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CHAPTER I 

 

INTRODUCTION 

 

 A fundamental characteristic of human information processing is its limited capacity. 

Despite the myriad sources of information impinging our senses, we are only able to fully 

process a small portion of that information (Beck, Rees, Frith, & Lavie, 2001; Desimone & 

Duncan, 1995; Duncan, 1980; Duncan & Humphreys, 1989; Dux & Marois, 2009; Marois & 

Ivanoff, 2005). Capacity limited attentional mechanisms have been long thought to be the means 

by which incoming information can be filtered for the behaviorally relevant components 

(Broadbent, 1981; Neisser & Lazar, 1964; Triesman, 1964). Potentially important information 

can be identified by either its relevance to currently held goals or by its intrinsic salience 

(Corbetta & Shulman, 2002; Egeth, Virzi, & Garbart, 1984; Jonides, 1981; Petersen & Posner, 

2012; Posner & Petersen, 1990; Yantis & Jonides, 1990). The neurobiological and 

phenomenological fate of selected information is the subject of a complementary question, “what 

mechanisms allow for conscious access to the selected information?” In other words, once 

selected via attentional mechanisms, how do humans become consciously aware of a particular 

piece of information? Despite William James’s (1890) proclamation over a century ago that 

“everyone knows what attention is,” the theoretical and experimental debate over how selective 

attention biases information and ultimately reaches awareness continues. 

 Very often, modern views of the neurobiological substrates underlying attention and 

awareness, as well as many other cognitive functions, take what I will describe as a “network-

level” perspective. This network-level viewpoint argues that cognitive functions use a multi-
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focal set of activations in the brain to produce flexible deployment of mental functions 

(Mesulam, 1990). Distinct collections of activations will underlie distinct cognitive functions, 

such as language, attention, memory, or executive control (Mesulam, 1990; Posner, Petersen, 

Fox, & Raichle, 1988). The hypothesized neurobiological bases of selective attention and 

conscious awareness are two primary examples of cognitive operations with widely popularized 

network-level (i.e. a limited set of coordinated brain regions) theories (Beck et al., 2001; 

Corbetta & Shulman, 2002; Corbetta, Patel, & Shulman, 2008; Desimone & Duncan, 1995; 

Lumer & Rees, 1999; Marois & Ivanoff, 2005; Naghavi & Nyberg, 2005). Ultimately, however, 

behavior is not an expression of any one cognitive process, but rather the coordination of 

numerous cognitive and physiological operations. Incoming perceptual information must be 

widely distributed to each of the various, more specialized processing systems of the brain while 

also maintaining a subjectively unified conscious experience of the world (Baars, 2005; Baars, 

2002). Consequently, it is vital that we examine the whole brain to fully understand the processes 

like attention and awareness. 

 In this dissertation, I aim to further explore theories of the neurobiological bases of 

attention and awareness. In particular, I will contrast predictions made by network-level theories 

with those made by theories developed in the context of the whole-brain nature of behavior. To 

preview the conclusions presented here, these cognitive processes often generate diffuse 

functional changes beyond the brain regions typically identified in imaging activation studies.  
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Network-Level Neurobiological Theories of Awareness and Attention 

 

 How the brain begets conscious awareness has been one of the most fundamental and 

elusive problems in neuroscience, psychology and philosophy. Correspondingly, this problem 

has spawned a remarkably large number of theories that differ by the proposed extent of cortical 

and subcortical changes associated with awareness. Typically, researchers study awareness by 

contrasting the neural correlates of consciously perceived or correctly reported stimuli with the 

neural correlates of either masked or sub-threshold presentations. Not surprisingly, due to the 

heterogeneity in task demands of these studies, there is significant heterogeneity in the proposed 

neural correlates of conscious (Kim & Blake, 2005; Seth, Dienes, Cleeremans, Overgaard, & 

Pessoa, 2008). Three general classes of theories describe the range of proposed cortical 

recruitment necessary to produce the conscious percept of awareness and the ability to access 

that information: focal, network-level, and global theories. According to ‘focal’ theories, 

awareness results from the recruitment of individual cortical regions or highly circumscribed 

neuronal populations restricted to a single macroscopic region of the brain. Proposals vary as to 

the location of the minimally necessary activation, with various theories suggesting only local 

changes in neural activity in either the perceptual substrates (Moutoussis & Zeki, 2002; Tse, 

Martinez-Conde, Schlegel, & Macknik, 2005; Zeki, 2007) or in higher-level nodes of 

information processing pathways (Lau & Passingham, 2006) are necessary. Zeki’s “micro-

consciousness” proposal, for example, argues that awareness of individual visual properties, such 

as color and motion, requires only recruitment of the appropriate visual circuitry involved in 

perception. Due to the observation that color could be perceived prior to the perception of 
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motion, he argues that there can not be a single unitary awareness (Arnold, Clifford, & 

Wenderoth, 2001; Moutoussis & Zeki, 2002; Zeki, 2007). 

 ‘Network-level’ theories posit that awareness results from the recruitment of attention-

related networks in the brain. Many studies comparing the neural correlates of seen and unseen 

stimuli with functional magnetic resonance imaging (fMRI) have shown recruitment of these 

fronto-parietal areas (Asplund, Todd, Snyder, & Marois, 2010a; Beck et al., 2001; Lumer & 

Rees, 1999; Lumer, Friston, & Rees, 1998; Marois & Ivanoff, 2005; Naghavi & Nyberg, 2005; 

Rees, Kreiman, & Koch, 2002). Numerous paradigms for examining seen and unseen stimuli 

with fMRI have produced attention-network or similar fronto-parietal activations, including 

studies of change blindness (Beck et al., 2001), binocular rivalry (Lumer et al., 1998; Lumer & 

Rees, 1999), the attentional blink (Asplund, Todd, Snyder, & Marois, 2010a; Feinstein, Stein, 

Castillo, & Paulus, 2004; Kranczioch, Debener, Schwarzbach, Goebel, & Engel, 2005; Marois, 

Yi, & Chun, 2004), bistable perception (Hahn et al., 2007; Kleinschmidt, Büchel, Zeki, & 

Frackowiak, 1998; Sterzer, Kleinschmidt, & Rees, 2009), threshold stimuli (Boly et al., 2007; 

Sadaghiani, Hesselmann, & Kleinschmidt, 2009), and masked stimuli (Dehaene et al., 2001; 

Haynes, Driver, & Rees, 2005). 

   Finally, a third class of models has found increased prominence within the last decades. 

These “global” models reflect an alternative perspective as to what comprises the necessary 

mechanisms for the percept of conscious awareness. These theories suggest that there are 

widespread changes in the activation state (Baars, 2005; Baars, 2002; Dehaene & Changeux, 

2011; Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006) and functional connectivity 

(Edelman, 2003; Tononi, 2008; Tononi & Sporns, 2003; van Gaal & Lamme, 2012) of the brain. 
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A common component between these theories is that without a unified, global recruitment of 

cortical and subcortical mechanisms, the unified conscious experience does not form.  

 Whereas there is substantial disagreement as to the neurobiological substrates of 

awareness, theorized cortical areas controlling the allocation of attention in the brain enjoy a 

modicum of agreement. Two separable networks control goal-driven and stimulus-driven 

orienting respectively (Corbetta, 1998; Corbetta & Shulman, 2002; Yantis et al., 2002). The 

endogenous, or goal-driven, control of attention is attributed to the dorsal attention work, 

comprised principally of bilateral human frontal eye fields (FEF) and intraparietal sulcus (IPS) 

regions (Corbetta & Shulman, 2002; Kastner, De Weerd, Desimone, & Ungerleider, 1998; 

Kastner, Pinsk, De Weerd, Desimone, & Ungerleider, 1999). The dorsal network is thought to be 

involved in both spatial and non-spatial deployment of attention (Moore, 2003; Schall, 2002; 

Serences, 2004; K. G. Thompson, Biscoe, & Sato, 2005), and accordingly, electrical stimulation 

of the monkey FEF produces saccades (Schall, 2002). However, shifts of attention do not require 

overt eye movements, and stimulation below saccade threshold in the monkey FEF produces 

perceptual benefits without producing an eye movement (Moore, 2003). Neuroimaging in 

humans reveals activation in the human FEF region during covert shifts of attention in space as 

well as recruitment of the superior parietal lobule (Corbetta, 1998; Yantis et al., 2002). However, 

no spatial shift is necessary to recruit dorsal attention regions and can occur when shifting 

attention between overlapping objects (Serences, Schwarzbach, Courtney, Golay, & Yantis, 

2004a) as well as shifts between categorical rules (Chiu & Yantis, 2009). FEF and IPS are 

additionally recruited following preparatory cues, reflecting their role in the preparation and 

execution of goal-directed attention (Corbetta, Kincade, Ollinger, McAvoy, & Shulman, 2000; 

Hopfinger, Buonocore, & Mangun, 2000; Kastner et al., 1999; G. L. Shulman et al., 1999), a 
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finding confirmed through meta-analysis of both fMRI and PET studies (Wager, Jonides, & 

Reading, 2004).  

 In contrast to goal-directed attention, the stimulus-driven orienting of attention is 

hypothesized to be supported by a ventral network (Corbetta et al., 2008; Corbetta & Shulman, 

2002) of regions including the temporo-parietal junction (TPJ), inferior frontal junction (IFJ), 

and anterior insula (AI) that overlaps with a related ‘salience’ network in AI and dorsal anterior 

cingulate cortex (dACC)(V. Menon, 2011; V. Menon & Uddin, 2010). Activity in ventral 

attention network is generally modulated by detection of unattended, salient events (Corbetta & 

Shulman, 2002). This attention network also shows sensitivity to capture of attention by targets 

occurring at unexpected locations (Arrington, Carr, Mayer, & Rao, 2000; Corbetta et al., 2000; 

Kincade, Abrams, Astafiev, Shulman, & Corbetta, 2005; Vossel, Thiel, & Fink, 2006), 

contingent capture of attention by stimuli sharing target features at an irrelevant location 

(Serences et al., 2005), as well as oddball stimuli (Bledowski, Prvulovic, Goebel, Zanella, & 

Linden, 2004; Braver, Barch, Gray, Molfese, & Snyder, 2001; Marois, Leung, & Gore, 2000; M. 

Stevens, Calhoun, & Kiehl, 2005). Recruitment of the ventral attention network occurs across 

multiple sensory modalities (Astafiev, Shulman, & Corbetta, 2006; Downar, Crawley, Mikulis, 

& Davis, 2000; 2002), does not require spatial shifts of attention (Marois et al., 2000), and will 

respond to individual features of an object (Downar et al., 2000). Completely task irrelevant, 

surprising images have also been shown to produce recruitment of the ventral attention network 

(Asplund, Todd, Snyder, & Marois, 2010a).  

  However, despite these well-characterized activations for goal-directed and stimulus-

driven attention, both dorsal and ventral network regions will often co-activate with a larger set 

of regions thought to embody more generalized cognitive control networks (Duncan, 2010; M. 
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Fox, Corbetta, Snyder, Vincent, & Raichle, 2006). These coactivations have been referred to as a 

“multiple demand network” (Duncan, 2006; Duncan & Owen, 2000), “task activation ensemble” 

(Seeley et al., 2007),“cognitive control network” (Cole & Schneider, 2007; Cole, Pathak, & 

Schneider, 2010), “fronto-parietal control system” (Vincent, Kahn, Snyder, Raichle, & Buckner, 

2008), and “task control network” (Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008; 

Dosenbach et al., 2007; Petersen & Posner, 2012). Together, these hypothesized networks cross 

wide swaths of cortex, extending from posterior parietal and extrastriate cortex to anterior and 

lateral prefrontal regions in addition to portions of cortex within the medial walls of the brain. 

These “task-positive” regions (M. D. Fox et al., 2005) co-activate across a wide-ranging set of 

cognitively demanding tasks. The various nomenclatures refer to similar anatomical constituents 

but often offer different explanations of network function. For example, there is dispute as to 

whether these activations constitute a single network or multiple sub-networks. One theorized 

subdivision within the task-positive set can be placed between areas responsible for coordinating 

cognitive control, a broad class of functions responsible for the flexible adaptation of information 

processing to current goals and tasks (Cole & Schneider, 2007; Dosenbach et al., 2008; Duncan, 

2006; 2010; Duncan & Owen, 2000; Uddin et al., 2010), and those responsible for the orienting 

of attention (Corbetta & Shulman, 2002). Each of these theories hypothesizes specialized 

functions for individual regions and do not necessarily preclude existence of sub-specialized 

connectivity within the broader network (Duncan, 2010; Hon, Epstein, Owen, & Duncan, 2006; 

R. Thompson & Duncan, 2009) predicted by other theories (Dosenbach et al., 2007; 2008; 

Seeley et al., 2007).  
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Utilizing Graph Theory  

 

 One thread of neuroimaging research that has reinforced network-level views of brain 

function comes from connectivity literature. Connectivity approaches have been one of the 

fastest growing segments of fMRI research over the last decade (Friston, 2011b) and have 

contributed significantly to our understanding of network function. For example, the discovery 

that many cortical areas display coordinated, spontaneous activity while not engaged in any overt 

task cements this notion that common activity is distributed between numerous regions (i.e. 

network-level), rather than being localized to circumscribed, single regions (M. D. Fox et al., 

2005). Additionally, the entire global class of theories of awareness is predicated on the notion 

that widespread connectivity contributes to the formation of the conscious percept (Baars, 2005; 

Dehaene, Kerszberg, & Changeux, 1998; Tononi & Edelman, 1998; Tononi, SPORNS, & 

Edelman, 1994). There are numerous methodologies with which to study the connections 

between brain regions including analysis of the structural connections as well as functionally 

derived measures (Friston, 2011b; Friston, Frith, Liddle, & Frackowiak, 1993). These 

methodologies provide a measure of some pairwise connection, be it structural, correlational, or 

effective between two brain locations.  

 The connectivity literature presents a complex view of these networks’ function. For 

example, both the attention and cognitive control networks described above all show resting state 

connectivity amongst constituent regions (Cole, Bassett, Power, Braver, & Petersen, 2014; 

Dosenbach et al., 2007; M. D. Fox et al., 2005; M. Fox et al., 2006; He, Chen, & Evans, 2007), 

but this finding is not unanimous and differential maps may be found depending on where they 

were seeded from (Power et al., 2011; Vincent et al., 2008). Examinations of the structural 
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relationships between regions can provide some sense as to the anatomical and therefore 

potentially functional similarity between regions that may not be correlated at rest (de Schotten 

et al., 2011). Task-concurrent functional connectivity studies reveal that task demands can 

potentially cause individual regions to switch network membership (Asplund, Todd, Snyder, & 

Marois, 2010a; Weissman & Prado, 2012) and effective measures yield results highlighting the 

directional nature of the some of these connections (Friston, Moran, & Seth, 2013; Rogers, 

Morgan, Newton, & Gore, 2007). These are only a small fraction of the studies highlighting the 

complex relationships between areas that serve similar cognitive functions. The many-to-one 

mapping of function (e.g. the many cognitive control theories described above) to cortical region 

complicates the notion that individual networks may ultimately embody the necessary neural 

mechanisms to produce particular cognitive processes and behavior.  

 Graph theoretical and network scientific approaches to research represent a shift towards 

the importance of looking at not just individual regions, not just networks, but hierarchically 

organized, dynamic relationships between networks (Park & Friston, 2013). Graph theory can 

use structural, functional, or effective connectivity to compliment studies of functional 

activations while expanding on the notion that coordinated activity between networks may be 

particularly important making connecting links between behavior and brain function (Bullmore 

& Sporns, 2009; Sporns, 2011). At its simplest, graph theory is a branch mathematics that deals 

with the pair-wise relationships between components of a network. However, as a tool for 

describing the interactions between connected parts, it is incredibly flexible and generalizable. Its 

use in the context of describing neurobiological networks has grown in popularity within the last 

decade (Bullmore & Sporns, 2009). In graph theoretical parlance, components of a system are 

referred to as “nodes” and the connections between them as “edges.” From the perspective of 
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cognitive neuroscience, node definition depends on the methodology being used. For MRI 

analyses, individual voxels or regions of interest (ROIs) typically constitute the nodes of the 

neural system. The connections (edges) between them can be measured using any pair-wise 

measure of similarity (e.g. the Pearson correlation). 

 Remarkably, many of the same network structures observed in other self-organizing 

systems also appear in the brain (Watts & Strogatz, 1998). These networks, dubbed “small-

world,” display efficient patterns of information transfer by routing many connections through a 

few, highly interconnected hub regions (Sporns, Honey, & Kötter, 2007; Watts & Strogatz, 

1998). Watts & Strogatz (1998) show that the United States power grid, the neural network of C. 

elegans, and a network of actors common to the same movies all display similar small-world 

properties. A core feature of this organization is that it appears to provide a balance for two 

driving features of networked systems: specialization and integration (Bullmore & Sporns, 2012; 

Cole et al., 2014; Power et al., 2011). Like the brain, these systems require sub-components to 

perform specialized computation that, when integrated with other sub-components, produced an 

emergent or global behavior. Ultimately, graph theoretical research provides novel utility 

towards the study of neurobiological systems by offering a language and analytical methods with 

which describe both the components and holistic structure of a network. 

 The individual components, nodes and edges, of these networks can be described in how 

they interact amongst themselves to form small, highly interconnected communities, or modules 

(Fig. 1). Questions about the connections made by an individual node provide a low-level entry 

point of analysis. The extent to which a node displays high “degree”, or many connections, 

provides a perspective on its “centrality”, or usefulness, for efficient communication (Bullmore 

& Sporns, 2009; 2012). A node that lies on the path between many other nodes, like a central 
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terminal of a train route, can be described as a “hub” with vital importance for integrating the 

specialized functions of individual sub-networks (Bullmore & Sporns, 2009; van den Heuvel & 

Sporns, 2013). Analysis of the “modular” structure of the overall network examines connectivity 

in a all-inclusive manner, taking into account all pairwise connections between regions to 

generate a plausible structural or functional organization(Sporns & Betzel, 2015). The 

application to neuroscientific research becomes obvious due to the frequency with which the 

brain, at many spatial scales, is described as functioning like a network. Questions about the role 

of an individual cortical region and its integrative properties can be described in terms of its 

mathematically derived centrality and hub properties. The emergent structure of networks and 

how they communicate with one another can be assessed by the modularity and small-world 

properties they display. 

 

 

Figure 1. Schematic of basic graph theoretical structures. Nodes (circles) and edges (connecting 
lines) represent the basic structure of the network, potentially embodying individual regions of 

the brain and the functional or structural connections between them. Highly interconnected 
clusters of nodes form modules whereas a highly connected individual node acts as a hub. 

