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Chapter 1

Introduction

1.1 Abstract

The stochastic gradient descent algorithm for training neural networks is widely used

in many machine learning, especially deep learning tasks. The stochastic gradient descent

algorithm operates by choosing a small fraction of the training data, called a mini-batch,

at each iteration to compute an approximation of the gradient of the objective function

to be optimized. In practice, researchers tend to use small batch sizes, and the training

data fed into the neural network is usually of various categories and is in random order.

Researchers have shown the advantages of smaller sizes of mini-batches quantitatively,

yet in the past, there were very few formal investigations into the question of how the

order of training data would affect the training efficiency and generalizability of the neural

network. To gain more insight into this problem, we have investigated effects of training

order and the composition of a mini-batch by conducting a series of controlled experiments.

In our experiments, we retrained an existing neural network model for object recognition

with images from the ImageNet dataset and from a newly-collected dataset called the Toy-

Box dataset. We investigated using optimization techniques like genetic algorithms and

simulated annealing to optimize the order of training data. Also, we compared training

efficiency for different compositions of mini-batches.

1.2 Structure of the Thesis

The first chapter of this thesis will cover a brief introduction to the research problem that

will be thoroughly discussed in the later chapters and the structure of the thesis. The second

chapter will cover some background information and the goal of the research project. In the

third chapter, we will do a literature review regarding some previous influential artificial
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neural network models and discussions regarding optimization algorithms. In the fourth

chapter, we will cover the detailed problem statements, experiments completed, and report

on the results as well as some data analysis. In the fifth chapter, we will have a conclusion

and some discussion on the future research, followed by appendices and a list of references.
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Chapter 2

Background

2.1 A Brief History of Modern Artificial Neural Network

In this section, we will briefly discuss the evolution of artificial neural networks that

recently starts to draw a significant amount of attention not only from computer science

researchers but also from industries and the general public. There are numerous influ-

ential papers regarding the artificial intelligence and neural networks. However, we will

only mention some of them in the introduction based on some factors that can reflect their

relative impacts, such as the citation number, recommendations, and references made in

popular forums and blog posts [1][2][3][4].

The dream of bringing the intelligence to a machine can be retrieved from the early age

of modern computing when scientists started to formulate the computing theory and build

those gigantic programmable computers. The pioneer of modern computing, Alan Turing,

in his famous paper Computing Machinery and Intelligence, even provided us a series

of criteria to determine whether a machine was intelligent or not [5]. Since then, those

criteria, also known as the “Turing Test,” were frequently used in the pursuit of machine

intelligence.

Before the modern artificial neural network came into being, scientists who were work-

ing in this field got most of the inspiration from cognitive systems. During this period,

researchers studied brains as well as neurons and tried to mimic the mechanisms behind

those complex yet well-organized infrastructures. In the early 1950s, Walter Pitts and War-

ren McCulloch in their influential paper A Logical Calculus of the Idea Immanent in Ner-

vous Activity at first introduced the concept of a thresholded logic unit [6]. While it was

not until the late 1960s that another researcher Frank Rosenblatt created the real precursor

to the artificial neural networks we are using today, the perceptron. The concept of the pre-
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ceptron was introduced in Rosenblatt’s paper The Perceptron: A Probabilistic Model For

Information Storage And Organization In The Brain., and it was also a biologically inspired

algorithm [7]. However, compared to the thresholded logic unit, the perceptron went a step

further, since it could learn more complex skills or features quantitatively through trial and

error.

In 1986, decades after the introduction of the perceptron, a man called Geoffrey Hin-

ton, together with two other researchers, published a paper Learning representations by

back-propagating errors. In this paper, Hinton pointed out that people could use back-

propagation algorithm to efficiently train networks of neuron-like units, or artificial neural

networks as of today. Backpropagation algorithm operates by calculating the derivatives

of the cost function of an artificial neural network, and back-propagate errors to adjust the

weights of connections between layers in the network. The goal of this algorithm is to

quickly optimize an artificial neural network so that the difference between the output of

the network and the expected value could be minimized. By adding some “hidden” units

that are not visible to both the input and output layers, people could implicitly encode many

useful features, thus enabling the network to learn nonlinear functions [8]. Several years

ago, with the proof of the universal approximation theorem, people found that the artificial

neural network was able to learn not just nonlinear functions but virtually any functions [9]

[10].

The backpropagation algorithm was then used to train the convolutional neural network

for recognizing handwritten digits, and it started to show the potential in many other tasks

since then [11]. However, the real strength of artificial neural networks was hidden due

to the lack of computing power and collection of data until a breakthrough in 2012. This

time, Geoffrey Hinton, again, showed people that some of the algorithms (backpropagation

and gradient descent) used decades ago could also scale well using Graphics Processing

Units (GPUs). Hinton used two GPUs to train a rather deep artificial neural network with

two other researchers, and their resulting network model (AlexNet) was so influential that
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almost all the subsequent artificial neural networks were under the enlightenment of the

AlexNet [12]. The success of the AlexNet demonstrated not only the importance of com-

bining the power of hardware and software during the training process but also ways of

improving the training efficiency.

With the fast iteration of computer hardware and simplification of machine learning

related code libraries, more and more researchers in fields of computer science, mathe-

matics, biology, finance and even social science start to build and train their artificial neu-

ral networks. Researchers would also spend the time to fine-tune the parameters used in

their network models so that they could achieve higher accuracies. In practice, researchers

found many rules to help accelerate the training process and prevent the training from sev-

eral common problems like overfitting, vanishing and exploding gradient [13]. However,

compared to the novel applications of the artificial neural network, very few formal inves-

tigation has been done in the past for those rules aimed at increasing the training efficiency.

One reason is that the mechanisms behind the artificial neural network have not been fully

understood so that it is hard to prove the effectiveness of those rules quantitatively. An-

other reason is that researchers not in the fields of mathematics and computer science tend

to spend more time gathering information from various forums and blog posts for improv-

ing their network models, yet may not care so much about the validity of the information

as long as some improvements are observed.

2.2 Goal of the Research

The goal of this research project is to find out how different properties of training data

will affect the training efficiency when we are training on some datasets using a specific

model (the Inception-v3 model in our case, a pre-trained network model built into the

Google’s TensorFlow library) for objects recognition. Specifically, we are going to investi-

gate three aspects of the training data fed into the network model and examine their effects

qualitatively and quantitatively. First and foremost, we will do experiments to find out,
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given various training orders, if the network model would prefer a specific order of train-

ing data from another regarding the training efficiency, and if it is possible to optimize the

training order. Then, we will explore how the composition of a mini-batch (that we will use

in the stochastic gradient descent algorithm) would affect the training efficiency. Last but

not least, we will examine if the dataset we use would affect the training efficiency (e.g.,

if we could achieve different training efficiencies when we are using the ImageNet dataset

and the Toy Box dataset).
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Chapter 3

Literature Review: Advancements in Recent Neural Network Architecture and

Discussions of Optimization Algorithms

3.1 AlexNet

The paper that started a whole new era of machine learning and the artificial neural

network is ImageNet Classification with Deep Convolutional Neural Networks by Alex

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. These researchers used ImageNet dataset,

which contains over 15 million labeled images in 22000 categories, and trained a convolu-

tional neural network (AlexNet) on two Nvidia GTX 580 GPUs for five to six days [12].

