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candidates that are considered in a job selection process, a threshold centrality value can be used to filter 

job candidates based on their importance in the GitHub user graph. A challenge with this approach is that, 

since GitHub has millions of users, calculating the centrality for every node in the GitHub user graph is an 

expensive operation. To overcome this challenge, we train a decision tree to predict a user’s centrality 

based on a limited subset of their attributes. To generate training data for the decision tree from the 
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with Accepted or Rejected based on whether or not the corresponding user meets the threshold centrality. 
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I. INTRODUCTION 

It has become increasingly challenging to evaluate large numbers of software 

engineering candidates for jobs and there are few objective indicators to help human 

resource (HR) departments screen candidates. According to a 2012 Jobvite survey [1], most 

recruiters take social network information into account when hiring: 54% of recruiters use 

Twitter, 66% Facebook, and 97% LinkedIn as recruitment tools, and a total 92% of the 

recruiters use or plan to use social networks for recruiting. Furthermore, 49% of the 

recruiters saw an increase in the quantity of candidates, 43% reported an increase in 

candidate quality, and 20% reported it took less time to hire if they used social network 

data. Therefore, it is a reasonable approach to take the GitHub social network into account 

in the software engineering recruitment process. Furthermore, because the decision 

making process for recruitment is based on the biases of each recruiter, it would be 

valuable for recruiters to have some kind of objective and intuitive indicator to reference 

when filtering candidates. The objective of my thesis is to provide an efficient approach 

for recruiters to estimate a job candidate’s skill based on their impact on the GitHub user 

network.   

GitHub, as a popular social coding community and has attracted a large number of 

programmers to contribute to the open source community. Millions of registered GitHub 

users have helped to establish a very complex social network through the ‘Follow’ 

mechanism provided by GitHub. In this paper, we view every user as a node in a directed 

graph; and if one user has followed another user, then there is a directed edge from this 

node to the node that user represents. Although not all programmers are on GitHub, we 

can still use the graph built by this method to approximately evaluate candidates in the 

recruiting process. The graph built by this method generally represents the community 

structure and influence relationships among the programmers. According to this social 

structure, we can explore the approximate impact of a programmer on this graph and the 

open source community.  

 In this thesis, we use the centrality value of a node in the graph we build as an indicator 

of the value of the programmer. Although this is not a very objective standard to assess 
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the skill level of the programmer, it can be at least used as an approximate indicator to 

judge how active and devoted a programmer is and how impactful their projects are on 

the open source community – both of which are indirect indications of programmer skill. 

The intuition behind this idea is that, although not all good programmers are socially active 

and influential on GitHub, most of the socially active and influential programmers are 

valuable to the coding community, which is an objective standard to take into 

consideration in the recruiting process. Although not perfect, this estimate can be a good 

metric that helps to facilitate HR’s work of narrowing down a list of candidates.  

What we want to achieve in this project is to build a model that can quickly tell a recruiter 

if a candidate is likely to have a high impact on the GitHub community or not. A challenge 

with this vision is that in order to build the training dataset for this goal, we need to 

compute the centrality value for every user and select a threshold to label users who are 

deemed acceptable candidates – the computational complexity is high and the 

appropriate threshold is not obvious. Further, there are many different kinds of centrality 

calculations that can be used for a graph. In this paper, we compare three different 

centrality computation methods and conduct experiments to examine their impact on the 

outcome.  

In order to train a decision tree to predict the centrality value of a user, we need training 

attributes to base the prediction on. There are 25 types of events that a user can generate 

through the GitHub API. We used the GitHub Archive [2] to collect all events generated by 

each user and used the number of each type of event that a user produced as the features 

that we based our decision tree centrality threshold predictions on.  

For the decision tree, we used the random forest algorithm and trained it with our 

collected dataset. We conducted experiments to test the trained random forest model and 

how well it predicted if a candidate’s centrality value was above the threshold used to filter 

out job candidates. We used four different evaluation methods to examine the trained 

model. The final result shows that our model can correctly filter out greater than 96% of 

candidates.  
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An additional benefit that we will show in this paper is that this approach eliminates the 

need for expensive network centrality computations in the future as the GitHub user graph 

evolves. Each day, there is a huge volume of changes in both the nodes and edges of the 

GitHub graph every day. If we were only to use centrality value to judge if a candidate 

should be accepted or not, we would need to recalculate the centrality value for the entire 

user graph of GitHub, which would be very expensive considering that there are over 5 

million nodes in the graph and continues to grow. 