Module	

Within	module	
edge	

Between	
module	edge	

Hub	Node	
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 The last decade has seen an explosion of studies focusing on the connectivity properties 

of the brain above and beyond just the activation patterns observed with non-invasive methods 

(Bullmore & Sporns, 2009; Friston, 2011a; Sporns & Betzel, 2015). Following on the heels of 

these advances in the study of functional connections, network science and graph theory has 

commensurately exploded in neuroscience. The graph theoretical perspective has begun to 

address connectivity differences in clinical populations (Ahmadlou, Rostami, & Sadeghi, 2012; 

Bachiller et al., 2014; Caeyenberghs et al., 2012; de Haan et al., 2012; King et al., 2013; Lord et 

al., 2011; Nomura et al., 2010; Sheffield, Repovs, Harms, Carter, Gold, MacDonald, Daniel 

Ragland, et al., 2015a; Sheffield, Repovs, Harms, Carter, Gold, MacDonald, Ragland, et al., 

2015b) as well as task-dependent changes in connectivity in typically-developing populations  

(Bassett et al., 2011; Cole et al., 2014; 2013; Crossley et al., 2013; De Vico Fallani et al., 2008; 

Ekman, Derrfuss, Tittgemeyer, & Fiebach, 2012; Ginestet & Simmons, 2011; Hermundstad et 

al., 2013; Kitzbichler, Henson, Smith, Nathan, & Bullmore, 2011; Nicol et al., 2012; S. Palva, 

Monto, & Palva, 2010; Rosenberg et al., 2015; A. A. Stevens, Tappon, Garg, & Fair, 2012). Few 

graph theory studies have focused on the dynamic properties of attention or awareness. These 

studies have examined graph changes during tasks requiring cognitive control shifts (Cole et al., 

2013; Ekman et al., 2012) and during maintenance of items in working memory (Cao et al., 

2014; Ginestet & Simmons, 2011; Kitzbichler et al., 2011; S. Palva & Palva, 2012), but they 

have not focused on how these cognitive processes effect connectivity from a global perspective.  
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Specific Aims 

 

 The overarching goal of this dissertation is to extend our understanding of attention and 

awareness by examining the global network properties of these cognitive states using graph 

theoretical measures. Cognitive neuroscience research often focuses on the role of individual 

cortical regions and network-level activity, potentially neglecting the whole-brain changes 

associated with cognitive function and behavior. The experiments in this dissertation aim to 

expand on the role of the brain’s complex functional topology by leveraging recent advancement 

in graph theoretical tools for studying neural connections.  

 

Aim 1: Characterize the global network properties of visual awareness. 

 A theoretical debate exists as to the extent of neural activity necessary to produce a 

conscious percept of some piece of information. As described in the preceding sections, focal 

and network-level theories of awareness posit that relatively restricted activity in sensory and/or 

specific association cortices is sufficient to produce conscious awareness. However, several 

“global” theories suggest much more widespread changes are associated with awareness of a 

percept. Network science provides a well-suited perspective and set of tools for adjudicating 

between these opposing viewpoints. Chapter II of this dissertation (Godwin, Barry, & Marois, 

2015) discusses the network properties of target awareness and presents evidence in favor of 

global theories of awareness.  
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Aim 2: Identify global, functional network properties of attentional capture by salient oddballs. 

 Highly salient visual stimuli produce a powerful orienting response, a involuntary 

physiological and cognitive redirection to perceptually interesting items (Pavlov, 1927; Sokolov, 

1963). In the brain, detection of task-irrelevant, oddball stimuli has been shown to consistently 

recruit a ventral fronto-parietal network consisting of the anterior insula (AI), temporo-parietal 

junction (TPJ), and the inferior frontal junction (IFJ). However, the orienting response to novel 

or salient stimuli is comprised of a wide-ranging set of physiological and cognitive processes 

recruited in order to orient to and evaluate novel stimuli (Beatty, 1982; Han & Marois, 2014; 

Kahneman & Beatty, 1966; Tracy et al., 2000). Chapter III examines the functional topology 

associated with the detection of a task-irrelevant, oddball stimulus to characterize the global 

functional changes associated with the orienting response.  

 

Aim 3: Examine the differential global network properties of task relevant and irrelevant 
information. 
 
 Chapters II and III respectively examine the global network function related to relevant 

targets and irrelevant oddballs. However, these studies are not designed to test the relationship of 

these influences of information processing concurrently. Chapter IV of this dissertation tests 

hypotheses the patterns of global topological changes associated with the detection of task-

relevant and irrelevant stimuli by using results from Chapters II and III as functional markers of 

task relevant and task irrelevant processing.	These analyses aim to examine whether topology 

changes contribute to the process of biasing information or suppressing distractors during an 

attention task. The simultaneous examination of both relevant and irrelevant competition for 

cortical representation better reflects the experience of the natural world where innumerable 

relevant and irrelevant sources of information impinge our senses.  
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 The recruitment of specific, circumscribed networks plays a prominent role in theories of 

attention and cognitive control. There are, however, numerous disagreements as to what 

individual regions are recruited, how these areas communicate to form networks, and how those 

network coordinate activity to produce coherent behavior. The burgeoning literature and use of 

network science to study cognitive function provides a vital linking component between the 

function of individual regions or networks and the rest of the brain during behavior.  
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CHAPTER II 

 

BREAKDOWN OF THE BRAIN’S FUNCTIONAL NETWORK MODULARITY WITH 

AWARENESS 

 

This chapter is based on Godwin et al. (2015). 

 

 The debate over the neurobiological basis of conscious awareness best encapsulates the 

tensions between network-level and connectionist-based, global theories. Within this debate are 

theories that run the entire gamut of proposed neural correlates of consciousness.  Three broad 

classes of models have been proposed to explain the neural basis of awareness, and these classes 

primarily differ on the predicted extent of neural information changes associated with conscious 

perception. According to ‘focal’ theories, awareness results from local changes in neural activity 

in either the perceptual substrates (Moutoussis & Zeki, 2002; Tse et al., 2005; Zeki, 2007) or in 

higher-level nodes of information processing pathways (Lau & Passingham, 2006). By contrast, 

‘network-level’ theories posit that awareness is tightly associated with activation of parieto-

frontal attention networks of the brain (Asplund, Todd, Snyder, & Marois, 2010a; Beck et al., 

2001; Lumer et al., 1998; Lumer & Rees, 1999; Marois & Ivanoff, 2005; Naghavi & Nyberg, 

2005; Rees et al., 2002). Finally, ‘global’ models propose that awareness results from 

widespread changes in the activation state (Baars, 2005; Baars, 2002; Dehaene et al., 2006; 

Dehaene & Changeux, 2011) and functional connectivity (Edelman, 2003; Tononi, 2008; Tononi 

& Sporns, 2003; van Gaal & Lamme, 2012) of the brain. While there is strong experimental 

support for network-level theories there is scant experimental evidence in favor of truly 
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sweeping, widespread changes in brain activity with conscious perception despite the fact that 

global scale models have recently come to prominence in the theoretical landscape of this field.  

 Using a graph theoretical approach applied to ultra-high field functional magnetic 

resonance imaging (fMRI) data, here we experimentally tested a key tenet of global theories: the 

widespread emergence of large-scale functional connectivity with awareness. Graph theory 

analyses are ideal tools to test global models of awareness because they can provide concise 

measures of the integration and segregation of interconnected nodes of a system (Bullmore & 

Sporns, 2012). Applied to functional imaging data, we treat individual brain ROIs as nodes, 

functional connectivity between as edges, and functional brain networks as interconnected 

modules of nodes. When examining a large set of ROIs that encompass the different networks of 

the human cerebral cortex (Pettersson-Yeo, Allen, Benetti, McGuire, & Mechelli, 2011; Power et 

al., 2011), we can apply graph theory analyses to estimate the extent to which key measures of 

global information processing are altered by the state of awareness. This approach has been 

previously applied to study differences in cognitive states (Bassett et al., 2011; Cao et al., 2014; 

Cole et al., 2013; Ekman et al., 2012; Ferri, Rundo, Bruni, Terzano, & Stam, 2008; Ginestet & 

Simmons, 2011; Hermundstad et al., 2013; Kitzbichler et al., 2011; A. A. Stevens et al., 2012). 

Although recent studies have taken advantage of graph theory analysis to examine the 

connectivity patterns that precedes a conscious event (Weisz et al., 2014) or following 

pharmacologically induced loss of consciousness (Schröter et al., 2012), this approach has yet to 

be used for characterizing the topology associated with conscious target perception per se, a 

necessary test for global theories of awareness.  

If the changes with awareness are truly global, one should see such changes even if the 

task does not require complex discrimination, identification, and semantic processes that may 
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recruit vast extents of cortical tissue that have not necessarily been associated with conscious 

perception; in other words, these global changes should appear even for the simple conscious 

detection of a flashed disk. For this reason, we had participants perform an elementary masked 

target detection task (Fig. 2) while being scanned at ultra-high field (7 Tesla [T]). The task 

included three trial types: Forward-Masked, Backward-Masked, and No-Target conditions. In the 

Forward-Masked (paracontrast) condition, a 133ms-duration annular mask offset 33ms prior to 

the target (a disk whose exterior border coincided with the interior border of the annulus), 

presented for 33ms. In the Backward-Masked (metacontrast) condition the order of mask-target 

presentation was reversed while keeping all timing parameters the same. Under such conditions, 

forward masking of targets has been shown to impair target detection more than backward 

masking (Lefton & Newman, 1976; Schiller & Smith, 1966). Consequently, the mask/target 

orderings provided a manipulation of target awareness while maintaining the same mask and 

target presentation times across both Forward- and Backward-Masked conditions. Because on 

each trial participants made a detection response about the presence or absence of the target 

followed by a confidence rating on their response, subjects’ performance could be assessed on 

both an objective (discriminability index, d’) and subjective (confidence rating) measure of 

awareness (Seth et al., 2008). In turn, only trials in which the target was either seen (Aware) or 

unseen (Unaware) at high confidence levels were used for analysis of brain imaging data. 

Finally, because the report of the percept was 12 seconds removed from the stimulus 

presentations (Fig. 2), the task design precluded initiation of the motor response itself from 

influencing estimates of awareness. Although response selection and motor preparation 

processes likely occur during this period, similar preparation would occur across all conditions. 
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Figure 2. Schematic of behavioral paradigm with Forward-Masked and Backward-Masked trial 

types (No-Target trials not shown). On each trial, participants responded whether or not they 
detected the target stimulus and indicated a confidence rating for their answer (see Methods). 

 

Methods 

 
Participants 

 Twenty-eight individuals (aged 18-33; fifteen females), recruited from the Vanderbilt 

University community, participated in the study. All participants had normal or corrected to 

normal vision. The Vanderbilt University Institutional Review Board approved the experimental 

protocol and informed consent was obtained from all subjects. Data from four participants were 

excluded due to technical difficulties (two participants), excessive head motion (> 6 mm; one 

participant), and failure to follow task instructions (one participant). 

 

Behavioral Paradigm  

 Stimuli were presented using the Psychophysics Toolbox (Brainard, 1997; Kleiner, 

Brainard, & Pelli, 2007; Pelli, 1997) in MATLAB (The MathWorks, Natick, MA, USA). All 

stimuli were shown overlaid on a white background with a persistent, centered, black fixation 

square (.25° visual angle). Participants were instructed to monitor each trial for a target stimulus, 

ignoring a mask stimulus. The target stimulus, a filled gray disc (1° visual angle), was presented 
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at the center of the screen for 33 ms. The mask was a centered, black annulus (from 1° inner 

edge to 2° outer edge) surrounding the target disk and was shown for 133 ms.  

 All participants saw three conditions, psuedorandomly mixed within runs: Forward-

Masked, Backward-Masked, and No Target. Forward-Masked and Backward-Masked trial types 

are shown in Figure 2. In addition, fourteen of the twenty-four participants saw rare oddball 

images in 5% of all trials. These surprise trials were not analyzed for the current study. 

 Each trial began with enlargement of the fixation square for 200ms, cuing the participants 

for the upcoming target and/or mask presentation 800 ms after the fixation returned to its 

standard size. An interstimulus interval (ISI) of 33 ms separated the mask and target on all 

target-present trials. When the mask precedes the target (forward or paracontrast masking) at 

these timing parameters, target detection is severely impaired. By contrast, when the mask 

follows the target (backward or metacontrast masking), target detection improves (Lefton & 

Newman, 1976; Schiller & Smith, 1966). A 12 s fixation interval followed the stimulus 

presentations to allow the BOLD signal for target detection to be dissociated from the target 

response BOLD signal (see fMRI methods below). Following the 12 s interval, participants 

responded to an on-screen prompt (1.5 s) whether they had detected the target stimulus, using 

one of two right-handed button presses for “yes” or “no”. Participants were then prompted (1.5 s) 

to provide a rating, on a scale of 1 to 5, of how confident they were in their previous detection 

response (1 = No confidence; 5 = Total confidence) with a left-handed button press. The rating 

scale remained on screen for the duration of each prompt. The next trial began following another 

11 s fixation period.  

 This stimulus presentation paradigm afforded several advantages for assessing the 

changes in global functional connectivity with target awareness. First, the reversed mask/target 
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orderings provided a manipulation of target awareness while maintaining identical mask and 

target presentation durations across both Forward and Backward Masked conditions. This 

consistency across conditions allowed examination of robust effects of target awareness without 

differences in overall physical stimulation. Moreover, our paradigm yielded robust numbers of 

trials in which the subjects were highly confident they either did or did not see the target 

(Kunimoto, Miller, & Pashler, 2001). In addition, because all stimuli were presented at fixation, 

the task required no spatial shifts of attention or eye movements. Finally, by using a very simple 

stimulus target-mask presentation paradigm that only required rudimentary target stimulus 

detection (brief percept of a disk), our manipulation provides a strong test of the global theories 

of awareness because it is unlikely to evoke widespread activation associated with identification, 

discrimination, or semantic processing (as may occur, for instance, with the attentional blink 

paradigm).   

  Twenty-one of the participants completed between four and five fMRI runs (three 

completed four runs whereas the remaining 18 completed five runs), each consisting of twenty 

trials split between the Backward-Masked, Forward-Masked and No-Target trials (35%, 35%, 

30% respectively). Three additional participants completed between five and eight fMRI (one 

completing five runs, one completing six runs, and one completing eight runs) runs consisting of 

fifteen trials each (5 of each of the three trial types). Trial types were presented in a pseudo-

randomized order in each run. Trials during which participants failed to provide either a 

detection response or a confidence rating were excluded from analysis (<1% of all trials). 
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fMRI methods 

 Stimuli were presented using an Avotec SV-6011 projector (Avotec, Inc. Stuart, FL.) 

back-projected onto a screen inside the scanner. Participants lying in the scanner viewed the 

screen through a mirror mounted to the head coil. The experiment was performed at the 

Vanderbilt University Institute of Imaging Sciences on a 7T Philips Achieva MRI system to 

benefit from high sensitivity to blood oxygenation level dependent (BOLD) signals (Gati, 

Menon, Ugurbil, & Rutt, 1997; Ogawa et al., 1993) while providing full-brain coverage at 

conventional imaging resolutions. Whole brain, anatomical T1 weighted images were acquired 

with a 1x1x1 mm voxel resolution. Functional T2* images were acquired using a 3D PRESTO 

(Principles of Echo Shifting using a Train of Observations) sequence with 3x3x3 mm voxels and 

a 1 s volume acquisition time (Barry et al., 2011). Scan parameters consisted of a 10 ms 

repetition time (TR), 14 ms echo time (TE), 10° flip angle, 216 mm x 216 mm in-plane field of 

view (FOV), 72 × 72 matrix, and 40 slices (covering 120 mm superior-inferior). Each functional 

scan included either 410 brain volumes (Subjects 1-12) or 545 brain volumes (Subjects 13-24).  

Data preprocessing was performed using Brain Voyager QX 2.3 (Brain Innovation, 

Maastricht, The Netherlands) and included 3D head motion correction and linear trend removal. 

Functional and anatomical runs were co-registered and transformed into standard Talairach space 

(Talairach & Tournoux, 1988). 

 

Functional Connectivity Analysis 

 Cortical regions of interest (ROIs) were first defined from the set of coordinates reported 

in Power et al. (2011), in which authors identified nodes based on resting-state connectivity data 

with strong overlap with known functional-network systems. These nodes were parceled into 



	 23	

sub-graphs based on community detection algorithms resulting in strong concordance with 

previously identified functional networks. Coordinates, originally reported in MNI space, were 

converted to Talairach space using the mni2tal.m function in MATLAB (Matthew Brett). Four-

mm radius spheres were drawn around each coordinate to create a list of 264 ROIs to serve as 

nodes for graph theoretical analyses.  

 In order to examine connectivity differences associated with target awareness with 

maximum power, Hit and Miss trials were each collapsed across both Forward and Backward 

Masked trials, yielding a total of 486 high-confidence Hit trials and 276 high-confidence Miss 

trials. High-confidence trials were defined as those with “4” or “5” ratings on the 5-point 

confidence scale. Given that each condition (Hit and Miss) was comprised of trials primarily 

originating from one masking condition (Backwards and Forward, respectively), we also 

performed the Hit vs. Miss analyses on high-confidence trials within each masking condition to 

confirm that the results were not due to masking differences. Although the results of this analysis 

by masking conditions are consistent with the main findings, they suffer from low power because 

several subjects lacked a sufficient number of high-confidence trials of one trial type to make 

these comparisons statistically meaningful. Consequently, to further rule out the possibility that 

changes in connectivity differences with awareness may be due to masking differences, we also 

compared False Alarm and Correct Rejection trials of the no-target condition, as these two trial 

types are associated with very difference percepts but identical physical presentations.  

 Task-dependent functional connectivity between nodes was estimated using the 

generalized psychophysiological interaction (gPPI) method (McLaren, Ries, Xu, & Johnson, 

2012). This method aims to account for task-activation effects and non-task-specific correlations 

separately from task-induced connectivity differences (Gitelman, Penny, Ashburner, & Friston, 



	 24	

2003). GPPI is considered to be more powerful than a “standard” PPI analysis (Cisler, Bush, & 

Steele, 2014) and has been shown to be a better estimate of task-based functional connectivity 

than a cross-correlation coefficient (Kim & Horwitz, 2008). It utilizes the general linear model 

(GLM) with three regressor types: condition-specific task regressors (analogous to those used in 

standard fMRI GLMs), a “seed” timecourse regressor, and condition-specific interaction 

regressors. The seed timecourse regressor is included to capture signal variance in regions that 

show correlations with the seed region outside of task periods of interest. Interaction regressors 

were created using the deconvolution method described in McLaren et al. (2012). In essence, 

interaction regressors predict correlation with seed region signal, but only during task-relevant 

timepoints (capturing an interaction of seed and condition factors). Our GLMs included 

condition-specific regressors for high and low confidence Hit and Miss trials. Each GLM 

consisted of condition-specific regressors (modeled as events locked to target/mask 

presentation), a seed node BOLD time course, and condition-specific interaction regressors, all 

in addition to task regressors of no interest for fixation and response periods. Parameter estimates 

for high confidence interaction regressors were recorded and organized for graph theoretical 

analyses. 

 A separate GLM was run was for each of the 264 possible seeds for each subject. For 

each seed region, averaged parameter estimates for gPPI interaction regressors were extracted 

from and averaged across voxels in the 263 remaining ROIs providing a task-modulated measure 

of weighted (as opposed to binary) connectivity between each region pair. Larger parameter 

estimates indicate greater signal coherence between seed and target ROI and thus greater 

functional connectivity. No directionality was assumed in the data and reciprocal pairwise 

connections were averaged to generate the final, symmetric graph. PPI analyses were performed 
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using Brain Voyager QX 2.3 and custom MATLAB software in addition to the BVQXtools and 

NeuroElf toolboxes.  

