P3. If V (Pi) ∩ V (K ′) = ∅ for i = 1, 2, 3, then
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P1, P2, and P3 are the desired paths in G′. If V (Pi) ∩ V (K ′) 6= ∅ for some i, then

|V (Pi) ∩ {x, y, z}| ≥ 2 since {x, y, z} separates K ′ from H. Thus V (Pi) ∩ V (K ′) 6= ∅

for at most one i. Suppose V (P1) ∩ V (K ′) 6= ∅. Then all vertices of V (P1) ∩ V (K ′)

are in a single subpath of P1 which we replace by v to form a new path P ′1. Now P ′1,

P2, and P3 are the desired paths in G′.

Second consider w1 ∈ V (H) − {x, y, z} and w2 ∈ {x, y, z}, say w2 = x. If there

are not three internally disjoint paths between w1 and x in G′, then there is a 2-cut

{u1, u2} that separates w1 and x. Since there is no 2-cut in G, one of u1 and u2 must

be v, say u2 = v. Now, however, u1 is a cutvertex in H which is a contradiction since

H is 2-connected. Hence there are three internally disjoint paths between w1 and x.

Third consider w1, w2 ∈ {x, y, z}, say w1 = x and w2 = y. Because H is 2-

connected, there are two internally disjoint paths P1 and P2 from x to y in H. Take

P3 = xvy. Then P1, P2, and P3 are the desired paths in G′.

Fourth consider w1 ∈ V (H) − {x, y, z} and v. For any w2 ∈ V (K ′), there are

three internally disjoint paths P1, P2, and P3 from w2 to w1 in G. Without loss of

generality, say x ∈ V (P1), y ∈ V (P2), and z ∈ V (P3). Form P ′1 from P1 by replacing

the subpath w2...x with vx, form P ′2 from P2 by replacing the subpath w2...y with vy,

and finally form P ′3 from P3 by replacing the subpath w2...z with vz. Now P ′1, P ′2,

and P ′3 are the desired paths in G′.

Finally consider w1 ∈ {x, y, z}, say w1 = x, and v. By a consequence of Menger’s

Theorem, there are internally disjoint paths from {y, z} to x in H, say P1 = y...x and

P2 = z...x. Then P ′1 = vP1, P ′2 = vP2, and P3 = vx are the desired paths in G′.

Let Z ′ be a cycle in G′. If vx, vy, vz /∈ E(Z ′), then Z ′ is also a cycle in G. If
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{vx, vy, vz}∩E(Z ′) 6= ∅, then |{vx, vy, vz}∩E(Z ′)| = 2 and without loss of generality,

say vx, vy ∈ E(Z ′). Then form Z from Z ′ by replacing the subpath xvy with a path

from x to y via K ′; such a path necessarily exists because K ′ is connected and each

of x, y, and z is adjacent to a vertex of K ′. Now |V (Z)| ≥ |V (Z ′)|.

For a proper subgraph H of G, an H-bridge is a subgraph of G induced by one

of the following: all edges of a component C of G − V (H) together with all edges

connecting C to H, or an edge xy with x, y ∈ V (H).

We now state and prove the main theorem:

Theorem IV.3. Let G be a 3-connected, planar, K2,5-minor-free graph. Then G is

Hamiltonian.

Theorem IV.3 is proved by assuming G is not Hamiltonian, taking a longest cycle

C in G and finding a contradiction with either a longer cycle or a K2,5 minor.

Proof. Assume that G is not Hamiltonian and assume G is represented as a plane

graph. Let C be a longest non-Hamilton cycle in G. Fix a forward direction on C

that will be shown as clockwise in the figures. Denote by x+ the vertex directly after

the vertex x on C and by x− the vertex directly before x. Define C[x, y] to be the

forward subpath of C from x to y which includes x and y. If x = y then C[x, y] = {x}.

Define C(x, y) = C[x, y] − {x, y}, C(x, y] = C[x, y] − x, and C[x, y) = C[x, y] − y.

Define [x, y] = V (C[x, y]) and define (x, y) etc. similarly. Define G[x, y] to be the

subgraph of G induced by [x, y] and define G(x, y) etc. similarly. We say a vertex z

is between x and y if z ∈ (x, y). For any subpath P of C, we have an x− v jump out

of P if x is an internal vertex of P , v ∈ V (C)− V (P ), and there is a path from x to
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v in G which intersects C only at x and v. Because G is 3-connected, there must be

at least one jump out of C[x, y] whenever x and y are not consecutive on C. A jump

out of [x, y] is understood to mean a jump out of C[x, y].

Let D be a component of G − V (C) with the most neighbors on C. Let U =

{u0, u1, ..., uk−1} be the neighbors of D along C in forward order. Because G is 3-

connected, k ≥ 3. Let Si = C[ui−1, ui] with subscripts taken modulo k. We call these

special paths sectors and a jump out of Si for any i is called a sector jump; note that

sector jumps do not intersect D. Let Ui = (ui, ui+1). If Ui = ∅ for some i, then there

is a cycle longer than C: replace Si with a path from ui−1 to ui through D. Thus

Ui 6= ∅ for all i and there is a sector jump out of every sector.

For a vertex x ∈ V (C), define σ(x) as follows: σ(x) = i when x ∈ Ui and

σ(x) = i+ 1
2

when x = ui. Define the length of a sector jump x− y, as min{|σ(x)−

σ(y)|, k − |σ(x)− σ(y)|}.

Claim 1. For every sector jump x−y of length greater than 1, there is a sector jump

x1 − y1 of length 1 with x1, y1 ∈ [x, y] and another sector jump x2 − y2 of length 1

with x2, y2 ∈ [y, x].

For any sector jump u−v, define the linear length as |σ(u)−σ(v)|. We claim that

for any jump x′−y′ of linear length `′ > 1, there is a jump x′′−y′′ with x′′, y′′ ∈ [x′, y′]

such that x′′−y′′ has linear length `′′ < `′. There is a sector Uj such that Uj ⊂ (x′, y′).

Let x′′−y′′ be any jump out of Uj. If x′′−y′′ does not intersect x′−y′, then necessarily

by planarity, x′′−y′′ has linear length `′′ < `′. If x′′−y′′ intersects x′−y′, then x′′−y′

is a jump with linear length strictly less than `′ and we take this one. We may repeat

47



this process until we reach a jump x∗− y∗ with x∗, y∗ ∈ [x′, y′] of linear length 1, and

hence also length 1.

If we relabel {u0, u1, ..., uk−1} keeping the same cyclic order so that x ∈ U0 and

repeatedly apply the previous paragraph beginning with the jump x − y, we obtain

the required jump x1−y1. Similarly, relabeling so that y ∈ U0 yields the jump x2−y2.

This completes the proof of Claim 1.

Claim 2. k ≤ 3.

Assume that k ≥ 4. If there is a bridge of C with attachments in the interiors of

four or more sectors, then there is a K2,5 minor similar to the one shown in Figure 4.1.

When k ≥ 5, there can be a bridge with attachments in the interior of three sectors

that are not all in a row; then there is a K2,5 minor similar to the one shown in

Figure 4.2. If there are two bridges each with attachments in the interiors of three

consecutive sectors, then there is a K2,5 minor as shown in Figure 4.3.

Now suppose there is one bridge B with attachments in the interiors of three

consecutive sectors, say s1 ∈ S1, s2 ∈ S2, and s3 ∈ S3. Then since k ≥ 4, s1 − s3 is

a jump of length greater than 1. Therefore by Claim 1, there is a sector jump x− y

of length 1 with endpoints between s3 and s1 along C, and with an endpoint in at

most one of S1 or S3. Now there is a K2,5 minor as shown in Figure 4.4. Now all

bridges have attachments in the interiors of at most two sectors and therefore jumps

of length 1 cannot intersect jumps of length at least 2, or any other jump of length 1

whose ends are not in the same two sectors.
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Case 2.1. There is a jump of length at least 2.

Let x − y be a jump of length ≥ 2. Then by Claim 1, there is a sector jump of

length 1, x1 − y1, between x and y and a sector jump of length 1, x2 − y2, between

y and x. Let x, x1, y1, y, y2, x2 appear around C in that forward order. If x, x1, and

x2 are all in distinct sectors, then there is a K2,5 minor as shown in Figure 4.5. If

x, x1, and x2 are all in the same sector, then there is a minor symmetric to the one

shown in Figure 4.5; x, x1, and x2 switch roles with y, y1, and y2. If exactly two of

x, x1, and x2 are in the same sector, say x and x1, then we have the situation shown

in Figure 4.6.

When k ≥ 5, at least one of the vertices labeled ui, uj, and um must be present.

With ui, there is a K2,5 minor as shown in Figure 4.7. With um, there is a K2,5 minor

symmetric to the one in Figure 4.7; x1 − y1 and x2 − y2 switch roles and u0, um play

the roles of ui, u2. With uj, there is a K2,5 minor as shown in Figure 4.8.
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Now k = 4, so x− y is a sector jump of length two with x ∈ U0 and y ∈ U2. Then

by Claim 1 there are sector jumps of length 1 out of both U1 and U3, which cannot

intersect the jump x−y. If these jumps both jump into U0 or symmetrically U2, then

there is a K2,5 minor as shown in Figure 4.9. Hence without loss of generality, there

must be a U1−U0 jump and a U3−U2 jump. Let x1−x0 be the U1−U0 jump with x0

closest to x (and possibly equal to x) and x1 closest to u1. Let x3−x2 be the U3−U2

with x2 closest to y (and possibly equal to y) and x3 closest to u3. If (x0, u0) = ∅

and (x1, u1) = ∅, then there is a longer cycle as in Figure 4.10. If (x0, u0) 6= ∅, then

there is a K2,5 minor as in Figure 4.11; hence (x1, u1) 6= ∅. Let r − r′ be a jump out

of C[x1, u1]. Because of the choice of x1−x0, r′ /∈ [x, x0] and r− r′ does not intersect

x1 − x0. Hence there are two options for r′: r′ ∈ U2 or r′ ∈ [u0, x1). If r′ ∈ U2, then

there are three sector jumps of length 1 and a K2,5 minor similar to the one shown in

Figure 4.12 exists. Thus r′ ∈ [u0, x1). By symmetric arguments, there is a jump s−s′

with s ∈ (x3, u3) and s′ ∈ [u2, x3). Now there is a K2,5 minor as shown in Figure 4.13;

in the figure, r′ 6= u0 and s′ 6= u2 but a similar minor exists if r′ = u0 or s′ = u2.

Case 2.2. All jumps have length at most 11
2
.

Assume first that k ≥ 5. Since all sector jumps have length at most 11
2
, by Claim 1
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we can conclude there is a sector jump of length 1 out of every sector. Hence there

are at least three sector jumps of length 1 no two of which have endpoints in the same

two sectors and there is a K2,5 minor similar to the one shown in Figure 4.12.
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Now k = 4. Without loss of generality, assume there are sector jumps S0−S1 and

S2−S3. If there is a sector jump S1−S2 or S3−S0, then there is a K2,5 minor similar
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to the one shown in Figure 4.12, so there are no such jumps. Let x0−x1 be the sector

jump S0−S1 such that x0 is closest to u3 and x1 is closest to u1. Similarly, let x2−x3

be the sector jump S2 − S3 such that x2 is closest to u1 and x3 is closest to u3. If

(x0, u0) = ∅ and (x1, u1) = ∅, then there is a longer cycle similar to the one shown in

Figure 4.10. There are three additional possible longer cycles symmetric to the one

shown and hence we consider four pairs of sets of vertices along C: A0 = (x0, u0) and

B1 = (x1, u1), B0 = (u3, x0) and A1 = (u0, x1), B2 = (u1, x2) and A3 = (u2, x3), and

A2 = (x2, u2) and B3 = (x3, u3). At least one set from each pair must be nonempty

to avoid a longer cycle. If Ai 6= ∅ for at least three i, then there is a K2,5 minor as

shown in Figure 4.14 or symmetric to this one. Thus Ai 6= ∅ for at most two i and

therefore Bj 6= ∅ for at least two j. Note that because of the choice of x0 − x1, no

jump out of B0 or B1 can intersect x0 − x1 and similarly because of the choice of

x2 − x3, no jump out of B2 or B3 can intersect x2 − x3.

If there is a K2,2 minor in G[u3, u1] rooted at u3 and u1 and another K2,2 minor

in G[u1, u3] rooted at u1 and u3, then there is a standard K2,5 minor (R1, R2;S) in

G: S consists of a vertex of D, two vertices reachable by both u3 and u1 in G[u3, u1]

and two vertices reachable by both u3 and u1 in G[u1, u3]. Any jump leaving one of

the Ai or Bj that is inside C creates such a rooted K2,2 minor. Hence if there is any

such inside jump in either S0 or S1, then there cannot be such an inside jump in S2

or S3 and vice versa. Let a bad pair of jumps be two inside jumps that create two

rooted K2,2 minors and hence a K2,5 minor as just described.
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Suppose there are sector jumps of length 11
2

out of two nonempty Bj. Then by

planarity of G, up to symmetry there are two options for the two jumps: r1− u1 and

r2 − u1 with r1 ∈ B0 and r2 ∈ B3 or r1 − u1 and r2 − u3 with r1 ∈ B0 and r2 ∈ B2.

First suppose the former. Then there is a K2,5 minor as shown in Figure 4.15. Next

suppose the latter. Then if both B1 and B3 are nonempty, by planarity and the choice

of x0 − x1 and x2 − x3, each must have an inside jump out of them; then there is a

bad pair of jumps. Hence at most one is nonempty and therefore one of A0 and A2

is nonempty. Without loss of generality, suppose A0 6= ∅; then there is a K2,5 minor

as shown in Figure 4.16. Now at most one Bj has jumps of length 11
2

out of it.

Since Bj 6= ∅ for at least two j and at most one Bj has jumps of length 11
2

out

of it, some nonempty Bj, say B0, has no jump of length 11
2
, and hence has an inside

jump. Observe now that if G[u3, x0] contains a K2,2 minor rooted at u3 and x0, then

there is a K2,5 minor as shown in Figure 4.17.

Consider the structure of the Ai. If A0 is empty, then all jumps from B0 must

to go u0. If A1 is also empty, then apply Corollary III.6 to G[u3, x0] to get a path

P = x0...t such that V (P ) = (u3, x0] and t is a degree two vertex in G[u3, x0]. Because
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all jumps from B0 go to u0, t must be adjacent to u0. Now using P , there is a longer

cycle shown in Figure 4.18. The thick shaded line between u3 and x0 in the figure

represents the path P . Hence either A0 or A1 is nonempty.
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Because at most two Ai are nonempty and at least one of A0 and A1 is nonempty,

at most one of A2 and A3 is nonempty. Therefore at least one of B2 and B3 is

nonempty. Because there is an inside jump in S0, there cannot be an inside jump in

S2 or S3 else there would be a bad pair of jumps. Hence there must be a sector jump

of length 11
2

out of either B2 or B3.

