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CHAPTER I

INTRODUCTION

This research project focuses on the development of accelerated transmit radio-frequency

(RF) field mapping techniques in parallel Magnetic Resonance Imaging (MRI). Specifi-

cally it is shown that the Bloch-Siegert (BS) |B+
1 | mapping method [2] can be accelerated

using partially parallel auto-calibrating image reconstruction methods such as GRAPPA [3]

and SPIRiT [4]. In this chapter, we will review the fundamentals of parallel imaging (PI)

and focus on the details of GRAPPA and SPIRiT. We will then discuss the BS method in

conjunction with other approaches to field mapping.

I.1 Parallel Imaging

Sum-of-squares
or 

Full multi-coil reconstruction

Figure I.1: Parallel imaging makes use of phased array coils. In this example images
acquired using a 4 element coil are shown. Coil sensitivities get multiplied with the image
and thus provide spatial encoding. The multi-coil images can be combined using sum-of-
squares or a full multi-coil reconstruction when the coil sensitivities are known.

1



In MRI spatial encoding of the signal is achieved by applying spatially varying mag-

netic fields called the gradient fields. In 2D imaging the location of the signal is resolved

along the two dimensions by applying two gradient fields called the frequency encoding

and phase encoding gradients. In 3D imaging an additional phase encoding gradient is

used to resolve the signal along the third dimension. Of the two encoding steps, phase en-

coding is the most time consuming. The effect of the phase encoding gradient is to select a

single spatial frequency along the phase encode direction. To acquire all spatial frequencies

required to reconstruct an image, the phase encode step must be repeated multiple times,

with varying phase encoding gradient strength.

Parallel imaging in MRI refers to the use of phased array coils to simultaneously acquire

multiple views of the same object. As Figure I.1 shows, the image acquired by each coil

is weighted by the coil’s sensitivity which are spatially-localized. In practice the image is

weighted by the square of the sensitivity, once each for transmit and receive sensitivities.

The images from individual coils can be combined using a sum-of-squares or a multi-coil

reconstruction which are shown to be SNR optimal in Ref. [5].

An intuitive way to reduce scan time is to reduce the number of phase encoding lines

acquired to reconstruct an image with the required fidelity. Increasing the distance between

phase encoding lines while not changing the maximal extent of k-space reduces scan time

while maintaining the image resolution. As Figure I.2 shows, skipping k-space lines ef-

fectively reduces the k-space sampling rate and thus reduces the field of view in the phase

encode direction. If the sampling rate violates the Nyquist criteria then aliasing artifacts

are seen in the image domain. The goal of all PI methods is to allow large k-space sam-

pling intervals while utilizing the spatial encoding provided by array coils to upsample the

signal to the Nyquist rate. PI reconstruction methods can be broadly classified into image

based and k-space based methods. Image based methods such as SENSE [6] start with

aliased images and unfold the aliasing in the image domain. k-Space based methods such

as GRAPPA [3] fill in the missing data in k-space and then apply Fourier transformation to
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(a)

(b)

Undersample

IFFT

Parallel Image 
Reconstruction

(c)

Figure I.2: The goal of all parallel imaging reconstruction methods is to undo the image
aliasing caused by decimating k-space data. In this example (a) k-space data is undersam-
pled by a factor of 2× by skipping every alternate TR in a Cartesian scan. (b) Straightfor-
ward inverse FFT gives aliasing artifact in the phase encode direction. (c) Parallel imaging
reconstruction produces either an unaliased image per coil or a single unaliased image
which has contributions from all the coils.

get unaliased images. There are also methods such as SMASH [7] that work in the hybrid

space. The data is reconstructed in the k-space while the coil sensitivities are treated in

the image space. PI methods also differ in the number of output images. Some methods

produce a single coil-combined image and other methods reconstruct one image per coil.
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I.1.1 GRAPPA

GRAPPA is a pure k-space based PI method introduced by Griswold et. al. in 2002 [3].

The idea in GRAPPA is to synthesize the unsampled k-space data from a neighbourhood

of acquired data points. Unlike image based methods such as SENSE and hybrid-space

based methods such as SMASH, GRAPPA does not require the knowledge of coil sen-

sitivity maps. The aim is to calculate weights that relate each unacquired sample to its

neighbourhood of acquired data points across all coils. A fully-sampled set of points called

the calibration region is typically acquired at the center of k-space. When the calibration

region is acquired in the same scan as the accelerated data the samples in the calibration

region are called the auto-calibration signal (ACS) lines. The ACS lines are used to calcu-

late the GRAPPA kernel weights. Then each unacquired data point is synthesized from its

neighbirhood using the calculated weights.