 

Graph Theoretical Analysis 

 Graph theoretical analyses were performed using the Brain Connectivity Toolbox 

(Rubinov & Sporns, 2010). Graphs (i.e. ROIs and their functional connections) were constructed 

and analyzed on an individual subject basis for each condition of interest (e.g. high-confidence 

hit, high-confidence miss trials). As noted in Rubinov & Sporns (2010), network properties often 

differ based on the number of nodes, connections, and degree distribution of a network. To 

construct network measures that allow comparisons across conditions/graphs that might differ 

along any of these properties, graph theory metrics are “normalized” by comparing – on a per 

subject basis – each of these metrics against a null hypothesis network; i.e. a network with a 

randomized topology that otherwise conserves the size, density, and degree distribution of the 

original network. All graph theoretic measures were normalized via division by their respective 

metric averaged across 100 random graphs generated via the Brain Connectivity Toolbox 

function “randmio_und.m”  Statistical significance of normalized graph theoretic measures was 

performed via Wilcoxon sign-rank tests given the lack of evidence concerning the normal 

distribution of graph theoretic metrics (Bullmore & Sporns, 2009). Because graph theoretic 

metrics can be threshold-dependent (van Wijk, Stam, & Daffertshofer, 2010), it is important to 

examine graph measurements over a range of possible connection densities. In accordance with 

prior studies (Cao et al., 2014; Dosenbach et al., 2008; Rubinov et al., 2009), results were 

obtained for graphs density thresholded at the top 10% to 30% of individual subject connections, 

with 5% steps, for a total of five threshold levels. Results are presented for the top 10% of 
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connections. Thresholded matrices were rescaled to the range [0,1] (Rubinov & Sporns, 2010). 

This normalization procedure was calculated by dividing each connectivity value by the 

maximum value in the graph in order to rescale values to a similar range as correlations.  

 Following the approach of previous work in the field, no correction for multiple 

comparisons across the multiple measures of network properties were applied because of the 

non-independence of these measures (Cao et al., 2014; Rubinov & Sporns, 2010; 2011) and 

because the current study aims only to test the global patterns of topology, rather than the 

independent properties of individual nodes or ROIs. Correction for multiple comparisons is 

normally applied when testing several ROIs (Bassett, Nelson, Mueller, Camchong, & Lim, 2012; 

Lynall et al., 2010; Schröter et al., 2012) or if statistical significance (on a per voxel basis) acts 

as a thresholding step (Bassett et al., 2009; E. T. Bullmore & Bassett, 2011; Cole et al., 2014; 

Dosenbach et al., 2007; Rubinov & Sporns, 2011). The statistical reliability of our findings was 

provided by a test of replication; the same results were obtained in two independent data 

analyses: comparisons of Hits vs. Misses as well as the comparison of False Alarms vs. Correct 

Rejections. 

 In order to measure changes in the graph properties of connections across the brain’s 

neural network as a function of our awareness manipulation, we describe connectivity based on 

measures of functional segregation, functional integration, and centrality (Rubinov & Sporns, 

2010). To estimate the functional segregation of the brain’s connectivity, we assessed 

“modularity”, or the amount to which a graph (i.e. our entire ROI set) can be divided into non-

overlapping modules (i.e. sub-networks of ROIs), via Newman’s spectral algorithm for weighted 

matrices (M. Newman, 2004). Weighted modularity (Qw) was calculated by: 
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with weighted connections between nodes i and j (wi,j), sum of all weights in a graph (lw), 

weighted degree of a node (ki), module containing node i (mi), and 𝜕!!,!! = 1 if mi = mj. 

Based on the modules identified by Newman’s algorithm we examined the “participation 

coefficient” (yw), or the degree to which nodes (i.e. ROIs) connect with nodes in other functional 

modules (sub-networks). Participation provides a measure of centrality per node; that is, a 

measure of a node’s importance in inter-modular communication. Nodes with high participation 

increase global integration by facilitating between-module communications. The participation 

coefficient was calculated by: 
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where ki
w(m) is the weighted degree of connections between node i and nodes in module m. 

 We additionally measured each node’s “clustering coefficient”, a measure of the degree 

of segregation present in a network that estimates the extent to which connectivity is clustered 

around each node irrespective of its module membership. The clustering coefficient (Cw), where 

ti is the number of triangles around node I, is calculated with the following formula:  
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Finally, “average path length” (Lw), a measure of network integration, provided a statistic 

describing the functional distance between nodes, where di,j  is the shortest path length between 

nodes i and j, computed with a inverse mapping of weight to length.  

 

𝐿!  =  
1
𝑛
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Further descriptions of how these metrics are calculated and their implications can be found in 

Rubinov & Sporns (2010).  

 As a measure of non-parametric effect size, we report the dependent measures probability 

of superiority, or PSdep (Grissom & Kim, 2012). PSdep is defined as  

 

𝑃𝑆!"# =  
𝑛!
𝑁  

 

where n+ is the number of positive difference scores, discarding ties and N is the sample size. 

PSdep ranges from 0 to 1 and can be interpreted simply as the proportion of paired samples 

showing greater values in one condition compared to the other.    

 

BOLD Activation Maps for Awareness 

  In order to isolate regions activated by awareness of the target stimulus, a separate model 

was defined (a non-PPI, GLM analysis) for trials in which the participant successfully detected 

the target (hits) and trials when participants reported not having seen the target (misses), 

collapsing across Forward- and Backward-Masked trials to increase power. In addition, high-
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confidence trials and low-confidence trials were modeled separately, resulting in four separate 

regressors: high-confidence hits, high-confidence misses, low-confidence hits, and low 

confidence misses. To isolate awareness-sensitive regions, high-confidence hit trials were 

directly compared to high-confidence miss trials. Group random-effect statistical parametric 

maps (SPMs) of the activation differences between Aware and Unaware trials were then created 

and thresholded at p < .05, cluster corrected for multiple comparisons (Forman et al., 1995) 

utilizing the Brain Voyager cluster correction plugin. 

 

Results by Masking Condition  

 Because most of the Target Aware trials came from the Backward-Masked condition 

(~83%) whereas the Target Unaware trials primarily originated from the Forward-Masked 

condition (~84%), we assessed whether the results obtained for the data pooled across masking 

conditions also held when the analytical tests between Target Aware and Unaware trials were 

compared within each masking condition. This analysis is statistically limited, however, by the 

low trial number in some of the conditions: In the Backward-Masked condition, there were a 

total of 403 high-confidence Aware trials compared to only 45 Unaware trials, whereas the 

Forward-Masked condition included few (83) high-confidence Aware trials compared to high-

confidence Unaware trials (231). As a result, 7 of the subjects for the Backward-Masked 

condition and 12 of the subjects for the forward-masked condition were excluded from these 

analyses because they had no or too few (1 or 0 instance per run) high-confidence aware or high-

confidence unaware trials to perform the graph theory analyses with the gPPI method. 
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Results 

 

 Target discriminability was greater under the Backward-Masked condition than the 

Forward-Masked condition (main effect of masking condition, F(1,92) = 35.51, p < .001). 

Moreover, this difference in target discriminability between the Backward and Forward 

conditions increased at the highest confidence ratings (main effect of confidence rating, Fig. 3, 

F(4,92) = 9.82, p <.001). These results not only demonstrate that the masking manipulation was 

successful in affecting target detection but also indicate that high confidence ratings provide a 

robust means of distinguishing between seen and unseen targets.  

 

 

 

Figure 3. Target stimuli were seen reliably more often in Backward-Masked trials compared to 
Forward- Masked trials, especially at high confidence ratings. Global connectivity analysis was 
confined to the high-confidence trials (“4” and “5” ratings) to ensure potent differences between 

aware and unaware states. Error bars show within-group standard error. 
 

To assess whether consciously Aware and Unaware target states were associated with 

distinct global patterns of functional connectivity, we compared the differences in graph 
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theoretical metrics between seen and unseen trials for high confidence ratings only. In order to 

increase the number of trials entering into the analysis, each trial type was pooled across both the 

forward and backward-masked conditions and classified as Target Aware (seen) or Unaware 

(unseen) trial types. We examined whether the results obtained for the data pooled across 

masking conditions also held for comparisons within each masking conditions.  

 Figure 4 illustrates weighted connection matrices for all pair-wise PPI parameter 

estimates, averaged across subjects, between each of the 264 cortical nodes for Target Aware and 

Unaware conditions organized using the Power et al. (2011) parcellation. Projections of the 

nodes and edges onto two-dimensional cortical representations in Figure 4 highlight the 

widespread differences in functional PPI strengths between Aware and Unaware states. It is 

difficult to draw firm conclusions about connectivity changes with awareness from visual 

inspection of these matrices or projections alone. Hence, we quantitatively assessed network 

topology changes with awareness by estimating key graph theoretical metrics – network 

segregation, integration and centrality – based on the top 10% of connection strengths (Fig. 4), 

though similar results were obtained using a range of strength thresholds. If awareness is 

associated with widespread increases in cortical functional connectivity, it would likely be 

accompanied by decreased network segregation, increased network integration, and increased 

node centrality (i.e. highly interactive nodes that facilitate functional integration).  
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Figure 4. Group-averaged, symmetric connectivity graphs for Target Aware and Unaware 
conditions thresholded at the top 10%. Node coordinates were derived from Power, et al. (2011). 

(a) Aware (top) and Unaware (bottom) matrices are organized by the 14 network assignments 
described by Power and colleagues. Heat scale indicates magnitude of interaction regressor (seed 

x condition; PPI) parameter estimates. (b) Differences between subject-averaged connectivity 
matrices plotted for Aware minus Unaware. Values were derived by subtracted subject-averaged 
graphs shown in Figure 3a. Hot colors depict stronger connections for the Aware than Unaware 
condition, whereas cool colors depict Unaware connections greater than Aware. Plots are shown 

overlaid on a surface projection for reference to anatomical direction and general location. 
Difference scores with the greatest absolute value are plotted above weaker differences. 

  

 Functional modularity, a measure of the ability to segregate the connectivity patterns into 

clearly distinct networks, decreased with target awareness (Fig. 5, Target Aware vs. Unaware; 

Wilcoxon’s signed-rank test, p = .043, PSdep  = .75). Moreover, the average participation 

coefficient, a value assessing between-network connectivity strengths, was greater in the Target 

Aware condition than in the Unaware condition (Wilcoxon’s signed-rank test, p = .009, PSdep = 

.67). Typically, functional network topologies are complex, with more long distance connections 

than lattice (i.e. serially connected) networks but fewer than randomly-connected networks 
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(Bullmore & Sporns, 2012). This complex topology is thought to be a functionally and 

metabolically efficient middle ground between random and lattice organizations. Changes in 

functional modularity and participation toward more “random-like” (i.e. a normalized value of 1) 

organizations suggest a shift along this efficiency spectrum to favor longer distance connections 

at the expense of segregation of functional networks (Kitzbichler et al., 2011).  

 

 

Figure 5. Effect of Awareness manipulation on graph theoretic measurements for Target Aware 
and Unaware trials. (a) Comparison of Target aware and Unaware trials (collapsed across target- 

present conditions). Significant differences between Aware vs. Unaware conditions were only 
observed for Modularity and Participation metrics. (b) Comparison of false alarm trials (Aware) 
to correct rejection trials (Unaware) from the No-Target condition. All y-axis values represent 
the ratio of the observed graph theory metric to the corresponding random graph metrics (see 

Methods). Error bars represent within-group standard error. Asterisks indicate significant 
differences between groups at p < .05. 

 

  Modularity and average participation coefficient were the only metrics to exhibit 

changes between Aware and Unaware conditions. The average clustering coefficient, a different 
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measure of network segregation that estimates the degree to which neighboring nodes tend to 

interconnect with one another, was not affected by the awareness manipulation (Wilcoxon’s 

signed-rank test, p = .689, PSdep = .54). The average path length, a metric of integration that 

measures the average functional distance between two nodes, did not show differences between 

Aware and Unaware conditions (Wilcoxon’s signed-rank test, p = .753, PSdep = .54). Unlike 

modularity and participation coefficient, neither of these metrics takes into account module 

membership. The finding that modularity and participation coefficient – measures which are 

sensitive to changes in inter-modular communication as opposed to changes in individual node 

connectivity – are those that are altered with awareness strongly suggests that awareness is 

associated with a breakdown of the brain’s network modularity. Similar results were observed 

across a range of connectivity thresholds (Fig. 6). 
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Figure 6. Graph theoretical measures across multiple threshold levels of the main fMRI 
experiment data. Relationships between Aware and Unaware graph metrics do not change across 

the top 10% to 30% of connectivity values as assessed by PPI strength. Error bars represent 
within-group standard error. 

 

 The hypothesis that conscious target perception is associated with whole-brain functional 

connectivity changes would be strongly validated if it were replicated in an independent trial data 

set: high-confidence false alarms and correct rejections in no-target trials. These two trial types 

have physically identical stimulus presentations (no targets) and identical levels of subjective 

confidence, but very distinct percepts (Aware vs. Unaware). False alarm trials showed lower 

modularity compared to correct rejection trials (Wilcoxon’s signed-rank test, p = .007, PSdep = 

.67), and average participation coefficients were higher during false alarm trials compared to 

correct rejections as well (Wilcoxon’s signed-rank test, p = .0002, PSdep = .79).  Absent a target, 
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the highly confident awareness of a percept appears sufficient to alter the brain’s network 

topology. This might take place because the false alarm trials correspond to those with structured 

internal noise sufficient to trigger the simple percept of a flash (Ress & Heeger, 2003). These 

results provide converging evidence that reported perception of the target stimulus, regardless of 

masking manipulations or target presence, produces decreased functional modularity while 

increasing average participation. 

 It is conceivable that the functional connectivity changes observed with awareness arise 

from large connectivity changes between a small number of networks, rather than truly global 

topological changes. If one module or a small set of modules showed greater between-network 

connectivity changes compared to the others, it should be detectable by testing for an interaction 

between networks and target awareness state in participation coefficient (a measure of inter-

module communication). To test this possibility, we utilized the fourteen consensus networks 

identified by Power et al. (2011). Using the participation coefficients (calculated either based on 

module membership detected by our modularity calculations or based on the Power et al. (2011) 

networks as the source of module membership), we estimated the average participation 

coefficient for nodes in each of the fourteen Power et al. networks for each subject in the Target 

Aware and Unaware conditions. A repeated-measures ANOVA showed no significant interaction 

between condition (Aware vs. Unaware) and network for either of the analytical methods (Fs 

(13,299) < 1.03, ps > .43). It is unlikely that the global modularity and participation differences 

observed in the present data between the Aware and Unaware conditions primarily stem from 

changes in a restricted set of networks. 

 If not driven by a small number of networks, perhaps our global metrics are instead 

skewed by massive connectivity changes occurring with awareness in a small number of nodes. 
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To examine this possibility, we tested the integrity of the global network to removal of the most 

highly interconnected nodes on a per-subject basis (Bullmore & Sporns, 2009). If these nodes 

were singularly responsible for what appeared to be global effects, we should no longer observe 

difference in modularity and participation coefficient between Aware and Unaware conditions 

following removal of these highly connected nodes. Excluded nodes were defined as the regions 

with the greatest summed weighted connection strengths (i.e. the sum of all pairwise connections 

made by that particular node, thresholded at the top 1% (3 nodes) or 10% (27 nodes) of the most 

interconnected nodes).  

 Even after removal of these nodes, modularity still differed between Aware and Unaware, 

with greater modularity in the Unaware compared to Aware conditions (1%: p = .046; PSdep = 

0.71, 10% p = .046; PSdep = 0.71). Correspondingly, functional participation still increased with 

Awareness after this targeted attack (1%: p = .01, PSdep = 0.67; marginally at 10% p = .063, PSdep 

= 0.58). No significant differences were found for the clustering coefficient (1%, p = .732, PSdep 

= .54; 10%, p = .775, PSdep = .5) or average path length (1%, p = .753, PSdep = .54; 10%, p = .65, 

PSdep = .58). The effects of Awareness on graph theory metrics do not appear to be driven by a 

small subset of nodes showing the highest connectivity changes. 

 A final possibility that we considered was that the global connectivity changes were 

driven by the brain regions that showed significant BOLD amplitude changes with awareness (as 

identified in SPMs of the contrast of high-confidence Aware vs. high-confidence Unaware 

conditions; see Figure 7). To address this issue, we performed a similar targeted attack analysis 

as above, excluding nodes that overlapped with activated voxels in the SPMs. After removal of 

the eight nodes that were identified as overlapping with foci activated with the Awareness 

manipulation, modularity was still greater in the Unaware condition (p = .043, PSdep = 0.67), 
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whereas participation was greater in the Aware condition (p = .007, PSdep = 0.67). Again, we 

found no significant differences between average path length (p = .753, PSdep = .54) and the 

clustering coefficient (p = .797, PSdep = .5) between conditions. The brain regions that showed 

significant BOLD amplitude changes do not solely drive the global connectivity changes 

observed with the Awareness manipulation.  

 

 

Figure 7. BOLD Amplitude SPM for Awareness. Foci showing activation in the contrast of 
Aware > Unaware (high confidence trials collapsed across forward-and backward- masked 

conditions) are presented. These activations include VLPFC (-42,32,12), PreSMA (- 1,13,51), 
left MFG (-36,1,46), left and right IPL (-56,-44,40; 59,-38,35), and left IPS (-34,- 59,38). All 
coordinates (peak activations) are reported in Talairach space. Maps thresholded at p < .05, 

cluster corrected for multiple comparisons. 
 

 Taken together, these results suggest that target awareness is associated with degradation 

of modularity in the brain’s functional networks via an increase in the participation coefficient 

without changes in clustering coefficient. Awareness may be associated with a widespread 

increase in functional connectivity across modules rather than within modules. These results are 
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also in line with reports that manipulations of working memory load can increase intermodular 

communication and decrease modularity in the absence of global efficiency changes (Ginestet & 

Simmons, 2011), lending credence to our conclusion that decreased functional modularity with 

awareness results from widespread increased inter-modular connectivity.  

 

BOLD Amplitude Patterns of Awareness 

 In order to contrast the global connectivity changes with those obtained when measuring 

amplitude differences in activation with awareness, we contrasted the SPM for Target Aware vs. 

Unaware (high-confidence) trials (collapsed across masking conditions). This map revealed 

activations in a few scattered fronto-parietal locations – left ventrolateral prefrontal cortex 

(VLPFC), pre-supplementary motor area (PreSMA), left middle frontal gyrus (MFG), bilateral 

inferior parietal lobule (IPL), and left intraparietal sulcus (IPS) (Figure 7). There were no regions 

more activated in the Unaware compared to the Aware condition. This pattern of activations, 

which is much more circumscribed than the global changes in connectivity that we observed, is 

generally consistent with previous evidence of fronto-parietal activations with target awareness 

(Lau & Passingham, 2006; Marois et al., 2000; 2004; Tse et al., 2005).  

 

Results by Masking Condition 

 The pattern of results observed, when splitting the data across masking directions, is 

similar to that obtained in the main analysis for the top 10% of connections (Figure 8). 

Specifically both backward-masked and forward-masked tended to show a decrease in 

modularity and an increase in participation in Aware relative to Unaware trials, with no 

observable trends for clustering and distance metrics. However, as evidenced in the graph, only a 



	 40	

subset of the results reached statistical significance when broken down by masking condition. 

For backward-masked trials (metacontrast), modularity was significantly greater in the Unaware 

condition compared to the Aware condition (p  = .002, PSdep = .88). No other comparisons using 

this data broken out by masking condition reached statistical significance (p’s > .1). This is not 

surprising given that this breakdown by masking condition suffers from low power due to the 

small number of trials and subjects that could be included with this analysis. Nevertheless, the 

overall pattern of results, coupled with the False Alarm and Correct Rejection comparisons, 

suggest that the graph theory measures reported in this chapter reflect genuine changes in global 

connectivity with Awareness.  

