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CHAPTER I

INTRODUCTION

I.1 Emerging Trends

Significant advances in server and network technologies, and an explosive growth in

the number of sensors and mobile devices have given rise to a number of intelligent ser-

vices, which are grouped under a new paradigm called the Internet of Things (IoT). IoT

involves machine-to-machine communication technologies that enable embedded proces-

sors, mobile devices, and sensors to communicate with one another with limited human

intervention or none at all [90]. A special case of the IoT paradigm that focuses primar-

ily on domains for mission-critical applications is called the Industrial Internet of Things

(IIoT) [79].

IIoT systems are poised to deliver substantial societal, economical and environmental

benefits across multiple sectors by realizing smart transportation, smart healthcare, agile

and smart manufacturing and smart energy [3, 5, 10, 25, 29]. One trait of IIoT includes the

need for big data analytics due to the sheer volume, variety and velocity of the data that is

generated from many different sources [48]. Big data analytics for IIoT will require cloud

computing [2] capabilities so that the data is processed and analyzed for the different intel-

ligent services in an economic, elastic, and scalable manner. It will also require a scalable

messaging middleware for communication between the numerous machines [26] involved

in the system. Therefore, scientific advances in the systems software for the discovery

and data dissemination between machines at the edge as well as the cloud and also timely

and reliable analytics conducted in the cloud are significant to fulfill the performance and

reliability demands of IIoT services.

The current vision of IIoT has gradually evolved from existing concepts such as dis-

tributed real-time embedded (DRE) systems [77] and cyber physical systems (CPS) [44],
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where quality of service (QoS) properties, such as timeliness, reliability and security are

important. The second trait of IIoT thus involves the need for stringent QoS assurance

for data discovery, dissemination and data processing, along the dimensions of timeliness,

reliability, and security. The presence of a very large number of connected edge devices,

cloud infrastructures for real-time big data analytics, and QoS requirements at all these lev-

els makes it challenging to realize IIoT and differentiates it from prior concepts. The IIoT

paradigm also requires autonomic computing capabilities [40] because the big data analyt-

ics used in operational reliability and economical efficiency is also used to build predictive

models for self-diagnosis, self-correction and self-optimization.

Although the need for cloud computing to perform big data analytics in IIoT was high-

lighted above, it may not always be feasible to transfer very large amounts of data from

deeply embedded sensor networks to a cloud. IIoT systems such as wind farms and min-

ing operations require data analytics at different levels including the machine, plant, and

enterprise-levels [22, 82]. This three-tier architectural pattern is gaining acceptance as

evidenced by an ongoing work on a reference architecture for IIoT by the Industrial Inter-

net Consortium (IIC) [16]. Each level of analytics corresponding to this architecture and

shown in Figure 1 illustrates different requirements including the need to handle different

data types, volume of data, frequency, and response time expected. Figure 1 also presents

representative numbers for the data quantity and data frequency numbers for each analytics

level for a wind farm IIoT system provided GE [82] that indicates the different scales of

the overall system. At the machine level, the data quantity is low while data frequency is

high. In contrast to the machine level, the enterprise level requires computation on very

large quantities of data and but has a low data frequency.

This classification indicates that each level will likely adopt divergent approaches to

meet their functional and non-functional requirements. The key to getting accurate out-

comes from the analytics at each level stems from the ability of the systems software to

deliver and collect the right data at the right time and in the right quantities. To realize

2



Machine!
(Turbine)

Plant!
(Wind Farm)

Enterprise!
(Power Producer)

Data!
Quantity > 100 tags > 6,000 tags > 1,000,000 tags

Data!
 Frequency 40 milliseconds 1 second 1 second - 10 minutes

Figure 1: GE’s Three-level Model for Big Data Analytics in an IIoT System using
Wind Farm Example [81]

these essential traits, the system software, which often is in the form of distributed com-

munications middleware that supports data sharing used in machine and plant levels, and

also cloud infrastructures used in the enterprise level, must provide correct and desired QoS

according to requirements of each level.

I.2 Challenges for IIoT Middleware

Using the 3-level analytics model presented by GE, we have formulated a correspond-

ing 3-level IIoT systems problem formulation, which is subsequently used to situate the re-

search challenges addressed by this doctoral research in realizing the systems software for

IIoT. Figure 2 depicts such an architecture comprising a cloud (representing the enterprise

level) and the edge (representing both the plant and machine level). In this architecture,

the devices and sensors in a machine (e.g., wind turbine in the wind farm example) share

data via a machine data bus for optimizing operations of the machines. The research issues

at these level stem primarily from having to meet the hard real-time, safety, reliability and

security challenges.

At the plant-level, data from the machines can also be shared with other machines or

3



Machine Data Bus Machine Data Bus

Plant Data Bus

Cloud (Enterprise Level)

Edge (Machine/Plant Level)

Figure 2: Distributed and Cyber-Physical Architecture for IIoT Systems

with operation centers via a plant data bus. Such information may be needed to evalu-

ate health and performance of the plants. Finally, data from multiple plants can be col-

lected and aggregated in the cloud, and real-time streaming or batching analytics can be

conducted to help the global operations team prioritize maintenance, logistics, and other

services for the different plants. The timing requirements at both these levels have soft

real-time requirements where average response times are important though the plant-level

demonstrates more stringent QoS requirements than the enterprise-level. Each level has its

own reliability and security challenges.

To scope out the contours of this doctoral research, we have focused on the scientific

challenges at the plant and enterprise-levels only. The challenges at the machine-level are

predominantly concerned with meeting hard real-time deadlines, and is outside the scope

of this research. A close scrutiny of the problem space involving the plant and enterprise
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levels illustrates two key traits: (1) communication between endpoints is predominantly

data-centric [64], and (2) communicating endpoints demonstrate publish/subscribe (pub/-

sub) [20] semantics.

The pub/sub semantics stem from the fact that data sources make their data available to

anyone interested in it while not requiring to know the identity of the recipients. Similarly,

the receiving entities express interest in receiving one or more types of data without having

to know the precise sources of this information. Moreover, the pub/sub paradigm involved

event-based communications, and makes use of multicast so that it can disseminate data to

many subscribers in real-time and a scalable way

The data-centricity stems from the fact that a large number of sensors generate data

with different types and values as well as at different rates and volume. Among pub/sub

protocols for IIoT, the Advanced Message Queuing Protocol (AMQP) [88], Message Queue

Telemetry Transport (MQTT) [43], and Java Messaging Service (JMS) [30] are message-

centric technologies while OMG’s Data Distribution Service (DDS) [63] is a data-centric

technology [66]. Both types of technologies are similar with respect to providing pub/sub

communications in distributed systems, but the way they achieve it is different. A message-

centric technology delivers the message itself without considering the data content and

QoS. On the other hand, a data-centric technology provides infrastructure with higher level

of abstraction to deliver messages with a control of data flows based on data content as well

as QoS configurations.

The data-centric pub/sub communication semantics are of significant importance to the

success of IIoT as they support scalability and reliability with higher levels of abstractions.

This doctoral research investigates solutions to address a subset of challenges in the context

of data-centric pub/sub at the plant and enterprise levels of IIoT. The focus areas for this

dissertation are situated according to the levels of IIoT systems and are summarized in

Figure 3.
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Figure 3: Dissertation Focus Areas

Challenge 1: Scalable Discovery of Publishers and Subscribers at the Plant level

IIoT systems often involve publishers and subscribers that may join or leave the system

dynamically. This may happen because entities may be mobile, may fail (e.g., sensors may

die), or they may be deactivated as part of maintenance and technology refresh cycles. Due

to the dynamic churn in publishers and subscribers, effective data communication between

publishers and subscribers requires dynamic and reliable discovery of pub/sub endpoints.

For discovering peers in pub/sub systems, several mechanisms such as static [72], central-

ized [73], federated [58], and peer-to-peer [61] have been used.

Even though existing data-centric pub/sub technologies, such as the OMG Data Dis-

tribution Service (DDS) [57] currently support dynamic peer-to-peer endpoint discovery

via a standardized approach called the Simple Discovery Protocol (SDP), for large-scale

systems, however, SDP scales poorly since the discovery completion time grows as the

number of applications and endpoints increases. To scale to much larger systems, a more

efficient discovery protocol is required.
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Challenge 2: Coordination Across the Plant and Enterprise Levels

To share the data and results of analytics across the connected devices at the edge,

information must cross the plant boundaries reaching the enterprise level to conduct the

analytics, and results must be delivered to other plants so they reach the machines in those

destination plants. To address these requirements, existing data-centric pub/sub technolo-

gies such as DDS can be used because they provide benefits including scalable data dis-

semination with support for multiple transport protocols such as TCP and UDP, and a rich

set of configurable QoS policies including content-based filtering.

Despite the many benefits of DDS, there are challenges in using DDS for WAN-based

applications as in IIoT. First, DDS uses multicast as a default transport for discovery mes-

sages (i.e. control-plane messages) to locate endpoints in a system. If endpoints are lo-

cated in isolated networks not supporting multicast, these endpoints cannot be discovered

by other peers. In addition, because of network firewalls and network address transla-

tion (NAT), even if endpoints are discovered, peers may not be able to deliver data-plane

messages to the destination endpoints. DDS brokering solutions [28, 74] show promise,

however, for IIoT systems where a number of heterogeneous devices and networks exist,

a middleware solution to efficiently and scalably discover and coordinate DDS brokers lo-

cated in isolated networks remains an unresolved issue. Specifically, to deliver data from

source to destination in WANs, multiple brokers need to collaborate to form the data dis-

semination paths. Moreover, coordination among brokers to (re)establish dissemination

paths for dynamic endpoints in a consistent and efficient manner also remains as a chal-

lenging problem.

Challenge 3: Reliable Soft Real-time Cloud Infrastructure

At the enterprise level of IIoT systems, big data analytics involving both real-time

stream processing and batch computing will often be performed in the cloud. In cloud

infrastructures, machines or processes running a virtual machine (VM) may fail, which
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may be detrimental and in some cases catastrophic for the overall health, efficiency and

operation of IIoT systems. To guarantee both timeliness (soft real-time) and high availabil-

ity for big data analytics in the cloud, cloud infrastructures should provide fault-tolerant

mechanisms and intelligent resource management.

Solutions to address these requirements exist. For example, Remus [18] periodically

creates snapshots of states of primary VMs and rollback to synchronized backup VMs

when failures happen. However, these solutions do not consider replica placement, which

incurs shortcomings in the context of real-time applications when contention for shared

resources occurs. If backup VMs are placed on highly overloaded physical machines in

the case that does not consider resource constraints for placement, it cannot assure time-

liness requirements of applications due to high latency incurred by resource sharing after

a failover happens. Moreover, optimizing deployment of backup replica VMs considering

operation costs such as energy consumption is desired.

Challenge 4: Validating Properties of Pub/Sub Algorithms

Using existing data-centric pub/sub solutions, such as DDS, in a proper way is complex

as it is hard to predict performance of applications after combining multiple QoS config-

urations because the flexibility offered due to configurability further increases application

complexity in terms of validating their resultant behavior. To date, most deployments of

these technologies have been in controlled environments, such as local area networks. IIoT

systems represent a vastly different deployment environment where deploying and config-

uring pub/sub technologies is a hard task. Validating new data-centric, pub/sub solutions

that address the inherent IIoT challenges makes this task even harder.

To overcome this problem, design-time formal methods have been applied with mixed

success, but they lack sufficient accuracy in prediction, tool support, and an understanding

of formalism has prevented wider adoption of the formal techniques. Therefore, a technique
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is needed to reduce manual testing efforts and accidental complexity to find an optimal

configuration in a planned emulation environment.

I.3 Proposed Doctoral Research: Scalable and QoS-enabled IIoT Middleware for

Cloud and Edge

To address the challenges identified in Section I.2, this dissertation discusses algorithms

and techniques to enhance the scalability, timeliness, and reliability of QoS-enabled data-

centric pub/sub middleware and virtualized infrastructures used in IIoT systems at the plant

and enterprise levels. We have used the OMG DDS technology as the vehicle to implement

and evaluate our ideas. The novel contributions of this dissertation focus on addressing

the three identified inherent complexities (Challenges 1, 2, and 3) and the one significant

source of accidental complexity (Challenge 4) as follows:

1. Content-based Filtering Discovery Protocol (CFDP) is our new endpoint discov-

ery mechanism that employs content-based filtering to conserve computing, memory

and network resources used in the DDS discovery process. It embraces the design of

a CFDP prototype implemented in a popular DDS implementation. We analyze the

results of empirical studies conducted in a testbed we developed to evaluate the per-

formance and resource usage of our CFDP approach compared with the traditional

SDP approach. Chapter II describes this dimension of the research in details.

2. PubSubCoord is a cloud-based coordination and discovery service for QoS-enabled

data-centric pub/sub for wide area network (WAN) operations. PubSubCoord real-

izes a WAN-scale, low-latency data dissemination architecture by (a) balancing the

load using elastic cloud resources, (b) clustering brokers by topics for affinity, and (c)

minimizing the number of data delivery hops in the pub/sub overlay. PubSubCoord’s

coordination mechanism uses ZooKeeper to support dynamic discovery of brokers

and pub/sub endpoints located in isolated networks. Empirical results evaluating the
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performance of PubSubCoord are presented for (1) scalability of data dissemination

and coordination, and (2) deadline-aware overlays employing configurable QoS to

provide low-latency data delivery for topics demanding strict service requirements.

Chapter III describes the design and implementation as well as experimental results

of PubSubCoord.

3. We propose a cloud middleware for high availability of soft real-time applica-

tions that automatically deploys replicas of VMs in cloud data centers in a way that

optimizes resources while assuring availability and responsiveness. It realizes the

design of a pluggable framework within the fault-tolerant architecture that enables

plugging in different placement algorithms for VM replica deployment. Experimen-

tal results using a case study that involves a specific replica placement algorithm are

presented to evaluate the effectiveness of our architecture. Chapter IV describes our

contributions.

4. AUTOMATIC is a model-based performance testing framework with generative ca-

pabilities to reduce manual efforts in generating and verifying a large number of

relevant QoS configurations of data-centric pub/sub applications and deploy them on

a cloud platform. Chapter V describes the design and implementation of our auto-

mated testing framework and provide a case study with experimental results.

The rest of this dissertation describes the research we have conducted on the focus areas

and summarizes contributions of the dissertation and alludes to remaining challenges which

are proposed as future work.
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CHAPTER II

CONTENT-BASED FILTERING DISCOVERY PROTOCOL (CFDP): SCALABLE
AND EFFICIENT OMG DDS DISCOVERY PROTOCOL

II.1 Motivation

The pub/sub communication paradigm [21] is attractive due to its inherent scalability,

which decouples publishers and subscribers of event data in time and space, and enables

them to remain anonymous and communicate asynchronously. A data subscriber is an

entity that consumes data by registering its interest in a certain format (e.g., topics, types

or content) at any location and at any time. Likewise, a data publisher is an entity that

produces data for consumption by interested subscribers.

A key requirement for the pub/sub paradigm is the discovery of publishers by sub-

scribers. Although anonymity is often a key trait of pub/sub, the underlying pub/sub mech-

anisms that actually deliver the data from publishers to subscribers must map subscribers to

publishers based on matching interests. To support spatio-temporal decoupling of publish-

ers and subscribers, an efficient and scalable discovery mechanism is essential for pub/sub

systems since publishers and subscribers need not be present at the same time and in the

same location.

Achieving efficient and scalable discovery is even more important for pub/sub systems

that require QoS properties, such as latency of data delivery, reliable delivery of data, or

availability of historical data. To meet the requirements of various systems, a range of

discovery mechanisms exist. Example mechanisms include using static and predetermined

lookups, using a centralized broker, or using a distributed and decentralized approach.

The DDS [60, 63] is a standardized pub/sub middleware that provides a range of QoS

properties to distributed real-time and embedded (DRE) systems in which discovery is a key

challenge. Since DDS supports QoS policies that enable it to disseminate data in a reliable

11



and real-time manner, it has been used to build many mission-critical DRE systems, such

as air traffic control, unmanned vehicles, and industrial automation systems.

The discovery mechanism defined in the DDS standard is based on a peer-to-peer (P2P)

protocol, where a peer automatically discovers other peers by matching the topic names,

their data types, and their selected QoS configurations. DDS peers that contain the end-

points (i.e., actual data publishers or subscribers) are required to locate remote matching

peers with their endpoints to establish communication paths. Each peer thus runs a discov-

ery protocol to find matching remote endpoints.

The DDS standard adopts a distributed and decentralized approach called the Simple

Discovery Protocol (SDP) [61]. SDP provides simple and flexible system management by

using discovery traffic for joining and leaving endpoints. It also supports updating the QoS

status of endpoints.

II.1.1 Challenges

Although SDP is standardized, one drawback is that it scales poorly as the number of

peers and their endpoints increases in a domain since each peer sends/receives discovery

messages to/from other peers in the same domain [75]. When a large-scale DRE system is

deployed with SDP, therefore, substantial network, memory and computing resources are

consumed by every peer just for the discovery process. This overhead can significantly de-

grade discovery completion time and hence the overall scalability of a DDS-based pub/sub

system.

The root cause of SDP’s scalability issues is that peers send discovery messages to ev-

ery other peer in the domain, yet perhaps only a fraction of the peers are actually interested

in conversing with any other peer. As a result, unnecessary network, computing and mem-

ory resources are used for this discovery protocol. For example, a data consumer receives

and keeps discovery objects (these objects describe all of topic names and data type for-

mats of the data that each consumer uses) for all other consumers even though they never

12



communicate with each other since they are identical types of endpoints (e.g., they are all

subscribers).

II.1.2 Solution Approach

To overcome this limitation with SDP, we suggest a new mechanism for scalable DDS

discovery called the Content-based Filtering Discovery Protocol (CFDP). CFDP employs

content filtering on the sending peer(s) to filter discovery messages by exchanging filtering

expressions that limit the range of interests a priori. To implement SDP, we created a spe-

cial DDS topic called the Content Filtered Topic (CFT), which includes filtering properties

that are composed of a filtering expression and a set of parameters used by that expres-

sion. By using CFT, peers on the sending side that use CFDP can filter unwanted discovery

messages and enhance the efficiency and scalability of the discovery process. The results

of our empirical evaluations presented in Section II.4 demonstrate a linear reduction in the

number of transferred and stored messages.

II.2 Background

This section summarizes the key elements of the OMG Data Distribution Service

(DDS) and its Simple Discovery Protocol (SDP).

II.2.1 OMG DDS

The OMG DDS specification defines a distributed pub/sub communications architec-

ture [60]. At the core of DDS is a data-centric architecture for connecting anonymous data

publishers with data subscribers, as shown in Figure 4. The DDS architecture promotes

loose coupling between system components. The data publishers and subscribers are de-

coupled with respect to (1) time (i.e., they need not be present at the same time), (2) space

(i.e., they may be located anywhere), (3) flow (i.e., data publishers must offer equivalent

or better quality-of-service (QoS) than required by data subscribers), and behavior (i.e.,
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business logic-independent), (4) platforms, and (5) programming languages (e.g., DDS ap-

plications can be written in many programming languages, including C, C++, Java, and

Scala).

Data Bus (DDS Domain)

Publisher

Data
Reader

Data
Writer

Data
Writer

Subscriber Subscriber

Data
Reader

Data
Reader

Topic Topic Topic

Publisher

Data
Writer

Participant

Figure 4: DDS Architecture

A DDS data publisher produces typed data-flows identified by names called topics.

The coupling between a publisher and subscriber is expressed only in terms of topic name,

its data type schema, and the offered and requested QoS attributes of publishers and sub-

scribers, respectively. Below we briefly describe the key architectural elements of the DDS

specification.

• Domain is a logical communication environment used to isolate and optimize net-

work communications within the group of distributed applications that share com-

mon interests (i.e., topics and QoS). DDS applications can send and receive data

among themselves only if they have the same domain ID.

• Participant is an entity that represents either a publisher or subscriber role of a
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DDS application in a domain, and behaves as a container for other DDS entities

(i.e., DataWriters and DataReaders), which are explained next.

• DataWriter and DataReader. DataWriters (data publishers) and DataReaders

(data subscribers) are endpoint entities used to write and read typed data messages

from a global data space, respectively. DDS ensures that the endpoints are compat-

ible with respect to topic name, their data type, and QoS configurations. Creating a

DataReader with a known topic and data type implicitly creates a subscription, which

may or may not match with a DataWriter depending upon the QoS.

• Topic is a logical channel between DataWriters and DataReaders that specifies the

data type of publication and subscription. The topic names, types, and QoS of

DataWriters and DataReaders must match to establish communications between

them.

• Quality-of-service (QoS). DDS supports around two dozen QoS policies that can

be combined in different ways. Most QoS policies have requested/offered seman-

tics, which are used to configure the data flow between each pair of DataReader and

DataWriter, and dictate the resource usage of the involved entities.

• Reliability QoS controls the reliability of the data flow between DataWriters

and DataReaders. BEST_EFFORT and RELIABLE are two possible alternatives.

BEST_EFFORT reliability does not use any cpu/memory resource to ensure delivery

of samples. RELIABLE, on the other hand, uses an ack/nack based protocol to provide

a spectrum of reliability guarantees from strict (i.e., fully reliable) to BEST_EFFORT.