The process of reconstructing missing data for each coil can be represented as

m̂k(kx,ky) = ∑
i, j,l

ai, j,lml(kx + i∆kx,ky + j∆ky) (I.1)

where m̂k are the estimates of the missing k-space data for coil k and ml are the acquired

data for coil l at location (kx,ky), ∆kx and ∆ky are the k-space sampling steps in x and

y directions respectively and i, j index locations of the acquired samples. ai, j,l are the

kernel weights and are called the GRAPPA operator. Inside the calibration region the k-

space values at all the locations are exactly known so Equation I.1 can be solved for ai, j,l .

Equation I.1 can be rewritten in matrix-vector form as

Ml = alMA (I.2)

where, Ml is the calibration data for coil l, MA is the matrix of acquired samples in a pre-

defined neighbourhood across all coils and al are the GRAPPA kernel weights. Equation
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I.2 is solved to get an estimate of the GRAPPA operator âl

âl = (M
′
AMA +λ I)−1M

′
AMl (I.3)

where λ is a regularization parameter used to improve the conditioning of the problem and I

is the identity matrix. The missing data points for each coil are then calculated by applying

the GRAPPA operator in their neighbourhood using Equation I.1. The k-space data for

each coil is Fourier transformed to get the estimated image for each coil. These images can

then be combined using a sum-of-squares reconstruction to produce an unaliased image.

In GRAPPA, the weights in the synthesizing kernel are dependent on the pattern of

acquired points in the neighbourhood of each unacquired point. Thus the weights are spa-

tially varying which makes GRAPPA difficult to implement even for simple undersampling

patterns. This is illustrated in Figure I.3 for 4× acceleration achieved by skipping phase

encode lines in 3D imaging. This challenge is addressed by SPIRiT which we will discuss

next.

I.1.2 SPIRiT

This section is based on material from Ref. [4]

Inspired by GRAPPA, Lustig et. al. introduced SPIRiT [4] which is a general frame-

work for parallel image reconstruction that makes use of data more efficiently. In SPIRiT

the problem of parallel image reconstruction is formulated as an optimization constrained

by data consistency. The constraints are separated into (a) consistency with the calibration

and (b) consistency with the data acquisition. While GRAPPA enforces calibration con-

sistency only between synthesized points and acquired points in a close neighbourhood,

SPIRiT expands the notion of calibration consistency by including all the points (both ac-

quired and synthesized) in the neighbourhood across all coils. Figure I.3 illustrates how,

unlike GRAPPA, the kernel weights in SPIRiT are independent of the sampling pattern at

each spatial location.
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GRAPPA SPIRiT

kz

ky

Coil

kz

ky

Coil

Acquired Sample

Unacquired Sample

Synthesized Sample

Figure I.3: GRAPPA vs. SPIRiT. (a) In traditional 2D GRAPPA each missing k-space
data sample is synthesized from a neighbourhood of acquired points. The GRAPPA ker-
nel is dependent on the pattern of acquired points in the neighbourhood. (b) In SPIRiT,
reconstruction of each missing k-space sample is dependent on a neighbourhood of both
acquired and skipped points. The kernel is independent of the sampling pattern in the
neighbourhood.

If x represents the entire k-space data for all coils, and G is a matrix containing the

SPIRiT kernel weights, the calibration consistency constraint is given by

x = Gx (I.4)

The second constraint of data consistency comes naturally from the fact that the re-

constructed data should be consistent with the actual data acquired by the scanner at the

sampled locations. This constraint can be represented as

y = Dx (I.5)
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where y is the acquired data and D is a linear operator that relates the reconstructed Carte-

sian k-space x to the acquired data. The reconstruction is treated as the solution to an

optimization problem given by

minimize ||(G− I)x||2

s.t. ||Dx− y||2 ≤ ε

(I.6)

where ε is a constant that trades off data consistency with calibration consistency. This

problem can be efficiently solved using iterative descent methods such as steepest descent

or the conjugate gradient (CG) method.

In this work we have chosen SPIRiT as the primary auto-calibrating partially parallel

image reconstruction method. SPIRiT is a general PI framework that works for both uni-

form and non-uniform k-space trajectories. We take advantage of this and show that the

proposed method is a general approach for both uniform imaging such as Cartesian and

non-uniform imaging such as Spiral sampling.

I.2 Transmit RF Field Mapping

In MRI, RF coils are used to interact with molecular species which are typically protons.

