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Chapter 1

Introduction

My aim in this thesis is to examine the relationship between neural responses to reward

anticipation and reward attainment in the MID task and higher order psychopathology fac-

tors, as estimated using a bi-factor model. My aim is of an interdisciplinary nature, that

lies at the intersection of neuroscience, clinical psychological science and quantitative psy-

chology. For this reason, in this introductory section I will attempt to justify my aim and

hypothesis by providing a review of the various literatures that are pertinent to my con-

structs of interest. I will begin by reviewing the history and literature of using dimensional

factor analytic models to model psychopathology, including the bi-factor model approach

used in this study (Section 1.1), and the neural correlates of these higher-order dimensional

constructs (Section 1.2). Then, I will turn to the construct of reward, exploring theoretical

models surrounding reward processes supporting a distinction between reward anticipation

and attainment stages (Section 1.3), as well as the neural circuits involved in these reward

processes (Section 1.4). Finally, I will review current literature linking neural differences

in reward processing and psychopathology, and articulate my hypothesis (Section 1.5).

1.1 Dimensional conceptualizations of psychopathology: introducing the bi-factor

model

One of the most debated questions in the field of psychopathology has revolved around

the question of nosology. How exactly should psychopathology be understood, measured,

classified and organized? This is a central question that affects a wide array of stakehold-

ers, whether it is clinicians trying to conceptualize a case and develop a treatment plan,

researchers attempting to narrow down constructs and test hypotheses to advance clinical

psychological science, or even patients who are attempting to have a better understanding
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of what is going on with them and how it affects who they are.

Currently, the prevailing nosologies in clinical and research work are those espoused

by the Diagnostic and Statistical Manual of Mental Disorders (DSM) and the Interna-

tional Statistical Classification of Diseases and Related Health Problems (ICD), which

have been referred to as the DSM-ICD nosologies. The DSM-ICD nosologies are under-

pinned by two important assumptions. First, almost all DSM-ICD disorders are understood

as etiologically distinct, largely episodic, categorical entities, which are assumed to dif-

fer qualitatively from “normality” and from each other. Second, the DSM-ICD approach

makes an assumption (usually referred to as neo-Kraeplinian) that disorders could be dif-

ferentiated solely on the bases of signs (observable manifestations) and symptoms (patient

reports) (Lilienfeld & Treadway, 2016).

The DSM-ICD nosology has provided some important benefits to the advancement of

clinical practice and psychopathology research. By providing a well delineated “lingua

franca” to facilitate communication of diagnostic information and measurement of these

constructs, the DSM-ICD nosology has provided a good starting point for clinical mea-

surement and studies of psychopathology. Some DSM-ICD categories have also shown

consistent associations with family history and neural factors1, which is one way of sup-

porting their construct validity. Additionally, DSM-ICD categories allowed for the devel-

opment of specifically targeted empirically supported treatments (e.g., Cognitive Behavior

Therapy for Depression) (Lilienfeld & Treadway, 2016).

However, the DSM-ICD nosology has also faced some challenges. Perhaps one of the

largest challenges to this approach is the very high observed co-morbidity across psychi-

atric disorders (Lilienfeld & Treadway, 2016). For the DSM-ICD assumption that disorders

are etiologically distinct categorical entities that differ from one another, one might expect

to find that these categories largely tend to be mutually exclusive, with little co-occurrence.

1For example, one large meta-analytic study found larger polygenic loadings for schizophrenia in cases
with a greater family history of illness (Bigdeli et al., 2016); another meta-analysis found structural and
functional alternations in patients with depression (Sacher et al., 2012).
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Yet, epidemiological studies measuring psychopathology using the DSM-ICD approach

have revealed very high rates of co-morbidity across several epidemiological studies, with

a recurrent pattern that half of people with one disorder have met criteria for another disor-

der, and half of those met criteria for a third disorder, and so on (Newman, Moffitt, Caspi, &

Silva, 1998). In the seminal U.S. National Co-morbidity Survey study, Kessler et al. (1994)

found that 48% of those surveyed reported suffering one or more disorder in their lifetime;

27% experienced two or more disorders in their lifetime; and 14% experienced three or

more disorders in their lifetime. Similarly, in the Netherlands Mental Health Survey and

Incidence Study (NEMESIS), Bijl, Ravelli, and Van Zessen (1998) found that 41.2% of

respondents experienced 1 or more disorder in their lifetime; 18.5% of respondents expe-

rienced two or more disorders in their lifetime; and 9.2% of respondents experienced three

or more disorders in their lifetime. In the prospective Dunedin Multidisciplinary Health

and Development Study cohort, 47.3% of participants who were diagnosed with any one

psychiatric disorder were likely to be diagnosed with multiple disorders (Newman et al.,

1996).

Developmentally, the counter-part to the phenomenon of co-morbidity is heterotypic

continuity: the extent to which a disorder (A) can predict the incidence of a distinct dis-

order (B, C, etc.) later on in time. Several studies have shown that there is significant

heterotypic continuity across the lifespan for DSM-ICD categories (Copeland, Shanahan,

Costello, & Angold, 2009; Lahey, Zald, Hakes, Krueger, & Rathouz, 2014; Moffitt et al.,

2007). For example, in one of these studies Lahey et al. (2014) assessed homotypic and

heterotypic continuity between two waves separated by three years in the National Epi-

demiologic Study of Alcohol and Related Conditions (NESARC). Lahey and colleagues

found statistically significant bi-variate associations for nearly all heterotypic continuities,

with a median tetrachoric correlation of ρ = .28.

In the eyes of some authors, these recurrent empirical findings of heterotypic continuity

and co-morbidity suggests that the DSM is not drawing the correct diagnostic boundaries
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(e.g., Piccinelli (1998)). Other authors have taken this further, for example arguing that

co-morbidity across disorders might illustrate the propensity of the DSM to attach different

names to slightly different manifestations of a shared predisposition (Maj, 2005), an error

known as the “jangle fallacy” (Block, 1995; Lilienfeld & Treadway, 2016).

Following on this vein, several authors began to use factor-analytic techniques to ex-

plore the possibility that there may be underlying, latent dispositions that would explain the

high co-morbidity (or, statistically speaking, co-variance) across our current nosology of

psychiatric disorders. This line of work can be traced as far back as the work of Achenbach

(e.g., Achenbach and Edelbrock (1978)), who pioneered early efforts to use factor analy-

sis of symptom reports to empirically derive dimensions of psychopathology. Since then,

a wealth of evidence has emerged in support of the idea that the co-variance structure of

psychopathology symptom dimensions can be replicated using dimensional factor-analytic

models (Krueger, Caspi, Moffitt, & Silva, 1998; Vollebergh et al., 2001; Krueger, McGue,

& Iacono, 2001; Walton, Ormel, & Krueger, 2011; Markon, 2010; Cosgrove et al., 2011;

Wright et al., 2013; Lahey et al., 2012; Caspi et al., 2014). Furthermore, these higher-order

dimensional models do not just fit the data well, they can outperform traditional categorical

diagnoses in terms of both prognosis and stability (Krueger et al., 1998; Vollebergh et al.,

2001; N. Eaton, Krueger, South, Simms, & Clark, 2011; N. R. Eaton et al., 2013), predict-

ing treatment seeking (Sunderland & Slade, 2015), and assessing functional impairment

(Markon, 2010; Sunderland & Slade, 2015).

A few important departures are observed in this new line of work from the DSM-ICD

nosology. First, in these approaches DSM-ICD symptom dimensions are not assumed to

be mutually exclusive, but rather they are all manifestations of higher-order dispositional

factors2. Second, in these approaches the higher-order dispositional factors are specified

2It is important to note here that the extent to which these models are “theoretically independent” of the
DSM-ICD organization of symptoms into categories varies across studies, depending on the psychopathol-
ogy assessment instrument being used and the modeling approach being taken. For example, some stud-
ies specify models that use as manifest variables symptom counts for DSM-ICD dimensions; in this case,
the authors are still are presuming symptoms should be aggregated into manifest variables that map onto
DSM-ICD categories. Other models, e.g. those that use data from Achenbach’s measurement instruments

4



Figure 1.1: Three examples of dimensional CFA model specifications used to model psy-
chopathology across the literature. Panel A is reproduced from Krueger et al. (1998), in
which he used a two-factor orthogonal solution. Panel B is reproduced from Vollebergh
et al. (2001), in which Anxious-Misery and Fear factors load onto a third-order Internal-
izing factor, which correlates with the Externalizing factor. Note also that Externalizing
here does not include antisocial personality/conduct disorder. Panel C is reproduced from
Wright et al. (2013), who break down Internalizing into Distress, Fear and OCD sub-
factors, and also include a third Psychosis factor that is oblique to the Internalizing and
Externalizing factors.

as dimensional trait-like constructs, as opposed to categorical types3. Third, these trait-like

constructs are modeled on the basis of longer time periods rather than present experience of

symptoms (i.e., either lifetime or 12-month period). One advantage of this longer purview

of time consideration in the higher-order factor analytic approach is that it provides a better

account for heterotypic continuity, focusing less on specific presenting symptoms at a given

point in time and more on broad domains of dysfunction that could underlie changing

symptoms (Lahey et al., 2014).

like the CBCL, might instead presume that symptoms should be organized in accordance with the dimen-
sional scales proposed by the instrument’s manual, which may not necessarily map onto the DSM-ICD ap-
proach. Achenbach’s instruments, for example, condense generalized anxiety and depression into one scale,
the “anxious-depressed” scale, which does not map onto the distinction in DSM-ICD between anxiety disor-
ders and depression. Thus, some approaches might therefore have “anxious-depressed” as a manifest-variable
instead of separating these into “anxiety” and “depression”. I articulate this point here to elucidate that these
higher-order approaches are in most cases not entirely “DSM-ICD free” in their theoretical underpinnings.

3The performance of categorical, hybrid and dimensional approaches has been empirically compared and
supports the use of dimensions as opposed to these alternative approaches; see Wright et al. (2013).
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Although there is no formal strict consensus on the specific factor structure that should

be used to model psychopathology data, most models in the literature today are variations

or extensions from earlier designs in which two oblique factors (Externalizing and Internal-

izing) load onto symptom or diagnosis data (the spirit of this approach is synthesized well

by Krueger and Markon (2006)). To illustrate, one such archetype is a study by Krueger

et al. (1998), which specified an oblique two-factor solution: an externalizing factor that

loaded onto alcohol dependence, marijuana dependence, and anti-social personality dis-

order / conduct disorder; and an internalizing factor that loaded onto major depressive

episode, dysthymia, generalized anxiety disorder, agoraphobia, social phobia, simple pho-

bia, and obsessive-compulsive disorder. Figure 1.1 illustrates this factor structure (Panel

A), as well as two examples of derivative variations or extensions of this structure pub-

lished more recently, e.g. re-organizing internalizing into a hierarchical structure (Panel B)

and/or including a psychosis factor (Panel C).

In spite of the variability in model specifications, across most of these latent factor

models one finds that the Internalizing and Externalizing higher-order dimensions are not

orthogonal, and in fact show a very high and significant positive correlation. This observa-

tion led Lahey et al. (2012) to model psychopathology in the adult NESARC sample using

a higher-order bi-factor model, wherein all disorders were able to load onto a general fac-

tor, as well as three specific orthogonal Externalizing, Distress and Fear factors (see Figure

1.2, Panel A)4. The bi-factor model fit the data well5, but most importantly, the general bi-

factor measured in the NESARC Wave 1 prospectively predicted future psychopathology

and functioning assessed in NESARC Wave 2, over and above the variance accounted for

4In this case, the manifest variables were DSM-IV diagnoses in the past 12 months as measured by the
Alcohol Use Disorder and Associated Disabilities Interview Schedule - DSM-IV version (AUDADIS-IV),
which included major depression, dysthymia, social phobia, specific phobia, generalized anxiety disorder,
agoraphobia/panic disorder, antisocial personality disorder, tobacco dependence, marijuana dependence, al-
cohol dependence and other drug dependence. It did not include assessment of psychotic disorders or OCD.

5Although the authors originally argued that the bi-factor model fit the data “better” than the three-factor
solution on the basis of log-likelihood and BIC (Lahey et al., 2012), given more recent arguments that bi-
factor models are known for a propensity to over-fit, as well as other technical considerations (e.g., Bonifay,
Lane, and Reise (2017)), I will abstain here from paraphrasing said controversial claim. I will delve deeper
into problems with the bi-factor approach later in Section 4.4 (Limitations).
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Figure 1.2: This figure illustrates three different examples of dimensional bi-factor CFA
model specifications used to model psychopathology in the literature. Panel A, reproduced
from Lahey et al. (2012), shows the first bi-factor model applied to psychopathology in the
NESARC data set. Note how the internalizing and externalizing factors are orthogonal, as
is standard practice for bi-factor models. Panel B, reproduced from Caspi et al. (2014),
shows the bi-factor model variation specified by Caspi and colleagues. Note how the in-
ternalizing and externalizing residual factors are specified as oblique, and how “thought
disorder” dimensions (i.e., schizophrenia, mania and OCD) are included. Panel C, repro-
duced from Blanco et al. (2015), illustrates a more sophisticated hierarchically-organized
application of the bi-factor model to the NCS-A adolescent sample (as stated, this type of
specification is a more restricted version of the type of bi-factor model specified in Panels
A and B).
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by the fears, distress, and externalizing factors (Lahey et al., 2012).

Another seminal study that popularized using the bi-factor approach to model psy-

chopathology was that of Caspi et al. (2014), who applied this approach to model the

structure of psychopathology of the Dunedin Study longitudinal dataset (from adolescence

to midlife). Caspi and colleagues’ study extended the original insights offered by Lahey

et al. (2012) in several ways. First, Caspi and colleagues modeled psychopathology data

longitudinally in a prospectively assessed representative sample. Second, Caspi and col-

leagues used symptom counts, as opposed to binary diagnoses, to estimate higher-order

factors. Third, Caspi and colleagues included psychotic and thought-disorder dimensions

in their model (i.e., OCD, mania and schizophrenia symptoms). Fourth, Caspi and col-

leagues allowed for a correlation between the residualized internalizing and externalizing

factors, allowing them to examine whether (after controlling for the general factor) these

factors still showed some sort of relationship between each other6. Finally, Caspi and col-

leagues were able to provide an initial nuanced assessment of the criterion validity of the

general factor thanks to the rich phenotyping and wide array of measures collected in the

Dunedin Study. The bi-factor model specified by Caspi and colleagues fit the data well (see

1.2 Panel B for an illustration of the model specification), and showed several associations

of high clinical utility. For example, general psychopathology was more strongly correlated

with family history of each disorder than were the specific factor scores7. Additionally, the

general factor of psychopathology showed strong associations to several indicators of life

impairment and brain integrity, as measured by IQ and Executive Function assessments.

Caspi and colleagues branded the general factor as the p-factor, in an allusion to Spear-

6The authors were able to specify this correlation because the thought disorder factor was dropped and
OCD / mania / schizophrenia symptom dimensions were allowed to load directly onto the general factor.
Since these dimensions loaded onto the general factor without loading onto any residualized factor, the au-
thors had enough general-factor specific variance to be able to estimate the correlation between the residual-
ized internalizing and externalizing factors. Yet, while estimates converged in the overall data set, they did
not converge in all the age sub-samples; for a more nuanced technical description of the limitations of this
model specification and other concerns with the modeling approach taken by Caspi et al. (2014), see Markon
(2018).

7With the exception of conduct disorder / anti-social personality and substance dependence, which were
still highly correlated with residualized externalizing factor.
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man’s g-factor of intelligence.

Following the publication of these two studies, there has been a flurry of scientific

studies testing the portability of the bi-factor approach to model psychopathology and the

criterion validity of its higher-order latent constructs in different age ranges, populations,

and modeling approaches8. Several studies found that the bi-factor model specification

was able to fit psychopathology data for children well, and provided clinically valuable

information. Pettersson, Lahey, Larsson, and Lichtenstein (2018) found a bi-factor model

provided a good fit to item-level parental rating data from a structured interview adminis-

tered as part of the Child and Adolescent Twin Study in Sweden (ages 9 & 12; N = 16,806).

Additionally, Pettersson and colleagues found that the general factor of psychopathology

estimated in childhood was predictive of significant higher odds of experiencing a wide ar-

ray of adverse outcomes in adolescence, including anxiety diagnosis, depression diagnosis,

anxiolytic and antidepressant medication use, alcohol abuse diagnosis, drug use diagnosis,

conviction of crimes and ineligibility to begin high school, which supports the criterion

validity of the general factor. In another study, Lahey et al. (2015) found that a bi-factor

model fit mother-reports of symptoms9 well in a sample of 5-11 girls (N = 2,450). Impor-

tantly, the general factor was robustly and independently associated with all measures of

teacher-reported school functioning concurrently during childhood and prospectively dur-

ing adolescence, yet again supporting the criterion validity of the general factor. Addition-

ally, other studies have shown the bi-factor model fits adolescent data well. For example,

Carragher et al. (2016) successfully fit a bi-factor model on a sample of 2,175 Australian

adolescents aged 12-14 years from symptom-level endorsements10. In addition, other stud-

ies have been able to fit a more restricted version of the bi-factor model, in which the
8More specifically, whether the manifest variables used for model estimation are the presence or absence

of symptoms, symptom counts across a dimension, or binary diagnoses.
9Higher order dimensions were modeled on the basis of symptom counts across dimensions assessed via

two instruments. The Child Symptom Inventory-4 was used to assess inattention, hyperactivity-impulsivity,
oppositional defiance, conduct disorder, and depression; while the Screen for Child Anxiety Related Emo-
tional Disorders was used to assess generalized anxiety disorder, social phobia, separation anxiety disorder,
school phobia and panic/somatic symptoms.

10The authors integrated items from several scales in this study
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general factor model loads onto internalizing and externalizing factors, which in turn load

onto symptom dimensions11. For example, Blanco et al. (2015) found that a hierarchically

organized model provided an excellent fit to diagnosis data from the National Co-morbidity

Survey Adolescent Supplement (NCS-A) (illustrated in Figure 1.2, Panel C).