• Durability QoS specifies a mechanism for DataWriters to store and deliver previ-

ously published data to late-joining DataReaders. This QoS provides 3 different lev-

els of storing history data: VOLATILE (not storing), TRANSIENT (storing in memory),

PERSISTENT (storing in persistent storage like a disk).
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• Content Filtered Topic (CFT). Content filters refine a topic subscription and help

to eliminate samples that do not match the defined application-specified predicates.

The predicate is a string encoded SQL-like expression based on the fields of the data

type. The filter expression and the parameters may change at run-time. Data filtering

can be performed by the DataWriter or DataReader.
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Figure 5: DDS Discovery Protocol Built-in Entities

II.2.2 OMG DDS SDP

The OMG DDS Real-Time Publish-Subscribe (RTPS) standard [61] defines a discovery

protocol that splits the discovery process into two phases: the Participant Discovery Pro-

tocol (PDP) and the Endpoint Discovery Protocol (EDP). The PDP defines the means for

discovering participants in a network. After participants have discovered each other, they

exchange discovery messages for endpoints via the EDP.

The standard DDS specification describes a concrete discovery protocol called the Sim-

ple Discovery Protocol (SDP) as the default discovery protocol to be used by different

DDS implementations for interoperability. SDP also uses the two phase approach, which
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are called the Simple Participant Discovery Protocol (SPDP) and Simple Endpoint Discov-

ery Protocol (SEDP). These discovery protocols are suitable for deployments of DDS in

Local-Area Networks (LANs).

In the SPDP phase, a participant in a DDS application uses multicast or unicast dis-

covery messages to announce named participant DATA to other participants periodically.

These messages use built-in topics (i.e., special topics for discovery messages) for discov-

ery to let existing participants know of a new “announcing” participant. Figure 5 depicts

the different built-in DDS entities (topics and endpoints) used by SDP. The SPDP mes-

sage contains a participant’s Globally Unique Identifier (GUID), transport locators (IP ad-

dresses and port numbers), and QoS policies. The message is periodically sent with the

BEST_EFFORT reliability QoS to maintain liveliness of discovered participants. When par-

ticipant DATA messages are received from other participants, the received messages for

remote participants are archived in a database managed by the DDS middleware.

After a pair of remote participants discover each other by exchanging discovery mes-

sages, they transition to the SEDP phase. In this phase, remote entities (i.e., remote par-

ticipants or endpoints) imply the remotely-located entities from the entity that initiated the

discovery service. Likewise, local entities (i.e., local participants or endpoints) indicate the

locally-located entities in the same process address space.

After the SPDP phase, SEDP begins to exchange discovery messages of endpoints us-

ing the RELIABLE reliability QoS. These messages are known as publication DATA for

DataWriters and subscription DATA for DataReaders, respectively. They include topic

names, data types, and QoS of discovered endpoints. In the SEDP phase, participants

archive received remote endpoints’ information into an internal database and start the

matching process. During this process the communication paths for publication and sub-

scription are established between the matching endpoints if the remote endpoints have the

same topic name, data types, and compatible QoS configurations with the ones of their

local endpoints.
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Rather than using an out-of-band mechanism for discovery, SDP uses DDS entities (i.e.,

built-in DDS entities) as an underlying communication transport for exchanging discovery

information outlined above. As an initial step, an SDP-enabled participant creates and

uses built-in DDS entities to publish and subscribe discovery data. The built-in entities use

predefined built-in topics (DCPSParticipant, DCPSPublication, and DCPSSubscription) to

discover remote participants and endpoints, as shown in Figure 5.

The built-in entities have two variants: DataWriters for announcement and DataReaders

for discovery. Each discovery topic for different entities (participant, publication, and

subscription) therefore has a pair of DataWriters and DataReaders. After built-in entities

are initially created, the participants use it to exchange discovery messages for SDP.

II.2.3 Discovery Services for Pub/Sub Communications

In this section, we describe existing discovery mechanisms for pub/sub communica-

tions. For pub/sub communications, initially, peers running on devices need to search other

peers in a system. Next, discovered peers begin exchanging discovery information for pub-

/sub endpoints as topics and types. Once these discovery phases are done, communications

of matching pub/sub endpoints are established. We partition these procedures into three

phases: device discovery, endpoint discovery, and data communication.

Figure 6 shows procedures of the peer-to-peer discovery service with enabling mul-

ticast. In the device discovery, peers dynamically announce their locator information to

others in a system via multicast. In the endpoint discovery, discovered peers exchange

endpoint information (i.e., topics, types, QoS parameters if supported) to find matching

pub/sub endpoints. The peer-to-peer discovery service with multicast provides the zero

configuration infrastructure that does not require any centralized services and manual con-

figuration efforts for discovery to users, so it is called dynamic or automatic discovery

protocol.

If a system does not support multicast, it is possible to handle discovery procedures
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Figure 7: Peer-to-peer Discovery Service with Unicast

using unicast transmission. This mechanism requires manual configurations by users to

set locators of other peers at the device discovery phase. Like the multicast peer-to-peer

approach, this way also does not require external centralized services for discovery.

The static discovery involves user’s efforts to configure discovery information by hand.

This approach is beneficial to systems with limited network bandwidth as it does not use

resources for discovery. Still, this discovery method cannot be used in large-scale systems

where many peers and endpoints exist that cause a lot of configuration efforts.
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The centralized discovery service is a commonly used way to share discovery informa-

tion between peers as it is easy to manage with avoiding duplicated discovery information

and requires minimal manual efforts. However, this approach causes problems when the

centralized service is failed or congested and these incidents would affect the whole sys-

tem. In the discovery phase, each peer access a well-known discovery server and exchange

discovery information via the server.

To resolve the single point of failure issue in the centralized discovery, the federated
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discovery has been proposed. This mechanism is basically similar to the centralized discov-

ery except for the federation of the centralized discovery servers so that it is fault-tolerant

and scalable by balancing loads on multiple servers compared to the centralized approach.

Implementations of synchronizing information between servers and failover logic vary by

solutions.
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Many pub/sub technologies such as AMQP, MQTT, and JMS use centralized or feder-

ated servers called brokers for not only discovery but also pub/sub communications. This

approach is better than peer-to-peer in terms of memory management for persistent data

(i.e., sending previously published data to late joining subscribers) and scalability by del-

egating distribution overheads to federated brokers. Still, it leads to extra delivery hops

causing higher latency and is delicate to failures of brokers.

II.3 Design and Implementation

Section II.1.1 highlighted the drawbacks of the existing standardized protocol for peer

discovery in DDS called Simple Discovery Protocol (SDP). The key limitations in SDP

stemmed from multicasting discovery messages to all other peers in the LAN, many of

whom may not have a match between the publication and subscription. This protocol

unnecessarily wastes network, storage and computation resources. To overcome this limi-

tation, we designed the Content-based Filtering Discovery Protocol (CFDP). This section

first describes the design of CFDP and then outlines key elements of its implementation.

II.3.1 The Design of CFDP

CFDP filters discovery messages based on topic names and endpoint types, thereby

reducing the number of resources wasted by the traditional SDP approach. Like SDP, CFDP

utilizes the first phase of SDP called SPDP (described in Section II.2.2) for participant

discovery. It differs from SDP in the endpoint discovery phase known as SEDP, where key

modifications have been designed for CFDP.

Similar to how SEDP applies DDS built-in entities as a communication transport to

share discovery information, CFDP also uses DDS built-in entities to exchange discovery

messages, however with some modifications.

In our design, we have used a special feature called Content Filtered Topic (CFT) that

is supported in our underlying DDS implementation. CFT filters data samples on the
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DataWriter or DataReader side in accordance with the filtering expression defined in a

DataReader.

CFDP’s key enhancement was to create built-in entities with CFTs that filter discov-

ery messages on topic names stored in subscription DATA and publication DATA. Since

built-in topics already exist for discovering publication and subscription in the SEDP de-

sign, the CFDP creates separate built-in CFTs and filtering expressions for DataWriters

and DataReaders. The application logic is completely oblivious to these steps because

everything is handled at the DDS middleware-level.

DP2
DW{B}, DR{A}

Publication Filtering
topic_name MATCH 

'B,MASK_ALL'
Subscription Filtering
topic_name MATCH 

'A,MASK_ALL'

DP1
DW{A}, DW{B}

Publication Filtering
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'A,B,MASK_ALL'
Subscription Filtering
topic_name MATCH 

'MASK_ALL'

publication DATA (DW{A})

subscription DATA (DR{A})

publication DATA (DW{B})

publication DATA (DR{B})

Delivered Discovery Message

Filtered Discovery Message

Figure 12: Filtering Discovery Messages by Topic Names

Figure 12 shows an example of filtering discovery messages based on topic names. The

following notations are used in the figure.

• DPx - Domain Participant named x
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• Discovery DB - Internal in-memory database stored at the core level of the DDS

middleware.

• DW{y} - DataWriter publishing a topic y

• DR{z} - DataReader subscribing for a topic z

• DPx[DW{y}, DR{z}] - Discovery object indicating a Domain Participant containing

DW{y} and DR{z} stored in the Discovery DB.

DPs using SDP disseminate all the discovery messages for created endpoints to other

DPs in the same domain. Our CFDP approach, however, filters out unmatched discov-

ery messages on the DataWriter side utilizing CFTs by harnessing topic names of local

endpoints. This avoids unwanted messages being sent over the network.

In this example, DP1 does not forward any discovery messages about DW{B} to DP2

since DP2 does not have DR{B}. Likewise, DP2 does not send discovery messages for

DW{B} to DP1. Discovery messages about unmatched endpoints in CFDP are filtered out

on the announcing side and implemented via filtering expressions defined in each partici-

pant.

The publication filtering expression in DP1 (topic_name MATCH ‘A,B,MASK_ALL’)

means that it only accepts subscription discovery messages for topics A and B. Here, topic-

_name is a variable defined in the built-in topic for the discovery process. MATCH is a

reserved relational operator for a CFT expression. If a value of the variable is matched

with the right-hand operator (‘A,B,MASK_ALL’), a sample containing the value is accepted

by the participant. Likewise, the subscription filtering expression does not allow any publi-

cation discovery messages by using a reserved filter, MASK_ALL, because DataReaders do

not exist.

Figures 13 and 14 compare SDP and CFDP by showing an example having the same

application topology. In this comparison, we assume that unicast is used for the discovery

protocol. In Figure 13, each participant contains DataWriters and DataReaders with topic
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names ranging from A to D. Every participant publishes SEDP messages of endpoints to

other participants in the same domain, and participants receiving the discovery messages

store the messages as discovery objects in internal database. Six discovery objects includ-

ing discovery objects of local endpoints are stored in each participant resulting in a total

of 18 discovery objects consuming memory resources in this system. Likewise, there are a

total of 18 network transfers.

DP1
DW{A}, DR{B}

Discovery DB
DP2[DW{B}, DR{C}]
DP3[DW{C}, DR{D}]

DP3
DW{C}, DR{D}

Discovery DB
DP1[DW{A}, DR{B}]
DP2[DW{B}, DR{C}]

DP2
DW{B}, DR{C}

Discovery DB
DP1[DW{A}, DR{B}]
DP3[DW{C}, DR{D}]

Network Load: 6 transfers for each DP = 18
Memory Load: 6 objects for each DP's DB = 18 

Figure 13: SDP Example

Figure 14 shows a case using CFDP, which has the same setup and topology used in

the SDP example. However, in this case, each participant filters discovery messages based

on topic names and endpoint types, so it transfers and stores only the required discovery

messages. As a result, a total of ten discovery objects are stored in each local database

resulting in ten network transfers. This comparison demonstrates that CFDP can conserve

memory and network resources.

Algorithm 1 describes the pseudo code for the event callback functions for CFDP.
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DP1
DW{A}, DR{B}

Discovery DB
DP2[DW{B}]

DP3
DW{C}, DR{D}

Discovery DB
DP2[DR{C}]

DP2
DW{B}, DR{C}

Discovery DB
DP1[DR{B}]
DP3[DW{C}]

Network Load: 3(DP1) + 4(DP2) + 3(DP3) = 10
Memory Load: 3(DP1) + 4(DP2) + 3(DP3) = 10 

Figure 14: CFDP Example

The callback function is invoked by the pluggable discovery framework described in Sec-

tion II.3.3.1, which we have used in our solution.

Each callback function is invoked when the following events occur:

• LocalEndpointEnabled - when a local endpoint (DataWriter or DataReader) is cre-

ated

• LocalEndpointDeleted - when a local endpoint (DataWriter or DataReader) is deleted

• RemoteDataWriterReceived - when a remote DataWriter is created

• RemoteDataReaderReceived - when a remote DataReader is created

A discovery object of a created local endpoint is delivered as a parameter value to

the LocalEndpointEnabled callback function. When the discovery object is for a local

DataWriter, the function adds the DataWriter’s topic name to the subscription filtering

expression(SubFiltering). The subscription filtering expression is used for finding matching

remote DataReaders for local DataWriters.
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Algorithm 1 CFDP Callback Function Algorithms
function LOCAL ENDPOINT ENABLED(EP)

if EPtype is DataWriter then
if EPtopicName ∈ SubFiltering then

Add EPtopicName to SubFiltering

else if EPtype is DataReader then
if EPtopicName ∈ PubFiltering then

Add EPtopicName to PubFiltering
Send EP to remote Participants

function LOCAL ENDPOINT DELETED(EP)
if EPtype is DataWriter then

if EPtopicName ∈ SubFiltering then
Delete EPtopicName f rom SubFiltering

else if EPtype is DataReader then
if EPtopicName ∈ PubFiltering then

Delete EPtopicName f rom PubFiltering

function REMOTE DATA WRITER RECEIVED(EPDW )
Assert EPDW into Internal DB

function REMOTE DATA READER RECEIVED(EPDR)
Assert EPDR into Internal DB

Similarly, in the case for finding matching remote DataWriters for local DataReaders,

the publication filtering expression (PubFiltering) is used and must be updated with a topic

name of a local DataReader if it does not exist. After updating topic names in the filtering

expressions, it sends the discovery objects to other participants to let them know about the

newly created local endpoints.

When a local endpoint is deleted, the topic name of the local endpoint is removed from

the relevant filtering expressions in the callback function LocalEndpointDeleted. The call-

back functions for remote endpoints (RemoteDataWriterReceived and RemoteDataRead-

erReceived) insert discovery objects of remote endpoints to the internal database. The

underlying DDS middleware then executes the matching process by comparing data types

and QoS policies stored in the discovery objects to establish communication paths between

endpoints.
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II.3.2 Analysis of SDP and CFDP Complexity

We performed a complexity analysis of SDP and CFDP to determine the expected num-

ber of transmitted discovery messages and stored discovery objects. Tables 1 and 2 show

notations and metrics used for the complexity analysis, respectively.

Table 1: Notation used for Complexity Analysis

Notation Definition
P Number of participants in a domain
E Number of endpoints in a domain
F Number of endpoints per participant, Fanout = E/P
R Ratio of the number of matching endpoints to the number of end-

points in a participant, 0≤ R≤ 1

Table 2: Metrics used for Complexity Analysis

Metric Definition
Nmulti_participant Number of messages sent/received by a participant using multi-

cast
Nmulti_total Total number of messages sent/received by participants using

multicast in a domain
Nuni_participant Number of messages sent/received by a participant using unicast

Nuni_total Total number of messages send/received by participants using
unicast in a domain

Mparticipant Number of endpoint discovery objects stored in a participant
Mtotal Total number of endpoint discovery objects stored in a domain

The notations use the number of participants and the number of endpoints in a domain

because these variables are crucial to measuring the performance of discovery protocols.

A ratio of matching endpoints in each participant can also be used for CFDP complexity

analysis because it is the primary factor affecting network transfers and stored objects of
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CFDP. For analysis metrics, we decided to inspect the number of transferred and stored

discovery messages per participant, as well as per domain (entire set of participants) for

both unicast and multicast.

II.3.2.1 SDP Complexity Analysis

In the case of multicast-enabled SDP, the number of messages sent from a participant

is the number of endpoints divided by participants, which yields the number of endpoints

in a participant, E/P. Regardless of the number of participants and endpoints in a domain,

if multicast is used, a message is sent to other participants only when a local endpoint is

created. The delivery of a message to multiple destinations (one-to-many communication)

is performed by a network switch.

The number of messages received by a participant is the number of endpoints except for

local endpoints in a participant (E
P in Equation (1)). The number of messages sent from a

participant is the number of local endpoints multiplied by the number of remote participants

(E
P · (P−1) in Equation (1)). As a result, in Equation (2), E

P is cancelled out and therefore

the sum of sent and received number of messages per participant can be simplified to the

number of endpoints in a domain, E in Equation (3). The total number of transfers in a

domain is the number of transfers per participant multiplied by the number of participants

in a domain, which is E ·P as shown in Equation (4).

Nmulti_participant =
E
P
+

E
P
· (P−1) (II.1)

=
E
P
+E− E

P
(II.2)

= E (II.3)

Nmulti_total = E ·P (II.4)
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Unicast-enabled SDP incurs more overhead when it sends discovery messages because

it handles one-to-many data distribution by itself, rather than using network switches. Each

participant disseminates the discovery message as many times as the number of endpoints

without including local endpoints (E
P · (P− 1) in Equation (5)). The number of received

messages is the same as when using multicast (E
P · (P− 1) in Equation (5)). The total

number of network transfers incurred by the unicast enabled SDP is 2 times E
P · (P− 1),

and therefore 2 · E
P · (P−1), as shown in Equation (6).

Nuni_participant =
E
P
· (P−1)+

E
P
· (P−1) (II.5)

= 2 · E
P
· (P−1) (II.6)

∵ (P−1)∼ P (II.7)

∼ 2 ·E (II.8)

Nuni_total ∼ 2 ·E ·P (II.9)

In the asymptotic limit (i.e., very large P), as shown in Equation (7), (P−1) ∼ P, and

hence it can be approximated as 2 ·E in Equation (8), and accordingly the total number of

transfers in a domain is roughly 2 ·E ·P as shown in Equation (9).

Unicast-enabled SDP incurs more overhead (which grows as a factor of E) compared

to multicast-enabled SDP since every participant in a domain must send more messages

since it uses point-to-point unicast data dissemination instead of the one-to-many multicast

dissemination. SDP keeps all discovery objects of endpoints in the same domain, and

therefore the memory consumption per participant for SDP is directly tied to the number

of endpoints in a domain, E in Equation (10). The total memory capacity used by all
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participants in a domain is thus E ·P, as shown in Equation (11).

Mparticipant = E (II.10)

Mtotal = E ·P (II.11)

II.3.2.2 CFDP Complexity Analysis

We applied the same analysis as SDP to measure the number of transfers for CFDP,

i.e., a sum of received and sent network transfers. There is no change in the number of

sent messages because each participant with multicast sends one message for each corre-

sponding endpoint it contains (E
P in Equation (12)). We can reduce the number of received

messages, however, since only matched discovery messages are received by the filtering

mechanism. This factor is therefore multiplied by the ratio of matching endpoints, R (for

all, 0 ≤ R ≤ 1). Hence, the number of received messages can be E
P · (P− 1) ·R as shown

in Equation (12). From Equation (12) to Equation (13), E
P · (P− 1) ·R can be transitioned

to E ·R− E
P ·R. Then, E

P −
E
P ·R in Equation (13) can be E

P · (1−R), and thus simply be

F · (1−R) in Equation (14) because E
P = F .

Nmulti_participant =
E
P
+

E
P
· (P−1) ·R (II.12)

=
E
P
+E ·R− E

P
·R (II.13)

= F · (1−R)+E ·R (II.14)

∼ E ·R (II.15)

Nmulti_total ∼ E ·P ·R (II.16)
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As shown above, the number of transfers per participant is approximated by E ·R in Equa-

tion (15) because F · (1−R) in Equation (14) can be a very small number in most cases

such that it can be ignored. Using the total transfers per participant (E ·R in Equation (15)),

the total transfers in a domain is E ·P ·R in Equation (16).

CFDP reduces both the number of sent and received transfers proportional to the match-

ing ratio if unicast is enabled, so both the number of sent and received messages can be

E
P · (P− 1) ·R in Equation (17). Accordingly, the number of transfers per participant is

2 · E
P · (P−1) ·R as shown in Equation (18). This number can be approximated to 2 ·E ·R

shown in Equation (19) via the same analysis used for SDP (See Equation (7)). The total

transfers in a domain is thus 2 ·E ·P ·R, as shown in Equation (20) because it is the total

number of transfers per participant (2 ·E ·R) multiplied by the number of participants in a

domain (P).

Nuni_participant =
E
P
· (P−1) ·R+

E
P
· (P−1) ·R (II.17)

= 2 · E
P
· (P−1) ·R (II.18)

∼ 2 ·E ·R (II.19)

Nuni_total ∼ 2 ·E ·P ·R (II.20)

CFDP also decreases memory use as a consequence of reducing the number of remote

endpoints by removing unmatched ones. Similarly, CFDP conserves resources proportional

to the ratio of matching endpoints for cases per participant as shown in Equation (22), as

well as per domain as shown in Equation (23).