After the protons are polarized using the main magnetic field (B0), conventionally along

the longitudinal axis, the protons start precessing at a characteristic frequency called the

Larmour frequency which is given by

ω = γB0 (I.7)

where γ is the gyromagnetic ratio and has a value of 2π × 42.57 MHz/T for protons. In

MRI jargon the precessing protons are called spins. To generate an MR signal the spins

need to be tipped to the transverse plane. To achieve this, a transmit RF coil is used to

excite the spins. After excitation, the transmit field is turned off and the spins begin to

return to equilibrium magnetization. The rate at which the spins decay is characteristic of
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tissue property. The spin decay rate along with pulse sequence timing parameters form the

basis of signal contrast in MRI. The excitation phase is followed by signal encoding using

the gradient coils, as described in section I.1. When the signal is ready to be acquired the

receive RF coils are turned on and the decaying spin magnetization produces an emf in the

coils. In practice a single coil could be used for both transmission and reception or multiple

coils could be used for transmission and/or reception.

Ideally, the RF coils would have a uniform response, for example, two identical spins

at two locations in the field of view would generate the same emf in the receive coil. But

in practice, the transmit and receive RF coil sensitivities are a function of space and are

represented by B+
1 (~x) and B−1 (~x) respectively, where ~x is the space variable. The B1 field

can be divide into a right-circularly polarized field (B−1 ) and a left-circularly polarized field

(B+
1 ). By convention, the left-circularly polarized field rotates in the same direction as the

spins, so this component has a larger effect than the right-circularly polarized component

which is 2γB0 off-resonance and can be ignored.

When an excitation pulse is played on the RF coil, the spins get tipped to the transverse

plane by an angle called the flip angle. The flip angle of an on-resonant spin is dependent

on the time-dependent RF pulse envelope (b1(t)) and the magnitude of B+
1 (~x), and is given

by

θ(~x) = γ

∫ T

0
|B+

1 (~x)|b1(t)dt (I.8)

From Eq. I.8, if |B+
1 (~x)| is not uniform over space then the flip angle seen by the spins

will be different at different locations. This can reduce the image quality by introducing

spatially varying image contrast and shading artifacts.

To design methods to correct the adverse effects of non-uniform |B+
1 | fields a map

of the |B+
1 | is required. Specifically, |B+

1 | mapping is required in applications such as

quantitative imaging, |B+
1 | shimming and parallel transmission. However |B+

1 | mapping is

time consuming as it must be performed during pre-scan in each subject, for each transmit

coil and over the entire imaging volume. Ideally the fields for each element of an array
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could be rapidly measured during a prescan stage over the entire imaging volume, but the

measurement time scales with the number of transmit channels, and even the fastest field

mapping techniques suffer from relatively long acquisition times for many coils.

|B+
1 | mapping techniques can be broadly classified into two classes: signal phase based

and signal magnitude based methods. These methods depend on the change in signal mag-

nitude or phase based on |B+
1 |. Magnitude based methods generally suffer from problems

such as T1 dependence and large RF power deposition. These problems are mitigated by

phase-based methods. In this work we have used a phase based approach called the Bloch-

Siegert method. This method was chosen because it is fast and robust to T R, T1 relaxation,

flip angle, chemical shift, background field inhomogeneity, and magnetization transfer [8].

I.2.1 Double-Angle Method

The Double-Angle mapping [16] is an image magnitude based method to calculate a flip-

angle map, which is an indirect measure of the |B+
1 | field. This method is based on the

fact that for a given flip angle θ , the image signal in a voxel is proportional to sin(θ).

To calculate the flip angle map, two images I1 and I2 are acquired with flip angles θ and

2θ , respectively. If all pulse sequence parameters are kept constant, then the ratio of the

magnitude images satisfies

I2(~x)
I1(~x)

=
sin(2θ(~x)) f2(T1,T R)
sin(θ(~x)) f1(T1,T R)

(I.9)

where θ(~x) represents the spatially varying flip angles due to B+
1 inhomogeneity and f1,

f2 are the effects on the image signal due to spin lattice relaxation time (T1) and choice

of pulse repetition time (T R). If the effects of T1 and spin-spin relaxation time (T2) are

neglected then the flip angle map can be calculated as

θ (~x) = arccos
(∣∣∣∣ I2(r)

2I1(r)

∣∣∣∣) (I.10)

9



In practice, to remove T1 dependence, T R is set to a value several times higher than T1. This

leads to undesirably long acquisition times, especially for molecular species with high T1

values. The Double-Angle method also suffers from problems such as due to background

field inhomogeneity and chemical shift artifacts, which are typical for magnitude based

|B+
1 | mapping methods. Both these limitations are overcome by the Bloch-Siegert method

which is discussed next.

I.2.2 Bloch-Siegert Method

Bloch-Siegert |B+
1 | mapping is a phase-based method based on the Bloch-Siegert effect.

