

COMPUTER SCIENCE

A Decision Tree Based Approach to Filter Candidates for Software Engineering Jobs Using GitHub Data

Songtao Hei

Thesis under the direction of Professor Christopher Jules White

 A challenge for companies hiring software engineers is the large number of candidate profiles on

LinkedIn, Monster.com, and other job websites and the inability to easily filter top candidates from these

lists. In this paper, we propose a novel approach for utilizing the social network structure in GitHub and a

decision tree algorithm to solve this problem efficiently and filter candidate software engineers. The

approach is based off the idea that the centrality value of a node (i.e., candidate engineer) in the graph of

GitHub users is an approximate indicator of the value of the programmer. To reduce the number of

candidates that are considered in a job selection process, a threshold centrality value can be used to filter

job candidates based on their importance in the GitHub user graph. A challenge with this approach is that,

since GitHub has millions of users, calculating the centrality for every node in the GitHub user graph is an

expensive operation. To overcome this challenge, we train a decision tree to predict a user’s centrality

based on a limited subset of their attributes. To generate training data for the decision tree from the

unlabeled GitHub user graph, a threshold centrality value is chosen and a part of the user graph is labeled

with Accepted or Rejected based on whether or not the corresponding user meets the threshold centrality.

We also collect the total number of the each kind of public GitHub event each user has generated and we

use the number of these GitHub events as training attributes for each user in the training dataset. Once

decision trees are built with this training dataset, recruiters can use these decision trees to process large

quantities of software engineering job candidates and to improve the judgment of HR departments. Based

on empirical results from experiments that we conducted with GitHub user data, our approach can reach a

precision of 96%. Moreover, this method saves future expensive network centrality computation as the

GitHub social graph changes over time.

Approved: Christopher Jules White Date: 3/20/15

A Decision Tree Based Approach to Filter Candidates for Software Engineering Jobs Using

GitHub Data

By

Songtao Hei

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

May, 2015

Nashville, Tennessee

Approved:

Professor Christopher Jules White

Professor Douglas C. Schmidt

ii

TABLE OF CONTENTS

Page

LIST OF TABLES ... iii

LIST OF FIGURES ... iv

I. Introduction .. 5

II. Challenge .. 7

III. Related work ... 8

 Decision tree .. 8

 Random forest ... 12

 Centrality value .. 13

 Betweenness centrality .. 14

 Eigenvector centrality ... 15

 PageRank centrality .. 15

 Metrics for model evaluation ... 16

 Precision, recall and F-measure .. 16

 Logarithmic loss ... 18

IV. Methodology and implementation ... 18

V. Empirical results .. 21

VI. Concluding remarks and future work .. 31

REFERENCES .. 33

iii

LIST OF TABLES

Table 1: Relationship between prediction and actual result 17

Table 2: Betweenness centrality based model with mean value as threshold 22

Table 3: PageRank centrality based model with mean value as threshold 22

Table 4: Eigenvector centrality based model with mean value as threshold 22

Table 5: Betweenness centrality based model with median value as threshold 25

Table 6: PageRank centrality based model with median value as threshold 25

Table 7: Eigenvector centrality based model with median value as threshold 26

iv

LIST OF FIGURES

Figure 1: performance comparison with mean values as threshold 23

Figure 2: log loss comparison with mean value as threshold 23

Figure 3: precision comparison with mean value as threshold 24

Figure 4: recall comparison with mean value as threshold .. 24

Figure 5: F-1 score comparison with mean value as threshold 25

Figure 6: Performance comparison with median value as threshold 26

Figure 7: log loss comparison with median value as threshold 27

Figure 8: precision comparison with median value as threshold 27

Figure 9: recall comparison with median value as threshold 28

Figure 10: F-1 score comparison with median value as threshold 28

Figure 11: performance comparison for betweenness centrality based model with

different threshold ... 29

Figure 12: performance comparison for PageRank centrality based model with different

threshold ... 29

Figure 13: performance comparison for eigenvector centrality based model with

different threshold ... 30

5

I. INTRODUCTION

It has become increasingly challenging to evaluate large numbers of software

engineering candidates for jobs and there are few objective indicators to help human

resource (HR) departments screen candidates. According to a 2012 Jobvite survey [1], most

recruiters take social network information into account when hiring: 54% of recruiters use

Twitter, 66% Facebook, and 97% LinkedIn as recruitment tools, and a total 92% of the

recruiters use or plan to use social networks for recruiting. Furthermore, 49% of the

recruiters saw an increase in the quantity of candidates, 43% reported an increase in

candidate quality, and 20% reported it took less time to hire if they used social network

data. Therefore, it is a reasonable approach to take the GitHub social network into account

in the software engineering recruitment process. Furthermore, because the decision

making process for recruitment is based on the biases of each recruiter, it would be

valuable for recruiters to have some kind of objective and intuitive indicator to reference

when filtering candidates. The objective of my thesis is to provide an efficient approach

for recruiters to estimate a job candidate’s skill based on their impact on the GitHub user

network.

GitHub, as a popular social coding community and has attracted a large number of

programmers to contribute to the open source community. Millions of registered GitHub

users have helped to establish a very complex social network through the ‘Follow’

mechanism provided by GitHub. In this paper, we view every user as a node in a directed

graph; and if one user has followed another user, then there is a directed edge from this

node to the node that user represents. Although not all programmers are on GitHub, we

can still use the graph built by this method to approximately evaluate candidates in the

recruiting process. The graph built by this method generally represents the community

structure and influence relationships among the programmers. According to this social

structure, we can explore the approximate impact of a programmer on this graph and the

open source community.