Beyond the aforementioned evidence supporting the replicability and criterion valid-

ity of a general factor of psychopathology, there is also growing evidence suggesting that

the general factor maps to some degree onto non-specific genetic risk factors. A mas-

sive study comprising almost 3.5 million participants from the Swedish National Registry

(Pettersson, Larsson, & Lichtenstein, 2016) found that a general genetic factor influenced

all disorders and convictions of violent crimes, accounting for between 10% (attention-

deficit/hyperactivity disorder) to 36% (drug abuse) of the variance of psychiatric disorders.

A more recent study by Selzam, Coleman, Caspi, Moffitt, and Plomin (2018) tested the

hypothesis that there is a genetic general factor by estimating a genetic correlation matrix

across psychiatric disorders using four different methods. Each of the principal component

analyses corresponding to the four methods yielded a general factor on which all disorders

loaded, explaining between 20% and 60% of the total variance. All in all, these studies

appear to suggest that there exist genetic pleiotropic influences that increase risk for almost

all psychiatric disorders, mapping onto the theoretical underpinnings of the general factor.

In their discussion, Caspi et al. (2014) argued that p may be a “‘dimension that unites

all disorders and has neurological roots.” This sentiment was echoed by (Zald & Lahey,

2017), who argued that examining these higher-order psychopathology dimension pheno-

types such as the general factor in using neuroimaging has the potential to reveal transdiag-

nostic neural substrates that non-specifically contribute to multiple forms of psychopathol-

ogy. This study will attempt to address this call, by examining the neural correlates of

higher-order psychopathology factors estimated using the bi-factor model approach.

11As indicated by Markon (2018), this type of model with a second-order general factor presume inter-
nalizing and externalizing mediate the relationship between the general factor and symptom expression, and
they are mathematically nested within the bi-factor models I have been discussing.
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1.2 Neural correlates of higher-order psychopathology factors

Because the idea of modeling psychopathology using a general factor is still relatively

recent, the literature of studies looking at neural correlates of higher-order psychopathol-

ogy factors is rather small. Additionally, one limitation in the existing literature is that it

is primarily focused on children, adolescents and young adults. Still, here I will aim to

provide a short survey of the existing body of research on this matter.

1.2.1 Structural correlates

Although not directly testing associations between the general factor of psychopathol-

ogy and brain structure, in a meta-analysis Goodkind et al. (2015) evidenced that there

are common structural abnormalities across psychiatric disorders. In this study, the au-

thors here conducted a voxel-based morphometry meta-analysis of 193 studies comprising

15,892 individuals across 6 diagnostic groups (schizophrenia, bipolar disorder, depression,

addiction, obsessive-compulsive disorder and anxiety). The authors found that grey matter

loss converged across diagnoses in three regions: the dorsal anterior cingulate (dACC), the

right insula, and the left insula12. In a follow-up analysis of three independent healthy par-

ticipant datasets, the authors then found that these common gray matter loss regions were

interconnected into a network: these regions showed significant co-activation in tasks, and

functional connectivity amongst each other at rest. Furthermore, lower grey matter in this

network was associated with poor executive functioning (Goodkind et al., 2015). It is im-

portant to note here that this study did not explicitly model a higher-order bi-factor model,

but rather, the authors aggregated several case-controlled studies and compared patient to

non-patient (control) groups across disorders. So, while it would be improper to claim

from this study alone that these regions are neural substrates of the general factor, these

findings do show that reduced grey matter in these regions is associated with several major

12The authors reported that there were few diagnosis-specific effects, with only schizophrenia and depres-
sion being distinguishable from other diagnoses.
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psychiatric disorders.

Snyder, Hankin, Sandman, Head, and Davis (2017) followed up with a study in which

they attempted to directly identify associations between gray matter volume and higher-

order psychopathology dimensions (from the bi-factor model). In this study, Snyder and

colleagues leveraged a community sample of 254 children ages 6 to 10 and fit a bi-factor

model onto parental reports scales from the Child Behavior Checklist (CBCL) and the Chil-

dren’s Behavior Questionnaire (CBQ). They found that the general factor of psychopathol-

ogy was associated with reduced grey matter in the dorsal pre-frontal cortex (dPFC), the

ventro-lateral prefrontal cortex (vlPFC), and the orbitofrontal cortex (OFC); while the in-

ternalizing factor was associated with reduced grey matter in the medial temporal lobe

(MTL), the amygdala and the insula (no brain regions analyzed were associated with the

externalizing factor) (Snyder et al., 2017)13.

In a similar vein, Romer et al. (2018) also attempted to directly identify associations

between gray matter volume and higher-order psychopathology dimensions (from the bi-

factor model), although in this case with college-aged youth. Romer and colleagues found

that higher general factor scores were associated with reduced grey matter volume in the

occipital lobe and left cerebellar lobule VIIb (which is functionally connected with pre-

frontal regions supporting cognitive control). Additionally, Romer and colleagues looked

at the structural integrity of white matter pathways, and they found that higher general

factor scores were associated with lower fractional anisotropy values14 uniquely in the

pons. Consistent with the large number of cerebellar afferents in the pons, Romer and

colleagues also observed a significant positive correlation between the white matter in-

tegrity of the pons and cerebellar grey matter volumes associated with higher general factor

scores. The authors interpreted their findings by positing that alterations in the structure

of cortico-cerebellar circuitry supporting integration, coordination and monitoring of in-

13It is important to note as well that here, the authors selected only eight brain regions to analyze a priori;
i.e., this was not a whole-brain analysis.

14Functional anisotropy, or FA, refers to the extent to which diffusion is restricted or unrestricted.
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formation might be a contributing factor to general disposition to experiencing psychiatric

symptoms.

1.2.2 Functional correlates

Taking a more developmental perspective, Sato et al. (2016) hypothesized that the mat-

uration status of the default mode network (DMN) would be negatively associated with the

general psychopathology factor. To test this, they recruited 654 students from schools in

Brazil (ages 6 to 15) and assessed the extent to which the general factor of psychopathology

was associated with default mode network (DMN) maturation (assessed here by looking at

deviations of observed fALFF fluctuations in DMN regions of interest from those expected

for the participant’s age)15. The authors found that delayed individuals with delayed DMN

maturation had significantly higher general factor scores than individuals with precocious

DMN development, after controlling for age, gender and acquisition site. There were no

differences in internalizing or externalizing factors associated with DMN development clas-

sification.

Additional compelling evidence for the functional correlates of higher-order factors

comes from studies of the Philadelphia Neurodevelopmental Cohort (PNC). In one study,

Shanmugan et al. (2016) examined whether higher-order psychopathology dimensions in

youth were associated with executive system deficits using a working memory paradigm.

They modeled psychopathology symptom endorsement from the GOASSESS interview us-

ing a bi-factor model, where they specified specified a general psychopathology factor and

four orthogonal residualized dimensions of anxious-misery, psychosis, behavioral prob-

lems, and fear. Subsequently, the authors used multivariate and uni-variate approaches to

test whether factor score estimates for higher-order symptom dimensions were associated

15Machine-learning techniques were used to predict the chronological age of subjects based on the frac-
tional amplitude of low frequency fluctuations (fALFF) of regions of interest belonging to the DMN; then, a
“maturational status” was defined for each subject based on the difference between the predicted and actual
age of the participants. Consistent with previous studies, fALFF for the DMN was found to significantly
predict the age of participants. (Sato et al., 2016)
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with differences in the 2-back > 0-back contrast in an n-back task16. The authors used mul-

tivariate pattern analyses were used to test for global effects, which revealed that general

psychopathology was associated with a significant disturbance in global executive system

recruitment; no other symptom dimensions showed a significant relationship for multivari-

ate analyses. The authors then used uni-variate voxel-wise whole-brain analyses were to

localize brain regions in which these associations were strongest, and to identify whether

residualized factors might also show any regionally specific associations. Higher general

psychopathology factor score estimates were associated with diminished activation of left

and right frontal pole, anterior cingulate cortex, anterior insula, thalamus, and precuneus.

Higher behavioral problems factor score estimates were associated with diminished acti-

vation of frontoparietal cortex, thalamus and cerebellum. Higher psychosis factor score

estimates were associated with diminished activation in the left dorsolateral prefrontal cor-

tex. Higher fear factor score estimates were marginally associated with diminished ac-

tivation in medial frontal cortex, although this effect did not survive when re-doing the

analysis excluding participants with poor performance in the 2-back condition. Finally,

unlike the other dimensions, higher anxious-misery factor score estimates were associated

with increased activation of multiple executive network brain regions including the anterior

cingulate cortex, dorsolateral prefrontal cortex, parietal cortex, and thalamus.

In another study on the PNC sample, Kaczkurkin et al. (2017) conducted a whole-

brain analysis to test the hypothesis that increased higher-order psychopathology dimen-

sion scores might be associated with differences in regional cerebral blood flow (rCBF) at

rest. rCBF is a measure tightly coupled with regional brain metabolism at rest. Kaczkurkin

and colleagues found that general psychopathology factor score estimates were associated

with elevated perfusion in the right dorsal ACC and the left rostral ACC (worth noting,

these were a small effects, with r = .13 for both). Looking at the residualized factors, the

16As a manipulation check to ensure the task was working, the authors also checked whether this contrast
robustly recruited the executive network and resulted in deactivation of non-executive regions, which it indeed
did.
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authors found that the residualized psychosis factor was negatively associated with rCBF

to the left frontal operculum / left insula (r = −.11), and the residualized fear factor was

associated with decreased rCBF to the left subgenual ACC and the right occipital / fusiform

gyrus (r =−.14 for both). One might note that in this study, higher general psychopathol-

ogy factor scores were associated with increased perfusion to the ACC at rest, while in the

aforementioned study by Shanmugan et al. (2016) (which was conducted on the same sam-

ple, using the same factor analytic model and dimensions) higher general psychopathology

factor score estimates were associated with decreased engagement activation of the ACC

in the n-back task contrast (which compared the harder to the easier condition). However,

it is important to remember here that rCBF is measuring metabolism at rest, which is not

necessarily the same as a measure of blood flow to this region during an executive func-

tion task, especially considering that the ACC plays a role in both emotional and cognitive

processing17.

1.3 Reward processing

Given the broad and dispositional nature of higher-order factors of psychopathology,

it has been suggested that these higher-order factors may be associated with alterations in

transdiagnostically-relevant psychological processes (Lahey, Krueger, Rathouz, Waldman,

& Zald, 2017). One such possible mechanism is reward processing: indeed, as it will be

discussed further on (see Section 1.5), abnormal reward processing is a prominent transdi-

agnostic feature of psychopathology (Zald & Treadway, 2017). Following, I will turn to a

focused review of the literature on reward processes and their neural substrates.

Although there is still some debate pertaining to the precise taxonomy of reward pro-

cesses, most current taxonomies draw from Robinson and Berridge’s theoretical frame-

work. Coming from the addiction studies literature, initially Robinson and Berridge offered

17I am thankful here to Dr. Kaczkurkin for responding to my email inquiry and explaining this valuable
clarification to me.
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the insight of distinguishing between two broad domains of reward processes. These are

reward attainment (corresponding to “liking” the reward; e.g., the hedonic component) and

reward anticipation (corresponding to “wanting” the reward) (Robinson & Berridge, 1993;

Berridge & Robinson, 1998, 2003; Berridge, Robinson, & Aldridge, 2009). Following

their initial publications, Robinson and Berridge updated their theoretical model to include

a third “learning” component as well, which is tied to how cognitive and implicit learn-

ing can change the predictive value of a rewarding stimulus (Berridge & Robinson, 2003;

Berridge et al., 2009)18. These distinctions found support across multiple levels of analysis,

including neurophysiology, behavior and subjective reports (Berridge & Robinson, 2003;

Berridge et al., 2009; Zald & Treadway, 2017).

Reward attainment is traditionally understood as the conscious, subjective experience

tied to the evaluation or consumption of the rewarding object or event. In this conceptu-

alization, one might for example measure and characterize this hedonic experience in an

affective space through the dimension of valence, with positive valence reflecting increased

hedonic value and negative valence reflecting an aversive experience (Russell, 2003; Zald

& Treadway, 2017). Some authors have also hypothesized that there may also be some un-

conscious aspects to reward attainment, based on evidence showing that participants may

alter their behavior after delivery of a “pleasurable” stimulus or drug even if they are not

consciously aware they attained this reward (Berridge & Kringelbach, 2008)19.

Reward anticipation can be broadly understood as a complex subjective, behavioral

and neurophysiological state preceding and attuned to potential reward attainment. Sub-

jectively, reward anticipation can be thought of as both “wanting” (in a more addiction-

18This domain will not be discussed at length here as it is not pertinent to the study at hand.
19For example, Winkielman, Berridge, and Wilbarger (2005) found that subliminal smiles did not cause

any self-reported changes in mood or arousal, but it did cause thirsty participants to pour and consume more
beverage, and increased their willingness to pay and their wanting of more beverage. Another piece of
evidence commonly cited in support of this hypothesis comes from human psychopharmacology studies, in
which participants were found to work more to receive a drug reward when they have been given a small
dose of the drug vs. no drug at all, even if participants are unaware they received drug (i.e., the small dose
produces no subjective effects or autonomic reactions) (Lamb et al., 1991; Hart, Ward, Haney, Foltin, &
Fischman, 2001; Berridge & Kringelbach, 2008).
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oriented sense, e.g., urges and cravings) and as an excitement or tension. Behaviorally,

reward anticipation is mainly observed as approach behavior directed towards acquisition

or goal attainment. Neuropsychologically, it is important to note that reward anticipation

can sometimes (but not always) involve what Zald and Treadway (2017) have termed “re-

ward facilitation”: the facilitation of multiple perceptual, attentional, cognitive, and motor

processes when rewards are at stake. Indeed, as Zald and Treadway (2017) have pointed

out, the term “reward anticipation” is often used by researchers to describe the engagement

and facilitation of all these processes (i.e., reward facilitation) rather than the explicit antici-

pation of a reward. This is the case for this thesis: when I refer to the “reward anticipation”

stage of the Monetary Incentive Delay (MID) task (Knutson, Adams, Fong, & Hommer,

2001), I am referring to BOLD signal changes related to preparing to make a response to

potentially gain a reward, rather than simply BOLD signal changes in expectation that a

reward is about to be obtained.

1.4 Neural substrates of reward processing

A substantial body of neuroscientific work has identified a set of brain regions impli-

cated in reward processing, as well as the anatomical connections between them; these are

commonly referred to as “the reward circuit” or the “mesolimbic reward circuit”. Figure 1.3

illustrates the structures and anatomical pathways in the reward circuit, which are embed-

ded within a cortico-striatal loop and efferents that modulate the functioning of that loop.

The reward circuit comprises the orbitofrontal cortex (OFC), the anterior cingulate cortex

(ACC), the ventromedial prefrontal cortex (vmPFC), the ventral striatum (VS), the ventral

pallidum (VP), and the dorsomedial thalamus and midbrain dopamine neurons. Broadly,

the circuit is formed as VS receives cortical inputs from ACC, vmPFC and OFC and then

relays its outputs to VP, which subsequently projects information back to cortex via thala-

mus (Haber & Knutson, 2010).

Given the importance of sensory information to reward processing, it is also worth
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Figure 1.3: Schematic illustrating key structures and pathways of the reward circuit. Re-
produced from Haber and Knutson (2010).
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mentioning that while reward circuit does not receive any direct sensory input, it does

receive processed sensory information. For example, the VS receives its primary input

from OFC, ACC, and insula; these three areas integrate sensory information from across

the senses, particularly OFC and insula. The VS also receives input from the amygdala,

which is also strongly associated with sensory processing (Haber, 2011).

It is also important to keep in mind that the reward circuit also interacts with other

cortico-basal ganglia circuitry. Although initially it was believed that the reward (a.k.a.

“limbic”) circuit functioned in parallel and in isolation from other cortico-basal ganglia

circuits like the associative (a.k.a. “cognitive” or “prefrontal”) circuit and the motor circuit

(Alexander, Crutcher, & DeLong, 1991), more recent evidence has shown that there are

integrative mechanisms in the brain through which information can be transferred between

these circuits (e.g., Draganski et al. (2008); Haber, Kim, Mailly, and Calzavara (2006)).

This suggests that the cortico-basal ganglia circuitry is capable of both parallel and inte-

grative processing, which in turn implies that the reward circuit does not work in isolation

(Haber & Knutson, 2010). This is consistent with the complexity of reward processing,

which itself requires integration of multiple different sources of information. Indeed, to

predict and evaluate a reward’s value, and leverage that data to come up with and execute

a planned behavior, the brain needs to: (1) combine incoming sensory information with re-

ward value, expectation, and memory for past outcomes of actions and events; (2) integrate

that information with cognition to develop a plan; and (3) relay this plan to motor control,

which will execute the planned response or behavior (Haber, 2011).

Human neuroimaging studies of reward have sought to measure changes in neuronal

activity due to reward processes. A multitude of different tasks and paradigms have been

used in this literature, differing in the nature of the reward (e.g., monetary, erotic, food,

social) (Knutson, Westdorp, Kaiser, & Hommer, 2000; Barrós-Loscertales et al., 2010;

Felsted, Ren, Chouinard-Decorte, & Small, 2010; Izuma, Saito, & Sadato, 2008) as well as

the degree and type of involvement required of the participant. Although there is evidence
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showing that these factors do, indeed, lead to some degree of variability in the spatial distri-

bution of neural response (c.f. Sescousse, Caldú, Segura, and Dreher (2013)), meta-analytic

findings aggregating across these different paradigms have found some convergence con-

sistent with the functional recruitment of the reward circuit in reward processes.