When an off-resonance RF field is applied to a nucleus, its resonance frequency shifts. This

effect is called the Bloch-Siegert shift [9], [10]. When the RF is far enough off-resonance

or a pulse shape is chosen such that it does not cause excitation, the spins experience a

change in precession frequency without excitation. The shift in precession frequency is

dependent on the magnitude of the B+
1 field and the difference between the spin resonance

and RF frequency. Under the assumption that the applied RF is far from off-resonance, the

precession shift can be approximately represented as

ωBS =
(γ|B+

1 |)2

2ωRF
(I.11)

where ωBS is the BS frequency shift, γ is the gyromagnetic ratio, and ωRF is the large

frequency offset of the applied RF pulse away from the resonant frequency.

In Ref [8] Sacolick et al. show that for any arbitrary pulse B1(t) the relationship be-

tween the BS phase shift and peak B1 is given by

φBS = B2
1,peak

∫ T

0

(γB1,normalized(t))2

2ωRF (t)
dt

= B2
1,peak×KBS

(I.12)

where, φBS is the BS phase shift, B1,peak is the magnitude of the peak B1, B1,normalized(t) is
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the RF pulse normalized to have a peak magnitude of 1 and KBS is a constant that describes

the phase shift in radians/Gauss2 for a given pulse. Note that this is an approximate

solution on which the BS method is based. A more detailed derivation is given in Ref.

[10].

The method is made more robust by acquiring two scans at symmetric off-resonance

frequencies (+ωRF and −ωRF ) around the water peak. The BS phase shift is estimated

by taking the phase difference between the two scans. As unwanted phase accrual due to

off-resonance effects such as B0 inhomogeneity and chemical shifts are the same for the

two scans, the difference operation removes them.

Figure I.4 shows an illustration of a Gradient Echo (GE) BS |B+
1 | mapping pulse se-

quence. After exciting the spins with a slice-selective pulse, a Fermi pulse is applied as

the BS encoding pulse. The signal is generated as usual in a GE sequence by rephasing

the spins using the readout gradient. The BS sequence can be implemented on the scanner

with very small changes to the GE sequence. For this work, we used the BS protocol which

was implemented by Jankiewicz et al. [11] by modifying the stock Fast Field Echo (FFE)

sequence on the Philips 7T human scanner.

RF

Gx

Gy

Gz

+/-ωrf

Figure I.4: Gradient echo sequence for Bloch-Siegert |B+
1 | mapping. The BS method can

be easily incorporated into a gradient or spin echo sequence.
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CHAPTER II

ACCELERATED BLOCH-SIEGERT TRANSMIT RADIO-FREQUENCY FIELD

MAPPING

II.1 Introduction

+ωrf -ωrf

 1

2

3

4

5

6

7

8

 1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8

Rx. 

Tx. 
128 virtual Rx. coils

Figure II.1: The central idea of the method. Each BS pulse imparts a unique phase shift
pattern to the same underlying image. This fact can be exploited to generate an augmented
set of virtual receive coils. In this example, 8 transmit and 8 receive coils with 2 BS
encoding pulses give a set of 128 virtual receive coils.

BS |B+
1 | mapping is an inherently fast method if SAR is not a limitation and off-

resonance RF pulses with high enough amplitudes can be used to generate detectable phase

shifts. Previously, BS acquisitions have been accelerated using single-shot readouts [12].

Compressed sensing has also been applied to magnitude-based |B+
1 | mapping methods [2].

Here we propose a PI approach for Bloch-Siegert (BS) |B+
1 | mapping that allows very
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high acceleration factors. The method makes use of the fact that each BS pulse imparts a

unique phase shift pattern to the same underlying image, enabling a joint autocalibrated PI

reconstruction across all BS acquisitions for a transmit array. Also, since the data for the

different transmit coils and off-resonance frequencies are acquired at different times, recon-

structions can be improved by acquiring data on disjoint k-space sampling patterns across

the transmit coils. The method is shown to produce accurate field maps, in some cases at

scan accelerations beyond the number of physical receive coils. The noise performance of

this method is quantified by empirically measuring the g-factor and angle-to-noise (ANR)

maps in simulations. Additionally, phantom TEM array and head birdcage dual transmit

|B+
1 |mapping experimental results at 7 T are shown, to demonstrate the performance of the

approach in vivo.

II.2 Theory

As described in Section I.1, Parallel imaging methods perform scan acceleration by skip-

ping k-space lines, and implicitly or explicitly filling in the missing k-space data by exploit-

ing the spatial encoding provided by the coil sensitivities. The more receive coils one has

with unique spatial sensitivity patterns, the higher the achievable scan acceleration without

major aliasing artifacts. In this work we use this principle to accelerate the |B+
1 | mapping

method by generating an expanded virtual coil dataset from the multiple acquisitions in a

BS experiment.

