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Chapter I 

THE C. elegans DOPAMINERGIC NERVOUS SYSTEM 

 

Dopamine Neurotransmission in the Mammalian Central Nervous System 

Dopamine (DA), also known as 3-hydroxytyramine or 3,4-

dihydroxyphenylethylamine, was first described as a chemical present in the mammalian 

brain in the late 1950s by Carlsson and colleagues [1]. Through the use of ion-exchange 

chromatography and fluorometric assays, Carlsson distinguished DA from other 

catecholamines (norepinephrine and epinephrine) and identified DA as a neurochemical 

with brain levels of DA enhanced by pretreatment of 3,4-dihydroxyphenylalanine (DOPA) 

and reduced by pretreatment with reserpine [2]. To be classified as a neurotransmitter, 

DA needed to be shown as a) present in presynaptic neurons, b) released from the 

presynaptic neuron upon electrical stimulation, c) acting on receptors for DA-specific 

signaling and d) having a mechanism for DA signaling termination.  

 

DA biosynthesis and vesicular packaging 

 DA is an amino acid derivative, synthesized from its precursor, tyrosine in the 

cytosol. The first, and rate limiting, step of DA synthesis is the hydroxylation of tyrosine 

at the 3rd carbon by tyrosine hydroxylase (TH) enzyme forming L-dihydroxyphenylalanine, 

L-DOPA (Fig. 1) [3, 4]. Successively, the enzyme, aromatic acid decarboxylase (AADC 

or DDC) removes a carboxyl group from L-DOPA to form 3,4-dihydroxyphenylethylamine 

or DA (Fig. 1) [5]. 
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Fig. 1. DA biosynthesis and metabolism. Image from Laatikainen et al. 2013. 
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In order to be released into the synaptic cleft from the presynaptic nerve terminal 

following electrical stimulation, DA is packaged into synaptic vesicles. Initial studies 

showed that DA and other catecholamines were transported into chromaffin granules and 

this transport was enhanced by ATP and inhibited by the drug reserpine [6]. Later, 

molecular cloning studies identified two cDNAs that encode proteins with the ability to 

transport biogenic amines, encoding proteins with twelve transmembrane domains and 

cytosolic N and C termini, the vesicular monoamine transporter 1 and 2 (vMAT1 and 

vMAT2) [7]. Further studies revealed that vMAT2 is the primary and high affinity vesicular 

transporter for biogenic amines in the midbrain, including DA, serotonin (5HT) and 

norepinephrine (NE) packaging [8]. vMAT2 is expressed in DA neurons on synaptic 

vesicles as determined by immuno-electron microscopy studies [9] and is responsible for 

ATP-dependent vesicular packaging of DA.  

 

Mammalian distribution of DA neuron cell bodies and projections 

Through the use of DA-labeling techniques such as formaldehyde-induced-

fluorescence (FIF), researchers determined that DA was present in mammalian neuronal 

cell bodies in the midbrain and at presynaptic regions of terminal fibers in the striatum 

[10, 11]. Later, via the use of immunohistochemical techniques to staining for DA specific 

proteins, such as TH or the DA transporter (DAT), researchers revealed that DA neuron 

cell bodies reside predominantly in two midbrain nuclei: the ventral tegmental area (VTA) 

and the substantia nigra pars compacta (SNc) [12, 13]. A small subset of DA neurons is 

located within the arcuate nucleus and send their axons to the median eminence (the 

tuberoinfundibular pathway) [14]. VTA DA neurons send their axons to the forebrain and 
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innervate several targets, A) the mesocortical pathway, with DA terminals in the prefrontal 

cortex and the insular cortex or B) the mesolimbic pathway, with DA terminals innervating 

the limbic cortex, hippocampus, ventral striatum, nucleus accumbens (Acc) and 

amygdala. The nigro-striatal pathway refers the DA neurons in the SNc that send axonal 

projections to the dorsal striatum [15]. These pathways are summarized in Fig. 2 (from 

psychopharmacologyinstitute.com). 

Utilizing retrograde labeling techniques, via horseradish peroxidase tracer or the 

more modern method of pseudo-rabies virus mediated retrograde labeling, researchers 

have established that midbrain DA neurons receive inputs from areas throughout the 

brain. Inputs to the SNc originate from brain areas such as the dorsal striatum, dorsal 

raphe nuclei, amygdala, globus pallidus and neighboring GABAergic interneurons [16, 

17]. In summary, the VTA receives inputs from brain regions including the dorsal raphe 

nuclei, amygdala, hypothalamus, pre-frontal cortex, bed nucleus of stria terminalis 

(BNST), nucleus accumbens (Acc), superior colliculus, locus coeruleus, the 

paraventricular nucleus, and neighboring GABAergic interneurons [17, 18]. 

 

DA release and signaling through DA receptors 

By coupling newly developed brain perfusion techniques, selective brain region 

electrical stimulation methods, and chromatographic DA detection methods, Portig and 

colleagues found that electrical stimulation of the SN resulted in DA release in the striatum 

[19, 20]. Following studies utilized pre-treatment of brain slices with radiolabeled DOPA 

to visualize subsequently synthesized radiolabeled DA release from presynaptic 

terminals upon electrical stimulation of DA neuron cell bodies [21]. As detection  
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Fig. 2. Mammalian DA projection pathways. ­Red: The mesocortical pathway; DA neurons in 
the VTA project to the prefrontal cortex. ­Blue: The mesolimbic pathway; VTA DA neurons send 
their projections to the limbic cortex and nucleus accumbens. ­Green: The nigro-striatal pathway; 
DA neurons in the substantia nigra send projections to the dorsal striatum.  ­Orange: The 
tuberoinfundibular pathway; DA neurons in the arcuate nucleus send axons to the median 
eminence. Adapted from www.psychopharmacologyinstitute.com. 
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techniques advanced, high performance liquid chromatography (HPLC) coupled to micro-

dialysate collection allowed more precise and accurate measurements of DA release in 

the brain [22, 23]. Additionally, electrochemical detection via the unique “signature” or 

oxidative potential of DA by fast-scan cyclic voltammetry (FSCV) provided researchers 

with the ability to measure DA in vivo with increased sensitivity and greater temporal and 

spatial precision [24, 25]. In addition to stimulated DA release, work by Deister and 

colleagues demonstrate that the DA neurons in the midbrain fire in a tonic, burst pattern 

[26] and further work by Williams and colleagues demonstrate that the burst-firing pattern 

of DA release is controlled by DA itself through an inhibitory autoreceptor (D2R) feedback 

mechanism [27, 28]. 

Solidifying DA’s role as a neurotransmitter, use of radiolabeled compounds 

allowed researchers to determine that DA specifically bound a putative plasma membrane 

DA receptor in mammalian brain membrane fractions [29-31]. This work lead to the 

subsequent molecular cloning of human and rodent DA receptor cDNAs, such that five 

mammalian DA receptors, D1-D5 were found to be responsible for DA specific modulation 

of neuronal signaling [32-36]. DA receptors are categorized based on how activation of 

these receptors impacts cAMP, a second messenger, production. D1-type receptor (D1R 

and D5R) stimulation increases adenylyl cyclase activity and cAMP production, whereas 

D2-type receptor (D2R, D3R, and D4R) stimulation reduces cAMP production to modulate 

neuronal signaling [37]. 
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DA reuptake and metabolism  

 To function as a neurotransmitter, DA signaling must be terminated precisely and 

quickly to maintain spatially and temporally specific modulation of neuronal activity. Using 

molecular cloning techniques, researchers identified mammalian DA transporter (DAT) 

cDNAs and began studying DAT function. In a study by Kilty and colleagues, rat DAT, 

heterologously expressed in HeLa cells, displayed high affinity DA uptake into the cells, 

and this uptake could be antagonized by DA analogs and psychostimulants, including 

cocaine [38]. Immunohistochemistry studies determined that DAT was expressed in the 

VTA and SNc [12]  and later studies utilized FSCV to determine the endogenous function 

of DAT in the mouse brain [39]. DA signaling was therefore found to be terminated by 

selective DA reuptake by the DA transporter (SLC6A3), a member of the Na+- and Cl--

dependent neurotransmitter transporter family. 

 Although the majority of DA is cleared from the extracellular space by DAT, 

recycled, and repackaged into synaptic vesicles, a portion of DA is metabolized, and the 

abundance of these DA derivatives can be utilized to assess DA turnover. Metabolism of 

DA occurs by two metabolic pathways, 1) methyl group transfer to the 3’ carbon of DA by 

the cytosolic catechol o-methyltransferase (COMT) to form 3-methoxytyramine (3MT), or 

2) DA deamination by the monoamine oxidase (MAO) forms the DA metabolite, 3,4 

dihydroxyphenylacetic acid (DOPAC) (Fig. 1). These two metabolic pathways converge, 

as both 3MT and DOPAC are modified to the final DA-related metabolite, homovanillic 

acd (HVA).  
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Brain Disorders, Behaviors, and Phenotypes Associated with Dysregulated DA 

Signaling 

 Through action on both DA receptors that activate adenylyl cyclase (D1R, D5R) 

and inhibit adenylyl cyclase (D2R, D3R, D4R), DA modulates the inherent excitability of 

many neuronal cells including glutamate (Glu), GABA, and acetylcholine releasing 

neurons. Via these modulatory actions, DA regulates many mammalian behaviors 

including cognition, reward behaviors and motor actions. Understanding the molecular 

components and regulators of DA under normal physiological conditions has been 

extremely useful in understanding how different brain disorders are associated with 

altered or dysregulated DA signaling. Though this brief review of brain disorders 

associated with changes in DA signaling is not comprehensive, I will focus this summary 

on highlighting well-described disorders predominately associated with altered DA 

signaling. 

 

Movement related disorders with altered DA signaling 

 Parkinson’s disease (PD) is perhaps the brain disorder most tightly connected with 

DA signaling dysfunction. The impaired motor function and symptoms classically used to 

diagnose PD (bradykinesia, tremor, rigidity, shuffling gait, and postural instability) are 

attributed to loss of DA neurons in the SNc and subsequent loss of DA modulation of 

neurotransmitter signaling in the basal ganglia [40, 41]. Furthermore, clinical confirmation 

of a PD diagnosis is dependent on DA related treatments improving the movement related 

symptomology of patients. More recently, the non-motor symptoms of PD such as 

depression, autonomic dysfunction, impulse control deficits, and cognitive decline are 
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also attributed, at least in part, to dysregulated DA signaling prior to the severe (60-70%) 

SNc DA neuron loss required for the motor symptom manifestation [42]. In PD pathology, 

Lewy bodies (dense inclusions of abnormal protein aggregates with in nerve cells) and a-

synuclein aggregation occurs in SNc DA neurons as well as other non-DArgic nuclei [43, 

44]. The exact mechanism leading to Lewy body formation and SNc DA neuron cell death 

in PD patients has not been determined, however bodies of research indicate that Glu 

induced excitotoxicity, oxidative stress, mitochondrial dysfunction, mishandling of 

misfolded proteins/ proteasome dysfunction, and inflammation contribute to PD pathology 

[45-48], summarized in Fig. 3 [49]. In order to study animal models of PD, many 

researchers employ neurotoxins that selectively and specifically lesion DA neurons, such 

as 6-OHDA and MPTP [50-53].  

Although less well-characterized in terms of abnormal DA neurotransmission, 

Huntington’s disease (HD) pathology also implicates DA signaling as a contributor to the 

symptoms of HD. A dominant, inherited, progressive neurodegenerative disease, HD 

arises due to a mutation that increases the expansion of CAG repeats in the HTT gene. 

Differing from PD, the primary sites of neurodegeneration in the brain are the striatum, 

cerebral cortex, and to lesser extent in the hippocampus [54, 55]. However post-mortem 

studies indicate that the motor and cognitive symptoms of HD occur prior to severe 

neuronal loss, indicating that symptoms are a result of neuronal and synaptic dysfunction 

[56]. Researchers have used positron emission tomography and autoradiography to 

determine the DA D1 and D2 receptor densities in HD patients, prior to and after symptom 

onset, and have observed reduced striatal D1 and D2 receptor densities in both HD 

patients and non-symptomatic, heterozygous carriers [57, 58]. These alterations in DA 
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Fig. 3. Diagram of the key pathological and clinical features of Parkinson’s Disease. This 
schematic summarizes the key pathways identified as contributing to the pathology and 
symptoms associated with Parkinson’s disease. Several genetic mutations associated with PD 
susceptibility are highlighted for their contributions to the physiological pathology of PD (i.e. 
LRRK2, SNCA, PINK1, etc.). Additionally, this diagram highlights known mechanistic contributors 
to DA neuron cell death including mitochondrial dysfunction, reactive oxygen species, protein 
misfolding and aggregation, etc. (Adapted from Farrer, 2006). 
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receptor densities in the striatum (observed in HD patients and HD genetic mouse 

models) have been correlated with cognitive deficits including changes in memory, 

learning, and attention [59, 60]. Studies support the hypothesis that dysregulated DA 

signaling follows a biphasic trend, mirroring the biphasic trend of dysregulated Glu 

signaling in HD. Researchers use electrophysiological methods to demonstrate that 

cortical Glu signaling is increased, and lead to increased DA neuron firing/ DA tone early 

in HD [61, 62]. In treating the chorea (jerky, involuntary movements) associated with HD, 

often, the VMAT2 inhibitor, tetrabenazine, is prescribed to reduce DA signaling within the 

basal ganglia [63]. Researchers then hypothesize that as the disease progresses, DA 

neuron modulation of Glu release ultimately results in reduced Glu and DA signaling in 

late stages of HD [56].  

Dystonia, characterized by repetitive or sustained motor contractions, including 

tremor and abnormal gait or postures, is associated with neurological disorders, including 

but not exclusive to PD. One distinct form of dystonia that was set apart from sporadic 

Parkinson’s disease is known as infantile-onset parkinsonism-dystonia, named for the 

hypokinetic parkinsonism that presents in early infancy and develops into a complex 

movement disorder. Using biochemical detection techniques, researchers determined 

that patients with infantile parkinsonism-dystonia have abnormal levels dopamine 

metabolites, such as homovanillic acid, in their cerebral-spinal fluid (CSF) [64]. Kurian 

and colleagues determined that increased levels of homovanillic acid in the CSF of three 

unrelated patients with infantile parkinsonism-dystonia was a result of separate loss-of-

function mutations in the dat gene [65]. This work, as well as subsequent studies 

identifying additional inherited DAT mutations leading to infantile parkinsonism-dystonia, 
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suggest that these mutations reduce surface level DAT expression therefore impairing 

DAT-mediated DA clearance resulting in dysregulated dopaminergic neurotransmission 

and disease pathology [65-67]. Researchers and clinicians group a subset of dystonia 

associated neurological disorders as DA-responsive dystonia (DRD), in that treatment 

with L-DOPA alleviates the abnormal movement symptoms that fluctuate diurnally [68, 

69]. Within the group of DA-related dystonias, CTP cyclohydrolase I (GCH1) deficiency 

and tyrosine hydroxylase (TH) deficiency arising from genetic mutations are the most well 

characterized types of DRDs [70]. Various mutations in these genes result in a reduced 

capacity to synthesize DA and patient’s and mouse-model symptoms are alleviated by 

administration of L-DOPA, the DA synthesis precursor, as it increases striatal DA levels 

[71-74]. Post-synaptic DA signaling on DA receptors, both D1R and D2R, is dysregulated 

in models of DRD. Cai and colleagues found that agonist activation of both subtypes of 

DA receptors ameliorated the motor symptoms in the Thtm/Ehess mouse model of DRD, a 

knock-in mouse model that recapitulates a known human TH mutation associated with 

DRD and reduced TH activity, yet the mice only exhibit increased behavioral sensitivity 

to D1R activation [70, 74]. By using genetic mouse models with construct, face, and 

predictive validity, researchers are focusing their efforts to understanding the mechanism 

by which DA depletion and maladaptive DA receptor changes results in dystonia, and 

how to best treat human patients with DRDs. 

 

Cognitive disorders associated with disrupted DA signaling 

 The most commonly diagnosed neuropsychiatric disorder of childhood, Attention-

deficit/hyperactivity disorder (ADHD), affects 4-12% of United states school-aged children 



	 13 

[75, 76]. With a wide spectrum of behavioral criteria used for clinical diagnosis, including 

motor hyperactivity, inattention, and impulsivity, researchers have long been interested in 

determining the genetic and environmental factors that contribute to this disorder. The 

behavioral symptomology of ADHD observed by clinicians and researchers implicates 

dysregulated DA and NE in the pre-frontal cortex, and first-line medications to alleviate 

the disruptive symptoms of ADHD include the psychostimulants, methylphenidate and 

amphetamines, that interact with and inhibit DAT and the related NE transporter (NET) 

[77]. Pairing pharmacological treatment with behavioral therapy helps many adults and 

children with ADHD, however about 30% of patients are unresponsive to the primary 

stimulants prescribed. To better understand the etiology of ADHD, many researchers 

point to disruptions in DA system genes as underlying the symptoms of ADHD, for 

example, animal models of ADHD utilize DA D1R agonist to phenocopy locomotor 

hyperactivity [78-80], and polymorphisms in DA receptors [81-83] the DA transporter [84-

87], and DA metabolizing enzymes [88, 89] have all been found in patients with ADHD. 

First identified in a patient diagnosed with bipolar disorder, a coding variant in the human 

DAT, Val 559 [90, 91], was further characterized as a heritable variant in two brothers 

with ADHD, and later identified in two unrelated subjects with autism spectrum disorder. 

Mergy, Davis, and Gowrishankar have respectively developed, characterized 

behaviorally, and biochemically a murine ADHD model with a human ADHD variant (DAT 

Val559) [92, 93]. This construct, phenotypic, and predictively valid mouse model for 

ADHD, has allowed researchers to better understand the contributions of DAT and DA 

signaling to locomotor hyperactivity (no overt hyperactivity in this mouse model, however 

the DAT Val559 mice display a robust darting phenotype) and in vivo response to 
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psychostimulants as well identify a role for DA signaling in impulsive behaviors dependent 

on a reward context [92-94]. In addition to animal models of ADHD, researchers have 

gained insight to various contributions of the DA system to ADHD through case-control 

PET and SPECT imaging studies, to assess DA receptor densities and DAT levels in drug 

exposed and drug naïve individuals [95-98]. 

 Mesolimbic DA signaling has been extensively studied in terms of mediating the 

enjoyable aspects of biologically salient rewards (food, water, and sex) and also in 

mediating arousal as animals and humans learn to predict future reward or positive 

reinforcer [99]. Many drugs of abuse act via the mesolimbic DA signaling pathway to exert 

their initial rewarding properties [100]. Psychoactive drugs, such as cocaine and 

amphetamines increase DA signaling above physiological levels in the brain-reward 

circuit to activate direct striatal D1R pathways and inhibit the indirect striato-cortical 

pathway by D2Rs [101] (Fig. 4) [99]. Addiction requires the transition from a controlled to 

a compulsive drug taking behavior despite adverse consequences. This change is likely 

resultant from long-term compensatory changes in neurotransmitter signaling (including 

DA, GABA, and Glu) in the brain by exploiting the brain’s normal reward circuitry (Fig. 4) 

(addiction) [102, 103]. Researchers implicate DA signaling in brain regions responsible 

for habit formation and the rewarding response to drugs (dorsal striatum and Acc 

respectively) in the development in addiction. Researchers found reduced striatal levels 

of D2R in self-administration non-human primate and rodent models of addiction [104-

106]. Furthermore, human brain-imaging studies similarly show reduced striatal D2R 

availability in the brains of patients struggling with addiction, for the majority of drugs of 

abuse [107]. D2R reductions in the striatum reduce inhibition of the indirect pathway and  
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Fig. 4. Brain-reward circuitry in the rat. Proposed sites of drug actions are shown in boxes, 
Acc= Nucleus Accumbens, VTA=ventral tegmental area, such that drugs of abuse impinge on 
normal brain reward circuitry and alter neurotransmitter signaling, DA= dopamine, 
Enk=encephalin, NE= norepinephrine. (Figure adapted from Gardner and Lowinson 1993, and 
Kandel, Schwartz, and Jessell, Principles of Neural Science, 4th edition, 2000). 
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reduce activity in the PFC, altering behaviors such as planning, control, flexibility in 

response, and delayed gratification [107]. Although DA signaling is not the sole mediator 

of the addiction as a brain disorder, the neurotransmitter plays a critical role in both the 

initial response to drugs of abuse, and brain adaptations responsible for addiction.  

