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CHAPTER 1 

 

INTRODUCTION 

 

Cell cycle and genome maintenance  

 The cell represents the simplest unit that is able to satisfy all of the characteristics of life, 

including the ability to use energy, maintain homeostasis, respond to the environment, grow and 

reproduce (Campbell et al., 2004).  Cells function as the building blocks for all known lifeforms; 

they can proliferate as single cells or construct tissues and multicellular organisms (Campbell et 

al., 2004).  The capacity of the cell to pass on hereditary information through reproduction 

differentiates life from other natural processes and makes the cell the smallest self-sustaining 

vehicle for the genome (Alberts et al., 2008).  The “cell cycle” refers to the events of growth and 

reproduction that allow cells to transfer genomic information to their progeny.  The eukaryotic cell 

cycle is comprised of four phases: two growth phases, an intervening DNA synthesis phase, and 

M phase, which is comprised of nuclear division (mitosis) and cytoplasmic division (cytokinesis) 

(Alberts et al., 2008).  Mitosis itself is also divided into phases. These are based on the cytological 

changes that occur as the genome is segregated (Flemming, 1965).  Chromosome condensation, 

nuclear envelope breakdown, and formation of the mitotic spindle occur during prophase and 

prometaphase (Alberts et al., 2008).  The mitotic spindle aligns duplicated chromosomes at the 

cell equator during metaphase in preparation for segregation (Kapoor, 2017) and the genome is 

physically separated during anaphase when sister chromosomes are pulled apart (Asbury, 2017).  

The final step of mitosis is telophase; the chromosomes de-condense and the nuclear envelope re-

forms around each copy of the genome (Alberts et al., 2008).  Anaphase and telophase are closely 

coupled to cytokinesis, which cleaves the cell to create two distinct daughters (Green et al., 2012). 
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  The cell cycle is a carefully orchestrated sequence of events that is controlled temporally 

by a series of biochemical switches (Nurse, 2000).  These regulatory “checkpoints” ensure each 

phase of the cycle is complete before continuing, and that the cell cycle only progresses in one 

direction (Nurse, 2000; Reed, 2003).  Cell cycle checkpoints function to maintain the integrity of 

the genome and promote accurate chromosome segregation (Hoeijmakers, 2009).  Erroneous cell 

cycle regulation can have potentially disastrous effects on cell viability and health of an organism.  

If cells attempt to enter mitosis before completing DNA synthesis, daughter cells inherit an 

incomplete genome, resulting in cell death (Tyson and Novak, 2008).  Alternatively, genome 

duplication in the absence of mitosis causes polyploidy, or too many copies of the genome (Porter, 

2008).  Progeny can also inherit an abnormal number of chromosomes, termed aneuploidy, if sister 

chromosomes are missegregated during anaphase (Heald and Khodjakov, 2015) due to faulty 

connections between duplicated chromosomes and the mitotic spindle (Holland and Cleveland, 

2012; Rode et al., 2016).  Notably, aneuploidy is a hallmark of cancer cells indicating that accurate 

transmission of the genome is essential for the homeostasis of multicellular organisms (Holland 

and Cleveland, 2012; Nojima, 1997; Rode et al., 2016).  Even if dividing cells successfully pass 

each cell cycle checkpoint, daughters can still become polypoid if cytokinesis fails (Steigemann et 

al., 2009).  Failure to cleave the cytoplasm results in a doubling of the genome, making cells 

susceptible to chromosome missegregation in future cell cycles (Green et al., 2012; Holland and 

Cleveland, 2012).  In this way cytokinesis can be regarded as the culmination of the preceding cell 

cycle events and also as the linchpin for genomic maintenance and heredity.  If the final step of 

cell division fails, the careful orchestration of the cell cycle is for naught.   
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The cytoskeleton 

 If the cell is the smallest self-sustaining vehicle for the genome, then the cell’s cytoskeleton 

is the undercarriage or chassis that supports that vehicle.  The cytoskeleton creates a frame that 

determines cell shape, provides a scaffold to organize cellular contents, and harnesses energy to 

generate mechanical force (Alberts et al., 2008).  Unlike a chassis, the cytoskeleton is not a static 

structure, and a number of cellular processes require dynamic rearrangements of cytoskeletal 

networks (Goode et al., 2000).  Cell division is one such process, as chromosome segregation and 

cell cleavage require the force-generating activities of the microtubule and actin cytoskeletons, 

respectively (Eggert et al., 2006).  In eukaryotes, actin and microtubules, along with their 

associated regulatory proteins, are the most thoroughly studied cytoskeletal networks, and are the 

primary focus of this study.   

 

Actin 

 Actin filaments (F-actin) are polymeric structures assembled through the head-to-tail 

assembly of actin monomers (globular or G-actin) (Mitchison, 1992).  Actin is an inherently polar 

filament with a barbed (plus) end, which is the preferred site of monomer addition, and a pointed 

(minus) end, the site of disassembly (Alberts et al., 2008).  G-actin is an enzyme that hydrolyzes 

ATP as it polymerizes and at steady state, plus end growth is matched to minus end disassembly, 

a phenomenon termed treadmilling (Wang, 1985).  A single actin filament is thin and flexible as 

it is made of only two protofilaments wound around each other (Mitchison, 1992), however, actin 

can contribute to large-scale force generation by assembling into more complex arrays (Kasza and 

Zallen, 2011).  The organization of actin in the cell is regulated by nucleation factors which 

promote the assembly of branched or linear actin arrays (Skau and Waterman, 2015).  Formin-
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mediated nucleation creates arrays of linear actin, which can exist as polarized bundles, with all 

barbed ends pointing in the same direction, or as non-polar arrays, with barbed ends pointing in 

opposite directions (Alberts et al., 2008).  The cell’s ability to modulate and remodel F-actin is 

essential for a wide variety of cellular functions and these functions can be probed using small 

molecules that induce F-actin disassembly, such as cytochalasin B (Cimini et al., 1998; MacLean-

Fletcher and Pollard, 1980). 

 While actin filaments can generate force on their own, by treadmilling (Ridley et al., 2003), 

actin can also work with molecular motors to produce forces that alter cell shape (Cooper, 2000).  

The myosin superfamily of proteins is an important component of the actin cytoskeletal network 

and myosin proteins carry out a number of diverse, actin-based cellular processes including muscle 

contraction, cell migration and cleavage furrow ingression (Alberts et al., 2008).  To facilitate such 

processes, myosin hydrolyzes ATP to generate force on the F-actin network (Houdusse and 

Sweeney, 2016). The role of acto-myosin force generation in cells can be observed using 

blebbistatin, a small molecule inhibitor of non-muscle myosin (Straight et al., 2003).  Force 

generation by myosin motors is intrinsically linked to the geometry of the F-actin network.  For 

example, polarized actin bundles in sarcomeres are optimized for long-range contraction (Alberts 

et al., 2008) while branched actin structures in the lamellipodia are tailored to cell migration (Skau 

and Waterman, 2015).  The cytokinetic contractile array is one example where the relationship 

between F-actin geometry and myosin force generation is not well understood.  Formins promote 

assembly of linear actin filaments, of mixed polarity, within the contractile ring (Green et al., 2012) 

and how myosin generates forces on these filaments to promote cleavage is a subject of intense 

debate (Murthy and Wadsworth, 2005).  Models for acto-myosin contraction during furrow 

ingression are discussed below.    
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Microtubules  

  Microtubules (MTs) are cylindrical, miniature tubes assembled from heterodimers of α 

and β-tubulin (Alberts et al., 2008).  Similar to actin, MTs are polar polymers with a fast growing, 

dynamic plus end, and a slow growing minus end (Mitchison, 1992).  MTs switch between states 

of growth and shrinkage, a phenomenon termed “dynamic instability” (Brouhard, 2015; Mitchison 

and Kirschner, 1984) and this property distinguishes MTs from actin.  At steady state individual 

MTs within a population can exist in a state of growth or shrinkage (Kristofferson et al., 1986) and 

these parameters of dynamic instability are modulated by MT regulatory proteins (Brouhard, 

2015).  Compared to actin, MTs are sturdier filaments that can withstand greater force (Mitchison, 

1992), due in part to their hollow structure and the fact that a MT is built from thirteen 

protofilaments held together through lateral non-covalent bonds (Alushin et al., 2014).  Cellular 

organization of MTs is generally controlled by MT-organizing centers (MTOCs) such as the 

centrosome (McIntosh and Hays, 2016) which anchors MT minus ends.  If MTs are anchored at 

both ends, filaments can undergo a process termed flux, whereby plus end growth is coordinated 

with minus end disassembly (Mitchison et al., 1986).  Flux is distinct from treadmilling in that the 

individual tubulin subunits move within the MT towards the minus end (Shirasu et al., 1999).  

 MTs can generate force in two ways: polymerization produces pushing forces, and 

depolymerization creates pulling forces (Inoue and Salmon, 1995).  Both force generation 

mechanisms occur during nuclear division, as depolymerizing MTs segregate sister chromosomes 

and plus end polymerization in the cell center pushes chromosomes further apart (Asbury, 2017; 

Scholey et al., 2017).  Polymerizing MTs can produce force as they grow against a barrier through 

“thermal ratcheting” (Joglekar et al., 2010), and energy released during disassembly allows 

depolymerizing MTs to do work (Caplow et al., 1994).  Similar to actin, tubulin dimers also 
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hydrolyze nucleotide upon incorporation into the filament.  GTP-hydrolysis by the β-subunit is 

coupled to a “bent” conformational change (Alushin et al., 2014) which produces strain and makes 

MT depolymerization energetically favorable.  The growing plus end is protected against 

depolymerization by a cap of “straight” GTP-bound tubulin (Alberts et al., 2008; Nogales et al., 

1999) and the loss of this stabilizing cap is rapidly followed by disassembly (Brouhard, 2015; 

Desai et al., 1999; Howard and Hyman, 2003).  To study the role of MT dynamics in cells, MT 

stability can be modified pharmacologically.  Taxol, for example, stabilizes MTs by binding the 

lattice (Kellogg et al., 2017), and nocodazole destabilizes MTs by sequestering tubulin dimers 

leading to the loss of the stabilizing cap (Hu et al., 2011).  Exposure to cold temperature also 

induces disassembly, by slowing monomer addition at the growing end, and has been classically 

used to assay the stability of discrete MT populations in cells (Brinkley and Cartwright, 1975).  

 Proteins that associate with MTs can also modulate dynamics and the majority of those 

alter growth and disassembly at the plus end (Alberts et al., 2008).  These same factors also control 

the organization and stability of the cellular MT network.  Proteins that interact with the MT 

cytoskeleton can be divided into two major classes: non-enzymatic MT-associated proteins 

(MAPs), and ATP-hydrolyzing molecular motors, including plus-end directed kinesin, and minus-

end directed dynein (Wittmann et al., 2001).  MAPs organize the MT cytoskeleton in cells by 

regulating dynamics, cross-linking MT bundles, and mediating interactions with other cellular 

proteins (Andersen, 2000).  During anaphase, protein regulator of cytokinesis (PRC1) stably cross-

links anti-parallel MTs to build the spindle midzone (Kellogg et al., 2016).  This MAP is proposed 

to function by switching from a flexible to rigid state upon interaction with two MTs (Kellogg et 

al., 2016; Subramanian et al., 2010).  The kinesin superfamily of proteins constitute a class of MT-

based molecular motors that couple ATP hydrolysis to mechanical force, and these forces organize 
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and remodel the MT cytoskeleton.  For example, the homo-tetrameric kinesin Eg5 (Avunie-Masala 

et al., 2011; Zhu et al., 2005b) promotes mitotic spindle assembly by sliding anti-parallel MTs 

(Kapoor, 2017).  Non-motile kinesins can also use ATP to alter MT dynamics.  The kinesin-13 

family of proteins, including MCAK and Kif2a, destabilize MTs by inducing curvature at the 

protofilament end (Hirokawa and Takemura, 2004; Manning et al., 2007; Walczak, 2003; Walczak 

et al., 2013).  Finally, MTs can serve as tracks for kinesin motors to transport cargo.  As cells exit 

mitosis, mitotic kinesin-like protein 1 (Mklp1) and mitotic kinesin-like protein 2 (Mklp2) transport 

factors needed for division plane specification and cleavage furrow ingression to MT plus ends 

(Neef et al., 2006).  The relationship between MTs and their associated proteins is essential to 

build, maintain, and remodel cytoskeletal arrays.   

 A number of cellular structures are built from MT arrays, and one of the most iconic is the 

MT-based mitotic spindle.  The spindle is a cellular machine which aligns and segregates sister 

chromatids (McIntosh and Hays, 2016) made of highly dynamic MTs (Mitchison and Kirschner, 

1984).  The mitotic spindle is a bipolar structure comprised of three major classes of MTs, all of 

which have minus ends embedded in the centrosomes (McIntosh and Hays, 2016).  The first class 

of MTs interacts with centromeric chromatin via the kinetochore (K-MTs) and function to align 

chromosomes at the cell equator and segregate sister chromatids during anaphase (Asbury, 2017). 

The bulk of the bipolar spindle is comprised of interpolar MTs (iMTs) which invade the spindle 

but do not interact with the kinetochore (Mastronarde et al., 1993).  Finally, astral MTs extend to 

the cell cortex and are necessary to maintain spindle orientation during chromosome alignment 

(Grill and Hyman, 2005).  These spindle MT subsets all have essential roles during mitotic exit as 

well, and those functions are discussed below.   
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Cytoskeletal coordination underlies cellular functions 

 The actin and MT cytoskeletal networks have long been studied independently and the 

function of proteins that regulate dynamics and organization are well-understood within a single 

filament system.  The cell, however, uses both actin and MTs to facilitate processes that are 

essential for life, and many of these events rely on the coordinated activity of actin and MTs 

(Goode et al., 2000).  For example, “dual-transport” of vesicles (Langford, 1995) occurs through 

cooperative activity of molecular motors on both cytoskeletal filaments (Benashski et al., 1997; 

Huang et al., 1999).  Actin and MTs are also both required to drive cell migration; disrupting either 

filament system impairs cell motility (Ballestrem et al., 2000; Ridley et al., 2003). Cytoskeletal 

cooperation is also central to chromosome alignment and segregation during mitosis.  During 

metaphase, myosin-10 tethers astral MTs to the cortical actin “cloud” and this tethering functions 

to position the centrosomes and orient the mitotic spindle (Kwon et al., 2015).  While this type of 

cooperation is mediated by a physical interaction between actin and MTs, the cytoskeleton can 

also functionally coordinate the activities of actin and MTs through signaling or cytoskeletal cross-

talk (Goode et al., 2000).  One example of this occurs when cells specify the cleavage plane as 

they exit mitosis.  As cells enter anaphase, Mklp1 uses MT tracks to deliver signaling factors to 

the cortex that promote assembly of the contractile array (Mishima, 2016).  Cytoskeletal cross-talk 

has also been proposed to promote the formation of the spindle midzone (Giansanti et al., 1998; 

Hu et al., 2008) although the molecular factors that mediate this signaling have not been identified.  

Investigating how actin and microtubules work together to carry out cellular functions is 

fundamental to understanding how the cell accurately divides the genome.      
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Mitotic exit  

 Together, the stages of anaphase and telophase make up the cell’s exit from mitosis.  These 

phases are linked in space and time to cytokinesis, which divides the cytoplasm (Green et al., 

2012).  Mitotic exit is triggered by a biochemical switch that degrades the cell cycle regulator 

cyclin B (Tyson and Novak, 2008) and represents a distinct mitotic state.  Importantly, mitotic exit 

can be uncoupled from cytokinesis, using perturbations that block cleavage furrow ingression 

(Straight et al., 2003).  Cells have a limited window in which the furrow is competent to contract, 

referred to as C phase (Canman et al., 2000), and should cells pass this window without cleaving 

they will re-enter interphase as a binucleate cell.  While the steps of mitotic exit can be broken 

down into the classically-recognized stages of anaphase, telophase and cytokinesis, cells can also 

be classified with respect to the state of cleavage furrow ingression during C phase (pre- or post-

cleavage furrow ingression), or with respect to the time spent exiting mitosis (early or late mitotic 

exit).  

 

Anaphase A 

 Satisfaction of the spindle assembly checkpoint during metaphase triggers the physical 

segregation of sister chromosomes.  The first step of this process, anaphase A, is marked by 

chromosomes moving towards each end of the spindle (Asbury, 2017).  In animal cells, poleward 

directed movement is largely due to K-MT depolymerization, and chromosomes are observed to 

move with the centromere leading and arms trailing (Mazia, 1961).  As evidence that kinetochores 

link chromosomes to segregation forces during anaphase, laser ablation of the kinetochore results 

in chromosome “drift” and abolishes poleward directed movement (McNeill and Berns, 1981).  

After loss of sister chromosome cohesion at anaphase onset, kinetochores remain stably coupled 
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to depolymerizing MTs which powers chromosome segregation (Powers et al., 2009).  While K-

MTs are known to undergo flux within the mitotic spindle, it remains unclear whether this 

contributes to anaphase chromosome segregation in animal cells (Desai et al., 1998; Ganem et al., 

2005; Manning et al., 2007; Waters et al., 1996).   

 As sister chromosomes segregate, the mitotic spindle is dramatically re-organized to form 

the spindle midzone (also known as the central spindle).  K-MTs depolymerize, pulling 

chromosomes apart, and iMTs template the formation of the midzone, an array of anti-parallel 

MTs with overlapping plus ends (Mastronarde et al., 1993) that acts as barrier between segregated 

chromatids (Straight et al., 2003).  While the midzone is templated by iMTs, its formation is 

regulated by factors that are distinct from those required to build the spindle (Glotzer, 2009).  For 

example, the midzone MT plus end overlap is cross-linked by PRC1.  The localization of PRC1 to 

midzone MTs is regulated by Polo-like kinase 1 (Plk1), which prevents PRC1 from binding iMTs 

in the mitotic spindle, and ensures that midzone formation does not occur until mitotic exit (Hu et 

al., 2012).  PRC1 also regulates midzone length in concert with the kinesin Kif4A (Nunes Bastos 

et al., 2013; Subramanian et al., 2013).   

 In addition to the midzone, the C phase MT array includes astral MTs that emanate from 

the centrosomes and project towards the presumptive cleavage furrow, hereafter referred to as 

furrow-associated astral MTs (Bringmann and Hyman, 2005; Dechant and Glotzer, 2003).  The 

geometry of furrow-associated astral MTs is cell-type dependent.  For example, in Ptk1 cells, astral 

MTs straight and angled towards the division plane relative to the spindle axis (Canman et al., 

2003).  In HeLa and RPE-1 cells, furrow-associated astral MTs are less pronounced, and resemble 

the geometry of the midzone MT array as they curve and then run parallel to the spindle axis and 

the cortex (Mishima, 2016; Rankin and Wordeman, 2010).  Classically, these MTs are thought to 
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position the division site (Pollard, 2003), although more recent studies suggest that midzone MTs 

and astral MTs work together to specify placement of the cleavage furrow (Eggert et al., 2006).  

The redundancy for division plane specification can potentially be explained by factors that 

localize to the plus ends of both MT subsets.   

 

 

 

 One such factor that localizes to the plus ends of midzone and furrow-associated astral 

MTs is centralspindlin, which is required for both midzone organization and cytokinesis (Mishima 

et al., 2002; Raich et al., 1998).  Centralspindlin is a complex of the plus end directed, kinesin-6 

motor, Mklp1 (Kif23), and the Rho GTPase activating protein (GAP), MgcRacGAP (CYK4) 

(Pavicic-Kaltenbrunner et al., 2007).  Mklp1 bundles anti-parallel MTs in vitro (Davies et al., 

2015; Zhu et al., 2005a), which may explain role of centralspindlin in midzone organization.  The 

anaphase localization of these proteins is interdependent; depletion of either in cells abolishes 

midzone targeting of its partner (Pavicic-Kaltenbrunner et al., 2007; Tao et al., 2016).  

Centralspindlin targeting to furrow-associated astral MT plus ends is required to recruit the Rho 

guanine nucleotide exchange factor (GEF), ECT2, to the cell equator (Mishima, 2016; Su et al., 

Figure 1.1 Models for furrow-associated astral MT arrangements A, B) Diagram of midzone MTs 
(green), astral MTs (purple), chromatids (blue), and cortical actin (red) in a C phase cell. In A) astral 
MTs emanate from the centrosomes and run parallel to the midzone and the cortex with overlapping 
plus ends. In B) Astral MTs are angled relative to the midzone and the plus ends terminate at the cell 
cortex.  
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2011).  Recruitment of ECT2 locally activates RhoA, triggering downstream signaling that leads 

to assembly of the contractile array and cleavage furrow ingression (Prokopenko et al., 1999).    

 A second essential anaphase transporter is the plus end directed kinesin Mklp2 (Kif20A) 

which targets the Chromosomal Passenger Complex (CPC) to C phase MT plus ends (Gruneberg 

et al., 2004; Neef et al., 2006).  Cells depleted of Mklp2 fail to complete cleavage furrow 

ingression, suggesting that Mklp2-dependent transport of the CPC is essential for cytokinesis 

(Kitagawa et al., 2013).  The CPC regulates a number of processes during mitotic exit (Carmena 

et al., 2012) and its localization to the cell middle is critical for carrying out these functions 

(Afonso et al., 2014; Fuller et al., 2008).  Like centralspindlin, recruitment of the Mklp2-CPC 

complex is interdependent (Gruneberg et al., 2004; van der Horst et al., 2015) and cell cycle 

regulated.  Cdk1 phosphorylation prevents Mklp2 from associating with the spindle until after 

cyclin B degradation ensuring that motor transport and CPC off-loading from the centromere are 

coordinated (Kitagawa et al., 2014; Malumbres and Barbacid, 2009).  Mklp2 is also known to 

bundle MTs in vitro (Neef et al., 2003), suggesting it may also be involved in organizing the 

midzone MT array.   

 

Anaphase B 

 After midzone formation and division site specification, the central spindle elongates, 

further segregating sister chromosomes (Scholey et al., 2017).  While sister chromatid segregation 

during anaphase A occurs via K-MTs pulling forces, chromosome segregation during anaphase B 

relies on pushing forces generated by midzone MT polymerization (Saxton and McIntosh, 1987).  

Microinjection of fluorescent tubulin in Ptk1 cells demonstrates that the bulk of microtubule 

growth during C phase occurs at the plus end overlap (Saxton and McIntosh, 1987).  This plus end 
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growth is thought to be coupled to motor-dependent MT sliding (Cole et al., 1994; Hogan et al., 

1993), however, the molecular motors that drive spindle elongation in mammalian cells have not 

been characterized.  The most likely candidate to slide anti-parallel MTs is Eg5 (Avunie-Masala 

et al., 2011; Zhu et al., 2005b), although, in animal cells Eg5 has been shown to function as a brake 

that slows midzone elongation (Collins et al., 2014).  Small molecule inhibition of Eg5 also does 

not disrupt elongation (Kapoor et al., 2000), making the role of Eg5 during anaphase B unclear.  It 

is possible that multiple motors work to drive spindle elongation in mammalian cells, as has been 

observed for mitotic spindle assembly (Sturgill and Ohi, 2013).  Midzone MTs are also known to 

undergo flux during anaphase B, but the role that flux plays in pushing sister chromosomes apart 

is not well understood (Brust-Mascher et al., 2004).  Cortical pulling forces,  generated through 

dynein acting on polar astral MTs (Palmer et al., 1992), could serve as a third mechanism to 

elongate the central spindle (Aist et al., 1991; Fink et al., 2006), however, this is largely unexplored 

in tissue culture cells.  

 As the cleavage furrow ingresses the midzone MTs become bundled and eventually 

coalesce to form the midbody (Hornick et al., 2010).  The mechanism of bundling during 

ingression is not well defined, although it has been shown that midzone MTs become resistant to 

nocodazole and pressure-induced disassembly after furrowing (Hu et al., 2011; Salmon et al., 

1976), indicating they are highly stable.  The midbody is a highly conserved structure made of 

densely packed MTs that creates an intracellular bridge between the two daughter cells (Eggert et 

al., 2006; Otegui et al., 2005; Straight and Field, 2000).  Proteins localized to the midzone plus 

end overlap become incorporated into the midbody after coalescence (Glotzer, 2009).  Midbody 

formation is followed by abscission, the final step in cell division, which severs the intracellular 

bridge between the newly formed daughter cells (Nashe et al., 2017).  Abscission is regulated by 
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CPC-dependent recruitment of ESCRT proteins (Capalbo et al., 2016; Fung et al., 2017), and thus 

represents the final checkpoint of the cell cycle (Nahse et al., 2017).  Midbody MTs are thought to 

be required for the localization of abscission factors (Eggert et al., 2006) and for transport of new 

membrane vesicles to the cut site (Finger and White, 2002), however, other functions of midbody 

MTs are still under investigation.   