To assess whether human functional neuroimaging paradigms are able to engage the

reward network, X. Liu, Hairston, Schrier, and Fan (2011) conducted a meta-analysis in

which they organized peak activation foci from 142 studies by valence (positive or nega-

tive)20 and processing stage (reward anticipation or reward attainment)21, and then used two

competing algorithms (Activation Likelihood Estimation, or ALE, and Parametric Voxel-

Based Meta-Analysis, or PVM) to identify brain regions that showed robust engagement

during reward processing. When looking at overall effects across valence and processing

stage, both ALE and PVM algorithms identified significant engagement of almost all of the

key reward circuit regions mentioned above that can be reliably surveyed using neuroimag-

ing approaches: VS22, medial and lateral OFC, and ACC; as well as significant associations

with other regions postulated to regulate the reward network, including the amygdala (ALE

only, n.s. for PVM), the dorsolateral and dorsomedial prefrontal cortex (dlPFC / dmPFC),

the anterior insula, and the inferior parietal lobule (X. Liu et al., 2011).

The meta-analysis referenced above also found differences in which brain regions re-

ward anticipation and reward delivery tend to engage, lending additional support to the tax-

onomical distinction between reward anticipation and attainment as well as the ability of

20Specifically pertinent to this manuscript, the “positive valence” category of studies included anticipation
or attainment of: winning money or points, winning the larger of two sums of money or points, losing the
smaller sum of money or points, receiving encouraging words in the screen, receiving a sweet taste in their
mouths, and any other types of positive rewards as a result of successful completion of the task. Although
not discussed due to not being too pertinent to the study at hand, the “negative valence” category included
those in which participants lost money or points, did not win money or points, won the smaller of two sums
of money or points, etc. (X. Liu et al., 2011).

21The authors defined reward anticipation as “the time period when the subject was pondering potential
options before making a decision”, while reward attainment was defined as “the period when the subject
received feedback on the chosen option” (X. Liu et al., 2011).

22It is important to note here that the authors did not mention the Ventral Palladium in their results inter-
pretation for overall effects. It is likely that the VP was still significant, but “swallowed in” to the massive
basal ganglia cluster the authors are referring to as VS. This distinction or clarification was not made in the
paper, but it is consistent with the activation maps show in Figure 2 of the paper.
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Figure 1.4: Prototypical MID task gain and loss structure; reproduced from Knutson and
Greer (2008)

neuroimaging paradigms to differentiate spatio-temporal responses corresponding to these

two processes. Reward anticipation showed more consistent engagement of the bilateral

anterior insula, ACC/SMA, inferior parietal lobule and brainstem than reward attainment.

Conversely, reward attainment preferentially activated ventral striatum, medial OFC, and

amygdala relative to the anticipation phase. These differences in brain region recruitment

are consistent with the distinction between reward anticipation and attainment (X. Liu et

al., 2011).

As suggested by this meta-analysis, fMRI paradigms allow us to probe engagement of

reward circuitry in humans. These types of paradigms allow for measurement of individual

differences across individuals in this circuit, and have increasingly been used to prove

the neural substrates of reward dysfunction in psychopathology and temperament (Zald

& Treadway, 2017). In the following sub-section, I will focus my review to discuss more

in depth one of the most popular human fMRI paradigms out there, the Monetary Incentive

Delay (MID) task paradigm (Knutson et al., 2000), which is used in this study.
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1.4.1 The Monetary Incentive Delay (MID) task paradigm

First introduced by Knutson et al. (2000), the MID task is a cued response task whose

design was inspired by the work of Wolfram Schultz (Schultz, 1998; Knutson & Greer,

2008). The typical organization of a prototypical MID task is illustrated in Figure 1.4.

Participants initially see a cue representing that they will have will have the chance to

either gain or avoid losing a certain amount of money, followed by a fixation cross. Then,

a target briefly appears on the screen (180-280ms), and participants have to try to press a

button before the target is replaced by a fixation cross again. Lastly, participants see the

outcome of their performance on that trial and cumulative earnings in the task.

The MID task has been shown to robustly engage core elements of the reward circuit.

In the first neuroimaging study using the MID (in which anticipation and attainment were

modeled together) the reward condition showed increased engagement of bilateral insula,

nucleus accumbens, caudate, putamen, medial PFC, and supplementary motor area (SMA)

/ motor cortex (Knutson et al., 2000). In a follow-up study, in which anticipation and out-

come phases were modeled separately23, the reward anticipation phase showed increased

engagement of bilateral insula, bilateral nucleus accumbens, bilateral caudate, left puta-

men, thalamus, right amygdala, medial prefrontal cortex, supplementary motor area, left

motor cortex and cerebellar vermis; while the reward outcome phase tended to engage the

right caudate, right putamen, thalamus, orbitofrontal cortex, anterior cingulate, posterior

cingulate, and parietal cortex (Knutson, Fong, Adams, Varner, & Hommer, 2001).24

Indeed, another strength of the MID task is that it has allowed researchers to compare

how different areas in the reward network are engaged in response to reward anticipation

and reward attainment. In this vein, researchers have identified that in the anticipatory

23As illustrated in the figure, typically reward anticipation is modeled as the epoch between offset of the
cue and onset of the target (when a fixation cross is shown), while reward attainment is modeled as the epoch
in which feedback is displayed to the participant (Knutson & Greer, 2008).

24The foci listed above varied depending on whether the reward attainment contrast was defined as at-
tainment of $1.00 vs. attainment of $50.00 reward, or attainment of magnitude of monetary reward vs. no
reward.
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phase of the Monetary Incentive Delay task the ventral striatum shows significant modula-

tion based on the reward value of the trial during the period of reward anticipation (Knutson,

Adams, et al., 2001), while a region in the medial prefrontal cortex (mPFC) preferentially

tracks reward attainment (Knutson, Fong, Bennett, Adams, & Hommer, 2003). Indeed,

more direct contrasts support this notion that there may be some slight variation in how

reward anticipation vs. reward attainment processes recruit regions that lie along the tra-

jectory of ascending dopamine projections (Knutson, Fong, et al., 2001).

There are two other advantages of the MID task paradigm worth discussing. First, the

MID task is that has been studied extensively over the last two decades, and findings re-

garding the neural circuits it engages have been replicated over several studies (see Knutson

and Greer (2008) for a review). Second, the MID task has shown sensitivity to differences

between psychiatric patients and controls across a variety of disorders (e.g. depression

Knutson, Bhanji, Cooney, Atlas, and Gotlib (2008), schizophrenia Juckel et al. (2006),

substance use disorders Balodis and Potenza (2015)) as well as constructs like impulsivity

(e.g., Plichta and Scheres (2014)). Evidence of this sensitivity to psychopathology and in-

dividual differences across individuals suggests that contrasts derived from the MID task

are likely to be sensitive to differences across individuals in levels of higher-order factors

of psychopathology.

1.5 Reward and psychopathology

Altered reward processing is a feature in multiple forms of psychopathology. Indeed,

abnormal functioning of reward processes has actually been instantiated in the diagnostic

criteria of several DSM-5 disorders: anhedonia in mood disorders; aphathy in schizophre-

nia; urges, cravings and abnormal valuations in substance use disorders; and low valuation

of social reward in schizoid personality disorder and autism, to name a few (Zald & Tread-

way, 2017). However, there is still much controversy in regards to the best theoretical

model to account for reward dysfunction in psychopathology.
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In this section, I will review several case-controlled studies testing hypotheses of hyper-

or hypo-responsivity to reward across a variety of DSM-ICD disorders. It is important to

keep in mind that this is a vast literature comprising several different types of evidence,

ranging from studies reliant on self-reports to studies focused on behavioral, neuroimaging

or EEG measures. These different types of evidence do not always necessarily converge

with one another, and they all provide valuable information. However, for the purposes of

narrowing down the review to the aspects most pertinent to the study at hand, my review

will be mostly focused on neuroimaging data.

Following this review, I will then attempt to integrate these data, as well as other ev-

idence reviewed in this introductory chapter, to formulate some broad hypotheses to be

tested in regards to how higher-order psychopathology factors might be associated with

differences in brain response to reward anticipation and attainment in the MID task.

1.5.1 Hypotheses and evidence linking psychopathology to hypo-responsivity to reward

On one hand, several researchers have focused on testing the hypothesis that psy-

chopathology might be associated with a global reduction in reward processing. Here, I

will discuss four disorders for which this hypothesis has been formulated and tested exten-

sively: addiction disorders, major depressive disorder (MDD; sometimes, more specifically

anhedonia), attention deficit / hyperactivity disorder (ADHD), and schizophrenia25.

Addiction. Within the context of the addiction literature, Blum et al. (1996) hypothe-

sized that part of the etiology of addiction can be explained by a reward deficiency syn-

drome (RDS). The RDS hypothesis posits that a lack of rewarding subjective experiences

or a reduced hedonic tone would lead individuals to pursue and consume strong rewards,

25I would like to acknowledge here that, although some past studies of higher-order psychopathology have
included patients with psychosis in the estimation of a thought-disorder and/or general factor, the Tennessee
Twin Study sample studied in this manuscript did not. Our sample specifically excluded patients with psy-
chotic disorders. However, given the hypothesis postulated by Caspi et al. (2014) that psychosis might reflect
the highest range of general psychopathology factor scores, I am including here a cursory review of these
data for the sake of completeness.
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such as drugs of abuse. Blum and colleagues linked RDS to neuroimaging data showing

reduced striatal D2 dopamine receptor (DRD2) density in participants with substance use

disorders, (Blum et al., 1996, 2000), as well as findings from N. Volkow et al. (1997) that

there is lowered psychostimulant-induced dopamine release in patients with substance use

disorders (Blum et al., 2000).

There is some empirical support for the RDS hypothesis in addiction studies. Two

meta-analyses of human neuroimaging studies observed some degree of decreased striatal

activation during monetary reward anticipation in addicted samples (Balodis & Potenza,

2015; Luijten, Schellekens, Kühn, Machielse, & Sescousse, 2017), and some pre-clinical

animal studies are consistent with the hypothesis that lowered striatal DRD2 levels increase

risk for drug self-administration (Nader et al., 2006). However, as articulated by Zald and

Treadway (2017), there are several elements of the RDS hypothesis that are difficult to

integrate with existing data. First, conceptualizing RDS as decreased reward anticipation

seems rather incongruent with the DSM definitions of substance use disorders, which em-

phasize the willingness to spend excessive amounts of time, money and energy to pursue

the rewarding drug or rewarding object. Second, conceptualizing RDS as a deficiency in

reward attainment experience seems unlikely to drive substantial reward seeking; by de-

valuing a stimulus, e.g. devaluing food through satiation, a person should work less, not

more, for it. This conceptualization is also inconsistent with findings from the above cited

meta-analysis by Luijten et al. (2017), which found that addicted populations showed in-

creased ventral striatum activation in the reward attainment phase. Third, although one

might also consider conceptualizing RDS as a lowered homeostatic level of satisfaction,

this alternative conceptualization finds limited support by the data, which emphasize that

heightened negative and positive affect states play a stronger role in driving urges for drug

consumption (Baker, Morse, & Sherman, 1986; Brandon, Wetter, & Baker, 1996; Zald &

Treadway, 2017). Fourth, the linkage between RDS and dopaminergic function is inconsis-

tent with mounting evidence showing that dopamine is more critically involved in reward

25



anticipation / motivational aspects as opposed to reward attainment. Indeed, significant

work in animals and humans has shown that lowered expression of DRD2 receptors is not

linked to reward attainment (Berridge & Robinson, 1998; Treadway & Pizzagalli, 2014;

Zald & Treadway, 2017). Alternatively, if DRD2 were a marker of reward anticipation sen-

sitivity, then addicted populations with lower DRD2 levels should have reduced wanting of

drugs as opposed to craving, based on the findings cited above (Zald & Treadway, 2017).

Major depressive disorder. There is also some evidence linking hypo-responsivity to

reward and depression. In a neuroimaging study, Pizzagalli et al. (2009) found that, rel-

ative to healthy controls subjects, participants with major depression showed significantly

weaker response to gains in the left nucleus accumbens and caudate bilaterally, specific to

reward attainment. In terms of reward anticipation, they found that participants with major

depression showing reduced activation to reward cues in a small sector of the left posterior

putamen. In another study, Kumar et al. (2008) found that patients with major depression

had significantly reduced reward learning signals in several regions involved in the reward

network, including the ventral striatum, rostral and dorsal anterior cingulate cortex, the

midbrain and the hippocampus. Yet another study by Greenberg et al. (2015) found that

in depressed individuals, greater anhedonia severity was associated with reduced reward

expectancy and prediction error-related ventral striatal reactivity. Integrating a wide array

of studies like these, in a meta-analysis of neuroimaging case-controlled studies looking

at major depression, W. N. Zhang, Chang, Guo, Zhang, and Wang (2013) also found that

patients with MDD tended to show decreased activation in the caudate during both reward

anticipation and reward attainment. Intriguingly, these patients also tended to exhibit in-

creased activation during reward anticipation in more frontal regions, such as the middle

frontal gyrus, anterior cingulate cortex, and the frontal lobe.

Schizophrenia. Patients with schizophrenia have also shown decreased activation in

reward circuit brain regions in neuroimaging studies. Juckel et al. (2006) found that un-

medicated men with schizophrenia showed reduced ventral striatal activation during the
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reward anticipation phase, compared to controls. Furthermore, the authors also found that

decreased activation of the left ventral striatum was inversely correlated with the sever-

ity of negative symptoms. In another study, Morris et al. (2012) compared responses be-

tween expected and unexpected rewards in a conditioned cue paradigm for patients with

schizophrenia and controls; they found that patients with schizophrenia did not display the

normal differential activation between expected and unexpected rewards, which was in part

due to blunted responses in the left ventral striatum to unexpected rewards - although, an-

other part of this effect was due to exaggerated responses to reward attainment in the right

ventral striatum.

ADHD. Reward deficiency hypotheses have also been prominent in neuroimaging stud-

ies of ADHD. A meta-analysis of case-controlled fMRI studies of ADHD patients found

that ADHD patients have decreased activation of the ventral striatum relative to controls

in the reward anticipation, with an overall estimated medium effect size (Cohen’s d of .45

for all studies, and .58 when only including studies using the MID task paradigm) (Plichta

& Scheres, 2014). According to Zald and Treadway (2017), this result may be associ-

ated with heightened temporal discounting of reward in ADHD patients, given evidence

that in adolescents lower ventromedial caudate responses during reward anticipation are

associated with steeper rates of temporal discounting behavior (Benningfield et al., 2014;

Zald & Treadway, 2017). Other findings supporting a reward deficiency hypothesis for

ADHD include observations that individuals with ADHD need greater incentives to mod-

ify their behavior (Kollins, Lane, & Shapiro, 1997) and positron emission tomography

(PET) imaging studies showing adult individuals with ADHD have reduced function in the

brain dopamine reward pathway (N. D. Volkow et al., 2011). However, as noted by Zald

and Treadway (2017), there are some concerns with a global reward deficiency model for

ADHD, particularly the fact that reward has robust effects on task performance for ADHD

patients, and in some cases these effects can be even stronger for children with ADHD than

typically developing children (Luman, Oosterlaan, & Sergeant, 2005; Zald & Treadway,
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2017).

1.5.2 Hypotheses and evidence linking psychopathology to hyper-responsivity to reward

On the other hand, another line of research has tested an opposite hypothesis: that

certain forms of psychopathology might be associated with a global hyper-responsivity to

reward. Here, I will review these hypotheses with reference to addiction, bipolar disorder,

and anti-social personality disorder.

Addiction. There is evidence that striatal activity is increased in the presence of drug-

related cues (Leyton & Vezina, 2013), which is consistent with the excessive pursuit of

drugs by addicted individuals despite their substantial costs or associated risks in addiction

phenotypes (Zald & Treadway, 2017).

Bipolar disorder. Hyper-responsivity to reward has also been associated to bipolar dis-

order, although again there are some inconsistencies in terms of to which reward process

these hyper-responsivities correspond. In one study, euthymic Bipolar I patients were found

to display greater activation of the ventral striatum and right OFC in the reward anticipation

phase, but not the reward attainment phase, of a card guessing task (Nusslock et al., 2012).

In another study, remitted Bipolar I patients completed both the MID task and a Social In-

centive Delay variant that administered social reward (via complements to the participant);

contrary to the first study I discussed, this study found that remitted Bipolar I patients had

elevated reactivity to the monetary and social reward attainment in the striatum relative to

control, with no differences relative to controls in reward anticipation (Dutra, Cunningham,

Kober, & Gruber, 2015).

Antisocial traits. A large number of higher-order psychopathology models, including

the one specified in this study, have included psychiatric constructs associated with anti-

social traits in specifications of an externalizing factor (i.e. oppositional-defiant disorder

for youth, conduct disorder for adolescents and anti-social personality disorder or psycho-

pathic traits measures for adults). There is evidence showing that these traits might be
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associated with a hyper-responsivity to reward. For example, Buckholtz et al. (2010) found

that in adults, impulsive-antisocial psychopathic traits were positively associated with the

level of ventral striatal response in the reward anticipation phase of the MID task, and with

nucleus accumbens dopamine release in response to pharmacological reinforcers. How-

ever, these findings are not fully congruent with another study looking at an adolescent

sample: Bjork, Chen, Smith, and Hommer (2010) found that adolescents with externaliz-

ing disorders26 showed significantly elevated nucleus accumbens activation in response to

reward attainment. There are two potential things to keep in mind when looking at these

paradoxical findings: first, differences in brain development across the populations of these

two studies could explain the inconsistent result; second, the specific construct examined

by Buckholtz et al. (2010) (impulsive-antisocial psychopathic traits) is more narrow and

perhaps contained within the broader diagnostic categories of conduct disorders. Still, in

spite of the contradictions, both of these studies offer some degree of evidence that anti-

social traits might be associated with a hyper-responsivity to reward.