 Schizophrenia (SCZ) is a devastating mental disorder, affecting about 1% of the 

population worldwide [108, 109], with great health care and social care costs. 

Researchers are actively pursuing studies to better understand the complex genetic 

contributions, environmental contributions, and symptoms associated with SCZ. The 

symptoms of this mental disorder fall roughly into two categories, the positive symptoms, 

typically accompanying a psychotic episode are more strikingly abnormal and include 

paranoia, hallucinations, delusions, disordered thoughts, whereas the negative 

symptoms reflect the absence of normal behaviors including social withdrawal, flat affect, 

lack of motivation and poor attention span [99]. In the 1950-1960s researchers found that 

a group of drugs, termed “typical antipsychotics” including phenothiazines 

(chlorpromazine), butyrophenones (haloperidol), and thioxanthenes, successfully treated 

the positive, psychosis related symptoms of SCZ [110-112]. More recently a second class 

of drugs termed “atypical antipsychotics” (including the dibenzodiazepine, clozapine) 

were employed to treat the negative and cognitive symptoms of patients with SCZ [113]. 

Originally, both classes of antipsychotics were prescribed based on treatment efficacy 

without truly understanding the mechanism of action by which these drugs alleviated the 

symptoms of SCZ, however the side effects of these drugs, including Parkinsonian-like 

movement alterations (Tardive dyskinesia), indicated a role for dysregulated DA signaling 

in the symptomology of SCZ. Pioneered by Carlsson, researchers determined that many 
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antipsychotic agents block DA receptors (typical antipsychotics have high affinity for the 

D2-type receptors, whereas the atypical antipsychotics bind effectively to D3 and D4 

receptors) which lead to the DA hypothesis of SCZ, that excess DA neurotransmission 

underlies, at least in part, the pathology and symptoms of SCZ [31, 114-116]. Post-

mortem studies provide additional evidence for pre- and post-synaptic DA changes in 

SCZ patients. For example, early studies provided evidence for increased levels of striatal 

DA [117], and more recently, TH levels, determined by TH specific immunostaining, were 

found to be significantly increased in the SNc of SCZ patients compared to controls [118]. 

A clear association between the D2R gene (DRD2) and SCZ has been supported by 

extensive research demonstrating increased D2R densities in post-mortem samples from 

patients [119, 120], DRD2 gene polymorphisms as a genetic risk factor for SCZ [121, 

122], and in vitro data showing a significant increase in the expression of D2R 

homodimers compared to controls [123, 124]. In addition to post-mortem studies, PET 

and SPECT imaging studies over the past 25 years or so allowed researchers to quantify 

DA function and signaling in SCZ patients and controls in vivo. In summary, neuroimaging 

studies provide evidence that 1) following radioactive L-DOPA analog intake capacity 

demonstrates increased DA synthesis in SCZ patients [125-127], 2) there is no significant 

evidence for altered DA reuptake via DAT in SCZ patients [128-130], and 3) imaging 

studies using radio-labeled ligands demonstrates increased D2 receptor density in SCZ 

patients versus controls [131]. Though research studies provide clear evidence that 

dopaminergic transmission abnormalities contribute to the pathology of SCZ, especially 

the psychosis associated with the positive symptoms, other neurotransmitters such as 

Glu are emerging as important contributors to schizophrenia.  
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Anatomy of DA Neurons in C. elegans 

Comparable to their mammalian counterparts, the DA neurons of the nematode, 

Caenhorhabditis elegans, are well-described and adopt stereotypical morphology and 

neuronal connections. As a catecholamine derived from the amino acid tyrosine, DA can 

be cross-linked with formaldehyde to produce formaldehyde-induced-fluorescence (FIF), 

that can be detected as a green fluorescent color in areas or cells where catecholamines 

are present [132]. As C. elegans does not contain the other major mammalian 

catecholaminergic neurotransmitter, NE, the FIF method could be employed to identify 

the DA neurons of the worm. Pioneering work by Sulston and colleagues utilized the FIF 

technique to characterize DA neurons in the nematode [133]. This study revealed two 

bilaterally symmetric pairs of neurons in the nerve ring, with their cell soma residing 

between the anterior and posterior bulbs of the pharynx and DA dense “dendritic” 

projections reaching the cephalic sensilla at the tip of the worm proboscis and “axonal” 

projections terminating at the nerve ring. These morphological features, paired with 

electron microscopy (EM) reconstruction, identified these DA neurons as the cephalic 

neurons (CEPs) in the hermaphrodite  Fig. 5 [134]. The EM reconstruction studies by 

Ward and colleagues also describe the glial-like cells that ensheath the CEP neuron 

dendritic processes and nerve ring (CEPsh), and the glial-like socket cells that form a 

channel around the CEP dendrites in the lips of the nematode (CEPso) [135]. The CEP 

neurons have since been show to make synaptic connections at the nerve ring with 

neurons such as the interneurons RIA and RIB as well as the motor neurons RIV, SIA, 

SIB, and SMB which are described as important for C. elegans navigation [136]. Another  



	 19 

 
 

Fig. 5. C. elegans DA system. A. A cartoon diagram of an adult C. elegans hermaphrodite 
demonstrating the anatomical location of the DA neurons. B. A cartoon diagram of an adult C. 
elegans male demonstrate the anatomical location of the DA neurons, including the specific male 
tale DA neurons. C. Enlarged view of the DA neurons located in the head (4 CEP and 2 ADE) of 
adult hermaphrodites and males. D. Enlarged view of the DA neurons located in the midbody (2 
PDE) of adult hermaphrodites and males. E. Enlarged view of the 6 DA neurons (3 pairs, R5A, 
R7A, R9A) located in the male tail. F-H. Representative confocal images with DIC overlay of adult 
worms expressing DA neuron specific GFP (pdat-1::GFP), to show the anatomical location of the 
CEP and ADE neurons (F), the PDE neurons (G), and the male tail DA neurons (H). (Image from 
McDonald and Blakely, 2006). 
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pair of DA neurons were identified with ventral “axonal” processes ending just posteriorly 

to the nerve ring and dorsal “dendritic” processes ending at the deirid pore, denoting these 

as the anterior deirid neurons (ADE). The ADE neurons make synaptic connections with 

neurons associated with touch response (ALM, AVA, and AVD) [137]. In the body of the 

hermaphrodite another pair of neurons were shown to be FIF+, with soma near the vulva 

and projections in close proximity to the ventral nerve cord, recognized as the posterior 

deirid neurons (PDE) however little is known about their synaptic connections. The ADE 

and PDE neurons also form sensillum consisting of a DA neuron, an enseathing glial cell, 

and a socket glial cell, ADEsh/ADEso cells and PDEsh/PDEso cells respectively [135]. 

C. elegans males were shown to have three FIF+ pairs of neurons in the sensory ray of 

the mail tail [133]. In total, the C. elegans hermaphrodite has eight DA neurons and the 

male has an additional six DA neurons in the male tail as shown in Fig. 5. Identification 

of DA neuron specific genes such as the DA transporter, dat-1, [138] coupled with the 

use of promoter fusions with fluorescent proteins (i.e. GFP), confirmed the DA neuron 

identifications described by Sulston.  

 

The Glia of the C. elegans DA Neuron Sensillum  

 As briefly described above, the DA neurons of C. elegans are all associated with 

ensheathing glial cells (CEPsh, ADEsh, and PDEsh) and socket support glial cells 

(CEPso, ADEso, PDEso) [135]. Previously, the morphology and anatomy of these and 

other glial cells were only briefly described in the nematode in terms of their proximity and 

ensheathment of sensory neuron dendrites (sheath cells) or the presence of socket cell 

within the sensillum of sensory neurons (Fig. 6) [139][135]. However, over the past  
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Fig. 6. Cells of the cephalic sensilla. The cartoon rendition above depicts the cells of the left 
side cephalic sensillar cells. The CEM cells are only found in males. The four CEP DA neurons 
are located close to the nerve ring, with dendrites sent to the lips of the nematode, and axons 
projects into the nerve ring to make synaptic connections. CEPsh glial cells reside in close 
apposition to the CEP neurons, and ensheath the CEP dendrites and send sheet like processes 
to surround the nerve ring. The CEPso glial cells are just posterior to the anterior bulb and create 
a pore like structure at the ciliated dendritic ending of the CEP neurons. (Figure adapted from 
wormatlas.org, Altun and Hall, 2010).  
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decade, studies indicate that the 50 glial cells associated with sensory organs of the 

nematode play important functional roles in the C. elegans nervous system (reviewed by 

Shaham [140]). Using laser ablation techniques [141], Yoshimura and colleagues 

specifically ablated the CEPsh glia of the worm at an early larval stage and determined 

that ablation of these cells does not cause overt CEP neuronal death making the 

nematode an excellent model to study, in vivo, the effects of perturbed glial support on 

DA neuron morphology and function (Fig. 6) [142]. The authors determined that loss of 

these glia resulted in truncated CEP neuronal dendrites, abnormal axon guidance and 

branching of other sensory neurons leading to defects in the nerve ring [142]. Further 

studies demonstrate that disruption of CEPsh glial cell specification, via genetic mutation 

of the CEPsh specific gene, hlh-17, encoding a Helix-Loop-Helix transcription factor, 

results in defects in CEP neuron mediated behaviors including egg-laying, feeding, and 

impaired gustatory learning [143-145]. More recently, as described below, Hardaway and 

colleagues characterized a novel glial-expressed gene, swip-10, that regulates DA 

neuron excitability and hyperdopaminergia via a glutamate dependent mechanism [146]. 

Although not yet described for the glial support of CEP neurons, other nematode glial 

cells have been shown to support normal neuronal excitability and function via 

mechanisms including ion buffering, acid sensing, and pH buffering [147-150]. These 

studies present the nematode as a model organism to study modes of support and 

communication between glia and DA neurons and the importance of glia for proper 

neuronal morphology, neuronal function and normal downstream behavioral outcomes. 
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Molecular Regulation of DA Signaling in the Nematode 

In addition to characterizing the CEP, ADE, and PDE neurons as dopaminergic, 

Sulston and colleagues also initiated the groundwork for identification of DA neuron 

signaling genes in C. elegans. Using a chemical mutagen, Sulston performed a forward 

genetic screen and identified six mutants with altered FIF, which he named as 

catecholamine deficient (cat-1 through cat-6) [133].  

 The first of these mutants, cat-1, (shown to have reduced FIF and DA levels), was 

cloned by Duerr and colleagues and identified as the C. elegans vesicular monoamine 

transporter (VMAT2) homolog [151]. This work determined that cat-1 was expressed in 

the DA neurons, localized to synaptic vesicles, and transported biogenic amines (DA and 

5-HT) in vitro. Mutation to cat-1 altered nematode behaviors such as locomotion, and 

these defects were rescued by expression of human VMAT2. 

 The second of these mutants, cat-2, (shown to have reduced FIF and DA levels) 

was cloned and characterized by Lints et al. as the C. elegans tyrosine hydroxylase (TH) 

homolog and was the first C. elegans gene identified within the DA biosynthetic pathway 

[152]. This study was the first to use GFP promotor fusions to show a DA neuron specific 

gene was expressed selectively in FIF+ cells, and that transgenic expression of wildtype 

cat-2 fused to GFP (cat-2:GFP) restored FIF in cat-2 mutants.  

 cat-4, also initially described in Sulston’s original screen, is another gene identified 

in relation to the DA biosynthetic pathway [133]. Encoding an enzyme, GTP 

cyclohydrolase, cat-4 catalyzes the biosynthesis of tetrahydrobiopterin, a critical cofactor 

in the decarboxylation of the biogenic amine precursors, levadopa (L-DOPA) and 5-

hydroxytryptophane (5-HTP). The aromatic amino acid decarboxylase (AADC) that 
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converts L-DOPA to DA and 5-HTP to 5-HT, was identified as bas-1 in the nematode 

[153, 154]. These studies verified the conservation of DA biosynthesis pathways from 

worm to man. The degradation and catabolism of DA in the worm is also conserved, as 

demonstrated by the identification of monoamine oxidase (MAO) and catechol-o-

methyltranferase (COMT) homologs in the C. elegans genome and the presence of DA 

catabolites found in whole worm extracts [155].  

 As in mammals, DA signaling in the worm is primarily terminated by the clearance 

of extracellular DA by the DA transporter (DAT), DAT-1, in C. elegans. Jayanthi and 

colleagues cloned the nematode DAT homolog using homology-based oligonucleotide 

plaque hybridization [138]. Using heterologous cell expression methods and 

pharmacological techniques, they determined that the protein product of the cloned gene, 

T23G5.5, preferentially transported DA and is highly homologous to the human NE 

transporter (NET). With no NE in the worm, and the ability of known DAT and NET 

antagonists to inhibit the transport activity of T23G5.5, the authors named this gene as 

dat-1, encoding the C. elegans DA transporter. Further support of dat-1 as the worm DAT 

homolog was provided when Nass et al. determined that the dat-1::GFP transgene was 

selectively expressed in DA neurons in vivo (Fig. 5) [52]. The strain created by Nass et 

al, BY200, and the successively created brighter fluorescent transgenic strain, BY250 

[156], are now used by multiple labs to visualize the morphology of the C. elegans DA 

neurons [157-159]. Nass and colleagues also demonstrated in vivo that DAT-1 was 

required for 6-hydroxydopamine (6-OHDA) (a known DAT substrate) transport and 

toxicity, such that following treatment with 6-OHDA the DA neurons in wildtype animals 

selectively degenerated, whereas dat-1 mutant animals were protected against toxicity 
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[52]. The high conservation of presynaptic genes required for DA signaling, such as cat-

1, cat-2, and dat-1, demonstrates the importance of DA signaling across phylogeny (Fig. 

7) [160]. 

 As important DA signaling genes were being cloned using traditional techniques, 

such as those used to identify dat-1, the initial publication of the C. elegans and human  

genomes allowed researchers to employ bioinformatics techniques to identify conserved 

genes that contribute to DA signaling. For example, these methods allowed the 

identification of four DA receptors in the worm, dop-1, dop-2, dop-3, and dop-4 (Fig. 7). 

First, Suo and colleagues identified dop-1 and dop-2, two C. elegans DA receptors [161]. 

Heterologous expression studies paired with radiolabeled ligand displacement assays, 

indicated that dop-1 and is a D1-type DA receptor. In contrast, heterologous expression 

studies and ligand binding assays indicated preferential binding of DA to dop-2 which 

resulted in inhibition of cAMP production. Together, with the promoter fusion expression 

of dop-2 in neurons of the nerve ring as well as presynaptic expression in DA neurons, 

dop-2 is likely both a post-synaptic D2-like receptor and the C. elegans DA autoreceptor. 

Chase and colleagues again utilized sequence homology to identify another putative C. 

elegans D2 receptor, dop-3, and soon thereafter dop-3 was validated as a DA receptor by 

Suguira et al [162, 163]. In GFP promotor fusion transgene studies, Chase determined 

the expression patterns for dop-1 and dop-3. As predicted, both DA receptors were 

expressed post-synaptically, with dop-1 expressed in cholinergic neurons and the 

mechanosensitive PVD touch neuron, and dop-3 expressed in the motor circuit including 

cholinergic and GABAergic neurons and expressed in the body wall muscle in addition to 

the PVD neuron as well [164]. Sugiura and colleagues also identified another putative  
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Fig. 7. Conserved DA signaling genes in C. elegans. This cartoon depicts the pre- and post-
synaptic DA signaling genes conserved from the nematode to man. Although the schematic 
shows a “typical” tight synapse, DA signaling also occurs distally from synaptic release. DA 
receptors are expressed on interneurons, and the cholinergic and GABAergic neurons in the 
ventral nerve cord of the nematode, as well as DOP-2 expressed as an auto-receptor on DA 
neurons. (Adapted from Nass and Blakely, 2003). 
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C. elegans DA receptor, dop-4, a D1-type receptor that increased production of cAMP 

with post-synaptic expression in neurons (ASL, ASG, CAN, and PQR) and non-neuronal 

cells (rectal epithelial cells, male tail, and vulva) [163]. 

 In summary, molecular determinants and genes involved in DA signaling are highly 

conserved from worm to man (Fig. 7). Presynaptically, the C. elegans genome contains 

the genes required for the biosynthesis, vesicular packaging, and clearance of DA. 

Postsynaptically, DA signals in the nematode via conserved D1- and D2- type DA 

receptors (dop-1/dop-4 and dop-2/dop-3 respectively). 

 

DA Regulation of Phenotypes and Behaviors in C. elegans 

The identification of conserved DA signaling-related genes in the worm was critical 

to understanding the molecular determinates of DA signaling, and these genes have since 

been manipulated to better understand phenotypes and behaviors dependent on DA 

signaling. Extensive genetic and pharmacological studies, to either elevate or reduce DA 

signaling, implicate DA signaling in the modulation of many C. elegans behaviors, 

including locomotion, defecation, touch-habituation, egg-laying, and foraging [134, 165]. 

While DA plays an important role in all of these behaviors, I will focus selectively on DA 

regulation of C. elegans locomotion-related behaviors. 

 Early studies established that neurotransmitters, including 5-HT and octopamine, 

could inhibit nematode locomotion [166], and work by Schafer and Kenyon first described 

that exogenous DA could inhibit worm locomotion [167]. Subsequent work by Sawin and 

colleagues examined the role of DA in the context of a normal endogenous behavior. This 

study demonstrated that the observed behavior of healthy, fed worms slowing their rate 
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of locomotion as they enter a lawn of bacteria (termed a basal slowing response, BSR) is 

dependent on DA signaling as loss of cat-2 results in defective BSR [154]. The authors 

further corroborate this findings by showing that exogenous DA treatment can restore 

normal BSR to cat-2 mutant animals, and they used partial or complete laser ablation of 

the DA neurons to demonstrate that the DA neurons act redundantly to mediate BSR, 

with the CEP neurons most strongly associated with a strong BSR response. Sawin et al. 

suggests that mechanosensation, as the worms come into contact with the bacteria, might 

trigger stimulation of the DA neuron dendrites as mechanical stimulation alone via a 

matrix of glass beads also produced BSR.  

 As the important regulators of DA signaling in the nematode were being 

characterized, such as the cloning of the DA receptors, these DA dependent behaviors, 

locomotion inhibition/paralysis and BSR, became important to understanding the 

mechanism of DA’s role in controlling locomotion. Chase and colleagues found that loss 

of the D2-like receptor, dop-3, abolished BSR, and transgenic restoration of dop-3 

restored this behavior, whereas genetic loss of the D1-like receptor, dop-1, restored 

normal BSR to dop-3 mutant animals [162]. This study used DA sensitivity to determine 

that these receptors function antagonistically to promote a paralysis response to 

exogenous DA and normal BSR. dop-1, in GABAergic motor neurons, acts through the 

G-protein egl-30 and downstream effector phospholipase Cb, egl-8, while dop-3 acts 

through the G-protein goa-1 and downstream effector dgk-1. More recently, researchers 

utilized the DA-dependent BSR behavior to identify other genes that regulate DA 

signaling. For example, it was determined loss of nematode neuroligin (nlg-1), a 

postsynaptic cell adhesion protein critical for synaptic formation and function, resulted in 
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impaired BSR and increased expression of comt-4, the worm ortholog of COMT, and one 

of the known enzymes responsible for DA degradation [168, 169]. These studies showed 

that RNAi knockdown of comt-4 restored normal BSR in nlg-1 mutants, suggesting that 

neuroligin in the worm regulates DA related behavior.  