 In this thesis, we use the centrality value of a node in the graph we build as an indicator

of the value of the programmer. Although this is not a very objective standard to assess

6

the skill level of the programmer, it can be at least used as an approximate indicator to

judge how active and devoted a programmer is and how impactful their projects are on

the open source community – both of which are indirect indications of programmer skill.

The intuition behind this idea is that, although not all good programmers are socially active

and influential on GitHub, most of the socially active and influential programmers are

valuable to the coding community, which is an objective standard to take into

consideration in the recruiting process. Although not perfect, this estimate can be a good

metric that helps to facilitate HR’s work of narrowing down a list of candidates.

What we want to achieve in this project is to build a model that can quickly tell a recruiter

if a candidate is likely to have a high impact on the GitHub community or not. A challenge

with this vision is that in order to build the training dataset for this goal, we need to

compute the centrality value for every user and select a threshold to label users who are

deemed acceptable candidates – the computational complexity is high and the

appropriate threshold is not obvious. Further, there are many different kinds of centrality

calculations that can be used for a graph. In this paper, we compare three different

centrality computation methods and conduct experiments to examine their impact on the

outcome.

In order to train a decision tree to predict the centrality value of a user, we need training

attributes to base the prediction on. There are 25 types of events that a user can generate

through the GitHub API. We used the GitHub Archive [2] to collect all events generated by

each user and used the number of each type of event that a user produced as the features

that we based our decision tree centrality threshold predictions on.

For the decision tree, we used the random forest algorithm and trained it with our

collected dataset. We conducted experiments to test the trained random forest model and

how well it predicted if a candidate’s centrality value was above the threshold used to filter

out job candidates. We used four different evaluation methods to examine the trained

model. The final result shows that our model can correctly filter out greater than 96% of

candidates.

7

An additional benefit that we will show in this paper is that this approach eliminates the

need for expensive network centrality computations in the future as the GitHub user graph

evolves. Each day, there is a huge volume of changes in both the nodes and edges of the

GitHub graph every day. If we were only to use centrality value to judge if a candidate

should be accepted or not, we would need to recalculate the centrality value for the entire

user graph of GitHub, which would be very expensive considering that there are over 5

million nodes in the graph and continues to grow.

The remainder of this paper is structured as following: part II, Challenges, describes the

challenges that we faced with this work, part III, Related work, covers prior research in this

area, part IV, Methodology and implementation, provides a detailed description of our

methodology, part V, Empirical results, presents results from our experiments with the

GitHub user graph, and part VI, Concluding remarks and future work.

II. CHALLENGES

The main existing challenge in the technology recruiting process is the lack of an

objective indicator to filter large quantities of applicants. Recruiters have limited time to

review each candidate’s resume line by line and objectively determine if an applicant

deserves a follow-up phone interview. Recruiters rely on their experience and recruitment

networks, but the whole process is still subjective and subject to significant bias. However,

the most significant challenge is still the fact that the number of applicants is unwieldy,

and there are insufficient tools to preprocess the candidates’ information efficiently and

give meaningful indications of potential skill.

Also the method of using centrality value brings the challenge of computing centrality

value, which is very expensive in practical setting. For this research, we used Betweenness

centrality, for which the best algorithm so far has a computing complexity of O(VE) for

unweighted graphs and O(VE+V(V+E)logV) for weighted graph with the space complexity

of O(VE), where V stands for the amount of the vertex in the graph, and E stands for the

amount of edges in the graph [3]. In a 16-core high-cpu Google Compute Engine Virtual

Machine [4], we profiled the algorithm using graph-tool [5], which has an average 398.3

8

seconds per call for a random graph with 39,796 vertices and 301,498 edges. With a graph

of millions of nodes and edges, as is the case with the GitHub social graph, the running

time for the algorithm increases dramatically. Due to the large size of the GitHub graph, it

is impossible or highly expensive to recalculate the centrality value on an ongoing basis.

This large computational cost is the primary motivation for our proposed prediction that

can predict centrality values with little computational expense directly from the user’s

GitHub usage history.

III. RELATED WORK

In this section we present prior research related to the proposed approach. There is a

long history of research with the machine learning algorithms used in our research:

decision trees [6] and ensemble methods of random forest [7]. The centrality value of a

graph and the three graph centrality computing methods we employed in our experiment

are Betweenness centrality [8], PageRank centrality [9] , and Eigenvector centrality [10], which

were developed in prior work. For validation our results, we use four well-known metrics:

logarithmic loss [11], precision, recall, and F-1[12]. The remainder of this section covers each

of these key related works that we rely on.

Decision tree

The decision tree algorithm is a supervised machine learning method that can be used

for classification and regression into a finite set of labeled classes (e.g., car, person, flower,

etc.). In this work, the decision tree is used for binary classification of whether or not a

candidate’s graph centrality is expected to be above a threshold value. To build a binary

classification tree, a recursive partitioning process is applied to the training data set. Every

time the training dataset is split, a test is performed to find out which attribute of the

training dataset has the highest information gain and then the dataset is split along that

attribute. This process repeats recursively until there is no data to partition or a subset is

found that has the same value for the target attribute in all data items. There are a number

of variations on the splitting method that optimize for speed, accuracy, or other properties.