Figure 3.1: AlexNet Architecture

The CNN introduced in the paper contained five convolutional layers and three fully

connected layers, shown in Figure 3.1. The final layer used a 1000-way softmax so that the

model could calculate a probability distribution over 1000 class labels for prediction. In

the paper, researchers used Rectified Linear Units (ReLUs), and the ReLUs could signifi-

cantly accelerate the training process compared to a traditional network with tanh neurons.

Besides, researchers applied data augmentation techniques and dropout layers to reduce

overfitting problems that were common in training the convolutional neuron networks. Re-

searchers used a variant of the CNN model in the paper to attend ILSVRC-2012 competi-
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tion (ImageNet Large-Scale Visual Recognition Challenge) and achieved a winning top-5

test error rate of 15.3% (top-5 test error is the error that the correct label is not within the top

five predictions from a model). Compared to 26.2% top-5 test error rate by the second-best

model, the AlexNet was a big step ahead.

3.2 ZF Net

After the AlexNet, another influential artificial neural network was introduced in ILSVRC-

2013, which won the first place with an error rate of 11.2%. This new network (ZF Net)

was built by Matthew Zeiler and Rob Fergus by fine-tuning the AlexNet introduced in 2012.

Matthew Zeiler and Rob Fergus wrote the paper Visualizing and Understanding Convolu-

tional Networks, in which they reduced the filter size from 11*11 to 7*7, and the stride

of convolution from 4 to 2, so that relevant information will not be easily skipped in the

training process [14].

Figure 3.2: ZF Net Architecture

Figure 3.3: Visualizations of Layer 1 and Layer 2
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The structure of the ZF Net was quite similar to that of the AlexNet, with some im-

provement, yet the more important contribution of both researchers was that they found a

way (Deconvolutional Network, or deconvnet) to visualize and examine the feature activa-

tion. The deconvnet could help researchers not only to understand the infrastructure and

mechanisms of a CNN better but also to gain insight for fine-tuning the network.

3.3 VGG Net

With the simplicity and depth in mind, Karen Simonyan and Andrew Zisserman built a

19-layer CNN (also known as VGG network, since both researchers were from the Oxford

University’s renowned Visual Geometry Group). Compared to the AlexNet’s 11*11 filters

and ZF Net’s 7*7 filters, the very deep convolutional network created by two researchers

in 2014 used small 3*3 filters and 2*2 maxpooling layers throughout the whole network.

However, after each maxpooling layer, the number of filters doubled in the network. By

shrinking the spatial dimensions, researchers managed to balance the network by increasing

the depth of the network. To train such a deep artificial neural network, researchers used

4 Nvidia Titan Black GPUs, and it took over two weeks to train a single network [15]. It

was apparent that with more complex network structures, it would take much longer time

and higher-end hardware to train CNNs. The VGG network, although not the winner of

ILSVRC-2014 with its error rate of 7.3%, showed us that the hierarchical representation of

visual data could work better with a deeper network of layers.

3.4 GoogLeNet

In ILSVRC-2014, the first place was taken by the GoogLeNet, a CNN built by re-

searchers from Google Inc., University of North Carolina (Chapel Hill), University of

Michigan (Ann Arbor) and Magic Leap Inc. The GoogLeNet had a top-5 error rate of 6.7%

in the ILSVRC-2014, and it contained 22 layers, which was even more than the number of

layers in the VGG Net.
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Figure 3.4: Full Inception Module of GoogLeNet

The GoogLeNet introduced the inception module, which, instead of stacking layers of

neurons, used a spatially spread-out cluster. The inception module allowed pieces in CNN

to operate in parallel. Researchers also solved the problem of having too many outputs

from an inception module by applying dimensionality reduction techniques [16]. With

the use of inception architectures, researchers were able to add more stages and increase

the width of each stage in a CNN without largely increasing the computational resources

and complexity. Thus, although the GoogLeNet had more layers than any other CNN

models that won the ILSVRC in previous years, the GoogLeNet contains 12 times fewer

parameters than the AlexNet from two years ago. Besides, it only took researchers a few

high-end GPUs and a week to train the GoogLeNet, a much faster process than the training

of the VGG Net.

3.5 Microsoft ResNet

In ILSVRC-2015, researchers from Microsoft Research Aisa introduced their incredi-

ble deep residual learning framework. An implementation of the residual learning frame-

work was the Residual Network or ResNet, which won the first place in ILSVRC-2015

with a classification error of 3.6%. This new network contained 152 layers and was trained
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with 8 GPUs in no more than three weeks [17].

Figure 3.5: A Residual Block in ResNet

Researchers found that by letting stacked layers to fit a residual mapping, instead of

the desired mapping, the CNN could get better optimization during the training process,

and alleviate the network degradation problems. A building block of the residual network

follows a Conv-ReLU-Conv structure, a rather straight-forward and elegant structure. This

improvement on the neural networks, with more layers, helped the model to learn much

more efficiently, not only on the ImageNet dataset but also on the CIFAR-10 dataset. Re-

searchers also did some experiments and found that stacking layers on top of each other

won’t provide further improvements on a CNN; on the contrary, an overly-layered CNN

would easily suffer from overfitting problems.

3.6 Insights into Stochastic Gradient Descent Algorithm

One of the pioneers of the artificial neural network, Yann LeCun, advocated the use of

stochastic gradient descent in a chapter of the book Neural Networks: tricks of the trade.

He systematically provided many heuristics for better training a neural network. One of

the heuristics he gave was to shuffle the training data. The intuition behind this tip is that

artificial neural networks learn the quickest through the most unexpected examples [13].

During the time LeCun wrote the book, it was still hard to tell whether a training example

was information rich or not. Thus, LeCun pointed out that a straightforward, yet effective
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way was to make sure that the successive training examples are of different classes. Since

from the intuition, data from different classes is likely to contain different features and vice

versa.

Another researcher who has provided us some insight into the order of training data

is Leon Bottou. Bottou did several experiments regarding the convergence speed of the

stochastic gradient descent algorithm, in which he compared three different strategies for

randomizing the order or training data. The first strategy is called random, and a specific

number of training examples are selected uniformly from the entire training dataset. The

second strategy is called cycle, and the training examples in each mini-batch are sequen-

tially selected from the shuffled training dataset. The third strategy is called shuffle, and

the training examples are selected sequentially from the training dataset, while the dataset

is shuffled at each iteration in the training process. Bottou found that the second strat-

egy, cycle, performed the best since the strategy could result in the fastest convergence of

the stochastic gradient descent. The random strategy led to a slower convergence, and the

shuffle strategy led to a more chaotic convergence, which was also not ideal [18]. The log

convergence of the algorithm using various strategies are shown in Figure 3.6. The x-axis

counts the number of epoch, and each epoch contains 781265 iterations; the y-axis counts

the log convergence rate of the algorithm. Bottou did not, however, complete experiments

to compare the speeds of convergence for any specific orders of training data; besides, he

did not explore how the convergence speed would be affected without randomization of the

training dataset.
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Figure 3.6: Convergence of the Stochastic Gradient Descent Algorithm for Three Example
Selection Strategies
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Chapter 4

Research Questions and Problem Solving

4.1 Phase I: Effects of the Order of Training Data on the Training Efficiency

4.1.1 Research Problems

Randomizing the order of training data has been considered to be one of the most useful

approaches to prevent the training from overfitting. From the mathematical perspective, the

cost function we use to measure an artificial neural network in a specific stage of the training

process has non-convexity problems. If we do not randomize the order of training data, it

is possible that we would finally get stuck in local minimum. Various orders of training

data, by the end of a training process, would lead us to different places towards either

local minimum or global minimum, resulting in various training and evaluation accuracies.