 As in mammalian systems, complex behaviors in the nematode, such as a 

locomotor response to various stimuli, are not controlled by one neurotransmitter in 

isolation, rather require the precise coordination of many neurotransmitters and 

neuropeptides. A study by Hills, Brockie, and Maricq described the DA and glutamate 

(Glu) regulated locomotor behavior, area restricted search (ARS) such that C. elegans 

(and other animals) will turn more frequently after finding food to restrict their search area 

to that location and after food depletion, animals turn with less frequency, moving more 

linearly, to explore new areas [170]. They show that DA plays a role in ARS as loss of 

cat-2, DA neuron ablation, or treatment with the DA receptor antagonist raclopride inhibits 

ARS, and exogenous DA restores normal ARS behavior. Further characterizing this 

phenotype, they show that genetic disruption of the ionotropic Glu receptors, glr-1 and 

glr-2, results in failure to show ARS. The authors suggest that DA may directly modulate 

downstream glutamatergic signaling or that DA and Glu may act in parallel to control this 

behavior.  

 Locomotor habituation to a tap stimulus, ranging from short-term to long-term 

memory, requires the precise coordination of DA, Glu and other neuro-signaling 

molecules in the worm, emphasizing the importance of dynamic neural signaling 

molecules to allow flexible signaling potential. Researchers found that DA signaling 

modulates short-term tap-habituation. Kindt and colleagues demonstrated that loss of 
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dop-1 caused animals to habituate more rapidly in the presence of food in a paradigm of 

short term habituation with a short inter-stimulus interval (ISI) [171]. To further establish 

a role for DA in habituation, the authors also showed that animals with genetic loss of cat-

2 and mutation to the downstream effectors of dop-1, such as elg-8, display a more rapid 

habituation than wildtype animals. In keeping with a role for DA modulation of short term 

habituation, Kindt et al. revealed that genetic loss of dat-1 slowed the time it took for 

animals to habituate to a tap stimulus presented with a short ISI. Glu signaling was also 

hypothesized to play a role in the molecular mechanism of habituation, and studies 

conducted by Rankin and Wicks confirmed that mutation to the vesicular Glu transporter, 

eat-4, results in animals that significantly habituate more rapidly than wildtype 

counterparts and eat-4 mutant animals did not experience dishabituation like wildtype 

animals [172]. In contrast, other studies indicated that Glu signaling contributes to the 

long-term memory component of tap-habituation. Rose and colleagues first determined 

that eat-4 mutants did not show capacity for long-term tap habituation, and subsequently 

corroborated a role for Glu signaling in C. elegans long-term habituation as genetic loss 

of the AMPA-type, ionotropic Glu receptor (iGluR), glr-1, and pharmacological blockade 

of iGluRs prevented animals from showing long-term memory [173, 174]. The described 

work shows that C. elegans are able to alter their locomotor response to a stimulus in a 

simple learning related behavior, and these studies uncovered that DA and GLU are 

required for overlapping and distinct aspects of this behavior. Though researchers 

identified the foundational molecular mechanisms driving tap-habituation, reviewed by 

Giles and Rankin [175], it is clear that this behavior is actually quite complex, and involves 

many neuro-signaling molecules in the worm. 
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Chapter II 

IDENTIFICATION AND CHARACTERIZATION OF NOVEL REGULATORS OF DA 

SIGNALING IN C. elegans 

 

Identification of Swimming Induced Paralysis Phenotype 

The previous work describing DA signaling in the worm relied heavily on the use 

of genetic mutation of DA-related genes and the response of mutant animal locomotion 

to exogenous DA, supporting an extrasynaptic role for DA signaling in the worm. Despite 

the demonstrated role of C. elegans dat-1, in DA re-uptake and the neurotoxic action of 

6-OHDA, loss of dat-1 had no major effect on nematode locomotion on plates. 

Tangentially to investigations of an endogenous behavioral role for dat-1, we found that 

mutation of the presynaptic choline transporter, cho-1, resulted in animals displaying 

deficits in sustaining normal swimming behavior [176]. Our lab therefore hypothesized, 

given the critical role DA in nematode locomotion, that dat-1 contributes to C. elegans 

locomotor behavior in different behavioral context. McDonald and colleagues described 

that loss of dat-1 resulted in a rapid, complete paralysis of swimming locomotion in water, 

whereas wildtype counterparts sustained normal swimming or thrashing behavior for 10 

minutes [177]. The paralysis behavior of dat-1 animals was aptly termed, Swimming 

induced paralysis, or Swip. The authors further verified that the dat-1 Swip was dependent 

on DA signaling as genetic disruption of DA synthesis, by loss of cat-2, completely 

restored normal swimming behavior in dat-1 mutants. Furthermore, dat-1 Swip is 

dependent on DA signaling solely via DOP-3 as loss of dop-3 restores normal swimming 

behavior completely, despite evidence that the transition from swimming to crawling 
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requires DOP-1 and DOP-4 [178]. Additionally, McDonald and colleagues determined that 

the Swip phenotype of dat-1 mutants was suppressed by pharmacological disruption of 

DA signaling utilizing the cat-1 (vMAT2 in mammals) inhibitor, reserpine. Critically, the 

authors utilized transgenic animals to demonstrate that restoring dat-1 expression in the 

DA neurons of mutant animals rescued the Swip phenotype, therefore supporting the role 

of DA clearance via dat-1 in normal C. elegans swimming behavior.  

 

Forward Genetic Screen for Novel Regulators of DA Signaling in 

C. elegans 

The Swip phenotype represented a behavior mediated by endogenous DA well 

suited to further elucidation of the pre- and post-synaptic regulators of DA signaling in C. 

elegans. Forward genetic mutagenesis screens following a particular behavior or 

phenotype have been extensively utilized in the worm to identify novel, conserved genes 

[179]. Hardaway and colleagues implemented the fast, highly reproducible Swip 

phenotype in a forward genetic screen to identify novel regulators of DA signaling in the 

worm. As described in Fig. 8A [180], L4 staged BY200 (Pdat-1:GFP) animals (serving as 

wildtype) were chemically mutagenized by ethyl methanesulfonate (EMS) to generate 

random mutations across the genome of their progeny. Second generation (F2) progeny 

were tested for the Swip behavior, and those at least showing 80% paralysis were cloned 

to determine the persistence and the penetrance of Swip in the F3 progeny. Mutants that 

displayed abnormal locomotion on solid substrate were discarded to reduce the 

probability that the recovered mutants shared control of molecular signaling with other 

neurotransmitters, such as GABA or ACh. In order to isolate mutants that displayed DA- 
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Fig. 8. Implementing a forward genetic screen to identify novel C. elegans mutants 

displaying reserpine-sensitive Swimming induced paralysis, Swip. A. Schematic depicting 
the forward genetic mutagenesis screen using the hyperdopaminergic, reserpine-sensitive 
phenotype, Swip, to identify novel regulators of DA signaling in C. elegans. Animals that did not 
reproduce, displayed gross morphological differences from N2, or uncoordinated movement on 
plates were discarded. B. After three rounds of outcrossing, the forward genetic screen yielded 
10 novel mutants (vt) that retained reserpine sensitive Swip. (Adapted from Hardaway, 2012). 
  

A 

B 



	 34 

dependent Swip, a tertiary screen tested for Swip reversal after reserpine incubation 

[177]. Ten mutant lines with penetrant, reserpine-sensitive Swip after 3X outcrossings 

were discovered in this initial forward genetic screen (Fig. 8B) [180]. Genetic validation of 

the Swip DA-dependence observed in the novel mutant alleles was determined by Swip 

reversal after crossing to cat-2 and/or dop-3 mutant animals. 

 This screen revealed two novel point mutation alleles in the DAT-1 gene that cause 

robust DA dependent Swip similar to the canonical dat-1 loss of function allele, ok157. 

These findings attest to the validity of the designed forward genetic screen based on the 

Swip phenotype to identify critical regulators of DA signaling in the worm. One of these 

dat-1 alleles, vt21, contains a non-conservative missense mutation while the other allele, 

vt22, harbors a nonsense mutation resulting in a truncated DAT-1 protein. Hardaway and 

colleagues further characterized two mutant lines, vt25 and vt29, (of the original ten 

identified in the screen) that possess mutations in genetic loci independent of one another 

and independent of other known regulators of DA signaling. Like dat-1 mutants, the Swip 

phenotype of both vt25 and vt29 is reserpine sensitive and cat-2 and/or dop-3 mutation 

restores normal swimming behavior [180]. The authors utilized automated thrashing 

analysis to determine that the Swip of these two mutant alleles does differ from dat-1, in 

measures of latency to paralysis and paralysis reversal events. Further characterization 

of vt29 revealed that the mechanism of Swip arises via a parallel pathway to dat-1 as vt29 

demonstrates normal sensitivity to the DA neuron specific toxin 6-OHDA, and dat-1;vt29 

mutant animals display an additive Swip phenotype at various solution osmolarities. Both 

of these novel regulators of DA signaling, as well as the other uncharacterized mutant 

lines discovered in the forward genetic screen conducted by Hardaway et al. can be 
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targeted in future studies to further elucidate conserved regulators of DA signaling and 

reveal insight into brain disorders associated with altered DA signaling. 

 

Characterization of the Novel, Glial-Expressed Regulator of DA Signaling in the 

Nematode, swip-10 

After identifying novel mutant lines that demonstrate DA-dependent Swip, 

Hardaway and colleagues sought to further characterize the molecular basis by which the 

disrupted genes regulate DA signaling. In these efforts, we determined that two non-

complementing alleles, vt29 and vt33, harbored a nonsense and missense mutation 

respectively in the same gene, F53B1.6, which we termed swip-10 [146]. Genetic 

disruption of DA signaling via either cat-2 or dop-3 mutation restores all available swip-

10 mutation alleles, vt29, vt33, and the deletion allele tm5915, to wildtype swimming 

behavior, indicating that genetic disruption to swip-10 results in DA-dependent Swip. 

Interestingly, swip-10 exerts its control of DA signaling in a cell non-autonomous 

mechanism; through transgenic promotor fusions, we showed that swip-10 is expressed 

in the epidermis and uterine muscle cells in early developmental stages (L1 and L2), and 

in later development (L4) and adult stages swip-10 is predominately expressed in the 

glial-like support cells of the worm (Fig. 9) [146]. Glial-specific rescue experiments also 

determined that swip-10 paralysis is rescued via wildtype swip-10 expression under a 

pan-glial promoter, Pptr-10.  

 As swip-10 was previously shown to act in a parallel pathway to dat-1 by Hardaway 

and colleagues (Hardaway, 2012), we hypothesized that swip-10 acts in glia to regulate 

DA neuron excitability and thus modulates DA release and downstream signaling. Using  
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Fig. 9. swip-10 is expressed in the glial cells of the nematode. The swip-10 transcriptional 
reporter, pswip-10::GFP, co-localized in multiple cells labeled by the pan-glial transcriptional 
reporter, pptr-10::myrRFP. (Adapted from Hardaway, 2015).  
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a fluorescence recovery after photo-bleaching (FRAP) approach, we assessed the rates 

synaptic vesicle fusion with the plasma membrane specifically in the nematode DA 

neurons and determined that swip-10 mutants display increased DA vesicular fusion rates 

or hyper-DA secretion than N2 counterparts (Fig. 10A-B) [146]. To further support our 

hypothesis, in vivo DA neuron specific Ca2+ imaging revealed that the DA neurons of swip-

10 mutants are hyper-excitable by the presence of food, and that glial expression of swip-

10 is sufficient to restore normal DA neuron excitability (Fig. 10C-D) [146]. Knowing the 

importance of mammalian glia in the tight regulation of extracellular and synaptic Glu 

levels and Glu being the primary excitatory neurotransmitter in worms and man, we 

hypothesized that swip-10 acts in glia to control neuronal excitation by maintaining normal 

extracellular Glu homeostasis in the worm. In support of this hypothesis, we demonstrated 

that genetic disruption of Glu signaling via loss of the well characterized Glu vesicular 

transporter, eat-4, or loss of the Glu receptors, glr-4, glr-6 and mgl-1, suppress the Swip 

phenotype of swip-10 mutant animals (Fig. 11A and 11B) [146]. Additionally, we showed 

that loss of select plasma membrane Glu transporters was sufficient to drive DA-

dependent Swip (Fig. 11C) [146]. In our study, we provided a model for the mechanism 

of swip-10 hyperdopaminergia dependent on extra-synaptic Glu signaling such that the 

Swip phenotype of swip-10 mutants arises due to excess extracellular Glu signaling that 

results in increased DA neuron excitability and hyper-secretion of DA beyond the 

clearance capacity of dat-1, allowing hyperdopaminergic signaling on dop-3 to result in 

Swip (Fig. 12) [146]. 
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Fig. 10. Loss of swip-10 results in increased rates of DA vesicular release and elevated DA 

neuron excitability. A. Schematic describing the fluorescence recovery after photo-bleaching 
(FRAP) experiment designed to examine DA vesicular fusion rates. B. Loss of swip-10 results in 
significantly elevated rate of fluorescence, indicating a more rapid rate of DA vesicular release. 
C. Schematic describes the in vivo Ca2+ imaging experiment design used to determine DA neuron 
specific activity in the context of response to a food stimulus using radiometric value, comparing 
Ca2+-sensitive GFP to a stable non-Ca2+-sensitive RFP. D. Food triggers an increase in DA 
neuron activity, and this response is significantly elevated in swip-10 mutants, and glial-specific 
expression of swip-10 (blue and orange) restores swip-10 mutant DA excitability to N2 levels. 
(Adapted from Hardaway, 2015). 
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Fig. 11. swip-10 paralysis is dependent on glutamate signaling and loss of glutamate 

clearance results in DA-dependent Swip. A. swip-10 mutant animal Swip behavior is 
suppressed by loss of the vesicular Glu transporter, eat-4, as determined by automated thrashing 
analysis. B. Manual Swip assays determined that loss of the Glu receptors, glr-4, glr-6, and mgl-
1, significantly (and additively) suppress swip-10 paralysis. C. Manual Swip assays determined 
that loss of the plasma membrane Glu transporters, glt-1, glt-3, and glt-4 result in significant DA-
dependent Swip as loss of cat-2 restores normal wildtype swimming behavior in these mutants. 
(Adapted from Hardaway, 2015). 
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Fig. 12. Model for swip-10 mutant, Glu-signaling dependent hyperdopaminergia. Cartoon 
illustration depicting the hypothesis that swip-10 hyperdopaminergia induced Swip arises due to 
a glial dependent increase in extrasynaptic Glu driving increased DA neuron excitability and 
increased DA secretion, overwhelming normal DA clearance via DAT-1 to result in excessive 
activation of DA receptors (DOP-3) expressed on cholinergic motor neurons resulting in DA-
dependent Swip. (Adapted from Hardaway, 2015). 
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Conservation of SWIP-10 as the Mammalian Metallo-b-Lactamase Domain 

Containing Protein, MBLAC1. 

In our efforts to characterize the C. elegans SWIP-10 protein, we employed an in 

silico protein database search approach and discerned that SWIP-10 contains a metallo-

b-lactamase domain (MBD) in the protein’s C-terminus. We found this domain to be highly 

conserved across phylogeny and identified the mammalian ortholog, MBLAC1. 

Furthermore, the two swip-10 point mutation alleles (vt29 and vt33) from the 

aforementioned screen are conserved within the MBD domain (Fig. 8 and Fig. 13) [146]. 

The MBD derives its name from the prokaryotic enzymes containing conserved amino 

acid residues that form the active site required for the coordination of metal ions (such as 

Zn2+) and water molecules to aid in the hydrolysis of b-lactam antibiotics such as penicillin 

[181]. Though we hypothesize that SWIP-10 and MBLAC1 function enzymatically to 

hydrolyze a substrate, the specific target of these enzymes is currently unknown. 

However, we recently determined that MBLAC1 is a specific, high-affinity target for the 

neuroprotective b-lactam antibiotic, ceftriaxone (Cef) [182]. Retzlaff and colleagues 

utilized an MBLAC1-specific polyclonal antibody to determine that MBLAC1 is expressed 

throughout the mammalian brain and using fractionated mouse fibroblasts, further show 

that MBLAC1 is localized within the cytosol [182]. Using two independent techniques, 

affinity capture with cyanogen bromide immobilized Cef and backscattering interferometry 

with freely-mobile, unmodified Cef, Retzlaff and colleagues demonstrate that MBLAC1 is 

a high affinity binding partner of Cef in the CNS (KD=2.2 µM) [182]. Retzlaff provides 

further evidence that MBLAC1 is potentially an exclusive binding partner for Cef as 

binding activity in mouse brain lysates was totally eliminated by MBLAC1  
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Fig. 13. SWIP-10 is conserved across phylogeny as the mammalian protein, MBLAC1. The 
SWIP-10 C-terminus contains a metallo b-lactamase domain (red bar) highly conserved across 
phylogeny especially within the canonical b-lactamase family HxHxDH motif required for 
metal/water coordination for substrate hydrolysis (His in blue, Asp in purple). Additionally, the 
mutant swip-10 alleles, vt33 and vt29, respectively resulting in a missense mutation of a 
conserved glycine to glutamic acid, and a nonsense mutation of a conserved tryptophan to a stop 
codon. (Adapted from Hardaway, 2015). 
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immunodepletion [182]. The neuroprotective actions of Cef arise from its known 

regulation of glial Glu transporter expression, further described in the subsequent chapter. 

The identified specific Mblac1/Cef interaction, as well as the established role for glial-

expressed swip-10 in the regulation of Glu dependent DA neuron function and excitability 

in the nematode, points to the importance of further investigation of SWIP-10/MBLAC1 

related mechanisms supporting normal Glu signaling and brain health.  
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Chapter III 

GLUTAMATE INDUCED EXCITOTOXICITY AND CELL DEATH 

 

Molecular Mechanisms of Glu-Induced Excitotoxicity 

 Across phylogeny, the amino acid Glu plays multiple, important roles including 

contributions to protein synthesis, intermediary metabolism, and chemical 

neurotransmission [183-186]. Very early studies by Krebs identified the important 

metabolic role of Glu in the brain [187], however, years later, Glu was determined to be 

the major neurotransmitter responsible for excitatory neuronal signaling, and therefore 

Glu neurotransmission is involved in most aspects of normal brain function. Maintenance 

of Glu homeostasis within the brain is critical to allow Glu signaling to occur with exact 

temporal and local accuracy. At neuronal synapses, Glu signals through both 

metabotropic receptors that initiate G-protein coupled signaling [188-190] as well as 

ionotropic receptors that flux ions such as Na+ and Ca2+, altering membrane excitability 

and facilitating induction of normal intracellular Ca2+ signaling cascades associated with 

neuronal synaptic plasticity (Fig. 14) [188, 191-193]. Researchers further classified 

ionotropic Glu receptors based on the agonist that binds or activates the iGluR, N-methyl-

D-aspartate (NMDA) receptors [194, 195], a-amino-3-hydroxy-5-methyl-4-isoxazole 

(AMPA) receptors [196], and kainate receptors [197, 198]. Excitotoxicity, a term first 

coined by Olney [199], refers to neuronal cell death arising from excess Glu activation of 

Glu receptors. Excessive ionotropic Glu signaling in the mammalian brain has been 

implicated in a variety of brain disorders including addiction, schizophrenia, amyotrophic  
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Fig. 14. Cartoon depicting normal post-synaptic Glu neurotransmission induced 

intracellular Ca
2+

 signaling. Glu stimulated influx of Ca2+ through ionotropic NMDA Glu receptors 
results in Ca2+ storage in the endoplasmic reticulum and mitochondria. Intracellular Ca2+ signaling 
results in insertion of new AMPA-type ionotropic Glu receptors in the post-synaptic density, as 
well as activates kinase signaling pathways to activate translation and de novo protein synthesis, 
both which contribute to synaptic plasticity.  
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lateral sclerosis (ALS), and Parkinson’s disease (PD) [200-203], as well as the neuronal 

death that arises in the context of stroke and glioblastoma [204, 205] (Fig. 15).  

