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CHAPTER 1 

 

INTRODUCTION 

1 Background 

Fluid Power is the use of pressurized fluids to generate, control and transmit power 

consisting of two mediums, hydraulics and pneumatics. One of the primary advantages of using 

fluid power over other forms is that it offers power density that competing power sources cannot. 

Despite this compelling advantage, a major shortcoming of the fluid power industry is that it is 

largely inefficient. As a result, the Center for Compact and Efficient Fluid Power, a National 

Science Foundation Engineering Research Center was formed, with efficiency being one of its 

primary focuses. A number of efficiency concepts have been developed within the center with 

one, the strain energy accumulator, building off of an existing fluid power efficiency 

improvement device, the accumulator. 

1.1 Existing Accumulator Technology 

Accumulator technology has been introduced in a number of applications in the hydraulic 

sector to bolster energy efficiency. Traditional accumulators consist of a rigid exterior cavity that 

is partitioned into two regions, with gas on one side and a hydraulic fluid on the other side. The 

accumulator stores energy by pumping hydraulic fluid into one side of the cavity and 

compressing the gas on the other side of the cavity resulting in a nonlinear pressure profile. 

Doing so accomplishes two objectives; first it attenuates pressure spikes in the system that can 

cause damage to other costly fluid power components. Second, it temporarily stores energy for 

the system that can be used at a later point in time. While traditional accumulators isolate 

pressure spikes and increase efficiency there is much room for improvement as the existing 

technology is often big and bulky, relatively inefficient in energy storage due to heat loses and 

carries an additional maintenance burden due to the diffusion of gas across the bladder into the 

hydraulic side of the system. A device developed to address these drawbacks of traditional 

accumulators is the strain energy accumulator (SEA). 

1.2 Strain Energy Accumulator Technology 

The SEA is an energy storage device consisting of an expandable rubber bladder inside of a 

rigid shroud. Fundamentally, the SEA utilizes the hyperelastic behavior of rubber to store energy 

in the form of strain energy of the stretched rubber material and pressure energy of the stored gas 

within the material. The SEA comes in both a hydraulic and pneumatic version. In the hydraulic 

version, the application of the SEA remains largely the same as traditional accumulators while 

offering a more compact and efficient alternative. The pneumatic strain energy accumulator 

(pSEA) on the other hand, for the first time, enables the use of accumulators in pneumatic 

systems. The closest competing technologies in the pneumatics sector are rigid compressed air 

storage tanks for energy storage and pressure regulators for improved efficiency. In application, 

a primary method of use of the pSEA is in exhaust gas recycling.  
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A specific area of application is use in line with pneumatically actuated cylinders in 

manufacturing processes. Current standard operating procedures for pneumatic cylinders require 

each cylinder to be supplied with supply air. In applications where current efficiency 

improvement methods are employed, pressure regulators are used to regulate cylinders down to 

their minimum operating pressure to avoid using excessively pressurized air, equating to 

unnecessary energy expenditures. Even with pressure regulators in use the largest source of 

wasted energy comes from the exhaust stage of the operating cycle where compressed air in the 

cylinder is exhausted to atmosphere along with all of its usable energy. The pSEA is introduced 

to the system to capture those gases and their remaining useful energy, and store them for use at 

a later time; thus recovering and recycling the exhaust gas. The pSEA fills the accumulator 

technology gap in the pneumatics industry, offering the advantages of offering a constant 

pressure supply, being compact, lightweight, inexpensive and highly efficient. 

2 Motivation 

A report released in 2012 by Oak Ridge National Laboratories (ORNL) and the National 

Fluid Power Association (NFPA) identified the fluid power industry as being only 22 % efficient 

on average [1]. The pneumatic division of the fluid power industry comes in even lower at a 

mere 15 % average efficiency. In an era where energy consumption and efficiency are of great 

concern, the fluid power industry and specifically the pneumatics sector with its abysmal 

efficiency, is an obvious candidate offering significant room for improvement.  If the efficiency 

of the fluid power industry can be increased, fluid power has a great potential to address an 

increasing energy demand and desire for energy efficiency. 

2.1 Previous Work 

The SEA having been identified as an improvement over existing hydraulic accumulators as 

well as a highly efficient device offers an opportunity to improve the fluid power industry’s 

efficiency. Two Master’s theses have been completed in advancing the body of knowledge 

available on the SEA. The first of these two works is by Pedchenko [2] focusing on the design 

and finite element modeling of the SEA. In the work Pedchenko developed the basic theory 

behind the operational behavior of the SEA, developed a prototype, modeled the prototype using 

finite element analysis to capture the fundamental behavior of the SEA and experimentally 

validated SEA behavior. Subsequently Tucker [3] advanced the work completed by Pedchenko 

and investigated a number of materials and geometries to use for the SEA. In doing so several 

new configurations of the SEA were developed primarily for hydraulic applications with 

emphasis placed on the distributed piston configuration. 

The work completed by Pedchenko and Tucker identified a number of gaps that needed to be 

addressed including advanced materials and manufacturing design challenges to overcome high 

pressure challenges presented by hydraulic systems and limiting the use of elastomers in the 

SEA. Bing et al. [4] studied the efficiency impact a hydraulic accumulator had on a hydraulic 

elevator system. In the paper by Bing et al., the efficiency improvement realized by introducing 

the accumulator into the system was confirmed along with the ability of the accumulator to 

attenuate perturbations of the system allowing the elevator to follow the desired input. The work 

did not extend out generically to other hydraulic systems, did not develop widely applicable 

models and neglected any pneumatic system implications. Finally Harris et al. [5] studied energy 

efficiency in pneumatic production systems by evaluating current state of the art technologies 

and methods and identifying needs for the future. The findings included the importance of using 
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current efficiency methods such as eliminating leaks and using pressure regulators. In the report 

is was estimated that the ability to recover and recycle air could result in 12-52 % energy savings 

but that “recovery of exhaust air is not feasible” and that future research needs include “a lack of 

compressed air cost accounting and lack of awareness of potential savings,” “development of 

integrated performance metrics” and “model-based optimization techniques with specific focus 

on the application side.” The ensuing body of work addresses all of these gaps and needs. 

3 Objectives and Contributions 

Motivated by the gaps in the current state-of-the-art, the current work’s objectives and 

resulting contributions start by identifying new materials being developed for other applications 

and extending them to the current application with materials modeling work [6]. Modeling 

efforts are continued through development of models for efficiency studies for the pneumatic 

strain energy accumulator [7]. Component efficiency [8] and System efficiency increases [9] are 

studies and reported while incorporating uncertainty analysis. Finally, the materials concepts are 

extended by completing conductive elastomer proof of concept work investigating the ability to 

monitor load and detect damage in hyperelastic materials [10]. 

3.1 Advanced Accumulator Materials Modeling 

Due to the hyperelastic nature of the material, the identification of an appropriate elastomer 

and the characterization of the strength properties and energy density of this elastomer are 

challenging tasks. Another technical barrier is the manufacturability of these elastomers 

including the high cost of fabrication and the limited elastomer formulations with high strength 

and large energy density. A quantitative analysis of these technical barriers is needed. A 

comprehensive modeling effort for the strain energy accumulator in 2-D and 3-D using the 

hyperelastic Mooney-Rivlin model was performed to validate the behavior of the strain energy 

accumulator. Additionally, various multiscale modeling methods, including the Mori-Tanaka, 

Hashin-Shtrikman, Lielens, Voigt and Reuss Methods were investigated to estimate the 

homogenized elastic modulus of carbon nanotube rubber resulting in homogenized modulus 

estimates ranging anywhere from a few times to almost 80 times the elastic modulus of rubber. 

3.2 Pneumatic Strain Energy Accumulator Model 

The pneumatic Strain Energy Accumulator (pSEA), a device that stores the energy of 

compressed air in the strain energy of a rubber bladder, has recently undergone proof of concept 

testing showing promise in compact energy storage applications. An adequate model of the 

pneumatic strain energy accumulator on a systems level is needed to explore the design space in 

order to optimize the device. The recent success of the pneumatic strain energy accumulator on 

an Ankle Foot Orthosis (AFO) medical assist device serves as motivation for such a systems 

level model. In laboratory experiments the AFO medical assist device has reported from 25-75 % 

energy efficiency improvement when using the pSEA depending on the various parameters of 

the medical device. Early measurements and calculations for a single stage independent process 

pSEA indicated a theoretical maximum energy efficiency increase of 33 % which lies between 

the energy efficiency values realized on the AFO device using a single stage coupled process 

pSEA. A study of a lumped parameter model using measured Pressure-Volume curve data as a 

model input will be used to quantify energy efficiency increases for a variety of system 

configurations. Once complete, a set of measurement techniques and tools to successfully realize 

the strain energy accumulator will be ready to use in quantifying its energy savings. 
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3.3 Component Efficiency with Uncertainty Analysis 

There is heightened interest in research to develop materials and devices that achieve greater 

energy storage capacity, power density and increased energy efficiency. This work analyzes the 

performance of a novel energy storage device, the pneumatic strain energy accumulator, which is 

designed to exploit the advantageous aspects of the non-linear behavior of elastomeric materials. 

An analytical methodology for simultaneously characterizing the pneumatic and material energy 

storage in a strain energy accumulator, and more general for pneumatic and strain energy 

systems, has been developed. Component efficiency along with the expansion and contraction 

pressures of the pneumatic strain energy accumulator are determined experimentally, using a 

combined Matlab and National Instruments data acquisition system, so that a system level 

efficiency calculation can be performed. Incorporating uncertainty analysis, the efficiencies of 

the strain energy accumulator are measured to be consistently over 93 % in over 2500 cycles of 

testing. The expansion and contraction pressures of the accumulator, despite the hysteretic 

behavior of rubber, have a fairly stable value with a standard deviation of only 0.1 % of the mean 

values. 

3.4 System Efficiency State Models with Energy Savings Projections 

A number of national organizations have recently expressed interest in research to develop 

materials and devices that achieve greater energy storage capacity, power density and increased 

energy efficiency on the heels of a report finding that the pneumatic sector of the fluid power 

industry averages only 15 % efficiency. One way of improving efficiency is the use of energy 

storage and recycling devices. The pneumatic Strain Energy Accumulator is a recently developed 

device that recycles exhaust gas from one pneumatic component, stores it in a highly efficient 

process, and reuses the stored exhaust gas at a constant pressure to power another pneumatic 

component. This work analyzes system efficiency increases directly attributable to the 

implementation of a pneumatic strain energy accumulator applying an analytical methodology 

for system level efficiency improvement calculations, experimental validation, and energy 

savings projections. Experimentally determined efficiency increases start at 36 % and be as high 

as over 60 %, rendering the pneumatic strain energy accumulator a viable part of the solution to 

the fluid power efficiency challenge. 

3.5 Carbon Nanotube Reinforced Elastomers Concept 

Early work on embedding CNTs in elastomers focused on strength and electrical effects 

including modulus, conductivity and electro-magnetic interference (EMI) shielding properties. In 

some of the most recent work, CNTs have been dispersed into viscous materials or spun into 

threads and used to measure strain in composite materials in an effort to functionalize CNTs 

embedded in elastomeric and carbon fiber reinforced composites respectively. Recently, carbon 

nanotube sensor thread was tested as a distributed sensor for the first time on IM7/977-3 

composites where the sensor thread was able to monitor strain and detect damage in composite 

panels while not affecting the integrity of the composite material. Extending this work to 

conductive elastomers, CNTs in forest or ribbon form would be ideal to use in hyperelastic 

materials due to their ability to undergo large deformations and maintain contact with each other 

upon return to the original geometry. CNTs, when used as electrical sensors, can enable material 

state awareness through structural health monitoring (SHM) while improving strength properties. 

The ability to sense strain using CNTs in the form of CNT thread is extended through a proof of 
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concept study demonstrating the ability of conductive elastomers to monitor load and detect 

damage in specific directions. 
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Abstract 

Energy efficiency is a prominent target in cost reduction efforts in a variety of machinery 

including manufacturing equipment and hybrid vehicles. In the course of developing a proof of 

concept strain energy accumulator on an Ankle Foot Orthosis (AFO) device, several technical 

barriers have been quantified in this device.  Due to the hyperelastic nature of the material, the 

identification of an appropriate elastomer and the characterization of the strength properties and 

energy density of this elastomer are challenging tasks. Another technical barrier is the 

manufacturability of these elastomers including the high cost of fabrication and the limited 

elastomer formulations with high strength and large energy density. A quantitative analysis of 

these technical barriers is needed. A comprehensive modeling effort for the strain energy 

accumulator in 2-D and 3-D using the hyperelastic Mooney-Rivlin model was performed to 

validate the behavior of the strain energy accumulator. Additionally, various multiscale modeling 

methods, including the Mori-Tanaka, Hashin-Shtrikman, Lielens, Voigt and Reuss Methods were 

investigated to estimate the homogenized elastic modulus of carbon nanotube rubber resulting in 

homogenized modulus estimates ranging anywhere from a few times to almost 80 times the 

elastic modulus of rubber. 

1 Introduction 

Energy efficiency is an active area of research, which continues to grow as energy costs and 

demand increase amidst rising concerns over the depletion of natural resources. Fluid power has 

a great potential to address this increase in energy demand and desire for energy efficiency [1]. 

The main benefit of fluid power is that it has more energy density than competing power sources. 
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1.1 Current Accumulator Technology 

In particular, fluid power energy accumulator technology has been introduced in a number of 

applications to bolster energy efficiency. Traditional accumulators consist of a rigid exterior 

cavity that is partitioned into two regions, with gas on one side and a hydraulic fluid on the other 

side. The accumulator stores energy by pumping hydraulic fluid into one side of the cavity and 

compressing the gas on the other side of the cavity. 

Drawbacks of the current technology include excessive size and weight, thermal losses from 

the compressed gas to the environment when the energy stored is not reused soon after it is 

stored, and diffusion of the gas across the partition into the hydraulic fluid leading to increased 

maintenance requirements of the device [2]. These challenges motivated the development of a 

new strain energy accumulator design concept [3]. 

1.2 Strain Energy Accumulator Technology 

The strain energy accumulator, which is illustrated in Figure 2.1, consists of a rubber bladder 

encased by a rigid shroud. The strain energy accumulator functions by capitalizing on the 

hyperelastic behavior of the rubber bladder as it stores energy in the form of strain energy in the 

rubber bladder. Both pneumatic and hydraulic variants of the strain energy accumulator are 

possible – the pneumatic proof of concept device is pictured in Figure 2.2. 

 

Figure 2.1: Strain energy accumulator US Patent Application US20120085449 A1 

 

Figure 2.2: Pneumatic strain energy accumulator proof of concept 

The strain energy storage of the accumulator can be understood by correlating Figure 2.3(a) 

and (b). In Figure 2.3(b), the stress strain curve of rubber is divided into four regions that 

correspond to the behavior seen in Figure 2.3(a). The rubber deforms according to the initial 
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modulus of the deflated rubber bladder in Region 1 in Figure 2.3(b) corresponding to the linear 

region of the pressure-volume diagram in Figure 2.3(a). In Region 2 shown in Figure 2.3(b), the 

rubber modulus begins to decrease corresponding to the rounded peak in Figure 2.3(a). At this 

point the bladder material undergoes hyperelastic deformation and begins to balloon resulting in 

a sudden increase in volume and the pressure drop seen in Figure 2.3(a). 

 

Figure 2.3: (a) typical pressure-volume diagram of strain energy accumulator  

(b) typical stress-strain curve of rubber 

The pressure then continues to drop until the ballooning region of the rubber bladder 

experiences a local increase in elastic modulus in Region 4 of Figure 2.3(b) resulting in the same 

modulus as in Region 1 of Figure 2.3(b). The localized increase in elastic modulus is believed to 

be caused by a localized strain hardening of the rubber material, at which point the ballooning 

region of the rubber bladder starts to travel the length of the bladder at the minimum modulus of 

Region 3 from Figure 2.3(b). As the ballooning region travels the length of the bladder, the 

pressure remains constant while the volume increases which corresponds to the flat region in 

Figure 2.3(a). 

1.3 Applications for Strain Energy Accumulator 

Two specific applications that motivated the development of the strain energy accumulator 

are the Ankle Foot Orthosis (AFO) device for assisting patients in stroke recovery and the 

hydraulic hybrid vehicle shown in Figures 3.4(a) and (b), respectively. 

      

Figure 2.4: (a) Ankle Foot Orthosis [4] (AFO) and (b) hydraulic hybrid [5] concepts 

a b 

a b 
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Early success has been realized on the AFO using a pneumatic strain energy accumulator that 

takes advantage of the nearly constant pressure-volume relationship of the accumulator to 

recycle exhaust gases. An efficiency increase in the AFO device of over 25 % as compared to the 

device without the pneumatic strain energy accumulator has been demonstrated experimentally 

[6]. The initial success of the pneumatic strain energy accumulator has led to insights regarding 

the challenges in both the pneumatic and hydraulic variants of the strain energy accumulator in 

the areas of materials, modeling and manufacturing. A discussion of the materials challenges is 

presented next with proposed solutions, followed by an overview of the modeling efforts that are 

underway to quantify these challenges, and ending with a discussion of the manufacturing 

obstacles that need to be addressed to make the advanced strain energy accumulator 

commercially viable. 

2 Materials 

Several challenging material issues have been identified. Typically, rubber is used in 

isolation applications, e.g., bushings, in which maximum hysteresis is desirable to damp out 

unwanted vibrations. Additionally, the elastic modulus of rubbers that exhibit hyperelastic 

behavior is relatively low compared to other materials such as alloys and composites; therefore, 

the use of rubber in high pressure and large stress operating conditions, as are typically 

experienced in hydraulic systems, results in premature material failure. 

2.1 Carbon Nanotube Embedded Rubber 

One idea that has been proposed to improve the material properties of rubber is to add 

Carbon Nanotubes (CNTs) to the rubber material. The embedding of CNTs in rubber has been 

investigated previously primarily for its improvement in rubber’s strength and electrical 

properties [7],[8]. The improved strength properties with increasing weight percent CNTs are 

illustrated conceptually in Figure 2.5. 

 

Figure 2.5: Effect of increasing weight percent of CNTs on rubber modulus 

With an increase in the elastic modulus of rubber containing CNTs, this advanced concept of 

the strain energy accumulator has the potential to be used in higher pressure hydraulic 

applications. In addition to improved strength properties, a number of other material property 

advantages exist for CNT embedded rubber including increased conductivity and Electro 

Magnetic Interference (EMI) shielding capability [7] and the potential to produce functionally 
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graded CNT embedded rubbers. Prior to fully exploring these additional capabilities, the concept 

for a CNT embedded rubber must be thoroughly developed. 

2.2 Advanced CNT Embedded Rubber Strain Energy Accumulator Concept 

Carbon nanotubes embedded in a rubber strain energy accumulator enable advanced material 

properties to be achieved. A number of possibilities exist of how to incorporate CNTs into rubber 

including CNT powder, vertically aligned CNT sheets, and even spun CNT threads. The concept 

of a sheet of vertically aligned CNTs embedded in rubber is shown in Figure 2.6. Figure 2.6(a) 

shows the advanced strain energy accumulator in its elastic taut position with vertically aligned 

CNTs; Figure 2.6(b) shows the hyperelastic configuration of the advanced strain energy 

accumulator. 

 

Figure 2.6: Vertically aligned CNT embedded rubber strain energy accumulator concept (a) initial 

(b) final/stretched configuration 

Yamada et al. [9] have also demonstrated the capability of vertically aligned CNTs to be used 

in flexible fabrics as a strain sensing device. Kang et al. [7] have also demonstrated the strain 

sensing capability of CNTs in a spun thread configuration. Before a final configuration is 

selected, the expected properties and feasibility of each configuration must be investigated 

through appropriate modeling and manufacturing techniques. 

3 Modeling 

There are several modeling techniques available to approach the CNT embedded rubber 

material including multiscale modeling and analytical software packages such as Abaqus 

available in both 2-dimensional (2-D) and 3-dimensional (3-D) versions. All of these techniques 

will be considered and employed herein. Table 2-1 shows the material properties used for CNTs 

in the multiscale modeling homogenization techniques. 

Table 2-1: CNT material properties used in homogenization methods 

Direction Young’s Modulus (GPA) Poisson’s Ratio Shear Modulus (GPA) 

Longitudinal 825.0 0.28 
8.0 

Transverse 4.5 0.38 

a b 
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The values chosen for the longitudinal and transverse Young’s modulus and Poisson’s ratio 

for CNTs reported by Montazeri et al. [11] were used and the shear modulus reported by Zeng et 

al. [12] was used. Since the values for rubber vary based on the type of rubber selected and also 

vary from one manufacturer to another, for the Abaqus modeling, a soft rubber was chosen with 

a Young’s modulus of 28.5 MPa; for the multiscale homogenization techniques a Young’s 

modulus representing a stiff rubber was selected to be 0.1 GPa with a corresponding Poisson’s 

ratio of 0.4. The importance of the selection of two opposing moduli will be discussed in later 

sections. The aforementioned values are supplied as inputs to their respective models.  

3.1 2-D Modeling of Dynamic Performance of Strain Energy Accumulator 

The first step in the modeling process was to complete a 2-D analytical dynamic model in 

Abaqus of the strain energy accumulator to accurately capture the behavior of the device. Figure 

2.7 shows the deformation predicted by Abaqus and relative stress magnitude for a rubber only, 

strain energy accumulator. As expected the rubber bladder ballooned and then started to travel 

down the length of the device with a higher stress on the inside wall and a lower stress on the 

outside wall of the accumulator. 

 

Figure 2.7: 2D Abaqus dynamic model of strain energy accumulator 

The 2-D Abaqus model, with a profile view shown in Figure 2.8(a), was used to generate the 

P-V curve shown in Figure 2.8(b) and validate the general shape of the P-V curve shown in 

Figure 2.3(a). 

 

Figure 2.8: (a) Profile view of 2-D Abaqus model displaying Von Mises stress distribution for free (no shroud) 

expansion and contraction w/o hysteresis (b) P-V curve generated from simulation 

With the behavior of the strain energy accumulator characterized in 2-D the next step was to 

generate a 3-D model of the strain energy accumulator. 

 

 

a b 
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3.2 3-D Modeling of Quasi-Static Response of Advanced Strain Energy Accumulator 

The next stage of the modeling effort was to develop a 3-D rubber model for the strain 

energy accumulator. In the model shown in Figure 2.9, the Mooney-Rivlin hyperelastic model 

was selected. Required inputs to the Mooney-Rivlin hyperelasticity model are the constants C10, 

C01, and D. Constants C10, C01, and D are typically determined from the bulk modulus of rubber 

and experimental data. In the absence of experimental data, the elastic modulus of rubber 

selected was the softest value of initial stiffness reported by Xue and Hutchinson [13] as listed in 

Table 2-2 with the corresponding values for constants C10, C01, and D. The softest modulus was 

selected since softer rubbers are ideal for hyperelastic behavior in the strain energy accumulator. 

Table 2-2: Mooney-Rivlin Constants 

Initial Stiffness E (MPa) C10 (MPa) C01 (MPa) D (1/MPa) 

28.5 4.5980 -0.18392 4.2105e-3 

 

Values for the constants were entered into the Mooney-Rivlin 3-D hyperelastic model. The 

dimensions used in the 3-D simulation were similar to those of the 2-D simulation from Figures 

3.8(a) and (b) rounded to the nearest metric dimension for the free expansion (no shroud) 

configuration without hysteresis. Figure 2.9 shows the initial and final states of the strain energy 

accumulator. 

        

Figure 2.9: 3D Quasi-static simulation of rubber only strain energy accumulator (a) mesh used in simulation 

(b) Von Mises stress in final inflated stress state for constant pressure loading 

The results obtained from the 3-D quasi-static model are consistent with those obtained in the 

2-D model, thus serving as a form of verification of the 2-D model. It is observed that the inner 

surface experiences a much higher strain than the outer surface even at a relatively thin wall 

thickness of 2.5 mm. The final quasi-static state is in the fully ballooned configuration. The next 

modeling step is to develop a dynamic 3-D simulation in an effort to again validate the P-V 

curves in Figure 2.3(a) and Figure 2.8(b). Once the P-V curve has been validated with the 3-D 

model, the next step is to validate the P-V curve using the homogenized modulus value 

determined from multiscale modeling homogenization techniques after the value has been 

validated experimentally. 

 

 

a b 
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3.3 Multiscale Modeling Homogenization Techniques to Estimate Elastic Modulus of CNT 

 Embedded Rubber 

The models used to extrapolate macroscale properties for a carbon nanotube reinforced 

elastomer are the Mori-Tanaka, Hashin-Shtrikman, Lielens, Voigt and Reuss Homogenization 

Methods [14]. The Mori-Tanaka Homogenization method is selected because it is the most 

referenced homogenization technique in the literature that is used as a benchmark. Hashin-

Shtrikman Homogenization was selected since it serves as an upper and lower bound for the 

elasticity tensor, or homogenized modulus. Once the results are obtained for the carbon nanotube 

reinforced elastomer a comparison of the model results will be conducted to investigate the range 

of predicted values. Finally, consideration will be given to the possibility of feeding these results 

into other models. All of the homogenization methods start with the basic stress-strain relations 

and their respective tensors as given in Eq. (1): 

 klijklij C    (1) 

3.3.1 Voigt and Reuss Methods 

The simplest of all the homogenization methods are the Voigt and Reuss methods. The 

homogenized modulus is determined by the effective elasticity tensor C
*
. In the Voigt 

homogenization method the effective elasticity tensor is equivalent to springs in parallel and is 

defined as: 
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Here α is the phase (matrix or inclusion), cα is the volume fraction or the ratio of the volume 

of the particular phase to the total volume and Cα is the stiffness tensor of the respective phase. 

In the CNT reinforced rubber there are only two phases, the CNTs and the rubber. The volume 

fraction is the variable input to the homogenization method and the stiffness tensor for the CNT 

inclusions and rubber matrix, Ci and Cm are the stiffness tensors for the inclusion and matrix 

material which are assumed to be transversely isotropic and isotropic respectively. The Reuss 

homogenization method is equivalent to springs in series with the effective elasticity tensor: 
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As can be seen from Eq. (2) and Eq. (3) the Voigt method serves as an upper limit and the 

Reuss method serves as a lower limit. The homogenized modulus in the longitudinal direction 

for these two methods and all subsequent homogenization methods will be the C11 element of the 

effective elasticity tensor. 

3.3.2 Mori-Tanaka Method 

The Mori-Tanaka homogenization method is one of the most referenced homogenization 

methods in the literature to which most new methods compare their results. The Mori-Tanaka 

effective elasticity tensor is defined by Klusemann and Svendsen
[15]

 as: 

  
i
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Where CI is the elasticity tensor of the inclusion, Cm the elasticity tensor of the matrix, ci the 

volume fraction of the inclusion and AI(MT),i as defined by Klusemann and Svendsen [15]. In the 

case of a transversely isotropic elliptical inclusion material the Eshelby tensors are defined 

Weinberger and Cai.[16] When spherical isotropic inclusions are assumed, then the Eshelby 

tensors simplify to those provided Odegard et al. [17]. 

3.3.3 Hashin-Shtrikman Method 

The Hashin-Shtrikman method serves as a lower and upper bound similar to the Voigt and 

Reuss Methods. The Hashin-Shtrikman method is included as a secondary bounding 

homogenization method primarily because the lower bound is similar to the Mori-Tanaka 

Method. The Hashin-Shtrikman upper and lower bound are defined by Klusemann and Svendsen 

[15] and Klusemann et al. [14] as follows: 
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In the upper bound Hashin-Shtrikman method, SI is the Eshelby tensor that uses the Poisson’s 

ratio of the inclusion in place of that of the matrix for the lower bound. 

3.3.4 Lielens Method 

The final method considered in the current study is the Lielens Method since it utilizes the 

Mori-Tanaka method and inverse Mori-Tanaka method to obtain an interpolative elastic modulus 

estimate that results in a solution between the upper and lower bounds of the Hashin-Shtrikman 

method. In the inverse Mori-Tanaka method the matrix material becomes the inclusion material 

and the inclusion material becomes the matrix material and is annotated by C
*
(MT

-1
). The Lielens 

homogenization method is defined by Klusemann and Svendsen [15] and Klusemann et al. [14] 

as: 
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3.3.5 Results and Discussion of Multiscale Modeling Homogenization Methods 

The prediction of the normalized homogenized elastic modulus of the various 

homogenization techniques are shown in Figure 2.10. The Voigt and Upper Hashin-Shtrikman 

are not shown in Figure 2.10 as they predict a very large elastic modulus due to the heavy 

weight/influence given to the material properties of the CNTs but are presented above for 

completeness. 

As can be seen from Figure 2.10, the various homogenization methods result in substantially 

different estimates for the homogenized elastic modulus of CNT embedded rubber. The Reuss 

method, being inversely proportional to the properties of the CNTs, results in a very small 

homogenized modulus estimation. The Mori-Tanaka and Lower Hashin-Shtrikman methods are 

in good agreement, as was observed in the literature, and start out dominated by the material 

properties of the rubber and slowly transition to those of the CNTs. Finally, the Lielens method 

attempts to give more weight to the material properties of CNTs at lower volume fractions and 
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then transitions to the Mori-Tanaka method at larger volume fractions of CNTs which is 

consistent with Eq. (6). 

 

Figure 2.10: Elastic modulus homogenization results for CNT embedded rubber 

Due to the large variation of predictions from the different multiscale modeling 

homogenization methods, these modeling techniques may not be adequate to predict the behavior 

of the advanced strain energy accumulator. Experimentally determined modulus values are 

required due to the large variation in predicted values from the multiscale methods. After the 

homogenized modulus values have been experimentally determined then the 2-D and 3-D 

models can be updated with this experimental data and the simulations can be rerun. Prior to 

experimental validation, the manufacturing methods used to create CNT embedded rubber are 

addressed. 

4 Manufacturing 

Similar to most research oriented programs, the first of many challenges is the cost to 

produce a small lot/short run accumulator samples, especially for the hydraulic accumulator 

which is typically larger in size. In addition to the high cost of small lot production, CNTs 

remain expensive and CNT manufacturers are currently working to significantly reduce the cost 

per gram while simultaneously greatly increasing production capability. Specific to the hydraulic 

accumulator is the higher pressure operating environment which has led to the desire to 

incorporate CNTs in the rubber material. Finding a rubber supplier with the capability of 

incorporating CNTs into a rubber compound is a challenge since not all rubber manufacturers 

have the capability. Even if they do have the capability, the knowhow is also an area that is 

currently at a relatively low Technology Readiness Level (TRL) for practical applications. Ways 

that are being considered to embed, orient, and functionally grade CNTs into rubber include 

vibration, magnetic fields, centrifuge, etc. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120
Comparison of Mori-Tanaka, Hashin-Shtrikman Lower Bound, Lielens and Reuss Methods

Volume Fraction, a

N
o
rm

a
liz

e
d
 H

o
m

o
g
e
n
iz

e
d
 M

o
d
u
lu

s
 (

C
1
1
/C

m
1
1)

 

 

Mori-Tanaka

H-S Lower

Lielens

Reuss



16 

 

5 Conclusions and Future Work 

Several key findings were put forth in the current work. The primary driver for the current 

work is the inability of elastomers to be applied to the high pressure hydraulic strain energy 

accumulator. The CNT embedded advanced strain energy accumulator was conceptualized to 

address this need. Hyperelastic models in both 2 and 3-D were constructed to validate the P-V 

curve of the strain energy accumulator and multiscale modeling homogenization techniques were 

employed to predict a homogenized elastic modulus of the CNT embedded strain energy 

accumulator. The large variation in predicted values from the existing homogenization methods 

indicates that the current methods may not be adequate in estimating the homogenized modulus 

for CNT embedded rubber. Future experimental validation will determine if new homogenization 

methods are required for such a material. Finally, the necessity of developing unique 

manufacturing methods to ensure proper dispersion of CNTs in rubber will also be explored to 

functionalize CNT embedded rubber in the application of the strain energy accumulator. 

There is a significant potential for elastomers with improved strength properties in pneumatic 

and hydraulic power applications. Key industries such as manufacturing and automotive where 

pneumatics and hydraulics have the potential with even modest increases in efficiency, to save 

millions, possibly billions of dollars annually in energy costs [1]. By addressing the materials 

issues, gaining deeper insight through detailed modeling and improving current manufacturing 

techniques or developing new ones, many other industries, including the medical and aviation 

industries, stand to benefit from CNT embedded rubber. In the helicopter industry, as far back as 

1975, bearings were identified as the number one cost driver of a helicopters transmission system 

[18] and remain so today. Hydraulic repair issues are well known by aircraft manufacturers as 

one of the top warranty drivers in new aircraft. All of these industries use elastomers, which with 

improved material properties, could help to achieve substantial cost reductions in material and 

maintenance costs [19]. 
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Abstract 

The pneumatic Strain Energy Accumulator (pSEA), a device that stores the energy of 

compressed air in the strain energy of a rubber bladder, has recently undergone proof of concept 

testing showing promise in compact energy storage applications.  An adequate model of the 

pneumatic strain energy accumulator on a systems level is needed to explore the design space in 

order to optimize the device. The recent success of the pneumatic strain energy accumulator on 

an Ankle Foot Orthosis (AFO) medical assist device serves as motivation for such a systems 

level model. In laboratory experiments the AFO medical assist device has reported from 25-75 % 

energy efficiency improvement when using the pSEA depending on the various parameters of 

the medical device. Early measurements and calculations for a single stage independent process 

pSEA indicated a theoretical maximum energy efficiency increase of 33 % which lies between 

the energy efficiency values realized on the AFO device using a single stage coupled process 

pSEA. A study of a lumped parameter model using measured Pressure-Volume curve data as a 

model input will be used to quantify energy efficiency increases for a variety of system 

configurations. Once complete, a set of measurement techniques and tools to successfully realize 

the strain energy accumulator will be ready to use in quantifying its energy savings. 

1 Introduction 

Increasing energy efficiency is one of many approaches being taken to address the world’s 

increasing energy demand. Many of the low hanging fruits in the area of energy efficiency have 

been realized, giving way to the next generation of devices to further increase energy efficiency 

and address the growing demand for energy. One such device that has been developed in recent 
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years to address the next wave of energy efficiency increases is the strain energy accumulator 

(SEA). 

1.1 Previous Strain Energy Accumulator Work 

There are both pneumatic (pSEA) and hydraulic (Hy-SEA) versions of the strain energy 

accumulator, offering high energy densities to help meet the desire for increased energy 

efficiency in both pneumatics and hydraulics [1],[2]. Preliminary work on the strain energy 

accumulator focused on proving the concept [3], developing finite element models (FEM) [4] 

and addressing material and manufacturing challenges [5]. The advancements in each of these 

previous works in the areas of proving out the concept, FEA, and materials and manufacturing 

challenges has indicated the need for system-level modeling for quantifying system performance 

in terms of the strain energy accumulator design parameters. 

 

1.2 Current Strain Energy Accumulator Focuses 

Advances in the materials used for the SEA to include carbon nanotubes (CNTs) [7]-[9], with 

possible self-sensing capabilities [9], continue to be pursued. Standard black latex rubber is 

sufficient to use on the pSEA as more advanced materials are developed to address durability 

and diagnostic improvements. Development efforts underway include fabricating a quick 

disconnect commercially viable accumulator shown in Figure 3.1, fully defining and 

characterizing an accumulator model, and developing a lumped parameter system model to 

estimate efficiency improvements for various systems utilizing the pSEA. 

 

Figure 3.1: Quick disconnect commercially viable pSEA 

1.3 Application of the Strain Energy Accumulator 

The primary motivation for further developing the pSEA model is its implementation on the 

Ankle Foot Orthosis (AFO) device used in assisting patients in stroke recovery. Early testing 

with the pSEA on the AFO showed an efficiency increase in the AFO device of over 25 % [10] 

as compared to the device without the pneumatic strain energy accumulator. At a recent meeting 

with industry, efficiency increases, potentially as high as 75 %, were reported using the pSEA on 
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the AFO. During testing that yielded 75 % efficiency increases, multiple parameters were 

adjusted leading to a question of how much of the reported increase was due to the pSEA and 

how much was due to other system parameters.  Additionally, there is also a question regarding 

the efficiency increase limits that can be realized for various systems while using the pSEA. 

Answers to these questions necessitate the development of complete component and system level 

models of the pSEA that can provide estimates for such limits, especially as the device is 

extended for use on a hydraulic hybrid vehicle. [11] 

2 Accumulator Model 

Before a system level model can be developed, a component level model must be completely 

defined as it will serve as input to the system level model. 

 

2.1 Total Energy Stored and Extracted: Component 

A first step in developing a useful component level model is to clearly define the component, 

including the control volume in both space and time. Figure 3.2 shows the control volume (CV) 

of the fully expanded pSEA demarcated by the dashed line. 

 

Figure 3.2: pSEA control volume 

Having defined the component in space the various operating condition in time can be 

defined. First, the accumulator starts in the deflated state having an initial pressure of Patm and an 

initial volume Vo. The accumulator is then filled with a mass flow rate, ,m until the accumulator is 

full at time tfull having a final volume of Vfull and a final pressure of Pmax. The final pressure can 

either stop at the expansion pressure, Pexp, or continue to rise to a higher maximum pressure, 

Pmax, storing additional energy in the form of pressure. The pressure-volume curve of the fill 

process is shown below in Figure 3.3. 