The remainder of this paper is structured as following: part II, Challenges, describes the 

challenges that we faced with this work, part III, Related work, covers prior research in this 

area, part IV, Methodology and implementation, provides a detailed description of our 

methodology, part V, Empirical results, presents results from our experiments with the 

GitHub user graph, and part VI, Concluding remarks and future work. 

 

II. CHALLENGES 

The main existing challenge in the technology recruiting process is the lack of an 

objective indicator to filter large quantities of applicants. Recruiters have limited time to 

review each candidate’s resume line by line and objectively determine if an applicant 

deserves a follow-up phone interview. Recruiters rely on their experience and recruitment 

networks, but the whole process is still subjective and subject to significant bias. However, 

the most significant challenge is still the fact that the number of applicants is unwieldy, 

and there are insufficient tools to preprocess the candidates’ information efficiently and 

give meaningful indications of potential skill.  

Also the method of using centrality value brings the challenge of computing centrality 

value, which is very expensive in practical setting. For this research, we used Betweenness 

centrality, for which the best algorithm so far has a computing complexity of O(VE) for 

unweighted graphs and O(VE+V(V+E)logV) for weighted graph with the space complexity 

of O(VE), where V stands for the amount of the vertex in the graph, and E stands for the 

amount of edges in the graph [3]. In a 16-core high-cpu Google Compute Engine Virtual 

Machine [4], we profiled the algorithm using graph-tool [5], which has an average 398.3 
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seconds per call for a random graph with 39,796 vertices and 301,498 edges. With a graph 

of millions of nodes and edges, as is the case with the GitHub social graph, the running 

time for the algorithm increases dramatically. Due to the large size of the GitHub graph, it 

is impossible or highly expensive to recalculate the centrality value on an ongoing basis. 

This large computational cost is the primary motivation for our proposed prediction that 

can predict centrality values with little computational expense directly from the user’s 

GitHub usage history. 

III. RELATED WORK 

In this section we present prior research related to the proposed approach. There is a 

long history of research with the machine learning algorithms used in our research: 

decision trees [6] and ensemble methods of random forest [7]. The centrality value of a 

graph and the three graph centrality computing methods we employed in our experiment 

are Betweenness centrality [8], PageRank centrality [9] , and Eigenvector centrality [10], which 

were developed in prior work. For validation our results, we use four well-known metrics: 

logarithmic loss [11], precision, recall, and F-1[12]. The remainder of this section covers each 

of these key related works that we rely on. 

 

Decision tree 

The decision tree algorithm is a supervised machine learning method that can be used 

for classification and regression into a finite set of labeled classes (e.g., car, person, flower, 

etc.). In this work, the decision tree is used for binary classification of whether or not a 

candidate’s graph centrality is expected to be above a threshold value.  To build a binary 

classification tree, a recursive partitioning process is applied to the training data set. Every 

time the training dataset is split, a test is performed to find out which attribute of the 

training dataset has the highest information gain and then the dataset is split along that 

attribute. This process repeats recursively until there is no data to partition or a subset is 

found that has the same value for the target attribute in all data items. There are a number 

of variations on the splitting method that optimize for speed, accuracy, or other properties. 
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    ID3 [13] (Iterative Dichotomiser 3) was firstly introduced by Ross Quinlan in 1986. The 

algorithm builds a multi-branch tree by using a greedy algorithm to split the dataset using 

the categorical feature that will yield the lowest entropy. This algorithm is the original 

decision tree learning algorithm but doesn’t consider attributes with continuous numeric 

values. The drawback of this algorithm is that modeling continuous attributes as discrete 

values and applying the splitting algorithm can run into problems of overfitting, which lead 

to poor prediction results.  

C4.5 [14] is a successor to the ID3 algorithm, which has much better performance when 

operating on numeric continuous attributes in a training dataset. To overcome prior 

limitations with continuous attributes, the algorithm dynamically defines a discrete 

attribute that splits continuous numeric values into two branches that represent the 

attribute, partitioning the continuous attribute value into a discrete set of intervals. The 

C4.5 algorithm transforms the tree model from ID3 into sets of if-then guidelines for 

classification. The accuracy of each if-then rule is assessed to decide the order in which 

they should be applied to produce the overall highest accuracy classification. Pruning is 

carried out by removing rule preconditions for any rule that performs better without the 

precondition. Quinlan et al.’s latest C5.0 [15] algorithm has a number of improvements to 

make it more memory-efficient compared to C4.5 while also producing more accurate 

predictions. 

CART [16] (Classification and Regression Trees) is the method we employed in the thesis, 

which is the standard implementation in the scikit-learn [17] python library we chose to use 

in our experiments. This algorithm is very similar to C4.5 in the model building process and 

dataset partitioning methods, but it differs in that it supports numerical target variables, 

thus it can function as a regression learning algorithm instead of just purely as a classifier. 