Suppose first there is a sector jump r3 − u1 with r3 ∈ B3. There cannot be an

inside jump out of B2 and there cannot be another jump of length 11
2

out of B2 hence

B2 = ∅ and therefore A3 6= ∅. If A0 6= ∅, then there is a K2,5 minor as shown in

Figure 4.19. If A1 6= ∅, then there is a K2,5 minor as shown in Figure 4.20.

Next suppose there is a sector jump r2 − u3 with r2 ∈ B2. Then since the minors

in Figures 4.19 and 4.20 do not use the edge r0u0, symmetric minors exist in this

situation when either A0 or A1 is nonempty. This ends the proof of Claim 2.

Henceforth we assume k = 3.
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Claim 3. Without loss of generality, we may assume all bridges of C other than the

bridge containing D are single edges, and D is a single degree three vertex.

Let D = D0, D1, D2, ..., Dα be the components of G−V (C) and denote by D+
i the

bridge of C corresponding to Di for each i, 0 ≤ i ≤ α. Because G is 3-connected and

D is a component of G−V (C) with the most neighbors along C, |V (D+
i )∩V (C)| = 3

for all i. Let G = G0 and let H0 = G0 − V (D0). If H0 is not 2-connected, then there

is a cutvertex u. Now u /∈ V (C) and V (C) must be entirely in one component of

H0 − u. Since the attachment vertices of D+
0 are all on C, vertices of D+

0 are only

adjacent to vertices on one side of the cut. Hence u is also a cutvertex in G0 = G,

which is a contradiction. Thus H0 is 2-connected. Now let G1 = G0/E(D0). Then

by Lemma IV.2, G1 is 3-connected.

Repeat this process for i = 0, 1, ..., α. For each i, form Gi+1 from Gi by contracting

D+
i to a single vertex di. Let G′ = Gα+1 which is 3-connected. At each step, apply

the second part of Lemma IV.2 to conclude that any cycle Z ′ in G′ corresponds to a

cycle Z in G with |V (Z)| ≥ |V (Z ′)|.

By Theorem IV.1, there is an edge e1 incident with d1 such that the graph formed
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from G′ by contracting e1 is 3-connected. Let G′1 be this graph. Any cycle Z ′′ in G′1

corresponds to a cycle Z ′ in G′ with |V (Z ′)| ≥ |V (Z ′′)|. To see this, let x, y, and z

be the neighbors of d1 in G′ and suppose e1 = d1z. Call the vertex that results from

the contraction z. If xz, yz /∈ E(Z ′′), then take Z ′ = Z ′′. If |{xz, yz} ∩ E(Z ′′)| = 1,

say xz ∈ E(Z ′′), form Z ′ from Z ′′ by replacing xz with the path xd1z. If xz, yz ∈

E(Z ′′), form Z ′ from Z ′′ by replacing the subpath xzy with xd1y. Note in all cases,

|V (Z ′)| ≥ |V (Z ′′)|. Apply Theorem IV.1 repeatedly to find contractible edges ei+1

incident with di+1, and continue this process of forming new graphs by contracting

these edges. For 1 ≤ i ≤ α− 1, let G′i+1 be the graph formed from G′i by contracting

the edge ei+1 incident with di+1. Now any cycle W in G′α corresponds to a cycle Z ′

in G′ and hence a cycle Z in G with |V (Z)| ≥ |V (Z ′)| ≥ |V (W )|. Furthermore, since

G′α is a minor of G, any K2,5 minor in G′α corresponds to a K2,5 minor in G. Thus

without loss of generality, take G = G′α; this proves Claim 3.

We are now in the general situation an example of which is shown in Figure 4.22.

There are three sectors labeled S0, S1, and S2. Let t0− t1 be the S0−S1 sector jump

(if any S0−S1 sector jump exists) with t0 closest to u2 and t1 closest to u1. Similarly

let t2 = t3 be the S1 − S2 sector jump (if any S1 − S2 sector jump exists) with t2

closest to u0 and t3 closest to u2. Use t4− t5 for S2−S0 sector jumps. Because every

sector must have a jump out of it, there are at least two sector jumps; without loss

of generality, assume there are sector jumps t0 − t1 and t2 − t3. Define X0 = (t0, u0),

X1 = (u0, t1), X2 = (t2, u1), X3 = (u1, t3), X4 = (t4, u2), and X5 = (u2, t5). Note

these sets are not defined when the necessary ti vertices do not exist.
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Claim 4. There are no sector jumps u2 − x where x ∈ (t1, t2).

Let u2 − x be a sector jump with x ∈ (t1, t2). If (u0, t1) 6= ∅ and (t2, u1) 6= ∅, then

there is a K2,5 minor as shown in Figure 4.23. Now at least one of (u0, t1) and (t2, u1)

is empty and without loss of generality, assume (u0, t1) = ∅. If there is a K2,2 minor

in G[u2, u0] rooted at u2 and u0, then there is a K2,5 minor as shown in Figure 4.24.

Now all jumps out of (u2, u0) must go to t1. Apply Corollary III.6 to G[u2, u0] to find

a path P = u0...t such that V (P ) = (u2, u0] and t is a degree two vertex in G[u2, u0]

and hence must be adjacent to t1. Now using P , there is a longer cycle as shown in

Figure 4.25. This completes the proof of Claim 4.
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Figure 4.26

Claim 5. Either t0 6= u−0 or t3 6= u+
1 (X0 and X3 cannot both be empty).
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Assume that t0 = u−0 and t3 = u+
1 . Consider the representation of the graph

shown in Figure 4.26 and focus on the portion of the graph in the shaded region

R = G[t0, t3]. If either u0u1 or t0t3 exist, remove them. The graph is still 3-connected

because u0 and u1 and t0 and t3 each have three vertex disjoint paths between them

without these edges as can be seen in the figure and hence we have not created a

2-cut. Let P be the path from u0 to u1 along the outer face of R and Q be the

path from t0 to t3 along the outer face of R; note all vertices of R are enclosed by

these paths together with u0t0 and u1t3. P and Q are both paths, without repeated

vertices, because any repeated vertex would be a cutvertex in G but G is 3-connected.

Additionally, |V (P )| ≥ 3 because we have removed the edge u0u1 if it existed and

|V (Q)| ≥ 3 because t1, t2 ∈ V (Q) (and possibly t1 = t2).

The paths P and Q may intersect but only in limited ways. If P and Q intersect at

two non-consecutive vertices on C, then using Claim 4 these two vertices would form

a 2-cut in G. Hence there are three possibilities for P and Q: V (P )∩V (Q) = {x, x+},

V (P ) ∩ V (Q) = {x}, or V (P ) ∩ V (Q) = ∅.

First assume V (P ) ∩ V (Q) = {x, x+}. We will show that there is a longer cycle

as shown in Figure 4.27. Let R1 = G[t0, x] and R2 = G[x+, t3]. Note that since

t0t1, t2t3 ∈ E(G), t1 ∈ V (R1) and t2 ∈ V (R2). We will construct two paths P1 and Q1

such that P1 = u0...x and Q1 = t0...x, V (P1 ∪Q1) = V (R1), and V (P1)∩ V (Q1) = x.

Represent the portion of P in R1 as (u0 = p0)p1...pr−1(pr = x) and similarly represent

the part of Q in R1 as (t0 = q0)q1...qs−1(qs = x). If s = 1 (i.e. t0x ∈ E(G)), then let

P1 = t0x and Q1 = C[u0, x]. Hence assume s ≥ 2.

Now let P1 = u0...x and Q1 = t0...x be paths in R1 disjoint except at x, such
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that |V (Q1)| ≥ 3 and t1 ∈ V (Q1). Such paths necessarily exist since we can take

P1 = p0...pr and Q1 = q0...qs. Additionally assume |V (P1) ∪ V (Q1)| is maximum.

Suppose V (P1∪Q1) 6= V (R1) and let K be a component of R1−V (P1∪Q1). Because

G is 3-connected, K must have three neighbors. By planarity of G, K must have

three neighbors in V (P1∪Q1)∪{u2}. By Claim 4, there is no sector jump from u2 to

any vertex of R except possibly t1 or t2 and t1, t2 /∈ V (K) so K has three neighbors

in V (P1) ∪ V (Q1). If either t1 or t2 is in K, while they may be adjacent to u2, they

each have three additional neighbors in R, hence K must have three neighbors in

V (P1 ∪ Q1). Furthermore, K must have two neighbors in one of P1 or Q1. Suppose

K is adjacent to w1 and w2 on either P1 or Q1. If w1 and w2 are consecutive on either

P1 or Q1, then there is a longer path P1 or Q1: replace the edge w1w2 with a path

from w1 to w2 through K. Hence w1 and w2 are not consecutive.

Suppose w1, w2 ∈ V (Q1) and let w3 be a vertex between them along Q1. The

vertex w3 together with a vertex from K form a K2,2 minor in R1 rooted at t0 and

x and hence there is a K2,5 minor in G as shown in Figure 4.28. Now suppose

w1, w2 ∈ V (P1) and let w3 again be a vertex between them. The vertex w3 together

with a vertex from K form a K2,2 minor in R1 rooted at u0 and x. Now take an interior

vertex of Q1, which exists because |V (Q1)| ≥ 3, to form a K2,3 minor in R1 rooted at

x and t0 and hence a K2,5 minor in G similar to the one shown in Figure 4.28. Thus

no such component K exists, V (P1 ∪Q1) = V (R1), and P1 and Q1 are desired paths

in R1.

By symmetric arguments, there is a path P2 = u1...x
+ in R2 and a path Q2 =

t3...x
+ in R2 such that V (P2∪Q2) = V (R2) and V (P2)∩V (Q2) = x+ and hence there
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is a longer cycle as shown in Figure 4.27.

Figure 4.27 Figure 4.28 Figure 4.29

Now assume V (P ) ∩ V (Q) = {x}. We will show that this case can be reduced

to the previous one in which V (P ) ∩ V (Q) = {x, x+}. First assume x+ = u1. Then

there is a longer cycle similar to the one shown in Figure 4.27: the subpath from u1

to t3 through x+ becomes the edge u1t3 since u1 = x+. Now let R1 = G[t0, x] and

R2 = G[x+, t3]. Then t1 ∈ V (R1) and t2 ∈ V (R2)∪{x}. We claim there are internally

vertex-disjoint paths x+...u1 and x+...t3 in R2, namely segments of the outer face of

R2. Suppose not and assume v is the first intersection vertex along C from x+ of

the two paths along the outer face of R2. Since t2 is adjacent to t3, t2 /∈ {x, v};

also t2 /∈ V (R2) so by Claim 4, {v, x} is a 2-cut in G separating x+ and C(v, x).

Delete all edges xz where z ∈ V (R2) − {x+}, and now we can apply the arguments

of the previous case with V (P ) ∩ V (Q) = {x, x+}. (If t2 = x, we drop the condition

t2 ∈ V (Q2) which just ensures that any component K of R2 − V (P2 ∪ Q2) does not

have a jump from u2.)

Finally suppose V (P ) ∩ V (Q) = ∅. Let P ′ and Q′ be disjoint paths in R from

u0 to u1 and from t0 to t3 respectively such that |V (P ′)|, |V (Q′)| ≥ 3. Such paths

necessarily exist because we can take P ′ = P and Q′ = Q. Assume additionally
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that |V (P ′) ∪ V (Q′)| is maximum. Suppose V (P ′) ∪ V (Q′) 6= V (R) and let K be

a component of R − V (P ′ ∪ Q′). Because G is 3-connected, K has three neighbors.

Furthermore, because G is planar, K must have three neighbors in V (P ′∪Q′)∪{u2}.

By Claim 4, there are no jumps from u2 to any vertex of R except possibly t1 and

t2, and t1, t2 /∈ K. Hence K must have three neighbors in V (P ′ ∪ Q′). Without

loss of generality, suppose K is adjacent to w1 and w2 where w1, w2 ∈ V (P ′). If w1

and w2 are consecutive along P ′, then there is a path longer than P ′ from u0 to u1:

replace w1w2 on P ′ with a path from w1 to w2 through K. Hence w1 and w2 are

not consecutive and there is a vertex w3 between them on P ′. Now there is a K2,5

minor in G as shown in Figure 4.29; the vertex on Q′ is necessarily there because

|V (Q′)| ≥ 3. Hence V (P ′) ∪ V (Q′) = V (R).

Now we construct a longer cycle using P ′ and Q′. If (u2, t0) = ∅ or symmetrically

(t3, u2) = ∅, then there is a longer cycle as shown in Figure 4.30; hence (u2, t0) 6= ∅

and (t3, u2) 6= ∅. If there is a K2,2 minor in G[u2, t0] rooted at u2 and t0, then there

is a K2,5 minor as shown in Figure 4.31. Suppose that all jumps out of [u2, t0] go

to u0. Then apply Corollary III.6 to G[u2, t0] to find a path P = t0...t such that

V (P ) = (u2, t0] and t is a degree two vertex in G(u2, t0) and hence must be adjacent

to u0 by our assumption. Now using P there is a longer cycle similar to the one shown

in Figure 4.30: replace t0u0 by P ∪ tu0. Now all jumps out of [u2, t0] do not all go to

u0 and there is a jump x1−x2 with x2 ∈ [t3, u2); without loss of generality, let x1−x2

be the [u2, t0]− [t3, u2) jump with x1 closest to but not equal to t0 and x2 closest to

(and possibly equal to) t3.

If there is a jump out of [u2, x1] to (x1, u0], then there is a K2,5 minor as shown
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in Figure 4.32. A symmetric minor exists if there is a jump out of [x2, u2] to [u1, x2).

Hence the only vertex that is the endpoint of a jump out of C[x2, x1] is u2. If there is

a K2,2 minor in G[x2, x1] rooted at x2 and x1, then there is a K2,5 minor as shown in

Figure 4.31. Furthermore, G[x2, x1] is 2-connected because it is a circuit graph in a

3-connected graph. Now apply Lemma III.4 to G[x2, x1] to find a path P1 = x2x1...t

where V (P1) = [x2, x1] and t is a degree two vertex in G(x2, x1) and hence must be

u2. If there is a K2,2 minor in G[x1, t0] rooted at x1 and t0, then there is a K2,5 minor

similar to the one shown in Figure 4.31. Now apply Corollary III.6 to G[x1, t0] to find

a path P2 = t0...s where V (P2) = (x1, t0] and s is a degree two vertex in G[x1, t0] and

hence must be adjacent to u0. Using P1 and P2, there is a longer cycle as shown in

Figure 4.33.
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This completes the proof of Claim 5.