1.5.3 Possible hypotheses concerning links between reward processing and higher-order

psychopathology

Several of the examples discussed above illustrate how simple global hyper- or hypo-

reward processing models have been insufficient to explain the empirically observed alter-

ations in reward processing across DSM-ICD disorders. Furthermore, the examples above

suggest there is a lack of specificity among the abnormal reward function patterns observed

across disorders; e.g., hyper- or hypo-activation of the ventral striatum in response to re-

ward anticipation or attainment is a common theme across DSM-ICD disorders. These

current limitations in the literature could be explained in a variety of ways. One possibility,

26To clarify, Bjork et al. (2010) primarily meant by this construct children who were diagnosed with dis-
ruptive, impulse control and conduct disorders. This can be ascertained by examining the breakdown of the
adolescents with externalizing disorders group (N = 12) consisted of 6 adolescents with ODD, 3 adolescents
with CD, 2 adolescents with co-morbid ODD and ADHD, and 1 adolescent with ADHD only.
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suggested by Zald and Treadway (2017), is that that for the field to progress, we need to

move past simple global hypotheses about hyper- or hypo-responsivity to reward and de-

velop more refined or nuanced models of reward. Another possibility, which I will attempt

to explore in this manuscript, is that the DSM-ICD constructs offer too narrow of a picture

to fully understand the relationships between reward and psychopathology, which may be

hierarchically organized and complex.

Taking into account the limitations of DSM-ICD approaches and the support for higher-

order dimensional models of psychopathology, Lahey et al. (2017) have more formally pos-

tulated a “hierarchical causal taxonomy of psychopathology” that might provide a useful

new framework to examine the relationship between psychopathology and neural markers

of reward. In Lahey and colleagues’ model, the hierarchical higher-order structure of psy-

chopathology (discussed in Section 1.1) mirrors a hierarchy of increasingly specific etio-

logic influences. Thus, the general factor of psychopathology would be associated with the

broadest, least-specific etiological factors that increase risk for all kinds of psychopathol-

ogy, the internalizing/externalizing factors would be associated with etiological factors

that increase risk more specifically for those spectra of disorders, and then going down

the hierarchy, there would also be etiological influences that are disorder-specific or even

symptom-specific. Applying this hierarchical approach to neuroimaging MID task data

in a large sample has the potential to reveal neural substrates that might non-specifically

contribute to multiple forms of psychopathology and their co-morbidity; and, in doing so,

facilitate the study of mechanisms that are specific to single dimensions and subsets of

symptoms (Zald & Lahey, 2017).

The purpose of my study is thus to examine the relationship between neural responses to

reward anticipation and reward attainment in the MID task and higher order psychopathol-

ogy factors as estimated using a bi-factor model. To achieve this, I analyzed data from

Wave II of the Tennessee Twin Study (TTS). All participants in the TTS Wave II sample

(N = 499) completed the computer-assisted YA-DISC psychopathology clinical interview,
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and a subset of participants (N = 448) also completed a neuroimaging protocol that in-

cluded the MID task. I used MID task data to compute reward anticipation and reward

attainment activation maps for the N = 326 subjects with valid neuroimaging data (that

passed a quality assurance protocol). I then conducted between-subjects analysis that tested

for regional associations in the brain between higher-order psychopathology factors and

activation in the reward anticipation contrast for the MID, by using a voxel-wise SEM ap-

proach. For each voxel in the brain, I specified a structural equation model that would allow

me to test whether paths between higher-order psychopathology factors (general, internaliz-

ing, externalizing; estimated from the YA-DISC dimension symptom counts) and the MID

reward anticipation activation measure were significantly different than zero. To correct for

multiplicity, I used a clustering correction approach, which allowed me to identify clusters

of voxels in the brain that showed significant associations to higher-order psychopathology.

I subsequently used the exact same approach to examine relationships between higher-order

psychopathology factors and activation in the reward attainment contrast of the MID task.

At a voxel-wise level, my main hypothesis is that the general, internalizing and exter-

nalizing higher-order factors will show significant associations with activation to reward

anticipation and attainment in the MID task. At a brain-wide level, I would expect that clus-

ters of voxels showing significant associations with higher-order psychopathology would

specifically localized to voxels corresponding to brain regions in the reward network, in-

cluding regions in the core reward circuit (e.g., striatum, ACC, OFC, pallidum) and regions

that are not in the core circuit but are known to play a role in its regulation (e.g., PFC,

amygdala, hippocampus, thalamus, insula, etc.).

I base this hypothesis on four premises. First, the higher-order factors estimated in

the bi-factor model of psychopathology appear to be a viable metric of subjects’ trans-

diagnostic disposition to experience psychopathology, as evidenced by studies supporting

the criterion validity of the bi-factor model higher-order dimensions and supporting the

emergence of a genetic general factor (Section 1.1). Second, higher-order dimensions of
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psychopathology have been shown to be associated with structural and functional changes

in brain regions associated with core executive function and reward processing (Section

1.2). Third, there is substantial evidence supporting the distinction between reward attain-

ment and anticipation (Section 1.3) and that these two processes differentially and robustly

recruit brain regions in the reward network (Section 1.4), particularly so in the MID task

paradigm that was used in this study (Section 1.4.1). Fourth, as discussed earlier in Sec-

tions 1.5.1 and 1.5.2, there is significant evidence that psychopathology leads to changes in

neural response to reward anticipation and attainment, although the directionality of these

changes is inconsistent across and even within these disorders.27

27For this reason, I do not provide a strong hypothesis regarding directionality here. Questions regarding
how to make sense of directionality will be further addressed in the discussion section.
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Chapter 2

Materials and methods

2.1 The Tennessee Twin Study Sample

In this study, I analyzed participant data from Wave II of the Tennessee Twin Study

(TTS) dataset. The TTS was orchestrated in two waves. Wave I of the TTS was designed to

test different models and hypotheses pertaining to the latent structure of psychopathology.

Wave II of the TTS was designed as a follow-up to Wave I, with one of the intents being

attempting to link higher-order psychopathology constructs previously identified in the TTS

Wave I and other epidemiological samples to behavioral and neural markers.

2.1.1 Wave I

Participants in Wave I were selected to be representative of all 6- through 17-year-

old twins born in Tennessee and residing in one of the state’s five metropolitan statistical

areas (Nashville, Memphis, Knoxville, Chattanooga and Bristol) during the data collection

phase (2000-2001). From birth records identified by the Tennessee Department of Health,

a random sample was selected and stratified by age and geographic subareas, proportional

to the number of families in each subarea. 4,012 household were selected to participate in

the study; of these, 89.5% were located and screened. Of the screened families, 2,646 were

found eligible based on pre-established criteria (both twins lived together with the adult

caretaker for least half of the time in the past 6 months, and the twins and caretaker spoke

English). Phone interviews were completed with 2,063 adult caretakers (90.8% biological

mothers), with a 70% response rate. Twin pairs in which either youth had been diagnosed

with autism, psychosis, or seizure disorder were excluded. After exclusions, the finalized

sample consisted of 3,990 twins in 1,995 complete pairs. Caretakers classified 71% of the

twins as non-Hispanic white, 24% African American, and 5% as Hispanic and other groups
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(Lahey et al., 2008).

2.1.2 Wave II

Because of the high cost of collecting neuroimaging and lab data, a smaller sub-sample

of twins previously surveyed in Wave I was invited to participate. Two important decisions

were made when selecting this sub-sample. First, the age range was constrained to twins

who were 10- to 17-year-olds during Wave I in order to narrow the age distribution. Second,

high-risk twins were over-sampled based on Wave I CAPS psychopathology in order to

ensure that there was enough representation of psychopathology in the smaller sub-sample.

High-risk pairs were selected if either twin had symptom counts on the total number of

internalizing, ADHD, or the combination of ODD and CD in the top 10% for that age

range (Lahey et al., 2018).

A sub-sample of 405 twin pairs were invited to participate in Wave II. Of these, 40

pairs could not be located, or declined to be screened, and 18 selected pairs were declared

out of scope due to previous participation in the pilot study, mental or physical incapacity,

residence outside of the United States, current imprisonment, or death. This resulted in 347

total twin pairs (694 individual twins) who agreed and were deemed eligible to complete the

telephone screening. During telephone screenings, 114 twin pairs were deemed ineligible

to complete the neuroimaging portion for safety reasons (e.g., large body size, metal im-

plants, claustrophobia), although they were still invited to complete interview assessments

in person or by telephone (Lahey et al., 2018).

In total, of the 694 screened individuals, 499 completed clinical interviews either in per-

son or over the phone for Wave II. These 499 individuals in the final Wave II sample contain

248 complete twin pairs (49.6% monozygotic; 66.9% high risk), and three individuals who

interviewed without their twin (Lahey et al., 2018). Demographic characteristics for Wave

II participants who completed clinical interviews are shown in Table 2.1, reproduced from

a previously published paper by our group (Lahey et al., 2018).
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Demographic variable Percent/mean (SD)

Sex (% female) 52.1

Race-ethnic group
Non-Hispanic White (%) 71.5
African-American (%) 25.2
Other groups (%) 3.2

Monozygotic twin (%) 49.5

Still in school (%) 26.0

Age
In Wave I (mean, SD) (%) 13.6 (2.6)
In Wave II (mean, SD) (%) 26.9 (1.8)
Range in Wave II (%) 23-31

Years of education completed (mean, SD) 14.3 (2.3)

Table 2.1: Demographic characteristics for Wave II sample (N = 499), reproduced from
Lahey et al. (2018)

The Vanderbilt University Institutional Review Board (IRB) reviewed and approved the

TTS Wave II study protocols. Separate protocols were reviewed and approved by the IRB

for participants who were and were not tested at Vanderbilt, and for those who did and did

not complete an MRI session.

Participants who were tested at Vanderbilt read and signed informed consent forms.

The TTS Wave II Vanderbilt lab visit consisted of a full day, 7-hour-long session, which

included completion of several questionnaires, behavioral tasks, and an optional 1.5-hour

functional and structural neuroimaging session. Participants who came in for the lab visit

and completed MRI scanning were paid $400, plus up to $50 in task earnings. Participants

who came in for the lab visit, but did not complete MRI scanning were paid $200 for

participation in the study, plus up to $8 in task earnings. All of these participants were also

reimbursed for travel expenses, and they were also eligible to earn $20 more by completing

questionnaires at home.

Participants who were not tested at Vanderbilt (i.e., completed their psychiatric inter-

view over the phone) provided verbal consent prior to initiating their phone interview, and
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would then mail a signed consent form to the lab.1 They would then spend about 2 hours

completing a phone administration of the YA-DISC and filling out self-report forms. Par-

ticipants not tested at Vanderbilt were paid $100 for complete participation in the study,

with the potential to earn an additional $15 if they mailed back a saliva sample to the lab.

This study was funded by the National Institute of Mental Health, as part of it’s Re-

search Domain Criteria (RDoC) program. The NIMH has determined that phenotypic data

collected for studies funded by the RDoC program should be provided to a data repository.

In compliance with this policy, non-genetic data collected in Wave II of the TTS are cur-

rently stored on a platform specially created for RDoC projects by NDAR (ndar.nih.gov).

Other researchers may request access to the TTS Wave II data being analyzed in this study,

subject to approval by the NIMH.

2.2 Tasks and measures

2.2.1 Young Adult Diagnostic Interview Schedule (YA-DISC)

Psychopathology was assessed in Wave II using the Young Adult Version of the Diag-

nostic Interview for Children (YA-DISC) (Schaffer, Fischer, Piacentini, & Lucas, 2008).

The computer-assisted YA-DISC interview was selected due to mirroring several of the

assessed dimensions in Wave I, and having a relatively low number of skip-outs. Skip-

outs refer to heuristics used in many structured interviews, in which absence of one or

two “main criteria” leads the interviewer to skip assessment of other symptoms in that

dimension. While skip-outs like these might be useful heuristics in a clinical setting when

attempting to arrive at a diagnosis, they can be problematic when attempting to model

higher-order psychopathology, since they can artificially lower symptom counts. For this

reason, selecting a clinical assessment instrument with low number of skip-outs like the

1Participants would receive two copies of the consent form in the mail prior to their phone interview; then,
when a phone interview was scheduled, research assistants went over the consent with them, answered any
questions they might have, and asked them if they agreed to participate in the study. If they agreed, these
participants would then sign the consent form and mail a signed copy to the lab.
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YA-DISC is important when modeling higher-order psychopathology.

The YA-DISC assessed for symptoms of ADHD, MDD, GAD, Post-Traumatic Stress

Disorder (PTSD), Agoraphobia, Panic Attacks, Social Phobia, Specific Phobia, Manic

Episodes, and Anti-Social Personality Disorder (APD), and maladaptive use of drugs such

as nicotine, alcohol and marijuana during the past 12 months (Lahey et al., 2018).

2.2.2 Neuroimaging

The neuroimaging protocol lasted approximately 1.5 hours. Imaging data were acquired

on two identical 3T Phillips Intera-Achieva MRI scanners, using a 32-channel head coil.

We ensured that both twins in any pair were scanned in the same scanner (i.e., twin pairs

are nested within scanners).

T1-weighted anatomical structure images (used in our processing pipeline for registra-

tion purposes) were acquired with a 3-D Magnetization Prepared Rapid Acquisition Gra-

dient Echo (MPRAGE) sequence, with the following parameters: TE/TR = 9000/4600ms;

SENSE = 2.0; echo train = 131; scan time = 4 min 32 s; FOV = 256×256×170mm; flip

angle = 5°; 1mm isotropic voxel resolution.

Functional data for the Monetary Incentive Delay task were collected across 3 func-

tional runs with identical scanning parameters: TR/TE = 2000/28ms; SENSE = 2.0; echo

train = 43; scan time = 8 min 12 s; volumes = 246; FOV = 80×80×38; flip angle = 15°;

3mm × 3mm × 3.30mm voxel resolution.

In the same session, participants also completed functional runs of a Go/No-Go task

(2 runs), a Cued Aversive-Threat Picture Task (2 runs), and a diffusion weighted imaging

(DWI) scan. These tasks and scans will not be discussed in this thesis.

2.2.3 Monetary Incentive Delay (MID) task

The TTS Wave II study used an adapted version of the Monetary Incentive Delay (MID)

task (Knutson et al., 2000; Knutson, Adams, et al., 2001) to assess reward anticipation and
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Figure 2.1: Trial structure in TTS Wave II MID task, adapted from Knutson et al. (2000)

response to reward attainment. As discussed earlier (see Section 1.4.1), the MID is one of

the most widely used measures of individual differences in corticostriatal reward circuitry.

The structure of our version the task can be seen in Figure 2.1. In each trial, participants

saw a cue indicating the reward value of the trial (in the TTS MID task adaptation, the

cue consisted of a numeric cash value with a plus sign, as opposed to other trials that use

circles or squares crossed with lines to indicate the value of the upcoming trial). Following

a variable delay period, participants then had to make a rapid response to a target in order to

obtain the monetary reward indicated in the cue. A few seconds after the target disappeared,

participants were then informed of whether they hit or missed the target, and the amount of

money they earned in that trial. In the TTS MID task adaptation, there were three possible

conditions for each trial: +$5.00, +$1.00, or +$0.00 (no gain / control); there were no

punishment or loss conditions included. Participants completed 3 runs of the MID task,

each of which contained 13/13/14 trials for each condition, which amounted to a total of

40 trials per condition across runs.
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2.2.4 Urine drug screen

To assess whether participants were or had recently been under the influence of psy-

choactive substance, participants were required to complete a urine drug screen. Most par-

ticipants in the TTS Wave II study were screened using a urine dip strip manufactured by

Medimpex United, Inc. (SKU: DTP-10), which screened for amphetamines, barbiturates,

benzodiazepines, cocaine, marijuana, methamphetamine, methadone, opiates, and phency-

clidine. A few participants, however, were screened with a urine dip strip by USHealthT-

ests, Inc. (SKU: IS10), which tested for all of the drugs listed earlier and tricyclic antide-

pressants.

2.3 Neuroimaging pre-processing pipeline

Of the 499 individuals who completed Wave II clinical interviews, a total of 448 indi-

viduals consented to the neuroimaging protocol and participated in a scanning session.

As it pertained to our analysis of the MID task, we excluded 14 of these 448 participants

prior to the data processing phase based on review of the scanning logs kept by research

assistants and the available data. Reasons for exclusions are outlined as follows: 1 partici-

pant was excluded due to reporting suffering from a very strong migraine during the task;

1 participant was excluded due to reporting suffering from strabismus during the task; 4

participants were excluded due to missing scan or task data; 2 participants were excluded

due to not responding to the task or falling asleep; and 6 participants were excluded be-

cause their scans were interrupted (e.g., due to claustrophobia, technical problems, nausea

or other factors).

The functional and structural data for the remaining 434 subjects were compiled into a

dataset compliant with the Brain Imaging Data Structure (BIDS) (K. J. Gorgolewski et al.,

2016). Our dataset was then pre-processed using the FMRIPREP v1.0.0 pipeline (Esteban

et al., 2018). Following is a detailed description of the pre-processing steps, generated by

39



the FMRIPREP program based on our input processing parameters:

Pre-processing was performed using FMRIPREP version 1.0.0 (Esteban et

al., 2018) a Nipype (K. Gorgolewski et al., 2011; K. J. Gorgolewski et al.,

2017) based tool. Each T1 weighted volume was corrected for bias field using

N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010) and skull-stripped us-

ing antsBrainExtraction.sh v2.1.0 (using OASIS template). The skull-stripped

T1w volume was coregistered to skull-stripped ICBM 152 Nonlinear Asym-

metrical template version 2009c (Fonov, Evans, McKinstry, Almli, & Collins,

2009) using non-linear transformation implemented in ANTs v2.1.0 (Avants,

Epstein, Grossman, & Gee, 2008).

Functional data were slice time corrected using AFNI (Cox, 1996) and mo-

tion corrected using MCFLIRT v5.0.9 (Jenkinson, Bannister, Brady, & Smith,

2002). This was followed by co-registration to the corresponding T1-weighted

volume using boundary-based registration with 9 degrees of freedom, imple-

mented in FSL (Greve & Fischl, 2009). Motion correcting transformations, T1

weighted transformation and MNI template warp were applied in a single step

using antsApplyTransformations v2.1.0 with Lanczos interpolation.

Three tissue classes were extracted from T1w images using FSL FAST v5.0.9

(Y. Zhang, Brady, & Smith, 2001). Voxels from cerebrospinal fluid and white

matter were used to create a mask that was in turn used to extract physiolog-

ical noise regressors using aCompCor (Behzadi, Restom, Liau, & Liu, 2007).