The algorithm does not compute rule sets. CART constructs binary trees through a process 

of thresholding attributes with continuous values and chooses the values that yield the 

largest information gain when splitting the dataset into two parts. For this research, we 

needed to process and experiment on large datasets and the parallel computing 

capabilities of CART in scikit-learn implementation produced good performance.  
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There are several advantages of choosing decision trees as our binary classifier. Firstly, 

the decision tree model is relatively simple to understand and to interpret in the program, 

and the model itself can be easily visualized, which will facilitate further analysis in the 

future. Decision trees also don’t require substantial data preprocessing before a data set 

can be processed. This is especially important for this project because the GitHub dataset 

itself is large and transformation and processing can be time consuming and error-prone. 

Compared to other techniques that require data normalization, creating dummy variables, 

and removing blank values, etc., decision trees are much more convenient to use with 

large-scale datasets. Further, with the application of an ensemble method, such as random 

forest (which will be introduced in the next subsection), the model can perform as 

accurately as other techniques.  

The cost of using the trained tree model to predict classes is fast since the prediction 

time complexity is logarithmic with respect to the number of data points used to split the 

dataset in the training process of the algorithm. The decision tree model is also one of the 

few machine learning techniques that is able to handle both numerical and categorical 

data. Although in the setting of the experiment in this thesis there are only numerical data 

attributes, this approach stills has the clear advantage of leaving room for further 

development in this project by adding non-numeric attributes from GitHub, such as 

location, employer, etc. Most other techniques for classification are usually specialized to 

datasets with one type of variable, limiting their extensibility. Decision trees are also able 

to handle multi-output classification [18], which is also can be of great importance for the 

genericity of the model and the further development of the model in the future.  

A white box model is used in the decision tree model, which makes it easier to generate 

an analysis of the model itself and it easier to tweak the attributes used to build the 

decision tree to improve its performance. Each attributes importance can be easily 

observed in the model and the explanation for classification decisions can be easily 

inferred from the tree. Conversely, in a black box model environment like in an artificial 

neural network, the results may be much more difficult to interpret, and improving feature 
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selection and or transforming the model by combining it with other models to boost the 

performance are difficult.  

With decision trees, it is also easy to validate a model built from a training dataset by 

applying statistical tests, which is a powerful way to account for the reliability of the model 

you have built from empirical experiment results. In this research, this property makes it 

easy to check the correctness of our assumptions. Decision trees also perform well when 

the training data is incomplete. The model can still have a high chance that it will generate 

the right output for the data. This is also a reflection of the stability of the prediction 

performance of the decision tree model. This ability to handle incomplete data is also 

important for the experiments in this thesis, since we are using GitHub Archive data, which 

is prone to errors and omissions. 

There are also several disadvantages of the decision tree model we used for our 

experiment, which deserve consideration in the experimentation process and in future 

work. Firstly, decision trees tend to build over-complicated trees that do not generalize 

the data well, which is a problem previously mentioned called overfitting. Solutions to this 

problem range from the pruning methods employed by the C4.5 algorithm to controlling 

the minimum number of dataset samples needed at each leaf node. 

Although decision trees exhibit stable prediction performance, as previously mentioned, 

the process of building decision trees from the training dataset can be unstable because 

small changes in the training dataset may cause the process to choose the wrong attribute 

to branch on or select incorrect values for continuous value attribute partitioning. This is 

especially important for this project because of the adoption of the GitHub Archive, which 

is not the official data store of GitHub.  

It is also worth noted that the decision tree model is likely to create biased trees if 

certain classes in the target attributes dominate the training dataset. This potential for 

certain attributes dominating the dataset and skewing the results is the reason why we 

need to compute the centrality for every user to avoid the generation of an unbalanced 

training dataset. It is also important for validation when we used K-Fold and stratified K-
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Fold validation will make sure the sample datasets preserve the original distribution of 

each class in the target attribute.  

 

Random forest 

Random forest is a widely used ensemble method [19] for machine learning and is the 

method we employ in our final data model to avoid the problem of the overfitting. The 

goal of ensemble methods is to combine multiple models from the same machine learning 

algorithm in order to improve prediction performance as a whole. Generally, an ensemble 

model built from multiple models has better robustness than a single model. There are 

two families of ensemble methods for machine learning: averaging methods and boosting 

methods. 