 

Figure 3.3: Pressure-volume curve of pSEA fill process. 
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A number of simplifying assumptions standard to pneumatic systems are made in order to 

begin the energy analysis of the device: 

1. The CV is defined by the dashed line along the inner surface of the pSEA rubber bladder. 

2. The accumulator is filled and exhausted rapidly; therefore, the heat loss terms are 

negligible so .0Q  

3. Kinetic and potential energy effects associated with the flow are neglected. 

4. The thermodynamic state of the air entering and exiting the CV remains constant during 

the fill and exhaust processes. 

5. The ideal gas model applies for air. 

With the system defined in both space and time and the corresponding assumptions 

established, an energy rate balance analysis can be performed. 

The energy rate balance equation is given in Eq. 1 when simplified for a single inlet: 
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After applying assumptions two and three from above, Eq. 1 simplifies to: 
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Multiplying both sides by dt and then integrating, the total energy stored in the pSEA is 

calculated: 
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The work done on the CV is the total boundary work, WTB, or strain energy, ES, done on the 

strain energy accumulator. Boundary work is defined as: 
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If the result of Eq. 4 is substituted into Eq. 3, an equation for the total energy of the pSEA in 

integral form of boundary work and mass flow rate into the accumulator is obtained: 
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Additionally, the second integral of Eq. 5 is the energy stored in the mass of the gas at the 

given pressure and volume. Once the accumulator has been filled, the final pressure and volume 

are set, thus fixing the mass of the system at that point. The theoretical maximum potential that 

the fixed mass has, at the given pressure and volume, can be determined analytically by 

evaluating the equivalent fixed mass control volume. 

An equivalent fixed mass CV that is allowed to expand isothermally is shown in Figure 3.4. 

Allowing the mass at the final pressure and volume to expand isothermally yields the maximum 

theoretical potential energy stored in the pressure of the gas. The application of assumption five 

enables the analysis of the closed CV to determine the maximum potential of the compressed 

gas. 
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Figure 3.4: Closed system CV with constant mass allowed to expand isothermally 

In an isothermal constant mass expansion, the ideal gas law results in the following 

expression: 

 CmRTVPVPPV finalatmfull  max  (6) 

The above equation is rearranged by solving for P in terms of Pmax, Vfull and V to evaluate the 

integral PdV for the general pressure boundary work equation to obtain: 
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Evaluating the integral in Eq. 7 the following result is obtained: 
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Utilizing the relationship in Eq. 6 the volume ratio is calculated inside the natural log to 

obtain an expression for the theoretical maximum energy stored in the pressure of the gas: 
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If the result of Eq. 9 is substituted into the second integral in Eq. 5, the end result is the total 

energy equation in terms of the sum of strain energy and pressure energy completely defined by 

pressures and volumes that are designable parameters for the strain energy accumulator: 
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The advantage of having the equation in the form given in Eq. 10 is twofold. First, it provides 

a theoretical maximum stored energy value in terms of the primary forms of stored energy, strain 

and pressure. Next, it defines the total stored energy as a function of pressures and volumes, 

which are adjustable parameters for the pSEA. The equation allows for a sensitivity analysis to 

be discussed in more detail in Section 3.3. 
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2.2 Efficiency 

Previous work on the strain energy accumulator has demonstrated how the device behaves 

under expansion and exhaust/contraction [3],[4]. Figure 3.5 shows the typical accumulator 

pressure-volume curve for both expansion and contraction. 

 

Figure 3.5: Exhaust pressure-volume curve of pSEA 

The contraction of the pSEA occurs at a lower pressure and the net recoverable energy is the 

area under the contraction curve plus the contraction pressure energy. The total energy extracted 

from the pSEA can be determined from a modification to the limits of integration in Eq. 10 to 

get: 
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By taking a ratio of the energy exhausted to that input to the accumulator an efficiency of the 

component can be determined, ηacc: 
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In long form the accumulator efficiency is: 
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This expression enables a sensitivity analysis to determine how the variation in each 

parameter will impact component efficiency. With the pSEA component model fully defined, 

including an analytical efficiency, the system model and resulting system efficiency can be 

determined. 
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3 System Model 

Upon completing the component modeling, the next step is to determine the component 

impacts on overall system efficiency.  Once a system model is complete the impact of the 

various parameters can be investigated, particularly the designable parameters, to minimize 

losses and maximize system efficiency. 

3.1 Total Energy Expended: System 

In order to calculate the total system efficiency with implementation of the pSEA, an energy 

accounting of energy expended must be performed. The motivation for this system model is the 

manual pSEA demonstrator shown in Figure 3.6. The manual demonstrator consists of three 

principal components: a primary cylinder with a volume, V1, a pSEA, and a smaller secondary 

cylinder with V2. The demonstrator receives a supply pressure of PS and exhausts out of the valve 

connected to the secondary cylinder to Patm. 

 

Figure 3.6: Pneumatic Accumulator Demonstrator 

The energy expended by the system is taken into account by tracking the mass used at each 

stage of the cycle using the following equations: 
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The above equation is used in conjunction with the following modeling assumptions: 

1. The efficiency is evaluated for one complete cycle, with one cycle being one complete 

out stroke and one complete in stroke of both cylinders. 

2. The cylinders have a set volume ratio, α.  

3. The secondary cylinder in the system without an accumulator is regulated down to the 

same operating pressure as the secondary cylinder in the system with the accumulator. 

4. Both cylinders in the system without an accumulator exhaust out to atmospheric pressure. 

5. The expansion and contraction pressures of the accumulator have a ratio, β where Patm/PS 

≤  β < 1 and Pexp > Pcon. 

6. The shaft volume is negligible and the volume on both sides of the cylinder is the same. 

Actuator 1 

Actuator 2 

Accumulator (pSEA) 

Patm 

Ps 
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7. All cylinders start at zero initial volume at the start of fill and completely fill the volume 

inside the cylinder. 

8. The system is charged to start thus expelling mass on the first stroke of all cylinders. 

Figure 3.7 shows the out-stroke flow diagram with the pSEA in line between cylinders one 

and two and is divided into two steps. In step one, supply pressure is input on the left side of the 

cylinder moving the cylinder to the right as indicated by the dashed arrow. The pressure on the 

outlet side of the cylinder is then exhausted into the accumulator where it stabilizes at the 

expansion pressure of the accumulator upon expansion thus completing step one. Step two starts 

with the accumulator exhausting at its contraction pressure to fill the second cylinder. The air on 

the other side of the second cylinder is then exhausted to the atmosphere. 

 

Figure 3.7: Outstroke diagram of pSEA 

The in-stroke of the cylinders is essentially the reverse of the out-stroke steps and is shown in 

Figure 3.8 as steps three and four. 

 

Figure 3.8: In stroke diagram of pSEA 
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In the case where the accumulator is not connected to the system, new mass is introduced at 

supply pressure to cylinder one and exhausts to atmosphere on the backside of the cylinder for 

each stroke of the cylinder. Cylinder two has new mass introduced at the contraction pressure as 

its input pressure and exhausts to atmosphere on the backside of the cylinder. Each addition of 

mass to the system is governed by Eq. 14. Before a system level efficiency analysis is performed 

a mass accounting is conducted for each step of the cycle both with and without the accumulator 

in line. 

Starting with the system without an accumulator, the mass introduced to the system at steps 

one and three in Figures 4.7 and 4.8 is determined by: 
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In steps two and four the mass introduced is the same in each step and is given by: 
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Using assumptions two and five listed above, the following relations can be used in Eq. 16: 

 12 VV   (17) 

 expPPcon   (18) 

By substituting Eqs. 17 and 18 into Eq. 16 the following relation is obtained: 
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The total mass used in the system without a pSEA is: 
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Once the pSEA is introduced into the system the mass used from supply in steps one and 

three is the same as the case without the accumulator: 
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The energy savings in the system with the accumulator comes in subsequent steps that are 

powered by the energy captured by the accumulator. In these steps no additional mass from 

supply is required, thus in the overall mass accounting the additional mass used from supply is 

zero yielding: 

 0_4,2 wm  (22) 

Summing the mass used from supply during each step of the cycle for the system with the 

accumulator gives: 
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With the mass used from supply accounted for in each step of the cycle for both cases, with 

and without the accumulator, the efficiency increase of the system can be calculated. 
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3.2 System Efficiency 

Defining the efficiency of the system as a ratio of the mass used from supply with the 

accumulator to that used without the accumulator the following relation is obtained: 
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If the results from Eq.’s 20 and 23 are substituted into Eq. 24, an equation for the system 

efficiency in terms of supply pressure and accumulator expansion pressure is given as: 
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Since the system efficiency is defined as how much less mass is used from supply for the 

system with the pSEA compared to the system without the pSEA, the percent efficiency increase 

can be defined as: 

   1001%  sysIncreaseEfficiency   (26) 

Having defined percent efficiency increase the accumulator provides, this result can be used 

to perform a sensitivity analysis of the system to determine which parameters have the greatest 

impact on system efficiency. 

3.3 Sensitivity Analysis 

In order to perform a preliminary quantitative sensitivity analysis, a sample system must be 

defined. Let the atmospheric pressure of the sample system be 15 psia and the primary supply 

pressure be 60 psia. As a first step in a complete sensitivity analysis, let the expansion pressure 

of the accumulator vary from atmospheric pressure way up to supply pressure. These are the two 

extremes that serve as an upper and lower limit of the operating range that expansion pressure 

could be set to by proper material and dimension selection for the system of interest. 

Next let the values of α, for the volume ratio, and β for the accumulator expansion and 

compression ratio both be equal to one. By letting α equal one the volume of the first and second 

cylinder are equal. When β is equal to one then accumulator expansion and contraction pressures 

are equal, indicating a lossless accumulator providing an upper maximum bound of efficiency 

increase. Figure 3.9 shows the percent efficiency increase and how it changes with accumulator 

expansion pressure. 
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Figure 3.9: % Efficiency Increase vs Accumulator Pexp 

Based on the specified conditions for the sample system, the percent efficiency increase that 

can be expected by adding a pSEA to the system ranges from 20 % to 50 %. If the input to the 

model is adjusted to values similar to those experienced on the manual pneumatic accumulator 

demonstrator from Figure 3.6, the result is that of Figure 3.10. The values for the system in 

Figure 3.10 are a supply pressure of 50 psia, an accumulator expansion pressure of 40 psia, a 

volume ratio of 0.7 and an accumulator expansion/contraction ratio of 0.95. 

 

Figure 3.10: Projected % Efficiency Increase for Manual Pneumatic Accumulator Demo 

It is observed in Figure 3.10 that for the manual demonstrator and for an expansion pressure 

of 40 psia, the maximum theoretical efficiency improvement is approximately 35 %. The 

theoretical maximum efficiency improvement is close to that observed in testing on the Ankle 

Foot Orthosis device of 27 % through the Center for Compact and Efficient Fluid Power. 
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4 Modeling Discussion 

The modeling effort developed herein started by defining the pneumatic strain energy 

accumulator in both space and time. Once the accumulator had been clearly defined in space and 

time an energy storage balance was able to be completed. The result of the energy balance 

resulted in determination of energy terms for both the strain and pressure energy components 

stored in the pSEA. The total energy of the accumulator is a sum of the strain and pressure 

energies, with the final equation requiring only pressures and volumes. Some of the pressures 

and volumes are design parameters that can be modified to meet the system requirements. 

Knowing the maximum theoretical energy input to the accumulator, along with the 

theoretical maximum that can be extracted, a theoretical component level efficiency can be 

calculated analytically. Component efficiency together with actuation work will dictate how 

many times the remaining energy stored in the accumulator can be reused by a system. All else 

being equal, the smaller the losses in the accumulator the more times the remaining energy can 

potentially be used down the line. The ability to store and recycle the remaining energy more 

than once has the potential to further boost the overall system efficiency. 

Similarly to the component model, the system model was defined in space and time with a 

flow diagram that was used to perform an accounting of the mass consumed from the supply. 

Upon completion of the mass accounting, these values were used to calculate a system efficiency 

which was subsequently used to determine the percent efficiency increase with use of the 

accumulator compared to the system without an accumulator. The resulting energy saved is a 

function of supply pressure, accumulator expansion pressure, the volume ratio, and 

expansion/contraction pressure ratio of the accumulator. The percent efficiency increase equation 

shows a clear relationship among these parameters, allowing for the design optimization of a 

given application.  

One of the parameters in the efficiency increase equation, the accumulator expansion 

pressure, was varied from atmospheric to supply pressure for a system with a cylinder volume 

ratio of one and an expansion/compression ratio of one to provide a maximum theoretical 

efficiency increase. The maximum for that system was a 50 % efficiency increase. This makes 

sense intuitively if the cylinders are the same size, there are no losses, and the gas from the first 

cylinder can be used to power the second cylinder of equal size. An analysis of the specific case 

approximating the manual pneumatic accumulator demonstrator was performed based on the 

conditions experienced with that system. The maximum theoretical efficiency increase at the 

given expansion pressure was 34.7 % which is comparable to the 27 % reported on the Ankle 

Foot Orthosis device. 

5 Conclusions and Future Work 

In the current work, both a component and system level energy accounting and efficiency 

calculation were conducted. The results of the modeling effort provide a new set of tools that can 

be used to analyze actual systems designed with, or retrofitted with, the accumulator. The 

equations clearly display the design parameters and how they impact the system performance. 

An initial sensitivity analysis was conducted by varying the expansion pressure of the 

accumulator on the system level. Other parameters can be varied including the supply pressure, 

the contraction pressure, the volume ratio, the expansion/contraction pressure ratio and the 

volumes of the components to reveal the system’s sensitivity to various parameters. Performing a 

sensitivity analysis will direct future work to focus on key areas for improving component and 
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system efficiency. An additional area that can be further investigated and developed is 

calculation of strain at the inner wall of the accumulator, which has been shown to be the critical 

stress area [4]. 

The analysis performed in the current work can also be extended to the hydraulic version of 

the accumulator. There is significant potential for strain energy accumulators to improve 

efficiencies in fluid power applications. Industries such as manufacturing and automotive, that 

use fluid power extensively, have the potential to save millions of dollars annually in energy 

costs [1]. By gaining deeper insight through detailed modeling, and the subsequent development 

of analysis tools, many other industries, such as the medical and aviation industries, stand to 

benefit from strain energy accumulators. 
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Abstract 

There is heightened interest in research to develop materials and devices that achieve greater 

energy storage capacity, power density and increased energy efficiency. This work analyzes the 

performance of a novel energy storage device, the pneumatic strain energy accumulator, which is 

designed to exploit the advantageous aspects of the non-linear behavior of elastomeric materials. 

An analytical methodology for simultaneously characterizing the pneumatic and material energy 

storage in a strain energy accumulator, and more generally for pneumatic and strain energy 

systems, has been developed. Component efficiency along with the expansion and contraction 

pressures of the pneumatic strain energy accumulator are determined experimentally, using a 

combined Matlab and National Instruments data acquisition system, so that a system level 

efficiency calculation can be performed. Incorporating uncertainty analysis, the efficiencies of 

the strain energy accumulator are measured to be consistently over 93 % in over 2500 cycles of 

testing. The expansion and contraction pressures of the accumulator, despite the hysteretic 

behavior of rubber, have a stable value with a standard deviation of only 0.1 % of the mean 

values. 

1 Introduction 

Energy demand and the ability to meet it using efficient means are driving much of the 

innovation in the energy sector. One strategy to meet this demand is to develop energy storage 

and recovery devices. A device that has emerged recently that addresses the need for energy 

efficiency while also meeting power density requirements is the strain energy accumulator 

(SEA). 
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1.1 Pneumatic Strain Energy Accumulator 

The pneumatic form of the strain energy accumulator (pSEA) operates by capturing and 

storing the exhaust gas from one component until it is needed and used by another component at 

a later point in time. The pSEA functions by expanding a rubber bladder at a constant pressure 

inside a rigid shroud, storing energy in the form of both strain and pressure energy, and then 

contracts at a lower constant pressure returning the energy to the system to be used for a 

secondary task. A 2012 Oak Ridge National Labs (ORNL) study indicates the need and 

importance of a device such as the pSEA. The ORNL study found that the fluid power industry 

uses between 2-3 % of the nation’s energy and averages only 22 % efficiency (Love et al. 2012). 

The pneumatic sector is even less efficient averaging just 15 % efficiency, clearly indicating the 

need to increase efficiency and develop devices for energy storage and recovery such as the 

pSEA. 

One such application using the pSEA is the Ankle Foot Orthosis (AFO) stroke rehabilitation 

device (Boes et al. 2013). The AFO uses a rotary actuator powered by a compressed gas supply, 

carried by the patient, that helps raise and lower a patient’s foot to improve muscle memory 

during rehabilitation. While changing multiple system parameters, efficiency increases ranging 

from 25 % to 75 % when using the pSEA on the AFO were reported. With no way to directly 

identify the efficiency increase due solely to the pSEA, a need to quantify system performance in 

terms of the SEA design parameters was identified. This need has motivated the current work to 

fully define and characterize an accumulator component efficiency model, and develop a lumped 

parameter state model to estimate system level efficiency improvements. The ultimate goal for 

the current research is to accurately define efficiency increase limits that can be realized for 

various systems while using the pSEA. This paper demonstrates that the development of models 

for the pSEA has enabled the ability to provide estimates for efficiency limits at both the 

component and system level. 

1.2 Pneumatic and Strain Energy Literature Survey 

 Initial investigation into the SEA by Pedchenko and Barth (2009) provided a proof of 

concept design of an energy dense SEA. In 2012, Tucker further investigated the energy density 

of the SEA device determining the forms of rubber that are ideal in terms of performance for use 

in the SEA due to their high energy density. In 2013, Boes et al. provided the first reported 

efficiency increases resulting from use of the pneumatic strain energy accumulator (pSEA). 

Equations to quantify these efficiencies are given in Cummins et al. 2015, offering the ability to 

characterize efficiency and how it relates to the unique material properties of rubber. 

Prior to understanding the pSEA and how its performance benefits from the properties of 

rubber, a basic understanding of these properties is required. In his book Rubber Technology, 

John Dick (2009) provides a thorough overview of these properties including elasticity, tensile 

stress-strain behavior and fatigue resistance, hysteresis, etc. which are the underlying operating 

principals of the pSEA. The Mullins’ effect is well documented in Mullins’ original work from 

1948 and explains how the strain of a rubber is dependent on previous loading, which is 

important for strain energy considerations. An often cited work by Cadwell et al. (1940) provides 

a comprehensive review of various parameters and their effect on the fatigue life of rubber 

showing how changing any one loading parameter can greatly affect the fatigue life of rubber. 

Current fatigue testing standards for rubber are given by ASTM 2011 and, specific to the SEA, 

understanding and characterizing the ballooning behavior of rubber tubing is presented in detail 

in Gent 1978 and 2005, corresponding to the behavior observed in the ballooning process of the 
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SEA. To obtain quantitative insights, standard uncertainty analysis such as that given in Haldar 

and Mahadevan (2000) can be used. 

Harris et al. (2012) completed an efficiency optimization study using current technologies 

and identified future needs of the pneumatic industry. Within the study, energy storage was 

specifically identified as an area for improvement. Additionally, future directions that were 

identified included the development of integrated performance metrics focused on model-based 

optimization techniques tailored to specific applications. The three primary goals of the current 

research are to: (a) develop a generally applicable model-based component efficiency estimation 

as an integrated performance metric to the system efficiency, (b) experimentally measure the key 

performance parameters of the pSEA including component efficiency, and expansion and 

contraction pressures for the specific system of interest, and (c) perform uncertainty analysis of 

the component performance parameters to make uncertainty propagation an integral part of 

system efficiency measurements. 

2 Accumulator Component Efficiency Model 

Prior to system level model development, component efficiency estimates are analytically 

determined. In order to develop an analytical efficiency expression, an energy rate balance 

analysis is performed and simplified for the single inlet device shown in Figure 4.1. 

 

Figure 4.1: Single Inlet/Outlet Control Volume 

The simplified energy balance equation for the total energy of the pSEA in integral form is 

developed in Cummins et al. (2015). The full details of the derivation can be found in Cummins 

et al. and is comprised of both boundary work and mass flow rate into the accumulator: 

  

f

o

f

o

t

t

V

V

Tot hdtmPdVE   (1) 

where ETot is the total energy stored in the component, P is the pressure at the given volume 

and instant in time, Vo is the initial volume, Vf is the final volume, m is the mass flow rate in or 

out of the system with corresponding enthalpy, h, to is the initial time and tf is the final time. 
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If the second integral on the right hand side of Eq.1 is evaluated, the resulting total energy 

equation is given in terms of the sum of the boundary work, or strain energy, and pressure 

energy: 
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Here, Patm is atmospheric pressure and Pmax is the maximum fill pressure of the accumulator 

with corresponding maximum volume Vfull. The strain and pressure energy terms are completely 

defined by pressures and volumes that are designable parameters for the strain energy 

accumulator. A theoretical maximum stored energy value in terms of the primary modes of 

stored energy, strain and pressure, is thus given in Eq. 2. 

The total energy input to and extracted from the pSEA can be determined by evaluating the 

total energy function in Eq. 2 at the respective limits of integration for input and exhaust. A ratio 

of the energy exhausted by the accumulator to the energy input into the accumulator yields the 

efficiency of the component, ηacc: 
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With the model-based analytical pSEA component efficiency estimate defined, experiments 

can be conducted to determine the pSEA component efficiency. 

3 Efficiency Experiments 

Having developed the analytical equation necessary to determine the efficiency of the pSEA 

component, the necessary pressures and volumes, including the expansion and contraction 

pressures, can be experimentally measured and determined. 

3.1 Experimental Setup 

The experimental setup (Figure 4.2) consisted of a single pneumatic strain energy 

accumulator, Alicat M-series Mass Flow Meter, throttle valve, Festo 5-way valve bank, supply 

pressure regulating valve (not pictured), electrical power supply and National Instruments (NI) 

data acquisition (DAQ) system. The pSEA tested in each series of tests consisted of a black 

rubber tube encased by a polycarbonate shroud. The pSEA dimensions and volumes are 

proprietary as the technology is currently involved in ongoing commercialization efforts and are 

only provided as normalized values when necessary and where appropriate. 
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Figure 4.2: Component efficiency testing experimental test setup 

Shop supply air (725 kPa) passed through the regulating valve where it was regulated down 

to approximately 360 kPa (denoted as Ps), which was subsequently connected to the supply port 

for the valve bank (port one in Figure 4.3). The upstream side of the mass flow meter was 

connected indirectly to port 2 on the opposite side of the bank. Between the mass flow meter and 

port 2 was the throttle valve. The throttle valve was placed in line to limit the fill rate of the 

accumulator to prevent clipping of the mass flow meter. The valve bank was modified to create a 

3-way valve that could be used to control the air flow into and out of the accumulator (Figure 

4.3). All pressures are reported in absolute pressure. 

 

Figure 4.3: Airflow block diagram for automated valve for fill (left), hold (center) and exhaust (right) 

positions 

In the hold phase (Figure 4.3 center) all ports remained closed. During the fill phase (Figure 

4.3 left), compressed air from supply flowed into the pSEA when port 1 diverted to port 2. Upon 

exhausting (Figure 4.3 right), air flowed from the pSEA out to atmosphere when port 2 diverted 

to port 3. Throughout the cycle, the downstream side of the flow meter was connected to the 

Accumulator Mass Flow 
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Throttle 

Valve Valve Bank 

Power Supply NI DAQ 

Cards 

DAQ System 
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accumulator allowing the volumetric flow rate and pressure of the air flowing into and out of the 

accumulator to be measured. The volumetric flow and pressure data collected by the flow meter 

was sent to an NI input DAQ card which was then connected to the laptop computer. The valve 

bank positioning was controlled by a 24 V electrical power supply controlled by a NI output 

DAQ card connected to the laptop computer.  

One full cycle of the accumulator consisted of an initial two second hold, followed by a fill 

stage, another two second hold, and a two second exhaust stage. A Matlab interface was used to 

send and receive output and input signals from the respective DAQ cards, control the number of 

cycles for each test, specify the sample rate at 1000 Hz and set the fill time for each test. The fill 

time and number of cycles were varied depending on the test. Fill time was varied from 0.30 

seconds and 0.60 seconds to investigate the effect of spiking the pressure on component 

efficiency. Tests included a 25 cycle warmup period to minimize the Mullins effect followed by 

100 cycles during which data was collected for analysis. During initial testing, tests using 500 

cycles produced results consistent with the 100 cycles test. Therefore, to reduce experimental 

and computational time, 100 cycles were used during all subsequent tests. A recovery period of 

five minutes was observed between each test. 

3.2 Experimental Data Collection 

Pressure and volumetric-flow readings were acquired from the mass-flow meter. The 

resulting time histories for three cycles for pressure and volumetric flow are shown in Figure 4.4 

and Figure 4.5, respectively. 

 

Figure 4.4: Pressure vs time from three experimental cycles 

Figure 4.4 exhibits behavior similar to the results obtained in previous works (Gent 2005 and 

Pedchenko 2009). Initially a pressure spike is seen as the accumulator is made taut followed by a 

sudden drop in pressure as the accumulator balloons out. After ballooning initiates, the 

accumulator experiences a relatively constant pressure fill process followed by a slight pressure 

spike as the accumulator reaches its maximum volume. In the cases where the end of the 

accumulator hits the bump stop at the end of the shroud, the P-V curve experiences a slight rise 

in pressure. The slight decrease in pressure during the hold phase indicates a minor low flow leak 
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in the system. Finally the pressure experiences a relatively constant contraction stage before final 

exhaust to atmosphere. 

   

Figure 4.5: Volumetric flow vs time (left) and Volume vs time (right) from three experimental cycles 

Figure 4.5a shows the volumetric flow rate as a function of time where the positive spikes 

correspond to the fill stage and the negative spikes the exhaust stage. When the fill cycle starts, 

the volumetric flow experiences a sharp rate increase before a slight levelling out as the bubble 

forms. A relatively constant fill rate is reached before flow into the accumulator is stopped and 

the volumetric flow rate returns to zero. During the hold stage when the pSEA is filled, no flow 

is seen by the flow meter due to the slow low-velocity leak in the system. Similar behavior is 

observed during exhaust of the pSEA except having a negative volumetric flow rate. 

Volumetric flow rate was integrated using the trapezoidal method and detrended to obtain the 

accumulator volume shown in Figure 4.5b. Integration drift resulted from limitations inherent in 

the mass-flow meter’s calibration. The data was corrected and drift was accounted for by 

determining a linear regression best fit line using the starting points of each cycle. Once the best 

fit line for the drift was found it was subtracted out from the data. The resulting volume time 

history is shown in Figure 4.5. Remnants of the integrator drift can be seen at the end of each 

cycle after the exhaust stage when the volume does not return to zero; however, this effect is 

negligible and is noted as a minor source of epistemic uncertainty. With the challenges 

associated with accurately measuring mass flow rate particularly in transient, dynamic and low 

flow conditions known (de Giorgi et al., 2008 and Igarashi et al., 2007), the transient behavior of 

the pSEA introduces an additional and greater source of epistemic uncertainty. 

By combining pressure and volume data at each instant in time, pressure-volume curves for 

each cycle were generated.  Data within a cycle was divided into fill and exhaust phases with 

respect to the cycle’s maximum and minimum volumes: data produced as the system moved 

from a minimum volume to a maximum volume was designated as the fill phase (red), while data 

produced as the system moved from a maximum volume to a minimum volume was designated 

as the exhaust phase (blue).  Sample pressure-volume curves for the beginning (cycle 1), middle 

(cycle 250), and end (cycle 500) cycles from a 500-cycle test are shown in Figure 4.6. 
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Figure 4.6: Pressure vs volume for cycles at beginning, middle and end of 500 cycle test 

Several key results are observed that benefit from the hyperelastic behavior of rubber. First, 

as the rubber is stretched hyperelastically and softens, a slight decrease in expansion and 

contraction pressure is observed. This means that less work is done on stretching the rubber 

during steady state operation. Additionally, as the rubber softens over time the end of the 

accumulator reaches the bump stop at the end of the shroud thus fixing the volume and causing a 

slight pressure spike near the end of the fill phase. 

While the pressure spike increases component efficiency, as can be seen analytically (due to 

domination of the pressure term in the efficiency equation) and is verified experimentally, it 

results in two undesired effects. First, it negates the novelty of a constant pressure device and it 

also degrades long term performance as it exceeds the normal operating pressure. Recurring 

exceedance of the design pressure causes premature failure of the accumulator as it transfers load 

to the end attachments. This effect was experienced during testing at excess pressures (not 

presented herein due to degraded pSEA life performance with current end configurations). This 

indicates the importance of properly designing the accumulator to the desired engineering 

application. 
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4 Results and Discussion 

4.1 Component Efficiency 

A cycle’s efficiency is defined as the ratio between the total energy output by the pSEA to 

the total energy input to the pSEA as given in Eq. 3. The total energy is determined in part by 

calculating the area under the pressure-volume curve, or the strain energy, for both the fill and 

exhaust phases. This area was determined by integrating pressure with respect to volume using 

the trapezoidal method and is shown in Figure 4.7. 

 

Figure 4.7: Pressure volume plot showing strain energy in (red+blue) and out (blue) of pSEA 

The remainder of the total energy comes from the maximum potential of the pressurized air 

and is determined by measuring the cycle’s maximum volume and corresponding maximum 

pressure at that volume. When the maximum potential of the air pressure is combined with the 

experimentally determined strain energy, the efficiency of the cycle is obtained. Calculated 

efficiency values for five, 100-cycle tests are depicted in Figure 4.8. 
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Figure 4.8: Energy efficiency of pSEA component for five, 100 cycle trials with inset zoomed-in efficiency 

It is important to note the scale used for the efficiency in Figure 4.8. With the efficiency 

varying minimally, less than 0.3 % from max to min, the scale was chosen to identify the type of 

uncertainty analysis to be performed. 

4.2 Component Efficiency Uncertainty Analysis 

The mean value for each of the 100 cycle tests, μ, along with the standard deviation, σ, were 

calculated as follows: 
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where n is the total number of data points and xi is value of the i
th

 data point. Data sets that 

showed little to no trend in the data, such as the efficiency calculations, were analyzed using 

mean and standard deviation uncertainty analysis. The experimentally determined efficiency 

values for the pSEA component from Figure 4.8 exhibit little to no trend thus a basic mean and 

standard deviation analysis is given in Table 4-1. 

Table 4-1: Component experimental efficiency of pSEA 

Strain Energy Accumulator Component Efficiency 

Trial Mean (%) Standard Deviation (%) 

1 93.35 0.063 

2 93.32 0.057 

3 93.42 0.050 

4 93.42 0.056 

5 93.39 0.048 

5 Cycle Average 93.38 0.068 

 

In Table 4-1, the 5 Cycle Average refers to taking all five, 100 cycle tests and treating them 

as a single data set. The resulting values correspond to a composite value for the pSEA 

component across tests. Uncertainty analysis indicates that across all tests the pSEA as a 

component has an average efficiency around 93.4 %. Even when the warmup cycles are taken 

into consideration (observed but not shown for conciseness) efficiency is still close to 92 %, and 

in both cases the standard deviation is less than a tenth of a percent. This indicates that in spite of 

hysteresis and Mullins effect, which often times negatively affect elastomer performance, the 

pSEA is still an energy efficient device. Furthermore, the efficiency increases with each test until 

it converges to a steady state efficiency of 93.4 %. 

4.3 Component Key Performance Parameters 

In order to study the accumulator’s impact on system efficiency, it is first necessary to 

determine the pSEAs key performance parameters, the expansion and contraction pressures. 

These pressure values will serve as input parameters to the system efficiency model.  The 

expansion pressure of the pSEA is characterized by a rapid increase in volume while the pressure 

remains relatively constant.  Likewise, the contraction pressure corresponds to a rapid decrease 

in volume at a relatively constant pressure.  Both of those pressures can be clearly seen on a 

pressure-volume diagram in Figure 4.9 as the regions where the curve is nearly linear with very 

little slope. In the constant pressure region, minimum and maximum volumes were set as end 

points for determining the expansion and contraction pressures. The pressure data between those 

points was averaged during each of the fill and exhaust phases.  A sample determination is given 

in Figure 4.9. The experimentally determined expansion and contraction pressures for the five, 

100 cycle tests are shown in Figure 4.10. 
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Figure 4.9: Points on P-V curve used to determine expansion, contraction, and maximum pressures 

 

Figure 4.10: Expansion (top) and contraction (bottom) pressures for five, 100 cycle trials 
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Figure 4.11: Energy into pSEA (top) and energy out of pSEA (bottom) 

In Figure 4.11 the energy input to and returned by the pSEA are shown. This is done to give 

an idea of the order of magnitude of energy storage of a pSEA of this size. Figure 4.11 along 

with the expansion and contraction pressures in Figure 4.10 exhibit several of the advantageous 

properties of rubber. The general trend of the energy in/out is that over time the accumulator 

stores and returns more energy which is reflected in the higher efficiency numbers over time as 

noted earlier. The increase in energy and efficiency can be attributed to two primary factors. The 

first is that, as seen in Figure 4.10, the expansion and contraction pressures decrease over time 

requiring less energy to stretch the pSEA. This can be attributed to the decrease in hysteresis 

over time as is established and discussed in the literature. As the pSEA transitions from warm up 

to steady state operation and the rubber softens the pSEA stretches farther axially during steady 

state. This behavior resulted in the end of the pSEA hitting the bump stop at the end of the 

shroud leading to a slight increase in pressure, thus resulting in an increase in overall energy 

stored and ultimately higher component efficiency. 

One difference between Figure 4.11 and Figure 4.10 is that the energy in/out appears to be 

constantly increasing whereas the expansion and contraction pressures appear to be 

asymptotically approaching a steady state value. When either the first 25 warmup cycles are 

included or the 500 cycle plots are considered, the energy plots also appear to be asymptotically 

approaching a steady state value. The asymptotic value for the expansion and contraction 

pressures is indicated numerically by the decreasing correlation between the values. As the data 

approaches its steady state value it no longer has a trend but rather a scatter about its mean value 

and is more pronounced in later trials. Finally, the recovery period is observed in both the energy 

and pressure plots as the initial value of the later trials is lower than the final value of the 

previous trials. This behavior indicates that starting and stopping the pSEA, as might occur in 

application, will decrease its efficiency and impact the other performance metrics including 

pressure and volume. 
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4.4 Key Performance Parameters Uncertainty Analysis 

When trends in the data occurred, such as those observed in the expansion and contraction 

pressures, a linear regression analysis was performed and the resulting coefficient of 

determination, or R
2
 values and standard error of regression (SY | x) values were determined. The 

R
2
 values indicate the degree to which the linear regression equation fits the data and SY | x is the 

conditional standard deviation of the regression or the standard error of regression. 
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where E(Y | x) is the expected value of the variable of interest, Y, for a given value of x and 

b0 and b1 are the regression coefficients representing the intercept and slope respectively. In Eqs. 

7 and 8, iy  is the experimentally measured value, iŷ  is the expected value determined by using 

the regression equation and y  is the mean value of y. Once a linear regression is performed the 

95 % confidence interval for the predicted values can be found using linear regression techniques 

with ± two standard errors of regression as outlined by Haldar and Mahadevan 2000. 

The 95 % confidence interval of the predicted values provides a range of the values to be 

expected in future experiments based on analysis of the current results. Unlike the component 

cycle efficiency, the expansion and contraction pressures do exhibit trends in the data so a 

subsequent linear regression analysis is carried out with the resulting coefficient of 

determination, R
2
, and standard error of regression, SY | x, values listed in Table 4-2. 

Table 4-2: Linear Regression Analysis: Coefficient of Determination (R
2
) and Standard Error of 

Regression    (SY | x) for expansion and contraction pressures 

Strain Energy Accumulator Experimental Pressures 

Trial 
Expansion Contraction 

R
2 

SY | x (kPa) R
2 

SY | x (kPa) 

1 0.948 0.1176 0.952 0.0812 

2 0.951 0.0673 0.944 0.0794 

3 0.906 0.0680 0.960 0.0567 

4 0.806 0.0603 0.920 0.0673 

5 0.584 0.0656 0.928 0.0541 
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The corresponding 95 % confidence prediction interval using trial five R
2
 values, can be seen 

in Figure 4.12. 

 

Figure 4.12: 95 % confidence interval of trial five expansion and contraction pressures 

It is once again observed that the variance is minimal similar to the efficiency with the 

variance of the 95 % confidence interval of the expansion pressure at approximately 0.5 kPa and 

less than 1 kPa for the contraction pressure. 

5 Conclusions and Future Work 

At the commencement of the study three primary objectives were identified. The first was to 

develop a generally applicable model-based efficiency estimate as an integrated performance 

metric to the system efficiency. Starting with a simple energy balance, a model-based equation 

for the efficiency of the pSEA component was developed and is given in Eq. 3. This general 

model-based methodology enables individual component efficiency to be an integrated 

performance metric to system efficiency for both pneumatic and strain energy systems. 