9

 ID3 [13] (Iterative Dichotomiser 3) was firstly introduced by Ross Quinlan in 1986. The

algorithm builds a multi-branch tree by using a greedy algorithm to split the dataset using

the categorical feature that will yield the lowest entropy. This algorithm is the original

decision tree learning algorithm but doesn’t consider attributes with continuous numeric

values. The drawback of this algorithm is that modeling continuous attributes as discrete

values and applying the splitting algorithm can run into problems of overfitting, which lead

to poor prediction results.

C4.5 [14] is a successor to the ID3 algorithm, which has much better performance when

operating on numeric continuous attributes in a training dataset. To overcome prior

limitations with continuous attributes, the algorithm dynamically defines a discrete

attribute that splits continuous numeric values into two branches that represent the

attribute, partitioning the continuous attribute value into a discrete set of intervals. The

C4.5 algorithm transforms the tree model from ID3 into sets of if-then guidelines for

classification. The accuracy of each if-then rule is assessed to decide the order in which

they should be applied to produce the overall highest accuracy classification. Pruning is

carried out by removing rule preconditions for any rule that performs better without the

precondition. Quinlan et al.’s latest C5.0 [15] algorithm has a number of improvements to

make it more memory-efficient compared to C4.5 while also producing more accurate

predictions.

CART [16] (Classification and Regression Trees) is the method we employed in the thesis,

which is the standard implementation in the scikit-learn [17] python library we chose to use

in our experiments. This algorithm is very similar to C4.5 in the model building process and

dataset partitioning methods, but it differs in that it supports numerical target variables,

thus it can function as a regression learning algorithm instead of just purely as a classifier.

The algorithm does not compute rule sets. CART constructs binary trees through a process

of thresholding attributes with continuous values and chooses the values that yield the

largest information gain when splitting the dataset into two parts. For this research, we

needed to process and experiment on large datasets and the parallel computing

capabilities of CART in scikit-learn implementation produced good performance.

10

There are several advantages of choosing decision trees as our binary classifier. Firstly,

the decision tree model is relatively simple to understand and to interpret in the program,

and the model itself can be easily visualized, which will facilitate further analysis in the

future. Decision trees also don’t require substantial data preprocessing before a data set

can be processed. This is especially important for this project because the GitHub dataset

itself is large and transformation and processing can be time consuming and error-prone.

Compared to other techniques that require data normalization, creating dummy variables,

and removing blank values, etc., decision trees are much more convenient to use with

large-scale datasets. Further, with the application of an ensemble method, such as random

forest (which will be introduced in the next subsection), the model can perform as

accurately as other techniques.

The cost of using the trained tree model to predict classes is fast since the prediction

time complexity is logarithmic with respect to the number of data points used to split the

dataset in the training process of the algorithm. The decision tree model is also one of the

few machine learning techniques that is able to handle both numerical and categorical

data. Although in the setting of the experiment in this thesis there are only numerical data

attributes, this approach stills has the clear advantage of leaving room for further

development in this project by adding non-numeric attributes from GitHub, such as

location, employer, etc. Most other techniques for classification are usually specialized to

datasets with one type of variable, limiting their extensibility. Decision trees are also able

to handle multi-output classification [18], which is also can be of great importance for the

genericity of the model and the further development of the model in the future.

A white box model is used in the decision tree model, which makes it easier to generate

an analysis of the model itself and it easier to tweak the attributes used to build the

decision tree to improve its performance. Each attributes importance can be easily

observed in the model and the explanation for classification decisions can be easily

inferred from the tree. Conversely, in a black box model environment like in an artificial

neural network, the results may be much more difficult to interpret, and improving feature

11

selection and or transforming the model by combining it with other models to boost the

performance are difficult.

With decision trees, it is also easy to validate a model built from a training dataset by

applying statistical tests, which is a powerful way to account for the reliability of the model

you have built from empirical experiment results. In this research, this property makes it

easy to check the correctness of our assumptions. Decision trees also perform well when

the training data is incomplete. The model can still have a high chance that it will generate

the right output for the data. This is also a reflection of the stability of the prediction

performance of the decision tree model. This ability to handle incomplete data is also

important for the experiments in this thesis, since we are using GitHub Archive data, which

is prone to errors and omissions.

There are also several disadvantages of the decision tree model we used for our

experiment, which deserve consideration in the experimentation process and in future

work. Firstly, decision trees tend to build over-complicated trees that do not generalize

the data well, which is a problem previously mentioned called overfitting. Solutions to this

problem range from the pruning methods employed by the C4.5 algorithm to controlling

the minimum number of dataset samples needed at each leaf node.

Although decision trees exhibit stable prediction performance, as previously mentioned,

the process of building decision trees from the training dataset can be unstable because

small changes in the training dataset may cause the process to choose the wrong attribute

to branch on or select incorrect values for continuous value attribute partitioning. This is

especially important for this project because of the adoption of the GitHub Archive, which

is not the official data store of GitHub.

It is also worth noted that the decision tree model is likely to create biased trees if

certain classes in the target attributes dominate the training dataset. This potential for

certain attributes dominating the dataset and skewing the results is the reason why we

need to compute the centrality for every user to avoid the generation of an unbalanced

training dataset. It is also important for validation when we used K-Fold and stratified K-

12

Fold validation will make sure the sample datasets preserve the original distribution of

each class in the target attribute.

