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CHAPTER I 

 

Introduction 

 

 

Figure 1. Global map of deviation from 1951-1980 average temperatures for the year 2015.1 

 

The Problems 

 

Our world is plagued by problems such as global climate change and poverty. Although global poverty 

has been on the decline for the past two centuries due to increasing economic growth and despite a growing 

population,2 there are still roughly 750 million people living in extreme poverty (on <1.90 international-$/day).3 

Thus, further progress needs to be made on this front, as The World Bank has declared a goal of ending extreme 

poverty by 2030.4  

 



2 

 

Global climate change is a result of using fossil (e.g. crude oil, coal, natural gas) and other hydrocarbon-

based (e.g. biomass) fuels as an energy source. Beside the finite supply of fossil fuels, burning hydrocarbons 

produces carbon dioxide (CO2) and nitrous oxide (N2O), among others, which are greenhouse gases that 

contribute to increasing global temperatures (2015 is the hottest year to date, as seen in Figures 1 & 2).1 This 

warming affects and disrupts natural environments, fauna, and agriculture. Also, the release of hazardous 

byproducts such as perfluorocarbons and particulate matter puts a significant strain on human health, resulting 

in increased healthcare costs and infant mortality, to name two metrics.5  

 

 

Figure 2. Deviation from 1951-1980 average temperatures (in °C) from 1884-2015: annual mean (grey points) 

and 5-year mean (black line).1 

 

Oil has been a major source of global conflict for over a century, leading to wars between governments 

in developing as well as developed countries.6 War destroys lives, infrastructure, and businesses and leads to 

poverty as a result of homelessness and emigration. Using abundant, renewable resources and thus decreasing 

scarcity will incite less conflict, cause less destruction, and support more stable economies. Beyond the roles 

that war, economy, mental illness, and governmental policy play in poverty, access to clean energy, or “energy 

poverty,” is a significant metric for evaluating the progress of developing countries.7 The largest current source 

of energy poverty is a lack of access to clean cooking facilities that do not require the use of biomass as fuel.7 
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Sustainable and inexpensive alternative energy technologies must be developed to reverse and diminish the 

effects of burning fossil fuels as well as increase the availability of clean energy options for impoverished 

people worldwide.  

 

The Solution? 

 

The Role of Science 

 

The burden to alleviate the global energy crisis is placed on Science, our society’s chief means of 

solving problems, to produce new technology, which is a particular solution to a specific problem. To 

effectively solve this energy crisis, the final product technologies must maximize efficiency to justify their 

existence and increase benefit over cost. Sustainability, the rule-of-thumb approach to environmental health 

problems, must also be maximiz. Environmental health encompasses everything on the earth and affects future 

generations. This means that the cost, waste, and the effect of the waste on the environment (toxicity) must also 

be minimized. Concordantly, as scientists observe, hypothesize, and experiment, they should incorporate 

sustainability at every step so that the final product will meet those standards of efficiency and sustainability. 

One caveat to this is that sometimes it is important to perform a more expensive or less sustainable experiment 

for the sake of increasing fundamental knowledge, which – when disseminated –  is timeless, priceless and will 

benefit future generations. 
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Goals and Recent Progress 

 

The U.S. Department of Energy (DOE) has set a goal for renewable hydrogen fuels to be produced at a 

monetary cost less than or equal to the gas gallon equivalent (gge), specifically $4/gge.8 Because one gallon of 

gas contains a finite amount of energy, 32.9 kWh,9 this figure can be converted to set a reasonable goal of 

12 ¢/(kWh) (Figure 3) for not just hydrogen fuel, but any other alternative energy source as well.  

Featured in Figure 3 is the levelized cost of energy (LCOE) for several major energy generation sources 

in the past six years (2014 is the latest available data).10–28 LCOE is a calculation which compares the cost of 

varying energy technologies. For the calculated data in Figure 3, real data are used from reports and outlooks 

published by various energy organizations including the Office of Energy Efficiency & Renewable Energy 

(DOE) and the International Energy Agency (IEA), among many others.29 LCOE values are normalized using 

one discount rate and lifetime of the technology across the board, while the other normalization factors (default 

capacity factor and value of depreciation) vary by generation source.  
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Figure 3. Levelized Cost of Energy (LCOE) for several major energy sources from 2010 - 2014.12 Parameters: 

7% discount rate, 30 years lifetime. 

 

The LCOE of solar photovoltaic generation has decreased since 2011 and fell sharply from 2013 – 2014 

to right above the 12 c/(kWh) viability goal. Interestingly, most generation sources in this calculation fall into a 

tight group in 2014 from 10-12 c/(kWh), showing that alternative energy technologies are indeed competitive 

with carbon combustion technologies. Even fuel cells, which represent a real-world application of water 

splitting, are just below the viability threshold as of 2011. Current fuel cell research efforts are directed towards 

decreasing operating temperature,30–32 which is expected the drive the LCOE even lower. 
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What is not shown here is the capacity factor, which is the ratio of average power output to peak power 

output. Due to the inherent intermittency of the sun (day and night, winter, cloud cover, etc.), solar power 

conversion technologies are somewhat limited in their capacity factor (currently, 16%)12 even if their power 

conversion efficiencies can be increased to unity. On the other hand, nearly every other generation source has a 

higher capacity factor, with geothermal and fuel cells leading at 95%.   

 

Justification for Approach of the Present Work 

 

Introducing Nanomaterials Chemistry 

 

Solving energy problems with science requires the use of many materials (both well-known and yet-to-

be-discovered) as well as consideration of their interactions with other materials. This requirement leads 

naturally to the field of chemistry. Chemistry offers unique insight into periodic properties of elements, 

bonding, compatibility, phases (solid, liquid, gas), phase structure (crystal structure in solids), epitaxy, absolute 

energy positions of highest-occupied and lowest-unoccupied molecular orbitals (HOMO/LUMO) as well as 

conduction and valence bands of bulk materials with optimal alignment. Therefore, chemistry is a very useful 

approach to the energy problem. In this dissertation, I focus on inorganic materials: mostly transition metals and 

chalcogenides.33  

Beyond fundamental chemical characteristics, developing new technologies requires consideration of 

the dynamic interaction of higher-order (bulk) materials with atoms, molecules, and ions and across different 

phases (heterogeneous catalysis). Thus, this marriage of chemistry with larger-scale interactions yields the field 

of catalytic nanomaterials chemistry. 
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Now, considering the field of catalytic nanomaterials chemistry, the selection of elements must be 

narrowed down to the most earth-abundant and non-toxic materials for the sake of maximizing sustainability. 

Then, the effect and need of nanostructuring must be evaluated. Most commonly, nanostructuring of a material 

is used to increase the surface area-to-volume ratio, which ultimately minimizes the weight and volume of 

material needed while maximizing the area available for catalytic reactions. Since the 1980s, nanostructuring 

has used to confine materials, in at least one dimension, below the Bohr exciton radius to exploit its quantum 

confinement effects.34,35 Furthermore, nanostructuring allows for isolating the specific facet(s) of a crystal 

structure which are ideal for the desired application.  

 

Enter MoS2 

 

Briefly, MoS2 (the subject of this dissertation) has greatly benefitted from the birth of nanoscience. 

MoS2 is an abundant and inexpensive material that is interesting due to its layered crystal structure which yields 

anisotropic conductivity36 and facile exfoliation of single layers,37 and functionality as a solid-state lubricant.38 

The electronic structure of MoS2 provides electrochemical stability as a cathode because the valence and 

conduction bands are seated in relatively non-bonding orbitals, dominated by Mo 4d character.36 When a 

current is passed through MoS2, its bonding character is not expected to be greatly altered.39 As a testament to 

the electronic structure, MoS2 has shown remarkable stability under both photooxidative40 and 

electrochemically reductive conditions.41  

The unique crystal structure of MoS2 can be exploited to optimize its catalytic properties. MoS2 has a 

layered, hexagonal crystalline structure (Figure 4). Sulfurs form pairs of close-packed layers with Mo atoms 

sandwiched between them, forming a trilayer, and each MoS2 trilayer is separated by a van der Waals gap. It 

has been found that coordinately unsaturated crystallite edge sites of MoS2, where Mo is exposed – not the S-
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terminated faces – are the catalytic sites for HDS42,43 and electrochemical HER.44 Thus, maximizing the relative 

number of edge sites to facial sites has been shown to improve activity in electrochemical cells45,46 and HDS 

catalyst designs.42  

 

 

Figure 4. Crystal structure of MoS2: a) unit cell observed along the <010> axis; b) several MoS2 layers with 

Mo-exposed edges and S-terminated faces labeled. 

 

Electrons preferentially conduct in-plane (a-, b-direction) and not through-plane (c-direction) in MoS2.
47 

Grain boundaries are also conducting,44 and energy states arising from surface defects (such as edges, corners, 

and steps) positively influence catalysis. 48 MoS2 was investigated in the 1990s as a cathode material for 

polysulfide reduction but gave disappointingly low activity. This was most likely due to the material being 

produced in a planar fashion.41 Thus, an ideal electrocatalyst should also incorporate a directionality of the 

MoS2 crystallites normal to a surface to promote conduction.   

 MoS2 is still very intriguing to researchers around the world, and it is not likely to attract any fewer 

researchers in years to come. Figure 5 shows the results of a Web of Science™ search for MoS2, and the results 

are plotted as number of records and corresponding percentage of records as a function of publication year. The 

number of reports on MoS2 has been on a steep increase since 2010 (2 years prior to the beginning of my work 

Mo S

ab

c

a) b)
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c

PowderCell 2.0
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on this dissertation). This increase in the annual number of MoS2 reports may have waned slightly in 2015, but  

apparently has not plateaued yet. 

 

 

Figure 5. Thompson Reuters™ Web of Science™ search results for topic: MoS2 OR topic: molybdenum 

disulfide OR topic: molybdenum(IV) sulfide. Top 500 results, minimum record count: 1. As of 11/21/2016. 

 

Techniques 

 

Beyond optimizing the aforementioned design parameters (material choice and nanostructure) to achieve 

harmony for the desired applications, the development of nanomaterials for alternative energy applications 

requires synthesis, characterization, and testing. Each of these three steps require a host of tools and techniques, 

which will be introduced below. With most techniques, there is often a tradeoff between frugality of deposition 

conditions (vacuum, inert atmosphere, voltage, temperature) and level of control. 

 

 

 



10 

 

Synthesis 

 

Synthesis and processing types utilized in this dissertation include solvothermal, which essentially is 

heating a solvent, and hydrothermal, where the solvent is specifically water. The solvothermal approach has 

been used in high-temperature preparations of nanoparticles in organic solvents, which support the controlled 

nucleation and growth of crystals in the nanometer regime using coordinating ligands.34,49–52 However, 

hydrothermal syntheses are favorable to organic solvothermal approaches, as water is more abundant and less 

costly than organic solvents (e.g., octadecene, oleylamine). While hydrothermal syntheses require no more than 

heating water with reagents to precipitate a product, sealed reaction vessels are typically used to heat the 

solution above the boiling point of water, creating a high-pressure environment which often produces unique, 

hierarchical structures and is very accommodating to the design of nanomaterials.33,53–58 One tradeoff of 

hydrothermal synthesis is a generally decreased amount of control over final product crystal structure.  

Deposition is another very useful tool in nanomaterials synthesis, especially in the preparation of 

electrode films. There are three major methods of deposition used in this work: electrodeposition, evaporation-

assisted deposition, and chemical deposition. These deposition techniques offer varying degrees of control, from 

conformal coatings to atomically smooth deposits of a desired material.  Electrodeposition includes 

electroplating and electrophoretic deposition, and is simply applying a controlled potential or electrical current 

to a conductive substrate of interest. This application of current or potential results in reduction (most common) 

or oxidation of solvated species, immobilizing them on the electrode surface. Electrophoretic deposition (EPD) 

is often used to deposit nanoparticles onto a TiO2 or ZnO electrode and is a somewhat more complicated matter; 

the polarity (+ or -) and magnitude of potential used will depend on the particles to be deposited. Evaporation-

assisted deposition requires vacuum conditions and the target material is evaporated either by heat (thermal) or 

by electrons (e-beam). Evaporation yields a very high degree of control, often to less than a nanometer. Lastly, 

chemical deposition operates on the principles of known chemical reactions. Chemical bath deposition involves 



11 

 

cooling reactants down considerably in order to slow the reaction and provide a moderate level of control over 

the resulting film thickness. Successive ionic layer adsorption and reaction (SILAR) consists of sequentially 

precipitating a desired material onto a substrate by dipping it in a solution of the desired cation, then the anion, 

and repeating. 

 

Characterization  

 

A few characterization techniques are indispensable to the nanomaterials chemist in the following 

general areas: electron microscopy, absorbance/fluorescence/Raman spectroscopy, and X-ray characterization 

techniques. Electron microscopy primarily includes scanning and transmission electron microscopy (SEM and 

TEM, respectively), with some intermediate and special modes such as backscattering (sub-surface 

information), scanning transmission electron microscopy (STEM), and the very useful energy-dispersive X-ray 

spectroscopy (EDS), which provides compositional information by measuring characteristic elemental X-rays 

emitted from the sample. SEM provides surface morphology and tends to be used in larger size regimes while 

TEM generally provides images of “translucent” particles (depending on size and MW) yielding crystalline 

lattice spacing and is used for few-nanometer size particles. UV-Visible absorbance and fluorescence 

spectroscopies, along with Raman spectroscopy, can offer a quick check as to the size of certain nanoparticles, 

their band gap, purity, size dispersity,34 and identity. X-ray diffraction (XRD) is a complementary or 

substitutional technique to TEM (when particle sizes are much larger) and provides information about 

crystallinity, specific crystal structure, average grain size, and preferred orientation of materials. X-ray 

Photoelectron Spectroscopy (XPS) is a surface-sensitive technique which uses X-rays to excite electrons and 

emit them from the sample; the energy of the emitted photon is element- and oxidation state-dependent. 
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Performance Evaluation 

 

Electrochemistry stands in the gap between characterization and performance testing. Most often, it is 

used to measure the effectiveness and stability of a material to transfer electrons to or from an electrolyte 

solution of interest, as in cyclic voltammetry (CV), linear sweep voltammetry (LSV), and chrono-amperometry 

or -potentiometry. Also, electrochemistry can be used to measure electronic properties of the electrode itself 

utilizing alternating-current (AC) impedance techniques.  

Perhaps performance testing in the academic laboratory is not as extensive as in the industrial 

laboratory, which is closer to the production of commercial devices. However, a high degree of engineering and 

optimization is required for testing of novel materials incorporated into devices, such that it can dominate or 

become the rate-limiting step in the completion of a Ph.D., among other things. Also, new device architectures 

which do not exist commercially are often attempted by researchers and this makes for lengthy, repeated 

experimentation. 
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Figure 6. Diagram of a 3-electrode cell, including a working electrode (WE), reference electrode (RE), and a 

counter electrode (CE) submerged in an electrolyte solution. This image is used with permission from Punter, 

J.; Colomer-Farrarons, J.; Ll., P. Bioelectronics for Amperometric Biosensors. In State of the Art in Biosensors - 

General Aspects; InTech, 2013.59 

 

Using the example of a solar cell, the electrochemical properties of a single electrode in question can be 

isolated using a 3-electrode cell, as depicted in Figure 5. This isolation of the desired electrode (used as WE) is 

possible because the potential is set or measured with respect to a standard RE, while the CE is excluded, and 

provides additional current as needed to support the WE-RE potential. For the photo-anode or -cathode, a 

photoelectrochemical cell may be employed, which consists of an illuminated 3-electrode cell. Once the 

photoelectrode is optimized, it can be incorporated into a discrete, sealed device with a counter electrode and 

electrolyte (liquid- or solid-state) and tested as such, similar to a commercial device (see Chapter II, Figure 1). 

This holds true for studies in energy storage, e.g. lithium-ion batteries (LIBs), as well.  

A final measure of performance is stability, as mentioned above, and consists of measuring a material or 

device for long periods of time. Extended cycling of novel materials and devices enables the researcher to make 

inferences about the commercial application of the invention. Good stability studies involve materials 
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characterization post-measurement to evaluate failure or degradation mechanisms, and can provide insight as to 

what improvements would be needed to produce longer-lasting materials. 

 

Scope of Dissertation 

 

The following chapters present not only the development of novel, MoS2-based electrodes, but their 

application in three alternative energy technologies: quantum dot sensitized solar cells (QDSSCs), the hydrogen 

evolution reaction (HER) for hydrogen fuels, and lithium-ion batteries (LIBs). Fundamental synthetic and 

electrochemical studies, comprehensive characterization, and real-world testing of these electrodes is 

performed. For each of these technologies, petaled MoS2 electrodes have inherent advantages and 

disadvantages, which I attempt to describe and understand so that the material (and technologies) may be 

further improved.  

In Chapter II, I demonstrate the preparation of a novel, self-supported, nanostructured MoS2 material. 

We have coined this material “petaled MoS2” or P. MoS2 for short. P. MoS2 is found to be an excellent 

polysulfide reduction catalyst which naturally lends itself to liquid-junction QDSSC technology. Thus, I tested 

it as a counter electrode in these devices. 

In Chapter III, we discovered that during growth, P. MoS2 electrodes go through an intermediate 

MoSxOy phase which is present in the final electrodes and serves as a conductive contact between the Mo 

substrate and the surface MoS2 petals. This layer is shown to be beneficial to electrocatalytic HER for the 

production of hydrogen fuels. Also, P. MoS2 was grown from an alternate, Au substrate using a new synthetic 

approach. This was done to limit the formation of the MoSxOy layer and act as a control, but it boasts greater 

instrinsic HER activity than the Mo substrate. 
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 In Chapter IV, the applicability of P. MoS2 in LIBs for energy storage is evaluated. It is found that the 

MoSxOy layer contributes greatly to the capacity of the electrode, while other typical Li-S cycling reactions are 

not as prevalent. Ex situ characterization is utilized to understand the primary chemical species and reactions 

involved in the charge/discharge processes.    