Section I.2.2 explained how the BS method uses encoding pulses that cause a change in

signal phase depending on the strength of the |B+
1 | field seen by previously-excited magne-

tization [8]. In multi-transmit-channel BS |B+
1 |mapping, assuming that either the same coil

or RF shim is used for each excitation, or, if different coils or shims are used for excitation

but T1 effects can be ignored, then each encoding pulse imparts a unique smooth phase shift

to the same underlying image. These phase shifts can be mathematically absorbed into the

receive coil sensitivities, leading to an augmented set of virtual receive coils.
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The reconstructed image weighted by the receive coil sensitivity can be represented as

Ii(~x) =Ci(~x)M(~x) (II.1)

where Ii is the image for receive coil i, Ci is receive coil i’s sensitivity and M(~x) is the

transverse magnetization. In BS |B+
1 | mapping, two images are acquired for each transmit

coil with the BS pulses at opposite off-resonance frequencies, so that background and B0

phase can be removed using a phase difference. The image for receive coil i, off-resonance

frequency j, and transmit coil k is

Ii jk(~x) =Ci(~x)M jk(~x), (II.2)

where M jk is given by

M jk(~x) = M(~x)eıφ BS
jk (~x) (II.3)

and φ BS
jk (~x) is the BS phase shift, which is approximately proportional to |B+

1 |2. The phase

shifts can be absorbed into receive coil sensitivities

Ii jk(x,y) = [Ci(~x)e
ıφ BS

jk (~x)]M(~x)

=Ci jk(~x)M(~x) (II.4)

where Ci jk is an element of an augmented set of Nr×2×Nt virtual receive channels, where

Nr is the number of physical receive coils, and Nt is the number of transmit coils that

are mapped. Thus, BS data for Nt transmit channels, each comprising data for Nr receive

channels at two symmetric off-resonant frequencies (+/-), effectively comprises data from

Nr× 2×Nt virtual receive channels. We exploit this augmented receive channel array to

accelerate BS |B+
1 | mapping beyond the factors that can be achieved using only physical

receive coils for acceleration. Furthermore, since the 2×Nt BS datasets are acquired at

different time points, we have the opportunity to improve image reconstruction quality by
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acquiring disjoint/staggered k-space sampling patterns for each BS frequency polarity and

transmit channel.

II.3 Methods

To demonstrate the broad applicability of the proposed approach, both (Cartesian) GRAPPA

[3] and (Cartesian and non-Cartesian) SPIRiT [4] methods were used for the following

simulated and experimental autocalibrated PI reconstructions. Both methods require little

modification to allow distinct k-space sampling patterns for each receive channel. Three

acquisition and reconstruction scenarios were compared to fully-sampled reconstructions

in simulations and experiments: (1) Low resolution reconstruction of each of the 2×Nt

BS datasets, where the total number of data points sampled equalled the total number of

samples for the accelerated cases; (2) Accelerated independent reconstruction of each of

the 2×Nt BS datasets with the same sampling pattern, exploiting only the physical receive

coils for acceleration (‘independent’); (3) Joint reconstruction of all 2×Nt datasets with

the same sampling pattern (‘joint; same’). (4) Joint reconstruction with staggered sam-

pling across off-resonance frequencies and transmit coils (‘joint; staggered’). Acceleration

was performed by retrospectively undersampling simulated and measured k-space data. To

qualitatively evaluate the quality of magnitude reconstructions, for each transmit channel

all the receive channel images were combined as the root of the sum of squares (SoS) of

all the individual receive coil images. |B+
1 | maps were estimated from each reconstruction

using an image magnitude-weighted average across receive channels as follows

|B+
1 |k =

Nc

∑
i=1

 |Ii1k|+ |Ii2k|
2

√
∠(Ii1kI∗i2k)

2KBS

(
Nc

∑
i=1

|Ii1k|+ |Ii2k|
2

)−1
 (II.5)

where |B+
1 |k represents the |B+

1 | map for transmit coil k, Ii1k, Ii2k are the reconstructed

images for the two BS off-resonant frequencies for receive coil i and transmit coil k. KBS is

a constant that describes the phase shift in radians/Gauss2 for a given BS pulse [8].

All reconstructions were implemented in MATLAB (MathWorks Inc., Natick, MA,
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USA). SPIRiT and GRAPPA reconstructions were performed using the image reconstruc-

tion library provided by Lustig et al [4], wherein non-uniform fast Fourier transforms were

performed using the algorithm in Ref. [13].

(a) Same Sampling (b) Staggered Sampling

Missing Data

Acquired Data

Figure II.2: Staggered Cartesian sampling illustration showing k-space sampling patterns
for 2 coils with 4× acceleration. a: The same k-space points are sampled for each transmit
coil and Bloch Siegert frequency polarity. b: Disjoint k-space locations are sampled for
different transmit coils and frequency polarities.