Claim 6. Either t1 = u+
0 or t2 = u−1 (at least one of X1 and X2 is empty).

Assume that t1 6= u+
0 and t2 6= u−1 . By Claim 5, either t0 6= u−0 or t3 6= u+

1 .

Without loss of generality, suppose t0 6= u−0 . Then there is a K2,5 minor shown in

Figure 4.34.

Claim 7. At most two pairs of sectors have jumps between them.

Assume that there are three sector jumps t0 − t1, t2 − t3, and t4 − t5 where

possibly t0 = t5, t1 = t2, or t3 = t4. By Claim 5, X0 and X3 cannot both be empty

and symmetrically, X1 and X4 cannot both be empty and X2 and X5 cannot both

be empty. Hence Xi 6= ∅ for at least three i. By Claim 6, at least one of X1 and X2

is empty and symmetrically, at least one of X3 and X4 is empty and at least one of

X5 and X0 is empty. Hence Xi 6= ∅ for exactly three i. Furthermore, the nonempty

Xi must be rotationally symmetric about C. Without loss of generality, suppose X0,

X2, and X4 are nonempty and X1, X3, and X5 are empty.
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If t1 = t2, then there is a longer cycle as shown in Figure 4.36. A symmetric longer
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cycle exists if t3 = t4 or if t5 = t0 hence these vertices must be distinct. Now consider

a jump r0 − r′0 out of X0. There are three options for r′0: r′0 ∈ [t5, t0), r′0 = t1, or

r′0 = u2. Suppose first that r′0 ∈ [t5, t0). Since t1 6= t2, there is a K2,5 minor as shown

in Figure 4.37.
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Now r′0 is either t1 or u2 and symmetrically for a jump r2 − r′2 out of X2, r′2 is

either u0 or t3 and for a jump r4− r′4 out of X4, r′4 is either u1 or t5. If at least two of

r′0, r′2 and r′4 are ui, then there is a K2,5 minor similar to the one shown in Figure 4.38.

If only one of r′0, r′2, and r′4 is a ui, then there is a K2,5 minor shown in Figure 4.39.

Hence all three jumps must be outside C: r′0 = t1, r′2 = t3, and r′4 = t5. If there is

a K2,2 minor in G[t0, u0] rooted at t0 and u0, then there is a K2,5 minor as shown in

Figure 4.40. Hence there is no such rooted K2,2 minor and symmetrically, there are

no rooted K2,2 minors in G[t2, u1] or G[t4, u2]. Because all jumps from X4 go to t5,

we can apply Corollary III.6 to G[t4, u2] and find a path P = t4...t where t is adjacent

to t5 and [t4, u2) = V (P ). Now if (t5, t0) = ∅, then there is a longer cycle similar to

the one shown in Figure 4.35: replace the edge t5t4 by P ∪ tt5. Hence (t5, t0) 6= ∅ and

symmetrically (t1, t2) 6= ∅ and (t3, t4) 6= ∅.

Let y−y′ be a jump out of [t5, t0]. There are three possibilities for y′: y′ ∈ (t0, u0),
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y′ = u0, or y′ = u2. If y′ ∈ (t0, u0), then there is a K2,5 minor similar to the one

shown in Figure 4.37. If y′ = u0, there is a K2,5 minor shown in Figure 4.41; a similar

minor exists when y′ = u2 (replacing edge yu0 by yu2). This completes the proof of

Claim 7.

Henceforth we assume there are jumps t0 − t1 and t2 − t3, but not t4 − t5.
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Figure 4.43

The graph in Figure 4.43 shows a longer cycle that exists if t0 = u+
2 and t0 is

adjacent to u+
0 . There is a symmetric longer cycle if t3 = u−2 , and t3 is adjacent to

u−1 .

Claim 8. Either t1 6= u+
0 or t2 6= u−1 (at most one of X1 and X2 is empty).

Assume that t1 = u+
0 and t2 = u−1 . If t0 = u+

2 , then there is a longer cycle as shown

in Figure 4.43. Symmetrically, if t3 = u−2 , there is a longer cycle. Hence t0 6= u+
2 and

t3 6= u−2 . If there is a K2,2 minor in G[u2, t0] rooted at u2 and t0, then there is a

K2,5 minor shown in Figure 4.42; hence G[u2, t0] is u2t0-outerplanar. If there is a

K2,2 minor in G[t0, u0] rooted at t0 and u0, then there is a K2,5 minor as shown in

Figure 4.44; hence G[t0, u0] is t0u0-outerplanar. All jumps out of C[u2, t0] must go to

either C(t0, u0) or to u0.
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Suppose first that all jumps go to u0. Then all jumps out of C[t0, u0] must go to

t1 since jumps to u2 are blocked by planarity. By Corollary III.6 applied to G[u2, t0],

there is a path P1 = t0...t such that V (P1) = (u2, t0] and t is a degree two vertex in

G[u2, t0] and therefore is adjacent to u0. Similarly if (t0, u0) 6= ∅ by Corollary III.6,

there is a path P2 = t0...s such that V (P2) = [t0, u0) and s is a degree two vertex in

G[t0, u0] or s = t0 and therefore is adjacent to t1. Using P1 and P2, there is a longer

cycle as shown in Figure 4.45.

Now there is some jump out of C[u2, t0] that goes to C(t0, u0). All jumps out of

C[t3, u2] must go to C[u1, t3) and there is a K2,5 minor similar to the one shown in

Figure 4.46. This concludes the proof of Claim 8.
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Now by Claims 6 and 8, exactly one of X1 and X2 is empty. Without loss of

generality, assume X1 = ∅ and X2 6= ∅. Hence t1 = u+
0 and t2 6= u−1 . If t0 = u+

2 , then

there is a longer cycle as in Figure 4.43; hence t0 6= u+
2 . As in the proof of Claim 8,

we can show that there are no rooted K2,2 minors along C[u2, t0] or C[t0, u0] using

Figures 4.42 and 4.44. Hence if all jumps out of C[u2, t0] go to u0, then we again get

a longer cycle as in Figure 4.45.

Thus there is a jump r − r′ with r ∈ (u2, t0) and r′ ∈ X0. We now focus on
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the structure of the other two sectors. If there is a K2,2 minor in G[t1, u2] rooted

at t1 and u2, then there is a K2,5 minor as shown in Figure 4.46. It follows that if

[a, b] ⊆ [t1, u2], then G[a, b] has no K2,2 minor rooted at a and b, so is ab-outerplanar.

Suppose (t3, u2) 6= ∅ and let s− s′ be a jump out of C[t3, u2]. By Claim 7, s′ /∈ (u2, t0]

hence s ∈ [u1, t3). Now there is a K2,5 minor similar to the one shown in Figure 4.46.

Thus (t3, u2) = ∅ and t3 = u−2 .

u0

u2

t0 t1

Figure 4.46
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t1
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If there is a jump from C(u1, t3) to u2, then the minor similar to the one in

Figure 4.46 still exists so all jumps out of C[u1, t3] must go to C[t2, u1). We now

focus on jumps out of X2. Let Y be the set of vertices in X2 that jump to X3 ∪ {t3}

and Z be the set of vertices in X2 that jump to [u0, t2). We consider three cases:

Z = ∅, Y ⊆ Z, and Z 6= ∅ and Y − Z 6= ∅.

First suppose Z = ∅ so all jumps out of X2 go to X3 ∪ {t3}. G[t2, t3] is t2t3-

outerplanar. Furthermore G[t2, t3] is 2-connected because it is the graph inside a

cycle in a 3-connected planar graph; see Lemma 2 of [14]. Hence apply Lemma III.4

to G[t2, t3] to find a path P = t2t3...t such that V (P ) = [t2, t3] and t is degree two in

G[t2, t3]; t = u1 because u1 is the only degree two vertex in G[t2, t3] besides possible

t2 and t3. Now using P , there is a longer cycle as shown in Figure 4.47.
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Second suppose Y ⊆ Z so every vertex with a jump out of X2 jumps to [u0, t2). If

t1 6= t2, then there is a K2,5 minor shown in Figure 4.48; hence t1 = t2 and therefore

all jumps from X2 to [u0, t2) go to u0. Now by Corollary III.6 applied to G[t2, u1],

there is a path P = t2...t such that V (P ) = [t2, u1) and t is degree two in G[t2, u1],

therefore has a jump out of X2, and therefore is adjacent to u0. Now using P , there

is a longer cycle shown in Figure 4.49.

Finally suppose Z 6= ∅ and Y − Z 6= ∅. Note the minor in Figure 4.48 exists here

as well if t1 6= t2 so t1 = t2 and there are jumps from Z to u0. Let y be the first

vertex of Y −Z. If there is a vertex z ∈ (y, u1)∩Z, then there is a K2,5 minor shown

in Figure 4.50. Otherwise there is z ∈ (t2, y)∩Z. If y jumps to (u+
1 , t3], then there is

a K2,5 minor shown in Figure 4.51; hence y jumps to u+
1 . Now apply Corollary III.6

to G[t2, y] to find a path P = t2...t such that V (P ) = [t2, y) and t is degree two in

G[t2, y] or t = t2 and hence is adjacent to u0. Now using P , there is a longer cycle

shown in Figure 4.52.

u0

u1u2

t0 t1

t2

t3

Figure 4.48

u0

u1u2

t0
t1=t2

t3

Figure 4.49

u0

u1
u2

t0
t1=t2

t3

Figure 4.50
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u0

u1
u2

t0
t1=t2

t3

Figure 4.51

u0

u1
u2

t0
t1=t2

t3

Figure 4.52

There are no remaining possibilities forX1 andX2 and hence the proof is complete.

A natural next step is to consider the same result for K2,6-minor-free graphs. It

is not true, however, that all 3-connected planar K2,6-minor-free graphs are Hamilto-

nian. In fact, we can construct an infinite family of 3-connected planar K2,6-minor-free

graphs.

Lemma IV.4. The graph shown in Figure 4.53 is a 3-connected, planar, non-Hamilton,

K2,6-minor-free graph for all values of k ≥ 1.

x

y

z

u1 u2

u3 u4

u5

u6
u7

v1
v2

v3

vk

Figure 4.53

Proof. Let G be the graph in Figure 4.53. Then the graph formed from G by con-

tracting all of the vertices labeled vi to a single vertex v is known as the Herschel
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graph, the smallest 3-connected, planar, non-Hamiltonian graph. Suppose G has a

Hamilton cycle C. If v1, v2, ..., vk appear consecutively along C, then we can form

a Hamilton cycle in the Herschel graph by contracting this portion of C to a single

vertex v. If v1, v2, ..., vk do not appear consecutively, then since y is the only neighbor

of v2, ..., vk−1 outside of the other vertices vi, there must be some j, 1 ≤ j ≤ k − 1,

such that x, v1, ..., vj, y, vj+1, ..., vk, z appear in that consecutive order in C. We con-

sider the location of u2 along C. Since deg(u2) = 3 and the edge u2y is not in C,

we must have u5, u2, x appearing in that consecutive order along C. Similarly for the

vertex u7, we can conclude that u5, u7, z must appear in that consecutive order along

C. But now C = zu7u5u2xv1...vjyvj+1...vkz and C is not Hamiltonian. Thus G has

no Hamilton cycle C.

To see that G is K2,6-minor-free, we observe that (H,K) is a 3-separation in G

where H is the graph on the left of Figure 4.54 and K is the graph on the right.
x

y

z

u1 u2

u3 u4

u5

u6
u7

x

y

z

v1
v2

v3

vk

H K

Figure 4.54 H and K

We prove several claims.

Claim 1. The graph H̄ = H + xy + yz + xz has no K2,6 minor.

Suppose (R1, R2, S) is a K2,6 minor in H̄. Then since |V (H̄)| = 10 and no vertex
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has degree six, we must have |R1| = |R2| = 2. Then R1 and R2 must consist of

either two adjacent vertices of degree at least four or contain a vertex of degree

five. Suppose to start that x ∈ R1; then the other vertex of R1 must be a neighbor

of x. If R1 = {x, u3}, R1 = {x, u2}, or R1 = {x, y}, then R1 does not have six

distinct neighbors and hence we cannot form R1 with |R1| = 2. If R1 = {x, u1}, then

S = {u4, u5, u3, u2, y, z} and R2 = {u6, u7} but neither u6 nor u7 has degree at least

four. If R1 = {x, z}, then S = {u3, u1, u2, u6, u7, y} and R2 = {u4, u5} but now u4

and u5 are not adjacent and hence R2 is not connected. Thus x /∈ R1 and hence

symmetrically x /∈ R2. By symmetric arguments, z /∈ Ri for i = 1, 2. The vertices x

and z are the only degree five vertices so now R1 and R2 must both consist of adjacent

degree four vertices. There are only two degree four vertices, however, (y and u5) so

we cannot form R1 and R2. Thus H̄ is K2,6-minor-free.

Claim 2. The graph K̄ = K + xy + yz + xz has no K2,6 minor.

The graph K̄ − y is outerplanar and thus contains no K2,3 minor (and hence no

K2,6) minor. Therefore if K̄ contains a K2,6 minor, then y must be in the minor. If

y ∈ S, then K̄ − y must contain a K2,5 minor but again K̄ − y is outerplanar and

contains no K2,3 and hence no K2,5 minor. If y ∈ Ri for i = 1 or 2, then K̄ − y must

contain a K1,6 minor but K̄ − y is a cycle and hence contains no K1,6 minor. Thus

K̄ is K2,6-minor-free.

Now by Lemma III.3, Claim 1, and Claim 2, if G contains a K2,6 minor (R1, R2;S),

then we must have one of x, y, and z in R1 and one of x, y, and z in R2. Without loss

of generality, suppose x ∈ R1.
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First assume y ∈ R2. Since H̄ is K2,6-minor-free, vi ∈ S for at least one i. Suppose

to start vi ∈ S for only one i. Then there must be a K2,5 minor (R′1, R
′
2;S ′) in H+yz

rooted at x and y. Since |V (H)| = 10 and no vertex of H + yz has degree five or

more, both |R′1| ≥ 2 and |R′2| ≥ 2 and thus either |R′1| = 2 or |R′2| = 2. Without

loss of generality, suppose |R′1| = 2. In order to have at least five neighbors, R′1 must

contain a degree four vertex and since (R′1, R
′
2;S ′) is rooted at x and y, either x ∈ R′1

or y ∈ R′1, say y ∈ R′1. The degree four vertices are u5 and z and since u5 is not

adjacent to either y or x, we must have R′1 = {z, y}. Now, however, R′1 does not have

five distinct neighbors in H + yz and there is no K2,5 minor (R′1, R
′
2;S ′).