In Chapter V, P. MoS2 is again used as a counter electrode in QDSSCs employing novel, Cu2S@SnS 

core@shell nanocubes, prepared by Dr. Suresh Sarkar, as photoabsorbers. While the role of P. MoS2 is not 

highlighted in this work, I developed a protocol for electrophoretically depositing this material onto TiO2 

photoanode. The Cu2S@SnS, SnS@Cu2S, and SnS nanocubes performed well for the selected application, and 

the differences in performance were discussed considering the type II band alignment of SnS and Cu2S.   
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CHAPTER II 

 

Petaled Molybdenum Disulfide Surfaces: Facile Synthesis of a Superior Cathode for QDSSCs.1 

 

 

 

Introduction 

 

Quantum dot sensitized solar cells (QDSSCs) have the potential to revolutionize solar energy conversion 

due to the large extinction coefficients and tunable band gaps of quantum dots;1  efficiencies of over 5% have 

been achieved using this design.2 Great strides are being made into developing new, more efficient absorber 

                                                        
1 This chapter has been adapted with permission from Finn, S. T.; Macdonald, J. E. Petaled Molybdenum 

Disulfide Surfaces: Facile Synthesis of a Superior Cathode for QDSSCs. Advanced Energy Materials 2014, 

4. © 2014 John Wiley & Sons, Inc. 
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layers on the photoanode;3 however, instability and poisoning of standard cathode materials limit champion cell 

performances and make it challenging to identify important characteristics of experimental photoanodes.  

Ultimately, poor cathode performance will hinder a commercially viable QDSSC technology.4,5 While QDSSC 

photoanodes are and have been extensively studied,3 cathodes designed to improve cell characteristics have 

only just recently come under renewed investigation.5–11 

The distinguishing quality of QDSSCs is that quantum dots (QDs) – typically metal chalcogenides such 

as CdSe or PbS – function as the light-absorbing component rather than dyes or silicon. QDs are an attractive 

photoabsorber material because they have large absorption coefficients and their absorption onset in the visible 

region can be tuned based on their size and composition. In a QDSSC (Figure 1), light is absorbed by QDs on 

the photoanode, and the accompanying excited electron is shuttled through the transparent conducting oxide(s) 

while the remaining hole on the QD is reduced by the electrolyte. While many electrolytes have been attempted, 

the Sn
2-/S2- (polysulfide) redox system has proven the most effective so far because of its optimal redox 

potential, efficient hole extraction from the QDs, and ability to chemically stabilize QDs such as CdS, PbS, and 

Ag2S.4 

 



23 

 

 

Figure 1. Typical QDSSC overlaid with relative electron energetics (not to scale). At the photoanode, photons 

with sufficient energy (h) will strike the QD, exciting an electron (e-) from the valence band (VB) to the 

conduction band (CB). The excited electron (e-*) will conduct by traveling to TiO2 then the fluorine-doped 

tin(IV) oxide (FTO) CBs.  Electrons travel out of the photoanode, do work, and return to the cell via the 

cathode. The cathode Fermi level (Ef), to which the redox potential (Eredox) of the electrolyte (E0
polysulfide = -0.5 V 

vs. NHE) equalizes, reduces the electrolyte, which carries negative charge to the photo-generated hole in the 

QD. 

 

The cathode must be able to reduce the electrolyte to complete the circuit. The most common cathode 

used for evaluating QDSSCs is platinum, followed by gold and glassy carbon; however, all are quickly 

poisoned by the polysulfide, resulting in significant drops in current. Thus, these materials require large 

overpotentials to operate, lowering solar cell efficiencies and making them unsuitable for long-term use in a 

device. Also, platinum is rare and expensive, so replacing it with an inexpensive, earth-abundant material is an 

necessary goal.  
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Semiconducting metal sulfides such as Cu2S, PbS and CoS are highly catalytically active for polysulfide 

reduction, but early studies of these materials showed that they were not stable under operating conditions. 

Specifically, the PbS device dropped to 10% of its initial current density after two weeks and both Cu2S and 

CoS dissolved and migrated to deposit on the photoanode, causing the power conversion efficiency to drop 

significantly.12 Very recently, cathode preparations based on supported nanoparticles of PbS and Cu2S have 

shown improved stability.6,9,11   

Another potential candidate material for highly stable and catalytically active cathodes for polysulfide 

reduction is molybdenum(IV) sulfide (MoS2). Lately, MoS2 has been the subject of a flurry of research (see 

Chapter I, Fig. 4) due  to its layered structure and interesting properties as a two-dimensional material, similar 

to graphene.13 MoS2 is a potential component in field-effect transistors14 and dye sensitized solar cells15 as well 

as an intercalation host for lithium ion batteries.16 However, its known catalytic activity is most relevant here as 

it has long been used as an industrial hydrodesulfurization (HDS) catalyst17 and has been shown to be an 

electrocatalyst for the hydrogen evolution reaction (HER),13 both of which showcase its potential as a stable 

catalyst for sulfur electrochemistry.  

The electronic structure of MoS2 provides electrochemical stability as a cathode because the valence and 

conduction bands are seated in relatively non-bonding orbitals, dominated by Mo 4d character.18 This is in 

contrast to late transition metal sulfides such as the electrochemically unstable PbS, CoS and Cu2S where the 

valence and conduction bands are in strongly bonding and antibonding orbitals, respectively. 

The research groups of Jaramillo and Cui have recently developed novel, highly controlled ways to 

expose the active edges of MoS2 for HER cathodes, but these methods require several steps, expensive 

equipment, vacuum-assisted or inert atmosphere techniques, and hazardous chemicals.19,20 Previously, a 

hydrothermal route produced flower-like MoS2 spheres presenting a large number of freestanding edge sites, 

which has been reproduced by our group as featured in the scanning electron microscopy (SEM) images in 

Figure 2.21 Thus, modifications of this type of reaction and material became our focus. Generally, hydrothermal 

syntheses are attractive synthetic routes, as high surface area, hierarchical crystal structures of the first row 
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transition metal sulfides are common products.22–25 Hydrothermal syntheses are typically experimentally facile, 

one-pot reactions which employ common, stable reagents. 

 

 

Figure 2. SEM image of loose, flower-like MoS2 spheres. 

 

Here, we have developed a one-step, scalable, hydrothermal synthesis of a MoS2 electrode that 

preferentially exposes MoS2 active edges, incorporates a vertical directionality of the crystallites that promotes 

electron conduction, and can be used as a cathode for QDSSC and HER without further modification. 

 

Experimental  

 

All chemicals were obtained from Sigma-Aldrich unless otherwise noted and all water was purified 

using Millipore® Direct-Q3 System to 18.2 MΩ•cm resistivity. 
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Petaled MoS2 and MoSe2 Syntheses 

 

Petaled MoS2 was grown from Mo foil via a hydrothermal synthesis technique. Thiourea (1.847 mmol), 

1.5 x 1.5 cm2 Mo foil (99.95%, Strem) and 15.0 mL water were added to 23 mL PTFE cup with lid, assembled 

into a stainless steel autoclave (Parr Instrument Company) and suspended in a silicone oil bath. The bath was 

heated to 180°C and maintained at this temperature for 18 hours. After cooling to room temperature, the 

autoclave was removed from the oil bath, disassembled and the product removed. The product was soaked in 

three separate rinses of water for at least 1 minute per soak. Petaled MoSe2 was also prepared by following the 

P. MoS2 procedure, but with the following changes. An equimolar amount of Se powder was used instead of S, 

and the autoclave was heated at 230°C for 24 h. 

 

Characterization 

 

Petaled MoS2 electrodes were characterized using Raman spectroscopy (Thermo Scientific DXR Raman 

Microscope) to confirm presence of MoS2. Electrodes were imaged using scanning electron microscopy 

(Hitachi S-4200). 

 

FTO Preparation  

 

All SnO2:F (FTO) on glass pieces (TCO22-7, Solaronix) were cut to ~2 x 2 cm2 and cleaned via 

sonication in an ultrasonic bath (VWR Symphony) for 10 minutes in each of the following solvents, 

consecutively: acetone, ethanol, water. FTO pieces used for photoanodes were cleaned by sonicating in a 

solution of Versa Clean™  (Fisherbrand®) in water for 30 min, scrubbing with a lab tissue soaked in soapy 

water, rinsed with water, then sonicated for 15 min in ethanol, rinsed with ethanol and dried with an air stream. 
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High Surface Area Pt Electrodes  

 

Platinum electrodes were prepared by the electron beam evaporation (Angstrom Engineering Ǻmod) of a 

5-nm Cr adhesion layer followed by a ~100 nm Pt layer onto clean FTO/glass pieces. To increase the Pt surface 

area to make the electrodes more comparable to the high surface area petaled MoS2 electrodes, a 5 mM K2PtCl6 

suspension in isopropanol was dropped onto the surface of the e-beam evaporated Pt electrodes and allowed to 

dry, then annealed at 380°C for 15 minutes. 

Other Electrodes  

Other electrodes used for comparison were Au evaporated on Si (with Cr adhesion layer), Mo foil, FTO 

and glassy carbon (CH Instruments, Inc.). All electrodes except glassy carbon were cleaned before use 

according to FTO cleaning procedure described above. Glassy carbon electrodes were cleaned by polishing with 

moistened 0.05 µm alumina powder on a felt pad (CH Instruments, Inc.). 

 

Electrolyte  

 

Polysulfide electrolyte solution (1M Na2S, 0.1M S, 0.1M KOH) was prepared by combining Na2S•9H2O 

(Strem), S, and KOH with water, heating to 60°C under N2 atmosphere until S dissolved and cooling to room 

temperature. 0.1M KOH control solution was made by dissolving KOH in H2O. In QDSSCs, a 2M S2-, 2M S 

polysulfide solution was prepared by combining desired amounts of Na2S•9H2O and S in ~5 mL water, 

sonicating 1 h, and diluting to desired final volume. This solution was not kept under inert atmosphere.  

 

Electrochemical Measurements  

 

Electrochemistry (Gamry Series G 300 with PHE200 Software Package) was used to determine 

electrode characteristics. Electrochemical techniques employed were linear sweep voltammetry and 
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chronoamperometry. Electrodes were evaluated individually by submerging in polysulfide solution along with a 

1 M Ag/AgCl reference electrode and Pt mesh counter electrode, then measured using linear sweep 

voltammetry from -0.6 to -1 V vs. Ag/AgCl (1 M) at a scan rate of 0.1 V s-1 and 2 mV voltage step. Cathodes 

were measured without respect to illumination. Control measurements of petaled MoS2 and high surface area Pt 

cathodes were carried out in 0.1 M KOH solution. Loose flower-like MoS2 spheres were electrochemically 

evaluated by drop-casting a suspension of the spheres in toluene onto a glassy carbon electrode and measuring 

current from -0.4 V to -1 V in polysulfide (1  M Na2S,  1M S, 1 M KOH) and 1 M KOH control solutions. 

 

Photoanode Preparation  

 

Photoanodes were prepared by treating cleaned FTO/glass pieces with TiCl4 (Strem) before and after a 

doctor blade application of TiO2 paste by placing pieces in the bottom of a dish, covering the pieces with 

40 mM TiCl4  in water and placing the dish in a 70°C oven for 30 minutes. The FTO pieces were then removed 

and rinsed with water and ethanol, and then dried. TiO2 paste was applied to FTO/glass pieces via doctor blade 

technique: a 6x9 cm2 FTO piece was placed over a template and tape pieces of appropriate width were placed 

over the template in a grid to mark off the active areas. Then, a small amount of active layer paste (Ti-Nanoxide 

T/SP, Solaronix) was placed in front of every other active area lengthwise. A Ti doctor blade was then pressed 

at a ~45° angle and dragged down the length of the FTO piece enough times to apply the paste evenly. The TiO2 

paste was allowed to rest, covered ~15 min then dried in an 80°C oven 1h. Then, the FTO piece was annealed in 

a tube furnace: pieces were placed in at <350°C, ramped to 350°C for 5 min, soaked at 350°C for 10 min, and 

so on at 400°C, 450°C, and 500°C, then allowed to cool to room temp. The process of applying a tape grid, then 

TiO2 paste, resting, drying, and annealing was repeated for the scattering layer, but the paste used was PST-

400C (JGC Catalysts & Chemicals) and the tape template resulted in areas slightly larger than the active layer 

area. Finally, the electrodes were treated again with 40mM TiCl4 and annealed at 500°C for 30 min. 
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Successive ionic layer adsorption and reaction (SILAR) was then performed on TiCl4-treated 

TiO2/FTO/glass pieces to form a CdS layer. Pieces were submerged in 0.1 M Cd(NO3)2 (Strem) in methanol for 

1 minute, rinsed with methanol, dried with air stream, submerged in 0.1M Na2S in 1:1 methanol:water for 1 

minute, then rinsed, and dried; 10 of these cycles were repeated per photoanode. After CdS deposition, a 

protective ZnS layer was applied via SILAR: photoanodes were dipped as before, but in 0.1M Zn(NO3)2 

(Strem) in methanol instead of Cd(NO3)2; 2 of these cycles were repeated per photoanode, then photoanodes 

were stored in the dark.  

 

QDSSC Construction and Testing  

 

Solar devices were constructed by cutting a ~1.5 x 1.1 cm2 piece of Parafilm® with a 0.7 x 0.7 cm2 

square cut out of the center. This was applied to the cathode, and then placed on a 100°C hot plate until the 

parafilm began to melt; the cathode was quickly removed and parafilm pressed to the cathode to remove air 

bubbles. Then, the cathode was placed face-up. Excess polysulfide solution (~4 drops) was added to the square, 

and then the photoanode was placed face-down over it and clamped down using binder clips. Then the device 

was rinsed with water and dried in a N2 stream.  

Devices were tested by positioning them in the center of and perpendicular to the light beam from the 

500W Hg(Xe) arc lamp (Newport Corporation) at a predetermined distance such that the light reaching the 

device was equal to 1 Sun intensity (1000 W m-2). Then, the working electrode was attached to the photoanode 

FTO, and the counter and reference electrode leads were attached to the cathode. Linear sweep voltammetry 

scans from 0.1 – (-0.6) V at 2 mV s-1 scan rate were taken in the dark and under illumination. Device stability 

was assessed using chronoamperometry, where 0 V was applied for 5 minutes (dark) and 24 hours 

(illuminated). 
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Results and Discussion 

 

Petaled MoS2 Synthesis 

 

Flower-like MoS2 spheres were prepared by a modified hydrothermal synthesis from the literature21,26 in 

which the spheres exhibited preferential edge growth perpendicular to the core (Scheme 1a). Simply, sodium 

molybdate, thiourea, hydrochloric acid, and water were combined in a PTFE cup, assembled into a stainless 

steel autoclave and heated at 180°C for 24h (Scheme 1a). When drop-cast onto a glassy carbon (GC) electrode, 

these loose spheres improved the current density achieved by glassy carbon alone for polysulfide reduction 

(Figure 3a) but did not show significant HER activity over GC in basic solution (Figure 3b).   

 

 

Scheme 1. Hydrothermal syntheses to produce nanostructured MoS2: a) flower-like spheres and b) petaled 

MoS2. 
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Figure 3. Linear sweep voltammograms of glassy carbon electrodes with and without MoS2 flowers drop-cast 

onto them in a) polysulfide and b) KOH solution. 

 

In order to adapt this material for applications requiring flat electrodes and improve conductivity to a 

metallic contact, the MoS2 flower structures needed to be grown uniformly from a conducting surface. The Xie 

group demonstrated that hollow cubes of MoS2 petals could be hydrothermally grown from a Mo-containing 

insoluble intermediate template structure.21,27,28 We adapted this methodology by using molybdenum foil as the 

insoluble Mo-containing template material in the hydrothermal reaction (Scheme 1b). SEM (Scheme 1b and 

Figure 4a) showed the product to be a uniform layer of MoS2 petals aligned normal to the Mo foil with a high 

number of edges exposed – a nearly ideal result. We have coined the term “petaled MoS2” (P. MoS2) to describe 

this material. 
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Figure 4. SEM image of a typical (a) P. MoS2 and (b) P. MoSe2  electrode; (c) Raman spectra of a P. MoS2 

electrode, MoS2 powder, P. MoSe2 and a Mo foil control. 

 

Raman spectroscopy was used to confirm the presence of MoS2 (Figure 4c) which exhibits two large 

characteristic peaks at 376 and 403 cm-1, corresponding to the E2g
1 symmetric in-plane and A1g out-of-plane S-

Mo-S stretching, respectively.29 The Raman peaks of the P. MoS2 electrode align well with MoS2 powder 

(Aldrich), but are slightly offset, especially in the case of the A1g mode, which is most likely because fewer 

bundled MoS2 trilayers are being excited by the laser.30–32 A Raman spectrum of the Mo foil shows that it does 

not contribute to the Raman signal of MoS2 at these wavenumbers. 

It has been shown that MoS2(1-x)Se2x alloys, where S:Se is 1:1, have improved HER activity compared to 

MoS2 or MoSe2.
33 So, as a step towards preparing these catalysts and demonstrating the versatility of the 

synthetic approach, P. MoSe2 was also prepared by using an equimolar amount of Se powder in place of S and 
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heating at 230°C for 24 h. This synthesis formed a more diffuse arrangement of petals (Figure 4b). Like MoS2, 

MoSe2 features characteristic A1g (240 cm-1) and E2g (290 cm-1) modes due to out-of-plane and in-plane 

stretching, respectively, of its Se-Mo-Se trilayers.34,35 The MoSe2 petals appear to grow from a MoO2 

intermediate phase, as evidenced by the 205 cm-1 Raman peak;36 however, further studies would be needed to 

confirm this. A very slight peak at 205 cm-1 is also observed in P. MoS2, which might suggest the presence of 

MoO2 in this material, but we instead find that it arises due to the single-layer nature of the MoS2 petal edges, 

which will be discussed further in the next chapter.  

 

Electrochemical Characterization 

 

Evaluation of the petaled MoS2 electrochemical performance was carried out via linear sweep 

voltammetry (LSV) in 1M Na2S, 0.1M S, 0.1M KOH polysulfide solution (Figure 5a). LSV scans from -0.6 to -

1 V show that much higher current densities can be achieved using petaled MoS2 electrodes than many other 

common materials such as Pt, Au, glassy carbon, and FTO. Mo foil did not perform nearly as well as petaled 

MoS2 electrodes for reducing polysulfide, so it can be concluded that the high performance of petaled MoS2 

does not originate from Mo foil. The petaled MoS2 achieved current densities at least six times higher than other 

common electrode materials.  
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Figure 5. a) Linear sweep voltammetry of various electrode materials in polysulfide solution: petaled MoS2 

electrode, high surface area Pt, Mo, Au, FTO, and glassy carbon. b) Linear sweep voltammetry of petaled MoS2 

and Pt electrode materials in polysulfide and KOH control solutions.  