 

Cytokinesis 

 Once the duplicated genome has been segregated to opposite spindle poles, cellular 

division produces two daughter cells.  Cytokinesis requires cortical remodeling to facilitate the 

changes in cell shape that underlie cleavage furrow ingression (Green et al., 2012).  Positioning 

the division plane is an essential part of completing the cell cycle.  Cleavage always occurs 

perpendicular to chromosome segregation, and generally at the cell equator, although asymmetric 

cell division occurs in some cell types (Eggert et al., 2006).  Three major models account for 

cleavage plane specification, and all of these models theorize that MT-dependent signaling 

positions the furrow.  The polar relaxation model hypothesizes that astral MTs extending toward 

the polar cortices negatively regulate contractility, thereby indirectly stimulating ingression in the 

cell center (Canman et al., 2003).  The equatorial stimulation model also implicates a role for astral 

MTs, although it suggests that astral MTs at the cell equator promote contraction (Mishima, 2016; 

Rappaport, 1961).  The midzone stimulation model postulates that midzone MTs define the 

division site by propagating signaling to the cortex along the plus end overlap (Nguyen et al., 2014; 

Wheatley, 1999).  Currently, it is thought that all three models contribute to cleavage plane 

specification, although only the molecular players for equatorial and midzone stimulation have 

been defined (Eggert et al., 2006; Green et al., 2012).   
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 Assembly of the contractile array at the division plane is largely mediated through the 

GTPase RhoA (Bement et al., 2005).  In fact, local activation of RhoA can induce transient 

furrowing regardless of cell cycle state (Wagner and Glotzer, 2016).  Like other GTPases, RhoA 

activity is controlled by regulatory proteins: MgcRacGAP, part of the centralspindlin complex, 

and the Rho-GEF, Ect2 (Fededa and Gerlich, 2012).  Recent studies suggest that cycling RhoA 

activation and actin polymerization indicate that the cortex of a dividing cell is an excitable 

medium (Goryachev et al., 2016).  RhoA stimulates formin-dependent nucleation of actin at the 

division site, and initiates a signaling cascade that leads to myosin II-dependent furrowing (Fededa 

and Gerlich, 2012).  Rho-associated protein kinase (ROCK) activates myosin contractility by 

simultaneously phosphorylating myosin light chain and inhibiting myosin phosphatase 

(Matsumura, 2005).    

 The mechanical forces that drive cleavage furrow ingression are generated by myosin II 

cross-linked to actin at the equatorial cortex.  When myosin II activity is blocked, using 

blebbistatin, cleavage furrow ingression halts (Straight et al., 2003).  The mechanism of force 

generation is still not well understood, due in part to competing models for how actin and myosin 

are oriented in the ring (Eggert et al., 2006).  Current models include the purse string model, where 

parallel actin filaments are proposed to slide past one another as the furrow closes (Miller, 2011; 

Schroeder, 1972) and the gelation contraction model which hypothesizes that randomly oriented 

actin filaments form a “gel” that myosin II acts on to generate force (Fededa and Gerlich, 2012).  

It is known that the concentration of actin in the ring remains the same as the cleavage furrow 

ingresses, as opposed to muscle sarcomeres which get thicker (becoming more concentrated) as 

they shorten (Pollard, 1976; Schroeder, 1972).  This implies that contraction of the furrow is 

coupled to regulated F-actin disassembly (Green et al., 2012), although, high dose treatment with 



16 

 

an actin-depolymerizing drug arrests furrow ingression similar to myosin II inhibition (Schroeder, 

1972).  Cytokinesis ends in midbody formation, and is follow by abscission as described above.    

 

The CPC regulates cell division 

 The Chromosomal Passenger Complex (CPC) is a key regulator of a number of mitotic 

processes including chromosome segregation, midzone formation, cytokinesis and abscission 

(Carmena et al., 2012).  The CPC is tetrameric complex comprised of the scaffolding protein 

INCENP (Inner Centromeric Protein), two regulatory proteins – Survivin (BIRC5) and Borealin 

(Darsa/CDCA8), and the enzymatic component ABK (aurora B kinase).  INCENP forms a triple 

helix bundle with Survivin and Borealin at a 1:1:1 ratio at its N-terminus (Jeyaprakash et al., 2007) 

and binds ABK through the highly conserved IN-box at its C-terminus (Adams et al., 2000).  

During mitosis, all members of the CPC participate in complex formation (Carmena et al., 2012).  

Whether the CPC oligomerizes to form higher-order structures is the subject of current 

investigations (van der Horst et al., 2015).  The CPC is trans-activated by ABK-dependent 

phosphorylation of a conserved Thr-Ser-Ser motif in INCENP (Bishop and Schumacher, 2002), 

and the T-loop (Thr232, kinase domain) of ABK (Sessa et al., 2005).  Therefore, increasing the 

local concentration of CPC through clustering stimulates ABK activity, and this mechanism of 

CPC activation is observed throughout the cell cycle (Noujaim et al., 2014; Rosasco-Nitcher et al., 

2008; Wang et al., 2011).  

 The sub-cellular localization of the CPC is tightly coupled to its function during cell 

division.  For example, when cells enter mitosis the CPC associates with the centromere where it 

corrects erroneous MT attachments to the kinetochore (Carmena et al., 2012).  This localization is 

so important for cell cycle progression that multiple pathways function to ensure the CPC is 
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correctly targeted.  ABK feedback signaling (Emanuele et al., 2008) and phospho-regulation of 

Borealin (Tsukahara et al., 2010) work together to promote centromere localization, and both ABK 

inhibition and Borealin depletion result in an increased frequency of incorrect MT attachments 

(Carmena et al., 2012).  When cells exit mitosis, Mklp2-dependent transport of the CPC to midzone 

MT plus ends and the equatorial cortex is required for midzone organization and cleavage furrow  

 

 

 

ingression (Douglas et al., 2010; Gruneberg et al., 2004; Kitagawa et al., 2013).  The CPC is 

required to recruit centralspindlin (Basant et al., 2015; Douglas et al., 2010) which is one reason 

the C phase localization is key for furrowing.  Similarly, midbody-localized CPC regulates the 

recruitment of ESCRT proteins and the timing of abscission (Fung et al., 2017; Nahse et al., 2017).  

One model that describes the relationship between CPC localization and function, is the spatial 

gradient model which theorizes that mitotic events are regulated by a gradient of ABK activity.  

Evidence for this model largely relies on the cellular expression of an FRET sensor that undergoes 

a conformation change after ABK phosphorylation (Wang et al., 2011).  Analysis of this sensor 

indicates that ABK activity is high at the centromere during metaphase, and on midzone MT plus 

ends during C phase, and gradually decreases towards the spindle poles (Afonso et al., 2014; Fuller 

Figure 1.2 Model of the Chromosomal Passenger Complex A) Diagram of the proteins that make 
up the CPC and relevant domains of INCENP. The triple helix is made of the N-terminal region of 
INCENP complexed with Survivin and Borealin. The C-terminal half of INCENP contains the SAH 
domain and the IN box, which is where INCENP and ABK interact.  
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et al., 2008).  This gradient is thought to generate spatial cues that help promote accurate nuclear 

and cytoplasmic division.  There are some caveats to this model, however, it is clear that the cell 

takes great effort to target the CPC to where its activity is needed, and that perturbing CPC 

localization disrupts successful cell division.  This study demonstrates that the CPC functions at 

the cortex to mediate cytoskeletal cross-talk between acto-myosin contraction and midzone 

stabilization.  Moreover, we find that the C phase localization of the CPC is carefully regulated by 

cooperation between the actin and microtubule cytoskeletons.  
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 CHAPTER 2  

 

MATERIALS AND METHODS 

 

Cell culture and transfections 

Cell lines were cultured in media supplemented with 10% fetal bovine serum (FBS) and 

penicillin/streptomycin at 37°C, with 5% CO2.  HeLa “Kyoto” cells were cultured in DMEM.  

HeLa cells stably expressing GFP-Tubulin and mCherry-H2B (a gift from Dr. Dan Gerlich) 

additionally contained 500mg/ml G418.  Stable HeLa cells expressing GFP-INCENP under the 

control of a doxycycline-inducible promoter were cultured in DMEM containing 1 µg/ml 

puromycin during selection and then cultured in DMEM without antibiotic. RPE-1 cells were 

cultured in 50% DMEM/50% F-12 media.   

  

 Transfections were performed using Lipofectamine 2000 (Invitrogen) for plasmid DNA or 

HiPerFect (Qiagen) for siRNAs according to manufacturer instructions.  For both, cells were 

Target Sequence Source Reference 

INCENP 

3’ UTR 
5’AAGGCTTGGCCAGGTGTATAT Qiagen  

Kif2a 

ON-TARGET plus SMARTpool 

5’GAAAUGGUUUACAGGUUA 

5’CUACACAACUUGAAGCUAU 

5’GAAAACGACCACUCAAUAA 

5’GACCCUCCUUCAAGAGAUA 

Dharmacon  

Mklp2 5’AACCACCTATGTAATCTCATG Qiagen (Kitagawa et al., 2013) 

LoGC 

Duplex 

#3 

Proprietary 
Life 

Technologies 
 

Table 2.1 Sequences of siRNAs used in this study.  
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cultured in Opti-MEM supplemented with 10% FBS following transfection.  The siRNA sequences 

used in this study are shown in Table 2.1.  Cells were fixed for immunofluorescence or used for 

live cell imaging 24 hours after transfection.  For Kif2a siRNA depletion cells were transfected 

twice, 96 hours and 48 hours before they were fixed for immunofluorescence.  For doxycycline-

inducible stable cell lines 2 µg/ml doxycycline was added to Opti-MEM supplemented with with 

10% FBS at the time of transfection.   

 

Stable cell lines 

 The CRISPR-Cas9 system was used to generate stable cell lines depleted of Kif2a (Kif2a 

KO) (Mali et al., 2013).  HeLa cells were transfected using guide RNAs (gRNA), outlined in Table 

2.2, targeting the Kif2a ORF.  These gRNA sequences were selected to reduce the possibility of 

off-target effects, as each sequence is only represented once within the genome. A gBlock (IDT) 

containing the U6 promoter, Kif2a  targeting sequence, gRNA scaffold, and termination signal was 

synthesized and cloned into pCR-Blunt II-TOPO (Invitrogen). This was co-transfected with  

pcDNA3.3-Cas9 (Addgene) into HeLa cells using Lipofectamine LTX according to the 

manufacturer’s instructions. Single clones were isolated and analyzed for Kif2a protein levels by 

immunostaining.  Clones that displayed a reduction in Kif2a by immunostaining were transfected  

 

Table 2.2 Guide RNAs used in this study for CRISPR-Cas9 mediated knockout 

 

Name Target (Kif2a ORF) Sequence 

Kif2a gRNA 1 Nucleotides 24-46 5’GATCCAGATCGGGATTTACGTGG 

Kif2a gRNA 2 Nucleotides 27-49 5’TCTCCACGTAAATCCCGATCTGG 

Kif2a gRNA 3 Nucleotides 43-65 5’GTGGAGATCAAGCGCAGCGATGG 
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and isolated a second time to improve the efficiency of the knock down.     

 To generate HeLa cells that stably express GFP-INCENP in a doxycycline-inducible 

manner we used the high efficiency, low background RCME system (Khandelia et al., 2011).  

Acceptor HeLa cells (Sturgill et al., 2016) were transfected with pEM791 containing GFP-

INCENP (see Molecular biology).  24 hours after transfection, cells were cultured in the presence 

of 1 µg/ml puromycin, and were transferred to media containing 2 µg/ml puromycin 48 hours post-

transfection to select for transgenic cells.  Cells were pooled and cultured in DMEM containing 

10% FBS, penicillin and streptomycin.  GFP-INCENP expression was induced using 2 µg/ml 

doxycycline for 24 hours.   

 

Cold and pharmacological perturbations 

To destabilize MTs, cells were incubated in DMEM chilled to < 4oC and placed on ice for 10 min.  

Drug stocks in DMSO were diluted in DMEM immediately before use.  All drugs were stored at -

20oC and diluted in media promptly before use.  Drug concentrations, sources, and treatment times 

for fixed cell imaging are outlined in Table 2.3. All drug treatments were performed at 37oC for 

the time indicated before fixation.  For live cell imaging, drug concentrations, sources, and  

 

Table 2.3 Drugs used in this study for fixed cell imaging  

Drug Source Solvent Concentration Duration 

Blebbistatin Tocris Bioscience DMSO 100 μM 30 min 

Cytochalasin B Sigma DMSO 
5 μg/ml 

10 μg/ml 

30 min 

10 min 

ZM447439 Tocris Bioscience DMSO 2 μM 10 min 

Nocodazole Sigma DMSO 5 μM 10 min 

Taxol Sigma DMSO 2.5 nM 30 min 

BI 25436 Selleck Chemicals DMSO 100 nM 20 min 
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treatment times are outlined in Table 2.4. Live cell “nocodazole shock” experiments cells were 

performed by pre-incubating cells in drug for the duration indicated prior to the addition of high 

dose nocodazole. To destabilize MTs during live cell experiments an equivalent volume of movie 

medium was added during imaging containing 2X nocodazole ([Final] = 10 μM) and 1X 

blebbisatin or ZM 447439.  For cortical imaging, cells were incubated with media containing 

cytochalasin B or nocodazole for the time indicated.   

 

Table 2.4 Drugs used in this study for live cell imaging  

 

Immunofluorescence and fixed-cell imaging 

For most experiments, HeLa and RPE-1 cells were fixed with methanol at -20oC for 3, 5 

or 10 min.  Primary antibodies used in this study are outlined in Table 2.5.  Secondary antibodies 

conjugated to Alexa 488, Alexa 594, or Alexa 647 (Invitrogen) were used at 1:1000.  Primary and 

secondary antibody incubations were performed for 1 hour each at room temperature.  DNA was 

counterstained with 5 μg/ml Hoechst 33342.  Stained cells were mounted in Prolong Gold 

(Invitrogen). 

 To quantify midzone fluorescence after cold treatment, cells were fixed in 2% 

glutaraldehyde in cytoskeleton buffer (CB, 10 mM MES pH 6.1, 138 mM KCl, 3 mM MgCl2, 2 

Drug Source Solvent Concentration Duration 

Nocodazole Sigma DMSO 10 μM 

5 μM 

During imaging (shock) 

5 min (cortical imaging) 

Blebbistatin Tocris Bioscience DMSO 100 μM 30 min 

ZM447439 Tocris Bioscience DMSO 2 μM 5 min 

Cytochalasin B Sigma DMSO 10 μg/ml 10 min 
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mM EGTA) plus 11% sucrose at room temperature for 10 minutes. To visualize actin, cells were 

fixed with 1% glutaraldehyde in CB plus 11% sucrose at room temperature for 10 minutes.  Actin 

was stained with phalloidin-TRITC (Sigma) at 500 ng/μl.  To visualize PRC1, cells were fixed in 

4% formaldehyde and Perm-Fix (100 mM K-PIPES, 0.2% TX-100, 10 mM K-EGTA, 1 mM  

MgCl2).   

 

Table 2.5 Primary antibodies used in this study for immunofluorescence 

 

 To visualize myosin IIA, cells were fixed with 4% paraformaldehyde (PFA) in PBS at 

room temperature for 10 min.  To visualize Mklp2 cells were fixed in methanol at -20oC for 3 min.  

Where indicated, cells were permeabilized with 100 mM K-PIPES (pH 6.8), 1 mM MgCl2, and 

1% TX-100 for 30 seconds prior to fixation to extract free tubulin. 

Cells were visualized using either a 60X 1.4 NA or 100X 1.4 NA objective (Olympus) on 

a DeltaVision Elite imaging system (GE Healthcare) equipped with a Cool SnapHQ2 CCD camera 

Antibody Source Dilution 

Mouse anti-tubulin, DM1α Vanderbilt Antibody and Protein Resource 1:500 

Rat anti-tubulin, YL1/2 Accurate Chemical and Scientific Corporation 1:500 

Mouse anti-AIM BD Transduction Labs 1:500 

Rabbit anti-INCENP Abcam 1:500 

Rabbit anti-Mklp2 Abnova 1:50 

Rabbit anti-Mklp1 Santa Cruz Biotechnology 1:500 

Mouse anti-Lamin B Abcam 1:200 

Rabbit anti-Kif2a Abcam 1:1000 

Goat anti-PRC1 Santa Cruz Biotechnology 1:50 

Rabbit anti-myosin IIa BioLegend 1:1000 

Mouse anti-GFP conjugated to 

DyLight 488 
Rockland 1:1000 
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(Roper).  Optical sections were collected at 200 nm intervals and processed using ratio 

deconvolution in SoftWorx (GE Healthcare).  Images were prepared (rotation, maximum 

projection) using Image J and NIS-Elements AR.   

To quantify midzone MT fluorescence following cold treatment, cells were fixed in 

glutaraldehyde with or without pre-extraction as described above.  Sum intensity projections were 

generated from 200 nm z-slices of tubulin fluorescence and a boxed region within the midzone 

was used to measure the integrated fluorescence intensity.  To measure fluorescence from polymer 

only, background fluorescence was measured from an equivalently sized region outside the 

midzone where no detectable polymer was observed, and subtracted from midzone fluorescence.  

To determine the extent to which cleavage furrows had ingressed, the following formula was used: 

distance furrow ingressed  ÷ total cell width ×  100 = % ingression.  To measure ABK 

fluorescence after Mklp2 depletion, a boxed region at the division plane was used to determine the 

integrated fluorescence of a sum intensity projection.  An equivalently sized region outside the 

division plane was used to measure background fluorescence and this was subtracted from the 

division plane fluorescence.   

 

Live cell imaging 

Widefield live cell imaging was performed at 37oC with 5% CO2 and a 60X 1.4 NA 

objective on a DeltaVision Elite imaging system equipped with a WeatherStation Environmental 

Chamber.  For live imaging of HeLa cells stably expressing GFP-Tubulin and mCherry-H2B, cells 

were plated on glass bottom dishes (MatTek Corporation) 24 hours prior to imaging.  Prior to 

imaging, cells were incubated in movie medium (L-15 medium without Phenol Red supplemented 

with 10% FBS, penicillin/streptomycin, and 7 mM K-HEPES, pH 7.7).  One optical section was 
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selected and cells were imaged at 15 second intervals.  For live cell imaging of transiently 

expressed GFP-INCENP constructs and mCherry-Utrophin, HeLa cells were plated on glass 

bottom dishes (MatTek Corporation) 48 hours prior to imaging.  24 hours prior to imaging cells 

were transfected with plasmid DNA and/or siRNA as described above.  Immediately before 

imaging culture media was exchanged for movie medium.  To image probes during C phase one 

optical section was selected and cells expressing GFP-INCENP were imaged at 5 second intervals.  

Cells expressing mCherry-Utrophin were imaged at 30 second intervals to prevent photobleaching.  

To image stable HeLa cell lines expressing GFP-INCENP, cells were plated on glass bottom dishes 

48 hours prior to imaging.  24 hours prior to imaging siRNA was transfected as described above 

and 2 μg/ml doxycycline was added.  Cells were imaged in movie medium and GFP-INCENP was 

imaged at 10 second intervals.  Where indicated, differential interference contrast (DIC) imaging 

was used to image the cell cortex of GFP-INCENP stable cells during furrowing.  For these 

experiments, cells were imaged at 30 second intervals.   

To quantify midzone MT fluorescence in live cells after exposure to nocodazole the 

midzone was defined as the region between the chromosome plates in the X dimension, and the 

chromosome edges in Y dimension.  The fluorescence intensity of GFP-tubulin within a boxed 

region encompassing the midzone from a single optical section was measured over time.  Similar 

to fixed cells, a region outside the midzone lacking detectable polymer was used to measure 

background fluorescence for each time point, which was subtracted from the midzone fluorescence 

values at corresponding time points.  To normalize for changes in the size of the midzone over 

time (due to ingression or movement of the chromosome plates), we calculated the integrated 

fluorescence intensity per pixel at each time point and then scored these values relative to the initial 
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fluorescence intensity (before nocodazole addition) to determine the percent of fluorescence decay 

over time.   

Live cell confocal imaging was performed at at 37oC with 5% CO2 and a 60X 1.4 NA in 

movie medium.  Cells were imaged using a Nikon spinning disk confocal microscope equipped 

with a stage top incubator (Tokai Hit) and an Andor DU-897 EMCCD camera.  Fluorophores were 

excited using 488 nm and 561 nm diode laser lines.  For live imaging of C phase in GFP-INCENP 

stable HeLa cells, cells were plated on glass bottom dishes 48 hours before imaging, and siRNA 

transfection and doxycycline addition occurred 24 hours before imaging.   A single optical section 

was imaged at 15 second intervals.  To image cortical movements of transiently expressed GFP-

INCENP cells were plated on glass bottom dishes coated with 100 µg/ml fibronectin.  Cells were 

transfected with plasmid DNA 24 hours prior to imaging.  The optical section closest to the 

coverslip was imaged in pre-ingression cells at 3 second intervals.  For pharmacological 

perturbations, cells were incubated with cytochalasin B for >10 min prior to imaging.  To ensure 

that nocodazole treatment did not disrupt cortical delivery of GFP-INCENP, C phase cells were 

identified prior to drug addition, and then incubated in nocodazole for 5 min before imaging.  For 

co-imaging of transiently expressed GFP-INCENP and Mklp2-mCherry cells were plated on glass 

bottom dishes coated with 100 µg/ml fibronectin and transfected with plasmid DNA 24 hours prior 

to imaging.  Three optical sections, corresponding to the cortex, midzone, and one optical section 

between, were imaged at 5 second intervals using triggered acquisition to reduce temporal delay.   

To quantify cortical enrichment of GFP-INCENP at the cell cortex 200 nm optical sections 

were collected and volume projections of the YZ dimension were generated using Image J. and 

Line scans across the YZ projection of the division plane were normalized for length, aligning 

peak intensity values or cell edges where applicable.  Background fluorescence was measured 



27 

 

outside the cell and this value was subtracted from all intensity measurements along the line scan.  

Fluorescence intensity values were then normalized to cytoplasmic background, to control for 

variable protein expression.  To determine the relative increase of fluorescence intensity at the 

cortex, three adjacent values from each peak of fluorescence intensity were averaged.   

GFP-INCENP spot tracking was performed using the TrackMate plug-in in Image J 

(Tinevez et al., 2016).  The TrackMate parameters used were as follows: a LoG detector, an 

estimated blob diameter of 1.5 µm, a threshold of 15.0, a simple LAP tracker (for non-branching 

tracks), a linking max distance of 1.0 µm, a gap closing max distance of 1.0 µm, and a gap closing 

frame of 1.  Only tracks with a lifetime ≥ 9 seconds (or 3 frames) were used considered for GFP-

INCENP cortical imaging.  For cells co-expressing GFP-INCENP and Mklp2-mCherry, tracks 

were analyzed separately for each probe and optical section.  The TrackMate parameters used were 

similar to GFP-INCENP tracking, although they were modified slightly to accommodate the dim 

fluorescence of mCherry.  Parameters used were as follows: a LoG detector, an estimated blob 

diameter of 1.0 µm, a threshold of 10.0, a simple LAP tracker (for non-branching tracks), a linking 

max distance of 1.0 µm, a gap closing max distance of 1.0 µm, and a gap closing frame of 1.  Only 

tracks with a lifetime of ≥ 15 seconds (or 3 frames) were considered.  Diffusion coefficients were 

calculated using the MSDanalyzer MATLAB plugin (Tarantino et al., 2014b), where only the first 

120 s were used for MSD analysis.  The diffusion co-efficient was determined by dividing the 

slope of the best fit linear regression by 4, to account for movement in two dimensions.   

To quantify the Pearson’s correlation co-efficient of GFP-INCENP and Mklp2-mCherry 

on the midzone and the cortex, images were cropped in time to only analyze the correlation from 

anaphase onset to the initiation of furrowing.  Only the region corresponding to the division plane 

on the midzone and the cortex was included so as not to analyze areas beyond the chromosomes 
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plates, or outside the cell.  The correlation co-efficient was measured using the GDSC stack 

correlation analyzer with no additional thresholding or corrections.  To normalize for the duration 

of C phase, the time cells began furrowing was normalized to 1, with anaphase onset normalized 

to 0.   

 

Immunoblotting 

For preparation of whole cell lysates, cells were washed three times with PBS and resuspended in 

2X Laemmli buffer.  For pure protein, samples were mixed with 2X Laemmli buffer.  After heating 

to 95oC for 5 min, proteins were resolved by SDS-PAGE and transferred to nitrocellulose 

(Whatman).  Immunoblots were blocked with 5% w/v milk in PBST and then probed with primary  

 

Table 2.6 Primary antibodies used in this study for Western Blot 

 

antibodies outlined in Table 2.6 for 1 hour.  Blots were then probed with species-appropriate 

fluorescently-tagged secondary antibodies for 45 minutes.  Fluorescence was measured using 

an Odyssey fluorescence detection system (LI-COR Biosciences) and Image J.   

 

 

Antibody Source Dilution 

Mouse anti-tubulin, DM1α Vanderbilt Antibody and Protein Resource 1:1000 

Mouse anti-AIM BD Transduction Labs 1:1000 

Rabbit anti-INCENP Abcam 1:1000 

Rabbit anti-Kif2a Abcam 1:1000 

Mouse anti-GFP conjugated to 

DyLight 488 
Rockland 1:1000 
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Molecular biology 

A full-length human INCENP ORF (Source Bioscience, IOH62774:pDEST15, NCBI 

accession: AY714053) was used to prepare all wild type INCENP DNA constructs.  Amplification 

of the INCENP ORF was performed using PrimeStar GXL polymerase (Takara).  All constructs 

were prepared using isothermal assembly (Gibson et al., 2009).  PCR fragments were cloned into 

pEGFP-C1 (Clontech) restricted with KpnI and NdeI or into pET15 (Novagen) restricted with XhoI 

and NdeI. 

Charge reversal mutagenesis was performed using G blocks (IDT) containing the desired 

mutations and a 4-part Isothermal Assembly of INCENP G blocks fragments into pEGFP-C1 

restricted with EcoRI and KpnI.  The following mutations were made to codons corresponding to 

amino acids 563-580 to change lysine and arginine to glutamic acid (mutations underlined):  

GGAAGAAGAACTGGAGGAGGTGGAGCTGGAGGAAGAGGAAGAACTCGAAGAG.  