Mparticipant =
E
P
+

E
P
· (P−1) ·R (II.21)

∼ E ·R (II.22)
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Mtotal ∼ E ·P ·R (II.23)

II.3.3 Implementing CFDP

We prototyped our solution at the application level, rather than make invasive and non-

standard changes to the underlying DDS middleware, which is RTI Connext [73]. In par-

ticular, our implementation leveraged DDS discovery event callbacks using interfaces pro-

vided by the middleware, though our approach could be incorporated inside the middleware

itself to optimize performance. Our prototype implementation assumes that when partici-

pants are created, users determine which topics are published or subscribed by participants

(this decision is usually made when endpoints are created).

We made this assumption in our prototype implementation of CFDP since it uses the

DDS TRANSIENT_LOCAL durability QoS for both late joiners and CFTs. When a parame-

ter in a filtering expression of a CFT is changed, however, the changed value is not reflected

in the list of late joiners. For example, a peer filters a discovery message of topic x because

it does not have any endpoints interested in the topic x. Later when an endpoint interested

in the topic x is created in the peer, then the peer should be considered a late joiner, but it is

not. If the discovery message for the topic x is already filtered, it is not resent even though

the filtering expression is updated with having the interest of topic x.

In addition, the prototype implementation of our CFDP discovery plugin had to address

the following two issues:

1. It needs to operate with the DDS middleware core by interchanging discovery events

since event information is available on different threads. Section II.3.3.1 describes

how we resolved this issue via the Pluggable Discovery Framework (PDF) provided

by RTI Connext DDS [73].

2. It needs to have a proper data model according to the DDS RTPS specification for
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discovery messages exchanged between remote peers. Section II.3.3.2 describes the

data model we devised to address this issue.

II.3.3.1 CFDP Plugin Using the Pluggable Discovery Framework (PDF)

The PDF allows DDS users to develop pluggable discovery protocols, and utilize dif-

ferent discovery approaches under various system environments, such as a network en-

vironment with limited bandwidth or high loss rates. The PDF offers callback functions

invoked when DDS entities are created, deleted, or changed. It also provides a function to

assert a discovery object to internal database of the DDS middleware to delegate managing

discovery objects and the matching process to the core level of the middleware. We there-

fore provided interfaces in PDF between the discovery plugins and associated participants

as channels to exchange information in both directions: local-to-remote (announcing local

entities) and remote-to-local (discovering remote entities).

Figure 15 shows the software architecture of our CFDP prototype. In this figure, there

are six built-in entities present at the DDS core level. The CFDP uses SDP built-in enti-

ties to discover application-level built-in entities. The discovery plugin employs callback

functions provided by the PDF to retrieve discovery events from the middleware.

Figure 16 introduces a procedure of discovery with the PDF enabled CFDP when a

DataWriter is created.

The PDF also furnishes a function to deliver discovery information from the applica-

tion level to the core level of the middleware. The CFDP exchanges discovery messages

between peers with four built-in entities like SDP, and sets up the same QoS configura-

tions of SDP. For example, to deliver discovery messages in a reliable way, the RELIABLE

reliability QoS is selected and the TRANSIENT_LOCAL durability QoS is configured to

guarantee durability of discovery messages for late joiners as endpoints usually are not

created at the same time.

Interfaces of functions for DataWriter discovery provided by the PDF are shown in
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Figure 15: CFDP Prototype Software Architecture

Figure 17. The NDDS_Endpoint Discovery_AfterLocalDataWriterEnabledCallback is a

callback function invoked when a local DataWriter is created. CFDP uses this function

to add a topic name of a created DataWriter to a proper filtering expression and to pub-

lish discovery information of the created DataWriter to announce to other remote peers.

NDDS_EndpointDiscovery _assert_remote_datawriter is a function that asserts a discov-

ery object of a discovered remote DataWriter to the internal database in the underlying

middleware.

For example, if a DataWriter is produced in Peer1 the AfterLocalDataWriterEnabled-

Callback is invoked and the callback function sends Publication DATA (discovery data for

DataWriters) to other peers. The publication DATA then arrives at Peer2 and is delivered
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Peer 2

Pluggable Discovery Framework (PDF)

CFDP Discovery Plugin

CFDPPublication
Built-in DataReader

Peer 1

Pluggable Discovery Framework (PDF)

CFDP Discovery Plugin

CFDPPublication
Built-in DataWriter

publication DATA

STEP 1
AfterLocalDataWriterEnabledCallback

STEP 2

STEP 3
assert_remote_datawriter

Figure 16: CFDP Sequence with PDF

Figure 17: PDF Functions for DataWriter Discovery

to the core by calling the function assert_remote_datawriter. Finally, the DDS middle-

ware establishes the communication by matching topic, type, and QoS policies stored in

the publication DATA.

II.3.3.2 CFDP Data Model

A data model containing the required information for endpoints is needed to develop

discovery built-in entities at the application level. DDS supports diverse QoS configura-

tions and makes the data model for endpoint discovery complicated because QoS configu-

rations for endpoints are exchanged at the endpoint discovery phase. Thus, defining the data

model from scratch is hard. We therefore exploited OMG Interface Definition Language

(IDL) definitions already used in the DDS core middleware and generated source code for
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the data model, thereby reducing the time and effort needed to define and implement the

data model.

Figures 18 and 19 depict data models for publication and subscription discovery defined

in IDL. Attributes for keys to identify discovery entities are contained and topic_name and

Figure 18: IDL Definition for Publication Discovery Data Model

type_name attributes can be used to find matching endpoints by topics and type structures.

The data models include the basic attributes required for the DDS specification, but addi-

tional attributes can be added to support an advanced discovery process. For example, the

type name can be used for type matching, but an object for type structure can be used to

realize extensible and compatible type definitions.

QoS policies required for endpoint matching are also defined in the data models. The

QoS policies are different depending on the types of entities (publication or subscription).

For example, the time-based filter QoS controls data arrival rates on the DataReader side
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Figure 19: IDL Definition for Subscription Discovery Data Model

even though DataWriters may publish at a faster rate. This QoS policy can therefore be

applied only to DataReaders (subscription). Likewise, the lifespan QoS validates how long

samples are alive on the DataWriter side, and is only applicable to DataWriters (publica-

tion). DDS QoS policies can be reconfigured at run-time, and endpoint discovery messages

are used to propagate those changes.

II.4 Experimental Results

This section presents the results of empirical tests we conducted to compare CFDP with

SDP. We conducted these tests to evaluate the scalability and efficiency of CFDP over SDP

in terms of discovery completion time, which is defined as the duration of the discovery

process to locate every matching endpoint in a domain. We measured CPU, memory, and

network usage for both CFDP and SDP to determine how discovery completion time is

affected by computation and network resource usage.
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II.4.1 Overview of the Testbed

Our testbed consists of six 12-core machines. Each machine has a 1 GB Ethernet con-

nected to a single network switch. We implemented our CFDP plugin and the standard

SDP implementation with RTI Connext DDS 5.0 [73]. We concurrently created 480 appli-

cations for each test, where each application contained a single participant. Specifically,

we maintain equal number of publishers and subscribers, each with 20 endpoints (i.e., a

data writer or reader, respectively).

All test applications are evenly distributed and executed across the six machines. Each

participant has 20 endpoints with an identical entity kind (only DataWriters or DataRead-

ers), and the total number of endpoints in a test is 9,600 (i.e., 480 applications with 20

endpoints each). We set the default matching ratio in each test to 0.1 (10%). It means two

out of 20 endpoints in each participant are matched with other endpoints in a domain at a

probability of 0.1. Our experiments have tested other matching ratios also.

CFDP uses unicast to filter messages on the DataWriter side because the filtering occurs

on DataReader side if multicast is enabled. Filtering on the DataReader side filtering does

not reduce the number of discovery messages transferred over a network, so it may have

little improvement on performance. SDP uses multicast because it is the default discovery

transport for this protocol.

We also developed a test application that measures discovery completion time. The

application starts a timer after synchronizing distributed tests in a domain since we remotely

execute the applications from a single machine sequentially. It then stops the timer when

the expected number of endpoints are discovered. This implementation does not count the

discovery time incurred for discovering participants, but measures only the time to discover

endpoints because we compare the performance of the endpoint discovery phase (recall that

the first phase of the discovery process is common to both SDP and CFDP).
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II.4.2 Measuring Discovery Time

Discovery completion time is a critical metric to measure performance of discovery

protocols. In the context of our tests, discovery completion time is defined as the time

needed to discover all endpoints in a domain. We measured discovery completion time of

480 test applications for CFDP and SDP, respectively. Figure 20 presents the minimum,

average, and maximum of discovery completion times for the test applications.

Figure 20: CFDP and SDP Discovery Time Comparison

The minimum discovery time for CFDP is 1.1 seconds and the maximum discovery is

15.92 seconds. Most test applications for CFDP complete the discovery process within 1

to 2 seconds. The average discovery time for all applications is 5.2 seconds. Some of the

worst-case results were caused due to CPU saturation as discussed below.
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In the case of SDP, the earliest discovery completion time is 15.3 seconds and the latest

finish time is 32.9 seconds. The average discovery time is 15.3 seconds. As a result, the

maximum discovery time of CFDP is 2 times faster than SDP; the average time is about 5

times faster, and the minimum discovery completion time is 15 times faster.

As mentioned above, the matching ratio used in this experiment is 0.1 (10%). In fact,

SDP does not filter any discovery messages. So the different matching ratios make no

difference for SDP. The performance of CFDP can be different based on the matching

ratio, however, because it is determined by the number of messages to be filtered and its

computational complexity.

If CFDP uses unicast as a transport, its performance can sometimes be worse than SDP

with a higher matching ratio because it consumes computation resources for the filtering

process as well as delivering messages which requires serializing and deserializing mes-

sages. CFDP therefore cannot always outperform SDP in a system with a smaller number

of topics and endpoints. On the other hand, in large-scale DRE systems with many topics

and endpoints, CFDP can always perform the discovery process more efficiently and scal-

ably than SDP. Naturally, if the matching ratios are very high, then the benefit accrued may

not be significant but we surmise that in general the matching ratios will remain small.

II.4.3 Measuring Resource Usage

We measured CPU utilization used by the discovery process by exploiting gnome-

system-monitor. All distributed test applications are executed nearly simultaneously and

the discovery process of each test application begins immediately after the endpoints are

created. As shown in the Figure 21, however, there is a spike at a specific time range that

occurs due to the discovery process overhead.

Figure 21 shows that more CPU cycles of SDP are consumed than for CFDP (10%).

SDP’s CPU utilization is higher since the number of transferred discovery messages is

larger than for CFDP, so it incurs more processing overhead. These results indicate that
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CFDP  CPU Usage (10% Matching)
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CFDP CPU Usage (50% Matching)

Figure 21: CFDP and SDP CPU Usage Comparison

the processing overhead incurred by filtering messages on DataWriters is lower than the

processing costs incurred by transferring discovery messages. We therefore conclude that

the CFDP discovery scheme uses fewer CPU resources than SDP.

The processing resources used by CFDP can be different for different matching ra-

tios, as shown by CPU utilization results in the Figure 21. As expected, CPU utilization

increases with higher matching ratios. This figure indicates that CFDP is not effective for

every case, especially with a high matching ratio. It should therefore be used for large-scale

DRE system having many endpoints where the matching ratio is lower than a small-scale

system.

To analyze and compare network and memory usage of CFDP and SDP, we counted

the number of sent and received messages for the discovery process by each proto-

col. The DataWriters and DataReaders provide detailed messaging information, such

as how many messages and bytes are sent, received, or filtered via the functions named

42



get_datawriter_protocol_status() and get_datareader_protocol_status(). Based on this in-

formation, we counted the number of messages, as shown in Figure 22.

Figure 22: Number of Sent/Received Discovery Messages

CFDP exchanges discovery messages via unicast and each test application creates the

same number of endpoints. The number of received and sent messages are therefore iden-

tical. CFDP (10%) sent and received 480 samples each and the total was 960.

SDP uses multicast for discovery messages, so the number of received messages is

substantially more than the number of sent messages. In this experiment, only 20 samples

are sent by a participant as each participant creates 20 endpoints. Although SDP sends

fewer messages than CFDP, the total number of messages transferred by a participant using
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SDP is still larger than any case of CFDP because the number of received samples is always

large.

In this test the number of received transfers for SDP is 9,600, which is 10 times larger

than CFDP. Even for 100% matching ratio of CFDP, CFDP uses less messages than SDP

because filtering expressions for publication and subscription exist separately, and discov-

ery messages for the same kind of endpoints are automatically filtered as they do not need

to communicate.

The size of publication DATA is 292 Bytes and the size of subscription DATA is 260

Bytes. Based on these sizes, we can calculate memory and network usage approximately.

The total transferred bytes of CFDP (10%) is 264.96 KB and the total transferred bytes

of SDP is 2808.4 KB. The estimated memory consumed per participant for CFDP is thus

124.8 KB, while SDP requires 2,496 KB.

II.5 Related Work

This section compares and contrasts our CFDP DDS peer discovery mechanism with

other discovery mechanisms reported in the literature. Several DDS discovery protocols

have been developed to satisfy different system requirements and deployment scenarios.

The Simple Discovery Protocol (SDP) [61] is the standard DDS discovery protocol. SDP

is a decentralized and distributed approach to discover remote peers and their endpoints as

each peer independently manages discovery information. It requires no effort in discovery

configurations and avoids a single point of failure. The motivation for our work on the

CFDP approach is to overcome the limitations of scalability inherent in the standard SDP

approach.

OMG DDS also supports a centralized approach [73] [58], which requires a dedicated

service to manage all of the participants and endpoints in a domain. This approach can

be more scalable than SDP in certain configurations because every peer in a domain need

not exchange discovery messages with all other peers in a domain, but only communicate
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with the central node where the dedicated service runs. This centralized scheme, however,

has several drawbacks. First, its centralized design can become a single point of failure.

Second, if the dedicated service is overloaded, the performance of the discovery process of

peers in a system can deteriorate considerably.

To avoid the run-time overhead incurred by both the decentralized and centralized dis-

covery protocols, an alternative is a static discovery protocol [72]. In this model users

manually configure the discovery information of peers and their endpoints at design- and

deployment-time, which requires significant configuration efforts. Such approaches can

be useful, however, for closed DRE systems that are deployed in networks with limited

resources because no additional resources are used during the run-time discovery process.

The key distinction of this static approach with our work on CFDP is that the latter is not a

static approach and operates in an open environment.

An improvement to SDP is presented in [75] by utilizing bloom filters to address scala-

bility problems incurred in large-scale DRE systems. The peers send bloom filters to other

peers, where the bloom filter is a summary of endpoints deployed in a peer. Peers use

the received bloom filters to check if the matching endpoints are in the set represented by

the filter. The peers store information about all endpoints, but leverage the smaller size

enabled by bloom filters to use network and memory resources more efficiently. Although

this related work has similar goals as CFDP (i.e., both approaches attempt to solve the same

problem), each approach is designed and implemented differently. In particular, rather than

using a bloom filter, CFDP uses a content filter topic (CFT) to filter unmatched endpoint

discovery messages.

In [89], the authors investigate the challenges of using DDS in large-scale, network-

centric operations and suggest an adaptive discovery service framework to meet key per-

formance requirements. This work also mentions the scalability problem of DDS discov-

ery, but focus on the discovery scalability problems incurred in WANs. Likewise, the work

presented by [49] outlines an extension to the IETF REsource Location And Discovery
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(RELOAD) protocol [39] for content delivery in WAN-based IoT systems using DDS. The

authors conducted experiments with 500 to 10,000 peers over a simulated network to show

its scalability. Although this paper addressed the discovery scalability issue of DDS, their

approach centers on a structured P2P overlay architecture in WANs, which is different from

our work on CFDP, which is based on an unstructured P2P scheme.

Discovery is an important issue for the domain of peer-to-peer (P2P) systems, which

can be classified into structured P2P and unstructured P2P schemes [51]. The structured

P2P scheme, such as Chord [83] and Pastry [69], assigns keys to data and organizes peers

into a graph (a distributed hash table) that maps each data key to a peer, and therefore

realizes efficient discovery of data using the keys. The standard discovery approach for

DDS in LANs based on SDP can be classified as an unstructured P2P scheme since it or-

ganizes peers in a random graph by allowing anonymously joining and leaving participants

via multicast. The unstructured P2P scheme is not efficient compared to the structured one

because discovery messages must be sent to a large number of peers in the network to build

a graph of peers that remain anonymous to each other, however, this approach is needed to

support the spatio-temporal decoupling of peers. Since our CFDP solution is designed to

improve SDP, it operates in the unstructured P2P environment.

A taxonomy that compares and analyzes existing technologies for discovery services

in Ultra-large-Scale (ULS) systems [54] is presented in [32]. The authors evaluate dis-

covery services along four dimensions: heterogeneity, discovery QoS, service negotiation,

and network scope and type. To support interoperability between heterogeneous systems,

the OMG DDS supports diverse operating platforms (i.e. Linux(x86), Windows, and Vx-

Works), and also has standardized the Real-TimePublish-Subscribe (RTPS) pro-

tocol [61] for different DDS implementations by vendors. DDS uses built-in DDS entities,

such as topics and endpoints, to discover peers, as explained in Section II.2.2. DDS’ QoS

policies can in turn be used by these entities to support QoS of discovery. For service

negotiation, DDS discovery protocols compare the requested and offered QoS policies by
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data producers and data consumers at the endpoint discovery phase. DDS discovery mech-

anisms originally focused on the Local Area Network (LAN) scope. Recent research [27]

has broadened their scope to support Wide Area Networks (WANs) by deploying additional

capabilities, such as the DDS Routing Service [74] that transform and filter local DDS

traffic to different data spaces (i.e., network domain).

II.6 Concluding Remarks

This paper motivated the need to improve the efficiency and scalability of the standard

Simple Discovery Protocol (SDP) [61] used for DDS applications. We then presented the

design and implementation of our Content-based Filtering Discovery Protocol (CFDP),

which enhances SDP for a large-scale systems by providing a content filtering mechanism

based on standard DDS features to eliminate unnecessary discovery messages for partici-

pants according to matching topic names and endpoint types. We also analyzed the results

of empirical tests to compare the performance of SDP and CFDP, which indicate that CFDP

is more efficient and scalable than SDP in terms of CPU, memory, and network usage. The

following is a summary of the lessons we learned from this research and the empirical

evaluations.

• CFDP is more efficient and scalable than SDP. The experimental results show that

CFDP is more efficient and scalable than SDP in terms of discovery completion time,

as well as in the use of computing and network resources. In particular, for discov-

ery completion time, CFDP is 5 times faster than SDP on average and minimum

discovery completion time is 15 times faster when the matching ratio is 0.1 (10%).

For CFDP the computing and network usage linearly decreases as the matching ra-

tio decreases. CFDP therefore disseminates and processes discovery of peers and

endpoints more efficiently and scalably than SDP.
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• CFDP’s current lack of support for multicast can impede scalability. Our em-

pirical tests indicated that the number of messages sent by SDP is smaller than those

sent by CFDP since CFDP does not use multicast to filter messages on the data pub-

lisher side. SDP can seamlessly use multicast because only a single multicast address

is needed for all participants to use. For CFDP, however, each content filter used by

CFDP will need a separate multicast address. To overcome this limitation, our future

work will enhance CFDP to support multicast thereby reducing the number of dis-

covery messages sent by delegating the overhead to network switches. This approach

will group peers with a set of multicast addresses by topic names so that built-in dis-

covery DataWriters will publish data only to assigned multicast channels (groups).

We also plan to leverage Multi-channel DataWriters, which is a DataWriter that is

configured to send data over multiple multicast addresses according to the filtering

criteria applied to the data [73]. By using this feature, the underlying DDS middle-

ware evaluates a set of filters configured for the DataWriter to decide which multicast

addresses to use when sending the data.

• Instance-based filtering can help to make CFDP scalable in a large-scale system

with a small set of topics. DDS supports a key field in a data type that represents

a unique identifier for data streams defined in a topic. A data stream identified by

a key is called instance. The current CFDP filters discovery messages based on

topic names, which limits its scalability in a system where most data streams are

differentiated by a key of a topic, rather than by a topic itself. For example, a regional

air traffic management system may have many endpoints that exchange data by using

a single topic (such as flight status), but are interested in only a specific set of flights

that are identified by their keys. In such a system, even though all endpoints are

involved in the same topic, they do not need to be discovered by each other because

its interest is not based on the topic name, but on the key value of the topic. In future

work we will enhance CFDP to filter discovery messages based on topic names as
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well as instance IDs (keys). This enhancement should provide performance benefits

for DRE systems that contain numerous endpoints and instances with a single or less

number of topics.
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CHAPTER III

A CLOUD-ENABLED COORDINATION SERVICE FOR INTERNET-SCALE
OMG DDS APPLICATIONS

III.1 Motivation

Many pub/sub messaging solutions [31, 56, 88] including research efforts [13, 19, 65]

exist that can operate in WANs. Some of these even support QoS properties, such as avail-

ability [19, 65], configurable reliability [56], durability [31], and timeliness [12, 41]. How-

ever, these solutions tend to support only one QoS property at a time and in most cases,

support for configurability is lacking. Moreover, dynamic discovery of endpoints, which is

a key requirement for IIoT, is often missing in these solutions.

The presence of large amounts of generated data in IIoT motivates the need for data-

centric pub/sub with support for configurable, multiple QoS properties. The Object Man-

agement Group (OMG)’s Data Distribution Service (DDS) [60] standard for data-centric

pub/sub holds substantial promise for IIoT applications because of its support for config-

urable QoS policies, dynamic discovery, and asynchronous and anonymous decoupling of

data endpoints (i.e., publishers and subscribers) in time and space.