Random forest

Random forest is a widely used ensemble method [19] for machine learning and is the

method we employ in our final data model to avoid the problem of the overfitting. The

goal of ensemble methods is to combine multiple models from the same machine learning

algorithm in order to improve prediction performance as a whole. Generally, an ensemble

model built from multiple models has better robustness than a single model. There are

two families of ensemble methods for machine learning: averaging methods and boosting

methods.

With averaging methods, multiple independent models are queried for predictions and

the final prediction is produced by averaging the multiple independent predictions. It is

usually the case that this type of generalized average data model has a much higher

accuracy than any of the single data models that is the part of the ensemble because the

prediction variance is reduced. With boosting methods, the single data models are built

sequentially and each newly built single data model tries to reduce the bias of the all the

previously built single data models. This process continues until the last data model is

reached. The goal of the methodology is to gradually improve from a single weak data

model to a powerful ensemble data model.

Random forest is an averaging method. In random forest, each tree in the ensemble is

built from a sample of the training dataset. When partitioning takes place, the split point

is computed from a random subset of the features that are selected rather than all of the

features. The chosen split point may not be the best split point in the features, but will

instead be the best split point in the randomly selected set. Because of the random

selection of features, each individual model may be more biased than a decision tree built

with consideration of every feature. However, as a result of the randomness that is

introduced into the models and the averaging of the predictions, the process decreases

the variance of the predictions and the biases generated from each single data model can

13

be compensated for. In most cases, this compensation overcomes the individual biases to

improve classification accuracy.

Centrality value

We used three approaches to compute graph centrality values in this thesis:

betweenness centrality, page rank centrality, and eigenvector centrality. Centrality values

are a measure of the importance of a node or edge within a graph. The applications of

centrality are very diverse. One of the most popular applications of centrality values is to

use centrality to find the most influential persons in a social network. This research also

centrality to social network analysis but on the GitHub user network. In addition to social

network analysis, there are also many other important applications of centrality values,

such as finding the key infrastructure nodes in the Internet or locating the main spreaders

of disease in an viral epidemic.

Because centrality values were first introduced in the context of social network analysis,

most of the terms in centrality originate from sociological studies, such as the

betweenness centrality used in this research. The way that centrality is used to find the

most important nodes in a network is by defining functions over the nodes of a graph,

which compute a real numeric value for each of the node in the graph. Depending on the

value computed from the function, we can rank the importance of the nodes according to

the computed centrality value. Because the analytical framework is flexible, different

aspects of importance can be taken into account when evaluating a node. There are many

different definitions of graph centrality that reflects different features or concepts of

importance in the graph. Usually, centrality approaches are grouped into two

distinguishing families. In the first family, influence is calculated based on the role a node

has played in a specific type of network flow or transfer through the network. Centralities

are categorized by the type of network flows that are considered important. In the second

family, the impact of a node is described by its participation in the cohesiveness of the

graph. In both of families, there are many different measures of importance, which is why

there are so many variations in how centrality values are calculated.

14

In the family of centralities built on measures of cohesiveness, the majority of centrality

calculations belong to one group, which considers each node’s importance in a “walk”

through the graph. Different walking structure definitions give different values for the

walking distance from one node to another node. For example, degree centrality is based

on walks of length 1[20] and eigenvector centrality is based on infinite length walks. For

centralities characterized by walking structure, there exist two different categories. One

category of centrality focuses on the length of the walks, often labeled as Radial, like

degree centrality and eigenvector centrality. Other centrality measures focus on counts of

how many walks pass through a given node, such as betweenness centrality.

 In this research, the three centrality computation methods that we compared in our

experiment are all from the cohesiveness family and consider walking structure in the

graph. For representation of centralities utilizing shortest paths, we chose betweenness

centrality, which is from the medial walk category. For walking structure length-based

centrality, we used eigenvector centrality and page rank centrality. We did not experiment

with any centrality values based on walking length one since they don’t reflect enough

information in the graph.

Betweenness centrality

Betweenness centrality calculates a centrality value for every node and edge in the

graph. We only consider node centrality in our experiments, since every node in the

GitHub graph represents a user. The centrality computation is straightforward – a shortest

path algorithm is run against the graph. For every node, the algorithm keeps track of the

number of times the node is part of the shortest path between two other nodes. This

algorithm was first developed as a measure to evaluate the impact of specific individuals

in the communications of a social network. Nodes that have a high probability of appearing

in a randomly chosen shortest path from any two nodes in the graph have a higher

betweenness centrality value. The equation for computing betweenness centrality is

defined for a node v as follows: for a graph G = (V, E) where V represent the vertices, and

E represents the edge [21]:

15

𝐶𝐵(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠 ≠𝑣 ≠𝑡 ∈𝑉

 (1)

where 𝜎𝑠𝑡 is the total number of shortest paths from node s to node t and 𝜎𝑠𝑡(𝑣) defines

the number of times v appears on those paths.

Eigenvector centrality

 Eigenvector centrality is also a commonly used centrality value to indicate the social

impact of a user. It is essentially the eigenvector of the weighted adjacency matrix of the

graph A with the largest eigenvalue λ [22]. To be specific, the eigenvector centrality is the

solution of:

𝐴 𝐱 = λ 𝐱 (2)

where A is the adjacency matrix and λ is the largest eigenvalue.