Now vi, vj ∈ S for i 6= j. In order to have R1 adjacent to vi and vj, z ∈ R1.

Now there must be a K2,4 minor (R′1, R
′
2;S ′) in H + xz with x, z ∈ R′1 and y ∈ R′2.

Because vi, vj ∈ S and y ∈ R2, x and z are not connected in R1 using a path in K,

thus (R′1, R
′
2;S ′) must exist in H alone. Since degH(y) = 2 and y is not adjacent to a

degree four vertex, |R′2| ≥ 3 in order to ensure R′2 has at least four neighbors. Since

x, z ∈ R′1 and x and z are not adjacent, |R′1| ≥ 3. Since |V (H)| = 10 and |S ′| = 4,

|R′1| = |R′2| = 3. Thus R′1 = {x, z, u3} and therefore S contains four of u1, u2, u4, u6,

and u7 and u5 /∈ S so u5 ∈ R′2. S cannot contain both u2 and u7 since one of these

vertices must be in R′2 thus {u1, u4, u6} ⊂ S. But now R′2 does not reach u4. Thus

there is no K2,4 minor (R′1, R
′
2;S ′). We cannot have vi ∈ S for three distinct i since

then one vi would be reachable from y but not from x or z.

Now we must have z ∈ R2 (and y /∈ R2 and symmetrically, y /∈ R1). Again since

H̄ is K2,6-minor-free, vi ∈ S for at least one i. At most one vi is reachable by both

x and z without using y, however, so there is exactly one vi in S. Hence there must
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be a K2,5 minor (R′1, R
′
2;S ′) in H + xy + yz rooted at x and z with y /∈ R′1 ∪ R′2.

Since |V (H)| = 10 and no vertex of H has degree five or more, either |R′1| = 2 or

|R′2| = 2. Without loss of generality, suppose |R′1| = 2 and further suppose x ∈ R′1.

Then the other vertex in R′1 must be a neighbor of x and the two vertices together

must have five distinct neighbors in H + xy + yz other than z. None of the pairs x

and u3, x and u2, and x and y together have five such neighbors. If R′1 = {x, u1},

then S ′ = {u3, u4, u5, u2, y} and R′2 ⊆ {z, u6, u7} but then R′2 is not adjacent to u2.

Thus we cannot form R′1 and there is no K2,5 minor (R′1, R
′
2;S ′).
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Chapter V

A CHARACTERIZATION OF K2,4-MINOR-FREE GRAPHS

In this chapter, we provide a complete characterization of all K2,4-minor-free

graphs. We start by defining a class of graphs and describing several small exam-

ples which together make up all 3-connected K2,4-minor-free graphs. We begin with

3-connected graphs because all 4-connected graphs on at least six vertices have a K2,4-

minor. This is obvious for complete graphs. Otherwise, a pair of nonadjacent vertices

and the four internally disjoint paths between them guaranteed by Menger’s Theorem

yield a K2,4 minor. In Section 2 we extend the characterization to 2-connected graphs.

The generalization to all graphs follows because a graph that is not 2-connected is

K2,4-minor-free if and only if each of its blocks is K2,4-minor-free.

5.1 The 3-connected Case

All graphs G with |V (G)| < 6 are trivially K2,4-minor-free; the 3-connected ones

are K5, K5 − e, K5 − 2K2, and K4. To describe the graphs with |V (G)| ≥ 6, first we

define a class of graphs and identify those that are 3-connected and K2,4-minor-free.

We then look at some small graphs that do not fit into this class. Finally, we show

that every 3-connected K2,4-minor-free graph is one of these we have described.
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5.1.1 A Class of Graphs G
(+)
n,r,s

For n ≥ 3, 0 ≤ r, s ≤ n − 3, let Gn,r,s consist of a spanning path v1v2...vn which

we call the spine and edges v1vn−i for 1 ≤ i ≤ r and vnv1+j for 1 ≤ j ≤ s. The graph

G+
n,r,s is Gn,r,s + v1vn; we call v1vn the plus edge. Examples are shown in Figures 5.1

and 5.2. Note G
(+)
n,r,s
∼= G

(+)
n,s,r. Hence, for simplicity we assume r ≤ s throughout

unless otherwise stated.

v1 v9

G9,4,3

Figure 5.1

v1 v7

G+7,1,4

Figure 5.2

Consider Gn,r,s with n ≥ 4. Observe that Gn,1,s and symmetrically Gn,r,1 are not

3-connected. We claim the following:

Lemma V.1. For n ≥ 4, G
(+)
n,r,s is 3-connected if and only if (i) r = 1, s ≥ n − 3,

and the plus edge is present (or symmetrically s = 1, r ≥ n− 3, and the plus edge is

present) or (ii) r, s ≥ 2 and r + s ≥ n− 2.

Proof. To prove the forward direction, assume G is 3-connected and first suppose

r = 1. Then if the plus edge is not present, then v1 has degree two and {v2, vn−1} is

a 2-cut. Similarly if s ≤ n− 4, then vn−2 has degree two and {vn−3, vn−1} is a 2-cut.

Next suppose r, s ≥ 2. If r + s ≤ n− 3, then there is necessarily a degree two vertex

vi with 4 ≤ i ≤ n− 3 and hence a 2-cut in G.

To prove the reverse direction, assume G is not 3-connected and consider a pos-

sible 2-cut. The vertices v1 and v2 do not form a 2-cut because G − {v1v2} is a
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path. Similarly, vn−1 and vn and v1 and vn do not form 2-cuts. The vertices v1

and vi with 2 < i < n do not form a 2-cut because G − {v1, vi} contains a path

vi+1vi+2...vnv2v3...vi−1. Similarly, vi and vn do not form a 2-cut for 1 < i < n− 1.

Finally consider two vertices vi, vj, with 1 < i < j < n. First assume j = i+ 1. If

n = 4, then i = 2, j = 3 and r = s = 1 and therefore the plus edge v1v4 is present;

hence G − {v2, v3} is connected and {v2, v3} is not a 2-cut. Now n ≥ 5 so either

j 6= n − 1 or i 6= 2. Without loss of generality, say j 6= n − 1; then v1v2...vi−1 and

vj+1vj+2...vn are connected because v1 is adjacent to vn−1. Next assume j 6= i + 1.

Then there is a vertex between vi and vj and since r+ s ≥ n− 2, all vertices between

vi and vj must be adjacent to v1 or vn. In particular, vi+1 6= vj must be adjacent to

either v1 or vn. The two situations are similar, so without loss of generality, assume

vi+1 is adjacent to v1. When i 6= 2, v1v2...vi−1, vi+1vi+2...vj−1, and vj+1vj+2...vn are all

connected because vn is adjacent to v2. When i = 2, then v1v2...vi−1, vi+1vi+2...vj−1,

and vj+1vj+2...vn are all connected because either vn is adjacent to v1 or vn is adjacent

to vi+1 (since either s = 1 forcing the plus edge or s ≥ 2).

Lemma V.2. Let G = G
(+)
n,r,s with n ≥ 6 and r+ s ≤ n− 1. If G has a standard K2,4

minor (R1, R2;S), then v1 ∈ R1 and vn ∈ R2 (or vice versa).

Proof. The graph G − v1 is outerplanar and thus has no K2,3 minor. Therefore, if

G has a K2,4 minor, then v1 must be included in the minor. By symmetry, vn must

also be included in the minor. We cannot have v1 ∈ S because then the outerplanar

graph G − v1 would have a K2,3 minor. Symmetrically, vn /∈ S. If v1, vn ∈ Ri, then

G− {v1, vn} must have a K1,4 minor, but G− {v1, vn} is a path and there is no K1,4
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minor in a path. The only remaining possibility is v1 ∈ R1 and vn ∈ R2 (or vice

versa).

Lemma V.3. For n ≥ 6, G
(+)
n,r,s is K2,4-minor-free if and only if r + s ≤ n− 1.

Proof. To prove the forward direction, suppose r + s ≥ n. Then there are vertices vi

and vi+1 such that both v1 and vn are adjacent to both vi and vi+1 and 3 ≤ i ≤ vn−3.

Then there is a K2,4 minor (R1, R2;S) in G: let S = {v2, vi, vi+1, vn−1}, R1 = v1, and

R2 = vn.

Now suppose that r+s ≤ n−1. Let A = {vn−r, vn−r+1, ..., vn−1} = N(v1)−v2 and

B = {v2, v3, ..., vs+1} = N(vn) − vn−1 (which intersect only if vn−r = vs+1). Suppose

G has a K2,4 minor (R1, R2;S). Then by Lemma V.2, v1 ∈ R1 and vn ∈ R2. We

consider the makeup of S. Suppose {s1, s2, s3} ⊆ S∩A, in that order along the spine.

Now since {v1, s1, s3} ⊆ R1 ∪ {s1, s3} separates s2 and vn, and vn ∈ R2, we cannot

have R2 adjacent to s2, which is a contradiction. Thus |S ∩ A| ≤ 3. Symmetrically,

|S ∩B| ≤ 3. We must have s1, s2 ∈ S ∩A and s3, s4 ∈ S ∩B in the order s4, s3, s2, s1

along the spine. Since vn ∈ R2, there must be a vn − s2 path in G − {v1, s1, s3, s4}.

Then since vs+1 is a cutvertex separating vn and s2 in G − {v1, s1, s3, s4}, we have

vs+1 ∈ R2. Now there must also be an v1 − s3 path in G− {vn, vs+1, s4} but no such

path exists. Thus there is no K2,4 minor.

All graphs on fewer than six vertices are necessarily K2,4-minor-free. The 3-

connected ones areK5, K5−e, K5−2K2, andK4. Three of these graphs are isomorphic

to graphs in the family G
(+)
n,r,s: K5 − e ∼= G+

5,2,2, K5 − 2K2
∼= G+

5,1,2, and K4
∼= G+

4,1,1.

Denote by G the set of all graphs Gn,r,s or G+
n,r,s that are 3-connected and K2,4-
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minor-free. Then by Lemmas V.1 and V.3 and the discussion of 3-connected K2,4

-minor-free graphs on fewer than six vertices:

G = {G+
n,1,n−3 : n ≥ 4} ∪ {G(+)

n,r,s : n ≥ 5, 2 ≤ r ≤ s ≤ n− 3, r + s = n− 1 or n− 2}

There are some isomorphisms between graphs in G and also symmetries within

certain graphs of the class. The graph G+
n,1,n−3 = K1 + Cn−1 is a wheel with hub vn

and has the obvious symmetries. In Gn,2,n−4, there is an automorphism that swaps

v1 and vn−2 and fixes vn. To see this, consider Figure 5.3. The graph in the figure

without the dotted edges e1 and e2 is G9,2,5. Define a mapping σ (corresponding

to reflection about a vertical axis in the figure) such that σ fixes vn−1 and vn and

σ(vi) = vn−1−i for 1 ≤ i ≤ n − 2. In general, the map σ is an involution and an

automorphism of Gn,2,n−4.

With the edge e1, the graph is G+
9,2,5 and with e2, the graph is G9,2,6. Thus in

general, σ is an isomorphism from G+
n,2,n−4 to Gn,2,n−3 which maps e1 to e2. With

both edges e1 and e2, the graph is G+
9,2,6 and hence in general σ is an automorphism

of G+
n,2,n−3. Now in general σ maps the spine P = v1v2...vn to the path σ(P ) =

vn−2vn−3...v2v1vn−1vn. When r = 2, we call this the second spine. In Gn,2,n−4 and

G+
n,2,n−3, the second spine is the image of the spine under an automorphism, and in

one of G+
n,2,n−4 and Gn,2,n−3, it is the image under an isomorphism of the spine in the

other graph.

Finally, G6,2,2 is vertex-transitive and is isomorphic to the triangular prism. These

symmetries and isomorphisms will be important later on, particularly in Section 5.2
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when we discuss which edges of G ∈ G can be subdivided without creating a K2,4

minor.

Up to isomorphism, G contains one graph with n = 4 and 2n− 8 graphs for each

n ≥ 5.

5.1.2 Small Cases

There are nine examples of small graphs G, G /∈ G, that are 3-connected and

K2,4-minor-free. They are shown in Figure 5.6. The first is K5 which is the final 3-

connected graph that has less than six vertices and so is necessarily K2,4-minor-free.

Lemma V.4. The graph C+ is K2,4-minor-free.

e1 e2

v2

v1

v3

v4

v5

v6

v7

v8

v9

Figure 5.3

v1 v2

v3

v4 v5

v6 v7 v8

Figure 5.4 C+

v1 v2

v3 v4

v5
v6 v7

Figure 5.5 D

Proof. Consider C+ with vertices labeled as in Figure 5.4. |V (C+)| = 8. Suppose

there is a K2,4 minor (R1, R2;S) in C+ and suppose |R1| = 1. Then R1 must be either

v4 or v5 since these are the only vertices of degree four. Say, without loss of generality,

R1 = {v4}. Then S = {v5, v6, v7, v8}, and R2 must be a subset of {v1, v2, v3}. None

of these three vertices are adjacent to v5, however, so we cannot have R2 adjacent to
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v5 and thus we cannot have |R1| = 1, or symmetrically, |R2| = 1. Thus |R1| ≥ 2 and

|R2| ≥ 2 and since |C| = 8, |R1| = |R2| = 2.

Let T be a triangle with a set N of neighbors with |N | = 3. Suppose R1 ⊆

V (T ). Then we would have N ⊆ S along with the third vertex t of T , but N

separates t from the rest of the graph so R2 cannot be adjacent to t. Thus R1

(or symmetrically R2) cannot consist of two vertices in a triangle with only three

neighbors. In C+, we have the following triples of vertices which form such triangles:

{v1, v2, v3}, {v4, v5, v6}, {v4, v5, v7}, and {v4, v5, v8}. The only remaining pairs of

adjacent vertices that could make up R1 or R2 are {v3, v6}, {v2, v8}, and {v1, v7}

where all three cases are symmetric. If R1 = {v3, v6}, then R2 must be {v7, v8} but

this set is not an option for R2.

Corollary V.5. All minors of C+ are K2,4-minor-free.