The next objective was to experimentally measure the key performance parameters of the 

pSEA including component efficiency, and expansion and contraction pressures specific to the 

system being studied herein. Key performance parameters of the pSEA including component 

efficiency, and expansion and contraction pressures for the specific system of interest were 

experimentally measured. The pSEA steady state component efficiency was experimentally 

determined to be consistently over 93 % and the expansion and contraction pressures were also 

found to asymptotically approach steady state values of 323.5 kPa and 280 kPa respectively. 
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The final objective was to perform uncertainty analysis of the component performance 

parameters to identify sources of uncertainty and make uncertainty propagation an integral part 

of system efficiency measurements. Mean value of the component steady state efficiency was 

found to have a maximum standard deviation of less than 0.1 %. Expansion and contraction 

pressure linear regression analysis was fit with 95 % confidence bounds and were found to have 

narrow confidence bounds with minimal standard errors of regression. Having obtained all three 

objectives, the component model, performance metrics and uncertainty analysis, enables 

development and testing of a system model with corresponding performance metrics using an 

integrated approach. With the pneumatic sector of the fluid power industry averaging only 15 % 

efficiency, introducing the pSEA having a 93 % efficiency into existing fluid power systems has 

the potential to substantially impact pneumatic systems efficiency. 
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Abstract 

A number of national organizations have recently expressed interest in research to develop 

materials and devices that achieve greater energy storage capacity, power density and increased 

energy efficiency on the heels of a report finding that the pneumatic sector of the fluid power 

industry averages only 15 % efficiency. One way of improving efficiency is the use of energy 

storage and recycling devices. The pneumatic Strain Energy Accumulator is a recently developed 

device that recycles exhaust gas from one pneumatic component, stores it in a highly efficient 

process, and reuses the stored exhaust gas at a constant pressure to power another pneumatic 

component. This work analyzes system efficiency increases directly attributable to the 

implementation of a pneumatic strain energy accumulator by applying an analytical methodology 

for system level efficiency improvement calculations, experimental validation, and energy 

savings projections. Experimentally determined efficiency increases ranged between 31 % and 

60 %, demonstrating that the pneumatic strain energy accumulator can be a viable part of the 

solution to the fluid power efficiency challenge. 

1 Introduction 

A report published in 2012 by Oak Ridge National Labs (ORNL), in conjunction with the 

National Fluid Power Association (NFPA), revealed that the operations in the fluid power 

industry are only 22 % efficient [1]. The pneumatic sector of the fluid power industry was found 

to be even worse averaging just 15 % efficiency. One technology that has been developed to 

improve the efficiency of the fluid power industry is the strain energy accumulator (SEA) [2]-

[5]. 
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The pneumatic version of the SEA, or the pSEA, is an energy storage device, consisting of an 

expandable rubber bladder inside of a rigid shroud that utilizes the hyperelastic behavior of 

rubber to store energy in the form of strain energy of the stretched rubber material and pressure 

energy of the stored compressed gas within the material as shown in Figure 5.1. The pSEA 

reclaims exhaust gas from pneumatic cylinders at an initial constant expansion pressure (Pexp), 

temporarily stores the exhaust gas and its accompanying energy and then recycles it at a lower 

constant contraction pressure (Pcon) at a later point in time in a highly efficient process [6]. 

 

Figure 5.1: (left) Empty pSEA on top and filled pSEA on bottom; and (right) PV curve of pSEA with 

expansion pressure Pexp, contraction pressure Pcon, and constant pressure region 

Compressed air energy storage (CAES) is an active area of research. Ibrahim et al. [7] 

evaluated several types of energy storage methods, including CAES and small-scale CAES 

(SSCAES), in areas such as high cycle rates and energy storage capacity to meet the growing 

energy storage needs in managing renewable energy but did not perform an in-depth study on 

any one energy storage method. Raju and Khaitan [8] developed a dynamic simulation model for 

large scale CAES inside of caverns using mass and energy balance methods of a large scale 

system with a rigid boundary. Luo et al. [9] investigated how system efficiency is affected by 

component performance and parameters to help achieve higher efficiencies in adiabatic CAES 

systems and Zhao et al. [10] studied the impact of different discharge modes on CAES 

efficiency. Each of the modeling efforts focused on large scale compressed air storage and 

dynamic models which often breakdown with changes in assumptions or are difficult to 

implement in small scale highly transient systems. 

A common source of energy loss in compressed air storage is through heat generation 

resulting from continuous pressure increases. Several methods to overcome heat loss have been 

developed and studied including the use of hybrid liquid air CAES systems [11],[12] that require 

long storage times for acceptable efficiencies, and the used of packed bed thermal energy storage 

[13],[14] which do not solve the heat generation problem but increase system complexity in an 

effort to mitigate heat losses. Kim et al. [15] developed and characterized a constant-pressure 

hydro CAES system to improve storage efficiency. A number studies look at the economics [16], 

configurations [17], performance and cost [18], role [19], market [20], and optimal operation 

[21] of CAES systems to estimate their impact on energy demands. While each of these studies 

investigated various elements of increasing efficiency on a large scale and/or the economic 

impact of compressed air energy storage, none combined small scale energy storage that 

minimizes energy loss through mechanical material properties while developing models that are 

used to make economic projections at both the local and national levels. 

Constant Pressure 

Pexp 

Pcon 
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Saadat et al. [22] proposed and modelled an open accumulator CAES system with simulation 

results. Van de Ven [23] introduced a constant hydraulic pressure non-constant gas pressure 

energy storage hydraulic accumulator. Bing et al. [24] studied the efficiency increase of a 

hydraulic elevator applied system using a hydraulic accumulator. Finally, Harris et al. [25] 

reviewed existing industrial pneumatic efficiency increase approaches and identified the need for 

model-based performance metrics quantify and improve the efficiency of pneumatic systems. 

Even though each of these studies most closely aligns with the use of accumulators and 

evaluation of efficiency increase methods in pneumatics, again none combine a small scale fully 

pneumatic constant pressure device with simple models and energy savings projections. The 

gaps identified in the literature that the current work addresses, thus introducing the novelty of 

the work, are that the pSEA is a small-scale fully pneumatic compressed air energy storage 

device that operates at a constant pressure with first principles model-based performance metrics 

delivering experimentally validated efficiency increase projections used for energy saving 

projections at the local and national levels. 

An application using the pSEA that serves as a motivation for the current work is the Ankle 

Foot Orthosis (AFO) stroke rehabilitation device (Boes et al. [26]). The AFO uses a rotary 

actuator powered by a compressed gas supply that helps raise and lower a patient’s foot during 

rehabilitation. Similar to industrial applications, the AFO desires to minimize compressed air 

usage by maximizing efficiency so a patient can carry as small of a portable compressed air 

supply tank as possible. 

During multiple trials, while changing several system parameters simultaneously, efficiency 

increase estimates ranging from 25 % to 75 % when using the pSEA on the AFO were reported 

when compared to the AFO without the pSEA. With no way to directly identify the efficiency 

increase attributable to the pSEA, a need to quantify the pSEAs impact is needed. This need has 

led to the development of a lumped parameter state model to estimate system level efficiency 

improvements. The ultimate goal for the current research is to accurately define efficiency 

increase limits that can be realized for various systems while using the pSEA and make energy 

savings projections based on currently available data. 

One such source of available industry data is the aforementioned 2012 ORNL fluid power 

efficiency report. According to the ORNL report, there are over 200,000 industrial facilities in 

the United States that use compressed air. One tenth of all industrial energy consumption goes 

towards powering industrial air compressors. In some sectors, like chemical manufacturing, 

industrial air compressors account for over twenty percent of energy consumption. In aggregate, 

this amounts to 150 billion kilowatt hours ($10 billion) of electricity each year. 

According to the US Department of Energy, three fourths of the total life cycle cost (capital 

expenditure, maintenance, and operations) of an industrial air compressor goes towards 

electricity. Manufacturing and material handling facilities are the biggest users of compressed 

air. Because of this, these end users stand to gain the most from decreased compressor demand 

resulting from increased pneumatic efficiency. Pneumatic technology has remained essentially 

unchanged for over fifty years. With rising energy costs and intense competition from 

international firms, companies are now more conscious of controlling costs than ever before. 

2 Pneumatic System State Efficiency 

Prior to conducting efficiency experiments, system level efficiency models were developed 

in Cummins et al. [27]. The purely analytical approach is presented first, followed by the 

practical applied model used to compare the experimental results. The analytical model lays the 
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foundation for the applied model which in turn will help define the efficiency increase limits and 

determine the efficiency increases directly attributable to the pSEA. 

2.1 Pneumatic System State Efficiency: Analytical Model and Baseline Systems 

Figure 5.2 shows a two cylinder pneumatic system with a pSEA.  During operation the 

exhaust from the primary cylinder is reclaimed by the accumulator, stored, and then recycled at a 

later point in time to serve as the supply for the secondary cylinder. 

 

Figure 5.2: Two cylinder system with pSEA test configuration model 

The system shown in Figure 5.2 has two cylinders of differing sizes operating such that for 

every out/instroke of the primary cylinder there is an accompanying out/instroke of the 

secondary cylinder, resulting in a stroke ratio of 1:1. The limitation of this model is that it 

assumes a 1:1 ratio is possible which for cylinders with too great of a volume difference, a 

complete stroke of the secondary cylinder may not be possible. As the model is developed 

further, and applied to experimental configurations, stroke ratios other than 1:1 will be used.  

In order to compare the efficiency improvements directly attributable to the pSEA, baseline 

compressed air consumption of a system that does not use a pSEA is measured and serves as the 

foundation upon which efficiency increases are determined on a cycle by cycle basis. One 

complete cycle consists of an outstroke followed by an instroke, of both cylinders. In the 

derivation to follow, the baseline system without a pSEA assumes that the secondary cylinder 

supply has been regulated down to the pSEA contraction pressure. This represents a partially 

regulated system. This assumption introduces the ability to adjust the model for systems that 

employ existing energy efficiency methods by regulating down cylinder pressures with pressure 

regulators. 

Three baseline systems will be used for comparison: an unregulated, partially regulated and 

fully regulated system. An unregulated system uses no pressure regulators in the system and uses 

supply air at whatever pressure the air is supplied to the system. A partially regulated system 

uses a single pressure regulator on one of the cylinders in the pair and partially reduces exhaust 

gas waste. The unregulated and partially regulated systems represent the most common 

configurations found in industrial facilities. While less common in practice, a fully regulated 
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system uses pressure regulators on both cylinders reducing exhaust gas waste for each. The fully 

regulated system is an equivalent work output system to one that uses a pSEA since all cylinders 

experience the same change in pressure across the cylinder. Comparison to a fully regulated 

system enables a comparison with current energy saving techniques and is the third baseline 

system that is used as a comparison to determine efficiency increases for systems that use a 

pSEA. 

Energy is accounted for in each of the states of the system shown in Figure 5.2. Ideal gas 

behavior is assumed for the entire operating range of the system, an assumption that is also 

implemented by the flow meter in performing the necessary flow calculations. The ideal gas law 

is rearranged to solve for mass as follows: 

 
RT

VP
m ii

i   (1) 

where mi is the mass at the respective state, Pi is the pressure, Vi is the volume, R is the ideal gas 

constant of air and T is the temperature of air. Only the mass is accounted for since it is 

conserved at each state as both the pressure and volume are allowed to change from one state to 

the next. 

At this point a relationship between the two volumes of the cylinders is introduced where α is 

the ratio between the volume of the primary cylinder, V1, and the volume of the secondary 

cylinder, V2: 

 12 VV  . (2) 

By substituting Eq. 2 into Eq. 1 and summing the mass introduced at each stage of the cycle, the 

following expressions are obtained for the system without a pSEA in line and for one that uses a 

pSEA: 
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where Ps and Pcon are the supply pressure and pSEA contraction pressure, respectively, and the 

subscripts T_w/o and T_w indicate the total mass of air used from supply without the pSEA and 

with the pSEA, respectively. The complete derivation can be found in Cummins et al. 2015 [27]. 

A ratio of the total mass used by the system with the pSEA to that of the baseline system 

without the pSEA represents the model efficiency, ηsys_ana, and is given by: 
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Substituting Eqs. 3 and 4 into Eq. 5 simplifies to the following: 
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By subtracting ηsys_ana from 1 and converting it to percent, the analytical efficiency increase 

directly attributable to the pSEA is obtained: 

   1001% _  anasysIncreaseEfficiency   (7) 

To find the efficiency increase upper limit, Pcon in ηsys_ana from Eq. 6 is replaced with PS, the 

supply pressure, and the larger energy savings that can be realized in unregulated systems can be 

determined. Similarly, to find the efficiency increase lower limit for a fully regulated system, PS 

in the denominator of Eq. 6 is replaced with Pcon. 

2.2 Pneumatic System State Efficiency: Applied Model 

In the experimental application of the analytical model, the volume ratio is varied from one 

trial to the next, by interchanging a small, medium and large cylinder in the primary and 

secondary positions of the system shown in Figure 5.2. Doing so results in a number of practical 

implications to implementing the model presented in Subsection 2.1. The practical 

considerations impacting the model include: 

1. pSEA length is limited to 91.5 cm as it is large enough to contain a single exhaust 

stroke of the large cylinder with the given geometry, and is representative of size 

constraints to be expected in application on actual machinery out in the field. 

2. The expansion and contraction pressures of the pSEA are less than the supply 

pressure since the primary cylinder will perform work and experience losses in 

application. 

3. The stroke ratio for the various cylinder combinations is determined experimentally 

using worst case volume stack up. This takes into account the reduced volume when 

the cylinder rod is fully retracted and occupying internal cylinder volume. The ratios 

are set so that during testing the accumulator: 

a. does not exhaust through a relief valve placed immediately before the pSEA 

b. on the last stroke of the secondary cylinder for each cycle, the accumulator is 

allowed to fully contract, dropping to a pressure slightly below the contraction 

pressure of the pSEA. 

4. Each cylinder stroke results in the cylinder completing an entire stroke. 

5. The number of complete total system cycles was limited so that the accumulator did 

not reach its maximum volume. Doing so would result in a pressure spike that would 

eliminate the constant pressure supply novelty of the pSEA. 

Starting with Eq. 5 and applying the practical considerations above results in the following 

equation for the applied system efficiency, ηsys_app: 
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where p is the total number of strokes the primary cylinder undergoes, and q is the total number 

of strokes the secondary cylinder completes. The importance of Eq. 8, when compared to Eq. 5, 

is that it allows for any stroke ratio combination as it is a function of the summation of primary 



54 

 

and secondary cylinder strokes, making no assumption about the stroke ratio. The applied system 

efficiency increase is then determined by replacing ηsys_ana in Eq. 7 with ηsys_app to obtain: 

   1001% _  appsysIncreaseEfficiency   (9) 

By substituting Eq. 1 into Eq. 8 for the given pressures and volumes at the respective system 

states, an applied efficiency increase model value is obtained that is used to compare with the 

experimental data. The experimentally measured mass values are substituted directly into Eq. 8 

to produce an applied efficiency increase experimental value with which to compare the model 

values. 

3 Pneumatic System Efficiency Experiments 

Having developed the equations necessary to determine the efficiency increases of a system 

directly attributable to the pSEA, the experimental techniques used to validate these models and 

make energy savings projections is presented. 

3.1 Experimental Setup 

The experimental setup shown in Figure 5.3 consists of two pneumatic cylinders, a single 

pneumatic strain energy accumulator, Alicat M-series Mass Flow Meter (used to measure flow in 

standard litres per minute (SLPM)), throttle valve, SMC 3-way valve, two 0-10 bar pressure 

gages (used to monitor the accumulator pressure), supply pressure regulating valve (not 

pictured), accumulator overfill relief valve, electrical power supply and National Instruments 

(NI) data acquisition (DAQ) system. The pSEA tested in each series of tests consisted of a black 

rubber tube encased by a polycarbonate shroud. The pSEA dimensions are proprietary as the 

technology is currently involved in ongoing commercialization efforts; therefore, only the length 

dimension of the pSEA used for testing is provided. 

 

Figure 5.3: System with accumulator efficiency increase experimental test setup 

Shop supply air (725 kPa) passed through the regulating valve where it was regulated down 

to approximately 500 kPa (denoted as Ps), which was subsequently connected to the throttle 
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valve just before the mass flow meter. The throttle valve was placed in line to limit the fill rate of 

the accumulator to prevent clipping of the mass flow meter. The downstream side of the mass 

flow meter was connected to the supply port of the externally piloted/actuated valve connected to 

the primary cylinder. This enabled the mass flow meter to measure all the air directly as it 

entered into the system. Two pressure gages were placed on either side of the pSEA to monitor 

the pressure of the accumulator and an accumulator overfill relief valve was placed just before 

the accumulator to exhaust the system if the accumulator reached its maximum volume. The 

pSEA was connected to a second externally piloted/actuated valve and served as the supply air, 

at the contraction pressure of the pSEA of 280 kPa, to the secondary cylinder. All pressures are 

absolute pressures. 

 

Figure 5.4: Cylinder mass flow calibration test configuration 

Due to the highly transient nature of the efficiency tests and the challenges of obtaining 

accurate flow measurements of compressed air, which have been well documented by de Giorgi 

et al. 2008 [28] and Igarashi et al. 2007 [29], a series of calibration tests were conducted prior to 

individual cylinder or system testing. In the calibration test setup shown in Figure 5.4, the flow 

meter was connected to the outstroke cavity of the cylinder and the flow into the cylinder was 

measured. Knowing the volume, pressure and temperature of the cylinder, the theoretical mass of 

the cylinder is known. The measured mass value was then compared with the theoretical value 

and a calibration constant was calculated using a 100 cycle average for the each cylinder. 

Cylinders of three different sizes were used interchangeably in the primary and secondary 

positions and are referred to as small, medium and large. The bore and stroke dimensions along 

with the calibration constants of the three cylinders used in the tests are given in Table 5-1. 

Table 5-1: Cylinder Dimensions and Calibration Constants 

Cylinder Bore (mm) Stroke (mm) Calibration Constant 

Small 16 40 1.54 

Medium 20 80 1.14 

Large 25 160 0.71 

In order to find the total mass used by a system without a pSEA, each individual cylinder was 

tested at supply pressures of 500 kPa and 280 kPa as shown in Figure 5.5. 
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Figure 5.5: Individual Cylinder Consumption Test Setup 

The flow meter was connected to the supply of the 3 way valve and 100 cycle averages were 

collected. The calibration factors for the respective cylinder sizes were applied and the average 

mass used on a single cycle, consisting of an outstroke and an instroke, of each cylinder was 

calculated. Collection of average cycle mass data at the two supply pressures provided the 

necessary data for any combination of cylinders and pressures needed for a system that does not 

use a pSEA that serves as the baseline to determine an efficiency increase for a system that uses 

a pSEA. 

3.2 Experimental Data 

In the system efficiency improvement experiments, the cylinder in the primary position 

determined the flow into the system. Consequently, the calibration factor for the primary 

cylinder was applied to the system flow data to improve the accuracy of the measurements. 

Taking into consideration the various volume and pressure combinations of the cylinders, the 

number of times a cylinder would need to fire to either fill or exhaust the accumulator varies. 

Applying worst case volume (cylinder volume less the volume of the cylinder rod) and pressure 

combinations, estimates for the stroke ratio were calculated and then experimentally confirmed. 

The ratio values used in collecting system efficiency improvement data are given in Table 5-2. 

Table 5-2: Stroke/firing ratio of primary to secondary cylinder 

Cylinder 1 Cylinder 2 Stroke Ratio 

Small Medium 2:1 

Small Large 5:1 

Medium Large 2:1 

Medium Medium 1:1 and 1:2 

Medium Small 1:3 

Large Small 1:8 

Large Medium 1:3 and 1:4 

The first number in the ratio (x:y) indicates the number of primary cylinder strokes (x) and the 

second number indicates the number of secondary cylinder strokes (y). The system was run for 

50 warmup cycles for each cylinder combination listed in Table 5-2 prior to data collection. The 

warmup period served to minimize the Mullin’s effect and hysteresis during steady state 

operation. 
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Each stroke ratio in Table 5-2 was tested for the system with the pSEA and the efficiency 

increase was calculated for three system baseline configurations: unregulated, partially regulated 

and fully regulated. These three baseline systems are chosen because they are representative of 

actual systems encountered in application where total, partial or no pressure regulation is 

implemented. The total amount of mass used during operation was collected for each individual 

cylinder and then combined for the baseline system without the pSEA as outlined in the previous 

section. Total mass for the system with the pSEA was recorded at the supply of the primary 

cylinder for each test. In all system tests with the pSEA, the supply pressure to the primary 

cylinder was 500kPa. 

In the unregulated baseline system, supply pressures of 500 kPa were used for both cylinders. 

In the case of the partially regulated system, in which the pressure of the secondary cylinder was 

regulated down to the contraction pressure of the pSEA, supply pressures of 500 kPa and 280 

kPa were used for the primary and secondary cylinders respectively. The fully regulated system 

is when both cylinders perform the same amount of work and, therefore, experience the same 

change in pressure. In Cummins et al. [6] the expansion pressure of the pSEA was determined to 

be approximately 320 kPa. For the fully regulated system, having a supply pressure of 500 kPa 

and exhausting at 320 kPa, the net change in pressure for the primary cylinder in the system with 

the pSEA is 180 kPa. With the secondary cylinder operating at 280 kPa, and exhausting at 100 

kPa, both cylinders experience a net pressure change of 180 kPa. Therefore, when compiling the 

individual cylinder data for the equivalent fully regulated baseline system, the 280 kPa total mass 

data is used for both the primary and secondary cylinders. 

It is important to note that the unregulated and partially regulated systems are most 

representative of applied systems and offer the greatest opportunities in the field to realize 

energy savings with implementation of the pSEA. Application of the pSEA to these systems 

could be accomplished with relative ease and greatly improve their energy efficiency. A fully 

regulated system is most comparable to a system using a pSEA due to the fact that the two 

cylinders output the same work when comparing the two energy savings techniques; however, 

fully regulated systems are often not implemented in practice. As the results show below, all 

three systems show significant energy efficiency improvements when equipped with the pSEA. 

The increased ratios for the medium to medium and large to medium cylinder combinations 

in Table 5-2 are the same systems run with an additional secondary cylinder stroke that started 

with a partially expanded accumulator at the constant contraction pressure supply condition and 

ended with the accumulator fully contracted and the final pressure of the accumulator dropping 

below the accumulator contraction pressure. This operating condition may not be allowable in 

certain applications but was included to show the potential for additional efficiency 

improvements if such operational environments are permissible. The results are presented in the 

next section. 

4 Results and Discussion 

4.1 Experimental System Efficiency Increases with Uncertainty Analysis 

First, for the unregulated system, the pressure, volume and stroke ratio values for the test 

configurations listed in Table 5-2 were input into Eqs. 1, 8 and 9 to produce applied model 

efficiency increase projections. The experimentally measured mass flow for the same systems 

was input into Eqs. 8 and 9 to calculate the applied experimental efficiency increase values. The 

applied model and experimentally measured results from Eq. 9 are compared in Figure 5.6. The 
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results obtained from Eq. 9 and shown in Figure 5.6 are the efficiency increases as a percent 

increase for unregulated baseline systems. These efficiency increases are directly attributable to 

the pSEA. 

 

Figure 5.6: Unregulated system efficiency increase as a function of stroke ratio; red arrows indicate efficiency 

increase resulting from an increased stroke ratio by adding an additional stroke to the secondary cylinder 

In Figure 5.6, a stroke ratio of greater than one indicates that the secondary cylinder fired 

more times than the primary cylinder. The increased stroke ratio data points as mentioned earlier, 

indicated by the bold markers, show the jump in efficiency (red arrows) that a system can 

experience if it is able to operate at a pressure below the contraction pressure of the pSEA. In the 

medium to medium and large to medium system tests an additional stroke of the secondary 

cylinder was added to each cycle, allowing the accumulator to fully contract and its supply 

pressure to the secondary cylinder to drop below the contraction pressure of the accumulator. In 

the large to medium case a slight increase in efficiency was noted; however, in the medium to 

medium case the efficiency increase jumps significantly to 89 %. This indicates that for a system 

using similar size cylinders, if it is allowable for the pressure to the secondary cylinder to drop to 

a pressure below the accumulator contraction pressure, substantially greater efficiency increases 

can be realized. 

The standard deviation of the experimental efficiency increase resulting from mass flow 

measurement data and the associated error bars indicated that the variation of the flow 

measurements, and thus the aleatory uncertainty, was minimal. The largest source of flow 

measurement uncertainty likely comes from the epistemic uncertainty in the volume 
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approximations. The cylinder volume approximations were used to determine an experimental 

mass flow calibration constant. The uncertainty is greater for the smaller cylinders and smaller 

for the larger cylinders. Trends in the error with cylinder size are observed in the data in Figure 

5.6. 

Greater differences are observed between experimental efficiency increase and model 

prediction for the systems with a smaller primary cylinder. This is expected for two reasons; 

first, the uncertainty in the volume for the small cylinder is a larger percentage of the total 

volume, resulting in greater error in the experimental efficiency increase and larger deviation 

from the model prediction. The converse is true for large cylinders; the uncertainty in the volume 

approximation is a smaller portion of the total volume resulting in less error in the experimental 

efficiency increase and smaller variations from the model prediction. 

A second reason the larger cylinders are expected to have less error in the mass flow 

measurement is that the flow conditions are closer to steady state, where the flow meters 

measurement is most accurate, than they are for the smaller cylinders. The flow in the smaller 

cylinders tends to be more transient, which introduces more error through uncertainty in the flow 

measurement. The greater error due to uncertainty with smaller cylinder size is observed at every 

point in Figure 5.6.  

Starting on the left and working right, the small to large cylinder system, where the small 

cylinder dictated flow measurement, experiences the largest error from the model prediction. The 

next stroke ratio was small to medium and medium to large. The small to medium combination 

exhibits more error than the medium to large. Next the medium to medium experiences a similar 

error as the medium to large. Subsequently, medium to small and large to small have the same 

stroke ratio yet the medium to small experiences greater error than large to medium while large 

to medium approaches the model prediction. Finally the large to small experiences the least error 

and is closest to the model prediction. 

Where the applied model predicted the same efficiency increase for the same stroke ratios, 

the experimental data yielded two slightly different efficiency increase numbers. With the 

volume uncertainty entering into the experimental data through the calibration constant, 

increasing error with decreasing cylinder size, it is expected that the two systems with the same 

stroke ratio having different cylinder size primary cylinders would exhibit different experimental 

efficiency increases. Therefore, it is expected that with improved volume estimates the 

experimental values would approach each other and converge on the model prediction. 

The same results were compared for the partially regulated system as in the unregulated 

system and are given in Figure 5.7. 
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Figure 5.7: Partially regulated system efficiency increase as a function of actuation ratio; red arrows indicate 

efficiency increase resulting from an increased stroke ratio by adding an additional stroke to the secondary 

cylinder 

The partially regulated system experiences lower efficiency increases than the unregulated 

system as expected. Regulated systems currently reduce energy waste by reducing the use of 

excessively pressurized air which is why unregulated system would be expected to see greater 

efficiency increases. In both the partially regulated and unregulated systems the model is 

conservative compared to the experimental results. A conservative baseline for energy savings 

projections is preferred since it does not over predict the savings that can be obtained by 

implementing the pSEA when building a business case when deciding whether or not to pursue 

developing the pSEA. 

Efficiency increase results for the fully regulated, equal work, baseline system are shown in 

Figure 5.8. 
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Figure 5.8: Fully regulated system efficiency increase as a function of actuation ratio; red arrows indicate 

efficiency increase resulting from an increased stroke ratio by adding an additional stroke to the secondary 

cylinder 

The fully regulated system exhibits similar trends as the partially regulated and unregulated 

systems with a few differences. The first difference between the fully regulated system and the 

partially regulated and unregulated systems is a lower efficiency increase. This is expected as the 

fully regulated baseline system already utilizes pressure regulators that reduce pressure resulting 

in less exhaust waste. Another difference is that the large to small cylinder test condition with a 

stroke ratio of eight in Figure 5.8 shows a negative efficiency improvement while the model 

predicts a slight efficiency improvement. A negative efficiency improvement indicates that the 

pressure regulators would be more efficient in this condition; however the modeling error is too 

small to support such a claim. It would need to be investigated further to determine which 

approach is actually more efficient but the differences are expected to be negligible at high 

stroke ratios. Regardless of which energy saving approach is more efficient, the two are close 

enough that the use of the pSEA would be preferred. The pSEA offers the advantage of being 

able to regulate the net change in pressure of both cylinders and achieve similar energy 

efficiency with the use of a single accumulator where it would require two pressure regulators. 

A final observation is that the increased stroke ratio for the fully regulated system results in a 

greater efficiency increase than either the partially regulated or unregulated systems. This result 

is expected as the fully regulated baseline system already implements energy saving pressure 
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regulators. The additional stroke is an additional energy savings technique the accumulator offers 

that pressure regulators are unable to offer. 

All three sets of results, without the increased stroke ratio data points, are shown together in 

Figure 5.9 for comparison. 

 

Figure 5.9: Comparison of regulated and unregulated systems model and experimental efficiency increases 

The minimum and maximum numerical model and experimental results for the unregulated, 

partially regulated and fully regulated systems from Figure 5.9 are shown in Table 5-3. 

Table 5-3: Efficiency improvement projections summary 

Efficiency 
Improvement 

Unregulated Partially Regulated Fully Regulated 

Min (%) Max (%) Min (%) Max (%) Min (%) Max (%) 

Model 45.0 66.1 36.4 57.8 1.8 39.5 

Experimental 47.0 78.8 41.9 76.0 -2.7 59.2 

In all system configurations the greatest efficiency increases are seen when a smaller primary 

cylinder at a higher pressure powers a larger secondary cylinder at a lower pressure. At a stroke 

ratio of 1:1 the efficiency improvement returns start to level off as larger primary cylinders at a 

higher pressure power smaller secondary cylinders at a lower pressure. Considering systems that 

do not fully utilize pressure regulators, the minimum efficiency improvement for the system 

model is 31.4 % for a partially regulated system, and the maximum is 66.1 % for an unregulated 
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system. The experimental efficiency improvement values are higher and range from 31.9 % to 

78.8 %. Even at the low end of the range, incorporation of the pSEA offers large improvements 

to an industry that currently averages just 15 % efficiency. 

4.2 Energy Savings Projections 

According to the US Department of Energy, from their compressed air challenge fact sheet 

number nine [30], “electricity costs are by far the largest expense of owning and operating a 

compressed air system.” Many facilities are unaware of how much their compressed air systems 

actually cost to operate. The Department of Energy states that a single 100 horsepower air 

compressor can consume $50,000 in electricity each year.  In using the Department of Energy’s 

figures, with a conservative efficiency improvement of just 30% from the pSEA, would yield 

annual energy savings of $15,000 per compressor. This savings is realized by the compressor 

operating less frequently. An additional benefit is that less frequent operation would also result is 

a longer service life of the compressor. Facilities that use multiple, more powerful compressors 

would experience even greater savings. Such an increase in efficiency could reduce the total 

number of compressors required to meet system demand. 

While Table 5-3 shows that some systems could experience substantially higher increases in 

efficiency, not all industrial users of compressed air will be able to integrate the pSEA into their 

pneumatic systems. This makes overall projections for aggregate energy savings less certain. But 

assuming that only ten percent of users could utilize the pSEA to increase their pneumatic 

system efficiency by 30%, the result would still be an aggregate energy savings in excess of 

$300 million in the US each year. The opportunity for such considerable cost reductions are 

welcome news in the face of slow industrial growth projections and increased international 

competition. 

5 Conclusions and Future Work 

A 2012 report by ORNL and NFPA on the efficiency of the fluid power industry revealed 

that the pneumatic division of the fluid power industry has an average efficiency of a mere 15 %. 

Motivated by such low efficiencies, the current work set out to: first, perform an accounting of 

the compressed air moving through the system; second, developed a model for applied systems 

that quantifies the efficiency increase directly attributable to the implementation of the 

pneumatic strain energy accumulator, an energy recovery, storage and recycling device; and 

finally, experimentally determine the efficiency increase of an applied system using a pSEA and 

compare that to the model predictions. In completing each of the aforementioned tasks, model 

predictions ranged from 31 % to 66 % efficiency increase and experimental increases ranged 

from 31 % to 78 %, rendering the model favorably conservative. 

Starting with the conservative minimum model efficiency increase and making modest 

projections it is estimated that the pSEA has the potential to yield annual energy savings of 

$15,000 per compressor. Extrapolated out industry wide, the pSEA alone could result in industry 

wide annual savings in the US of $300 million. The next step will be to arrange case studies with 

industry partners and measure the actual energy used in a real system to see what the real energy 

savings turn out to be of the pSEA in an actual system, refining the model and energy savings 

projections as the body of knowledge around the pSEA expands. Once actual energy savings 

have been quantified the pSEA device will be one step closer to commercialization. 
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Abstract 

The use of elastomers in the rotating reference frame of helicopters is pivotal in the 

dissipation of vibration as a means of mitigating fatigue damage. Three of the largest cost drivers 

for elastomers from the perspective of design, maintenance and warranty are dampers, bearings, 

and hydraulic systems. One of the primary modes of failure of these components is degradation 

of elastomeric materials. To address these failures, elastomer compounds have been improved in 

conjunction with carbon nanotubes (CNTs) and structural health monitoring (SHM) 

technologies. Early work
[7],[8]

 on embedding CNTs in elastomers focused on strength and 

electrical effects including modulus, conductivity and electro-magnetic interference (EMI) 

shielding properties. In some of the most recent work,
[3],[7]

 CNTs have been dispersed into 

viscous materials or spun into threads and used to measure strain in composite materials in an 

effort to functionalize CNTs embedded in elastomeric and carbon fiber reinforced composite 

material respectively. The CNTs used to form CNT thread originate in sheet form. This 

configuration or a variant of it would be ideal to use in hyperelastic materials such as elastomers 

due to its ability to undergo large deformations and maintain contact upon return to its original 

geometry. CNTs, when used as electrical sensors, also can enable material state awareness 

through SHM with the added benefits of improved strength properties and EMI shielding. The 

ability to sense strain using CNTs in the form of CNT thread is extended through a proof of 

concept study demonstrating the ability of conductive elastomers to monitor load and detect 

damage in specific directions. 
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1 Introduction 

Elastomers are used extensively in rotorcraft, especially in the rotating reference frame, 

where their applications are most critical. Rotorcraft and these elastomers experience one of the 

harshest environments imaginable including extreme weather, vibration and combat hazards in 

military applications. Billions of dollars are spent annually on detection and prevention of failure 

of critical rotorcraft components; among the most frequent failures are those involving 

bearings,
[18]

 bushings, dampers and seals, all of which utilize elastomers. 

Current detection and prevention methods rely primarily on maintenance crews and daily 

inspections, which are costly and time consuming. Even the most advanced decision support 

systems such as Health and Usage Monitoring Systems (HUMS) rely on vibration data and post 

processing and tend to be reactive rather than proactive, requiring clues provided by previous 

component failures to predict impending failures across a fleet. 

One current area of active research is Integrated Structural Health Management, which 

utilizes structural health monitoring systems to detect and even predict component failures before 

they occur so that preventive maintenance actions can be taken to reduce unscheduled 

maintenance and improve aircraft availability.
[19]

 Technologies being developed to address these 

needs include energy harvesting, wireless sensing and data analytics. 

Carbon nanotubes (CNTs) are simultaneously being developed for use in other parts of the 

airframe, e.g., fuzzy fibers to improve the matrix/fiber interface. Additionally, CNTs are being 

used to improve the interfacial strength between plies of composites. CNT thread has also been 

developed to measure strain on composite materials.
[7]

 Despite all of these advancements and 

active areas of research very few of these technologies have been considered or directly applied 

to elastomers. While elastomers are often times considered secondary structure, their failure 

often can and does lead to failure of primary structures.
[8]

 

A concept that is currently in development that pulls from aforementioned technology 

development efforts is the CNT reinforced elastomer. The development of a CNT reinforced 

elastomer stems from the design of an advanced strain energy accumulator.
[9]

 The advantages of 

CNT reinforced rubber include improved strength properties, EMI shielding, strain sensing 

capability, and the potential for functionally graded elastomers. 

1.1 Early CNT Elastomer Work 

In the early 2000’s preliminary work was done to embed CNTs in various rubber materials at 

various volume fractions and weight percentages. The focus of these studies was to investigate 

the general effect on material properties including strength, conductivity, and electromagnetic 

shielding ability.
[7],[8]

 At this time, carbon nanotubes were new, at a low technology readiness 

level (TRL), costly and were not produced in large quantities; it was also not yet possible to 

functionalize CNTs. 

1.2 Current Measurement Techniques 

Several different measurement and sensing techniques exist for obtaining material properties 

for elastomers but each has drawbacks. The standard load frame used in determining strength 

properties is accurate but lacks the ability off-the-shelf to monitor the material in situ. Standard 

foil strain gages are a reliable measurement technology but are subject to disbonding and also 

fail under the hyperelastic deformations experienced by some elastomers. 

Additionally, strain gages are typically surface mounted and difficult, if not impossible in 

most applications, to mount inside structures. Digital Image Correlation (DIC) is another 
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commonly used measurement technique that uses a speckle pattern to track displacements of the 

material. DIC has its own challenges and drawbacks including in situ monitoring, the required 

speckle paint pattern that would not be feasible in most military rotorcraft applications, and the 

tendency of the paint specs to disbond from the elastomeric materials in high strain or 

hyperelastic deformation situations.
[10]

 

1.3 New Measurement Techniques 

A new measurement technique being developed at the University of Cincinnati is the used of 

CNT thread for integrated sensing of carbon fiber reinforced polymer (CFRP) composites. In this 

new sensing method, sheets of vertically aligned CNTs are woven into thread and are then 

integrated into CFRP composite panels for impact testing. A CFRP composite panel with an 

integrated CNT thread sensor system, the CNT sensor grid with impact location and measured 

response from an instrumented impact hammer can be seen in Figure 6.1. 