Masks were eroded and limited to subcortical regions to limit overlap with

gray matter, six principal components were estimated. Frame-wise displace-

ment (Power et al., 2014) was calculated for each functional run using Nipype

implementation.
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2.4 Neuroimaging quality assurance

Following successful pre-processing, these 434 Wave II participants were included in

our quality assurance (QA) pipeline. Our QA pipeline consisted of the following steps.

1. The subject’s anatomical and functional data were pre-processed using the FMRIPREP-

v1.0.0 pipeline, the details of which are presented in the following section. Research

assistants then reviewed the output reports produced by FMRIPREP for the subject,

to ensure that normalization and brain mask estimation was accurate.

2. Stimulus timing data were used to create a design matrix for the subject’s MID runs

in SPM12 (fil.ion.ucl.ac.uk/spm/software/spm12).

3. A composite coverage mask was created for each subject by calculating the intersec-

tion of the coverage masks for each run produced by FMRIPREP.

4. The composite coverage mask, design matrix file and motion regressors (calculated

by FMRIPREP) were fed into the ART Toolbox for SPM, version 2015-10 (ni-

trc.org/projects/artifact detect). Outlier timepoints were then estimated by ART us-

ing the following thresholds: global signal z > 3; motion > 1mm.

5. Runs were flagged for exclusion if 20% of TRs for any condition of interest (e.g.,

CueFive, CueOne, CueZero, FiveHit, FiveMiss...) were identified as outliers.

6. Subjects were flagged for exclusion if they had less than 2 viable runs (i.e., 2 or 3 of

their runs were flagged for exclusions by the QA algorithm)

Head motion during scanning is one of the most problematic sources of artifacts in

neuroimaging, because it can yield differences across participants’ parameter maps that

could easily be mistaken for neuronal effects (Van Dijk, Sabuncu, & Buckner, 2012). I

decided to detect and censor outlier timepoints based on empirical evidence supporting

timepoint censoring in fMRI. Motion censoring has been found to decrease variance in
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parameter estimates within- and across-subjects, reduce residual error in GLM estimation,

and increase the magnitude of statistical effects (Siegel et al., 2014). A 0.9mm frame-

wise motion displacement threshold was chosen for flagging outliers because this specific

threshold was found to be ideal in maximizing effect sizes in the aforementioned study2.

An assumption of the within-subject GLM analyses used to obtain parameter maps for

each condition is that residuals will be normally distributed after regressing out task and

motion parameters. However, this assumption can be violated more often than one might

think due to just a few outlier timepoints. In a study with 328 subjects and 3 runs per

participant, Whitfield-Gabrieli (2017) found that in 48% of the sessions the residualized

scan-to-change in average BOLD signal was not normally distributed. However, this per-

centage dropped to 4% when removing an average of 8 timepoints per run, using a global

signal threshold of z > 3. Furthermore, she found that global signal outlier removal im-

proved power to detect task effects from .29 (prior to censoring) to .70 (after censoring an

average of 8 scans per session, using the aforementioned threshold). Given that censoring

of a few timepoints can both reduce violations of assumptions of normality and improve

power to detect effects, I decided to implement this procedure as part of my Quality Assur-

ance pipeline. I chose the threshold of z > 3 because this was explicitly recommended by

Whitfield-Gabrieli (2017), who also developed the ART Toolbox that is being used in our

pipeline.

An important drawback from the censoring QA approach used in this paper is that it

results in an effective reduction in the temporal degrees of freedom being used to estimate

parameter maps for conditions of interest. That is, at a given threshold, the number of

time-points being censored will be higher for subjects who move more, leading to fewer

2It is worth noting here that the study by (Siegel et al., 2014) flagged timepoints for censoring based
on a framewise displacement (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) global motion metric,
which is very similar, but not exactly identical, to the composite motion metric used by the ART toolbox
(for more on this, see nitrc.org/forum/forum.php?thread id=4028&forum id=1144). While general support
for the concept of thresholding still holds, the optimal framewise displacement threshold of 0.9mm might
correspond to a slightly different number in ART’s composite motion metric. However, since no studies were
done on the optimal metric to use with ART’s composite metric, I am using the FD-optimal threshold, with
the expectation that it should be a good approximation of the optimal value for ART’s metric.
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temporal degrees of freedom being available for estimating parameters maps. At a within

subject level, the consequence of this is that the reliability and power of parameter estimates

for those subjects will be reduced. On a between-subjects level, this becomes even more

problematic because it could introduce biases. That is, if high motion covaried with higher-

order psychopathology or other factors of interest, inclusion of these subjects at the group

level could lead to biased estimates of group-level effects (Caballero-Gaudes & Reynolds,

2017). In order to avoid these potential biases, Caballero-Gaudes and Reynolds (2017) rec-

ommend setting a maximum number of censored volumes across populations included in a

group analysis, in order to assure that there is some degree of consistency. This approach

was taken here by setting an a priori threshold that no more than 20% of timepoints used

to estimate parameter maps for a given condition of interest be flagged for censoring in the

QA pipeline in order for a run to be included. This specific threshold, although somewhat

arbitrary, is consistent with what has been used in other studies applying the censoring

approach for modeling fMRI task data (Simmonds, Hallquist, & Luna, 2017).

2.5 Neuroimaging analyses: within-subjects (first-level)

Following pre-processing, each subject’s data were smoothed using a 6mm full width

at half-maximum (FWHM) Gaussian kernel using SPM12. Then, for each participant,

AFNI’s 3dDeconvolve was used to model the ideal hemodynamic response to each event

type as a boxcar function convolved with a canonical hemodynamic response function. For

each participant, I created a design matrix including regressors for signal drift, response

to each task condition of interest, and six regressors for motion and rotation; in addition,

regressors were added to censor TRs as guided by the neuroimaging QA in ART described

above. An example of the design matrix specified by AFNI’s 3dDeconvolve is shown in

Figure 2.2.

Model estimation was conducted using 3dREMLfit, which performed Generalized Least

Squares (GLSQ) regression combined with REML estimation of an ARMA(1,1) temporal
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Figure 2.2: Example design matrix from 3dDeconvolve for a participant with three runs
and no outlier timepoints. From left to right: the first 15 columns are polynomial regressors
used to model run-specific baseline signal and signal drift, using polynomials (5 columns
per run). The following 9 columns correspond to parameter estimates for task conditions
of interest: anticipation of $5, $1, $0 trial; hit $5, $1, $0 trial; miss $5, $1, $0. The last 6
columns correspond to regressors for 3-D motion displacement (x, y and z axes) and 3-D
head rotation, estimated by FMRIPREP during re-alignment of the images. If a participant
had a censored timepoint, an additional column would be tacked at the end, with a value of
1 for the censored TR and 0 for all others.
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correlation structure. For each subject, I also modeled within-subject contrasts of interest

in this stage, which were specified as General Linear Tests (GLTs):

1. Anticipation: $5 trial − $0 trial (high vs. no reward)

2. Attainment: $5 hit − $5 miss

2.6 Neuroimaging analyses: between-subjects (second-level)

2.6.1 Issues considered when selecting a between-subjects analysis approach

Both the nature of the TTS Wave II sample and my interest in examining relationships

with latent constructs led to some unique challenges when coming up with a between-

subjects analysis approach:

• Sampling issues. The TTS Wave II sample is not a random sample. Subjects rep-

resented in Wave II include those who were selected based on over-sampling for

psychopathology from TTS Wave I respondents, and is further limited to those who

were both eligible to participate in the study and chose to participate.

• Non-independence. The TTS Wave II sample consists of twins, which means there

is high non-independence in the sample that must be statistically accounted for. Fur-

thermore, the TTS Wave II sample twin pairs are heterogeneous in sex and related-

ness, i.e., there are mono-zygotic twin pairs, di-zygotic twins of the same sex, and

di-zygotic twins of different sexes. Again, this must be accounted for statistically.

• Neuroimaging subsample. Not all TTS Wave II participants came in for a lab visit,

and were eligible for or completed the imaging protocol. Furthermore, not all TTS

Wave II participants who completed the imaging protocol pass our QA pipeline, i.e.

are eligible for inclusion in the between-subjects analyses.
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• Latent variables. The constructs of interest are latent variables. This means that

relationships between these constructs and neural response need to be analyzed either

within an SEM framework, or by potentially extracting factor score estimates and

then using another regression-based approach.

• Voxel-wise analysis. My intended goal with these analyses is to take a whole-brain,

voxel-wise approach will be taken. This means that the regression model would

be run for each voxel in the brain (there are 61,183 voxels in our between-subjects

mask), with each of these 61,183 models having as a dependent variable the par-

ticipants’ contrast estimate for a given voxel. Because of this, I need to correct for

multiplicity to avoid increased false positive rates. Furthermore, in using an SEM

approach, I have to consider how introducing the voxel variable might affect the

loadings in the bi-factor model, and therefore the extent to which this variability in

the measurement model could affect the commensurability of results across voxels.

• Software limitations. Currently available mainstream neuroimaging software pack-

ages (AFNI, FSL, SPM) are not well equipped to handle complex designs with

non-independence. The most sophisticated mainstream product available currently

is AFNI’s 3dLME, which allows for a Linear Mixed Effects model with one random

intercept and one random slope (Chen, Saad, Britton, Pine, & Cox, 2013).

In choosing an approach, I realized it would be difficult for me to address every single

challenge listed above optimally. I want to be upfront and acknowledge to the reader that

the approach I am about to present is not perfect or the only approach that could be used.

However, I believe this approach does address most of these issues to some extent. I will

provide a more in-depth discussion on the strengths and limitations of my methodological

approach, as well as future directions or improvements that could be made, in the Section

4.3.
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2.6.2 Voxel-wise SEM approach

I chose to use a voxel-wise, Structural Equation Modeling (SEM) based approach to

test my hypothesis that paths from general, internalizing and externalizing factors to the

MID reward anticipation and reward attainment contrasts would be significantly different

than 0. My approach consists of a two-step SEM, which is consistent with what my group

has used in other analyses to test other neuroimaging related hypothesis in the TTS Wave

II dataset (Hinton et al., 2019).

First, I ran a confirmatory factor analysis (CFA) in Mplus 8 (M. . Muthén, 2018) to

obtain the un-standardized factor loadings for the bi-factor model that was previously iden-

tified by our group to have the best fit for the full TTS Wave II sample (N = 499) (Lahey

et al., 2018). The model specification was almost identical to the one discussed in the

aforementioned publication: I used maximum likelihood estimation with robust standard

errors (MLR) to account for non-normality in symptom count distributions, and I instructed

Mplus to adjust standard errors to reflect stratification in sampling and the clustering of

twins within twin pairs. The one change in my analysis is that, unlike Lahey et al. (2018), I

did not use weights to account for probability of selection into the Wave II sample or biases

that may have emerged due to non-response or missing data in my CFA analysis.3

Second, for each voxel in the brain (61,183 total voxels), I specified a SEM analysis,

again using Mplus 8. The SEM specification for a single voxel is illustrated in Figure

2.3. In all these SEMs, I fixed the loadings of higher-order psychopathology factors onto

symptom count dimensions to be the unstandardized loadings obtained from the CFA of

the full TTS sample described above. In each of these SEMs, the dependent variable was

the z-scored contrast estimate for a single voxel4; the latent independent variables were

the higher-order psychopathology factors (general, internalizing, and externalizing); and

3For further explanation of why this decision was made and what implications it has, please refer to the
Section 4.3 in the Discussion chapter.

4The contrast estimates were large numbers, which created problems for Mplus when attempting to run
the SEMs. To overcome these Mplus limitations, I z-scored contrast estimates for each given voxel, across
all participants, for the same voxel.
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ManiaInattentionHyperactivityNicotineMarijuanaAlcoholAntisocial PD OCD PTSD GAD Agoraphobia MDD Social Phobia Specific Phobias

Externalizing Internalizing

General

.64 .36 .42 .25 .32 .47 .72 .26 .27 .46

.50 .29 .24 .39 .57 .61 .65 .55 .47 .46 .37 .66 .31 .23

MID Contrast (z) Residual Variance

ScannerMother’s Ed.Log. Fam. Income Handedness Sex Race Age

Figure 2.3: Example SEM specification for a given voxel. Note that the λ factor loadings
for general, internalizing and externalizing are fixed to those obtained from running the
model with the full sample (N = 499). I scraped the standardized (STDYX) output from
Mplus to create brain maps of the standardized estimated path coefficient, its standard error
and associated p-value for paths between the MID contrast and other variables.
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several manifest independent variables were included as covariates: age, sex, race, scanner,

mother’s education, family income (log-transformed), and handedness. This SEM included

only the subset of participants with viable fMRI data (in this case, N = 326). Similar to the

first CFA step, for all SEMs I used maximum likelihood estimation with robust standard

errors (MLR) to account for non-normality in symptom count distributions, and I instructed

Mplus to adjust standard errors to reflect stratification in sampling and the clustering of

twins within twin pairs.

From each of these SEMs, I exported Mplus outputs and integrated them into parameter

maps of the betas, standard error, and p-values for each independent variable included in

the SEM regression.

My scripts to achieve these SEM analyses were coded and run in R (R Core Team, 2013)

version 3.5.1, and relied on two libraries. I relied on Neuropointillist (Madhyastha et al.,

2018) to extract voxel-wise data for each voxel across subjects, generate data-frames on the

fly, run my analysis script across subjects and organize the outputs of each voxel’s SEM

into standard NIFTI files5. I also relied on the MplusAutomation package (Hallquist &

Wiley, 2018) to export data frames for each voxel to an Mplus compatible format, generate

Mplus SEM scripts on the fly based on my template, and scrape Mplus outputs into an R

data structure that could be saved using Neuropointillist.

2.6.3 Multiplicity correction approach

To address the issue of multiplicity (due to the large number of voxels in the brain),

I followed the recommendation by the creators of Neuropointillist to use AFNI’s cluster-

based correction for multiple comparisons (Integrated Brain Imaging Center at the Univer-

sity of Washington, 2018). This approach consisted of the following steps. First, AFNI’s

3dFWHMx was used on each subject’s within-subject GLM residuals to estimate the pa-

5Neuroimaging Informatics Technology Initiative (NIFTI) is a popular 3D or 4D neuroimaging format for
storing brain maps.
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rameters of their spatial auto-correlation function (ACF).6 This yielded a list of spatial

ACF parameter estimates for each subject. These parameters were then averaged across

subjects, and fed to AFNI’s 3dClustSim program. 3dClustSim then ran 10,000 simulations

in which it generated a 3D grid of independent and identically distributed N(0,1) random

deviates, smoothed them to the level estimated from the average spatial ACF parameters

across subjects in our sample, carried out voxel-wise thresholding, and then finally clus-

tered the voxel maps to determine how often contiguous clumps of varying sizes occur at

various voxel-wise thresholds. From these simulations, 3dClustSim yielded a table that in-

dicates the empirical cluster extent threshold obtained from the simulations corresponding

to one’s desired α and voxel-wise uncorrected p-value threshold (Cox et al., 2017). Based

on an empirical examination of false positive rates obtained from this approach, Cox et al.

(2017) recommend that in complex group analyses with mixed models, researchers use an

uncorrected voxel-wise p-threshold of either p = .001 or p = .002. Based on this recom-

mendation, I decided a priori that I would use a voxel-wise p-threshold of p = .001, and

select the cluster-extent threshold corresponding to an empirical α = .05. Clustering was

done using the nearest neighbor (NN) definition recommended by the AFNI developers,

which is NN = 1 (Cox et al., 2017).7

2.6.4 Manipulation check

The aforementioned analysis is predicated on the fact that the MID task was able to

effectively engage the reward network in study participants. Although the MID task has

6According to Cox, Chen, Glen, Reynolds, and Taylor (2017), the empirical ACF estimates are typically
fit well by a function that mixes a Gaussian and monoexponential form, which involves the estimation of 3
parameters.

7AFNI and 3dClustSim give the option of selecting from estimated cluster extent thresholds corresponding
to different nearest neighbor (NN) definitions (i.e., what voxels are considered contiguous). AFNI provides
three options for this: NN = 1, typically used by AFNI, which defines a contiguous voxel as one that shares
a face with another voxel (i.e., 6 possible contiguous voxels); NN = 2, typically used by SPM, which defines
a contiguous voxel as one that shares either a face or an edge with another voxel (i.e., 18 possible contiguous
voxels); and NN = 3, typically used by FSL, which defines a contiguous voxel as one that shares a face, an
edge or a corner (i.e., 26 possible neighboring voxels) (Cox et al., 2017).
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been published on extensively and has replicated well across studies (see Section 1.4.1),

a manipulation check was included to ensure that the task reliably engaged the reward

network in our study sample.

The main obstacle for this manipulation check analysis was non-independence in the

sample due to the twins, which I decided to address by splitting the sample such that no

two relatives would be present in the same sample. I used R to pseudo-randomly separate

each twin pair into two groups, such that no two related individuals would be in the same

group. I then pseudo-randomly assigned “stray” twins (i.e., those for whom their twin was

not scanned or was excluded in the QA procedure) equally amongst the two sub-samples.

Subsequently, I used AFNI’s 3dttest++ to examine task effects in the contrasts I would

be examining in relation to psychopathology. I did this in a voxel-wise fashion: for each

voxel, I conducted a paired t-test in which I tested whether the β parameter estimates from

the within-subject GLM for the two conditions being contrasted were equal. I then used

the multiplicity correction approach outlined above in Section 2.6.3 to correct for multiple

comparisons across voxels within each analysis.

AFNI’s 3dttest++ also offers the option to account for covariates in the analyses (see

bit.ly/2EjFLHU for further details on how covariates are accounted for by the program).