 

Analyses excluding PPI deconvolution step 

 We have analyzed the global data using PPI excluding the deconvolution step, as 

described in MacLaren et al. (2012).  For this analysis, the interaction predictors were calculated 

as the timepoint-by-timepoint product of the task regressor and the extracted seed timecourse. 

All other aspects of the graph theoretical analysis were identical to those presented above. With 

this reanalysis at the top 10% of connection strengths, the pattern of results for functional 

Modularity remained the same as in the earlier analysis, with the average modularity in the 

Aware condition marginally lower than in the Unaware condition (Wilcoxon’s signed-rank test, 

p = .05, PSdep = .71). Participation was significantly greater in the Aware compared to the 

Unaware condition (Wilcoxon’s signed-rank test, p = .005, PSdep = .75), as in previous analyses. 

The clustering coefficient showed a trend for being greater in the Aware condition than in the 

Unaware condition (Wilcoxon’s signed-rank test, p = .07, PSdep = .63). The average functional 

path length did not significantly differ between conditions (Wilcoxon’s signed-rank test, p = .15, 
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PSdep = .54). Thus, without the deconvolution step, we see similar effects on modularity, 

participation coefficient, and functional path length to what was presented above. We also see a 

marginal difference in the average clustering coefficient, a trend that was not observed in any 

other iteration of our analysis. 

 

 

Figure 8. Differences in graph metrics for Aware and Unaware trials in forward- and backward-
masked conditions. (a) Results for backward-masked trials only. (b) Results for forward-masked 

trials only. Error bars represent within-group standard error. 
 
 
Pearson correlation analysis 

 To confirm our results were not simply due to an artifact of the PPI procedure, we 

reanalyzed the data with a Pearson Correlation method using Jochen Weber’s NeuroElf toolbox 

for MATLAB and custom MATLAB scripts. Using the “vtc.RegressOut” function included in 

the toolbox, we removed task-related variance as well as several additional, z-transformed, 
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nuisance variables (timecourses from white matter and ventricle ROIs) on a run-by-run basis.  

Following this regression step, we generated condition-specific timecourses by concatenating 12-

volume timecourses (with a 1 s volume acquisition time) corresponding to the post-target delay 

in our design. In order to cancel out the contribution of intrinsic functional connectivity in these 

timecourses, we analyzed the differences between Aware and Unaware connectivity for 

individual subject connectivity matrices. We Fisher z-transformed the Pearson correlated 

matrices, calculated difference matrices (Aware - Unaware) per subject and performed graph 

theoretical analyses on these difference matrices, testing vs. a baseline as in a paired t-test. 

Because our analyses utilize normalized (by null graph) values, a baseline value of 1 would 

indicate the matrix is comprised of random data points. Using a paired t-test vs. 1, we found 

significant modularity (mean = 1.4391; p = .04 x 10-9), participation (mean = .8110; p = 

.000001), and clustering effects (mean = .6951; p = .02 x 10-6). There was no significant 

difference for the average path length (mean = 1.0212; p = .2). While this analysis confirms a 

difference in modularity and participation between conditions that we observed with the PPI 

method, interpretation of graph theory metrics based on a matrix of Pearson correlation 

difference scores is difficult in the context of the present design. Specifically, whereas the gPPI 

analysis examines the topology of connectivity matrices under the conditions of target awareness 

and unawareness, this Pearson correlation method requires the examination of a difference 

matrix to account for the influences of intrinsic connectivity. While some individual connectivity 

strengths may not significantly differ between these conditions, they still contribute to the overall 

topology of the network in conjunction with stronger connectivity differences. When calculating 

difference matrices, we likely lose a substantial contributing factor to graph topology due to the 

subtraction of connectivity strengths. This complicates interpretation of the graph theoretical 
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properties of difference matrices and makes extrapolation of our findings to the properties of 

awareness more difficult. Consequently, the main claims of this paper are based on the gPPI 

connectivity analysis described above. 

 

Head Motion  

 Head motion has been shown to have substantial impacts on estimates of functional 

connectivity (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; Van Dijk, Sabuncu, & 

Buckner, 2012). In order to ensure that our analyses were not confounded by a condition-specific 

pattern of head movement, we examined head motion during the 12-second period following 

target presentation. We compared the root-mean-square of movement deviations in six estimated 

motion parameters (Van Dijk et al., 2012). No significant interaction was observed between 

conditions in our main analysis (high-confidence hits and misses) and these estimated movement 

parameters (F(1,5) = .76, p = .58). 

 

Discussion 

 A key finding of the present study is the selective effect of target awareness on a specific 

subset of graph theory metrics associated with inter-modular connectivity: While modularity and 

inter-modular participation indices were affected by the awareness manipulation, there were no 

changes in clustering coefficient and characteristic path length. Interestingly, the latter two 

parameters are used to estimate a network’s small-worldness (Rubinov & Sporns, 2010), i.e., a 

network’s tendency to exhibit both high functional segregation and efficiency. The average path 

length (and the related global efficiency metric) is largely insensitive to multiple, long paths in 

larger networks (Estrada & Hatano, 2008), precisely the pattern of connections that appear to be 
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most affected by awareness based on participation differences observed in our data. Additionally, 

existence of small-worldness is defined by strong local clustering (Humphries & Gurney, 2008) 

that may not be affected by the cross-modular changes seen here with awareness. Awareness of a 

simple percept may not significantly affect small-worldness because both of the measures used 

to compute this network feature are more sensitive to intra-modular local connections, whereas it 

evidently is the inter-modular connections that are preferentially affected by conscious target 

perception. As previous studies have identified broad increases in long-distance oscillatory 

synchrony as a marker of consciousness (Gross et al., 2004; King et al., 2013; E. F. Lau, Phillips, 

& Poeppel, 2008; Melloni et al., 2007; Schröter et al., 2012), it is conceivable that the increase in 

participation and breakdown of modularity that we report are a result of changes in long-distance 

functional synchrony following target awareness. 

 As a whole, the present findings provide strong evidence in support of global theories of 

awareness, in which the conscious perception of a stimulus is associated with whole-brain 

dynamic alterations in functional connectivity. Such results may explain why awareness is a 

unitary phenomenal experience (Seth, Izhikevich, Reeke, & Edelman, 2006), and suggest the 

means by which information at the focus of attention is broadcasted across the cerebral cortex. It 

is noteworthy that the changes associated with awareness observed here are more extensive than 

those reported on the basis of BOLD amplitude changes, which tend to show scattered cortical 

activation foci with awareness (Dehaene et al., 2001; Haynes et al., 2005; Lau & Passingham, 

2006; Marois et al., 2000; 2004; Tse et al., 2005).  Such a BOLD amplitude pattern of fronto-

parietal activity was in fact observed in our own data when comparing Target Aware and 

Unaware conditions (see Figure 7). As such, these results imply – aside from differences in 

sensitivity between BOLD amplitude and functional connectivity approaches – that connectivity 
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differences may reflect latent changes in the functional state of distant brain structures, priming 

them for target-related activation should the task or environmental situation call upon it.  

Importantly, even though our results reveal global summary changes in modularity and 

participation that are not driven by massive connectivity changes in a single network or small 

number of nodes, they do not discount focal or network-level contributions to awareness. 

Instead, we view these global connectivity changes as a complementary aspect of awareness to 

the recruitment of fronto-parietal regions observed in numerous univariate studies of BOLD 

amplitude changes (Asplund, Todd, Snyder, & Marois, 2010a; Beck et al., 2001; Dehaene et al., 

2001; Haynes et al., 2005; Lau & Passingham, 2006; Lumer et al., 1998; Lumer & Rees, 1999; 

Marois et al., 2000; 2004; Marois & Ivanoff, 2005; Naghavi & Nyberg, 2005; Rees et al., 2002; 

Tse et al., 2005). It is only once we are able to integrate the findings obtained at different levels 

of analysis that we will have a comprehensive understanding of the neural basis of awareness.  

Finally, while our findings suggest that changes in a single network do not drive the 

global functional connectivity changes, not all network inter-connectivity is similarly engaged. It 

may very well be, for example, that visual and auditory awareness would reveal a different 

balance in functional weights across the brain’s networks. Nevertheless, while more studies are 

evidently required to account for the differentiable aspects of consciousness (Tononi & Edelman, 

1998), our results reveal a possible mechanism supporting the integrative nature of this mental 

state. 
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CHAPTER III 

 

INCREASE IN THE BRAIN’S FUNCTIONAL SMALL-WORLDNESS WITH ATTENTION 

CAPTURE 

 

 The previous chapter considered the case in which consciously perceived information 

was goal relevant. However, salient but task-irrelevant stimuli often enjoy a privileged, 

distracting access to our mental faculties. Generally, novel and salient stimuli in the environment 

powerfully grab attention. The existence of such a stimulus-driven orienting response to 

unexpected events has clearly adaptive behavioral purposes and produces wide-ranging 

responses, both cognitively and physiologically (Pavlov, 1927; Sokolov, 1963). In particular, the 

onset of novel stimuli in the environment produces numerous physiological changes, including 

sympathetic nervous system activation, increased arousal, pupillary dilation, and galvanic skin 

response (Beatty, 1982; Kahneman & Beatty, 1966; Tracy et al., 2000). These stimuli also 

mobilize a host of related cognitive processes, including (but not limited to) the orienting of 

attention, evaluative processes, and planning of appropriate behavioral responses (Han & Marois, 

2014; Kahneman, 1973; Sara & Bouret, 2012). Altogether, these processes prepare an individual 

to interact with the attention-grabbing event in accordance with its behavioral meaning and 

value. As such, the cumulative response to unexpected or sudden events in the environment can 

be considered a global one, recruiting aspects of both body and mind.  

 In contrast to the global effects resulting from the capture of attention by a surprise 

stimulus, neurobiological studies of attention have mostly focused on its selective neural 

properties (Chawla, Rees, & Friston, 1999; Corbetta & Shulman, 2002; Desimone & Duncan, 
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1995; Kastner et al., 1999; Reynolds & Chelazzi, 2004; Reynolds, Chelazzi, & Desimone, 1999). 

However, even such focal effects can trigger a cascade of neurophysiological changes that 

propagate across brain regions, for example via oscillatory mechanisms (Fries, Reynolds, Rorie, 

& Desimone, 2001; Womelsdorf, Fries, Mitra, & Desimone, 2005). Indeed, widespread changes 

in neurophysiological activity are an integral part of an influential model of attention – the biased 

competition model – in which it is postulated that attention biases the competition for 

representation of stimuli or events in the brain (Desimone & Duncan, 1995). Yet, evidence that 

attention produces truly global neural changes is scant. Attention networks of the brain have 

been well delineated, including a ventrolateral network composed of the temporo-parietal 

junction (TPJ), inferior frontal junction (IFJ) and anterior insula (AI)(Corbetta & Shulman, 2002; 

Downar et al., 2000; Marois et al., 2000; Serences et al., 2005) that overlaps with a related 

‘salience’ network in AI and dorsal anterior cingulate cortex (dACC) (V. Menon, 2011; V. 

Menon & Uddin, 2010), as well as a dorsal attention network consisting of core components in 

the frontal eye field and dorsal parietal cortex (Beck et al., 2001; Chica, Valero-Cabre, Paz-

Alonso, & Bartolomeo, 2014; Corbetta & Shulman, 2002; Kastner et al., 1999; G. L. Shulman et 

al., 1999). These studies, as well as many others, have ultimately produced a network-level view 

of attention, in which the control of attention results from the coordinated function of a 

circumscribed set of brain areas. However, as noted above, numerous physiological and 

cognitive processes take place following the capture of attention by an unexpected event in order 

to bring about the swift and systemic changes that are necessary to insure a prompt analysis, 

physiological reaction, and behavioral response to the event (Pavlov, 1927; Sokolov, 1963). 

Given the wide-ranging extent of these changes, they may likely originate from well beyond the 

confines of the attention networks. Moreover, the rapidity and flexibility at which an individual 
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may have to interact with the surprising event could be optimized if cortical resources are primed 

to address this event. Thus, we hypothesize that attention capture by a surprising event involves 

widespread alterations in the functional topology of the human brain to facilitate the rapid 

exchange of information across the cerebral cortex.   

 Using functional magnetic resonance imaging (fMRI) combined with graph theoretical 

analyses, we sought to examine whether detection of salient, novel, task-irrelevant “oddball” 

events produced functional connectivity changes throughout the brain or whether they were 

mostly confined to the attention/salience networks. Graph theory is ideal for testing global 

functional connectivity predictions as it provides concise measures of the functional topology of 

an entire system (Bullmore & Sporns, 2009). Participants performed a demanding goal-oriented 

visual search task in which they monitored a rapid stream of distractors for the presentation of 

target letters, with the task disrupted by the rare presentations of unexpected, salient oddball 

images. Such oddballs powerfully capture attention and produce a strong orienting response 

(Asplund, Todd, Snyder, & Marois, 2010a; Asplund, Todd, Snyder, Gilbert, & Marois, 2010b; 

Braver et al., 2001; Marois et al., 2000; M. Stevens et al., 2005) that quickly habituates after the 

first few oddball instances (Asplund, Todd, Snyder, & Marois, 2010a; Asplund, Todd, Snyder, 

Gilbert, & Marois, 2010b; Sokolov, 1963). The rapid habituation of the orienting response makes 

a specific prediction about the life span of the changes in functional connectivity that may 

accompany attention capture. Specifically, repeated ‘oddball’ presentations should attenuate the 

changes in the brain’s functional topology brought about by the initial presentations, despite the 

continued presence of these task-irrelevant events. Consequently, we aim to examine two factors 

of the functional topology following oddball presentation: (1) whether the initial presentations of 

oddballs produce a global shift in the pattern of functional connectivity rather than network-level 
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(e.g. attention network) changes and (2) whether such global changes mirror the behavioral 

habituation pattern that is observed with repeated presentations of the surprising events.  

 

Methods 

 

This study presents novel connectivity and graph theory analyses of data acquired in 

Asplund et al. (2010b). The graph analytical methods have been previously described in detail in 

Godwin et al. (2015) and in Chapter II of this dissertation.  

 

Participants 

 Thirty-one individuals (12 females) recruited from the Vanderbilt University community 

participated in the study. All participants had normal or corrected-to-normal vision. The 

Vanderbilt University Institutional Review Board approved the experimental protocol, and 

informed consent was obtained from all subjects. Data from one participant was excluded due to 

technical problems during the scan session. 

 

Behavioral Paradigm 

 The main task (Fig. 9) consisted of searching for a target letter (‘X’) presented in a rapid 

serial visual presentation (RSVP) of distractor letters (all letters were shown in white Helvetica 

font, 1.8° x 1.8°, overlaid on a dark gray background). Trials were 5.4s seconds long and 

consisted of a 3.4 s letter RSVP followed by a 2 s response period and a 2.6 s inter-trial-interval 

(ITI). RSVP periods consisted of 31 letters chosen randomly, without possibility of two identical 

letters occurring in a row, from a possible set of 20 with vowels being excluded from the 
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possible set. All stimuli were shown for 100 ms with a 10 ms inter-stimulus-interval (ISI). An 

onscreen prompt directed participants to initiate a right index finger button press response to 

indicate “target present” or a right middle finger response to indicate ‘target absent.’ ITIs 

displayed a white fixation cross on the screen for the duration. The target was present on 77.5% 

of the 40 total trials presented over the course of one fMRI run per participant.  

 

 

Figure 9. (a) Schematic of behavioral design.  Each trial (8 s) began with a 3.4 s RSVP of 31 
letters, with each letter presented for 100 ms with a 10 ms inter-stimulus-interval. Participants 
had 2 s to respond following each trial as to the presence of a target, indicated by a prompt on 
screen. A 2.6 s inter-trial-interval followed each response period while a white fixation cross 
remained on the screen. Size of stimuli shown in figure are not to scale. (b) Rates of target 

detection for Early (first two) oddball trials, late (last four) oddball trials and no-oddball trials. 
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On a subset of trials (6 out of 40) participants were shown a salient, task-irrelevant 

‘oddball’ during the RSVP at fixation in place of a distractor letter stimulus. Oddballs consisted 

of grayscale faces, each distinct from one another, and were shown during both target-present 

trials (5) and no-target trials (1). On target-present trials, oddball images were displayed 330 ms 

prior to the target. Although only faces were used in the current study, we have previously shown 

that similar behavioral effects are obtained for other oddball types (Asplund, Todd, Snyder, & 

Marois, 2010a). The order of oddball trials, including the target-less oddball trial, was pseudo-

randomized and was balanced across subjects. Oddball trials were separated by a minimum of 

two trials containing a target with no oddball stimulus. Only target-present trials were practiced 

prior to the fMRI session and participants needed to be proficient at 80% accuracy prior to 

scanning.  

All stimuli were presented using Psychophysics Toolbox extensions (Brainard, 1997; 

Kleiner et al., 2007; Pelli, 1997) in MATLAB (MathWorks).  

 

fMRI Methods 

 The study was carried out in a 3T GE MRI system at the Vanderbilt University Institute 

of Imaging Sciences (VUIIS). Stimuli were back-projected from an LCD projector (Avotec, Inc.) 

onto a screen viewed by the participant lying in the scanner via a mirror. Nineteen 7-mm-thick 

axial slices were taken parallel to the anterior commissure–posterior commissure (AC-PC) line 

(0 mm skip; 3.75 × 3.75 mm in-plane). T2*-weighted image acquisition consisted of a 25 ms 

echo time, 70° flip angle, 240 mm FOV, 64 × 64 matrix, and a 2,000 ms repetition time. 166 

brain volumes were collected during the functional scan, although the first 6 volumes were 

discarded to allow for signal stabilization.  
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 Data preprocessing was performed using Brain Voyager QX 2.6 (Brain Innovation) and 

included 3D head-motion correction, linear trend removal, and a correction for slice acquisition 

timing. Functional and anatomical runs were co-registered and transformed into standard 

Talairach space (Talairach & Tournoux, 1988). Prior to the functional connectivity stage of 

analysis, six estimates of motion and the first derivatives of those estimates were regressed out of 

the data to account for the potential effects of head motion on connectivity estimates (Power et 

al., 2012). 

 

Functional Connectivity Analysis 

 Regions of interest were defined according to the results of a previously reported analysis 

of resting state functional connectivity (Power et al., 2011), in which authors identified 264 

nodes with strong overlap with known functional-network systems. Conversion of these 

MNIcoordinates into Talairach coordinate space was performed in the current study via the 

mni2tal.m function. Six-millimeter radius spheres were drawn around each coordinate to create a 

list of 264 ROIs to serve as nodes for graph theoretical analyses. 

 To assess how connectivity differed as a function of task, connections between nodes 

were measured using the generalized psychophysiological interaction (gPPI) method (McLaren 

et al., 2012). In using gPPI, connections are estimated based on correlations in blood oxygen 

level dependent (BOLD) signal in such a way as to separately estimate task activation effects and 

non-task specific correlations in order to isolate task-dependent changes in connectivity (Cisler et 

al., 2014; Gitelman et al., 2003; Kim & Horwitz, 2008). Three general classes of predictors are 

included in the general linear model (GLM) to simultaneously account for respective sources of 

variance: predictors of task activation, a seed node timecourse, and condition-specific interaction 
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timecourses. Predictors of task activation are analogous to those used in standard fMRI GLMs. 