 

Figure 6.1: CNT thread sensor grid mounted on composite panel (left), sensor grid with impact location 

(center), measured response (right). Adapted from [7] included in Appendix A 

The CNT sensor thread integrated on a CFRP composite panel demonstrated the ability to 

locate the damage and indicate the severity of the impact on the panel, the full details of which 

can be found in the complete manuscript in Appendix A. These results from the impact testing 

conducted are promising as they demonstrate the feasibility of the use of CNT thread as a viable 

sensor for new and advanced sensing applications. While just one version of CNTs was tested for 

sensing possibilities, other variations such as sheet/forest, ribbon and a combination thereof have 

yet to be explored and offer additional potential to advance new measurement and self-sensing 

techniques. 

1.4 Applications of Sensor Thread 

As demonstrated by the aforementioned results, the potential for CNTs to be used as sensors 

is greatly expanding as both the fields of SHM and CNTs continue to mature. One of the most 

critical applications for the use of CNTs as sensors is the Aerospace industry. As increasingly 

more aircraft are being made of composites due to strength and weight requirements the ability 

to monitor these structures is moving to the forefront. Composites typically fail suddenly and 

catastrophically so the ability to monitor and manage their structural integrity is of utmost 

importance. Since CNTs have the potential to be used as sensors and add very little weight, 

improve strength and are becoming affordable for use in application, they are ideal candidates 

for future sensors. 

Another way in which CNT sensors can be used is as an enabler for condition-based 
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maintenance (CBM). As the cost of aircraft and other composite structures increases so does the 

cost to maintain and repair those structures. By implementing CNT sensors as a tool in CBM the 

total cost of ownership is reduced. Additionally, once CBM is implemented and acceptable 

levels of reliability of SHM systems are achieved, predictive maintenance can be realized. The 

potential of SHM systems to attain predictive maintenance not only reduces cost but also 

increases reliability and safety. Furthermore, where other sensors fail, due to their inferior 

material properties, CNT sensors can be used as complementary or redundant sensors. One such 

example is in monitoring hot spots or fatigue tests for composite components, where the 

composite part often outlasts a traditional foil strain gage, leading to increased costs of testing 

and the introduction of an additional source of uncertainty into results. 

In addition to sensing capabilities of CNTs, there are several other properties of CNTs that 

can be utilized for application in other areas. CNTs offer improved strength properties which can 

be used in civil structures such as strengthening concrete or reinforcing elastomers. Furthermore, 

CNTs have resistive properties which can be used for thermography or other heating 

applications. The ability of CNTs embedded in rubber has also been documented [37] to provide 

EMI shielding capabilities, which is of great interest in defense applications. Where current 

measurement technologies fall short, the integration of CNTs into elastomers offers the potential 

to significantly advance the state-of-the-art of elastomers and measurement techniques. 

2 Carbon Nanotube Elastomers 

A material that has the potential to address the limitations of current measurement techniques 

and material properties of elastomers, and provide in situ material data for structural health 

monitoring of elastomers is CNT embedded elastomers. Kang and Schulz et al. first reported on 

the use of CNT in polymers for strain sensing but were limited at the time by the length of the 

CNTs.
[7]

 One of the first reported uses of a flexible CNT sensor was by Yamada et al. in 2011 for 

human-motion sensing.
[11]

 Since then Song et al. successfully utilized long, vertically aligned 

CNTs as shown in Figure 6.2 to create CNT thread for strain sensing in composites.
[7]

 

 

Figure 6.2: Vertically aligned spinnable CNTs. 
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The key findings of each of these prior works suggest the concept of a CNT embedded 

elastomer utilizing vertically aligned spinnable CNTs for in situ structural health monitoring of 

rotorcraft parts. 

2.1 Carbon Nanotube Embedded Elastomers 

Early investigation of CNT elastomers were focused on the mechanical and electrical 

properties and not on functionalizing the CNTs within the material, due to the purity and size 

limitations of early CNTs. Figure 6.3 shows the effect that the addition of CNTs has on the 

material properties of natural rubber, which is an elastomer. 

 

Figure 6.3: Effect of increasing weight percent of CNTs on rubber modulus. Adapted from [2]. 

It is observed that as the CNT percent increases, both the strength and elastic modulus 

increase as one would expect while the maximum strain percent obtainable decreases along with 

the toughness. In addition to improved strength properties, a number of other material property 

advantages exist for CNT embedded elastomers. Figure 6.4 shows the Electro Magnetic 

Interference (EMI) shielding capability of CNTs embedded in rubber that is of particular interest 

in military and shipboard rotorcraft applications. 

 

Figure 6.4: EMI shielding ability of carbon nanotubes in rubber at 30 wt%. Adapted from [2]. 



71 

 

The ability for CNT embedded elastomers to be used for strain sensing and functionally 

graded materials is considered here in the context of rotorcraft elastomeric components. 

2.2 CNT Embedded Elastomer Components 

Degradation of elastomeric components can lead to sudden and catastrophic failure in the 

vibration intensive environment in which rotorcraft operate. Early detection of the degradation of 

elastomeric components is difficult in operation. In a ground test environment, detection is aided 

in the visual clues left behind in the form of pieces or residues from the degrading component. It 

is more challenging to detect early degradation in a flight test as the visual clues from the 

material that are shed are lost to the operating environment.  With additional sensors and 

manpower available in flight tests, degradation can still be detected.  

In daily operations, when maintainers perform inspections during regular intervals, and are in 

charge of a portion of a fleet of aircraft, early detection is challenging and early indicators of 

degradation can be missed. With the addition of vertically aligned CNTs in elastomers to enable 

strain sensing capability, early detection is possible and reductions in unscheduled maintenance 

or worst case scenario mishaps can be avoided. 

 

Figure 6.5: Cross sectional view of focal bearing elastomer with vertically aligned CNT embedded elastomer  

(a) initial/unstressed (b) final/stressed 

Figure 6.5 shows a representative elastomeric component, i.e. a focal bearing, bushing, or 

bearing seal, with a vertically aligned CNT sheet embedded with the ends spun to form CNT 

thread coming out of the component serving as leads and having initial resistance, oR . As a load 

is applied, the component deflects and the resistance changes to experience a compressive 

load/resistance, 
1R , and a tensile load/resistance, 

2R . As the component degrades the 

connections between the CNTs may be interrupted and result in a change in the initial, unstressed 

resistance of the material. This functionalization of the CNTs within the rubber could add the 

capability to monitor loads in the component and detect early signs of failure. 

Similarly for functional grading of materials, vertically aligned CNT sheets can be replaced 

with high purity CNT powder. Again using Figure 6.5 as an example, as the component is loaded 
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CNTs can be dispersed to certain regions of the material depending on the load profile and where 

an increase, or decrease, in stiffness would be of benefit to the component. 

3 Dispersion of Carbon Nanotubes in Viscous Substances 

Dispersion of CNTs has been an area of research for some time and has focused on polymers, 

elastomers, and concrete. Lessons have been learned and new techniques developed to achieve 

more uniform dispersion enabling improved functionality of CNTs 

3.1 Carbon Nanotube Dispersion in Polymers 

Early work performed by the University of Cincinnati
[7]

 focused on dispersion of CNTs in 

polymers for sensing capability, which utilized ultrasound and shear force mixing methods. One 

of the issues faced at the time was the inability to grow long CNTs, thereby limiting the ability to 

utilize them for measuring mechanical and electrical properties. While shear force mixing is the 

simplest, it is limited to primarily coarse dispersion where ultrasound can improve dispersion on 

a nanoscale. A drawback to ultrasound is that it can damage the nanotubes during the dispersion 

process. 

3.2 Carbon Nanotube Dispersion in Concrete 

The conventional approach to incorporate CNTs in concrete is to first disperse the CNTs in 

the mix water using a combination of superplasticizer and ultrasonication and then mix the 

resulting dispersion with the cement powder. Work performed at Vanderbilt University
[12]

 has 

shown that while the use of polycarboxylate-based high range water reducer can help in the 

dispersion of CNTs in concrete, there is still evidence of the formation of sub-micron and micro-

scale CNT clusters and non-uniform arrangement of individual CNTs within the cement paste 

leading to CNT rich and CNT poor regions. It has been demonstrated that the quantification of 

the agglomeration state of the CNTs by optical microscopy observation and image analysis is a 

useful tool to understand the structure-property relationship of concrete containing CNTs. 

3.3 Magnetic Nanoparticle Dispersion 

A new method that has been developed for dispersing nanoparticles in materials uses 

magnetic fields.
[13]

 One of the key findings of Stuyven et al. is that magnetic fields can impact 

laminar flow profiles and produce velocity gradients that result in varying levels of dispersion. 

Given the electromagnetic properties of CNTs, magnetic fields should be able to achieve 

enhanced dispersion enabling functionally graded materials. 

4 Carbon Nanotube Strain Sensing 

Carbon nanotube materials are piezoresistive, which means the resistance of the carbon 

nanotube thread/ribbon changes with strain. The piezoresistive behavior can be used to sense 

strain and potentially damage in a host structure because local strain fields are influenced by 

mechanical damage. The sensitivity of strain sensing depends on the length of the sensor because 

average strain is measured over the length of the sensor. Carbon nanotube sensor threads are 

barely visible and do not add significant weight to the host composite structure. 
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4.1 Carbon Nanotube Thread Strain Sensing 

A carbon nanotube forest was synthesized and spun into carbon nanotube sensor thread with 

a diameter of 20µm in the Nanoworld Laboratory at the University of Cincinnati. The sensitivity 

of the sensor thread was compared to the strain measured from a regular strain gage. Both 

sensors were bonded onto a 4-ply symmetric cross-ply laminated IM7 composite coupon for 

strain measurement. The tensile stress versus strain and resistance change versus strain were 

plotted. The gage factor of the carbon nanotube sensor thread was 0.91. The relative strain 

measurement error between the carbon nanotube sensor thread and regular strain gage was 5.9 

%.
[7]

 

Unlike strain gages, the carbon nanotube sensor thread could be integrated into the inner 

plies of a laminated composite and will not affect the integrity of the host composite structure. 

Therefore, carbon nanotube sensor thread provides a simple and reliable way for strain 

measurement and damage detection on composite structures on a near real time basis. The ability 

of CNT thread to measure strain on carbon fiber composites near real time can be extended to 

strain measurement in elastomers utilizing vertically aligned CNTs embedded in elastomers. 

5 Modeling of CNT Elastomers 

Homogenization models are used to extrapolate macroscale properties from their individual 

molecular scale material properties in this section. A brief overview of the homogenization 

methods is provided because it indicates a need for experimentally determined material property 

data. A detailed analysis is given in Cummins et al.
[9]

 

5.1 Homogenization Techniques Estimating the Elastic Modulus of a CNT Embedded 

Elastomer 

All homogenization methods begin with the stress-strain relations given in Eq. (1): 

 klijklij C    (1) 

The homogenized modulus is determined by the effective elasticity tensor, C
*
. In the upper 

limit Voigt homogenization method, the effective elasticity tensor is defined as: 
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Where α is the phase (matrix or inclusion), cα is the volume fraction or the ratio of the 

volume of the particular phase to the total volume, and Cα is the stiffness tensor of the respective 

phase. In the CNT reinforced rubber there are only two phases, the CNTs and the rubber, where 

Ci and Cm are the stiffness tensors for the inclusion and matrix material respectively. The lower 

limit Reuss homogenization method is: 
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The homogenized modulus in the longitudinal direction for these two methods and the Mori-

Tanaka homogenization method is the C11 element of the effective elasticity tensor. The Mori-

Tanaka effective elasticity tensor is defined
[14]

 as: 
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Where CI is the elasticity tensor of the inclusion, Cm the elasticity tensor of the matrix, ci the 

volume fraction of the inclusion and AI(MT),i as defined by Klusemann and Svendsen.
[14]

 

5.2 Summary of Homogenization Methods 

The estimates of homogenized modulus for CNT rubber vary greatly depending on the 

method employed.
[9]

 Table 6-1 shows the large variation in estimated homogenized modulus 

values for a soft rubber material. The homogenized elastic modulus values in Table 6-1 are 

normalized by the elastic modulus of the rubber material. Even at small volume fractions the 

methods are orders of magnitude apart. The discrepancy between the homogenization methods 

only increases as the volume fraction of the CNTs increases. 

Table 6-1: Normalized Homogenized Modulus Values 

Volume Fraction % 
Homogenization Method 

Reuss Mori-Tanaka Voigt 

5 1.05 2.42 1.45*10
3
 

50 2.00 7.36 14.47*10
3
 

95 19.99 104.24 27.50*10
3
 

 

Such large discrepancies among the methods, especially with their dependence on the 

material properties of CNTs which can vary greatly, point to a need to obtain experimental data 

on the material properties of CNT elastomer samples. 

6 Preliminary Testing on Metal Rubber 

A first step in determining material properties of CNT elastomers, while the final formulation 

and construction is being finalized, is to study those of the most comparable commercially 

available product which in this case is a material called Metal Rubber which was used for the test 

specimens shown in Figure 6.6. 

               

Figure 6.6: Metal Rubber test specimens: dogbone (left) and rectangular (right) 
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Metal Rubber consists of rubber and gold nanoclusters and exhibits the material properties of 

both metal and rubber. Early experiments were performed by Lalli et al.
[15]

 measuring the 

resistance of the material at varying stress-strain levels. In their work they found that they were 

able to accurately measure strain levels up to 20 % strain but, beyond that, the metal nanoclusters 

lost conductance paths and resistance saturated at 75 % strain. It is believed the vertically aligned 

CNT elastomers, specifically rubbers in large strain deformation applications, will be able to 

maintain conductivity due to the large aspect ratio and van der Waals forces between the 

nanotubes. 

One application envisioned for the CNT elastomers that can be tested on the Metal Rubber is 

the use on bearings and hydraulic seals to test for damage and leakage. In the current body of 

work, the Metal Rubber rectangular test specimens were measured for resistance values using a 

Fluke IV Ohmmeter. Three different damage modes were introduced to the metal rubber 

specimen and are labeled one through three in Figure 6.7. Damage mode one was a vertical snip 

using wire cutters at approximately half the vertical dimension of the Metal Rubber rectangle. 

The second damage mode introduced was a horizontal surface scratch and the third was a 

vertical surface scratch the entire vertical length of the specimen. 

 

Figure 6.7: Three damage modes on Metal Rubber 

Alligator clips from the Ohmmeter were vertically fixed to a bench to properly hold the 

specimen and reduce fluctuation in resistance due to unnecessary movement as shown in Figure 

6.8. 

 

Figure 6.8: Damaged Metal Rubber rectangular test specimen experimental test setup 

1 

2 

3 
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Table 6-2 gives the Metal Rubber’s change in resistance when physical damage is introduced 

to the test specimen. 

Table 6-2: Change in resistance with damage 

 R1 R2 ΔR 

Half Snip 18.0 31.3 13.3 

Horizontal Scratch 31.3 35.0 3.7 

Vertical Scratch 35.0 Infinite* Infinite* 
*Saturation of ohmmeter resistance reached 

It is important to note that the Metal Rubber is not very durable and prone to scratching when 

the alligator clips are connected. The material’s gold nano cluster layer is easily rubbed off by the 

metal alligator clips, revealing a clear non-conductive rubber layer. Once the thin layer of gold 

nano clusters was rubbed off, that portion of the material is no longer conductive and loses its 

sensing capabilities. This significantly changes the base resistance measurements throughout the 

experiment. Therefore, it is critical to notice the changes in resistance when the damage is 

induced rather than the resistance value itself. 

Data from Table 6-2 indicates that vertical abrasions will significantly alter the material’s 

conductive properties with the possibility of complete loss of conductivity. The “half-snip” and 

the horizontal scratches increase the resistance, but alternate conductive pathways are easily 

utilized by the material resulting in an increase in resistance while maintaining conductivity. The 

substantial decrease, or complete loss, of conductivity due to damage in a certain direction 

allows for directional sensing capabilities. This directional sensing capability could enable 

elastomers that are used for sealing applications to sense damage across the seal, severing 

electrical connection, and indicating a possible leak initiation site. 

Subsequently, resistance changes in the Metal Rubber due to increasing load were examined 

through tensile testing. Vise Grip pliers were used to grip both ends of a dogbone Metal Rubber 

specimen while resistance changes were monitored by an Ohmmeter as weights were added to 

the lower Vise Grip incrementally. Figure 6.9 shows the experimental test setup used for the 

simple tensile test. 

 

Figure 6.9: Metal Rubber dogbone specimen experimental setup for tensile test 
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The results of the tensile test are shown in Figure 6.10. An apparent non-linear relationship is 

observed between load and resistance. 

 
Figure 6.10: Plot of Resistance vs Load for Metal Rubber 

The non-linear relationship between resistance and mass is best explained in correlation to a 

segmented stress-strain curve of rubber in Figure 6.11. As small amounts of weight are added, 

there is no significant change in resistance because the elastic modulus or slope of the line in 

Region 1 is large and linear. As more weight is added to the specimen, the stress-strain curve of 

rubber in Region 2 starts to transition into the hyperelastic regime. In this transition region, the 

elastic modulus starts to decreases resulting in larger deformations and therefore greater 

measured resistances as the gold nanoclusters in the Metal Rubber start to loose contact. 

 
Figure 6.11: Stress-Strain Curve of Rubber 

Finally, as the transition into the hyperelastic region is complete, the elastic modulus reaches 

a local minimum in Region 3 of Figure 6.11. This new lower elastic modulus gives way to even 

larger elastic deformations and measured resistance values as more electrical pathways are 

severed, thus resulting in the non-linear behavior that is observed. One last point worth noting is 

that the range of load applied herein is only 3 N. Such large changes in resistance with relatively 

small changes in load bode well for a sensor with great sensitivity to changes in load. 
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7 Conclusions and Future Work 

The current work looks at the evolution of CNTs embedded in elastomers; from the early 

years when a simple study to investigate the impact of CNTs on mechanical and electrical 

properties was performed to recent years when great strides have been made to functionalize 

CNTs within elastomers. 

Much has been learned in the area of dispersion of CNTs within materials including 

polymers and concrete, new methods are being investigated to achieve uniform and repeatable 

dispersion including the use of magnetic fields. Such methods have the potential to lead to 

achieving functionally graded elastomers. Realizing that the material properties and functionality 

of CNTs dispersed into elastomers may differ from vertically aligned CNTs embedded in 

elastomers, parallel paths and their corresponding results are being pursued. The functionality of 

each as applied to elastomeric rotorcraft components will continue to be investigated and 

reported. 

The ability of CNT thread to measure strain has proven successful and the results of which 

are currently being developed and extended to vertically aligned CNTs embedded in elastomers. 

Preliminary multiscale modeling efforts have resulted in a wide variation of predicted material 

properties indicating a need to further investigate existing homogenization techniques and both 

verify and validate experimentally. 

The nearest commercially available product to vertically aligned CNT embedded rubber is 

that of Metal Rubber which exhibits both hyperelastic behavior and electrical conductivity at 

mid-range strains. While the Metal Rubber samples tested experienced durability issues, they did 

allow proof of concept to both detect damage and measure load in rubber materials. Once 

constructed, the vertically aligned CNT embedded rubber will be compared to the results of 

Metal Rubber presented in the current study and extended to representative rotorcraft 

applications in the lab utilizing both the RC helicopter in Figure 6.12 and the in-house whirl test 

stand in Figure 6.13. 

 

Figure 6.12: RC helicopter used for load/strain data acquisition testing 
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Figure 6.13: Whirl Test Rig 
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CHAPTER 7 

 

CONCLUSION 

A Department of Energy report from ORNL and NFPA estimated that the composite 

efficiency of the fluid power industry is 22 %, with the pneumatic division of the fluid power 

industry averaging a mere 15 % efficiency, providing techno-economic motivation for this work. 

Inspired by these low efficiencies, the strain energy accumulator (SEA) was pursued and a 

survey of previous work was completed. The SEA is an energy storage device consisting of an 

expandable rubber bladder inside of a rigid shroud that stores energy in the form of pressure and 

strain. In completing a survey of previous work in the areas of the SEA and fluid power 

component and system efficiencies, a number of knowledge and technology gaps that needed to 

be addressed were identified including: advanced materials modeling, uncertainty analysis, and 

component and system efficiency quantification through development of integrated performance 

metrics and model-based techniques focusing on application. Encouraged by the potential of the 

strain energy accumulator to improve the low efficiency of the fluid power industry, and having 

identified the gaps in the current state-of-the-art, the current work set out to address these 

deficiencies. 

Efficiency of the pneumatic strain energy accumulator was studied by developing lumped 

parameter state efficiency models, introducing integral model-based performance efficiency 

metrics. The newly developed model-based performance metrics were applied in component 

efficiency studies with the incorporation of uncertainty analysis. Successful implementation of 

the efficiency metrics at the component level enabled extension of these metrics to the system 

level focusing on representative applied systems. After completing the efficiency studies, the 

research examined the advanced materials focus with conductive elastomer proof of concept 

work by investigating the ability of conductive nanomaterial elastomers to monitor load and 

detect damage while deforming hyperelastically. Multiscale modeling homogenization 

techniques were also used to develop a rudimentary model of CNT rubber and predict the elastic 

modulus of the material. 

The multiscale modeling homogenized modulus effort resulted in elastic modulus estimates 

ranging from a few times to over 80 times the elastic modulus of rubber. A wide variation in the 

predicted elastic modulus was useful for assessing CNT rubber’s utility in the SEA application 

while indicating a need for future more detailed multiscale material model development and 

validation. The modeling effort then transitioned into the development of models for efficiency 

studies for the pneumatic strain energy accumulator. The newly developed models were used to 

perform component efficiency studies where, in over 2500 cycles of testing, the component was 

found to be consistently over 93 % efficient. The incorporation of model-based performance 

metrics was extended through system efficiency increase studies where conservative model 

efficiency increase estimates ranged from 31 % to over 60 %. In applying the low end of the 

efficiency range, in conjunction with modest industry adoption figures of 10 %, it was 

determined that such efficiency increases could result in a savings of $15,000 annually per 

industrial compressor translating to $300 million annually across all US industries. Finally, 

completion of conductive elastomer proof of concept testing was successful in demonstrating the 
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ability of the material to both monitor load while deforming hyperelastically and detecting the 

presence and direction of damage. 

Completion of the current research verified that the pneumatic strain energy accumulator is a 

highly efficient device with considerable potential to increase overall system efficiency. The 

stain energy accumulator as a single device has the potential to make a significant improvement 

in the tremendous inefficiency of the fluid power industry. Moving forward, a majority of the 

work will focus on commercialization efforts and development of a commercial prototype. An 

announcement by the Center for Compact and Efficient Fluid Power dated February 17, 2016 

stated that the proposal aimed at commercializing the pneumatic strain energy accumulator was 

selected to be funded for a two year period. Selection of the proposal for funding will enable the 

development of a commercial prototype which in turn will facilitate fatigue/component life 

studies and case studies with industry partners quantifying the actual energy savings in 

application. It is anticipated that successful completion of these activities will substantially 

advance the pneumatic strain energy accumulator towards commercialization. Finally, while 

schedule and budget did not permit an in-depth study of the advanced materials development 

aspect of the current research, exploring the potential use of nanomaterials for the self-sensing of 

fluid power components helped get the need for self-sensing of fluid power components on the 

radar of the National Fluid Power Association, as indicated by their 2015 Technology Roadmap.  
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Abstract 

Laminated composite materials are used in applications where light weight is the key 

requirement. However, minor delamination damage in composites can propagate and lead to 

failure of components. Failure occurs because delamination reduces the local bending stiffness 

and increases bending stress which leads to propagation of damage and eventual failure. These 

failures may be avoided if the damage could be detected early and repaired. Although many 

damage detection methods have been investigated, none are in widespread use today to prevent 

failure of composites. This paper describes use of carbon nanotube sensor thread which is a new 

way to monitor strain and damage in composite materials. Sensor thread was bonded onto an 

IM7 laminated composite test coupon to measure surface strain in a quasi-static uniaxial tensile 

test. The sensor thread was calibrated against a strain gage also mounted to the coupon. The 

sensor thread measured the average strain over the length of the sample and indicated when the 

strain exceeded a nominal safe level. Sensor thread was also bonded to the surface of laminated 

composite panels in different patterns and detected, located, and partially characterized damage 

caused by multiple impacts to the panels. Testing showed damage must be close to the sensor 

thread to be detected. Summarizing what is new in this paper; (1) carbon nanotube sensor thread 

was tested as a distributed sensor for the first time on IM7/977-3 composites; (2) the sensor 

thread was able to monitor strain and detect damage in the composites with potential sensitivity 

down to the micro-crack level; (3) the sensor thread was barely visible on the composite and did 

not add significant mass or affect the integrity of the composite; (4) the data acquisition system 

developed was simple and reliable. 
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1 Introduction 

Composite materials have been widely used in many advanced applications where high 

strength and light weight are required such as aircraft, automotive and boats. On the other hand, 

the main disadvantage of laminated composite materials is delamination often caused by minor 

impacts. Delaminations can quickly propagate along the boundary between laminae and lead to 

catastrophic failure of the composite as there are no fibers in the through-the-thickness direction 

to prevent damage propagation. Matrix cracking is also a critical failure mode because carbon 

fibers are brittle and susceptible to transverse cracking. Early warning of delamination and 

cracking can avert composite failure. Therefore, it is important for safety reasons to monitor the 

strain distribution and delamination in specific spots of laminated composite materials and 

structures.  

Currently non-destructive evaluation (NDE) and structural health monitoring (SHM) are the 

main methods to monitor delamination of composite materials. NDE can detect local 

delamination effectively but it requires the composite component to be out of operation for 

inspection [1-4]. SHM methods include fiber optics, stress wave propagation, and piezoresistive 

metallic foil gages. These methods have specific disadvantages such as difficulty in making 

connections for a large number of fibers, low sensitivity, stress wave dispersion in complicated 

geometric features of composite structures, and foil gages debond from the surface of laminated 

composite materials due to vibration and temperature cycling [5-24]. Damage detection on 

polymeric materials using CNT thread under simple loading conditions is described in [1-2]. 

SHM application of CNT thread based on laminated glass fabric composite materials is 

described in [3-6]. This new manuscript presents distributed strain measurement and damage 

monitoring based on IM7 laminated carbon fabric composite materials. Modern NDE techniques 

are still the primary means of damage detection and monitoring as SHM methods are 

approaching the required reliability to be used in-situ. Alamusi [25] et al and Hu et al [26] 

reviewed the piezoresistive behaviors of strain sensors consisting of CNT/polymer 

nanocomposites. In the case of CNT sensor thread, the mechanism that causes piezoresistivity of 

CNT thread (without polymer) is not fully understood yet. Abot et al recently proposed their 

hypothesis regarding the mechanism of piezoresistivity for CNT thread [27]. When the CNT 

thread is subjected to a tensile load, the strands that comprise the CNT thread were brought 

together and the spacing among the strands are reduced. This leads to the overall resistance 

decreased as the interfacial resistance decreased when the CNT strands come in closer contact 

with each [27]. 

Recently, people have investigated new piezoresistive strain sensors based on carbon 

nanofiller/polymer nanocomposites for SHM applications [28-29]. B Hu and N Hu et al 

developed vapor grown carbon fiber (VGCF)/epoxy nanocomposite sensors to detect slight 

damage of a cantilever beam under bending condition. Their experimental results showed the 

VGCF/epoxy nanocomposite sensors are much more sensitive compared to metal-foil strain 

gages in terms of the variation of resistance change ratio [28]. However, the VGCF/epoxy 

nanocomposite sensor has a typical dimension of 13 mm × 5 mm including wire connections. It 

is not as flexible as carbon nanotube sensor thread to be mounted in irregular geometry structures 

such as holes, corners, sharp edges. The carbon nanotube sensor thread typically has a diameter 

in the order of 20~25 μm and can undergo large deformation and could be bonded interested 

target locations or irregular geometry locations. Sebastian et al grew CNTs directly on fuzzy 

glass fiber and the sensing elements were comprised of around 3000 such fuzzy CNT grown 
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glass fibers [30]. These fuzzy glass fiber sensors were integrated into IM7 composite panel to 

sense strain. This technique can provide sensing over large sections especially in locations that 

are inaccessible by conventional strain gages [30]. If the damage in the IM7 composite panel 

causes only small portion of glass fibers to break, the overall resistance change will not be 

obvious and the measurement sensitivity is relatively low. In addition, the 3000 fuzzy glass 

fibers with CNT grown were sandwiched between two thin layers of plain weave E2 glass 

fabrics for electrical isolation purpose. The two-ply isolating E2 glass fabrics will affect the 

integrity of the IM7 composite panel. Christner et al developed carbon fiber sensors (CFS) 

consisting of a 1k roving of T300B fibers to measure strain [31]. The CFS exhibits a linear 

piezoresistivity up to a strain level of 6000μm/m. The material property such as ultimate strain of 

CFS is not tailorable which limits the applications of this sensor. As a comparison, the ultimate 

strain of our CNT sensor thread could be adjustable by changing the twist (number of turns per 

unit length) and diameter of the CNT sensor thread. This is very convenient when the CNT 

sensor thread is used to detect damage and measure strain of different host structures with 

variable deformation. 

Carbon nanotube (CNT) thread is a piezoresistive material which means its resistance 

changes due to strain caused by longitudinal loading [1-4]. CNT thread spun from vertically 

aligned CNT arrays [1] can be used as a sensor to measure strain similar to how strain 

measurement is done using conventional metallic foil strain gages. The difference is CNT thread 

measures distributed strain over the length of the thread. This paper demonstrates the fabrication 

and use of carbon nanotube thread as a sensor. The approach is to fabricate and test tensile test 

coupons of laminated composites with surface mounted CNT sensor thread. The gage factor of 

the CNT sensor thread can be determined based on tensile testing and comparison with the strain 

measured by conventional foil strain gages. A piezoresistive sensor grid is also constructed by 

bonding CNT thread onto the surface of laminated composites to detect delamination and 

cracking caused by impact loads. 

2 Methods 

The fabrication of CNT thread and the composite panels is described along with the 

instrumentation used in the experiments. 

2.1 CNT Thread Fabrication 

CNT thread is produced by pulling a web from a spinnable CNT array and simultaneously 

twisting [32-34] as illustrated in Figure A.0.1(a), (b). Spinnable CNT arrays have the unique 

property that allows assembly of the individual CNTs into continuous threads, yarns and fibers 

by simply grabbing one spot with forceps, and pulling and twisting in a similar manner to pulling 

a silk fiber from a cocoon. Due to its appropriate density and length, there are enough contact 

points between CNTs that allow the CNT thread to assemble due to van der Waals interactions 

and entanglement between the nanotubes. The as-grown CNT array has a density of 0.03 gm/cm
3
 

and an average CNT length of 500 µm. The diameter of single ply thread is controlled by the 

width of the spinnable CNT array. A 12 mm width array typically forms a 20-25 µm diameter 

CNT thread. By adding a weaving process into the overall spinning process with multiple spools 

of 1-ply thread, a variety of larger ply CNT rope may be fabricated, including 3-ply CNT rope 

and a 9-ply CNT rope (three 3-ply CNT ropes spun together). The different diameter rope can be 

used for fine or coarse resolution in measuring damage (e.g. in a polymer or cement). The 

fabrication process of CNT thread twists multiple CNT strands together. The twist in the CNT 
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thread under tension causes a radial component of the tension force that produces a high friction 

force among CNT strands, which substantially increases the tensile strength of the CNT thread. 

An SEM image of the manufactured thread is shown in Figure A.0.1(c). For the testing 

performed in this paper, as grown CNT thread was used. Currently, our CNT thread has strength 

of about 0.5-1 GPa [35-36]. 

 

 

Figure A.0.1: Carbon nanotube thread fabrication technique: (a) Illustration where one side of a spinnable 

CNT array is pulled and collected on a spool while spinning to provide twisting; (b) photograph that shows  

pulling and twisting at the same time; (c) image of uniform CNT thread. 

A 20 μm diameter CNT sensor thread was spun from a multi-wall CNT array without post 

treatment in the Nanoworld Laboratory at the University of Cincinnati [2]. CNT thread 

fabrication starts with the synthesis of a vertically aligned CNT array, known as a spinnable 

array, which contains typically double, triple and multiwall CNTs. Chemical vapor deposition 

(CVD) is employed to synthesize the high purity, well aligned and spinable multiwall CNT 

arrays. Argon is used as a carrier gas along with hydrogen and a small amount of water vapor. 

Ethylene is our choice for the carbon precursor gas. A low partial pressure of ethylene (~0.068) 

was used in order to obtain spinable CNTs arrays. The reactor pressure was nearly atmospheric. 

An oxidized silicon single crystal substrate was processed to form several multi-layers. An Al2O3 

(10 nm) buffer layer and Fe alloy (2 nm) catalyst layer were formed on top of the Si/SiO2 wafer 

by e-beam evaporation. All the experiments were conducted at 750ºC. The water vapor 

concentration in the CVD was controlled by passing argon gas through a bubbler with water. 

During the cooling step the system was purged with a mixture of hydrogen and argon gases until 

the temperature reached 300°C and finally with argon up to ambient temperature.  

2.2 Composite Coupon Fabrication and Setup for Tensile Strain Measurement 

A four-ply (0°,90°,90°,0°) IM7/977-3 composite panel was fabricated and consolidated at 

180°C for six hours. This panel was cut into 203 mm × 12.7 mm x 1.2 mm strips for tensile 

testing. Fiberglass composite tabs were bonded on both ends of each test coupon with Loctite 

adhesive 9430 in order to protect the coupon surface for grip clamping. All the test coupons were 

placed in an air bag with for seven-hours under vacuum at room temperature for adhesive curing. 

A thin epoxy layer was spread on the test coupon surface for electrical insulation between the 

carbon fibers and CNT thread. In the future, electrically insulated thread will be used and the 

epoxy insulation layer will not be needed. Additionally, the CNT thread was bonded on the 

epoxy layer with another thin layer of epoxy. A Vishay strain gage was bonded in the center 

location of the back side of test coupon. An Instron 4206 test machine was used for uniaxial 

quasi-static tensile testing as shown in Figure A.0.2(a). Figure A.0.2(b) shows a tensile test 

coupon and Figure A.0.2(c) shows a close up view of the CNT sensor thread bonded on the test 

(c) (b) (a) 
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coupon with epoxy. The two ends of the CNT threads were fixed on the thin epoxy layer with 

conductive epoxy (the two silver spots in Figure A.0.2(b)) for wiring connections. The loading 

rate was 0.05”/min and the sampling rate for data acquisition is 5 points/second. The test data 

was recorded by the Instron test machine. Three test coupons were characterized and the test data 

was analyzed and plotted. 

 

 
Figure A.0.2: Experimental setup for uniaxial quasi-static tensile testing: (a) a tensile test composite coupon 

clamped in the Instron 4206 test machine; (b) a four-ply tensile test composite coupon (a strain gage was 

bonded on the back surface of the coupon); (c) close up view of the CNT sensor thread bonded with epoxy on  

the front surface of the coupon. 

2.3 Composite Panel Fabrication and Setup for Impact Testing 

A symmetric eight-ply (0°,90°,0°,90°)s IM7/977-3 composite panel 200mm × 200mm x 

2.4mm was fabricated using a hot press. This lay-up was heated to 180°C for six hours for 

consolidation. Then three fastener holes were drilled on each edge with 50.8 mm spacing 

between holes. A thin layer of epoxy was spread and cured on the top surface of the IM7 

composite panel for electrical insulation between the carbon fiber and the CNT thread to be 

installed. The panel and experimental set up for impact testing are shown in Figure A.0.3. The 

overview of experimental set-up is shown in Figure A.0.3(a). Figure A.0.3(b) shows the CNT 

sensor threads bonded on the IM7 composite panel. Figure A.0.3(c) shows a close-up view of 

CNT sensor thread. The composite panel was mounted on an aluminum impact test rig with 12 

bolts (Figure A.0.3(a), (d)). An impact rod with a tip radius of 15.875 mm was machined and 

mounted on the bottom side of the impact hammer (Figure A.0.3(e)). The hammer is raised to a 

specific angle and released during the impact test. An analog input data acquisition module 

(DAQ NI9205), provided by National Instruments, was adopted (Figure A.0.3(a)) for data 

acquisition. A Kistler type 8763B1K0AB accelerometer shown in Figure A.0.3(d) was attached 

to the top surface of the impact hammer to record the acceleration at the moment of impact. The 

eight sensor channels and the accelerometer were connected to the NI9205 data acquisition 

module. A Labview vi program was designed to display and save the data to a file (Figure 

A.0.3(a)). 

A schematic of the composite panel showing the CNT sensor threads in rows and columns 

with the strike location is shown in Figure A.0.4(a). Twelve CNT sensor threads were bonded 

(a) (b) (c) 
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with epoxy onto the panel in the longitudinal direction, Figure A.0.4(a). Every three intermediate 

CNT threads were connected to one signal channel of a Wheatstone bridge and a Labview data 

acquisition system. Another twelve CNT sensor threads were bonded with epoxy in the 

transverse direction. Thus eight channels of simultaneous data acquisition were used. The four 

channels in the longitudinal x direction were named R1, R2, R3, R4 and the four channels in the 

transverse y direction were named C1, C2, C3, C4 as shown in Figure A.0.4(a). Then one end of 

each signal channel was connected to the customized Wheatstone bridge circuit and the other end 

of each signal channel was connected to a common ground. Figure A.0.4(a) also shows that the 

strike point was located at the node between row sensor R1 and column sensor C2 on the 

composite panel. In order to detect and localize damage of smaller size, the number of row and 

column CNT sensor thread is required to increase. But this does not mean the number of 

communication circuits, connecting a single CNT sensor thread and DAQ, will increase 

correspondingly. A time-division multiplexing method will be used here shown in Figure 

A.0.4(b). A row and a column time-division multiplexer will connect the individual CNT sensor 

threads and computer via a data bus. The computer controls both time-division multiplexers to 

connect each individual row and column input CNT sensor threads in sequence, one after the 

other, to the DAQ device. The connection between one CNT sensor thread and DAQ device is 

very quick and then this connection is terminated. The multiplexer automatically builds another 

connection between the next CNT sensor thread and DAQ device similar to the previous 

connection. 
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Figure A.0.3: Experimental setup for impact testing: (a) overview of the impact test set up for the composite 

panel; (b) CNT sensor thread bonded with epoxy on the top surface of the composite panel; (c) close-up view 

of the CNT sensor thread; (d) the composite panel was mounted on an aluminum impact test rig with 12 bolts. 