These mutations are referred to in this study as INCENP CR.  Additionally, mutations were made 

to codons corresponding to amino acids 622-631 to change lysine and arginine residues to glutamic 

acid.  Mutations were also made to optimize G block synthesis which did not affect the ORF 

(mutations underlined): GAGGCCGAGGAAGAGGCGGCGGCCGAGGAG.  In this study these 

mutation are referred to as INCENP MT CR.  To generate stable cell lines GFP-INCENP wt, 563-

580 CR, 622-631 CR, were amplified from pEGFP-C1 constructs using PrimeStar GXL and cloned 

into pEM791 restricted with BsrGI and BglII (a gift from E. Makeyev).    

 

Protein expression and purification 

His6-INCENP500-680 and His6-INCENP500-680 CR were expressed in BL21 DE3 RIPL cells 

with 0.4 mM IPTG for 16 hours at 16oC.  For purification, cells were pelleted and resuspended in 
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lysis buffer (PNI [50 mM sodium phosphate, 500 mM NaCl, 20 mM imidazole], 5 mM β-

mercaptoethanol (β-ME), 1% NP40, and protease inhibitors [1 mM phenylmethylsufonyl fluoride, 

1 mM benzamidine, and 10 μg/ml each of leupeptin, pepstatin, and chymostatin]).  Cells were 

enzymatically lysed by incubation in 1 mg/ml lysozyme (Sigma) for 30 minutes.  The lysate was 

sonicated, and clarified by centrifugation at 35K rpm for 1 hour in a Ti-45 rotor (Beckman).  4 ml 

of Ni++-NTA agarose (Qiagen) was incubated with the supernatant for 1 hour at 4oC, and then 

washed extensively with wash buffer (PNI, 5 mM β-ME).  Protein was eluted with PNI, 5 mM β-

ME, and 180 mM imidazole.  Peak fractions were desalted using a PD-10 column (GE Healthcare) 

equilibrated in 10 mM K-HEPES pH 7.7, 50 mM KCl, 1 mM DTT.  Powdered sucrose was added 

to 20% w/v.  Protein was aliquoted, frozen in liquid nitrogen and stored at -80oC.   

 

Actin polymerization and co-sedimentation 

Rabbit skeletal muscle actin (Cytoskeleton) was resuspended in 5 mM Tris-HCl pH 8.0 

and 200 μM CaCl2, and stored at -20oC until use.   Actin was polymerized in 500 mM KCl and 20 

mM MgCl2 for 10 minutes at room temperature.   

Prior to use, His6-INCENP500-680 and His6-INCENP500-680 CR were pre-clarified by 

centrifugation at 90K rpm for 30 minutes at 4oC in a TLA-100 Ultracentrifuge (Beckman).   For 

co-sedimentation with actin, His6-INCENP500-680 or His6-INCENP500-680 CR (5 μM) were mixed 

with F-actin (10 μM) in 100 μl reaction buffer (10 mM K-HEPES pH7.7, 50 mM KCl, 1 mM DTT, 

1 mM MgCl2-ATP).  Reactions were incubated at room temperature for 15 min and centrifuged at 

90K rpm for 20 minutes at 22oC.  100 μl of supernatant was collected and mixed with and 

equivalent volume of 2X Laemmli buffer.  Pellets were resuspended in 200 μl of 2X Laemmli 
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buffer.  Fractions were heated to 95oC for 5 min and 40 μl of each fraction was run on a 12% SDS-

PAGE gel and stained using Coomassie Brilliant Blue.    

 

Statistical analysis 

Statistically relevant differences in experimental data were determined using the T.TEST function 

in Excel (Microsoft). In all cases, P-values report the two-tailed distribution of a two-sample 

Student’s t-Test assuming unequal variance. 
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CHAPTER 3 

 

ACTO-MYOSIN CONTRACTILITY DRIVES MIDZONE STABILIZATION 

 

Introduction 

  Cytokinesis, the final step in cell division, individualizes two daughter cells through 

concerted actions of the actin and microtubule (MT) cytoskeletons.  During anaphase, MTs 

positioned between segregated chromosomes are incorporated into an anti-parallel array termed 

the spindle midzone (midzone MTs) while F-actin and non-muscle myosin II, together with other 

factors, organize into the cleavage furrow (Green et al., 2012).  With the exception of cleavage 

plane specification, little is known as to whether remodeling of the actin and MT cytoskeletons are 

actively coordinated throughout cytokinesis.  Previous studies of the spindle midzone in somatic 

cells have shown that midzone MTs become highly stable after furrows have begun ingression (Hu 

et al., 2011), indicating that furrow-to-MT communication may occur.  Consistent with this notion, 

midzone formation is inhibited in fly spermatocytes that fail to form a cleavage furrow (Giansanti 

et al., 1998) and during monopolar cytokinesis when myosin contractility is blocked by the non-

muscle myosin II inhibitor blebbistatin (Hu et al., 2008).  Our work shows that acto-myosin 

contractility underlies MT stabilization in bipolar midzones and suggests cytoskeletal coordination 

is fundamental to mammalian cytokinesis.   

 

A modified version was previously published as:  

Landino, J. and Ohi, R. (2016) The Timing of Midzone Stabilization during Cytokinesis 

Depends on Myosin II Activity and an Interaction between INCENP and Actin. Curr Biol 26, 

698-706 
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Midzone MTs are differentially stable during C phase  

 To investigate the relationship between furrowing and midzone MT stability, we exposed 

asynchronous HeLa cells to cold temperature (0°C) for 10 minutes prior to fixation.  This treatment 

indicated that midzone MTs become increasingly stable as cells progress through C phase 

(Canman et al., 2000; Straight et al., 2003).  Cells that appeared to be in anaphase A at the time of 

fixation, characterized by chromosome segregation without pole separation and a non-ingressed 

furrow, were devoid of midzone MTs, whereas cells that apparently progressed further, ie., 

anaphase B and telophase cells, contained cold-stable MTs (Figure 3.1 A).  In agreement with 

previous work (Hu et al., 2011), cells with cold-stable midzone MTs had invariably initiated 

furrow ingression; only 5.3 ± 3.2% of non-ingressed cells (mean ± SE, n=70 cells) retained tubulin 

polymer following cold treatment, whereas 82.0 ± 3.5% (n=108 cells) of cells with an ingressed 

furrow contained polymer (Figure 3.1 B).   This qualitative result was unaffected by removal of 

free tubulin via a brief permeabilization step prior to fixation (Figure 3.1 C).  Quantitative analysis 

revealed that the sum intensities of polymeric tubulin fluorescence following cold-treatment in 

ingressed cells show a positive linear correlation with the degree of furrowing and this result was 

unaffected by the presence or absence of free tubulin (Figure 3.1 D and E).  Midzone MTs behaved 

similarly in the non-transformed RPE-1 cell line (Figure 3.1 F and G).   

 To better correlate the timing of furrowing with midzone stabilization, we next used a live 

cell assay to monitor midzone MT stability.  HeLa cells that simultaneously express GFP-tubulin 

and mCherry-H2B were challenged during C phase with DMSO or 10 μM nocodazole before or 

after furrow ingression (Hu et al., 2011).  DMSO-treated cells progressed through cytokinesis 

normally without losing midzone MTs (Figure 3.2 A).  In contrast, nocodazole caused rapid 
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Figure 3.1 Midzone MTs are differentially stable during C phase. A) Maximum z-projections of 
untreated (top) or cold-treated (bottom) HeLa cells in C phase with non-ingressed or ingressed cleavage 
furrows. Cells were stained with antibodies against tubulin (green) and counterstained with Hoechst 
33342 to visualize DNA (blue). Scale bar, 10 μm. B) Quantification of the percentage of cells with 
midzone MTs (mMTs) before and after cold treatment as described in A). Data represent mean ± SE. n 
> 150 cells from three independent experiments, * = p < 0.005. C) Maximum z-projections of untreated 
(top) and cold-treated (bottom) HeLa cells in C phase with non-ingressed or ingressed cleavage furrows. 
Cells were permeabilized for 30 seconds prior to fixation to extract free tubulin. Dashed lines indicate 
cell boundary. Cells were stained as described in A). D) Left: Maximum z-projections of cold-treated 
HeLa cells permeabilized prior to fixation. Cells were stained as described in A). Dashed lines indicate 
cell boundary. Dashed box represents regions used to quantify midzone intensity. Scale bar, 10 μm. 
Right: Quantification of midzone MT fluorescence intensity after cold treatment in non-ingressed (red) 
and ingressed (purple) cells plotted as a function of the percent furrow ingression. Cells were fixed after 
pre-extraction of free tubulin. (n=54). E) Quantification of midzone fluorescence intensity as described 
in A). Cells were fixed without extraction of free tubulin (n=52).  F) Maximum z-projections of untreated 
(top) and cold-treated (bottom) RPE-1 cells in C phase with non-ingressed or ingressed cleavage 
furrows. Cells were stained as described in A). Scale bar, 10 μm. G) Maximum z-projections of RPE-1 
cells permeabilized for 30 seconds prior to fixation.  Cells were stained as described in A). Dashed lines 
indicate cell boundary. Scale bar, 10 μm.   
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Figure 3.2 Midzone MTs are stabilized after furrowing. A) 
Top: Single z-plane micrographs taken from time lapse 
movies of HeLa cells expressing GFP-tubulin (green) and 
mCherry-H2B (red) exiting mitosis in the presence of DMSO 
(control) or 10 μM nocodazole. Time is indicated in min 
relative to the initial frame. Dashed lines were used to 
generate kymographs.  Scale bars, 10 μm. Bottom: 
Kymographs of GFP-tubulin fluorescence across the division 
plane during C phase.  Arrowheads (white) indicate time point 
of nocodazole addition. Scale bars, 2.5 min (x axis) and 10 
μm (y axis). B) Quantification of midzone MT fluorescence 
intensity in pre- and post-ingression cells treated with 10 μM 
nocodazole. Arrowhead (black) indicates the time of 
nocodazole addition. Data represent mean ± SD. n=10 (pre-
I) and 9 (post-I) from three independent experiments, ** = p 
< 0.01.  Continued on next page. 
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midzone MT disassembly when added to cells that had not initiated furrowing (Figure 3.2 A, Pre-

I).  The addition of nocodazole to cells that had begun furrowing, however, did not cause 

widespread midzone MT depolymerization (Figure 3.2 A, Post-I).  At the terminal time point (7 

min following nocodazole addition), pre-ingression cells retained an average of only 16.3 ± 8.6% 

(mean ± SD, n=10 cells) of the initial midzone MT fluorescence, whereas post-ingression cells 

retained on average 45.1 ± 16.8% (n=9 cells) of their initial midzone MT fluorescence (Figure 3.2 

B).  Similar results were obtained using cells expressing mCherry-tubulin (Figure 3.2 C and D).  

These results indicate that midzone MTs acquire nocodazole resistance after furrowing has 

initiated, and is consistent with observations made using our fixed cell cold-stability assay.   

 

Stabilization of midzone MTs requires myosin II activity 

 Midzone MTs might acquire stability through a time-dependent process or, alternatively, 

become stabilized by furrowing.  To discriminate between these models, we used lamin B 

immunofluorescence to more precisely judge how long a cell had spent in C phase.  Few non-

ingressed cells (9.3 ± 1.6%, n=125 cells) had detectable lamin B on chromatin, but this number 

increased to 95 ± 1.1% (n=123 cells) in ingressed cells (Figure 3.3 A) demonstrating that lamin B 

immunofluorescence is a suitable marker for late-stage C phase cells.  We then treated 

asynchronous cells with the non-muscle myosin II inhibitor blebbistatin (100 μM) to block furrow 

Figure 3.2 continued. C) Top: Single z-plane micrographs taken from time lapse movies of C phase 
HeLa cells expressing mCherry-tubulin in the presence of DMSO (control) or 10 μM nocodazole. Time 
is indicated in min:seconds relative to the initial frame.  Dashed lines were used to generate 
kymographs. Scale bars, 10 μm.  Bottom: Kymographs of GFP-tubulin fluorescence across the division 
plane during C phase.  Arrowheads (white) indicate time point of nocodazole addition.  Scale bars, 2.5 
min (x axis) and 10 μm (y axis). F) Quantification of midzone MT fluorescence intensity in pre- and post-
ingression cells treated with 10 μM nocodazole. Arrowhead (black) indicates the time point of 
nocodazole addition. Data represent mean ± SD. n=8 (pre-I) and 9 (post-I) cells from three independent 
experiments, * = p < 0.05.   
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Figure 3.3 Midzone MT stabilization requires non-muscle 
myosin II activity. A) Left: Maximum z-projections of HeLa cells 
in C phase with non-ingressed or ingressed cleavage furrows 
showing nuclear envelope staining.  Cells were stained with 
antibodies against tubulin (green) and lamin B (red).  DNA (blue) 
was counterstained with Hoechst 33342. Scale bar, 10 μm.  Right: 
Quantification of the percent of cells with lamin B staining in C 
phase. Data represents mean ± SE. n > 200 cells from three 
independent experiments, * = p < 0.005. B) Maximum z-
projections of cells treated with 100 μM blebbistatin prior to fixation 
(top) or cold treatment (bottom). Cells were stained with antibodies 
to lamin B (single channels) to mark the nuclear envelope and 
tubulin (green). DNA was counterstained with Hoechst 33342 
(blue).  Scale bar, 10 μm. Continued on next page. 
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ingression without perturbing assembly of the contractile array (Straight et al., 2003).  Although 

midzones were present in blebbistatin-treated cells at 37°C (Straight et al., 2003), they were cold- 

 

Figure 3.4 Midzone MT stabilization requires acto-myosin. 
A) Maximum z-projections of HeLa cells treated with 5 μg/ml 
cytochalasin B prior to fixation (top) or cold-treatment (bottom).  
Cells were stained with antibodies to tubulin (green) and lamin 
B (single channels).  DNA (blue) was counterstained with 
Hoechst 33342.  Scale bar, 10 μm. B)  Maximum z-projections 
of HeLa cells permeabilized for 30 seconds prior to fixation to 
extract free tubulin.  Cells were otherwise treated, fixed, and 
stained as described in A). Dashed lines indicate cell boundary.  
Scale bar, 10 μm.  C) Quantification of the percent of 
cytochalasin B treated cells with midzone MTs before and after 
cold treatment as described in A).  Data represent mean ± SE, 
n > 150 cells from three independent experiments.  

Figure 3.3 continued C) Quantification of the percentage of blebbistatin-treated cells with midzone MTs 
before and after cold treatment as described in B).  Data represent mean ± SE, n > 200 cells from three 
independent experiments. D)  Maximum z-projections of HeLa cells permeabilized for 30 seconds prior 
to fixation to extract free tubulin.  Cells were otherwise treated, fixed, and stained as described in B). 
Dashed lines indicate cell boundary.  Scale bar, 10 μm. 
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Figure 3.5 Midzone MT stabilization requires furrowing. A) Top: Single z-plane micrographs of 
HeLa cells expressing mCherry-tubulin in early C phase, as judged by the degree of chromatin 
condensation. Cells were treated with 100 μM blebbistatin prior to addition of 10 μM nocodazole.  Time 
is indicated in min relative to the initial frame. Dashed lines were used to generate kymographs. Scale 
bar, 10 μm.  Bottom: Kymographs of mCherry-tubulin fluorescence across the division plane during C 
phase. Arrowheads (white) indicate time of nocodazole addition. Scale bars, 2.5 min (x axis) and 10 
μm (y axis). B) Top: Single z-plane micrographs of HeLa cells expressing mCherry-tubulin in late C 
phase, as judged by the lack of condensed chromatin. Cells were treated with 100 μM blebbistatin prior 
to addition of 10 μM nocodazole.  Time is indicated in min relative to the initial frame. Dashed lines 
were used to generate kymographs. Scale bar, 10 μm.  Bottom: Kymographs of mCherry-tubulin 
fluorescence across the division plane during C phase. Arrowheads (white) indicate time of nocodazole 
addition.  Scale bars, 2.5 min (x axis) and 10 μm (y axis). C) Quantification of midzone MT fluorescence 
intensity in early and late C phase cells treated with 100 μM blebbistatin and 10 μM nocodazole. 
Arrowhead (black) indicates time of nocodazole addition. Data represent mean ± SD.  n=14 (early 
anaphase) and 13 (late anaphase) cells, from three independent experiments.   
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labile even in cells containing lamin B-labeled chromatin (Figure 3.3 B and C).  Similar results 

were observed in cells treated with 5 μg/ml cytochalasin B, an actin poison (Figure 3.4 A).  Again, 

pre-extraction of free tubulin did not affect these results (Figures 3.3 D and 3.4 B).   

We then tested the relative importance of time spent in C phase versus contractility for  

midzone MT stabilization in live cells using our nocodazole shock assay.  As blebbistatin has 

phototoxic effects when imaged with blue light (Kepiro et al., 2014; Mikulich et al., 2012; 

Sakamoto et al., 2005), we transiently expressed mCherry-tubulin in HeLa cells to visualize 

midzone MTs.  DIC imaging was used to determine the degree of chromatin condensation and 

distinguish between cells in early or late C phase.  Cells were treated with blebbistatin to block 

furrowing for > 20 min prior to nocodazole addition.  Without nocodazole, midzone MTs in early 

C phase (condensed chromatin as observed by DIC) or late C phase (decondensed chromatin) 

persisted throughout blebbistatin treatment (Figure 3.5).  Addition of nocodazole, however, 

induced midzone MT disassembly in both early and late C phase.  At the terminal time point (6 

minutes, 30 seconds), cells in early C phase treated with nocodazole had 26.0 ± 7.2% (n=14 cells) 

of the initial fluorescence from tubulin polymer.  Nocodazole similarly affected cells in late C 

phase (34.6 ± 9.9%, n=13 cells) indicating that a prolonged C phase does not considerably increase 

midzone stability in the absence of myosin II contractility (Figure 3.5 C).    These observations 

suggest that midzone MTs do not become stable as a function of time spent in C phase, but rather 

that their stability is dependent on myosin II contractility.   

  

Spindle elongation during C phase requires furrow ingression 

 Anaphase B is marked by the elongation of the central spindle to further segregate sister 

chromosomes into the two proto-daughter cells.  Elongation of the spindle midzone is believed to 
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occur by coupling MT polymerization to motor-dependent sliding (Roostalu et al., 2010; Rozelle 

et al., 2011; Wang et al., 2013).  The timing of central spindle elongation is closely coupled to 

cleavage furrow ingression and we asked whether these processes were also intrinsically linked.  

To test this idea, we tracked midzone elongation during C phase by live imaging cells expressing 

mCherry-tubulin.  We observed that when furrow ingression was blocked, by treatment with 

blebbistatin, the central spindle did not fully elongate (Figure 3.6 A).  In cells treated with DMSO, 

the anaphase spindle elongated to a maximum pole-to-pole distance of 11.3 ± 0.3 microns (mean 

± SE, n=16 cells).  In cells treated with blebbistatin, the maximum pole to pole distance in C phase 

was only 9.1 ± 0.5 microns (n=24 cells).  To ensure that we did not unintentionally quantify central 

spindle length in early C phase cells, only cells with decondensed chromatin were included in this 

analysis.   Similar to our observations of midzone stabilization, this finding suggests that spindle 

elongation during anaphase B depends on acto-myosin contractility and is not related to the 

duration of C phase.    

 

 

 

 

Figure 3.6 Central spindle elongation 
requires furrow ingression. A) Left, top: 
Single z-plane micrographs of HeLa cells 
expressing mCherry-tubulin in C phase, treated 
with DMSO or 100 μM blebbistatin. Time is 
indicated in min relative to the initial frame. 
Dashed lines were used to generate 
kymographs. Scale bar, 10 μm.  Left, bottom: 
Kymographs of mCherry-tubulin across the 
spindle axis over time. Scale bars, 10 μm (x 
axis) and 3 min (y axis). Right: Quantification of 
the maximum pole-to-pole distance of cells 
treated with DMSO or Blebbistatin. Data 
represents mean ± SD. n=16 (DMSO) and 24 
(blebbistatin), from three independent 
experiments, * = p < 0.05.   
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Discussion 

 Whether actomyosin contractility influences midzone formation during cytokinesis is 

controversial.  Actin disruption eliminates midzone MTs during the meiotic divisions of 

Drosophila spermatocytes (Giansanti et al., 1998) and myosin II inhibition prevents midzone 

formation during monopolar cytokinesis (Hu et al., 2008).   However, similar perturbations in 

somatic cells undergoing normal, bipolar cytokinesis (Aubin et al., 1981; Cimini et al., 1998; 

Savoian et al., 1999; Straight et al., 2003) have yielded conflicting results.  Our data show that the 

midzone MTs of HeLa and RPE-1 cells are stabilized upon furrow initiation in a manner that 

requires actomyosin contraction, suggesting that furrow ingression impacts bipolar midzone 

stability.  These findings are consistent with previous reports showing that midzone MTs in 

somatic cells acquire resistance to nocodazole (Hu et al., 2011) and pressure (Salmon et al., 1976) 

during cytokinetic progression.  Additionally, our cell analyses demonstrate that myosin II 

contractility is only required to initiate the feedback signaling that stabilizes midzone MTs; 

midzones become nocodazole-resistant once furrowing has begun.  It is likely that the onset of 

furrowing thus triggers a unidirectional change in the physiological properties of the midzone.   
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CHAPTER 4 

 

THE CHROMOSOMAL PASSENGER COMPLEX MEDIATES CYTOSKELTAL 

FEEDBACK SIGNALING 

 

Introduction 

 Aurora B kinase (ABK) is the catalytic component of the Chromosomal Passenger 

Complex (CPC), a protein complex which also consists of INCENP, Borealin, and Survivin, and 

plays key roles in multiple aspects of cytokinesis (Carmena et al., 2012).  While the CPC has well-

documented functions in cleavage plane specification (Nguyen et al., 2014) and promoting 

midzone assembly (Kaitna et al., 2000), its role at the furrow remains unclear.  Interestingly, 

studies of monopolar cytokinesis implicate the CPC in mediating myosin II-dependent cortex-to-

MT signaling that promotes the formation of a monopolar midzone (Hu et al., 2008).  Moreover, 

the CPC localizes to actin cables in a MT-free zone that connects the cortex to midzone MTs 

during monopolar cytokinesis (Canman et al., 2003; Hu et al., 2008).  As our data demonstrate a 

causal relationship between furrow ingression and midzone MT stabilization, we investigated 

ABK as a potential candidate to mediate cortex-to-MT signaling in bipolar midzones.   

 

 

 

A modified version was previously published as:  

Landino, J. and Ohi, R. (2016) The Timing of Midzone Stabilization during Cytokinesis 

Depends on Myosin II Activity and an Interaction between INCENP and Actin. Curr Biol 26, 

698-706 
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Stabilization of midzone MTs requires Aurora B kinase activity  

To test whether ABK regulates midzone stabilization during C phase, we treated cells for 

10 min with 2 μM ZM447439, an ABK inhibitor (Ditchfield et al., 2003), prior to cold treatment.  

ZM447439 caused a ~5-fold decrease in the percentage of ingressed cells with cold-stable MTs 

(15 ± 1.7%, mean ± SE, n=85 cells) compared to control cells (79.3 ± 0.9%, n=123 cells) 

suggesting that ABK activity is required for midzone stabilization after furrow ingression (Figure 

4.1 B).  Pre-extraction of soluble tubulin did not affect the outcome of this experiment (Figure 4.1 

C).  To demonstrate this in live cells, GFP-tubulin/mCherry-H2B labeled cells were treated with 

ZM447439 for 5 min prior to imaging or exposure to nocodazole.  Under these conditions, 

ZM447439 treatment alone did not cause midzone disassembly in either pre- or post-ingression 

anaphase cells (Figure 4.1 D).  Nocodazole addition, however, caused rapid MT disassembly both 

before and after furrow ingression.  Pre-ingression cells treated with ZM447439 maintained only 

26.7 ± 10.0% (mean ± SD, n=11 cells) of the initial midzone fluorescence after 6 min in nocodazole 

(Figure 4.1 E).  Likewise, post-ingression midzones maintained only 16.9 ± 7.9% (n=10 cells) of 

the initial fluorescence after nocodazole addition, demonstrating that myosin II-dependent 

midzone MT stabilization after the initiation of furrowing also requires active ABK.  