However, there still remain many unresolved challenges in using DDS in WAN-based

IIoT applications. For instance, DDS uses multicast as a default transport to dynamically

discover peers in a system. If the endpoints are located in isolated networks that do not

support multicast, then these endpoints cannot be discovered by each other. Secondly, even

if these endpoints were discoverable, because of network firewalls and network address

translation (NAT), peers may not be able to deliver messages to the destination endpoints.
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III.1.1 Challenges

One approach to supporting DDS in WAN-based pub/sub relies on broker-based solu-

tions [28, 50]. It is conceivable to think that these broker-based solutions in conjunction

with the data-centric and configurable QoS features provided by DDS can readily make it

useful for IIoT. However, this is not the case for the following reasons. IIoT use cases il-

lustrate heterogeneity in the kinds of devices and networks involved, the number and types

of data-centric topics of interest that must be managed, and significant number and churn

(i.e., joining and leaving) of the endpoints. Thus, a solution for dynamic discovery and

QoS-enabled dissemination that can scale to large number of endpoints is desired. Since

brokers are necessary to overcome issues with NAT and firewalls, the scalable discovery

and dissemination solution desired for IIoT must also provide effective coordination among

potentially large number of distributed brokers.

III.1.2 Solution Approach

To fill this gap, we present PubSubCoord, which is a cloud-based coordination service

for geographically distributed pub/sub brokers to transparently connect endpoints and real-

ize internet-scale data-centric pub/sub systems. To that end, this paper makes the following

contributions:

• To address the scalability and low latency requirements of data dissemination across

WANs, PubSubCoord introduces a two-level broker hierarchy deployed over a pub-

/sub overlay network, which provides a maximum two-hop dissemination path for

data across distributed, isolated networks.

• To achieve dynamic discovery and data routing between brokers, PubSubCoord ex-

ploits and extends the ZooKeeper coordination service [35] to synchronize dissemi-

nation paths for the dynamic network of brokers and endpoints.

• For those dissemination paths that need both low latency and reliability assurances,
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PubSubCoord trades off resource usage in favor of deadline-aware overlays that build

multiple, redundant paths between brokers.

PubSubCoord preserves the endpoint discovery and data dissemination model of the un-

derlying pub/sub messaging system while adding a two-level broker hierarchy by tunneling

discovery and dissemination messages across the broker hierarchy. Our contributions are

discussed and demonstrated concretely in the context of endpoints that use the OMG DDS

as the pub/sub messaging system, however, the solution is generic and can be used for other

pub/sub messaging systems.

III.2 Background

Since we have used the OMG DDS as the concrete pub/sub technology and ZooKeeper

as the coordination service to describe PubSubCoord’ contributions, this section provides

an overview of these underlying technologies.

III.2.1 OMG DDS QoS Policies

OMG DDS supports a number of different QoS policies that can be mixed and matched.

Each QoS policy has offered and requested semantics (i.e., offered by publishers and re-

quested by subscribers) and are used in conjunction with the topic data type to match pairs

of endpoints, i.e., the DataReader and DataWriter. We briefly describe only those policies

that we have used either in the design of PubSubCoord or in our empirical studies.

The reliability QoS controls the reliability of data flows between DataWriters and

DataReaders at the transport level. It can be of two kinds: BEST_EFFORT and RELIABLE.

The durability QoS specifies whether or not the DDS middleware stores and delivers pre-

viously published data samples to endpoints that join the network later. The reliability and

persistency can be affected by the history QoS policy, which specifies how much data must

be stored in in-memory cache allocated by the middleware. Along with the history QoS

policy, the lifespan QoS helps to control memory usage and lifecycle of data by setting
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expiration time of the data on DataWriters, so that the middleware can delete expired data

from the cache.

The deadline QoS policy specifies the deadline between two successive updates for

each data sample. The middleware will notify the application via callbacks if a DataReader

or a DataWriter breaks the deadline contract. Note that DDS makes no effort to meet the

deadline; it only notifies if the deadline is missed. The liveliness QoS specifies the mech-

anism that allows DataReaders to detect disconnected DataWriters. The ownership QoS

specifies whether it allows multiple DataWriters to write data on a stream simultaneously.

If it is set to have an exclusive owner, the exclusive owner is determined by the configured

strength of DataWriters. The primary DataWriter with the highest strength is switched to a

backup if it violates the deadline QoS or is disconnected.

III.2.2 DDS Routing Service

Since PubSubCoord relies on a broker-based architecture, we have leveraged and ex-

tended an existing DDS broker solution. Specifically, we have used the DDS Routing

Service, which is a content-aware bridge service for connecting geographically dispersed

DDS systems [50]. It integrates DDS applications across LANs as well as WANs. DDS

Routing Service leverages all the entities of DDS and enables DDS applications to pub-

lish and subscribe data across domains in multiple networks without any changes to the

applications.

As shown in Figure 23, DDS Routing Service exploits DDS entities (e.g., DataWriter

and DataReader) to forward data from a domain to other domains, and therefore it also

supports features provided by DDS entities such as a rich set of QoS policies and content-

based filtering.

Our solution utilizes DDS Routing Service for brokers to establish data dissemination

paths based on routing decisions by coordination logic. As our system is deployed in
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internet-scale WAN environments, we use TCP communications between brokers for re-

liable data delivery in geographically dispersed networks. DDS Routing Service supports

IP and port translation as well as Transport Layer Security (TLS) for security reasons in

WANs. DDS Routing Service can be administered remotely by sending control commands

(e.g., add peers’ locators and create routing paths), so it is easy to set up routing paths

in a programmable way in our solution. Each broker in PubSubCoord sends commands

to Routing Service based on its coordination algorithms based on event notifications from

ZooKeeper servers.

III.2.3 ZooKeeper

ZooKeeper is a service for coordinating processes within distributed applications [35].

The ZooKeeper service consists of an ensemble of servers that use replication to accom-

plish high availability with high performance and relaxed consistency. ZooKeeper provides

the watch mechanism to notify a client of a change to a znode (i.e., a ZooKeeper data ob-

ject containing its path and data content). There exist many coordination recipes using

ZooKeeper that are often needed for distributed applications, such as leader election, group

membership, and sharing configuration metadata. PubSubCoord exploits these capabilities

in its design.
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III.3 Design and Implementation

This section describes the architecture and design rationale for the PubSubCoord de-

sign. We also provide details on the implementation.
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III.3.1 PubSubCoord Architecture

Figure 24 shows the PubSubCoord architecture depicting three layers: a coordination

layer, a pub/sub overlay layer, and the physical network layer. The pub/sub overlay com-

prises the two-level broker hierarchy representing the logical network of brokers and end-

points in a system. An edge broker is directly connected to endpoints in a LAN (i.e., an

isolated network) to serve as a bridge to other endpoints placed in different networks. A

routing broker serves as a mediator to route data between edge brokers according to as-

signed and matched topics that are present in the global data space. The coordination layer

comprises an ensemble of ZooKeeper servers used for coordination between the brokers.

The data dissemination in PubSubCoord is explained using an example in Figure 24.

Pi{T} denotes a publisher i that publishes topic T (similarly for a subscriber S). Since

there are no endpoints interested in topic A other than publisher P1 and subscriber S1, they

communicate only within the local network A via either UDP-based multicast or unicast

for scalability and low latency. P2, P4, and S2 are interested in topic B but are deployed

in different networks. So their communications are routed through a routing broker that is

responsible for topic B. The network transport protocol between brokers is configurable,

but TCP is used as a default transport to ensure reliable communication over WANs. As

seen from this example, a maximum of 2 hops on the overlay network are incurred by data

flowing from one isolated network to another (e.g., network A to B).

III.3.2 Rationale for PubSubCoord Design Decisions

We now offer a justification for the various design decisions we made in our architec-

ture.

III.3.2.1 2-level Broker Hierarchy and Scalability

Traditional WAN-based pub/sub systems form an overlay network with brokers to

which endpoints can be connected. The brokers exchange subscriptions they receive from
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subscribers, by which they build routing paths from publishers. The main challenge of this

approach is how to build routing states among brokers to route data according to matching

subscribers efficiently. To resolve this challenge, our solution clusters brokers by matching

topics and routes data through routing brokers responsible for specific topics to minimize

the overall number of data exchange and connections between brokers in a system.

In the broker-based pub/sub systems, if a local broker fails, it halts not only a service

for endpoints connected to this broker but also service for endpoints connected to other

brokers because local brokers can be used as intermediate routing brokers. To overcome

these limitations, PubSubCoord is structured by harnessing a two-tier architecture similar

to the BlueDove system [46] that classifies brokers into dispatcher (similar to edge broker

in our solution) and matcher (similar to routing broker in our solution).

Having only one routing broker in the top level will be problematic since it cannot

handle the substantial routing load stemming from the dissemination of various topic data.

On the other hand, multiple layers of hierarchy similar to DNS would have complicated

the management of topics and recovery from failures, and could introduce multiple routing

hops. For that reason, the top layer comprises a cluster of routing brokers that balance the

load among themselves.

Although the edge brokers are always placed at the edge of their respective isolated

networks, we had to reason about where to place the routing brokers. We decided to place

the routing brokers in the cloud because the cloud enables us to elastically scale the number

of routing brokers depending on the load.

III.3.2.2 Need for a Coordination Layer

Although a 2-level broker hierarchy resolves issues with maintaining substantial pub/-

sub routing states, we needed an approach that the brokers can form this broker hierarchy

and set the connections between the edge and routing brokers. To that end, PubSubCoord

incorporates the coordination layer comprising an ensemble of ZooKeeper servers, which
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help brokers discover each other and build broker overlay networks using coordination

logic.

The data model of ZooKeeper used for coordination of distributed processes is struc-

tured like a file system in the form of znodes. This hierarchical namespace is actually meant

to manage group membership, however, we repurpose it to manage pub/sub endpoints that

are grouped by topics. Figure 25 shows the znode data tree structure of PubSubCoord.

The root znode contains three znodes: topics, leader, and broker. The topics znode con-

tains children znodes for every unique topic that has endpoints interested in it, which in

turn become the children of the specified topic znode. The leader znode is used to elect

a leader among routing brokers. The broker znode has children znodes for each routing

broker where its locator information (i.e., IP address and port number of a routing broker)

is stored. The leader uses this information to associate a selected routing broker’s locator

to a topic znode after the topic assignment.

/

/topics

/pub /sub

/dw1 /dr1

/leader /broker

/topic_A /topic_B

/pub /sub

/dw1 /dw2 /dr1

/rb1 /rb2 /rb3

Figure 25: PubSubCoord ZNode Data Tree Structure
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Brokers connect to the coordinating servers as clients and create, update, and delete zn-

odes in stored in the servers. They also set watches on interesting znodes to receive notifi-

cations (e.g., broker join/leave). ZooKeeper provides different modes for znode: ephemeral

and persistent. A znode with ephemeral mode is automatically deleted when a session of a

client that creates the znode is lost. We utilize this ephemeral mode to manage events when

brokers join or leave our system.

III.3.2.3 Load Balancing and Fault Tolerance

To achieve load balancing at the routing broker layer, the cluster of routing brokers elect

a leader. To elect a leader in a consistent manner, PubSubCoord uses ZooKeeper’s leader

znode for routing brokers to write themselves on the znode so as to be elected as a leader

(i.e., voting process). The routing broker that gets to write first becomes a leader since the

znode is locked thereafter (i.e., no one can write on the znode unless the leader fails).

When an endpoint is created with a new topic, an edge broker informs ZooKeeper of

the new topic which inserts it into its znode tree and informs the leader routing broker of the

new topic. The routing broker leader selects one of the existing routing brokers to handle

that topic. This selection is made based on the load on each routing broker.

If a routing broker fails, the leader reassigns topics handled by that failed broker to

another routing broker to avoid service cessation. If the load is too high, the cloud will

elastically scale the number of routing brokers. If a leader fails, the routing brokers vote

for another leader again. On assignment or failure and reassignment of routing broker,

ZooKeeper notifies the appropriate edge brokers to update their paths to the right routing

broker.

To provide a scalable and fault-tolerant service at the coordination layer, multiple ZooKeeper

servers can exist as a quorum, and a leader of the quorum synchronizes data between dis-

tributed servers to provide consistent coordination events to clients (i.e., brokers in our

solution) and avoid single points of failure.
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III.3.2.4 Deadline-aware Overlay Optimizations

PubSubCoord also supports an optimization to both improve reliability and latency by

providing an additional one hop path over the overlay that directly connects communicating

edge brokers. Figure 26 illustrates the concept. These optimizations can be leveraged

by pub/sub streams that require stringent assurances on reliable and deadline-driven data

delivery.

R

E1 E2

P S

L2 L3

L1

Figure 26: Multi-path Deadline-aware Overlay Concept

To achieve this feature, PubSubCoord exploits the capabilities of the underlying pub/-

sub messaging system. To that end, we use the deadline values configured by DDS’ dead-

line QoS. Recall that this parameter is used to express the maximum duration of a sample

to be updated. For those event streams requiring strict deadlines, multi-path overlay net-

works build an alternative, additional path directly between edge brokers thereby reducing

the number of hops to just one.

III.3.3 Broker Interactions

In this section we describe how the brokers interact and the actual process of updating

their internal states used in routing the streamed pub/sub data. Routing brokers can be

divided into two kinds: leader routing broker and worker routing broker. A leader routing
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broker manages the cluster of routing brokers and assigns topics to workers in a way that

balances the load. Worker routing brokers relay pub/sub data between edge brokers. The

leader routing broker can also serve as a worker routing broker.

Figure 27 presents the sequence diagram showing the interactions of the routing bro-

kers. Each routing broker initially connects to the ZooKeeper servers as a client. The

cluster of routing brokers subsequently elect a leader among themselves. The leader rout-

ing broker registers a listener (i.e., event detector that is notified when the registered znode

changes) on the topics znode (shown in Figure 25) to receive topic relevant events (e.g.,

creation or deletion of topics). For example, as shown in Figure 27, when TopicA is cre-

ated, the leader assigns the topic to the least loaded worker, which currently is decided

based on the number of adopted topics by that worker. However, other strategies can also

be used in the load balancing decisions (e.g., least loaded based on CPU utilization or the

number of connections). Next, the leader updates a locator of the assigned worker broker

on the corresponding znode that is created for TopicA, i.e., a child of topics znode – see

the leftmost node in row three of Figure 25. This locator information will then be used by

edge brokers interested in TopicA.

A worker routing broker initially registers listeners on a znode for itself (i.e., a child of

broker znodes) to receive topic assignment events, which occur when the assigned topics

znode is updated by a leader routing broker. When the worker routing broker is informed

that it must handle a specific topic, such as TopicA, it then registers a listener on pub/sub

znodes for that particular assigned topic (e.g., children of topic_A znode) to receive end-

point discovery events, such as creation of publisher or subscriber endpoints interested in

TopicA. When an endpoint for TopicA is created and the worker routing broker is notified,

it establishes data dissemination paths to edge brokers. For this data dissemination, Pub-

SubCoord relies on the underlying pub/sub messaging systems’ broker capabilities, such

as the DDS Routing Service we have leveraged in our work.

Figure 28 shows the corresponding sequence diagram for edge brokers. Like routing
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Figure 27: Routing Broker Sequence Diagram

brokers, edge brokers initially connect to ZooKeeper servers as clients. Edge brokers make

use of built-in entities (i.e., special pub/sub entities for discovering peers and endpoints in

a network supported by the underlying pub/sub messaging system) to discover endpoints in

local networks. For example, when a pub or sub endpoint interested in TopicA is created,

built-in entities receive discovery events via multicast, and then edge brokers create znodes

for the created endpoints.

Edge brokers register a listener on a topic znode (e.g., topic_A in Figure 25) in which

the created endpoint is interested in to obtain the locator for the routing broker that is in

charge of that particular topic. Once a locator of a routing broker is obtained, an edge bro-

ker initiates a data dissemination path to the routing broker through the Routing Service.

If the created endpoints move to different networks or are deleted, a timeout event occurs
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Figure 28: Edge Broker Sequence Diagram

by virtue of using the liveliness QoS (i.e., a DDS QoS policy used to detect disconnected

endpoints where the timeout values are configurable) and accordingly the znodes for end-

points are deleted from coordination servers and a route created in Routing Service is also

terminated. Thus, mobility of publisher and subscriber endpoints is also supported by the

PubSubCoord design.

III.3.4 Broker Implementation Details

In this section we describe some implementation details that use the OMG DDS pub/sub

messaging system as the underlying pub/sub technology and ZooKeeper. Algorithms 2

and 3 describe the pseudo code of callback functions implemented in edge brokers and
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routing brokers, respectively. Callback functions are invoked by either the DDS endpoint

discovery events in built-in DDS DataReaders (i.e., built-in entities) or notifications by

ZooKeeper services.

III.3.4.1 Edge Broker Implementation

Algorithm 2 Edge Broker Callback Functions
function ENDPOINT CREATED(ep)

create_znode (ep)
if ! topic_multi_set.contains(eptopic) then

ep_node_cache = create_node_cache(ep)
set_listener (ep_node_cache)
routing_service.create_topic_route(ep)

topic_multi_set.add(eptopic)

function TOPIC NODE LISTENER(topic_node_cache)
rb_locator = topic_node_cache.get_data()
if ! rb_peer_list.contains(rb_locator) then

rb_peer_list.add(rb_locator)
routing_service.add_peer(rb_locator)

function ENDPOINT DELETED(ep)
delete_znode (ep)
topic_multi_set.delete(eptopic)
if ! topic_multi_set.contains(eptopic) then

delete_node_cache(ep)
routing_service.delete_topic_route(ep)

Each callback function for edge brokers is invoked when the following events occur:

• ENDPOINT CREATED: This function is invoked when an endpoint in a network is

created and activated by a built-in DDS DataReader.

• TOPIC NODE CACHE LISTENER: This function is invoked when a topic znode man-

aged by an edge broker is updated with a locator of an assigned worker routing bro-

ker. It is activated by a ZooKeeper client process.
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• ENDPOINT DELETED: This function invoked when an endpoint in a network is

deleted and activated by a built-in DDS DataReader.

We use Curator1, which is a high-level API that simplifies using ZooKeeper, and pro-

vides useful recipes such as leader election and caches of znodes. We use the cache recipe

to locally reserve data objects accessed multiple times for fast data access and reducing

loads on ZooKeeper servers.

The ENDPOINT CREATED callback function first creates a znode for a created endpoint

(i.e. ep in Algorithms 2) that contains the topic name, type, QoS settings. If a relevant

topic to the created endpoint has not appeared in an edge broker before, a cache for the

topic znode and its listener for the topic are created to receive locator information of an

assigned routing broker. When the znode for the topic is updated by a leader routing broker,

it triggers the TOPIC CACHE LISTENER callback described in Algorithm 2.

In the TOPIC NODE LISTENER callback function, each topic znode stores a locator of a

routing broker which is responsible for the topic. The locator of a routing broker is added to

DDS Routing Service to establish a communication path from the edge broker to a routing

broker.

The ENDPOINT DELETED callback function deletes the znode for the existing endpoint,

and deletes it from the multi-set for topics. Next, it checks if the multi-set contains the topic

of the deleted endpoint. If the topic is contained in the multi-set, it means other endpoints

are still interested in the topic. If it is empty, it means no endpoints that are interested

in the topic exists, and that the cache and its listener need to be removed. The multi-set

data structure for topics is used because there may still exist endpoints interested in topics

relevant to deleted endpoints.

III.3.4.2 Routing Broker Implementation

1http://curator.apache.org
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Algorithm 3 Routing Broker Callback Functions
function BROKER NODE LISTENER(broker_node_cache)

topic_set = broker_node_cache.get_data()
for topic : topic_set do

if ! topic_list.contains(topic) then
ep_cache = create_children_cache (topic)
set_listener(ep_cache)
topic_list.add(topic)

function ENDPOINT LISTENER(ep_cache)
ep = ep_cache.get_data()
switch ep_cache.get_event_type() do

case child_added
if ! eb_peer_list.contains(epeb_locator) then

eb_peer_list.add(epeb_locator)
routing_service.add_peer(epeb_locator)

if ! topic_list.contains(eptopic) then
routing_service.create_topic_route(ep)

topic_multi_set.add(eptopic)

case child_deleted
topic_multi_set.delete(eptopic)
if ! topic_multi_set.contains(eptopic) then

eb_peer_list.delete(epeb_locator)
routing_service.delete_topic_route(ep)
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Each callback function for routing brokers is invoked when the following events occur:

• BROKER NODE LISTENER - This function is invoked when a znode for a worker rout-

ing broker is updated with an assigned topic by a leader routing broker and activated

by a ZooKeeper client process.

• ENDPOINT LISTENER - This function is invoked when children pub/sub endpoints

of a znode for an assigned topic is created, deleted, or updated. It is activated by a

ZooKeeper client process.

Every routing broker registers a listener on the znode for itself to receive topic assign-

ment events updated by a leader routing broker. In the BROKER CACHE LISTENER callback

function, the znode for the routing broker stores a set of topics. When the topic set is up-

dated by the leader (e.g., the leader assigns a new topic to the worker routing broker), and

it applies the changes by creating a cache for the assigned topic and its listener to receive

events relevant to endpoints interested in the assigned topic.