An accelerometer was mounted on the top surface of the hammer; (e) an impact tip with radius 5/8” was  

mounted on the bottom surface of the hammer and the hammer handle was pivoted on a shaft. 
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Figure A.0.4: Schematic of the composite panel shows CNT sensor threads: (a) 4x4 CNT sensor thread grid 

connections and the location of the strike point; (b) nxn CNT sensor thread grid with row and column  

multiplexer for time-division multiplexing. 

3 Results and Analysis 

The results of strain monitoring and impact testing are described in this section. 

3.1 Tensile Testing 

Figure A.0.2(a) showed a failed tensile test coupon that was clamped between two grips on 

an Instron 4206 material test machine. Figure A.0.5(a) shows the entire failed tensile test coupon. 

A close-up view of the failure surface is shown in Figure A.0.5(b). The failure surface of the 

symmetric and cross-ply tensile test coupon is perpendicular to the loading direction. 

 

 

Figure A.0.5: Failed test coupon for uniaxial tensile testing and impact testing: (a) four-ply (0°,90°,90°,0°)  

IM7/977-3 tensile test composite coupon; (b) close-up view of the failure surface after tension testing. 

Figure A.0.6(a) shows the tensile test curves for three four-ply (0°,90°,90°,0°) IM7/977-3 

tensile test composite coupons. The synchronized tensile test curve and resistance response curve 

of the CNT sensor thread from one of the three test coupons are plotted in Figure A.0.6(b). The 

mean elastic modulus of the test coupons is 79.3 GPa and the mean tensile strength is 1.2 GPa. 

(b) 

(a) 
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As the tensile stress of the test coupon linearly increased, the resistance of the CNT sensor thread 

increased linearly up to 1.43 % tensile strain (or 1.05 GPa tensile stress). When the tensile stress 

is approaches the ultimate tensile strength, the resistance of the sensor thread increases 

dramatically. In the initial linear region, the maximum change in resistance was only around 80 

Ohms. In the rapid increase region, the maximum change in resistance was around 1600 Ohms, 

which indicates that high strain or damage occurred in the test coupon. 

 

Figure A.0.6: Test curves for tensile test coupons: (a) tensile test curves for three samples; (b) synchronized  

tensile test curve and resistance response curve of the CNT sensor thread for one test coupon. 

These tests showed that CNT thread provides a simple way to measure the tensile strain. A 

conventional strain gage was used to provide a baseline strain measurement to verify the 

accuracy of CNT thread as a strain sensor. Since the CNT sensor thread is a piezoresistive 

material, it is an excellent micro-sensor for measuring strain and distributed strain in composite 

structures. The CNT thread is either bonded on the surface of composite structures or embedded 

inside composite structures after being co-cured with epoxy. The typical diameter of our CNT 

thread is approximately 20~25 μm, only around 3 times bigger than a single carbon fiber. The 

integration of CNT thread onto the composite does not affect the integrity of the composite 

structure. The CNT thread sensor also does not debond from the host composite structure. This is 

important for monitoring composite structures that are operating in vibrational environments. 

The gage factor of the CNT thread has to be calculated before it can be used as a strain 

sensor. The equation used to compute the gage factor is: 

 𝐺𝐹 =
∆𝑅 𝑅⁄

𝜀
 (1) 

Here the ratio of normalized resistance (the change in resistance divided by the original 

resistance) to strain could be calculated from the slope of the linear portion of the resistance 

curve in Figure A.0.6(b) and the initial resistance. The gage factors for the three CNT sensor 

threads are listed in Table A-1. The mean value of the gage factor in the initial linear portion is 

0.91.  

The individual gage factor could be used as a material property of the CNT sensor thread. 

The strain that CNT sensor thread measured can be calculated with the individual gage factor via 

(1). Figure A.0.7 shows the comparison of strain measurement between the CNT sensor thread 

and the strain gage for the three test coupons separately.  

The relative strain measurement errors between the CNT thread and strain gage for the three 

test coupons were calculated at each data point and the mean value of the relative strain 
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measurement error was calculated as:  

 𝛿 =
1

𝑛
∑

𝜀𝑖
𝐶𝑁𝑇−𝜀𝑖

𝑠𝑔

𝜀
𝑖
𝑠𝑔

𝑛
𝑖=1  (2) 

Here, 𝛿 is the mean relative strain measurement error between CNT sensor thread and strain 

gage, 𝑛 is the number of total data points, and 휀𝑖
𝐶𝑁𝑇 and 휀𝑖

𝑠𝑔
 are individual strains measured by 

the CNT sensor thread and strain gage respectively. The mean relative strain error between the 

CNT sensor thread and strain gage is 5.9 %, and is shown in Table A-1. The strain measurement 

from the CNT sensor thread for the three test coupons was close to the measurement from the 

strain gage. The difference of the two measurements comes from the small orientation error of 

the CNT thread or strain gage during the bonding process and the calculation error for the mean 

gage factor of the CNT thread. In addition, the length of the CNT sensor thread bonded on the 

tensile test coupon is around 101 mm while the gage length of the strain gage is only around 

10mm. The strain gage and the CNT sensor thread measure the average strain in the gage length 

that they cover. Therefore, the difference in gage lengths of the CNT sensor thread and strain 

gage contributes to the difference of the two measurements. 

Overall, this result shows the potential of CNT thread to be used as a strain sensor. More 

tests are needed in order to determine the effective strain measurement limit of the CNT thread. 

In addition, the temperature compensation of CNT thread will be completed in the future. Also, 

the design of the sensor thread (diameter, twist angle, doping, and others) can be tailored to 

provide the strain to failure needed for monitoring different types of materials. 

 

Figure A.0.7: Strain measurement of CNT sensor thread and a strain gage for three test coupons with the 

abscissa representing time and the ordinate representing strain in percentage. 

Table A-1: Mechanical properties of IM7 composite coupons (0°, 90°)s with surface mounted CNT sensor 

thread 

  E(GPa) σu(MPa) εu(%) Gage Factor Strain Measurement Error (%) 

Sample 1 77.2 1189.0 1.58 0.79 6.0 

Sample 2 79.9 1132.8 1.65 0.86 6.6 

Sample 3 80.8 1279.2 1.70 1.07 5.2 

Mean 79.3 1200.3 1.64 0.91 5.9 

STDEV 1.87 73.9 0.06 0.15 0.7 
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3.2 Impact Testing 

3.2.1 First Impact Test 

The impact test consisted of two strikes at the same strike point from the impact hammer. 

The hammer was lifted at an angle of around 60° to the ground and then released for striking. 

The strike point for both strikes was the node formed by row sensor R1 and column sensor C2 

(schematically shown in Figure A.0.4). The impact hammer was raised to the same height (0.7 

m) over the impact rig for both impacts. The potential energy of the hammer was 19.6 Nm. The 

impact occurs directly on the sensor thread to study the sensitivity of the thread to damage. The 

size of a square unit cell of the grid pattern is the smallest damage that could occur without 

detection if the impact occurred in the center of the square which is the farthest distance away 

from the sensor thread. The grid size in this experiment was 10 mm x 10 mm. Even though the 

impact may not be directly on the sensor thread, damage could propagate either at the time of 

impact or later to the sensor thread and be detected. Detecting damage that occurs away from the 

sensor thread was not studied in this paper and is a subject for future work. Detection of 

arbitrarily small damage can be achieved by creating a grid pattern with as small of unit cells as 

desired. If only detection of damage is desired on a panel, only one signal channel is needed for 

an arbitrary number of sensor threads arranged in a grid pattern. To locate the damage, multiple 

signal channels can be used with multiplexing. Thus only one channel of data acquisition can be 

multiplexed over multiple sensor threads arranged in rows and columns to detect and locate 

damage of an arbitrary size. Future work is to automate a technique for applying the sensor 

thread on large structures. 

Figure A.0.8(a) shows the acceleration and resistance response after the first strike. The first 

strike impulse duration is only 0.007 s and the maximum vertical component of the acceleration 

of the hammer is around 250 g. The row sensor R1 captured the first impact load with an impulse 

in the resistance curve (row sensor curves in Figure A.0.8(a)). Then resistance of row sensor R1 

oscillated and returned to its original resistance after the impact load disappeared. All the column 

sensors C1-C4 captured the first impact load (column sensor curves in Figure A.0.8(a)) in a 

similar way to the resistance response of row sensor R1. 

The normalized mean nodal resistance change, defined in equation (3), during both impact 

tests was calculated and plotted as a bar chart in Figure A.0.9(a). In the first impact test, the first 

row CNT sensor thread showed a higher normalized mean nodal resistance change than the other 

sensors while the column CNT sensor threads showed relatively even normalized mean nodal 

resistance changes. The normalized mean nodal resistance change after the first hammer strike is 

listed in Table A-2. Here the steady resistance instead of peak resistance at the moment of impact 

is used to calculate the normalized mean nodal resistance change as:  

 

 ∆𝑅𝑖𝑗̅̅ ̅̅ ̅̅ =
1

2
(
𝑅𝑖
𝑠𝑡𝑒𝑎𝑑𝑦

−𝑅𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑅𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +

𝑅𝑗
𝑠𝑡𝑒𝑎𝑑𝑦

−𝑅𝑗
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑅𝑗
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ),   𝑖, 𝑗 = 1,2,3,4 (3) 

 

Here, 𝑅𝑠𝑡𝑒𝑎𝑑𝑦 and 𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are the steady (final) and initial resistances of the CNT sensor 

thread, respectively. Subscripts i and j designate the resistances from a row of CNT sensor thread 

and a column of CNT sensor thread, respectively. 

The maximum normalized mean nodal resistance change is only 0.035 at the node formed by 
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row sensor thread R1 and column sensor thread C2 as shown in Table A-2. There is no 

substantial increase of normalized mean nodal resistance change at each node after first impact 

strike thus indicating no significant damage occurred at the sensor thread. 

   

Figure A.0.8: The response of the hammer acceleration and impact resistance curves of the CNT sensor 

threads  

after both strikes of the hammer 

    

Figure A.0.9: Normalized mean nodal resistance change of the CNT sensor threads: (a) after the first hammer  

impact strike; (b) after the second hammer impact strike. 

Table A-2: Normalized mean nodal resistance change of the CNT sensor threads after both impact strikes at 

all nodes 

 First impact test Second impact test 

  C1 C2 C3 C4 C1 C2 C3 C4 

R1 0.034 0.035 0.030 0.035 0.390 0.576 0.388 0.390 

R2 0.018 0.018 0.014 0.018 0.008 0.193 0.005 0.007 

R3 0.024 0.024 0.020 0.024 0.008 0.193 0.005 0.007 

R4 0.017 0.018 0.013 0.018 0.012 0.198 0.010 0.012 
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3.2.2 Second Impact Test 

The CNT sensor threads captured the second impact. Figure A.0.8(b) shows the acceleration 

and resistance response curves for the second strike of the hammer. It shows that the duration of 

the impact load only lasts 0.012 s. There were positive and negative spikes in the acceleration 

response when the impact load was applied at 5.216 s. The amplitude of the acceleration spikes 

reduced gradually, followed by oscillation and disappearance of the spikes. The resistances of 

row sensor R1 and column C2 show an approximate exponential rising from initial values to 

infinity during the second impact process. Then both resistances of row sensor R1 and column 

sensor C2 remained infinite even though the impact load disappeared. This means the CNT 

sensor thread R1 and C2 was damaged/broken due to the second impact load. 

The normalized mean nodal resistance change for the second strike of the hammer was 

calculated and plotted as a bar chart in Figure A.0.9(b). The first row of CNT sensor thread 

showed a larger change in normalized mean nodal resistance than the other row sensors during 

the second strike while the second column of CNT sensor thread showed a larger change in 

normalized mean nodal resistance than the other column sensors. The normalized mean nodal 

resistance change after the second strike of the hammer is listed in Table A-2. The maximum 

normalized mean nodal resistance change of 0.58 occurred at the node formed by row sensor 

thread R1 and column sensor thread C2. This value is between 3 to 115 times higher than the 

value of its neighboring nodes. This clearly indicates sensor thread damage/breakage at the node 

formed by row sensor R1 and column sensor C2, thus locating the damage. The amplitude of the 

resistance change at the nodes is a measure of the severity of damage. Damage can also be 

partially characterized by the amplitude pattern in Figure A.0.9(b), which shows whether the 

damage is localized or distributed. A finer grid pattern might also show the shape of the damage, 

e.g. an oval pattern indicating delamination or a linear pattern indicating cracking. 

As confirmation of the damage, Figure A.0.10 shows the failure on the back side of the IM7 

composite panel after impact testing. Both impact strikes lead to damage to the composite panel 

and the final damage is the accumulation of damage from both strikes. The damage to the back 

of the panel indicates that sensor thread placed on the back side of the panel could detect damage 

due to impacts on the outside surface of the panel. 

 

 

Figure A.0.10: The failure on the back surface of a symmetric eight-ply (0°,90°,0°,90°)s IM7/977-3 composite  

panel after impact testing. The front side of the panel does not have visual indentation damage. 

Fiber Breakage 
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The performance of the CNT sensor thread in the impact test shows it is an excellent build-in 

piezoimpedance sensor for SHM applications. CNT sensor thread has high sensitivity to 

detecting and locating damage, high accuracy for strain measurement and is low cost. There are 

various parameters available for design of the sensor system [1-4]. The CNT sensor thread 

system can be surface mounted, as in the current study, or embedded in the composite. 

Additionally, the architecture of the CNT sensor thread can be in the plane of the composite to 

detect fiber breakage or stitched through the thickness of the composite to have high sensitivity 

to delamination and cracking. The CNT sensor thread is a new type of distributed sensor material 

and there are a lot of opportunities to develop new sensor systems tailored to specific 

applications. The SHM sensor development process itself consists of sensor fabrication, sensor 

system architecture (parallel, series, channel count, multiplexing), bonding the sensor to the 

composite structure, data acquisition and analysis. The prototype SHM sensor system described 

here could be improved in all areas and in particular by eliminating the wiring to the data 

acquisition system, improving the tailoring of properties of the sensor material, and investigating 

optimizing sensor configurations for different applications. 

3.3 Printed Wiring 

In the current prototype SHM sensor system, all the CNT threads were soldered to 

conventional wires and then connected to individual Wheatstone circuit boards. This wiring 

method may be fine for static applications, but is not desirable for SHM applications in aircraft 

due to the additional weight from wires and the possible falling-off of wires in a high vibration 

environment. Accordingly, printed circuit wiring has been developed to replace conventional 

wires. All the channel terminals and common ground wiring were replaced by printed aluminum 

leads. An AutoCAD layout was designed for the 206 mm square IM7 composite panels as shown 

in Figure A.0.11(a). Each aluminum lead extends one channel terminal or common ground to 

one corner of the IM7 composite panel, where a 9-pin-to-socket connector is soldered. This 

connector is then connected to the Wheatstone circuit boards. The width of the leads is 762 

microns and the spacing between leads is 1.02 mm for the purpose of even aluminum deposition. 

This AutoCAD layout of leads is converted to a mask for aluminum deposition by cutting on a 

transparent film via a 50 W laser cutting machine (Universal Laser Systems 30). The mask is 

bonded on the IM7 composite panel with adhesive and the aluminum deposited. The thickness of 

the aluminum deposition is 5 μm. The advantage of this method is that the aluminum leads are 

directly painted on the composite panel without any additional materials and little extra weight. 

Figure A.0.11(a) shows a 4x4 rectangular pattern of CNT sensor thread (8 channels of data 

acquisition) for locating small damage on the panel. In the case where only the detection of 

damage is of interest, and the location of damage is not needed or can be determined using a 

NDE method, a single meandering CNT sensor thread can be used with one channel of data 

acquisition, Figure A.0.11(b). If the dynamic response of the panel is not of interest, then the 8-

channel system can be multiplexed thus requiring only one channel of data acquisition thus 

simplifying the data acquisition module and reducing the cost. 
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Figure A.0.11: Improvement of wiring and sensor design: (a) IM7 composite panel with printed circuit leads 

and surface mounted CNT sensor threads. The printed aluminum circuit leads were connected to a 

Wheatstone bridge circuit board via a pin-socket connector; (b) IM7 composite panel with printed circuit 

leads and a surface mounted meandering CNT sensor thread; (c) a spiral CNT sensor thread for large  

monitoring coverage; (d) a single CNT sensor thread for monitoring the integrity of multiple fastener holes. 

The CNT sensor thread can be any shape and its design can be based on the target location 

and target structure. Figure A.0.11(c) and (d) show two examples of CNT sensor thread for 

damage detection. The CNT thread is curved into a spiral shape to increase the damage detection 

coverage in Figure A.0.11(c). In Figure A.0.11(d), the CNT thread is placed around the 

circumferences of three fastener holes in one composite structure. This CNT sensor thread can 

monitor the integrity of these three fastener holes during the operation of the composite structure. 

The sensor thread can also measure average strain over the length of the sensor thread. 

Interpreting the average strain measurement related to the distributed strain in the structure is a 

new area of research, especially for dynamic strain.  

Printed Aluminum Leads 

Pin-Socket Connector 

Pin-Socket Connector 

CNT Sensor Thread  

(
c) 

Hole 

in 
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3.4 Suggestions for Real Life Practical Applications of Sensor Thread 

The potential for CNTs to be used as sensors is greatly expanding as both the fields of SHM 

and CNTs continue to mature. One of the most critical applications for the use of CNTs as 

sensors is the Aerospace industry. As increasingly more aircraft are being made of composites 

due to strength and weight requirements the ability to monitor these structures is moving to the 

forefront. Composites typically fail suddenly and catastrophically so the ability to monitor and 

manage their structural integrity is of utmost importance. Since CNTs have the potential to be 

used as sensors and add very little weight, improve strength and are becoming affordable for use 

in application, they are ideal candidates for future sensors. 

Another way in which CNT sensors can be used is as an enabler for condition-based 

maintenance (CBM). As the cost of aircraft and other composite structures increases so does the 

cost to maintain and repair those structures. By implementing CNT sensors as a tool in CBM the 

total cost of ownership is reduced. Additionally, once CBM is implemented and acceptable 

levels of reliability of SHM systems are achieved, predictive maintenance can be realized. The 

potential of SHM systems to attain predictive maintenance not only reduces cost but also 

increases reliability and safety. 

In addition to sensing capabilities of CNTs, there are several other properties of CNTs that 

can be utilized for application in other areas. CNTs offer improved strength properties which can 

be used in civil structures such as strengthening concrete or reinforcing elastomers. Furthermore, 

CNTs have resistive properties which can be used for thermography or other heating 

applications. The ability of CNTs embedded in rubber has also been documented [37] to provide 

EMI shielding capabilities, which is of great interest in defense applications. 

Finally, where other sensors fail, due to their inferior material properties, CNT sensors can be 

used as complementary or redundant sensors. One such example is in monitoring hot spots or 

fatigue tests for composite components, where the composite part often outlasts a traditional foil 

strain gage, leading to increased costs of testing and the introduction of an additional source of 

uncertainty to results. All the aforementioned examples only begin to scratch the surface of the 

applications and advantages of the use of CNTs as sensors. 

4 Conclusions 

The performance of CNT sensor thread in quasi-static and impact testing shows it is an 

excellent build-in piezoresistive sensor for SHM applications. It has high sensitivity to locate 

damage and detect delamination, high accuracy to measure strain and low cost. A prototype 

SHM system was developed that includes CNT thread, a technique for bonding CNT sensor 

thread to composite panel, a customized 8-channel Wheatstone bridge measurement circuit, and 

a Labview data analysis system and algorithm. This prototype SHM system successfully 

measured distributed strain and detected damage on composite panels. Sensor thread is being 

improved (dielectric coating) and is becoming available commercially. The overall conclusion 

from the work described in this paper is that carbon nanotube sensor thread is a simple, reliable, 

accurate, and practical technique for structural health monitoring. 
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APPENDIX B 

 

MATLAB CODE FOR ANALYTICAL ANALYSIS AND EXPERIMENTAL DATA 

ACQUISITION AND ANALYSIS 

 

B1: Chapter Two: Multiscale Modeling Homogenized Modulus Code 

close all; 
clear all; 
clc; 

  
%% Define material properties 
%Set counter 
ii=1; 

  
%CNT size 
a=10;               %nm 
b=2;                %nm 

  
%Longitudinal Direction 
Em=28.5*10^6;        %N/m^2 
Ei=825*10^9;        %N/m^2 
vm=0.4; 
vnt=0.28; 

  
%Transverse Direction 
Eit=4.5*10^9;       %N/m^2 
vntt=0.38; 

  
%Shear Modulus 
Gnt=8*10^9;         %N/m^2 

  
%% Generate Tensor Matrices 
%Matrix (Rubber) 
Sm1111=1/(2*(1-vm))*((b^2+2*a*b)/(a+b)^2+(1-2*vm)*b/(a+b)); 
Sm2222=1/(2*(1-vm))*((a^2+2*a*b)/(a+b)^2+(1-2*vm)*a/(a+b)); 
Sm3333=0; 
Sm1122=1/(2*(1-vm))*(b^2/(a+b)^2-(1-2*vm)*b/(a+b)); 
Sm2233=1/(2*(1-vm))*2*vm*a/(a+b); 
Sm2211=1/(2*(1-vm))*(a^2/(a+b)^2-(1-2*vm)*a/(a+b)); 
Sm3311=0; 
Sm3322=0; 
Sm1212=1/(2*(1-vm))*((a^2+b^2)/(2*(a+b)^2)+(1-2*vm)/2); 
Sm1133=1/(2*(1-vm))*2*vm*b/(a+b); 
Sm2323=a/(2*(a+b)); 
Sm3131=b/(2*(a+b)); 
%Eshelby Tensor for Matrix with ellipsoidal inclusions 
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Sm=[Sm1111 Sm1122 Sm1133 0 0 0;Sm2211 Sm2222 Sm2233 0 0 0;Sm3311 Sm3322 

Sm3333 0 0 0;0 0 0 Sm2323 0 0;0 0 0 0 Sm3131 0;0 0 0 0 0 Sm1212]; 
%Eshelby Tensor for Matrix with spherical inclusions 
Sms1111=(7-5*vm)/(15*(1-vm)); 
Sms1122=(5*vm-1)/(15*(1-vm)); 
Sms1212=(4-5*vm)/(15*(1-vm)); 
Sms=[Sms1111 Sms1122 Sms1122 0 0 0;Sms1122 Sms1111 Sms1122 0 0 0;Sms1122 

Sms1122 Sms1111 0 0 0;0 0 0 Sms1212 0 0;0 0 0 0 Sms1212 0;0 0 0 0 0 Sms1212]; 
%Stiffness Tensor for isotropic material 
Cm=Em/((1+vm)*(1-2*vm))*[1-vm vm vm 0 0 0;vm 1-vm vm 0 0 0;vm vm 1-vm 0 0 0;0 

0 0 (1-2*vm)/2 0 0;0 0 0 0 (1-2*vm)/2 0;0 0 0 0 0 (1-2*vm)/2]; 
%Stiffness Tensor for plane stress isotropic material for spherical incl 
Cms=Em/((1+vm)*(1-2*vm))*[1-vm vm vm 0 0 0;vm 1-vm vm 0 0 0;vm vm 1-vm 0 0 

0;0 0 0 (1-2*vm)/2 0 0;0 0 0 0 (1-2*vm)/2 0;0 0 0 0 0 (1-2*vm)/2]; 

  
%Inclusion (CNTs) 
Si1111=1/(2*(1-vnt))*((b^2+2*a*b)/(a+b)^2+(1-2*vnt)*b/(a+b)); 
Si2222=1/(2*(1-vnt))*((a^2+2*a*b)/(a+b)^2+(1-2*vnt)*a/(a+b)); 
Si3333=0; 
Si1122=1/(2*(1-vnt))*(b^2/(a+b)^2-(1-2*vnt)*b/(a+b)); 
Si2233=1/(2*(1-vnt))*2*vnt*a/(a+b); 
Si2211=1/(2*(1-vnt))*(a^2/(a+b)^2-(1-2*vnt)*a/(a+b)); 
Si3311=0; 
Si3322=0; 
Si1212=1/(2*(1-vnt))*((a^2+b^2)/(2*(a+b)^2)+(1-2*vnt)/2); 
Si1133=1/(2*(1-vnt))*2*vnt*b/(a+b); 
Si2323=a/(2*(a+b)); 
Si3131=b/(2*(a+b)); 
%Eshelby Tensor for Inclusion with ellipsoidal inclusions 
Si=[Si1111 Si1122 Si1133 0 0 0;Si2211 Si2222 Si2233 0 0 0;Si3311 Si3322 

Si3333 0 0 0;0 0 0 Si2323 0 0;0 0 0 0 Si3131 0;0 0 0 0 0 Si1212]; 
%Stiffness Tensor for transversely isotropic ellipsoid inclusion material 
S_i=[1/Ei -vnt/Eit -vnt/Eit 0 0 0;-vnt/Ei 1/Eit -vntt/Eit 0 0 0;-vnt/Ei -

vntt/Eit 1/Eit 0 0 0;0 0 0 2*(1+vntt)/Eit 0 0;0 0 0 0 1/Gnt 0;0 0 0 0 0 

1/Gnt]; 
Ci=inv(S_i); 
%Stiffness Tensor for isotropic spherical inclusion material 
Cis=Ei/((1+vnt)*(1-2*vnt))*[1-vnt vnt vnt 0 0 0;vnt 1-vnt vnt 0 0 0;vnt vnt 

1-vnt 0 0 0;0 0 0 (1-2*vnt)/2 0 0;0 0 0 0 (1-2*vnt)/2 0;0 0 0 0 0 (1-

2*vnt)/2]; 

  
%Mori-Tanaka Influence Tensor Calculation 
I=eye(6,6); 
%Ellipsiod Inclusion 
Ao=inv(I+Sm*inv(Cm)*(Ci-Cm)); 
%Spherical Inclusion 
Aos=inv(I+Sms*inv(Cms)*(Cis-Cms)); 
%Inverse Mori-Tanaka Influence Tensor Calculation 
Aoi=inv(I+Si*inv(Ci)*(Cm-Ci)); 

  
%% Pre-allocate for speed 
a=zeros(1,19); 
E_mt=zeros(1,19); 
E_hsu=zeros(1,19); 
E_hsl=zeros(1,19); 
E_l=zeros(1,19); 
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E_v=zeros(1,19); 
E_r=zeros(1,19); 
E_mts=zeros(1,19); 
E_hsls=zeros(1,19); 

  
%% Volume Fraction Iteration for all methods 
for ai=0.05:0.05:0.95 
    am=1-ai; 
    a(ii)=ai; 

  
    %Method 1: Mori-Tanaka Method 
    Ai=inv(ai*I+am*inv(Ao)+ai*Ao*inv(Ao)); 
    E_hom1=Cm+ai*(Ci-Cm)*Ai; 
    E_mt(ii)=E_hom1(1,1)/Em; 

     
    %Method 2: Hashin-Shtrikman Bounds 
    E_hom2=Ci+am*inv(inv(Cm-Ci)+ai*Si*inv(Ci)); 
    E_hsu(ii)=E_hom2(1,1)/Em; 
    E_hom3=Cm+ai*inv(inv(Ci-Cm)+am*Sm*inv(Cm)); 
    E_hsl(ii)=E_hom3(1,1)/Em; 

     
    %Method 3: Lielens Method 
    Aii=inv(am*I+ai*inv(Aoi)+am*Aoi*inv(Aoi)); 
    E_hom4=Ci+am*(Cm-Ci)*Aii; 
    E_hom5=inv((1-(ai+ai^2)/2)*inv(E_hom4)+(ai+ai^2)/2*inv(E_hom1)); 
    E_l(ii)=E_hom5(1,1)/Em; 

     
    %Method 4: Voight/Reuss Bounds 
    E_v(ii)=(ai*Ei+am*Em)/Em; 
    E_r(ii)=((ai*Ei^-1+am*Em^-1))^-1/Em; 
%     E_r(ii)=((ai*Ei+am*Em)^-1)/Em; 

     
    %Method 5: Sphere vs. Ellipse Assumption Check 
    Ais=inv(ai*I+am*inv(Aos)+ai*Aos*inv(Aos)); 
    E_hom1s=Cms+ai*(Cis-Cms)*Ais; 
    E_mts(ii)=E_hom1s(1,1)/Em; 
    E_hom3s=Cms+ai*inv(inv(Cis-Cms)+am*Sms*inv(Cms)); 
    E_hsls(ii)=E_hom3s(1,1)/Em; 

     
    ii=ii+1; 
end 

  
%% Figure Generator 
figure(1) 
plot(a,E_mt,'r','LineWidth',3) 
hold on 
plot(a,E_hsl,'--c','LineWidth',3) 
plot(a,E_l,'b','LineWidth',3) 
plot(a,E_r,'m','LineWidth',3) 
hold off 
title('Comparison of Mori-Tanaka, Hashin-Shtrikman Lower Bound, Lielens and 

Reuss Methods') 
xlabel('Volume Fraction, a') 
ylabel('Normalized Homogenized Modulus (C_{11}/C_{m11})') 
legend('Mori-Tanaka','H-S Lower','Lielens','Reuss') 
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E_m=Em 
E_ro=[E_r(1,1); E_r(1,10); E_r(1,19)] 
E_mto=[E_mt(1,1); E_mt(1,10); E_mt(1,19)] 
E_vo=[E_v(1,1); E_v(1,10); E_v(1,19)] 

B2: Chapter Three: Analytical System Efficiency Increase Projections Code 

close all; 
clear all; 
clc; 

  
%Define System Parameters 
Patm=15; 
Ps=50; 
Pmax=120; 

  
%Preallocate for speed 
% eta_sysa=zeros(); 
% eta_sysb=zeros(); 
% eta_sysp=zeros(); 

  
%% Efficiency as a function of alpha (Volume Ratio) 
ii=1; 
for alpha=0.1:0.1:10, 
    Pexp=40; 
    beta=0.95; 
    eta_sysa(ii)=Ps/(Ps+alpha*beta*Pexp); 
    eta_sysa_s(ii)=1/(1+alpha); 
    ii=ii+1; 
end 
alpha0=0.1:0.1:10; 

  
%% Efficiency as a function of beta (Accumulator Pressure Ratio) 
jj=1; 
for beta=Patm/Ps:0.01:1, 
    Pexp=40; 
    alpha=0.7; 
    eta_sysb(jj)=Ps/(Ps+alpha*beta*Pexp); 
    jj=jj+1; 
end 
beta0=Patm/Ps:0.01:1; 

  
%% Efficiency as a function of p_exp 
kk=1; 
for p_exp=Patm:0.1:Ps, 
    alpha=0.7; 
    beta=.95; 
    eta_sysp(kk)=Ps/(Ps+alpha*beta*p_exp); 
    kk=kk+1; 
end 
p_exp0=Patm:0.1:Ps; 

  
%% Efficiency as a function of Ps 
ll=1; 
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for Ps=Patm:1:Pmax, 
    alpha=0.7; 
    beta=.95; 
    p_exp=40; 
    eta_sysps(ll)=Ps/(Ps+alpha*beta*p_exp); 
    ll=ll+1; 
end 
Ps0=Patm:1:Pmax; 

  
%% Efficiency Plots 
figure(1) 
subplot(2,2,1) 
plot(p_exp0,(1-eta_sysp)*100,'LineWidth',3) 
set(gca,'FontWeight','bold') 
xlabel('P_e_x_p','fontweight','bold','FontSize',12) 
ylabel('% Efficiency Increase','fontweight','bold','FontSize',12) 
title('% Efficiency Increase vs Accumulator Expansion 

Pressure','fontweight','bold','FontSize',12) 

  
% figure(2) 
subplot(2,2,2) 
plot(alpha0,(1-eta_sysa)*100,'LineWidth',3) 
hold on 
plot(alpha0,(1-eta_sysa_s)*100,'-r','LineWidth',3) 
hold off 
set(gca,'FontWeight','bold') 
xlabel('\alpha','fontweight','bold','FontSize',12) 
ylabel('% Efficiency Increase','fontweight','bold','FontSize',12) 
title('% Efficiency Increase vs Cylinder Volume Ratio 

(\alpha)','fontweight','bold','FontSize',12) 

  
% figure(3) 
subplot(2,2,3) 
plot(beta0,(1-eta_sysb)*100,'LineWidth',3) 
set(gca,'FontWeight','bold') 
xlim([min(beta0) max(beta0)]) 
xlabel('\beta','fontweight','bold','FontSize',12) 
ylabel('% Efficiency Increase','fontweight','bold','FontSize',12) 
title('% Efficiency Increase vs Accumulator Pressure Ratio 

(\beta)','fontweight','bold','FontSize',12) 

  
% figure(4) 
subplot(2,2,4) 
plot(Ps0,(1-eta_sysps)*100,'LineWidth',3) 
set(gca,'FontWeight','bold') 
xlim([min(Ps0) max(Ps0)]) 
xlabel('P_s','fontweight','bold','FontSize',12) 
ylabel('% Efficiency Increase','fontweight','bold','FontSize',12) 
title('% Efficiency Increase vs Supply 

Pressure','fontweight','bold','FontSize',12) 

B3: Chapter Four: Component Efficiency Data Acquisition and Analysis Code 

B3.1: Data Acquisition Code 
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%This code controls a three-way valve that fills and exhausts a single  
%accumulator and collects data from a flow meter. 
%the valve holds first, then fills the accumulator, holds again, and then 

exhausts 
%the flowmeter collects volumetric flow rate and pressure data in volts 

  
clear all 
daq_session5 = daq.createSession('ni'); 

  
addAnalogOutputChannel(daq_session5,'cDAQ1Mod1',0:1,'Voltage'); %creates two 

analog output channels for the ao0 and ao1 pins on the NI 9264 
addAnalogInputChannel(daq_session5,'Dev9',0:1,'Voltage'); %creates two analog 

input channels for the ai0 and ai1 pins on the NI 9215 

  

  
daq_session5.Rate = 1000; 

  
daq_session5.Channels(3).Coupling = 'DC'; %sets DC coupling for both input 

channels 
daq_session5.Channels(4).Coupling = 'DC'; 

  
fill_time = .5; %seconds 
hold_time = 2; %seconds 
exhaust_time = 2; %seconds 

  
fill_samples = fill_time*daq_session5.Rate; %# of samples 
hold_samples = hold_time*daq_session5.Rate; %# of samples 
exhaust_samples = exhaust_time*daq_session5.Rate; %# of samples 
cycle_samples = fill_samples + 2*hold_samples + exhaust_samples; 

  

  
num_cycles = 3; %number of cycles run 

  
sample_number = cycle_samples*num_cycles; %total number of samples 

  
output_data = zeros(sample_number,2); 
i = 0; 
while cycle_samples*i < sample_number, 
    for k = 1:1:cycle_samples,  
        ind = k+cycle_samples*i; 
        if k > hold_samples && k <= hold_samples+fill_samples %if k is in the 

fill region, ao0 is set to 5 V 
            output_data(ind,1) = 5; 
        elseif k > 2*hold_samples+fill_samples, % if k is in the exhaust 

region ao1 is set to 5 V 
            output_data(ind,2) = 5; 
        end % in the hold region, both channels are 0 V 
    end 
     i = i+1; %i essentially counts the loop iterations 
end 

  
queueOutputData(daq_session5,output_data); %assigns the output data matrix to 

the session 



108 

 

disp('start'); 

  
[input_data, time] = daq_session5.startForeground();%starts the DAQ session 

in the foreground.  

  
exhaust_hold = zeros(exhaust_samples+1,2); 
exhaust_hold(:,2) = exhaust_hold(:,2)+5; 
exhaust_hold(end,2) = 0; 
queueOutputData(daq_session5,exhaust_hold); 
disp('exhaust'); 
daq_session5.startForeground(); 

 

B3.2: Data Analysis Code 

B3.2.1: Data Analysis Fit and Analyze Raw Data Code 

 
% The following function computes the mean, standard deviation, and  
% polynomial of best fit of degree, d, for a data set [x, y].   

  
function [average, standard_deviation, confidence_interval_95_percent, 

curve_of_best_fit, r_squared, r_squared_adjusted] = fit_and_analyze(x, y, d) 
average = mean(y); 
curve_of_best_fit = polyfit(x, y, d); 
sd_matrix = ones(length(x), 5); % [index, value, prediction, deviation, 

deviation squared] 
for i = 1:1:length(x) 
    sd_matrix(i,1) = i; 
    sd_matrix(i,2) = y(i); 
    sd_matrix(i,3) = polyval(curve_of_best_fit, x(i)); 
    sd_matrix(i,4) = sd_matrix(i,2) - sd_matrix(i,3); 
    sd_matrix(i,5) = (sd_matrix(i,4))^2; 
end 
summation = sum(sd_matrix(:,5)); 
standard_deviation = sqrt((1/(length(x)-2))*(summation)); 
standard_deviation_of_the_mean = standard_deviation/(sqrt(length(y))); 
confidence_interval_95_percent = standard_deviation_of_the_mean * 1.96; 
y_predict = polyval(curve_of_best_fit, x); 
y_resid = y - y_predict; 
sum_of_squares_resid = sum(y_resid.^2); 
sum_of_squares_total = (length(y) - 1) * var(y); 
r_squared = 1 - (sum_of_squares_resid/sum_of_squares_total); 
r_squared_adjusted = 1 - 

((sum_of_squares_resid/sum_of_squares_total)*((length(y)-1)/(length(y)-d-

1))); 
end 

 

B3.2.2: Data Analysis Component Efficiency Analysis Code 

 
% This is the post-processing analysis script for examining the 
% efficiency of the component setup for the advanced pneumatic strain 
% energy accumulator.   