The graphs C, B+, B, A+ (contract v1v7 and v2v8), A, and K3,3 in Figure 5.6 are

minors of C+ and hence are all K2,4-minor-free.

Consider D with vertices labeled as shown in Figure 5.5.

Lemma V.6. The graph D is K2,4-minor-free.

Proof. Suppose there is a K2,4 minor (R1, R2;S) in D. Since |V (D)| = 7, at least

one of R1 or R2 must consist of a single vertex of degree four. There are three

degree four vertices: v1, v3, and v6. Suppose R1 = {v6}; then S = {v1, v3, v5, v7} and

R2 = {v2, v4}. But neither v2 nor v4 is adjacent to v5. By symmetric arguments,

R1 6= {v3} and R1 6= {v1} and thus there is no K2,4 minor.
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K3,3 A

A+ B B+

C C+ D

K5

Figure 5.6

5.1.3 Main Theorem

Theorem V.7. Let G be a 3-connected graph. Then G is K2,4-minor-free if and only

if G ∈ G or G is one of the nine small exceptions shown in Figure 5.6.

Our original proof of this theorem examined the structure of 3-connected K2,4-

minor-free graphs relative to a longest non-Hamilton cycle in the graph. We con-

structed a case analysis based on possible structures and either derived a contradiction

with a longer non-Hamilton cycle or a K2,4 minor, or found a desired graph. Recent

results of Ding and Liu [10] shorten our proof, so we present the new shorter version

here. First we explain their notation. Denote by Oct\e the graph obtained from the

octahedron by removing one edge, and denote the cube by Q3, shown in Figure 5.8.

Denote by V8 the graph shown in Figure 5.7. A 3-sum of two 3-connected graphs G1

and G2 is a graph G obtained by identifying a triangle of G1 with a triangle of G2

and possibly deleting some of the edges of the common triangle as long as no degree

two vertices are created. Any 2-cut in G would lead to a 2-cut in either G1 or G2 so
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G is 3-connected. An example is the graph denoted K∆
5 shown in Figure 5.9 which is

a 3-sum of K5 and a triangular prism. A common 3-sum of three or more graphs is

formed by specifying one triangle in each graph and identifying all as a single triangle

called the common triangle; again edges of the common triangle may be deleted as

long as no degree two vertices are created. Let S be the set of all graphs formed by

taking common 3-sums of wheels and triangular prisms. Note that all graphs in S

are 3-connected. We have the following result due to Ding and Liu.

Figure 5.7 Figure 5.8 Figure 5.9 K∆
5

Theorem V.8 (Ding, Liu [10]). The family of 3-connected Oct\e-minor-free graphs

consists of graphs in S and 3-connected minors of V8, Q3, and K∆
5 .

Oct\e contains K2,4 as a minor so all 3-connected K2,4-minor-free graphs must

lie inside the family described in Theorem V.8. In particular, we must consider 3-

connected minors of V8, Q3, and K∆
5 and also members of S.

Proof of Theorem IV.3. Lemmas V.3, V.4, V.5, and V.6 give the reverse direction of

the proof so it remains to show the forward direction. In particular, we show that

the graphs listed are the only K2,4-minor-free graphs that are 3-connected minors of

V8, Q3, and K∆
5 or are members of S.

We begin by determining which members of S are K2,4-minor-free. Any common

3-sum of four wheels contains a K3,4 minor (the three vertices of the common triangle
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form the part of size three). In fact any common 3-sum of any four or more graphs

contains a K3,4 minor. Thus we consider common 3-sums of at most three graphs.

We begin by looking at how many wheels can be in the common 3-sum. Denote by

Wn the wheel on n vertices.

First consider a common 3-sum of three wheels, Wk, W`, and Wm. For k = ` = 5

and m = 4, since all vertices of W4 = K4 are equivalent, there are two ways up to

symmetry to form a common 3-sum (disregarding the possible existence of the edges

of the common triangle): the centers of the two wheels are either identified or not

identified. Both ways result in a K2,4 minor; Figure 5.10 shows the minor for each

case. The dotted edges are the edges of the common triangle which may or may not

be present in the common 3-sum. Since graphs with k ≥ 5, ` ≥ 5, and m ≥ 4 all

have one of these two graphs as a minor, these graphs also have K2,4 minors and

hence only one of k, `,m can be greater than 4. When k = 6, ` = m = 4, there is

again a K2,4 minor shown in Figure 5.11. All graphs with k > 6 and ` = m = 4 have

this graph as a minor and hence also have a K2,4 minor. For k = 5, ` = m = 4, we

have the graphs shown in Figure 5.12. With none of the dotted edges of the common

triangle, this graph is K2,4-minor-free and is isomorphic to the graph B. With e1 (or

symmetrically e2), the graph has the K2,4 minor shown on the left of the figure. With

e3, the graph has the K2,4 minor shown on the right of the figure. Hence k, `,m ≤ 4.

For k = ` = m = 4, we have the graph shown in Figure 5.13. With any two of the

dotted edges, the graph has the K2,4 minor shown in the figure for e1 and e2. With

none of the edges, the graph is isomorphic to K3,3. With any one dotted edge, the

graph is isomorphic to A. Henceforth we can consider common 3-sums with at most
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two wheels.

Figure 5.10 Figure 5.11

e1 e2

e3

e1 e2

e3

Figure 5.12

e1 e2

e3

Figure 5.13

Next consider common 3-sums with two wheels and begin with a common 3-sum

of two wheels and a prism. If the wheels are Wk and W4 with k ≥ 5, then all common

3-sums have the K2,4 minor shown in Figure 5.14. If both wheels are W4, then we

have the graph shown in Figure 5.15. With the edge labeled e1 (or symmetrically e2

or e3), we have the K2,4 minor shown in the figure. With none of the dotted edges,

the graph is isomorphic to C.

Now consider a common 3-sum of two wheels Wk and W` in which the centers

of the wheels are not identified (and k, ` ≥ 5). The case in which either k or `

is 4 is also covered here because in W4, any vertex can be considered as a center

or non-center as appropriate. We have the graph shown in Figure 5.16. At least

one of the edges labeled e1 and e2 must be present in the common 3-sum to ensure

there are no degree two vertices. Let n = k + ` − 3. With e1 and e2, the graph is

isomorphic to Gn,k−2,`−2. With e1 (or symmetrically e2), the graph is isomorphic to

either Gn,k−3,`−2 or Gn,k−2,`−3. In all cases e3 is the optional plus edge. The spine
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is shown in the figure as the thick, highlighted path. Hence we have all graphs in G

with at least five vertices.

Figure 5.14

e1 e2

e3

Figure 5.15

e2
e1

e3

Figure 5.16

Now suppose the centers of Wk and W` are identified in the common 3-sum. For

k, ` = 5, we have the graph shown in Figure 5.17; a common 3-sum of any two wheels

with k, ` ≥ 5 have this graph as a minor. With the edge labeled e1, the graph has

the K2,4 minor shown. Without e1, both e2 and e3 must be present to ensure there

are no vertices of degree two. Then the graph is a wheel. In W4, all vertices are

symmetric so a common 3-sum of Wk and W4 for any k ≥ 4 was considered in the

previous case in which the centers of the wheels were not identified. Henceforth we

consider common 3-sums with at most one wheel.

Now consider common 3-sums that include two prisms and begin with a common

3-sum of two prisms and one wheel. We have the graph in Figure 5.18 with the K2,4

minor shown; the figure shows the minor for W4, and a common 3-sum of two prisms

and any larger wheel has this graph as a minor. Now consider a common 3-sum of

two prisms. We have the graph in Figure 5.19. At least two of the three dotted edges

are needed to ensure there are no degree two vertices and so we have the K2,4 minor

shown. In a common 3-sum of three prisms, the dotted edges do not need to be
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present to ensure 3-connectivity. However, instead of using one of the dotted edges

in the K2,4 minor as in Figure 5.19, we can use a path between these two vertices

through the third prism. Hence a K2,4 minor similar to the one shown in Figure 5.19

exists in a common 3-sum of three prisms. Henceforth we consider common 3-sums

with at most one prism.

e1

e2 e3

Figure 5.17 Figure 5.18 Figure 5.19

Consider a common 3-sum of a wheel Wk and a prism. Up to symmetry, there is

one common 3-sum for k ≥ 5, shown in Figure 5.20 for k = 5; any common 3-sum of

Wk and a prism with k ≥ 6 has this graph as a minor. At least one of the edges e1

and e2 must be present to ensure there are no vertices of degree two so we have the

K2,4 minor shown. When k = 4, we have the graph shown in Figure 5.21. Two of the

three dotted edges must be present to ensure there are no degree two vertices. With

all three edges, the graph is isomorphic to D. With any two of the three, the graph

is isomorphic to G7,3,2.

Finally, consider common 3-sums of a single graph. The wheel Wk (k ≥ 4) is

isomorphic to the graph G+
k,1,k−3 and the triangular prism is isomorphic to the graph

G6,2,2.
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e1

e2

Figure 5.20 Figure 5.21

Next we look at 3-connected minors of V8. Once we obtain a minor that has six

vertices, we do not need to consider further minors formed by edge contraction because

all graphs on fewer than six vertices are trivially K2,4-minor-free. Furthermore, if no

set of edges and vertices can be deleted to form a 3-connected K2,4-minor-free graph,

then any minor of interest involves at least one edge contraction so without loss of

generality, we will first consider edge contractions followed by either additional edge

contractions or deletions.

V8 itself has a K2,4 minor (R1, R2;S): take two adjacent vertices that are not

consecutive on the outer cycle in Figure 5.7 as R1 and their four neighbors as S. The

graph is 3-regular so the deletion of any set of edges or vertices results in a graph

that is not 3-connected. Thus any 3-connected, K2,4-minor-free minor of V8 must

result from at least one edge contraction so first we consider edge contractions. Up to

symmetry, there are two contractions to consider. The first is shown in Figure 5.22

and is isomorphic to the graph B. We further consider minors of this graph. The

deletion of any edge results in a graph that is not 3-connected since all edges are

incident with a degree three vertex. Up to symmetry, there are six edge contractions

to consider: v1v5, v1v7, v6v7, v5v6, v3v7, and v4v5. Contracting v1v5 or v4v5 both result

in a vertex of degree two so the graph is not 3-connected; the graphs also have six
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vertices so we do not consider further minors. Contracting v1v7 results in a graph

isomorphic to W6 = G+
6,1,3, and deleting any edge of G+

6,1,3 results in a graph that is

not 3-connected. Contracting v6v7 or v3v7 both result in graphs isomorphic to G+
6,2,2.

The edge corresponding to the plus can be deleted to give G6,2,2. Finally contracting

v5v6 results in a graph isomorphic to A. Only one edge can be deleted from A and

the result is K3,3.

The second edge contraction up to symmetry in V8 results in the graph shown

in Figure 5.23 and contains a K2,4 minor so we must further consider minors of this

graph. Every edge is adjacent to a degree three vertex so the deletion of any edge

results in a 2-connected graph. Hence we first consider contracting edges. Up to

symmetry, there are four edge contractions to consider: v1v2, v3v4, v2v6, and v3v7.

Contracting v3v4 results in a graph that are not 3-connected; the graphs also have six

vertices so we do not need to consider further minors.

Figure 5.22 Figure 5.23 Figure 5.24

Contracting the edge v1v2 results in a graph isomorphic to G+
6,2,2. The edge cor-

responding to the plus can be deleted to result in G6,2,2. Contracting v3v7 results

in a graph isomorphic to G6,2,2; deleting any edge of this graph results in a graph

that is not 3-connected. Contracting v2v6 yields a graph with a K2,4 minor as shown

in Figure 5.24. Deleting any edge from this graph results in a graph that is not
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3-connected.

Now consider 3-connected minors of Q3. Q3 itself has a K2,4 minor (R1, R2;S):

take any two adjacent vertices as R1 and their four neighbors as S. The graph

is 3-regular so the deletion of any edge results in a graph that is not 3-connected.

Hence any 3-connected K2,4-minor-free minor of Q3 must come from at least one edge

contraction so we first consider edge contractions. However, all edges are symmetric

and the contraction of any edge results in a graph isomorphic to the one shown in

Figure 5.23. This graph was already fully analyzed so we are done with Q3.

Finally we consider K∆
5 as in Figure 5.9. This graph is isomorphic to C+ so it is

K2,4-minor-free. Deleting the edge v7v8 results in the graph C. Up to symmetry, there

are four edge contractions of K∆
5 to consider: v1v2, v3v5, v4v8, and v7v8. Contracting

v1v2 results in a degree two vertex; contracting an edge incident with this vertex

results in a graph isomorphic to A. Only one edge can be deleted from A without

creating a 2-connected graph and the result is K3,3. Contracting v7v8 results in a

graph with three degree two vertices; at least three edge contractions are needed

to yield a 3-connected graph but then the graph will have fewer than six vertices.

Contracting the edge v3v5 results in the graph B+. Contracting the edge v4v8 results

in the graph G7,2,3. Hence we consider further minors of these three graphs: C, B+,

and G7,2,3.

First consider G7,2,3 with spine v1v2v3v4v5v6v7. Deletion of any edge results in

a graph that is not 3-connected. Contraction of any edge not on the spine or the

edge v5v6 results in a degree two vertex and hence a graph that is not 3-connected;

these graphs have six vertices so we do not consider further minors. Graphs in G
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are closed under contracting spine edges. We look at the graphs resulting from these

contractions. Contracting v6v7 results in a graph isomorphic to G+
6,1,3; deleting any

edge of this graph results in a graph that is not 3-connected. Contracting v4v5 results

in a graph isomorphic to G6,3,2; deleting any edge of this graph results in a graph that

is not 3-connected. Contracting v3v4 or v2v3 result in graphs isomorphic to G6,2,2;

deleting any edge of this graph results in a graph that is not 3-connected. Finally,

contracting v1v2 results in a graph isomorphic to G+
6,2,2; the edge corresponding to

the plus can be deleting resulting in G6,2,2.