When an endpoint is created or deleted, the edge brokers create or delete znodes for

endpoints and these events will trigger the ENDPOINT CACHE LISTENER function in routing

brokers that are responsible for topics involved with the endpoints. The data of znode cache

for an endpoint (ep in the ENDPOINT CACHE LISTENER callback function) contains the

locator of an edge broker where the endpoint is located as well as the topic name, type, and

QoS settings.

If the event type is creation, it adds the locator of the edge broker to the DDS Routing

Service running in the routing broker if it does not exist. Thereafter, it requests the DDS

Routing Service to create a route for the topic based on the information provided by the

content of the ep znode from this routing broker to the edge broker, if it does not exist.

If the event type is deletion, it has to delete the locator and the topic route from the DDS

Routing Service on the condition that no endpoints for that topic still exist.
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III.4 Experimental Results

This section presents the experimental results we conducted to evaluate scalability and

validate deadline-aware overlays of PubSubCoord.

III.4.1 Overview of Testbed Configurations and Testing Methodology

Our testbed is a private cloud managed by OpenStack comprising 60 physical machines

each with 12 cores and 32 GB of memory. To experiment with a WAN-scale environment,

our cloud platform uses Neutron2, an OpenStack project for networking as a service, that

allows users to create virtual networks by using a Open vSwitch plugin3. For our experi-

ments, we created 120 virtual networks, and 380 virtual machines (VMs) are placed across

these virtual networks. Each VM is configured with one virtual CPU and 2 GB of memory.

We use RTI Connext 5.14 as the implementation of the DDS Routing Service and for our

test applications.

Our experiments use the reliability and durability DDS QoS policies for pub/sub com-

munications to illustrate experimental results for higher service quality in terms of reli-

ability and persistence of data delivery. Depending on the systems’ requirements, QoS

policies can be varied and performance results may change according to the different QoS

settings. Specifically, we use RELIABLE reliability QoS to avoid data loss in a transport

level through data retransmission. We use KEEP_ALL history QoS to keep all historical

data and TRANSIENT durability QoS to make it possible for late-joining subscribers to ob-

tain previously published samples. The lifespan QoS is set to 60 seconds so publishers

guarantee persistence for 60 seconds.

To evaluate our solution, we measure end-to-end latency from publishers to subscriber,

and CPU usage on brokers for scalability of data dissemination. CPU usage is shown along

with latency to understand how different settings, i.e., number of topics per network and

2https://wiki.openstack.org/wiki/Neutron
3http://www.openvswitch.org
4https://community.rti.com/rti-doc/510/ndds.5.1.0/doc/pdf/RTI_

CoreLibrariesAndUtilities_UsersManual.pdf
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number of routing brokers, affect dissemination scalability. Moreover, we measure latency

of coordination requests and the number of data objects and notifications on ZooKeeper

servers to show coordination scalability. To measure end-to-end latency from publishers

to subscribers, we calculate time differences with timestamps of events on publishers and

subscribers. Because publishers and subscribers run in different machines, we exploit the

Precise Time Protocol (PTP) [11] that guarantees fine-grained time synchronization for

distributed machines, and achieves clock accuracy in the sub-microsecond range on a local

network.

III.4.2 Scalability Results

We used the 380 VMs for our scalability experiments. Each broker operates on a VM

for which we used 160 VMs in total (120 VMs for edge brokers and 40 VMs for routing

brokers). Of the remaining 220 VMs, 20 VMs are used for publishers and 200 VMs for

subscribers. Each of these VMs runs 25 publisher or 50 subscriber test applications. We lo-

cate 50 publishers or 100 subscribers for each network (i.e., 2 VMs for each network). The

entire number of publishers and publishers is 1,000 and 10,000, respectively. Subscribers

in each network are interested in 100 topics out of 1,000 topics in a system. Publishers

push data every 50 milliseconds, and the size of a data sample is 64 bytes. We use settings

described above as a default in our experiments.

For end-to-end latency of measurements, we collect latency values of 5,000 samples in

total for each subscriber and use values only after 1,000 samples since the latency values of

the initial samples are not consistent due to coordination and discovery process overhead

until system stabilizes (e.g., time for discovery of brokers and creating routes).

III.4.2.1 Scalability of the Broker Overlay Layer

Since the edge brokers are responsible for delivering data incoming from other brokers

to subscribers in a local network, the computation overhead on edge brokers grows linearly

69



20 40 60 80 100
2

4

6

8

10

12

14

Number of Topics Per Edge Broker

E
n
d
−

to
−

e
n
d
 L

a
te

n
c
y
 (

m
s
)

 

 

Median

Mean

Figure 29: Mean and Median End-to-end Latency of Pub/Sub by Different Number
of Topics Per Network
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Figure 30: 95th and 99th Percentile End-to-end Latency of Pub/Sub by Different
Number of Topics Per Network

as the number of adopted topics increases. Figure 29, 30, and 31 show results with different

number of topics per edge broker, increasing the number of topics from 20 to 100 out of
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Figure 31: CPU Utilization by Different Number of Topics Per Network

1,000 topics in a system. The CPU utilization linearly increases by the number of adopted

topics, and average and maximum latency values grow as well. From these results, we can

infer that if the number of incoming streams increases due to more number of topics per

network, it affects latency values because edge brokers need to manage more number of

input and output pub/sub streams.

Our solution supports load balancing in the group of routing brokers and makes it pos-

sible to flexibly scale systems with the number of topics. Figure 32, 33, and 34 present

latency and CPU usage by different number of routing brokers. When the number of rout-

ing brokers is small, in this case 5, the CPU of the routing brokers become saturated and

latency values are adversely impacted. However, after increasing the number of routing

brokers to 10, latency values improve. The results in Figure 34 also validate that CPU

usage linearly decreases by increasing the number of routing brokers.

III.4.2.2 Scalability of the Coordination Layer

We evaluate the scalability of a ZooKeeper-based centralized coordination service by

increasing the number of simultaneous joining subscribers. Figure 35 and 35 shows aver-

age and maximum latency, i.e., the amount of time it takes for the server to respond to a

71



5 10 15 20
0

1

2

3

4

Number of Routing Brokers

E
n
d
−

to
−

e
n
d
 L

a
te

n
c
y
 (

s
e
c
)

 

 

Mean

Median

Figure 32: Mean and Median End-to-end Latency of Pub/Sub with Load Balance in
Routing Brokers
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Figure 33: 95th and 99th Percentile End-to-end Latency of Pub/Sub with Load Bal-
ance in Routing Brokers

client request. Figure 37 presents the number of used znodes and watches. We use mntr,
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Figure 34: CPU Utilization with Load Balance in Routing Brokers
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Figure 35: Average Latency of Coordination Service by Different Number of Joining
Subscribers

a ZooKeeper command for monitoring service5, to retrieve the experimental values pre-

sented in our results. We increase the number of subscribers from 2,000 to 10,000 in steps

of 2,000. The average latency increases from 10 milliseconds to 20 milliseconds and the

number of znodes and watches linearly increase approximately 2,000 and 4,000, respec-

tively by the increased number of subscribers. The reason why the number of watches are

5http://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html
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Figure 36: Maximum Latency of Coordination Service by Different Number of Join-
ing Subscribers
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Figure 37: Number of ZNodes and Watches by Different Number of Joining Sub-
scribers

twice compared to the number of znodes is that it needs to notify brokers for both publishers

and subscribers if they have matching pub/sub endpoints.
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III.4.3 Deadline-aware Overlays

We also conducted experiments to validate our deadline-aware overlays showing la-

tency and overhead by comparing the performance parameters for multi-path and single-

path overlays. A topology used for these experiments was shown in Figure 26. We

use Dummynet [68] to simulate network delays and packet losses, which are common in

WANs. These parameters are varied depending on geographic locations of brokers, which

is a factor influencing the need for deadline-aware overlays. For multi-path overlay exper-

iments, we use delay and loss data provided by Verizon, which shows latency and packet

delivery statistics for communication between different countries across the globe.6 We

categorize delay and loss data into two groups (i.e., A with 30ms delay and no packet loss,

and B with 250 msec delay and 1% packet loss in Table 3) and experimented 8 possible

combinations with given links (i.e., L1, L2, and L3 as shown in Figure 26), and test cases

described in Table 3.

Table 3: Deadline-aware Overlays Experiment Cases

Test Cases L1 L2 L3
Case 1 A A A
Case 2 A A B
Case 3 A B A
Case 4 A B B
Case 5 B A A
Case 6 B A B
Case 7 B B A
Case 8 B B B

A = 30ms delay, no packet loss
B = 250ms delay, 1% packet loss

Figure 38 and 39 show average and maximum latency of single-path overlays with

6http://www.verizonenterprise.com/about/network/latency
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Figure 38: End-to-end Latency of Pub/Sub with Single-path Overlays
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Figure 39: End-to-end Latency of Pub/Sub Multi-path Overlays
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Figure 40: Overhead Comparison

different network delays and packet loss and multi-path overlays with 8 test cases, re-

spectively. From case 1 to case 5, multi-path overlays perform better than any cases of

single-path in terms of latency. All cases of multi-path overlays outperform a case with

125 milliseconds delay and 1% packet loss in single-path overlays. In spite of that, a multi-

path overlay builds a duplicate path from an edge broker other than from a routing broker,

so it causes extra overhead compared to a single-path overlay due to additional computa-

tions and extra network transfer at the edge broker. We measure network transfer overhead

for 10,000 samples from a publisher to a subscriber to compare single-path and multi-path

by using tcpdump7 and the results are presented in Figure 40.

III.5 Related Work

Prior research on pub/sub systems can be classified into topic-based, attribute-based,

and content-based depending on the subscription model. The topic-based model, such as

Scribe [70], TIB/RV [59], and SpiderCast [15], groups subscription events in topics. In the

7http://www.tcpdump.org
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attribute-based model, events are defined by specific types, and therefore this model helps

developers to define data models in a robust way by type-checking. The content-based

model [13, 65] allows subscribers to express their interests by specifying conditions on the

data content of events, and the system filters out and delivers events based on the conditions.

The OMG DDS adopts a data-centric model that groups subscriptions in topics, validates

types of topic events, and also filters out events by conditions on data content using a

special topic called Content-Filtered Topic (CFT). Besides, it matches subscriptions based

on offered and requested QoS parameters to disseminate data with assured service levels.

Pub/sub systems tend to form overlay networks to support application-level multicast

rather than using IP-based multicast owing to the fact that IP multicast is not supported in

WANs and the limited number of IP-based multicast addresses would not fit the potential

number of logical channels for fine-grained subscription models [4]. Overlay architec-

tures for pub/sub systems can be categorized into broker-based overlay [13, 59, 65], struc-

tured peer-to-peer [70], and unstructured peer-to-peer. GREEN [80] supports configurable

overlay architectures for different network environments. PubSubCoord adopts a hybrid

approach that constructs unstructured peer-to-peer overlays in LANs by dynamically dis-

covering peers via multicast, and broker-based overlays in WANs.

BlueDove [46] is similar to our approach in that it achieves scalability and elasticity

by harnessing cloud resources, and is a two-tier architecture to reduce the number of de-

livery hops and for simplicity. However, this service is designed for enterprise systems

deployed in the cloud and does not consider the restrictions of physical locations of pub/-

sub endpoints. In our system, pub/sub endpoints located in different networks dynamically

discover each other with the help of edge brokers, and therefore we consider physical re-

strictions of pub/sub endpoints and they cannot connect to any edge brokers.

Bellavista et al. [7] study QoS-aware pub/sub systems over WANs and compare multi-

ple existing pub/sub systems supporting QoS including DDS. In [41], the authors evaluate a

pub/sub system for wide-area networks named Harmony and techniques for responsive and
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high available messaging. The Harmony system delivers messages through broker over-

lays placed in different physical networks, and pub/sub endpoints communicate via local

brokers located in the same network. Although this effort describes a WAN-scale pub/sub

solution with QoS support, it centers on selective routing strategies to balance responsive-

ness and resource usage in view of the fact that its architecture is based on multi-hop broker

networks unlike our 2-hop solution.

IndiQoS [12] also proposes a pub/sub system with QoS support to reduce end-to-end

latency by exploiting network-level reservation mechanisms, where message brokers are

structured using distributed hash table (DHT). Similar to IndiQoS, we pursue low-latency

and high availability but our solution also supports other QoS policies such as configurable

transport reliability, data persistence, ordering, and resource management by controlling

depth of history data and subscribing rate. We do not use a DHT solution for brokers and

so a comparison along these lines will be part of our future work.

Recent research [28, 50] has broadened the scope of DDS to WANs by bringing in

routing engines to disseminate data from a local network to others. Our solution utilizes

similar routing engines and additionally solves the discovery and coordination problem

between routing engines that otherwise requires significant manual efforts for large-scale

systems. Finally, [92] suggests separation of control and data plane in next generation

pub/sub systems, which is motivated by software-defined networking (SDN).

III.6 Concluding Remarks

Emerging paradigms such as the Industrial Internet of Things illustrate the need to

disseminate large volumes of data between a large number of heterogeneous entities that

are geographically distributed, and require stringent QoS properties for data dissemination

from the publishers of information to the subscribers. This paper presents the design, im-

plementation, and evaluation of PubSubCoord, which is a cloud-enabled coordination and
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discovery service for internet-scale pub/sub applications. PubSubCoord supports scalabil-

ity in terms of data dissemination as well as coordination, dynamic discovery, and config-

urable QoS properties. The test harness and capabilities in PubSubCoord are available for

download from www.dre.vanderbilt.edu/pubsubcoord.

The following is a summary of the insights we gained from this research and the em-

pirical evaluations.

• PubSubCoord disseminates data in a scalable manner for systems having many

pub/sub endpoints and topics. The experimental results show that PubSubCoord

can deliver streamed data within 100 milliseconds for a system having 10,000 sub-

scribers and 1,000 topics distributed across more than 100 networks. As the number

of topics increases in a system, our solution uses elastic cloud resources and load

balancing techniques to deliver data in a scalable way. However, if the number of

adopted topics per edge broker increases, service quality becomes worse as shown

in the experimental results because edge brokers need to deal with more number of

forwarding operations between routing brokers and pub/sub endpoints. If a system

requires higher frequency or more number of topics per network, edge brokers pos-

sibly become bottleneck, so an elastic solution for edge brokers will be needed.

• Centralized coordination service like ZooKeeper can serve as a pub/sub con-

trol plane for large-scale systems. Our solution employs a centralized service for

coordinating pub/sub brokers for its consistency and simplicity, and our experimen-

tal results show that average latency of the coordination service is 20 milliseconds

for 10,000 subscribers joining simultaneously and the number of data nodes and no-

tifications linearly increase by organizing its data tree in a hierarchical way. Our

experiments use a standalone server for coordination, but multiple servers as quorum

can be used for scalability and fault-tolerance and ZooKeeper guarantees consistency

of data between multiple servers. The quorum is more scalable for read operations,

80



but not for write operations that require synchronizing data between servers. In fu-

ture, we plan to carry out experiments with increasing the number of coordination

servers to understand its scalability for pub/sub broker coordination in depth.

• Configurable QoS supported by DDS can be used for low-latency data delivery

in WANs by building multi-path overlays. We use configurable deadline QoS to

deliver data at low-latency by establishing selective multi-path overlays, and vali-

date this approach by providing experimental results. Since not every path can be a

delay-sensitive path, we need some higher level policy management (e.g., offered and

requested QoS management between network domains) to decide what characterizes

a delay-sensitive path. In addition, although this approach assures low-latency data

delivery, it occurs extra overhead by duplicating data delivery from multiple paths.

To reduce the costs, we can utilize ownership QoS that dynamically selects an owner

of data streams to reduce data traffic from backups, and the owner is changed to

a backup when the owner fails to meet its deadline. Our deadline-aware overlay

optimizations are possible due to capabilities of DDS; implementing similar opti-

mizations for other messaging systems will require identifying similar opportunities.

• End-to-end QoS management is required for efficiency. Most of the QoS policies

in our solution are supported by hop-by-hop enforcement between brokers. Yet,

some QoS policies for persistence, reliability, and ordering used in our experiments

guarantee end-to-end QoS. However, this approach would be inefficient for some

cases. For example, the durability QoS ensures sending previously published data

to late joining subscribers. To support end-to-end data persistence with hop-by-hop

QoS enforcement, each broker needs to keep history data in memory that will not be

freed until it is acknowledged. This is beneficial for some late joining subscribers

that require history data with low-latency. However, keeping duplicated history data

on each broker unnecessarily consumes memory resources. To reduce this overhead,
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we can suggest end-to-end acknowledgment mechanisms to provide persistence and

reliability in an efficient way.
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CHAPTER IV

A CLOUD MIDDLEWARE FOR ASSURING PERFORMANCE AND HIGH
AVAILABILITY OF REAL-TIME APPLICATIONS

IV.1 Motivation

Cloud computing is a large-scale distributed computing platform based on the principles

of utility computing that offers infrastructures such as CPU, storage, network as well as

applications as services over the Internet [1]. The driving force behind the success of cloud

computing is economy of scale. Traditionally, cloud computing has focused on enterprise

applications. Lately, however, a class of real-time applications that demand both high

availability and predictable response times are moving towards cloud-based hosting [14,

17, 84].

To support real-time applications in the cloud, it is necessary to satisfy low latency,

reliability and high availability demands of such applications. Although the current cloud-

based offerings can adequately address the performance and reliability requirements of

enterprise applications, new algorithms and techniques are necessary to address the Qual-

ity of Service (QoS) needs, e.g., low-latency needed for good response times and high

availability, of performance-sensitive, real-time applications.

For example, in a cloud-hosted platform for personalized wellness management [14],

high-availability, scalability and timeliness is important for providing on-the-fly guidance

to wellness participants to adjust their exercise or physical activity based on real-time track-

ing of the participant’s response to current activity. Assured performance and high avail-

ability is important because the wellness management cloud infrastructure integrates and

interacts with the exercise machines both to collect data about participant performance and

to adjust the intensity and duration of the activities.
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IV.1.1 Challenges

Challenge 1: Assuring timeliness and high-availability in virtualized environments

Prior research in cloud computing has seldom addressed the need for supporting real-time

applications in virtualized environment which is common in the cloud.1 However, there is

a growing interest in addressing these challenges as evidenced by recent efforts [91]. Since

applications hosted in the cloud often are deployed in virtual machines (VMs), there is a

need to assure the real-time properties of the VMs. A recent effort on real-time extensions

to the Xen hypervisor [91] has focused on improving the scheduling strategies in the Xen

hypervisor to assure real-time properties of the VMs. While timeliness is a key require-

ment, high availability is also an equally important requirement that must be satisfied.

Fault tolerance based on redundancy is one of the fundamental principles for supporting

high availability in distributed systems. In the context of cloud computing, the Remus [18]

project has demonstrated an effective technique for VM failover using one primary and one

backup VM solution that also includes periodic state synchronization among the redundant

VM replicas. The Remus failover solution, however, incurs shortcomings in the context

of providing high availability for soft real-time systems hosted in the cloud in terms of

intelligent deployment of backups.

Challenge 2: Lack of effective VM replica placement middleware

Current high availability solutions such as Remus do not focus on effective replica place-

ment. Consequently, it cannot assure real-time performance after a failover decision be-

cause it is likely that the backup VM may be on a physical server that is highly loaded.

The decision to effectively place the replica is left to the application developer or cloud ad-

ministrators in a manual way. Unfortunately, any replica placement decisions made offline

are not attractive for a cloud platform because of the substantially changing dynamics of

the cloud platform in terms of workloads and failures. This requirement adds an inherent

complexity for the developers who are responsible for choosing the right physical host with

1In this research we focus on soft real-time applications since it is unlikely that hard real-time and safety-
critical applications will be hosted in the cloud.
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enough capacity to host the replica VM such that the real-time performance of applications

is met. It is not feasible for application developers to provide these solutions, which calls

for a cloud platform-based solution that can shield the application developers from these

complexities.

IV.1.2 Solution Approach

To address these requirements, this chapter makes the following three contributions

described in Section IV.4:

1. We present a fault-tolerant architecture in the cloud geared to provide high avail-

ability and reliability for soft real-time applications. Our solution is provided as a

middleware that extends the Remus VM failover solution [18] and is integrated with

the OpenNebula cloud infrastructure software [23] and the Xen hypervisor [6]. Sec-

tion IV.4.3 presents a hierarchical architecture motivated by the need for separation

of concerns and scalability.

2. In the context of our fault-tolerant architecture, Section IV.4.4 presents the design of

a pluggable framework that enables application developers to provide their strategies

for choosing physical hosts for replica VM placement. Our solution is motivated

by the fact that not all applications will impose exactly the same requirements for

timeliness, reliability and high availability, and hence a “one-size-fits-all” solution

is unlikely to be acceptable to all classes of soft real-time applications. Moreover,

developers may also want to fine tune their choice by trading off resource usage and

QoS properties with the cost incurred by them to use the cloud resources.