  
% The following tasks are necessary in order to analyze the raw voltage  
% data and produce efficiency, energy, and other plots: 
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%  
% 1).  Translate the output voltage data into meaningful physical data. 
% 2).  Integrate the volumetric flow/time data to produce volume/time data. 
% 3).  Calculate the average contraction/expansion pressures of each cycle;  
%      each cycle's input and output energies; and each cycle's efficiency. 
% 4).  Trim the calculated data of early cycles whose 
%      efficiency/energy/pressure data are not reflective of the 
%      accumlator's performance as a whole.  Determine means and standard 
%      deviations of the calculated data. 
% 5).  Produce plots and figures of the analyzed data. 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Task 1: Translate the output voltage data into meaningful physical data. 

  
% The necessary input data must be in the form of an nx2 matrix, where 
% column 1 contains the volumetric flow data and column 2 contains the 
% pressure data. 

  
% Other necessary information include: the times and numbers of samples 
% associated with each stage in the accumlator's cycle sequence (fill, 
% hold, exhaust, etc.), the total number of cycles, atmospheric  
% pressure relative to a vacuum, and the standard pressure from which the  
% mass-flow meter is calibrated. 

  
% Input data is translated into SI units for calculations and converted 
% into Imperial units for display purposes. 

  
disp('Start'); 
disp('Translating Output Data'); 

  
volumetric_flow_data = (-30 + 6*input_data(:,1)) * (0.001/60); % Standard 

Cubic Meters Per Second 
pressure_data = ((16*input_data(:,2)) * 6894.7573); % Pascals 
p_atm = 14.696 * 6894.7573; % Pascals 
cycle_time = hold_time + fill_time + hold_time + exhaust_time; % The sequence 

for one cycle 
sample_rate = fill_samples/fill_time; % Samples per second; 
cycle_samples = cycle_time * sample_rate; % Number of samples in one cycle 
sample_vector = 1:1:length(input_data(:,1)); 
time_vector = sample_vector * (1/sample_rate);  

  
% pressure_standard = 101320; % Pascals 
% temperature_standard = 298.15; % Kelvin 
%  
% % This bit of script assumes that overall temperature change while the 
% % device is operating is linearly increasing. 
%  
% initial_temperature = 296.04; % for the 500 cycle test 
% final_temperature = 297.56; % for the 500 cycle test 
%  
% temp_vector = zeros(length(time_vector),1); 
%  
% for i = 1:1:length(time_vector) 
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%     temperature = (((final_temperature - 

initial_temperature)/(length(time_vector)))*i) + initial_temperature; 
%     temp_vector(i,1) = temperature; 
% end 

  
data_1 = [time_vector', pressure_data, volumetric_flow_data]; % Compiled, 

translated input data 

  
% % Adjusting for pressure and temperature to produce a "true" volumetric 

flow: 
%  
% for i = 1:1:length(data_1(:,3)) 
%     pressure_i = data_1(i,2); 
%     temp_i = temp_vector(i); 
%     adjusted_volume = (pressure_standard/pressure_i) * 

(temp_i/temperature_standard) * data_1(i,3); 
%     data_1(i,3) = adjusted_volume; 
% end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Task 2: Integrate the volumetric flow/time data to produce volume/time 

data. 

  
% The volumetric flow data is integrated using the trapezoidal method of  
% integration.  A running summation of the areas of each trapezoid outlined 
% for a given point in time is recorded for that particular point in time  
% to form a data set of volume with respect to time.   

  
disp('Integrating Volumetric Flow Data'); 

  
running_volume_total = 0; % For the loop  
volume_data = zeros((length(volumetric_flow_data)),1); % A blank vector for 

data collection 

  
for i = 1:1:(length(volumetric_flow_data) - 1) % The "-1" is essential for 

the trapezoidal method of integration 
    time_1 = data_1(i,1); 
    time_2 = data_1((i+1),1); 
    time_diff = abs(time_2 - time_1); 
    volumetric_flow_1 = data_1(i,3); 
    volumetric_flow_2 = data_1((i+1),3); 
    volumetric_flow_diff = volumetric_flow_2 - volumetric_flow_1; 
    if volumetric_flow_1 <= volumetric_flow_2 
        area_under_curve = ((time_diff) * (volumetric_flow_1)) + ((0.5) * 

(time_diff) * (volumetric_flow_diff)); 
        running_volume_total = running_volume_total + area_under_curve; 
        volume_data(i+1,1) = running_volume_total; 
    elseif volumetric_flow_1 > volumetric_flow_2 
        area_under_curve = ((time_diff) * (volumetric_flow_2)) + ((0.5) * 

(time_diff) * (-1)*(volumetric_flow_diff)); 
        running_volume_total = running_volume_total + area_under_curve; 
        volume_data(i+1,1) = running_volume_total; 
    else 
    end 
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end 

  
data_2 = [data_1(:,1), data_1(:,2), volume_data]; % Compiled, includes time, 

pressure, and volume data. 

  
% The volume data with respect to time tends to drift linearly upwards as   
% time progresses due to uncertainties inherent in the volumetric-flow  
% meter's calibration.  To clean the data, this drift must be eliminated.   
% This is accomplished in two ways: first, each cycle is deliniated from  
% the rest of the data by recording maximum and minimum volumes along a  
% cycle's total time and designating each cycle as spanning from minimum  
% volume to subsequent minimum volume.  Once each cycle has been  
% identified, the volumetric flow data is re-integrated and the volume for  
% each cycle is forced to reset to zero at the end of each cycle, thereby 
% eliminating any long-term drift in the data.  Second, each cycle is 
% individually analyzed using linear regression to subtract out the line of 
% best fit determined from points known to be zero.  

  
disp('Eliminating Drift') 

  
% The following script deliniates each cycle by creating an matrix of 
% indecies of minimum and maximum volumes.  Each cycle is counted from  
% minimum volume to the subsequent minimum volume.   

  
v_min_max_data_1 = zeros((num_cycles + 1), 3); % Pattern: [cycle number, min 

index, max index] 

  
for i = 1:1:(num_cycles + 1) 
    if i == 1 
        min_index = 1; 
        v_min = data_2(min_index,3); 
        [v_max,max_index] = max(data_2((min_index:1:round((min_index + 

(cycle_samples)))),3)); 
        v_min_max_data_1(i,1) = i; 
        v_min_max_data_1(i,2) = min_index; 
        v_min_max_data_1(i,3) = max_index; 
    elseif i > 1 && i <= (num_cycles - 1) 
        previous_max_index = v_min_max_data_1((i-1),3); 
        [v_min,min_index] = 

min(data_2(((previous_max_index):1:round(((previous_max_index) + 

(cycle_samples)))),3)); 
        min_index = min_index + previous_max_index - 1;  
        [v_max,max_index] = max(data_2(((min_index):1:round(((min_index) + 

(cycle_samples)))),3)); 
        max_index = max_index + min_index - 1;  
        v_min_max_data_1(i,1) = i; 
        v_min_max_data_1(i,2) = min_index; 
        v_min_max_data_1(i,3) = max_index; 
    elseif i == (num_cycles) 
        previous_max_index = v_min_max_data_1((i-1),3); 
        [v_min,min_index] = 

min(data_2(((previous_max_index):1:(round((length(data_2(:,3))) - 

(0.5*cycle_samples)))),3)); 
        min_index = min_index + previous_max_index - 1;  
        [v_max,max_index] = 

max(data_2(((min_index):1:(length(data_2(:,3)))),3)); 
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        max_index = max_index + min_index - 1;  
        v_min_max_data_1(i,1) = i; 
        v_min_max_data_1(i,2) = min_index; 
        v_min_max_data_1(i,3) = max_index; 
    elseif i == (num_cycles + 1) 
        previous_max_index = v_min_max_data_1((i-1),3); 
        [v_min,min_index] = 

min(data_2(((previous_max_index):1:(round((length(data_2(:,3)))))),3)); 
        min_index = min_index + previous_max_index - 1;  
        max_index = length(data_2(:,3)); 
        v_max = data_2(max_index,3); 
        v_min_max_data_1(i,1) = i; 
        v_min_max_data_1(i,2) = min_index; 
        v_min_max_data_1(i,3) = max_index; 
    end 
end 

  
% The original volumetric-flow data is now re-integrated, reseting the 
% running total at the beginning of each new cycle, according to the 
% indecies collected in the immediate script above.  The data is 
% re-integrated for one cycle, then the cycle is adjusted to account for 
% linear drift along the cycle.   

  
running_volume_total = 0;  
cycle_volume_data = zeros((v_min_max_data_1((num_cycles + 1),2)),2); % 

format: [re-integrated volume data, linearly-adjusted volume data] 
cycle_index = 1; 

  
while cycle_index < (num_cycles + 1) 

  
    for i = v_min_max_data_1(cycle_index,2):1:((v_min_max_data_1((cycle_index 

+ 1),2)) - 1)  
        if i == v_min_max_data_1(cycle_index,2) 
            cycle_volume_data(i) = 0; 
            running_volume_total = 0; 
            time_1 = data_1(i,1); 
            time_2 = data_1((i+1),1); 
            time_diff = time_2 - time_1; 
            volumetric_flow_1 = data_1(i,3); 
            volumetric_flow_2 = data_1((i+1),3); 
            volumetric_flow_diff = volumetric_flow_2 - volumetric_flow_1; 
            if volumetric_flow_1 <= volumetric_flow_2 
                area_under_curve = ((time_diff) * (volumetric_flow_1)) + 

((0.5) * (time_diff) * (volumetric_flow_diff)); 
                running_volume_total = running_volume_total + 

area_under_curve; 
                cycle_volume_data(i+1,1) = running_volume_total; 
            elseif volumetric_flow_1 > volumetric_flow_2 
                area_under_curve = ((time_diff) * (volumetric_flow_2)) + 

((0.5) * (time_diff) * (-1)*(volumetric_flow_diff)); 
                running_volume_total = running_volume_total + 

area_under_curve; 
                cycle_volume_data(i+1,1) = running_volume_total; 
            else 
            end 
        else 
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            time_1 = data_1(i,1); 
            time_2 = data_1((i+1),1); 
            time_diff = time_2 - time_1; 
            volumetric_flow_1 = data_1(i,3); 
            volumetric_flow_2 = data_1((i+1),3); 
            volumetric_flow_diff = volumetric_flow_2 - volumetric_flow_1; 
            if volumetric_flow_1 <= volumetric_flow_2 
                area_under_curve = ((time_diff) * (volumetric_flow_1)) + 

((0.5) * (time_diff) * (volumetric_flow_diff)); 
                running_volume_total = running_volume_total + 

area_under_curve; 
                cycle_volume_data(i+1,1) = running_volume_total; 
            elseif volumetric_flow_1 > volumetric_flow_2 
                area_under_curve = ((time_diff) * (volumetric_flow_2)) + 

((0.5) * (time_diff) * (-1)*(volumetric_flow_diff)); 
                running_volume_total = running_volume_total + 

area_under_curve; 
                cycle_volume_data(i+1,1) = running_volume_total; 
            else 
            end 
        end 
    end 

  
    % Now that the volumetric-flow data has been re-integrated, the small 
    % drift across a cycle must be addressed.  To do so, the following 
    % script identifies points along the cycle where the volumetric flow 
    % should, in theory, be zero: at points before the accumulator has 
    % started to fill with pressurized air.  To identify these points, the 
    % script first identifies the point of maximum volumetric flow along 
    % the cycle, then tests each data point from the maximum volumetric 
    % flow until the start of the cycle (testing 'backwards' in time, so to 
    % speak).  If the difference between the volumetric flows of the test  
    % point and the start of the cycle is greater than a given threshold, 
    % then the volumetric flow cannot be considered essentially zero, and 
    % the next test point is evaluated.  This process continues until a 
    % suitible test point has been identified.  If the number of samples 
    % between the suitible test point and the start of the cycle isn't 
    % significant, than linear regression analysis isn't an opiton and the 
    % re-integrated data remains ultimately unchanged.   

     
    [volumetric_flow_max, volumetric_flow_index] = 

max(data_1((v_min_max_data_1(cycle_index,2):1:v_min_max_data_1(cycle_index,3)

),3)); % This is the index within the individual cycle 
    volumetric_flow_index = volumetric_flow_index + 

v_min_max_data_1(cycle_index,2) - 1; % Now, the index has been adjusted 

within the entire data set 
    minimum_difference = 10e-07; 
    minimum_significant_data_points = 10; 

     
    suitible_volumetric_flow_index = 0; 

     
    for j = volumetric_flow_index:-1:v_min_max_data_1(cycle_index,2) 
        if data_1(j,3) <= minimum_difference && 

suitible_volumetric_flow_index == 0 
            suitible_volumetric_flow_index = j; 
        else 
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            continue 
        end 
    end 

     
    % Next, all points of volume data between the start of the cycle to the  
    % suitible test point are considered to be of equal volume, zero.  A  
    % line of best fit is evaluated through these data points, producing a  
    % general trend line upon which all data within the cycle has been  
    % superimposed. Expected values for each data point as a function of  
    % time can be constructed from this trend line and subtracted out of  
    % the data.   

     
    linear_regression_matrix = zeros((length(data_2(:,3))),4); % [time, 

volume, time^2, time * volume] 

  
    for k = v_min_max_data_1(cycle_index,2):1:suitible_volumetric_flow_index 
        t_k = (k - v_min_max_data_1(cycle_index,2))/sample_rate; 
        v_k = cycle_volume_data(k,1); 
        linear_regression_matrix(k,1) = t_k; 
        linear_regression_matrix(k,2) = v_k; 
        linear_regression_matrix(k,3) = t_k^2; 
        linear_regression_matrix(k,4) = t_k * v_k; 
    end 

  
    % Linear function format: y = A + (B * x) 
    A = 0; 
    B = 0;  
    if (suitible_volumetric_flow_index - v_min_max_data_1(cycle_index,2)) >= 

minimum_significant_data_points 
        B = 

(sum(linear_regression_matrix(:,4)))/(sum(linear_regression_matrix(:,3))); 
    end 

  
    for l = (v_min_max_data_1(cycle_index,2) + 

1):1:(v_min_max_data_1((cycle_index + 1),2) - 1) 
        old_cycle_volume = cycle_volume_data(l,1); 
        time_value = (l - v_min_max_data_1(cycle_index,2))/sample_rate; 
        linear_volume = A + (B * time_value); 
        new_cycle_volume = old_cycle_volume - linear_volume; 
        cycle_volume_data(l,2) = new_cycle_volume; 
    end 

  
    % The following string script displays the real-time status of this 
    % data-cleaning process. 

     
    completed_cycle_number_tag = int2str(cycle_index); 
    total_cycle_number_tag = int2str(num_cycles); 
    status_tag = ['Drift removed from ' completed_cycle_number_tag ' of ' 

total_cycle_number_tag ' cycles']; 
    disp(status_tag); 

  
    cycle_index = cycle_index + 1; 

  
end 
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% Lastly, the re-integrated cycle volume is forced to zero at the end of 
% the final cycle and a new data set reflecting the cleaned volume data is 
% created. 

  
cycle_volume_data((v_min_max_data_1((num_cycles + 1),2)),1) = 0; 
cycle_volume_data((v_min_max_data_1((num_cycles + 1),2)),2) = 0; 

  
data_3 = [data_2((1:1:length(cycle_volume_data(:,2))),1), 

data_2((1:1:length(cycle_volume_data(:,2))),2), cycle_volume_data(:,2)]; % 

Includes time, pressure, and cleaned volume data 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Task 3:  Calculate the average contraction/expansion pressures of each  
% cycle; each cycle's input and output energies; and each cycle's  
% efficiency. 

  
% The final data set is divided again into individual cycles according to 
% maximum and minimum volumes before analysis for each cycle can begin. 
% This is necessary because adjusting the data to account for linear drift 
% isn't perfect and may result in volume values within the cycle that are  
% minutely less than zero.  For efficiency calculations, it's prefferable 
% to calculate from minimum volume to minimum volume, so a new cycle 
% deliniation is necessary.   

  
v_min_max_data_2 = zeros((num_cycles + 1), 3); % Pattern: [cycle number, min 

index, max index] 

  
for i = 1:1:(num_cycles + 1) 
    if i == 1 
        min_index = 1; 
        v_min = data_3(min_index,3); 
        [v_max,max_index] = max(data_3((min_index:1:round((min_index + 

(cycle_samples)))),3)); 
        v_min_max_data_2(i,1) = i; 
        v_min_max_data_2(i,2) = min_index; 
        v_min_max_data_2(i,3) = max_index; 
    elseif i > 1 && i <= (num_cycles - 1) 
        previous_max_index = v_min_max_data_2((i-1),3); 
        [v_min,min_index] = 

min(data_3(((previous_max_index):1:round(((previous_max_index) + 

(cycle_samples)))),3)); 
        min_index = min_index + previous_max_index - 1;  
        [v_max,max_index] = max(data_3(((min_index):1:round(((min_index) + 

(cycle_samples)))),3)); 
        max_index = max_index + min_index - 1;  
        v_min_max_data_2(i,1) = i; 
        v_min_max_data_2(i,2) = min_index; 
        v_min_max_data_2(i,3) = max_index; 
    elseif i == (num_cycles) 
        previous_max_index = v_min_max_data_2((i-1),3); 
        [v_min,min_index] = 

min(data_3(((previous_max_index):1:(round((length(data_3(:,3))) - 

(0.5*cycle_samples)))),3)); 
        min_index = min_index + previous_max_index - 1;  
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        [v_max,max_index] = 

max(data_3(((min_index):1:(length(data_3(:,3)))),3)); 
        max_index = max_index + min_index - 1;  
        v_min_max_data_2(i,1) = i; 
        v_min_max_data_2(i,2) = min_index; 
        v_min_max_data_2(i,3) = max_index; 
    elseif i == (num_cycles + 1) 
        previous_max_index = v_min_max_data_2((i-1),3); 
        [v_min,min_index] = 

min(data_3(((previous_max_index):1:(round((length(data_3(:,3)))))),3)); 
        min_index = min_index + previous_max_index - 1;  
        max_index = length(data_3(:,3)); 
        v_max = data_3(max_index,3); 
        v_min_max_data_2(i,1) = i; 
        v_min_max_data_2(i,2) = min_index; 
        v_min_max_data_2(i,3) = max_index; 
    end 
end 

  
% Next, the contraction and expansion pressures of each cycle (defined as 
% the stationary pressures at which the accumulator expands and contracts  
% most rapidly) are determined.  The script uses user-defined minimum and 
% maximum volumes within the accumlator's fill and exhaust phase and  
% averages the pressure data between those volumes, for the respective fill 
% and exhaust phase. 

  
disp ('Determining Expansion/Contraction Pressures of Each Cycle') 

  
expansion_contraction_pressures_matrix = [num_cycles,7]; % [cycle, fill MIN 

boundary index, fill MAX boundary index, exhaust MAX boundary index, exhaust 

MIN boundary index, expansion pressure, contraction pressure] 

  
for i = 1:1:num_cycles 

     
    target_min_volume = 0.35 * 

max(data_3((v_min_max_data_2(i,2):1:v_min_max_data_2(i,3)),3)); % Cubic Feet 

- Arbitrary, based on percentage of max volume 
    target_max_volume = 0.85 * 

max(data_3((v_min_max_data_2(i,2):1:v_min_max_data_2(i,3)),3)); % Cubic Feet 

- Arbitrary, based on percentage of max volume 

     
    fill_target_min_volume_index = 0; 
    fill_target_max_volume_index = 0; 

     
    exhaust_target_max_volume_index = 0; 
    exhaust_target_min_volume_index = 0; 

     
    for j = v_min_max_data_2(i,2):1:v_min_max_data_2(i,3) 
       if data_3(j,3) >= target_min_volume && fill_target_min_volume_index == 

0 
           fill_target_min_volume_index = j; 
       elseif data_3(j,3) >= target_max_volume && 

fill_target_max_volume_index == 0 
           fill_target_max_volume_index = j; 
       else 
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           continue 
       end 
    end 

     
    for k = v_min_max_data_2(i,3):1:v_min_max_data_2((i+1),2) 
        if data_3(k,3) <= target_max_volume && 

exhaust_target_max_volume_index == 0 
           exhaust_target_max_volume_index = k; 
       elseif data_3(k,3) <= target_min_volume && 

exhaust_target_min_volume_index == 0 
           exhaust_target_min_volume_index = k; 
       else 
           continue 
       end 
    end 

     
    expansion_pressure = 

mean(data_3((fill_target_min_volume_index:1:fill_target_max_volume_index),2))

; 
    contraction_pressure = 

mean(data_3((exhaust_target_max_volume_index:1:exhaust_target_min_volume_inde

x),2)); 

     
    expansion_contraction_pressures_matrix(i,1) = i; 
    expansion_contraction_pressures_matrix(i,2) = 

fill_target_min_volume_index; 
    expansion_contraction_pressures_matrix(i,3) = 

fill_target_max_volume_index; 
    expansion_contraction_pressures_matrix(i,4) = 

exhaust_target_max_volume_index; 
    expansion_contraction_pressures_matrix(i,5) = 

exhaust_target_min_volume_index; 
    expansion_contraction_pressures_matrix(i,6) = expansion_pressure; 
    expansion_contraction_pressures_matrix(i,7) = contraction_pressure; 

     
end 

  
% Next, the energy input and output for each cycle and the efficiency (the 
% ratio of ouput energy to input energy) is calculated for each cycle. 
% The energy input and energy output are largely the result of the areas 
% under the PV curve for the fill and exhaust phases, respectively.  Those 
% areas are determined using the trapezoidal method of integration with the 
% pressure and volume data points in the matrix data_3.   

  
disp ('Calculating Energy and Efficiencies for Each Cycle') 

  
efficiency_mat_cycles = ones(num_cycles,4);  

  
for i = 1:1:num_cycles 

  
    integrated_fill_running_total = 0;  
    integrated_exhaust_running_total = 0; 

  
    for j = (v_min_max_data_2(i,2)):1:((v_min_max_data_2(i,3)) - 1) 
        vol_1 = data_3(j,3); 
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        vol_2 = data_3((j+1),3); 
        vol_diff = abs(vol_2 - vol_1); 
        pressure_1 = data_3(j,2);  
        pressure_2 = data_3((j+1),2);  
        pressure_diff = pressure_2 - pressure_1; 
        if pressure_1 <= pressure_2 
            area_under_curve = ((vol_diff) * (pressure_1)) + ((0.5) * 

(vol_diff) * (pressure_diff)); 
            integrated_fill_running_total = integrated_fill_running_total + 

area_under_curve; 
        elseif pressure_1 > pressure_2 
            area_under_curve = ((vol_diff) * (pressure_2)) + ((0.5) * 

(vol_diff) * (-1)*(pressure_diff)); 
            integrated_fill_running_total = integrated_fill_running_total + 

area_under_curve; 
        else 
        end 
    end 

  
    for k = (v_min_max_data_2(i,3)):1:((v_min_max_data_2((i+1),2)) - 1) 
        vol_1 = data_3(k,3); 
        vol_2 = data_3((k+1),3); 
        vol_diff = abs(vol_2 - vol_1);  
        pressure_1 = data_3(k,2);  
        pressure_2 = data_3((k+1),2);  
        pressure_diff = pressure_2 - pressure_1; 
        if pressure_1 <= pressure_2 
            area_under_curve = ((vol_diff) * (pressure_1)) + ((0.5) * 

(vol_diff) * (pressure_diff)); 
            integrated_exhaust_running_total = 

integrated_exhaust_running_total + area_under_curve; 
        elseif pressure_1 > pressure_2 
            area_under_curve = ((vol_diff) * (pressure_2)) + ((0.5) * 

(vol_diff) * (-1)*(pressure_diff)); 
            integrated_exhaust_running_total = 

integrated_exhaust_running_total + area_under_curve; 
        else 
        end 
    end 

     
    % Having determined the areas under the PV curves for the fill and 
    % exhaust phases, the final energy calculations will need to consider 
    % the maximum volume of the cycle and the pressure at that volume. 

     
    specific_max_pressure = data_3(v_min_max_data_2(i,3),2); 
    specific_max_volume = data_3(v_min_max_data_2(i,3),3); 

     
    % The final energy and efficiency calculations are derived in the  
    % accompanying article. 

     
    cycle_energy_in = integrated_fill_running_total + (specific_max_pressure 

* specific_max_volume * (log(specific_max_pressure/p_atm))); % Joules 
    cycle_energy_out = integrated_exhaust_running_total + 

(specific_max_pressure * specific_max_volume * 

(log(specific_max_pressure/p_atm))); % Joules 
    cycle_efficiency = (cycle_energy_out/cycle_energy_in) * 100; % Percentage 
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    % The input and output energies and each cycle and the cycle's 
    % efficiency are recorded in a matrix for later use. 

     
    efficiency_mat_cycles(i,1) = i; 
    efficiency_mat_cycles(i,2) = cycle_efficiency; 
    efficiency_mat_cycles(i,3) = cycle_energy_in; 
    efficiency_mat_cycles(i,4) = cycle_energy_out; 

        
    % The following string script displays the real-time status of the 
    % efficiency-calculating process. 

     
    completed_cycle_number_tag = int2str(i); 
    total_cycle_number_tag = int2str(num_cycles); 
    status_tag = ['Energy and Efficiency Computed for ' 

completed_cycle_number_tag ' of ' total_cycle_number_tag ' cycles']; 
    disp(status_tag); 

  
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Task 4: Trim the calculated data of early cycles whose efficiency/energy/ 
% pressure data are not reflective of the accumlator's performance as a  
% whole. Determine means and standard deviations of the calculated data. 

  
% Early cycles don't represent the perfomance of the elastomeric 
% accumulator as a whole for a very praticle reason:  the elastic bladder 
% hasn't had time to warm up and energy/efficiency data for early cycles is 
% significantly lower than later ones.  After 25 cycles, the accumulator 
% performs consistently and its efficiency doesn't continue to  
% significantly climb.   

  
disp('Calculating Means and Standard Deviations') 

  
trim = 25; % number of cycles excluded from analysis taken from the beginning 

of the test 

  
% Determing the average efficiency, average input/output energy, and 
% average expansion/contraction pressures over all the (trimmed) test 
% cycles makes use of an external function ('fit_and_analyze'). Please 
% refer to the documentation of that function's script for more  
% information. 

  
[efficiency_average_trimmed, efficiency_SD_trimmed, 

efficiency_confidence_interval_trimmed, efficiency_curve_trimmed, 

efficiency_curve_r_squared_trimmed, 

efficiency_curve_r_squared_adjusted_trimmed] = 

fit_and_analyze(efficiency_mat_cycles((1:1:num_cycles-trim),1), 

efficiency_mat_cycles((trim+1:1:num_cycles),2), 1); 
efficiency_data_trimmed = [efficiency_average_trimmed, efficiency_SD_trimmed, 

efficiency_confidence_interval_trimmed, efficiency_curve_trimmed, 

efficiency_curve_r_squared_trimmed, 

efficiency_curve_r_squared_adjusted_trimmed]; 
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[energy_in_average_trimmed, energy_in_SD_trimmed, 

energy_in_confidence_interval_trimmed, energy_in_curve_trimmed, 

energy_in_curve_r_squared_trimmed, 

energy_in_curve_r_squared_adjusted_trimmed] = 

fit_and_analyze(efficiency_mat_cycles((1:1:num_cycles-trim),1), 

efficiency_mat_cycles((trim+1:1:num_cycles),3), 1); 
energy_in_data_trimmed = [energy_in_average_trimmed, energy_in_SD_trimmed, 

energy_in_confidence_interval_trimmed, energy_in_curve_trimmed, 

energy_in_curve_r_squared_trimmed, 

energy_in_curve_r_squared_adjusted_trimmed]; 

  
[energy_out_average_trimmed, energy_out_SD_trimmed, 

energy_out_confidence_interval_trimmed, energy_out_curve_trimmed, 

energy_out_curve_r_squared_trimmed, 

energy_out_curve_r_squared_adjusted_trimmed] = 

fit_and_analyze(efficiency_mat_cycles((1:1:num_cycles-trim),1), 

efficiency_mat_cycles((trim+1:1:num_cycles),4), 1); 
energy_out_data_trimmed = [energy_out_average_trimmed, energy_out_SD_trimmed, 

energy_out_confidence_interval_trimmed, energy_out_curve_trimmed, 

energy_out_curve_r_squared_trimmed, 

energy_out_curve_r_squared_adjusted_trimmed]; 

  
[expansion_pressure_average_trimmed, expansion_pressure_SD_trimmed, 

expansion_pressure_confidence_interval_trimmed, 

expansion_pressure_curve_trimmed, expansion_pressure_curve_r_squared_trimmed, 

expansion_pressure_curve_r_squared_adjusted_trimmed] = 

fit_and_analyze(expansion_contraction_pressures_matrix((1:1:num_cycles-

trim),1), 

expansion_contraction_pressures_matrix((trim+1:1:num_cycles),6)/1000, 1); % 

data will be returned in kilopascals 
expansion_pressure_data_trimmed = [expansion_pressure_average_trimmed, 

expansion_pressure_SD_trimmed, 

expansion_pressure_confidence_interval_trimmed, 

expansion_pressure_curve_trimmed, expansion_pressure_curve_r_squared_trimmed, 

expansion_pressure_curve_r_squared_adjusted_trimmed]; 

  
[contraction_pressure_average_trimmed, contraction_pressure_SD_trimmed, 

contraction_pressure_confidence_interval_trimmed, 

contraction_pressure_curve_trimmed, 

contraction_pressure_curve_r_squared_trimmed, 

contraction_pressure_curve_r_squared_adjusted_trimmed] = 

fit_and_analyze(expansion_contraction_pressures_matrix((1:1:num_cycles-

trim),1), 

expansion_contraction_pressures_matrix((trim+1:1:num_cycles),7)/1000, 1); % 

data will be returned in kilopascals 
contraction_pressure_data_1_trimmed = [contraction_pressure_average_trimmed, 

contraction_pressure_SD_trimmed, 

contraction_pressure_confidence_interval_trimmed, 

contraction_pressure_curve_trimmed, 

contraction_pressure_curve_r_squared_trimmed, 

contraction_pressure_curve_r_squared_adjusted_trimmed]; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Task 5: Produce plots and figures of the analyzed data. 
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disp('Generating Figures'); 

  
% Converting to Standard Cubic Centimeters 

  
for i=1:1:length(data_1(:,3)) 
    old_volumetric_flow = data_1(i,3); 
    new_volumetric_flow = old_volumetric_flow*(10^6); 
    data_1(i,3) = new_volumetric_flow; 
end 

  
for i=1:1:length(data_3(:,3)) 
    old_volume = data_3(i,3); 
    new_volume = old_volume*(10^6); 
    data_3(i,3) = new_volume; 
end 

  
% Converting to Kilopascals 

  
for i=1:1:length(data_3(:,2)) 
    old_pressure = data_3(i,2); 
    new_pressure = old_pressure/1000; 
    data_3(i,2) = new_pressure; 
end 

  
% Determing maximum and minimum data over many variables is necessary when  
% framing the presented data within proper bounds. 

  
overall_minimum_pressure = min(data_3(:,2)); 
overall_maximum_pressure = max(data_3(:,2)); 

  
overall_minimum_volumetric_flow = min(data_1(:,3)); 
overall_maximum_volumetric_flow = max(data_1(:,3)); 
absolute_maximum_volumetric_flow = max(overall_minimum_volumetric_flow, 

overall_maximum_volumetric_flow); 

  
overall_minimum_volume = min(data_3(:,3)); 
overall_maximum_volume = max(data_3(:,3)); 

  
overall_minimum_efficiency_trimmed = 

min(efficiency_mat_cycles((trim+1:1:num_cycles),2)); 
overall_maximum_efficiency_trimmed = 

max(efficiency_mat_cycles((trim+1:1:num_cycles),2)); 

  
overall_minimum_energy_in_trimmed = 

min(efficiency_mat_cycles((trim+1:1:num_cycles),3)); 
overall_maximum_energy_in_trimmed = 

max(efficiency_mat_cycles((trim+1:1:num_cycles),3)); 

  
overall_minimum_energy_out_trimmed = 

min(efficiency_mat_cycles((trim+1:1:num_cycles),4)); 
overall_maximum_energy_out_trimmed = 

max(efficiency_mat_cycles((trim+1:1:num_cycles),4)); 
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overall_minimum_expansion_pressure_trimmed = 

min(expansion_contraction_pressures_matrix((trim+1:1:num_cycles),6))/1000; 
overall_maximum_expansion_pressure_trimmed = 

max(expansion_contraction_pressures_matrix((trim+1:1:num_cycles),6))/1000; 

  
overall_minimum_contraction_pressure_trimmed = 

min(expansion_contraction_pressures_matrix((trim+1:1:num_cycles),7)/1000); 
overall_maximum_contraction_pressure_trimmed = 

max(expansion_contraction_pressures_matrix((trim+1:1:num_cycles),7)/1000); 

  
% Normalizing Volume Data 

  
for i=1:1:length(data_1(:,3)) 
    old_volumetric_flow = data_1(i,3); 
    new_volumetric_flow = 

old_volumetric_flow/absolute_maximum_volumetric_flow; 
    data_1(i,3) = new_volumetric_flow; 
end 

  
for i=1:1:length(data_3(:,3)) 
    old_volume = data_3(i,3); 
    new_volume = old_volume/overall_maximum_volume; 
    data_3(i,3) = new_volume; 
end 

  
% Occasionally, some of the figures require some adjustments on the bounds. 

  
graph_adjust = 2.01; % x-axis, minimum, pressure/mass_flow/volume figures 
efficiency_adjust = 0.02; % y_axis, min and max, efficiency figures 
energy_adjust = 0.2; % y-axis, min and max, energy figures 
pressure_adjust = 0.2; % y-axis, min and max, exp/contr pressure figures 

  
% The following figures display pressure as a function of time, volumetric  
% flow as a function of time, and volume as a function of time for some 
% sample cycles within the data.  The figures are also stored to a file for 
% later retrieval.   

  
% Graphing pressure(t) (selected cycles) (pressure in kPa): 
pressure_fig = figure('visible', 'off'); 
plot (data_3(:,1),(data_3(:,2)),'blue'); 
xlabel ('Time (Seconds)'); 
ylabel ('Pressure (Kilopascals)'); 
axis ([((v_min_max_data_2((round(0.5 * (num_cycles - (trim))) + 

trim),2))/sample_rate)+graph_adjust ((v_min_max_data_2((round(0.5 * 

(num_cycles - (trim))) + trim + 3),2))/sample_rate) overall_minimum_pressure 

overall_maximum_pressure]) 
title ('Pressure as a Function of Time'); 
set(pressure_fig, 'visible', 'on'); 
print (pressure_fig, '-dtiff', '1_pressure_vs_time') 

  
% Graphing volumetric-flow(t) (selected cycles) (in standard cubic meters per 

second): 
volumetric_flow_fig = figure('visible', 'off'); 
plot (data_1(:,1),data_1(:,3),'red'); 
xlabel ('Time (Seconds)'); 
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ylabel ('Normalized Volumetric Flow'); 
axis ([((v_min_max_data_2((round(0.5 * (num_cycles - (trim))) + 

trim),2))/sample_rate)+graph_adjust ((v_min_max_data_2((round(0.5 * 

(num_cycles - (trim))) + trim + 3),2))/sample_rate) 

overall_minimum_volumetric_flow/absolute_maximum_volumetric_flow 

overall_maximum_volumetric_flow/absolute_maximum_volumetric_flow]) 
title ('Volumetric Flow as a Function of Time'); 
set(volumetric_flow_fig, 'visible', 'on'); 
print (volumetric_flow_fig, '-dtiff', '2_volumetric_flow_vs_time') 

  
% Graphing volume(t) (selected cycles) (cubic meters): 
volume_fig = figure('visible', 'off'); 
plot (data_3(:,1),data_3(:,3),'red'); 
xlabel ('Time (Seconds)'); 
ylabel ('Normalized Volume'); 
axis ([((v_min_max_data_2((round(0.5 * (num_cycles - (trim))) + 

trim),2))/sample_rate)+graph_adjust ((v_min_max_data_2((round(0.5 * 

(num_cycles - (trim))) + trim + 3),2))/sample_rate) 

overall_minimum_volume/overall_maximum_volume 

overall_maximum_volume/overall_maximum_volume]) 
title ('Volume as a Function of Time'); 
set(volume_fig, 'visible', 'on'); 
print (volume_fig, '-dtiff', '3_volume_vs_time') 

  
% The following figure is a compilation of typical PV curves for the data 
% as a whole, utilizing the beginning, middle, and end cycles of the 
% trimmed data. 