We also investigated whether myosin II inhibition might alter midzone stability by 

disrupting ABK localization.  We noted no observable differences in ABK localization in non-

ingressed cells compared to ingressed cells suggesting that the change in MT stability observed 

between these two stages is not due to gross changes in the steady state localization of the kinase 

(Figure 4.2 A).  Additionally, inhibition of myosin II or ABK activity did not prevent ABK from 

localizing to the division plane (Figure 4.2 B and C) suggesting that changes in midzone stability, 

induced either through contractility or treatment with small molecules, cannot be attributed to 
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Figure 4.1 ABK activity is required for midzone MT stabilization. 
A) Maximum z-projections of cells treated with 2 μM ZM447439 (ZM) 
prior to fixation (top) or cold treatment (bottom). Cells were stained 
with antibodies to tubulin (green) and DNA was counterstained with 
Hoechst 33342 (blue).  Scale bar, 10 μm. B) Quantification of the 
percentage of ingressed cells with midzone MTs after treatment with 
DMSO or 2 μM ZM447439 and cold. Data represent mean ± SE, n > 
200 cells from three independent experiments, * = p < 0.005. C) 
Maximum z-projections of HeLa cells treated, fixed and stained as 
described in A). Cells were permeabilized prior to fixation to remove 
free tubulin.  Dashed lines indicate cell boundary. Scale bar, 10 μm. 
D) Top: Single z-plane micrographs taken from time lapse movies of 
pre- and post-ingression HeLa cells expressing GFP-tubulin (green) 
and mCherry-H2B (red) treated with 2 μM ZM447439 with or without 
10 μM nocodazole.  Time is indicated in min relative to the initial 
frame. Dashed lines were used to generate kymographs. Scale bar, 
10 μm. Bottom: Kymographs of GFP-tubulin fluorescence across the 
division plane during C phase. Arrowheads (white) indicate time of 
nocodazole addition.  Scale bars, 2.5 minutes (x axis) and 10 μm (y 
axis). E) Quantification of midzone MT fluorescence intensity in pre- 
and post-ingression cells treated with 2 μM ZM447439 and 10 μM 
nocodazole. Arrowhead (black) indicates time of nocodazole addition.  
Data represent mean ± SD.  n=11 (pre-ingression), and 10 (post-
ingression) from three independent experiments.   
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changes in ABK localization.  Brief inhibition of ABK also did not displace the midzone 

organizing factors Mklp1 and PRC1 (Figure 4.2 D and E). 

 

Midzone MT destabilization requires Polo-like kinase 1 

 Microtubule dynamics are highly regulated throughout mitosis (Belmont et al., 1990), 

including during C phase, with multiple mitotic kinases working to control cytoskeletal remodeling 

(Carmena et al., 2012; Green et al., 2012).  Polo-like kinase 1 (Plk1) contributes to the formation 

of an organized midzone during C phase by regulating the localization of the plus-end directed 

Figure 4.2 ABK localization during C phase. A) Maximum z-projections of HeLa cells stained with 
antibodies to Aurora B kinase (ABK, red) and tubulin (green). DNA was counterstained with Hoechst 
33342 (blue). Scale bar, 10 μm. B) Maximum z-projections of cells treated with 100 μM blebbistatin.  
Cells were stained with antibodies to ABK (red), lamin B (purple) to mark the nuclear envelope, and 
tubulin (green). DNA (blue) was counterstained with Hoechst 33342. Scale bar, 10 μm. C) Maximum z-
projections of cells treated with 2 μM ZM447439.  Cells were stained with antibodies to ABK (red) and 
tubulin (green). DNA (blue) was counterstained with Hoechst 33342.  Scale bar, 10 μm. D) Maximum z-
projections of cells treated with DMSO (top) or 2 μM ZM447439 (bottom). Cells were stained with 
antibodies to Mklp1 (red) and tubulin (green). DNA (blue) was counterstained with Hoechst 33342.  
Scale bar, 10 μm. E) Maximum z-projections of cells treated with DMSO (top) or 2 μM ZM447439 
(bottom). Cells were stained with antibodies to PRC1 (red) and tubulin (green). DNA (blue) was 
counterstained with Hoechst 33342. Scale bar, 10 μm.  
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kinesin Mklp1 (Li et al., 2010), and the MT cross-linker PRC1 (Hu et al., 2012; Schmucker and 

Sumara, 2014).  We investigated whether Plk1 activity regulates midzone stabilization by briefly 

treating cells with the small molecule inhibitor BI 2536 (100 nM) for 20 min before exposure to 

cold temperature.  In agreement with our previous work, midzone MTs in non-ingressed DMSO-

treated cells were sensitive to cold temperature (Figure 4.3 A). However, following Plk1 inhibition, 

midzone MTs in non-ingressed cells were cold-stable.  This finding suggests that Plk1 may 

function in early C phase, opposite of ABK, to promote midzone MT disassembly or turnover.  

While we have not pursued studies of Plk1 regulation of midzone stabilization, future 

investigations should include identifying downstream regulators of early C phase MT dynamics, 

as well as exploring the relationship between Plk1-dependent and ABK-dependent regulation of 

midzone MT stabilization.    

 

 

Human INCENP binds actin directly 

The localization of ABK to actin cables during monopolar cytokinesis (Hu et al., 2008) 

suggests that its function in monopolar midzone formation may require an interaction with actin.  

Interestingly, Dictyostelium INCENP has been shown to associate with actin in cells (Chen et al., 

2007), leading us to speculate that human INCENP might also bind actin directly.  To examine 

this possibility, we first analyzed the ability of various GFP-INCENP constructs to co-localize  

Figure 4.3 Midzone destabilization in early C phase 
requires Plk1. A) Maximum z-projections of HeLa cells 
treated with DMSO or 100 nM BI 2536prior or cold-
treatment. Cells were stained with antibodies to tubulin 
(green). DNA (blue) was counterstained with Hoechst 
33342. Scale bar, 10 μm.  
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with actin-based structures, marked with mCherry-Utrophin, when exogenously expressed in  

Figure 4.4 Characterization INCENP-actin binding. A) Schematic of GFP-INCENP truncations used 
to map the actin binding domain in cells. B) Single plane micrographs of HeLa cells expressing GFP-
INCENP (green) truncations and mCherry-Utrophin (red). Cells expressing GFP-INCENP 500-680 and 
mCherry-Utrophin were treated with 10 μg/ml cytochalasin B to confirm that colocalization was specific. 
Scale bar, 10 μm. C) Single z-plane micrographs of HeLa cells transiently expressing mCherry-Utrophin 

to mark actin (red) and GFP-INCENP
500-680

 fragments (green) containing the wild type (wt) INCENP 
sequence or charge reversal (CR) mutations. Dashed lines were used to generate line scans.  Scale 

bar, 10 μm. D) Top: Coomassie-stained gels showing recombinant His6-INCENP
500-680

 and His6-

INCENP
500-680

 
CR

. Bottom: Anti-His immunoblots of recombinant His6-INCENP
500-680

 and His6-

INCENP
500-680

 
CR

. Molecular weight standards are indicated in kDa. E) Coomassie-stained gel showing 

an actin co-sedimentation assay using recombinant wt or CR His6-INCENP
500-680

. Supernatant (S) and 

pellet (P) fractions are indicated. Molecular weight standards are indicated in kDa.  
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HeLa cells (Figure 4.4 B).  A 180 amino acid (aa) fragment of INCENP (hereafter referred to as 

INCENP500-680) was sufficient to co-localize with actin during both interphase and mitosis.  To 

confirm the specificity of this co-localization, we treated cells expressing GFP-INCENP500-680 with 

cytochalasin B and found that its localization was disrupted in a manner similar to that of actin 

(Figure 4.4 C).  As INCENP aa residues 500-680 reside in a highly charged region of a single 

alpha helical domain (Samejima et al., 2015), we hypothesized that INCENP associates with actin 

through an electrostatic interaction.  To test this, and to abrogate a potential INCENP-actin 

interaction, we generated charge-reversal mutants (lysine/arginine-to-glutamic acid) within amino 

acid residues 500-680.  Charge-reversal of ten residues  

(K563,R564,R565,R566,K571,K573,R574,R577,R579,K580) abolished co-localization of GFP-

INCENP500-680 with mCherry-Utrophin in mitotic cells (Figure 3.11, INCENP500-680 CR).  To 

determine if INCENP binds actin directly, we purified recombinant His6-INCENP500-680 from E. 

coli (Figure 4.4 D) and performed an actin co-sedimentation assay.  His6-INCENP500-680 sediments 

specifically in the presence of F-actin, indicative of a direct interaction.  His6-INCENP500-680 CR, 

however, does not co-sediment with actin, indicating that the charge-reversal mutations that 

abolish actin co-localization in cells also disrupt direct actin binding in vitro (Figure 4.4 E).   

 

INCENP-actin binding is required for midzone stabilization  

To investigate the role of CPC actin-binding during C phase, we next incorporated the ten 

charge-reversal mutations into a full-length GFP-INCENP construct (GFP-INCENP CR).  We then 

used a depletion/rescue strategy to substitute endogenous INCENP with either full-length GFP-

INCENP or GFP-INCENP CR (Figure 4.5 A).  We first analyzed the localization of the CPC in 
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cells expressing wild type GFP-INCENP or GFP-INCENP CR by imaging GFP and ABK. In 

agreement with previous work (Earnshaw and Cooke, 1991),  GFP-INCENP and ABK both  

 

Figure 4.5 C phase localization of GFP-INCENP-actin 
binding mutant. A) Immunoblots of cell extracts 
prepared from HeLa cells transfected with a control 
siRNA (left) or siRNA targeting the 3’ UTR of INCENP 
(right). Tubulin is shown as a loading control.  Molecular 
weight standards are indicated in kDa. B) Maximum z-
projections of the X and Y dimensions (top panels) and 
volume projections of Y and Z dimensions (bottom 
panels) of GFP-INCENP (wt or CR, red) in HeLa cells 
depleted of endogenous INCENP. Cells were stained 
with antibodies against tubulin (green), and ABK (teal).  
DNA (blue) was counterstained with Hoechst 33342. 
Scale bar, 10 μm. C) Maximum z-projections of HeLa 
cells depleted of endogenous INCENP and transfected 
with GFP-INCENP (wt or CR).  Cells were stained with 
antibodies against GFP (green) and actin was visualized 
using phalloidin-TRITC (red). DNA (blue) was 
counterstained with Hoechst 33342. Scale bar, 10 μm. 
D) Maximum z-projections of HeLa cells depleted of 
endogenous INCENP and transfected with wt GFP-
INCENP or the charge reversal mutant (CR). Cells were 
stained with antibodies against GFP (green) and myosin 
IIA (red). DNA (blue) was counterstained with Hoechst 
33342.  Scale bar, 10 μm.  
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to the midzone and the cell cortex in cells expressing wild type GFP-INCENP (Figure 4.5 B), with 

cortical localization examined in volume projections rotated by 90°.  In cells expressing  

 

Figure 4.6 INCENP actin-binding promotes midzone MT stabilization. Maximum z-projections of 
HeLa cells depleted of endogenous INCENP and rescued with full-length GFP-INCENP (top) or GFP-
INCENP CR (bottom) prior to fixation or cold-treatment. Cells were stained with antibodies against 
tubulin (green) and GFP (red). DNA was counterstained with Hoechst 33342 (blue). Scale bar, 10 μm. 
B) Quantification of the percent of cells with midzone MTs before and after cold-treatment as described 
in A). Data represent mean ± SE. n = 148 cells from three independent experiments, * = P < 0.005. C) 
Maximum z-projections of HeLa cells treated and stained as described in A). Cells were permeabilized 
for 30 seconds prior to fixation. Dashed lines indicate cell boundary. Scale bar, 10 μm.  
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GFP-INCENP CR, GFP-INCENP and ABK still localized to the midzone and to the cell cortex, 

although this mutation appears to partially disrupt CPC distribution along the midzone.  Myosin II 

and actin localized normally in cells expressing GFP-INCENP CR (Figure 4.5 C and D), indicating 

that expression of the mutant does not disrupt the organization of the contractile array.   

We next assayed midzone MT stability in these cells using exposure to cold temperature 

(Figure 4.6 A).  Similar to unperturbed cells, 86.0 ± 1.5% (mean ± SE, n=84 cells) of ingressed 

cells expressing wild type GFP-INCENP had cold-stable midzone MTs.  However, the percentage 

of cells with stable midzone MTs decreased ~5-fold in cells expressing GFP-INCENP CR (17.3 ± 

3.5%, n=64 cells; Figure 4.6 B).  Pre-extraction to remove free tubulin did not change our ability 

to detect MTs (Figure 4.6 C).  This 5-fold decrease in midzone MT stability observed in ingressed 

cells expressing GFP-INCENP CR mirrors the decrease we observed following ABK inhibition 

using ZM447439 (Figure 4.1 A), supporting the idea that INCENP-actin interactions are crucial 

for the CPC to mediate feedback signaling from cortical actin to midzone MTs.   

 

INCENP-actin binding is required for cleavage furrow ingression  

To investigate the role of INCENP-actin binding during cleavage furrow ingression, we 

used live cell imaging to follow cells depleted of endogenous INCENP and rescued with either 

GFP-INCENP or GFP-INCENP CR throughout C phase.  We observed that 100 ± 0.0% of cells 

expressing wild type GFP-INCENP were successful in cleavage furrow ingression (mean ± SE, 

n=12 cells), validating our approach.  In contrast, only 37.8 ± 2.3% of cells expressing GFP-

INCENP CR were able to ingress the furrow and form a midbody (n=16 cells; Figure 4.7 B).  As 

myosin II and actin localized normally in cells expressing GFP-INCENP CR (Figure 4.5 C and 
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Figure 4.7 INCENP actin-binding promotes furrow closure. A) Top: Single z-plane micrographs 
taken from time-lapse of HeLa cells depleted of endogenous INCENP and and rescued with GFP-
INCENP wt or the charge reversal mutant (CR). Cells were pre-incubated with DMSO or 2.5 nM taxol 
for 30 mins prior to imaging. Dashed lines were used to generate kymographs. Bottom: Kymographs of 
GFP-INCENP fluorescence across the division plane during C phase. Scale bars, 2.5 min (x axis) and 
10 μm (y axis). B) Quantification of the percentage of cells expressing GFP-INCENP wt or CR that 
successfully completed furrow ingression as described in A). Data represent mean ± SE. n= 12 (wt, 
DMSO), 16 (CR, DMSO), 10 (wt, Taxol), and 12 (CR, Taxol) cells from three independent experiments, 
* = p < 0.05. C) Top: Single z-plane micrographs taken from time lapse movies of HeLa cells expressing 
GFP-tubulin (green) and mCherry-H2B (red) incubated for > 30 mins in DMSO or 2.5 nM Taxol prior to 
exposure to 10 μM nocodazole. Time is indicated in min relative to the initial frame. Dashed lines were 
used to generate kymographs. Scale bars, 10 μm. Bottom: Kymographs of GFP-tubulin fluorescence 
across the division plane during C phase.  Arrowheads (white) indicate time point of nocodazole addition.  
Scale bars, 2.5 min (x axis) and 10 μm (y axis). D, E) Quantification of midzone MT fluorescence intensity 
in pre-ingression or post-ingression cells incubated with DMSO or 2.5 nM Taxol before exposure to 10 
μM nocodazole.  Arrowhead (black) indicates the time of nocodazole addition.  Data represent mean ± 
SD.  n=11 (pre-I, DMSO), 10 (pre-I, 2.5 nM Taxol), 9 (post-I, DMSO) and 10 (post-I, 2.5 nM Taxol) from 
three independent experiments, ** = p < 0.01.   
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D), furrow ingression failure in GFP-INCENP CR-expressing cells cannot be a consequence of 

failed actomyosin accumulation.   

As cells expressing GFP-INCENP CR have cold-sensitive midzone MTs, we next 

investigated whether artificially stabilizing MTs would rescue cleavage furrow ingression in these 

cells.  To test this, we incubated cells in the presence of a low dose of taxol (2.5 nM for 30 minutes, 

(Gayek and Ohi, 2014)) prior to imaging, a treatment that did not impede C phase progression in 

cells expressing wild type GFP-INCENP.  Cells expressing wild type GFP-INCENP completed 

cleavage furrow ingression 88.7 ± 11.3% of the time (mean ± SE, n=10 cells) in taxol (Figure 4.7 

B).  Similarly, cells expressing GFP-INCENP CR also successfully completed cleavage furrow 

ingression following taxol treatment (91.6 ± 8.3, n=12; Figure 3.14 cells).  To confirm that 2.5 nM 

taxol altered midzone MT stability during C phase, we used the live cell nocodazole shock assay.  

HeLa cells stably expressing GFP-tubulin and mCherry-H2B were pre-incubated with DMSO or 

2.5 nM taxol for 30 minutes before exposure to 10 μM nocodazole (Figure 4.7 C).  In cells pre-

incubated with low-dose taxol, midzone MTs were more stable when nocodazole was added before 

cleavage furrow ingression.  At the terminal time point (7 min following nocodazole addition), 

pre-ingression cells incubated with DMSO retained only 23.9 ± 5.9 % (mean ± SD, n=11 cells) of 

the initial midzone MT fluorescence, whereas pre-ingression cells incubated with taxol retained 

on average 38.2 ± 11.9% (n=10 cells) of their initial midzone MT fluorescence (Figure 4.7 D).  

Taken together these results support the notion that INCENP-actin binding is essential for 

cytokinesis, and that this interaction is important because it promotes midzone MT stabilization.   
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Disrupting INCENP-MT binding does not affect midzone stabilization 

 Previous work has shown that the CPC interacts with MTs via INCENP (Noujaim et al., 

2014; Rosasco-Nitcher et al., 2008; Wheatley et al., 2001b).  Of note, the charge reversal mutations 

that disrupt INCENP actin-binding also appear to disrupt MT localization of GFP-INCENP500-680 

in cells (Figure 4.4 A).  To confirm that the effect of GFP-INCENP CR expression on midzone 

stabilization is specific to breaking the CPC-actin interaction and not due to disrupting the CPC-

MT interaction we quantified midzone stabilization in cells expressing a second charge reversal 

mutant (GFP-INCENP MT CR, see Methods and Appendix I).  These charge reversal mutations 

selectively disrupt localization of GFP-INCENP500-680 to MTs in cells without perturbing actin co-

localization.  We replaced endogenous INCENP with full length GFP-INCENP MT CR using the 

same depletion/rescue strategy outlined above, and exposed cells to cold temperature to assay 

midzone stability.  In agreement with our previous findings, 90.3 ± 4.0% of ingressed cells 

expressing wild type GFP-INCENP had cold-stable midzones (mean ± SD, n=52 cells).   Midzones 

were similarly stable in cells expressing GFP-INCENP MT CR as 85.1 ± 4.1 % (n=54 cells) of 

ingressed cells had midzone MTs after cold treatment (Figure 4.8 A). This result indicates that 

then CPC-MT interaction is not necessary for midzone MT stabilization after furrow ingression.  

This finding supports our hypothesis that the CPC-actin interaction is essential and specific for  

 

Figure 4.8 INCENP MT-binding is not required for midzone MT 
stabilization. A) Quantification of the percentage of ingressed HeLa 
cells depleted of endogenous INCENP and rescued with full-length 
GFP-INCENP or GFP-INCENP MT CR with midzone MTs after cold-
treatment. Data represents mean ± SD. n = 106 cells from two 
independent experiments.  



56 

 

promoting midzone stabilization after furrow ingression.   

 

Kif2a midzone localization is controlled by Aurora B kinase activity 

 We next investigated factors that could alter MT dynamics during C phase in order to 

identify possible effectors that work downstream of ABK signaling to regulate midzone stability.  

Previous work has shown that the Kinesin-13 Kif2a functions during C phase to regulate midzone 

MT dynamics and central spindle length (Uehara et al., 2013).  Using immunofluorescence we 

observed that Kif2a localized to the midzone of non-ingressed C phase cells (Figure 4.9 A) and 

was not detectable on midzone MTs in ingressed cells.  Notably, the disappearance of Kif2a 

immunofluorescence from the midzone is temporally correlated with the appearance of cold- and 

nocodazole-stable midzone MTs (Figure 3.1 and 3.2).  We next investigated whether this 

displacement of Kif2a from midzone MTs was dependent on acto-myosin contractility.  Cells were 

treated with blebbistatin as described previously (see Chapter 3) to block furrowing.  Kif2a 

immunofluorescence was detectable on midzone MTs in blebbistatin-treated cells, including cells 

in late C phase, as indicated by decondensed chromatin (Figure 4.9 B). This suggests that Kif2a 

displacement from the midzone is coupled to cleavage furrow ingression and is not related to the 

time spent in C phase.   

 The MT-depolymerizing activity of kinesin-13s is negatively regulated by ABK in vitro 

(Ohi et al., 2007).  Kinesin-13s diffuse along the MT lattice through electrostatic interactions with 

the tubulin E-hook (Helenius et al., 2006) and ABK-dependent phosphorylation blocks the 

enzymatic activity by decreasing MT binding (Andrews et al., 2004).  With this in mind, we 

investigated whether Kif2a midzone localization was phospho-regulated by treating cells with 

ZM447439.   We observed that in ZM447439-treated C phase cells Kif2a localized to a discrete 
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band in the center of the midzone regardless of the state of furrow ingression (Figure 4.9 C).  This 

was distinct from the broad midzone localization normally observed in non-ingressed cells (Figure 

4.9 A).  This central region of the midzone represents the plus end overlap of midzone MTs 

(Bieling et al., 2010) and we hypothesized that this localization pattern indicated Kif2a 

accumulation on MT plus ends.  We confirmed this by co-staining for the plus end directed  

 

 

Figure 4.9 Kif2a localization 
during C phase. A) Maximum z-
projections of HeLa cells with non-
ingressed (left) or ingressed (right) 
cleavage furrows stained with 
antibodies to Kif2a (red, single 
channels) and tubulin (green). 
DNA was counterstained with 
Hoechst 33342 (blue). Scale bar, 
10 μm.  B)  Maximum z-projections 
of cells treated with 100 μM 
blebbistatin. Cells were stained 
with antibodies as described in A). 
Scale bar, 10 μm. C) Maximum z-
projections of cells with non-
ingressed (left) or ingressed (right) 
cleavage furrows treated with 
DMSO or 2 μM ZM447439. Cells 
were as described in A). Scale bar, 
10 μm. D) Maximum z-projections 
of cells with treated with DMSO or 
2 μM ZM447439 and stained for 
Mklp1 (green), Kif2a (red). DNA 
was counterstained with Hoechst 
33342 (blue). Scale bar, 10 μm.  
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anaphase kinesin Mklp1 (Gruneberg et al., 2006; Jang et al., 2005; Neef et al., 2006) and found 

that Kif2a and Mklp1 only co-localized after ABK inhibition (Figure 4.9 D).  These results suggest 

that ABK functions during C phase to prevent Kif2a accumulation on midzone MTs, especially in 

ingressed cells. The presence of Kif2a immunofluorescence on midzone MTs in cells treated with 

ZM447439 may explain the sensitivity of these MTs to cold temperature and nocodazole (Figure 

4.1).  

 

Kif2a regulates midzone MT stabilization in non-ingressed cells  

 To investigate whether Kif2a affects midzone stabilization, we depleted cells of Kif2a 

using siRNA.  Kif2a is notoriously difficult to deplete using RNAi (Uehara et al., 2013) so we 

analyzed depletion efficiency by Western Blot of whole cell lysates, and by counting the number 

of cells with Kif2a spindle pole staining after depletion.  Normalized to tubulin, Kif2a protein 

levels were reduced to 26 ± 10.8 % of that in control cells (mean ± SD, n=2 experiments, Figure 

4.10 B).  Kif2a immunofluorescence was detectable at the spindle pole in 98.2 ± 0.7 % (n=254) of 

control depleted cells, however, after Kif2a depletion pole staining was only present in 32.1 ± 1.6 

% of cells (mean ± SE, n=282) (Figure 4.10 C).  These measurements indicate that Kif2a siRNA 

treatment only partially depletes protein levels in cells.  We tested midzone MT stability in Kif2a-

depleted cells using cold temperature and non-ingressed cells showed a moderate, but statistically 

significant, increase in midzone MT stability (Figure 4.11 D).  After treatment with control siRNA 

32.4 ± 3.6 % (mean ± SE, n=93) of cells had midzone MTs following cold treatment, whereas 56 

± 3.45 % (n=90) of cells treated with Kif2a siRNA had cold stable midzone MTs, suggesting Kif2a 

affects midzone MT stability during C phase.  The moderate increase in midzone MT stability in 

non-ingressed cells after Kif2a depletion leads us to speculate that Kif2a is likely not the only  
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factor regulating midzone MT dynamics. Taken together with the observation that Kif2a is 

displaced by ABK activity in ingressed cells, our data suggests that Kif2a may function to 

Figure 4.10 Midzone stabilization in cells lacking Kif2a A) Top: Representative Western blot of Kif2a 
protein levels after control or Kif2a RNAi. Tubulin is shown as a loading control. Bottom: Maximum z-
projections of HeLa cells stained with antibodies to Kif2a after control or Kif2a RNAi. Scale bar, 10 μm. 
B) Quantification of Kif2a protein levels as analyzed by Western blot as described in A). Kif2a protein 
levels were normalized to tubulin and scored relative to control cells.  Data represents mean ± SE. 
Measurements from two independent experiments, * = p < 0.05. C) Quantification of the percentage of 
cells showing Kif2a spindle pole staining after treatment as described in A). Data represents mean ± 
SE. n > 250 for each condition from four independent experiments, * = p < 0.05. D) Left: Maximum z-
projections of non-ingressed cells treated as described in A) and stained with antibodies for tubulin 
(green) and Kif2a (red). DNA was counterstained with Hoechst 33342 (blue) Scale bar, 10 μm. Right: 
Quantification of the percentage of cells with mMTs after control or Kif2a RNAi and cold treatment. Data 
represents mean ± SE. n=94 (control) or 174 (Kif2a), * = p < 0.05. E) Western blot of Kif2a protein levels 
in HeLa and Kif2a KO cell lines. Tubulin is shown as a loading control. F) Quantification of the 
percentage of cells with mMTs in HeLa or Kif2a KO cell lines. n≥100 cells from one experiment. 
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destabilize midzone MTs before ingression, and that ABK-mediated displacement of Kif2a after 

furrowing promotes midzone stabilization.  