Interaction regressors predict changes in connectivity isolated to periods following the 

presentation of the respective stimuli while zeroing out predictions at other timepoints. The 

parameter estimates corresponding to the interaction predictors serve as our task-modulated 

measurement of functional connectivity.  

 In order to produce a full connectivity matrix, a separate GLM was performed for each of 

the 264 seeds (nodal ROIs). For each GLM, a timecourse was extracted from a seed region, 

included as a predictor in the GLM, and utilized to produce a seed-specific interaction regressor 

with task condition. Increases in the interaction (PPI) parameter estimates for a particular voxel 

in a given GLM indicates an increase in the synchrony of the seed timecourse and the target 

voxel specific to the particular task condition. We assumed no directionality in these predictors 

and, consequently, averaged across the diagonal in our per-subject connectivity matrices, thus 

producing a symmetric graph (Rubinov & Sporns, 2010). 

 GLMs included condition-specific regressors for the first two oddball trials (“Early” 

oddballs), the next four oddball trials (“Late” oddballs), target-only trials, and no-target trials. 

The decision to distinguish the initial two oddballs from the later four was based on the pattern 

of behavioral results indicating an exponential decrement in oddballs’ capacity to capture 

attention with repeated presentations, with the first two presentations capturing more attention 

than the next four, as judged by target detection performance (Asplund, Todd, Snyder, & Marois, 

2010a; Asplund, Todd, Snyder, Gilbert, & Marois, 2010b). In addition to the two oddball 

conditions (Early and Late oddballs), parameter estimates for interaction regressors to be input 

into the graph theoretical analyses were also obtained for the Search trials condition, as no-target 

trials provide a baseline for assessing connectivity and topology in the absence of distracting 
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oddball images. Based on the comparison of target detection in the Late oddballs vs. Search trials 

(see Fig. 9), the Late oddballs still capture attention (see Results for a comparison of Early and 

Late oddball topologies against all oddball-absent trials). gPPI analyses were conducted using 

custom scripts in the BrainVoyager QX 2.6 and MATLAB environments. 

   

Graph Theoretical Analysis 

 Graphs were constructed for each of our conditions of interest (Early oddballs, Late 

oddballs, and Search trials) and examined via the Brain Connectivity Toolbox (Rubinov & 

Sporns, 2010) for graph theoretical analyses. However, several initial steps were performed prior 

to the calculation of graph theoretic statistics. In particular, one must account for the effects of 

graph metrics due to the number of nodes, connections, and distribution of connections in a 

graph (Rubinov & Sporns, 2010). First, graphs were proportionally thresholded (to exclude the 

potential influence of noise connections on graph metrics) in a range from the top 5% strongest 

connections to 25% strongest connections at 5% intervals, similar to previously reported work 

(Cao et al., 2014; Dosenbach et al., 2007; Godwin et al., 2015; Rubinov et al., 2009). We present 

the results for top 10% of connections here, as well as validation with alternate thresholds. 

Following thresholding, matrices were rescaled to the range [0,1] by dividing connectivity values 

by the maximum value on a per-subject graph basis. Finally, following calculation of graph 

metrics, all values were “normalized” by comparing said values to those derived from the 

average of 100 null reference graphs. Reference graphs were constructed by utilizing the Brain 

Connectivity Toolbox function “randmio_und.” This normalization step allows for the 

comparison of graphs across thresholds, which contain variable connection densities and can 

affect values of graph metrics (van Wijk et al., 2010). 
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 Corrections for multiple comparisons of graph metrics was performed by gating 

comparison of pairwise conditions by the significant result of an omnibus one-way ANOVA per 

metric examined (Rubinov & Sporns, 2011). Given the non-independence of the network 

properties examined, no correction for multiple comparisons was performed based on the 

number of metrics tested, similar to previous work in the field (Cao et al., 2014; Godwin et al., 

2015; Rubinov & Sporns, 2010; 2011). Additionally, the current study aims to assess globally 

averaged measures of topology, as opposed to testing the significance of individual nodes, 

negating the need for corrections for multiple comparisons based on the number of nodes 

(Bassett et al., 2011; Lynall et al., 2010; Schröter et al., 2012) or significance per voxel as a 

thresholding measure (Bassett et al., 2009; E. T. Bullmore & Bassett, 2011; Cole et al., 2014; 

Dosenbach et al., 2007; Rubinov & Sporns, 2011). 

 To get a more complete understanding of the connectivity changes associated with 

attention capture, we tested metrics of functional segregation, functional integration, and 

centrality of the graph system to test the “integration” and “small-worldness” hypotheses 

(Godwin et al., 2015; Rubinov & Sporns, 2010).  

The integration hypothesis predicts changes in modularity and participation coefficient as 

a function of target awareness (Rubinov & Sporns, 2010). We utilize Newman’s spectral 

algorithm for weighted matrices to determine the modularity of graphs, a measure assessing the 

degree to which connections can be segregated into non-overlapping “modules” with a maximal 

amount of within-module connections while minimizing between module connections. Weighted 

modularity (Qw) was calculated by: 

 

𝑄! =  
1
𝑙! 𝑤!,!  −  

𝑘!!𝑘!!

𝑙! 𝜕!!,!!!,!∈!
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with weighted connections between nodes i and j (wi,j), sum of all weights in a graph (lw), 

weighted degree of a node (ki), module containing node i (mi), and 𝜕!!,!! = 1 if mi = mj. The 

degree to which modularity increases reflects the extent of isolated processing within modules, 

independent of communication with nodes in other modules, and hence the segregation of these 

islands of information processing.  

 Utilizing the modules defined by the modularity algorithm, we can calculate the degree to 

which nodes communicate across modules; i.e. the participation coefficient (𝑦!!) of those nodes, 

a measure of centrality of the graph’s system. Nodes with high participation increase global 

integration by facilitating between-module communications. Specifically, 

 

𝑦!! = 1 −  
𝑘!! 𝑚
𝑘!!

!

!∈!
 

 

where ki
w(m) is the weighted degree of connections between node i and nodes in module m. 

The “small-worldness” hypothesis predicts changes in the balance between the demands 

for functional integration necessary for efficient global communication and functional 

segregation necessary for specialized processing (Bullmore & Sporns, 2009; Watts & Strogatz, 

1998), potentially uniquely occurring in the clustering coefficient and characteristic path length.  

The clustering coefficient highlights the degree to which information is shared across 

triads of nodes, reflecting local sites of dense interconnection. The clustering coefficient (Cw), 

where ti is the number of triangles around node I, is calculated with the following formula:  
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𝐶!  =  
1
𝑛

2𝑡!!

𝑘! 𝑘! − 1!∈!
 

  

 The characteristic path length, a metric of functional integration reflecting the degree to 

which information is spread widely throughout the graph, measures the functional distance 

between any two nodes. Specifically, the characteristic path length (Lw) is defined the functional 

distance between nodes, where di,j  is the shortest path length between nodes i and j, computed 

with a inverse mapping of weight to length.  

 

𝐿!  =  
1
𝑛

𝑑!"!!∈!,!!!

𝑛 − 1!∈!
 

 

Finally, Small-Worldness (Sw) can be calculated by the ratio of the normalized (by null 

network) clustering coefficient to the average path length: 

 

𝑆! =  
𝐶!
𝐶!"#$

𝐿!
𝐿!"#$

 

 

where Crand and Lrand are clustering and average path length calculated on comparable 

random networks (Humphries & Gurney, 2008). 
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Results 

 

 Target detection in the fMRI run was worse in the first two oddball trials than in the last 

four (t(29) = 6.036, p < .001; Fig. 9b ). Importantly, target detection in the last four oddball trials 

was also worse than in target-only trials (t(29) = 56.064, p < .001). Thus, although attenuated, 

attention capture still took place in the last four oddballs. Taken together, these behavioral results 

indicate that oddballs powerfully capture attention, and that the strength of this attention capture 

is contingent on the number of times oddball are presented.  

 The rapid attenuation of attention capture with serial oddball presentations provides a 

powerful means to assess whether potential global connectivity changes reflect attention capture 

per se rather than the physical presentation of the oddballs, as the latter is equated in all oddball 

trials. Indeed, based on the behavioral results, one would expect a temporal order effect of 

oddball presentations onto global brain connectivity, with largest effects with the first two 

presentations, followed by the next four oddball presentations, which is in turn followed by trials 

consisting of only goal-driven processes (Search trials).   

 To examine the effects of attention capture on global functional connectivity patterns, we 

assessed the pair-wise functional connectivity across 264 nodal regions of interest of the cerebral 

cortex (Power et al., 2011) via the generalized psychophysiological interaction (PPI) method 

(McLaren et al., 2012). From the pair-wise functional connections across these 264 nodes, we 

assessed summary properties of this ensemble functional cortical network (i.e. the graph) using 

graph theoretical metrics based on the top 10% strongest functional connections. Given the 

extensive behavioral effects produced by the initial presentations of salient, task-irrelevant 

stimuli, we hypothesized that these would be accompanied with pervasive changes in functional 
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connectivity, reflecting the powerful capture of attention by the unexpected oddballs. We further 

predicted that such putative global connectivity changes would be attenuated with additional 

oddball presentations, though these changes would still be present relative to trials with no 

oddball presentations. Consistent with this hypothesis, a node-based search for such pattern of 

functional connectivity changes revealed a widespread distribution of progressively decreasing 

connectivity strengths with the three conditions of interest, namely the first two (Early) oddballs, 

last four (Late) oddballs, and No oddballs (Search trials; Fig. 10) with no discernable structure in 

the topological arrangement of these changes.  
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Figure 10. Subject-averaged connectivity for edges showing connectivity strength changes 
consistent with the behavioral pattern of Early oddball > Late oddball > Search trials, with hotter 

colored edges denoting increased magnitude of interaction regressor (seed x condition; PPI) 
parameter estimates. Heat scale indicates magnitude of interaction regressor (seed x condition; 

PPI) parameter estimates after rescaling to the range [0,1], as was performed for graph 
theoretical analyses. Node coordinates and network memberships were derived from Power et al. 

(2011), with nodes color-coded according to purported network membership. Node alignment 
with inflated surface is approximate and displayed for illustration purposes only. Abbreviations: 

C/O – Cingulo-opercular; F/P – Fronto-parietal. 
 
 

 It is difficult, however, to draw any further conclusions from the visual inspection of the 

changes in connectivity patterns rendered into two dimensions. To provide a quantitative and 

global assessment of the changes in functional connectivity patterns that occur with attention 

capture by oddballs, we submitted the PPI matrices data to graph theory analysis. Specifically, 

using graph theory metrics of functional segregation, integration, and centrality, we tested two 

competing models by which attention capture may affect the brain’s global functional topology, 
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namely via changes in “integration” versus “small-worldness.”  According to the integration 

model, suggested by a recent study about the global connectivity changes that take place with 

conscious target detection (Godwin et al., 2015), attention capture would lead to a breakdown of 

the brain’s functional modularity (i.e. the ability to separate the graph into non-overlapping 

modules or networks), with such breakdown resulting from an increase in the functional 

participation of inter-modular connections. Alternatively, the small-worldness model instead 

argues that attention capture by oddball presentations would trigger an increase in the brain’s 

functional small-worldness, a composite measure of the balance between functional 

specialization and efficient information propagation in the brain (Bullmore & Sporns, 2012; 

Watts & Strogatz, 1998). According to this model, the capture of attention by the presentation of 

oddballs would lead to oddball information being more efficiently processed locally and 

distributed globally. For both of these hypotheses, the predicted graph theoretical effects of 

oddball presentations would be greatest with Early oddballs, with diminished effects for Late 

oddballs and even lesser effects during Search trials. 

  The graph theoretical properties of Early oddball presentations, Late oddball 

presentations, as well as Search trials for the top 10% of functional connections are depicted in 

Figure 11. To address the first proposed account of global functional connectivity change – 

integration, or decreased modularity caused by an increase in participation coefficient – we 

looked for main effects of condition in modularity and participation coefficient.  Functional 

modularity did show a main effect of condition (F(2,29) = 5.324, p = .008), but it was counter to 

the pattern predicted in the integration hypothesis; modularity was higher in Early oddball trials 

than in Late oddball trials (t(29) = 2.249, p = .032) and than in Search trials (t(29) = 2.98, p = .006). 

No significant difference was observed between late oddball trials and search trials (t(29) = .825, p 
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= .416).  The greater modularity for the Early oddball condition suggests that functional modules 

were more easily segregated in the first few oddball presentations than in other trial types. The 

participation coefficient, which measures cross-modular connections defined by the modularity 

algorithm, showed no significant main effect of condition (F(2,29) = 2.102, p = .131). Taken 

together, these results suggest that the capture of attention by the presentations of novel, salient 

oddballs does not break down the brain’s network modularity; if anything, these oddballs 

increase it. Rather than causing global increases in functional integration, the initial oddball 

presentations – when the behavioral capture effect is most pronounced – displayed significantly 

more segregation compared to Search trials. 
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Figure 11. Effect of oddball manipulation on selected graph theoretic measures for Early oddball, 
Late oddball, and search events. All y-axis values represent the ratio of the observed graph 
theory metric to the corresponding random graph metrics (see Methods). Asterisks indicate 

significant main effects of condition at p < .05. Error bars represent within-group standard error. 
 

 To address the second proposed account of global changes in functional connectivity with 

attention capture, we first assessed the metrics that are factored in the computation of small-

worldness: the clustering coefficient and characteristic path length.  The clustering coefficient 

showed a main effect of condition (F(2,29) = 7.91, p < .001), with higher clustering coefficient in 

Early and Late oddballs than in Search trials (t(29) = 3.599, p = .001 and t(29) =2.742, p = .01, 

respectively), and a non-significant trend between the Early and Late oddball trials (t(29) = 1.471, 

p = .152). For characteristic path length, there were no main effect of condition (F(2,29) = .547, p 

= .566). Small-worldness, measured as the ratio of the normalized clustering coefficient over the 
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normalized characteristic path length (Humphries & Gurney, 2008; Watts & Strogatz, 1998), 

showed a main effect of condition (F(2,29) = 7.539, p = .001). Specifically, small-worldness was 

higher during Early and Late oddball presentations than during Search trials (t(29) = 3.521, p = 

.001; t(29) = 2.531, p = .017), with a non-significant trend between Early and Late oddball 

conditions (t(29) = 1.537, p = .135).  

The estimates of small-worldness for Early oddball trials, Late oddball trials and Search 

trials tended to match the behavioral data pattern (i,e. Oddballearly > Oddballlate > Search). In 

order to quantify the amount of evidence for this pattern in the graph theory data, we adopted a 

Bayesian inequality constrained analysis of variance (Klugkist, Laudy, & Hoijtink, 2005; Mulder 

et al., 2009). Specifically, we assessed how much more evidence there is for the constrained 

inequality hypothesis (Oddballearly > Oddballlate > Search; hereafter Hoddball) than for the 

alternative hypothesis that there is no effect of condition (i.e. Oddballearly = Oddballlate = Search; 

hereafter Hnull). This method of comparison using constrained hypotheses generates allows for 

comparison across multiple constrained hypotheses by computing a Bayes factor relative to a 

common, unconstrained null. We found that small-worldness showed substantially more 

evidence (Bayes factor = 5.45) for the hypothesis Hoddball, compared to the hypothesis Hnull 

(Bayes factor = 0.88). There was also more evidence for Hoddball than for the alternative 

hypothesis that Oddballearly =  Oddballlate > Search (Bayes factor = 2.97).  

 It is conceivable that the small-worldness results were caused by large changes in a 

restricted set of nodes in the overall graph – such as those corresponding to attention networks 

associated with the orienting of attention to unexpected stimuli – instead of emanating from 

changes distributed throughout the cerebral cortex. To address this issue, we examined the graph 

metrics of small-worldness and clustering coefficient per network rather than for the entire 
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graph. If one or a few networks dominate changes in clustering or small-worldness with 

condition, there should be an interaction between network and condition to the graph theory 

metrics. As shown in Figure 12, however, there were no interactions between network and 

condition for either clustering (F(26,754) = .918, p = .583) or small-worldness (F(26,754) = .978, p = 

.496); all networks appear to show the same trend observed in the global results, with mean 

clustering coefficients and small-worldness greatest for Early oddballs and smallest for the 

Search trials. Thus, it does not appear that network-specific modulations in graph metrics drive 

the overall global results in clustering coefficient or small-worldness.  
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Figure 12. Effect of oddball manipulation on graph theoretic measures of clustering coefficient 
and small-worldness averaged across Power et al. (2011) modules. No interaction between 
network and condition was observed for any of the examined metrics. Error bars represent 

within-group standard error. 
 

 

 Another, and more direct, means to assess whether the global results of small-worldness 

may be driven by the attention networks is to employ a targeted attack procedure (Bullmore & 
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can conclude that the attention networks are critical to the global changes in small-worldness 

with oddball presentations. Aside from excluding these nodes and the edges they formed with 

other portions of the overall graph, the analytical approach was identical to that of the globally 

averaged analysis described above. When excluding the ventral attention network, main effects 

of condition for the top 10% of connections were still observed for clustering coefficient (F(2,29) 

= 7.51, p = .001) and small-worldness (F(2,29) = 7.178, p = .002), with similar pair-wise 

differences as observed with the entire graph. Similarly, targeted attack of the dorsal attention 

network yielded significant effects of condition for clustering (F(2,29) = 6.109, p = .004) and small 

worldness (F(2,29) = 5.809, p = .005), with similar pair-wise differences as observed with the 

entire graph. Thus, the results of the targeted attacks of the ventral and dorsal attention networks 

mirror those obtained with the entire graph. These findings suggest that the global changes in 

functional connectivity with the presentations of novel, salient oddballs do not uniquely occur in 

attention networks. This is not to say, however, that the attention networks do not play critical 

roles in the responses to attention-capturing events (Asplund, Todd, Snyder, & Marois, 2010a). 

Rather, our findings suggest that distinct from BOLD amplitude-based changes in these 

attentional networks, there is also a more diffuse, global set of changes that accompany detection 

of task irrelevant, oddballs. 

 

Head motion 

 Head motion has been shown to have significant effects on functional connectivity and 

graph theoretical measures (Drakesmith et al., 2015; Power et al., 2011; Van Dijk et al., 2012). 

We compared the root mean square of movement deviations in six estimated motion parameters 

(Van Dijk et al., 2012) to ensure that our analyses were not confounded by a condition-specific 
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pattern of head movement. No significant interaction was observed between conditions in our 

main analysis (early oddballs, late oddballs, and search trials) and these estimated movement 

parameters (F(2, 5) = 1.48, p = 0.147), suggesting that our principal graph theoretical results are 

not differentially affected by head motion. 

 

No-oddball trials 

 Early and late oddballs were compared against trials with no oddball or target presented 

in order to compare the stimulus-driven capture effects of the oddball vs. an uninterrupted goal-

driven state. However, in order to determine whether the inclusion of target-present trials would 

change the pattern of results observed, we recomputed PPI values and re-ran the globally 

averaged analyses to compare early oddballs, late oddballs, and all non-oddball trials (both 

target-present and target-absent).  