PageRank centrality

For a graph G, the value of PageRank for each vertex can be given by following iterative

relation where Γ−(𝑣) represents the in-neighbors of vertex v, 𝑑+(𝑢) represents the out-

degree of the vertex w, with d symbols damping factor, and N symbols the number of the

nodes in the graph [23].

𝑃𝑅(𝑣) =
1 − 𝑑

𝑁
+ 𝑑 ∑

𝑃𝑅(𝑢)

𝑑+(𝑢)
𝑢 ∈ Γ−(𝑣)

 (3)

 The whole PageRank algorithm is based on the intuition that information on a web page

can be ranked based on link popularity. A page should be ranked higher if there are more

links to the page. This concept was first introduced in the context of web pages but it is

also an applicable algorithm for social graphs. The final result of the algorithm is a

probability distribution, in which for each node x in the graph, the PageRank value

represents the probability that a randomly selected node would have a link to node x.

PageRank centrality values can be computed for a graph of the any size. In the beginning

of the computation, the distribution of the PageRank value is evenly divided among all the

nodes. Theoretically, the computation process is iteratively applying Page Rank equation

16

shown above until The PageRank value doesn’t change anymore for a vertex in graph.

Practically, the function a threshold value is used to stop the iteration. Whenever an

iteration produces a PageRank value change below the threshold, the iteration stops and

the algorithm return the values computed for the nodes.

Metrics for model evaluation

In this subsection, we will introduce the metrics that we used in our experiments to

evaluate the performance of our random forest decision tree data model, and thus

validate our assumption that we can use the existing social graph information to find the

approximate mapping relationship between the accumulated historical usage data of the

user and their social impact in the GitHub social network. Once this model is built, we can

use the same model to infer the approximate social impact of future candidates in the

GitHub social graph and provide an objective indicator to help recruiters more effectively

screen candidates.

Precision, recall and F-measure

We used total four methods of evaluation in our experiments. Three of them are

precision, recall, and f-measure. The precision of a test in the experiment is an evaluation

of the ability of the data model not to classify an original positive sample as negative. The

recall of a test evaluates the ability of the data model to find all the existing positive

samples in the test dataset. The computation of the F-measure (Fβ measure) is based on

the weighted harmonic mean of the precision and recall, which can be seen as a standard

for the generalized ability for the data model to find all the positive samples in the test

dataset without including significant negative examples. All three of the evaluation

methods, including Fβ measure with β changing flexibly, range from 0 to 1, where 1 is the

best score, and 0 is the worst. The F-measure transforms into F-1 measure when β = 1,

meaning the precision and the recall are deemed equally important in the evaluation.

When using these measures in a binary classification, we use the terms “positive” and

“negative” as an indication of the data model’s acceptance of a user as a potential

17

candidate. The terms “true” and “false” are used to label whether the prediction is equal

to the expectation (e.g., correct candidates are accepted and incorrect candidates are

rejected). With these terms, we define the following relationships:

 Actual result in the test

Prediction

 true positive : Correct result false positive : Unexpected result

false negative: Missing result true negative : Correct absence of
result

Table 1: Relationship between the prediction and the actual test result

From this table, we define the following:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑣𝑒
 (4)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5)

𝐹𝛽 = (1 + 𝛽2)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

 𝛽2𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (6)

 These equations are of great importance in evaluating a data model’s performance. The

precision is a measure of how likely our approach is to correctly accept a candidate, which

is directly linked to the trustworthiness of our approach in correctly filtering the candidate

pool (e.g., it does not accept candidates that are not sufficiently skilled). The recall is linked

directly to the ability of our approach to accept as many fit candidates as possible without

introducing unfit candidates (e.g., a measure of not over filtering the list). Finally, the F-1

measure is a generalized measure of our approach’s ability to balance these two tasks.

18

Logarithmic loss

The fourth evaluation that we apply is logarithmic loss, which is also known as logistic

regression loss or cross-entropy loss. Log loss is commonly used to test the performance

of (multinomial) logistic regressions and neural networks. It is can also be a good fit to test

binary classification with random forest ensemble methods, since the final decision tree

can produce multiple results for each decision tree in each test, which will makes it

convenient to calculate the probability distributions. Logarithmic loss, itself, is a more

objective standard to evaluate the overall performance of the model compared to pure

accuracy-based metrics.

The equation for log loss per sample data test in this project can be computed through

the equation below, where the target attribute’s value is 0 or 1, and probability estimate

p is equal to the probability that the target attribute has value 1:

𝐿𝑙𝑜𝑔(𝑦, 𝑝) = − log Pr(𝑦 | 𝑝) = −𝑦 log 𝑝 + (1 − 𝑦) log(1 − 𝑝) (7)

IV. METHODOLOGY AND IMPLEMENTATION

The methodology for implementing the system was as follows. First, we collected every

‘Follow’ event from GitHub, then we built a graph based on these user to user relationships

(e.g. if user A follows user B, then there is an out edge from A to B in the graph). Next, we

computed every node’s centrality value in the in the graph. Third, we collected the number

of each type of GitHub event a user has generated (e.g., measures of different types of

activity on GitHub), and transform the data into a training dataset. Finally, we used the

random forest decision tree algorithm on our dataset to build a model to aid in predicting

a user’s graph centrality and whether or not they should be accepted as a job candidate.