Now consider B+ with vertices labeled as in Figure 5.25. Deleting the edge v6v7

results in a graph isomorphic to B. We already considered minors of B when it

occurred as a minor of V8. Deleting the edge v3v6 (or symmetrically v3v7) results

in a graph isomorphic to G7,3,2 and we have already considered further minors of

this graph. Up to symmetry, there are six edge contractions to consider: v1v2, v1v3,

v1v4, v3v6, v4v6, and v6v7. Contracting v1v3 or v6v7 all result in graphs that are not

3-connected. Contracting v1v2 results in a graph isomorphic to A and contracting

v1v4 results in a graph isomorphic to the graph A+. One edge can be deleted from

A+ to result in A and one edge can be deleted from A to result in K3,3. Contracting

v3v6 results in a graph isomorphic to W6 = G+
6,1,3; deleting any edge of this graph

results in a graph that is not 3-connected. Finally, contracting v4v6 results in a graph

isomorphic to G+
6,2,2. The edge corresponding to the plus can be deleted resulting in

G6,2,2.
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v1 v2

v3

v4 v5

v7v6

Figure 5.25

v1 v2
v3

v4 v5 v6

v7 v8

Figure 5.26

Finally, consider C with vertices labeled as in Figure 5.26. Deleting any edge

of C results in a graph that is not 3-connected. Up to symmetry, there are three

edge contractions to consider: v1v2, v1v4, and v4v7. Contracting v1v2 results in a

graph with a degree two vertex; contracting an edge incident with this vertex results

in a graph isomorphic to K3,3. Contracting v1v4 results in a graph isomorphic to B;

further minors of B have already been considered. Contracting v4v7 results in a graph

isomorphic to G7,3,2; further minors of G7,3,2 have already been considered.

We have now shown that all 3-connected K2,4-minor-free graphs that are in S or

are minors of V8, Q3, or Kδ
5 are all members of G or are the small cases in Figure 5.6.

Thus the proof is complete.

In the same paper, Ding and Liu prove the following result where K‡3,3 is the graph

K3,3 with two additional edges added on the same side of the bipartition:

Theorem V.9 (Ding and Liu [10]). The family of all 3-connected K‡3,3-minor-free

graphs consists of 3-connected planar graphs and 3-connected minors of the three

graphs shown in Figure 5.27.

Figure 5.27
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It is worthwhile to observe that because K2,4 is a minor of K3,3‡ , K2,4-minor-free

graphs must be a subset of the graphs described in Theorem V.9. This theorem can

be combined with Theorem V.8 to conclude that for large enough graphs, all K2,4-

minor-free graphs must be planar and members of S and hence only common 3-sums

of two wheels or just one wheel or just one prism are possible. The analysis required

for the small cases is not simplified by using this theorem, however, so we provide the

full analysis using only Theorem V.8.

5.2 The 2-connected Case

In order to describe the structure of 2-connected K2,4-minor-free graphs, we need

the following lemma:

Lemma V.10. Let z be a degree two vertex in a graph G with neighbors x and y. Let

G′ be the graph formed from G by replacing the path xzy with an xy-outerplanar graph

on at least 3 vertices. Then G is K2,t-minor-free if and only if G′ is K2,t-minor-free,

for t ≥ 3.

Proof. (⇐): G is a minor of G′ so if G′ is K2,t-minor-free then so is G.

(⇒): Let H = G− z. Let K be the xy-outerplanar graph in G′. Then (H,K) is a 2-

separation in G′ with V (H)∩V (K) = {x, y}. Because G is K2,t-minor-free, we know

that H + xy is K2,t-minor-free and also there is no K2,3 minor in H rooted at x and

y. Because K + xy is outerplanar, K + xy is K2,t-minor-free. Thus by Lemma III.1,

if G′ has a K2,t minor, then x ∈ R1 and y ∈ R2. If |S ∩V (K)| ≥ 2, then K has a K2,2

minor rooted at x and y which contradicts Lemma III.2. Thus |S ∩ V (H)| ≥ 3 but
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now we have a K2,3 minor rooted at x and y in H which is a contradiction. Hence G′

is K2,t-minor-free.

We can now describe the structure of 2-connected K2,4-minor-free graphs. Let G

be a 2-connected graph with a 2-cut {x, y}. If G−{x, y} has four or more components,

then G has a K2,4 minor: let x ∈ R1, y ∈ R2, and let S consist of one vertex from each

of the four components. Thus we assume G− {x, y} has at most three components.

A set of edges F in a K2,4-minor-free graph G is subdividable if the graph formed

from G by subdividing all edges of F is K2,4-minor-free.

Theorem V.11. Let G be a 2-connected graph. Then G is K2,4-minor-free if and

only if G is one of the following:

(i) an outerplanar graph,

(ii) three nontrivial xy-outerplanar graphs joined together at the vertices x and y,

with or without the edge xy,

(iii) a 3-connected K2,4-minor-free graph G′ with each edge xiyi in a subdividable

set of edges {x1y1, x2y2, . . . , xkyk} replaced by an xiyi-outerplanar graph.

Proof. (⇐): All outerplanar graphs are K2,4-minor-free since they are K2,3-minor-

free. To show that a graph G in (ii) is K2,4-minor-free, we use Lemma V.10. G is

K2,4-minor-free if the graph formed from G by replacing each of the three outerplanar

pieces with a single vertex is K2,4-minor-free. This graph is either K2,3 or K1,1,3 and is

thus K2,4-minor-free. We use Lemma V.10 again to show that graphs in (iii) are K2,4-

minor-free. Let G′ be a graph formed from a 3-connected K2,4-minor-free graph by

subdividing some set of subdividable edges. G′ is still K2,4-minor-free by the definition
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of subdividable edges. Now replace the degree two vertex in each subdivided edge

xy with an xy-outerplanar graph and by Lemma V.10, the resulting graph is still

K2,4-minor-free.

(⇒): We proceed by induction on |V (G)|. If G is 3-connected, then (iii) holds

so suppose G is K3 or has a 2-cut {x, y}. For the base case, take n = 3 or 4; a

connectivity 2 K2,4-minor-free graph on three or four vertices is K3, K1,1,2 or C4 all of

which are outerplanar and thus are in (i). As discussed above, we know that G−{x, y}

has at most three components. Suppose there are exactly three components. If some

{x, y}-bridge is not xy-outerplanar, then we have a K2,4 minor: by Lemma III.2, there

is a K2,2 minor rooted at x and y in this bridge to which we may add one vertex from

each of the two remaining components of G − {x, y}. Thus all three {x, y}-bridges

must be xy-outerplanar and we have (ii).

Now assume G−{x, y} consists of two components. If neither {x, y}-bridge is xy-

outerplanar, then G contains a K2,4 minor. If both {x, y}-bridges are xy-outerplanar

then the whole graph is outerplanar and we have (i). Hence one bridge, H, is not

xy-outerplanar and one bridge, K, is xy-outerplanar. Now form a graph G′ from G

by replacing K with a single edge xy. |V (G′)| < |V (G)| and thus by induction, G′ is

either in (i), (ii), or (iii). Because G′ = H + xy and H is not xy-outerplanar, G′ is

not outerplanar and hence not in (i). If G′ is in (ii), then there is a 2-cut {u, v} in G

such that G − {u, v} consists of three components and thus G is also in (ii) by the

argument above.

Now assume G′ is in (iii); G′ is a 3-connected K2,4-minor-free graph with subdivid-

able edges replaced by path-outerplanar pieces. Suppose first that xy is not part of
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one of the path-outerplanar pieces. Because G is K2,4-minor-free, the graph formed by

contracting K−{x, y} to a single vertex adjacent to both x and y is also K2,4-minor-

free. This graph is isomorphic to the one formed from G′ by subdividing xy. Hence

xy is a subdividable edge in G′. Now by Lemma V.10, replacing this subdivided edge

with an xy-outerplanar graph results in a graph that is still K2,4-minor-free. Hence

G is in (iii).

Next suppose xy is part of one of the outerplanar pieces, say a uv-outerplanar

graph F . Then we need to look at where the edge xy lies in F . If xy is on the

outer path of F , then replacing xy with an xy-outerplanar graph results in a new

graph that is still uv-outerplanar. Thus G is again in (iii). If xy is not on the outer

path of F , then we can show G − {x, y} consists of three components which will be

a contradiction since we are assuming G− {x, y} consists of two components. Since

F is uv-outerplanar, all of its vertices are on the outer path. Order the path from u

to v so that u, x, y, v appear in that forward order. Then since xy is not on the outer

path, there must be a vertex w between x and y along the path. Because xy ∈ E(F ),

w cannot be adjacent to any vertex before x along the path including u or any vertex

after y along the path including v. Thus w is in a separate component from u and

v in G′ − {x, y}. These two components are both distinct from K − {x, y} in G so

G− {x, y} has three components which is a contradiction.

To complete the 2-connected case, it remains to find all sets of subdividable edges

F in part (iii) of Theorem V.11 for each 3-connected K2,4-minor-free graph. Note that

if a set of edges is subdividable, then all subsets of that set are also subdividable. In
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proving that sets are subdividable, the following lemma will be helpful.

Lemma V.12. Let G be a K2,t-minor-free graph with t ≥ 3. Let G′ be the graph

formed from G by subdividing an edge with a vertex x. Then if G′ has a K2,t minor,

x ∈ S.

Proof. Because G is K2,t-minor-free, if G′ has a K2,t minor, then x must be in the

minor. Suppose (R1, R2;S) is a K2,t minor in G′ and suppose x ∈ R1. Then since

deg(x) = 2 and t ≥ 3, we cannot have R1 = {x}. One or both of the neighbors

of x must also be in R1. Then (R1 − {x}, R2;S) is a K2,t minor in G which is a

contradiction. Symmetrically x /∈ R2 and thus x ∈ S.

We will state the maximal subdividable sets of edges in each graph. We start with

graphs in G with n ≥ 6. Recall the spine is the path v1v2...vn and when r = 2, the

second spine is vn−2vn−3...v1vn−1vn.

Theorem V.13. Consider G
(+)
n,r,s with r ≤ s and n ≥ 6.

(i) r = 1: The wheel G+
n,1,n−3 has n− 1 maximal subdividable sets of edges. Each one

includes all edges of the rim as well as one of the spokes.

(ii) r = 2: For G6,2,2, there are six maximal subdividable sets of edges. All are sym-

metric and correspond to the edge set of the spine under an automorphism of G6,2,2,

the triangular prism.

For G7,2,3, there are three maximal subdividable sets of edges: the set {v1v2, v4v5, v6v7, v3v7},

the edge set of the spine, and the edge set of the second spine.

For G6,2,3, there are three maximal subdividable sets of edges: the edge set of the path

v4v3v6v5v1v2, the edge set of the spine, and the edge set of the second spine. Under
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the isomorphism σ, these correspond to three maximal subdividable sets of edges in

G+
6,2,2, namely the edge set of the path v1v2v6v5v4v3, the edge set of the second spine,

and the edge set of the spine, respectively.

For G
(+)
n,2,s with n ≥ 8 and G+

7,2,3, there are two maximal subdividable sets of edges:

the edge set of the spine and the edge set of the second spine.

(iii) r ≥ 3: The edge set of the spine v1v2...vn is the only maximal subdividable set of

edges.

Symmetric sets of edges in G
(+)
n,r,s with r > s are also maximal subdividable sets.

Proof. We first show that the graph formed by subdividing all of the edges in each

claimed subdividable set of edges is K2,4-minor-free. For the wheel G+
n,1,n−3, subdi-

viding all edges of the rim and one spoke results in a graph which is a subgraph of

G2n,2,2n−4 and hence K2,4-minor-free. Note that the graph formed by subdividing all

edges of the spine in G
(+)
n,r,s is a subgraph of another graph in G with 2n−1 vertices and

thus is K2,4-minor-free. This observation holds even when r = 2. Recall for Gn,2,n−4

and G+
n,2,n−3, there is an automorphism σ that reverses the path v1v2...vn−2 and fixes

vn−1 and vn. The spine maps to the second spine vnvn−1v1v2...vn−2. Hence for these

graphs, the edge set of the second spine is a subdividable set of edges. Recall also

that G+
n,2,n−4 is isomorphic to Gn,2,n−3; the spine in G+

n,2,n−4 maps to the second spine

in Gn,2,n−3 and vice versa. Hence for graphs of the form G+
n,2,n−4 or Gn,2,n−3, the edge

set of the second spine is subdividable. Note that because of the symmetry of G+
6,2,2,

there are two isomorphisms from it to G6,2,3: one maps the spine to the second spine

in G6,2,3 and the other maps the spine to v4v3v6v5v1v2. Hence G6,2,3 has two sets of
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subdividable edges in addition to the spine.

All sets listed in the statement of the theorem have now been covered except for

the set {v1v2, v4v5, v6v7, v3v7} in G7,2,3. Let G′ be the graph formed from G7,2,3 by

subdividing all edges of this set. Denote by xij the vertex subdividing the edge vivj.

Then V (G′) = V (G) ∪ {x12, x45, x67, x37}. Note that G′ − x37 is a subgraph of a

graph in G and thus is K2,4-minor-free. Therefore, by Lemma V.14, if G′ has a K2,4

minor (R1, R2;S), then x37 ∈ S. Without loss of generality, assume v3 ∈ R1 and

v7 ∈ R2. We consider the makeup of R1. Suppose first that v4 ∈ R1 and v2 /∈ R1.

Because the vertices of R1 must have at least four distinct neighbors, we must also

have x45, v5 ∈ R1. Now G′ − {v3, v4, x45, v5, x37} is a cycle and thus R2 can have at

most two additional neighbors which implies |S| ≤ 3, a contradiction. Next suppose

v2 ∈ R1 and v4 /∈ R1. Again because the vertices of R1 must have at least four distinct

neighbors, x12, v1 ∈ R1. Now G′ − {v3, v2, x12, v1, x37} is again a cycle and thus R2

can have at most two additional neighbors which implies |S| ≤ 3, a contradiction.

Finally suppose v2, v4 ∈ R1. Then we must have either v2, x12 ∈ R1 or x45, v5 ∈ R1.

In either case the graph without {v2, v3, v4, x37} and these vertices is a path and again

we cannot form S of size four. Hence there is no K2,4 minor.

Now we show that the sets of edges listed are maximal and are the only subdi-

vidable sets. Begin with the wheel G+
n,1,n−3. All edges of the rim are in each set so

we consider the spokes. If we subdivide two adjacent spokes, we have the K2,4 minor

shown in Figure 5.28. A similar minor exists if we subdivide nonadjacent spokes as

long as n ≥ 6. Hence we cannot divide two spokes and the sets listed are maximal

and are the only subdividable sets of edges.
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Figure 5.28

Now assume r, s ≥ 2. For this portion of the proof, we remove the assumption that

r ≤ s. We then consider the subdivision of edges of the form v1vn−i for 0 ≤ i ≤ r, and

edges vnv1+j for 0 ≤ j ≤ s are handled similarly. Denote by G
(+)
n,r,s ◦ vivj the graph

formed from G
(+)
n,r,s by subdividing the edge vivj with the vertex xij. We consider

two cases. The first, Case A, is shown in Figure 5.29. The graph is G+
5,2,2 ◦ v1v5

and has the K2,4 minor shown. Because all graphs G
(+)
n,r,s with n ≥ 6 and r, s ≥ 2

except for G6,2,2 have G+
5,2,2 as a minor, this K2,4 minor exists in general for other

members of G with subdivided edges. In particular, the minor exists in G
(+)
n,r,s ◦ v1vn−i

for 0 ≤ i ≤ r−2, provided s ≥ 2. We form G+
5,2,2 ◦v1v5 as a minor from G

(+)
n,r,s ◦v1vn−i

so that the K2,4 minor shown exists by contracting all edges of the paths v3v4...vn−i−3

and vn−ivn−i+1...vn and deleting multiple edges.