 Using this comparison, modularity no longer displayed a main effect of condition (F(2,29) 

= 1.574, p = .216). However, the clustering coefficient (F(2,29) = 6.029, p = .004) and small-

worldness (F(2,29) = 5.422, p = .007) showed similar main effects of condition as observed in the 

main analysis. The participation coefficient (F(2,29) = 1.393, p = .257) and characteristic path 

length (F(2,29) = .303, p = .740) all showed no effect of condition, similar to the main analysis.  

As for pairwise comparisons, the clustering coefficient showed significant differences 

between early oddball trials and search trials (t(29) = 3.055, p = .005) as well as between early and 

no-oddball trials (t(29) = 2.393, p = .023), with no significant differences between early and late 

oddball clustering (t(29) = 1.208, p = .237). Small-worldness showed significant differences 

between early oddball and no-oddball trials (t(29) = 2.921, p = .007) as well as late oddball and 

no-oddball trials (t(29) = 2.345, p = .026), with no significant difference between early and late 
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oddballs (t(29) = 1.025, p = .314). These results largely mirror the pairwise differences observed 

in the main analysis, supporting our conclusions that measures of segregation differ amongst 

conditions as a result of the detection of oddball stimuli. 

 

Thresholding 

 Thresholding of graphs ultimately serves to exclude noise connections from consideration 

when calculating summary graph theoretical measures; even a small number of noise 

connections can have drastic effects on descriptions of graphs (Drakesmith et al., 2015). 

However, various graph measures are sensitive to the number of nodes and edges included in this 

calculation; consequently, analyzing only a single threshold places a constraint on the 

interpretability of the metrics (van Wijk et al., 2010). To consider the possibility that our results 

might be unique to a particular graph threshold, we repeated our globally averaged analyses at 

several additional thresholds ranging from the top 5% of connections to 25%, at 5% intervals. 

The results of these analyses are depicted in Figure 13. To test whether our results were unique 

to the 10% threshold described in the main analysis, threshold was included as an additional 

factor in a two-way analysis of variance (ANOVA). We examined several aspects of the results 

at these additional thresholds. First, do we replicate the main effects of condition? Next, is there 

an interaction between condition and threshold for our metrics? If an interaction exists, does this 

interaction conflict with our originally presented pattern of results?  
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Figure 13. Graph metrics calculated across the range of the top 5% of connections to 25% of 
connections, at 5% increments. The effects of condition on modularity, participation, clustering, 

characteristic path length, and small-worldness are generally consistent across thresholds. 
 

 

 Modularity (F(2,58) = 7.083, p = .004), clustering coefficient (F(2,58) = 6.408, p = .003), and 

small worldness (F(2,58) = 8.313, p = .002) all showed main effects of condition, similar to the 

results observed in the main analysis when only considering our a priori threshold of 10%. Some 

of these measures did show an interaction of condition and threshold, namely modularity (F(8,232) 

= 3.414, p < .001), and small-worldness (F(8,232) = 2.385, p = .022). However, as Figure 13 

depicts, these metrics never appear to show a qualitatively different pattern of results across 
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thresholds. We conclude from these results that our findings are generally robust across the range 

of thresholds tested.  

 

Discussion 

 

 The results of the present study indicate that detection of task-irrelevant oddball images 

produces specific changes in global functional connectivity as assessed by graph theory. In 

particular, oddballs produced global changes in measures of functional segregation – namely 

modularity and clustering coefficient – as well as in small-worldness. The network and targeted 

attack analyses suggest that these changes were not specific to a subset of nodes or networks, but 

rather reflected truly global changes.  

One of the two tested hypotheses, the “integration” account, predicted that the capture of 

attention by novel, task-irrelevant oddballs would cause increases in measures of global 

functional integration. The present results are inconsistent with this hypothesis. Indeed, rather 

than finding clear changes in integration metrics, we observed changes in measures that typically 

reflect properties of localized connectivity, with these effects culminating in significant changes 

in the brain’s small-worldness, in direct support of the second hypothesis of global functional 

connectivity change with the capture of attention. 

 Small-world networks are often described as representing an efficient balance of 

functionally specialized and densely interconnected sub-networks with robust long-distance 

integration across these more specialized sub-components (Bullmore & Sporns, 2012; Rubinov 

& Sporns, 2010; Tononi et al., 1994; Watts & Strogatz, 1998). A wide variety of physical, 

technological, and social networks produce organizations that fall into this class of networks, a 
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ubiquity that suggests these networks likely provide a unique efficiency in global information 

transfer – owing to a low average path length – without sacrificing the ability to perform more 

specialized processes by densely interconnected subcomponents with high clustering (Watts & 

Strogatz, 1998). Our results show that the changes associated with presentation of a task-

irrelevant oddball specifically correlate with increases in clustering, a key component of small-

worldness. It is possible that this increase in clustering reflects the panoply of specialized 

processes that are recruited with the capture of attention by a novel event (Pavlov, 1927; 

Sokolov, 1963), including primary sensory systems, executive control processes, and ultimately 

motor systems. According to this view, the increase in clustering coefficient is a result of 

widespread priming of functional neural connectivity in preparation for further processing of the 

oddball event, should it be advantageous for any given neural node or network to be involved in 

the swift processing of that event. Such large-scale increase in functional clustering may be 

brought about by activation of the locus coeruleus, as this region of the brainstem is known to 

briskly respond to novel events and to have widespread neuromodulatory effects in the cerebral 

cortex to facilitate rapid reorganizations of distributed functional networks (Sara & Bouret, 

2012).  

 While we hypothesized that the capture of attention by a novel, salient event would 

trigger a surge in the brain’s functional small-worldness, we did not expect that this change 

would be brought about by an increase in local functional connectivity rather than, or in addition 

to, a decrease in path length. A lack of effect on path length may be due to functional networks 

already being very efficient with near-optimal short-path lengths (Latora & Marchiori, 2001; van 

den Heuvel, Stam, Boersma, & Pol, 2008). Consistent with the present findings, a 

magnetoencephalography (MEG) study of the presentations of rare, deviant tones among 
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standard tones reported that the deviant tones produced an increase in the clustering coefficient 

and other measures of localized processing (Nicol et al., 2012) rather than global increases in 

functional integration. What we show here is the profound functional implication that a change 

in clustering coefficient with the powerful capture of attention by oddballs can have on the 

brain’s functional topology, and that is to increase its small-worldness, a fundamental and 

ubiquitous characteristic of efficient neural networks (Bullmore & Sporns, 2012; Humphries & 

Gurney, 2008; Watts & Strogatz, 1998).    

 An intriguing outcome of the present findings is how much they contrast with those 

obtained in Chapter II, in which conscious target perception was associated with large-scale 

increases in measures of functional integration and long-distance connectivity, consistent with 

global network models of awareness (Baars, 2005; Dehaene & Changeux, 2011; Ekman et al., 

2012). Here we show that the powerful capture of attention by novel, task-irrelevant oddball 

stimuli produces changes in local connectivity patterns across the whole brain, similar to the 

profound and reliable pattern of effects observed in previous studies of capture by oddball 

stimuli (Asplund, Todd, Snyder, & Marois, 2010a; Braver et al., 2001; Marois et al., 2000; M. 

Stevens et al., 2005).  

  One possibility to account for these marked differences in functional dynamic topology 

may be the goal relevance of the attended or consciously perceived information. Greater long-

range functional efficiency and functional integration has been shown to correlate with improved 

performance in goal-oriented working memory (Bassett et al., 2009; Kitzbichler et al., 2011) and 

visual discrimination tasks (Ekman et al., 2012). By contrast, the stimuli examined in the current 

study as well as in Nicol et al. (2011) can be considered distractors in the context of an ongoing 

goal-relevant task (though only the present data showed these distractors to interrupt ongoing 
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goal-oriented behavior). It is therefore possible that functional integration is critical for the 

successful completion of task goals, whereas increased functional segregation emerges with the 

presentation of distractors that interrupt ongoing processing and capture attention from the goal-

directed task sets. Functional integration and segregation may thus play specific and 

countervailing roles when it comes to processing of task-relevant and -irrelevant information. 

Alternatively, is also conceivable that rather than task relevance, it is the cognitive state that 

accounts for the differences in findings between Chapters II and III. That is, to the extent that 

attention and awareness can be dissociated (Koch & Tsuchiya, 2007; Lamme, 2003), it is 

possible that these two states are associated with distinct functional topologies. Given the 

significance that support for either of these two hypotheses would have in regards to 

understanding global brain functions, they merit further investigation.  

 In conclusion, the present findings indicate that attention capture by a novel, task-

irrelevant event triggers a shift in the brain’s small-world topology. Despite these changes 

occurring among local connectivity measures, they were observed across the entire graph system. 

It is perhaps through widespread increases in local connectivity that the brain is able to mobilize 

a wide variety of physiological and cognitive processes with attentional capture, thereby 

rendering the brain’s functional topology a smaller world for swiftly and adaptively analyzing 

and responding to the attention capturing event.   

 
  



	 75	

CHAPTER IV 

 

GLOBAL NETWORK PROPERTIES OF GOAL-RELEVANT AND -IRRELEVANT 

COMPETITION 

 

 Chapters II and III of this dissertation aimed to characterize awareness of percepts 

characterized as being respectively relevant (targets) and irrelevant (oddballs) for the ongoing 

cognitive tasks. Two qualitatively different patterns of global connectivity change correlated 

with each of these stimuli types. In everyday life we are constantly bombarded by stimuli, only a 

fraction of which will be relevant to our ongoing behavior. However, all of these stimuli, both 

relevant and irrelevant, will compete for representation and higher-level processing in the brain. 

When searching for a target among distractors that share target features, the amount of time it 

takes to find the target increases with the number of distractors (Neisser & Lazar, 1964; Wolfe, 

2003) as well as with distractor similarity to the target (Duncan & Humphreys, 1989). When 

distractors are visually salient, they will attract attention away from goal-directed processes in a 

stimulus driven manner (Phelps, Ling, & Carrasco, 2006; Theeuwes, Kramer, & Kingstone, 

2004; Yantis & Egeth, 1999). Additionally, when distractors share some stimulus feature(s) with 

targets, they will tend to capture attention via a hybrid of bottom-up and goal-driven processed 

referred to as contingent capture (Folk & Remington, 1992).  

 Both targets and nontargets are thought to contribute to a competition between stimuli 

fighting for access to the brain’s information processing pathways. The biased competition 

model of selective attention (Desimone & Duncan, 1995; Duncan, Humphreys, & Ward, 1997) 

asserts that the processing of both goal-relevant and goal-irrelevant stimuli will be influenced by 
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bottom-up and top-down biasing factor. These biases preferentially advantage each stimulus type 

to ultimately win this competition so that potentially relevant information reaches awareness. 

Competition appears to arise as multiple sources of information interact at common neural 

representations to mutually suppress one another (Beck & Kastner, 2009; Kelley & Lavie, 2011; 

Reynolds et al., 1999).  

  The sources of these biasing signals have often been linked to two separable cortical 

networks that control goal-driven and stimulus-driven orienting (Chiu & Yantis, 2009; Corbetta, 

1998; Corbetta & Shulman, 2002). The goal-driven control of attention is localized to a dorsal 

attention work, comprised of bilateral human frontal eye fields (FEF) and intraparietal sulcus 

(IPS) (Corbetta & Shulman, 2002; Desimone & Duncan, 1995; Kastner et al., 1999). Stimulus-

driven attention, recruited by salient or novel items in the environment, has been localized to the 

temporo-parietal junction (TPJ) and inferior frontal junction (IFJ) (Corbetta et al., 2008; Corbetta 

& Shulman, 2002; Marois et al., 2000) and is closely tied to a related network composed of the 

anterior cingulate cortex (ACC) and anterior insula (AI) tasked with indicating salience of 

objects in the environment(Han & Marois, 2014; V. Menon, 2011; V. Menon & Uddin, 2010). 

 The previous two chapters have described connectivity patterns that may reflect this 

biasing in favor of processing goal-relevant and goal-irrelevant stimuli, respectively. In Chapter 

II, awareness of the target produced a decrease in the modularity and increase in the functional 

participation of whole brain graphs relative to unperceived target trials. This pattern of results 

replicated across a comparison of hits to misses as well as a comparison of false alarms to correct 

rejections. Having perceived a target, regardless of whether one was actually presented, 

produced a consistent decrease in the functional separation between networks, brought about by 

increased cross-modular connections. Generally, these results are consistent with global theories 
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of awareness including global workspace theories (Baars, 2005; Dehaene & Changeux, 2011) 

and information integration theory (Tononi, 2008; Tononi & Edelman, 1998). However, what 

this study could not address was whether information that was not relevant for an ongoing task 

would be distributed globally in a similar manner. 

 Chapter III assessed the graph properties of a task-irrelevant oddball stimulus to see 

whether information pertaining to distracting stimuli, rather than a task-relevant stimulus, 

entered a similar globally connected workspace. Rather than being the target of the ongoing task, 

these novel images decreased detection rates of the target, especially for the initial oddball 

presentations (Asplund, Todd, Snyder, & Marois, 2010a; Asplund, Todd, Snyder, Gilbert, & 

Marois, 2010b). Although these stimuli do not contain the goal-relevance as in the first study, the 

powerful orienting response they provoke does require the coordination of numerous distinct 

cognitive and physiological processes in order to orient to and evaluate novel stimuli (Han & 

Marois, 2014; Kahneman & Beatty, 1966; Sara & Bouret, 2012). Consequently, we might expect 

them to display similar widespread connectivity properties as were observed during detection of 

a task-relevant target. Ultimately, we found that global connectivity changes were associated 

with detection of a task-irrelevant stimulus, but that this pattern was qualitatively different than 

the one observed for target awareness: increased clustering drove an increase in the small-

worldness of subjects’ functional graphs during oddball detection, reflecting an increase in 

functional segregation. This increase in functional segregation was reflected in an increase of the 

modularity statistic, reflecting greater functional distinctiveness between modules. 

 Together, Chapters II and III suggest that the task-relevance of a stimulus (i.e., a stimulus 

that matches a target profile vs. an irrelevant or novel stimulus to be evaluated) may alter global 

patterns of connectivity, helping to communicate this information to appropriate brain structures 
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for ongoing cognition. One alternative explanation for the source of these differences may come 

from a dichotomy between how task instructions are used to proactively bias information versus 

a more reactionary form of control brought about by the stimulus-driven properties of 

information at the moment it is presented (Braver, 2012; Braver, Paxton, Locke, & Barch, 2009). 

This “dual-mechanisms of control” (DMC) model predicts that expectations formed during cue 

presentation bias an individual to adopt either a more “proactive” form of control vs. a “reactive” 

control. This proactive bias is primarily described as primarily a goal-oriented form of control 

(Braver, 2012; E. K. Miller & Cohen, 2001). Alternatively, this model theorizes a second, 

reactive, form of control (Braver, 2012; Braver et al., 2009) that is more stimulus-driven in 

nature and tends to be adopted when expectations of distractor interference are low. Here, the 

dissociation between the effects of task-relevant and –irrelevant information is embodied 

primarily in whether the bias is cued in preparation for target presentation or whether stimulus-

driven factors, such as distractor interference, necessitate more online control to filter out 

conflicting information.  

 In the present study, we aimed to test the relationship between functional topology and 

the processing of task-relevant and -irrelevant information. Awareness of task-relevant 

information may be crucially communicated and integrated throughout the brain by a highly 

interconnected set of global connections (Baars, 2005; Dehaene et al., 1998; Edelman, 2003; 

Tononi, 2008). These hypotheses were supported by the results of Chapter II in which detection 

of task-relevant stimuli (e.g. targets) produced decreases in functional modularity and increases 

in the functional participation of the whole brain. Consequently, for the current study this pattern 

of increased functional integration (indexed by decreases in modularity and increases in the 

participation coefficient) will serve a marker of task-relevant information processing. However, 
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the presence of distracting information (e.g. oddball presentations) in Chapter III produced 

increases in functional segregation. We hypothesized that functional isolation (indexed by an 

increase in modularity, clustering coefficient, and small-worldness) may serve to prevent 

irrelevant information from out-competing goal-relevant information. Therefore, we would 

expect processing of task-irrelevant information would display these same patterns of functional 

segregation. A schematic of these hypothesized markers of task-relevant and task-irrelevant 

processing is shown in Figure 14. 
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Figure 14. Hypothesized markers of task-relevant and task-irrelevant processing. Based on the 
results of Chapter II and III, the figure shows hypothesized markers of global functional 

connectivity associated with concurrent goal-relevant and goal-irrelevant information processing. 
No scale is given as these patters are intended to be relative changes in connectivity in 

comparison to other task periods. Goal-relevant processing, informed by the results of Chapter II, 
suggest that global functional integration (decreased modularity and increased participation) 

accompanies goal-relevant information. Chapter III showed increased global segregation 
(increased modularity, clustering, and small-worldness) associated with processing of task-

irrelevant stimuli. 
 

 However, the data presented in Chapters II and III only measured functional changes 

concurrent with the presentation of targets and oddballs. The DMC theory suggests that when 

task-irrelevant information is likely, as indicated by an informative cue, proactive control is 

employed to optimally bias, in a sustained manner, the processing of goal-relevant information 

(Braver, 2012; Braver et al., 2009). When the likelihood of task-irrelevant information is low, 
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reactive control only employs biasing procedures at the moment irrelevant information is 

detected (Braver, 2012; Braver et al., 2009). Therefore, from a DMC theory perspective, we 

would expect to observe differential patterns of global functional connectivity when distracting 

information is highly likely vs. when it is unlikely.  

 To test the differential predictions of the dual-mechanisms of control theory and 

predictions based only on immediate task-relevance, I reanalyzed a previously published 

experiment designed to probe preparatory influences on activity in visual cortex (Serences, 

Yantis, Culberson, & Awh, 2004b). Participants were asked to add two target numbers and make 

an immediate parity judgment. Targets were identified by spatially predictive cues that contained 

additional information about the likelihood of visual distractors during the task. Distractors were 

invalidly cued on a subset of trials allowing for the examination of cue-related preparatory 

activity as well the consequences of violations of expectations.  

 

Methods 

 

 The data utilized in this study has been previously published as “Experiment 1” in 

Serences et al. (2004). The connectivity and graph theoretical methods described here are a novel 

analysis of this dataset aimed at addressing hypotheses formed based on the previous chapters of 

this dissertation. Additional details of the experimental design can be found in Serences et al. 

(2004) and Awh et al. (2003).  
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Participants 

 Twelve adults (10 female, aged 20-31) participated in this study. All participants 

provided informed consent and The Johns Hopkins University institutional review board 

approved the experimental design. 

 

Behavioral Paradigm 

 The stimulus display consisted of white items overlaid on a black background. The trial 

design is shown in Figure 15. Each trial consisted of a cue period, target array, and pattern mask. 

The length of the cue period was drawn from a pseudo-exponential distribution ranging from 

2500-8500 ms (mean 4,375 ms). Cues consisted of a center fixation square as well as two circle 

and two square stimuli presented at the corners of an invisible square, centered on the fixation 

square. Each pair of matching cue stimuli (circles, squares) was presented diagonally from one 

another. Half of all participants were instructed to attend to locations indicated by the square-

cued locations, with the remaining participants instructed to attend to the circle-cued locations. 

The task required participants to add digits at the cued locations and provide an immediate 

odd/even judgment of the summed result. Digits appeared at all four locations on every trial, thus 

targets were defined by the appropriate cue location (and therefore cues were 100% valid with 

respect to target location). 
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Figure 15. Task design depicting valid trial types. Participants were instructed to monitor two 
cued locations, indicated by either circle or square items in the cue display. The orientation of 

these cued locations indicated whether there were likely (top) or unlikely (bottom) to be 
distractors presented on that particular trial. Participants were instructed to add numbers in the 

target locations together and indicate whether the sum was even or odd with a button press. 
Figure adapted from Serences et al., (2004). 