With averaging methods, multiple independent models are queried for predictions and 

the final prediction is produced by averaging the multiple independent predictions. It is 

usually the case that this type of generalized average data model has a much higher 

accuracy than any of the single data models that is the part of the ensemble because the 

prediction variance is reduced. With boosting methods, the single data models are built 

sequentially and each newly built single data model tries to reduce the bias of the all the 

previously built single data models. This process continues until the last data model is 

reached. The goal of the methodology is to gradually improve from a single weak data 

model to a powerful ensemble data model.  

Random forest is an averaging method. In random forest, each tree in the ensemble is 

built from a sample of the training dataset. When partitioning takes place, the split point 

is computed from a random subset of the features that are selected rather than all of the 

features. The chosen split point may not be the best split point in the features, but will 

instead be the best split point in the randomly selected set. Because of the random 

selection of features, each individual model may be more biased than a decision tree built 

with consideration of every feature. However, as a result of the randomness that is 

introduced into the models and the averaging of the predictions, the process decreases 

the variance of the predictions and the biases generated from each single data model can 
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be compensated for. In most cases, this compensation overcomes the individual biases to 

improve classification accuracy.  

 

Centrality value 

We used three approaches to compute graph centrality values in this thesis: 

betweenness centrality, page rank centrality, and eigenvector centrality. Centrality values 

are a measure of the importance of a node or edge within a graph. The applications of 

centrality are very diverse. One of the most popular applications of centrality values is to 

use centrality to find the most influential persons in a social network. This research also 

centrality to social network analysis but on the GitHub user network. In addition to social 

network analysis, there are also many other important applications of centrality values, 

such as finding the key infrastructure nodes in the Internet or locating the main spreaders 

of disease in an viral epidemic.  

Because centrality values were first introduced in the context of social network analysis, 

most of the terms in centrality originate from sociological studies, such as the 

betweenness centrality used in this research. The way that centrality is used to find the 

most important nodes in a network is by defining functions over the nodes of a graph, 

which compute a real numeric value for each of the node in the graph. Depending on the 

value computed from the function, we can rank the importance of the nodes according to 

the computed centrality value. Because the analytical framework is flexible, different 

aspects of importance can be taken into account when evaluating a node. There are many 

different definitions of graph centrality that reflects different features or concepts of 

importance in the graph. Usually, centrality approaches are grouped into two 

distinguishing families. In the first family, influence is calculated based on the role a node 

has played in a specific type of network flow or transfer through the network. Centralities 

are categorized by the type of network flows that are considered important. In the second 

family, the impact of a node is described by its participation in the cohesiveness of the 

graph. In both of families, there are many different measures of importance, which is why 

there are so many variations in how centrality values are calculated.  
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In the family of centralities built on measures of cohesiveness, the majority of centrality 

calculations belong to one group, which considers each node’s importance in a “walk” 

through the graph. Different walking structure definitions give different values for the 

walking distance from one node to another node. For example, degree centrality is based 

on walks of length 1[20] and eigenvector centrality is based on infinite length walks. For 

centralities characterized by walking structure, there exist two different categories. One 

category of centrality focuses on the length of the walks, often labeled as Radial, like 

degree centrality and eigenvector centrality. Other centrality measures focus on counts of 

how many walks pass through a given node, such as betweenness centrality.  

    In this research, the three centrality computation methods that we compared in our 

experiment are all from the cohesiveness family and consider walking structure in the 

graph. For representation of centralities utilizing shortest paths, we chose betweenness 

centrality, which is from the medial walk category. For walking structure length-based 

centrality, we used eigenvector centrality and page rank centrality. We did not experiment 

with any centrality values based on walking length one since they don’t reflect enough 

information in the graph.  

 

Betweenness centrality 

Betweenness centrality calculates a centrality value for every node and edge in the 

graph.  We only consider node centrality in our experiments, since every node in the 

GitHub graph represents a user. The centrality computation is straightforward – a shortest 

path algorithm is run against the graph. For every node, the algorithm keeps track of the 

number of times the node is part of the shortest path between two other nodes. This 

algorithm was first developed as a measure to evaluate the impact of specific individuals 

in the communications of a social network. Nodes that have a high probability of appearing 

in a randomly chosen shortest path from any two nodes in the graph have a higher 

betweenness centrality value. The equation for computing betweenness centrality is 

defined for a node v as follows: for a graph G = (V, E) where V represent the vertices, and 

E represents the edge [21]: 
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𝐶𝐵(𝑣) =  ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠 ≠𝑣 ≠𝑡 ∈𝑉

    (1) 

where 𝜎𝑠𝑡 is the total number of shortest paths from node s to node t and 𝜎𝑠𝑡(𝑣) defines 

the number of times v appears on those paths. 