Figure II.2 illustrates example Cartesian k-space sampling patterns for ‘same’ and ‘stag-

gered’ cases. In the same sampling pattern the same k-space location is sampled for each

transmit coil. In staggered sampling the k-space locations skipped in one coil are sam-

pled in another coil. The fully sampled calibration region at the center of k-space remains

unchanged for the same and staggered patterns.

For the non-Cartesian staggered reconstruction, the single shot spiral trajectory was

rotated in increments of 2π/(2×Nt) radians to generate a disjoint set of spiral co-ordinates

for the extended 2×Nt coil data.

Figure II.3(a) shows an illustration of a dual density sampling scheme for 2 coils at 2×

acceleration used in simulations. Figure II.3(b) shows a staggered sampling scheme using

multi-shot spiral trajectory used in in-vivo experiments. The spiral k-space co-ordinates

are chosen such that all the coils have the same acceleration and each coil has a unique

sampling trajectory.
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(a) Single-shot (b) Multi-shot

Figure II.3: Illustration of staggered single-shot variable density and multi-shot spiral sam-
pling schemes showing k-space sampling locations for 2 and 4 coils respectively. Each
transmit coil and Bloch Siegert frequency polarity is represented by a unique line marker.

II.3.1 Simulations

Simulated BS |B+
1 | mapping data were synthesized from B+

1 and B−1 maps calculated using

CST Microwave Studio (CST AG, Darmstadt, Germany) at 300 Mhz (7 T) for an 8-channel

transmit/receive TEM array in a human head model. The maps had a 24 cm FOV and 128

×128 matrix size. To generate complex BS images with contrast, for each transmit coil a

Shepp-Logan phantom was weighted by the B−1 maps for each receive coil and a BS phase

of±κBS|B+
1 (~x)|2 was applied, where κBS is the phase coefficient of a Fermi pulse with dura-

tion 8 msec and off-resonance frequency 4 kHz [8]. Cartesian k-space data were generated

using Fast Fourier Transforms. Subsequently, GRAPPA reconstruction was performed at

16× acceleration. A GRAPPA kernel size of 5×5 was chosen with a kernel calibration reg-

ularization parameter of 0.01 [4]. To synthesize spiral k-space data the Cartesian data were

resampled to a single shot variable density spiral trajectory with a 9 ms readout duration

(Fig. II.3a). The center of k-space was fully sampled up to a resolution of 7.35 cm and the

6× acceleration was used beyond that. The images were reconstructed using image-based

non-uniform SPIRiT. Calibration data of size (32×32) were obtained from the fully sam-
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pled Cartesian dataset and used to calibrate kernels of size 5×5. The calibration Tikhonov

regularization parameter was 0.02, the SPIRiT regularization parameter was 100, and 100

conjugate gradient (CG) iterations were performed. In addition to evaluating image and

|B+
1 | reconstruction accuracy, g-factor and angle-to-noise ratio (ANR) maps were deter-

mined empirically using Monte Carlo simulations with 100 realizations, wherein complex

white Gaussian noise was added to the k-space data.

II.3.2 Experiments

II.3.2.1 Phantom

To validate the method with several transmit channels, phantom data was acquired using

a mineral oil phantom on a Philips Achieva 7 T scanner (Philips Healthcare, Cleveland,

Ohio) with an in house-built 6-element TEM coil. A gradient echo BS pulse sequence was

used with a 2 ms optimized BS pulse [11] for both phantom and in-vivo exams. TE/TR

was set to 7.5/500 ms with nominal excitation flip angle of 70 degrees. Cartesian Bloch-

Siegert acquisitions were performed with a 25 cm FOV, 256×256 matrix size, and 5 mm

slice thickness. Cartesian SPIRiT reconstruction was performed at 16× acceleration with

the calibration and reconstruction Tikhonov regularization parameters set to 0.01 and 10−5

respectively. Calibration data of size 20×20 were used to calibrate kernels of size 5×5.

Thirty CG iterations were performed. To reduce the effects of noise due to poor receive

sensitivity, all maps were refined using a penalized-likelihood algorithm [14], which was

initialized by first order polynomial fits to the maps.