 

 Participants were instructed that the location of the cue stimuli would indicate the 

likelihood of upcoming distractor stimuli to be presented during the target array. For half of 

participants, if the appropriate cue stimuli were presented in he upper left and lower right corners 

of the invisible square (unlikely-distractor cues), the target array was very likely to only consist 

of numbers presented at the four possible locations (clean target array). For the alternative 

orientation, lower left and upper right cues (likely-distractor cues) would indicate that the target 
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array would likely be filled with irrelevant letters stimuli filling the screen at regular locations 

(noisy target array). Various aspects of cue meaning were counterbalanced across subjects. 

Distractor likelihood was cued with 80% validity; on 20% of unlikely-distractor trials 

participants would view a noisy target display during the target array period and on 20% of 

likely-distractor cues participants would view a clean target display during the target array 

period. Pattern masks consisting of “#” symbols at each target and distractor location were 

presented immediately following the target array and were displayed for 581 ms. No mask was 

presented at empty locations during clean target display trials.  

 Duration of the target array was determined prior to scanning by a staircasing procedure 

performed by each subject, independently for clean and noisy displays (only valid trials were 

presented during the staircasing procedure). This procedure aimed to equate accuracy across 

conditions, keep performance off of ceiling, and produce exposure durations too fast to 

successfully saccade between targets. The staircasing procedure titrated the exposure duration of 

the target to produce about 75% accuracy on both target array types. Displays were initially 

presented for each condition for 1,670 ms. The exposure duration decreased by 10% following 

correct responses and increased by 30% following incorrect response during this process. Eight 

blocks of the staircasing procedure, consisting of 40 trials each, were performed on the day prior 

to scanning. Average exposure durations during the final two blocks during this session were 

then used as a starting point for an additional three blocks of the staircasing procedure after the 

participant had entered the scanner, but prior to scanning. Exposure durations were manually 

adjusted during scanning between runs if participant performance deviated largely from around 

75% accuracy. This procedure resulted in a mean exposure duration of 193 ms (41 ms standard 
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deviation [SD]) during noisy displays. Clean displays, without distractors, resulted in a mean 

exposure duration of 88 ms (31 ms standard deviation) (Serences et al., 2004b).  

 

fMRI Methods 

 The experiment was performed utilizing a Philips Intera 3T scanner at the F.M. Kirby 

Research Center for Functional Brain Imaging at the Kennedy Krieger Institute in Baltimore, 

MD. T1-weighted anatomical images were acquired with a 1mm isotropic voxel resolution. 

Functional scans utilized a SENSE (MRI Devices, Waukesha, WI) head coil with a SENSE 

factor of 2. Echoplanar functional image (EPI) acquisition parameters consisted of a repetition 

time (TR) of 1,830 ms, 25 ms echo time (TE), 70° flip angle, 240 mm FOV, 80 × 80 matrix. 26 

axial slices were collected with a 3 mm thickness and a 1 mm gap. 10 functional runs were 

acquired, each consisting of 40 trials and 200 time points. In addition to the functional scans, two 

localizer scans were acquired for retinotopic mapping which utilized the same scanning 

parameters. These localizer scans are not considered in the present analysis. 

 Data preprocessing was performed using Brain Voyager QX 2.6 (Brain Innovation) and 

consisted of 3D motion correction, correction for slice scan timing, and linear trend removal. 

Anatomical and functional runs were co-registered and transformed into Talairach space 

(Talairach & Tournoux, 1988). Numerous sources of noise have been shown to negatively affect 

accurate estimation of functional connectivity (Power et al., 2012) including subject motion and 

cardiac/respiratory influences. Prior to estimation of functional connectivity measures, six 

estimates of motion, their first derivatives, as well as the timecourses from four regions of no 

interest (two white matter, two ventricular ROIs of similar size to spherically defined ROIs in the 

current study) were regressed out of the data to account for these spurious sources of variance. 
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White matter and ventricular regions of non-interest were manually defined on a per-subject 

basis. 

 

Functional Connectivity Analysis 

 Estimation of functional connectivity was performed similarly to the experiments 

described in the previous chapter, utilizing 264 nodes of interest defined by Power and 

colleagues (2011) with known overlap with cognitive networks of interest. Six-millimeter radius 

spheres were drawn around each coordinate reported to form the 264 nodes with which to the 

whole brain graph for analysis. Connectivity estimates were derived from the condition-specific 

interaction regressors included in the GLM using the gPPI method.  

 Initial analysis of the data included four condition-specific regressors for cue periods and 

four condition-specific regressors for target periods. Cue specific conditions were defined by cue 

type (likely-distractors vs. unlikely-distractors) as well as what target array type was presented 

(clean target vs. noisy target). The original authors for this dataset were concerned that there was 

not adequate time between presentation of the cue and the target to distinguish the sources of 

these two signals (Serences et al., 2004b). Therefore, to test whether target-related activity 

affected estimates of cue activity, separate conditions for valid and invalid cues were included in 

the model. The authors predicted an interaction between cue type and target type would be 

indicative of potential cross-contamination of the two signals. We employ a similar test to assess 

these effects in our own analysis. Target-related conditions were similarly separated by the cue 

type and target-display type. Ultimately, this produced a 2 (distractor likely vs. unlikely) x 2 

(clean vs. noisy target display) x 2 (cue vs. target periods) design. A secondary analysis was 

performed, combining cue and target conditions into a single condition beginning at the cue 
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presentation period and ending with the target-array presentation. This secondary analysis 

constituted a single 2 (likely vs. unlikely cue) x 2 (clean vs. noisy target) design and is based on 

the assumption of signals from the cue and target related periods being confounded in 

connectivity analyses. All PPI analyses were conducted using BrainVoyager QX 2.6 and 

MATLAB custom scripts. 

 

Graph Theoretical Analysis 

 Per-subject graphs were constructed for each of the conditions of interest based on 

parameter estimates of the PPI regressors. All analyses described below were performed on 

graphs proportionally thresholded at the top 10% of connections. All weights, as in analyses 

described in the previous chapters, were rescaled to the range [0,1] by dividing each connection 

by the maximum per-graph connectivity value. Each metric is normalized by calculating the ratio 

of the observed metric per-subject, per-condition to the average of 100 randomized null-graphs 

with equivalent degree distributions. Calculation of each metric as well as construction of 

reference null graphs was performed using the Brain Connectivity Toolbox for MATLAB 

(Rubinov & Sporns, 2010).  

 In the first-pass analysis, individual graphs were constructed for each cell of the initial 2 

x 2 x 2 design. In the secondary analysis, a single cue-target period was defined and 

consequently no separation of cue and target related graphs were possible. Four graphs were 

composed for this secondary analysis, for each cell of the 2 x 2 design.  

 Several factors could determine the expected pattern of graph results for these conditions. 

Given that the results from Chapters II and III were measured concurrently with the presentation 

of task-relevant and irrelevant information, we might expect global patterns of connectivity to be 
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dependent only on the current task relevance of the current visual display. This leads to the first 

set of predictions based on what I will refer to as my “task-relevance” hypothesis. Using the 

distinct patterns of the results observed for task-relevant and -irrelevant information processing 

in Chapters II and II as markers (Fig. 14), the task-relevance hypothesis would predict that 

currently relevant information produces a pattern of global functional integration. From a global 

workspace perspective, this relevant information would inhabit a centralized shared workspace, 

with efficient access to specialized processors in the brain such that relevant information could 

be easily processed, updated, and reprocessed based on going task demands (Baars, 2005; 

Dehaene et al., 1998). Without distraction, task-relevant information would easily win 

competition for central representation and therefore global functional integration would be an 

efficient means of communicating that information. Alternatively, task-irrelevant information, 

such as the presence of distracting information, would produce global functional segregation as a 

potential means of protecting ongoing goal-related information. Without the same efficiency of 

access to central representation and specialized cognitive processors that might be seen without 

distraction, task-irrelevant information may be more easily suppressed at the expense of ongoing 

task performance. This leads to the task-relevance prediction that cue-related information, which 

will always be task-relevant in this paradigm, to display characteristics of global functional 

integration. Noisy displays will then necessarily shift towards a more segregated pattern of 

topology, while clean displays will maintain a pattern of functional integration. 

 As an alternative to the task-relevance hypothesis, the dual-mechanisms of control model 

predicts a proactive form of control to be observed during cue-periods when distractor likelihood 

is high (Braver et al., 2009). If the patterns of connectivity observed in Chapter III, increased 

functional segregation, are in fact a means of protecting task-relevant information and 
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suppressing distracting, task-irrelevant information, we would expect to see increased global 

segregation during the cue period on distractor-likely trials. Previous work has shown that in 

trials with greater expectation of distracting information, regions of the lateral prefrontal cortex 

show more sustained activity during cue-periods whereas decreased activity, time-locked to 

target and distractor presentation, occurs on trials when the distracting information is cued to be 

less likely (Burgess & Braver, 2010). Therefore, in the case of proactive control, no change in 

connectivity would be expected at the onset of the target/distractor array. I would then expect 

that on distractor-unlikely trials, according to this model, global connectivity patterns associated 

with task-irrelevant processing to occur coincident with the (invalid) presentation of a noisy 

display. This effect occurs due to the utilization of a reactive form of control, implemented in the 

absence of distractor expectation, detecting interference and providing an online shift in 

processing topology (Braver, 2012). The predictions of the task-relevance and dual-mechanisms 

of control hypotheses are summarized in Fig. 16. 
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Figure 16. Patterns of topology predicted during cue and target display periods. 
 

 

Results 

 

 Behavioral results are described in detail in Serences et al. (2004). Briefly, participants 

showed decreased accuracy on the parity judgment on distractor-present (noisy) trials when 

distractors were cued to be unlikely compared to all other trial types. No difference in 

performance was observed for distractor absent (clean) between distractor likely and unlikely 

cues. A significant interaction was observed between cue and target display type, with poor 

performance identified primarily in distractor-unlikely, noisy displays. Performance in validly 
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and invalidly cued clean displays as well as validly cued noisy displays were roughly equivalent, 

all around performance determined by the staircasing procedure (~75% correct). 

 In the first-pass, 2 x 2 x 2 graph theoretical analysis, modularity for the cue-period 

showed no main effect of cue type (distractor likely vs. unlikely; F(1,11) = 1.322,  p = .275), nor of 

target display (F(1,11) = .297; p = .597). However, modularity during the cue-period did show a 

marginal interaction between cue type and the target display type (F(1,11) = 4.635; p = .054). This 

effect can be interpreted as a validity effect, with greater modularity seen for validly cued trials 

compared to invalidly cued trials. This marginal interaction effect is concerning for interpreting 

cue-period activity as it suggests that target related activity may be contaminating the cue epoch. 

No validity effect or cue by target interaction should be observed given that at the time of the cue 

the participant has seen no information about the target. The participation coefficient too showed 

no main effect of cue type (F(1,11) = .318; p = .584) nor target type (F(1,11) = .054; p = .821) while 

additionally showing a marginal interaction between cue and target types (F(1,11) = 4.151; p = 

.066). Ultimately, only interactions between cue and target type were observed for metrics 

previously associated with a task-relevant pattern of global functional connectivity. 

 During the cue period, the clustering coefficient showed no main effect of cue type (F(1,11) 

= 1.153; p = .306) and no main effect of target type (F(1,11) = 1.425; p = .258). Again, however, 

the clustering coefficient displayed a marginal interaction between cue and target type (F(1,11) = 

3.492; p = .089). The characteristic path length showed a similar pattern of effects. No main 

effect of characteristic path length was observed during the cue-period (F(1,11) = .225; p = .645) 

nor was a main effect of target observed (F(1,11) = .021; p = .888). A significant interaction 

between cue and target type was observed during the cue-period for the characteristic path length 

(F(1,11) = 7.316; p = .02). These interactions appear to be driven by a validity effect, with valid 
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trials showing greater clustering as well as a larger characteristic path length. The small-

worldness metric showed no main effects of cue type (F(1,11) = 1.165; p = .304), target type 

(F(1,11) = 1.452; p = .254), nor an interaction between cue and target (F(1,11) = 2.933; p = .115). 

Again, for metrics previously associated with a task-irrelevant pattern of functional connectivity, 

we observed only interactions between cue and target types.  

 

 

Figure 17. Cue period results for initial analysis for the top 10% of connections. Interactions 
between cue type and validity were seen for several metrics indicating contamination from target 

activity. 
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 During the period following target-array presentation, no main effect of cue type (F(1,11) < 

.001; p = .996) or target type (F(1,11) = 2.159; p = .17)  was observed in modularity, a metric 

predicted to be an indicator of goal-driven changes in functional connectivity. A significant 

interaction was observed between cue and target types (F(1,11) = 7.385; p = .02), with the greatest 

modularity occurring for target-unlikely cues followed by noisy displays. Participation showed 

no main effect of cue type (F(1,11) = .247; p = .629), but a marginal effect of target display type 

(F(1,11) = 3.832; p = .076). Additionally, the participation coefficient showed a significant 

interaction between cue and target types (F(1,11) = 6.569; p = .026), with the greatest functional 

participation occurring on trials with target-likely cues but clean displays. This trial type 

additionally showed the lowest values of modularity, reflecting the close relationship between an 

increase in cross modular communication and a decrease in measures of how separable those 

modules are.    

 The clustering coefficient showed no main effects of cue (F(1,11) = .826; p = .383)  or 

target type (F(1,11) = .053; p = .823). However, similar to the goal-driven measures of functional 

connectivity, a significant interaction between cue and target type was observed (F(1,11) = 28.142; 

p < .001). The characteristic path length showed no main effect of cue type (F(1,11) = .344; p = 

.57), but a marginal effect of target type (F(1,11) = 3.989; p = .071). No significant interaction 

effect was observed for the characteristic path length. The small-worldness metric mirrored the 

clustering coefficient, as expected given the lack of effects for the characteristic path length. No 

main effect of cue (F(1,11) = 1.27; p = .284)  or target (F(1,11) = .038; p = .849)  type was observed 

for small-worldness but a significant interaction (F(1,11) = 30.497; p < .001) was observed. This 

interaction appears to underscore a crossover effect, with the greatest clustering values occurring 

for distractor-unlikely cues followed by noisy displays (an invalidly cued trial). The lowest 
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clustering values occurred for distractor-likely cued trials and especially in the valid trials with 

noisy target displays. 

 

 
Figure 18. Target period results for first analysis at top 10% of connections. 

 

 The lack of interpretable cue effects during the cue period precludes any assessment of 

predictions made by the dual-mechanisms of control model or an task-relevance hypothesis. 

Additionally, evidence of a cue/target interaction in nearly all of the observed metrics indicates a 

high likelihood that the cue period was contaminated by target-related information in the current 

analysis. Although such an effect was not found in the original analysis of this manuscript 

(Serences et al., 2004b), those analyses tested peak differences in event related averages of 

BOLD-activation timecourses. These analyses somewhat bypass the influence of the target 
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related activity apparent during the latter timepoints in the event related averages. Despite the 

lack of observed interaction, Serences et al. nevertheless retested their prediction in a slow-event 

related design specifically formulated to disentangle cue and target related activity, expressing 

concern over contamination of these measures (unfortunately, for technical reasons this data was 

not available for graph theory analysis). Given the current study’s use of PPI methodology to 

estimate functional connectivity, a temporal dissociation between cue and target related activity 

may not be possible. Consequently, we performed a second analysis that combined cue and 

target periods into a single condition predictor, beginning with the cue presentation and ending 

with the target presentation timepoint.  

 This analysis (Fig. 19) was evaluated similarly to the above method, assessing graph 

metrics for main effects of target, cue, and interactions between these factors. Modularity 

showed no main effects of cue (F(1,11) = .92; p = .358) or target (F(1,11) = 1.124; p = .312). 

However, the interaction showed a significant effect (F(1,11) = 7.011; p = .023), which appears to 

be driven by a decrease in modularity in the distractor likely but clean display trial type. The 

participation coefficient showed no main effects of cue (F(1,11) = .344; p = .569) or target (F(1,11) = 

1.252; p = .287) type but also showed a significant interaction (F(1,11) = 8.969; p = .012) between 

these factors.  
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Figure 19. Results from secondary analysis combining cue and target presentations for the top 
10% of connections. 

 

 

 The clustering coefficient showed no main effect of cue (F(1,11) = .879; p = .369) or target 

(F(1,11) = .756; p = .403) type. A marginal interaction effect was observed for the clustering 

coefficient (F(1,11) = 4.513; p = .057). The characteristic path length showed no effects of cue 

(F(1,11) = .387; p = .547), target (F(1,11) = .366; p = .558), or an interaction (F(1,11) = 2.062; p = 

.179) between cue and target. Small-worldness, tracking the clustering coefficient, showed no 

main effect of target (F(1,11) = 1.275; p = .283) or cue (F(1,11) = .563; p = .469) type and only a 

marginal interaction (F(1,11) = 3.483; p = .089) between target and cue. 
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 The primary finding of this second analysis appears to be a pattern of interaction between 

cue and target, with significant interactions found for functional modularity and participation 

coefficient. Marginal interactions were apparent in the clustering coefficient and small-worldness 

of the graph. In each of these interactions, the effect appears to be largely driven by one 

condition in particular: likely-distractor/clean target.  

 As with the previous chapters, we aimed to evaluate whether the global pattern of results 

was primarily driven by a small number of networks we might a priori have believed to be 

drivers of connectivity change from a network-level perspective. The original Serences et al. 

(2004) manuscript found activation differences in visual cortex as a result of cue differences 

(distractor likely vs. unlikely). We thus explored the specific changes in functional connectivity 

that might be found in visual cortex. Examining only the nodes in a visual network defined by 

Power et al., (2011), we probed the participation and clustering coefficients, metrics designed to 

measure inter-modular and intra-modular connectivity changes respectively.  The participation 

coefficient of the visual network showed no main effect of cue (F(1,11) = 2.625; p = .133) nor a 

main effect of target type (F(1,11) = .646; p = .439), but did display an interaction between cue and 

target type (F(1,11) = 11.524; p = .006) that is driven by a decrease in participation in the 

distractor-likely/noisy display condition. This pattern of results in the functional participation of 

the visual network mirrors the pattern of significance seen in the global statistics, suggesting the 

visual network connectivity likely tracks the global pattern of results. The clustering coefficient, 

again similar to the global pattern of changes, showed no main effect of cue type (F(1,11) = .501; p 

= .494), no main effect of target type (F(1,11) = 2.211; p = .165), and no interaction between cue 

and target (F(1,11) = 1.535; p = .241). The lack of target display effects raises concerns about the 
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sensitivity of our analysis with the current dataset as we would generally expect noisy and clean 

displays to elicit strong differences in visual cortex. 