 

Also, the known catalytic reduction of water on MoS2 is not a large contributor to the current density of 

petaled MoS2 in polysulfide. When the control measurement was taken in 0.1 M KOH solution (Figure 5b), 

where only water reduction will contribute to the measured current, the current density on the petaled MoS2 

electrode was much smaller than in polysulfide. Indeed, Pt outperformed petaled MoS2 for water reduction. 

Furthermore, it was noted that the current density on high surface area Pt was smaller in polysulfide than in 

KOH. It is inferred from these observations that the high performance of petaled MoS2 electrode toward 

polysulfide is not only the result of large surface area. The petaled MoS2 catalytically reduces polysulfide, 

whereas Pt is not catalytic for this reaction but is instead poisoned in the polysulfide environment. 
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Figure 6. (a) Scheme representing preparation of photoanode (Step 1), cathode with spacer and electrolyte 

(Step 2) and cell assembly configuration (Step 3). (b, c) images of photoanode and assembled device, 

respectively.   

 

Experimental QDSSCs 

 

Experimental QDSSCs were prepared (as summarized in Figure 6) and tested to compare petaled MoS2 

and high surface area Pt as cathode materials. Photoanodes were prepared by applying TiO2 paste (Ti-Nanoxide 

T/SP, Solaronix) to a TiCl4-treated37,38 FTO electrode via doctor blade technique, followed by annealing. CdS 

and ZnS QD layers were then deposited onto the TiO2 via successive ionic layer adsorption and reaction 

(SILAR).6,9 A representative photoanode is depicted in Figure 6a (Step 1) and b. Devices were constructed by 

applying Parafilm® as a spacer to petaled MoS2, Pt, or Au cathode, filling the active area with polysulfide 

electrolyte (2M Na2S, 2M S; Figure 6a, Step 2) and clamping a QD-sensitized TiO2/FTO photoanode to the 

cathode with binder clips (Figure 6a, Step 3, and c). These devices were evaluated by attaching the working 

electrode clip to the photoanode and the counter and reference electrode clips to the cathode, then sweeping the 

potential from 0.1 to -0.6 V in the dark and under illumination (Figure 7). The numeric values for cell 
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characteristics including short-circuit current density (Jsc), open-circuit voltage (Voc), and the calculated values 

for fill factor (FF) and efficiency () are listed in Table 1.  

 

 

Figure 7. Current-potential curves in the dark and under illumination of devices using Pt or petaled MoS2 

cathode.  

 

Table 1. Solar Cell Characteristics 

Cathode Jsc (mA cm-2) Voc (V) FF  

Petaled MoS2 6.22 0.477 0.41 1.21% 

Pt 6.13 0.489 0.29 0.85% 

Au 6.12 0.517 0.24 0.75% 

 

Comparing experimental QDSSC results, petaled MoS2 outperforms both Pt and Au as a cathode 

material. In Figure 8, when either device is not illuminated, the current becomes increasingly cathodic as the 

potential is swept to negative values. Under illumination, however, the curve is shifted up on the current axis so 

that a photovoltaic current is being produced. The device employing petaled MoS2 as a cathode produces more 

photovoltaic current and has overall superior cell characteristics to the devices employing a Pt or Au cathodes. 

The primary improvement of petaled MoS2 over Pt and Au is in the fill factor (FF), arising from decreased 
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series resistance in petaled MoS2 which indicates more ideal behavior of the overall device as a DC power 

source.39 This provides further evidence that petaled MoS2 can act catalytically in the electroreduction of 

polysulfide. A low fill factor severely limits the maximum power that can be produced by solar devices. 

Specifically, FF values of ~0.25 (0.29 and 0.24 for Pt and Au, respectively) indicate that the device is behaving 

like a resistor; this is improved by switching to a petaled MoS2 electrode.  

 

 

Figure 8. Chronoamperometric study of an illuminated QDSSC device using Pt (red line) or petaled MoS2 

(black line) as a cathode. *At this point, the device was removed from the measurement apparatus and rested 1 

h while another measurement was being taken, then illuminated for an additional 24h. 

 

Table 2. Solar Cell Characteristics before and after long illumination. 

Cathode Jsc (mA cm-2) Voc (V) FF  

Petaled MoS2 5.71 0.491 0.39 1.08% 

Post 25h illum. 4.29 0.475 0.26 0.53% 

Pt 6.13 0.489 0.29 0.85% 

Post 24h illum. 4.17  0.471  0.28 0.54%  

 

When studying the cell photocurrent over 24 h, after an initial decay in the first 2h, the photocurrent 

became steady indicating both that the cathode was stable and that at long periods, other series resistances 



38 

 

become dominant in the working cell (Figure 8 and Table 2). There is also some improvement in Jsc, which is 

significant because cathode improvement is expected to increase current flowing through the device, since there 

would be less resistance as a result of cathode poisoning. Voc is not enhanced by petaled MoS2, which indicates 

improved interaction of the Pt or Au cathode Fermi level and electrolyte redox potential with the photoanode. 

Finally, petaled MoS2 achieves at least 140% the cell efficiency of cells prepared with either Pt or Au cathodes, 

which is very promising for the utilization of this material in commercial solar cells. 

 

Conclusions 

 

In conclusion, we have developed a facile hydrothermal synthesis to prepare petaled MoS2, a highly 

active and inexpensive cathode material for polysulfide reduction in QDSSCs and HER. The synthesis produced 

a uniform layer of catalytically active edges grown perpendicular to the Mo precursor and substrate, which 

would be beneficial for a variety of applications requiring the catalytic capability of MoS2, including HER and 

HDS. Electrochemical studies showed that petaled MoS2 electrodes are active for HER and are more 

catalytically active for polysulfide reduction than Pt, far surpassing the current densities achieved with 

commonly used Pt electrodes. Quantum dot sensitized solar cells were constructed and tested, increasing greatly 

in efficiency simply by switching from a Pt cathode to a petaled MoS2 cathode. 
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CHAPTER III 

 

Contact and support considerations in the HER activity of petaled MoS2 electrodes.* 

 

 

 

Introduction 

 

The high activity and earth-abundant elemental composition of molybdenum disulfide (MoS2) makes it 

an attractive replacement for platinum and other precious metals in electrocatalytic applications. MoS2 has been 

identified as a highly active electrocatalyst for the hydrogen evolution reaction (HER)1 and polysulfide 

reduction in quantum dot sensitized solar cells (QDSSCs), as shown in the previous chapter.2 Exposed edges of 

the layers and defect terrace sites have been identified as the active sites for the HER3,4 and, as a result, 

                                                        
* This chapter has been adapted with permission from Finn, S. T.; Macdonald, J. E. Contact and Support 

Considerations in the Hydrogen Evolution Reaction Activity of Petaled MoS2 Electrodes. ACS Applied 

Materials & Interfaces 2016, 8, 25185-25192. © 2016 American Chemical Society. 
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significant research efforts have been devoted to preparing MoS2 architectures on electrode surfaces which 

expose these edges as well as inducing defect sites on the S-terminated faces.4–6  

As described in Chapter II, I developed a synthesis for nanostructured MoS2 electrodes in one step, 

directly from a Mo foil support, which exposes a high number of catalytic edge sites. As a result, the planar 

foils can be immediately employed as an electrode without the use of binders or other support materials. These 

“petaled” MoS2 (P. MoS2) (Figure 1a, b and Scheme 1a) foils performed excellently as an inexpensive and 

highly active electrode material towards polysulfide reduction in liquid-junction QDSSCs.2 Other groups have 

developed synthetic methodologies where metallic Mo is converted to MoS2 and supported onto electrodes of 

carbon fibers, fluorine-doped SnO2 (FTO), etc., but additional steps are required in these syntheses.5,7,8  These 

preparations are very exciting low-cost methods for preparing highly active MoS2 catalysts.  
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Figure 1. Characterization of petaled MoS2/Mo. a) Top-down and b) cross-sectional SEM images of exfoliated 

(b only) P. MoS2/Mo revealing the intermediate MoSxOy layer. The interface occurs at the transition between 

the high-texture MoS2 and low-texture MoSxOy regions. c) TEM image of P. MoS2 synthesized on Mo aperture 

grid. d) High-angle annular dark field (HAADF) TEM image of exfoliated P. MoS2/Mo cross-section (the flat 

bottom of the MoSxOy layer is on the left and the top of the MoS2 petals are on the right) with corresponding 

EDS maps of e) Mo (blue), f) S (yellow), and g) O (red). Each elemental map is normalized to its respective 

maximum signal.  
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Scheme 1. Synthesis of P. MoS2 electrodes using a) Mo foil or b) Au/Si as a substrate. 

 

 

The role of the contact between the MoS2 and its support material towards the function of the electrode 

has yet to be fully characterized, but previous work in other areas has shown that the support is integral to 

activity.  The effect of the support for hydrodesulfurization on MoS2 has been well-studied, and has shown that 

strong Mo-O- bonds to metal oxide supports hinder the inherent activity of the material.9  Both computational 

and experimental work with single- or few-layer MoS2 in transistor designs, which highlight the fundamental 

roles of interfacial band-bending phenomena and in-plane conductivity of layered MoS2,
10–12 imply that the 

material choice and directionality of the MoS2-support contact are important to function. Such experimental 

work has not been carried out for MoS2 electrodes, where refining the design of the MoS2 to expose catalytic 

edge sites has been a main focus, but perfecting the support material has not yet been considered.  

We will describe here that an intermediate MoSxOy layer forms between the Mo Foil and the P. MoS2 in 

our hydrothermal preparation of electrodes (Figure 1b) and may be formed in other hydrothermal preparations 

of MoS2. Intermediate oxides of Al2O3 and TiO2 (~1 nm thick)13 have been shown to ameliorate contacts 

between metals and MoS2 by preventing Fermi level pinning, and MoOx has been shown to be an ideal contact 

material for hole injection.14,15 It is yet unclear whether the very thick (~800 nm), intermediate MoSxOy layer is 
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a barrier to electron conduction for a pure catalytic reaction on P. MoS2 or similarly if other support materials 

may provide junctions that hinder the free flow of electrons to the MoS2 surface.  

To this end, we present a first experimental study on the role of the support contact and intermediate 

layers on the function of MoS2 electrodes in catalytic HER. Because catalysis is presumed to occur solely at the 

edges of the MoS2 petals, the study of the HER reaction isolates electronic effects such as barrier resistances 

from reactivity. We developed a synthesis to prepare P. MoS2 directly on an Au contact (P. MoS2/Au), which 

does not have the intermediate MoSxOy layer. We compare the two electrode designs – P. MoS2/Mo and P. 

MoS2/Au - to understand the role of the contact on electrode function.  

 

Experimental 

 

All chemicals were obtained from Sigma-Aldrich unless otherwise noted and all water was purified 

using Millipore Direct-Q3 System to 18.2 MΩ·cm resistivity. “OAc” = “acetate.” 

 

Electrode Synthesis 

 

P. MoS2/Au electrodes were prepared by electroplating Mo onto Au/Si (100 nm Au evaporated onto 5 

nm Cr, evaporated onto intrinsic Si) substrates, then exposing them to the same reaction conditions as 

P. MoS2/Mo. The Mo deposition solution was prepared by combining Na2MoO4 (0.075 mmol), KOAc (365 

mmol), NH4OAc (365 mmol), and water (1.39 mol) in a beaker, stirred and heated until dissolved. The solution 

pH was then adjusted to 6.6 using acetic acid and ammonium hydroxide, while carefully adding small amounts 

of water to maintain solubility. The Au/Si substrate was prepared for Mo deposition by marking off an active 

area using Surlyn® (McMaster-Carr) adhesive tape. The electrode was then clipped to a double alligator clip 

apparatus (made in-house) along with a Pt Mesh electrode; the electrodes were separated by ~6 mm. The 

deposition solution was heated to 30°C with stirring at a rate low enough that the surface was not disturbed by 
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the vortex, but high enough that any bubbles formed could quickly escape the working electrode surface. The 

double alligator clip apparatus was connected to the appropriate electrode leads, suspended in the stirring 

deposition solution, and -300 mA cm-2 was applied for 30 min The electrode was rinsed and cut to fit in the 

bottom of the autoclave (~1.5 x 1.5 cm2 or 1 x 2 cm2), then subjected to the same reaction conditions as 

P. MoS2/Mo. 

 

Characterization 

 

P. MoS2 electrodes were characterized using Raman spectroscopy (Thermo Scientific DXR Raman 

Microscope) to confirm presence of MoS2 and XPS (Physical Electronics (PHI) VersaProbe 5000) to analyze 

the chemical nature of the surface.  

XPS data were collected using Al Kα X-rays (1486 eV), a takeoff angle of 45, and a spot size of 100 

μm. Peaks were fitted using CasaXPS software, with the adventitious C 1s peak calibrated to 284.8 eV. In the 

Mo 3d and S 2p spectra, the separation of the spin-orbit couples were set to 3.2 and 1.15 eV, respectively; the 

peak areas were constrained to ratios of 3:2 and 2:1, respectively. The full-width at half maximum of each peak 

was constrained to between 0.6 and 2.4 eV, according to the band-pass of the instrument. In order to measure 

the underside of P. MoS2 films, electrodes were scored using a diamond scribe into a grid pattern, then 

exfoliated using adhesive tape. 

Electrodes were imaged using SEM (Zeiss® Merlin Gemini II) and TEM (FEI™ Tecnai Osiris). SEM 

and TEM images were analyzed for petal edge length density and width using ImageJ (NIH) software. 

The height of Mo electrodeposited onto Au, as well as surface roughness of various electrodes, were 

measured with a Stylus Profilometer (Veeco® Dektak 150). 
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Electrochemical Measurements 

  

Linear sweep voltammetry (LSV) and potentiostatic electrochemical impedance spectroscopy (EIS) 

were used to measure the HER activity of electrodes (Gamry Series G 300 with PHE200 & EIS300 Software 

Packages). 0.5 M H2SO4 solution was prepared and purged with N2 for at least 20 min. Electrodes were 

submerged into 0.5M H2SO4 along with an Ag/AgCl reference electrode (saturated KCl) and Pt mesh counter 

electrode. The solution was stirred rapidly with the working electrode close in proximity to the magnetic stir 

bar, to remove bubbles from electrode surface, and with a nitrogen needle suspended over the surface of the 

solution. LSVs were measured from 0 – (-0.75) V vs. Ag/AgCl at a scan rate of 50 mV s−1 and 1 mV voltage 

step, then immediately measured with EIS. Open-circuit voltage was measured until it reached a stability of 

2 mV min-1, then EIS spectra taken from 100 kHz - 100 mHz at -250 mV vs. RHE DC voltage, 5 mV AC 

Voltage. Once the uncompensated resistance (Ru) was obtained from EIS measurement and modeling, it was 

used to compensate (“iR compensation”) the measured voltage at every data point for the potential drop (Ohm’s 

Law: 𝑉 = 𝐼𝑅) across the solution according to 

𝐸𝐴𝑔/𝐴𝑔𝐶𝑙 = 𝐸𝑚𝑒𝑎𝑠 − 𝐼𝑚𝑒𝑎𝑠 ∗ 𝑅𝑢, 

where EAg/AgCl is the iR-compensated potential vs. Ag/AgCl, Emeas is the measured potential vs. Ag/AgCl, and 

Imeas is the measured cell current (A). EAg/AgCl values were converted to the reversible hydrogen electrode (RHE) 

using the relation: 

𝐸𝑅𝐻𝐸 = 𝐸𝐴𝑔/𝐴𝑔𝐶𝑙 + 0.059 ∗ 𝑝𝐻 + 𝐸𝐴𝑔/𝐴𝑔𝐶𝑙
0 , 

where ERHE is the calculated potential vs. RHE, respectively, pH is the measured pH value (typically ~0.3), and 

E0
Ag/AgCl is the formal reduction potential of Ag/AgCl (sat’d KCl), +0.197 V vs. NHE.16   

Geometric electrode areas used for normalization of current density, exchange current density, 

resistivity, and double layer capacitance are as follows: Pt – 0.0314 cm2, P. MoS2/Mo – 2.25 cm2, P. MoS2/Au – 

0.71 cm2, Au – 0.994 cm2, Mo – 2.25 cm2. 
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Results & Discussion 

 

Materials Synthesis and Characterization 

 

P. MoS2 on Mo foil (Figure 1) was prepared as described in Chapter II.2 The surface of the Mo grows 

“petals” of multilayer sheets of MoS2 standing perpendicular to the plane of the support. Cutting or bending the 

substrate exposes a ~800 nm thick intermediate layer between the Mo substrate and the MoS2 petal structures 

(Figure 1b). X-ray photoelectron spectroscopic (XPS) surveys have revealed that this layer contains significant 

amounts of Mo, S, and O (Figure 2). High resolution (HR)-XPS analysis indicates that this layer exhibits 

mostly MoO2 character and to a lesser extent, MoO3 character (Figure 3b, d). The S 2p region of the MoSxOy 

measurement show the S signal is similar to that of the MoS2 petals (Figure 3c). TEM-EDS mapping 

(Figure 1d-g) shows that the concentration of oxygen is larger deeper into the intermediate layer, and there is a 

gradient to sulfur-rich closer to the petaled MoS2 surface. Glancing-angle X-ray diffraction (GAXRD, 

Figure 3a) shows that the intermediate layer is amorphous, as the diffractogram is dominated by the Mo support 

with only weak, broad reflections from the crystalline MoS2 petals (Figure 3a, inset). 
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Figure 2. X-ray Photoelectron Spectroscopy (XPS) quantified survey region of the underside of exfoliated 

petaled MoS2 material, revealing a mixture of Mo, O, and S.  
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Figure 3. a) Glancing-angle X-ray diffractogram of P. MoS2/Mo, where * denotes Mo (JCPDS Card No. 42-

1120) reflections and # denotes 2H-MoS2 (JCPDS Card No. 37-1492) reflections; inset: zoomed-in 

diffractogram of 2H-MoS2 region. XPS spectra of P. MoS2/Mo top and underside (MoSxOy), P. MoS2/Au, MoS2 

powder, cleaned Mo foil (with native oxides present), and Sputtered Mo foil (sputtered for 10 min with Ar gas 

to remove oxides) in b) Mo 3d (● indicates S 2s peaks), c) S 2p, and d) O 1s regions. The color legend in b) also 

applies to c) and d). Vertical lines are included to show typical peak locations for selected species. Binding 

energies were corrected by matching the adventitious C 1s peak to 284.8 eV. 