II.3.2.2 In vivo

To validate the method in vivo, human studies were conducted with the approval of the

Institutional Review Board at Vanderbilt University. Data were acquired with a 32 channel

SENSE volume coil (Nova Medical Inc., Wilmington, MA), and a 2-channel parallel trans-

mit birdcage coil. 2D single-slice Cartesian and spiral BS data were acquired with a 24

cm FOV, 120×120 matrix size, and a 2 mm slice thickness. TE/TR were set to 12/616 ms
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with nominal excitation flip angle of 70 degrees. This setup gave a total of 128 (2×32×2)

augmented virtual receive coils for the joint reconstructions. In all acquisitions the same

excitation pulse was used, with the two channels of the birdcage coil driven in quadrature;

the transmit channel not being mapped was turned off only during the BS pulse. Cartesian

SPIRiT reconstruction was performed at 32× acceleration with the calibration and recon-

struction Tikhonov regularization parameters set to 0.01 and 10−5 respectively. Calibration

data of size 20×20 were used to calibrate kernels of size 5×5. Thirty CG iterations were

performed. Spiral data were acquired on a uniform density multi-shot spiral trajectory with

64 interleaves as illustrated in Figure II.3(b). The dataset was retrospectively undersam-

pled by a factor of 8× by dropping interleaves. For comparison with joint reconstructions,

a fully-sampled low resolution dataset was generated by truncating the eight uniformly-

spaced shots down to the point at which they were fully-sampled, which was defined as the

time point at which the distance between adjacent shots was FOV−1. This way, the low-

resolution reconstruction used the same number of shots, and thus approximately the same

sequence duration as the accelerated acquisition. The reconstruction was performed using

non-Cartesian SPIRiT at 8× acceleration with the calibration and reconstruction Tykhonov

regularization parameters set to 0.01 and 104 respectively. Calibration data of size 32×32

was used to calibrate kernels of size 7×7. Four hundred CG iterations were performed.

II.4 Results

II.4.1 Simulations

II.4.1.1 Cartesian GRAPPA

Figure II.4 shows the 16× accelerated reconstruction images of one of the transmit chan-

nels. Despite an acceleration factor of twice the number of receive channels, the jointly-

reconstructed |B+
1 | maps contain only small errors, while the independent image and map

contain large aliasing artifacts, and the low resolution image and map contain large ringing

artifacts. The |B+
1 |maps of the joint; staggered reconstruction closely match the true maps,
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Figure II.4: 16×-accelerated Cartesian sum-of-squares (SoS) images and |B+
1 | map of 1

transmit coil. Joint reconstruction with staggered sampling achieves lowest error.

with the smallest error.

II.4.1.2 Non-Cartesian SPIRiT

Figure II.5 shows the spiral 6× acceleration results. The independent and joint; same

images contain large spiral aliasing artifacts, which are not present in the joint; staggered

image, though, interestingly, the joint; same |B+
1 | map contains low artifacts. The jointly

reconstructed |B+
1 | maps both have an order of magnitude lower error than the independent

case, and the joint; staggered |B+
1 | map is the most accurate.

II.4.1.3 Noise Performance

Figure II.6 shows that the joint; staggered reconstruction achieves the smallest maximum

noise amplification with the most uniform g-factor for the Cartesian acquisition. The

g-factor map for the joint; same reconstruction shows higher noise amplification than

both the independent and joint; staggered reconstructions. Interestingly, while the jointly-

reconstructed magnitude images have higher noise amplification, the jointly-reconstructed

|B+
1 | maps have a higher angle-to-noise (ANR) compared to the independent reconstruc-
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Figure II.5: 6×-accelerated Spiral SoS images and |B+
1 | maps of 1 transmit coil. Joint;

staggered reconstruction achieves lowest error.
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Figure II.6: g-Factor, angle-to-noise (ANR) maps (16× acceleration) and |B+
1 | RMSE vs

acceleration. Joint reconstruction with staggered sampling achieves the most uniform g-
factor (calculated from SoS magnitude images). Overall, joint reconstructions achieve
higher |B+

1 | ANR than independent and their error is relatively flat up to a high acceler-
ation factor.
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tion. The root mean square error (RMSE) vs acceleration plot shows that the joint recon-

structions have a stable RMSE up to an acceleration factor beyond the number of receive

channels, up to a factor of 25×, whereas the independent reconstruction’s RMSE rises

steeply. Note that the acceleration limit of 25× is imposed by the size of the GRAPPA

kernel used for reconstruction, and that it is expected that the joint reconstructions’ RMSE

would rise steeply at a higher acceleration than was simulated here.

II.4.2 Experiments

II.4.2.1 Phantom Cartesian SPIRiT
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Figure II.7: 16×-accelerated |B+
1 | maps using a 6 channel TEM array coil. Results with

conventional phase difference and penalized-likelihood refinement are shown. The joint;
staggered reconstruction is most accurate. Note that Nr = 1 here.

Figure II.7 shows the results from the 6 transmit-channel phantom |B+
1 | mapping ex-

periment. The joint; staggered maps closely match the fully-sampled maps, while the

independently-reconstructed maps have severe aliasing and the low resolution reconstruc-

22



tion contain ringing artifacts.