The challenges in this project can be divided into two parts. The first challenge was how

to collect the right data from GitHub and then convert it into a right format for the

algorithm to process and reason on. The second challenge was how to design and conduct

experiments from the data to accurately evaluate the random forest decision tree model.

The only way to collect public data from GitHub is to use GitHub’s official API to access

the GitHub public timeline. However, GitHub’s strict limit of 60 requests per second

19

through the GitHub API made it nearly impossible to collect the data we needed to apply

our machine learning algorithms. To stay within their restrictions, it would take months to

just collect all the basic profile information of GitHub users need to generate the initial

graph. To overcome this limitation, I used the open source GitHub Archive to collect the

data. The project streams every event from GitHub’s public timeline [24] into a Google

BigQuery [25] public dataset [26] on Google Cloud Platform [27], which made it possible to

query the table for all needed data.

Because githubachive.org has a record of all the public GitHub timeline events since

2011, one can easily access and query any public GitHub event since 2011. The test data

for this thesis spans all public GitHub data from February, 2011 to January, 2015. In order

to build the graph of ‘Follow’ relationships among users, we used the following BigQuery

query:

//code to collect the graph

select *

from [githubarchive:github.timeline]

where type = 'FollowEvent';

 To form the final dataset for training, we also need to compute the centrality value

for the every user in the dataset. The challenge here is that the dataset is very large and

contains 4+ million users and creates a graph with even more edges (e.g., follow

relationships between users). To run a network centrality algorithm on this big graph is

very time consuming and is one of the problems we are trying to solve with our approach.

By training a machine learning model, we only need to run the network centrality

algorithm once to train the model and then we can use our model to predict centrality for

future users without performing the graph centrality computation again. To speed up the

computation for the GitHub social graph, we used the graph analysis library graph-tool [28].

In our experiments, which employed OpenMP [29], we ran the algorithm in parallel on the

20

multiple cores virtual machine provided by Google Compute Engine to speed up the

computation and reduce the running time from two or three weeks to a single day.

The training attributes we selected are the total number of each type of GitHub event

a user has generated. There are a total of 25 different event types [30] in GitHub and most

of the event counts can be accessed through the GitHub Archive with the following

BigQuery query:

//code to collect training attributes data

select actor, type, count(type) as events

from [githubarchive:github.timeline]

group each by actor, type;

 A subset of the users don’t have any follow events and don’t have any followers, causing

them to be disconnected from the graph. For these users, we labeled their centrality value

as -1, since they do not impact the overall graph centrality calculations. After collecting of

the all the mappings between users and the total number of each event type generated

by each user, we still need label users with their centrality values.

When we are done building the graph and the computing the centrality values, we

choose the mean centrality value, and the median centrality value of the overall graph

respectively in our experiment as a threshold to indicate if a user/node in the graph has an

above average social influence in the GitHub community or not. All the users with a

centrality value larger than the threshold are labeled as “Accepted” and all others are

labeled as “Rejected.” The choice of the value for the threshold is flexible and can be

adapted to each company’s preference on the aggressiveness with which candidates are

filtered out. In this research, we chose the mean of all the centrality values as the threshold

to examine the feasibility of the method and identify “above average” candidates.

We use random forest decision trees as basis for predicting if a user had a centrality

value above the threshold based solely on the counts of the different types of events they

generate in GitHub. The implementation we used to build the data model was written in

21

Python and part of the open source scikit-learn library. After building the random forest

decision tree, we can use the model to process future job candidates without recomputing

centrality values again – even though the GitHub social graph is changing every day.

Theoretically, we should only have to recalculate the centrality values if the social

structures and relationships in the GitHub community change substantially, which means

the mapping relationship we have generalized from the current network no longer reflect

the real-world relationships among the users in the GitHub social graph. However, it is

unlikely that this will be the case in the near future since the GitHub community is very

mature and unlikely to change radically.

V. EMPIRICAL RESULTS

In this section we describe the experiments that we conducted to evaluate our

approach. As discussed in the previous sections, there are four metrics that we used to

examine the performance of our model, log loss, precision, recall, and f-measure. The main

difficulty in setting up the experiment for this project is that there isn’t a real-world test

dataset of job candidates and sorted hiring preferences to compare against. Our analyses

focused on how accurately the model predicted whether or not a particular user was

above the chosen centrality threshold and not whether or not a user was an appropriate

candidate for a specific job.

To validate the accuracy of the centrality threshold predictions, we use cross-validation

on the training dataset. Cross-validation is a technique that uses part of the training

dataset to do the training and tests the model with the remainder of the dataset. It is a

common model validation technique that indicates how well the data model should

function on an independent new data set.

There are many methods for performing cross validation. We chose to evaluate our

model with K-fold cross validation. K-fold cross-validation divides the training dataset into

K equal parts and uses up to the Kth part as a test dataset while the remaining K-1 parts

are used for training. To achieve fairer test results for the whole dataset, we used stratified

K-fold to enhance the test process. Stratified K-fold evaluation is done just like the original

22

K-fold validation, except that the partitioning is done in a manner that preserves the

distribution of the class values across each part. We used stratified 5-fold validation for

our model. For threshold using the mean of the centrality values, the results for

betweenness centrality are shown in Table 2, for PageRank centrality in Table 3, and

eigenvector centrality in Table 4. For threshold using the median of the centrality values,

the results are respectively shown in Table 5, Table 6 and Table 7. The results were

obtained from a Python scikit-learn implementation. The final random forest decision tree

data model we built has a 100 single decision tree estimator in the ensemble.