 Given the non-uniform depletion of Kif2a by RNAi and the unusually high percentage of 

non-ingressed control cells with cold-stable midzone MTs, we turned to the CRISPR-Cas9 (Mali 

et al., 2013) system to generate Kif2a knock out cell lines. HeLa cells twice transfected with 

gRNAs targeting Kif2a were clonally selected and screened using immunofluorescence.  Three 

cell lines with reduced Kif2a protein levels (Figure 4.10 E) were selected and analyzed for midzone 

stability using cold treatment.  Similar to Kif2a RNAi treatment, the percentage of non-ingressed 

C phase cells with cold-stable midzones increased in Kif2a KO cell lines.  In HeLa cells 7.5% 

(n=40) of non-ingressed C phase cells had cold-stable midzone MTs, which more closely mirrors 

midzone stabilization in non-ingressed cells that we observed in other experiments (Figure 3.1).  

In Kif2a KO cell lines, 30 % (Kif2a KO 18, n=30), 39 % (Kif2a KO 22, n=36) and 55 % (Kif2a 

KO 29, n=40) of non-ingressed cells had cold-stable midzones (Figure 4.10 F).  Notably, we later 

determined that the Kif2a KO cell line with the largest increase in midzone stabilization (Kif2a 

KO 29) was not clonal.  We isolated single clones by limiting dilution from Kif2a KO 29 and again 

screened for a lack of Kif2a by immunostaining, however, these cells have not yet been analyzed 

for midzone MT stability.   

 

Discussion   

 Although the mechanism of midzone MT stabilization is not clear, our data identify the 

CPC as a key mediator of this process; pharmacological inhibition of ABK at any point during 

cytokinesis results in rapid destabilization of midzone MTs.  The importance of CPC actin-binding, 
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via INCENP, in promoting midzone MT stabilization after furrow ingression further suggests that 

the CPC may propagate a midzone MT stabilization signal that originates at the equatorial cortex.   

The idea that the CPC participates in a feedback loop that couples the activities of F-actin and MTs 

during cytokinesis has been suggested previously; Hu et al. showed that ABK activity is required 

for the formation of a midzone during monopolar cytokinesis (Hu et al., 2008).  Our data also 

suggests that the kinesin-13 Kif2a may be a regulator of midzone stabilization that acts 

downstream of ABK signaling.  Displacement of Kif2a from the midzone requires ABK activity 

and depletion of Kif2a results in hyper-stable midzone MTs.   Finally, the requirement for midzone 

stabilization to promote furrow closure supports the notion that the activities of the actin and MT 

cytoskeletal systems are interdependent, and illuminates the fundamental role of cytoskeletal 

cross-talk during cell division.   
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CHAPTER 5 

 

RECRUITMENT OF THE CHROMOSOMAL PASSENGER COMPLEX TO THE DIVISON 

PLANE 

 

Introduction 

 At the metaphase to anaphase transition the CPC leaves the centromere and is targeted to 

midzone MT plus ends and the equatorial cortex (Adams et al., 2000; Carmena et al., 2012; Cooke 

et al., 1987; Earnshaw and Cooke, 1991).  This localization depends on the plus end directed 

kinesin Mklp2; previous work has shown that RNAi of Mklp2 eliminates CPC localization at both 

midzone plus end and the cortex (Gruneberg et al., 2004; Hummer and Mayer, 2009; Kitagawa et 

al., 2014).  Mklp2-depleted cells are characterized by two phenotypes: first, the CPC remains 

associated with chromatin throughout C phase, and second, cells fail to complete cleavage furrow 

ingression (Gruneberg et al., 2004; Kitagawa et al., 2013).  Ingression failure in these cells is 

distinctive in that cells initiate furrowing, but the furrow regresses before midbody formation 

(Kitagawa et al., 2013).  Our work shows that disrupting the INCENP-actin interaction perturbs 

midzone localization of the CPC during C phase, however the role of actin-binding in regulating 

CPC recruitment has not been studied.  In this chapter, we present evidence for actin-dependent 

recruitment of the CPC to the equatorial cortex.  Cortically localized CPC remains associated with  

Mklp2 as cell divide, however actin binding is sufficient to enrich CPC at the cortex in the absence  

 

A modified version is in preparation for publication:  
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of motor.  These findings suggest that the C phase localization of the complex is regulated in two 

ways: through motor-dependent delivery to MT plus ends, and direct interactions with actin and 

the equatorial cortex.  

 

Aurora B kinase localizes to the division plane in the absence of Mklp2 

 In agreement with previous work (Gruneberg et al., 2004), we found that Mklp2 RNAi 

blocked midzone targeting of ABK and enrichment on chromosomes during C phase (Figure 5.1 

A).  However, we also observed low levels of ABK at the division plane in cells with no detectable 

Mklp2 immunofluorescence.  To quantify this, we analyzed the fluorescence intensity of ABK at 

the division plane and observed that Mklp2 RNAi decreased CPC levels ~3-fold (27.9 ± 4.3 AU 

in control cells, data represent mean ± SE, n=29 cells; 9.7 ± 1.4 AU in Mklp2-depleted cells, n=27 

cells, Figure 5.1 B).  This finding differs from previous work in that we observed that low levels 

of ABK immunofluorescence were still detectable at the division plane in the absence of Mklp2 

(Figure 5.1 A).  We also observed that ABK was present at the equatorial cortex in Mklp2-depleted 

cells, as viewed using a volume projection (YZ dimensions) of the division plane (Figure 5.1 C).  

This phenotype is unlikely to be due to partial motor depletion as the bulk of CPC fluorescence is 

localized to chromatin, a hallmark of Mklp2 RNAi treatment.  These results indicate that Mklp2 

depletion leads to a reduction, but not a complete loss of the CPC at the division plane.  As our 

previous work indicates a role for actin-binding in regulating CPC localization during C phase, we 

next investigated whether this residual population of ABK was recruited in an actin-dependent 

manner.  To test this possibility, we briefly treated Mklp2-depleted cells with cytochalasin B (5 

μg/ml, 10 min) to disrupt F-actin, and we observed that under these conditions, endogenous ABK 

is only detectable on chromosomes and no longer concentrates at the division plane (Figure 5.1 
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Figure 5.1 The CPC localizes to the division plane in the absence of Mklp2. A) Left: Maximum z-
projections of HeLa cells transfected with control (top) or Mklp2 siRNA (bottom).  Cells were stained with 
antibodies to tubulin (green), Mklp2 (teal) and ABK (red). DNA (blue) was counterstained with Hoechst 
33342. Dashed boxes indicate regions used for quantitation of ABK fluorescence. Dashed lines were 
used to generate line scans. Scale bars, 10 μm. Left: line scans of ABK fluorescence intensity along the 
spindle axis in cells treated with control or Mklp2 siRNA. B) Quantification of ABK fluorescence intensity 
at the division plane after treatment as described in A). n > 50 cells from three independent experiments.  
* = p < 0.05. C) Top: Volume projections (YZ dimensions) of the division plane of cells treated as 
described in A). Dashed lines were used to generate line scans. Scale bar 10 μm. Bottom: Line scans 
of Mklp2 and ABK fluorescence intensity across the YZ projection of the division plane. D) Maximum z-
projections of HeLa cells transfected with control or Mklp2 siRNA and treated with DMSO or 5 μg/ml 
cytochalasin B (Cyto B). Cells were stained with antibodies to tubulin (green), Mklp2 (teal), and ABK 
(red). DNA (blue) was counterstained with Hoechst 33342. Scale bar, 10 μm.   
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D).  This observation suggests that CPC recruitment to the division plane in the absence of Mklp2 

requires actin. 

 

The CPC is enriched at sites of actin-MT overlap during C phase  

 In agreement with previous work (Earnshaw and Cooke, 1991),  we found that ABK 

localized to the cell periphery in YZ volume projections of the division plane and INCENP 

immunofluorescence co-localized with actin in similar projections, confirming that the CPC is 

enriched at the cell cortex during C phase  (Figure 5.2 A and B).  The equatorial enrichment 

overlapped with cortically-associated MTs that apparently run along the cell cortex, demonstrating 

that the CPC localizes to regions where actin and MTs intersect.  Notably, we cannot resolve 

cortically-associated MT plus ends in these cells and therefore cannot specify whether this 

represents localization to single MT plus ends that terminate at the cortex, or overlapping MT plus 

ends.  We further analyzed the spatial relationship between the CPC, actin, and MTs during C 

phase using single optical sections of INCENP immunofluorescence at the division plane. We 

observed that INCENP co-localized with MTs, cortical actin, or both filaments simultaneously 

(Figure 5.2 C), demonstrating that the CPC can accumulate on cortical actin at sites devoid of 

furrow-associated MTs.  This finding is in agreement with our previous work showing INCENP 

binds actin in vitro and is consistent with the observation that ABK decorates actin cables during 

monopolar cytokinesis (Hu et al., 2008).  

The co-localization of INCENP with both actin filaments and MTs prompted us to 

investigate the role each filament system plays in positioning the CPC at the division plane.  We 

analyzed the localization of ABK in cells briefly treated with 5 μM nocodazole, 5 μg/ml 

cytochalasin B, or both drugs simultaneously.  In DMSO-treated cells, ABK localized to a 
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narrowly focused 2.0 ± 0.4 μm wide band (mean ± SD, measured in the X dimension along the 

spindle axis, n=14 cells, Figure 5.3 B) at the division plane, and prominently to the equatorial  

 

 

Figure 5.2 The CPC co-
localizes with actin and 
MTs at the cortex during C 
phase. A, B) Top: Maximum 
z-projections of the X and Y 
dimensions of C phase cells 
(left panels). Dashed box 
indicates section used to 
generate a volume projection 
of Y and Z dimensions (right 
panels). Dashed lines were 
used to generate line scans.  
Cells were stained with 
antibodies to tubulin (green), 
ABK (red, A), and INCENP 
(yellow, B). Actin was 
visualized with phalloidin-
TRITC (pink, B). DNA was 
counterstained with Hoechst 
33342 (blue).  Scale bars, 10 
μm.  Bottom: line scans of 
MT and ABK fluorescence 
intensity or MT and Actin and 
INCENP fluorescence 
intensity across the YZ 
projection of the division 
plane. C) Top: Single optical 
sections through a C phase 
cell stained with antibodies 
to tubulin (green) and 
INCENP (yellow). DNA 
(blue) was counterstained 
with Hoechst 33342. Actin 
was visualized using 
phalloidin-TRITC (pink).  
Dashed arrows were used to 
generate line scans.  
Distance of each optical 
section from the coverslip is 
indicated at the bottom left.   
Scale bars, 10 μm.  Bottom: 
line scans of MT and actin 
and INCENP fluorescence at 
each optical section, as 
indicated by dashed arrows 
in panels shown above.  
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Figure 5.3 CPC localization to the division plane requires MTs and actin. A) Maximum z-projections 
of the XY dimensions (top) and volume projections of ABK localization in the YZ dimensions (bottom) in 
cells treated with DMSO, 5 μg/ml cytochalasin B, 5 μM nocodazole, or both drugs simultaneously. 
Brackets (red) indicate representative regions used to derive “band width” measurements of ABK along 
the spindle axis.  Cells were stained with antibodies to tubulin (green) and ABK (red). DNA (blue) was 
counterstained with Hoechst 33342 (blue). Scale bar, 10 μm. B) Quantification of ABK band width along 
the spindle axis in C phase cells treated with DMSO, 5 μg/ml cytochalasin B, or 5 μM nocodazole. Data 
represent mean ± SD. n = 14 cells per condition, * = p < 0.05. C) Maximum z-projections of cells treated 
as described in A). Cells were stained with antibodies to tubulin (green) and actin was visualized using 
phalloidin-TRITC (red). DNA (blue) was counterstained with Hoechst 33342. Scale bar, 10 μm. 
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cortex (Figure 5.3 A).  Single drug treatments displaced ABK in two ways.  First, the ABK band 

widened ~2-fold at its maximum points of separation along the spindle axis (4.6 ± 1.8 μm after 

nocodazole, n=14 cells; 4.2 ± 1.7 μm after cytochalasin B, n=14 cells, Figure 5.3 B).  Second, the 

cortical enrichment of ABK was reduced (Figure 5.3 A).  Notably, ABK localization to both the 

division plane and the cell cortex was only completely abolished when actin filaments and MTs 

were simultaneously disrupted (Figure 5.3 A and C) suggesting that actin and MTs work 

cooperatively to properly localize the CPC during anaphase.   

 

INCENP-actin binding targets the CPC to the furrow in the absence of Mklp2 

 To further characterize the movement and localization of the CPC during C phase, we 

studied the kinetics of CPC accumulation at the midzone and cortex in live cells transiently 

expressing GFP-INCENP (Figure 5.4 A).  At anaphase onset, GFP-INCENP “streamed” from 

centromeres to the center of the midzone at a rate of 10.1 ± 2.1 μm/min (mean ± SD, n=52 events).  

GFP-INCENP then coalesced into numerous puncta (hereafter referred to as “spots”) that moved 

dynamically throughout the midzone at an average rate of 4.4 ± 1.8 μm/min (n=316 spots, Figure 

5.4 B).  The rate of streaming was determined by measuring the rate at which the fluorescence 

furthest from the MT-plus end overlap coalesced into a narrow band.  This measurement likely 

represents two oppositely-directed populations of motor-driven transport moving towards each 

other on the midzone, implying the rate of transport of a single population is approximately half.   

Therefore, our analysis suggests that streaming and spot movement occur at similar rates.  GFP-

INCENP spots were notably distinct from the CPC localization pattern visualized using 

immunofluorescence, and may arise from overexpression.  Spots were larger than CPC puncta 

observed by immunofluorescence, and were not always uniform in size.  These spots localized to 
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both the midzone and the cortex, and can be observed to fuse and split during early mitotic exit.  

However, upon the initiation of furrowing GFP-INCENP took on an appearance indistinguishable  

 

 

Figure 5.4 Characterization of GFP-INCENP movements during C phase. A) Single z-plane 
micrographs taken from a time-lapse movie of a HeLa cell transiently expressing GFP-INCENP. Time 
is indicated in minutes relative to the initial frame.  Box indicates region used to demonstrate streaming 
in panel C). Scale bar, 10 μm. B) Quantification of the rate of GFP-INCENP streaming (left) and GFP-
INCENP spot movement (right). Spot movement analysis includes spots that moved uni-directionally for 
at least two consecutive frames. Data represent mean ± SD. n=52 events (streaming) and 316 spots 
(spot movement). C) Single z-plane micrographs taken from the time-lapse movie shown in A). Time is 
indicated in minutes:seconds relative to the initial frame. Arrows indicate streaming of GFP-INCENP 
along a midzone MT, leading to coalescence into a single spot. Scale bar, 10 μm. D) Single z-plane 
micrographs taken from a time-lapse movie of a GFP-INCENP expressing cell depleted of Mklp2. Note 
the lack of midzone-localized GFP-INCENP. Time is indicated in minutes relative to the initial frame.  
Scale bar, 10 μm. E) Single z-plane micrographs taken from a time-lapse movie of a GFP-INCENP CR-
expressing cell. Time is indicated in minutes relative to the initial frame. Scale bar, 10 μm. F) Single 
plane micrographs taken from a time-lapse movie of a GFP-INCENP CR-expressing HeLa cell depleted 
of Mklp2. Note lack of midzone-localized GFP-INCENP CR. Time is indicated in minutes relative to the 
initial frame. Dashed lines represent the cell boundary. Scale bar, 10 μm.    
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Figure 5.5 Cortical enrichment of GFP-INCENP at the 
division plane. A, B, C, D) Top: Single z-plane micrographs in 
the XY dimension and volume projections (YZ dimensions) of 
the division plane in cells expressing GFP-INCENP or GFP-
INCENP CR and treated with control or Mklp2 siRNA. Dashed 
lines were used to generate line scans. Scale bar, 10 μm. 
Middle: line scans across the division plane in the XY dimension, 
or across a volume projection of the division plane in the YZ 
dimension.  Continued on next page. 
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from endogenous CPC in fixed cells.  RNAi of Mklp2 in GFP-INCENP-expressing cells abolished 

streaming and puncta formation, indicating that these events depend on motor activity (Figure 5.4 

C).  

 In addition to midzone localization, and in agreement with our observations from fixed 

cells, we observed an accumulation of GFP-INCENP at the cortex during C phase (Figure 5.5 A).  

We analyzed the enrichment of GFP-INCENP at the equatorial cortex using line scans of 

fluorescence intensity across YZ projections of the division plane.  Intensity values were 

normalized to cytoplasmic (non-midzone) fluorescence to control for variable expression, and 

three peak intensity values were averaged to determine the relative increase in fluorescence at the 

cortex.  In cells expressing GFP-INCENP the cortical intensity was 4.5 ± 0.8-fold higher than the 

cytoplasmic signal (Figure 5.5 E).  Similar to our fixed cell analysis, the cortical enrichment of 

GFP-INCENP was reduced but not absent in Mklp2-depleted cells. Cortical GFP-INCENP 

fluorescence was increased 2.3 ± 0.2-fold relative to cytoplasmic GFP-INCENP (Figure 5.5 E).  

Importantly, these cells did not show any midzone MT localization, confirming successful RNAi 

of Mklp2.  The partial reduction of cortical GFP-INCENP in Mklp2-depleted cells suggests the 

motor is involved in cortical delivery of the CPC, perhaps via furrow-associated astral MTs.  

However, the presence of cortical GFP-INCENP fluorescence after Mklp2 depletion suggests that 

there are alternative mechanisms that work to recruit the CPC to the cortex.  

 To test whether this Mklp2-independent cortical accumulation of GFP-INCENP requires 

an interaction with actin, we utilized our previously described (see Chapter 4) INCENP-actin 

binding mutant (full length GFP-INCENP CR) and analyzed its localization in the presence and  

absence of Mklp2.  Similar to wild type GFP-INCENP, GFP-INCENP CR localizes to the  
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centromeres during metaphase and moves as spots along the midzone during anaphase, suggesting 

that this construct associates with other CPC components and Mklp2 (Figure 5.4 E).  Also, like 

wild type INCENP, GFP-INCENP CR movements on the midzone are abolished by Mklp2 

depletion (Figure 5.4 F).  Quantitation of cortical fluorescence revealed that GFP-INCENP CR 

was enriched 3.2 ± 0.4-fold (Figure 5.5 E) compared to cytoplasmic fluorescence, which is 

significantly lower than the cortical enrichment of wild type GFP-INCENP.  These cells also 

showed punctate localization in the cell middle, suggesting that the CPC can still localize to 

midzone MTs in the absence of actin binding.  The reduction in cortical enrichment compared to 

wild-type GFP-INCENP demonstrates that direct actin binding is required to fully recruit the CPC 

to the cortex during C phase, even in the presence of Mklp2.  However, disrupting the INCENP-

actin interaction is not sufficient to fully abolish cortical enrichment.  There are two possible 

explanations for this: Mklp2 may transport the CPC along to the plus ends of furrow-associated 

MTs or Mklp2 could bind the cortex directly through an interaction with myosin (Kitagawa et al., 

2013).  Both mechanisms have the potential to promote CPC cortical localization even when actin-

binding is disrupted.  With these possibilities in mind, as well as our observation that Mklp2-

depletion reduces cortical enrichment of wild type GFP-INCENP, we next asked if GFP-INCENP 

CR could localize to the cortex in the absence of motor. In Mklp2-depleted cells expressing GFP-

INCENP CR the cortical fluorescence was lower than the cytoplasmic signal (0.6 ± 0.1 fold 

enrichment, Figure 5.5 E) indicating a loss of cortically-localized CPC under these conditions.  

Figure 5.5 Continued.  A, B, C, D) Bottom: normalized line scans of cells expressing GFP-INCENP or 
GFP-INCENP CR and treated with control or Mklp2 siRNA. n=10 cells (GFP-INCENP wt + control siRNA 
or Mklp2 siRNA, GFP-INCENP CR + control sRNA) or 9 cells (GFP-INCENP CR + Mklp2 siRNA). E) 
Quantification of cortical GFP-INCENP peak intensities as described in A-D). Three adjacent peak 
intensity values were averaged for each individual cell, n=10 or 9 cells as described previously, * = p < 
0.05.   
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These results demonstrate that cortical enrichment of the CPC during C phase requires both 

INCENP-actin binding and transport by Mklp2.  Moreover, our data suggests that a direct 

interaction with actin is sufficient to recruit the CPC to the cortex in the absence of motor.     

 

The CPC and Mklp2 move together during C phase 

 Cortical localization of the CPC has been observed previously (Earnshaw and Cooke, 

1991), although the mechanism of cortical recruitment has not been investigated.  Our analysis of 

GFP-INCNEP cortical enrichment demonstrates that the CPC can target the equatorial cortex in 

the absence of Mklp2, in a manner that depends on INCENP-actin binding.  Additionally, we 

observed that actin-dependent recruitment by itself is inefficient at promoting cortical enrichment.  

This result might indicate that cortical recruitment of the CPC is a two-step process where MT-

dependent transport by Mklp2 delivers the CPC to the cortex and the complex is then “off-loaded” 

onto cortical actin.  Alternatively, transport by Mklp2 and INCENP-actin binding may work 

cooperatively to position the CPC at the division site.  As previous investigations of the CPC-

Mklp2 relationship have primarily focused on midzone targeting, we asked whether cortically-

localized CPC was associated with Mklp2 in live cells.  Cells transiently expressing GFP-INCENP 

and Mklp2-mCherry were plated on 100 μg/ml fibronectin (Taneja et al., 2016) to flatten mitotic 

cells on the basolateral side and create a large cortical surface for imaging.  As expected, spots of 

GFP-INCENP and Mklp2-mCherry were co-localized on the midzone during C phase (Figure 5.6 

B).  In addition, we observed that spots of GFP-INCENP were co-localized with Mklp2-mCherry 

at the cell cortex (Figure 5.6 A).  These spots are also dynamically associated as they move in 

unison when tracked over time by kymograph (Figure 5.6 A and B).  The co-localization of GFP-

INCENP and Mklp2-mCherry on both the midzone and the cortex argues against an “off-loading” 
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Figure 5.6 GFP-INCENP and Mklp2-mCherry are co-localized on the cell cortex. A, B) Top: Single 
z-plane micrographs of the cell cortex or midzone taken from a time-lapse movie of a HeLa cell 
transiently expressing GFP-INCENP and Mklp2-mCherry plated on 100 μg/ml fibronectin. Micrographs 
represent a time point 6 minutes after anaphase onset. The “tracks” panel highlights examples of spots 
and tracks used to quantify MSD. Numbers indicate tracks that correspond to kymographs below. Scale 
bar, 10 μm. Bottom: Kymographs of GFP-INCENP and Mklp2-mCherry generated from the spots 
indicated above. Scale bars, 100 seconds (y axis) and 1 μm (x axis). C, D) Pearson’s correlation co-
efficient of GFP-INCENP and Mklp2-mCherry on the cell cortex or midzone (colored circles). Co-
localization was quantified from immediately after anaphase onset (normalized time=0) to immediately 
before cleavage furrow ingression (normalized time=1). 
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model where cortically localized CPC represents a population that moves independent of the 

motor.   

 To quantify the association of GFP-INCENP and Mklp2-mCherry across multiple cells we 

tracked the Pearson’s correlation co-efficient (Manders et al., 1992) at the cortex and on the 

midzone during C phase (Figure 5.6 C and D).  GFP-INCENP and Mklp2-mCherry were positively 

correlated on the midzone at anaphase onset (0.68 ± 0.02, data represents mean ± SD, normalized 

time=0) and immediately before cleavage furrow ingression (0.72 ± 0.11, normalized time=1, n=5 

cells Figure 5.6 D) in agreement with fixed cell observations (Gruneberg et al., 2004).  At the 

cortex, GFP-INCENP and Mklp2-mCherry were similarly positively correlated at anaphase onset 

(0.68 ± 0.09, normalized time=0) and immediately before cleavage furrow ingression (0.68 ± 0.05, 

normalized time=1, n=5 cells, Figure 5.6 C).  Control cells co-expressing GFP-INCENP and 

mCherry did not show a strong positive correlation on the cortex (0.25 ± 0.03, normalized time=0; 

0.07 ± 0.15, normalized time=1, n=3 cells) or on the midzone (0.26 ± 0.02, normalized time=0; 

0.30 ± 0.14, normalized time=1, n=3 cells).  This result indicates that GFP-INCENP and Mklp2-

mCherry localization is positively correlated during early mitotic exit.   