 

Other syntheses of nanostructured MoS2, hydrothermal and otherwise, are known to go through an 

amorphous and/or CnxMoOyXz (Cn = cation; X = halide) intermediate phase, depending on the precursors and 

synthesis conditions.17–20  Therefore, we hypothesized that the formation of the P. MoS2 film and intermediate 

layer proceed in the following manner: first, the Mo foil reacts with water to form amorphous surface oxides of 

mixed valence (MoOx). The decomposition of thiourea at 177°C21 then allows S to react with the Mo oxides to 

form both MoSxOy and the P. MoS2 structure on the surface. Since the petals are limited to ~200-300 nm in 

height, and there is an effectively infinite thickness of Mo in the Mo foil, we hypothesized that limiting the 
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thickness of Mo available to react to less than 300 nm would ensure complete conversion to MoS2 petals and 

exclude the presence of the MoSxOy intermediate layer. In order to investigate the role that this intermediate 

layer plays on charge transfer in the electrodes, we developed a synthesis that would yield a product without 

this layer.  

Therefore, a thin layer of metallic Mo was reductively electrodeposited22 on support materials of Au/Si, 

Pt/Si and FTO/glass as these substrates are not affected by the hydrothermal conditions (Scheme 1b). Mo did 

not deposit on Pt due to HER competition during electrodeposition.22 However, Mo was successfully 

electrodeposited on FTO and Au/Si (~225 nm, Figure 4) and subjected to a similar hydrothermal reaction to 

give P. MoS2. Little to no P. MoS2 was found on the FTO after the hydrothermal step, indicating poor adhesion 

of the product to the FTO. In contrast, ~250 nm-thick P. MoS2 was successfully grown on Au/Si, as confirmed 

by scanning electron microscopy (SEM), Raman spectroscopy (Figure 5a-c) and XPS (Figure 3b-d). The petal 

density of P. MoS2/Au (Figure 5a) is visibly less than that of P. MoS2/Mo (Figure 1a). The root mean squared 

surface roughness (Rq) of P. MoS2/Au was 220 nm (over 6 mm as measured by profilometry), whereas it was 

over three times larger (760 nm over 2 mm) for P. MoS2/Mo. The electrodeposited films of Mo have a low Rq 

of 14.5 nm (over 6 mm) compared to the 742 nm (over 2 mm) Rq of Mo foil, which likely adversely affects the 

nucleation density in the hydrothermal synthesis to MoS2 as well, providing much less real surface area for petal 

formation. The electrodes were cut and the cross section analyzed by SEM-EDS to compare the concentration 

of O (Figure 6). We found that no significant O signal was measured in P. MoS2/Au as compared with P. 

MoS2/Mo, confirming the absence of an intermediate MoSxOy layer in P. MoS2/Au electrodes. 
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Figure 4. Profilometric scans of a typical Mo electrodeposition on Au, starting on Au, then scanning towards 

the Mo deposit. The dip below zero in the blue scan corresponds to a pit in the Au, exposing the Si substrate. 

 

 
Figure 5. a) Top-down and b) cross-sectional SEM images of P. MoS2/Au. c) Raman spectra of P. MoS2/Au, P. 

MoS2/Mo, MoS2 Powder, and Mo foil; dashed lines represent the baseline for each respective measurement; 

green areas indicate expected 1T-MoS2 frequencies. 
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Figure 6. Cross-sectional images of a) P. MoS2/Au and b-d) P. MoS2/Mo. [O] corresponds to EDS oxygen 

content in the areas enclosed by red boxes. Additional images c) and d) included to highlight distinction 

between MoS2 petals and intermediate MoSxOy layer. 

 

Several materials characterization techniques reveal the single-layer nature of P. MoS2. Both P. 

MoS2/Mo and P. MoS2/Au were found to exhibit non-zero Raman signals in regions associated with single-

layer, 1T-MoS2.
23,24 Specifically, in the J2 and J3 regions at ~225 cm-1 and ~330 cm-1, the spectra rise above the 

baseline, whereas the MoS2 powder spectrum does not. The single-layer nature of the surface is also confirmed 

by XPS in Figure 3b-d, where the primary Mo 3d and S 2p peak pairs of P. MoS2/Mo and P. MoS2/Au  are 

shifted to much lower binding energies (228.5 and 161.4 eV; 229.3 and 162.3 eV, respectively), compared with 

MoS2 powder (229.8 eV and 162.8 eV, respectively).25,26. Such low binding energies of the Mo 3d and S2p 

peaks have been reported for metallic, 1T-MoS2.
23,27 Peak deconvolution of the XPS spectra (Figure 7) for P. 
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MoS2/Mo reveals additional higher binding energy components in the Mo 3d and S 2p regions, which is more 

consistent with bulk MoS2. XPS is a highly surface-sensitive technique, thus these results reflect the chemistry 

of the very edges of the petals. The TEM images (Figure 1c and Figures 8 and 9) of the petals show regions of 

multilayer MoS2, but also regions of frayed single-layer MoS2. The interlayer spacings (6.20-6.38 Å) are larger 

than the bulk (002) spacings (6.15Å) of 2H-MoS2, indicating the chemistry is not entirely bulk-like, even in the 

multilayer regions. We collectively interpret these results to mean that the exposed edges of the petals tend to 

behave like single-layer MoS2, possibly due to strain or fraying of the petal edges, whereas the deeper regions 

of the MoS2 petals are more similar to bulk, multi-layer MoS2.  

 

 

Figure 7. HR-XPS spectra of P. MoS2/Mo with peak deconvolution using CasaXPS software. Reference peak 

positions (Mo 3d 5/2, S 2p 3/2, and O 1s 1/2) for relevant compounds are indicated by vertical lines (NIST XPS 

Database) for comparison to experimental data. For instance, the primary experimental Mo 3d 5/2 peak lies 

between the values for typical MoS2 and Mo. 
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Figure 8. TEM images of P. MoS2 grown from a Mo aperture grid used for measuring petal thickness: 6.7 nm 

± 2.6 nm, n = 139. This corresponds to 11 S-Mo-S trilayers. 
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Figure 9. TEM images with corresponding FFT of P. MoS2 synthesized on a Mo aperture grid. The red circles 

indicate the d-spacing assigned to the (002) reflection of 2H-MoS2 (d = 6.15 Å, JCPDS Card No. 37-1492), 

with noticeably larger values than the card, likely due to fraying of the petal edges. TEM scale bars are 10 nm 

for a) and b), and 5 nm for c) and d). 
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Electrochemical Performance 

P. MoS2/Mo and P. MoS2/Au were evaluated for HER activity using linear sweep voltammetry (LSV) 

and electrochemical impedance spectroscopy (EIS) in 0.5M H2SO4, as shown in Figure 10. Control 

measurements of Pt (the best known HER catalyst), Au, and Mo electrodes were also included. By comparing 

the overpotential (η) required to achieve -10 mA cm-2 with respect to geometric electrode area (see Table 1), 

the excellent catalytic activity of P. MoS2 is highlighted, independent of its substrate. P. MoS2/Mo exhibits an η 

of 242 mV and P. MoS2/Au exhibits a larger value of 279 mV, which are comparable to those reported for other 

MoS2 nanocatalysts.28 LSV scans of P. MoS2/Mo and P. MoS2/Au show good HER activity as compared with 

their respective substrates: Au requires high η, indicating low HER activity, and Mo shows even lower HER 

activity as expected from the well-known volcano plots first published by Nørskov et al.29 
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Figure 10. a) iR-corrected LSV measurements of electrodes: Pt (red), P. MoS2/Mo (black), P. MoS2/Au 

(orange), Au (blue), Mo (green). b) Tafel analysis of scans in (a) with Tafel slopes. c) Nyquist plots of 

electrodes at -250 mV vs. RHE, 5 mV amplitude; inset: large impedance regime of Mo foil. d) Equivalent 

circuit diagram of Randles cell used to fit EIS data, which was modified by removing the commonly used 

Warburg impedance component (diffusion in quiet solutions) and using a constant phase element (CPE) to 

account for non-ideal capacitive behavior. 

 

Table 1. Comparison of relevant electrochemical values for electrodes tested.  

Electrode 

η to 10 mA cm-2 

(mV vs. RHE) 

j0,geo 

(mA cm-2) 

j0,real 

(mA cm-2) 

Ru 

(Ω·cm2) 

Rct 

(Ω·cm2) 

Cdl 

(μF cm-2) 

Pt 61.4 0.447 0.13 0.45 1.0 70. 

P. MoS2/Mo 242 0.00290 1.710-6 2.2 3.4 1.7104 

P. MoS2/Au 279 0.000921 5.910-6 2.4 13 1.6103 

Au  371 0.00563 0.0021 3.6 3.0 54 

Mo 459 0.000339 2.110-5 3.6 110 330 

 

The presence of Mo oxides in the P. MoS2/Mo intermediate layer is evidenced in LSVs. In Figure 10a, 

both P. MoS2 electrodes have similar HER onsets of ~200 mV vs. RHE. The P. MoS2/Mo shows a significant 
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additional reductive current at potentials below +0.2 V vs. RHE, leading down to a plateau at -0.136 V. This 

additional reductive current is likely due to reduction in the MoSxOy intermediate layer, as the standard 

electrochemical potentials of several Mo oxides fall in this region:21 

 H3Mo7O24
3- + 45 H+ + 42e- ⇄ 7 Mo + 24 H2O E° = +0.082 V (1) 

 MoO3 + 6 H+ + 6 e- ⇄ Mo + 3 H2O E° = +0.075 V (2) 

 MoO2 + 4 H+ + 4 e- ⇄ Mo + 4 H2O E° = -0.152 V (3) 

The electrochemical evidence agrees with the HR-XPS results that the interfacial layer is mostly 

comprised of MoO2, with small amounts of higher oxides that, from the XRD analysis, are amorphous.  

The similar Tafel slopes of ~68 mV dec-1 for the two P. MoS2 electrodes in Figure 10b demonstrate that 

P. MoS2 catalyzes HER via the same mechanism independent of its substrate. The Tafel relationship is as 

follows: 

 
𝑠𝑙𝑜𝑝𝑒 =

2.3𝑅𝑇

(𝑛′ + 𝛼)𝐹
 (4) 

 

where R is the ideal gas constant, T is temperature, F is the Faraday constant, n’ is the number of 

electrons transferred before the rate-determining step (RDS), and α is the charge transfer coefficient. The slope 

is an indicator of the RDS in the HER mechanism (Table 2).  

 

Table 2. Component steps of the Hydrogen Evolution Reaction with characteristic Tafel Slopes. 

Step Reaction Tafel slope if RDS  

Volmer H3O
+ + e- → Hads

* + H2O 120 mV dec-1 (5) 
Chemical Rearrangement Hads

* → Hads 60 mV dec-1 (6) 

Heyrovsky Hads + H3O
+ + e- → H2 42 mV dec-1 (7) 

Tafel Hads + Hads → H2 + H2O 30 mV dec-1 (8) 

 

There are several reports of MoS2 electrodes that show Heyrovsky-limited HER.30–34 Incomplete cubane 

clusters ([Mo3S4]
4+) showed Volmer-limited behavior with a Tafel slope of 120 mV dec-1.35 However, the slope 

of ~68 mV dec-1 observed here for P. MoS2 lies between the characteristic Tafel slopes of 40 mV dec-1 and 120 
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mV dec-1 indicating that neither the Heyrovsky nor the Volmer steps, respectively, are rate-determining.36 

Several other nanostructured MoS2 electrodes have shown intermediate Tafel slopes.3,31,37–39 A Tafel slope of 

60 mV dec-1 is an indicator instead that the RDS does not involve electron transfer (α =0) and it occurs after one 

electron has transferred (n’=1) in the overall mechanism. For HER, a Tafel slope near 60 mV dec-1 has been 

ascribed to a necessary rate-limiting chemical rearrangement of H on the surface before the second electron 

transfer.40 Thus, bond strength to H and proximity of the active sites30 are important to impeding this step. For 

P. MoS2, this rate-determining step indicates that there are H trap sites and poor H mobility on the petals, which 

is not uncommon for MoS2 catalysts.3,31,38,39,41 The high electron density on the surface Mo atoms of P. MoS2 

electrodes (as indicated by the low binding energies in XPS, Figure 3b) likely increases the strength of the H 

adsorption, rendering the chemical rearrangement of Hads the rate-limiting reaction. The TEM, XPS, and Raman 

studies suggest that the petals are frayed at the surface and behave as single-layer MoS2. This separates the 

active sites from one another along the c-axis of the crystal structure.  

Of note, the exchange current density with respect to geometric electrode area (j0,geo, Tables 1 & 3) was 

very high for P. MoS2/Mo (0.00290 mA cm-2) and was similar to that seen by the Cui group for electrodes with 

a plane of densely-packed vertically-aligned MoS2 layers on Si (0.0022 mA cm-2).42 Despite the comparatively 

low geometric packing of the MoS2 petals on our electrodes, the high j0,geo indicates that the protruding shape of 

the petals provides a large number of active catalytic sites. The j0,geo for P. MoS2/Au was lower at 

0.000921 mA cm-2. We ascribe this to the lower petal density of P. MoS2/Au, which provides a lower number of 

catalytic sites (vide supra).  

The EIS results are presented as Nyquist plots in Figure 4c and were modeled using a simple Randles 

circuit (Figure 10d). RCT is characteristic of the kinetics of the electron-transfer chemical reactions occurring at 

the petal edges. The absence of multiple semicircles in the Nyquist plots confirms that the MoS2 petals 

completely cover the surface, and no underlying MoSxOy is exposed to solution.43 As expected from the 

increased surface roughness and j0,geo, the RCT is correspondingly lower (and Cdl is higher) for the P. MoS2/Mo 

(3 Ω•cm2) than for P. MoS2/Au (13 Ω•cm2).  
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Since Cdl is proportional to the real surface area, it was used to obtain the exchange current density 

normalized to the real surface area of each electrode, j0,real (See Table 1 above). The impedance of a CPE is 

given by: 

𝑍𝐶𝑃𝐸 =
1

(𝑗𝜔)𝛼𝑌0
 

where j is the imaginary number, ω is the angular frequency, α is a constant equaling 1 for an ideal capacitor, 

and Y0 is the capacitance. From fitting the EIS data using Randles circuit with CPE in place of a capacitor, Y0 

and α are obtained which can be used with ωc (at 𝑍𝑟𝑒𝑎𝑙 = 𝑅𝑢 +
𝑅𝑐𝑡

2
 ) to calculate Cdl as follows: 

𝐶𝑑𝑙 = 𝑌0(𝜔𝑐)𝑎−1. 

Cdl scales with electrochemical surface area.44 Since atomically smooth metallic electrodes typically have Cdl of 

20 µF cm-2,45–47 the electrochemical roughness factor (RF) can be estimated as: 

𝑅𝐹 =
𝐶𝑑𝑙

20 𝜇𝐹 𝑐𝑚−2
 

For MoS2 electrodes, Cdl is normalized to 10 µF cm-2.48 RF was used to calculate j0,real and jreal at -200 mV vs. 

RHE as such, the values of which are included in Table 3:  

𝑗𝑟𝑒𝑎𝑙 =
𝑗𝑔𝑒𝑜

𝑅𝐹
. 

The j0,real  is on the same order for both P. MoS2/Au and P. MoS2/Mo, but indeed is larger for P. MoS2/Au. 

While this may suggest that the Au support increases the inherent catalytic activity of the MoS2 petals, we 

hesitate to speculate on the reason for this difference without deeper study.  
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Table 3. Measured and calculated values from EIS and LSV. 

Electrode Y0 

(µF cm-2) 

ω (Hz) α Cdl 

(µF cm-2) 

j0,geo 

(mA cm-2) 

RF j0,real 

(mA cm-2) 

Pt 550 3776.258 0.75 70 0.447 3.5 0.13 

P. MoS2/Mo 24500 4.760921 0.7741 17200 0.00290 1700 1.7*10-6 

P. MoS2/Au 2152 12.00102 0.8678 1549 0.000921 150 5.9*10-6 

Au 404.4 1503.907 0.725 54.1 0.00563 2.7 0.0021 

Mo 341.5 4.760921 0.9781 330.03 0.000339 17 2.1*10-5 

 

 

A figure of merit for intrinsic HER activity is turnover frequency (TOF) per active site, which can be 

calculated using the equation: 

𝑇𝑂𝐹 =
𝑗𝐴

𝑛𝐹𝑁
, 

where j is the current density in A cm-2, A is Avogadro’s number, n is the number of electrons transferred (2 for 

HER), F is Faraday’s constant, and N is the density of active sites.34 For MoS2 HER catalysts, TOF is usually 

calculated per surface Mo28 which allows a comparison to other MoS2 HER catalysts. N for the active edges 

was calculated using the crystallographic information for MoS2. N was calculated by assuming that the real area 

was composed entirely of edges. Therefore, using the lattice parameters of 2H-MoS2 from (JCPDS Card No. 

37-1492) of a, b = 3.1612 Å and c = 12.2985 Å: 

𝑁 =
2 𝑀𝑜

(3.1612∗12.2985)Å2
∗

1016Å2

𝑐𝑚2
= 5.14 ∗ 1014𝑀𝑜 𝑐𝑚−2. 

Then the TOF was calculated for P. MoS2/Mo electrodes using jreal = 2.8*10-6 A cm-2 at -200 mV vs. RHE: 

𝑇𝑂𝐹𝑎𝑙𝑙 𝑆𝐴 =
2.8×10−6 𝐴 𝑐𝑚−2 ∗ 6.02×1023 𝐻2 𝑚𝑜𝑙−1

2 ∗ 96485 𝐶 𝑚𝑜𝑙−1 ∗ 5.14 ∙ 1014 𝑀𝑜 𝑐𝑚−2
= 0.017 𝐻2 𝑀𝑜−1 𝑠−1 
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The TOFall SA was calculated for P. MoS2/Mo at 0.017 H2 Mo-1 s-1 and for P. MoS2/Au at 0.042 H2 Mo-1 s-1 

(summarized in Table 4). This assumption provides a low estimate of TOF since the petaled MoS2 presents a 

large portion of inactive, sulfur-terminated faces. 

 

 

Table 4. Values used in TOF calculation for MoS2 electrodes. 