 

Mammalian models of excitotoxicity  

Much of what the neuroscience community knows about the molecular mechanism 

of Glu-induced excitotoxicity is through work utilizing mammalian cell culture models, and 

in vivo rodent and non-human primate models [199, 206], summarized in Fig. 16. Acute 

treatment of neurons in culture with high, non-physiological, levels of Glu can induce signs 

of cell death within minutes, characterized by intense vacuolization and cell swelling 

characteristic of necrosis [207-210]. In contrast, chronic hyper-activation of neurons by 

Glu, within physiological limits, can drive apoptotic mediated neural degeneration, 

particularly if other genetic or environmental risk pathways are engaged [211-213]. 

Chronic Glu activation of Glu receptors can lead to prolonged alterations in intracellular 

Ca2+ homeostasis, driving Ca2+-dependent proteolysis and activation of apoptotic 

programs [214] (Fig. 16). Determining the cell autonomous mechanisms underlying Glu 

excitotoxic neurodegeneration is complicated due to this heterogeneity of cell death 

observed. Bonfoco and colleagues observed this using a cortical neuronal cell culture 

model of excitotoxicity where the initial severity and duration of NMDA insult dictated 

necrotic (short, high concentration NMDA treatment) or apoptotic (longer, less severe 

NMDA treatment) neurotoxicity [215]. In vivo murine studies by Portera-Cailliau, Price, 

and Martin utilized NMDA or non-NMDA agonists to stimulate neuronal excitotoxicity and 

demonstrated that the cell death mechanism driving neurodegeneration is influenced by 

neuronal maturity and neuronal GluR subunit composition [216]. More recently, Anilkumar  



	 47 

 
 

Fig. 15. Schematic illustrating the variety of human brain disorders and neurodegenerative 

diseases associated with acute versus chronic Glu induced excitotoxicity.  
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Fig. 16. Schematic of Glu-induced excitotoxicity arising due to aberrant intracellular Ca
2+

 

signaling and subsequent induction of cell death mechanisms. (Figure adapted from Lo et 
al. 2003). 
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and colleagues used a mammalian cell culture model to find that extrinsic factors, such 

as glucose or nutrient availability, influence the mode of neural degeneration despite 

similar levels of Glu stimulation [217]. Glu excitotoxicity studies, such as those highlighted 

here, suggest that the induced mode of cell death occurs along a spectrum, ranging from 

necrosis to apoptosis with both shared and distinct molecular mechanisms driving neural 

degeneration [218].  

One shared molecular feature of Glu stimulated necrosis or apoptosis, is the 

dysregulation of intracellular Ca2+ regulation and signaling [219]. Choi first described the 

involvement of Ca2+ influx in Glu excitotoxicity using neuronal cultures, where Glu-

induced neurodegeneration was markedly decreased in neurons cultured in Ca2+-free 

solution, and further implicated NMDA receptors as responsible for Ca2+ influx in Glu 

excitotoxicity [220, 221]. Further research suggests that excessively stimulated iGluRs 

lead to post-synaptic membrane depolarization and aberrant Ca2+ influx either through 

the iGluRs or through secondary Ca2+-permeable channels such as DEG/ENaCs 

(Na+/Ca2+-permeable degenerin/ epithelial sodium channels) [148, 222, 223]. After 

entering the cell, Ca2+ activates many Ca2+-dependent enzymes including proteases, 

phosphatases, lipases, and DNAses, and excessive activation of these proteins has 

deleterious effects on neuronal viability. Along these lines, Wang and colleagues used a 

hippocampal cell culture model of Glu-induced excitotoxicity to demonstrate that Glu-

stimulated Ca2+ influx activated the Ca2+-dependent phosphatase, calcineurin, which 

subsequently dephosphorylated BAD, a pro-apoptotic effector, leading to apoptosis 

induction and degeneration [224]. Multiple studies implicate calpain, a Ca2+-dependent 

protease, as a mediator of Glu induced cell stress that can ultimately culminate in 
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neurodegeneration through apoptotic or necrotic cell death pathways [225, 226]. 

Recently, Gold and colleagues demonstrated that pharmacological inhibition of calpain 

reduced Glu-induced excitotoxicity in murine primary neurons [227]. In addition to 

dysregulated activation of Ca2+-dependent proteins, excitotoxic Ca2+ influx leads to 

deficiencies in mitochondrial and ER Ca2+ buffering which increases cellular stress to the 

point of activating cell death mechanisms [228-230]. Dykens was able to show that brain 

mitochondria exposed to increased levels of cytosolic Ca2+ produced significantly more 

free radicals, and led to increased measures of mitochondrial dysfunction [231]. 

Mitochondrial dysfunction has been associated with both necrotic and apoptotic cell death 

pathways in the context of Glu-induced neurodegeneration [232, 233]. 

Although cell autonomous mechanisms remain a focal point for many 

investigations seeking insights into determinants of neurodegeneration, increasing 

attention has been given to astrocytic mechanisms that can sustain neuronal viability 

[234], in the context of constant Glu stimulation that could otherwise lead to cell death. 

These mechanisms include the shuttling of metabolic intermediates such as lactate to 

neurons that can help sustain ATP synthesis [235-237], the buffering of extracellular ions 

such as K+, since excess extracellular K+ due to chronic ion channel activation and Na+/K+ 

ATPase dysregulation can contribute to excess neuronal activation [236, 238, 239], and 

more recently, Grant and colleagues determined that C. elegans glia support neuronal 

health via pH buffering by transport of bicarbonate [150]. Important for neuronal viability, 

glia are critical for the efficient clearance of extracellular Glu that both limits the amplitude 

of synaptic and extrasynaptic Glu signaling but also limits Glu-driven neuronal 

degeneration [236, 240, 241]. 
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Glutamate transporter regulation of glutamate signaling 

 Maintaining Glu homeostasis, and regulating extracellular Glu concentrations prior 

to, during, and after pre-synaptic Glu release is crucial to normal neurotransmission, 

neuronal heath, and normal brain function. Extracellular Glu uptake is mediated by 

multiple Na+-dependent Glu-transporters of the SLC1 family that terminate Glu signaling 

via binding and uptake of Glu in proximity to synaptic release sites [202, 241, 242]. Of 

these plasma membrane Glu transporters, GLT1 (rodents) / EAAT2 (humans) is 

responsible for the majority of synaptic Glu clearance. By solubilizing rat brain 

membranes and employing chromatographic methods, Danbolt and colleagues first 

identified GLT-1 as a specific Glu transporter in the brain, and later generated a specific 

antibody to this protein and by immunoreactivity methods determined that GLT-1 

expression is localized to glial cells in the brain [243-245]. With the identification of the 

GLT-1 protein, several research groups independently used various molecular cloning 

techniques to identify the cDNA for GLT-1 and two other Na+-dependent Glu-transporter 

cDNAs now known as GLAST (rodents)/ EAAT-1 (humans), and EAAC1 (rodents)/ EAAT-

3 (humans) [246-248]. Brain localization of these Glu transporters varies, with GLT-1 

expressed in glial cells in the forebrain, GLAST immunostaining reveals localization to 

both neurons and glial cells primarily in the cerebellum, and EAAC-1 expressed in 

neurons throughout the brain, but at much lower levels [249-251]. Later, two additional 

glutamate transporters were identified as EAAT-4 and EAAT-5 (with expression restricted 

to the cerebellum and retina respectively [252-254]. While all of these plasma membrane 

Glu transporters transport extracellular Glu, the astrocytic glial Glu transporter, GLT-
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1/EAAT-2, is responsible for tightly regulating synaptic Glu, and 90% of Glu uptake (Fig. 

17) [255]. With excessive synaptic Glu signaling leading to excitotoxicity in both acute 

and chronic neurological disorders, normal GLT-1/EAAT-2 function is critical to normal 

brain health and elevating the expression or activity this protein has become a 

pharmacological strategy explored for protecting neurons against excessive Glu 

signaling. In this regard, pharmacological inhibition or genetic disruption to GLT-1 is 

sufficient to generate Glu induced excitotoxicity [211, 240] and GLT-1 dysfunction has 

been implicated in a number of brain disorders associated with excitotoxicity, including 

but not limited to stroke, addiction, ALS, PD, etc. [256-259]. 

A second astrocytic Glu transporter that participates in extracellular Glu 

homeostasis is xCT (SLC7A11), the transporter subunit of a dimer that supports 

intracellular Glu exchange for extracellular cystine. First identified as a Na+-independent 

Glu transporter [260], the Glu/cystine exchange was first characterized by Bannai using 

human fibroblast cells, and subsequent molecular cloning by Sato and colleagues 

identified xCT as the subunit responsible for Glu/cystine transport [261, 262]. Several 

groups have used xCT specific antibodies coupled to immunoreactivity staining 

techniques to show that within the CNS, xCT is expressed in astrocytes as well as 

neurons, and highly expressed in glioma cell lines [263, 264]. xCT is generally thought to 

provide basal extrasynaptic Glu tone to modulate Glu neurotransmission as well as 

providing the precursor (cystine) for astrocytic glutathione synthesis (Fig. 17) [255, 265-

267]. Work conducted by Baker and colleagues to monitor radiolabeled cystine uptake in 

vivo, demonstrated that Glu export by xCT exerted modulatory Glu tone on metabotropic 

GluRs (mGluR2/3) thus regulating Glu neurotransmission [268]. Additional studies  



	 53 

 
 

Fig. 17. Cartoon depicting a glutamatergic synapse ensheathed by an astrocytic process 

and the glial control of extracellular glutamate via glutamate transporters and the 

cystine/glutamate exchanger. Glu released from the presynaptic terminal acts on post-synaptic 
AMPA (A) and NMDA (N) ionotropic Glu receptors. Glu within the synaptic cleft is rapidly cleared 
by the glial Glu transporters (E), where within the astrocyte Glu is incorporated into the 
Glu/Glutamine cycle. Extrasynaptic glutamatergic tone is, where Glu modulates neuronal activity 
by acting on metabotropic Glu receptors (M), is regulated by the cystine/Glu exchanger (Orange). 
(Figure from Bridges and Baker, 2012). 
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revealed evidence that the extrasynaptic Glu released by xCT is cleared as it diffuses 

toward synaptic areas by EAATs [268, 269]. These findings support the hypothesis that 

xCT acts oppositely to SLC1 transporters, thereby maintaining Glu homeostasis via 

compartmentalization of extracellular Glu into different domains (Fig. 17) [255]. Excessive 

Glu efflux via xCT has been shown to result in pathological excitation of iGluRs, and result 

in Glu-induced excitotoxicity [270]. Therefore, similar to GLT-1, xCT dysregulation has 

been associated in the pathology of brain disorders linked to excitotoxicity including 

addiction, Alzheimer’s disease, and multiple sclerosis [257, 271, 272]. 

 Due to their significant impact on synaptic and extrasynaptic Glu homeostasis, Glu 

transporters and exchangers have been widely studied to determine their contribution to 

Glu-induced neural degeneration as well as in efforts to manipulate their activity and 

expression for therapeutic ends [257, 267, 273]. In a landmark study, Rothstein and 

coworkers screened a library of FDA-approved compounds for their ability to increase 

GLT-1 mRNA and protein levels [202]. They identified b-lactam antibiotics, typified by the 

cephalosporin-type antibiotic ceftriaxone (Cef), as capable of elevating GLT1 expression 

in vitro and in vivo, protecting neurons from Glu toxicity, and enhancing longevity in an 

ALS mouse model [202]. Subsequently, many investigators have demonstrated the 

neuroprotective activity of Cef administration in a variety of rodent models of brain 

disorders including stroke, addiction, PD [274-276]. Researchers, such as Rothstein, 

provide evidence that Cef imparts neuroprotection by modulation of both GLT1 and xCT 

expression [202, 267, 277]. Lee and colleagues use immunoreactivity techniques 

(western blots and immunofluorescence) and electrophoretic mobility shift assays to 

provide evidence that Cef increases expression of GLT-1 in primary human fetal 
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astrocytes through increased activation the nuclear factor-kB (NF-kB) signaling pathway 

[278]. Likewise, studies conducted by Lewerenz and colleagues provide support that Cef 

induces xCT protein expression in a hippocampal neuron derived cell line by increasing 

transcription of the exchanger via the nuclear factor erythroid 2-related factor (Nrf2) 

signaling pathway [277]. While the studies by Lee and Lewerenz both suggest 

transcriptional regulation of Glu transporters by Cef, the candidate(s) or substrate(s) 

targeted by the antibiotic in glia have, until recently, been unidentified. As described in 

the previous chapter, Retzlaff and colleagues determined that the metallo b-lactamase 

domain containing protein 1, MBLAC1 (SWIP-10 in C. elegans), interacts specifically and 

selectively with Cef [182]. Studies are underway in the Blakely lab to evaluate the 

expression of MBLAC1 as essential to the neuroprotective actions of Cef. 

 

C. elegans Elucidation of Cell Death Mechanisms 

Mammalian models of Glu induced excitotoxicity demonstrate that the duration, time, 

and extent of Glu signaling elicits neuronal cell death via two major forms of cellular 

demise, apoptosis or necrosis (Fig. 18). The utilization of C. elegans as a model organism 

was instrumental in the genetic, molecular, and cellular characterization of both 

programmed cell death (apoptotic) and necrotic cell death pathways. Well-described 

developmental stages, transparency, and a known cell lineage map made the nematode 

an excellent model for studying normal and aberrant cell death. I will concentrate the 

following review on foundational studies that used the worm as a powerful genetic model 

to uncover the cellular and molecular mechanisms that mediate either apoptotic or 

necrotic cell death.  
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Fig. 18. Diagram depicting the cell death mechanisms by which various paradigms of Glu-

induced neurodegeneration occurs. High, acute levels of Glu exposure, such as that observed 
in models of stroke, ischemia, and traumatic brain injury, result in necrotic mediated cell death. 
Chronic, low levels of excess Glu are implicated in neurodegeneration over a longer period of 
time in models of neurodegenerative diseases such as PD, ALS, etc. Models of chronic 
neurodegeneration implicate apoptosis in mediating neuronal cell death. (Figure adapted from 
Lea and Faden. 2003). 
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Programmed cell death – apoptosis  

In the mid-1960’s, pioneering researchers, such as Kerr, were first beginning to 

characterize “controlled cell deletion”, now known as programmed cell death. Originally 

called “shrinking necrosis” based on morphological description [279, 280], apoptosis has 

become the term used in the scientific community to describe cell-autonomous 

programmed cell death, although we now know that apoptosis can also be triggered by 

extrinsic factors such as excessive Glu signaling. Apoptosis was characterized as 

morphologically distinct from other types of cell death by Kerr, Wyllie, and Currie [281]. 

Using electron microscopy techniques these researchers described the morphological 

cues still used to determine apoptotic cell death; cells first become rounded and 

separated in appearance, and electron density increases as the chromatin condenses 

within the nucleus, and eventually apoptotic cells undergo nuclear fragmentation, plasma 

membrane blebbing, and vacuole shedding [281, 282]. 

Outstanding work by Sydney Brenner, John Sulston, and Robert Horvitz, for which 

they were jointly awarded the 2002 Nobel Prize in Physiology or Medicine, informed the 

scientific community of the conserved, genetic regulation of programmed cell death. In 

the 1970’s, Brenner developed and refined C. elegans research and genetic techniques, 

including the methods for mutagenesis-based genetic screens, gene isolation, genetic 

complementation and gene mapping. These methods allowed subsequent research to 

link genetic analyses with studies ranging from cell development and cell death to animal 

behavior [179, 283]. Taking advantage of the transparency and stereotyped development 

of C. elegans, Sulston used Nomarski differential interference contrast (DIC) microscopy, 

in vivo, to follow cell lineage maps from fertilized egg to the 959-cell adult hermaphrodite 
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[284-286]. These studies revealed that every time a fertilized egg develops into an adult, 

131 somatic cells die during normal, developmental, programmed cell death with 

apoptotic like morphology, including chromatin condensation, cell shrinkage, and a 

“button-like” appearance due to increased cytosol refractility (Fig. 19) [287]. Strikingly, 

105 of the cells that undergo programmed cell death during C. elegans development are 

neurons, resembling the neuronal overpopulation and subsequent neuronal pruning that 

occurs during vertebrate nervous system development.  

After the elucidation the C. elegans cell lineage maps, Sulston and Horvitz 

employed Brenner’s genetic techniques to isolate and characterize gene mutations 

resulting in altered nematode cell lineage [288, 289]. Hedgecock and colleagues identified 

two genes, ced-1 and ced-2, that when mutated prevent the engulfment of dying cells 

during development, such that cells undergoing apoptosis do not disappear and remain 

identifiable via their increased refractility and “button-like” appearance [290]. Via chemical 

mutagenesis, Horvitz and Ellis conducted a forward genetic screen on a ced-1 mutant 

background to discover mutations that result in a cell death abnormal (ced) phenotype 

such that cells that normally become “button-like” retained normal refractility, survived, 

and even differentiated [291]. Subsequent genetic mapping and complementation tests 

revealed the first genes, ced-3 and ced-4, identified within the genetic pathway controlling 

programmed cell death in the worm [291]. Additional screening by Ellis and Horvitz 

revealed a dominant mutation in a novel gene that resulted in visible loss of apoptotic 

cells [292]. A follow-up study by Hengartner named this new gene as ced-9, and further 

determined that loss of function mutations result in embryonic lethality, presenting ced-9 

as a negative regulator of genes required for programmed cell death [293]. Originally  
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Fig. 19. Representative DIC images of necrotic, healthy, and apoptotic neurons in the 

nematode. A. The PVM touch receptor neuron (red arrow) of a mec-4(d) mutant animal displays 
the typical morphology, vacuole like- cell swelling and nucleus expansion (blue arrow), of necrotic 
cell death.  B. Healthy cells are indicated by green arrows. C. An example of an apoptosis 
generated retractile cell corpse (red arrow), compact and button-like, with dark electron dense 
formations. Figure from Syntichaki and Tavernarakis, 2002. 
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identified as a gene regulating egg-laying behavior, egl-1 was first described by Horvitz 

and colleagues as they determined that gain of function mutation to egl-1 results in ectopic 

programmed cell death in the HSN neuron in the nematode. Later work by Conradt and 

Horvitz determined that loss of function mutation to egl-1 prevents normal programmed 

cell death [294, 295]. Following the elucidation of the genes required for normal 

developmental programmed cell death, researchers utilized genetic epistasis 

experiments to determine the interactions between egl-1, ced-9, ced-4, and ced-3. These 

studies often involved overexpression of one of these genes to kill cells in the context of 

different genetic backgrounds. These epistasis experiments revealed egl-1 to be a 

negative regulator of ced-9, which in turn negatively regulates ced-4, and finally ced-4 

activates ced-3 to execute programmed cell death (Fig. 20)  [296][297]. 

In parallel to the discovery of the genes within the genetic pathway controlling 

programmed cell death in C. elegans, researchers also sought to characterize the 

conservation and function of the proteins for which these genes encoded. Fig. 21 also 

depicts the nematode apoptotic pathway, including portraying the functional role 

attributed to each gene of the genetic pathway. ced-3, the final gene effector in the 

programmed cell death pathway is known as the “executioner”, and Yuan and colleagues 

found that the CED-3 protein sequence has homology to the human and rodent 

interleukin-1b-converting (ICE) enzyme therefore determining that CED-3 is a member of 

the caspase family (cysteine aspartate-specific protease), and suggesting that CED-3 

activation results in cell death via its proteolytic cleavage of protein substrates [298, 299]. 