 We next investigated whether the CPC and Mklp2 have similar dynamic properties on the 

cortex and at the midzone.  To analyze the movement of GFP-INCENP and Mklp2-mCherry we 

used automated tracking to determine the XY position of spots over time (Tinevez et al., 2016)  

(Figure 5.6 A and B) and then quantified the mean-squared displacement (MSD) of these tracks  

 

Figure 5.6 Continued. Control cells expressing GFP-INCENP and mCherry are represented by gray-
scale circles. n=3 cells (control) and 5 cells (experimental) from three independent experiments. E, F) 
Mean squared displacement (MSD) of GFP-INCENP (green circles) and Mklp2-mCherry (red circles) 
spots on the cortex and midzone during C phase. Data represents mean ± SE. Linear regression 
represents best fit used to calculate the diffusion co-efficient. n=625 tracks (GFP-INCENP, cortex), 537 
tracks (Mklp2-mCherry, cortex), 626 tracks (GFP-INCENP, midzone), or 424 tracks (Mklp2-mCherry, 
midzone) from 6 cells from three independent experiments.   
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(Tarantino et al., 2014a).  At the cortex, the MSD of GFP-INCENP was best fit using a linear 

regression, as was the MSD of Mklp2-mCherry, indicating that cortical movement is largely 

diffusive.  The diffusion co-efficient of GFP-INCENP was 2.5 x 103 µm2/s (n=625 tracks from 6 

cells), and the diffusion co-efficient of Mklp2-mCherry was similar at 1.7 x 103 µm2/s (n=537  

tracks from 6 cells, Figure 5.6 E).  The quantitative difference in GFP-INCENP and Mklp2-

mCherry cortical diffusion is likely due to the fact that mCherry fluorescence is relatively dim 

compared to GFP, and more difficult to detect by automated tracking.  While the movement of 

GFP-INCENP and Mklp2-mCherry was primarily diffusive, there were rare instances of directed 

movement detected during our analysis (see Figure 5.6 A and B kymographs).  These events 

comprised approximately 2-6% of the total time tracked, and are therefore unlikely to significantly 

alter the diffusion co-efficient.  The movements of midzone-localized GFP-INCENP and Mklp2-

mCherry were also best fit by linear regression.  Importantly, this analysis largely represents time 

points after which the CPC has coalesced into discrete spots, and does not include directed 

“streaming” events in early anaphase.  The diffusive behavior of Mklp2 and CPC on the midzone 

may indicate that motor activity is shut off after the complex reaches midzone MT plus ends, or 

once the complex coalescence into spots.  The diffusion co-efficients of GFP-INCENP and Mklp2-

mCherry were nearly identical on the midzone (GFP-INCENP=1.9 x 103 µm2/s, n=626 tracks from 

6 cells; Mklp2-mCherry=2.1 x 103 µm2/s, n=424 tracks from 6 cells, Figure 5.6 F) demonstrating 

that the two proteins have the same dynamic behavior during early mitotic exit.  Combined with 

our observation that GFP-INCENP and Mklp2-mCherry localization is positively correlated, we 

propose that the CPC and Mklp2 are always associated during C phase.   
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Dynamic cortical movement of the CPC depends on actin and MTs 

 Our analysis of GFP-INCENP and Mklp2-mCherry cortical movement indicates that the 

CPC diffuses on the cell cortex during C phase.  Additionally, our quantification of GFP-INCENP 

cortical enrichment demonstrates that robust recruitment of the CPC depends on actin-binding.  

We next asked whether cortical diffusion of the CPC is affected by cortical F-actin.  To test this, 

we treated cells expressing GFP-INCENP, plated on 100 μg/ml fibronectin, with DMSO or 5 μg/ml 

cytochalasin B, to induce F-actin disassembly; and tracked the XY position (Tinevez et al., 2016) 

of GFP-INCENP spots on the cortex.  In agreement with our previous findings, GFP-INCENP 

cortical movement in cells treated with DMSO was best fit by linear regression, and the diffusion 

co-efficient was 1.9 x 103 µm2/s (n=256 tracks from 6 cells, Figure 5.7 A).  Treatment with 

cytochalasin B prior to imaging dampened the movement of GFP-INCENP on the cortex, and 

significantly decreased the diffusion co-efficient (1.1 x 103 µm2/s, n=249 tracks from 5 cells, 

Figure 5.7 A).  This observation suggests that rapid diffusion of cortical GFP-INCENP requires 

actin filaments.  Moreover, this finding argues against a model where cortical F-actin acts as a 

static tether for equatorial CPC.  

 Furrow-associated astral MTs are thought to stably interact with the equatorial cortex 

(Canman et al., 2003).  We therefore investigated whether MTs also influence cortical diffusion 

of the CPC.  We treated cells expressing GFP-INCENP, plated on 100 μg/ml fibronectin, with 

DMSO or 5 μM nocodazole to depolymerize MTs.  In order to ensure that we did not disrupt MT-

dependent delivery of the CPC to the cortex, nocodazole was only added after cortical GFP-

INCENP was detectable.  The behavior of cortical GFP-INCENP in DMSO-treated cells was 

similar to our previous experiment and the diffusion co-efficient well matched (1.9 x 103 µm2/s, 

n=626 tracks from 6 cells, Figure 5.7 B).  Treatment with 5 μM nocodazole altered the movement 
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of cortical GFP-INCENP and partially decreased the diffusion co-efficient (1.4 x 103 µm2/s n=424 

tracks from 9 cells, Figure 5.7 B) indicating that MTs also promote diffusion of the CPC along the 

cortex.  Notably, depolymerizing MTs had a smaller effect on cortical diffusion than disassembly 

of actin filaments (nocodazole ~26% decrease of the diffusion co-efficient; cytochalasin B ~42%  

 

Figure 5.7 GFP-INCENP cortical movement depends on actin and MTs. A, B) Top left: Single z-
plane micrographs of the cell cortex or midzone taken from a time-lapse movie (time=0 seconds) of a 
HeLa cell transiently expressing GFP-INCENP plated on 100 μg/ml fibronectin treated with DMSO, 5 
μg/ml cytochalasin B, or 5 μM nocodazole prior to imaging. Top right: Micrograph time projections of 
GFP-INCENP fluorescence over the course of 170 seconds. Scale bar, 10 μm. Time projection scale, 0 
seconds to 170 seconds. Bottom: Mean squared displacement (MSD) of GFP-INCENP spots on the 
cortex and midzone in cells treated with DMSO (open circles), or 5 μg/ml cytochalasin B (closed circles), 
or 5 μM nocodazole (closed circles). Data represents mean ± SE. Linear regression represents best fit 
used to calculate the diffusion co-efficient. n=256 tracks (DMSO) from 6 cells, 249 tracks (cytochalasin 
B) from 5 cells from three independent experiments as described for A). n=626 tracks (DMSO) from 6 
cells, or 424 tracks (nocodazole) from 9 cells from three independent experiments as described for B).   
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decrease of the diffusion co-efficient). This comparison suggests that while actin and MTs both 

influence cortical diffusion of the CPC, actin plays a larger role in promoting movement on the 

cortex.   

 

INCENP overexpression rescues cleavage furrow ingression in Mklp2-depleted cells 

 We next investigated whether cortically-localized CPC was functional during C phase.  We 

tested this by observing the success of cleavage furrow ingression in Mklp2-depleted cells.  In 

agreement with a previous study (Kitagawa et al., 2013), we observed that ~47% of Mklp2-

depleted cells (n=7/15 cells) successfully completed cleavage furrow ingression (Figure 5.8 A), as 

judged by imaging mCherry-Utrophin to mark the furrow.  Cells that failed to complete furrowing 

did so as a consequence of furrow regression rather than a failure to initiate ingression, mirroring 

the phenotype others have observed (Kitagawa et al., 2013).  In contrast, 92% of control cells 

(n=11/12 cells) completed furrow ingression, resulting in the formation of a midbody.  

Surprisingly, transient overexpression of GFP-INCENP rescued the ability of Mklp2-depleted 

cells to complete cytokinesis: 92% (n=11/12) of cells expressing GFP-INCENP completed furrow 

ingression, similar to control transfected cells (100%, 8/8 cells; Figure 5.8 B).  The timing and 

rates of furrow ingression were similar between control-depleted cells and Mklp2-depleted cells 

expressing GFP-INCENP (Figure 5.9 A and B).  In control siRNA-transfected cells expressing 

GFP-INCENP, furrow ingression started 6.01 ± 1.12 min (mean ± SD) after anaphase onset (n=5 

cells), and proceeded at a rate of 1.48 ± 0.36 μm/min (n=8 cells).  Mklp2-depleted cells expressing 

GFP-INCENP began furrow ingression 5.89 ± 1.29 min after anaphase onset, and ingression 

progressed at a rate of 1.51 ± 0.42 μm/min (n=12, Figure 5.9 B and C).  Transient expression of 

GFP-INCENP led to a 2.5-fold increase in INCENP protein levels, as assessed by Western blotting  
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Figure 5.8 Overexpression of GFP-INCENP rescues cleavage furrow ingression in Mklp2-
depleted cells. A, B, C) Top: Single z-plane micrographs taken from time-lapse movies of cells 
transiently expressing mCherry-Utrophin, GFP-INCENP, or GFP-INCENP CR in the presence or 
absence of Mklp2. Time is indicated in minutes. Dashed lines were used to generate kymographs. Scale 
bars, 10 μm. Bottom: Kymographs of mCherry-Utrophin, GFP-INCENP, or GFP-INCENP CR 
fluorescence across the division plane. Scale bars, 2.5 minutes (y axis) and 10 μm (x axis). D) 
Quantification of the percentage of cells from A) and B) that successfully completed furrow ingression.  
For mCherry-Utrophin-expressing cells, n=12 (control) and 15 (Mklp2 siRNA) cells.  For GFP-INCENP-
expressing cells, n=8 (control) and 12 (Mklp2 siRNA) cells. E) Quantification of total percentage of cells 
from C) that successfully completed furrow ingression. n=14 cells per condition. F) Immunoblots of cell 
extracts prepared from HeLa cells transfected with GFP or GFP-INCENP. ABK levels are unchanged 
when GFP-INCENP is overexpressed. Tubulin is shown as a loading control.  Molecular weight 
standards are indicated in kDa.  
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(Figure 5.8 F), but did not result in a gross overexpression of ABK (1.2-fold increase), 

demonstrating that INCENP overexpression does not concomitantly increase expression of other 

CPC components.   

 

 

Figure 5.9 Dynamics of C phase in cells expressing GFP-INCENP. A) Quantification of the rate of 
cleavage furrow ingression in cells expressing mCherry-Utrophin. Cells were transfected with a control 
or Mklp2-targeting siRNA. Cells that failed to complete furrow ingression were not scored. Data 
represent mean ± SD. n=12 (control) and 6 (Mklp2 siRNA) cells. B) Quantification of the rate of furrow 
ingression in cells expressing GFP-INCENP. Cells were transfected with siRNA as described in A). Cells 
that failed to complete furrow ingression were not scored. n=6 (control) and 12 (Mklp2 siRNA) cells. C) 
Quantification of the time to ingression onset, measured relative to anaphase onset. Cells were treated 
as described in B). Data represent mean ± SD. n=5 (control) and 6 (Mklp2 siRNA) cells. D) Quantification 
of the rate of cleavage furrow ingression in cells expressing GFP-INCENP CR and transfected with a 
control siRNA. Cells that failed to complete furrow ingression, including cells transfected with an Mklp2-
targeted siRNA, were not scored. n=8 cells. E) Quantification of the time to ingression onset measured 
relative to the time of anaphase onset in cells expressing GFP-INCENP CR as described in D). Data 
represent mean ± SD. n=6 cells.   
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Furrow ingression rescue requires INCENP-actin binding  

 Using the INCENP CR mutant, we next tested whether actin-dependent furrow enrichment 

of INCENP can explain its ability to rescue cytokinesis in Mklp2-depleted cells.  Control or 

Mklp2-depleted cells were transfected with GFP-INCENP CR and imaged during C phase.  78% 

of control-depleted cells expressing GFP-INCENP CR (n=11/14 cells) progressed through C phase 

normally and completed furrow ingression, forming a midbody (Figure 5.8 C).  The time from 

anaphase onset to furrow ingression was identical to control cells (6.64 ± 2.01 min, Figure 5.9 D), 

and the rate of furrow ingression in cells expressing GFP-INCENP CR was comparable to cells 

expressing wild type GFP-INCENP (1.11 ± 0. 26 μm/min, n=8, Figure 5.9 E).  In contrast, only 

14% of Mklp2-depleted cells expressing GFP-INCENP CR (n=2/14 cells) successfully completed 

furrow ingression (Figure 5.8 E), indicating that INCENP overexpression rescues furrow 

ingression in Mkp2-depleted cells in a manner that requires actin binding.  Interestingly, furrows 

did not initiate ingression in Mklp2-depleted cells expressing GFP-INCENP CR, strongly 

suggesting that actin-dependent targeting of the CPC to the cortex is required to initiate cleavage 

furrow ingression in the absence of Mklp2.  

 

Cleavage furrow ingression in cell lines stably expressing GFP-INCENP 

 As transient expression of GFP-INCENP could affect the success of cleavage furrow 

ingression in a manner dependent on the level of protein expression we generated stable cell lines 

that uniformly express GFP-INCENP in a doxycycline-inducible manner (see Materials and 

Methods).  These cells expressed GFP-INCENP in addition to endogenous INCENP, although 

overexpression of INCENP was lower than transient transfection (1.79-fold for GFP-INCENP, 

1.64-fold for GFP-INCENP CR, Figure 5.10 F).  As a control, we tracked the success of cleavage  
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Figure 5.8 Stable overexpression of GFP-INCENP rescues cleavage furrow ingression in Mklp2-
depleted cells. A, B,) Top: Single z-plane micrographs taken from time-lapse movies of cells stably 
expressing GFP-INCENP or GFP-INCENP CR, after 24 hours in 2 μg/ml doxycycline, in the presence 
or absence of Mklp2. Time is indicated in minutes. Dashed lines were used to generate kymographs. 
Scale bars, 10 μm. Due to the dim cortical signal of GFP-INCENP CR (green) after Mkp2 depletion, we 
tracked furrow ingression by DIC. Bottom: Kymographs of GFP-INCENP, GFP-INCENP CR 
fluorescence, or DIC imaging across the division plane. Scale bars, 2.5 minutes (y axis) and 10 μm (x 
axis). Continued on next page. 
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furrow ingression in a cell line expressing GFP alone in the presence and absence of Mklp2.  In 

agreement with our previous findings, 100% of GFP-expressing cells treated with a control siRNA 

successfully completed furrowing (n=8/8 cells), while only 50% of Mklp2-depleted cells (n=5/10 

cells) completed furrow ingression (Figure 5.10 C).  Stable expression of GFP-INCENP also 

showed a similar phenotype to transient transfection.  Control-depleted cells completed furrow 

ingression 92% (n=13/14 cells) of the time, and Mklp2-depleted cells expressing wild type GFP-

INCENP were similarly successful (80%, n=8/10 cells) demonstrating that even low level 

overexpression of INCENP can rescue furrowing after Mklp2 RNAi (Figure 5.10 A and D).  Stable 

expression of GFP-INCENP CR, however, was not sufficient to rescue furrowing after Mklp2 

depletion.  83% (n=10/12 cells) of GFP-INCENP CR-expressing cells transfected with control 

siRNA completed furrowing, while only 23% (n=3/13 cells) of cells transfected with Mklp2 

siRNA completed furrow closure (Figure B and E).  A portion of these cells were able to initiate 

furrowing, but this event was soon followed by furrow regression.  Other cells were unable to 

initiate furrowing, in agreement with our observations from transient transfection.  These findings 

demonstrate that even low level overexpression of INCENP can rescue cleavage furrow ingression, 

and that regardless of expression level, the INCENP-actin interaction is required for furrowing in 

the absence of Mklp2.  Taken together, the general observation that overexpression of INCENP 

Figure 5.8 Continued. C) Quantification of the percentage of cells stably expressing GFP successful 
in cleavage furrow ingression in the presence or absence of Mklp2. n=8 (control) and 10 (Mklp2 siRNA) 
cells.  D, E) Quantification of the percentage of cells successful in cleavage furrow ingression as 
described in A) and B). For GFP-INCENP-expressing cells, n=14 (control) and 10 (Mklp2 siRNA) cells. 
For GFP-INCENP CR-expressing cells, n=12 (control) and 13 (Mklp2 siRNA) cells. F) Immunoblots of 
cell extracts prepared from cells stably expressing GFP or GFP-INCENP CR after 24 hours in 2 μg/ml 
doxycycline. Molecular weight standards are indicated in kDa. Boxes (bottom) represent the fold change 
in INCENP expression after doxycycline relative to non-induced cells.  



85 

 

rescues furrowing in a manner that depends on actin-binding, suggests that the cortical population 

of the CPC is functional during C phase, and is sufficient to promote the final steps of cell division.  

 

Discussion 

 While it is well accepted that the CPC traffics to the spindle midzone via Mklp2-dependent 

transport (Cesario et al., 2006; Gruneberg et al., 2004; Hummer and Mayer, 2009; Jang et al., 2005; 

Nguyen et al., 2014), how the CPC concentrates at the equatorial cortex had remained largely 

uncharacterized.  As with midzones, MT association provides one plausible explanation.  MTs 

lining the equatorial cell perimeter are abundant, as are those whose plus-ends terminate there.  

Indeed, our data shows co-localization of the CPC with cortically-associated MTs at the division 

plane. However, the CPC also localizes to cortical actin, and disrupting the INCENP-actin 

interaction perturbs normal C phase localization.  Moreover, ABK and GFP-INCENP both localize 

to the equatorial cortex in cells depleted of Mklp2.  Our work suggests that the CPC-actin 

interaction regulates the recruitment of the complex to the equatorial cortex and is sufficient to 

promote cortical localization in the absence of motor.  We found that proper CPC localization 

during C phase requires both actin and MTs; single disruptions of either cytoskeletal system, by 

filament disassembly, or by abolishing the interaction between the CPC and cytoskeletal filaments, 

are insufficient to fully displace the CPC from the midzone or the equatorial cortex.  It is important 

to note that CPC interactions with F-actin and furrow-associated MTs do not appear to statically 

link the complex to the cortex.  The CPC diffuses on the cell cortex during early mitotic exit and 

cytoskeletal perturbations diminish cortical diffusion.  However, the CPC remains at the cortex 

after single filament disruption, suggesting tethering mechanisms, such as Mklp2-myosin 

(Kitagawa et al., 2013) or Mklp2-lipid interactions (Fung et al., 2017), may be involved in 
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maintaining cortical localization.  Our studies suggest that cortical diffusion is primarily dependent 

on actin filaments, indicating that the behavior of the CPC once it reaches the cortex does not 

depend on motor activity.  This is distinct from the proposed mechanism of Mklp2-based transport 

to target midzone MT plus ends.  Collectively, these findings lead us to propose that the CPC 

concentrates at the equatorial cortex because F-actin and MT plus-ends overlap there.  Finally, 

cortical CPC is functional to promote cleavage furrow ingression in the absence of Mklp2, 

suggesting that successful cell division does not necessarily require midzone-localized CPC.    
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CHAPTER 6 

 

CONCLUDING REMARKS 

 

Cytoskeletal coordination during C phase 

 A variety of essential cellular functions depend on active cooperation between the actin 

and microtubule cytoskeletons (Rodriguez et al., 2003).  During cell migration, actin and MTs 

cooperate to drive forward motility (Ballestrem et al., 2000).  In neurons, cytoskeletal dynamics 

are synchronized during pathfinding to prevent “wandering” growth cone extensions (Schaefer et 

al., 2002; Zhou et al., 2002).  The activities of actin and microtubules are highly coordinated 

throughout the process of cell division as well.  For example, actin and myosin interact with astral 

MTs to position centrosomes (Hwang et al., 2003; Kwon et al., 2015).  As cells exit mitosis, 

furrow-associated astral MTs specify the division site by serving as tracks to deliver factors that 

promote assembly of the contractile array (Mandato et al., 2000; Mishima, 2016).  With respect to 

mitotic exit, it has remained unclear whether cytoskeletal cross-talk occurs in the reverse direction; 

that is, does cortical actin regulate MT dynamics?  Work using monopolar cytokinesis as a model 

suggests that acto-myosin contractility is required for midzone formation (Hu et al., 2008), 

however, efforts to investigate this relationship during bipolar cytokinesis have produced 

conflicting results (Cimini et al., 1998; Straight et al., 2003).  Actin-to-microtubule communication 

could allow plasticity in positioning the division plane before furrowing, or ensure that the 

midzone does not form a barrier before chromosomes have fully segregated.  

In this study we have demonstrated that acto-myosin contractility is required for bipolar 

midzone stabilization, suggesting there is signaling which links the activities of cortical actin to 

midzone MTs.  Moreover, we have identified the CPC as a key mediator of this feedback signaling. 
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This finding parallels the cytoskeletal coordination that occurs during monopolar cytokinesis (Hu 

et al., 2008) and supports the idea that cross-talk occurs in the cortex-to-midzone direction.  

Additionally, we observed that cleavage furrow ingression fails in cells with unstable midzones 

(see Chapter 4).  This finding is particularly exciting as it suggests MT stabilization is an essential 

step in cytokinesis.  An intriguing possibility is that positive feedback from the midzone promotes 

furrow closure, creating a double feedback loop of cytoskeletal communication.  Whether this 

feedback is representative of bi-directional signaling via the CPC is yet to be determined.  

Nevertheless, our work underscores the notion that cytokinetic processes cannot be studied as a 

linear series of events as they involve feedback loops that dynamically connect the spatio-temporal 

activities of acto-myosin and midzone MTs.  

 

Monopolar cytokinesis as a tool for studying feedback signaling 

 A number of previous studies have investigated the localization and function of C phase 

proteins using monopolar cytokinesis as a model system (Hu et al., 2008; Kitagawa et al., 2013; 

van der Horst et al., 2015).  While myosin II and ABK inhibition block monopolar midzone 

formation, these perturbations do not affect midzone formation in bipolar cells, and instead alter 

bipolar midzone stabilization, an outcome which we suggest reflects a fundamental difference in 

the properties of monopolar vs. bipolar midzones. This is somewhat unsurprising as the plus ends 

of MTs in bipolar midzones are cross-linked within the anti-parallel overlap, due to the activity of 

PRC1 (Bieling et al., 2010; Subramanian et al., 2010) and associated factors, such as Kif4A 

(Kurasawa et al., 2004).  Our findings lead us to propose that relative to monopolar midzones, 

bipolar midzones may be more organizationally robust.  In accordance with this idea, PRC1 and 

Mklp1 are delocalized in monopolar midzones that do manage to form in the presence of an ABK 
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inhibitor (Hu et al., 2008), whereas PRC1 and Mklp1 localizations are qualitatively unaffected by 

ABK inhibition during bipolar cytokinesis (See Chapter 4).  Despite the organizational differences, 

there appears to be comparable feedback signaling that exists in both monopolar and bipolar C 

phase cells.  However, the outcome of this signaling pathway differs; i.e. midzone formation vs. 

stabilization.  This observation indicates that monopolar cytokinesis could be a useful tool beyond 

studying protein localization.  Our work predicts that signaling factors which affect bipolar 

midzone stability would also regulate monopolar midzone formation, and vice versa.  This may 

present an opportunity to rapidly screen for factors involved in cytoskeletal cross-talk during C 

phase.  

 

Midzone stabilization during mitotic exit 

 An important goal for the future will be to determine the significance of midzone MT 

stabilization during bipolar cytokinesis.  One obvious possibility is that midzone stabilization 

ensures that cells will undergo abscission properly, through the formation of a functional midbody 

that in turn recruits abscission factors, such as the ESCRT machinery (Green et al., 2012).  

However, cells with unstable midzones, such as cleaving cells treated with nocodazole (Wheatley 

and Wang, 1996), fail in cytokinesis prior to abscission, implying that midzone stability may play 

an earlier role in promoting cleavage furrow ingression.  Here, we used the INCENP-actin binding 

mutant to selectively block midzone stabilization after furrowing and found that furrow ingression 

failed before midbody formation (see Chapter 4).  Midzone stabilization appears to be the 

underlying factor as furrow closure was rescued by treating cells with low dose taxol.  

Unfortunately, we cannot rule out the possibility that the ABK phospho-gradient (Afonso et al., 

2014; Fuller et al., 2008) is also disrupted in these cells, as the actin-binding mutations also affect 



90 

 

CPC midzone localization.  Addressing the function of midzone stabilization in furrowing cells 

will require a more precise experimental approach to perturb C phase MT dynamics in a manner 

that does not broadly disrupt CPC localization and function.    

 While our work suggests that midzone stabilization in mammalian cells is required for 

successful furrow closure, the function of MT stabilization during C phase may be cell-type 

specific.  Studies of midzones in millimeter-sized urchin embryos have suggested that stabilization 

- assessed by nocodazole resistance - can occur prior to cleavage furrow ingression (Foe and von 

Dassow, 2008).  It has also been proposed that the midzone array of urchin embryos generates 

MT-dependent signaling that specifies the cleavage plane (Bement et al., 2005), which may 

explain why midzone MTs are stabilized earlier relative to mammalian cells.  Investigations of 

midzone organization and stability in C. elegans indicate that MTs are generally required for 

successful cleavage furrow ingression (Guse et al., 2005; Raich et al., 1998), however, an 

organized midzone is dispensable for cytokinesis (Verbrugghe and White, 2004).  This may point 

to a role for furrow-associated MTs in driving furrow closure in this system.  Cleavage plane 

specification in smaller somatic cells is a function that has been ascribed to furrow-associated 

astral MTs (Canman et al., 2003; Shannon et al., 2005), potentially negating the requirement for 

highly stable midzones in early anaphase in mammalian cells.  Taken together with work presented 

in this study, these findings indicate that the timing and function of midzone stabilization differs 

among organisms and cell types.   One plausible explanation for this phenomenon is that cell size 

may dictate the function and therefore stability of C phase MT subsets.  Urchin embryos are 

significantly larger than somatic cells, and a stable midzone array may be more efficient at 

propagating diffusion-based signaling (Nguyen et al., 2014).  Another possibility is that midzone 

stability is tied to MT geometry.  For example, the MT array in C. elegans embryos is comprised 
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of a compact midzone and large astral MTs (Raich et al., 1998) while midzones in mammalian 

cells are much larger relative to cell size and astral MTs are less dominant in C phase (Rankin and 

Wordeman, 2010).  These ideas are not mutually exclusive and many factors may work in concert 

to influence midzone stabilization.  In the future, determining the relative importance of astral MTs 

and midzone MTs in positioning the cleavage furrow and promoting ingression may provide 

insight as to why the timing of midzone stabilization varies among different cell types.  This will 

require strategies that selectively alter or eliminate specific sub-populations of C phase MTs.   