Electrode: P. MoS2/Au P. MoS2/Mo 

|jgeo| @ -200 mV (A cm-2) 0.00107 0.00475 

*N (Mo atoms cm-2) 5.1443*1014 5.1443*1014 

|jreal| @ -200 mV (A cm-2) 6.9*10-6 2.8*10-6 

*TOFall SA (H2 Mo-1 s-1) 0.042 0.017 

*Assuming real surface area is all edges 

 

 

TOF was also calculated with a more realistic approximation (assuming petals are rectangular prisms) 

by multiplying by a factor to account for the limited portion of surface area that is actually comprised of active 

edge sites. For simplicity, the petals are approximated as rectangular prisms attached to the surface (only one 

long side exposed) with a height of 200 nm. SEM measurements (Table 5) were used to approximate the 

dimensions of the petals and obtain the ratio of exposed edges to total surface area of MoS2. Thus, the petal 

edge surface area (SA) is: 

𝑆𝐴𝑒𝑑𝑔𝑒 = 𝑤𝑖𝑑𝑡ℎ ∗ (𝑙𝑒𝑛𝑔𝑡ℎ + 2 ∗ ℎ𝑒𝑖𝑔ℎ𝑡), 

the petal face SA is: 

𝑆𝐴𝑓𝑎𝑐𝑒 = 2 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡, 

and the edge SA : total SA is: 

𝑆𝐴𝑒𝑑𝑔𝑒:𝑡𝑜𝑡𝑎𝑙 =
𝑆𝐴𝑒𝑑𝑔𝑒

𝑆𝐴𝑒𝑑𝑔𝑒+𝑆𝐴𝑓𝑎𝑐𝑒
. 

Thus, the TOF, excluding faces from the active site density, with the understanding that only edges are HER-

active is: 

𝑇𝑂𝐹𝑒𝑑𝑔𝑒𝑠 𝑜𝑛𝑙𝑦 =
𝑇𝑂𝐹𝑎𝑙𝑙 𝑆𝐴

𝑆𝐴𝑒𝑑𝑔𝑒:𝑡𝑜𝑡𝑎𝑙
=

0.017 𝐻2 𝑀𝑜−1 𝑠−1

0.0679
= 0.25 𝐻2 𝑀𝑜−1 𝑠−1. 
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Table 5. Measured and calculated values used to calculate TOF. 

Electrode: P. MoS2/Mo P. MoS2/Au 

 average st. dev. n average st. dev. n 

Petal length (nm) 117 93 296 118 90 205 

Petal width (nm) 6.7 2.6 139 8.6 3.5 91 

† Petal height (nm) 200 200 

**SAedge (nm2) 3419 4468 

**SAface (nm2) 46930 47280 

**SAedge:total 0.0679 0.0864 

**TOFedges,only (H2 Mo-1 s-1) 0.25 0.48 

† Estimated from SEM images. 

**Assuming petals are rectangular prisms. 

 

TOFedges only was also calculated for P. MoS2/Au and found to be 0.48 H2 Mo-1 s-1, approximately double 

that of P. MoS2/Mo. These values are similar to other MoSx electrodes which have TOFs between 0.2 – 1 

H2 Mo-1 s-1 at -200 mV vs RHE.28 Combined, the high j0,geo but unremarkable TOF highlight that it is the shape 

of the MoS2 petals that lend these electrodes their impressive HER activity.  

The uncompensated resistance Ru, contains, in series, the solution resistance and the resistance at the 

interface between the layers such as the Mo-MoSxOy-MoS2 interfaces and Au-MoS2 interface. In the electrolyte, 

the solution resistance should be similar for all electrodes, so changes in Ru reflect the resistance of the layer 

interfaces alone. The Ru for the P. MoS2/Mo (2.2 Ω•cm2) electrodes is quite low, and sits between that of Pt 

(0.5 Ω•cm2) and the Mo and Au metallic electrodes (both 3.6 Ω•cm2). This indicates that the contact between the 

P. MoS2 and the Mo support is nearly ohmic and most importantly, the MoSxOy intermediate layer is not 

resistive as previously feared but instead provides an optimal electronic interface between the support Mo and 

catalytic petaled MoS2 surface, although it may inhibit the intrinsic activity, as suggested by the decreased TOF 

compared to P. MoS2/Au.  

The contact for P. MoS2/Au is also highly conductive (Ru= 2.4 Ω•cm2). The Au-MoS2 interface, in 

particular, has been predicted to suffer from a large tunnel barrier, high Schottky barrier, and weak orbital 

overlap due to the lattice mismatch between Au and MoS2 when the MoS2 lies coplanar to the surface.12 This 

has been found to be experimentally true for top metal-MoS2 contacts in transistor designs.49–51 In contrast, 
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arranging single MoS2 sheets perpendicularly to Au contacts has been computationally shown to improve 

electronic connections12 and experimentally shown to form ohmic contacts.52 The low Ru  of P. MoS2/Au is 

likely a result of the arrangement of the petals perpendicular to the Au surface, which optimizes the electronic 

contact.  

 

Conclusions 

 

In this work, the support material for P. MoS2 electrodes was found to be crucial to their performance. P. 

MoS2, when grown on Mo foil, was found to have a MoSxOy intermediate layer with unknown electrochemical 

properties. Thus we sought a synthesis where the Mo film thickness was limited to prevent the formation of this 

layer. Mo could not be electrodeposited on Pt, precluding the synthesis of P. MoS2/Pt. The synthetic technique 

identified that FTO has poor surface adhesion to MoS2 petals. However, P. MoS2 was grown from Au for the 

first time in this work by electrodepositing a controlled amount of Mo on an Au support, then carrying out a 

hydrothermal reaction with thiourea and water. In this manner the MoSxOy layer was excluded. This 

inexpensive and easily scalable synthesis shows promise as an alternate method of producing this material on a 

wider variety of substrates.  

The material properties and HER activity of P. MoS2/Mo were compared to P. MoS2/Au using a variety 

of techniques. Raman, TEM and XPS demonstrate that the multilayer petals are frayed at the edges, showing 

metallic, 1T-MoS2 character, and are chemically identical whether grown from Mo or Au substrates.  

In general, both P. MoS2/Mo and P. MoS2/Au showed excellent electrode characteristics for HER. P. 

MoS2/Mo required a 242 mV overpotential to achieve 10 mA cm-2, which was 35 mV lower when compared to 

P. MoS2/Au. Also, P. MoS2/Mo gave an exchange current density of 0.00290 mA/ cm-2 which was ~3x higher 

than that of P. MoS2/Au. We ascribe these differences to a higher petal density on P. MoS2/Mo than P. 

MoS2/Au. In turn, the petal density is a result of the surface roughness of the Mo surface from which the MoS2 

was synthesized. The effect of petal density was also reflected in the charge-transfer resistance (3.4 Ω•cm2 vs. 
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13 Ω•cm2) and double layer capacitance (17.2 mF cm-2 vs. 1.55 mF cm-2) from EIS studies. Conservative 

estimates of turnover frequency were calculated, revealing similar TOFs for petaled MoS2 independent of Mo or 

Au substrate (0.25 H2 Mo-1 s-1 vs. 0.48 H2 Mo-1 s-1, respectively) and similar to that of other MoS2 electrodes 

seen in the literature.  

Both P. MoS2/Mo and P. MoS2/Au showed ohmic contacts with very low Ru of less than 2.4 Ω•cm2. It is 

likely the vertical arrangement of the petals on Au contributes to the excellent contact, which has been shown 

elsewhere to be resistive when MoS2 lies coplanar to Au. The results also show that the MoSxOy intermediate 

layer seen in P. MoS2/Mo is not resistive, and instead provides a near ideal electrical contact between the two 

layers.  

In the future, scientific efforts should be dedicated to developing synthetic techniques to increase the 

petal density and therefore the density of active sites in this self-supported, nanostructured material. 

Additionally, further exploration of methods to increase the adhesion of the precursors, intermediates, and 

product MoS2 to the substrate should be undertaken. Exploration of additional substrates which have similar 

lattice spacing to MoS2 will yield advances toward practical P. MoS2 electrodes. 
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CHAPTER IV 

 

Evaluation of Petaled MoS2 Electrocatalysts for Use in Lithium-Ion Batteries 

 

 

 

Introduction 

 

Lithium ion batteries (LIBs) are now a commonly used energy storage technology present in electric 

vehicles and portable electronics. LIBs are flourishing due to their rechargeability, which results from their 

reversible chemistry (vs alkaline Zn-MnO2 batteries), light weight, and increased energy and power density per 

unit mass over lead-sulfur or nickel-cadmium batteries. The technologies that require portable energy storage 

are highly diverse, thus different LIB designs must be developed to meet the varying needs in size, weight, and 

energy capacity. For example, the incorporation of LIBs into microelectronics such as microelectromechanical 
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devices (MEMS), back up storage on hard drives or in circuits, and implantable electronics for use in 

medicine1–5 require design considerations that are considerably different from those of bulk battery systems. 

Typical bulk LIB systems contain a liquid or polymer slurry electrolyte, bulk graphite anode, and a cathode 

made from a Li metal oxide, carbon black, and binder. Other systems require a solid-state electrolyte and a self-

supported anode and/or cathode electrode6,7 in order to achieve small battery sizes. In general, self-supported 

electrode materials have the advantages of high surface area for high power energetics and direct electrical 

contact to their underlying substrates.8,9 

Self-supported MoS2 presents itself as a promising candidate for use as a LIB electrode. This and other 

transition metal dichalcogenides have long attracted attention as a LIB electrode material. As a cathode, MoS2 

has favorable energetics of its intercalation reaction with a reasonably high E1/2 of 2.1 V vs. Li/Li+ (all voltages 

reported in this chapter are vs. Li/Li+).10–13 More recently, MoS2 has been considered as an anode material to be 

paired with the LiMOx family of high-voltage cathodes for LIBs due to its large theoretical capacity of 1675 

mA h g-1 and significant rate capability,13–18 i.e. a high maximum charging rate relative to its nominal capacity. 

For both anode and cathode roles, the intermediate voltage of MoS2 is not ideal, but is compensated for by its 

extended cycling stability and charge storage capacity.13 

In addition to the advantages of using MoS2 for LIBs, there has been a renewed interest in MoS2 over 

the last several years due to the ability to develop few- and single-layer nanostructures with a myriad of 

potential uses, which has led to a large body of research directed towards simplifying synthesis of such 

nanostructures.19–22 Specifically for LIBs, layered, nanostructured materials offer greater free volume per unit 

cell for accommodating intercalants and a higher surface area-to-volume ratio than bulk materials. As has been 

shown in previous chapters, P. MoS2/Mo electrodes synthesized using a simple, scalable, hydrothermal 

technique performed excellently as an inexpensive and highly active electrode material towards polysulfide 

(Sn
2-) reduction in liquid-junction QDSSCs.23 The large, intermediate, MoSxOy layer between the Mo substrate 
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and the MoS2 petals provides excellent ohmic contact.24 Thus, this material is promising as an inexpensive, self-

supported LIB electrode material.  

In the following discussion, I will present the application of this self-supported petaled MoS2 as an 

electrode material for LIBs that acts as a high-surface-area structural support for Li2S-Sn
2- and Mo-MoO3 

conversion, but also exhibits high capacity, rate capability, and cyclability as a cathode.  

 

Experimental  

 

Preparation of Petaled MoS2 and Hydrothermal MoOx Electrodes for LIB testing 

 

Nanostructured MoS2 petals were prepared as in Chapter II, but with two 1 × 1 × 0.025 cm3 Mo foil pieces 

(99.95%, Strem) instead of one 1.5 × 1.5 cm2 Mo foil piece, as was necessary for assembly into a Li coin cell. 

Hydrothermal MoOx electrodes were synthesized using the exact same conditions as the petaled MoS2 

electrodes, except that no thiourea was added. 

 

Characterization 

 

Focused Ion Beam (FIB) milling followed by scanning electron microscopy (SEM) imaging and Energy 

Dispersive X-ray Spectroscopy (EDS) elemental identification was performed on a Tescan Lyra 3 XMU 

Focused Ion Beam Scanning Electron Microscope, located at Middle Tennessee State University 

Interdisciplinary Microanalysis and Imaging Center (MIMIC), and operated by Joyce Miller . Due to the high 

surface roughness of petaled MoS2, a ~2 µm thick Pt layer was deposited prior to Ga3+ ion milling using 49 pA 

deposition current for 30 min. Rough milling of the material was performed at 857 pA for 25 min to achieve a 5 

µm deep trench. Finally, the wall of the trench was polished using 218 pA beam current to remove curtaining. 
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The EDS spectra were collected at 15.0 keV and quantified using Bruker Quantax 200 software, which was 

calibrated prior to collection using high-quality Cu tape. 

Glancing-Angle X-Ray Diffraction (GAXRD) measurements were taken using a Scintag XGEN-4000 

X-ray diffractometer with a Cu Kα (λ = 0.154 nm) radiation source. The X-ray source (ω) was held at 0.1° 

while the detector (θ) scanned from 20-60° with step size 0.05° and scan rate of 0.002°/s. 

Raman spectra of samples were collected using a Renishaw inVia MicroRaman system with 535nm 

LASER excitation, and at 50x magnification.  

Batteries were tested in a half-cell Li ion battery configuration using a 1M LiPF6 in ethylene carbonate 

and dimethyl carbonate electrolyte, with a Celgard® separator, and a Li metal counter-electrode. 

Electrochemical testing was performed on an Autolab Multichannel analyzer, and with an MTI 8 channel 

battery analyzer. 

 

Results & Discussion 

 

Materials Characterization 

 

The petaled MoS2 structure was synthesized as described previously,23 and is comprised of a uniform 

film of MoS2 petals grown from Mo foil and separated by an intermediate, MoSxOy layer. As a full 

understanding of the chemical composition of both the upper petaled region and the intermediate layer is crucial 

for determining the chemistry of LIB reactions as well as the active mass, we performed a series of experiments 

to verify the chemical composition of the intermediate layer. A cross-sectional Raman spectrum (Figure 1) 

supplements the evidence in previous chapters that the intermediate layer is a material with a combination of 

crystalline MoS2 as well as amorphous MoO2- and MoO3-like molybdenum centers, all of which have been 

found to be active species for Li+ intercalation.25–27 Although each of the peaks is likely to be some convolution 
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of several smaller peaks, previous studies by other groups suggest that the peaks at 849 cm-1 and 938 cm-1 (Fig. 

1b) are due to amorphous MoO3,
26, 27 the peaks 440 cm-1 and 744 cm-1 are due to amorphous MoO2,

26, 28
  and the 

peak at 305 cm-1  is due to a combination of both MoO2 and MoO3. The hydrothermal MoOx (Fig. 1c), which is 

described later as a negative control for thiourea, shows less distinctive Raman features that broadly coincide 

with those peaks observed in P. MoS2, specifically at 305 cm-1, 440 cm-1, and 740 – 940 cm-1, but without the 

characteristic MoS2 peaks. This data suggests that the MoOx is even less crystalline than that found in the 

intermediate layer of P. MoS2. 

 

 

Figure 1. Cross-sectional SEM image of exfoliated P. MoS2 (a). Raman spectra of the P. MoS2 cross-section (b) 

and hydrothermally synthesized MoOx material (c).  

 

In order to determine the ratios of the different chemical species present in the intermediate layer, we 

performed focused ion beam (FIB) milling of the material into the Mo substrate followed by energy-dispersive 

X-ray spectroscopy (EDS, Figure 2). The study revealed that at the deepest interface between the Mo foil and 

the MoSxOy layer, there is little to no S present and a small amount of O (Figure 2 a,c). Towards the middle of 

the intermediate layer, the amount of S and O increases to reach a Mo:S:O ratio of approximately 1:0.5:2 

(Figure 2 a,c,d), which is observed even at the top of the MoS2 petals (Figure 2 b,f).   
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Figure 2. SEM images of petaled MoS2 samples 1 (a, b) and 2 (c-f). The white rectangles correspond to EDS 

collection areas while in b, d, and f, the entire SEM image area was collected. (e) Low-magnification view of 

measurement region; note the darker contrast in the area imaged using FIB due to destruction by Ga3+ ions. 

Dashed lines connect zoomed-out view of regions in (e) to corresponding zoomed-in regions (c, d, f); solid 

arrows are drawn from the numbered collection area to its corresponding label and Mo:S:O ratio.  

 

Estimation of Active Mass 

 

The mass of the petaled region was determined by measuring the petal length density from several top-

down SEM images, giving a geometric density of 0.0192 
𝑛𝑚 𝑝𝑒𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

𝑛𝑚2 𝑖𝑚𝑎𝑔𝑒
. The petal edge area within each image 

was then determined by multiplying the petal length density by the average thickness of the petals (6.78 nm) as 

determined using TEM: 
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𝑃𝑒𝑡𝑎𝑙 𝐸𝑑𝑔𝑒 𝐴𝑟𝑒𝑎: 𝐼𝑚𝑎𝑔𝑒 𝐴𝑟𝑒𝑎 =
𝑃𝑒𝑡𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ (𝑛𝑚)

𝐼𝑚𝑎𝑔𝑒 𝐴𝑟𝑒𝑎 (𝑛𝑚2)
∗ 𝑃𝑒𝑡𝑎𝑙 𝑤𝑖𝑑𝑡ℎ (𝑛𝑚) 

0.0192 𝑛𝑚

𝑛𝑚2
∗ 6.78 𝑛𝑚 = 0.129 (𝑜𝑟 12.9%) 

The total mass of the MoS2 petals was then determined using the height of the petaled region as 

determined from cross-sectional SEM images and the density (ρ) of MoS2 (5.06 g mL-1): 

𝑃. 𝑀𝑜𝑆2 𝑀𝑎𝑠𝑠 = 𝐶𝑢𝑏𝑖𝑐 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃. 𝑀𝑜𝑆2 ∗ 𝑃𝑒𝑡𝑎𝑙 𝐸𝑑𝑔𝑒 𝐴𝑟𝑒𝑎: 𝐼𝑚𝑎𝑔𝑒 𝐴𝑟𝑒𝑎 ∗ 𝜌𝑀𝑜𝑆2
 

1 𝑐𝑚 ∗ 1 𝑐𝑚 ∗ 200 𝑛𝑚 ∗ 0.129 ∗ 5.06 𝑔 𝑚𝐿−1 = 13.05 µ𝑔 

The mass of the intermediate layer was determined by first using the volume measurements from 

external measurements and cross-sectional SEM images (Figure 1a) with a total volume of 1 cm  1 cm  800 

nm, which gives a total volume of 0.08 mm3.  The density was estimated using the EDS data in Figure 2 where 

it was shown that the intermediate layer had an approximate elemental ratio of 1 Mo: 0.5 S: 1.9 O. Assuming all 

of the S is from MoS2 that would suggest that 25% of the Mo is used to form MoS2. This leaves the remaining 

75% of Mo to be found in MoO2 and MoO3 compounds. An O ratio of ~1.9 suggests 37.5% MoO2 and 37.5% 

MoO3. Thus, we estimate that the intermediate layer is composed of approximately 25% MoS2, 37.5% MoO2 

and 37.5% MoO3. 