II.4.2.2 In Vivo Cartesian SPIRiT

Figure II.8 shows the results from the Cartesian in vivo study. The data were undersampled

by a factor of 32×. The joint; staggered magnitude image appears closest to the fully-

sampled magnitude. The |B+
1 | maps for the joint reconstructions look very similar and

closely match the fully-sampled |B+
1 | maps. In comparison, the independent maps are

noisier and contain aliasing artifacts. The low resolution maps are blurred and contain

large ringing artifacts.

Fully
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ss
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Figure II.8: 32×-accelerated SoS images and |B+
1 | maps of 2 transmit coils. The joint;

staggered reconstruction is most accurate. Nr = 32 here.

II.4.2.3 In Vivo Non-Cartesian SPIRiT

Figure II.9 shows the non-Cartesian in vivo reconstructions. Again, the joint; staggered

reconstruction produced the closest magnitude image to the fully-sampled reconstruction.

Most of the ringing artifacts seen in the independent and joint; same images do not appear

in the joint; staggered image. The low resolution |B+
1 | maps are oversmoothed, and the
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Figure II.9: 8×-accelerated SoS images |B+
1 |maps of 2 transmit coils. The joint; staggered

reconstruction is most accurate. Nr = 32 here.

independent maps show higher noise levels and aliasing artifacts. In contrast, the |B+
1 |maps

for the joint reconstructions closely match the fully-sampled maps.

II.5 Discussion

We have presented a simple approach to accelerate Bloch-Siegert |B+
1 | map acquisition

without sacrificing accuracy. The method was shown to apply to both Cartesian and non-

Cartesian data using two different autocalibrating parallel image reconstruction methods.

It can also be used in single transmit systems to jointly reconstruct the images for the

two off-resonance frequencies in a BS acquisition. More broadly, the general approach

of jointly reconstructing |B+
1 | mapping images across transmit coils may be applicable to

many |B+
1 | mapping methods, though T1 relaxation would be a concern for magnitude-

based methods such as AFI [15] and double angle [16].

The proposed approach is expected to benefit tailored parallel excitation which requires

acquisition of multiple transmit channels. Though it is typical in parallel excitation to
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Figure II.10: a: Simulation of erroneous excitation in 8-channel, 6×-accelerated spiral par-
allel excitation designed using low resolution |B+

1 | maps. Ringing artifacts in the passband
are alleviated by pulses designed with |B+

1 | maps reconstructed at a high resolution, using
the proposed method to accelerate |B+

1 | acquisition and achieve a scan time equivalent to
a low-resolution acquisition. b: Erroneous excitation in 4 coils, 2×-accelerated parallel
transmit, due to partial volume effects at object edges in |B+

1 | maps, [1]. The excitation
errors are ∼18% of the peak flip angle.

use |B+
1 | maps of lower resolutions (64×64 matrix sizes are common) than we acquired

here, such low resolutions can lead to excitation errors in the designed pulses. This is

because the body effectively masks |B+
1 | maps, introducing sharp boundaries that result in

ringing artifacts throughout the maps, and/or partial volume effects at those boundaries.

While this is not a significant problem for RF shimming, it can significantly degrade the

performance of parallel excitation pulses with relatively high spatial resolution, such as

pulses for reduced-FOV imaging, as is demonstrated in Fig. II.10. The proposed method

enables rapid acquisition and accurate reconstruction of high resolution maps with reduced

excitation errors.
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CHAPTER III

CONCLUSIONS

The research work reported in this thesis has presented a novel approach to accelerate the

Bloch-Siegert transmit RF field map reconstructions. The extra encoding provided by the

BS pulses was utilized to create a set of virtual receive coils, which allowed higher ac-

celeration factors in autocalibrating parallel image reconstructions. The proposed method

is shown to give good quality |B+
1 | maps at high accelerations for both uniform and non-

uniform k-space sampling, using two different parallel image reconstruction methods. It

is a simple approach to accelerate |B+
1 | map acquisitions that exploits the extra degrees

of freedom inherently provided in a typical BS experimental set-up, and does not require

gathering any additional data. However, the method does have some drawbacks, especially

when used with iterative image reconstruction methods. Most iterative methods require

tuning parameters such as the Tikhonov regularization factor in SPIRiT. These parame-

ters may need to be manually set on a case-by-case basis. Another drawback is that for a

large number of virtual receive coils, iterative methods may become time consuming if the

implementation doesn’t use a computationally-efficient algorithm.

The method is expected to be most useful for parallel excitation and RF shimming ap-

plications, where it is desirable to rapidly measure |B+
1 |maps of many transmit coils during

a prescan stage. |B+
1 | inhomogeneity is a substantial problem in high and ultra high field

imaging. Therefore patient tailored RF pulse design methods are used to generate pulses

that compensate for field inhomogeneity unique to each subject. Since the |B+
1 | mapping

procedure has to be repeated for each subject, the proposed method will benefit in acceler-

ating patient tailored imaging.
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