  

Aurora B kinase mediates cytoskeletal cross-talk 

 While the CPC is known to regulate many aspects of cytokinesis, the specific function of 

the CPC at the cell cortex has remained elusive (Carmena et al., 2012).  We have shown that the 

CPC coordinates the initiation of furrowing with midzone MT stabilization.  Significantly, the 

ability of INCENP to bind actin is essential for this function of the CPC.  This key finding strongly 

suggests that CPC-mediated cytoskeletal feedback signaling initiates at the cortex.  Determining 

the mechanism(s) by which ABK coordinates midzone stabilization with furrowing is an important 

area of future work.  We find that perturbations of the CPC, either through pharmacological 

inhibition of ABK or through disrupting INCENP-actin binding, specifically alters midzone 

stability after cleavage furrow ingression, suggesting ABK signaling is likely to function 

downstream of myosin II activity (see Chapter 4).  An exciting possibility is that INCENP-actin 

binding enables the CPC to respond to physical changes in the furrow as it ingresses.  Furrow 

ingression could impact ABK activity at a molecular level in a number of ways.  For example, 

CPC clustering and MT binding both increase ABK activity in vitro (Kelly et al., 2007; Noujaim 

et al., 2014; Rosasco-Nitcher et al., 2008), and cleavage furrow ingression may mimic a “reduction 
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in dimensionality” by bringing neighboring complexes close enough to activate feedback 

signaling.  One way to test whether acto-myosin activates ABK through clustering would be to 

measure the activity of recombinant ABK in vitro in the presence of F-actin or an acto-myosin 

contractile meshwork (Kasza and Zallen, 2011).  Previous studies of MT-dependent CPC 

activation (Noujaim et al., 2014; Rosasco-Nitcher et al., 2008) lead us to predict that contraction-

dependent clustering of the CPC would hyper-activate ABK.  Another model that might explain 

ABK activation after furrowing, is that as the circumference of the cortex shrinks the midzone-

bound substrates of ABK become more accessible to cortically-localized CPC.  In contrast to this 

model, we do not observe that MTs closest to the cortex become stabilized first.  In other words, 

MTs in the center of the midzone are cold-stable even in the early stages of ingression.  However, 

it is plausible that reducing the distance between the cortex and midzone, through furrowing, may 

allow for more efficient transmission of ABK signaling across the midzone (Nguyen et al., 2014).  

Finally, cleavage furrow ingression could induce conformational changes in INCENP which 

activate ABK signaling.  The structure of full-length INCENP remains unsolved, however, the C-

terminal half is primarily comprised of a single-alpha helical (SAH) domain which has been 

proposed to function as a flexible “dog-leash” during prometaphase (Samejima et al., 2015).  This 

model suggests that the flexibility of the SAH domain allows ABK to reach substrates at the outer 

kinetochore, even while the N-terminus of INCENP is anchored at the centromere.  It is 

conceivable that flexibility conferred by the SAH domain allows for conformational changes of 

INCENP at the cortex as well.  Distinguishing between these possibilities will be important for 

elucidating the mechanism of ABK feedback signaling during cleavage furrow ingression.  

Generally, we anticipate that the INCENP actin-binding mutant described here will be a useful 

tool to probe these models.  
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Microtubule dynamics regulators and midzone stabilization 

 Our work clearly indicates that there is a transition from unstable to stable midzones as 

cells progress through C phase.  We have identified the CPC as a mediator of cytoskeletal cross-

talk that drives midzone stabilization, however, we have yet to fully identify substrates of ABK 

that regulate MT dynamics at this stage of division.  Our preliminary investigation of Kif2a 

suggests that it may be one effector of feedback signaling.  Kif2a is displaced from the midzone 

after ingression in a manner that depends on ABK activity, and eliminating Kif2a results in a 

moderate increase in midzone stabilization before furrowing.  The generation of Kif2a KO cell 

lines presents an opportunity to further characterize the role of Kif2a in regulating midzone MT 

stability.  An analysis of midzone stabilization in this cell line using our “nocodazole shock” assay 

would allow us to more carefully quantify small changes to MT stability in the absence of Kif2a.  

For example, the addition of high dose of nocodazole may show that midzones in Kif2a KO cells 

depolymerize more slowly than the parent cell line.  This result would not be revealed by analyzing 

cells exposed to cold temperature.  Another informative experiment would be to express Kif2a 

phospho-mutants (Ohi et al., 2007; Uehara et al., 2013) in the KO cell line and examine Kif2a C 

phase localization and midzone MT stability.  Based on our preliminary experiments, we predict 

a non-phosphorylatable mutant of Kif2a will localize robustly to midzone MT plus ends 

throughout C phase.  This may also cause midzones to become cold and nocodazole-sensitive after 

furrowing, thereby pheno-copying ABK inhibition.  Alternatively, an ABK phospho-mimetic 

would be expected to prevent Kif2a midzone localization.  Our Kif2a RNAi experiments suggest 

this would likely cause midzones to become hyper-stable before furrow ingression. These 

experiments have the potential to reveal how ABK feedback signaling directly regulates midzone 

MT stability.   
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 It is worth mentioning that we have searched for other microtubule-associated factors that 

may be involved in regulating midzone MT dynamics.  To do this we have screened the C phase 

localization of candidate proteins before and after cleavage furrow ingression, and before and after 

ABK inhibition.  For example, PRC1 and Kif4A have roles in regulating midzone organization 

and length immediately after anaphase onset, however, both proteins are associated with midzone 

MT plus ends regardless of the state of cleavage furrow ingression (Kurasawa et al., 2004; Shrestha 

et al., 2012; Subramanian et al., 2013).  We have also investigated the C phase localization of 

kinesins that associate with the midzone such as Mklp1, Mklp2, Kif18a, and Eg5 (Zhu et al., 

2005b).  Unfortunately, the steady state localization of these proteins does not reflect pattern that 

would explain changes in midzone stability.  Even so, these proteins may still be involved in 

regulating midzone MT dynamics.  Importantly, we do not believe that depleting these proteins by 

RNAi is a useful approach for testing their role in midzone stabilization, as this is likely to cause 

major disruptions to cell cycle progression and midzone organization, which would complicate the 

interpretation of any observed effect on midzone stabilization.  Investigating whether these factors 

influence midzone stabilization may instead require an analysis of protein dynamics within the 

plus end overlap.  It is possible that the turnover of plus-end associated proteins decreases after 

the initiation of furrowing, and this could stabilize MT plus ends without broadly changing the 

steady state protein localization.  This question could be addressed using FRAP (De Los Santos et 

al., 2015) or photo-activation (McKinney et al., 2009) of proteins localized to the plus-end overlap 

before and after furrowing.  A decrease in protein turnover might suggest that MT plus ends 

become stably embedded in a cross-linked matrix after cleavage furrow ingression.  This could 

affect midzone MT stability by making the plus ends inaccessible to destabilizing factors (Walczak 

et al., 2013).  Using this approach, it would be possible to investigate whether factors that regulate 
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midzone formation in early C phase also impact midzone MT stabilization after furrowing.  

Moreover, this analysis could be coupled to investigations of depletion phenotypes using the 

monopolar cytokinesis model system.  Factors that appear to stabilize bipolar midzone MTs would 

be predicted to promote monopolar midzone formation. 

 

The role of actin in CPC C phase localization 

 Previous studies of CPC recruitment to the plus end overlap and the equatorial cortex have 

focused primarily on Mklp2-dependent transport along MTs (Gruneberg et al., 2004; Hummer and 

Mayer, 2009; Kitagawa et al., 2013) while the mechanism of cortical localization of the CPC has 

remained largely unexplored (Earnshaw and Cooke, 1991).  This is somewhat surprising given the 

number of cytokinetic functions attributed to ABK (Carmena et al., 2012) and the proposed 

requirement for proper localization in carrying out those functions (Afonso et al., 2014; Fuller et 

al., 2008).  We find that the CPC distributes more broadly along the midzone in cells expressing 

an INCENP actin-binding mutant (GFP-INCENP CR, see Chapter 4) and this result led us to 

speculate that this interaction may be involved in CPC localization during C phase.  In agreement 

with this idea, we found that actin-binding is sufficient to recruit the complex to the cortex in the 

absence of Mklp2.  We have also observed that cortically localized CPC can rescue furrow closure 

in Mklp2-depleted cells indicating that this population of CPC is functional for cytokinesis.  Our 

investigation shows that the CPC diffuses along the cell cortex before furrow ingression, in a 

manner that depends primarily on actin filaments. Therefore, we propose that direct interactions 

between the Mklp2-CPC complex and acto-myosin underlie cortical recruitment.   

 Our work implies that there is cooperation between actin and MTs in localizing the CPC 

during normal C phase, however, what remains unanswered is how INCENP-actin binding can 
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promote recruitment to the division site in the absence of Mklp2.  We generally do not observe 

cortical enrichment of GFP-INCENP near the spindle poles, and we can clearly detect CPC at the 

equatorial cortex and midbody of Mklp2-depleted cells by immunofluorescence and live-cell 

imaging (see Chapter 5).  As cortical actin is only moderately enriched (~1.5-fold) at the site of 

the presumptive furrow in mammalian cells (Murthy and Wadsworth, 2005; Rankin and 

Wordeman, 2010), we predict that the mechanism of actin-based recruitment to the cell equator is 

more complex.  One way the CPC could become enriched in the cell middle is through cortical 

flow towards the division site (Bray and White, 2017), however, our study suggests that the 

movement of GFP-INCENP on the cortex is primarily diffusive.  We cannot rule out the possibility 

that cortical diffusion switches to flow after RNAi of Mklp2, and this hypothesis could be tested 

using lectins to block cortical flow during C phase (Rosenblatt et al., 2004).  Unfortunately, cells 

lacking Mklp2 do not have enough cortically localized GFP-INCENP to accurately track and 

characterize spot movement.  Other explanations for medial CPC enrichment include the 

possibilities that the CPC reaches the cortex through cytoplasmic diffusion, or is targeted there 

through yet unknown direct interactions with factors within the contractile array.  Differentiating 

between these possibilities has the potential to reveal the physiological relevance of Mklp2-

independent recruitment of the CPC to the cortex.  

 

CPC movement during C phase 

 The behavior and transport of the CPC observed in live cells is strikingly complex.  The 

movement of Mklp2-CPC can be described in two phases.  First, the CPC off-loads from 

centromeric chromatin at anaphase onset, and is rapidly transported to the plus end overlap of the 

nascent midzone.  Second, the CPC diffuses on the cortex and midzone until the onset of cleavage 
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furrow ingression.  Transport on the early midzone to MT plus ends appears to depend on motor 

activity, as this event is absent in Mklp2-depleted cells.  The window of time where off-loading 

and plus-end directed transport occurs is short (< 2 min after anaphase onset) and future 

characterization of these events would benefit from high-speed imaging.  It is encouraging that the 

rate of streaming measured in our system is comparable to CPC plus end-directed streaming on 

MT asters in vitro (Nguyen et al., 2014).   A number of unanswered questions about these early 

events remain.  Why does the CPC off-load onto the newly formed midzone, as opposed to other 

populations of MTs?  Are there regulatory factors that function to couple centromere off-loading 

to Mklp2-CPC complex formation?  Monopolar cytokinesis may be the best model system for 

addressing these questions as one complication of studying this process in bipolar cells is that the 

chromosome masses mask the GFP-INCENP signal on the early midzone.  It would also be useful 

to track CPC off-loading using a photo-convertible INCENP probe (Bancaud et al., 2010) which 

would allow us to follow the movement of a specific sub-population of centromeric CPC and 

analyze its behavior as cells transition into C phase.  This type of analysis could potentially provide 

more detailed and quantitative information about the first steps of Mklp2-dependent CPC transport 

on the midzone.  

 Our data indicates that once streaming is complete motor activity no longer dominates C 

phase movement of the CPC.  Midzone-localized Mklp2-CPC is diffusive after streaming, 

suggesting that motor activity is shut off.  One explanation is that the bulk of Mklp2-CPC remains 

stably associated with MT plus ends, either due to the inherent properties of the motor or perhaps 

through interactions with other factors at the plus end overlap.  In this scenario, the midzone 

diffusion of Mklp2-CPC would be correlated to diffusive movement of the entire MT filament 

within the midzone.  Alternatively, Mklp2-CPC spots could transiently interact with midzone MT 
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ends and move laterally along the plus end overlap.  This model is in agreement with in vitro 

studies of ABK plus end localization using centrosome-nucleated asters (Nguyen et al., 2014).  

Previous studies have indicated that the MT-binding activity of INCENP promotes Mklp2 midzone 

localization (van der Horst et al., 2015), however, it is not clear which phase of CPC transport 

requires this interaction.  It is possible to envision models where INCENP-MT binding is necessary 

for any one of the following events: CPC off-loading, Mklp2-CPC complex formation, plus end-

directed transport on the early midzone, or association with midzone MT plus ends.  High-speed 

imaging of an INCENP-MT binding mutant during monopolar cytokinesis may help answer this 

question.  Our analysis of CPC behavior on the midzone suggests that motor activity promotes 

plus end accumulation very early in C phase, and once Mklp2-CPC coalesces in the center of the 

cell, directed movement stops.  

 Our work suggests that delivery of GFP-INCENP spots to the cortex occurs via Mklp2.  

While actin-binding can promote cortical recruitment in the absence of motor, the enrichment of 

CPC at the cortex is low compared to control-depleted cells.  Additionally, cortical GFP-INCENP 

spots are too dim to accurately image and track after Mklp2 depletion.  Surprisingly, Mklp2 and 

the CPC diffuse together, indicating the Mklp2-CPC complex remains stably associated on the 

cortex.  Moreover, the diffusive behavior suggests that once Mklp2-CPC reaches the cortex, 

movement no longer depends on motor activity.  In agreement with this idea, we find that F-actin 

disassembly causes a decrease in the diffusion co-efficient of GFP-INCENP.  This result indicates 

that actin filaments do not function to tether the CPC to the cortex, and are instead required for 

movement.  One possibility is that electrostatic interactions between the CPC and F-actin allow 

the complex to rapidly diffusive along the cortex, and when those filaments are disrupted Mklp2-

CPC becomes statically attached to the membrane, perhaps through lipid interactions (Fung et al., 
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2017).  Our work suggests that MTs also contribute to Mklp2-CPC diffusion on the cortex.   This 

could occur if Mklp2-CPC diffuses along the lattice of MTs that run parallel to the cortex or if 

Mklp2-CPC is stably bound to the plus ends of MTs that terminate there.  Importantly, disassembly 

of either filament does not appear to cause Mklp2-CPC to switch filament tracks.  For example, 

actin disassembly does not result in directed movement along MTs, and MT disassembly does not 

cause an increase in actin-based diffusion.  This suggests that actin and MTs work cooperatively 

to promote cortical diffusion of Mklp2-CPC, and this agrees with our finding that actin and MTs 

are both required to promote cortical localization of the CPC.  In the future it will be interesting to 

uncouple cortical CPC diffusion from cleavage furrow ingression in order to test whether this 

dynamic CPC movement is required for cytokinesis.    

 

Cross-linking actin and MTs at the cortex 

 It is exciting to consider the potential for higher-order complex formation between 

cytoskeletal filaments and Mklp2-CPC at the equatorial cortex.  Mklp2 has been proposed to 

interact directly with myosin II (Kitagawa et al., 2013) in addition to the CPC (Carmena et al., 

2012); and Mklp2 bundles MTs in vitro (Neef et al., 2003). We have demonstrated that INCENP 

binds actin at the cortex, and others have shown that recombinant INCENP binds directly to MTs 

(Noujaim et al., 2014; Samejima et al., 2015).  Furthermore, INCENP has been proposed to 

multimerize in cells during C phase (van der Horst et al., 2015) suggesting higher-order complex 

formation is possible.  Using live-cell imaging we have observed that Mklp2-mCherry and GFP-

INCENP move together as discrete spots on the cortex and the midzone.  Notably, these spots are 

much larger than we would predict for single molecules, potentially supporting the hypothesis that 

these proteins assemble into larger complexes in cells.  Previous studies have shown that 
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multimerization increases the affinity of INCENP for MTs (van der Horst et al., 2015) suggesting 

weak electrostatic interactions between the Mklp2-CPC complex and cytoskeletal filaments may 

be enhanced by forming multimers.  As Mklp2 and the CPC can each interact with both actin and 

MTs, we hypothesize that multimeric “teams” of Mklp2-CPC may function as a tether that links 

furrow-associated astral MTs to cortical actin.  This model is particularly intriguing because this 

MT sub-population has been proposed to be highly stable compared to MTs at the polar cortices 

(Canman et al., 2003) and physically cross-linking MT plus ends to the cortex might explain this 

stabilization.   

 It is imperative to determine whether INCENP can multimerize in vitro and to identify the 

mechanism(s) and/or protein domains that are necessary for this process.  Previous work in cells 

has shown that an N-terminal fragment of INCENP can “piggyback” on endogenous protein to 

target the division plane (van der Horst et al., 2015).  Deleting this region of INCENP in cells is 

challenging as this would disrupt interactions with Survivin and Borealin and likely affect cellular 

processes that precede C phase (Carmena et al., 2012).  It would be most useful to identify point 

mutations that abolish multimer formation without disrupting the interaction between INCENP 

and Survivin and Borealin.  This approach is potentially more informative than generating mutants 

that abolish the interaction between Mklp2 and the CPC as recruitment of these proteins to the 

division plane is interdependent (Gruneberg et al., 2004; Kitagawa et al., 2013; van der Horst et 

al., 2015).  Expression of an INCENP multimerization mutant in cells would allow us to test 

whether GFP-INCENP spots represent the formation of higher-order complexes.  Moreover, by 

examining astral MT stability in these cells it would be possible to determine whether multimeric 

Mklp2-CPC promotes tethering of furrow-associated MTs to the cortex.  These studies have the 
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potential to shed light on how C phase astral MTs that extend toward the cleavage furrow are 

stabilized as well as reveal the function of astral MT stabilization during mammalian cytokinesis.   
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APPENDIX 

 

THE ROLE OF INCENP WITHIN THE CHROMOSOMAL PASSENGER COMPLEX 

 

Fixed Cell Imaging 

 To visualize Mad1 and CREST cells were fixed at -20o C in MeOH for 10 min and stained 

as previously described (see Chapter 2).  Serum containing anti-Mad1 was used at a 1:10 dilution 

and anti-CREST (Immunovision) was used at a 1:100 dilution.  To visualize phospho-Hec1 

coverslips were first rinsed in 1X PHEM buffer (60 mM PIPES, 25 mM K-HEPES, 10 mM EGTA, 

4 mM MgSO4, pH=6.9) at 37o C.  Fresh lysis buffer (1X PHEM, 1% TX-100, and 100 nM 

microcystin) was sonicated for 5 min before use.  Coverslips were incubated in lysis buffer for 5 

min at 37o C.  Cells were then fixed in 2% PFA in 1X PHEM for 20 min at 37o C.  Coverslips were 

washed with 1X PHEM and blocked with 1X PHEM + 20% BSA for 1 hour at room temperature.  

Antibodies were diluted in 1X PHEM-T (1X PHEM + 0.1% TX-100).  Anti-phospo-ser44 (anti-

phosphoHec1, a gift from Jennifer DeLuca) was used at 1:30.  Imaging was performed as 

previously described (see Chapter 2).  

 

Molecular Biology 

To construct the CPC triple helix complex full-length human Borealin (CDCA8, NCBI 

accession: KJ894139) and Survivin (BIRC5, NCBI accession: CR541740) ORFs were synthesized 

as G blocks (IDT) and cloned into pETDuet-1 restricted with EcoRI and HindII or NdeI and KpnI, 

respectively.  Borealin was cloned into the first MCS of pETDuet so as to add a His6 tag for 

purification.  An N-terminal fragment (amino acids 1-50) of INCENP was assembled with the 

amplified mCherry ORF (from pmCherry-C1) into pST39 restricted with EcoRI and HindIII. That 



103 

 

fragment was amplified using PrimeStar GXL (Takara) and cloned into pGEX6P1 restricted with 

EcoRI and SalI.   

Full-length human Mklp2 (Kif20a) cDNA (Thermo Scientific, Clone ID: 3604291, NCBI 

accession: BC) was used to prepare all Mklp2 DNA constructs.  Amplification of the ORF was 

performed using Phusion polymerase (New England Biolabs).  The Mklp2 ORF was cloned into 

pmCherry-N1 restricted with XhoI and BamHI.  Mklp2 ORF was also cloned into pEGFP-N1 

restricted with EcoRI and KpnI.  Bacculovirus construction was performed by assembling the 

amplified Mklp2-GFP ORF into pFASTBAC-1 restricted with EcoRI and HindIII.  This construct 

was used with the Bac-to-Bac expression system (Invitrogen) to create bacculovirus that expresses 

full length Mklp2-His6-GFP.   

 

Protein Expression and Purification 

His6-INCENP500-680 MT CR was expressed in BL21 DE3 RIPL cells with 0.4 mM IPTG for 

16 hours at 16oC and purified as previously described for His6-INCENP500-680 (see Chapter 2). 

 To generate the CPC triple helix construct, GST-mCherry-INCENP1-50, His6-Borealin, and 

Survivin were expressed in Bl21 DE3 RIPL cells with 0.4 mM IPTG for 16 hours at 16oC.  For 

purification, cells pelleted and resuspendend in lysis buffer lysis buffer (1X PBS, 0.5 M NaCl, 5 

mM β-mercaptoethanol (β-ME), 1% NP40, and protease inhibitors [1 mM phenylmethylsufonyl 

fluoride, 1 mM benzamidine, and 10 μg/ml each of leupeptin, pepstatin, and chymostatin]).  Cells 

were enzymatically lysed, sonicated, and clarified by centrifugation as described previously.  The 

clarified supernatants were mixed at 4oC for 1 hour before a 1 hour incubation with 2 ml of GST 

bind resin (Millapore).  Resin was washed extensively with wash buffer (PBS, 0.5 M NaCl, 5 mM 

β-ME) and protein was eluted with (50 mM Tris-Cl pH=8.0, 300 mM KCl, 5mM Glutathione).  
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Peak fractions were desalted using a PD-10 column (GE Healthcare) equilibrated in 10 mM K-

HEPES, pH=7.7, 1 mM DTT, 300 mM KCl, and 10 % glycerol.  Protein was aliquoted, frozen in 

liquid nitrogen and stored at -80oC.  

His6-GFP-Mklp2 was expressed in Sf9 cells for 72 hours.  For purification, cells were 

pelleted and resuspended in PNI, 5 mM β-mercaptoethanol (β-ME), 100 μM MgCl2, 100 μM ATP, 

1 % NP40, 10 % glycerol and protease inhibitors.  Cells were then sonicated, and clarified by 

centrifugation as described previously.  Clarified supernatant was incubated with Ni++-NTA 

agarose (Qiagen) for 1 hour at 4oC and washed with wash buffer (PNI, 5 mM β-ME, 100 μM 

MgCl2-ATP, 10 % glycerol).  Protein was eluted with PNI, 5 mM β-ME, 100 μM MgCl2-ATP, 10 

% glycerol and 180 mM imidazole.  Peak fractions were combined and subjected to size exclusion 

chromatography on a Hiload 16/60 Superdex 200 preparatory grade column (GE Healthcare). The 

bed volume for this column is 120 mls, and the void volume is 56 mls. Gel filtration buffer 

contained 10 mM K-HEPES, pH=7.7, 1 mM DTT, 0.1 mM MgATP, 300 mM KCl, and 10 % 

glycerol.  Protein concentration was measured by Bradford assay, accounting for dimerization of 

Mklp2.  Peak fractions were combined (17-19) and protein was aliquoted, frozen in liquid nitrogen 

and stored at -80oC.   

 

MT assays  

 For gliding assays with Mklp2-His6-GFP, flow cells were constructed with double-stick 

tape and infused with 1 µM Mklp2-His6-GFP at 1.9 µM for 3 minutes, 1% Pluronic F-127 in 

BRB80 for 1 minute, and Alexa 594-labeled GMPCPP MTs at 1 µM tubulin in BRB80 for 3 

minutes.  Flow cells were washed between each infusion with 3 volumes wash buffer (WB; BRB80 

+ 1 mM MgATP + 500 μg/ml casein).  For the final infusion, the MTs were diluted in flow cell 
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buffer (FCB; BRB80 + 1 mM MgATP + 500 μg/ml casein + Oxygen Scavenging Mix [200 μg/ml 

glucose oxidase, 35 μg/ml catalase, 25 mM glucose, 70 mM β-ME]). MT motility was recorded at 

3 s intervals by timelapse microscopy. Images were acquired at ambient temperatures by widefield 

fluorescence microscopy on an Eclipse 90i (Nikon) equipped with a 100X 1.4 NA (Nikon) 

objective and a Cool SnapHQ2 CCD camera (Roper). Nikon Elements was used for acquisition 

and ImageJ for subsequent image processing (adjusting levels, rotating, and cropping). 

 For imaging single molecules, flow cells were prepared in the same way. Alexa-594- and 

biotin-labeled GMPCPP MTs were adhered to coverslips coated with biotin-BSA and neutravidin.   

Flow cells were washed with WB, and the final mixture contained 1X BRB80, 0.5 mg/ml casein, 

100 mM MgATP, 1X OS and a 1:2 dilution of Mklp2-GFP from cell lysates.    