The densities of MoS2, MoO2 and MoO3 are 5.06 g cm-3, 6.47 g cm-3 and 4.69 g cm-3
, respectively. 

Therefore, the weighted average density of the intermediate MoSxOy layer is 5.51 g cm-3
, as calculated below: 

MoS2:    0.25*5.06 

MoO2: 0.375*6.47 

MoO3: 0.375*4.69 

Total: 5.51 g/cm3 

With these two estimates for the volume and density we can derive a mass estimate for the MoSxOy layer:   

0.08𝑚𝑚3 ∗ 5.51 𝑔 𝑐𝑚3 = ⁄ 440.8 µ𝑔 𝑀𝑜𝑆𝑥𝑂𝑦 (110.2 µ𝑔 𝑀𝑜𝑆2). 
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Electrochemical Testing 

 

The self-supported P. MoS2 material was then tested it in a half-cell LIB configuration using a LiPF6 

electrolyte, a Celgard® separator, and a Li metal counter electrode. Andrew Westover* and Landon Oakes, in 

the research lab of Dr. Cary Pint, performed LIB testing and provided analysis. In order to ensure that the 

capacity in the petaled MoS2 was indeed due to the petaled morphology we first compared the cyclic 

voltammetric (CV) behavior of the petaled MoS2, a flat Mo foil, and a hydrothermally synthesized MoOx analog 

that was made using the same process as the petaled MoS2 but without thiourea. The comparison of the current 

density of these three materials clearly shows that the petaled MoS2 outperforms both the Mo foil and the 

hydrothermal MoOx material, highlighting that the sulfur (S) plays a key role in enabling Li+ storage in the 

material (Figure 3a).  

 

                                                        
* Funding for A.S.W. was provided by NASA EPSCPR grant #4-22-453-3591.  
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Figure 3. a) CV curves of petaled MoS2, hydrothermally synthesized MoOx and Mo foil. b) first three CV 

curves for Petaled MoS2. c) Charge/discharge curves at various charging rates for petaled MoS2. d) High 

voltage cycling of the petaled MoS2 at 0.01 mA/cm2.  

Table 1. Prediction of experimental peak positions in Figure 2b and processes of P. MoS2 electrode based on 

literature reports. 

Scan # Sweep Direction Peak Position (V) Process  Reference 

1 cathodic (-) 0.9 𝐿𝑖+ + 𝑀𝑜𝑆2 → 𝐿𝑖𝑥𝑀𝑜𝑆2   13-17, 21 

  0.4 𝐿𝑖𝑥𝑀𝑜𝑆2 → 𝐿𝑖2𝑆 + 𝑀𝑜 
𝐿𝑖+ + 𝑀𝑜𝑂𝑥 → 𝐿𝑖𝑥𝑀𝑜𝑂𝑥 

 

27 

     

 anodic (+) 1.5 𝐿𝑖𝑥𝑀𝑜𝑂𝑥 → 𝐿𝑖+ + 𝑀𝑜𝑂𝑥 27-29 

  2.25 𝐿𝑖2𝑆 → 𝐿𝑖+ + 𝑆𝑛
2− 13-17 

     

2 cathodic (-) 1.9 𝐿𝑖+ + 𝑆𝑛
2− → 𝐿𝑖2𝑆 13-17, 21 

  0.9 𝐿𝑖+ + 𝑀𝑜𝑆2 → 𝐿𝑖𝑥𝑀𝑜𝑆2    

  0.5 𝐿𝑖+ + 𝑀𝑜𝑂𝑥 → 𝐿𝑖𝑥𝑀𝑜𝑂𝑥 27 
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In Fig. 3b, the first discharge scan in the CV of the petaled MoS2 material (in the cathodic (-) direction 

from the open-circuit potential, during which lithiation is expected) shows one small peak at 0.9 V and one 

intense peak at 0.4 V followed by the onset of Li0 deposition as 0 V is approached. The peak at 0.9 V is related 

to Li+ intercalation into MoS2 and the peak at 0.4 V is typically understood to be the conversion reaction from 

MoS2 to Mo metal and the formation of Li2S.13–17,21 In other reports of amorphous MoO2, a peak at 0.5 V has 

been observed and corresponds to the intercalation of Li+ into the defect sites in MoO2 and MoO3.
27 As P. MoS2 

electrodes contain a significant amount of O in the intermediate layer, this peak centered on 0.4 V is likely a 

combination of two reductions: Li+ intercalation into the defect sites in amorphous MoO2 and MoO3 at 0.5 V; 

and the conversion of LixMoS2 to Mo metal and Li2S at 0.3 V. These and the following predictions are 

summarized in Table 1. 

On the first charge scan (in the anodic (+) direction from 0 V, during which delithiation is expected) 

there are peaks at 1.5 V and 2.25 V. The peak at 2.25 V is a commonly observed MoS2 peak corresponding to 

the decomposition of Li2S to Sn
2-.13–17 On the other hand, the peak at 1.5 V is not typical in MoS2 materials but 

has been observed in amorphous MoO2 and MoO3 materials; it is understood to arise from the removal of the 

Li+ from MoO2 and MoO3.
27–29 This peak is also observed in low-current CVs of Mo foil in Figure 4, so it is 

likely due to native MoOx. Notably missing from the sweeps is a significant peak at 1.7 V corresponding to the 

deintercalation of Li+ from MoS2,
13 which could be due to the almost complete conversion of LixMoS2 to Li2S 

and Mo during the first discharge. 
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Figure 4. CV measurements of hydrothermally synthesized MoOx (a) and pure Mo foil (b) at varying scan 

rates.  

 

On subsequent cathodic scans, the Li2S formation peak at 1.9 V appears, the cathodic intercalation peak 

at 0.9 V remains unchanged, and the peak at 0.4 V disappears, leaving only the 0.5 V peak.  The disappearance 

of the 0.4 V peak indicates that the solid-electrolyte interphase (SEI) was formed at this potential during the 

initial discharge.30  From the discussion above, the SEI is likely comprised of a significant amount of Li2S and 

Mo metal which is not reversed in the corresponding anodic scan but is instead used in the Li2S/polysulfide 

redox pair at 1.9 V/2.25 V. 

Figure 3c shows the charge/discharge behavior of these petaled MoS2 electrodes. Along the discharge 

curve there is both a plateau at about 1.9 V and at about 0.5 V consistent with the CV curves in Figure 3b.  The 

charging curve is also consistent with the CV curve in Figure 3b with the conversion plateau at 1.4 V and the 

polysulfide reduction plateau at 2.2 V.   The material shows a maximum capacity of 3.8 mAh/cm3, which we 

estimate corresponds to 825 mAh/g at 0.01 mA/cm2. In addition to the excellent capacity of the material, Figure 

5 shows that the material has excellent rate capability maintaining a volumetric capacity greater than 1.5 

mAh/cm3 (> 300mAh/g) even at current densities as high as 1 mA/cm2. 
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Figure 5. Capacity vs. charging current for a petaled MoS2 battery, representing the rate capability of the 

petaled MoS2 material.  

 

Although the material may be useable as an anode for LIBs, the inefficiency in energy storage evidenced 

by the large voltage split between the 0.5 V/1.5 V pair suggests that this material is more likely to be useful as a 

cathode material. Thus, long-term, high-voltage cycling was performed in the potential range around the 

polysulfide peak (1.5 - 3 V), the relevant voltage regime for a cathode material.  When cycled in this region at 

0.01 mA/cm2 (Figure 3d), the material exhibited excellent capacity retention, maintaining over 90% of the 

original capacity for over 200 cycles. As the high voltage peak only corresponds to the MoS2, we estimated the 

capacity based on the approximate mass of the MoS2, finding that it maintained about 350 mAh/g MoS2. 
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Ex situ Characterization 

 

To elucidate the processes that occur during cycling, we performed ex situ characterization of the P. 

MoS2 electrodes. We analyzed pristine, charged and discharged P. MoS2 electrodes for morphology, chemical 

content, and crystal phases using TEM-EDS (Figure 6) and glancing-angle X-Ray Diffraction (GAXRD, Figure 

7). Two electrodes were cycled at least five times until reversible CVs were obtained, then one was allowed to 

discharge to 5 mV and removed (“discharged”) and the other was charged to 3.0 V and removed (“charged”). 

The electrodes were exfoliated using a stainless steel razor blade, the material sonicated in solvent, then 

deposited on TEM grid and allowed to dry. 
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Figure 6. HAADF-TEM images (left) with accompanying EDS maps (right) of P. MoS2/Mo: (a, b) pristine, (c, 

d) discharged, and (e, f) charged.  

 

The image of pristine P. MoS2 in Figure 6a shows a cross-section of P. MoS2/MoSxOy with the top 

petals on the right side of the image and the MoSxOy on the left side of the image. It can be observed that the O 

(red) content is highest in the intermediate layer on the left side, then rapidly decreases toward the petals, but S 

(yellow) is most clearly seen in the petals. Mo (blue) is observed throughout the material as evidenced by the 

purple hue of the O-rich area and the slight green hue of the S-rich area. In the discharged electrode (Fig. 6 c,d), 
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a combination of large, Mo-rich slabs and curly, O-rich petals can be observed, but no S is measured. The lack 

of S is likely due to the formation of Li2S, which dissolves in the ethylene carbonate solvent and does not 

remain immobilized on the electrode. The material is likely a combination of metallic Mo and Li4MoO5, as 

evidenced in the following GAXRD analysis. In Figure 6 (e,f) , a representative sample of the charged material 

can be seen, which is primarily composed of small MoO3 slabs and Mo and Sn
2- clusters. This is not surprising, 

as MoS2, Sn
2-, and delithiated MoOx are expected at this stage. 

The GAXRD results (Figure 7) are most illuminating as to the processes occurring as the battery is 

cycled. The Mo foil diffractogram is shown in black with two major reflections at 40.5° and 58.6° 2θ and some 

minor species with the approximate stoichiometry of MoO3 (MoxO3x-y) noted. Pristine P. MoS2 is shown in red 

where the Mo reflections dominate the measurement. There is a low, broad increase in the intensity from ~32-

38° where reflections from hexagonal (2H-) and rhombohedral (3R-) MoS2 are expected, as well as MoxO3x-y 

and monoclinic MoO2. The low, broad signal in this region indicates that the MoS2 has low crystallinity. If it 

was highly crystalline, one would expect a larger number of distinguishable peaks matching 2H-MoS2. In the 

discharged P. MoS2 electrode (blue), the relative intensities of 2H-MoS2 and metallic Mo reflections at 39.65°, 

40.5°, and 58.6° are maintained, but new reflections from MoxO3x-y and lithiated molybdates (LixMoyOz) 

appear. The MoxO3x-y reflections are different from those measured in pristine P. MoS2. The charged P. MoS2 

electrode is shown in green and is the only electrode where metallic Mo reflections are not the highest intensity. 

Rather, the Mo reflections are small and have been dwarfed by MoxO3x-y (Mo17O47 (5 1 0), JCPDS Card No. 13-

0345) as the strongest reflection. Additionally, the MoS2 reflections have not changed significantly and the 

LixMoyOz reflections are fewer.   
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Figure 7. GAXRD comparison of pristine (red), discharged (blue), and charged (green) P. MoS2/Mo electrodes 

as well as Mo foil (black). Assignments from JCPDS Cards: 42-1120 (Mo), 37-1492 (MoS2-2H), 17-0744 

(MoS2-3R), 05-0452 (MoO2-monoclinic); MoxO3x-y and LixMoyOz are groups of multiple JCPDS cards sharing 

the same generic formula, exhaustively listed in Table 2. 
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Table 2. Comprehensive list of categorized JCPDS cards used in GAXRD assignment. 

Group (symbol) used in Fig. 7 Formula  JCPDS Card No. Found in (m, d, c)* 

MoxO3x-y (●) Mo17O47 13-0345 m, d, c 

 

MoO3-orthorhombic 35-0609 m 

 

MoO3-hexagonal 21-0569 d, c 

   

 

LixMoyOz (□) Li4Mo5O17 25-0492 d, c 

 

Li0.62MoO2.87 37-1450 d, c 

 

Li2Mo4O13 25-0494 d, c 

 

Li0.1Mo4O7 38-0071 d 

 

β-Li4MoO5 21-0511 d, c 

 

γ-Li4MoO5 21-0509 d 

 

Li0.042MoO3 38-0645 d 

 LiMo8O10 42-0322 d 

 

β-Li2MoO3 21-0515 c 

 

Li2MoO4 12-0763 d, c 

 

Li1.3Mo3O8 37-0249 d 

 

*m – Mo foil, d – Discharged P. MoS2, c – Charged P. MoS2 

 

It is apparent from these data that the primary electrochemistry occurring during charge-discharge is the 

conversion between MoO3 and Mo metal and is detected in CVs by the 1.5 V/0.5 V peak pair, contrary to initial 

assumptions that this peak pair arose from lithiation/delithiation of MoOx defects. The secondary 

electrochemical reaction is the Sn
2-/Li2S conversion at 2.25 V/1.9 V, but these products are either soluble in the 

electrolyte solution or amorphous, so they are not observed in GAXRD. Lithiation and delithiation of MoxO3x-y 

and MoS2 are minor or nonexistent, respectively, as evidenced from the small or negligible change in these 

crystalline materials between discharged and charged states. From the TEM-EDS and GAXRD data, it appears 

that while the petal morphology is somewhat maintained during cycling, it only acts as a structural support for 

reversible Mo-MoO3 conversion. The results of this analysis are summarized in Figure 8. 
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Figure 8. CV of P. MoS2 with assignments of species formed at each voltage. From reference 13, with 

highlighted assignment from this work. 

 

Conclusions 

 

In summary, we have studied the use of a one-step hydrothermal synthesis to develop self-supported 

electrodes for LIB applications. We observe that the material exhibits three energy storage mechanisms: first, 

the conversion of MoS2 and MoOx to Mo metal, LixMoyOz, and Li2S; second, the oxidation of Mo to MoO3 and 

partial delithiation of LixMoyOz; and third, the formation/reduction of polysulfides. The dominant, reversible 

reaction is the conversion between Mo and MoO3. The unique petaled structure and large, intermediate, 

MoSxOy layer provide high surface area and O to support the Mo-MoO3 and Li2S-Sn
2- conversion reactions. The 

material exhibits a maximum capacity of 3.8 mAh/cm3 (~825 mAh/g). Isolating the polysulfide 

formation/reduction mechanism by cycling from 1.5 - 3.0 V results in a high voltage capacity of 0.42 mAh/cm3 

(350 mAh/g MoS2). The material also shows high rate capability and excellent cycle stability for the high 

voltage polysulfide reactions. This material presents itself as a self-supported structure for LIBs where the O 

supplied by the intermediate layer leads to intermediate-voltage conversion reactions. In the future, research 
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efforts should be dedicated to adapting this hydrothermal synthetic technique to prepare other, layered, self-

supported electrode materials such as LiCoO2 for energy storage platforms. 

 

References 

 

(1)  Dudney, N. J. Solid-State Thin-Film Rechargeable Batteries. In Materials Science and Engineering B: 

Solid-State Materials for Advanced Technology; 2005; Vol. 116, pp 245–249. 

(2)  Golodnitsky, D.; Nathan, M.; Yufit, V.; Strauss, E.; Freedman, K.; Burstein, L.; Gladkich, A.; Peled, E. 

Progress in Three-Dimensional (3D) Li-Ion Microbatteries. Solid State Ionics 2006, 177 (26–32 SPEC. 

ISS.), 2811–2819. 

(3)  Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S. Three-Dimensional Battery Architectures. 2004. 

(4)  Nathan, M.; Golodnitsky, D.; Yufit, V.; Strauss, E.; Ripenbein, T.; Shechtman, I.; Menkin, S.; Peled, E. 

Three-Dimensional Thin-Film Li-Ion Microbatteries for Autonomous MEMS. J. Microelectromechanical 

Syst. 2005, 14 (5), 879–885. 

(5)  Roberts, M.; Johns, P.; Owen, J.; Brandell, D.; Edstrom, K.; El Enany, G.; Guery, C.; Golodnitsky, D.; 

Lacey, M.; Lecoeur, C.; Mazor, H.; Peled, E.; Perre, E.; Shaijumon, M. M.; Simon, P.; Taberna, P.-L. 3D 

Lithium Ion Batteries—from Fundamentals to Fabrication. J. Mater. Chem. 2011, 21 (27), 9876. 

(6)  Ellis, B. L.; Knauth, P.; Djenizian, T. Three-Dimensional Self-Supported Metal Oxides for Advanced 

Energy Storage. Adv. Mater. 2014, 26 (21), 3368–3397. 

(7)  Cheah, S. K.; Perre, E.; Rooth, M.; Fondell, M.; Hårsta, A.; Nyholm, L.; Boman, M.; Gustafsson, T.; Lu, 

J.; Simon, P.; Edström, K. Self-Supported Three-Dimensional Nanoelectrodes for Microbattery 

Applications. Nano Lett. 2009, 9 (9), 3230–3233. 

(8)  Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J.-M. High Rate Capabilities Fe3O4-Based Cu 

Nano-Architectured Electrodes for Lithium-Ion Battery Applications. Nat. Mater. 2006, 5 (7), 567–573. 



94 

 

(9)  Ko, Y.-D.; Kang, J.-G.; Park, J.-G.; Lee, S.; Kim, D.-W. Self-Supported SnO2 Nanowire Electrodes for 

High-Power Lithium-Ion Batteries. Nanotechnology 2009, 20 (45), 455701. 

(10)  Yoffe, A. D. No Title. In Physics and Chemistry of Electrons and Ions in Condensed Matter; Springer, 

1984; pp 437–458. 

(11)  Haering, R. R.; Stiles, J. A.; Brandt, K. Lithium Molybdenum Disulphide Battery Cathode, 1979. 

(12)  Whittingham, M. S. Lithium Batteries and Cathode Materials. 2004. 

(13)  Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium Ion Battery Applications of Molybdenum Disulfide 

(MoS2) Nanocomposites. Energy Environ. Sci. 2014, 7 (1), 209–231. 

(14)  Chang, K.; Chen, W. L -Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with 

Excellent Electrochemical Performances for Lithium Ion Batteries. ACS Nano 2011, 5 (6), 4720–4728. 