In these manipulation check analyses, I also controlled for the same covariates used in the

SEM at a between-subjects level: mother’s education, log-transformed famimly income,

age, sex, handedness, and scanner.
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Chapter 3

Results

3.1 fMRI quality assurance results

A total of 326 participants out of 433 participants (75.28%) passed the QA pipeline

based on our a priori thresholds (see Section 2.4). Of those subjects who passed the QA

pipeline, 83 participants (25.46%) passed the QA protocol threshold for 2 our of 3 runs,

while the remaining 243 participants (74.54%) passed the QA protocol for 3 out of 3 runs.

3.2 Demographics and psychopathology coverage of neuroimaging sub-sample

Table 3.1 compares the demographics of the N = 326 sub-sample of participants who

survived the neuroimaging correction with that of all TTS Wave II (N = 499)1. As ev-

idenced by Table3.1, the TTS Wave II sub-sample that survived QA is demographically

quite similar to the broader sample.

Another aspect that was examined whether the representation of different symptom di-

mensions in the inclusion sub-sample might have differed from that of the full sample.

This could have impacted the analyses by affecting the covariance matrix between dis-

orders, which is essentially what the bi-factor psychopathology factor model is trying to

reproduce. This was examined in a couple ways.

The first aspect that was examined was whether the sub-sample included individuals

who had endorsed some symptoms in every dimension of psychopathology being consid-

ered. Figure 3.1 illustrates this comparison. As shown in the figure, the neuroimaging

sub-sample that passed QA had very similar proportions of participants endorsing psy-

chopathology as the full sample for most disorders.

1Handedness data is missing for 16 subjects in the broader sample; this proportion refers to the 483
subjects for which we have handedness data.
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Figure 3.1: Comparison of symptom endorsement in full TTS Wave II sample and neu-
roimaging sub-sample. Proportions are calculated on the basis of the number of individuals
in the sample/sub-sample who a number of symptoms greater than or equal to the threshold.
Symptom dimensions are obtained from the YA-DISC. The top panel shows the proportion
of participants endorsing one or more symptoms for a dimension; the center panel shows
the proportion endorsing 2 or more symptoms for a dimension; and the bottom panel shows
the proportion of participants endorsing three or more symptoms in a dimension.

53



Variable Full sample (N = 499) fMRI sub-sample (N = 326)

Sex (% Female) 52.10% 53.37%

Race (% Non-Hispanic White) 71.54% 75.15%

Handedness (% right-handed) 89.02% 91.10%

Age
Mean ± SD 26.05 ± 1.80 26.03 ± 1.77
Range 23−31 23−31

(Log) Family Income
Mean ± SD 2.86 ± 0.48 2.89 ± 0.44
Range 0.00−3.18 0.00−3.18

Mother’s Years of Education
Mean ± SD 13.59 ± 2.74 13.78 ± 2.75
Range 0−20 0−20

Table 3.1: Comparison of demographics for full TTS Wave II sample and neuroimaging
sub-sample

The second aspect that was examined was whether the correlation matrices for symp-

tom dimensions differed between the full sample and the neuroimaging sub-sample. Figure

3.2 illustrates the Spearman rank correlation matrices for the full sample (N = 499) and the

neuroimaging sub-sample (N = 326), as well as the differences between these two matri-

ces. Absolute differences between both correlation matrices ranged between 0.0001 and

0.1084. The mean absolute difference between correlation matrices was 0.036, with a stan-

dard deviation of 0.024. Differences between both correlation matrices ranged between

-0.053 and 0.1084, with positive values indicating a larger correlation in the full sample

relative to the neuroimaging sub-sample, and negative values reflecting a larger correlation

in the sub-sample relative to the full sample. The largest differences between the full sam-

ple and the sub-sample were the correlation between marijuana use and nicotine use (0.26

in full sample, 0.15 in neuroimaging sub-sample; 0.11 difference) and the correlation be-

tween nicotine use and hyperactivity symptoms (0.25 in full sample, 0.15 in neuroimaging

sub-sample; 0.10 difference). Aside from the two aforementioned correlations, no other

Spearman rank correlations between YA-DISC symptom dimensions differed between the
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full sample and the sub-sample by more than 0.10. Overall, while there are some differ-

ences in the correlation matrices between the broader sample and the included sub-sample,

these differences are small in nature.

3.3 Manipulation check: task effects

I split the N = 326 sample of participants surviving QA into two sub-samples of N =

163 subjects each; within each sub-sample, no participant was related to one another. In

this section, I will refer to each half as “half 1” (H1) and “half 2” (H2).

3.3.1 Reward anticipation contrast

For the $5 trial vs. $0 trial anticipation contrast, I found similar results across each half.

Although I initially attempted to threshold the activation maps with the aforementioned

strategy (uncorrected voxel-wise p < .001, cluster extent threshold k = 34), this was not

effective for visualization purposes as it led to a massive, brain-wide cluster of over 40,000+

voxels across both samples that appeared to be too broad to be informative. This can tend to

happen in neuroimaging studies that are overpowered for simple contrasts. For this reason,

I thresholded the image using a more conservative threshold of p < 10−28, which was more

illustrative for visualization purposes.

In H1, thresholding with the aforementioned threshold led to the identification of a

large cluster of 12,739 voxels (peak MNI coordinates (0,−39,1.2)), where for all these

voxels the beta for the BOLD signal in the anticipation of $5 trial condition was higher

than that of the $0 condition. In H2, I found a very similar cluster of size 10,767 voxels,

with the same exact peak MNI coordinates. The clusters for each half, entered on the

peak region, are shown in Figure 3.3. Across both samples, these clusters included several

regions in the reward network, including VS and VP, ACC, OFC, and insula. Additionally,

this cluster included other areas involved in sensory and motor processing, including the

pre-supplementary motor area (pre-SMA), motor cortex, visual cortex, and cerebellum.
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Spearman rank 
correlation matrix for 
neuroimaging sub-

sample 
(N = 499)

Spearman rank 
correlation matrix for 

full sample 
(N = 499)

Difference between full sample 
and neuroimaging sub-sample 

Spearman rank correlation 
matrices

Figure 3.2: Differences between full sample and neuroimaging sub-sample correlation ma-
trices. The top left figure illustrates the Spearman rank correlation matrix across symptom
disorder dimensions for the full TTS Wave II sample (N = 499). The bottom left figure
illustrates the Spearman rank correlation matrix across symptom disorder dimensions for
the neuroimaging subsample (i.e., those who had valid neuroimaging data and passed QA;
N = 326). The large figure on the right reflects the full sample correlation matrix minus the
neuroimaging sub-sample correlation matrix. Positive values indicate that the correlation
was larger in the full sample, while negative values indicate the correlation was larger in
the neuroimaging sub-sample. DEP = major depressive episode, GAD = generalized anx-
iety, PTSD = post traumatic stress, MANIA = manic episode, SPPHO = specific phobia,
SOCPHO = social phobia, AGORA = agoraphobia, OCD = obsessive-compulsive, APD
= anti-social personality, ALC = alcohol use, MJ = marijuana use, NIC = nicotine use,
HYPER = hyperactivity, INATT = inattention.
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Figure 3.3: Thresholded maps showing outcomes from a split-sample analysis of the re-
ward anticipation $5 vs $0 conditions contrast. Panels A, B, and C refer to the H1, while
panels D, E, and F refer to H2. 3dttest++ mean difference estimate outputs were thresh-
olded using AFNI by p < 10−28, and overlaid onto the MNI 2009c Asymmetrical template
brain anatomical image. All significant differences found were positive (i.e., higher BOLD
activation in the $5 anticipation condition than in the $0 anticipation condition). Brighter
(more yellow) colors indicate larger mean differences in β estimates. Images are centered
at the peak MNI coordinates for the large cluster: (x = 0,y =−39,z = 1.2). Panels A and
D show sagittal views, where the center image is centered at x = 0, and the flanking left
and right images are taken at x = −8 and x = 8, respectively, to illustrate activation and
engagement of bilateral VS, VP, ACC, SMA, motor cortex, visual cortex, and cerebellum.
L = left, R = right.
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This indicates that, as expected, participants showed increased activation of the reward

network, as well as other brain regions involved with preparing to make a quick response,

when there was a high reward at stake, relative to no reward. One interesting thing to note,

however, is that in both sub-samples the largest mean difference between the contrast maps

was concentrated around a peak just under the splenium of the corpus callosum. This peak

is hard to interpret and may be an artifact.

3.3.2 Reward attainment contrast

For the $5 condition hit vs. miss attainment contrast, I again found similar results

across each half. Figure 3.4 shows activation maps thresholded at p < .001 and clustering

with extent threshold k = 34. As expected, BOLD signal was significantly higher when

participants learned they were successful and attained a $5 reward (hit; relative to when they

learned they failed to attain this reward, or miss) in the VS and vmPFC. The vmPFC region

showed the largest differences between hit and miss trials. In other regions, including the

ACC and the pre-SMA, BOLD signal was significantly lower when participants learned

they were successful and attained a $5 reward (hit; relative to when they learned they failed

to attain this reward, or miss).

3.4 Unweighted CFA of full TTS Wave II sample

I did not complete model optimization steps since those were already described else-

where (Lahey et al., 2018). The bi-factor model provided acceptable fit when not using

weights (see Table 3.2 for a summary of fit statistics). Standardized factor loadings and

residuals (Mplus STDYX) are illustrated in Figure 3.5 (note: line widths for each loading

are proportional to the magnitude of that loading).
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Figure 3.4: Thresholded maps showing outcomes from a split-sample analysis of the reward
attainment contrast: hits vs. misses for the $5 trial condition. Panels A, B, and C refer to
the H1, while panels D, E, and F refer to H2. 3dttest++ mean difference estimate outputs
were thresholded using AFNI by p< .001, and overlaid onto the MNI 2009c Asymmetrical
template brain anatomical image. Statistically significant differences coded in red indicate
higher BOLD signal in the hit condition relative to miss; meanwhile, differences coded
in blue indicate lower BOLD signal in the hit condition relative to miss. Brighter (more
yellow or sky blue) colors indicate larger mean differences in BOLD signal. Images are
centered at (x = 0,y = 50,z = −1), close to the peak coordinates of vmPFC activation.
Panels A and D show sagittal views, where the center image is centered at x = 0, and the
flanking left and right images are taken at x = −8 and x = 8, respectively, to illustrate
activation and engagement of bilateral VS and vmPFC. L = left, R = right.
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ManiaInattentionHyperactivityNicotineMarijuanaAlcoholAntisocial PD OCD PTSD GAD Agoraphobia MDD Social Anxiety Specific Phobias

.34 .79 .76 .78 .67 .63 .58 .70 .67 .57 .34 .50 .83 .74

Externalizing Internalizing

General

.64 .36 .42 .25 .32 .47 .72 .26 .27 .46

.50 .29 .24 .39 .57 .61 .65 .55 .47 .46 .37 .66 .31 .23

Figure 3.5: Confirmatory factor analysis of the full TTS Wave II sample (N = 499). All
loadings and residuals are standardized (Mplus STDYX). Line widths for each loading are
proportional to the magnitude of said loading. Manifest variables depicted above refer to
symptom counts for each dimension, obtained from the YA-DISC clinical interview.

Fit statistic Value

χ2 114.79
df 67
p .00003

CFI 0.946

TLI 0.927

RMSEA 0.038
90% CI 0.026−0.049
p≤ .05 0.959

SRMR 0.040

BIC 22369

AIC 22150

Table 3.2: Full sample unweighted CFA fit statistics. Note: df = degrees of freedom,
CFI = confirmatory fit index, TLI = Tucker-Lewis index, RMSEA = root mean square
error approximation, SRMR = standardized root mean square residual, BIC = Bayesian
information criterion, AIC = Akaike information criterion.
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3.5 Between subjects SEM: reward anticipation

3.5.1 General factor

One cluster survived multiplicity correction. This cluster, which primarily comprised

the right SMA and a small section of the right ACC, indicated a statistically significant

positive association between the reward anticipation contrast (BOLD activation in $5 minus

$0 trials) and general factor scores (see Table 3.3 for full details).

I conducted a post-hoc analysis to assess whether task effects were present in this clus-

ter. In order to do this, I defined a region of interest (ROI) mask based on the surviving

voxels for this cluster, and I looked at its intersection with the thresholding masks for the

manipulation check analyses with the two split samples. The outcome of this analysis

is summarized in Table 3.4. For both H1 and H2, when using a voxel-wise threshold of

p < .001, all 63 voxels in the cluster showed significantly greater BOLD activation in the

$5 condition vs. the $0 condition. When looking at effect sizes and directionality, in H1,

the average z value estimated by 3dttest++2 for voxels in this cluster was 12.58, with z val-

ues associated with the paired t-test ranging from 7.21 through 13.00. Similarly, in H2, the

average z value estimated by 3dttest++ for voxels in this cluster was 12.65, with z values

associated with the paired t-test ranging from 6.87 through 13.00. In short, participants

showed increased activation in this region in the $5 condition relative to the $0 condition

regardless of their general factor scores.

3.5.2 Internalizing factor

Eight clusters survived multiplicity correction. These clusters comprised several brain

regions, including right posterior cingulate cortex (PCC), right precuneus, right motor cor-

tex, left pre-SMA, left cuneus, left middle frontal gyrus (MFG) in the dorsolateral pre-

23dttest++ transforms t-statistics estimated in the t-testing procedure into z values. Positive values reflect
greater activation in the $5 condition relative to the $0 condition; negative values reflect greater activation in
the $0 condition relative to the $5 condition.
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Size
(voxels)

Peak MNI
coordinates

Estimated
cluster α

Avg.
effect size

(Mplus
STDYX)

Avg. SE
(Mplus

STDYX)

Anatomical
regions

63 (0,18,47) < 0.01 0.2370 0.0633 Right pre-SMA
Right ACC

Table 3.3: Clusters surviving multiplicity correction for association between general psy-
chopathology factor and reward anticipation MID contrast. Estimated cluster α is provided
by AFNI, based simulations conducted with 3dClustSim (see Section 2.6.3).

MID Anticipation  
($5 vs $0 contrast) 
on General Factor 

Thresholded voxel-wise  
SEM results map 

Voxel-wise p < .001 
Cluster extent k > 34 

0.277

0.190

STDXY Loading 

(from Mplus)

x = 0

x = 6

x = 12 y = 27

y = 21

y = 15 z = 39

z = 45

z = 51

R

R

R L

R L

R L R L

R L

R L

Figure 3.6: Thresholded maps showing outcomes from my voxel-wise SEM analysis, for
the general factor → MID Contrast (z) path (see Figure 2.3). Path loading maps were
thresholded using AFNI by using a voxel-wise p < .001 and a cluster extent correction fac-
tor of k < 34 (see Section 2.6.3), and overlaid onto the MNI 2009c Asymmetrical template
brain anatomical image. The colored overlay represents a cluster of voxels in the brain
for which the general factor to MID contrast path was statistically significant and survived
thresholding; brighter (more yellow) colors indicate larger standardized (Mplus STDXY)
path coefficients. All path coefficients were positive. L = left, R = right.
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Cluster peak (voxels) % voxels with p < .001 Mean z [range]

(0,18,47)
H1 100.0 12.58 [7.21;13.00]
H2 100.0 12.65 [6.87;13.00]

Table 3.4: This table illustrates an examination of task effects in brain regions defined
by the significant clusters identified in the voxel-wise SEM for internalizing factor. The
second column indicates the percentage of voxels in the cluster mask that intersected with
a mask of voxels that survived cluster correction at a p < .001 voxel-wise threshold in
each pairwise t-test from the manipulation check. The third column indicates the average
z-statistic associated with the t-test (see footnote) across all voxels in the region defined by
this cluster, and the range of z values for all voxels within this region. All examinations
were done in each half of the split sample (H1 and H2).

frontal cortex (dlPFC), left temporal pole. Additionally, two clusters emerged in the cere-

bellum, comprising both left and right areas IX and X, left area V, and the right crus II. In

all these clusters, there was a statistically significant positive association between the re-

ward anticipation contrast (BOLD activation in $5 minus $0 trials) and internalizing factor

scores (see Table 3.5 for full details).