The second case, Case B, is shown in Figure 5.30. The graph is G+
5,2,2 ◦ v1v3 and

has the K2,4 shown. Note that the minor does not use the edge v2v5. As with Case

A, this minor exists in many larger graphs that have G+
5,2,2 as a minor. We list them

here:

(B1) in G+
n,r,s ◦ v1vn−i with s ≥ 2 and 2 ≤ i ≤ r

(B2) in Gn,r,s ◦ v1vn−i with s ≥ 2 and 3 ≤ i ≤ r
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(B3) in Gn,r,s ◦ v1vn−2 with s ≥ 3

For graphs in (B1), form G+
5,2,2 ◦ v1v3 as a minor from G+

n,r,s ◦ v1vn−i so that

the K2,4 minor shown still exists by contracting all edges of the paths v3v4...vn−i

and vn−i+1vn−i+2...vn−1 and deleting multiple edges as well as the edge v1v3 if it is

present after contraction. Similarly for graphs in (B2), contract all edges of the paths

v3v4...vn−i and vn−i+2vn−i+3...vn and delete multiple edges and v1v3. For graphs in

(B3), contract v1v2 and all edges of the path v4v5...vn−2 and delete multiple edges and

v1v3. By symmetry, Case B covers the subdivision of vnv1+i in situations symmetric

to those described.

Figure 5.29 Case A Figure 5.30 Case B

For G
(+)
n,r,s with r, s ≥ 3, Case A covers the subdivision of the edges v1vn, v1vn−1, ...,

v1vn−r+2 and Case B covers subdivision of the edges v1vn−r, v1vn−r+1, ..., v1vn−2. Sym-

metrically all edges adjacent to vn that are outside the spine are covered and hence

the spine is the only maximal subdividable set of edges.

Now either r = 2 or s = 2. Suppose to start that r ≥ 3 and s = 2 and consider

G
(+)
n,r,2. Then Case A covers subdivision of the edges v1vn, v1vn−1, ..., v1vn−r+2 and Case

B covers v1vn−r, v1vn−r+1, ..., v1vn−2 in G+
n,r,2, and v1vn−r, v1vn−r+1, ..., v1vn−3 (and also

v1vn−2 using B3 if s ≥ 3) in Gn,r,2. All nonspine edges v1vj are covered except for

v1vn−2 when r = 3 and s = 2 and there is no plus edge. We consider these edges

separately. By symmetry, in G
(+)
n,2,s with r = 2 and s ≥ 3, this argument covers all
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nonspine edges vnvj except for vnv3 when r = 2 and s = 3 (so n = 6 or 7) and there

is no plus edge.

Now suppose r = 2 and s ≥ 3 and consider G
(+)
n,2,s. Case A covers subdivision

of v1vn and Case B covers v1vn−r, ..., v1vn−2 (use B3 if there is no plus edge). The

edge v1vn−1 is subdividable in G
(+)
n,2,s. It can be subdivided along with all edges of the

spine except for vn−2vn−1. Subdividing v1vn−1 and vn−2vn−1 in G
(+)
n,2,s with r, s ≥ 2

and n ≥ 6 results in the K2,4 minor shown in Figure 5.31 (contract vnvn−1, and all

edges of v3v4...vn−3 when n ≥ 7).

At this point we reinstate the assumption that r ≤ s. If we do not have (r, s) =

(2, 2) or (2, 3), the previous arguments show that the only subdividable edge not on

the spine is v1vn−1, and this edge cannot be subdivided along with vn−2vn−1. Hence

the edge set of the spine and the edge set of the second spine are maximal subdividable

sets of edges in G
(+)
n,2,s and are the only ones.

Next we examine the small cases. We only need to look at graphs with r = 2 and

s = 3 and no plus edge, and with r = s = 2.

Start with G7,2,3. From above, the nonspine edges that are subdividable are v3v7

and v1v6. We know v3v7 is subdividable along with v6v7, v4v5, and v1v2. We claim

that v3v7 is not subdividable together with any of the other spine edges, v5v6, v3v4,

and v2v3. Subdividing v5v6 and v3v7 creates a K2,4 minor as shown in Case B. Case B

shows the minor in G7,3,2 when v2v3 and v1v5 are subdivided: contract v1v2 and both

edges of the path v3v4v5 and delete multiple edges. A symmetric minor exists in G7,2,3

when v5v6 and v3v7 are subdivided. Subdividing v3v4 and v3v7 creates a K2,4 minor

as shown in Figure 5.31. The figure shows a minor in G7,3,2 when v4v5 and v1v5 are
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subdivided: contract both edges of v5v6v7 and delete multiple edges. A symmetric

minor exists in G7,2,3 when v3v4 and v3v7 are subdivided. Finally subdividing v2v3

and v3v7 creates a K2,4 minor as shown in Figure 5.32. The figure shows a minor in

G7,3,2 when v1v5 and v5v6 are subdivided: contract v3v4 and delete the edge v1v3 after

contraction. A symmetric minor exists in G7,2,3 when v2v3 and v3v7 are subdivided.

We have shown which edges of the spine v1v6 is subdividable with, namely the edges

of the second spine. Hence it remains to show that we cannot subdivide v3v7 and v1v6

at the same time. Doing so results in the K2,4 minor shown in Figure 5.33. Hence

{v1v2, v3v4, v6v7, v1v5} and the edge set of the spine and second spine are maximal

subdividable set of edges and are the only ones in G7,2,3.

Figure 5.31 Figure 5.32

Figure 5.33

Next consider G6,2,3. The nonspine edges that are subdividable are v1v5 and v3v6.

We know v3v6 is subdividable along with v3v4, v5v6, v1v5, and v1v2. We claim that v3v6

is not subdividable together with the other spine edges, v2v3 and v4v5. Subdividing

v4v5 and v3v6 creates a K2,4 minor as in Case B. Case B shows a minor in G6,3,2 when

v2v3 and v1v4 are subdivided: contract v1v2 and v3v4. A symmetric minor exists
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Figure 5.34

in G6,2,3 when v4v5 and v3v6 are subdivided. Subdividing v2v3 and v3v6 creates a

K2,4 minor as shown in Figure 5.32. The figure shows a minor when v1v4 and v4v5

are subdivided in G6,3,2 and a symmetric minor exists in G6,2,3 when v2v3 and v3v6

are subdivided. We have already shown which spine edges v1v5 can be subdivided

with, namely the edges of the second spine. We may subdivide both v1v5 and v3v6;

then we get the maximal set already analyzed above. Hence the edge set of the

path v4v3v6v5v1v2 and the edge set of the spine and second spine are the maximal

subdividable sets of edges in G6,3,2.

Because G+
6,2,2 is isomorphic to G6,2,3, we do not need to analyze this graph sepa-

rately. The result follows from the analysis just completed for G6,2,3.

Finally consider G6,2,2; Cases A and B do not cover any edges as every edge is

subdividable in this graph. From Figure 5.34, we can see there are two sets of similar

edges: E1 = {v2v3, v3v6, v2v6, v1v4, v4v5, v1v5} and E2 = {v1v2, v3v4, v5v6}. Each of

the six symmetric subdividable sets of edges contains all edges of E2 and two non-

adjacent edges of E1. If three edges of E1 are subdivided, then necessarily two are

adjacent and we have a K2,4 minor symmetric to the one shown in Figure 5.34. Hence

the subdividable sets given are maximal and are the only subdividable sets for G6,2,2.
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It remains to describe the maximal subdividable sets of edges in the small cases.

The following lemma and corollary will be helpful.

Lemma V.14. Let G be a graph and let G′ be the graph formed from G by subdividing

an edge uv with a vertex x. If G′ has a standard K2,t minor (R1, R2;S) with x /∈ S

where t ≥ 3, then G also has a K2,t minor.

Proof. If x /∈ Ri for i = 1, 2, then (R1, R2;S) is a K2,t minor in G. If x ∈ Ri for some

i, then without loss of generality, say x ∈ R1. Let R′1 = R1−{x}. Now (R′1, R2;S) is

a K2,t minor in G.

Corollary V.15. Let G be a K2,t-minor free graph for t ≥ 3. Let G′ be the graph

formed from G by subdividing an edge with a vertex x. If G′ has a standard K2,t

minor (R1, R2;S), then x ∈ S.

Throughout the proofs we will frequently use the fact that in a standard K2,4

minor, Ri must contain either a vertex of degree at least four, or two vertices of degree

three. We will consider graphs formed from 3-connected graphs by subdividing edges.

Call the vertices of the 3-connected graph original vertices and the vertices of the

subdivided edges new vertices.

Lemma V.16. The set {b1c1, b2c2, b3c3} is a subdividable set of edges in C+ and C

where vertices are labeled as in Figure 5.35.
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Figure 5.35
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b1 b3

c1 c3
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Figure 5.36

Proof. Consider the embedding of C+ shown in Figure 5.35 with the edges of {b1c1, b2c2,

b3c3} subdivided. Let xi be the vertex subdividing the edge bici for i = 1, 2, 3. Let

G′ be the graph with these three edges subdivided. Then because C+ is K2,4-minor

free and by repeated applications of Corollary V.15, if G′ has a K2,4 minor and thus

a standard K2,4 minor, then one of x1, x2, or x3 must be in S. Suppose x1 ∈ S and

without loss of generality, suppose b1 ∈ R1 and c1 ∈ R2. Then since R2 must contain

at least two vertices of degree three, one of c2 and c3 must be in R2. The vertices

c1, c2, and c3 form a triangle, however, so in order to form an R2 with four distinct

neighbors, we must additionally have at least one of b2 or b3 in R2. Without loss of

generality, assume b2 ∈ R2. Then without loss of generality, either c3, x3, b3, a2 ∈ R2

or c2, x2 ∈ R2. If the former holds, then |R2| ≥ 6 and since |R1| ≥ 2, we cannot

form S of size four. Hence c2, x2 ∈ R2. Now we must have at least two vertices

in R1 as well; one of a1 and a2 must be in R1. Hence, {c1, c2, x2, b2} ⊆ R2 and if

{c1, c2, x2, b2} = R2, then R2 no longer has four distinct neighbors in G′ − (R1 ∪ R2)

so we must have |R2| ≥ 5. Now with |R1| ≥ 2, we have |V (G′)− (R1 ∪ R2)| = 4 and

hence b3, x3 ∈ S. But since deg(x3) = 2 and one of its neighbors is in S, then we

cannot form R1 and R2 both adjacent to x3 ∈ S. Thus we have no K2,4 minor with
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Figure 5.37

x1 ∈ S. From the graph in Figure 5.35, we can see that the situations with x2 ∈ S

and x3 ∈ S are symmetric and thus G′ is K2,4-minor free.

Lemma V.17. The set {b1c1, b2c2, b3c3} is a maximal set of subdividable edges in C+

and C and is the only one.

Proof. By Lemma V.16, the set is subdividable so it remains to show it is maximal

and the only one. If we subdivide a1b1, then there is a K2,4 minor as shown in the left

of Figure 5.37. The edges aibj are symmetric for i = 1, 2 and j = 1, 2, 3 so subdividing

any one results in a minor symmetric to the one shown. If we subdivide the edge

c1c2, then there is a K2,4 minor as shown in the middle of Figure 5.37. The edges

cicj are all symmetric for i 6= j so subdividing any one results in a minor symmetric

to the one shown. Finally subdividing the edge a1a2 in C+ results in the K2,4 minor

shown on the right in Figure 5.37. Thus no set containing a1a2, cicj for i 6= j, or aibj

for i = 1, 2, j = 1, 2, 3 is subdividable. The only set excluding all of these edges is

{b1c1, b2c2, b3c3} and hence it is maximal and is the only subdividable set.

Lemma V.18. The set {b1c1, b3c3} is the only maximal set of subdividable edges in
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B+ and B where vertices are labeled as in Figure 5.36.

Proof. Contracting the edge b2c2 in C+ or C results in the graphB+ orB, respectively.

Hence since b1c1 and b3c3 are subdividable in C+, they are also subdividable in B+

and B. To show that the set is maximal, consider subdivision of other edges. Here

we can extend the minors found in Figure 5.37 to find a standard K2,4 minor in B+

or B. In B+ and B, the vertices b2 and c2 are replaced by a single vertex d. Thus

for the minor on the left of Figure 5.37, d replaces c2 in S and for the minor on the

right, d replaces b2 in S. For the minor in the middle, Ri = {b2, c2} is replaced by

V (R′i) = {d} which covers subdividing c1d or c3d; for subdividing c1c3 swap the roles

of b2, c2 with b3, c3 before contracting b2c2. Thus no edges other than b1c1 and b3c3

are subdividable in B+ and B and {b1c1, b3c3} is a maximal set of subdividable edges

and is the only one.

Lemma V.19. The three symmetric sets {v1v2, v3v4, v6v7, v5v6}, {v1v2, v3v4, v6v7, v3v5},

and {v1v2, v3v4, v6v7, v1v5} are subdividable sets of edges in D.

Proof. Let D′ be the graph formed from D by subdividing each edge of the set

{v1v2, v3v4, v6v7, v5v6} with the vertices x1, x2, x3, x4, respectively. Suppose D′ has a

K2,4 minor (R1, R2;S). Since D is K2,4-minor free, at least one of the vertices xi

must be in the minor. If none of the xi are in S, then by repeated applications of

Lemma V.14, there is a K2,4 minor in D which is a contradiction. Thus at least one

xi must be in S.