 

Eigenvector centrality 

     Eigenvector centrality is also a commonly used centrality value to indicate the social 

impact of a user. It is essentially the eigenvector of the weighted adjacency matrix of the 

graph A with the largest eigenvalue λ [22]. To be specific, the eigenvector centrality is the 

solution of:  

𝐴 𝐱 =  λ 𝐱   (2)   

where A is the adjacency matrix and λ is the largest eigenvalue.  

 

PageRank centrality 

For a graph G, the value of PageRank for each vertex can be given by following iterative 

relation where  Γ−(𝑣) represents the in-neighbors of vertex v,  𝑑+(𝑢) represents the out-

degree of the vertex w, with d symbols damping factor, and N symbols the number of the 

nodes in the graph [23]. 

𝑃𝑅(𝑣) =
1 − 𝑑

𝑁
+ 𝑑 ∑

𝑃𝑅(𝑢)

𝑑+(𝑢)
𝑢 ∈ Γ−(𝑣)

 (3) 

    The whole PageRank algorithm is based on the intuition that information on a web page 

can be ranked based on link popularity. A page should be ranked higher if there are more 

links to the page. This concept was first introduced in the context of web pages but it is 

also an applicable algorithm for social graphs. The final result of the algorithm is a 

probability distribution, in which for each node x in the graph, the PageRank value 

represents the probability that a randomly selected node would have a link to node x. 

PageRank centrality values can be computed for a graph of the any size. In the beginning 

of the computation, the distribution of the PageRank value is evenly divided among all the 

nodes. Theoretically, the computation process is iteratively applying Page Rank equation 
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shown above until The PageRank value doesn’t change anymore for a vertex in graph. 

Practically, the function a threshold value is used to stop the iteration. Whenever an 

iteration produces a PageRank value change below the threshold, the iteration stops and 

the algorithm return the values computed for the nodes. 

 

Metrics for model evaluation 

In this subsection, we will introduce the metrics that we used in our experiments to 

evaluate the performance of our random forest decision tree data model, and thus 

validate our assumption that we can use the existing social graph information to find the 

approximate mapping relationship between the accumulated historical usage data of the 

user and their social impact in the GitHub social network. Once this model is built, we can 

use the same model to infer the approximate social impact of future candidates in the 

GitHub social graph and provide an objective indicator to help recruiters more effectively 

screen candidates. 

 

Precision, recall and F-measure 

We used total four methods of evaluation in our experiments. Three of them are 

precision, recall, and f-measure. The precision of a test in the experiment is an evaluation 

of the ability of the data model not to classify an original positive sample as negative. The 

recall of a test evaluates the ability of the data model to find all the existing positive 

samples in the test dataset. The computation of the F-measure (Fβ measure) is based on 

the weighted harmonic mean of the precision and recall, which can be seen as a standard 

for the generalized ability for the data model to find all the positive samples in the test 

dataset without including significant negative examples. All three of the evaluation 

methods, including Fβ measure with β changing flexibly, range from 0 to 1, where 1 is the 

best score, and 0 is the worst. The F-measure transforms into F-1 measure when β = 1, 

meaning the precision and the recall are deemed equally important in the evaluation. 

When using these measures in a binary classification, we use the terms “positive” and 

“negative” as an indication of the data model’s acceptance of a user as a potential 
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candidate. The terms “true” and “false” are used to label whether the prediction is equal 

to the expectation (e.g., correct candidates are accepted and incorrect candidates are 

rejected).  With these terms, we define the following relationships: 

 Actual result in the test 

 
 

Prediction 
 

   true positive : Correct result false positive : Unexpected result 

false negative: Missing result true negative : Correct absence of 
result 

Table 1: Relationship between the prediction and the actual test result 

 

From this table, we define the following: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑣𝑒
 (4) 

  

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5) 

 

𝐹𝛽 = (1 +  𝛽2)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

 𝛽2𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (6) 

 

     These equations are of great importance in evaluating a data model’s performance. The 

precision is a measure of how likely our approach is to correctly accept a candidate, which 

is directly linked to the trustworthiness of our approach in correctly filtering the candidate 

pool (e.g., it does not accept candidates that are not sufficiently skilled). The recall is linked 

directly to the ability of our approach to accept as many fit candidates as possible without 

introducing unfit candidates (e.g., a measure of not over filtering the list). Finally, the F-1 

measure is a generalized measure of our approach’s ability to balance these two tasks.  

 



18 

 

Logarithmic loss 

The fourth evaluation that we apply is logarithmic loss, which is also known as logistic 

regression loss or cross-entropy loss. Log loss is commonly used to test the performance 

of (multinomial) logistic regressions and neural networks. It is can also be a good fit to test 

binary classification with random forest ensemble methods, since the final decision tree 

can produce multiple results for each decision tree in each test, which will makes it 

convenient to calculate the probability distributions. Logarithmic loss, itself, is a more 

objective standard to evaluate the overall performance of the model compared to pure 

accuracy-based metrics. 