(15)  Chang, K.; Chen, W. In Situ Synthesis of MoS2/graphene Nanosheet Composites with Extraordinarily 

High Electrochemical Performance for Lithium Ion Batteries. Chem. Commun. 2011, 47 (14), 4252. 

(16)  Hwang, H.; Kim, H.; Cho, J. MoS2 Nanoplates Consisting of Disordered Graphene-like Layers for High 

Rate Lithium Battery Anode Materials. Nano Lett. 2011, 11 (11), 4826–4830. 

(17)  Xiao, J.; Choi, D.; Cosimbescu, L.; Koech, P.; Liu, J.; Lemmon, J. P. Exfoliated MoS2 Nanocomposite as 

an Anode Material for Lithium Ion Batteries. Chem. Mater. 2010, 22 (16), 4522–4524. 

(18)  Sen, U. K.; Mitra, S. High-Rate and High-Energy-Density Lithium-Ion Battery Anode Containing 2D 

MoS2 Nanowall and Cellulose Binder. ACS Appl. Mater. Interfaces 2013, 5 (4), 1240–1247. 

(19)  Albiter, M. A.; Huirache-Acuña, R.; Paraguay-Delgado, F.; Rico, J. L.; Alonso-Nuñez, G. Synthesis of 

MoS2 Nanorods and Their Catalytic Test in the HDS of Dibenzothiophene. Nanotechnology 2006, 17 

(14), 3473–3481. 

(20)  Berntsen, N.; Gutjahr, T.; Loeffler, L.; Gomm, J. R.; Seshadri, R.; Tremel, W. A Solvothermal Route to 

High-Surface-Area Nanostructured MoS2. 2003. 

(21)  Zhang, C.; Wang, Z.; Guo, Z.; Lou, X. W. (David). Synthesis of MoS2–C One-Dimensional 

Nanostructures with Improved Lithium Storage Properties. ACS Appl. Mater. Interfaces 2012, 4 (7), 



95 

 

3765–3768. 

(22)  Mdleleni, M. M.; Hyeon, T.; Suslick, K. S. Sonochemical Synthesis of Nanostructured Molybdenum 

Sulfide. 1998. 

(23)  Finn, S. T.; Macdonald, J. E. Petaled Molybdenum Disulfide Surfaces: Facile Synthesis of a Superior 

Cathode for QDSSCs. Adv. Energy Mater. 2014, 4. 

(24)  Finn, S. T.; Macdonald, J. E. Contact and Support Considerations in the Hydrogen Evolution Reaction 

Activity of Petaled MoS2 Electrodes. ACS Appl. Mater. Interfaces 2016, 8 (38), 25185–25192. 

(25)  Yang, L.; Liu, L.; Zhu, Y.; Wang, X.; Wu, Y. Preparation of Carbon Coated MoO2 Nanobelts and Their 

High Performance as Anode Materials for Lithium Ion Batteries. J. Mater. Chem. 2012, 22 (26), 13148. 

(26)  Li, W.; Cheng, F.; Tao, Z.; Chen, J. Vapor-Transportation Preparation and Reversible Lithium 

Intercalation/deintercalation of α-MoO3 Microrods. J. Phys. Chem. B 2006, 110, 119–124. 

(27)  Jang, J.; Kim, S.-M.; Kim, Y.; Park, K. H.; Ku, J. H.; Ryu, J. H.; Oh, S. M. Electrode Performances of 

Amorphous Molybdenum Oxides of Different Molybdenum Valence for Lithium-Ion Batteries. Isr. J. 

Chem. 2015, 55 (5), 604–610. 

(28)  Ju, X.; Ning, P.; Tong, X.; Lin, X.; Pan, X.; Li, Q.; Duan, X.; Wang, T. HxMoO3 Nanobelts with Better 

Performance as Anode in Lithium-Ion Batteries. Electrochim. Acta 2016, 213, 641–647. 

(29)  Lu, K.; Xu, J.; Zhang, J.; Song, B.; Ma, H. General Preparation of Three-Dimensional Porous Metal 

Oxide Foams Coated with Nitrogen-Doped Carbon for Enhanced Lithium Storage. ACS Appl. Mater. 

Interfaces 2016, 8 (27), 17402–17408. 

(30)  Verma, P.; Maire, P.; Novák, P. A Review of the Features and Analyses of the Solid Electrolyte 

Interphase in Li-Ion Batteries. Electrochim. Acta 2010, 55 (22), 6332–6341. 



96 

 

CHAPTER V 

 

A Cu2S@SnS Core@Shell Structure via SnS@Cu2S Cation Exchange and its Photovoltaic Performance.* 

 

Introduction 

 

Synthesis of nanoscale materials has made great strides and a wide variety of nanoscale materials with 

variable shape, size, morphology, phase, and composition have been reported in the literature.1–7 Cation 

exchange has emerged as a rational synthetic approach for achieving nanomaterials with complex 

architectures8–10 such as dot-in-rods of ZnSe/ZnS and Cu2Se/Cu2S,11 as well as PbSe/PbS,12 that are almost 

inaccessible by using conventional colloidal synthetic techniques with either a bottom-up or top-down 

approach.13–16 Cation exchange can substantially influence the physical and optoelectronic properties of the 

nanomaterials,17–20 as well as produce metastable phases of materials in the nanoscale size regime.21,22 Further, 

Manna et al. have shown that cation exchange can allow the selective chemical transformation of the 

nanostructures based on the reactivity of the foreign ions towards the different domains present in the pristine 

lattice.23 Cation exchange is typically a post-synthetic modification in which foreign cations are introduced into 

pre-synthesized nanocrystals, and the extent of exchange is externally tuned, mainly by foreign cation 

concentration.  Depending on the extent of exchange, doped,18,24,25 alloyed,16,26,27 core@shell,28–30 

heterostructured12,15,31 or completely exchanged12,21,32 nanocrystals can be obtained while retaining shape, size 

and often crystal structure. This retention of desired properties is based upon the reactivity of the foreign 

cation(s) as well as the miscibility of the product phase in the pristine lattice.11,12,16,33 Cation exchange with 

                                                        
* This chapter has been adapted from a manuscript in preparation by Sarkar, S., Finn, S., & Macdonald, J., 

Vanderbilt University, 2017. 
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different types of nanostructures having variable size, morphology, and phase has already been investigated.8–

10,13–16  Mechanistic details such as the accommodation of a foreign ion into a high-mismatch lattice and the 

crystallographic orientation of the product phase in the pristine lattice have been elucidated in other work.22,34,35 

 When a foreign cation experiences high lattice mismatch in the pristine lattice during the exchange 

process, it forms a separate domain with a distinct phase boundary, sharing the rigid anion sublattice of the 

pristine nanocrystals.36–39 Nevertheless, the reactant and product phases share a common interface with high 

lattice strain, making a crystallographically complex nanostructure.  However, the formation of a distinct 

boundary between different materials offers the opportunity for integrating multiple functionalities into a single 

building block for a variety of applications and is fundamentally important for investigating the electronic 

coupling between the two nanoscale components. A limited number of such cation exchange processes are also 

reported to form a void in the structure due to the large difference in the inward and outward diffusion flux of 

the selected cations.40,41 Nanocrystals with voids, owing to the large surface area and low material density, are 

of immense interest due to their potential application in nanoreactors,42 drug delivery,43 energy storage,44 

catalysis,45 gas sensing,46 etc. Hence, investigating a cation exchange process in such a system with high lattice 

mismatch is not only fundamentally challenging, but also highly important for producing desirable 

nanomaterials for many applications in current demand. 

A classic example of cation exchange, Cu2X → SnX (X= S, Se or Te), with high lattice mismatch has 

been reported previously.27,28,37  Here, we investigated the reverse cation exchange process employing Cu+ as 

foreign ion and SnS as the pristine lattice. We investigated the process with variable sizes of SnS nanocubes, 

and found that the Cu+ can only exchange with the surface Sn2+ at lower temperature at the initial stage of the 

reaction, resulting in a shell of Cu2S around the SnS. However, on increasing the temperature, Cu+ infiltrates the 

lattice extremely fast, thrusting Sn2+ out of the core of the SnS nanocube, transforming the SnS@Cu2S to a 

Cu2S@SnS nanocube. Also, comparative photovoltaic tests have been conducted with the pristine SnS and both 

types of core@shell nanocubes as both the SnS@Cu2S and Cu2S@SnS nanocubes absorb light in the visible 
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region of the solar spectrum. Mechanistic details of the SnS→Cu2S@SnS chemical process and its tunability 

will be discussed in a forthcoming publication.  

 

Experimental 

 

Tin(II) chloride (SnCl2, 99.99%), thiourea (≥ 99.0%), hexadecylamine (HDA, tech., 97%) oleylamine 

(OlAm, Aldrich, 70%), tri-butylphosphine (TBP, tech., 97%), Copper (I) chloride (CuCl, 97%) were purchased 

from Sigma Aldrich. All chemicals were used as received without further purification. 

 

Cu+ Exchange of SnS Nanocubes 

 

The first step of this process is a synthesis of SnS nanocube, and the second step is Cu+ treatment to the 

nanocubes in situ. 

Synthesis of 53 ± 5 nm SnS nanocubes: nanocubes of SnS have been synthesized following a modified 

literature method.1 In a round bottom three neck flask, 38 mg (0.2 mmol) SnCl2 and 2 gm HDA were loaded. 

The mixture was placed under vacuum for 30 min at 100°C. It turned turbid light brown solution. Then, 1 ml 

TBP (kept under N2 atmosphere) was injected into the solution, and the temperature of the reaction mixture was 

further raised to 190oC with a heating rate of 15oC/min to get a transparent solution. Then, the reaction mixture 

was allowed to cool down to 175oC, and a hot solution of thiourea (12 mg) dissolved in HDA (1 g) (through 

gentle heating under inert atmosphere) was injected in to the reaction mixture at 175oC. The reaction solution 

turned deep brown immediately after the injection, indicating the formation of SnS nanocubes. After 1 min the 
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solution was slowly (15oC/min) cooled down to 155oC and annealed for a total time of 20 min. It was further 

cooled down to 100oC for injection of the Cu+ solution. 

Cu+ addition to the 53 ± 5 nm SnS nanocubes: After cooling down the reaction solution to 100oC, 2.6 

mL of crude solution was removed, and a solution of CuCl (45 mg) dissolved in 2 ml of oleylamine under inert 

atmosphere was injected into the reaction mixture.  Then the temperature of the reaction solution was raised to 

170oC (20oC/min). Aliquots were collected at the different time points, while raising the temperature to 170oC. 

Synthesis of 22 ± 3 nm SnS nanocubes:  In a round bottom three neck flask, 38 mg (0.2 mmol) SnCl2 

and 2 gm HDA were loaded. The mixture was placed under vacuum for 30 min at 100°C. It also turned a turbid, 

light brown color. Then, 1 mL TBP (kept under N2 atmosphere) was injected into the solution, and the 

temperature of the reaction mixture was further raised to 190oC with a heating rate of 15oC/min until the 

solution turned transparent. The reaction mixture was then allowed to cool down to 160oC, and a hot solution of 

thiourea (39 mg) dissolved in HDA (1.4 g) (through gentle heating under inert atmosphere) was injected in to 

the reaction mixture at 160oC. The solution turned deep brown immediately after the injection. It was annealed 

at the same temperature for a min, after that, it was slowly (15oC/min) cooled down to 155oC, and annealed for 

a total time of 20 min to get the desired size of SnS nanocube. It was further cooled down to 100oC for Cu+ 

treatment. 

Cu+ addition to the 23 ± 3 nm SnS nanocubes: After cooling down the reaction solution to 100oC, 3.2 ml 

of crude solution was taken out, and a solution of CuCl (45 mg) dissolved in 2 ml of oleylamine under inert 

atmosphere was injected into the reaction mixture.  Then the temperature of the reaction solution was raised to 

170oC (20oC/min). Aliquots were collected at the different time points, while raising the temperature to 170oC. 
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Optical Spectroscopy 

 

Absorbance spectra of the purified samples were collected using a UV-visible spectrophotometer (Jasco 

V-670). Photoluminescence spectra were collected using a spectrofluorometer (Jasco FP-8300) with 348 nm 

excitation wavelength. 

 

TEM 

 

Transmission electron microscopy (TEM) images were collected and energy dispersive X-ray 

spectroscopy (EDS) was carried out using a FEI Tecnai Osiris digital 200 kV S/TEM system. TEM samples 

were prepared by drop-casting a dilute solution of the nanostructures dispersed in hexanes onto a carbon coated 

nickel grid and drying in air at room temperature. 

 

QDSSC Preparation and Testing 

 

Preparation, assembly, and testing of quantum dot sensitized solar cell (QDSSC) components including 

TiO2/FTO photoanodes, polysulfide electrolyte, and P. MoS2/Mo counter electrodes were carried out exactly as 

previously described47,48 with some changes. These changes include deposition of the photoabsorber quantum 

dots, successive ionic layer adsorption and reaction (SILAR) of the protective ZnS layer (no CdS), and linear 

sweep voltammetric (LSV) scan rate of photovoltaic measurements was 50 mV/s. 

The nanocubes were deposited onto TiO2/FTO via electrophoretic deposition (EPD). A ~50 mg dry 

sample of nanocubes was suspended in 5 mL chloroform with 1 drop of oleylamine, then sonicated for several 
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minutes until dispersed. A TiO2/FTO electrode and bare FTO electrode were attached to (-) and (+) leads, 

respectively, then suspended in the nanocube solution. A Keithley 2400 SourceMeter was used to apply 200 V 

to the system for 20 min. Once nanocubes were deposited onto TiO2/FTO, the photoanode was rinsed with 

toluene, then the surface excluding the TiO2 area was wiped with a Kimwipe. Typical loading of nanoparticles 

was 0.46 mg cm-2 Cu2S@SnS and 1.2 mg cm-2 SnS@Cu2S. 

After nanocube deposition, a protective ZnS layer was applied via SILAR: photoanodes were dipped in 

0.1 M Zn(NO3)2 (Strem) in methanol, rinsed with methanol, dried, dipped in 0.1 M Na2S·9H2O in 1:1 

methanol:water, rinsed, and dried; 2 of these cycles were repeated per photoanode, then photoanodes were 

stored in the dark.  

 

Results & Discussion 

 

SnS nanocubes have been synthesized following a modified literature method.49 Typically, thiourea 

dissolved in HDA (hexadecylamine) was injected at a particular temperature in a solution of SnCl2 in HDA and 

TBP, and annealed for 20 min at an optimized temperature to synthesize the SnS nanostructures, the schematic 

representation of which is shown in Scheme 1. In order to carry out the exchange process, various sizes of 

pristine nanostructures ranging from 25-50 nm were synthesized by varying the injection temperature, amount 

of anion precursor, and HDA.  

 

Scheme 1. Reaction scheme of cation exchange process. 
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Specifically, the injection of the room-temperature liquid into the 175°C solution caused the reaction 

temperature to drop and the solution was maintained at 155°C for 20 min. SnS nanocubes could be isolated at 

this step (Figure 1a, nanocube length = 52 ± 5 nm, n = 120).  XRD confirmed the phase to be the newly 

described cubic π-SnS50,51 with a small amount of orthorhombic α-SnS (JCPDS# 39-0354) as an impurity 

(Figure 2). The π-SnS can be described as NaCl-type with ordered defects, and so has an FCC anion sub-lattice. 

High resolution TEM (Figure 1) shows that the nanocubes are single-crystalline. The lattice fringes indicate that 

the faces of the cuboids are the [400].  

 

  

Figure 1.  TEM and HR-TEM images of SnS nanocubes (a-d), SnS@Cu2S nanocubes collected at 135 °C (e-h) 

and Cu2S@SnS nanocubes collected at 175°C (i-l). 

 

Cation exchange was performed without purification of the SnS nanocubes. The temperature of the 

reaction solution was reduced to 90°C, and a Cu+ solution in oleylamine was injected into the reaction flask. 
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The temperature was then ramped to 170°C, and aliquots were collected at several temperatures to observe the 

exchange processes.  

The TEM image of the early stage aliquot (Figure 1f) collected at 135°C after the copper injection 

shows a similar morphology to the pristine SnS nanocubes (Figure 1c) and the particles have a similar size 

(52 ± 5 nm, n = 120). HR-TEM paired with energy dispersive X-ray spectroscopy (EDS) indicate that the 

particles are composed of a SnS core with a copper-rich, 4-nm thick, mixed Cu-Sn-S shell (Figure 3). In some 

isolated areas of the shell, < 5nm crystallites could be observed with d = 0.3 nm, corresponding to the (101)-like 

reflections of a hexagonal Cu2-xS phase. The XRD pattern (Figure 2b) does not show additional reflections due 

to copper sulfide as these tiny crystallites are likely dwarfed by the more intense reflections of the π-SnS. 

 

 

Fig 2.  XRD at the different stages of the cation exchange reaction. (a, b, c) are the XRD for the pristine SnS, 

SnS@Cu2S and Cu2S@SnS, respectively. 
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XRD of the final Cu2S@SnS product shows additional reflections at 37.7°, 46.5° and 48.9°, 

characteristic of one of the hexagonal-like copper sulfides (Cu2-xS).  While there are several very similar phases 

of copper sulfide, we found the additional reflections are well-matched with roxbyite Cu1.8S. Roxbyite features 

a distorted hcp anion lattice, indicating that there is a major structural transformation from cubic to hexagonal 

anion lattice upon cation exchange from Sn2+
 to Cu+. For ease of discussion, we will approximate the lattice 

assignments of the Cu2S to that of a simple hexagonal structure. The reflections were accordingly assigned; 

37.7° is the (102)-like planes, 46.5° (110)-like planes, and the 48.9° (103)-like planes. HR-TEM (Figure 1i-l) 

showed that the particles were single-crystalline. The crystallite size (40.7 nm) determined by Scherrer 

calculation (considering the peak at 46.5°) is closely matched with the HR-TEM. A pair of perpendicular lattice 

fringes were assigned to d = 0.33 nm as (100)-like planes, and d = 0.19 nm as (110)-like planes. A third set of 

fringes, d = 0.23 nm, was assigned to (102)-like planes. The aliquot of the ~23-nm nanocubes (this size was 

optimal for EPD) collected at 170°C after copper injection shows that the cubes have developed Cu2S cores. 