For betweenness centrality with mean value as threshold:

 Result Mean

Log loss 0.037 0.035 0.034 0.034 0.033 0.035

Precision 0.80 0.73 0.71 0.73 0.74 0.74

Recall 0.46 0.53 0.53 0.53 0.54 0.52

F-1 score 0.58 0.62 0.61 0.62 0.63 0.61

Table 2: Betweenness centrality based model with mean value as threshold

For PageRank centrality with mean value as threshold:

 Result Mean

Log loss 0.125 0.122 0.122 0.123 0.123 0.123

Precision 0.73 0.65 0.65 0.66 0.67 0.67

Recall 0.28 0.30 0.31 0.30 0.30 0.30

F-1 score 0.40 0.41 0.42 0.42 0.42 0.41

Table 3: PageRank centrality based model with mean value as threshold

For eigenvector centrality with mean value as threshold:

 Result Mean

Log loss 0.086 0.078 0.078 0.079 0.077 0.080

Precision 0.75 0.64 0.64 0.65 0.64 0.67

Recall 0.19 0.23 0.24 0.23 0.22 0.22

F-1 score 0.30 0.34 0.35 0.34 0.33 0.33

Table 4: Eigenvector centrality based model with mean value as threshold

We can also directly compare them in the chart, which will be more intuitive to do some

cross sectional analysis to see the difference:

23

Figure 1: Performance comparison with mean value as threshold

Figure 2: log loss comparison with mean value as threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log loss precision recall F-1 score

Average performance comparison

betweenness PageRank eigenvector

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Log loss comparison

betweenness PageRank eigenvector

24

Figure 3: precision comparison with mean value as threshold

Figure 4: recall comparison with mean value as threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

precision comparison

betweenness PageRank eigenvector

0

0.1

0.2

0.3

0.4

0.5

0.6

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

recall comparison

betweenness PageRank eigenvector

25

Figure 5: F-1 score comparison with mean value as threshold

For betweenness centrality with median value as threshold:

 Result Mean

Log loss 0.22 0.23 0.22 0.22 0.22 0.22

Precision 0.97 0.96 0.96 0.96 0.96 0.96

Recall 0.75 0.73 0.74 0.74 0.74 0.74

F-1 score 0.84 0.83 0.84 0.83 0.84 0.84

Table 5: Betweenness centrality based model with median value as threshold

For PageRank centrality with median value as threshold:

 Result Mean

Log loss 0.25 0.24 0.24 0.24 0.24 0.24

Precision 0.72 0.68 0.67 0.67 0.67 0.68

Recall 0.39 0.44 0.44 0.43 0.43 0.43

F-1 score 0.50 0.53 0.53 0.53 0.52 0.52

Table 6: PageRank centrality based model with median value as threshold

For eigenvector centrality with median value as threshold:

 Result Mean

Log loss 0.24 0.24 0.23 0.24 0.22 0.24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

F-1 score comparison

betweenness PageRank eigenvector

26

Precision 0.75 0.70 0.69 0.70 0.71 0.71

Recall 0.41 0.45 0.45 0.44 0.44 0.44

F-1 score 0.53 0.55 0.54 0.54 0.54 0.54

Table 7: Eigenvector centrality based model with median value as threshold

The same kind of charts can also be drew for comparison:

Figure 6: Performance comparison with median value as threshold

0

0.2

0.4

0.6

0.8

1

1.2

log loss precision recall F-1 score

Average performance comparison

betweenness PageRank eigenvector

27

Figure 7: log loss comparison with median value as threshold

Figure 8: precision comparison with median value as threshold

0.2

0.21

0.22

0.23

0.24

0.25

0.26

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Log loss comparison

betweenness PageRank eigenvector

0

0.2

0.4

0.6

0.8

1

1.2

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

precision comparison

betweenness PageRank eigenvector

28

Figure 9: recall comparison with median value as threshold

Figure 10: F-1 score comparison with median value as threshold

 We can also compare the average performance of the model using mean value as the

threshold and median value as threshold vertically for the three centrality computing

methods respectively:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

recall comparison

betweenness PageRank eigenvector

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

F-1 score comparison

betweenness PageRank eigenvector

29

Figure 11: performance comparison for betweenness centrality based model with

different threshold

Figure 12: performance comparison for PageRank centrality based model with different

threshold

0

0.2

0.4

0.6

0.8

1

1.2

log loss precision recall F-1

Average performance comparison for betweenness
centrality based model

mean median

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log loss precision recall F-1

Average performance comparison for PageRank centrality
based model

mean median

30

Figure 13: performance comparison for eigenvector centrality based model with different

threshold

It is clear that all six models generated by utilizing different centrality computing

methods and different thresholding methods don’t have a very high log loss, which

indicates that they are all accurate models. However, as discussed previously, the precision,

recall, and F-1 scores are better evaluators of the model. The precision shows the ability

of the model to find highly influential candidates in the GitHub user graph without mixing

in the candidates with lower impact. The recall models the ability to discover larger

numbers of high quality candidates without introducing poor candidates. The F-1 score is

a generalized standard to evaluate how well the data model balances the two metrics.