The equation for log loss per sample data test in this project can be computed through 

the equation below, where the target attribute’s value is 0 or 1, and probability estimate 

p is equal to the probability that the target attribute has value 1: 

𝐿𝑙𝑜𝑔(𝑦, 𝑝) =  − log Pr(𝑦 | 𝑝) =  −𝑦 log 𝑝 + (1 − 𝑦) log(1 − 𝑝)  (7) 

 

IV. METHODOLOGY AND IMPLEMENTATION 

The methodology for implementing the system was as follows. First, we collected every 

‘Follow’ event from GitHub, then we built a graph based on these user to user relationships 

(e.g. if user A follows user B, then there is an out edge from A to B in the graph). Next, we 

computed every node’s centrality value in the in the graph. Third, we collected the number 

of each type of GitHub event a user has generated (e.g., measures of different types of 

activity on GitHub), and transform the data into a training dataset. Finally, we used the 

random forest decision tree algorithm on our dataset to build a model to aid in predicting 

a user’s graph centrality and whether or not they should be accepted as a job candidate. 

The challenges in this project can be divided into two parts. The first challenge was how 

to collect the right data from GitHub and then convert it into a right format for the 

algorithm to process and reason on. The second challenge was how to design and conduct 

experiments from the data to accurately evaluate the random forest decision tree model.  

The only way to collect public data from GitHub is to use GitHub’s official API to access 

the GitHub public timeline. However, GitHub’s strict limit of 60 requests per second 
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through the GitHub API made it nearly impossible to collect the data we needed to apply 

our machine learning algorithms. To stay within their restrictions, it would take months to 

just collect all the basic profile information of GitHub users need to generate the initial 

graph. To overcome this limitation, I used the open source GitHub Archive to collect the 

data. The project streams every event from GitHub’s public timeline [24] into a Google 

BigQuery [25] public dataset [26] on Google Cloud Platform [27], which made it possible to 

query the table for all needed data.  

Because githubachive.org has a record of all the public GitHub timeline events since 

2011, one can easily access and query any public GitHub event since 2011. The test data 

for this thesis spans all public GitHub data from February, 2011 to January, 2015. In order 

to build the graph of ‘Follow’ relationships among users, we used the following BigQuery 

query: 

 

//code to collect the graph 

select * 

from [githubarchive:github.timeline] 

where type = 'FollowEvent'; 

 

    To form the final dataset for training, we also need to compute the centrality value 

for the every user in the dataset. The challenge here is that the dataset is very large and 

contains 4+ million users and creates a graph with even more edges (e.g., follow 

relationships between users). To run a network centrality algorithm on this big graph is 

very time consuming and is one of the problems we are trying to solve with our approach. 

By training a machine learning model, we only need to run the network centrality 

algorithm once to train the model and then we can use our model to predict centrality for 

future users without performing the graph centrality computation again. To speed up the 

computation for the GitHub social graph, we used the graph analysis library graph-tool [28]. 

In our experiments, which employed OpenMP [29], we ran the algorithm in parallel on the 
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multiple cores virtual machine provided by Google Compute Engine to speed up the 

computation and reduce the running time from two or three weeks to a single day.     

The training attributes we selected are the total number of each type of GitHub event 

a user has generated. There are a total of 25 different event types [30] in GitHub and most 

of the event counts can be accessed through the GitHub Archive with the following 

BigQuery query: 

 

//code to collect training attributes data 

select actor, type, count(type) as events 

from [githubarchive:github.timeline] 

group each by actor, type; 

 

    A subset of the users don’t have any follow events and don’t have any followers, causing 

them to be disconnected from the graph. For these users, we labeled their centrality value 

as -1, since they do not impact the overall graph centrality calculations.  After collecting of 

the all the mappings between users and the total number of each event type generated 

by each user, we still need label users with their centrality values. 

When we are done building the graph and the computing the centrality values, we 

choose the mean centrality value, and the median centrality value of the overall graph 

respectively in our experiment as a threshold to indicate if a user/node in the graph has an 

above average social influence in the GitHub community or not. All the users with a 

centrality value larger than the threshold are labeled as “Accepted” and all others are 

labeled as “Rejected.” The choice of the value for the threshold is flexible and can be 

adapted to each company’s preference on the aggressiveness with which candidates are 

filtered out. In this research, we chose the mean of all the centrality values as the threshold 

to examine the feasibility of the method and identify “above average” candidates.    