Using the same procedure as with the general factor cluster, I conducted a post-hoc

analysis to assess whether task effects were present in these clusters. The outcome of this

analysis is summarized in Table 3.6. At a p < .001 threshold, most clusters showed some

degree of overlap across halves with voxels that had significant task effects after clusteriz-

ing and thresholding. Most of the voxels in the right motor cortex, the left pre-SMA, and

the right crus II in the cerebellum showed significant task effects in the manipulation check

(>90% across both halves); a majority of voxels in the left MFG, and bilateral areas IX

and X and left area V of the cerebellum showed significant task effects in the manipulation

check (>70% across both halves); more than half of voxels in the left cuneus showed sig-

nificant task effects (>50% across both halves); while there was very little significant task

effects in the right PCC and precuneous cluster areas (27.4% in H1, 15.8% in H2) and no

significant task effects in the left temporal pole area cluster.
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Size
(voxels)

Peak MNI
coordinates

Estimated
cluster α

Avg.
effect size

(Mplus
STDYX)

Avg. SE
(Mplus

STDYX)

Anatomical
regions

143 (−24,−39,−45) < 0.01 0.2719 0.6962 Cerebellum:
bilateral areas IX,
X; left area V

95 (9,−54,21) < 0.01 0.2598 0.0684 Right PCC
Right precuneus

52 (−3,15,64) < 0.01 0.2549 0.0665 Left pre-SMA

45 (−9,−69,14) < 0.02 0.2759 0.0695 Left cuneus

42 (39,−78,−42) < 0.03 0.2497 0.0673 Cerebellum:
right crus II

39 (−51,3,44) < 0.04 0.2671 0.0690 Left MFG

38 (−45,15,−22) < 0.04 0.2513 0.0635 Left temporal pole

36 (15,−15,74) < 0.04 0.2984 0.0757 Right motor cortex

Table 3.5: Clusters surviving multiplicity correction for association between internalizing
psychopathology factor and reward anticipation MID contrast. Estimated cluster α is pro-
vided by AFNI, based simulations conducted with 3dClustSim (see Section 2.6.3).
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Cluster peak (voxels) % voxels with p < .001 Mean z [range]

(−24,−39,−45)
H1 79.7 6.46 [−0.73;13.00]
H2 79.7 6.82 [−1.78;13.00]

(9,−54,21)
H1 27.4 1.68 [−2.64;6.80]
H2 15.8 0.26 [−4.18;5.56]

(−3,15,64)
H1 98.1 9.02 [2.70;13.00]
H2 98.1 9.95 [3.21;13.00]

(−9,−69,14)
H1 73.3 5.24 [0.52;13.00]
H2 55.6 4.15 [−1.77;13.00]

(39,−78,−42)
H1 100.0 5.61 [3.31;6.87]
H2 95.2 4.28 [3.12;5.74]

(−51,3,44)
H1 71.8 6.10 [−3.28;13.00]
H2 74.4 7.18 [−2.73;13.00]

(−45,15,−22)
H1 0.0 0.15 [−2.97;2.24]
H2 0.0 -1.25 [−3.29;0.49]

(15,−15,74)
H1 100.0 10.85 [4.65;13.00]
H2 100.0 11.55 [5.39;13.00]

Table 3.6: This table illustrates an examination of task effects in brain regions defined
by the significant clusters identified in the voxel-wise SEM for internalizing factor. The
second column indicates the percentage of voxels in the cluster mask that intersected with
a mask of voxels that survived cluster correction at a p < .001 voxel-wise threshold in
each pairwise t-test from the manipulation check. The third column indicates the average
z-statistic associated with the t-test (see footnote) across all voxels in the region defined by
this cluster, and the range of z values for all voxels within this region. All examinations
were done in each half of the split sample (H1 and H2).
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($5 vs $0 contrast) 

on Internalizing 
Factor 

Thresholded voxel-wise  
SEM results map 

Voxel-wise p < .001 
Cluster extent k > 34 
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Figure 3.7: Thresholded maps showing outcomes from my voxel-wise SEM analysis, for
the internalizing factor→MID Contrast (z) path (see Figure 2.3). Path loading maps were
thresholded using AFNI by using a voxel-wise p < .001 and a cluster extent correction fac-
tor of k < 34 (see Section 2.6.3), and overlaid onto the MNI 2009c Asymmetrical template
brain anatomical image. The colored overlay represents a cluster of voxels in the brain for
which the internalizing factor to MID contrast path was statistically significant and survived
thresholding; brighter (more yellow) colors indicate larger standardized (Mplus STDXY)
path coefficients. All path coefficients were positive. All clusters are being shown at the
same time across images; slices were chosen such that at least one slice is centered on the
peak coordinates of one of the identified clusters. L = left, R = right.
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3.5.3 Externalizing factor

No clusters survived multiplicity correction for the externalizing factor.

3.6 Between subjects SEM: reward attainment

No clusters survived our multiplicity correction for either general factor, internalizing

factor or externalizing factor in relationship to the reward attainment contrast.
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Chapter 4

Discussion

In this study, I sought to identify whether individual differences in higher-order latent

psychopathology dimensions might be associated with activation in the reward anticipation

and reward attainment contrasts for the MID task.

I tested the hypothesized that I would find associations between higher-order psy-

chopathology and activation in the MID task contrasts across the brain. In more statis-

tical terms, I hypothesized that in my SEM specification for each voxel the paths from the

higher-order factors to the MID contrast would not be equal to 0. I expected that voxels for

which these associations were significant would be largely localized to the reward network,

although the path was tested for all voxels in the brain.

Consistent with my hypothesis, I found that there were significant associations between

higher order factors of psychopathology (specifically general factor and internalizing fac-

tor) and the reward anticipation contrast of the MID task in some brain regions. Inconsistent

with my hypothesis, I did not find any associations between the externalizing psychopathol-

ogy factor and the reward anticipation contrast, or associations between any psychopathol-

ogy factor and the reward attainment contrast.

In terms of localization of significant paths, the right dACC was the only brain region in

the reward network that showed a significant association to higher-order psychopathology.

The rest of the brain regions that showed significant associations with psychopathology

factors are not traditionally associated with the reward network.

My results inform our understanding of the neural substrates of psychopathology by

contributing to a growing body of evidence suggesting there are several differences in

brain structure and function that can be ascribed to non-specific, dimensional transdiag-

nostic measures of psychopathology. Specifically, the present study expands on the initial
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findings by Shanmugan et al. (2016) that higher-order psychopathology dimensions are

associated with differences in brain activation in an n-back fMRI task paradigm, by show-

ing that higher-order psychopathology is also associated with activation in a different task

paradigm, the MID task. More broadly, the present study contributes to ongoing efforts

to identify neural substrates that might non-specifically contribute to several forms of psy-

chopathology and their co-morbidity. These efforts may, in the future, help with narrowing

down the extent to which brain differences may confer broad vulnerabilities or more spe-

cific vulnerabilities to sets of symptoms, which is not a question that can be directly tackled

in case-controlled designs.

In terms of the relationship between reward and psychopathology, my findings suggest

that higher-order psychopathology effects on reward processing are limited to reward antic-

ipation, and not the reward attainment stage. Keeping in mind several prior case-controlled

studies that found associations between disorders and reward attainment, one possible rea-

son why no associations were identified between higher-order psychopathology and reward

attainment may be that brain mechanisms operating at this level might be more specific to

certain symptom dimensions or disorders. This would also be to some degree consistent

with the existing contradictions across findings for various disorders. This explanation

could be further explored in a case-controlled re-analysis of the TTS Wave II dataset, or in

further studies.

4.1 Reward anticipation contrast associations to higher order psychopathology

The reward anticipation contrast of the MID task contrasted BOLD response when

participants were preparing to make a response in a trial where a $5 monetary reward was

at stake to BOLD response when participants were preparing to make a response in a trial

where no monetary reward was at stake. As evidenced by our manipulation check (see

Section 3.3.1), this contrast robustly reflects how higher reward trials recruited the entire

reward network more than no reward trials, increasing blood flow to almost all key regions
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in the reward circuit including the bilateral VS, VP and ACC. The task effects evident in

this contrast are highly consistent with what was expected by prior literature on the MID

task (see Section 1.4.1).

4.1.1 General psychopathology factor

In my voxel-wise SEM analyses, the general psychopathology factor showed a positive,

statistically significant, association with a cluster of voxels comprising right pre-SMA and

right dorsal ACC. This suggests that higher general psychopathology was associated with

increased activation of right pre-SMA and dACC when preparing to make a response in

high reward trials, relative to no reward trials.1 Subsequent analyses also revealed that in

the area demarcated by this cluster, there was also a significant positive effect of task, where

practically all voxels showed greater activation in the $5 trials relative to the $0 trials.

Right dorsal ACC. Consistent with my hypothesis, a small section of the right dorsal

ACC (part of the reward network) was included in this cluster of voxels associated with

the general factor. Looking at the case-controlled study literature, this finding is consis-

tent with meta-analyses of fMRI data suggesting elevated activation of the ACC across

major depressive disorder (W. N. Zhang et al., 2013; Hamilton et al., 2012) and anxiety

disorders (Etkin & Wager, 2007); and furthermore, this finding is also consistent with the

cross-disorder meta-analysis by Goodkind et al. (2015), which identified grey matter loss

in the dorsal ACC across patients with schizophrenia, bipolar disorder, depression, ad-

diction, obsessive-compulsive disorder, and anxiety. Functional differences in right ACC

response have also been previously linked to general psychopathology in the PNC stud-

ies. Kaczkurkin et al. (2017) found that higher general psychopathology was associated

with increased perfusion to the right dorsal and left rostral ACC while at rest using rCBF

techniques, while Shanmugan et al. (2016) found that higher general psychopathology was

1Because these findings are from data collected in the same wave, I would refrain from making any causal
inferences here.
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associated with decreased activation in the 2-back > 0-back contrast of the n-back task.

It is important to note that the dorsal ACC does not just play a role in reward process-

ing; in fact, the ACC is effect in numerous other processes such as performance monitoring

(Carter & Van Veen, 2007) and affect regulation (Bush, Luu, & Posner, 2000). Given the

breadth of processes the ACC is involved in, it is important to point out that the association

identified between the general factor and the reward anticipation contrast might not neces-

sarily emerge exclusively during reward anticipation, but rather might also emerge during

other non-reward related psychological processes as well. That said, because the ACC is

involved in so many processes, any kind of dysfunction in the ACC might confer vulnera-

bility to a variety of psychiatric symptoms, which would be consistent with the association

identified between ACC and general factor.

Right pre-SMA. Along with right dorsal ACC, the cluster of voxels associated with the

general factor included a section of right pre-SMA. The pre-SMA is commonly thought

of in relation to a cognitive control network, which also incldues the inferior frontal gyrus

(IFG) and some regions of the basal ganglia like the subthalamic nucleus (STN) (Aron,

Behrens, Smith, Frank, & Poldrack, 2007). The pre-SMA is considered to be an essential

node in this network, supporting cognitive control of actions that require rapid updating, in-

hibition, or switching (Obeso, Robles, Muñoz-Marrón, & Redolar-Ripoll, 2013). I did not

initially hypothesize that there would be a significant relationship between general factor

and the reward anticipation contrast for pre-SMA, and there are multiple possible inter-

pretations for this finding. One such possible interpretation relies on previous work by

(Forstmann et al., 2008), which suggests that right pre-SMA is activated when participants

are preparing to make responses under time pressure.2 In the MID anticipation phase, par-

ticipants are essentially preparing to making a quick response under time pressure (when

2In their study, Forstmann and colleagues had participants complete a moving dots task in the scanner, in
which participants had to ascertain the direction in which a cloud of dots were moving. Prior to each trial,
participants were given a cue of whether they should respond emphasizing speed, accuracy, or neutral. The
authors found increased activation in right pre-SMA and right striatum for the cue speed > neutral fMRI
contrast (Forstmann et al., 2008).

71



the target appears), and they are especially motivated to provide a quick response in the $5

reward trials since there is actual money at stake. If we refer back to the “reward facilita-

tion” conceptualization offered by Zald and Treadway (2017) (presented earlier in Section

1.3), the reward anticipation phase contrast does not just reflect motivational differences,

but also it shows how multiple perceptual, attentional, cognitive and motor processes are

engaged in preparation to make a response when a reward is at stake. One might thus

postulate that, perhaps, task effects reflecting increased engagement of pre-SMA in the

$5 relative to the $0 condition are due to increased preparation to make a quick response

for these trials under time pressure; and in this vein, participants with higher general psy-

chopathology needed to activate their right pre-SMA more than those with lower general

psychopathology to achieve the same desired outcome. That said, this is one of many pos-

sible interpretations, and further work needs to be done in order to further understand the

meaning and implications of links between pre-SMA and general psychopathology.

4.1.2 Internalizing psychopathology factor

In my voxel-wise SEM analyses, the internalizing psychopathology factor showed a

positive, statistically significant, association with eight clusters of voxels, comprising a

wide array of brain regions: left pre-SMA, left cuneus, left MFG (dlPFC), left temporal

pole, right PCC, right precuneus, right motor cortex, and cerebellum. This would suggest

that higher internalizing psychopathology scores were associated with increased activation

of the aforementioned brain regions when preparing to make a response in high reward tri-

als, relative to no reward trials. The brain regions identified to show significant associations

to internalizing psychopathology in this analysis do not clearly belong to a single network

or circuit, nor are they associated with the core reward circuit regions. Furthermore, for

some of these regions it is not entirely straightforward why they might be associated with

internalizing psychopathology.

An important preamble to this discussion is to keep in mind that the internalizing factor,
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as defined in my bi-factor model specification, is not the “same” as other conceptualizations

of internalizing from correlated factor models. That is, while in a correlated factors model

the internalizing factor models covariance across all internalizing disorders, in a bi-factor

model the internalizing factor is modeling the covariance among internalizing disorders

that is not explained by the general factor. Thus, my use of “internalizing factor” here

differs from that that has been used in prior papers.

Left pre-SMA. It is interesting that left pre-SMA emerged as significantly associated

with the internalizing factor, especially considering how right pre-SMA was associated

with the general factor. Just like the right pre-SMA cluster discussed above, the left pre-

SMA associated with internalizing factor showed significant task effects (i.e., it across

participants it was activated more strongly in the $5 condition than the $0 condition). One

possible explanation for this is that, just as it was proposed for the right pre-SMA as-

sociation with general factor, individuals with higher disposition to develop internalizing

psychopathology might engage left pre-SMA more in order to prepare themselves for a

fast motivated response. The lateralization aspect of this association is also interesting;

perhaps, it is possible that differential engagement in left pre-SMA might be specific to the

internalizing dimension, while differential engagement in right pre-SMA might be com-

mon across all symptom dimensions. All these hypotheses and potential interpretations are

not, however, the only possibilities, and would require support from further studies in order

to be taken seriously.

Right PCC and right precuneus. The posterior cingulate and the medial precuneus have

been consistently associated with correct remembering of previously learned items, includ-

ing autobiographical memories (Maddock, Garrett, & Buonocore, 2001; Vincent et al.,

2006). Some evidence also exists that the PCC may help mediate interactions of emotional

and memory-related processes (Maddock, Garrett, & Buonocore, 2003). The PCC/pre-

cuneus regions are generally thought about within the context of the default mode network

in the brain (DMN). The DMN has been traditionally conceptualizing as involving three
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major subdivisions: the ventromedial prefrontal cortex (vmPFC), the dorsal medial pre-

frontal cortex (dmPFC) and the PCC/precuneus. Broadly, the DMN is believed to play

playing a role in processes that support emotional processing, self-referential mental ac-

tivity, and recollection of prior experiences, with the PCC/precuneus being particularly

associated to this latter function (Raichle, 2015). Brain activation in DMN regions, includ-

ing the PCC/precuneus, are greater at rest than during engagement in goal directed-tasks

across multiple modalities, a phenomenon that has been coined “task deactivation” or “task

suppression” of the DMN (see Whitfield-Gabrieli (2017) for a full list of references). Inter-

estingly, studies have shown task suppression of the DMN is reduced in patients with major

depressive disorder in tasks of emotion perception and judgment (Grimm et al., 2009) and

during passive viewing and reappraisal of negative pictures (Sheline et al., 2009). Con-

sidering this line of research, one possible interpretation of the observed effect is that the

observed cluster reflects participants with higher internalizing scores tended to exhibit less

task suppression in the PCC/precuneus region of the DMN.

Left temporal pole. The temporal pole is understood functionally as a paralimbic region,

and has been associated with face processing, emotional processing of sensory stimuli, and

theory of mind across several neuroimaging studies (Olson, Plotzker, & Ezzyat, 2007). The

specific reason why this region might have shown a positive association with the reward

anticipation of the MID task remains unclear. It is interesting to note that, as stated in

Table 3.6, this region did not show any task effects (i.e., it across participants it was not

engaged more in the $5 condition than the $0 condition). Taking this into consideration,

one potential interpretation for this effect is that perhaps the temporal pole was engaged

more throughout the task for individuals with higher internalizing scores due to anxiety

related to scanning processes, unrelated to the task itself.

Right motor cortex. It is unclear why engagement the right motor cortex may have been

associated with internalizing psychopathology in this task. One possibility is that partici-

pants with higher internalizing scores tended to fidget or move more the left side of their
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body during the scanning process, due to increased anxiety or discomfort. However, this

proposed explanation is a bit of a stretch given that if participants were fidgeting around, I

would have expected a bilateral relationship between internalizing and motor cortex.

Cerebellum. Although the cerebellum was traditionally thought of as exclusively con-

tributing to the planning and execution of movement, mounting evidence from neuroimag-

ing studies, neuroanatomy studies and lesion studies has supported the view that the cere-

bellum also serves several non-motor functions (Buckner, 2013). Cerebellar activation has

been associated with a broad array of tasks, including those used to assess attention, ex-

ecutive control, language, working memory, learning, pain, emotion, and addiction (for a

full list of references, see Strick, Dum, and Fiez (2009)). Anatomical and functional differ-

ences in cerebellum have also been associated with a wide spectrum of disorders, including

ADHD, autism spectrum disorders, schizophrenia, bipolar disorder, major depressive dis-

order, and anxiety disorders (Phillips, Hewedi, Eissa, & Moustafa, 2015; Moreno-Rius,

2018). The human cerebellum is not a monolithic brain region: it has a distinct functional

topography (Stoodley & Schmahmann, 2009; Buckner, Krienen, Castellanos, Diaz, & Yeo,

2011; Stoodley, Valera, & Schmahmann, 2012). For this reason, it is important to focus

discussion on specific areas of the cerebellum that are of interest.

Cerebellum: bilateral area IX. As pointed out by Habas et al. (2009), area IX of

the cerebellum has been implicated in various functional tasks including thirst satiation

(Parsons et al., 2000), sensation (Hui et al., 2005), motor synchronization (Jantzen, Stein-

berg, & Kelso, 2004), working memory (Desmond, Gabrieli, Wagner, Ginier, & Glover,

1997), and perception of change in stimulus timing (T. Liu, Xu, Ashe, & Bushara, 2008).

Keeping in mind that a significant cluster associated with internalizing psychopathology

also emerged in the PCC and precuneus, it is interesting to note that Area IX, along with

retrosplenial and precuneus cortex, have been implicated in past and future event elabo-

ration (Addis, Wong, & Schacter, 2007). Furthermore, at least three resting-state studies

have suggested that area IX shows strong connections to the default mode network (DMN)
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(Habas et al., 2009; Filippini et al., 2009; Buckner et al., 2011), which also includes the

PCC and precuneus, and has been implicated in several psychopathological processes in-

cluding rumination (Broyd et al., 2009; Whitfield-Gabrieli, 2017).

Cerebellum: bilateral area X. Area X of the cerebellum, also referred to as the floccu-

lonodular lobe or vestibocerebellum, receives substantial input from the vestibular nerve,

and serves as a regulator of the vestibular system (Haines & Mihailoff, 2018). I was unable

to find any references connecting this area with pscyhopathology, so it is difficult to come

up with a good interpretation for what this relationship might mean. It is also possible that,

because areas IX and X are close together, involvement of area X may be an artifact from

blurring.