Further evidence of a conserved mammalian genetic apoptosis pathway was provided by 

Zou and colleagues in their studies to isolate and purify the cDNA for Apaf-1 from HeLa  
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Fig. 20. Apoptotic – Programmed cell death pathway. The basic genetic pathway (dogma) of 
apoptosis is conserved from worm to man. (Figure from Strasser, Cory, and Adams, 2011).  
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Fig. 21. C. elegans programmed cell death pathway function. Upstream apoptotic signaling 
triggers EGL-1 to interact with CED-9, displacing the inhibitory CED-9 interaction from CED-4. 
CED-4 is then able to cleave the inactive CED-3 precursor to the generate active CED-3. Active 
CED-3 will then cleave its substrate(s) to complete the apoptotic cell death pathway. (Adapted 
from Metzstein, Stanfield, and Horvitz, 1998) 
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cells, by which they demonstrated protein homology between APAF-1 and C. elegans 

CED-4 [300]. APAF-1 and CED-4 both contain multiple WD repeats, previously shown to 

mediate protein-protein interactions, and Zou and colleagues used immunoprecipitation 

experiments to show that APAF-1 interacts with cytochrome c and subsequently activates 

a downstream caspase (i.e. caspase-3) as shown in immunoblots by the appearance of 

the cleavage products from the caspase-3 precursor (Fig. 21) [300][296]. As the gain of 

function mutant allele of ced-9 prevented normal programmed cell death [293], it was 

hypothesized that ced-9 acted as a negative regulator of apoptosis and Hengartner and 

Horvitz determined that the mammalian ortholog of ced-9 is the proto-oncogene bcl-2, 

previously shown to protect lymphoma-derived cells from apoptosis [301, 302]. Using a 

yeast expression model system without intrinsic cell death machinery, S. pombe, James 

and collaborators expressed C. elegans apoptotic genes in yeast demonstrating that 

expression of ced-4 resulted in chromatin condensation and lethality that could be 

attenuated by co-expression of wildtype ced-9 [303]. The researchers confirmed a direct 

interaction between CED-4 and CED-9 via yeast two-hybrid analysis (Fig. 17) [303][296]. 

In the phenotypic characterization of egl-1 as a regulator of programmed cell death, 

Conradt and Horvitz cloned egl-1 cDNA and describe an amino acid region of EGL-1 with 

homology to the Bcl-2 homology region 3 (BH3) domain found in the family of mammalian 

cell death activators including Bik (human) and Bid/Bad (mouse) [295]. After using genetic 

epistasis experiments to support that egl-1 functions through ced-9, Conradt and Horvitz 

utilized a yeast two-hybrid approach to demonstrate that EGL-1 interacts directly with 

CED-9, supporting the hypothesis that BH-3-domain containing regulators of cell death 

(EGL-1, Bid, Bax, etc) activate cell death by binding to and blocking Bcl-2-like cell death 
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inhibitors (i.e. CED-9) [295] (Fig. 21) [296]. By using C. elegans to identify the genes in 

the programmed cell death pathway, and further characterize their mammalian orthologs 

and protein product functions, researchers such as Brenner, Sulston, and Horvitz 

provided an extensive framework for future scientists studying apoptotic cell death 

mechanisms in a wide variety of contexts including cancer, excitotoxicity, and 

neurodegeneration. 

 

Genetic and environmental regulation of necrotic cell death 

 The early studies describing the morphology of dying cells characterized two 

primary modes of cell death based on visual assessment, necrosis and apoptosis. 

Necrosis-like cell death was distinguished from programmed cell death by Wyllie, Kerr 

and Currie as being an accidental or deranged form of cell death occurring due to extrinsic 

factors causing irreversible injury [304]. Morphologically distinct from apoptotic dying 

cells, Hall and colleagues used light and electron microscopy techniques to describe the 

morphological cues used to determine necrosis-like cell death in C. elegans; the first signs 

of necrotic cell death are the appearance of membrane infoldings and whorls, followed by 

cell swelling resulting in the cytoplasm becoming less electron-dense and vacuoles 

emerge and enlarge, eventually cellular organelles disappear and the swollen cell 

ruptures (Fig. 19) [287, 305]. 

 In C. elegans normal developmental cell death typically follows the canonical 

apoptotic genetic program described above (Fig. 20) however, there are a few exceptions. 

For example, Sulston and collaborators describe the “in-between” necrosis-like 

programmed cell death that occurs in the male nematode linker cell. The linker cell dies 
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by the L4 stage of the animal, and this cell death persists even with genetic loss of the 

apoptotic executioner, ced-3 [306]. This example highlights the potential for overlapping 

mechanisms in cell death pathways originally thought to be distinct, and mammalian cell 

death studies provide even more support for the hypothesis of cell death being a 

spectrum, ranging from apoptosis to necrosis. 

 Necrotic cell death in the worm has been extensively studied in the context of non-

developmental cell death in the adult animal that can be triggered by extrinsic and intrinsic 

signals [307]. Dramatic environmental changes result in cellular toxicity and pathologies 

in mammals as well as in the worm (Fig. 22) [308]. Widespread necrotic cell death was 

observed in nematodes briefly exposed to hyperthermic conditions, modeling the 

pathologies of heat stroke in humans [309]. Oxygen deprivation, or hypoxia, has been 

shown to induce cell death in human disorders such as stroke and heart attack. Similarly, 

Scott, Aviden and Croweder demonstrate that hypoxic environmental exposure induces 

muscle and neuronal necrotic cell death in c. elegans, and further demonstrate that 

hypoxia resistance is modulated by the insulin/IGF receptor tyrosine kinase, DAF-2 [310]. 

Work by Yuan and colleagues demonstrated that nematodes with mutation to slo-2, a 

conserved Na+-activated K+ ion channel, are hypersensitive to hypoxic death, suggesting 

that SLO-2, normally protects against hypoxia induced necrosis by hyperpolarizing the 

neuronal resting potential to limit electrical activity [311]. 

As in mammalian nervous systems, ionic imbalances can lead to neuronal injury 

and trigger necrotic cell death in the nematode. Genetic mutations that alter ion channel 

permeability in the plasma membrane, leading to toxic intracellular ionic imbalancesand 

necrosis, are extensively studied in the worm. Chalfie and Wolinsky utilized Nomarski DIC  
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Fig. 22. Necrotic cell death mechanisms. Various extrinsic (i.e. heat shock and hypoxic 
conditions) and intrinsic (i.e. genetically-induced increase in membrane Ca2+-permeability) factors 
converge on ionic imbalances and aberrant intracellular Ca2+ signaling to result in necrotic cell 
death. Figure from Nikoletopoulou and Tavernarakis, 2014. 
  



	 67 

imaging to determine that a dominant mutation to deg-1, first identified in a genetic screen 

for regulators of touch receptor neuron differentiation [312], resulted in non-apoptotic 

degeneration of the posterior touch neuron of the nematode after embryogenesis [313]. 

In parallel, Driscoll and Chalfie, determined that three dominant mutations in the gene 

mec-4, previously described for its role mechanosensation, resulted in cell-swelling and 

late onset degeneration of the 6 soft-touch receptor neurons of the worm, assessed via 

light microscopy [314]. deg-1 and mec-4 were found to be homologous using a DNA 

cross-hybridization technique [314], and both belong to a larger nematode family of genes 

named degenerins (DEG) for the cell degeneration phenotype observed in dominant 

mutant alleles of these genes. These genes are homologous to mammalian epithelial 

sodium channels, (ENaCs) [308, 315]. Other C. elegans neuronal DEG/ENaC genes 

include, mec-10 and unc-8, and dominant mutations in these genes also results in 

osmotic imbalance and necrotic neuronal cell death in the gentle touch receptor neurons 

and cholinergic neurons of the ventral nerve cord, respectively [223, 316]. The neuronal 

toxicity resulting from hyperactive DEG/ENaC channels was demonstrated, in part, to 

arise due to increased Ca2+ permeability and aberrant intracellular Ca2+ signaling 

including a role for calreticulin and Ca2+ release from the ER as well as activation of Ca2+ 

dependent proteases, such as calpain [226, 317]. Research conducted by Bianchi, 

Matthewman, and others used a heterologous expression system and chimeric channels 

to study the ion conductance and toxicity of the dominant mutations of mec-4 and unc-8 

and thereby provided evidence that the cellular toxicity arising from hyperactive 

DEG/ENaC can be attributed increased Ca2+ permeability (MEC-4) [318] and as well as 

increased Na+ conductance (UNC-8) [222]. Dominant mutations in other classes of ion 
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channels, such as deg-3, an acetylcholine receptor ion channel permeant to Ca2+, or trp-

4, a DA neuron expressed transient receptor potential (TRP) channel, have been shown 

to cause Ca2+-dependent neuronal degeneration, separate from apoptosis [319, 320]. 

Using C. elegans as a model for necrotic neurodegeneration provides convincing 

evidence that tight regulation of ions is critical for maintaining neuron viability, a concept 

further supported by mammalian excitotoxicity studies.   

 

C. elegans Models of Glutamate Induced Excitotoxicity 

The molecular consequence of ionic imbalance in C. elegans is strikingly similar 

to the molecular mechanisms driving neuronal cell death in mammalian models of Glu-

induced excitotoxicity. Nematode models of Glu-induced neuronal degeneration are still 

in their infancy, with the primary paradigm developed by the groups of Driscoll and Mano. 

Using Nomarski DIC imaging, Mano and Driscoll provided evidence of Glu induced 

excitotoxic necrotic cell death in the worm, arising from a combined loss of Glu clearance 

(via the plasma membrane Glu transporter, glt-3) and a hyperactive, constitutively active 

form of the alpha subunit of the G-protein, Gs, elevating cAMP signaling via adenylyl 

cyclase, acy-1, activity (Fig. 23) [321]. Unlike mammalian models of Glu-induced 

excitotoxicity, single or combinatory loss of multiple Glu transporters was not sufficient to 

induce cell death, likely due to the genetic redundancy of Glu transporters in the worm. 

However, Mano and Driscoll further describe the contributions of Ca2+-permeable AMPA 

type Glu receptors to the excitotoxicity observed their model, such that genetic loss of glr-

1 and glr-2 attenuated the observed necrotic cell death (Fig. 23) [321]. In keeping with 

mammalian models of Glu-excitotoxicity, the authors provide evidence that disrupted ER  
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Fig. 23. Model for excitotoxic neurodegeneration in C. elegans. This schematic depicts the 
suggested mechanism for Glu induced excitotoxic signaling leading to necrotic cell death in the 
nematode. In this paradigm, excitotoxicity occurs in the context of disrupted Glu clearance by loss 
of glt-3, combined with constitutively active Gas protein. Excitotoxic signaling in this model is reliant 
on Glu signaling via AMPA receptors, disruption to intracellular Ca2+ signaling. (Figure from Mano 
and Driscoll, 2009). 
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Ca2+ storage and release contributes to excitotoxic neural degeneration as genetic loss 

of calreticulin, crt-1, suppresses necrotic cell death (Fig. 23) [321]. The Mano group 

continued to use this C. elegans paradigm of Glu-induced necrotic degeneration to 

implicate the involvement of additional molecular regulators of excitotoxicity. Despite 

contrary findings for a role of the insulin/IGF signaling (IIS) cascade in mammalian models 

of excitotoxic neurodegeneration, Tehrani and colleagues provide evidence that genetic 

hyperactivation of the IIS cascade exacerbates excitotoxic necrosis, and pharmacological 

disruption of the IIS cascade, through PI3K inhibition, can protect against the 

neurodegeneration observed in the C. elegans excitotoxicity induced necrosis paradigm 

[322]. Del Rosario and collaborators continued to use this paradigm to characterize a role 

for the autophagy-associated, cell death protein kinase, dapk-1, and it is known 

interaction partner, pin-1, as conserved regulators of excitotoxicity, whereby they act in 

parallel to autophagy induction of neurodegeneration and do not act to regulate 

neurotoxicity via modulation of synaptic strength [323]. This C. elegans model of Glu-

induced excitotoxicity provides insight to conserved molecular mechanisms of necrotic 

neurodegeneration. However, there is a need for additional nematode paradigms of Glu-

induced excitotoxicity, particularly those with a variety of cell death phenotypes ranging 

from apoptosis to necrosis, to further identify and characterize novel genetic regulators of 

Glu-induced neuronal degeneration.  
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Specific Aims 

Aim #1 – Determine and characterize the DA neuron morphology/ degeneration of swip-

10 mutant animals.  

Aim #2 – Elucidate the molecular mechanism of the Glu-excitotoxicity induced DA 

neurodegeneration and cell death of swip-10 mutants. 

Aim #3 – Utilize a global, untargeted metabolomic approach to identify the metabolic 

pathway(s) reliant on expression the metallo-b-lactamase domain containing protein, 

Mblac1.   
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Chapter IV 

DA NEURON DEGENERATION IS INDUCED BY LOSS OF THE METALLO-b-

LACTAMASE DOMAIN CONTAINING PROTEIN, SWIP-101 

 

Introduction 

Our previous studies identified a glial-expressed gene, swip-10, whose mutation 

induces hyper-excitability of DA neurons and elevates rates of vesicular DA release, 

culminating in the hyperdopaminergic phenotype, Swimming induced paralysis (Swip) 

and demonstrated a critical role for Glu signaling in establishing the paralytic phenotype 

of swip-10 mutants [146]. swip-10 is conserved across phylogeny as a metallo b-

lactamase domain containing protein, with the unstudied gene, Mblac1, as the putative 

mammalian ortholog. Additional studies in the lab established that MBLAC1 is a specific, 

high-affinity target for the neuroprotective b-lactam antibiotic Cef [182]. Together, these 

findings suggest that further study of SWIP-10/MBLAC1 may reveal mechanisms 

normally engaged to protect neurons from chronically elevated extracellular Glu and a 

path to the identification of novel neuroprotective agents. A key piece of data lacking in 

this hypothesis, however, is evidence that loss of SWIP-10/MBLAC1 either induces Glu-

dependent neural degeneration or eliminates the neuroprotective actions of Cef.  

  Here, we capitalize on the ease of monitoring the morphology and degeneration 

of C. elegans DA neurons engineered to stably express green fluorescent protein (GFP) 

																																																								
1	Adapted from Gibson CL, Balbona JT, Niedzwiecki A, Rodriguez P, Nguyen KCQ, Hall 
DH, et al. Glial loss of the metallo b-lactamase domain containing protein, SWIP-10, 
induces age- and glutamate-signaling dependent, dopamine neuron degeneration. 
PLOSGenet. In press. 2018. 
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to examine a requirement for swip-10 expression regulating DA neuron morphology. 

Using light and electron microscopy methods, we find that swip-10 mutants demonstrate 

a striking, progressive degeneration of the DA neurons that can be suppressed by glial 

expression of wild type swip-10 therefore providing evidence for a cell non-autonomous 

action of SWIP-10 to sustain DA neuron viability and suggest that this may not be solely 

limited to DA neurons but extend to other neurons tightly associated with glia. 

 

Materials and Methods 

C. elegans strains and husbandry 

Strains were maintained as described previously [179]. We thank J. Rand 

(Oklahoma Medical Research Foundation); the Caenhorhabditis Genetics Center (funded 

by the National Institutes of Health’s Office of Research Infrastructure Programs by Grant 

P40 OD010440); Shohei Mitani of the National Bioresource Project at Tokyo Women’s 

Medical University; and Shai Shaham, Niels Ringstad, and Oliver Hobert for providing the 

strains used in this work. N2 (Bristol) served as our wild-type strain, and unless specified 

otherwise, we utilized the proposed null allele, TM5915, of swip-10 [146]. Strains used in 

the studies described in this chapter are enumerated in order of appearance in Table 1. 

 

Plasmid construction and transgenic manipulations 

In all cases, insertion of the DNA fragment of interest and the fidelity of the vector 

was confirmed by sequencing and all PCRs were performed using KAPA HiFi HotStart 

ReadyMix (Kapa Biosystems). All constructs resulted in C-terminal cDNA fusion to an  
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Table 1. C. elegans strains utilized for data collection and figures described in Chapter IV. 

  

Strain no. Background strain/alleles Transgene no. Transgene
BY250 vtIs7 pdat-1 :GFP
BY1175 vtIs7;swip-10(tm5915) vtIs7 pdat-1 :GFP
BY956 vtIs7;swip-10(vt29) vtIs7 pdat-1 :GFP
BY1174 vtIs7;swip-10(vt29) vtIs7 pdat-1 :GFP
BY1224-BY1225 vtIs7 vtIs7; vtEx272-273 pdat-1 :GFP; pdat-1 :myrRFP
BY1209-BY1210 vtIs7;swip-10(tm5915) vtIs7; vtEx272-273 pdat-1 :GFP; pdat-1 :myrRFP
nsIs105 nsIs105 phlh-17::GFP
BY1310 nsIs105;swip-10(tm5915) nsIs105 phlh-17::GFP
nsIs108 nsIs108 pptr-10:myrRFP
BY1204 nsIs108;swip-10(tm5915) nsIs108 pptr-10:myrRFP
N2
TM5915 swip-10(tm5915)
BY1177 vtIs7;cat-2(tm2261);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1206 vtIs7;dat-1(ok157) vtIs7 pdat-1 :GFP

BY1257-BY1258, BY1262 vtIs7;swip-10(tm5915) vtIs7; vtEx188-190
pdat-1:GFP, [SWIP10 genomic PCR, pelt-
2:GFP, punc-122:RFP, pdat-1:mCherry]

BY1199-BY1201 vtIs7;swip-10(tm5915) vtIs7; vtEx269-271
pdat-1 :GFP, [pptr-10:swip-10 cDNA, 
punc122:RFP]

BY1233-BY1235 vtIs7;swip-10(tm5915) vtIs7; vtEx283-285
pdat-1 :GFP; [phlh-17:swip-10 cDNA, 
punc122:RFP]

BY1241-1243 vtIs7;swip-10(tm5915) vtIs7; vtEx159-161
pdat-1 :GFP; [pdat-1:swip-10 cDNA, pdat-
1:mcherry, punc122:RFP]

MT17370 nsIs242 pgcy-33:GFP
BY1193 nsIs242;swip-10(tm5915) nsIs242 pgcy-33:GFP
TV12498 wgIs328 pser2prom3:myrGFP
BY1207 wgIs328; swip-10(tm5915) wgIs328 pser2prom3:myrGFP
OH1422 otIs138 pser2prom3:GFP
BY1208 otIs138; swip-10(5915) otIs138 pser2prom3:GFP
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unc-54 3’ UTR. For the membrane bound transcriptional reporter, we used overlap PCR 

[324] and Gibson Assembly (New England Biolabs) to subclone the 700 bp dat-1 

promotor into the myrRFP containing backbone from pptr-10:myrRFP (gift from Shai 

Shaham) to create pRB1349 (pdat-1:myrRFP). For transgenic swip-10cDNA::GFP rescue 

experiments, DA neuron, pan-glial, and CEPsh glial expression was achieved using the 

previously described plasmids, pRB1157, pRB1158, and pRB1159, respectively [146]. 

Genomic full-length swip-10 rescue experiments were conducted as previously described 

[146]. 

 

Genetic crosses 

Crosses were performed using publicly available, integrated fluorescent reporter 

strains to mark chromosomes in trans. Single worm PCR was performed to confirm the 

presence of the indicated mutation. For all deletions, we used a three primer multiplex 

strategy that produces PCR amplicons with a 100–200 bp difference between N2 and 

mutant. This method was highly effective in eliminating preferential amplification of a 

lower-molecular-weight species. In all cases, a synthetic heterozygous control was used 

to ensure that heterozygous clones could be identified. We identified recombinant lines 

by PCR genotyping of single worm genomic DNA lysates. All genotyping PCRs were 

performed with the KAPA Genotyping Kit (KAPA Biosystems). In some cases, alleles 

were sequenced with sequence-specific primers to verify mutation homozygosity 

(GeneHunter and EtonBioscience). 
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Confocal imaging 

Confocal microscopy of mutants on the BY250 strain background was performed 

using a Nikon A1R confocal microscope in the FAU Brain Institute Cell Imaging Core 

using a 20x or 60x oil-immersion objective and Nikon Elements capture software. Worms 

were immobilized using 30 mM levamisole in M9 on a fresh 2% agarose pad and cover-

slipped with a 1 mm cover glass before sealing with paraffin wax [164]. 