To evaluate the effectiveness of our solution, we use a representative soft real-time ap-

plication hosted in the cloud and requiring high availability. For replica VM placement,

we have developed an Integer Linear Programming (ILP) formulation that can be plugged
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into our framework. This placement algorithm allocates VMs and their replicas to physi-

cal resources in a data center that satisfies the QoS requirements of the applications. We

present results of experimentation focusing on critical metrics for real-time applications

such as end-to-end latency and deadline miss ratio. Our goal in focusing on these met-

rics is to demonstrate that recovery after failover has negligible impact on the key metrics

of real-time applications. Moreover, we also show that our high availability solution at

the infrastructure-level can co-exist with an application-level fault tolerance capability pro-

vided by the application.

IV.2 Related Work

Prior work in the literature of high availability solutions and VM placement strategies

are related to the research contributions we offer in this chapter. In this section, we present

a comparative analysis of the literature and how our solutions fit in this body of knowledge.

IV.2.1 Underlying Technology: High Availability Solutions for Virtual Machines

To ensure high-availability, we propose a fault-tolerant solution that is based on the

continuous checkpointing technique developed for the Xen hypervisor called Remus [18].

We discuss the details and shortcomings of Remus in Section IV.3.2.

Several other high availability solutions for virtual machines are reported in the lit-

erature. VMware fault-tolerance [76] runs primary and backup VMs in lock-step using

deterministic replay. This keeps both the VMs in sync but it requires execution at both

the VMs and needs high quality network connections. In contrast, our model focuses on a

primary-backup scheme for VM replication that does not require execution on all replica

VMs.

Kemari [86] is another approach that uses both lock-stepping and continuous check-

pointing. It synchronizes primary and secondary VMs just before the primary VM has

to send an event to devices, such as storage and networks. At this point, the primary
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VM pauses and Kemari updates the state of the secondary VM to the current state of pri-

mary VM. Thus, VMs are synchronized with lower complexity than lock-stepping. Exter-

nal buffering mechanisms are used to improve the output latency over continuous check-

pointing. However, we opted for Remus since it is a mature solution compared to Kemari.

Another important work on high availability is HydraVM [34]. It is a storage-based,

memory-efficient high availability solution which does not need passive memory reserva-

tion for backups. It uses incremental check-pointing like Remus [18], but it maintains a

complete recent image of VM in shared storage instead of memory replication. Thus, it

claims to reduce hardware costs for providing high availability support and provide greater

flexibility as recovery can happen on any physical host having access to shared storage.

However, the software is not open-source or commercially available.

IV.2.2 Approaches to Virtual Machine Placement

Virtual machine placement on physical hosts in the cloud critically affects the perfor-

mance of the application hosted on the VMs. Even when the individual VMs have a share

of the physical resources, effects of context switching, network performance and other

systemic effects [53, 67, 87, 93] can adversely impact the performance of the VM. This

is particularly important when high availability solutions based on replication must also

consider performance as is the case in our research.

The approach proposed in [36] is closely related to the scheme we propose in this paper.

The authors present an autonomic controller that dynamically assigns VMs to physical

hosts according to policies specified by the user. While the scheme we propose also allows

users to specify placement policies and algorithms, we dynamically allocate the VMs in

the context of a fault-tolerant cloud computing architecture that ensures high-availability

solutions.

Lee et al. [45] investigated VM consolidation heuristics to understand how VMs per-

form when they are co-located on the same host machine. They also explored how the
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resource demands such as CPU, memory, and network bandwidth are handled when con-

solidated. The work in [8] proposed a modified Best Fit Decreasing (BFD) algorithm as

a VM reallocation heuristic for efficient resource management. The evaluation in the pa-

per showed that the suggested heuristics minimize energy consumption while providing

improved QoS. Our work may benefit from these prior works and we are additionally con-

cerned with placing replicas in a way that applications continues to obtain the desired QoS

after a failover.

IV.2.3 Comparative Analysis

Although there are several findings in the literature that relate to our three contribu-

tions, none of these approaches offer a holistic framework that can be used in a cloud

infrastructure. Consequently, the combined effect of individual solutions has not been in-

vestigated. Our work is a step in the direction of fulfilling this void. Integrating this differ-

ent approaches is not straightforward and requires good design decisions, which we have

demonstrated with our work and presented in the remainder of this chapter.

IV.3 Background

Our middleware solution is designed to operate with existing cloud infrastructure plat-

forms, such as OpenNebula [23], and hypervisor technologies, such as Xen [6]. In particu-

lar, our solution is based on Remus [18], which provides high availability to VMs that use

the Xen hypervisor. For completeness, we describe these building blocks in more detail

here.

IV.3.1 Cloud Infrastructure and Virtualization Technologies

Contemporary cloud infrastructure platforms, such as OpenStack [62], Eucalyptus [55],

or OpenNebula [23], manage the artifacts of a cloud infrastructure including servers, net-

works, and other equipment, such as storage devices. One of the key responsibilities such
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infrastructure is to manage virtualized servers where user applications are running in the

data center. Often, these platforms are architected in a hierarchical manner with a master

or controller node oversees the activities of the worker nodes that host VMs and user appli-

cations. In the OpenNebula platform we use, the master node is called the Front-end Node,

and the worker nodes are called the Cluster Nodes.

Hypervisors, such as Xen [6] and KVM [42], offer virtualization environments that

enable isolated multiple virtual machines to run within a shared physical machine. The hy-

pervisor manages the virtual machines and ensures both performance and security isolation

between different virtual machines hosted on the same physical server. To ensure that our

solution can be adopted in a range of hypervisors, we use the libvirt [47] software suite that

provides a portable approach to manage virtual machines. By providing a common API,

libvirt is able to interoperate with a range of hypervisors and virtualization technologies.

IV.3.2 Remus High Availability Solution

Remus [18] is a software system built for the Xen hypervisor that provides OS- and

application-agnostic high-availability on commodity hardware. Remus provides seamless

failure recovery and does not require lock step-based, whole-system replication. Instead,

the use of speculative execution in the Remus approach ensures that the performance degra-

dation due to replication is kept to a minimum. Speculative execution decouples the exe-

cution of the application from state synchronization between replica VMs by interleaving

these operations and, hence, not forcing synchronization between replicas after every up-

date made by the application.

Remus uses a pair of replica VMs: a primary and a backup. Since Remus provides

protection against single host fail-stop failures only, if both the primary and backup hosts

fail concurrently, the failure recovery will not be seamless; however, Remus ensures that

the system’s data will be left in a consistent state even if the system crashes.

Remus is not concerned with where the primary and backup replicas are placed in the
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data center. Consequently, it cannot guarantee any performance properties for the appli-

cations. The VM placement is the responsibility of the user, which we have shown to be

a significant complexity for the user. Our VM failover solution leverages Remus while

addressing these limitations in Remus.

IV.4 Design and Implementation

This section presents our contributions that collectively offer a high availability mid-

dleware architecture for soft real-time applications deployed in virtual machines in cloud

data centers. We first describe the architecture and then describe the contributions in detail.

IV.4.1 Architectural Overview

The architecture of our high-availability middleware, as illustrated in Figure 41, com-

prises a Local Fault Manager (LFM) for each PM, and a replicated Global Fault Manager

(GFM) to manage the cluster of PMs where LFMs are running. The inputs to the LFMs

are the resource information of PMs and VMs gathered directly from the hypervisor. We

collect information for resources such as the CPU, memory, network, storage, and pro-

cesses. The GFM is responsible for making decisions on VM replica placement. Since

no one-size-fits-all replica placement strategy is appropriate for all applications, our GFM

supports a pluggable replica placement framework.

IV.4.2 Roles and Responsibilities

Before delving into the design rationale and solution details, we describe how the sys-

tem will be used in the cloud. Figure 42 shows a use case diagram for our system in which

roles and responsibilities of the different software components are defined. A user in the

role of a system administrator will configure and run a GFM service and the several LFM

services. A user in the role of a system developer can implement deployment algorithms
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Figure 41: Conceptual System Design Illustrating Contributions

to find and use a better deployment solution. The LFM services periodically update re-

source information of VMs and PMs as configured by the user. The GFM service uses

the deployment algorithms and the resource information to create a deployment plan for

replicas of VMs. Then, the GFM sends messages to LFMs to run a backup process via

high-availability solutions that leverages Remus.

IV.4.3 Contribution 1: High-Availability Solution

This section presents our first contribution that deals with providing a high availability

middleware solution for VMs running soft real-time applications. Our solution assumes

that a VM-level fault recovery is already available via solutions, such as Remus [18].
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Figure 42: Roles and Responsibilities

IV.4.3.1 Rationale: Why a Hierarchical Model?

Following the strategy in Remus, we host the primary and backup VMs on different

PMs to support the fault tolerance.

In a data center with hundreds of thousands of PMs, a Remus-based solution managing

fault tolerance for different applications may be deployed on every server. Remus makes no

effort to determine the effective placement of replica VMs; it just assumes that a replica pair

exists. For our solution, however, assuring the QoS of the soft real-time systems requires

effective placement of replica VMs.

A centralized solution that manages faults across an entire data center is infeasible.

Moreover, it is not feasible for some central entity to poll every server in the data center

for resource availability and their usage. Thus, an appropriate choice is to develop a hier-

archical solution based on the principles of separation of concerns. At the local level (i.e.,

host level), a fault management logic can interact with its local Remus software while also

being responsible for collecting the local resource usage information. At the global level, a

fault management logic can decide effective replica placement based on the timely resource

usage information acquired from the local entities.

Although a two-level solution is described, for scalability reasons, multiple levels can
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be introduced in the hierarchy where a large data center can be compartmentalized into

smaller regions.

IV.4.3.2 Design and Operation

Our hierarchical solution is to utilize several Local Fault Managers (LFMs) associated

with a single Global Fault Manager (GFM) in adjacent levels of the hierarchy. The GFM

coordinates deployment plans of VMs and their replicas by communicating with the LFMs.

Every LFM retrieves resource information from a VM that is deployed in the same PM as

the LFM, and sends the information periodically to a GFM. We focus on addressing the

deployment issue because existing solutions such as Remus delegates the responsibility of

placing the replica VM onto the user. An arbitrary choice may result in severe performance

degradation for the applications running in the VMs.

The replica manager is the core component of the GFM and is responsible for running

the deployment algorithm provided by a user of the framework. This component determines

the PM where the replica of a VM should be replicated as a backup. The location of the

backup is then supplied to the LFM running on the host machine where the VM is located

to take the required actions, such as informing the local Remus of its backup copy.

The LFM runs a high-availability (HA) service that is based on the Strategy pattern [24].

This service includes starting and stopping replica operations, and automatic failover from

a primary VM to a backup VM in case of a failure. The use of the strategy pattern enables

us to use a solution different from Remus, if one were to be available. This way we are

not tightly coupled with Remus. Once the HA service is started and while it is operational,

it keeps synchronizing the state of a primary VM to a backup VM. If a failure occurs

during this period, it switches to the backup VM making it the active primary VM. When

the HA service is stopped, it stops the synchronization process and high-availability is

discontinued.

In the context of the HA service, the job of the GFM is to provide each LFM with
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backup VMs that can be used when the service is executed. In the event of failure of

a primary VM, the service ensures that the processing switches to the backup VM and

it becomes the primary VM. This event is triggered when the LFM informs GFM of the

failure event and requests additional backup VMs on which a replica can start. It is the

GFM’s responsibility to provide resources to the LFM in a timely manner so that the latter

can move from a crash consistent state to seamless recovery fault tolerant state as soon as

possible thereby assuring average response times of performance-sensitive soft real-time

applications.

In the architecture shown in Figure 43, replicas of VMs are automatically deployed in

hosts assigned by a GFM and LFMs. The following are the steps of the system described

in the figure.

Figure 43: System Architecture
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1. A GFM service is started, and the service waits for connections from LFMs.

2. LFMs will join the system by connecting to the GFM service.

3. The joined LFMs periodically send their individual resource usage information of

VMs hosted on their nodes as well as that of the physical host, such as CPU, memory,

and network bandwidth to the GFM.

4. Based on the resource information, the GFM determines an optimal deployment plan

for the joined physical hosts and VMs by running a deployment algorithm, which

can be supplied and parametrized by users as described in Section IV.4.4.

5. The GFM will notify LFMs to execute a HA service in LFMs with information of

source VMs and destination hosts.

A GFM service can be deployed on a PM or inside a VM. In our system design, to avoid

a single point of failure of a GFM service, a GFM is deployed in a VM and a GFM’s VM

replica is located in another PM. When the PM where the GFM is located fails, the backup

VM containing the GFM service is promoted to primary and the GFM service continues to

its execution via the high availability solution.

On the other hand, LFMs are placed in physical hosts used to run VMs in data cen-

ters. LFMs work with a hypervisor and a high availability solution (Remus in our case) to

collect resource information of VMs and hosts and to replicate VMs to other backup hosts,

respectively. Through the HA solution, a VM’s disk, memory, and network connections are

actively replicated to other hosts and a replication of the VM in a backup host is instantiated

when the primary VM is failed.
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IV.4.4 Contribution 2: Pluggable Framework for Virtual Machine Replica Place-

ment

This section presents our second contribution that deals with providing a pluggable

framework for determining VM replica placement.

IV.4.4.1 Rationale: Why a Pluggable Framework?

Existing solutions for VM high availability, such as Remus, delegate the task of choos-

ing the PM for the replica VM to the user. This is a significant challenge since a bad choice

of a heavily loaded PM may result in performance degradation. Moreover, a static decision

is also not appropriate since a cloud environment is highly dynamic. To provide maximal

autonomy in this process requires online deployment algorithms that make decisions on

VM and replica VM placement.

Deployment algorithms determine which host machine should store a VM and its replica

in the context of fault management. There are different types of algorithms to make this

decision. Optimization algorithms, such as bin packing, genetic algorithms, multiple knap-

sack, and simulated annealing are some of the choices used to solve similar problems in

a large number of industrial applications today. Moreover, different heuristics of the bin

packing algorithm are commonly utilized techniques for VM replica placement optimiza-

tion, in particular.

Solutions generated by such algorithms and heuristics have different properties. Simi-

larly, the runtime complexity of these algorithms is different. Since different applications

may require different placement decisions and may also impose different constraints on the

allowed runtime complexity of the placement algorithm, a one-size-fits-all solution is not

acceptable. Thus, we needed a pluggable framework to decide VM replica placement.
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IV.4.4.2 Design of a Pluggable Framework for Replica VM Placement

In bin packing algorithms [9], the goal is to use minimum number of bins to pack the

items of different sizes. Best-Fit, First-Fit, First-Fit-Decreasing, Worst-Fit, Next-Fit, and

Next-Fit-Decreasing are the different heuristics of this algorithm. All these heuristics will

be part of the middleware we are designing, and will be provided to the framework user to

run the bin packing algorithm.

In our framework, we view VMs as items and the host machines as the bins. Resource

information from the VMs, are utilized as weights to employ the bin packing algorithm.

Resource information is aggregated into one single scalar value, and one dimensional bin

packing is employed to find the best host machine where the replica of a VM will be

stored. Our framework adopts the strategy pattern to enable plugging in different VM

replica placement algorithms. A concrete problem we have developed and used in our

replication manager is described in Section IV.5.

IV.4.5 Problem Fomulation

Our solution provides a framework that enables plugging in different user-supplied VM

placement algorithms. We expect that our framework will compute replica placement de-

cisions in an online manner in contrast to making offline decisions. We have formulated it

as an Integer Linear Programming (ILP) problem.

In our ILP formulation we assume that a data center comprises multiple PMs. Each PM

can in turn consist of multiple VMs. We also account for the resource utilizations of the

physical host as well as the VMs on each host. Furthermore, not only do we account for

CPU utilizations but also memory and network bandwidth usage. All of these resources are

accounted for in determining the placement of the replicas because on a failover we expect

our applications to continue to receive their desired QoS properties. Table 4 describes the

variables used in our ILP formulation.

We now present the ILP problem formulation shown below with the defined constraints

97



Table 4: Notation and Definition of the ILP Formulation

Notation Definition
xi j Boolean value to determine the ith VM to the jth physical

host mapping
x′i j Boolean value to determine the replication of the ith VM to

the jth physical host mapping
y j Boolean value to determine usage of the physical host j
ci CPU usage of the ith VM
c′i CPU usage of the ith VM’s replica
mi Memory usage of the ith VM
m′i Memory usage of the ith VM’s replica
bi Network bandwidth usage of the ith VM
b′i Network bandwidth usage of the ith VM’s replica
C j CPU capacity of the jth physical host
M j Memory capacity of the jth physical host
B j Network bandwidth of the jth physical host

that need to be satisfied to find an optimal allocation of VM replicas. The objective function

of the problem is to minimize the number of PMs by satisfying the requested resource

requirements of VMs and their replicas. Constraints (2) and (3) ensure every VM and

VM’s replica is deployed in a PM. Constraints (4), (5), (6) guarantee that the total capacity

of CPU, memory, and network bandwidth of deployed VMs and VMs’ replicas are packed

into an assigned PM, respectively. Constraint (7) checks that a VM and its replica is not

deployed in the same PM since the PM may become a single point of failure, which must

be prevented.
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minimize
m

∑
j=1

y j (IV.1)

subject to
m

∑
j=1

xi j = 1 ∀i (IV.2)

m

∑
j=1

x′i j = 1 ∀i (IV.3)
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′
i j ≤C jy j ∀ j (IV.4)
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∑
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mixi j +
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∑
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′
i j ≤M jy j ∀ j (IV.5)

n

∑
i=1

bixi j +
n

∑
i=1

b′ix
′
i j ≤ B jy j ∀ j (IV.6)

n

∑
i=1

xi j +
n

∑
i=1

x′i j = 1 ∀ j (IV.7)

xi j = {0,1}, x′i j = {0,1}, y j = {0,1} (IV.8)

IV.5 Experimental Results

In this section we present results to show that our solution can seamlessly and effec-

tively leverage existing solutions for fault tolerance in the cloud.

IV.5.1 Rationale for Experiments

Our high-availability solution for cloud-hosted soft real-time applications leverages ex-

isting VM-based solutions, such as the one provided by Remus. Moreover, it is also possi-

ble that the application running inside the VM itself may provide its own application-level

fault tolerance. Thus, it is important for us to validate that our high availability solution

can work seamlessly and effectively in the context of existing solutions.
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IV.5.2 Representative Applications and Evaluation Testbed

To validate both the claims: (a) support for high-availability soft real-time applica-

tions, and (b) seamless co-existence with other cloud-based solutions, we have used two

representative soft real-time applications. For the first set of validations, we have used an

existing benchmark application that has the characteristics of a real-time application [71].

To demonstrate how our solution can co-exist with other solutions, we used a word count

application that provides its own application-level fault-tolerance. We show how our solu-

tion can co-exist with different fault-tolerance solutions.

Our private cloud infrastructure for both the experiments we conducted comprises a

cluster of 20 rack servers, and Gigabit switches. The cloud infrastructure is operated using

OpenNebula 3.0 with shared file systems using Network File System (NFS) for distributing

virtual machine images. Table 5 provides the configuration of each rack server used as a

clustered node.

Table 5: Hardware and Software specification of Cluster Nodes

Processor 2.1 GHz Opteron
Number of CPU cores 12

Memory 32 GB
Hard disk 8 TB

Operating System Ubuntu 10.04 64-bit
Hypervisor Xen 4.1.2

Guest virtualization mode Para

Our guest domains run Ubuntu 11.10 32-bit as operating systems, and each guest do-

main has 4 virtual CPUs and 4GB of RAM.
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IV.5.3 Measuring the Impact on Latency for Soft Real-time Applications

To validate our high-availability solution including the VM replica placement algo-

rithm, we used the RTI DDS Connext DDS latency benchmark. RTI Connext DDS is an

implementation of the OMG DDS standard [57]. The RTI Connext DDS benchmark com-

prises code to evaluate the latency of DDS applications, and the test code contains both the

publisher and the subscriber.

Our purpose in using this benchmark was to validate the impact of our high- availability

solution and replica VM placement decisions on the latency of DDS applications. For this

purpose, the DDS application was deployed inside a VM. We compare the performance be-

tween an optimally placed VM replica using our algorithm described in Section IV.4.5 and

a potentially worse case scenario resulting from a randomly deployed VM. In the experi-

ment, average latency and standard deviation of latency, which is a measure of the jitter, are

compared for different settings of Remus and VM placement. Since a DDS application is a

one directional flow from a publisher to a subscriber, the latency measurement is estimated

as half of the round-trip time which is measured at a publisher. In each experimental run,

10,000 samples of stored data in the defined byte sizes in the table are sent from a pub-

lisher to a subscriber. We also compare the performance when no high-availability solution

is used. The rationale is to gain insights into the overhead imposed by the high-availability

solution.

Figure 44 shows how our Remus-based high-availability solution along with the effec-

tive VM placement affects latency of real-time applications. The measurements from the

experimental results for the case of Without Remus, where VM is not replicated, shows

consistent range of standard deviation and average of latency compared to the case of Re-

mus with Efficient Placement. When Remus is used, average latency does not increase

significantly, however, a higher fluctuation of latency is observed by measuring standard

deviation values between both cases. From the results we can conclude that the state repli-

cation overhead from Remus incurs a wider range of latency fluctuations.
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Figure 44: Latency Performance Test for Remus and Effective Placement

However, the key observation is that significantly wider range of latency fluctuations are

observed in the standard deviation of latency in Remus with Worst Case Placement. On the

contrary, the jitter is much more bounded using our placement algorithm. our framework

guarantees that the appropriate number of VMs are deployed in PMs by following the

defined resource constraints so that contention for resources between VMs does not occur

even though a VM or a PM has crashed. However, if a VM and its replica is randomly

placed without any constraints, unexpected latency increases for applications running on

the VM could occur. The resulting values of latency’s standard deviation in Remus with
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Worst Case Placement demonstrate how the random VM placement negatively influences

timeliness properties of applications.