Cerebellum: right crus II (area VII). The crus II is a subdivision of area VII of the

cerebellum. A meta-analysis of fMRI studies found associations between the right crus

II and activations in language related tasks (Stoodley & Schmahmann, 2009); a follow-up

fMRI study also found the right crus II region showed peaks during mental rotation tasks

(Stoodley et al., 2012). A functional connectivity also found the bilateral crus I and II

contributed to the right and left executive control networks (Habas et al., 2009). Buckner

et al. (2011) also found that the crus II showed functional connectivity with the default

mode network (DMN), which is interesting in light of the other significant cluster in the

PCC/precuneus.

Cerebellum: left area V. Area V of the cerebellum has anatomical been implicated in

a closed-loop circuit between cerebellum and motor cortex in a virus transport study of

non-human primates (Kelly & Strick, 2003), and has previously been associated with right

finger tapping in the scanner in a prior study (Stoodley et al., 2012). Involvement of left

area V is interesting in light of the other significant cluster that emerged in the right motor

cortex, with which this region is anatomically linked. Just like the finding for right motor

cortex, however, it is difficult to make sense of why this area of cerebellum would be

associated with the internalizing factor. It is important to note however, that there is a very
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small portion of area V in the significant cluster identified, so it is possible that the small

number of voxels showing a significant relationship in this area may be just an artifact that

emerged from smoothing the images.

Left cuneus. The cuneus, located in the occipital lobe, is involved in processing of visual

information (Wandell, Dumoulin, & Brewer, 2009). Its association with the internalizing

factor here is difficult to interpret.

Left MFG (dlPFC). The dorsolateral prefrontal cortex is typically associated with exec-

utive functions, including working memory and selective attention. The dlPFC is consid-

ered to be a primary node in dorsal attentional networks that are linked to basic cognitive

selection of sensory information and responses (Sturm, Haase, & Levenson, 2016). The

dlPFC neurons are also sensitive to various aspects of reward, including quantity, qual-

ity, availability and delay of rewards (Kobayashi, 2009). In terms of our finding, there

are several possibilities why internalizing might have been related to dlPFC in the MID

anticipation contrast. One possibility is that individuals with higher internalizing disposi-

tion needed to engage dlPFC more than those with lower internalizing disposition, in order

to maintain their attention and focus on the task and prepare to make a quick response.

Another possibility is that individuals with higher internalizing disposition were more sen-

sitive to the quantity of reward, such that their dlPFC was activated more than in those with

lower internalizing disposition because they responded more strongly to the higher reward.

4.1.3 Themes

Taking all these findings into consideration, one might thus propose a few themes for

the observed pattern of associations. The first theme relates to the pre-SMA: it is interesting

that left pre-SMA activation was positively associated with internalizing, while right pre-

SMA activation was positively associated with general psychopathology. One proposed

explanation for pre-SMA involvement suggests that individuals high in internalizing and

general psychopathology might need to engage their pre-SMA more in order to prepare
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themselves to make responses under time constraints, although this is purely speculative

and would require further testing. A second theme pertains to DMN: the right PCC/pre-

cuneus and the right crus II and bilateral areas IX in the cerebellum, which were all posi-

tively associated with internalizing psychopathology factor scores, are also all part of the

DMN. Given the direction of the finding, one proposed explanation (out of many possi-

ble explanations) is that higher internalizing psychopathology scores might be associated

with reduced task suppression. That is, activation in DMN regions in the task is positively

associated with internalizing factor scores because individuals with higher internalizing

psychopathology had more difficulty suppressing DMN than those with lower internaliz-

ing psychopathology. Again, this proposed explanation is speculative and would require

further testing and consideration. A third theme could be engagement of motor regions,

which is illustrated by the clusters in the right motor cortex and left area V / bilateral area

X of the cerebellum. One might think this is associated with increased motor agitation

while in the scanner, although this harder to interpret given the laterality of these clusters.

4.1.4 Notable absences.

Perhaps the most surprising absence here is the lack of any kind of pattern of asso-

ciation with basal ganglia structures, particularly the VS. Differential response to reward

anticipation in the VS has been associated with a mulititude of disorders, albeit in different

directions: ADHD (decreased activation) (Plichta & Scheres, 2014), addiction (decreased

activation) (Balodis & Potenza, 2015), Bipolar I (increased activation) (Nusslock et al.,

2012), externalizing disorders in adolescence (increased activation) (Bjork et al., 2010),

schizophrenia (decreased activation) (Juckel et al., 2006). It is possible that these diver-

gences in directionality and the lack of findings here might be due to VS differences in re-

sponse to reward anticipation corresponding to more dimension-specific mechanisms. This

might be tested with our data by, for example, re-analyzing the data using a case-controlled

approach.
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4.2 Reward attainment contrast (lack of) associations to higher order psychopathology

It is particularly interesting to note that no significant associations were found between

the reward attainment contrast and higher-order psychopathology dimensions, especially

since the manipulation check (Section 3.4) appears to suggest the reward anticipation con-

trast engaged the reward network and looked like what I would have expected from the pre-

vious literature. Again, the biggest missing piece here is the striatum, which has been im-

plicated in several studies discussed earlier, e.g. for MDD (decreased activation) (Pizzagalli

et al., 2009), for bipolar I disorder (increased activation) (Dutra et al., 2015), and in a meta-

analysis of addicted populations (increased activation) (Luijten et al., 2017). Again, it is

possible that the lack of findings in striatum might reflect that psychopathology related

effects on this region are better understood as dimension-specific.

4.3 Strengths and weaknesses of the chosen methodological approach for

between-subjects analyses

4.3.1 Strengths

The voxel-based SEM approach I chose has several strengths.

First, by using Mplus to conduct my neuroimaging analyses, I am able to appropriately

handle several aspects of the complex design of the TTS Wave II sample. Sampling issues

have been partially (though not fully) addressed, by accounting for sampling strata in the

Mplus model specification. Non-independence has also been addressed in the same way

my group’s past epidemiological analyses have, by clustering twin pairs in Mplus (Lahey

et al., 2018); according to the Mplus manual, this allows for proper adjustment of standard

error estimates (L. Muthén & Muthén, 1998-2017).

Second, by using SEM this approach also allowed me to directly test relationships

between the latent higher-order factor variables and neural response, without having to rely

on factor score estimates.
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Third, the decision to fix loadings based on the CFA of the full sample allows us to en-

sure that the model coefficient estimation is not biased by the sub-sample or voxel-specific

issues3, and is consistent with past studies from our group (Hinton et al., 2019).

Fourth, this approach allowed us to conduct a brain-wide voxel-wise analysis, allowing

us to identify areas that we might not have a priori expected to show associations with

these factors while still correcting for multiplicity effects.

Fifth, by limiting the SEM analysis to only the 326 subjects with neuroimaging data, I

did not have to exclude covariates due to missing data. Data for handedness and scanner

is missing for some participants4, and Mplus refused to admit missing data for exogenous

manifest variables in the SEM, which may have required me to exclude said covariates

from the analyses.

Finally, this approach overcomes the limitations of existing software and has the poten-

tial to yield a new methodological approach as well as a use case for the literature.

4.3.2 Weaknesses

However, this approach has several weaknesses that must be acknowledged.

First, my approach did not fully account for sampling issues such as the probability of

selection into Wave II and non-response.5 This is important because the path coefficients

and associated standard errors in my approach may be biased with respect to the represen-

tative TTS Wave I due to biased sampling (both from Wave II and the neuroimaging QA).

Furthermore, because other analyses published by our group used the weights to account

for these sampling issues, my analyses are inconsistent in this regard with past work by my

group.

3I am thankful to Dr. Tomarken for pointing this out to me in our discussions.
4Handedness is missing for 16 out of 499 subjects in the full sample, and a scanner assignment was not

made for 51 out of 499 participants.
5Although it would have been ideal to generate these weights for our specific sub-sample, weighting issues

for the TTS Wave II project have been handled by our collaborator Paul Rathouz, who was not able to send
us a set of weights for the fMRI subsample or the code to generate said weights by the time I needed them
for my master’s thesis analyses.
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Second, by fixing factor loadings in the SEM, I made it difficult to accurately assess

model fit for each of the SEMs.6 Degrees of freedom are inflated due to fixing all the

loadings in the measurement model.

Third, by only including 326 participants with fMRI data in the SEM, I am reducing the

amount of information that can be used in the SEM to estimate latent psychopathology di-

mension scores; it is possible that, if I had included all 499 participants in Wave II, I would

have obtained a different result. One way I think about this is in terms of a missing data

problem. I have N = 499 participants with full psychopathology data, I am missing data for

some important covariates for some participants that did not complete scanning (N = 16

for handedness, N = 51 for scanner) and I am either excluding or missing neuroimaging

data for N = 173 participants. My approach was essentially performing a list-wise deletion

of all the N = 173 participants who either were missing and/or did not pass QA (which

also addressed the missing data problem for the covariates), and then fixing the loadings in

the measurement model to those obtained in the N = 499 sample to avoid biases in those

loadings. It is possible that my list-wise deletion approach to the missing data problem

here led to biases in my estimates, and that more sophisticated approaches to dealing with

missing data may have provided more accurate parameter estimates.

Fourth, the spatial multiplicity correction approach being used has not been validated

empirically for used in a voxel-wise SEM context, and it could not be used in higher voxel-

wise uncorrected p-thresholds (i.e., > .002) because at those thresholds it is prone to very

high false positive rates. This limitation prevented me from examining regional effects that

may have been smaller in magnitude but perhaps more diffuse across brain regions.

Finally, another important limitation with the chosen between-subjects analysis ap-

proach is that I used contrast coefficients as outcome variables. By doing this, I am essen-

tially failing to account for the within-subject variance embedded in that contrast, which

could bias my effects. Ideally, I would have preferred to model these effects as interactions

6Again, I am thankful to Dr. Tomarken for pointing this out to me in our discussions.
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between higher-order psychopathology and MID condition, since this would also include

modeling of the within-subject variance. However, I did not have the technical sophis-

tication necessary to come up with a way of achieving this analysis while appropriately

accounting for the complexity of this sample.

4.4 Limitations

Beyond the aforementioned limitations to the chosen between-subjects approach, there

are several other limitations to this study that I would like to point out.

First and foremost, it is important to acknowledge that the use of a bi-factor approach

to model dimensions of psychopathology is not without its controversy. As articulated

by Bonifay et al. (2017), bi-factor models raise issues of interpretability, model fit, and

vaidation. First, interpreting internalizing and externalizing factors that are orthogonal to

the general factor is challenging because they need to be conceptualized as sub-constructs

exclusive from the general factor. This interpretation is very different than the traditional

understanding of internalizing and externalizing seen in the literature for correlated factor

models, which are constructs that have important overlap with the general factor. Second,

it is difficult to assess model fit for the general factor (Bonifay et al., 2017; Markon, 2018),

since statistical fit indices can be biased in favor of the bi-factor model, even if the true

population model follows a different structure (Murray & Johnson, 2013). Indeed, quan-

titative studies have shown that bi-factor models tend to over-fit the data (Bonifay & Cai,

2017) and accommodate nonsense response patterns (Reise, Kim, Mansolf, & Widaman,

2016). Third, the bi-factor model construct needs to be validated beyond tests of model fit

(Bonifay et al., 2017).

The aforementioned challenges are all relevant to our study. The interpretability and

clinical translatability of our findings for the residualized internalizing factor are compli-

cated by the fact that the nature of this factor is somewhat hard to interpret. Our model fit

statistics for the bi-factor model were not particularly great, and it is not fully clear whether
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less biased model fit indicators might suggest that the bi-factor approach was not accept-

able. It is also concerning that for our sample, correlated factor models tended to provide

poor fit, with the highest CFI/TLI obtained being .811/.768 (Lahey et al., 2018). Finally,

the validity question is also important. In a sense, this concern has been addressed to a

greater degree in recent years, with the publication of a large number of studies supporting

the criterion validity of a general factor approach (reviewed in Section 1.1) and the publi-

cation of several other studies identifying neurobiologiocal correlates for the general factor

(e.g., Shanmugan et al. (2016); Snyder et al. (2017); Kaczkurkin et al. (2017); Romer et

al. (2018); Hinton et al. (2019)). However, concerns still remain about the validity of the

general factor. The effect sizes identified in many of these imaging studies were small (al-

though this is also the case for many case-controlled designs; see Paulus and Thompson

(2019)). And furthermore, in a recent pre-print Watts, Poore, and Waldman (2019) found

that bi-factor models tended not to explain additional variance in first-order psychopathol-

ogy symptom dimensions or external criteria (albeit with a measure that is not at present

well-validated).

An additional important limitation as it pertains to our specification of the general factor

is that it lacks any representation for individuals with psychotic disorders. Very few studies

so far have included psychosis in its factor specification, so the exact relation of psychosis

to the general factor is still unclear. It is also unclear how including psychosis in the

measurement model might change the nature of the general factor construct itself.

Another important source of limitations in our study pertains neuroimaging. Neu-

roimaging studies have several “experimental degrees of freedom”, in that there are mul-

tiple decisions that are made in the choices for how to pre-process and analyze the data

that can significantly impact outcomes of the analysis. I tried to inform many of my de-

cisions for how to do the analysis for this study based on the available empirical evidence

from the neuroimaging literature, although it must be noted that there are several steps for

which there is no singular best way to go about things. It is possible that I would have
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obtained different results if I had used a different pre-processing, quality assurance, or

within-subjects analysis modeling approach, even keeping the between-subjects modeling

approach the same. Testing out different methods was complicated because of the immense

amount of computational power and storage required for these analyses7 and the size of the

TTS sample.

Even if my chosen analysis approach and pipeline were optimal, I may have missed

some outliers in my quality assurance that could have influenced results. Although I found

the automated ART pipeline to be effective at detecting and flagging problems such as

excessive motion and signal dropout, it is possible ART might have missed some regional

artifacts, or that there were other problems in pre-processing that were missed by research

assistants in their manual review of the data.8 Particularly concerning in this note is the

peak just under the splenium of the corpus callosum observed for the anticipation $5 - $0

contrast, which is really hard to interpret.

4.5 Future directions

There are several future directions to explore following this study.

The findings in this study require a significant amount of further work in order to be

more robustly characterized. It might be helpful to leverage large datasets being collected

with data on the MID task, like ABCD, to determine whether these findings are repro-

duced/generalizable or whether they are idiosyncratic to this sample. If these findings

indeed are replicated on other samples, it might be worth doing some more work to try

to understand the nature and implications of said findings. For example, for the pre-SMA

findings, it would be valuable to examine a large population on a task that is more focused

on varying speed constraints, like the one used by (Forstmann et al., 2008), and testing

whether high general factor scores are associated with pre-SMA activation when making

7In preparing for this thesis, I became the ninth heaviest user of the ACCRE computational cluster at
Vanderbilt. I’m sorry, David.

8Which is understandable - it is very tedious to review manually over 430 subjects with 3 runs!
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responses under time pressure, but not associated with pre-SMA activation when making

responses under no time pressure. Meanwhile, the DMN task suppression hypothesis might

be tested by examining whether clusters like these emerge in the two other tasks partici-

pants in the TTS Wave II sample completed, and coupling this with an additional study that

included resting state data and a task more directly designed to test for DMN suppression.

It might also be interesting to repeat our analyses using an ROI approach focused on

the key reward network regions discussed earlier (see Section 1.4). It is possible that there

were some significant, but subtle, effects in rewards regions that did not survive voxel-

wise thresholding due to the high p-threshold, which might be identifiable using an ROI

approach.

It would also be valuable to re-analyze this dataset using a case-controlled approach;

i.e., to test for differences between TTS Wave II participants who qualified for each disorder

and those who did not qualify for any disorders, for every disorder. This type of analysis

would be informative, although one might also want to think carefully about how to account

for all these analyses.

In terms of defining the latent variables, it would be interesting to see whether the TTS

Wave II would conform with a hierarchical model (i.e., with a second order general factor

that loads onto internalizing and externalizing), and if so, how the relationships with brain

response would change. As pointed out by Markon (2018), the hierarchical model is a spe-

cial case of the bi-factor model, which conceptually frames internalizing and externalizing

factors as “mediators” of general factor influence. This model is perhaps more directly

conforming with the causal hierarchical taxonomy hypotheses postulated by Lahey et al.

(2017), wherein etiological influences go from less to more specific. Another interesting

variation might involve attempting to estimate higher-order psychopathology from an item

level, as opposed to a symptom dimension level.

Although our analyses here are correlational in nature, it would be interesting to explore

causality by examining whether Wave I higher-order psychopathology predicts differential
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brain response in the MID contrasts for Wave II. This would provide a more direct test of

the causality hypothesis postulated by Lahey et al. (2017).

In terms of neuroimaging, it would also be interesting to assess whether the same results

are obtained if some methodological aspects of the analyses are changed (e.g., using a dif-

ferent pre-processing pipeline, or estimating within-subject parameter maps and contrasts

using another software like SPM12). This would speak to some degree to how reproducible

our findings might be.

It would also be interesting to conduct more formal tests and validation of the voxel-

wise SEM approach used in this study, as well as the ability of the AFNI multiple com-

parisons approach to appropriately correct for these issues. Methodological advances for

relating latent variables to brain constructs are greatly needed in the clinical neuroscience

field currently, where there is now a lot of interest in examining the neural correlates of

these broad transdiagnostic constructs.

4.6 Conclusion

These data provide novel preliminary correlational evidence suggesting that the gen-

eral and internalizing psychopathology factors are associated with individual differences in

activation to reward anticipation in the MID task. Consistent with our hypothesis, activa-

tion in the anticipation phase of the MID in the right dorsal ACC was associated with the

general factor of psychopathology. Inconsistent with our hypothesis, no effects were found

in other brain regions from the reward network, for either the anticipation or attainment

stages, for any other higher-order dimension. Additionally, I identified several regions not

in the reward network for which activation in the reward anticipation stage was associated

with higher order psychopathology. Further work is needed to identify and characterize the

nature of these regions, and whether these findings are replicable.
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