If we define the training efficiency to be the decrease of evaluation accuracy in a unit of

time, then, in theory, the order of training data should affect the training efficiency to some

extent.

One of the pioneers of artificial neural networks, Yoshua Bengio, and his fellow re-

searchers had the hypothesis that people could guide the training process by changing the

order of training samples and dramatically increase the training speed. Researchers did ex-

periments regarding the curriculum learning, in which they compared the speed for training

a network for classifying geometric shapes with and without the curriculum learning tech-

nique. The result of the experiment showed that by feeding in the basic shapes first and

then feeding in the more complex shapes, researchers could achieve a significantly higher

training efficiency, compared to feeding in both kinds of shapes randomly (regardless of the

complexity) [19]. Some following experiments completed by researchers from the Deep-

Mind even showed the possibility of automating the curriculum learning process (with
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LSTM) [20].

In the curriculum learning process, people would qualitatively classify training data into

various categories based on complexity, and reorder the training data accordingly. How-

ever, MIT researchers found that to evaluate the quality of a particular training sample, they

could calculate the performance of a subset of the training data, which includes that partic-

ular sample and all samples that have negative impacts on the training performance. This

new criterion found by MIT researchers were proved to be very effective for optimizing the

training order in the object detection and scene recognition tasks[21].

Although experiments have shown possibilities of reordering the training data based on

specific criteria for improving the training efficiency, it is still difficult for us, in practice,

to adapt those methods with our datasets and neural network models. One apparent reason

is that either dataset we will train on shares different properties and image distributions

comparing to datasets used in previous experiments by other researchers. For example, in

curriculum training experiments, researchers worked with either moderately simple images

(geometric shapes) or even non-images (texts, which should be trained with RNNs). Be-

sides, although PASCAL 2007 dataset used by MIT researchers is similar to the ImageNet

dataset, it is still different from the Toy-Box dataset in many ways. Another reason is that it

is unclear if the training efficiency improvement would compensate for the time we use to

find the optimal order of training data, considering that the reordering of a gigantic dataset

itself is time-consuming, let alone the generation of such optimal order. To follow the

procedure described by MIT researchers, we not only have to find all samples that could

negatively affect the training efficiency at first but also complete an enormous amount of

training processes to evaluate the quality of each sample, before we could even start the

optimization of training order.

In the first stage of this research project, we will examine how the different order of

training data will affect the training efficiency. We will use the stochastic gradient de-

scent algorithm and compare multiple randomized order of training data, and check if any
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specific ordering is statistically better regarding the training efficiency than the others.

4.1.2 Experiments, Results and Analysis

To make the research project feasible, instead of training a CNN from scratch, we will

use the Inception-v3 model provided by the Python TensorFlow library. The reason is that

the Inception-v3 model has already been trained on the ImageNet dataset for its hidden

layers, with the final layers (fully-connected and softmax layers) left out to be trained with

our datasets, thus saving the time for experiments. Note that in the Inception-v3 model, all

hidden layers together provide us various features of an object and training on the final fully

connected layer is to map related features to specific objects. By simplifying the training

process, we can save a considerable amount of time comparing to training from scratch,

which can take up to two weeks for a single training process.

4.1.2.1 General Hyperparameter Settings

Since the Inception-v3 model was trained with the ImageNet dataset, we decided to at

first retrain the last layer of the network model with selected images from the ImageNet

dataset. For the ImageNet images we selected, there were 12 categories of objects (air-

plane, ball, car, cat, cup, duck, giraffe, helicopter, horse, mug, spoon, and truck), and each

category contained 1000 images for training and 100 images for evaluating. By completing

some experiments, we found that the retraining process was relatively fast with a learn-

ing rate 0.1 and a batch size of 200. The resulting network model performed well in the

evaluation, as shown in the Figure 4.1. Besides, since we use the mini-batch technique for

stochastic gradient descent algorithm, to make sure that all the training data would be fed

into the network model in a particular order, we could randomize the order of training data,

and sequentially select images from the training dataset into the mini-batch.

To measure the training efficiency of a training process, we would use the value of

average evaluation error in a certain number of training iterations as an approximation.
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Figure 4.1: A Visualization of the Typical Training Process

With limited time and hardware resources, we would also restrict the number of iterations

to retrain the Inception-v3 model to be 200, since most of time both the evaluation accuracy

and cross entropy (output of our cost function) would become stable after 200 training

iterations. As a result, we could complete as many experiments as possible without losing

too much generality.

4.1.2.2 Algorithms for Optimizing the Order of Training Data

Since we assume that order of training data would affect the training efficiency, it would

also be reasonable to assume that with various algorithms for optimization used in artificial

intelligence, we could gradually improve the quality of the training order, so that the train-

ing efficiency would increase over time. In other words, by optimizing the order of training

data for a certain number of training processes, we could expect a lower average evaluation

error within a training process.

For our control group, we would naively apply the randomization technique for the

order of training data, and that is to say, we would randomize the order of training data

before each training process begins.
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One optimization algorithm we decided to use was the genetic algorithm, which was in-

spired by the natural selection, a key concept of the modern biology. The natural selection

was popularized by Charles Darwin. This concept was elaborated in Darwin’s influen-

tial book On the Origin of Species by Means of Natural Selection, or the Preservation of

Favoured Races in the Struggle for Life, and the concept then appeared in the published pa-

per whose coauthor was Alfred Russel Wallace. The genetic algorithm mimics the behavior

of the natural genes and follows the initialization, selection, crossover as well as mutation

operations [22]. To apply the genetic algorithm in our experiments, as shown in Figure 4.2,

we would run a certain number of training process (200 iterations each) each time, and sort

their average evaluation error in the ascending order. Then we would pick a certain number

of best ordering (e.g., first half), and do pairwise exchanges of some particular fragments of

those ordering. For the mutation operations, we would choose a random fragment of each

ordering and do extra randomization on the fragment. In practice, the selection operation

requires us to complete multiple training processes, which means, for each training process

with the random ordering in our control group, we would run multiple training processes

using the genetic algorithm. Thus, the genetic algorithm tends to run much slower than our

control group.