 

MT co-sedimentation and Immunoblotting  

 Prior to use, His6-INCENP500-680 and His6-INCENP500-680 MT CR were pre-clarified by 

centrifugation at 90K rpm for 30 minutes at 4oC in a TLA-100 Ultracentrifuge (Beckman).   Co-

pelleting was performed with GFP-INCENP500-680 or GFP-INCENP500-680 at 1 µM in 100 µl 

reaction buffer (10 mM HEPES, pH=7.7, 50 mM KCl, 1mM DTT) with tubulin or taxol-stabilized 

MTs at 1 µM. Reactions were incubated for 15 minutes at room temperature and centrifuged at 

90K rpm for 20 minutes at 22oC.  Taxol was included to 1 µM in reaction buffer. 100 μl of 

supernatant was collected and mixed with and equivalent volume of 2X Laemmli buffer.  Pellets 

were resuspended in 200 μl of 2X Laemmli buffer. 20 µl of each fraction was boiled, separated on 

a 10% SDS-PAGE gel, and transferred to nitrocellulose for immunoblotting. Immunoblots were 

blocked with 5% w/v milk in PBS-T and then probed with anti-His (Sigma) or DM1α followed by 
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fluorescently tagged anti-mouse secondary antibodies (Invitrogen).  Bound antibodies were 

detected using an Odyssey fluorescence detection system and images were cropped using ImageJ. 

 

Preparation of Mklp2-GFP from cell lysates 

 Cos7 cells were transfected with Mklp2-GFP as previously described (see Chapter 2) 24 

hours before collection.  To synchronize cells in C phase, cells were treated with 10 µM STLC 

for 16 hours at 37oC and then transferred to 10 µM STLC + 30 µM Purvalanol A for 30 min at 

37oC to induce exit from mitosis.  Lysates were collected by adding 0.05% Trypsin-EDTA to 

cells for 2 min at room temperature, and cells were then transferred to a conical tube on ice.  

Cells were pelleted by centrifuging at 1500 rcf for 3 min at 4oC. After centrifugation, tryspin was 

removed and cells were washed with 1 ml of DMEM, and pelleted again by centrifugation.  After 

centrifugation, DMEM was removed and cells were resuspended in lysis buffer (25 mM HEPES 

pH=7.4, 115 mM KOAc, 5 mM NaOAc, 5 mM MgCl2, 0.5 mM EGTA, 1% TX-100) + 1 mM 

ATP.  Lysates were centrifuged for 10 min at 140,000 rpm at 4oC and supernatant was aliquoted 

and store at -80oC. 

 

Co-immunoprecipitation of Mklp-His6-GFP and triple helix 

 To immunoprecipitate Mklp-His6-GFP, anti-GFP beads were blocked with 1X P12 Buffer, 

1% BSA, 0.5 mg/ml casein, for 1 hour.  Beads were washed extensively with 1X P12, and 4 µg 

Mklp-His6-GFP was incubated with the beads end-over-end for 1 hour a 4oC.  Again, beads were 

washed extensively with 1XP12, and 4 µg of CPC triple helix was incubated with bound Mklp-

His6-GFP for 1 hour a 4oC.  Protein was eluted using high salt (3.6 M MgCl) according to 
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manufacturer instructions.  Protein was separated by SDS-PAGE, and transferred to a 

nitrocellulose membrane.  Bound protein was detected using anti-mCherry (Invitrogen) at 1:1000, 

and anti-Survivin (Abcam), and species-appropriate fluorescently tagged secondary antibodies, 

and an Odyssey fluorescence detection system. 

 

INCENP binds MTs directly  

Previous studies of CPC activation have shown that the C-terminal half of INCENP bound 

to ABK can bind MTs in vitro (Noujaim et al., 2014).  We set out to investigate which regions of 

INCENP were sufficient for MT-binding.  To do this, we exogenously expressed a fragment of 

INCENP in cells (GFP-INCENP500-680) along with fluorescently tagged α-tubulin (mCherry-

tubulin).  We observed that GFP-INCENP500-680 co-localized with MTs in mitotic cells, and GFP-

INCENP500-680 fluorescence was diminished after a 10 min treatment with 5µM Nocodazole  

(Figure A1.1 A).  As INCENP aa residues 500-680 reside in a highly charged region of a single 

alpha helical domain (Samejima et al., 2015), we predicted that INCENP MT-binding occurs 

through an electrostatic interaction. We generated charge reversal mutations (lysine/arginine-to-

glutamic acid) to abrogate MT co-localization.  Charge-reversal of eight residues (K622E, K624E, 

K625E, K626E, K630E, K631E) abolished the MT co-localization of GFP-INCENP500-680 in cells 

suggesting they disrupt INCENP-MT binding (Figure A1.1 A, GFP-INCENP500-680 MT CR). To 

determine if INCENP binds MTs directly, we purified recombinant His6-INCENP500-680 from E. 

coli and performed an MT co-sedimentation assay.  Free tubulin dimers mixed with His6-

INCENP500-680 do not sediment, however, His6-INCENP500-680 does co-sediment wtih MTs, 

confirming there is a direct interaction.  His6-INCENP500-680 CR MT CR, however, does not co-

sediment with MTs, indicating that these charge-reversal mutations disrupt MT-binding in vitro  
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(Figure A1.1 B).  These mutations were incorporated into full-length GFP-INCENP to test whether 

INCENP-MT binding was required to promote midzone stabilization (see Chapter 4).  This  

construct (GFP-INCENP MT CR) was also used to investigate the role of MT-binding at the 

centromere (see below).  

 

 

Figure A1.1 Characterization INCENP-MT 
binding. A) Single plane micrographs of HeLa 
cells expressing GFP-INCENP (green) 
truncations and mCherry-tubulin (red). Cells 
were treated with 5 μM nocodazole to confirm 
that MT colocalization was specific. Scale bar, 
10 μm. B) Anti-His and anti-tubulin immunoblot 

of recombinant His6-INCENP
500-680

 and His6-

INCENP
500-680 MT

 
CR

 showing a MT co-
sedimentation assay using recombinant wt or 

MT CR His6-INCENP
500-680

. Supernatant (S) 

and pellet (P) fractions are indicated. Molecular 
weight standards are indicated in kDa.  



109 

 

 

 

Mapping INCENP 

 Investigations of CPC function during cell division have largely focused on ABK, as it 

represents the active component of the complex.  However, ABK activity is largely regulated by 

Figure A1.2 Summary of INCENP sites that mediate cytoskeletal interactions.  
Amino acids 8-48: These residues interact with Survivin and Borealin through the formation of a triple 
 helix (Jeyaprakash et al., 2007). They are also sufficient to allow for exogenously expressed  
 INCENP to “piggyback” on endogenous INCENP and reach midzone MT plus ends (van der 
 Horst et al., 2015).   
Amino acid 59: This residue is phosphorylated by Cdk1 and de-phosphorylated by cdc14 to regulate 
  interactions with Mklp2 (Hummer and Mayer, 2009). 
Amino acid 197: Phosphorylation of this residue by Plk3 is required for midbody localization of the CPC 
  (Yang et al., 2007).   
Amino acids 1-405: These residues function as a dominant negative when expressed in cells and disrupt 
  midzone localization of the CPC (Wheatley et al., 2001a).   
Amino acids 491-918: These residues bind MTs in vitro when complexed with ABK, and when bound to 
  MTs, can lead to ABK activation through a “reduction in dimensionality”. Experiments 
  performed using X. laevis protein (Noujaim et al., 2014). 
Amino acids 500-715: These residues make up a single alpha helical (SAH) domain which binds MT in 
  vitro (Samejima et al., 2015). 
Amino acids 503-597: These amino acids are sufficient for in vitro MT binding (Samejima et al., 2015).    
Amino acids 542-747: These amino acids are necessary for midzone localization in cells.  They are not,  
 however, required for interactions with Mklp2 (van der Horst et al., 2015).  
Amino acids 563-580: Charge reversal mutations of lysine and arginine residues within this region 
 abolish actin and MT co-localization in cells.  These mutations also disrupt actin-binding in vitro.  
Amino acids 622-631:  Charge reversal mutations of lysine and arginine residues within this region 
 abolish MT co-localization in cells.  These mutations do not disrupt actin co-localization in cells. 
 These mutations also abolish MT binding in vitro. 
Amino acids 892-906: These residues represent the highly conserved IN box where ABK binds. 
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the scaffolding protein INCENP, which functions to activate low-level kinase activity through 

binding, and regulates the sub-cellular localization of active ABK (Carmena et al., 2012).  While 

the structure of INCENP is not known, previous studies have identified a number of key residues 

and protein domains that modulate interactions with the cytoskeleton and are involved in 

regulating CPC localization.  Those findings, in addition to the characterization of INCENP 

described in this study are summarized in Figure A1.2.  It is important to note that this is not a 

comprehensive list of INCENP regulatory sites, rather it highlights those domains which appear 

to control CPC-cytoskeletal interactions or CPC localization, especially during C phase.   

 The interactions between the SAH domain of INCENP and cytoskeletal filaments are not 

well understood.   One of the major discrepancies is how actin and MT interactions are differently 

regulated.  Our work, along with the work of others, suggest that INCENP can interact with F-

actin and MTs directly through electrostatic interactions (Samejima et al., 2015; van der Horst et 

al., 2015).  However, mutating residues to disrupt these interactions produces varied results.  For 

example, we find that generating charge reversal mutations in two discrete regions of the SAH 

domain abolishes co-localization of GFP-INCENP500-680 with MTs.   Charge reversal mutations of 

lysine and arginine residues from amino acids 563-580 (10 residues) or 622-631 (8 residues) can 

abolish MT co-localization.  Other investigations report that charge reversal mutations of either 8 

or 27 lysine/arginine residues spanning amino acids 543-746 also lowered the affinity of INCENP 

for MTs (van der Horst et al., 2015).  Together, these findings seem to indicate that INCENP MT-

binding is not confined to a specific site.  Instead, MT-binding may require a threshold of positively 

charged residues within the SAH.  This is distinct from what we have found for INCENP-actin 

binding.  Charge reversal mutations spanning amino acids 622-631 did not disrupt actin co-

localization of GFP-INCENP500-680 in cells.  This may indicate that actin-binding is mediated 
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through a specific site within amino acids 563-580, rather than requiring a threshold of positively 

charged residues.  An important future direction will be to determine if it is possible to disrupt 

INCENP-actin binding with a more specific set of mutations.  It is not clear how INCENP 

differentiates between cytoskeletal filaments and identifying a more discrete mutation that 

abolishes actin-binding, without disrupting MT binding, may help explain why charge reversal 

perturbations of INCENP affect filament interactions differently.    

 

The role of INCENP-MT binding during prometaphase 

 The localization of the CPC to centromeric DNA is essential for regulating MT-

attachments at the kinetochore (Carmena et al., 2009).  Previous studies have suggested that 

increasing the local concentration of the CPC leads to trans-activation of ABK (Wang et al., 2011) 

and both the centromere and MTs are thought to functionally activate ABK through clustering 

(Noujaim et al., 2014; Rosasco-Nitcher et al., 2008).  However, whether MTs function to promote 

ABK activity at the centromere is unclear.  MTs have been proposed to regulate the dynamics of 

the centromere-localized CPC as centromeric turnover of the CPC decreases in cells treated with 

nocodazole (Beardmore et al., 2004).  This finding is at odds with in vitro studies suggesting MTs 

promote centromere activation: if MTs promote turnover of the CPC, this should dampen ABK 

activity by reducing the local concentration.  To test the role of INCENP-MT binding at the 

centromere in cells we analyzed chromosome alignment and K-MT attachment in cells over-

expressing full-length wild type GFP-INCENP or full-length GFP-INCENP MT CR.  While 

misaligned chromosomes were relatively rare in cells over-expressing GFP-INCENP wt (23.7 ± 

4.8% of cells, data represents mean ± SE, n=174 cells), of percentage of cells with unaligned 

chromosomes increased to 57.5 ± 4.4% in cells expressing GFP-INCENP MT CR (n=194 cells) 
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Figure A1.3 INCENP-MT binding in pro-metaphase. A) Left: Maximum Z projections of HeLa cells 
expressing GFP-INCENP wt or GFP-INCENP MT CR. Cells were fixed and stained with antibodies to 
tubulin (yellow), GFP (green) and Mad1 (red). DNA was counterstained with Hoescht.  Scale bar, 10 
μm.  Bottom: enlarged micrographs corresponding to the dashed box shown above.  Scale bar, 2.5 μm. 
Right: Quantification of the number of cells with unaligned chromosomes in cells expressing GFP-
INCENP wt or GFP-INCENP MT CR.  Data represents mean ± SE, n>300 cells, * = p<0.005. B) Left: 
Maximum Z projections of cells expressing GFP-INCENP wt or GFP-INCENP MT CR. Cells were 
stained with antibodies to GFP (green), Crest (yellow), and Mad1 (red). DNA was counterstained with 
Hoescht. Scale bar, 10 μm. Bottom: enlarged micrographs corresponding to the dashed box shown 
above.  Scale bar, 2.5 μm. Continued on next page.  
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suggesting that INCENP-MT binding is required for chromosome alignment (Figure A1.3 A).  We 

also observed that unaligned chromosomes were generally positive for Mad1 suggesting these cells 

had errors in K-MT attachment.  We quantified the number of Mad1 puncta in cells co-stained 

with CREST to accurately position the kinetochore, and found that GFP-INCENP MT CR over-

expression caused ~2-fold increase in the number of Mad1 puncta per cell.  Cells expressing wild 

type GFP-INCENP had 4.2 ± 4.7 Mad1-positive kinetochores per cell (data represents mean ± SD, 

n=31 cells), while cells expressing GFP-INCENP MT CR had 8.7 ± 7.0 Mad1-positive 

kinetochores per cell (n=27 cells, Figure 1.3 B).  This finding is consistent with phenotypes of 

hyper-active ABK (Wang et al., 2011), suggesting that INCENP-MT binding decreases 

centromeric ABK activity.  We next investigated whether ABK substrates were hyper-

phosphorylated in cells expressing the MT-binding mutant.  ABK phosphorylates the kinetochore 

component Hec1 to regulate MT attachment to the kinetochore (DeLuca et al., 2006; Zaytsev et 

al., 2015).  Using a phospho-specific antibody for Hec1, we found that cells expressing wild type 

GFP-INCENP, showed relatively low phospho-Hec1 immunoflourescence at metphase, which is 

consistent with our observation that these cells had few Mad1-positive kinetochores.  Ratiometric 

analysis revealed that phospho-Hec1 fluorescence was increased approximately 2-fold (data 

represents mean ± SE, n=48 cells) in cells expressing GFP-INCENP MT CR (Figure A1.3 C).  

This result indicates that ABK activity is increased when INCENP-MT binding is disrupted and 

suggests that MTs reduce the centromeric ABK activity.  This is consistent with the idea that MTs 

 

Figure A1.3 Continued. Right: Quantification of the number of Mad1-positive puncta/cell. Data 
represents mean ± SD, n =58 cells. C) Left: Maximum Z projections of HeLa cells expressing GFP-
INCENP wt or GFP-INCENP MT CR.  Cells were otherwise fixed and with antibodies to GFP (green), 
Crest (yellow), pHec1 (red). DNA was counterstained with Hoescht. Scale bar, 10 μm. Right: Ratiometric 
analysis of pHec1 fluorescence intensity at the centromere is cells expressing wt GFP-INCENP or GFP-
INCENP MT CR. n=48 cells. 
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increase turnover of centromeric CPC and dampen ABK activity by decreasing the local 

concentration at the centromere.   In the future, it will be useful to quantify the centromeric 

turnover of tagged INCENP containing MT-binding mutations.  To this end, we have generated 

photo-convertible probes of INCENP for mammalian expression (mEOS-INCENP wt, mEOS-

INCENP MT CR). One interesting idea is that iMTs which are laterally associated with the 

centromere promote low-level CPC off-loading during pro-metaphase to fine-tune ABK activity.  

This may allow the spindle to modulate CPC activity, thereby creating a feedback loop where 

spindle MTs regulate ABK activation, and ABK regulates MT attachment to the kinetochore. 

   

INCENP regulates Mklp2 midzone targeting  

 The MT-binding activity of INCENP has been proposed to promote midzone localization 

of Mklp2 during C phase (van der Horst et al., 2015).  Disrupting MT binding does not affect direct 

interactions between the CPC and Mklp2 (van der Horst et al., 2015), suggesting that the MT-

binding activity of INCENP does more than just promote Mklp2-CPC complex formation.  

Investigations of centralspindlin using in vitro MT gliding assays suggest that MgcRacGAP 

functions to activate Mklp1 walking on MTs (Tao et al., 2016).  We investigated whether INCENP 

could also be involved in activating Mklp2 in cells by exogenously expressing fragments of GFP- 

 

Table A1.1 Localization of Mklp2 in cells expressing GFP-INCENP fragments 

 

GFP-INCENP (aa) Endogenous Mklp2 Mklp2-mCherry 

1-680 Midzone Midzone 

1-500 Cytoplasmic Midzone (sometimes 

50-680 Cytoplasmic Cytoplasmic 

50-500 Cytoplasmic Cytoplasmic 
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INCENP and examining the C phase localization of endogenous or transiently expressed Mklp2.  

The results of this analysis are summarized in Table A1.1.  Briefly, we observed that both the triple 

helix-forming domain of INCENP (aa 1-50) and the MT-binding region of the SAH (aa 500-680) 

were required to promote midzone localization of Mklp2.  This led us to hypothesize that Mklp2 

binds the CPC through the triple helix, and INCENP-MT binding may serve to increase 

processivity of Mklp2 on MTs. 

 We next investigated the single molecule properties of Mklp2-GFP expressed in Cos7 cells.  

Lysates were collected from interphase or C phase (monopolar cytokinetic) cells (Hu et al., 2008) 

over-expressing Mklp2-GFP and lysate was introduced into flows cell containing bound GMPCPP 

stabilized MTs.  We observed that Mklp2-GFP was motile and moved at a constant velocity 

towards the MT end.  Mklp2-GFP from interphase lysates walked with a velocity of 6.3 ± 0.4 

µm/min (data represents mean ± SE, n=121 tracks) and Mklp2-GFP from C phase lysates moved 

with a similar speed (8.2 ± 0.6 µm/min, n=96 tracks).  We were encouraged that these velocities 

were in the range measured for CPC streaming on the early midzone during anaphase onset.  Single 

molecules of Mklp2-GFP had a dwell time of 11.1 ± 0.9 sec (interphase lysate, n=121 tracks) and 

8.6 ± 0.6 (C phase lysate, n=96 tracks) demonstrating that Mklp2-GFP is only briefly associated 

with the MT lattice.  In agreement with this, single molecules had a relatively short run length at 

1.2 ± 0.1 µm for Mklp2-GFP from interphase lysates (n=121 tracks) and 1.1 ± 0.1 µm for Mklp2-

GFP from C phase extracts.  These results show that regardless of cell cycle state, Mklp2-GFP 

from cell lysates walks processively along stabilized MTs.  However, the motor generally does not 

remain associated with the lattice for long and as such is usually unable to travel far enough to 

reach the MT end.  These findings created a foundation for us to understand and probe the dynamic 

properties of Mklp2 in vitro.  
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 Using the cell lysate system we could not confirm whether processive Mklp2-GFP 

molecules were associated with the CPC.  To investigate whether CPC binding affects the behavior 

of the motor, we decided to use recombinant protein.  Mklp2-His6-GFP was expressed and purified 

from insect cells in order to examine motor properties with and without the CPC (Figure A1.5 A).   

Figure A1.4 Single molecule analysis of GFP-
INCENP from cell lysates. A) Sample 
kymograph of GFP-INCENP walking on a 
stabilized MT (not shown). Right side of 
kymographs represents MT plus end. Scale bars 
15 s (y axis) and 2 µm (x axis).  B) Histograms of 
the velocity, run length, and dwell time of Mklp2-
GFP single molecules from interphase (black) or 
C phase (red) lysates.  n=121 (interphase) or 96 
(C phase).  
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It is important to mention that Mklp2 does not tolerate the addition of sucrose, and therefore, we 

supplemented glycerol as a cryo-preservant.  We first characterized the motility of Mklp2-His6-

GFP using in vitro MT gliding assays.  Mklp2-His6-GFP glides MTs at a rate of 1.1 ± 0.2 µm/min 

(data represents mean ± SE, n=27 events) which is slower than the velocity of Mklp2-GFP single 

Figure A1.5 Purification and characterization of Mklp2-His6-GFP and CPC triple helix. A) Left: 
Elution profile of Mklp2-His6-GFP over an S200 gel filtration column. Peak fractions (17-19) were 
combined and frozen. Right: Coomassie-stained gel of Mklp2-His6-GFP.  Molecular weight standards 
are indicated in kDa. B) Left: Coomassie-stained gel of 5 µg or 10 µg of CPC triple helix. Right: Western 
Blot of CPC triple helix probed for survivin. Molecular weight standards are indicated in kDa. C) 
Quantification of MT gliding velocities for Mklp2-His6-GFP with and without CPC triple helix. Data 
represents mean ± SE, n=48 events. D) Co-immunoprecipitation of Mklp2-His6-GFP with CPC triple 
helix. Left blots probed with anti-mCherry to detect GST-mCherry-INCENP.  Right blots probed with anti-
Survivin. Molecular weight standards are indicated in kDa.  
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molecules in cell lysates (Figure A1.5 C).  To test whether the CPC influences the activity of 

Mklp2, similar to centralspindlin (Tao et al., 2016), we also recombinantly expressed and purified 

the components of the CPC triple helix (GST- mCherry-INCENP1-50, His6-Borealin, and Survivin).  

The addition of triple helix to MT gliding assays did not significantly change the velocity of Mklp2 

(1.1 ± 0.3 µm/min, n=21 events, Figure A1.5 C).  We also attempted to analyze the single molecule 

behavior of Mklp2-His6-GFP in vitro, however, we found the motor to be highly salt- and pH-

sensitive, and were unable to replicate processive movement of the motor.  Again, the addition of 

the CPC triple helix did not affect the behavior of the motor in single molecule experiments.   

 Our observation that the addition of triple helix did not affect the behavoir of Mklp2 led us 

to question whether recombinant triple helix was forming a complex with Mkp2 in vitro.  To 

investigate whether our CPC construct could bind Mklp2-His6-GFP we performed co-

immunoprecipitation experiments.  Using anti-GFP beads we sucessfully pulled down Mklp2-

His6-GFP, however, we were unable to co-immunoprecipitate GST-mCherry-INCENP or Survivin 

(Figure A1.5 D).  This result suggests that the CPC triple helix complex and Mklp2 do not stably 

assoicate in vitro.  One possible explanation is that our INCENP fragment is too short to promote 

complex formation.  As INCENP contains a phospho-regulatory site (Thr 59) at its N-terminus 

that modulates Mklp2 association in cells, it is reasonalbe to think a longer fragment of INCENP 

would be more likely to bind Mklp2.  Alternatively, the placement of the protein tags may interfere 

with Mklp2 binding, and we could test this by switching tag position. 

 

CPC off-loading at the metaphase-to-anaphase transition 

 In cells depleted of Mklp2, the CPC remains associated with the chromosomes throughout 

mitotic exit (Gruneberg et al., 2004).  This observation led us to hypothesize that off-loading from  
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the centeromere may require MTs.  In support of this idea, we observed that Mklp2-depleted cells 

do not exhibit the characteristic “streaming” of GFP-INCENP in early C phase that we observe in 

unperturbed cells using live imaging.  To examine the role of MTs during CPC off-loading we 

utilized monopolar cytokinesis as a model system (Hu et al., 2008).  Cells were arrested as 

monopoles using the Eg5 inhibitor 10 µM STLC, and then exposed to DMSO or 5 µM nocadazole 

for 10 min to depolymerize MTs.  Cells were then forced to exit mitosis using the Cdk1 inhibitor 

30 µM purvalanol A (Hu et al., 2008) and fixed and stained to analyze the localization of the CPC 

Figure A1.6 MTs are not required for 
CPC off-loading from the 
centromere. A) Schematic of the 
experimental approach. Cells were 
fixed after incubation with DMSO or 5 
µM Nocodazole or following mitotic exit.  
B) Maximum z-projections of HeLa 
cells treated as described in A) and 
fixed and stained for tubulin (green) 
and ABK (red).  DNA was 
counterstained with Hoescht (blue). 
Scale bar is 10 µm. C) Quantification of 
the percentage of cells with 
centromeric CPC after treatment as 
described in A). Data represents the 
mean from one experiment, n>400 
cells.    
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(antiboides to INCENP and ABK).  As expected, 95% of cells  (n=105) arrested with STLC 

showed prominenent CPC localization at the centromere. In control cells treated with DMSO 

before mitotic exit, the CPC was targeted to midzone MT plus ends and the polarized furrow and 

only 27% of cells (n=101, Figure A1.6 A and B) showed centromere-localized CPC.  Nocodazole 

treatment before mitotic exit did not affect CPC centromere localization, 100% of cells counted 

showed CPC immunoflourescence at the centromere (n=100 cells).  When cells were forced to exit 

mitosis after nocodazole, the majority of CPC was cytoplasmic (Figure A1.6 B). Only a fraction 

of cells had any centromeric CPC (2%, n=101 cells) suggesting that MTs are not required to 

promote CPC off-loading as cells transition to C phase.  Given the finding that Mklp2 depletion 

abolishes off-loading, it is possible that Mklp2-dependent off-loading does not depend on MTs.  If 

Mklp2 does function to pull the CPC from the centromere at the metaphase to anapahse transition, 

we would predict Mklp2-depleted cells treated with nocodazole, would show centromeric CPC 

localization during C phase.  Furthermore, it would be usefult to identify mutations in INCENP or 

Mklp2 that abolish interactions in vitro, and test whether these mutants can promote centromeric 

off-loading of the CPC.  
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