IV.5.4 Validating Co-existence of High Availability Solutions

Often times the applications or their software platforms support their own fault-tolerance

and high-availability solutions. The purpose of this experiment is to test whether it is pos-

sible for both our Remus-based high availability solution and the third party solution could

co-exist.

To ascertain these claims, we developed a word count example implemented in C++

using OMG DDS. The application supports its own fault tolerance using OMG DDS QoS

configurations as follows. OMG DDS supports a QoS configuration called Ownership

Strength, which can be used as a fault tolerance solution by a DDS pub/sub application.

For example, the application can create redundant publishers in the form of multiple data

writers that publish the same topic that a subscriber is interested in. Using the OWNER-

SHIP_STRENGTH configuration, the DDS application can dictate who the primary and

backup publishers are. Thus, a subscriber receives the topics only from the publisher with

the highest strength. When a failure occurs, a data reader (which is a DDS entity belonging

to a subscriber) automatically fails over to receive its subscription from a data writer having

the next highest strength among the replica data writers.

Although such a fault-tolerant solution can be realized using the ownership QoS, there

is no equivalent method in DDS if a failure occurs at the source of events such as a node

that aggregates multiple sensors data and a node reading a local file stream as a source of

events. In other words, although the DDS ownership QoS takes care of replicating the data

writers and organizing them according to the ownership strength, if these data writers are

deployed in VMs of a cloud data center, they will benefit from the replica VM placement

strategy provided by our approach thereby requiring the two solutions to co-exist.

To experiment with such a scenario and examine the performance overhead as well
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Figure 45: Example of Real-time Data Processing: Word Count

as message missed ratio (i.e., lost messages during failover), we developed a DDS-based

“word count” real-time streaming application. The system integrates both the high avail-

ability solutions. Figure 45 shows the deployment of the word count application running on

the highly available system. Four VMs are employed to execute the example application.

VM1 runs a process to read input sentences and publishes a sentence to the next processes.

We call the process running on the VM1 as the WordReader. In the next set of processes,

a sentence is split into words. These processes are called WordNormalizer. We place two

VMs for the normalizing process and each data writer’s Ownership QoS is configured with

the exclusive connection to a data reader and the data writer in VM3 is set to the primary

with higher strength. Once the sentences get split, words are published to the next process

called the WordCounter, where finally the words are counted. In the example, we can du-

plicate processes for WordNormalizer and WordCounter as they process incoming events,

but a process for WordReader cannot be replicated by having multiple data writers in dif-

ferent physical nodes as the process uses a local storage as a input source. In this case, our

VM-based high availability solution is adopted.
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Table 6: DDS QoS Configurations for the Word Count Example

DDS QoS Policy Value
Data Reader
Reliability Reliable
History Keep All
Ownership Exclusive
Deadline 10 milliseconds
Data Writer
Reliability Reliable
Reliability - Max Blocking Time 5 seconds
History Keep All
Resource Limits - Max Samples 32
Ownership Exclusive
Deadline 10 milliseconds
RTPS Reliable Reader
MIN Heartbeat Response Delay 0 seconds
MAX Heartbeat Response Delay 0 seconds
RTPS Reliable Writer
Low Watermark 5
High Watermark 15
Heartbeat Period 10 milliseconds
Fast Heartbeat Period 10 milliseconds
Late Joiner Heartbeat Period 10 milliseconds
MIN NACK Response Delay 0 seconds
MIN Send Window Size 32
MAX Send Window Size 32

Table 6 describes the DDS QoS configurations used for our word count application.

The throughput and latency of an application can be varied by different DDS QoS configu-

rations. Therefore, our configurations in the table can provide a reasonable understanding

of our performance of experiments described below. In the word count application, since

consistent word counting information is critical, reliable rather than best effort is desig-

nated as the Reliability QoS. For reliable communication, history samples are all kept in

the reader’s and writer’s queues. As the Ownership QoS is set to exclusive, only one pri-

mary data writer among multiple data writers can publish samples to a data reader. If a

sample has not arrived in 10 milliseconds, a deadline missing event occurs and the primary

data writer is changed to the one which has the next highest ownership strength.

The results of experimental evaluations are presented to verify performance and failover

overhead of our Remus-based solution in conjunction with DDS Ownership QoS. We ex-

perimented six cases shown in the Figure 46 to understand latency and failover overhead

of running Remus and DDS Ownership QoS for the word count real-time application. The
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experimental cases represent the combinatorial fail over cases in an environment selectively

exploiting Remus and DDS Ownership QoS.

Figure 46: Experiments for the Case Study

Figure 47 depicts the results of Experiment E1 and E2 from Figure 46. Both the ex-

periments have Ownership QoS setup as described above. Experiment E2 additionally has

VM1 running the WordReader process, which is replicated to VM1’ whose placement de-

cision is made by our algorithm. The virtual machine VM1 is replicated using Remus high

availability solution with the replication interval set to 40 milliseconds for all the exper-

iments. This interval is also visibly the lowest possible latency for all the experiments,

which has ongoing Remus replication. All the experiments depicted in Figure 46 involved

a transfer of 8,000 samples from WordReader process on VM1 to WordCount process run-

ning on VM4. In the experiments E1 and E2, WordNormalizer processes run on VM2 and

VM3 and incur the overhead of DDS Ownership QoS. In addition, experiment E2 has the

overhead of Remus replication.

The graph in Figure 47 is a plot of average latency for each of the 80 samples set

for a total of 8,000 samples transfer. For experiment E1 with no Remus replication, it
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Figure 47: Latency Performance Impact of Remus Replication

was observed that the latency fluctuated within a range depending upon the queue size

of WordCounter and each of WordNormalizer processes. For experiment E2 with Remus

replication, the average latency for sample transfer did not have much deviation except for

a few jitters. This is because of the fact that Remus replicates at a stable, predefined rate

(here 40 ms), however, due to network delays or delay in checkpoint commit, we observed

jitters. These jitters can be avoided by setting stricter deadline policies in which case, some

samples might get dropped and they might need to be resent. Hence, in case of no failure,

there is very little overhead for this soft real-time application.

Figure 48 is the result for experiment E3 where WordReader process on VM1 is repli-

cated using Remus and it experienced a failure condition. Before the failure, it can be

observed that the latencies were stable with few jitters due to the same reasons explained

above. When the failure occurred, it took around 2 seconds for the failover to complete

during which a few samples got lost. After the failover, no jitters were observed since Re-

mus replication has not yet started for VM1’, but the latency showed more variation as the
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system was still stabilizing from the last failure. Thus, the high availability solution works

for real-time applications even though a minor perturbation is present during the failover.
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Figure 48: DDS Ownership QoS with Remus Failover

Table 7 represents the missed ratio for different failover experiments performed. In

experiments E4 and E5, VM2 failed and the WordNormalizer process failed over to VM3.

Since the DDS failover relied on publisher/subscriber mechanism, the number of lost sam-

ples is low. The presence of Remus replication process on WordReader process node VM1

did not have any adverse effect on the reliability of the system. However, in case of experi-

ments E3 and E6, where Remus failover took place, the number of lost samples was higher

since the failover duration is higher in case of Remus replication than DDS failover. These

experiments show that ongoing Remus replication does not affect the performance of DDS

failover, even though Remus failover is slower than DDS failover. However, since DDS

does not provide any high availability for the source, infrastructure-level high availability

provided by our Remus-based solution must be used.
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Table 7: Failover Impact on Sample Missed Ratio

Missed Samples
(total of 8000)

Missed Samples
Percentage (%)

Experiment 3 221 2.76
Experiment 4 33 0.41
Experiment 5 14 0.18
Experiment 6 549 6.86

IV.6 Concluding Remarks

As real-time applications move to the cloud, it becomes important for cloud infras-

tructures and middleware to implement algorithms that provide the QoS properties (e.g.,

timeliness, high-availability, reliability) of these applications. In turn this requires sup-

port for algorithms and mechanisms for effective fault-tolerance and assuring application

response times while simultaneously utilizing resources optimally. Thus, the desired solu-

tions require a combination of algorithms for managing and deploying replicas of virtual

machines on which the real-time applications are deployed in a way that optimally utilizes

resources, and algorithms that ensure timeliness and high availability requirements. This

chapter presented the architectural details of a middleware framework for a fault-tolerant

cloud computing infrastructure that can automatically deploy replicas of VMs according

to flexible algorithms defined by users. This chapter also presented performance impact

of high availability solutions and deployment decisions by comparing latency of different

cases to validate our approach. The following is a summary of the lessons we learned from

this research and the empirical evaluations.

• Remus with efficient placement incurs less overhead and fluctuation on latency.

Experimental results show using Remus incurs overheads on latency because Remus

periodically synchronizes a primary VM with a backup machine and these overheads

cannot be avoided. However, the problem is that if backup placement is randomly

determined, latency values are increased more and fluctuate a lot because of resource
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contention. As a result, if the backup placement is optimal, overheads occurred by

high availability solutions can be minimized, and especially jitters can be reduced

substantially.

• VM level backup incurs more overheads than process(middleware) level backup,

but it must be used for some cases when middleware does not support high avail-

ability. Remus creates backups for all running processes on a VM, and it results in

more overheads compared to a technique which realizes high availability at process-

level. To experiment and compare the overheads, this chapter presented latency and

missed sample ratio of Remus and DDS middleware which supports high availabil-

ity at process-level. The experimental results show that latency is similar for both

Remus and DDS when a failures does not happen. However, when a failure happens

and failover process is needed, Remus causes more overheads in terms of the number

of missed samples. Nevertheless, if application or middleware does not support high

availability solution, VM level backup is required and it incurs acceptable overheads.

• Timeliness can be improved with both real-time scheduling by hypervisor and

resource allocation. The work presented in this paper addresses just one dimen-

sion of a number of challenges that exist in supporting real-time application in the

cloud. For example, scheduling of virtual machines (VMs) on the host operating

system (OS) and in turn scheduling of applications on the guest OS of the VM in

a way that assures application response times is a key challenge that needs to be

resolved. Scheduling alone is not sufficient; the resource allocation problem must

be addressed wherein physical resources including CPU, memory, disk and network

must be allocated to the VMs in a way that will ensure that application QoS proper-

ties are satisfied. In doing so, traditional solutions used for hard real-time systems

based on over-provisioning are not feasible because the cloud is an inherently shared

infrastructure, and operates on the utility computing model.
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CHAPTER V

MODEL-DRIVEN GENERATIVE FRAMEWORK FOR AUTOMATED OMG DDS
PERFORMANCE TESTING IN THE CLOUD

V.1 Motivation

The OMG DDS is a general-purpose middleware supporting real-time pub/sub seman-

tics for mission-critical applications. Specifically, the OMG DDS supports real-time, topic-

based, data-centric, scalable, deterministic and anonymous pub/sub interaction semantics

for large-scale distributed applications. To support the quality of service (QoS) require-

ments of a broad spectrum of application domains, the OMG DDS supports many QoS

configuration policies (in the form of configuration parameters) that when used in different

combinations determine the delivered end-to-end QoS properties.

An important consideration with DDS QoS policies is that not all QoS policies can be

combined with each other since certain combinations tend to be incompatible with each

other. Similarly, the parameter values chosen for specific QoS policies may tend to become

inconsistent when combined. Both the incompatibility and inconsistency issues pose sig-

nificant challenges for DDS application developers who must ensure that their deployed

applications have compatible and consistent QoS configuration policies. This issue was

covered in a previous work [33] that utilized model-driven engineering (MDE) [78] tech-

niques to pinpoint existence of such errors at design-time.

V.1.1 Challenges

Challenge 1: Prediction of end-to-end performance impact with combined QoS poli-

cies Addressing these accidental challenges alone is not sufficient, however, towards realiz-

ing high confidence DDS-based applications. Every individual QoS policy tends to impact

the end-to-end performance and behavior of the application in specific ways. When these
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QoS policies are combined in various combinations, it is hard to predict the outcome on

QoS of combining these policies. Such a problem is faced not just by application develop-

ers but also by the OMG DDS vendors themselves, who must have an in-depth knowledge

of how various combinations of configuration parameters interact, and to address issues

raised by their customers.

Challenge 2: Generation and deployment of lots of test cases It is not possible to expect

an application developer or a vendor to manually write test cases that can experiment every

QoS policy and all possible combinations of these QoS policies (along with their values),

not to mention that they must also ensure that these combinations are valid. Even if one

were to develop these large number of tests, executing them sequentially is time consuming,

which impacts both the application developers who aim at getting their applications to

market rapidly and vendors who must address customer problems in a timely manner.

V.1.2 Solution Approach

To address the combinatorial testing problem and limitations of sequential testing,

this paper presents AUTOMATIC (AUTOmated Middleware Analysis and Testing In the

Cloud), which is a framework we have developed that combines MDE techniques with

multiple stages of generative capabilities. Specifically, AUTOMATIC provides a domain-

specific modeling language that developers use to model their applications and QoS poli-

cies of interest. Generative tools synthesize essentially a product line of test cases, each

testing different QoS policies for the same pub/sub business logic. A second set of gener-

ators synthesize cloud-based deployment logic. Finally, a testing framework automates the

testing of the generated test cases in parallel in the cloud. Although a related effort called

Expertus [37] uses aspect oriented weaving techniques for code generation and automated

testing of applications for performance in the cloud, this effort does not address the QoS

configuration combinations and their impact on performance that we address in this paper.
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Although our research provides a framework of practical importance for the rapid test-

ing of OMG DDS middleware-based applications, the core ideas behind the work can

provide invaluable lessons for developers and engineers wishing to build their own test-

ing and deployment frameworks for applications built using other platforms. In fact, the

component-oriented design of our framework makes it possible to reuse parts of the genera-

tive capabilities, e.g., the cloud deployment capabilities can be reused without being tightly

coupled to DDS-specific test code.

This framework brings the following artifacts and merits.

• It provides a domain-specific modeling language (DSML) that enables developers

and engineers to define OMG DDS-based testing scenarios with DDS QoS policies

of interest and their acceptable range for the values of these parameters.

• It supports full automation beyond the modeling stage through multi-staging of gen-

erative capabilities, which helps to synthesize a family of test code variants that have

a common business logic but differ in how the QoS policies are combined, and tested.

• It enables the testing of all the generated scenarios in parallel by exploiting cloud

computing’s elastic properties, and completely automating the test execution and

collection of results.

• It supports a component-oriented, composable generative framework such that indi-

vidual parts of the tool chain can potentially be used for other application scenarios

and purposes.

V.2 Related Work

Expertus [38] is a code generation framework for distributed applications in clouds.

The paper described similar vision and approach to ones of our framework. However, Ex-

pertus focuses on performance by different application platforms and cloud platforms, but

our framework concentrates on application’s non-functional configurations. Moreover, The

113



work exploited aspect-oriented software engineering to weave common and variable parts

of code while our work uses model-driven engineering and model interpreters to generate

and combine common and variable code elements. The paper did not provide actual perfor-

mance of distributed applications, but our paper analyzes key performance indicators and

characteristics of QoS policies with a demonstration with an example distributed pub/sub

application.

DQML [33] is a modeling language to verify compatibility and consistency of DDS

QoS configurations. The aim of DQML that is to generate DDS QoS configuration code

is identical with our framework, but the ultimate goal of DQML is to check and validate

compatibility and consistency of QoS policies while we bring in to focus on performance

analysis with cloud platforms by mixed QoS configurations. Our framework also supports

validation of QoS compatibility and consistency in a different way from DQML.

V.3 Design and Implementation

Figure 49 describes the overall architecture and workflow of our automated perfor-

mance testing framework called AUTOMATIC. AUTOMATIC comprises three activity

domains: User, Test Automation System, and Cloud Infrastructure. The Modeling and

Test Monitoring functions included in the User domain should be conducted by a user who

prototypes DDS applications and performs performance testing of the applications. In the

Test Automation System domain, Test Planning and Test Deployment functions are carried

out by predefined tools in our framework. When the Test Planning is completed and ready

to be deployed in a testing infrastructure, a test environment is generated for our cloud

infrastructure to emulate application testing. In short, users need to define their models of

applications and test specifications with a modeling tool as inputs and obtain performance

results with a monitoring tool as outputs of this framework.

The rest of this section describes each activity in detail including the performance mon-

itoring capability.
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Figure 49: Framework Architecture

V.3.1 Domain-Specific Modeling Language (DSML)

We developed a DSML using the Generic Modeling Environment (GME) (www.isis.

vanderbilt.edu/projects/GME) that supports modeling a DDS application for

emulation and testing its performance for various combinations of DDS QoS policies.

GME provides a meta-modeling environment to develop DSMLs for specific domains.

Our meta-model includes modeling elements for all OMG DDS entities including Domain,

Topic, Publisher, Subscriber, DataWriter, DataReader, QoS, and their connections. In DDS

applications, a scope or operating region of an application is determined by the Domain,

and applications are isolated by different Domain IDs. DDS applications publish or sub-

scribe via DataWriters and DataReaders through associated Topics, and therefore in the

meta-model the Topic and Type elements are contained in the Domain element and Topics

and Types in the Domain are accessible by DataWriter and DataReader entities running in

the same Domain. Moreover, the Domain contains a Participant element which is a concept

to represent a processing unit for publishing or subscribing or both. Lastly, the modeling
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capability to configure QoS policies for DDS entities is contained in the Domain element.

Data communications between Participants are differentiated and identified by a Topic, so

a TopicConnection element is required in the Domain model to be used by DataWriters and

DataReaders in Participants.

Figure 50 shows an example application defined with our modeling language. This

example application examines the throughput of the application publishing octet sequence

data from a Participant containing a DataWriter to a Participant involving a DataReader.

Each DataWriter and DataReader are placed under the Participant element and behaves as

a communicating port between Participants.

Figure 50: Example Domain-Specific Model of DDS Throughput Testing Application

The DDS Participants are deployed in virtual machines (VMs) for testing and each Par-

ticipant in the model are connected to a VM element based on the deployment decision by

users. In this example, each Participant is deployed in a different VM. The deployment

plan (mapping of Participants and VMs) can be flexibly altered by users in the modeling

language if users like to test with different deployment plans. Users can emulate their ap-

plications by setting analogous hardware specifications to find similar performance results

in actual environment.

Communicating DataWriters and DataReaders are connected with directed lines which
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indicate communications defined by a Topic. A Topic is shown in the top of this example

model. If a name of a line is the same as the name of a Topic, it means DataWriters and

DataReaders connected with the link communicate data by the Topic. Each data type of a

Topic is determined by a struct like data type.

In the QoS Profile element, QoS policies used by DataWriters and DataReaders are

contained. For example, Reliability QoS has two kinds of policies to determine the level

of reliability: RELIABLE and BEST_EFFORT. History QoS also has two kinds of policies to

set the number of history samples in a entity’s cache: KEEP_ALL and KEEP_LAST. Some

QoS policies need to set as numeric values such as history depth in History QoS. A QoS

Profile element can be reused by multiple DataWriters and DataReaders. In our framework,

QoS policies defined in a QoS Profile element are variations of generative artifacts, and the

number of variations are determined by ranges of configuration parameters set by users.

Finally, the configurable parameters are set in the TestSpec element. In this element,

test related information such as running duration of the test, and the number of test cases

concurrently running is configured. A deployment tool uses this information to decide the

number VMs in a test set and schedule the test operations.

V.3.2 Test Plan Generation

The Test Planning function traverses the modeled elements in a model instance via a

model interpreter to generate executable applications and related test specification files. To

traverse GME model elements, relevant APIs for interpreting GME models are provided

and we utilized Unified Data Model (UDM) APIs [52] and the visitor pattern to develop

our interpreter. Moreover, LEESA [85] was also adopted in our interpreter implementations

to simplify complexity of the part for traversing UDM model elements.

Figure 51 shows an XML-based DDS application tree model transformed by the model

interpreter based on Figure 50. Because the aim of our automatic testing framework is

to analyze application performance by varying QoS configuration, elements under the QoS
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Library are categorized into variable elements and the rest of the elements fall into the com-

mon elements category. This approach is conducive to using generative programming to

realize a product line of test cases. The QoS Library embodies QoS elements for DataWrit-

ers and DataReaders. To demonstrate our framework with a simple example, we varied

only the Reliability QoS. In this example, both DataWriter QoS and DataReader QoS have

Reliability QoS. RELIABLE or BEST_EFFORT can be selected as a kind of the Reliability

QoS.

Figure 51: XML-based DDS Application Tree

The following procedure is used to form a tree shown in Figure 52 for all possible

combinations of QoS configurations defined in the QoS Library. In the example, four test

cases can be generated as each DataWriter and DataReader QoS has Reliability QoS that

can choose from BEST_EFFORT and RELIABLE. Once the combination tree for variable
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elements is complete, the combination tree is traversed with depth-first search to create

trees for variables elements actually used by the applications for testing.

Figure 52: Variable Element Combination Tree

As a final outcome, four trees for variable elements are created as shown in Figure 53.