EDS mapping indicates that the core is Cu2S and the shell is SnS (Figure 4).  
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Figure 3.  A) High Angle Annular Dark Field- Scanning Transmission Electron Microcopy (HAADF-STEM) 

image of the nanocubes collected at 135°C (b-e) EDS elemental mapping (f) relative EDS signal of Sn, Cu and 

S along the line noted in (e). 

 

 

Fig 4.  High Angle Annular Dark Field- Scanning Transmission Electron Microcopy (HAADF-STEM) image 

of the nanocubes (23 ± 2 nm, n = 120) collected at 170°C (b-d) EDS elemental mapping 
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What is most interesting about this reaction is that once multiple, very specific conditions are met 

(temperature, concentration of Cu+ and coordinating ligands), Cu+ rapidly moves into the SnS lattice, forcing 

Sn2+ out to form a SnS shell around a Cu2S core. Performing this rapid Cu+ exchange on roughly 25 nm, 50 nm, 

and 75 nm SnS nanocubes produces Cu2S@SnS, Sn@Cu2S@SnS, and Void@Cu2S@SnS heterostructures, 

respectively. More precise tuning of the SnS precursor nanocube size could result in a high level of control over 

the number, size, and composition of phases present. The coordinating ligands TBP and oleylamine are also 

found to play a pivotal role in the reaction based on their stabilizing interaction with Sn2+ and Cu+, respectively, 

suggesting that other ligand chemistries may be explored to achieve high monodispersity and alternate product 

morphologies. These initial results are very exciting and present the field with a novel approach to synthesize 

heterostructured nanoparticles. 

 

Photovoltaic Performance 

 

Bulk SnS and Cu2S have small band gaps (Eg) of 1.1 and 1.4 eV, respectively,52,53 making them 

attractive photoabsorbers for solar photovoltaics. Furthermore, UV-Visible absorbance spectra of the 

synthesized nanocubes (Figure 5) indicate an absorbance onset in the near-IR with a first exciton peak around 

500 nm and a broad absorbance over the visible range. Therefore, we conducted a comparative photovoltaic 

performance of the small pristine SnS, SnS@Cu2S and Cu2S@SnS core@shell nanocubes.  
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Figure 5. UV-vis of the aliquots collected at the different stages of the cation exchange reaction. 

 

The various nanocube samples were tested as photoabsorbers in QDSSCs prepared according to 

previous work47 and the results are presented in Figure 6a and Table 1. Cu2S@SnS nanocubes exhibit the 

highest short-circuit current density (Jsc), open-circuit potential (Voc) and external power conversion efficiency 

(η), but the lowest fill factor (FF). While the performance of SnS and SnS@Cu2S are approximately the same, it 

is apparent that Jsc, Voc, and η decrease when a Cu2S shell is added to the SnS nanocubes.  
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Figure 6. a) J-V curve of devices prepared using SnS@Cu2S (black), Cu2S@SnS (red), and SnS (black dashed) 

nanoparticles under 1 Sun illumination (AM 1.5). b) band alignment of total device using bulk values of CB 

(red) and VB (blue) and polysulfide reduction potential (orange). Small black arrows show expected direction 

of shell band movement due to quantum confinement effects. Green arrows show direction of photoexcited 

electron transfer. 

 

Table 1. Solar Cell Characteristics. 

Photoabsorber Voc (mV) Jsc (mA cm-2) FF η (%) 

SnS@Cu2S 346 0.74 0.41 0.105 

Cu2S@SnS 403 1.24 0.33 0.164 

SnS cubes 367 0.84 0.39 0.119 
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Considering the type II SnS-Cu2S band alignment (Figure 6b) with approximately equal conduction 

band (CB) positions, either core@shell configuration should allow for the flow of excited electrons (e-) from 

higher CBs to lower. However, devices employing Cu2S@SnS nanocubes are expected to have 

increased Jsc compared to SnS@Cu2S, as the valence band (VB) alignment allows for the electron hole (h+) left 

in the VB to be removed from the core by the electrolyte. From Figure 6b, it is expected that SnS@Cu2S 

particles will exhibit higher resistance to conduction than SnS because the h+ experience a larger energy barrier 

due to the Cu2S shell. Slight modulation of the shell CB is expected due to quantum confinement effects, as the 

2-3 nm shells are smaller than the Bohr exciton radius of both SnS (7 nm)52 and Cu2S (5 nm).53 A higher shell 

CB position likely limits the Jsc and FF of these devices. 

Increased η of Cu2S@SnS vs. SnS@Cu2S is observed, even with lower average loading: Cu2S@SnS = 

2.9 µmol cm-2 vs. SnS@Cu2S = 8.3 µmol cm-2. However, an unexpected deficiency in the Cu2S@SnS particles 

is the fill factor (FF), which indicates higher resistive response overall. Since these nanoparticles are much 

larger than the Cu2S Bohr exciton radius of 5 nm, it is expected that bulk-like transport phenomena contribute to 

a decrease in intra-particle conductance.53 Further, if there are defects present as CuxS (x = 1.8 - 2), the 

synthesized particles can give rise to a plurality of phases with associated band-bending at interfaces and 

changing absorption coefficients, which tend to increase the sheet resistance of the 

material. This correspondingly increases Jsc,
54 but causes the cell to respond to applied potential more like a 

resistor than an ideal photodiode.55 This is a demonstration of Ohm’s law, in which an ideal resistor has a linear 

I-V relationship and a FF of 0.25, in contrast to an ideal photodiode having a FF of 1.  
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Conclusions 

 

We have observed a chemical switching of core and shell materials in the cation exchange of SnS 

nanocubes with the foreign ion Cu+. On addition of Cu+ in to the crude solution of SnS nanocubes, Cu+ only 

exchanges a few monolayers of the surface Sn2+ at relatively lower temperature, producing SnS@Cu2S 

core@shell nanocubes. However at an elevated temperature, Cu+ acquires additional potential and proceeds 

extremely fast to occupy the core of the nanocubes, concomitantly moving the core SnS out to become a few-

monolayer-thick shell and producing Cu2S@SnS core-shell nanocubes. The transformation process of 

SnS→SnS@Cu2S→Cu2S@SnS can be rationalized as a unique chemical exertion by the diffusion couple, and 

is a product of the specific reaction conditions. Further, the comparative photovoltaics studies reveal that the 

Cu2S@SnS is overall a better photovoltaic material than the pristine SnS and SnS@Cu2S nanocubes, but it 

demonstrates resistive behavior.  
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CHAPTER VI 

 

Conclusion 

 

Scheme 1. Flowchart outlining sequential steps in development of an idea into a technology.  

 

 

Summary of Completed Work and Future Directions 

 

Throughout the course of this dissertation work, my approach has always been to minimize steps, cost, 

and harshness of synthesis conditions (e.g., by using low temperature, ambient air, etc.) for the sake of facile 

incorporation into end products. In the timeline from idea inception to final application (Scheme 1), I firmly 

believe that simplifying experiments on the research side (toward the blue) only makes for easier translation to 

the manufacturing side. After all, the aim of my work is to benefit mankind by providing affordable, alternative 

solutions to the global energy crisis.  

First, I have adapted a hydrothermal synthesis of flowerlike MoS2 spheres1 into a uniform film of MoS2 

petals grown from a planar Mo foil.2 Using a stainless-steel acid digestion vessel, only three ingredients are 

required: Mo foil, thiourea, and water. The simplicity and frugality of this synthesis are not to be understated, as 

they smooth the path for scale-up of this and potentially myriad other materials into larger devices. Also, I 

developed a method for growing P. MoS2 from a non-native, Au substrate following Mo electrodeposition while 

maintaining its unique morphology and chemistry. Although Au and Mo are not the most earth-abundant 
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materials, Mo is currently very inexpensive, and the synthetic principles of this work may be applied to more 

earth-abundant materials in the future. Next, I comprehensively characterized P. MoS2 using modern as well as 

time-tested techniques and technologies, including Raman spectroscopy, Stylus Profilometry, SEM, EDS, FIB, 

TEM, XPS, and XRD.  

I have evaluated the use of P. MoS2 in three different alternative energy technologies: QDSSCs, HER, 

and LIBs. Simply learning how to assemble a QDSSC with η ≥ 1% took 1.5 years, which is a testament to the 

state of the field vis-à-vis literature reporting practices. Ultimately, device testing may be best left to engineers 

and corporate labs, but it is very useful for chemists to be able to test their novel materials in model devices. 

Additionally, because I took the time to assemble and test devices, I learned a great deal about the role that each 

component plays. Also, I learned about the need to develop devices that minimize the number of interfaces and 

materials, as each new material adds at least one more interface for increasing resistance, lattice strain, degree 

of consideration for compatibility, etc. to the device.  

The HER studies escorted my project into the field of electrocatalysis proper. Most researchers who 

investigate MoS2 do so for final application to HER. We showed that P. MoS2 is a good HER catalyst, although 

it certainly is not the best, especially in comparison to NiP, NiMo, etc. catalysts by Lewis et al.3 However, 

considering the cost of the alternative (Pt), MoS2 is still a viable HER material, as the best MoS2 HER catalysts 

exhibit η to 10 mA cm-2 of 110 mV vs. RHE.4 This study also illuminated other challenges in the design of self-

supported electrode materials. It seems that materials produced from aqueous, low-cost syntheses can 

concomitantly produce tradeoffs such as complicated intermediate layers and unforeseen catalyst-support 

interactions. As was discovered, a rough support (Mo foil) which produces MoS2 catalytic sites with lower 

intrinsic activity (TOF) can be compensated for by providing a higher geometric density of active sites, 

compared to a flat support (e.g. Au) which provides catalytic sites with intrinsically higher HER activity. 

In contrast to the HER activity, I found that the intermediate MoSxOy layer which forms naturally from 

the hydrothermal process is, in fact, detrimental to performance of P. MoS2 in LIBs because the amorphous 
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oxysulfides cycle between Mo-MoO3. It is well known at this point that if any S is introduced in the device, it 

forms Li2S upon discharge, Sn
2- upon charge, then cycles between the two. Therefore, irrespective of the design 

of the nanostructured metal sulfide (except for exposing edge vs. terrace sites in layered TMDCs), it only serves 

as a S source and structural support for Sn
2- cycling. However, the petaled architecture may be beneficial in this 

case because it exposes the MoS2 basal plane, providing access to the van der Waals gaps while allowing 

horizontal swelling during intercalation. Also, in regards to designing cathodes for Li-S batteries, much 

attention has been paid to developing electrodes which interact strongly with Sn
2- species, preventing dissolution 

and migration to the anode.5 Future P. MoS2-based LIB electrodes could benefit from growth on an alternate 

substrate which prevents formation of the intermediate MoSxOy layer, such as the P. MoS2/Au electrodes 

demonstrated in Chapter IV. Alternatively, the P. MoS2 electrode could be modified with a conformal coating 

that preserves the petal morphology and S, but allows Li+ to move in and out during discharge and charge, 

respectively. 

Handling collaborations well will be increasingly important as grant funding becomes more scarce and 

therefore more selective. In this climate of government frugality towards research spending, collaborations will 

become necessary for all researchers to not only have a share in the funds, but address global concerns in an 

interdisciplinary way.  

Finally, core@shell nanocubes were synthesized by Suresh Sarkar, and I deposited them onto TiO2 

anodes via electrophoretic deposition, then tested their performance as photoabsorbers in QDSSCs. We found 

that the interesting band alignment strongly affected the photovoltaic properties of the device. Of course, 

P. MoS2 was used once again as the counter electrode for Sn
2- reduction. We showed a proof-of-concept 

measurement of the deposition and overall device characteristics. It would have been ideal to obtain a 

functioning device over 1% power conversion efficiency, but that was not the goal of the paper. 
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Outlook and Broader Impacts 

 

This specialized field of catalytic nanomaterials sits between nanochemistry synthesis and materials 

engineering. I foresee the field continuing to address energy-related problems by working together effectively. 

Thankfully, HER has been well-optimized for solar water splitting and fuel cells, but now our community needs 

to develop acid-stable oxygen-evolution reaction (OER) catalysts,6 as well as catalysts for the reverse reactions 

– hydrogen oxidation reaction and oxygen reduction reaction (HOR and ORR, respectively) – used in fuel 

cells.7,8 In general, it is still very difficult to find highly active Pt-free catalysts, so much so that a large body of 

research in this field is directed toward simply minimizing Pt content instead of removing it entirely.9 

Photocatalysis plays a role here as well as in SCs and – although it is absolutely necessary for solar energy 

conversion – direct solar-to-water-splitting photocatalytic systems suffer from low current densities and 

efficiencies.10–12 Perovskite materials have certainly made a large impact in the field of SCs as thin films,13 

providing evidence that focusing solely on the “nano” regime may not always provide the best solutions to 

some of these larger-scale energy problems.  

Relative to the broad discipline of chemistry, I have incorporated study of chemical interfacial processes 

between support and intermediate layer, intermediate layer and surface (crystallography, epitaxy, impedance) 

and those between surface and liquid (heterogeneous catalysis: Sn
2- reduction, HER, electrochemistry, 

intercalation). This work affects chemistry principally by simultaneously focusing on larger- and smaller-scale 

interactions and combining chemistry with engineering. I am not the only person working in this 

interdisciplinary melting pot of chemistry, physics, and engineering to solve global problems, and I am not even 

the only one at Vanderbilt University! Chemists like myself will bring the intuition of chemistry and others will 

bring the precise, physical relations and larger-scale, real-world considerations to this work. It requires the 

whole of STEM to solve the world’s energy crisis. 
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For science – which is the increasing of knowledge by asking and answering questions through observation, 

hypothesis, experiment, revision, and theory development – this work has incorporated sustainable practices at 

even the smallest steps. We have asked and attempted to answer questions which deal with the nature of things, 

and are fundamental in and of themselves but also serve to develop new technologies, in keeping with 

Aristotle’s pursuit of the highest good for all.14  

At minimum, this work has impacted society by increasing knowledge about the problem. Three 

scientific papers, a patent, and a dissertation have been produced, which serve to aid other researchers working 

on this problem as well as equip companies with chemical technologies that can be scaled up and incorporated 

into devices. Devices produced can hopefully be sold inexpensively to individuals, organizations, and 

governments for the sake of providing clean energy to all, improving their quality of life and reducing the 

burden of burning fossil fuels on our natural world. 

 

References 

 

(1)  Huang, W.; Xu, Z.; Liu, R.; Ye, X.; Zheng, Y. Tungstenic Acid Induced Assembly of Hierarchical 

Flower-like MoS2 Spheres. Mater. Res. Bull. 2008, 43 (10), 2799–2805. 

(2)  Finn, S. T.; Macdonald, J. E. Petaled Molybdenum Disulfide Surfaces: Facile Synthesis of a Superior 

Cathode for QDSSCs. Adv. Energy Mater. 2014, 4. 

(3)  Saadi, F. H.; Carim, A. I.; Verlage, E.; Hemminger, J. C.; Lewis, N. S.; Soriaga, M. P. CoP as an Acid-

Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, 

Interfacial Characterization and Performance Evaluation. J. Phys. Chem. C 2014, 118 (50), 29294–

29300. 



121 

 

(4)  Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the Hydrogen 

Evolution Reaction ( HER ) with Molybdenum Sulfide Nanomaterials. ACS Catal. 2014, 4, 3957–3971. 

(5)  Li, Z.; Huang, Y.; Yuan, L.; Hao, Z.; Huang, Y. Status and Prospects in Sulfur-Carbon Composites as 

Cathode Materials for Rechargeable Lithium-Sulfur Batteries. Carbon N. Y. 2015, 92, 41–63. 

(6)  Jin, J.; Walczak, K.; Singh, M. R.; Karp, C.; Lewis, N. S.; Xiang, C. An Experimental and 

Modeling/simulation-Based Evaluation of the Efficiency and Operational Performance Characteristics of 

an Integrated, Membrane-Free, Neutral pH Solar-Driven Water-Splitting System. Energy Environ. Sci. 

Energy Environ. Sci 2014, 7 (7), 3371–3371. 

(7)  Arico. A. S  Scorosati. B, Tarascon. J. M, Schalkwijk. W. V, B. P. Nanostructured Materials for 

Advanced Energy Conversion and Storage Devices. Nat. Mater. 2005, 4 (5), 366–377. 

(8)  Steele, B. C.; Heinzel, A. Materials for Fuel-Cell Technologies. Nature 2001, 414 (November), 345–352. 

(9)  Wang, Y.-J.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Progress in Modified Carbon Support Materials for Pt 

and Pt-Alloy Cathode Catalysts in Polymer Electrolyte Membrane Fuel Cells. Prog. Mater. Sci. 2016, 82, 

445–498. 

(10)  McCool, N. S.; Swierk, J. R.; Nemes, C. T.; Schmuttenmaer, C. A.; Mallouk, T. E. Dynamics of Electron 

Injection in SnO2/TiO2 Core/Shell Electrodes for Water-Splitting Dye-Sensitized Photoelectrochemical 

Cells. J. Phys. Chem. Lett. 2016, 7, 2930–2934. 

(11)  Sivula, K.; Le Formal, F.; Grätzel, M. Solar Water Splitting: Progress Using Hematite (α-Fe2O3) 

Photoelectrodes. ChemSusChem 2011, 4 (4), 432–449. 

(12)  Xiang, C.; Weber, A. Z.; Ardo, S.; Berger, A.; Chen, Y.; Coridan, R.; Fountaine, K. T.; Haussener, S.; 

Hu, S.; Liu, R.; Lewis, N. S.; Modestino, M. A.; Shaner, M. M.; Singh, M. R.; Stevens, J. C.; Sun, K.; 

Walczak, K. Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices. 



122 

 

Angew. Chemie Int. Ed. 2016, 55 (42), 12974–12988. 

(13)  Stoumpos, C. C.; Kanatzidis, M. G. The Renaissance of Halide Perovskites and Their Evolution as 

Emerging Semiconductors. Acc. Chem. Res. 2015, 48 (10), 2791–2802. 

(14)  Kraut, R. Aristotle’s Ethics. The Stanford Encyclopedia of Philosophy; 2016. 

 

 



123 

 

Appendix A. 

 

Additional SEM Images 

 

 

Figure A1. Additional SEM images of petaled MoS2 electrodes reveal a) - c) consistent film morphology 

amongst multiple preparations and d) uniform morphology across a larger area of the electrode (compare with 

Figure 3a in Chapter I text). 

 

 

 

 

 

 

 



124 

 

 

 

 

 

 

Figure A2. Additional SEM images of petaled MoSe2 electrodes reveal (a) – (c) consistent film morphology 

amongst multiple preparations. Clumps in (c, d) are Se particles. 
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