  
% Graphing PV curve - Fill and Exhaust Phases - Multiple, Selected, 

Overlapping Cycles 
overlapping_cycle_fig = figure('visible', 'off'); 
hold on 
plot (data_3((v_min_max_data_2(trim + 1,2):1:v_min_max_data_2(trim + 

1,3)),3), data_3((v_min_max_data_2(trim + 1,2):1:v_min_max_data_2(trim + 

1,3)),2), 'r-') 
plot (data_3((v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + 

trim,2):1:v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + trim,3)),3), 

data_3((v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + 

trim,2):1:v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + trim,3)),2), 

'r--') 
plot 

(data_3((v_min_max_data_2(num_cycles,2):1:v_min_max_data_2(num_cycles,3)),3), 

data_3((v_min_max_data_2(num_cycles,2):1:v_min_max_data_2(num_cycles,3)),2), 

'r:') 
plot (data_3((v_min_max_data_2(trim + 1,3):1:v_min_max_data_2((trim + 

1+1),2)),3), data_3((v_min_max_data_2(trim + 1,3):1:v_min_max_data_2((trim + 

1+1),2)),2), 'b-') 
plot (data_3((v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + 

trim,3):1:v_min_max_data_2((round(0.5 * (num_cycles - (trim))) + 

trim+1),2)),3), data_3((v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + 

trim,3):1:v_min_max_data_2((round(0.5 * (num_cycles - (trim))) + 

trim+1),2)),2), 'b--') 
plot 

(data_3((v_min_max_data_2(num_cycles,3):1:v_min_max_data_2((num_cycles+1),2))

,3), 
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data_3((v_min_max_data_2(num_cycles,3):1:v_min_max_data_2((num_cycles+1),2)),

2), 'b:') 
hold off 
cycle_title_tag = 'PV Curve for Cycles '; 
cycle_1 = int2str(trim + 1 - trim); 
cycle_1_tag_fill = ['Cycle ' cycle_1 ' - Fill Phase']; 
cycle_1_tag_exhaust = ['Cycle ' cycle_1 ' - Exhaust Phase']; 
cycle_2 = int2str(round(0.5 * (num_cycles - (trim))) + trim - trim); 
cycle_2_tag_fill = ['Cycle ' cycle_2 ' - Fill Phase']; 
cycle_2_tag_exhaust = ['Cycle ' cycle_2 ' - Exhaust Phase']; 
cycle_3 = int2str(num_cycles - trim); 
cycle_3_tag_fill = ['Cycle ' cycle_3 ' - Fill Phase']; 
cycle_3_tag_exhaust = ['Cycle ' cycle_3 ' - Exhaust Phase']; 
total_cycle_number_tag = int2str(num_cycles - trim); 
title_tag = [cycle_title_tag cycle_1 ', ' cycle_2 ', and ' cycle_3 ' of ' 

total_cycle_number_tag ' Cycles']; 
legend(cycle_1_tag_fill, cycle_2_tag_fill, cycle_3_tag_fill, 

cycle_1_tag_exhaust, cycle_2_tag_exhaust, cycle_3_tag_exhaust, 'Location', 

'East'); 
xlabel ('Normalized Volume'); 
ylabel ('Pressure (Kilopascals)'); 
axis ([overall_minimum_volume/overall_maximum_volume 

overall_maximum_volume/overall_maximum_volume overall_minimum_pressure 

overall_maximum_pressure]) 
title (title_tag); 
set (overlapping_cycle_fig, 'visible', 'on') 
print (overlapping_cycle_fig, '-dtiff', '4_overlapping_PV_cycles') 

  
% Graphing Area under the PV Curve 
area_fig = figure('visible', 'off'); 
hold on 
area (data_3((v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + 

trim,2):1:v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + trim,3)),3), 

data_3((v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + 

trim,2):1:v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + trim,3)),2), 

'FaceColor', 'red'); 
area (data_3((v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + 

trim,3):1:v_min_max_data_2((round(0.5 * (num_cycles - (trim))) + 

trim+1),2)),3), data_3((v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + 

trim,3):1:v_min_max_data_2((round(0.5 * (num_cycles - (trim))) + 

trim+1),2)),2), 'FaceColor', 'blue'); 
hold off 
legend('Fill Phase', 'Exhaust Phase', 'Location', 'East'); 
cycle_title_tag = 'PV Curve with Shaded Area for Cycle '; 
cycle_2 = int2str(round(0.5 * (num_cycles - (trim))) + trim - trim); 
total_cycle_number_tag = int2str(num_cycles - trim); 
title_tag = [cycle_title_tag cycle_2 ' of ' total_cycle_number_tag ' 

Cycles']; 
xlabel ('Normalized Volume'); 
ylabel ('Pressure (Kilopascals)'); 
axis ([overall_minimum_volume/overall_maximum_volume 

overall_maximum_volume/overall_maximum_volume overall_minimum_pressure 

overall_maximum_pressure]) 
title (title_tag); 
set (area_fig, 'visible', 'on') 
print (area_fig, '-dtiff', '5_area_PV_cycle') 
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% Graphing Area under the PV Curve (transparency) 
area_fig = figure('visible', 'off'); 
hold on 
fill_patch_volume_data = vertcat(data_3((v_min_max_data_2(round(0.5 * 

(num_cycles - (trim))) + trim,2):1:v_min_max_data_2(round(0.5 * (num_cycles - 

(trim))) + trim,3)),3), data_3((v_min_max_data_2(round(0.5 * (num_cycles - 

(trim))) + trim,3)),3)); 
fill_patch_pressure_data = vertcat(data_3((v_min_max_data_2(round(0.5 * 

(num_cycles - (trim))) + trim,2):1:v_min_max_data_2(round(0.5 * (num_cycles - 

(trim))) + trim,3)),2), 0); 
exhaust_patch_volume_data = vertcat(data_3(v_min_max_data_2(round(0.5 * 

(num_cycles - (trim))) + trim,3),3), data_3((v_min_max_data_2(round(0.5 * 

(num_cycles - (trim))) + trim,3):1:v_min_max_data_2((round(0.5 * (num_cycles 

- (trim))) + trim+1),2)),3)); 
exhaust_patch_pressure_data = vertcat(0, data_3((v_min_max_data_2(round(0.5 * 

(num_cycles - (trim))) + trim,3):1:v_min_max_data_2((round(0.5 * (num_cycles 

- (trim))) + trim+1),2)),2)); 
fill_patch = patch (fill_patch_volume_data, fill_patch_pressure_data, 'r'); 
exhaust_patch = patch (exhaust_patch_volume_data, 

exhaust_patch_pressure_data, 'b', 'FaceAlpha', 0.5); 
hold off 
legend('Fill Phase', 'Exhaust Phase', 'Location', 'East'); 
cycle_title_tag = 'PV Curve with Shaded Area for Cycle '; 
cycle_2 = int2str(round(0.5 * (num_cycles - (trim))) + trim - trim); 
total_cycle_number_tag = int2str(num_cycles - trim); 
title_tag = [cycle_title_tag cycle_2 ' of ' total_cycle_number_tag ' 

Cycles']; 
xlabel ('Normalized Volume'); 
ylabel ('Pressure (Kilopascals)'); 
axis ([overall_minimum_volume/overall_maximum_volume 

overall_maximum_volume/overall_maximum_volume overall_minimum_pressure 

overall_maximum_pressure]) 
title (title_tag); 
set (area_fig, 'visible', 'on') 
print (area_fig, '-dtiff', '5_transparent_area_PV_cycle') 

  
% Graphing Details of the PV Curve 
details_fig = figure('visible', 'off'); 
hold on 
plot (data_3((expansion_contraction_pressures_matrix((round(0.5 * (num_cycles 

- (trim))) + trim),2)),3), 

data_3((expansion_contraction_pressures_matrix((round(0.5 * (num_cycles - 

(trim))) + trim),2)),2), 'rv') 
plot (data_3((expansion_contraction_pressures_matrix((round(0.5 * (num_cycles 

- (trim))) + trim),4)),3), 

data_3((expansion_contraction_pressures_matrix((round(0.5 * (num_cycles - 

(trim))) + trim),4)),2), 'bv') 
plot (data_3((v_min_max_data_2((round(0.5 * (num_cycles - (trim))) + 

trim),3)),3), data_3((v_min_max_data_2((round(0.5 * (num_cycles - (trim))) + 

trim),3)),2), 'go') 
plot (data_3((expansion_contraction_pressures_matrix((round(0.5 * (num_cycles 

- (trim))) + trim),3)),3), 

data_3((expansion_contraction_pressures_matrix((round(0.5 * (num_cycles - 

(trim))) + trim),3)),2), 'rv') 
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plot (data_3((expansion_contraction_pressures_matrix((round(0.5 * (num_cycles 

- (trim))) + trim),5)),3), 

data_3((expansion_contraction_pressures_matrix((round(0.5 * (num_cycles - 

(trim))) + trim),5)),2), 'bv') 
plot (data_3((v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + 

trim,2):1:v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + trim,3)),3), 

data_3((v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + 

trim,2):1:v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + trim,3)),2), 

'k-') 
plot (data_3((v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + 

trim,3):1:v_min_max_data_2((round(0.5 * (num_cycles - (trim))) + 

trim+1),2)),3), data_3((v_min_max_data_2(round(0.5 * (num_cycles - (trim))) + 

trim,3):1:v_min_max_data_2((round(0.5 * (num_cycles - (trim))) + 

trim+1),2)),2), 'k-') 
hold off 
legend('Expansion Pressure Boundaries', 'Contraction Pressure Boundaries', 

'Maximum Pressure Fill/Exhaust Phase', 'Location', 'East'); 
cycle_title_tag = 'PV Curve with Details for Cycle '; 
cycle_2 = int2str(round(0.5 * (num_cycles - (trim))) + trim - trim); 
total_cycle_number_tag = int2str(num_cycles - trim); 
title_tag = [cycle_title_tag cycle_2 ' of ' total_cycle_number_tag ' 

Cycles']; 
xlabel ('Normalized Volume'); 
ylabel ('Pressure (Kilopascals)'); 
axis ([overall_minimum_volume/overall_maximum_volume 

overall_maximum_volume/overall_maximum_volume overall_minimum_pressure 

overall_maximum_pressure]) 
title (title_tag); 
set (details_fig, 'visible', 'on') 
print (details_fig, '-dtiff', '6_details_PV_cycle') 

  
% Though not displayed individually, the following figures display the 
% efficiency, energy input and output, and expansion/contraction pressures 
% of each cycle within the test data.  These figures and the data used to 
% produce them are compiled to present data trends across multiple data 
% sets.  

  
% Graphing Efficiency (trimmed) 
efficiency_fig_trimmed = figure('visible', 'off'); 
hold on 
plot(efficiency_mat_cycles((1:1:(num_cycles-trim)),1)', 

efficiency_mat_cycles(((trim + 1):1:(num_cycles)),2), 'k.', 'MarkerSize', 10) 
hold off 
grid on 
xlabel ('Cycle Number'); 
ylabel ('Efficiency (Percentage)'); 
axis ([0, num_cycles-trim, 85, 100]) 
title ('Efficiencies of Each Cycle'); 
set(efficiency_fig_trimmed, 'visible', 'on'); 
print (efficiency_fig_trimmed, '-dtiff', '7_efficiency_trimmed') 

  
% Energy data is normalized for presentation: each data point is 
% represented as a fraction of the maximum input/output energy. 

  
% Graphing Energy (trimmed) 
energy_fig_trimmed = figure('visible', 'off'); 
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subplot (2,1,1) 
plot(efficiency_mat_cycles((1:1:(num_cycles-trim)),1)', 

efficiency_mat_cycles(((trim + 

1):1:(num_cycles)),3)/overall_maximum_energy_in_trimmed, 'r.') 
grid on 
xlabel ('Cycle Number'); 
ylabel ('Normalized Energy (E_i/E_m_a_x)'); 
axis ([0, num_cycles-trim, 0.965, 1.0]) 
title ('Energy Input of Each Cycle'); 
subplot (2,1,2) 
plot(efficiency_mat_cycles((1:1:(num_cycles-trim)),1)', 

efficiency_mat_cycles(((trim + 

1):1:(num_cycles)),4)/overall_maximum_energy_out_trimmed, 'b.') 
grid on 
xlabel ('Cycle Number'); 
ylabel ('Normalized Energy (E_i/E_m_a_x)'); 
axis ([0, num_cycles-trim, 0.965, 1.0]) 
title ('Energy Output of Each Cycle'); 
set(energy_fig_trimmed, 'visible', 'on'); 
print (energy_fig_trimmed, '-dtiff', '8_energy_trimmed')  

  
% The plot for the expansion and contraction pressures includes a best-fit 
% trend line with 95% confidence bounds.   

  
% Graphing Expansion and Contraction Pressures (trimmed) 
exp_contr_pressures_fig_trimmed = figure('visible', 'off'); 
subplot (2,1,1) 
hold on 
plot (expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1), 

expansion_contraction_pressures_matrix(((trim + 1):1:(num_cycles)),6)/1000, 

'r.') 
plot (expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1), 

polyval(expansion_pressure_curve_trimmed, 

expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1)), 'red') 
plot (expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1), 

(polyval(expansion_pressure_curve_trimmed, 

expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1))) + 

expansion_pressure_SD_trimmed*2, 'r--') 
plot (expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1), 

(polyval(expansion_pressure_curve_trimmed, 

expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1))) - 

expansion_pressure_SD_trimmed*2, 'r--') 
hold off 
grid on 
xlabel ('Cycle Number'); 
ylabel ('Pressure (Kilopascals)'); 
axis ([0, num_cycles-trim, (overall_minimum_expansion_pressure_trimmed)-

pressure_adjust, 

(overall_maximum_expansion_pressure_trimmed)+pressure_adjust]) 
title ('Expansion Pressures of Each Cycle'); 
subplot (2,1,2) 
hold on 
plot (expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1), 

expansion_contraction_pressures_matrix(((trim + 1):1:(num_cycles)),7)/1000, 

'b.') 
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plot (expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1), 

polyval(contraction_pressure_curve_trimmed, 

expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1)), 'blue') 
plot (expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1), 

(polyval(contraction_pressure_curve_trimmed, 

expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1))) + 

contraction_pressure_SD_trimmed*2, 'b--') 
plot (expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1), 

(polyval(contraction_pressure_curve_trimmed, 

expansion_contraction_pressures_matrix((1:1:(num_cycles-trim)),1))) - 

contraction_pressure_SD_trimmed*2, 'b--') 
hold off 
grid on 
xlabel ('Cycle Number'); 
ylabel ('Pressure (Kilopascals)'); 
axis ([0, num_cycles-trim, (overall_minimum_contraction_pressure_trimmed)-

pressure_adjust, 

(overall_maximum_contraction_pressure_trimmed)+pressure_adjust]) 
title ('Contraction Pressures of Each Cycle'); 
set(exp_contr_pressures_fig_trimmed, 'visible', 'on'); 
print (exp_contr_pressures_fig_trimmed, '-dtiff', 

'9_expansion_contraction_pressures_trimmed') 

  
disp('Finish'); 

B4: Chapter Five: System Efficiency Increase Data Acquisition and Analysis Code 

B4.1: Data Acquisition Codes 

B4.1.1: Data Acquisition Calibration of Flow Meter for Cylinder Size Code 

 
%This code controls a three-way valve that instrokes and outstrokes a single  
%cylinder and collects data from a flow meter at the inlet of a cylinder to 

%calibrate the transient flow measurement to each cylinder. The valve holds 

%first, then outstrokes the cylinder, holds again, and then instrokes. The 

%flowmeter collects volumetric flow rate and pressure data in volts. 

  
clear all; 
close all; 
clc; 

  
daq_session5 = daq.createSession('ni'); 

  
addAnalogOutputChannel(daq_session5,'cDAQ2Mod1',0:1,'Voltage'); %creates two 

analog output channels for the ao0 and ao1 pins on the NI 9264 
addAnalogInputChannel(daq_session5,'Dev2',0:1,'Voltage'); %creates two analog 

input channels for the ai0 and ai1 pins on the NI 9215 

  

  
daq_session5.Rate = 1000; 

  
daq_session5.Channels(3).Coupling = 'DC'; %sets DC coupling for both input 

channels 
daq_session5.Channels(4).Coupling = 'DC'; 
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instroke_time = .75; %seconds 
hold_time = 1.5; %seconds 
outstroke_time = .375; %seconds 

  
instroke_samples = instroke_time*daq_session5.Rate; %# of samples 
hold_samples = hold_time*daq_session5.Rate; %# of samples 
outstroke_samples = outstroke_time*daq_session5.Rate; %# of samples 
cycle_samples = instroke_samples + 2*hold_samples + outstroke_samples; 

  

  
num_cycles = 102; %number of cycles run 

  
sample_number = cycle_samples*num_cycles; %total number of samples 

  
output_data = zeros(sample_number,2); 
i = 0; 
while cycle_samples*i < sample_number, 
    for k = 1:1:cycle_samples,  
        ind = k+cycle_samples*i; 
        if k > hold_samples && k <= hold_samples+instroke_samples %if k is in 

the instroke region, ao0 is set to 5 V 
            output_data(ind,1) = 5; 
        elseif k > 2*hold_samples+instroke_samples, % if k is in the 

outstroke region ao1 is set to 5 V 
            output_data(ind,2) = 5; 
        end % in the hold region, both channels are 0 V 
    end 
     i = i+1; %i essentially counts the loop iterations 
end 

  
queueOutputData(daq_session5,output_data); %assigns the output data matrix to 

the session 
disp('start'); 

  
[input_data, time] = daq_session5.startForeground();%starts the DAQ session 

in the foreground.  

  
outstroke_hold = zeros(outstroke_samples+1,2); 
outstroke_hold(:,2) = outstroke_hold(:,2)+5; 
outstroke_hold(end,2) = 0; 
queueOutputData(daq_session5,outstroke_hold); 
disp('outstroke'); 
daq_session5.startForeground(); 

  
plot(time,input_data(:,1)); 

 

B4.1.2: System Without Accumulator Data Acquisition Code 

 
%This code controls a three-way valve that instrokes and outstrokes a single  
%cylinder and collects data from a flow meter for individual cylinders 

%simulating a system without an accumulator. The valve holds first, then 

%outstrokes the cylinder, holds again, and then instrokes. The flowmeter 

%collects volumetric flow rate and pressure data in volts. 
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clear all; 
close all; 
clc; 

  
daq_session5 = daq.createSession('ni'); 

  
addAnalogOutputChannel(daq_session5,'cDAQ2Mod1',0:1,'Voltage'); %creates two 

analog output channels for the ao0 and ao1 pins on the NI 9264 
addAnalogInputChannel(daq_session5,'Dev2',0:1,'Voltage'); %creates two analog 

input channels for the ai0 and ai1 pins on the NI 9215 

  

  
daq_session5.Rate = 1000; 

  
daq_session5.Channels(3).Coupling = 'DC'; %sets DC coupling for both input 

channels 
daq_session5.Channels(4).Coupling = 'DC'; 

  
instroke_time = 1; %seconds 
hold_time = 1.5; %seconds 
outstroke_time = 1; %seconds 

  
instroke_samples = instroke_time*daq_session5.Rate; %# of samples 
hold_samples = hold_time*daq_session5.Rate; %# of samples 
outstroke_samples = outstroke_time*daq_session5.Rate; %# of samples 
cycle_samples = instroke_samples + 2*hold_samples + outstroke_samples; 

  
Ps=280; %supply pressure to store as variable in workspace in kPa 
num_cycles = 102; %number of cycles run 

  
sample_number = cycle_samples*num_cycles; %total number of samples 

  
output_data = zeros(sample_number,2); 

  
%initialize counters 
ii = 0; 

  
while cycle_samples*ii < sample_number, 
    for k = 1:1:cycle_samples,  
        ind = k+cycle_samples*ii; 
        if k > hold_samples && k <= hold_samples+instroke_samples %if k is in 

the instroke region, ao0 is set to 5 V 
            output_data(ind,1) = 5; 
        elseif k > 2*hold_samples+instroke_samples, % if k is in the 

outstroke region ao1 is set to 5 V 
            output_data(ind,2) = 5; 
        end % in the hold region, both channels are 0 V 
    end 
     ii = ii+1 %i essentially counts the loop iterations 
end 

  
clc; 
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queueOutputData(daq_session5,output_data); %assigns the output data matrix to 

the session 
disp('start'); 

  
[input_data, time] = daq_session5.startForeground();%starts the DAQ session 

in the foreground.  

  
outstroke_hold = zeros(outstroke_samples+1,2); 
outstroke_hold(:,2) = outstroke_hold(:,2)+5; 
outstroke_hold(end,2) = 0; 
queueOutputData(daq_session5,outstroke_hold); 
disp('outstroke'); 
daq_session5.startForeground(); 

  
figure(1) 
plot(time,input_data(:,1)); 
xlabel('Time (sec)') 
ylabel('Voltage (V)') 
title('Medium Cylinder P_s = 280 kPa absolute') 

 

B4.1.3: System Efficiency Increase Data Acquisition Code 

 
clear all; 
close all; 
clc; 

  
%Create Data Acquisition Session 
daqSessionsys = daq.createSession('ni'); 

  
%Specify input/output channels 
addAnalogOutputChannel(daqSessionsys,'cDAQ2Mod1',0:3,'Voltage'); %creates 

four analog output channels for the ao0, 1, 2,and 3 pins on the NI 9264 
addAnalogInputChannel(daqSessionsys,'Dev2',0:3,'Voltage'); %creates four 

analog input channels for the ai0, 1, 2,  3 channels 

  
%Specify sampling rate for data acquisition 
daqSessionsys.Rate = 1000; 

  
%Specify voltage type for each input channel 
daqSessionsys.Channels(5).Coupling = 'DC'; 
daqSessionsys.Channels(6).Coupling = 'DC'; 
daqSessionsys.Channels(7).Coupling = 'DC'; 
daqSessionsys.Channels(8).Coupling = 'DC'; 

  
%Volume Calculations 
    %Large Cylinder Volume Calculation 
    dL=25;                  %diameter in mm 
    sL=160;                 %stroke length in mm 
    VL=pi()*(dL/2)^2*sL;    %cylinder volume in mm^3 

  
    %Medium Cylinder Volume Calculation 
    dM=20;                  %diameter in mm 
    sM=80;                  %stroke length in mm 
    VM=pi()*(dM/2)^2*sM;    %cylinder volume in mm^3 
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    %Small Cylinder Volume Calculation 
    dS=16;                  %diameter in mm 
    sS=40;                  %stroke length in mm 
    VS=pi()*(dS/2)^2*sS;    %cylinder volume in mm^3 

  
    %Volume Ratio Calculations (non dimensional) 
    V_lm=VL/VM; 
    V_ls=VL/VS; 
    V_ml=VM/VL; 
    V_mm=VM/VM; 
    V_ms=VM/VS; 
    V_sl=VS/VL; 
    V_sm=VS/VM; 

     
%Specify # of cycles, # of fires for each cylinder, and # of sequences run 
numCyl1Cycles = 3; %number of complete cyl 1 cycles (in and out stroke) to be 

run, MUST BE MULTIPLE OF # OF CYL 1 FIRES 
numCyl1Fires = 1; %num of times cyl 1 fires in a sequence 
numCyl2Fires = 3; %num of times cyl 2 fires in a sequence 
totalSequences = 2*numCyl1Cycles/numCyl1Fires; %total number of sequences to 

be run 

  
%Fire and Hold times/samples for each cylinder 
    %Cylinder 1 
    cyl1FireTime = .75; %seconds 
    cyl1HoldTime = 1.5; %seconds, amount of time system holds before firing 

2nd cyl 
    cyl1FireSamp = cyl1FireTime*daqSessionsys.Rate; %# of samples per cyl 1 

fire 
    cyl1HoldSamp = cyl1HoldTime*daqSessionsys.Rate; %# of samples per cyl 1 

hold 
    cyl1StrokeSamp = cyl1FireSamp+cyl1HoldSamp; %samps per stroke (fire and 

hold) for cyl 1 
    cyl1SequenceSamp = numCyl1Fires*cyl1StrokeSamp; %samps per sequence for 

cyl 1 

     
    %Cylinder 2 
    cyl2FireTime = .75; %seconds 
    cyl2HoldTime = .5; %seconds, amount of time system holds before firing 

1st cyl or ending 
    cyl2FireSamp = cyl2FireTime*daqSessionsys.Rate; %# of samples per cyl 2 

fire 
    cyl2HoldSamp = cyl2HoldTime*daqSessionsys.Rate; %# of samples per cyl 2 

hold 
    cyl2StrokeSamp = cyl2FireSamp+cyl2HoldSamp; %samps per stroke (fire and 

hold) for cyl 2 
    cyl2SequenceSamp = numCyl2Fires*cyl2StrokeSamp; %samps per sequence for 

cyl 2 

     
%Specify initial hold time/samples before starting 
startHoldTime = 1; %seconds 
startHoldSamp = startHoldTime*daqSessionsys.Rate; %# of samps 

  
%Total samples in each sequence and in the data collection, 
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totalSequenceSamp = cyl1SequenceSamp + cyl2SequenceSamp; %# of samps in 

sequence 
totalSamp = startHoldSamp + totalSequenceSamp*totalSequences - cyl2HoldSamp; 

%total samps in data collection 

  
%Define output data matrix for test 
outputData = zeros(totalSamp,4); %sets entire matrix to zero (closed 

position) 

  
cycleNum = 0; %tracks how many cycles have been completed 
cyl1Pos = 0; %keeps track of position of cyl 1. Even is in, Odd is out 
cyl2Pos = 0; %keeps track of position of cyl 2. Even is in, Odd is out 

  
%Beginning of loop 
for sequence = 1:1:totalSequences, %tracks which overall sequence the loop is 

on  
    %Cylinder 1 
    k = 0; %# of fires completed in this sequence for Cyl 1 
    while k < numCyl1Fires, 
        for j = 1:1:cyl1FireSamp, 
            index1 = startHoldSamp + totalSequenceSamp*(sequence-1) + j + 

k*cyl1StrokeSamp; 
            %if cyclinder 1 is in, fire out 
            if mod(cyl1Pos,2) == 0, 
                outputData(index1,3) = 5; 
            %if cylinder 1 is out, fire in     
            else 
                outputData(index1,4) = 5; 
            end 
        end 
        k = k+1; 
        cyl1Pos = cyl1Pos+1;     
    end 

     
    %Cylinder 2 
    y = 0; %#of fires completed in this sequence for Cyl 2 
    while y < numCyl2Fires 
        for x = 1:1:cyl2FireSamp, 
            index2 = startHoldSamp + totalSequenceSamp*(sequence-1) + x + 

cyl1SequenceSamp + y*cyl2StrokeSamp; 
            %if cylinder 2 is in, fire out 
            if mod(cyl2Pos,2) == 0, 
                outputData(index2,1) = 5; 
            %if cylinder 2 is out, fire in 
            else 
                outputData(index2,2) = 5; 
            end 
        end 
        y = y+1; 
        cyl2Pos = cyl2Pos+1; 
    end 
end 

  

  
%Assign the output data matrix to the session and start data collection 
queueOutputData(daqSessionsys,outputData); 
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disp('start'); 
[inputData,time] = daqSessionsys.startForeground; 

  
%Specify final exhaust time/samples after data collection 
finalExhaustTime = 5; %seconds 
finalExhaustSamp = finalExhaustTime*daqSessionsys.Rate; %# of samps 

  
%Final exhaust and set every valve to closed at the end 
outputEnding = zeros(finalExhaustSamp+1,4); 
for z = 1:1:finalExhaustSamp, 
    if mod(cyl2Pos-1,2) == 0, 
        %if cyl 2 is in, exhaust in 
        outputEnding(z,2) = 5; 
        %if cyl 2 is out, exhaust out 
    else 
        outputEnding(z,1) = 5; 
    end 
end 

  
queueOutputData(daqSessionsys,outputEnding); 
disp('exhaust'); 
daqSessionsys.startForeground; 

  
%Plot important figures after testing completed to look for anomalies 
figure(1) 
plot(time,inputData(:,1),'r'); 
xlabel('Time (s)'); 
ylabel('Voltage (V)'); 
title('Mass Flow'); 

  
figure(2) 
plot(time,inputData(:,2),'b'); 
xlabel('Time (s)'); 
ylabel('Voltage (V)'); 
title('Source Pressure at Mass Flow Meter'); 

  
figure(3) 
plot(time,inputData(:,3),'g'); 
xlabel('Time (s)'); 
ylabel('Voltage (V)'); 
title('Pressure Sensor 1'); 

  
figure(4) 
plot(time,inputData(:,4),'c'); 
xlabel('Time (s)'); 
ylabel('Voltage (V)'); 
title('Pressure Sensor 2'); 

 

B4.2: Data Analysis Code 

 

B4.2.1: Individual Cylinder/System Without Accumualtor Raw Data Analysis Code 

 
% Based on LCat Variable Names 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Task 1: Translate the output voltage data into meaningful physical data. 

  
disp('Start'); 
disp('Translating Output Data'); 

  
density_air = 1.1840; % grams/Liter (or kilograms / m^3) 

  
mass_flow_data = (-30 + 6*input_data(:,1)) * (0.001/60) * density_air; % 

Kilograms Per Second 
pressure_data = ((16*input_data(:,2)) * 6894.7573); % Pascals 
p_atm = 14.696 * 6894.7573; % Pascals 
cycle_time = hold_time + instroke_time + hold_time + outstroke_time; % The 

sequence for one cycle (Check This)!!! 
sample_rate = instroke_samples/instroke_time; % Samples per second; 
cycle_samples = cycle_time * sample_rate; % Number of samples in one cycle 
time_vector = time;  

  
molar_mass_air = 28.97; % grams per mol 

  
pressure_standard = 101320; % Pascals 
temperature_standard = 298.15; % Kelvin 

  
data_1 = [time_vector, pressure_data, mass_flow_data]; % Compiled, translated 

input data 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Task 2: Integrate the volumetric flow/time data to produce volume/time 

data. 

  
disp('Integrating Volumetric Flow Data'); 

  
running_mass_total = 0; % For the loop  
mass_data = zeros((length(mass_flow_data)),1); % A blank vector for data 

collection 

  
for i = 1:1:(length(mass_flow_data) - 1) % The "-1" is essential for the 

trapezoidal method of integration 
    time_1 = data_1(i,1); 
    time_2 = data_1((i+1),1); 
    time_diff = abs(time_2 - time_1); 
    mass_flow_1 = data_1(i,3); 
    mass_flow_2 = data_1((i+1),3); 
    mass_flow_diff = mass_flow_2 - mass_flow_1; 
    if mass_flow_1 <= mass_flow_2 
        area_under_curve = ((time_diff) * (mass_flow_1)) + ((0.5) * 

(time_diff) * (mass_flow_diff)); 
        running_mass_total = running_mass_total + area_under_curve; 
        mass_data(i+1,1) = running_mass_total; 
    elseif mass_flow_1 > mass_flow_2 
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        area_under_curve = ((time_diff) * (mass_flow_2)) + ((0.5) * 

(time_diff) * (-1)*(mass_flow_diff)); 
        running_mass_total = running_mass_total + area_under_curve; 
        mass_data(i+1,1) = running_mass_total; 
    else 
    end 
end 

  
data_2 = [data_1(:,1), data_1(:,2), mass_data]; % Compiled, includes time, 

pressure, and mass data. 

  
disp('Eliminating Drift') 

  
m_min_max_data_1 = zeros((num_cycles + 1), 3); % Pattern: [cycle number, min 

index, max index] 

  
for i = 1:1:(num_cycles + 1) 
    if i == 1 
        min_index = 1; 
        m_min = data_2(min_index,3); 
        [m_max,max_index] = max(data_2((min_index:1:round((min_index + 

(cycle_samples)))),3)); 
        m_min_max_data_1(i,1) = i; 
        m_min_max_data_1(i,2) = min_index; 
        m_min_max_data_1(i,3) = max_index - 1; 
    elseif i > 1 && i <= (num_cycles - 1) 
        previous_max_index = m_min_max_data_1((i-1),3); 
        [m_min,min_index] = 

min(data_2(((previous_max_index):1:round(((previous_max_index) + 

(cycle_samples)))),3)); 
        min_index = min_index + previous_max_index - 1;  
        [m_max,max_index] = max(data_2(((min_index):1:round(((min_index) + 

(cycle_samples)))),3)); 
        max_index = max_index + min_index - 1;  
        m_min_max_data_1(i,1) = i; 
        m_min_max_data_1(i,2) = min_index + 1; 
        m_min_max_data_1(i,3) = max_index; 
    elseif i == (num_cycles) 
        previous_max_index = m_min_max_data_1((i-1),3); 
        [m_min,min_index] = 

min(data_2(((previous_max_index):1:(round((length(data_2(:,3))) - 

(0.5*cycle_samples)))),3)); 
        min_index = min_index + previous_max_index - 1;  
        [m_max,max_index] = 

max(data_2(((min_index):1:(length(data_2(:,3)))),3)); 
        max_index = max_index + min_index - 1;  
        m_min_max_data_1(i,1) = i; 
        m_min_max_data_1(i,2) = min_index + 1; 
        m_min_max_data_1(i,3) = max_index; 
    elseif i == (num_cycles + 1) 
        previous_max_index = m_min_max_data_1((i-1),3); 
        [m_min,min_index] = 

min(data_2(((previous_max_index):1:(round((length(data_2(:,3)))))),3)); 
        min_index = min_index + previous_max_index - 1;  
        max_index = length(data_2(:,3)); 
        m_max = data_2(max_index,3); 
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        m_min_max_data_1(i,1) = i; 
        m_min_max_data_1(i,2) = min_index; 
        m_min_max_data_1(i,3) = max_index; 
    end 
end 

  
% The original volumetric-flow data is now re-integrated, reseting the 
% running total at the beginning of each new cycle, according to the 
% indecies collected in the immediate script above.  The data is 
% re-integrated for one cycle, then the cycle is adjusted to account for 
% linear drift along the cycle.   

  
running_mass_total = 0;  
cycle_mass_data = zeros((m_min_max_data_1((num_cycles + 1),2)),2); % format: 

[re-integrated volume data, linearly-adjusted volume data] 
cycle_index = 1; 

  
while cycle_index < (num_cycles + 1) 

  
    for i = m_min_max_data_1(cycle_index,2):1:((m_min_max_data_1((cycle_index 

+ 1),2)) - 1)  
        if i == m_min_max_data_1(cycle_index,2) 
            cycle_mass_data(i) = 0; 
            running_mass_total = 0; 
            time_1 = data_1(i,1); 
            time_2 = data_1((i+1),1); 
            time_diff = time_2 - time_1; 
            mass_flow_1 = data_1(i,3); 
            mass_flow_2 = data_1((i+1),3); 
            mass_flow_diff = mass_flow_2 - mass_flow_1; 
            if mass_flow_1 <= mass_flow_2 
                area_under_curve = ((time_diff) * (mass_flow_1)) + ((0.5) * 

(time_diff) * (mass_flow_diff)); 
                running_mass_total = running_mass_total + area_under_curve; 
                cycle_mass_data(i+1,1) = running_mass_total; 
            elseif mass_flow_1 > mass_flow_2 
                area_under_curve = ((time_diff) * (mass_flow_2)) + ((0.5) * 

(time_diff) * (-1)*(mass_flow_diff)); 
                running_mass_total = running_mass_total + area_under_curve; 
                cycle_mass_data(i+1,1) = running_mass_total; 
            else 
            end 
        else 
            time_1 = data_1(i,1); 
            time_2 = data_1((i+1),1); 
            time_diff = time_2 - time_1; 
            mass_flow_1 = data_1(i,3); 
            mass_flow_2 = data_1((i+1),3); 
            mass_flow_diff = mass_flow_2 - mass_flow_1; 
            if mass_flow_1 <= mass_flow_2 
                area_under_curve = ((time_diff) * (mass_flow_1)) + ((0.5) * 

(time_diff) * (mass_flow_diff)); 
                running_mass_total = running_mass_total + area_under_curve; 
                cycle_mass_data(i+1,1) = running_mass_total; 
            elseif mass_flow_1 > mass_flow_2 
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                area_under_curve = ((time_diff) * (mass_flow_2)) + ((0.5) * 

(time_diff) * (-1)*(mass_flow_diff)); 
                running_mass_total = running_mass_total + area_under_curve; 
                cycle_mass_data(i+1,1) = running_mass_total; 
            else 
            end 
        end 
    end 

  
    % Now that the volumetric-flow data has been re-integrated, the small 
    % drift across a cycle must be addressed.  To do so, the following 
    % script identifies points along the cycle where the volumetric flow 
    % should, in theory, be zero: at points before the accumulator has 
    % started to fill with pressurized air.  To identify these points, the 
    % script first identifies the point of maximum volumetric flow along 
    % the cycle, then tests each data point from the maximum volumetric 
    % flow until the start of the cycle (testing 'backwards' in time, so to 
    % speak).  If the difference between the volumetric flows of the test  
    % point and the start of the cycle is greater than a given threshold, 
    % then the volumetric flow cannot be considered essentially zero, and 
    % the next test point is evaluated.  This process continues until a 
    % suitible test point has been identified.  If the number of samples 
    % between the suitible test point and the start of the cycle isn't 
    % significant, than linear regression analysis isn't an opiton and the 
    % re-integrated data remains ultimately unchanged.   