Figure 4.2: Genetic Algorithm Procedure

Another optimization algorithm we decided to use was a memory-less stochastic mod-

ification of the hill climbing algorithm, the simulated annealing algorithm. The simulated
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annealing is a technique used in metallurgy that alters the physical or chemical properties

of a material to reduce its defects. The simulated annealing requires a heat treatment with

controlled cooling, and the cooling process is usually interpreted as a gradual decrease in

the probability of accepting worse solutions during the global search. This technique is

often used as a heuristic to increase the chance of getting out of a local optimum [23]. To

apply the algorithm, as shown in Figure 4.3, we should start with a random order of training

data, and do randomization fragment by fragment on that ordering. At first, we will manu-

ally set a relatively high probability of accepting a worse solution (an order of training data

that produces higher evaluation error). Each time we get a better solution, we will accept

that better solution. However, if we get a worse solution, we will choose to keep or discard

the worse solution based on the acceptance rate, after which we will decrease the accep-

tance rate until the acceptance rate becomes a small value that closes to zero. When the

acceptance rate is so close to zero, or below a certain preset threshold, we will only accept

the better solution at each step. With the assumption that the order of training data could

affect the training efficiency, we could expect to get a better ordering using the simulated

annealing algorithm compared to a random order of the training data.

Figure 4.3: Simulated Annealing Procedure

In the first series of tests, we assumed that the average evaluation error of a specific
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training order would be within a Gaussian distribution (which contains all the average eval-

uation errors a specific training order could generate). We used the ImageNet dataset and

tested on the control group (randomizing the training order), the training order optimized

with the genetic algorithm and the training order optimized with the simulated annealing

algorithm. For these three groups of tests, we ran 500 trials of training processes each and

calculated the average evaluation error for each process. During each training process, we

ran 200 iterations using the Inception-v3 algorithm, whose learning rate was 0.1 and whose

batch size was 200. Besides, to get 500 data points for the training process optimized by

the genetic algorithm, since we only recorded the best one training order out of five each

time, we will have to run 2500 trials of the training process. After running 2500 trials of

training process for the genetic algorithm group, and 500 trials of training process for the

other two sets of experiments, we used the linear regression algorithm to approximate the

trend of the average evaluation error for each group. If the optimization algorithms are

effective, average evaluation errors are expected to exhibit a decreasing trend, as shown

in Figure 4.4. Three subplots in Figure 4.5 show the data of average evaluation errors (as

black dots) and their trends (as blue lines). Sub-plots from left to right demonstrate aver-

age evaluation errors generated with strategies Random Selection, Genetic Algorithm and

Simulated Annealing.

The visualization of these results shows that the average evaluation error is neither

increasing nor decreasing with and without optimization. One possible reason is that a

single average evaluation error of a specific training order may not be enough to reflect the

quality of that training order. We may need at least an estimated distribution of average

evaluation errors to denote the training efficiency of a specific training order. Another

reason is that the optimization algorithm may not be effective for improving the order of

training data, or it would require much more training processes for the improvement to be

visible in plots, which impairs the purpose of the optimization.

In the subplot for training process optimized by the genetic algorithm, we can see an
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Figure 4.4: Expected Trend for Average Evaluation Errors with Optimization

Figure 4.5: Average Evaluation Errors Generated Without and With Optimization on the
Training Order
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overall lower evaluation error, because each data point for evaluation error gets plot is the

best one among the five being calculated. Besides, it took much longer (as much as five

times) to optimize the order of training data by the genetic algorithm, which was much

longer than the training process without optimization or optimized by the simulated an-

nealing. Thus it is hard to justify if the results from training process optimized by the

genetic algorithm is comparable to results from other two groups. To save the time for

further experiments, we would only compare results from our control group and the group

optimized by simulated annealing algorithm in later trials.

4.1.2.3 Distribution of the Average Evaluation Error

From the previous experiments, we know that both optimization algorithms did not

show clear signal that they could gradually improve the order of training data. Thus, our

hypothesis might be flawed. Specifically, we need to test if average evaluation errors of a

specific training order would fall into a Gaussian distribution and if lower evaluation errors

would reflect overall better orders of training data.

We recorded the order of training data corresponding to the lowest and highest aver-

age evaluation errors (as shown in Figure 4.6) for both the randomized training order and

optimized training order (by simulated annealing algorithm) in the previous experiments

and ran 100 trials using each training order. We plot the average evaluation error of each

trial and their means across 100 trials for the best and worst order without optimization in

Figure 4.7, and with optimization in Figure 4.8. However, just from four plots, we could

not tell if a given data point (an average evaluation error) is corresponding to the training

order that originally generated the highest or lowest average evaluation error, and if that

training order is optimized or not.

Note that in both the Figure 4.7 and Figure 4.8, it is apparent that even we only use

a specific training order and fixed hyperparameter settings, we would get various average

evaluation errors distributed in a particular range. The result we get is not a fixed number
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Figure 4.6: The Best and Worst Training order

since the network model would randomly initialize the weights for the final fully-connected

layer before training. Thus, even following a fixed training order and updating weights for

the final layer of neurons in the same way, with different starting weights at the beginning,

we would get different average evaluation errors after each trial of the training process.

Figure 4.7: Average Evaluation Errors Generated By the Best and Worst Training Order
(Random Selection)

We did further inspection of distributions by plotting the probability density estimation

curves of average evaluation errors in four experiments done previously (100 trials each) in

Figure 4.9. We can see that all four curves, although not perfect, appear to be Gaussian dis-

tributions with similar means and standard deviations, and we could not easily distinguish

them from each other.
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Figure 4.8: Average Evaluation Errors Generated By the Best and Worst Training Order
(Simulated Annealing)

Figure 4.9: Probability Density Estimations of Average Evaluation Errors (Best and Worst
Training Order, With and Without Optimization)
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Since a specific order of training data might result in a range of average evaluation

errors, the training order that happens to generate a single low average evaluation error

(high training efficiency) is not necessarily a preferred training order. However, since the

average evaluation errors that the order of training data can generate would roughly fall

into a Gaussian distribution, we could still expect to see smaller means of such distributions

that correspond to our preferred training orders (order that would result in lower average

evaluation errors). Thus, in our next experiment, instead of using the training order that led

to the lowest and highest evaluation errors, we sorted the orders of training data and picked

top 10% and bottom 10% of them (top 50 and bottom 50 orders of training data). We

used the training orders that resulted in top 10% and bottom 10% average evaluation errors

and re-ran the training process for 50 trials each, and plotted probability density estimation

curves of their average evaluation errors, shown in Figure 4.10.

Figure 4.10: Probability Density Estimations of Average Evaluation Errors (Top and Bot-
tom 10 Training Orders, With and Without Optimization)

From the result, we could still see that those distributions of average evaluation er-

rors are roughly Gaussian distributions, and they share similar mean values and standard

deviations. Thus, strictly from a statistical perspective, it is highly unlikely that average

evaluation errors for the best or worst training orders with or without optimization are from

multiple distributions. We are confident to say that the order of training data (the selected
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subset of the ImageNet dataset) has no noticeable effect on the training efficiency, and the

simulated annealing algorithm could not provide an obvious improvement to the training

order.