We use random forest decision trees as basis for predicting if a user had a centrality 

value above the threshold based solely on the counts of the different types of events they 

generate in GitHub. The implementation we used to build the data model was written in 
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Python and part of the open source scikit-learn library. After building the random forest 

decision tree, we can use the model to process future job candidates without recomputing 

centrality values again – even though the GitHub social graph is changing every day. 

Theoretically, we should only have to recalculate the centrality values if the social 

structures and relationships in the GitHub community change substantially, which means 

the mapping relationship we have generalized from the current network no longer reflect 

the real-world relationships among the users in the GitHub social graph. However, it is 

unlikely that this will be the case in the near future since the GitHub community is very 

mature and unlikely to change radically. 

 

V. EMPIRICAL RESULTS 

In this section we describe the experiments that we conducted to evaluate our 

approach. As discussed in the previous sections, there are four metrics that we used to 

examine the performance of our model, log loss, precision, recall, and f-measure. The main 

difficulty in setting up the experiment for this project is that there isn’t a real-world test 

dataset of job candidates and sorted hiring preferences to compare against. Our analyses 

focused on how accurately the model predicted whether or not a particular user was 

above the chosen centrality threshold and not whether or not a user was an appropriate 

candidate for a specific job.  

To validate the accuracy of the centrality threshold predictions, we use cross-validation 

on the training dataset. Cross-validation is a technique that uses part of the training 

dataset to do the training and tests the model with the remainder of the dataset. It is a 

common model validation technique that indicates how well the data model should 

function on an independent new data set.  

There are many methods for performing cross validation. We chose to evaluate our 

model with K-fold cross validation. K-fold cross-validation divides the training dataset into 

K equal parts and uses up to the Kth part as a test dataset while the remaining K-1 parts 

are used for training. To achieve fairer test results for the whole dataset, we used stratified 

K-fold to enhance the test process. Stratified K-fold evaluation is done just like the original 
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K-fold validation, except that the partitioning is done in a manner that preserves the 

distribution of the class values across each part. We used stratified 5-fold validation for 

our model. For threshold using the mean of the centrality values, the results for 

betweenness centrality are shown in Table 2, for PageRank centrality in Table 3, and 

eigenvector centrality in Table 4. For threshold using the median of the centrality values, 

the results are respectively shown in Table 5, Table 6 and Table 7. The results were 

obtained from a Python scikit-learn implementation. The final random forest decision tree 

data model we built has a 100 single decision tree estimator in the ensemble. 

For betweenness centrality with mean value as threshold: 

 Result Mean 

Log loss 0.037 0.035 0.034 0.034 0.033 0.035 

Precision 0.80 0.73 0.71 0.73 0.74 0.74 

Recall 0.46 0.53 0.53 0.53 0.54 0.52 

F-1 score 0.58 0.62 0.61 0.62 0.63 0.61 

Table 2: Betweenness centrality based model with mean value as threshold 

 

For PageRank centrality with mean value as threshold: 

 Result Mean 

Log loss 0.125 0.122 0.122 0.123 0.123 0.123 

Precision 0.73 0.65 0.65 0.66 0.67 0.67 

Recall 0.28 0.30 0.31 0.30 0.30 0.30 

F-1 score 0.40 0.41 0.42 0.42 0.42 0.41 

Table 3: PageRank centrality based model with mean value as threshold 

 

For eigenvector centrality with mean value as threshold: 

 Result Mean 

Log loss 0.086 0.078 0.078 0.079 0.077 0.080 

Precision 0.75 0.64 0.64 0.65 0.64 0.67 

Recall 0.19 0.23 0.24 0.23 0.22 0.22 

F-1 score 0.30 0.34 0.35 0.34 0.33 0.33 

Table 4: Eigenvector centrality based model with mean value as threshold 

We can also directly compare them in the chart, which will be more intuitive to do some 

cross sectional analysis to see the difference: 
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Figure 1: Performance comparison with mean value as threshold 

 

 

Figure 2: log loss comparison with mean value as threshold 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log loss precision recall F-1 score

Average performance comparison

betweenness PageRank eigenvector

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Log loss comparison 

betweenness PageRank eigenvector



24 

 

 

Figure 3: precision comparison with mean value as threshold 

 

 

Figure 4: recall comparison with mean value as threshold 
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Figure 5: F-1 score comparison with mean value as threshold 

For betweenness centrality with median value as threshold: 

 Result Mean 

Log loss 0.22 0.23 0.22 0.22 0.22 0.22 

Precision 0.97 0.96 0.96 0.96 0.96 0.96 

Recall 0.75 0.73 0.74 0.74 0.74 0.74 

F-1 score 0.84 0.83 0.84 0.83 0.84 0.84 

Table 5: Betweenness centrality based model with median value as threshold 

 