  

Discussion 

 

 Several findings complicate the overall interpretation of the current results. First and 

foremost, in our initial analysis many graph theoretical metrics displayed an interaction between 

cue and target type during the cue-period. This interaction suggests that activity due to target and 

distractor presentation contaminated cue-period measures of functional connectivity. This 

contamination likely stems from a fundamental step of the PPI analysis, construction of the 

interaction regressor. Correlations in activity are measured over the time period during which a 

typical hemodynamic response might occur (Gitelman et al., 2003; McLaren et al., 2012). Given 

the relatively short period between cue and target in the current dataset, we might not expect to 

be able to differentiate these signals, as the cue interaction period will overlap with the 

subsequent target. A typical BOLD activation analysis would typically deal with this confound in 

signal estimation by two means: a variable delay between cue and target and/or a deconvolution 

analysis (Burock, Buckner, Woldorff, Rosen, & Dale, 1998; Friston, Zarahn, Josephs, Henson, & 

Dale, 1999; Serences, 2004). Although the current dataset utilized a variable delay, the signal of 

interest in a PPI study does not conform to the typical hemodynamic response function (HRF; 

and this signal is specifically disregarded) and may not  directly benefit from the increased 

ability to disentangle the HRF due to cue and target. Given this limitation, examination of the 

primary analysis in the current study is likely un-interpretable. Our secondary analysis aimed to 

combine signals from cue and target into a single experimental predictor, as this analysis should 
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allow us to interpret results by including the conflation of cue and target presentation signals in 

our model. The findings from this analysis were solely an interaction between cue and target 

types for the modularity and participation coefficient, with a marginal effect in clustering and 

small-worldness. These effects appear to be driven by the interaction between distractor-likely 

cues paired with a clean display. However, because our ultimate findings were primarily driven 

by the results in a single condition, I am ultimately unable to interpret the full range of 

predictions made by the dual-mechanisms of control and task-relevance models with these 

findings.  

 Finally, the lack of target display effects in the visual network promotes additional 

concern that the current analysis has a limited ability to discern potential changes in connectivity 

effects in the context of the current analysis. If any stimulus difference were to produce effects in 

visual areas, it would be the comparison of a crowded visual display vs. a relatively clean 

display. The lack of main effect due to target could be due to the confluence of top-down effects 

on these visual areas due to cue combined with any feed-forward effects, complicating 

expectations of activity in these areas.  

 Given the limitations of interpretation in the current study, an ideally designed follow-up 

would include additional time between cue and target to allow for an adequate estimation of 

connectivity for cues and targets. Experiment 2 in Serences et al. (2004) provides additional time 

between cue and target to better estimate activity of these two task periods independently. This 

data was, unfortunately, unavailable for analysis. A second alternative to the difficulties faced by 

the current study would be adopt a class of task-concurrent connectivity analyses based on 

correlating concatenated time-series after regressing out task-signal (Cole et al., 2014; Friston, 

2011a; Norman-Haignere, McCarthy, Chun, & Turk-Browne, 2011). These analysis methods do 



	 100	

not typically separate the intrinsic connectivity structure from task-evoked perturbations, and 

consequently display modularity highly correlated with the resting state (Cole et al., 2014). 

These analyses were not pursued for two reasons. First, the variance associated with intrinsic 

connectivity has been shown to be much larger than the variance associated with task-induced 

changes in connectivity (Cole et al., 2014). Consequently, examination of graph metrics would 

be largely driven by the organization of the intrinsic functional connectivity of the brain, rather 

than by the task evoked signal. Next, in order to compare between conditions such that the 

intrinsic connectivity does not dominate the graph organization, we would take the difference 

between conditions to “cancel out” the intrinsic signal. This step then requires interpretation of 

graph theoretical results of difference scores between conditions rather than direct estimations of 

the task-induced connectivity. These methods do, however, have the advantage of being more 

flexible in terms of the time-periods during which connectivity can be correlated compared to the 

PPI style analysis utilized in the current study. Further study with well-controlled design and 

analysis will be necessary to best answer the questions posed in this chapter.   
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CHAPTER V 

 

CONCLUSIONS 

 

 Modern theories of brain function contend that specific cognitive operations can be 

localized to functionally and anatomically specialized sites in the brain. However, coordination 

across multiple regions is necessary for the production of coherent behavior 

(Bullmore & Sporns, 2009; Friston, 2005; John, Easton, & Isenhart, 1997; McIntosh, 2000; 

Mesulam, 1990; Posner et al., 1988; Varela, Lachaux, Rodriguez, & Martinerie, 2001). Network 

science and graph theory provide a flexible and generalizable vantage from which to address 

questions about the coordination of activity across neural systems. A primary goal of the studies 

presented in this dissertation was to find evidence for and characterize whole brain changes in 

connectivity patterns associated with attention and awareness.  

 Chapter II addressed the theoretical debate between neurobiological theories of conscious 

awareness. Focal, network-level, and global theories provided distinct and testable predictions as 

to the expected patterns of functional connectivity. Focal and network-level theories would 

predict that the changes associated with conscious awareness of a target would be restricted to 

individual nodes of the global network or to a circumscribed set of fronto-parietal attention 

networks, respectively. However, detection of a simple target stimulus produced a much more 

diffuse pattern of effects than would have been expected from the standpoint of these theories. 

Functional connections spanning the entire brain appeared to participate in a global decrease in 

the functional modularity of the brain, measuring of how well one can disentangle the various 

specialized networks in the brain. Concurrent with, and likely contributing to, these changes in 



	 102	

modularity were increases in global measures of participation, or cross-modular connections. 

Consciousness has been previously correlated with increases in long-range oscillatory synchrony 

(Gross et al., 2004; King et al., 2013; Melloni et al., 2007; Schröter et al., 2012), a mechanism 

that appears to fit well as a potential source of the signal indexed by changes in participation. 

 The observed changes associated with conscious detection of a target (or the percept of 

detection of a target, in the case of false alarms) tightly align with the predictions of global 

models of conscious awareness. Rather than requiring specialized processing in a restricted set of 

regions, these theories argue that large-scale coordination across multiple modalities converge on 

a unified representation of currently accessible information. Formalized, the Global Workspace 

hypothesis (Baars, 2005; Baars, 1983; 2002; Dehaene et al., 1998; Dehaene & Changeux, 2011), 

Dynamic Core hypothesis (Edelman, 2003; Tononi & Edelman, 1998) and the Information 

Integration Theory (Tononi, 2008; Tononi & Sporns, 2003) each require information to be 

integrated via whole brain, recurrent connections as a prerequisite for awareness of that 

information. Of course, these results do not discount the findings of numerous task activation 

studies that found fronto-parietal activations in contrasts of seen versus unseen stimuli. Rather, 

the current results compliment these findings and highlight the need to examine large-scale 

functional dynamics as coordination across the entire brain is necessary for the production of a 

coherent cognitive experience (Bullmore & Sporns, 2009; Friston, 2005; John et al., 1997; 

McIntosh, 2000; Mesulam, 1990; Posner et al., 1988; Varela et al., 2001). These global changes 

in connectivity may work in tandem with the specific recruitment of fronto-parietal networks, 

facilitating efficient connectivity between these regions, sensory areas, and control regions 

necessary for flexibly responding behaviorally to incoming relevant stimuli.  
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 Although the results in this study were global, no differences were found in the 

characteristic path length or functional clustering of whole-brain graphs in aware compared to 

unaware conditions. These two measures are component characteristics of the brain’s small-

worldness, a holistic property of the brain that it shares with many other organized systems 

(Bullmore & Sporns, 2012; Humphries & Gurney, 2008; Watts & Strogatz, 1998). This 

functional balance between computational specialization and integration of information across 

domains can be found at numerous levels of analysis including structural (He et al., 2007; Sporns 

& Zwi, 2004; Supekar, Musen, & Menon, 2009; Watts & Strogatz, 1998), resting state (Achard, 

Salvador, Whitcher, Suckling, & Bullmore, 2006; Liao et al., 2011; Spoormaker et al., 2010; 

Uehara et al., 2014; van den Heuvel et al., 2008), and task-concurrent studies (Bassett et al., 

2009; Cole et al., 2014; Yu et al., 2011). Several factors may have contributed to the modularity 

and participation effects in the absence of clustering and characteristic path lengths effects, 

including the high levels of functional efficiency already inherent in the network (Estrada & 

Hatano, 2008), insensitivity of clustering and characteristic path length measures to specifically 

cross-modular connections (Humphries & Gurney, 2008), and the lack of distracting information, 

allowing an unimpeded shift benefitting functional integration. 

 Chapter III describes the connectivity changes associated with detection of a task-

irrelevant oddball that interrupts ongoing goal-directed behavior. Novel, salient stimuli bring 

about a host of both physiological (Beatty, 1982; Kahneman & Beatty, 1966; Tracy et al., 2000) 

and cognitive changes (Han & Marois, 2014; Kahneman, 1973; Sara & Bouret, 2012) required to 

produce an effective response to unexpected information. By presenting this information during 

the engagement of an otherwise (goal-driven) attentionally demanding task, this study assessed 

how the stimulus-driven recruitment of attention altered the functional human connectome. 
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Salient information may (or may not) be important for both immediate goals (like completing an 

experimental task) and higher-order goals (like survival) and consequently must be evaluated 

before such information is allowed to influence future behavior. If task-relevant information is 

globally communicated or represented, as shown in Chapter II, detection of a potentially relevant 

(but ultimately irrelevant) stimulus could produce complex changes to this pattern of 

connectivity. Detecting a novel stimulus requires evaluation of that stimulus while at the same 

time maintaining your current goals. 

 Largely mirroring the patterns of behavioral effects with repeated oddball presentations 

(Asplund, Todd, Snyder, & Marois, 2010a; Asplund, Todd, Snyder, Gilbert, & Marois, 2010b), 

initial presentations of a salient oddball caused significant changes in global functional 

connections. These initial oddballs significantly altered functional modularity, this time via an 

increase in the local clustering causing networks to ultimately be more functionally segregated 

from each other. Subsequent presentations of oddballs showed decreased measures of functional 

segregation (decreased modularity, clustering, small-worldness) relative to initial oddballs, but 

greater than those observed during no-target trials. Unlike the changes with target awareness 

described in Chapter II, detection of an oddball stimulus (or at least the initial presentations of an 

oddball) did produce changes in the functional small-world structure of brain. An increase in the 

small-worldness suggests that detection of this oddball produces a more functionally segregated 

connectome, perhaps reflecting recruitment of many specialized processes necessary to evaluate 

novel information that might necessitate behavioral change (Han & Marois, 2014; Pavlov, 1927; 

Sara & Bouret, 2012; Sokolov, 1963).  

 These results stand in contrast to a hypothetical “integration” hypothesis which, based on 

the results from Chapter II, hypothesized that information – regardless of its content – would 
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necessitate functional integration for global broadcasting (Baars, 2005; Dehaene & Changeux, 

2011; Edelman, 2003; Tononi & Edelman, 1998). Instead, we found a pattern of results more in 

line with a “segregation” hypothesis that predicted increases in measures of small-worldness 

perhaps because of the multitude of specialized processes brought online in order to evaluate 

novel stimuli (Pavlov, 1927; Sokolov, 1963). Of course, participants do consciously perceive 

oddball stimuli, and thus one could have expected that there would be high degree of integration 

in the global network as well. The current results represent a potential shift in the prioritization 

of the two driving influences on small-world organization: integration (for information sharing 

between networks) and segregation (for specialized processing). 

 The discrepancies in results found in Chapters II and III presented an interesting 

question: does task-relevant and task-irrelevant information processing produce differential 

patterns of global connectivity? Chapter II found evidence supporting global theories of 

awareness, which argue that in order for information to be consciously perceived, it needs be 

globally broadcast throughout the brain favoring the demands of functional integration. Similar 

patterns of global integration have been found for other goal-driven behaviors (Ekman et al., 

2012; Kitzbichler et al., 2011). Chapter III found a contrasting pattern of results, suggesting that 

when task-irrelevant, novel information (e.g. an oddball) interrupts goal-oriented behavior, it 

produces a more functionally segregated brain (also see Nicol et al., 2011). Perhaps the 

behavioral relevance of a stimulus has a direct influence on the global functional connectome in 

order to effectively facilitate complex demands of the environment. As noted above, distracting 

or irrelevant stimuli must be specifically suppressed while attempting to maintain performance 

levels dependent on the processing of goal-relevant information. 
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 Analyses presented in Chapter IV were intended to disentangle the potential effects of 

task-relevant changes in the functional connectome from task-irrelevant effects. In particular, 

either task-relevant information (targets) was expected to produce a pattern of goal-driven global 

functional integration, to be identified by changes in functional modularity and participation. 

Complementary, we hypothesized an increase in small-worldness and measures of functional 

segregation with presentations of task-irrelevant distractors, particularly when these stimuli were 

unexpected. Participants were cued to the locations of target digits along with information as to 

the likelihood that distracting, task-irrelevant letters would simultaneously be displayed (Awh, 

Matsukura, & Serences, 2003; Serences et al., 2004b). On a subset of trials, cues invalidly 

informed participants as to the upcoming presence of distractors, providing a mismatch between 

the expectations and control exerted during the cue period versus the need to reactively adapt 

behavior to the presence of unforeseen task-irrelevant information (Braver, 2012; Braver et al., 

2009). Ideally, the design would have allowed comparison of distractor-likely and unlikely cues 

separately from distractor-present and absent trials.  

 Results of these analyses suggested that the task design was insufficient to accurately 

disentangle connectivity differences in cue and target-display related activity. Specifically, cue-

period graph theoretical measures showed an interaction between cued likelihood and distractor 

presence in the subsequent target epoch, suggesting that activity during the target presentation 

period contaminated connectivity measurements during the cue period. Consequently, further 

analyses were unable to disentangle whether observed differences in graph theoretical measures 

were due to cue or target related activity, interpretations with divergent expectations given our a 

priori task-relevance and dual-mechanisms of control hypotheses. Several possible alternate 
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routes for testing these hypotheses in the context of a similar attentional task were proposed in 

Chapter IV.  

 Ultimately, despite a complicated pattern of results in Chapter IV, Chapters II and III 

have highlighted novel neurobiological characteristics of well-studied psychological phenomena. 

Despite well-characterized network-level activations in awareness and attention research, the 

results presented here suggest that there are other dimensions of these processes still to study. 

Although the current results have focused on one kind of graph theoretical result (global changes 

in connectivity), there are several other avenues of study available to expand upon typical 

activation based research. For example, the study of hub regions, or nodes vitally important for 

the efficient transfer of information, may aid in the identification and explanation of information 

processing bottlenecks.  

 Multitasking costs are ubiquitous and profound despite the frequency with which humans 

engage in multiple concurrent tasks (M. C. Smith, 1967; Welford, 1952). The central bottleneck 

hypothesis presumes that each task recruits a common, structural mechanism responsible for the 

response selection phase of task performance. This structure is only available to perform one 

mapping at a time, resulting in serial performance of each task (Marois & Ivanoff, 2005; Pashler, 

1994; M. C. Smith, 1967). Imaging research into the identity of potential bottlenecks has 

identified a few likely candidates including: lateral prefrontal cortex (lPFC), inferior frontal 

junction (IFJ), dorsal premotor cortex (FEF), anterior medial prefrontal cortex, anterior insula, 

and intraparietal sulcus (Dux & Marois, 2009; Dux, Ivanoff, Asplund, & Marois, 2006; Jiang & 

Kanwisher, 2003; Marois & Ivanoff, 2005; Marois, Larson, Chun, & Shima, 2005; Sigman & 

Dehaene, 2008; Tombu et al., 2011). These studies typically involve identifying foci revealed by 

the contrast of dual vs. single task or long vs. short stimulus onset asynchrony (SOA) in a 
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psychological refractory period (PRP) design. These foci make sense as potential central 

bottlenecks of information processing given their purported involvement in various aspects of 

cognition including cognitive control (Derrfuss, Brass, & Yves von Cramon, 2004; Dosenbach et 

al., 2007; 2008), attention (Corbetta et al., 2008; Corbetta & Shulman, 2002), and are generally 

recruited across a wide range of cognitively demanding tasks (Duncan, 2010; Duncan & Owen, 

2000; Duncan, Emslie, Williams, Johnson, & Freer, 1996).  

 Although performance of dual tasks produces recognizable deficits, performance of 

specific tasks over an extended period of time shows improvement through practice (Jonides, 

2004; Schumacher et al., 2001; Tombu & Jolicoeur, 2004). Dux et al. (2009) find that practice 

effects appear consistent with an “improved efficiency” hypothesis in which connection 

strengths between regions involved in task performance are improved and progressively routed 

away from speed-limiting bottlenecks (Poldrack, 2005). Consequently, through practice the very 

bottleneck regions identified by multitasking deficits appear to be routed around as a means of 

speeding processing. The network perspective afforded by graph theory offers an opportunity to 

examine the degree to which whole-brain, network, and individual hub node efficiency improves 

with practice of a task compared to early performance and in particular, test theories as to 

whether processing becomes more efficient in these nodes vs. new routes of information transfer 

are formed (Dux et al., 2009). 

 Additionally, examination of hub regions may play a future role in better elucidating the 

interactions between individual networks, such as the dorsal and ventral attention networks. 

Corbetta and Shulman (2002; 2008) have hypothesized that the ventral attention network acts as 

a “circuit breaker,” responsible for interrupting current task goals when salient stimuli occur 

outside the current goal-directed focus of attention. Diffusion tensor imaging (DTI) has shown 
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several anatomical connections between the dorsal and ventral attention networks (de Schotten et 

al., 2011) suggesting a plausible role of ventral attention regions responsible for pivoting 

attention away from the current focus via interactions with the dorsal network. This interaction 

was hypothesized to occur between the TPJ and nearby intraparietal regions (Astafiev et al., 

2006; Corbetta et al., 2008; Corbetta & Shulman, 2002). In fact, posterior parietal damage 

resulting in neglect symptoms produces breakdown of resting-state functional connectivity in 

both dorsal and ventral attention regions suggesting an important role of this region for 

connections between both attention networks (Corbetta & Shulman, 2011; He et al., 2007). 

However, other work implicates IFJ as a linking node between dorsal and ventral attention 

networks. Asplund et al. (2010) showed a switch in patterns of IFJ activity during capture of 

attention by a surprising, irrelevant stimulus and goal-directed search. During goal-directed 

search, IFJ showed similar activity to dorsal attention regions but coactivates with TPJ during 

capture by the surprising stimulus (Asplund, Todd, Snyder, & Marois, 2010a). Other work has 

shown that during covert shifts of spatial attention the ventral frontal cortex showed increased 

psychophysiological interaction (PPI) connectivity with dorsal attention regions for validly cued 

trials, again suggesting a coordinating role for IFJ (Weissman & Prado, 2012). If either of these 

regions (IFJ or TPJ) is a crucial, pivot points for the “circuit-breaking” process, we would expect 

to see a decrease in the average path length of these regions (suggesting efficient communication 

relies on these areas) and potentially an increase in the clustering coefficient (implying that these 

areas become more interconnected overall) in comparisons of oddball vs. target detection. 

 Additional probes of task-relevant and task-irrelevant information as well as differences 

between top-down and bottom-up attention will be necessary to determine the accuracy of these 

hypotheses. However, towards developing these hypotheses, these studies provided a novel 
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characterization of attention and awareness from the perspective of changes in global functional 

connectivity. These studies have, hopefully, highlighted the utility of graph theory as a means of 

succinctly describing the complex behaviors of the brain’s functional connectivity. Further work 

will be necessary to map the relationship between complex network structures of the brain and 

the specialized neural circuitry required to produce multifaceted human behavior. Ideally, future 

work would incorporate a more holistic, potentially graph theoretical, examination of the whole-

brain connectivity data to account for the global changes observed in this dissertation. 
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