4.1.2.4 Effects of Learning Rate and Batch Size

Our previous experiments showed that the order of training data has almost no effects

on the training efficiency, and an algorithm like the simulated annealing cannot help to

improve the training efficiency by optimizing the training order. However, in previous

experiments, to better understand factors that would affect the training process, we used the

average evaluation errors to measure the training efficiency and visualized the distribution

of the average evaluation errors. It turned out that those methods were quite helpful.

We used the same technique and did the visualization to explore how the learning rate

and batch size would affect the training efficiency. By randomizing the order of training

data each time, we completed 1000 training processes for the learning rates 0.1, 0.4 and 1.6

respectively with a fixed batch size 200 and ran 200 iterations in each training process. As

we can see from results in Figure 4.11 and Figure 4.12, with higher learning rate, we would

get larger average evaluation error (or lower learning efficiency). The resulting distribution

of average evaluation errors moves to the right as we increase the learning rate and the

standard deviation of the distribution curve also becomes larger. Besides, we can see that

the peak of the distribution estimation curve becomes lower as we increase the learning

rate, which means that there are less average evaluation errors close to the mean of that

distribution.

We completed 1000 trials of training processes using randomized training order for

the batch size 200, 400 and 800 respectively, with a fixed learning rate 0.1 and ran 200

iterations in each training process. This time, from the results in Figure 4.13 and Figure

4.14, we found that with the same learning rate and the number of training iterations, we

could get smaller average evaluation error (or higher training efficiency) with reasonably
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Figure 4.11: Average Evaluation Errors Generated by Random Training Orders with Vari-
ous Learning Rates

Figure 4.12: Probability Density Estimations of Average Evaluation Errors by Random
Training Order with Various Learning Rates
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larger batch sizes. In the plot for the distribution of average evaluation errors, we could

see that the distribution curve would move to the left as we increase our batch size. This

time, the standard deviation of the distribution curve would largely decrease as we increase

the batch size. It is even more apparent that the peak of the distribution estimation curve

becomes higher as we increase the batch size.

Figure 4.13: Average Evaluation Errors Generated by Random Training Orders with Vari-
ous Batch Sizes

Figure 4.14: Probability Density Estimations of Average Evaluation Errors by Random
Training Order with Various Batch Sizes

In all of our experiments above, we could observe that the standard deviation of a spe-

cific distribution (of average evaluation errors) is smaller when the mean of that distribution

is also smaller, and this happens when we are using smaller learning rates or larger batch

sizes while keeping other settings the same during the training process. This property of
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the result can be explained by the way we measure the training efficiency. For better expla-

nation, we will divide a training process into two stages. In the first stage, the evaluation

error drops quickly, and variances of evaluation error at each training step between dif-

ferent trials are large. In the second stage, the evaluation error would fluctuate within a

small rage, and variances of evaluation error between different trails are relatively small

compared to the first stage. It is apparent that within a certain number of training iterations

(200 iterations in our case), the faster our evaluation error drops, the faster our network

model can reach the stage where the evaluation errors become relatively stable. Thus, if it

only take very few training iterations to reach the second stage of a training process, the

evaluation errors within the second stage would contribute more to the average evaluation

error of this training process. In this case (when we are using larger batch sizes or smaller

learning rates, so that the evaluation error drops quickly during the first stage of training),

by performing multiple trials of training process, we will have smaller variances between

each trial, resulting in a smaller standard deviation in the distribution. Note that if we are

using other criteria to measure the training efficiency, the plotting for the training efficiency

distribution might show different properties.

Figure 4.15: Average Evaluation Errors Generated by Optimized Training Orders with
Various Learning Rates

With the same settings, we completed another two series of experiments, in which we

used the training order optimized with simulated annealing algorithm and we examined

how the learning rate and batch size would affect the training efficiency (average evalua-

tion error). The visualization of the average evaluation errors and their distributions are
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Figure 4.16: Probability Density Estimations of Average Evaluation Errors by Optimized
Training Order with Various Learning Rates

shown in Figure 4.15 to Figure 4.18. From the result, we can see that the learning rate and

batch size would affect the average evaluation errors the same way as they did without the

optimization of the training order.

Figure 4.17: Average Evaluation Errors Generated by Optimized Training Orders with
Various Batch Sizes

4.1.2.5 Effects of Training Order on Toy-Box Dataset

Besides the data we selected from the original ImageNet dataset, we also used a newly

collected dataset called Toy-Box to verify if the order of training data would affect the

training efficiency. The Toy-Box dataset, which contains a collection of first-person s, is

used to learn how the human beings would observe objects for image recognition tasks.
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Figure 4.18: Probability Density Estimations of Average Evaluation Errors by Optimized
Training Order with Various Batch Sizes

Researchers used wearable cameras to record videos in first-person views that contain dif-

ferent objects and gathered them into this new dataset [24]. With different frequencies of

capturing frames from videos, researchers could get various numbers of images per object.

Different from the images in the ImageNet dataset, which contains various objects with

utterly different backgrounds, the Toy-Box dataset may contain many images of the same

object in similar backgrounds. Both datasets contain 12 categories of objects. However, the

Toy-Box dataset contains only 15 objects (each object appears in over 170 images in the

dataset) for each category, while the ImageNet dataset we used contains 1000 objects per

category. Given the difference in composition between two datasets, we decided to explore

if the order of training data would also not affect the training efficiency using non-typical

Toy-Box dataset.

To make the experiments comparable, we selected 1000 images per category for train-

ing and 100 images per category for validation from the Toy-Box dataset. We did this by

holding 3 objects in each category to be used for validation, and the left 12 objects in each

category for training. Besides, we did make sure that the number of each object used in

the training and validation sets to be roughly the same. We ran 500 trials of the training
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Figure 4.19: Probability Density Estimations of Average Evaluation Errors by Optimized
Training Order with Various Batch Sizes (Toy-Box Dataset)

process with and without optimization by the simulated annealing and recorded training

orders that resulted in the top 10% and bottom 10% of average evaluation errors (with and

without optimization). Then we re-ran the training process 50 trials for each training order

and plot probability density estimation curves of their average evaluation errors, shown in

Figure 4.19. From the result, we can see that that all four curves (top 10% and bottom 10%

training orders with and without optimization) denote Gaussian distributions with simi-

lar means and standard deviations, and we could not easily distinguish them from each

other. Just like the result from the previous experiments in which we used images from

the ImageNet dataset, we found that the order of training data would not affect the training

efficiency. Besides, since it is hard to tell if a specific training order is better than another

one, it is also hard to verify if we could optimize a training order or not.
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4.2 Phase II: Effects of the Mini-Batch and Training Data Composition on the Training

Efficiency

4.2.1 Research Problems

In Phase I of our research project, we explored how the order of training data would

affect the training efficiency, in which we used the stochastic gradient descent and back-

propagation algorithm to optimize weights of connections between layers in the artificial

neural network. In Phase II, we will focus on the problem of how the composition of a

mini-batch used in stochastic gradient descent could affect the training efficiency.