 

Neurodegeneration assay 

The neurodegeneration assay was adapted from a previously described method 

[159]. In our case, we transferred 20 worms to normal NGM/OP50 plates as L4s and 

incubated these plates for 48 hrs at 19°C until animals reached the gravid adult stage, 

unless otherwise noted. We then picked 15 worms into 20 μL of 30 mM levamisole in M9 

on slides prepared with a 2% agarose pad. For imaging, we utilized a Zeiss Discovery 

V12 inverted fluorescent microscope outfitted with a Xenon UV light source and 

GFP/YFP/RFP filter sets. We used a Zeiss mono FWD 16 mm objective lens to visualize 

Green Fluorescent Protein (GFP) containing integrated transgenes, vtIs7[Pdat-1::GFP], 

nsIs242[Pgcy-33::GFP], wgIs328[Pser2prom3::GFP] selectively expressed in DA, BAG, and 

OLL neurons respectively, allowing us to examine neurodegeneration in a cell-specific 

manner. For the DA neurons, analysis was primarily limited to CEP neurons, because out 

of the 8 DA neurons in C. elegans, the 4 CEP neurons display the clearest and most 

distinct dendritic projections and can be readily identified via both light and electron 

microscopy (see below). Neurons were examined for the presence of 1) breaks in the 

CEP dendrites 2) shrunken or 3) missing somas. Worms were counted as displaying 
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degeneration if one or more of these features were present. Normal N2 CEP, BAG, and 

OLL neurons lacked any of these abnormalities at the gravid adult stage. Total animals 

with degeneration, shrunken and missing somas, or neurite breaks were calculated for 

each trial. The percentage of animals exhibiting each morphological trait was determined 

for graphical analysis. Animals were tested 15 animals/day on 7-9 separate days (n = 90-

135 animals assayed per genotype) blinded to genotype. 

 

Lifespan assay 

Lifespan analyses were conducted on OP50/NGM plates at 20°C as previously 

described [325]. Age refers to days following adulthood, and animals were transferred to 

fresh plates every 48hrs after the L4 stage to prevent E. coli depletion and confusion with 

subsequent generations. Animals were determined as dead if they did not respond with 

any movement to 3 head touches. 200-250 animals were assayed per genotype and 

animals were excluded from analysis if they crawled off the plate.  

 

Electron microscopy 

N2 and swip-10 mutant animals were raised and maintained at 20ºC on E. coli 

OP50/NGM plates and 2-day adult animals (fixed 2 days after the L4 stage) were fixed 

and embedded for transmission electron microscopy (TEM) following a chemical 

immersion protocol [305, 326]. Briefly, animals were first cut open in a cacodylate-

buffered osmium tetroxide fixative, then en bloc stained in uranyl acetate, and dehydrated 

and embedded in Spurr resin. Thin sections were collected onto Formvar-coated slot 

grids and examined on a Philips CM10 electron microscope. Digital images were 
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collected with an Olympus Morada camera on the TEM, and figures were created using 

Photoshop. 

 

Statistical analyses 

All statistical tests were performed and graphs generated using Prism version 7.0. 

Data were analyzed by Student’s t-tests, one-way ANOVAs followed by Sudak or 

Dunnet’s post-hoc tests, two-way ANOVAs, and Log Rank (Mantel-Cox) where 

appropriate. A P<0.05 was taken as evidence of statistical significance in all cases. 

 

Results 

DA neuron degeneration in swip-10 mutants 

Given the Glu signaling-dependent, Swimming-induced paralysis (Swip) 

phenotype present in swip-10 mutants [146], and evidence from the latter study that swip-

10 DA neurons are hyper-excitable, as assessed by a cytoplasmic Ca2+ reporter 

(GCamp), we sought to determine whether these animals might display signs of 

excitotoxic neural degeneration. We examined the DA neurons of multiple mutant swip-

10 alleles crossed to BY250, a strain that stably expresses the integrated transcriptional 

fusion pdat-1::GFP (vtIs7) (Fig. 24) [156]. We primarily focused our evaluations on CEP DA 

neurons, and quantitatively evaluated degeneration by three distinct morphological 

assessments: 1) neurite truncations and breaks in GFP-labeled dendrites (Fig. 24B,C, F), 

2) shrunken cell soma (Fig. 24D, G) and 3) missing cell soma (Fig. 24E, H),  as previously 

described [159, 327]. From these categories, we also calculated an overall degeneration  
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Fig. 24. CEP DA neuron degeneration observed in loss of function swip-10 alleles. A. N2 
DA neurons labeled with GFP demonstrating evenly expressed fluorescence throughout the 
neuronal processes. B-D. Representative images of swip-10(tm5915) mutant degeneration 
depicting (B) truncated CEP DA neuron dendrites indicated by a white circle, (C) breaks in GFP 
along CEP dendrites (white rectangle), (C) shrunken CEP cell soma (white arrowheads) and (D) 
missing CEP cell soma (white asterisks), scale bar is 10µm. F-I. Quantification of the components 
of CEP DA neuron degeneration for (F) truncations/breaks in GFP, (G) shrunken CEP soma, (H) 
missing CEP soma, and (I) total degeneration phenotype, inclusive of all three degeneration 
measures. Data were analyzed by one-way ANOVA with Sidak’s post-test to N2; *, **, *** indicate 
P<0.05, <0.01 and <0.001 respectively. Error bars represent ± SEM, with n=105-150 animals per 
strain. 
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score where the appearance of any of the components qualifies an animal as displaying 

CEP degeneration [159]. We found that all three available swip-10 alleles (vt29 and vt33 

from our forward genetic screen, and the larger deletion allele, tm5915) exhibited 

elevations in the degeneration index, relative to wildtype animals (Fig. 24I). To further 

support that mutation of swip-10 induces morphological changes in CEP DA neurons, 

versus a sequestration or inactivation of cytoplasmic GFP, we corroborated our findings 

using a DA neuron-targeted, membrane-bound reporter (pdat-1::myrRFP) which also 

yielded evidence of tm5915 CEP DA neurodegeneration (Fig. 25). While we did not 

assign quantitative measures to the examination of the ADE or PDE DA neurons, we 

report that qualitatively, there are subtle morphological differences between swip-

10(tm5915) mutants and N2 animals (Fig. 26). Our preliminary assessment of the ADE 

DA neurons in swip-10 animals reveals that at least 50% of the animals display normal 

ADE neuron morphology (Fig. 26A), however other swip-10 animals display dim GFP 

expression in the ADE neurons compared to consistently bright N2 GFP expression, and 

some swip-10 animals display abnormally shaped or missing ADE projections (Fig. 26A). 

Surprisingly we observe fewer qualitative differences between swip-10 and N2 PDE DA 

neuron morphology, although likely this is a reflection on the reduced GPF fluorescence 

of vtIs7 in N2 PDE neurons making qualitative and quantitative morphological 

assessment more challenging (Fig. 26B). Interestingly, evaluation of swip-10 impact on 

C. elegans glia broadly (marked by the ptr-10 promoter driven myrRFP) or on CEPsh glia 

that ensheath CEP DA neurons specifically (marked by phlh-17::GFP) failed to reveal 

evidence for gross morphological changes (Fig. 27). These findings suggest that swip-10  
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Fig. 25. Membrane-bound fluorescent reporter corroborates swip-10 mutant DA neuron 

degeneration. Integrated vtIs7 [pdat-1:GFP] reporter in green and extrachromosomal pdat-

1:myrRFP reporter in red show equal levels of degeneration in swip-10 mutants. Representative 
images show normal A. N2 DA neuron morphology, merged, and a representative image of a 
swip-10 mutant animal B. integrated marker, C. extrachromosomal array marker and D. merged, 
scale bar is 20µm. E. DA neuron degeneration was quantified in animals expressing both DA 
neuron fluorescent reporters, and both demonstrate swip-10 mutant animals have significantly 
increased DA neuron degeneration. Analyzed by Student’s t test, **** indicates a P<0.0001, error 
bars represent ± SEM, with n=105-150 animals per strain. 
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Fig. 26. ADE and PDE DA neuron morphology of swip-10 mutants. A. Top: N2 ADE DA 
neurons labeled with GFP demonstrating even expressed fluorescence throughout the neuron 
cell body and processes. Middle: Representative image of swip-10(tm5915) ADE DA neurons 
with normal, N2-like morphology and GFP expression. Bottom: Representative image of swip-
10(tm5915) mutant with altered ADE DA neuron morphology, dim GFP expression and altered 
neuronal processes location. Arrowheads denote shrunken CEP soma. B. Top: N2 PDE DA 
neurons labeled with GFP demonstrating even expressed fluorescence throughout the neuron 
cell body and processes. Bottom: Representative image of swip-10(tm5915) mutant with normal 
N2-like PDE neuron morphology and GFP expression. Anterior is left in all images shown, ), scale 
bar is 10µm. 
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Fig. 27. swip-10 mutants display normal glial morphology. Representative images of the 
CEPsh glia of N2 and swip-10 mutant animals, crossed onto a strain bearing an integrated phlh-

17:GFP transgene (DCR1337, nsIs105). Representative images of the glia of N2 and swip-10 
mutant animals, crossed onto a strain bearing an integrated pptr-10::myrRFP transgene (nsIs108). 
Scale bars are 10µm. 
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mutation induces a localized, cell non-autonomous effect on the integrity of neighboring 

DA neurons.  

 

Electron microscopy of swip-10 DA neurons 

To be sure that our fluorescent reporters of DA neuron morphology were faithfully 

reporting structural changes in DA neurons, we assessed CEP cilia of swip-10 via 

electron microscopy (EM). Previously, we used this approach to document damage to 

CEP dendrites in the context of 6-OHDA induced DA neuron degeneration [52]. The 

tm5915 deletion allele was selected for EM studies of swip-10 induced neural 

degeneration, though as noted above, all mutants demonstrated comparable 

degeneration. The morphology of CEP neuronal processes is well characterized at the 

ultrastructural level [328] especially the specialized cilium at the tip of the CEP dendrite, 

which can be visualized in transverse thin sections through the lips of adult C. elegans 

(Fig. 28A) [329, 330]. Using relative position and the defined morphological 

characteristics of CEP DA neurons, such as the electron dense cuticular branch or nubbin 

associated with their cilia to anchor the dendrite to the cuticle [330] and the presence of 

the electron dense clumps of tubule-associated material (TAM) previously shown to be 

characteristic of CEP cilium [329], we were able to identify multiple anomalies in tm5915 

CEP structure. These defects include changes in the size and appearance of the nubbin 

(Fig. 28B-D), loss or misplacement of TAM and microtubules (Fig. 28C-F), and the 

presence of large or small vacuoles in several locations either below or above the 

axoneme (Fig. 28C-F). A summary of the swip-10 mutant CEP cilium defects is depicted 

in Fig. 28G. In addition to the defects described above, half of the CEP dendrites of  
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Fig. 28. Electron microscopy confirms missing and deformed cilia of the CEP DA neuron 

dendrites in swip-10 mutants. A. Thin section through the lips of a swip-10 mutant adult all four 
CEP cilia are formed almost normally in positions DL, DR, VL, VR, forming specialized endings 
embedded in the lip cuticle. B. High power TEM image of swip-10 mutant CEPVR cilium, 
somewhat reduced in overall size, containing normal-looking microtubules and dark staining 
tubule-associated material (TAM). The nubbin is abnormally enlarged and emerges out of the 
cuticle in an enlarged tree-like structure, not seen in N2. C. Midway and more D. distal through 
another the defective CEPVR cilium in a different animal, lacking normal TAM or distal 
microtubules. E-F. show thin sections from a CEPDR cilium where small bits of TAM have 
abnormally become stuck inside the well-formed axoneme, while beyond the axoneme F. the 
malformed cilium consists of large vacuole-filled swelling with no TAM or microtubules, and only 
a minimal nubbin. Scale bar (0.5 micron) applies to panels B-F. G. Summary illustration of the 
variety of distal defects found in the CEP cilium, comparing a wildtype cilium to the left, and three 
progressively more defective mutant cilia on the right. EM analyses performed by David H. Hall 
and Ken C. Q. Nguyen. 
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swip-10 mutants were missing any cilium that extended beyond the axoneme. These TEM 

studies confirm that swip-10 mutation results in striking DA neuron morphological 

changes.  

 

DA neuron degeneration increases with age 

In order to determine whether the DA neuron degeneration observed in swip-10 animals 

represents a late onset phenomenon and/or might arise from a progressive perturbation 

across development, we assayed DA neuron degeneration in swip-10 mutants across 

various post-embryonic ages. We observed that tm5915 animals display time-dependent 

indications of DA neuron degeneration that are distinct from the changes seen with 

wildtype animals (Fig. 29). In wildtype animals, signs of DA neuron degeneration are 

evident only in older, adult animals whereas signs of degeneration are already evident in 

tm5915 animals by day 1 (L1 stage) of larval development (Fig. 29 and Fig. 30A). A 

breakdown of the components that comprise the overall degeneration score of tm5915 

mutants is revealing, where non-uniform patterns are evident across measures. Although 

we were unable to follow individual DA neuron morphological changes over time, our 

population findings are suggestive of a progressive form of degeneration at the single 

neuron level, with dendritic breaks and truncations as earliest signs of degeneration (Fig. 

29A and Fig. 30), followed by the appearance of shrunken soma (Fig. 29B), and then by 

missing soma (Fig. 29C). Overall similar patterns are evident with wildtype animals, just 

appearing much later in life. Together our findings indicate that swip-10 mutation begins 

to disrupt the health of DA neurons early in development with the appearance of indices 

of morphological perturbations arising in distal processes that progress to neuronal death.   
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Fig. 29. DA neuron degeneration increases with age, and swip-10 mutant animals display 

earlier and more progressive levels of DA neuron degeneration. A. swip-10(tm5915) mutants 
display dendritic breaks/truncations early in development, increasing in frequency with age. B. 
swip-10(tm5915) mutants display shrunken soma earlier in development, increasing in frequency 
with age compared to N2. C. swip-10(tm5915) mutants are missing soma earlier in development, 
increasing in frequency with age compared to N2. D. As assessed by the combined degeneration 
index, both N2 and swip-10 DA neuron degeneration increases with age, though the swip-10 
mutant DA neurons display degeneration at earlier ages than N2. Analyzed by two-way ANOVA 
with significant differences by age (**** P<0.0001) and by genotype (**** P<0.0001) and 
significantly different age by genotype interaction (**** P<0.0001). Error bars represent ± SEM, 
with n=105-150 animals per strain per stage. 
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Fig. 30. swip-10 mutant animals display early and more progressive levels of CEP DA 

neuron degeneration. A. Representative images of larval stage (L1, day 1)) N2 (top) and swip-
10(tm5915) (bottom) animals. N2 DA neurons labeled with GFP demonstrating evenly expressed 
fluorescence throughout the neuronal processes. At the L1 stage, swip-10 mutant CEP DA neuron 
display truncated CEP DA neuron dendrites indicated by a white circle. B. Representative images 
of larval stage (L4, day 4) N2 (top) and swip-10(tm5915) (bottom) animals. N2 DA neurons labeled 
with GFP demonstrating evenly expressed fluorescence throughout the neuronal processes. At 
the L4 stage, swip-10 mutant CEP DA neuron display truncated CEP DA neuron dendrites 
(indicated by a white circle) and breaks in GFP along CEP dendrites (white rectangle). Anterior is 
left in all images shown, scale bars are 10µm.   
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While complete loss of C. elegans DA neurons, by laser ablation, does not result in 

obvious changes in the viability of the nematode [154], we sought to determine if loss of 

swip-10 resulted in alterations in the lifespan of the nematode. Despite the observed 

progressive, age-dependent neurodegeneration observed in the CEP DA neurons, 

tm5915 animals display a modestly significant increase in median survivability, but have 

a wildtype-like lifespan (Fig. 31). 

 

No role for DA signaling in swip-10 neurodegeneration 

Mechanisms proposed to support DA neuron degeneration include mishandling of 

intracellular DA that can form cytotoxic quinones [331, 332]. Thus, elevations in cytosolic 

DA that arise with pharmacological blockade of the vesicular monoamine transporter 

(VMAT, cat-1 in C. elegans) by reserpine results in DA neuron degeneration [159], and a 

genetic reduction of VMAT2 expression causes progressive DA neuron degeneration in 

mammals [333]. The degeneration of DA neurons in swip-10 animals does not appear to 

arise as a consequence of elevations of intracellular DA as disruption of DA synthesis 

capacity arising from a loss of function mutation in cat-2, the C. elegans ortholog of 

tyrosine hydroxylase, the rate-limiting step in DA synthesis, did not alter tm5915 DA 

neuron degeneration (Fig. 32A). Extracellular DA elevations can lead to the formation of 

toxic adducts with vital cell proteins [334] and our prior studies support excess DA 

secretion in swip-10 animals [146]. However, loss of extracellular DA clearance capacity 

achieved via mutation of the presynaptic DA transporter, dat-1, which triggers Swip [177], 

did not induce DA neuron degeneration (Fig. 32B). 
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Fig. 31. Loss of swip-10 does not affect nematode longevity. swip-10(tm5915) mutant animals 
have a significant increase in median survivability compared to N2 (50% of the animals are alive 
at 15 days versus 14 days respectively), however swip-10(tm5915) animals live as long as N2 
animals (no significant change in the end of the assay). Analyzed by Mantel-Cox Log Rank, 
(*P<0.05) n = 190-240 animals per strain. Experiment performed in collaboration with Peter 
Rodriguez.  
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Fig. 32. The DA neuron degeneration of swip-10 mutants is not a result of aberrant 

intracellular DA signaling or hyperdopaminergia. A. Disruption of DA synthesis, by loss of the 
nematode tyrosine hydroxylase ortholog, cat-2, does not prevent the DA neuron degeneration of 
swip-10 mutant animals. B. Hyperdopaminergia, induced by disrupted DA clearance by loss of 
the DA transporter, dat-1, is not sufficient to induce DA neuron degeneration. Analyzed by 
Student’s t test, ns= non-significant (P>0.05), error bars represent ± SEM, with n=105-150 
animals per strain. 
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Glial role for swip-10 in neuron degeneration 

Although the Swip behavior of swip-10 mutants at the L4 stage arises as a consequence 

of excess DA signaling [180], this paralysis is a cell non-autonomous consequence of 

glial, and not DA neuron, expression of swip-10 [146]. To determine whether the 

degeneration of DA neurons is similarly a consequence of mutation of glial swip-10, we 

expressed a full length wild type swip-10 cDNA fused to GFP (swip-10::GFP) under 

control of glial and DA neuron promotors. Fig. 33A demonstrates that pan-glial swip-10 

expression, as achieved through use of the ptr-10 promoter (Yoshimura, 2008), robustly 

rescues DA neuron degeneration of tm5915 animals, comparable to that achieved with a 

genomic construct that encodes swip-10 and the upstream elements needed to achieve 

full rescue of Swip [146]. Significant rescue of DA neural degeneration was also achieved 

with the CEP sheath glia-specific promotor hlh-17 [142]. In contrast, DA neuron specific 

expression of swip-10, driving expression with the dat-1 promoter, failed to restore normal 

morphology. Together, these findings support the conclusion that glial expression of swip-

10 is required to maintain the normal viability of DA neurons. 