For PageRank centrality with median value as threshold: 

 Result Mean 

Log loss 0.25 0.24 0.24 0.24 0.24 0.24 

Precision 0.72 0.68 0.67 0.67 0.67 0.68 

Recall 0.39 0.44 0.44 0.43 0.43 0.43 

F-1 score 0.50 0.53 0.53 0.53 0.52 0.52 

Table 6: PageRank centrality based model with median value as threshold 

 

For eigenvector centrality with median value as threshold: 

 Result Mean 

Log loss 0.24 0.24 0.23 0.24 0.22 0.24 
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Precision 0.75 0.70 0.69 0.70 0.71 0.71 

Recall 0.41 0.45 0.45 0.44 0.44 0.44 

F-1 score 0.53 0.55 0.54 0.54 0.54 0.54 

Table 7: Eigenvector centrality based model with median value as threshold 

 

The same kind of charts can also be drew for comparison: 

  

Figure 6: Performance comparison with median value as threshold 
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Figure 7: log loss comparison with median value as threshold 

 

 

Figure 8: precision comparison with median value as threshold 
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Figure 9: recall comparison with median value as threshold 

 

 

Figure 10: F-1 score comparison with median value as threshold 

    We can also compare the average performance of the model using mean value as the 

threshold and median value as threshold vertically for the three centrality computing 

methods respectively: 
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Figure 11: performance comparison for betweenness centrality based model with 

different threshold 

 

 

Figure 12: performance comparison for PageRank centrality based model with different 

threshold 
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Figure 13: performance comparison for eigenvector centrality based model with different 

threshold 

  

It is clear that all six models generated by utilizing different centrality computing 

methods and different thresholding methods don’t have a very high log loss, which 

indicates that they are all accurate models. However, as discussed previously, the precision, 

recall, and F-1 scores are better evaluators of the model. The precision shows the ability 

of the model to find highly influential candidates in the GitHub user graph without mixing 

in the candidates with lower impact. The recall models the ability to discover larger 

numbers of high quality candidates without introducing poor candidates. The F-1 score is 

a generalized standard to evaluate how well the data model balances the two metrics. 

From these three metrics, we can see some interesting results. First, the betweenness 

centrality model seems to have much better performance than the two radial based 

centrality computing methods and has better scores in every one of the three metrics for 

two thresholding methods. The PageRank centrality and eigenvector centrality seem to 
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candidates. However, because we only built 100 trees in our random forest, it is possible 

that performance might improve with larger numbers of trees.   

For betweenness centrality, however, the model shows some real promising value since 

the precision of the prediction of a candidate’s centrality score can reach as high as 80% 

and has an average 74% accuracy in the mean value threshold method, 97% and 96% in 

the median threshold method, for predicting correctly whether candidates are above the 

threshold influence on GitHub. If we use this model in the recruiting process, this model 

tells you whether the candidate is a programmer with a higher impact on GitHub and is 

right as much as 96% of the time. 

Also, it can be seen clearly in the chart we have built above that the median is a better 

thresholding methods to choose in the training process. Except for the log loss metrics, the 

models with median value as threshold all outperform the models with mean value as 

threshold for three centrality computing methods respectively. A possible explanation is 

that the distribution of the centrality values for GitHub social graph is very unbalanced, 

and using mean value as threshold may cause the samples labeled with 

“Accepted”/”Rejected” too dominant  in the training dataset, thus yielding biased tree in 

the model.   

 

VI. CONCLUDING REMARKS AND FUTURE WORK 

To filter and more objectively assess the large number of the candidates in the software 

engineering recruitment process, we proposed a novel approach in this thesis to 

preprocess the candidates efficiently using their network centrality value in the GitHub 

user graph. By experimenting with three different centrality value computation methods: 

betweenness centrality, PageRank centrality, and eigenvector centrality, and a random 

forest prediction model, we showed that we could predict if a user’s betweenness 

centrality value was above a median threshold with 96% accuracy. This result supports our 

assumption that we can use GitHub user graph information to find an approximate 

relationship between the accumulated historical usage data of a user and their impact on 
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the GitHub network. Moreover, we can use the same model to infer the approximate 

impact of future candidates on the GitHub social graph. 

There is a lot space for future work for this project. First, we plan to evaluate other 

centrality value computations to compare their performance. Second, we plan to try more 

different methods to compute threshold values and compare their impact on overall 

performance. Finally, there are also plenty of other machine learning algorithms can be 

tried with this approach that will also be interesting to compare.  
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