     
    [mass_flow_max, mass_flow_index] = 

max(data_1((m_min_max_data_1(cycle_index,2):1:m_min_max_data_1(cycle_index,3)

),3)); % This is the index within the individual cycle 
    mass_flow_index = mass_flow_index + m_min_max_data_1(cycle_index,2) - 1; 

% Now, the index has been adjusted within the entire data set 
    minimum_difference = 10e-07; 
    minimum_significant_data_points = 100000; % Originally 10, high number 

prevents this second linear drift function 

     
    suitible_mass_flow_index = 0; 

     
    for j = mass_flow_index:-1:m_min_max_data_1(cycle_index,2) 
        if data_1(j,3) <= minimum_difference && suitible_mass_flow_index == 0 
            suitible_mass_flow_index = j; 
        else 
            continue 
        end 
    end 

     
    % Next, all points of volume data between the start of the cycle to the  
    % suitible test point are considered to be of equal volume, zero.  A  
    % line of best fit is evaluated through these data points, producing a  
    % general trend line upon which all data within the cycle has been  
    % superimposed. Expected values for each data point as a function of  
    % time can be constructed from this trend line and subtracted out of  
    % the data.   

     
    linear_regression_matrix = zeros((length(data_2(:,3))),4); % [time, 

volume, time^2, time * volume] 
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    for k = m_min_max_data_1(cycle_index,2):1:suitible_mass_flow_index 
        t_k = (k - m_min_max_data_1(cycle_index,2))/sample_rate; 
        m_k = cycle_mass_data(k,1); 
        linear_regression_matrix(k,1) = t_k; 
        linear_regression_matrix(k,2) = m_k; 
        linear_regression_matrix(k,3) = t_k^2; 
        linear_regression_matrix(k,4) = t_k * m_k; 
    end 

  
    % Linear function format: y = A + (B * x) 
    A = 0; 
    B = 0;  
    if (suitible_mass_flow_index - m_min_max_data_1(cycle_index,2)) >= 

minimum_significant_data_points 
        B = 

(sum(linear_regression_matrix(:,4)))/(sum(linear_regression_matrix(:,3))); 
    end 

  
    for l = (m_min_max_data_1(cycle_index,2) + 

1):1:(m_min_max_data_1((cycle_index + 1),2) - 1) 
        old_cycle_mass = cycle_mass_data(l,1); 
        time_value = (l - m_min_max_data_1(cycle_index,2))/sample_rate; 
        linear_volume = A + (B * time_value); 
        new_cycle_mass = old_cycle_mass - linear_volume; 
        cycle_mass_data(l,2) = new_cycle_mass; 
    end 

  
    % The following string script displays the real-time status of this 
    % data-cleaning process. 

     
    completed_cycle_number_tag = int2str(cycle_index); 
    total_cycle_number_tag = int2str(num_cycles); 
    status_tag = ['Drift removed from ' completed_cycle_number_tag ' of ' 

total_cycle_number_tag ' cycles']; 
    disp(status_tag); 

  
    cycle_index = cycle_index + 1; 

  
end 

  
% Lastly, the re-integrated cycle volume is forced to zero at the end of 
% the final cycle and a new data set reflecting the cleaned volume data is 
% created. 

  
cycle_mass_data((m_min_max_data_1((num_cycles + 1),2)),1) = 0; 
cycle_mass_data((m_min_max_data_1((num_cycles + 1),2)),2) = 0; 

  
data_3 = [data_2((1:1:length(cycle_mass_data(:,2))),1), 

data_2((1:1:length(cycle_mass_data(:,2))),2), cycle_mass_data(:,2)]; % 

Includes time, pressure, and cleaned volume data 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  



140 

 

% Task 3: Find and average the maximum volumes per each cycle. 

  
m_max_data = zeros(length(m_min_max_data_1(:,1))-3,2); % [cycle, max_volume] 

  
for i = (1:1:length(m_min_max_data_1(:,1))-3) 
    cycle = i; 
    max_volume = data_3((m_min_max_data_1(i+1,3)),3); 
    m_max_data(i,1) = cycle; 
    m_max_data(i,2) = max_volume; 
end 

  
average_max_mass = mean(m_max_data(:,2)); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Task 4: Produce plots and figures of the analyzed data. 

  
disp('Generating Figures'); 

  
% Determing maximum and minimum data over many variables is necessary when  
% framing the presented data within proper bounds. 

  
overall_minimum_pressure = min(data_3(:,2)); 
overall_maximum_pressure = max(data_3(:,2)); 

  
overall_minimum_mass_flow = min(data_1(:,3)); 
overall_maximum_mass_flow = max(data_1(:,3)); 

  
overall_minimum_mass = min(data_3(:,3)); 
overall_maximum_mass = max(data_3(:,3)); 

  
% The following figures display pressure as a function of time, volumetric  
% flow as a function of time, and volume as a function of time for some 
% sample cycles within the data.  The figures are also stored to a file for 
% later retrieval.   

  
% Graphing pressure(t) (pressure in kPa): 
pressure_fig = figure('visible', 'off'); 
plot (data_3(:,1),(data_3(:,2))/1000,'blue'); 
xlabel ('Time (Seconds)'); 
ylabel ('Pressure (Kilopascals)'); 
axis ([0 max(time) overall_minimum_pressure/1000 

overall_maximum_pressure/1000]) 
title ('Pressure as a Function of Time'); 
set(pressure_fig, 'visible', 'on'); 
print (pressure_fig, '-dtiff', '1_b_pressure_vs_time') 

  
% Graphing mass-flow(t) (selected cycles) (in kilograms per second): 
volumetric_flow_fig = figure('visible', 'off'); 
plot (data_1(:,1),data_1(:,3),'red'); 
xlabel ('Time (Seconds)'); 
ylabel ('Mass Flow (Kilograms Per Second)'); 
axis ([0 max(time) overall_minimum_mass_flow overall_maximum_mass_flow]) 
title ('Mass Flow as a Function of Time'); 
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set(volumetric_flow_fig, 'visible', 'on'); 
print (volumetric_flow_fig, '-dtiff', '2_b_mass_flow_vs_time') 

  
% Graphing volume(t) (kilograms): 
volume_fig = figure('visible', 'off'); 
plot (data_3(:,1),data_3(:,3),'red'); 
xlabel ('Time (Seconds)'); 
ylabel ('Mass (Kilograms)'); 
axis ([0 max(time) overall_minimum_mass overall_maximum_mass]) 
title ('Mass as a Function of Time'); 
set(volume_fig, 'visible', 'on'); 
print (volume_fig, '-dtiff', '3_b_mass_vs_time') 

  
% Graphing volume(t) - m_max check (kilograms): 
volume_fig = figure('visible', 'off'); 
hold on 
plot (data_2(:,1),data_2(:,3),'black'); 
plot 

(data_2((m_min_max_data_1(:,3)),1),data_2((m_min_max_data_1(:,3)),3),'go'); 
hold off 
xlabel ('Time (Seconds)'); 
ylabel ('Mass (Kilograms)'); 
title ('Mass as a Function of Time'); 
set(volume_fig, 'visible', 'on'); 
print (volume_fig, '-dtiff', '3_f_mass_vs_time') 

  
% Graphing mass(t) - m_max check (kilograms): 
volume_fig = figure('visible', 'off'); 
hold on 
plot (data_3(:,1),data_3(:,3),'black'); 
plot 

(data_3((m_min_max_data_1(:,3)),1),data_3((m_min_max_data_1(:,3)),3),'go'); 
hold off 
xlabel ('Time (Seconds)'); 
ylabel ('Mass (Kilograms)'); 
axis ([0 max(time) overall_minimum_mass overall_maximum_mass]) 
title ('Mass as a Function of Time'); 
set(volume_fig, 'visible', 'on'); 
print (volume_fig, '-dtiff', '3_d_mass_vs_time') 

  
% Graphing max masses: 
max_volume_fig = figure('visible', 'off'); 
plot (m_max_data(:,1), m_max_data(:,2), 'o') 
xlabel ('Cycle'); 
ylabel ('Maximum Mass (Kilograms)'); 
axis ([0 max(m_max_data(:,1)) overall_minimum_mass overall_maximum_mass]) 
title ('Maximum Mass of Each Cycle'); 
set(max_volume_fig, 'visible', 'on') 
print(max_volume_fig, '-dtiff', '3_e_max_masses') 

  
disp('Finish'); 

 

B4.2.2: System Efficiency Raw Data Analysis Code 

 
% Based on LCat Variable Names 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Task 1: Translate the output voltage data into meaningful physical data. 

  
disp('Start'); 
disp('Translating Output Data'); 

  
density_air = 1.1840; % grams/Liter (or kilograms / m^3) 
molar_mass_air = 28.97; % grams per mol 
pressure_standard = 101320; % Pascals 
temperature_standard = 298.15; % Kelvin 
p_atm = 14.696 * 6894.7573; % Pascals 

  
mass_flow_data = (-30 + 6*inputData(:,1)) * (0.001/60) * density_air; % 

Kilograms Per Second 
pressure_data = ((16*inputData(:,2)) * 6894.7573); % Pascals 
% cycle_time = hold_time + instroke_time + hold_time + outstroke_time; % The 

sequence for one cycle (Check This)!!! 
sample_rate = 1000; % Samples per second; 
cycle_samples = totalSequenceSamp; % Number of samples in one cycle 
time_vector = time;  
num_cycles = totalSequences; 

  
startHoldSamp_edit = 0;  

  
adjusted_mass_flow_data = 

mass_flow_data((startHoldSamp_edit+1:1:length(mass_flow_data)),1); 
adjusted_pressure_data = 

pressure_data((startHoldSamp_edit+1:1:length(pressure_data)),1); 
adjusted_time_vector = 

time_vector((startHoldSamp_edit+1:1:length(time_vector)),1); 

  
data_1 = [adjusted_time_vector, adjusted_pressure_data, 

adjusted_mass_flow_data]; % Compiled, translated input data 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Task 2: Integrate the volumetric flow/time data to produce volume/time 

data. 

  
disp('Integrating Volumetric Flow Data'); 

  
running_mass_total = 0; % For the loop  
mass_data = zeros(length(adjusted_mass_flow_data),1); % A blank vector for 

data collection 

  
for i = 1:1:(length(adjusted_mass_flow_data) - 1) % The "-1" is essential for 

the trapezoidal method of integration 
    time_1 = data_1(i,1); 
    time_2 = data_1((i+1),1); 
    time_diff = abs(time_2 - time_1); 
    mass_flow_1 = data_1(i,3); 
    mass_flow_2 = data_1((i+1),3); 
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    mass_flow_diff = mass_flow_2 - mass_flow_1; 
    if mass_flow_1 <= mass_flow_2 
        area_under_curve = ((time_diff) * (mass_flow_1)) + ((0.5) * 

(time_diff) * (mass_flow_diff)); 
        running_mass_total = running_mass_total + area_under_curve; 
        mass_data(i+1,1) = running_mass_total; 
    elseif mass_flow_1 > mass_flow_2 
        area_under_curve = ((time_diff) * (mass_flow_2)) + ((0.5) * 

(time_diff) * (-1)*(mass_flow_diff)); 
        running_mass_total = running_mass_total + area_under_curve; 
        mass_data(i+1,1) = running_mass_total; 
    else 
    end 
end 

  
data_2 = [data_1(:,1), data_1(:,2), mass_data]; % Compiled, includes time, 

pressure, and mass data. 

  
disp('Eliminating Drift') 

  
m_min_max_data_1 = zeros((num_cycles), 3); % Pattern: [cycle number, min 

index, max index] 

  
for i = 1:1:(num_cycles) 
    if i == 1 
        min_index = 1; 
        m_min = data_2(min_index,3); 
        [m_max,max_index] = max(data_2((min_index:1:(min_index + 

(cycle_samples))),3)); 
        m_min_max_data_1(i,1) = i; 
        m_min_max_data_1(i,2) = min_index; 
        m_min_max_data_1(i,3) = max_index - 1; 
    elseif i > 1 && i <= (num_cycles - 1) 
        previous_max_index = m_min_max_data_1((i-1),3); 
        [m_min,min_index] = 

min(data_2(((previous_max_index):1:((previous_max_index) + 

(cycle_samples))),3)); 
        min_index = min_index + previous_max_index - 1;  
        [m_max,max_index] = max(data_2(((min_index):1:((min_index) + 

(cycle_samples))),3)); 
        max_index = max_index + min_index - 1;  
        m_min_max_data_1(i,1) = i; 
        m_min_max_data_1(i,2) = min_index + 1; 
        m_min_max_data_1(i,3) = max_index; 
    elseif i == (num_cycles) 
        previous_max_index = m_min_max_data_1((i-1),3); 
        min_index = previous_max_index;  
        max_index = length(mass_data);  
        m_min_max_data_1(i,1) = i; 
        m_min_max_data_1(i,2) = min_index + 1; 
        m_min_max_data_1(i,3) = max_index; 
    end 
end 

  
% The original volumetric-flow data is now re-integrated, reseting the 
% running total at the beginning of each new cycle, according to the 
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% indecies collected in the immediate script above.  The data is 
% re-integrated for one cycle, then the cycle is adjusted to account for 
% linear drift along the cycle.   

  
running_mass_total = 0;  
cycle_mass_data = zeros((m_min_max_data_1((num_cycles),3)),2); % format: [re-

integrated volume data, linearly-adjusted volume data] 
cycle_index = 1; 

  
while cycle_index < (num_cycles + 1) 

  
    for i = 

m_min_max_data_1(cycle_index,2):1:((m_min_max_data_1((cycle_index),3)) - 1)  
        if i == m_min_max_data_1(cycle_index,2) 
            cycle_mass_data(i) = 0; 
            running_mass_total = 0; 
            time_1 = data_1(i,1); 
            time_2 = data_1((i+1),1); 
            time_diff = time_2 - time_1; 
            mass_flow_1 = data_1(i,3); 
            mass_flow_2 = data_1((i+1),3); 
            mass_flow_diff = mass_flow_2 - mass_flow_1; 
            if mass_flow_1 <= mass_flow_2 
                area_under_curve = ((time_diff) * (mass_flow_1)) + ((0.5) * 

(time_diff) * (mass_flow_diff)); 
                running_mass_total = running_mass_total + area_under_curve; 
                cycle_mass_data(i+1,1) = running_mass_total; 
            elseif mass_flow_1 > mass_flow_2 
                area_under_curve = ((time_diff) * (mass_flow_2)) + ((0.5) * 

(time_diff) * (-1)*(mass_flow_diff)); 
                running_mass_total = running_mass_total + area_under_curve; 
                cycle_mass_data(i+1,1) = running_mass_total; 
            else 
            end 
        else 
            time_1 = data_1(i,1); 
            time_2 = data_1((i+1),1); 
            time_diff = time_2 - time_1; 
            mass_flow_1 = data_1(i,3); 
            mass_flow_2 = data_1((i+1),3); 
            mass_flow_diff = mass_flow_2 - mass_flow_1; 
            if mass_flow_1 <= mass_flow_2 
                area_under_curve = ((time_diff) * (mass_flow_1)) + ((0.5) * 

(time_diff) * (mass_flow_diff)); 
                running_mass_total = running_mass_total + area_under_curve; 
                cycle_mass_data(i+1,1) = running_mass_total; 
            elseif mass_flow_1 > mass_flow_2 
                area_under_curve = ((time_diff) * (mass_flow_2)) + ((0.5) * 

(time_diff) * (-1)*(mass_flow_diff)); 
                running_mass_total = running_mass_total + area_under_curve; 
                cycle_mass_data(i+1,1) = running_mass_total; 
            else 
            end 
        end 
    end 
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    % Now that the volumetric-flow data has been re-integrated, the small 
    % drift across a cycle must be addressed.  To do so, the following 
    % script identifies points along the cycle where the volumetric flow 
    % should, in theory, be zero: at points before the accumulator has 
    % started to fill with pressurized air.  To identify these points, the 
    % script first identifies the point of maximum volumetric flow along 
    % the cycle, then tests each data point from the maximum volumetric 
    % flow until the start of the cycle (testing 'backwards' in time, so to 
    % speak).  If the difference between the volumetric flows of the test  
    % point and the start of the cycle is greater than a given threshold, 
    % then the volumetric flow cannot be considered essentially zero, and 
    % the next test point is evaluated.  This process continues until a 
    % suitible test point has been identified.  If the number of samples 
    % between the suitible test point and the start of the cycle isn't 
    % significant, than linear regression analysis isn't an opiton and the 
    % re-integrated data remains ultimately unchanged.   

     
    [mass_flow_max, mass_flow_index] = 

max(data_1((m_min_max_data_1(cycle_index,2):1:m_min_max_data_1(cycle_index,3)

),3)); % This is the index within the individual cycle 
    mass_flow_index = mass_flow_index + m_min_max_data_1(cycle_index,2) - 1; 

% Now, the index has been adjusted within the entire data set 
    minimum_difference = 10e-07; 
    minimum_significant_data_points = 100000; % Originally 10, high number 

prevents this second linear drift function 

     
    suitible_mass_flow_index = 0; 

     
    for j = mass_flow_index:-1:m_min_max_data_1(cycle_index,2) 
        if data_1(j,3) <= minimum_difference && suitible_mass_flow_index == 0 
            suitible_mass_flow_index = j; 
        else 
            continue 
        end 
    end 

     
    % Next, all points of volume data between the start of the cycle to the  
    % suitible test point are considered to be of equal volume, zero.  A  
    % line of best fit is evaluated through these data points, producing a  
    % general trend line upon which all data within the cycle has been  
    % superimposed. Expected values for each data point as a function of  
    % time can be constructed from this trend line and subtracted out of  
    % the data.   

     
    linear_regression_matrix = zeros((length(data_2(:,3))),4); % [time, 

volume, time^2, time * volume] 

  
    for k = m_min_max_data_1(cycle_index,2):1:suitible_mass_flow_index 
        t_k = (k - m_min_max_data_1(cycle_index,2))/sample_rate; 
        m_k = cycle_mass_data(k,1); 
        linear_regression_matrix(k,1) = t_k; 
        linear_regression_matrix(k,2) = m_k; 
        linear_regression_matrix(k,3) = t_k^2; 
        linear_regression_matrix(k,4) = t_k * m_k; 
    end 
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    % Linear function format: y = A + (B * x) 
    A = 0; 
    B = 0;  
    if (suitible_mass_flow_index - m_min_max_data_1(cycle_index,2)) >= 

minimum_significant_data_points 
        B = 

(sum(linear_regression_matrix(:,4)))/(sum(linear_regression_matrix(:,3))); 
    end 

  
    for l = (m_min_max_data_1(cycle_index,2) + 

1):1:(m_min_max_data_1((cycle_index),3) - 1) 
        old_cycle_mass = cycle_mass_data(l,1); 
        time_value = (l - m_min_max_data_1(cycle_index,2))/sample_rate; 
        linear_volume = A + (B * time_value); 
        new_cycle_mass = old_cycle_mass - linear_volume; 
        cycle_mass_data(l,2) = new_cycle_mass; 
    end 

  
    % The following string script displays the real-time status of this 
    % data-cleaning process. 

     
    completed_cycle_number_tag = int2str(cycle_index); 
    total_cycle_number_tag = int2str(num_cycles); 
    status_tag = ['Drift removed from ' completed_cycle_number_tag ' of ' 

total_cycle_number_tag ' cycles']; 
    disp(status_tag); 

  
    cycle_index = cycle_index + 1; 

  
end 

  
% Lastly, the re-integrated cycle volume is forced to zero at the end of 
% the final cycle and a new data set reflecting the cleaned volume data is 
% created. 

  
data_3 = [data_2((1:1:length(cycle_mass_data(:,2))),1), 

data_2((1:1:length(cycle_mass_data(:,2))),2), cycle_mass_data(:,2)]; % 

Includes time, pressure, and cleaned volume data 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Task 3: Find and average the maximum volumes per each cycle. 

  
m_max_data = zeros(length(m_min_max_data_1(:,1))-3,2); % [cycle, max_volume] 

  
for i = (1:1:length(m_min_max_data_1(:,1))-3) 
    cycle = i; 
    max_volume = data_3((m_min_max_data_1(i+1,3)),3); 
    m_max_data(i,1) = cycle; 
    m_max_data(i,2) = max_volume; 
end 

  
average_max_mass = mean(m_max_data(:,2)); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Task 4: Produce plots and figures of the analyzed data. 

  
disp('Generating Figures'); 

  
% Determing maximum and minimum data over many variables is necessary when  
% framing the presented data within proper bounds. 

  
overall_minimum_pressure = min(data_3(:,2)); 
overall_maximum_pressure = max(data_3(:,2)); 

  
overall_minimum_mass_flow = min(data_1(:,3)); 
overall_maximum_mass_flow = max(data_1(:,3)); 

  
overall_minimum_mass = min(data_3(:,3)); 
overall_maximum_mass = max(data_3(:,3)); 

  
% The following figures display pressure as a function of time, volumetric  
% flow as a function of time, and volume as a function of time for some 
% sample cycles within the data.  The figures are also stored to a file for 
% later retrieval.   

  
% Graphing volume(t) - m_max check (kilograms): 
volume_fig = figure('visible', 'off'); 
hold on 
plot (data_2(:,1),data_2(:,3),'black'); 
plot 

(data_2((m_min_max_data_1(:,3)),1),data_2((m_min_max_data_1(:,3)),3),'go'); 
hold off 
xlabel ('Time (Seconds)'); 
ylabel ('Mass (Kilograms)'); 
title ('Mass as a Function of Time'); 
set(volume_fig, 'visible', 'on'); 
print (volume_fig, '-dtiff', '3_f_mass_vs_time') 

  
disp('Finish'); 

 

B4.2.3: System Efficiency Increase Analysis Code 

 
clear all; 
close all; 
clc; 

  
%% Constant and System Test Parameter Definitions 

  
%Constants used in ideal gas equation set to 1 since they cancel in mass 
%ratio when calculating efficiency improvements (CHANGE IF ACT MASS USED) 
R=1; 
T=1; 

  
%System Test Parameters from system efficiency testing 
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%MAKE SURE TO CHECK THESE MATCH SYSTEM TESTING PARAMETERS 

  
%Test 1: Small To Medium Cylinder 
n1=10;                  %number of cycles used for data analysis 
r1=2;                   %fire ratio value here 2:1 
T1Cyl1Fires=2*n1;       %total number of fires for cylinder 1 in test 1 
T1Cyl2Fires=2*n1/r1;    %total number of fires for cylinder 2 in test 1 

  
%Test 2: Small To Large Cylinder 
n2=10;                  %number of cycles used for data analysis 
r2=5;                   %fire ratio value here 5:1 
T2Cyl1Fires=2*n2;       %total number of fires for cylinder 1 in test 2 
T2Cyl2Fires=2*n2/r2;    %total number of fires for cylinder 2 in test 2 

  
%Test 3: Medium To Small Cylinder 
n3=10;                  %number of cycles used for data analysis 
r3=3;                   %fire ratio value here 1:3 
T3Cyl1Fires=2*n3;       %total number of fires for cylinder 1 in test 3 
T3Cyl2Fires=2*n3*r3;    %total number of fires for cylinder 2 in test 3 

  
%Test 4: Medium to Medium Cylinder 
n41=10;                 %number of cycles used for data analysis 
r41=2;                  %fire ratio value here 1:2 
n42=3;                  %number of cycles used for data analysis 
r42=1;                  %fire ratio value here 1:1 
T4Cyl1Fires1=2*n41;     %total number of fires for cylinder 1 in test 4 

condition 1 
T4Cyl2Fires1=2*n41*r41; %total number of fires for cylinder 2 in test 4 

condition 1 
T4Cyl1Fires2=2*n42;     %total number of fires for cylinder 1 in test 4 

condition 2 
T4Cyl2Fires2=2*n42*r42; %total number of fires for cylinder 2 in test 4 

condition 2 

  
%Test 5: Medium to Large Cylinder 
n5=10;                  %number of cycles used for data analysis 
r5=2;                   %fire ratio value here 2:1 
T5Cyl1Fires=2*n5;       %total number of fires for cylinder 1 in test 5 
T5Cyl2Fires=2*n5/r5;    %total number of fires for cylinder 2 in test 5 

  
%Test 6: Large to Small Cylinder 
n6=10;                  %number of cycles used for data analysis 
r6=8;                   %fire ratio value here 1:8 
T6Cyl1Fires=2*n6;       %total number of fires for cylinder 1 in test 6 
T6Cyl2Fires=2*n6*r6;    %total number of fires for cylinder 2 in test 6 

  
%Test 7: Large to Medium Cylinder 
n71=3;                  %number of cycles used for data analysis 
r71=4;                  %fire ratio value here 1:4 
n72=3;                  %number of cycles used for data analysis 
r72=3;                  %fire ratio value here 1:3 
T7Cyl1Fires1=2*n71;     %total number of fires for cylinder 1 in test 7 

condition 1 
T7Cyl2Fires1=2*n71*r71; %total number of fires for cylinder 2 in test 7 

condition 1 
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T7Cyl1Fires2=2*n72;     %total number of fires for cylinder 1 in test 7 

condition 2 
T7Cyl2Fires2=2*n72*r72; %total number of fires for cylinder 2 in test 7 

condition 2 

  
% Tests=[SL SM_ML MM1 MS_LM3 LS] 
F_Ratio=[1/r2 1/r1 r42 r3 r6]; 
% Tests=[SL SM ML MM1 MS LM3 LS] 
F_Ratio2=[1/r2 1/r1 1/r5 r42 r3 r72 r6]; 
% Tests=[MM2 LM4] 
F_Ratio3=[r41 r71]; 

  
%% Volume Calculations 

  
%Large Cylinder Volume Calculation 
dL=25;                  %diameter in mm 
sL=160;                 %stroke length in mm 
VL=pi()*(dL/2)^2*sL;    %cylinder volume in mm^3 

  
%Medium Cylinder Volume Calculation 
dM=20;                  %diameter in mm 
sM=80;                  %stroke length in mm 
VM=pi()*(dM/2)^2*sM;    %cylinder volume in mm^3 

  
%Small Cylinder Volume Calculation 
dS=16;                  %diameter in mm 
sS=40;                  %stroke length in mm 
VS=pi()*(dS/2)^2*sS;    %cylinder volume in mm^3 

  
%Volume Ratio Calculations (non dimensional) 
V_lm=VL/VM; 
V_ls=VL/VS; 
V_ml=VM/VL; 
V_mm=VM/VM; 
V_ms=VM/VS; 
V_sl=VS/VL; 
V_sm=VS/VM; 

     
%% Pressure Values 

  
Ps=500;                 %Supply pressure in kPa 
Pexp=323.5;             %Accumulator expansion pressure in kPa 
Pcon=280;               %Accumulator contraction pressure in kPa 

  
%% Analytical Mass Calculations 

  
%Supply Pressure 
mLs=Ps*VL/(R*T); 
mMs=Ps*VM/(R*T); 
mSs=Ps*VS/(R*T); 

  
%Accumulator Contraction Pressure 
mLc=Pcon*VL/(R*T); 
mMc=Pcon*VM/(R*T); 
mSc=Pcon*VS/(R*T); 
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%Post script on variables: 
%R indicates partially regulated pressure system 
%U indicates unregulated pressure system 
%W indicates fully regulated, equal work system 

  
%Test 1: Small to Medium 
T1TotMW=T1Cyl1Fires*mSs; 
T1TotMWOR=T1Cyl1Fires*mSs+T1Cyl2Fires*mMc; 
T1EffImpR=(1-T1TotMW/T1TotMWOR)*100; 
T1TotMWOU=T1Cyl1Fires*mSs+T1Cyl2Fires*mMs; 
T1EffImpU=(1-T1TotMW/T1TotMWOU)*100; 
T1TotMWOW=T1Cyl1Fires*mSc+T1Cyl2Fires*mMc; 
T1EffImpW=(1-T1TotMW/T1TotMWOW)*100; 

  
%Test 2: Small to Large 
T2TotMW=T2Cyl1Fires*mSs; 
T2TotMWOR=T2Cyl1Fires*mSs+T2Cyl2Fires*mLc; 
T2EffImpR=(1-T2TotMW/T2TotMWOR)*100; 
T2TotMWOU=T2Cyl1Fires*mSs+T2Cyl2Fires*mLs; 
T2EffImpU=(1-T2TotMW/T2TotMWOU)*100; 
T2TotMWOW=T2Cyl1Fires*mSc+T2Cyl2Fires*mLc; 
T2EffImpW=(1-T2TotMW/T2TotMWOW)*100; 

  
%Test 3: Medium to Small 
T3TotMW=T3Cyl1Fires*mMs; 
T3TotMWOR=T3Cyl1Fires*mMs+T3Cyl2Fires*mSc; 
T3EffImpR=(1-T3TotMW/T3TotMWOR)*100; 
T3TotMWOU=T3Cyl1Fires*mMs+T3Cyl2Fires*mSs; 
T3EffImpU=(1-T3TotMW/T3TotMWOU)*100; 
T3TotMWOW=T3Cyl1Fires*mMc+T3Cyl2Fires*mSc; 
T3EffImpW=(1-T3TotMW/T3TotMWOW)*100; 

  
%Test 4: Medium to Medium 
T4TotMW1=T4Cyl1Fires1*mMs; 
T4TotMWO1R=T4Cyl1Fires1*mMs+T4Cyl2Fires1*mMc; 
T4EffImp1R=(1-T4TotMW1/T4TotMWO1R)*100; 
T4TotMWO1U=T4Cyl1Fires1*mMs+T4Cyl2Fires1*mMs; 
T4EffImp1U=(1-T4TotMW1/T4TotMWO1U)*100; 
T4TotMWO1W=T4Cyl1Fires1*mMc+T4Cyl2Fires1*mMc; 
T4EffImp1W=(1-T4TotMW1/T4TotMWO1W)*100; 
T4TotMW2=T4Cyl1Fires2*mMs; 
T4TotMWO2R=T4Cyl1Fires2*mMs+T4Cyl2Fires2*mMc; 
T4EffImp2R=(1-T4TotMW2/T4TotMWO2R)*100; 
T4TotMWO2U=T4Cyl1Fires2*mMs+T4Cyl2Fires2*mMs; 
T4EffImp2U=(1-T4TotMW2/T4TotMWO2U)*100; 
T4TotMWO2W=T4Cyl1Fires2*mMc+T4Cyl2Fires2*mMc; 
T4EffImp2W=(1-T4TotMW2/T4TotMWO2W)*100; 

  
%Test 5: Medium to Large 
T5TotMW=T5Cyl1Fires*mMs; 
T5TotMWOR=T5Cyl1Fires*mMs+T5Cyl2Fires*mLc; 
T5EffImpR=(1-T5TotMW/T5TotMWOR)*100; 
T5TotMWOU=T5Cyl1Fires*mMs+T5Cyl2Fires*mLs; 
T5EffImpU=(1-T5TotMW/T5TotMWOU)*100; 
T5TotMWOW=T5Cyl1Fires*mMc+T5Cyl2Fires*mLc; 
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T5EffImpW=(1-T5TotMW/T5TotMWOW)*100; 

  
%Test 6: Large to Small 
T6TotMW=T6Cyl1Fires*mLs; 
T6TotMWOR=T6Cyl1Fires*mLs+T6Cyl2Fires*mSc; 
T6EffImpR=(1-T6TotMW/T6TotMWOR)*100; 
T6TotMWOU=T6Cyl1Fires*mLs+T6Cyl2Fires*mSs; 
T6EffImpU=(1-T6TotMW/T6TotMWOU)*100; 
T6TotMWOW=T6Cyl1Fires*mLc+T6Cyl2Fires*mSc; 
T6EffImpW=(1-T6TotMW/T6TotMWOW)*100; 

  
%Test 7: Large to Medium 
T7TotMW1=T7Cyl1Fires1*mLs; 
T7TotMWO1R=T7Cyl1Fires1*mLs+T7Cyl2Fires1*mMc; 
T7EffImp1R=(1-T7TotMW1/T7TotMWO1R)*100; 
T7TotMWO1U=T7Cyl1Fires1*mLs+T7Cyl2Fires1*mMs; 
T7EffImp1U=(1-T7TotMW1/T7TotMWO1U)*100; 
T7TotMWO1W=T7Cyl1Fires1*mLc+T7Cyl2Fires1*mMc; 
T7EffImp1W=(1-T7TotMW1/T7TotMWO1W)*100; 
T7TotMW2=T7Cyl1Fires2*mLs; 
T7TotMWO2R=T7Cyl1Fires2*mLs+T7Cyl2Fires2*mMc; 
T7EffImp2R=(1-T7TotMW2/T7TotMWO2R)*100; 
T7TotMWO2U=T7Cyl1Fires2*mLs+T7Cyl2Fires2*mMs; 
T7EffImp2U=(1-T7TotMW2/T7TotMWO2U)*100; 
T7TotMWO2W=T7Cyl1Fires2*mLc+T7Cyl2Fires2*mMc; 
T7EffImp2W=(1-T7TotMW2/T7TotMWO2W)*100; 

  
% Tests=[SL SM_ML MM1 MS_LM3 LS] 
EffImpR=[T2EffImpR T1EffImpR T4EffImp2R T3EffImpR T6EffImpR] 

  
% Tests=[SL SM_ML MM1 MS_LM3 LS] 
EffImpU=[T2EffImpU T1EffImpU T4EffImp2U T3EffImpU T6EffImpU] 

  
% Tests=[SL SM_ML MM1 MS_LM3 LS] 
EffImpW=[T2EffImpW T1EffImpW T4EffImp2W T3EffImpW T6EffImpW] 

  
%% Mass and Efficiency Values from Test Data (manually input from data 

analysis code results/excel spreadsheet) 

  
% Tests=[SL (SM ML) MM1 (MS LM3) LS] 
ExpEffImpR=[68.6 61.4 58.4 46.4 44.4 38 31.9] %Used Manual Seq Cycle Avg from 

excel 
% Tests=[MM2 LM4] 
ExpEffImpR2=[89.1 41.6] %Used final-initial from excel 

  
% Tests=[SL (SM ML) MM1 (MS LM3) LS] 
ExpEffImpU=[78.8 72.9 70.9 59.5 58.2 51.9 46.3] %Used Manual Seq Cycle Avg 

from excel 
% Tests=[MM2 LM4] 
ExpEffImpU2=[92.5 56.7] %Used final-initial from excel 

  
% Tests=[SL (SM ML) MM1 (MS LM3) LS] 
ExpEffImpW=[59.2 46.5 44.5 20.9 17.3 8.4 -2.7] %Used Manual Seq Cycle Avg 

from excel 
% Tests=[MM2 LM4] 
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ExpEffImpW2=[85.8 61.9] %Used final-initial from excel 

  
%% Plots of Efficiency Improvements 

  
%Unregulated Efficiency Increases 
figure(1) 
plot(F_Ratio,EffImpU,'bo-') 
xlabel('Stroke Ratio') 
ylabel('Efficiency Improvement (%)') 
title('Unregulated System Efficiency Improvement as a Funciton of Stroke 

Ratio') 
xlim([0 10]) 
ylim([25 100]) 
hold on 
plot(F_Ratio2,ExpEffImpU,'b*') 
plot(F_Ratio3,ExpEffImpU2,'b.','linewidth',3,'markersize',20) 
legend('Unreg System Model','Exp Unreg System','Exp Inc Stroke Ratio') 
hold off 

  
%Partially Regulated Efficiency Increases 
figure(2) 
plot(F_Ratio,EffImpR,'ks-') 
xlabel('Stroke Ratio') 
ylabel('Efficiency Improvement (%)') 
title('Partially Regulated System Efficiency Improvement as a Funciton of 

Stroke Ratio') 
xlim([0 10]) 
ylim([25 100]) 
hold on 
plot(F_Ratio2,ExpEffImpR,'kd') 
plot(F_Ratio3,ExpEffImpR2,'k^','linewidth',3,'markersize',5) 
legend('Part Reg System Model','Exp Part Reg System','Exp Inc Stroke Ratio') 
hold off 

  
%Fully Regulated Efficiency Increases 
figure(3) 
plot(F_Ratio,EffImpW,'gx-') 
xlabel('Stroke Ratio') 
ylabel('Efficiency Improvement (%)') 
title('Fully Regulated System Efficiency Improvement as a Funciton of Stroke 

Ratio') 
xlim([0 10]) 
ylim([-5 100]) 
hold on 
plot(F_Ratio2,ExpEffImpW,'g+') 
plot(F_Ratio3,ExpEffImpW2,'g.','linewidth',3,'markersize',20) 
legend('Full Reg System Model','Exp Full Reg System','Exp Inc Stroke Ratio') 
hold off 

  
%Efficiency Increase Comparison 
figure(4) 
plot(F_Ratio,EffImpU,'bo-') 
xlabel('Stroke Ratio') 
ylabel('Efficiency Improvement (%)') 
title('Comparison of Efficiency Improvement as a Funciton of Stroke Ratio') 
xlim([0 10]) 



153 

 

ylim([-5 85]) 
hold on 
plot(F_Ratio2,ExpEffImpU,'b*') 
plot(F_Ratio,EffImpR,'ks-') 
plot(F_Ratio2,ExpEffImpR,'kd') 
plot(F_Ratio,EffImpW,'gx-') 
plot(F_Ratio2,ExpEffImpW,'g+') 
legend('Unreg System Model','Exp Unreg System','Part Reg System Model','Exp 

Part Reg System','Full Reg System Model','Exp Full Reg System') 
hold off 