Although not explored extensively, we sought to understand whether neural 

degeneration in swip-10 mutant animals is limited to the DA neurons. We chose to 

evaluate swip-10 mutant (tm5915) animals bearing reporters to demarcate OLL and BAG 

neurons. Glutamatergic OLL neurons are similar in location and morphology to 

dopaminergic CEP neurons, are mechanosensitive like CEP neurons, and share an 

association with glia (OLLsh) that ensheath OLL processes. Carbon-dioxide sensing, 

glutamatergic BAG neurons are similar in location and morphology to the CEP neurons, 

although not associated with direct ensheathing or socket glia. We observed  
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Fig. 33. Glial expressed swip-10 is required for normal DA neuron morphology, and glial 

ensheathment may be important for swip-10 support of neuronal health. A. Expression of 
swip-10 genomic fragment significantly restores DA neuron morphology in swip-10 mutants. 
Expression of swip-10 cDNA under the control of a pan glial promoter, ptr-10, and not under a DA 
neuron specific promoter (dat-1), significantly reduces swip-10 DA neurodegeneration, to similar 
levels as swip-10 genomic rescue. Additionally, expression of swip-10 cDNA in the CEPsh glial 
cell significantly reduces swip-10 CEP DA neuron degeneration. Data were obtained comparing 
non-transgenic and transgenic progeny, assayed in parallel. B. The OLL neurons of swip-10 
mutants display morphological characteristics similar to CEP neuron degeneration, including 
breaks in dendritic GFP, shrunken soma or missing soma (individual components not shown), 
and quantification of the three components together or “total degeneration” phenotype shows that 
OLL neurons in swip-10 mutants are significantly different from N2. C. The BAG neurons of swip-
10 mutants display normal N2 morphology as determined by quantification of total degeneration 
in gravid adult animals. The horizontal line beneath the genotypes on the x-axis refers to the 
background strain, B. OH1422, with an integrated OLL neuron transcriptional reporter 
(wgIs328[Pser2prom3::GFP]) and C. MT17310, with an integrated BAG neuron transcriptional 
reporter (nsIs242[Pgcy-33::GFP]). Data were analyzed using an unpaired Student’s t test (A-C), with 
*, **, *** indicating P<0.05, <0.01 and <0.001, respectively, ns= non-significant (P>0.05), error 
bars represent ± SEM, with n=105-150 animals per strain. 
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degeneration of glutamatergic OLL neurons (Fig. 33B) but not of BAG neurons (Fig. 33C). 

These findings, along with rescue of DA neurodegeneration through glial re-expression 

of swip-10, reinforce a key role for glia in maintaining the viability of C. elegans DA 

neurons. 

 

Discussion 

Our findings reveal that loss of glial-expressed swip-10 results in DA neuron 

degeneration. By using an integrated DA neuron specific fluorescent reporter, we were 

able to show and quantify that swip-10 CEP DA neurons display signs of incipient DA 

neurodegeneration, dendritic breaks and truncations, and determined that some animals 

display more severe indices of degeneration, shrunken and/or missing CEP cell soma 

(Fig. 24). Qualitative, visual inspection of the ADE and PDE DA neurons in gravid adult 

animals further implicate a role for glial swip-10 in DA neuron viability not limited to the 

CEP DA neurons but likely extends to the other C. elegans DA neurons, and both the 

ADE and PDE neurons are tightly associated with glial-like support cells at end of their 

dendrite-like projections, the ADEsheath/ADEsocket and PDEsheath/PDEsocket 

respectively (Fig. 26). Interestingly, we note that the PDE DA neurons of swip-10 mutants 

do not demonstrate indices of degeneration to the same extent as the CEP DA neurons. 

We hypothesize that, as the PDE neurons reside in the body of the nematode, distal from 

the majority of the worm glial cells (including the large sheet-like CEPsh glia that enwrap 

the nerve ring), that these DA neurons are less vulnerable to the glial disruption due to 

loss of swip-10 expression. However, our previous studies, demonstrating the increase 

in DA vesicular fusion of swip-10 mutant was assessed in PDE synapses [146], 



	 95 

suggesting that the PDE neurons are sensitive to loss of swip-10 in the context of 

generating hyperdopaminergia, and perhaps these DA neurons are responsible for Swip 

even if the other DA neurons of the worm are degenerating. Future studies to specifically 

ablate the PDE DA neurons (genetic or laser ablation) could further define the effect of 

swip-10 on individual DA neurons. Further analyses are required to quantify the extent to 

which the ADE and PDE neurons are altered morphologically due to loss of swip-10. 

Although, we predominantly characterized swip-10 DA neuron viability in gravid (egg-

laying) adults, time-dependence studies indicate that early indices of degeneration are 

evident in larval development, L1 and L4 stages shown in Fig. 30, and all degeneration 

measures increase across the lifespan (Fig. 29). A predominant display of fragmented or 

truncated dendrites in young animals versus shrunken or lost soma at later stages (Fig. 

29A-B and Fig. 30) suggests that degeneration in individual neurons is progressive, first 

emerging as altered neurite structure (Fig. 29A), followed by engagement of all 

compartments and eventually resulting in disappearance of some DA neurons altogether. 

While technically demanding, following the progressive degeneration of swip-10 DA 

neurons over time would provide a clearer picture of the progressive degeneration 

observed, however as the imaged animals would be exposed frequently to toxic paralytic, 

we envision the employment of microfluidic devices and 3D confocal imaging capabilities 

to perform this experiment. This progressive pattern of degeneration is commonly seen 

with neurons suffering from energy depletion, that can be triggered by excessive 

stimulation or through metabolic poisoning [335, 336]. While we describe the progressive 

pattern for swip-10 mutant induced DA neurodegeneration, as of yet, we have not 

examined an early developmental role for swip-10 in regulating DA neuron differentiation 
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and maturation. CEP DA neurons are observed early in embryogenesis [337] and our 

transcriptional swip-10 fluorescent reporter indicates that swip-10 is highly expressed in 

several C. elegans tissues (including glial and hypodermal expression) during embryonic 

development. One hypothesis is that glial expressed SWIP-10 has a biphasic role in DA 

neuron viability, first regulating normal CEP DA neuron development during 

embryogenesis (i.e. full and correctly placed dendrite extensions) and second plays a 

critical, supportive role in maintaining DA neuron viability. Future studies aimed at 

determining a developmental role for swip-10 may provide valuable insight to normal role 

for SWIP-10 in C. elegans glia.  

Most of our observations were obtained with a DA neuron-specific, cytosolic, 

fluorescent reporter, findings corroborated using a membrane anchored reporter (Figs. 

24 and 25). Subsequent studies of swip-10 mutants using electron microscopy to image 

DA dendrites and cilia provided clear evidence of physical alterations (Fig. 29) that we 

believe reflect the declining health of the DA neurons, versus a direct action of swip-10 

or its immediate effectors though further studies are needed. Additional EM studies would 

also be valuable in investigating the degeneration of swip-10 mutants at the level of the 

DA neuron cell bodies, axons, and synapses. While we utilized fluorescent light 

microscopy to initially describe the effect of swip-10 loss on ADE and PDE neurons our 

reporter is more dimly expressed in these neurons, especially the mid-body PDE neurons, 

and EM studies are better suited to determining detailed morphological changes arising 

from swip-10 mutant induced DA neuron degeneration. There are significant greater 

technical challenges associated with identifying the CEP and ADE DA neurons and their 
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processes in the densely populated nerve ring, though future studies that make use of 

correlated light electron microscopy (CLEM) can be envisaged [338]. 

The discovery that DA neurons degenerate in swip-10 animals was initially 

surprising as our identification of swip-10 derives from a hyperdopaminergic behavioral 

phenotype [146], though we previously demonstrated reduced DA levels in these animals 

[180]. Since swip-10 DA neurons exhibit increased excitability and tonically-elevated DA 

secretion rates [146], we hypothesize that the degenerative process we have 

characterized likely contributes to a perturbation of mechanisms that insure a tight control 

over DA release (e.g. DA autoreceptors), along with a diminished capacity for DA 

clearance, leading to Swip. Alternatively, a degeneration-induced loss of DA signaling 

capacity could result in a hypersensitivity of postsynaptic DOP-3 DA receptors, such that 

DA release arising from water immersion then triggers excessive inhibition of motor 

neurons and Swip. In support of the latter possibility, movement of swip-10 animals on 

plates reveals a heightened sensitivity to exogenous DA [180]. 

A critical step in defining the mechanism associated with swip-10 DA neuron 

degeneration is to determine the site(s) where wildtype swip-10 expression is required to 

support normal DA neuron morphology. As with the rescue of DA-dependent Swip 

behavior [146], we found that glial swip-10 re-expression, both genomic and cDNA, 

rescued swip-10 DA neuron degeneration, whereas DA neuron expression of swip-10 

was without effect (Fig. 33). These findings attest to a cell non-autonomous mode of 

action and raise the possibility that glial loss of swip-10 may damage the glial cells 

themselves, rendering them unable to engage in secretory or contact-mediated support 

for DA neurons. Although non-quantitative, we detected no obvious morphological 
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differences between wildtype and swip-10 glia (Fig. 27), which may indicate that swip-10 

expressing glia are deficient in a capacity to provide specific trophic or metabolic support 

to DA neurons, versus participating in critical cell autonomous mechanisms. Future 

studies using higher resolution, EM-based methods should be pursued to refine this 

analysis. Importantly, we obtained rescue of swip-10 DA neuron degeneration with a 

promoter driving wildtype swip-10 expression in CEP sheath glia. Moreover, degeneration 

was apparent in OLL neurons that like CEPs are ensheathed by glia but not in BAG 

neurons, which lack these contacts (Fig. 33B-C). These studies reinforce a contribution 

of glia to the cell non-autonomous actions of swip-10 to sustain neuronal viability and 

suggest that neurons in close apposition to ensheathing glia may preferentially depend 

on the activity of swip-10. While we suggest that loss of swip-10 affects the viability of 

neurons requiring close glial support, loss of swip-10 did not alter the lifespan duration of 

the nematode (Fig. 31). Despite progressive degeneration and a likely reduction in the 

health of the animal, swip-10 animals live as long as N2, and even display an increase in 

median survivability. As genetic elimination of the capacity to synthesize DA did not 

reduce swip-10 DA neuron degeneration and aberrant extracellular DA signaling due to 

hyperdopaminergia via loss of dat-1 did not induce DA neuron degeneration, we feel it 

unlikely that swip-10 induced DA neuron degeneration is resultant from either intracellular 

or extracellular toxic DA signaling. We suggest a more likely mechanism of 

neurodegeneration, that excess Glu signaling drives, at least in part, drives the DA neuron 

degeneration observed in swip-10 mutant animals.  

Our previous studies suggest that the paralysis of swip-10 arises due to altered 

extracellular Glu availability and dependent on Glu-signaling [146], a hypothesis 
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supported by a body of mammalian literature describing the critical role for glia in 

regulating Glu homeostasis. Additionally, the literature describes the role for glia in 

regulating extracellular Glu to prevent Glu-induced excitotoxicity and neurodegeneration, 

therefore we aim to determine if the observed progressive DA neuron degeneration of 

swip-10 mutants is reliant on toxic Glu signaling and subsequent activation of cell death 

mechanisms.  
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Chapter V 

THE METALLO-b-LACTAMSE DOMAIN CONTAINING PROTEIN, SWIP-10, 

PROTECTS DA NEURONS FROM GLUTAMATE DEPENDENT DEGENERATION 

AND CELL DEATH2 

 

Introduction 

Across phylogeny, Glu signaling plays a critical role in regulating neural excitability, 

thus supporting many complex behaviors. Perturbed synaptic and extrasynaptic Glu 

homeostasis in the human brain has been implicated in multiple neuropsychiatric and 

neurodegenerative disorders including Parkinson’s disease, where theories suggest that 

excitotoxic insults may accelerate a naturally occurring process of DA neuron 

degeneration. We have demonstrated that swip-10 mutations induce premature and 

progressive DA neuron degeneration, with light and electron microscopy studies 

demonstrating the presence of dystrophic dendritic processes, as well as shrunken and/or 

missing cell soma. We found that the swip-10-induced, striking, and progressive 

degeneration of DA neurons can be suppressed by glial expression of wild type swip-10.  

Here we provide evidence that a cell non-autonomous action of SWIP-10 sustains 

DA neuron viability in the context of excess Glu signaling via Ca2+ permeable Glu 

receptors and elevations of cytosolic Ca2+ that we hypothesize leads to increased cellular 

stress and, ultimately, apoptotic cell death. Our findings support SWIP-10 (and by 

																																																								
2	Adapted from Gibson CL, Balbona JT, Niedzwiecki A, Rodriguez P, Nguyen KCQ, Hall 
DH, et al. Glial loss of the metallo b-lactamase domain containing protein, SWIP-10, 
induces age- and glutamate-signaling dependent, dopamine neuron degeneration. 
PLOSGenet. In press. 2018. 
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extension MBLAC1) as a key protective agent whose further study may yield important 

insights into risk factors for progressive neurodegenerative disorders and their treatment. 

 

Materials and Methods 

C. elegans strains and husbandry 

See the Materials and Methods section for Chapter IV for a complete description. 

Strains used in the studies described in this chapter are enumerated per order of 

appearance in Table 2. 

 

Plasmid construction and transgenic manipulations 

In all cases, insertion of the DNA fragment of interest and the fidelity of the vector 

was confirmed by sequencing and all PCRs were performed using KAPA HiFi HotStart 

ReadyMix (Kapa Biosystems). All constructs resulted in C-terminal cDNA fusion to an 

unc-54 3’ UTR. For the DA neuron-specific Glu receptor experiments, a PCR product 

(20ng/µL) was amplified by overlap PCR [324] to include the 700 bp dat-1 promoter and 

genomic glr-1 from the ATG start to 2890 or genomic nmr-2 from the ATG start to 2974 

fused to unc-54 3’ UTR for injection, along with punc-122:RFP (35ng/µL) and pdat-1:myrRFP 

(35 ng/µL). 

 

Genetic crosses 

See the Materials and Methods section for Chapter IV for a complete description. 
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Strain no. Background strain/alleles Transgene no. Transgene
BY250 vtIs7 pdat-1 :GFP
BY1175 vtIs7;swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1194 vtIs7;eat-4(ky5) vtIs7 pdat-1 :GFP
BY1184 vtIs7;vglu-2(ok2356) vtIs7 pdat-1 :GFP
BY1190 vtIs7;vglu-3(tm3990) vtIs7 pdat-1 :GFP
BY1195 vtIs7;eat-4(ky5);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1183 vtIs7;vglu-2(ok2356);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1185 vtIs7;vglu-3(tm3990);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1176 vtIs7;glt-1(ok206) vtIs7 pdat-1 :GFP
BY1179 vtIs7;glt-3(bz34) vtIs7 pdat-1 :GFP
BY1180 vtIs7;glt-4(bz69) vtIs7 pdat-1 :GFP
BY1278 vtIs7;glt-5(bz70) vtIs7 pdat-1 :GFP
BY1247 vtIs7;glt-6(tm1316) vtIs7 pdat-1 :GFP
BY1248 vtIs7;glt-7(tm1641) vtIs7 pdat-1 :GFP
BY1292 vtIs7;aat-1(tm5841) vtIs7 pdat-1 :GFP
BY1294 vtIs7;aat-2(tm5841) vtIs7 pdat-1 :GFP
BY1293 vtIs7;aat-3(tm5203) vtIs7 pdat-1 :GFP
BY1327 vtIs7;aat-5(tm5367) vtIs7 pdat-1 :GFP
BY1329 vtIs7;aat-6(tm2881) vtIs7 pdat-1 :GFP
BY1295 vtIs7;aat-7(tm5480) vtIs7 pdat-1 :GFP
BY1307 vtIs7;aat-9(tm5413) vtIs7 pdat-1 :GFP
BY1271 vtIs7;aat-1(tm5841);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1296 vtIs7;aat-2(tm5841);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1272 vtIs7;swip-10(tm5915) aat-3(tm5203) vtIs7 pdat-1 :GFP
BY1328 vtIs7;aat-5(tm5367);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1330 vtIs7;aat-6(tm2881);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1297 vtIs7;aat-7(tm5480);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1298 vtIs7;aat-9(tm5413);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1311 vtIs7;vglu-3(tm3990);aat-1(tm5841);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1198 vtIs7;nmr-1(ak4);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1197 vtIs7;nmr-2(tm3785);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1213 vtIs7;glr-1(n2461);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1212 vtIs7;glr-2(ok2342);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1256 vtIs7;glr-3(tm6403);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1228 vtIs7;glr-4(ok3239);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1253 vtIs7;glr-5(tm3506);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1229 vtIs7;swip-10(tm5915)glr-6(tm2729) vtIs7 pdat-1 :GFP
BY1255 vtIs7;glr-7(tm1824));swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1211 vtIs7;mgl-1(tm1181);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1285 vtIs7 mgl-2(tm355);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1252 vtIs7;mgl-3(tm1706);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1227 vtIs7;glr-1(n2461);nmr-2(tm3785);swip-10(tm5915) vtIs7 pdat-1 :GFP
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continued from above… 
 

 
 

Table 2.  C. elegans strains utilized for data collection and figures described in Chapter V. 

Strain no. Background strain/alleles Transgene no. Transgene

BY1284,BY1286-BY1287 BY250;nmr-2(tm3785) vtIs7; vtEx293-295
pdat-1 :GFP; [pnmr-2::NMR2 genomic, 
pdat-1::myrRFP, punc122::RFP]

BY1288-BY1289 BY250;glr-1(n2561) vtIs7; vtEx290-292
pdat-1 :GFP; [pglr-1::GLR1 genomic, 
pdat-1::myrRFP, punc122::RFP]

BY1267-BY1269 BY250;nmr-2(tm3785);swip-10(tm5915) vtIs7; vtEx293-295
pdat-1 :GFP; [pnmr-2::NMR2 genomic, 
pdat-1::myrRFP, punc122::RFP]

BY1264-BY1266 BY250;glr-1(n2561) ;swip-10(tm5915) vtIs7; vtEx290-292
pdat-1 :GFP; [pglr-1::GLR1 genomic, 
pdat-1::myrRFP, punc122::RFP]

BY1245 vtIs7;crt-1(ok948) vtIs7 pdat-1 :GFP
BY1246 vtIs7;crt-1(ok948);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1290 vtIs7;clp-1(ok690) vtIs7 pdat-1 :GFP
BY1291 vtIs7;clp-1(ok690);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1314 vtIs7;crt-1(ok948);clp-1(690);swip-10(tm5915) vtIs7 pdat-1 :GFP
CL2166 dvIs19 pgst-4:GFP
BY1259 dvIs19;swip-10(tm5915) dvIs19 pgst-4:GFP
SJ4005 zcIs4 phsp-4 :GFP
BY1260 zcIs4; swip-10(tm5915) zcIs4 phsp-4 :GFP
TJ356 zIs356 pdaf-16 ::DAF-16::GFP + rol-6(su1006)
BY1261 zIs356;swip-10(tm5915) zIs356 pdaf-16 ::DAF-16::GFP + rol-6(su1006)
BY1237 vtIs7;ced-3(n717) vtIs7 pdat-1 :GFP
BY1239 vtIs7;ced-4(n1162) vtIs7 pdat-1 :GFP
BY1308 vtIs7;ced-9(n1950) vtIs7 pdat-1 :GFP
BY1238 vtIs7;ced-3(n717);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1240 vtIs7;ced-4(n1162);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1309 vtIs7;ced-9(n1950);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1312 vtIs7;ced-1(e1755) vtIs7 pdat-1 :GFP
BY1315 vtIs7;ced-6(n1813) vtIs7 pdat-1 :GFP
BY1317 vtIs7;ced-10(n3246) vtIs7 pdat-1 :GFP
BY1313 vtIs7;ced-1(e1755);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1316 vtIs7;ced-6(n1813);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1318 vtIs7;ced-10(n3246);swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1186 vtIs7;acy-1(nu329)swip-10(tm5915) vtIs7 pdat-1 :GFP
BY1192 vtIs7;dapk-1(gk219);swip-10(tm5915) vtIs7 pdat-1 :GFP



	 104 

Confocal imaging 

See the Materials and Methods section for Chapter IV for a complete description. 

 

Neurodegeneration assay 

See the Materials and Methods section for Chapter IV for a complete description. 