Stochastic gradient descent is a variant of the gradient descent, and another variant

of the gradient descent is batch gradient descent. Batch gradient descent calculates the

gradient using the entire dataset, while stochastic gradient descent calculates the gradient

using a single or several samples from the dataset at a time. Stochastic gradient descent

algorithm is empirically and theoretically better than batch gradient descent algorithm,

and in practice, researchers use the mini-batch technique for stochastic gradient descent

almost all the time. Batch gradient descent algorithm would drive the gradient more directly

towards the global or local minimum, yet it takes too much time to apply. Stochastic

gradient descent algorithm tends to drive the gradient in a zigzag manner towards the global

or local minimum. However, an advantage of the stochastic gradient descent is that, with

proper parameter settings, it can drive the gradient out of a local minimum.

For stochastic gradient descent algorithm, both the size and composition of a mini-

batch can affect the training efficiency. In the past, it has been observed that the large

batch size could cause significant degradation in the quality of a network model. With a

series of experiments, researchers also showed numerically that large-batch methods would

cause the network model to be lack of generalizability[25]. As a result, an inferior network

model trained within a certain number of iterations indicates a lower training efficiency. For

the composition of a mini-batch in the stochastic gradient descent algorithm, researchers
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showed convergence speed difference when using different methods for randomizing the

training data in a mini-batch [18]. However, no experiments have been done systemati-

cally to investigate the effects of not using randomization in the stochastic gradient descent

algorithm.

In the second stage of this research project, we will investigate qualitatively how a

mini-batch can harm the training efficiency without data randomization. Specifically, we

will design various compositions of a mini-batch and examine how different compositions

of a mini-batch could affect the training efficiency using both the ImageNet dataset and

Toy-Box dataset. Besides, we will explore if the different compositions of the training

data, which would explicitly affect the composition of a mini-batch, would indirectly affect

the training efficiency.

4.2.2 Experiments, Results and Analysis

4.2.2.1 Three Different Compositions of Mini-Batch

To test how compositions of mini-batches would affect the training efficiency, we de-

signed three different modes to form a mini-batch.

The first mode is called uniform mode. In each mini-batch, we will select the same

number of images from each category, either sorting them based on particular criteria or

keeping the order inside a mini-batch randomized, as shown in Figure 4.20 (a specific color

denotes a specific category of objects). For example, if the size of a mini-batch is 100, and

we have 10 categories of objects, then we will select 10 objects from each category for

each mini-batch. To make sure that every single image in the training dataset will be used

in the training process for the same number of times, we will at first randomize the order

of images for each category, and sequentially select the same number of images from each

category. Besides, we also have to carefully calculate and choose the proper batch size as

well as the number of images used in training for each category.
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Figure 4.20: Uniform Mode

The second mode is called alternate mode. Images inside a mini-batch are of the same

category. However, we will change to another category of objects in the subsequent mini-

batch, as shown in Figure 4.21. For example, if the size of a mini-batch is 100, then at the

first step of training, we will feed in 100 images of category A; at the second step, we will

feed in 100 images of category B, and so on. For this kind of composition, we also have to

apply similar method mentioned above to make sure that every single image in the training

dataset will be used for the same number of times.

Figure 4.21: Alternate Mode

The third mode is called sequential mode. Images inside a mini-batch are of the same
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category, and we will sequentially pick images from a particular category before we start

to use images from the subsequent categories, as shown in Figure 4.22. For example, if the

size of a mini-batch is 100, and each category contains 1000 images, we will keep using

100 different images of the category A at each step, until we have used all images from the

category A (which will take 10 iterations). Then we will start to use images from category

B, and so on. For the third kind of composition, we also have to make sure that every single

image in the training dataset will be used for the same number of times during the training

process.

Figure 4.22: Sequential Mode

4.2.2.2 Effects of Mini-Batch Composition

In our experiments for exploring how the composition of a mini-batch would affect the

training efficiency, we will train the Inception-v3 model on selected images from the Toy-

Box dataset, and evaluate on both selected images from the Toy-Box dataset and ImageNet

dataset. Specifically, for the training dataset, we will select 1080 images per category from

the Toy-Box dataset. Each category will contain 12 different objects, and each object will

appear in 90 different images in the training dataset. For each category, 3 objects, other

than those 12 objects used for training, will be used for evaluating the network model. We
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will make sure that the number of images in the evaluation set to be 100 per category, and

keep the number of images for each object in a category roughly the same (about 33 images

per object).

For the training process, we will use a batch size of 45, a learning rate of 0.01, and

3600 training iterations in total, so that in every experiment to be completed, every single

image in the training dataset will be used for the same number of times. Besides, during

each training step, we will calculate the training error right before we feed a mini-batch of

data into the network model to train so that we could know how the current model would

perform on the current batch of data before the model is overfitting after the current step of

training.

We plot curves of the training error, evaluation error (from both the Toy-Box and Ima-

geNet dataset), and the cross-entropy for each mode of mini-batch composition in Figure

4.23, Figure 4.25 and Figure 4.27. For each mode, we also trained for another 240 itera-

tions, so that we can get three extra plots to show more detailed trends of curves, as shown

in Figure 4.24, Figure 4.26 and Figure 4.28.

Figure 4.23: Training Process (Uniform Mode, 3600 Iterations)

Figure 4.23 and Figure 4.24 show training process when we were using the uniform

mode for the batch composition. We can see that the training error, evaluation error, and

the cross-entropy drop quickly during the first few iterations, and then slowly decrease,
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Figure 4.24: Training Process (Uniform Mode, 240 Iterations)

until the evaluation error of both the Toy-Box and ImageNet dataset reach 0.4 and 0.3

respectively. The convergence of the evaluation curves is quite chaotic, and it seems that at

the later part our training process, the training accuracy of the network model is not further

improved, or the improvement is too small to be visible from the plot.

Figure 4.25: Training Process (Alternate Mode, 3600 Iterations)

Figure 4.25 and Figure 4.26 show training process when we were using the alternate

mode for the batch composition. During the first few training iterations, the training error

is pretty high. The reason is that we calculate the training error right before we train the

network model, and the model is overfitting after each step since we would feed in the
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Figure 4.26: Training Process (Alternate Mode, 240 Iterations)

model with images of the same category every mini-batch.

Alternating the category of objects and the overfitting problems are also reflected in

the sustained and substantial fluctuation of the cross-entropy, which is an indication that

the way we feed in the training images is problematic. We can see that the cross-entropy,

training error and evaluation error dropped the most in the first 1000 iterations, yet failed

to maintain this trend later on.

Figure 4.27: Training Process (Sequential Mode, 3600 Iterations)

Figure 4.27 and Figure 4.28 show training process when we were using the sequential

mode for the batch composition. Both plots show apparent periodical patterns on both the
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Figure 4.28: Training Process (Sequential Mode, 240 Iterations)

training error and cross-entropy curves. Peaks of both curves are corresponding to the first

batches of each category used for training. In this mode, we also feed in the model images

of the same category at each step. However, when we start to feed in a batch of images

from a new category, the current network model is highly likely to categorize these images

to be of the previous category, which might cause an extremely high training error and

cross-entropy. The network model then quickly learn from the new category of objects and

start to be overfitting again.