The tree numbered 2 is discarded by the interpreter because the QoS configurations are

not compatible. The reason is that if the DataWriter’s Reliability QoS is BEST_EFFORT

and DataReader’s Reliability QoS is RELIABLE, then no communication between them is

feasible according to the DDS specification.

There are three ways to check QoS incompatibility and inconsistency. First, it can be

done by modeling environment with modeling constraint languages such as Object Con-

straint Language (OCL). The Distributed QoS Modeling Language (DQML) [33] intro-

duced this approach to configure compatible QoS policies at design-time. Second, we can

realize it by checking conditions in a modeling interpreter during traversing modeling ele-

ments and their attribute values. Our framework adopted this second approach. Third, QoS

incompatibility can be detected by DDS middleware at run-time.

As the final step, the trees for variable elements are combined with the tree for common

elements introduced in Figure 51, and the executable applications are generated.
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V.3.3 Test Deployment

To deploy the XML-based DDS testing applications in a cloud-based testing infrastruc-

ture, specifications related to the deployment are also generated by the model interpreter.

The specifications are composed of three parts: Test Specification, VM Specification, and

Application Specification. The Test Specification describes the environment including a ref-

erence to the VM Specification, concurrency level, duration for test execution, publication

period of publishers. Each test case is defined with an assigned ID and a referring speci-

fication file. The referred specification files have information about application’s topology

and the execution command.

The VM Specification example describes required VMs for testing and information of

VMs such as VM instance type and image. These specifications are fed into our deploy-

ment tool. VM instance types indicate specifications of VM such as the number of virtual

CPUs, memory size, and storage capacity. According to the user-selected VM image and

VM instance type, the Test Env Generation function deploys a proper VM in a cloud in-

frastructure. When the VM has booted up, a SSH connection is established and a test case

application is sent to the VM over the SSH connection by the Test Execution function.

We implemented our deployment tool in Python 2.7 for the Test Deployment function.

Our private cloud for testing adopted OpenStack as a cloud operating system, and the

Python Boto library is exploited to control cloud resources via Amazon AWS APIs. Our

tool utilized Paramiko (http://www.lag.net/paramiko/ to establish SSH com-

munications to the VMs.

The generated XML-specified application that is moved to the deployed VM is sub-

sequently executed on that VM using a tool provided by RTI called the RTI Prototyper

(http://community.rti.com/content/page/download-prototyper).

RTI Prototyper is a command-line executable application to operate DDS applications

defined in XML. By aid of the RTI Prototyper, implementations of our model interpreter

could be simplified by only formalized XML files need to be generated for complete DDS
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applications. The RTI Prototyper supports configurable parameters to determine Domain-

Participant required to run, running time, and publishing data interval. A full execution

command with these parameters are automatically recored in Application Specification

when the specification is generated by our interpreter, and it is used by the deployment tool

for actual execution.

V.3.4 Test Monitoring

We employed another product from RTI called the RTI Monitor to detect DDS applica-

tions’ performance while it is executing on the VM. The RTI Monitor is a tool to visualize

monitoring data of applications. The RTI Monitor helps users to understand their systems

easily via graphical interfaces and to verify behaviors of entities as expected. Moreover, it

comes to the aid of improving performance throughput provided statistics such as CPU and

memory usage, and throughput. The experimental results illustrated in Section V.4 were

collected using this tool.

To use the RTI Monitor, DDS applications is demanded to use Monitoring library plug-

in. The Monitoring library periodically checks and gets status of DDS entities and all

entities related details are sent to the Monitor. The Monitoring library is configurable via

DomainParticipant’s Property QoS Policy, and our framework automatically produces the

configuring QoS parts with a selectable attribute in the modeling environment.

V.4 Technology Validation

Our efforts at validating the claims in AUTOMATIC thus far have focused on a scenario

where an application developer seeks to make appropriate tradeoffs trying to balance the

conflicting requirements of reliability and timeliness. To that end, the experiment evalu-

ates performance of an example DDS application by combining the Reliability, History and

Deadline QoS policies. In this experiment, DDS applications use core libraries of RTI Con-

next DDS 5.0 (which is an implementation of OMG DDS) and executable scripts provided
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with RTI Connext Prototyper 5.0. Our OpenStack-based cloud testbed employs KVM as a

virtual machine (VM) hypervisor. Each VM machine type used in this experiment consists

of 1 virtual CPU and 512 MB memory.

Figure 53: Variable Element Tree

In our example, the publisher periodically publishes a topic containing octet sequence

typed data of 64K bytes to the subscriber. We chose a large packet size in the hope of

congesting the network. The publishing period is decided by the Deadline QoS setting and

was fixed at 1 millisecond. The purpose of this experiment is to understand deadline miss
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rate for different Reliability QoS configurations. The HISTORY setting was KEEP_ALL,

which means the publisher and subscriber hold on to all the data samples so they can be

used for retransmissions when complete reliability is desired. The Reliability QoS setting

is varied between RELIABLE (for eventual consistency) versus BEST_EFFORT (where no

attempt is made to retry transmissions when samples are lost). The generated test cases are

shown in Figure 53.

Figure 54 shows deadline miss counts of DataReader’s (an entity on the subscriber

side) in the test cases. If a sample is not arrived in a DataReader within 1 millisecond, it is

counted as a missed deadline. Each test case runs for 4 minutes and values are monitored

every 5 seconds. The X axis indicates time and Y axis presents deadline missed samples

for 5 seconds.

Figure 54: Deadline Miss Counts for Different Reliability QoS Settings

In test case 1, most samples do not miss the deadline and the range of the samples
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spans up to 10 as maximum. If Reliability QoS is set to BEST_EFFORT, a DataWriter keeps

publishing data regardless of the status of a DataReader and therefore it is beneficial to

be used for applications demanding low latency. In a congested network environment, it

would possibly lose samples, however, since our test network is not congested, there were

no lost samples.

In test case 3, deadline miss counts are monitored from 9 to 35 where they keep occur-

ring during the entire testing period. If the data cache of a DataWriter with the RELIABLE

Reliability QoS is filled with unacknowledged samples, the DataWriter’s write operation

is blocked for a while to control the sending rate to avoid congestion which increases the

latency of samples delivered. Accordingly, high latency causes deadline miss counts on

the DataReader side. However, samples can reliably arrive at the DataReader due to the

middleware supporting the retransmissions.

V.5 Concluding Remarks

Modern middleware, such as the OMG DDS, provide substantial flexibility to applica-

tions by virtue of supporting a large number of configuration options. These configuration

options when combined in different ways can lead to vastly different performance and

behavioral characteristics for the applications. Although some intuition is always avail-

able on the potential impact of individual configurations, and some guidelines do emerge

after a few years of experience using multiple configurations on real applications (e.g.,

community.rti.com/best-practices), application developers continue to face

numerous challenges deciding the right combinations of options they must use for their

application for the chosen deployment environments. It is infeasible for developers to

manually create and test each possible scenario to understand the impact of the configu-

ration options. To address these challenges in the context of OMG DDS middleware, this

paper combines model-driven engineering (MDE) and generative programming techniques
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to provide a tool called AUTOMATIC (AUTOmated Middleware Analysis and Testing In

the Cloud).

The following is a summary of the lessons we learned from this work

• MDE help application developers with intuitive abstractions to rapidly describe

their testing scenarios

• Generative programming is needed since the test cases that combine configura-

tion options can be considered a product line where the DDS application busi-

ness logic remains common while the configurations can vary.

• Deployment and testing in the cloud is chosen as an approach because of its

elastic nature where we can automate the parallel execution and collection of

test statistics for a large number of generated tests from our tooling.

Although the presented technology is showcased for the OMG DDS middleware, the

principles behind AUTOMATIC are applicable to other middleware. Moreover, our tech-

nology has significant practical utility to both application developers and middleware ven-

dors. Current artifacts in AUTOMATIC are available for download from www.dre.

vanderbilt.edu/~kyoungho/AUTOMATIC/.
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CHAPTER VI

CONCLUDING REMARKS

This doctoral dissertation is motivated by the need to address a variety of inherent and

accidental challenges manifested in realizing the true potential of Industrial Internet of

Things (IIoT). Specifically, we focus on the issues within the plant and enterprise levels

of the IIoT conceptual space defined by the Industrial Internet Consortium (IIC) [16]. Our

ideas have been implemented and evaluated in the context of the OMG’s Data Distribution

Service (DDS) data-centric, publish/subscribe (pub/sub) technology.

To address the inherent complexities stemming from scalable discovery of publishers

and subscribers, we proposed a scalable DDS discovery protocol called Content-based

Filtering Discovery Protocol (CFDP). This protocol was shown to reduce the computing

and network resources in the discovery phase to realize scalability in a large scale system.

Through this protocol, DDS applications can save on the number of resources used, and

achieve fast discovery of communication endpoints.

To realize QoS-enabled data-centric pub/sub communications over WANs, we described

A Cloud-enabled Coordination Service for Internet-scale OMG DDS Applications. Our so-

lution called PubSubCoord includes harnessing ZooKeeper and DDS Routing Service to

enable DDS applications to communicate in a WAN in a scalable and automatic way in

terms of discovery and pub/sub communications. The PubSubCoord architecture provides

load balancing and fault-tolerance for brokers located in the cloud as well as flexible pub/-

sub overlays based on deadlines dictated by communication requirements.

To support fault tolerant and soft real-time enterprise-level IIoT computing tasks in the

cloud, we presented the A Cloud Middleware Assuring Performance and High Availability

of Real-time Applications middleware solution. Specifically, this middleware integrates a

VM failover solution such as Remus to guarantee availability of cloud applications when a
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failure happens and provides a way to use pluggable placement algorithms for VM backups

to reduce the number of underlying physical machines as well as assure timeliness avoiding

contention of shared resources.

Validating various hypotheses in the context of IIoT is hard due to the large number

of accidental complexities stemming from the flexibility and configurability of the pub/sub

platforms. This research described the Model-driven Generative Framework for Automated

OMG DDS Performance Testing in the Cloud. This work utilizes MDE tools such as GME

to provide intuitive interfaces for users to define test cases and generative techniques to

automatically generate configuration and implementation scripts. Additionally, cloud in-

frastructures are exploited to deploy and execute a number of test cases concurrently by

leveraging the elastic properties of the cloud.

A number of follow on research efforts are possible stemming from our research con-

tributions. In particular, we have identified the following extensions for CFDP and Pub-

SubCoord.

• CFDP

SDP can seamlessly use multicast because only a single multicast address is used

for discovery of all participants. For CFDP, however, each content filter used by

CFDP will require a separate multicast address. To overcome this limitation, we sug-

gest enhancing CFDP to support multicast thereby reducing the number of discovery

messages sent by delegating the overhead to network switches. This approach will

group peers with a set of multicast addresses by topic names so that built-in discovery

DataWriters will publish data only to assigned multicast channels (groups).

The current CFDP filters discovery messages based on topic names, which limits

its scalability in a system where most data streams are differentiated by a key of a

topic, rather than by a topic itself. More work is needed to enhance CFDP to filter

discovery messages based on topic names as well as keys. This enhancement should
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provide performance benefits for DRE systems that contain numerous endpoints and

instances with a single or less number of topics.

• PubSubCoord

Although PubSubCoord supports dynamic joining and leaving of endpoints, the sys-

tem incurs some delay in executing the coordination actions to converge to a new

state of routes. We have not conducted experiments to evaluate this capability, which

may shed light on potential performance optimizations.

Despite the load balancing, it is possible that a routing broker has to maintain con-

nections to many different edge brokers. So fine-grained load balancing mecha-

nisms(e.g., load balancing by keys) are needed that do not adversely impact perfor-

mance for systems having many endpoints communicating via a small set of topics.

In our work we described the mechanism by which multi-path overlays can be in-

stantiated for delay-sensitive dissemination paths. Since not every path can be a

delay-sensitive path, we need some higher level policy mechanism to decide what

characterizes a delay-sensitive path.

Our experiments were conducted inside an emulated internet-scale network using

virtual LANs. This arrangement currently illustrates a large but flat network hierar-

chy. Although we created scripts to automate many of the tasks in our test harness,

more automation is needed to create more complex network hierarchies and evaluate

our solution.

The following sections present a summary of research contributions, and a list research

publications where these research contributions have been disseminated to the scientific

community.
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VI.1 Summary of Research Contributions

• Scalability of discovery protocol for pub/sub middleware

1. Design of CFDP which is a scalable and efficient DDS endpoint discovery pro-

tocol employing content-based filtering to conserve computing, memory, and

network resources used in the DDS discovery process.

2. Implementation of CFDP prototype on top of a popular DDS middleware im-

plementation.

3. Empirical results conducted in a testbed to evaluate the performance and re-

source usage of CFDP compared with SDP.

• Coordination service pub/sub middleware in WANs

1. Design scalable and dynamic discovery and coordination service for DDS sys-

tems over WANs called PubSubCoord that enables elastic cloud-based brokers

with supporting load balancing and fault-tolerance.

2. Supporting deadline-aware overlays that is beneficial to pub/sub endpoints re-

quiring strict deadlines by establishing multi-paths.

3. Empirical results to evaluate the scalability of PubSubCoord in terms of discov-

ery as well as data dissemination.

• Fault-tolerant and time-sensitive cloud computing infrastructures

1. Architecture for fault-tolerant framework that can be used to automatically de-

ploy replicas of virtual machines in data centers in a way that optimizes re-

sources while assuring availability and responsiveness.

2. Design of a pluggable framework within the fault-tolerant architecture that en-

ables plugging in different placement algorithms for virtual machine replica

deployment.
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3. Experimental results using a case study that involves a specific replica place-

ment algorithm to evaluate effectiveness of this architecture.

• Testing performance of different combinations of QoS configurations

1. A DSML that enables developers and engineers to define DDS-based testing

scenarios with QoS policies of interest and their acceptable range for the values

of these parameters.

2. Full automation beyond the modeling stage through multi-staging of generative

capabilities, which helps to synthesize a family of test code variants that have

a common business logic but differ in how the QoS policies are combined, and

tested.

3. Enabling the testing of all the generated scenarios in parallel by exploiting cloud

computing’s elastic properties, and completely automating the test execution

and collection of results.
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VI.2 Summary of Publications

Journal Publications

1. Kyoungho An, Shashank Shekhar, Faruk Caglar, Aniruddha Gokhale, and Shivaku-

mar Sastry, “A Cloud Middleware for Assuring Performance and High Availability of

Soft Real-time Applications”, The Elsevier Journal of Systems Architecture (JSA):

Embedded Systems Design, 2014.

Book Chapters

1. Kyoungho An, Adam Trewyn, Aniruddha Gokhale and Shivakumar Sastry, “Design

and Transformation of Domain-specific Language for Reconfigurable Conveyor Sys-

tems”, Book chapter in Formal and Practical Aspects of Domain-Specific Languages:

Recent Developments, IGI Global publishers, Editor: Marjan Mernik, 2012.

Conference Publications

1. Kyoungho An, Sumant Tambe, Paul Pazandak, Gerardo Pardo-Castellote, Anirud-

dha Gokhale and Douglas Schmidt, “Content-based Filtering Discovery Protocol

(CFDP): Scalable and Efficient OMG DDS Discovery Protocol”, 8th ACM Inter-

national Conference on Distributed Event-Based Systems (DEBS 2014), Mumbai,

India, May 26-29, 2014.

2. Kyoungho An, Takayuki Kuroda, Aniruddha Gokhale, Sumant Tambe, and Andrea

Sorbini, “Model-driven Generative Framework for Automated DDS Performance

Testing in the Cloud”, 12th ACM International Conference on Generative Program-

ming: Concepts & Experiences (GPCE 2013), Indianapolis, IN, Oct 27-28, 2013.

3. Kyoungho An, “Resource Management and Fault Tolerance Principles for Support-

ing Distributed Real-time and Embedded Systems in the Cloud”, 9th Middleware
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Doctoral Symposium (MDS 2012), co-located with ACM/IFIP/USENIX 13th Inter-

national Conference on Middleware (Middleware 2012), Montreal, Quebec, Canada,

Dec 3-7, 2012.

4. Kyoungho An, Adam Trewyn, Aniruddha Gokhale and Shivakumar Sastry, “Model-

driven Performance Analysis of Reconfigurable Conveyor Systems used in Mate-

rial Handling Applications”, Second ACM/IEEE International Conference on Cyber

Physical Systems (ICCPS 2011), Chicago, IL, Apr 11-14, 2011.

5. Anushi Shah, Kyoungho An, Aniruddha Gokhale and Jules White, “Maximizing Ser-

vice Uptime of Smartphone-based Distributed Real-time and Embedded Systems”,

14th IEEE International Symposium on Object/Component/Service-oriented Real-

time Distributed Computing (ISORC 2011), Newport Beach, CA, Mar 28-31, 2011.

Workshop, Work in Progress, and Poster Publications

1. Kyoungho An and Aniruddha Gokhale, “A Cloud-enabled Coordination Service for

Internet-scale OMG DDS Applications”, Poster paper at the 8th ACM International

Conference on Distributed Event-Based Systems (DEBS 2014), Mumbai, India, May

26-29, 2014.

2. Shashank Shekhar, Faruk Caglar, Kyoungho An, Takayuki Kuroda, Aniruddha Gokhale

and Swapna Gokhale, “A Model-driven Approach for Price/Performance Tradeoffs

in Cloud-based MapReduce Application Deployment”, MODELS 2013 workshop on

Model-Driven Engineering for High Performance and CLoud computing (MDHPCL

2013), Miami FL, Sep 29, 2013.

3. Kyoungho An and Aniruddha Gokhale, “Model-driven Performance Analysis and

Deployment Planning for Real-time Stream Processing”, Work-in-Progress (WiP)

session at 19th IEEE Real-time and Embedded Technology and Applications Sym-

posium (RTAS 2013), Philadelphia PA, Apr 9-11, 2013.
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4. Faruk Caglar, Shashank Shekhar, Kyoungho An and Aniruddha Gokhale, “WiP Ab-

stract: Intelligent Power- and Performance-aware Tradeoffs for Multicore Servers

in Cloud Data Centers”, Work-in-Progress (WiP) session at 4th ACM/IEEE Interna-

tional Conference on Cyber Physical Systems (ICCPS 2013), Philadelphia PA, Apr

9-11, 2013.

5. Kyoungho An, Faruk Caglar, Shashank Shekhar and Aniruddha Gokhale, “A Frame-

work for Effective Placement of Virtual Machine Replicas for Highly Available Performance-

sensitive Cloud-based Applications”, RTSS 2012 workshop on Real-time and Dis-

tributed Computing in Emerging Applications (REACTION 2012), San Juan, Puerto

Rico, Dec 4-7, 2012.

6. Kyoungho An, Subhav Pradhan, Faruk Caglar and Aniruddha Gokhale, “A Pub-

lish/Subscribe Middleware for Dependable and Real-time Resource Monitoring in

the Cloud”, Middleware 2012 workshop on Secure and Dependable Middleware for

Cloud Monitoring and Management (SDMCMM 2012), Montreal, Quebec, Canada,

Dec 3-7, 2012.

7. Kyoungho An, “Strategies for Reliable, Cloud-based Distributed Real-time and Em-

bedded Systems”, Extended abstract for PhD Forum in 31st IEEE International Sym-

posium on Reliable Distributed Systems (SRDS 2012), Irvine, CA, Oct 8-11, 2012.

8. Faruk Caglar, Kyoungho An, Aniruddha Gokhale and Tihamer Levendovszky, “Tran-

sitioning to the Cloud? A Model-driven Analysis and Automated Deployment Capa-

bility for Cloud Services”, MODELS 2012 workshop on Model-Driven Engineering

for High Performance and CLoud computing (MDHPCL 2012), Innsbruck, Austria,

Sep 30 - Oct 5, 2012.
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Technical Reports

1. Shweta Khare, Sumant Tambe, Kyoungho An, Aniruddha Gokhale, Paul Pazandak,

“Scalable Reactive Stream Processing Using DDS and Rx: An Industry-Academia

Collaborative Research Experience”, ISIS Technical Report, no.ISIS-14-103: Insti-

tute for Software Integrated Systems, Vanderbilt University, Nashville TN, April,

2014.

2. Kyoungho An, Sumant Tambe, Andrea Sorbini, Sheeladitya Mukherjee, Javier Povedano-

Molina, Michael Walker, Nirjhar Vermani, Aniruddha Gokhale, and Paul Pazandak,

“Real-time Sensor Data Analysis Processing of a Soccer Game Using OMG DDS

Publish/Subscribe Middleware”, ISIS Technical Report, no.ISIS-13-102: Institute

for Software Integrated Systems, Vanderbilt University, Nashville TN, June, 2013.

Submitted Papers

1. Kyoungho An, Takayuki Kuroda, and Aniruddha Gokhale, A Coordination and Dis-

covery Service for QoS-enabled Data-Centric Publish/Subscribe in Wide Area Net-

works, 35th IEEE International Conference on Distributed Computing Systems (ICDCS

2015), Columbus, OH, June 29-July 2, 2015.

2. Shweta Khare, Kyoungho An, Aniruddha Gokhale, and Sumant Tambe, Functional

Reactive Stream Processing for Data-centric Publish/Subscribe: Experiences using

.NET Reactive Extensions with OMG Data Distribution Service, 9th ACM Interna-

tional Conference on Distributed Event-Based Systems (DEBS 2015), Oslo, Norway,

June 29-July 3, 2015.
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