From these three metrics, we can see some interesting results. First, the betweenness

centrality model seems to have much better performance than the two radial based

centrality computing methods and has better scores in every one of the three metrics for

two thresholding methods. The PageRank centrality and eigenvector centrality seem to

not be good approaches for finding influential candidates and not overlooking influential

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log loss precision recall F-1

Average performance comparison for eigenvector centrality
based model

mean median

31

candidates. However, because we only built 100 trees in our random forest, it is possible

that performance might improve with larger numbers of trees.

For betweenness centrality, however, the model shows some real promising value since

the precision of the prediction of a candidate’s centrality score can reach as high as 80%

and has an average 74% accuracy in the mean value threshold method, 97% and 96% in

the median threshold method, for predicting correctly whether candidates are above the

threshold influence on GitHub. If we use this model in the recruiting process, this model

tells you whether the candidate is a programmer with a higher impact on GitHub and is

right as much as 96% of the time.

Also, it can be seen clearly in the chart we have built above that the median is a better

thresholding methods to choose in the training process. Except for the log loss metrics, the

models with median value as threshold all outperform the models with mean value as

threshold for three centrality computing methods respectively. A possible explanation is

that the distribution of the centrality values for GitHub social graph is very unbalanced,

and using mean value as threshold may cause the samples labeled with

“Accepted”/”Rejected” too dominant in the training dataset, thus yielding biased tree in

the model.

VI. CONCLUDING REMARKS AND FUTURE WORK

To filter and more objectively assess the large number of the candidates in the software

engineering recruitment process, we proposed a novel approach in this thesis to

preprocess the candidates efficiently using their network centrality value in the GitHub

user graph. By experimenting with three different centrality value computation methods:

betweenness centrality, PageRank centrality, and eigenvector centrality, and a random

forest prediction model, we showed that we could predict if a user’s betweenness

centrality value was above a median threshold with 96% accuracy. This result supports our

assumption that we can use GitHub user graph information to find an approximate

relationship between the accumulated historical usage data of a user and their impact on

32

the GitHub network. Moreover, we can use the same model to infer the approximate

impact of future candidates on the GitHub social graph.

There is a lot space for future work for this project. First, we plan to evaluate other

centrality value computations to compare their performance. Second, we plan to try more

different methods to compute threshold values and compare their impact on overall

performance. Finally, there are also plenty of other machine learning algorithms can be

tried with this approach that will also be interesting to compare.

33

REFERENCES

[1] http://www.jobvite.com/press-releases/2012/jobvite-social-recruiting-survey-finds-

90-employers-will-use-social-recruiting-2012/

[2] https://www.githubarchive.org/

[3] U. Brandes, “A faster algorithm for betweenness centrality”, Journal of Mathematical

Sociology, 2001

[4] https://cloud.google.com/compute/

[5] http://graph-tool.skewed.de/

[6] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.

Wadsworth, Belmont, CA, 1984.

[7] L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001

[8] Freeman, Linton (1977). "A set of measures of centrality based on betweenness".

Sociometry 40: 35–41.

[9] P. Lawrence, B. Sergey, M. Rajeev, W. Terry, “The pagerank citation ranking: Bringing

order to the web”, Technical report, Stanford University, 1998

[10] A. N. Langville, C. D. Meyer, “A Survey of Eigenvector Methods for Web Information

Retrieval”, SIAM Review, vol. 47, no. 1, pp. 135-161, 2005

[11] C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer, p. 209.

[12] Powers, David M W (2007). "Evaluation: From Precision, Recall and F-Factor to ROC,

Informedness, Markedness & Correlation". Journal of Machine Learning Technologies 2

(1): 37–63.

[13] Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81 -

106

[14] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,

1993.

[15] J. R. Quinlan. Improved use of continuous attributes in C4.5. Journal of Artificial

Intelligence Research, 4:77-90, 1996.

[16] T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning, Springer,

2009

34

[17] http://scikit-learn.org/stable/

[18] Tsoumakas, Grigorios; Katakis, Ioannis (2007). "Multi-label classification: an

overview". International Journal of Data Warehousing & Mining 3 (3): 1–13.

[19] Opitz, D.; Maclin, R. (1999). "Popular ensemble methods: An empirical study".

Journal of Artificial Intelligence Research 11: 169–198.

[20] L. C. Freeman, "Centrality in Social Networks: I. Conceptual Clarification." Social

Networks, 1, 1979, 215-239.

[21] Brandes, Ulrik (2008). "On variants of shortest-path betweenness centrality and their

generic computation". Social Networks 30: 136–145

[22] A. N. Langville, C. D. Meyer, “A Survey of Eigenvector Methods for Web Information

Retrieval”, SIAM Review, vol. 47, no. 1, pp. 135-161, 2005

[23] Arasu, A. and Novak, J. and Tomkins, A. and Tomlin, J. (2002). "PageRank

computation and the structure of the web: Experiments and algorithms". Proceedings of

the Eleventh International World Wide Web Conference, Poster Track. Brisbane,

Australia. pp. 107–117.

[24] https://developer.github.com/v3/activity/feeds/

[25] https://cloud.google.com/bigquery/

[26] https://bigquery.cloud.google.com/table/githubarchive:day.events_20150101

[27] https://cloud.google.com/

[28] http://graph-tool.skewed.de/

[29] http://openmp.org/wp/

[30] https://developer.github.com/v3/activity/events/types/