Comparing to the cross-entropy in the previous experiment, cross-entropy we got using

the sequential mode showed even more substantial fluctuation, and it had a severe impact

on the training efficiency. We can see that with the same number of training iterations, the

network model could not even achieve the same evaluation error comparing to models we

trained using two other modes.

To more directly compare the training efficiency between three different modes, for

each mode, we completed the training process 50 trials using 1080 images per category

from the Toy-Box dataset, with a batch size of 45 and ran 240 iterations of the training

process. For reference, we also ran another 50 trials using the random mode in which we

randomly selected training images for every mini-batch. Then we plotted probability den-
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sity estimation curves of average evaluation errors (computed using the evaluation errors

against Toy-Box validation dataset) for all four modes. Distributions of average evaluation

errors are shown in the Figure 4.29.

Figure 4.29: Probability Density Estimations of Average Evaluation Errors For Four Dif-
ferent Modes

Just as reflected in the previous plots, for a training process of only 240 iterations,

we got the largest average evaluation errors with the sequential mode, followed by the

alternate mode. We got the smallest average evaluation errors with the uniform mode and

random mode. Surprisingly, comparing to the random mode, we got even smaller average

evaluation errors on average using the uniform mode. The reason uniform mode could

outperform random mode is that it is guaranteed in the uniform mode our network model

could learn from each category equally at each step so that the network model could more

easily overcome the initial overfitting problem, while it is not guaranteed when using the

random mode. Thus, with our current hyperparameter settings, it is not difficult to observe

that the more uniformly training data of each category we distribute within and across

mini-batches, the higher training efficiency we can get.

However, in the long run, we would expect to have smaller average evaluation errors

using the random mode, compared to the uniform mode. Considering that the network

model (Inception-v3 model in our case) has a considerable amount of neurons, the model
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can learn the order we feed in training data, just as many other seemingly trivial features. It

is possible that after epochs of training the network model would self-adjust to perform well

on images fed in following the predefined order in the uniform mode, thus experiencing

overfitting problems. As a result, although in the short run the uniform mode may benefit

our network model by feeding in all different training images during each epoch, in the

long run, the random mode is a better choice since it could more effectively prevent the

network model from overfitting.

4.2.2.3 Effects of Training Data Composition

Besides the way we form a mini-batch, to explore factors that may affect the training

efficiency, we also have to take into account the overall composition of the training dataset.

In previous experiments, we used 12 objects per category for training and got a reasonably

good training accuracy and efficiency (using the random mode or uniform mode) consid-

ering that the diversity of our training dataset is much worse than that of the ImageNet

dataset. In the following experiments, we will explore how the diversity of objects (num-

ber of different objects in the training dataset) and the number of different images per object

in the training dataset would affect the training efficiency.

To explore the effects of objects’ diversity, we will keep the number of images per cat-

egory to be 1080, and change the number of objects each category contains in the training

dataset. We will use the random mode (randomly select training images from the entire

training dataset) to form the mini-batch, with a batch size of 45, and run the training for

2880 iterations. We will investigate how the training accuracy and efficiency would change

when there are 2, 4, 6, ..., 12 objects per category (so that each object would appear in

roughly 540, 270, 180, ..., 90 different images) in the training dataset. For each experi-

ment, we ran 50 trials and plotted all the probability density curves of average evaluation

errors (computed using the evaluation errors against ImageNet validation dataset) in Figure

4.30.

42



Figure 4.30: Probability Density Estimations of Average Evaluation Errors For Various
Objects’ Diversities

We can see from the plot that when the diversity of objects in our training dataset is

relatively large, with the same number of iterations in our extended training process, the

network model will reach lower average evaluation error, an indication of higher training

efficiency. However, this result is corresponding to the training process with our current

settings, which has a large number of training iterations, and we also want to know how the

average evaluation error would change when we change the length of the training process

(number of training iterations).

We plot the change of average evaluation error up to a specific training step in our

training process. From the Figure 4.31, we can see that the relationship of average evalua-

tion errors in the first 300 training iterations for various numbers of objects in the training

dataset is not stable. Especially in the first 100 iterations, all curves intertwine with each

other. However, after a certain number of training iterations (1500 iterations in our case),

as shown in the Figure 4.32, we know that the relationship of average evaluation errors be-

comes stable. The more different objects we use in our training dataset, the smaller average

evaluation errors we could achieve in the long run.

To explore how the number of images per object would affect the training efficiency, we
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Figure 4.31: Change of Average Evaluation Errors in Retraining Process for Various Ob-
jects’ Diversities (300 Iterations)

Figure 4.32: Change of Average Evaluation Errors in Retraining Process for Various Ob-
jects’ Diversities (2880 Iterations)
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only have to keep the total number of images used in the training process the same (batch

size times number of training iterations) and change the number of images per object used

in the training dataset. We will still use the random mode (randomly select training images

from the entire training dataset) to form the mini-batch, with a batch size of 45, and run the

training for 2880 iterations. In the training dataset, there will be 12 objects per category,

and we will investigate how the training efficiency would change when there are 2, 4, 10,

20, 40, 60, 80, and 90 images for each object. For each experiment, we ran 50 trials and

plotted all the probability density curves of average evaluation errors (computed using the

evaluation errors against ImageNet validation dataset) in Figure 4.33.

Figure 4.33: Probability Density Estimations of Average Evaluation Errors For Various
Numbers of Images per Object

We can see from the plot that the distribution of average evaluation errors is much

fuzzier than expected. We can still find out, though, when there are more different images

per object in a category, we will get overall lower average evaluation errors, an indication

of higher training efficiency. However, there are also exceptions. For example, when there

are 10 images per object in our training dataset, we will get lower average evaluation errors

than if there are 20, 40 or even 80 images per object in the training dataset.

To get more insight into the change of average evaluation errors during the training

process, we plot trends of average evaluation error up to a specific training step for the
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Figure 4.34: Change of Average Evaluation Errors in Retraining Process for Various Num-
bers of Images per Object (300 Iterations)

different number of images per object in Figure 4.34 and Figure 4.35 (for 300 iterations

and 2880 iterations respectively).

Figure 4.35: Change of Average Evaluation Errors in Retraining Process for Various Num-
bers of Images per Object (2880 Iterations)

From both plots, we can see that when we used at least four images per object in out

training dataset, there would be no significant difference regarding the training efficiency.

Thus, with our current hyperparameter settings, the number of different images per object

in the training dataset does not have a significant impact on the training efficiency as long
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as that number is above some threshold, although it is still unclear what would contribute

to that threshold.

One possible reason that increasing the number of images per object may not always

help to improve the training efficiency could be that different images of an object are not

distinguished enough for the network model to learn more features, a problem caused by the

nature of the Toy-Box dataset. We might be able to provide cure to this problem, however,

by manually selecting higher quality images for each object so that each of an object can

be much more distinctive.
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Chapter 5

Conclusions

5.1 Conclusions

From the phase I of this research project, we know that the order of training data, when

we are using the stochastic gradient descent algorithm, will have minimal, if not none,

effects on the training efficiency. As a result, it is hard for us to determine whether a

specific training order will provide higher training efficiency or not. For the same reason,

we know from our experiments that we would have a tough time to find proper criteria to

evaluate the training order, which is necessary for further optimization used to improve the

training efficiency.