Suppose first that x1 ∈ S; without loss of generality, v1 ∈ R1 and v2 ∈ R2. Then

D− x1 must contain a standard K2,3 minor (R1, R2;S − x1) rooted at v1 and v2. We
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consider the location of the three vertices of S ′ = S − x1. Let P1 = v5x4v6x3v7 and

P2 = v3x2v4. If |S ′ ∩ V (P1)| ≥ 2, then since v2 ∈ R2 and v2 is only adjacent to v7 in

P1, in order to reach all vertices of S ′, R2 must contain all of P2. Hence S ′∩V (P2) = ∅

and therefore |S ′∩V (P1)| = 3. Now in order for R1 to reach all vertices of S ′, R1 must

contain at least one vertex of P1; in particular, for R1 to have three distinct neighbors

on P1, v6 ∈ R1. Now, however, R2 can no longer have three neighbors on P1 and

hence cannot reach all of S ′. Thus |S ′∩V (P1)| ≤ 1 and therefore |S ′∩V (P2)| ≥ 2. In

order for R1 to reach two vertices of P2, R1 must contain {v6, x3, v7}. Now, however,

R2 cannot reach two vertices of P2. Thus we cannot have |S ′ ∩ V (P2)| ≥ 2 and there

is no K2,3 minor in D − x1 rooted at v1 and v2. Hence we cannot form a K2,4 minor

with x1 ∈ S or symmetrically x2 ∈ S.

Now suppose x3 ∈ S; without loss of generality, v7 ∈ R1 and v6 ∈ R2. R1 must

contain at least two original vertices and since v2, v7, and v4 are all of degree three

and form a triangle, it must contain one of v1 or v3. Assume without loss of generality

v3 ∈ R1. Then R2 must contain another original vertex since v6 no longer has four

neighbors outside of R1. With v3 ∈ R1, there must be a v7...v3 path in R1 and hence

either v2, v1 ∈ R1 or v4 ∈ R1. If v2, v1 ∈ R1, then v5 ∈ R2 but now R2 does not have

four neighbors in V (D′)−(R1∪R2). Thus we must have v4 ∈ R1 (and hence x2 ∈ R1).

If v2 ∈ R2, then v1 and x1 must also be in R2 and now |V (D′)− (R1 ∪R2)| = 3 so we

cannot form S. If v1 ∈ R2 then necessarily S = {x4, v5, x3, v2} since we know x1 /∈ S,

but now R1 cannot be adjacent to x4 since its two neighbors are in R2 and S. Hence

we cannot form a K2,4 minor with x3 ∈ S.

Finally suppose x4 ∈ S. Then D′− x4 must contain a K2,3 minor (R1, R2;S− x4)
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rooted at v5 and v6. Without loss of generality, suppose v5 ∈ R1 and v6 ∈ R2. We

know that D′ does not contain a K2,4 minor with x1, x2, or x3 in S and thus D′ − x4

does not contain a K2,3 minor rooted at v5 and v6 with x1, x2, or x3 in S ′ = S − x4.

We consider the location of S ′. If v1, v3 ∈ S ′, then since v5 ∈ R1, R1 cannot be

connected and adjacent to the third vertex of S ′. Thus at most one of v1 and v3 can

be in S ′ and therefore at least two of v2, v4, and v7 are in S ′.

If v2, v4 ∈ S ′, then since v6 ∈ R2 and v5 ∈ R1, in order for R1 to reach v2 and v4,

we must have v1, v3 ∈ R1. Then in order for R2 to reach v2 and v4, we must have

x3, v7 ∈ R2. Now, however, we cannot form S ′ with three vertices. If v2, v7 ∈ S ′, then

in order for R2 to reach v2 and v7, we must have either v1, x1 ∈ R2 or v3, x2, v4 ∈ R2.

The former forces v3, x2, v4 ∈ R1 but then we cannot form S ′ of size three. In the

latter case, we cannot form a connected R1 adjacent to v7 ∈ S ′. The situation with

v4, v7 ∈ S ′ is symmetric to the one just considered and hence there is no K2,3 minor

in D′ − x4 rooted at v5 and v6. Therefore there is no K2,4 minor in D′ with x4 ∈ S.

Thus D′ is K2,4-minor free.

The sets {v1v2, v3v4, v6v7, v3v5} and {v1v2, v3v4, v6v7, v1v5} are symmetric to {v1v2

, v3v4, v6v7, v5v6} so they are also subdividable by symmetric arguments.

Lemma V.20. The three symmetric sets {v1v2, v3v4, v6v7, v5v6}, {v1v2, v3v4, v6v7, v3v5},

and {v1v2, v3v4, v6v7, v1v5} are maximal sets of subdividable edges in D and are the

only maximal subdividable sets.

Proof. By Lemma V.19, the sets are subdividable so it remains to show they are

maximal and are the only ones. If we subdivide v1v3, then there is a K2,4 minor as
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Figure 5.38

shown on the left in Figure 5.38. Symmetric minors exist if we subdivide v1v6 or

v3v6 hence no subdividable set can include any of these edges. If we subdivide v2v4,

then there is a K2,4 minor as shown in the middle of Figure 5.38. Symmetric minors

exist if we subdivide v2v7 or v4v7 hence no subdividable set can include any of these

edges. Finally, if we subdivide two edges incident with v5, then there is a K2,4 minor

as shown on the right of Figure 5.38. Therefore no subdividable set can include two

of the edges v1v5, v5v6, and v3v5. There are three symmetric sets which include only

one of these three edges and none of the edges v1v3, v1v6, v3v6, v2v4, v2v7, and v4v7 and

they are precisely the sets listed in the statement of the lemma. Thus these sets are

maximal and are the only such sets.

Lemma V.21. The set {de, b1e, b3e} is the only set of maximal subdividable edges in

A where vertices are labeled as in Figure 5.39.

Proof. First we show the set is subdividable. Let G′ be the graph formed from A

by subdividing de, b1e, and b3e. Then if G′ has a standard K2,4 minor, R1 and R2

must consist of a degree four vertex or two degree three vertices. Suppose R1 = {a1}.

Then S = {b1, d, a2, b3} but now e is the only remaining original vertex for R2 so we

cannot have R1 or R2 consisting of a single degree four vertex (the situation with a2 is
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symmetric to this one). Hence R1 and R2 must contain at least two original vertices.

All three new vertices are adjacent to e so e must be in R1 or R2, say R1, and then

one of b1, d, b3 must also be in R1. Thus one of the new vertices is also in R1 so now

we must have exactly two new vertices in S, two original vertices in S, and hence

|R1| = |R2| = 2. The only pairs of adjacent original vertices that are adjacent to two

new vertices, however, all include e so we cannot form two such pairs and hence we

cannot form R1 and R2. Thus G′ is K2,4-minor-free.

If we subdivide a1a2, then there is a K2,4 minor as shown on the left in Figure 5.40.

If we subdivide a1b1, then there is a K2,4 minor as shown on the right in Figure 5.40.

Symmetric minors exist if we subdivide a1d, a1b3, a2b1, a2d, or a2b3. Thus no subdi-

vidable set of edges can contain any of these edges and the only set that excludes all

of them is {de, b1e, b3e}. Hence this set is maximal and is the only one.

a1 a2

b1 b3

d

e

Figure 5.39

a1 a2

b1 b3

d

e

a1 a2

b1
b3

d

e

Figure 5.40

Lemma V.22. The edge de is the only subdividable edge in A+ where edges are labeled

as in Figure 5.41.

Proof. Let G′ be the graph formed from A+ by subdividing the edge de with a vertex

x. Then since |V (G′)| = 7, if G′ has a standard K2,4 minor, either R1 or R2 must
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be a single vertex of degree four; without loss of generality let R1 = {a1}. Then

S = {b1, d, a2, b3} and hence R2 = {x, e} but (R1, R2;S) is not a K2,4 minor. Hence

R1 and R2 cannot consist of a single vertex so there is no K2,4 minor in G′.

Because A is a minor of A+, a spanning subgraph in fact, the K2,4 minors shown

in Figure 5.40 exist in A+ as well. Thus a1a2, a1b1, a1d, a1b3, a2b1, a2d, and a2b3 cannot

be subdivided in A+. Edges b1e and b3e are similar to a1d in A+ so they also cannot

be subdivided. Hence de is the only subdividable edge in A+.

a1 a2

b1 b3

d

e

Figure 5.41

a1 a2

b1 b3

a3

b2

Figure 5.42

Lemma V.23. Up to symmetry, the set {a1b1, a1b2, a1b3} is the only maximal subdi-

vidable set in K3,3.

Proof. K3,3 is a minor of the graph A; delete the edge a1a2 and relabel e as a3 and

d as b2. By Lemma V.21, the edges a1b1, a1d, and a1b3 are subdividable in A. These

edges correspond to the ones labeled a1b1, a1b2, and a1b3 in K3,3 in Figure 5.42 so

they are also subdividable. If we subdivide two edges not incident with the same

vertex, then there is a K2,4 minor similar to the one shown in Figure 5.42. Hence

no subdividable set can contain two edges incident with the same vertex so up to

symmetric, {a1b1, a1b2, a1b3} is maximal and is the only one.
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For the graph K5 − e, we consider the picture on the left in Figure 5.43.

Lemma V.24. The sets {ad, ae, bd, cd} and {ad, ae, bd, ce} are subdividable sets of

edges in K5 − e.

Proof. Observe that K5 − e is isomorphic to G+
5,2,2. We can label the vertices so that

the spine is bdaec. Hence {ad, ae, bd, ce} is a subdividable set of edges. K5−e is also a

minor of D: contract the triangle (v2v4v7) to the vertex d. Now the set {ad, ae, bd, cd}

corresponds to the set {v6v7, v5v6, v1v2, v3v4} in D and thus is subdividable.

Lemma V.25. Up to symmetry, the sets {ad, ae, bd, cd} and {ad, ae, bd, ce} are max-

imal sets of subdividable edges in K5 − e and are the only ones.

Proof. By Lemma V.24, the sets are subdividable so it remains to show they are

maximal. If we subdivide the edge bc with a vertex x we have a K2,4 minor with

R1 = {b}, R2 = {c} and S = {x, e, a, d}. Thus bc, ab, and symmetrically ac cannot

be subdivided. Each of the six other edges is individually subdividable so we consider

combinations of subdivisions. There are three symmetric 4-cycles that do not contain

any of the edges ab, bc, and ac: adbea, adcea, and bdceb. If we subdivide all edges of

a 4-cycle, then there is a K2,4 minor as shown in Figure 5.44. The six individually

subdividable edges form a K2,3 and it can be seen that the maximal sets that do not
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d

e

Figure 5.44

contain a 4-cycle are precisely the sets symmetric to those in Lemma V.24. Therefore

these sets are exactly the maximal subdividable sets.

Lemma V.26. In K5−2K2, the sets {ad, ae, bd, cd}, {ad, ae, bd, ce}, and {ad, bd, cd, ce, be}

are the only maximal subdividable sets up to symmetry.

Proof. By Lemma V.24, {ad, ae, bd, cd} and {ad, ae, bd, ce} are subdividable sets in

K5 − e so because K5 − 2K2 is a minor of K5 − e, the sets are also subdividable in

K5−2K2. K5−2K2 is a wheel so by the same arguments as in Theorem V.13 (i), the

set {ad, bd, cd, ce, be} and three symmetric copies of this set are subdividable because

they correspond to all edges of the rim and one spoke.

The minor shown in Figure 5.44 when all edges of the 4-cycle adbea are subdivided

exists in K5 − 2K2 as well since it does not use the edge bc. Hence we cannot

subdivide all edges of the 4-cycles adbea, abeca, aecda, and acdba. If we subdivide two

consecutive edges incident with a, then there is a K2,5 minor as shown in Figure 5.45.

So we may use at most two edges incident with a. If we use only one edge incident

with a then we may use all other edges as in the third set. If we use two edges incident

with a, then they must be opposite, say ad and ae, and we can add any edges not

incident with a as long as they do not complete a second path from d to e; this gives
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the first two sets.

a

b

cd

e

Figure 5.45 Figure 5.46

Lemma V.27. In K4, the set of four edges, three incident with a single vertex and

one additional edge, is a maximal subdividable set. There are 12 such symmetric sets

in K4.

Proof. Let G′ be the graph formed from K4 by subdividing all four edges in one of the

symmetric sets listed in the lemma. If there is a standard K2,4 minor in G′, then R1

and R2 must each consist of two original vertices and S must consist of the four new

vertices. One original vertex is only adjacent to new vertices, however, so this vertex

cannot be paired with another original vertex to form an Ri without also including a

new vertex. Hence there is no K2,4 minor.

Figure 5.46 shows a K2,4 minor when all edges of a 4-cycle are subdivided. Hence

the only way to avoid taking four edges of a 4-cycle is to take three edges incident

with a single vertex and any additional edge as stated in the lemma. Thus these sets

are maximal and are the only ones.

As mentioned earlier, a graph G is K2,4-minor-free if and only if each of its blocks

is K2,4-minor-free, so we can state our overall result as follows.

Theorem V.28. A graph is K2,4-minor-free if and only if each of its blocks is de-
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scribed by Theorem V.11, where for Theorem V.11 (iii), the 3-connected graphs are

given in Theorem V.7 and the subdividable sets are described in Theorem V.13 and

Lemmas V.17, V.18, V.20, V.21, V.22, V.23, V.25, V.26, and V.27.
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Chapter VI

FUTURE WORK

One possible future direction is to extend the result of Theorem II.1 to graphs

on the Klein bottle. There are classifications of 4-connected, 4-regular graphs on the

Klein bottle and although they are more complicated than those of the torus, they

might be useful for proving a similar result.

The results for minor-free graphs in Chapters IV and V lead to several future

directions. One idea is to provide a complete characterization for K2,5-minor-free

graphs. If this proves too difficult, then characterizing planar K2,5-minor-free graphs

is perhaps more feasible. Presumably, this proof would be aided by a characterization

of rooted 2-terminal K2,3-minor-free graphs which is another result to consider.

Another idea is to characterize all H-minor-free graphs for other small graphs H

of connectivity 2 in addition to K2,4. The results of Ding and Liu in [10] characterize

H-minor-free graphs for many small 3-connected graphs H so this idea is a natural

next step.

In regards to Hamiltonicity, we may be able to show that 3-connected planar

K2,6-minor-free graphs are Hamiltonian except for a family of well-characterized ex-

ceptions. One family of exceptions is described in Lemma IV.4, and based on com-

puter results by Gordon Royle, it appears that all other exceptions may be related to

these (private communication).

One final problem concerning forbidden minors and suggested by David Wood
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involves a class of graphs called subhamiltonian planar graphs. These graphs are

planar graphs in which every minor of the graph is a subgraph of a Hamiltonian planar

graph. The class of graphs is minor-closed and thus by the Robertson and Seymour

Graph Minor Theorem has a forbidden minor characterization. The question then is

to determine the forbidden minor characterization.
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