We have not tried, however, either the method of curriculum learning proposed by Ben-

gio [19] or the criteria of training value as shown in the paper by MIT researchers [20],

using which we could reorder the training data by various optimization algorithms. Thus,

by adapting those two methods, we might still have the chance to show that the order of

training data from both ImageNet and Toy-Box datasets can be optimized.

It is also worth noting that in a series of experiments we have done, we only used a spe-

cific setting. Although we have done multiple experiments and verified that the evaluation

error would drop significantly in a certain number of training iterations, it is still unclear

if the relationship between a training order and its corresponding training efficiency would

only be noticeable when using other settings. In other words, we might have to use other

neural network settings and train either more or less number of iterations to show whether

the training order would affect the training efficiency or not.

From the phase II of this research project, we know that not only the composition

of a mini-batch but also the composition of entire training dataset will have a substantial

impact on the training efficiency. Using mini-batches, in which images of all different
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categories are distributed evenly, we can in general, achieve higher training efficiency. In

fact, all non-uniformly distributed mini-batches can impair the training efficiency to some

extent, depending on how severe the overfitting problems they can cause in the training

process. Specifically, we found that when we ensure that images of all categories in the

dataset appear in every single mini-batch during the training process, the network model

will achieve a training efficiency as high as, if not higher than, the training efficiency of

randomly assigning images in a mini-batch. Although, in the long run, we expect to get

lower average evaluation errors using the random mode, since it could more effectively

help us prevent overfitting issues compared to the uniform mode.

Generally speaking, we would suffer from overfitting problem easily when we only

allow a single or limited number of categories to be in a mini-batch. The situation will get

worse if we further limit the diversity of categories between every mini-batch of data we

feed into the network model. To ensure that the training efficiency is as high as possible, we

have to distribute images of different categories evenly within and between mini-batches.

If we compare three different modes tested in our experiments to three modes men-

tioned in the Leon Bottou’s paper, we could easily tell that the later three modes are supe-

rior regarding the training efficiency, since all three modes used by Leon Bottou made use

of some randomization techniques, while three modes we tested did not [18]. Among these

six different modes, we expect to achieve the lowest training efficiency using the mode in

which we will apply randomization to the training order at the beginning of each epoch and

sequentially select data for the mini-batches.

For the construction of a training dataset, especially the Toy-Box dataset that contains

multiple images of the same object with a similar background, we should collect as many

images of different objects as possible. Besides, more different images per object would

also be helpful to improve the quality of our datasets, even though we found that sometimes

with a smaller number of images per object, we might get even higher training efficiency.

We could not tell, however, if the exceptions we got in our experiments were due to the
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quality issues of the dataset, or the fact that the number of images per object may not be a

critical issue, as long as we could get enough of them (above a certain threshold).

5.2 Future Work

Given that researchers have shown the possibility of accelerating the training process

by applying the curriculum training or similar technique from MIT researchers, we could

do further experiments to see if we can adapt those methods in our training process (using

ImageNet and Toy-Box datasets). We want to explore if we could find out a feasible and

systematic procedure to quantize the difficulty or quality of a training image for both tech-

niques. Besides, we will also have to check if the time we save with the optimized training

order could compensate for efforts we put into the image quality evaluation and reordering

process.

Besides, in the future, we will also do further experiments to explore with different

neural network settings, how the relationship between the training order and training ef-

ficiency would change accordingly. This can be particularly useful for us to use a proper

setting when examining the effect of a specific training order on the training efficiency.We

could also get more insights by visualizing relationships between the training efficiency

and each parameter we use to fine-tune our network models for a specific training order.
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Appendix A

A Short Discussion: Why the Average Evaluation Error is a Good Enough Estimation of

Training Efficiency

To explain why the average evaluation error can be a proper measurement or approx-

imation of the training efficiency, we have to at first define what the training efficiency

means in our context. When training a neural network model, the training efficiency means

how fast can the evaluation error of that network model be reduced. Given this definition,

we can calculate the training efficiency by taking the difference of the starting evaluation

error and the evaluation error at which step the training stops and then dividing by the

number of training iterations (suppose the model is not overfitting yet). However, this way

of calculating the training efficiency is not flawless, since the evaluation error at the first

and last step of a training process may vary in different trials. As a result, to reduce the

uncertainty of training efficiency that we calculate using only two data points, we can take

more evaluation errors of the training process into account.

We know that during a training process, the rate our evaluation error decreases is always

changing. As a result, to estimate an overall evaluation error changing rate (training effi-

ciency), we can calculate, on average, how fast the evaluation error should decrease at each

training step. This calculation can be done by taking the definite integral of the change in

evaluation error (which is to calculate the area under the evaluation error curve and above

the x-axis from start to end of the training process), dividing by the number of training

iterations. We can even simplify this estimation to the calculation of average evaluation

error in a training process, an approximation to the definite integral. Let the function f (x)

to be the average evaluation error at a specific training iteration x, and there are n iterations

in total, then:

51



∫ n

1
f (x)/n dx ≈

n

∑
n=1

f (n)/n

Thus, we have shown that the average evaluation is a proper measurement of the training

efficiency.
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Appendix B

Code Changes to the Google’s Inception-v3 Training Procedure

The first part of the code change in the official Inception-v3 retraining script is made

to enable the model to read in evaluation data from a specific directory, instead of using a

random selection of the training data for evaluation. This code change is useful since the

Toy-Box dataset used for training contains multiple different images of the same objects

with similar backgrounds, and we have a relatively high chance of evaluating the network

model against images that are too similar to ones we used for training. Thus, errors can be

too high for indicating the actual performance of the model due to the homogeneity of the

data we used. To resolve this problem, we could assign a directory that contains objects

that we have not used in the training process for evaluating the network model.

The second part of the code change in the official Inception-v3 retraining script is made

to read and write log files (in JSON format) for serializing useful information. We wrote

additional windows batch files (or Linux shell scripts) which could use the log files we

stored to automate the optimization of the training order with the genetic algorithm or

simulated annealing. In this part of the code change, we implemented the calculation of

average evaluation error, a measurement of the training efficiency, and it is a necessary

criterion for optimization algorithms.

The third part of the code change in the official Inception-v3 retraining script is made to

allow the network model to read in the training data in a predefined order, and to control the

composition of every mini-batch the model would use for training. In the official code, the

network model would randomly select any image in the training dataset into a mini-batch,

which means it is not guaranteed that every image in the training dataset will be used. At

the end of the training process, the network model could use a particular image multiple

times, yet never use another one. We designed a tracking mechanism so that the system
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could make sure that every single image is used at the end of an epoch, either in a random

order or a predefined order.

Beside above functional changes, we also updated the retraining script for easier de-

bugging and more elegant data visualization.
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