 

Fluorescence microscopy with GFP stress reporters 

All fluorescent stress reporter stains were a generous gift from Dr. Matt Gill 

(Scripps Research Institute, Jupiter, FL). All stress reporter strains were imaged as gravid 

adult animals grown at 19°C for 48 hrs after transfer to a fresh OP50/NGM plate at the L4 

stage. To determine levels of stress we used the transcriptional reporter strains, dvIs19 

[pgst-4:GFP] and zcIs4 [phsp-4:GFP] to measure oxidative stress and ER stress respectively. 

We adapted previously described methods [339, 340]. Briefly, the overall GFP 

fluorescence intensity/µm per 15-20 3 day adult swip-10 animals and 15-20 3 day adult 

N2 animals (with subtracted background fluorescence per animal) was determined, and 

the fold change GFP intensity compared to N2 signal was calculated for all animals 

assayed from one population and subsequently averaged over 4 independent days 

(n=60-75 animals assayed). To determine response to a known inducer of oxidative 

stress, and serve as positive control, we picked 15-30 L4 N2 and swip-10 animals to 

OP50 plates containing 2 mM paraquat (Sigma) mixed with the NGM agar [341]. pgst-

4:GFP fluorescence intensity/µm was assayed as described above. To determine 

susceptibility of swip-10 mutants to ER stress, we transferred 15-30 L4 N2 and swip-10 

animals to NGM plates containing 10 µg/mL tunicamycin (Sigma) [342]. For the DAF-16 



	 105 

localization experiment, the entire animal was observed, and DAF-16::GFP localization 

was assessed for each individual animal as 1) cytoplasmic or no nuclear localization 2) 

partial nuclear localization/ partial cytoplasmic and 3) complete nuclear localization as 

previously described [343]. Localization percentages were calculated based on total 

animals assayed per day. For the DAF-16::GFP experiment, imaging slides were 

prepared individually (blind to genotype) and assayed within 20 min to avoid false DAF-

16::GFP nuclear localization due to paralytic exposure or starvation. Individual assays 

were performed on 8 individual days (50 animals per genotype per day). For each of the 

fluorescent reporters, images were acquired using identical imaging settings across 

blinded genotypes and drug treatments, via a Nikon A1R confocal microscope in the FAU 

Brain Institute Cell Imaging Core using a 4x objective and Nikon Elements capture and 

analysis software. 

 

Statistical analyses 

All statistical tests were performed and graphs generated using Prism version 7.0. Data 

were analyzed by Student’s t-tests, one-way ANOVAs followed by Sudak or Dunnet’s 

post-hoc tests and two-way ANOVAs, where appropriate. A P<0.05 was taken as 

evidence of statistical significance in all cases. 

 

Results 

Role of Glu transporters in swip-10 degeneration 

Neural degeneration, more generally, can be triggered by extrinsic or intrinsic 

activation of cell death genetic programs, first elucidated at a molecular level in C. elegans 
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[291, 344, 345]. Additionally, disruptions of vital cellular processes (e.g. ATP production, 

membrane permeability, ion gradients or cytoskeletal organization) by genetically 

encoded neurotoxins or following exposure to reactive chemical species [221, 346, 347], 

have been shown to lead to the death of neurons. Lastly, excitotoxicity, a form of 

neurodegeneration with features of both apoptotic and necrotic cell death, is well known 

in mammalian brain preparations and typically observed in the context of over stimulation 

of Glu-responsive, ionotropic receptors [193, 215, 347]. Our prior findings that DA 

neurons in swip-10 animals display elevated excitability that is dependent on Glu 

signaling [146] encouraged our consideration of the latter mechanism of DA neuron 

degeneration. We therefore quantified DA morphological changes in swip-10 animals 

bearing loss of function mutations in genes supporting synaptic Glu packaging and Glu 

signaling, as well as mutations in genes encoding transporters thought to modulate 

extracellular Glu levels. First, we examined contributions of vesicular Glu transporters 

(vGLUTs). These proteins are responsible for packaging Glu into synaptic vesicles prior 

to release [348, 349]. There are three genes that encode proteins homologous to VGLUTs 

in C. elegans (eat-4, vglu-2, and vglu-3) [350-352] with eat-4 being the only one 

functionally characterized to date [349, 353]. Loss of individual vGLUTs (Fig. 34A) had 

no effect on DA neuron morphology. Interestingly, whereas eat-4 mutation significantly 

reduced the Swip behavior of swip-10 mutants [146], the same eat-4 allele failed to blunt 

the degeneration of DA neurons in tm5915 animals. The vglu-2 mutation was also unable 

to reduce DA neuron degeneration. In contrast, loss of vglu-3 significantly, suppressed 

DA neuron degeneration (Fig. 34A), suggesting a contribution of vesicular Glu signaling, 

directly or indirectly, to swip-10 DA neuron degeneration.  
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Fig. 34. Disruption of Glu signaling attenuates the DA neuron degeneration of swip-10 
mutants. A. Loss of the vesicular Glu transporter, vglu-3, suppresses swip-10 DA neuron 
degeneration, whereas loss of eat-4 or vglu-2 does not significantly alter the levels of swip-10 
neurodegeneration. B. Disrupting Glu clearance by loss of individual Glu transporters is not 
sufficient to induced DA neurodegeneration. C. Loss of the amino acid transporter, aat-1, but not 
aat-2, aat-3, aat-5, aat-6, aat-7 or aat-9, significantly attenuates the DA neuron degeneration of 
swip-10 mutants. Data were analyzed by a one-way ANOVA with Sidak’s post-tests, with * and ** 
indicating P<0.05 and <0.01 respectively, error bars represent ± SEM, with n=105-150 animals 
per strain. 
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Mammalian glia express multiple Na+-dependent Glu transporters (GLTs) of the 

SLC1 family that support efficient clearance of Glu after release at synapses and their 

dysfunction figures prominently in investigations of Glu-dependent neuronal injury and 

death [241]. Additionally, our previous studies [146] demonstrated that mutation of several 

GLTs (glt1, glt3 and glt4) conferred DA-dependent Swip. However, we found that 

mutation of individual glt genes failed to induce DA neuron degeneration (Fig. 34B).  

A second, glial Glu transport system, xCT, regulates extra-synaptic Glu levels, 

acting as a cystine/Glu exchanger [255]. xCT imports extracellular cystine in exchange 

for intracellular Glu, and thus altering the expression or activity of this transporter can 

modulate extracellular Glu levels. xCT is a member of the mammalian heteromeric amino 

acid transporter (HAT) family, for which there are 9 C. elegans homologs, with the highest 

homology for xCT being to AAT-1 and AAT-3 [354]. To determine whether xCT-like 

proteins could contribute to DA neuron degeneration, we generated tm5915 double 

mutants with all available aat mutants. Of the 7 xCT homologs tested, we found that loss 

of aat-1 uniquely attenuated the DA neuron degeneration of tm5915 (Fig. 34C). These 

findings implicate non-vesicular Glu release as a contributor to swip-10 DA neuron 

degeneration. To determine if both vesicular Glu release supported by VGLU-3 and 

transporter-mediated Glu release supported by AAT-1 act in parallel or via a shared 

pathway to support DA neuron degeneration, we examined DA neuron morphology in an 

aat-1;vglu-3 double mutant. We found no enhancement of the suppression of the tm5915 

degeneration beyond that of the individual mutants (Fig. 35). These findings are 

consistent with common mechanisms, downstream of extracellular Glu availability  
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Fig. 35. Combinatorial loss of both aat-1 and vglu-3 suppresses swip-10 
neurodegeneration similarly to levels of suppression by individual aat-1 loss. Data were 
analyzed by a one-way ANOVA with Sidak’s post-tests, ns= non-significant (P>0.05), error bars 
represent ± SEM, with n=105-150 animals per strain. 
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through either vesicular or non-vesicular Glu secretion mechanisms, as determinant of 

the quantitative extent of swip-10 DA neuron degeneration.  

 

Role of Glu receptors in swip-10 degeneration  

Post-synaptically in both vertebrates and nematodes, Glu binds and activates 

ionotropic and metabotropic receptors (iGluRs and mGluRs, respectively) [355, 356]. To 

further pursue the hypothesis that mutation of swip-10 triggers DA neuron degeneration  

via excess Glu signaling, we examined DA neuron morphology in tm5915 lines bearing 

available mutant alleles for the iGluRs and mGluRs. Among the twelve GluR mutants 

tested, we found that loss of either the NMDA-type iGluR, nmr-2, or loss of the AMPA-

type iGluR, glr-1 [357], significantly suppressed swip-10 DA neuron degeneration (Fig. 

36A). Interestingly, these GluRs are distinct from the GluRs previously shown to suppress 

the paralysis phenotype of swip-10 mutants (glr-4, glr-6 and mgl-1) [146]. A double mutant 

of glr-1 and nmr-2 did not further suppress tm5915 degeneration beyond that seen with 

either mutant alone, suggesting that these receptors support neurodegeneration through 

a common pathway (Fig. 36B). To further substantiate that excess GluR signaling via 

NMR-2 and GLR-1 could support our swip-10 observations, we selectively overexpressed 

these receptors in N2 DA neurons and examined CEP neuron morphology. As 

hypothesized, we detected statistically significant DA neuron degeneration, as compared 

to non-transgenic lines, similar to that observed in swip-10 mutants (Fig. 36C). 

Additionally, we determined that DA neuron selective overexpression of NMR-2 or GLR-

1 significantly enhances the DA neuron degeneration of swip-10 mutant animals (Fig. 37)  
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Fig. 36. Support of DA neuron degeneration of swip-10 mutants by ionotropic Glu receptor 
signaling and induction of DA neuron degeneration by DA neuron-specific nmr-2 and glr-
1 overexpression. A. Loss of the Ca2+-permeable ionotropic Glu receptors, nmr-2 and glr-1, 
suppress swip-10 mutant DA neuron degeneration. B. Combinatorial loss of both nmr-2 and glr-
1 does not suppress swip-10 neurodegeneration beyond the suppression achieved by individual 
iGluR loss. C. DA neuron-specific overexpression of either nmr-2 or glr-1 induces DA neuron 
degeneration in N2 animals. Analyzed by one-way ANOVA with Sidak’s post-tests (A, B) or 
unpaired Student’s t test comparing non-transgenic and transgenic progeny, assayed in parallel 
(C). **** indicates P<0.0001 and ns= non-significant (P>0.05), error bars represent ± SEM, with 
n=105-150 animals per strain. 
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Fig. 37. DA neuron-specific nmr-2 and glr-1 overexpression enhances DA neuron 
degeneration on a swip-10 mutant background. DA neuron-specific overexpression of either 
nmr-2 or glr-1, on respective GluR KO, swip-10(tm5915) background significantly enhances swip-
10(tm5915) induced CEP DA neuron degeneration. Analyzed by one-way ANOVA with Sidak’s 
post-tests, **** indicates P<0.0001, error bars represent ± SEM, with n=105-150 animals per 
strain. 
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further supporting that excess GluR signaling on DA neurons drives swip-10 induced 

neurodegeneration.  

 

Role of intracellular calcium signaling in swip-10 degeneration 

The evidence presented above of a role for Ca2+-permeant iGluRs [358] in DA 

neuron degeneration, as well as our prior findings that swip-10 DA neurons demonstrate 

exaggerated Ca2+ elevations in response to food contact [146], suggested to us that DA 

neuron degeneration in these animals could reflect activation of Ca2+-dependent 

programs linked to apoptotic and/or necrotic cell death [318, 359, 360]. Consistent with 

this idea, we found that loss of the primary endoplasmic reticulum (ER) Ca2+ 

storage/binding protein, calreticulin (crt-1) protected against swip-10 DA neuron 

degeneration (Fig. 38). Excessive activation of the Ca2+-activated protease calpain-1, has 

been shown to lead to cellular damage, including neurodegeneration, in both mammals 

and C. elegans [361-363]. In keeping with these findings, a loss of function mutation of 

clp-1, the C. elegans calpain-1 ortholog, significantly attenuated the DA neuron 

degeneration of tm5915 animals (Fig. 38). Additionally, we determined that loss of both 

crt-1 and clp-1 resulted in enhanced suppression of swip-10 DA neuron degeneration 

above loss of individual aspects of intracellular Ca2+ signaling (Fig. 38). Together, these 

results support the hypothesis that inappropriate or excessive elevations of intracellular 

Ca2+ support swip-10 DA neurodegeneration. 
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Fig. 38. Contributions of changes in intracellular Ca2+ to swip-10 induced DA neuron 
degeneration. Calreticulin (crt-1) and calpain-1 (clp-1) mutations suppress swip-10(tm5915) 
induced DA neurodegeneration, and loss of both crt-1 and clp-1 enhances suppression of swip-
10(tm5915) DA neuron degeneration. Analyzed by one-way ANOVA and Sidak’s post-tests, ** 
and **** indicates a P<0.01 and <0.0001 respectively, error bars represent ± SEM, with n=105-
150 animals per strain. 
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Assessing modes of cell stress in swip-10 mutants 

In mammals, aberrant excitotoxic Ca2+ signaling can generate reactive oxygen 

species (ROS) leading to activation of cell stress pathways that drive neuronal cell death 

[364, 365]. To explore this idea, we inspected swip-10 animals for signs of oxidative stress 

by monitoring reporter expression from Pgst-4::GFP. The gst-4 gene encodes a 

glutathione-s-transferase, and is a target for the ROS responsive transcriptional regulator 

SKN-1(C. elegans Nrf2 ortholog) [339, 366]. As shown in Fig. 39, tm5915 animals basally 

demonstrate a significant elevation in Pgst-4::GFP expression. swip-10 mutants are 

responsive to the known oxidative stress inducer, paraquat, with an increase in Pgst-

4::GFP expression similar to paraquat induced Pgst-4::GFP expression in N2 animals, for 

the 2 µM paraquat concentration used (Fig. 39). As a measure of ER stress, we monitored 

the transcriptional reporter, Phsp-4:GFP [340, 342]. Although tm5915 animals did not show 

indications of basal ER stress with this marker (Fig. 40), they were more sensitive to the 

pharmacological ER stressor, tunicamycin, compared to N2 animals (Fig. 40). Although 

not explored extensively, we sought preliminary data to implicate a mechanism 

responsible for the observed swip-10 loss induced basal expression of the Pgst-4::GFP. 

Environmental stress such as heat shock, and pharmacological oxidative stress inducers, 

including paraquat, have been shown to induce expression of detoxifying enzymes such 

as GST-4 [367], and oxidative stress has been shown to cause DAF-16 translocation from 

the cytoplasm to the nucleus to induce expression of detoxifying enzymes [343, 368]. 

Under basal conditions, tm5915 animals, show no change in the percentage of animals 

with partial or complete DAF-16 translocation to the nucleus compared to N2 (Fig. 41).  
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Fig. 39. Loss of swip-10 induces oxidative stress under basal conditions. A. Representative 
images of gravid adult, whole body oxidative stress reporter, dvIs19[pgst-4:GFP]. Fluorescence for 
basal N2 and swip-10 animals and N2, and swip-10 animals grown on NGM/OP50 plates with 2 
mM paraquat are presented, scale bar is 100 µm. B. Normalized reporter fluorescent intensity 
quantification reveals a significant increase in basal fluorescence in swip-10 mutants. Both N2 
and swip-10 animals significantly respond to the oxidative stressor, paraquat, and at this 
concentration of paraquat, N2 and swip-10(tm5915) normalized reporter fluorescent intensities 
are not significantly different. Analyzed by one-way ANOVA and Sidak’s post-tests, * and *** 
indicates a P<0.05 and <0.001 respectively, ns = non-significant (P>0.05), error bars represent ± 
SEM, with n=105-150 animals per strain. 
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Fig. 40. Loss of swip-10 increases sensitivity to ER stress. A. Representative images of 
gravid adult, whole body ER stress reporter, zcIs4[phsp-4:GFP]. Fluorescence for basal N2 and 
swip-10 animals and N2, and swip-10 animals grown on NGM/OP50 plates with 10 mg/mL 
tunicamycin are presented, scale bar is 100 µm. B. Normalized reporter fluorescent intensity 
quantification reveals no change in basal ER stress in swip-10 mutants. Both N2 and swip-10 
animals significantly respond to the ER stressor, tunicamycin, with swip-10 mutants significantly 
more sensitive to tunicamycin. Analyzed by one-way ANOVA and Sidak’s post-tests, ** and **** 
indicates a P<0.01 and <0.0001 respectively, ns = non-significant (P>0.05), error bars represent 
± SEM, with n=105-150 animals per strain. 
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Fig. 41. Loss of swip-10 does not result in basal changes in DAF-16 nuclear translocation. 
A. Representative images demonstrate that basally, in N2 and swip-10Itm59159) mutant animals, 
DAF-16::GFP localizes to the cytoplasm. B. Stacked graph representing the percentage of C. 
elegans with DAF-16::GFP no, partial, or complete nuclear localization, demonstrating no 
difference in DAF-16::GFP localization between N2 and swip-10(tm5915) mutants. Analyzed by 
one-way ANOVA and Sidak’s post-tests, ns = non-significant (P>0.05), error bars represent ± 
SEM, (n=8 independent experiments, 50 animals/experiment per strain). 
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Apoptotic method of swip-10 DA neuron cell death 

Glu-induced excitotoxic cell death has been reported to arise from multiple 

mechanisms, including necrosis, autophagy and apoptosis [369], processes that also 

contribute to cell death in the nematode [344]. Cells dying by necrosis exhibit cell swelling 

and vacuolization [344], which we do not observe in swip-10 animals (Fig. 42E-H). In 

contrast, as described in Fig. 24, DA neurons in swip-10 mutants display blebbing or 

breaks in processes (Fig. 24B-C) and shrunken soma (Fig. 24D), features characteristic 

of apoptosis [370]. Consistent with this idea, we found that loss of function ced-4 and ced-

3 mutants, well-known contributors to programmed cell death [291], significantly 

suppressed tm5915 DA neuron degeneration across all individual indices of degeneration 

and the total measure of DA neurodegeneration (Fig. 43). Additionally, we found that gain 

of function ced-9 mutant animals also a well-known regulator of apoptosis [301], 

significantly suppressed the more severe measures of DA neuron degeneration, 

shrunken and missing cell soma, as well as the total degeneration phenotype of tm5915 

mutant animals (Fig. 43). Interestingly, ced-9, ced-4, and ced-3 mutants most robustly 

suppressed the missing CEP soma phenotype of swip-10 loss induced DA 

neurodegeneration (reduced by 45%, 83%, and 65% respectively) (Fig. 43C). Apoptosis 

in the context of normal developmental programmed cell death is tightly coupled to cell 

corpse engulfment [371], with two partially-redundant and parallel pathways involving 

ced-1/ced-6 [372, 373] and ced-10 [374] responsible for recognition of dying cells and 

initiation of cell corpse clearance. Little is known concerning the integration of death and 

engulfment programs in relation to DA neuron cell death, though Offenburger recently 

reported contributions from both ced-6 and ced-10 linked engulfment mechanisms in  
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Fig. 42. swip-10 mutants do not display gross morphological characteristics of necrotic 
cell death. Single-plane phase contrast images merged with maximum intensity projection 
confocal image show the relative positions of the CEP DA neurons to the terminal bulb of the 
pharynx in A. N2 and E. swip-10(tm5915) animals. B. and F. show the maximum fluorescence 
intensity projection confocal image of N2 and swip-10(tm5915) animals respectively. C. and G. 
show the merged single plane phase contrast image and corresponding single plane GFP 
confocal image at a plane where 1 or more CEP cell soma are in focus for N2 and swip-
10(tm5915) animals respectively. D. and H. show the single plane phase contrast images for N2 
and swip-10(tm5915) animals respectively, demonstrating no visible vacuolated or altered cellular 
structures. Scale bar of 10 microns for A-H. 
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Fig. 43. Genetic evidence for involvement of an apoptotic cell death program underlying 
DA neuron degeneration in swip-10 animals. Genetic disruption of the apoptotic cell death 
pathway, via loss of ced-3 or ced-4 or gain of function mutation to ced-9 significantly reduces 
swip-10 mutant CEP DA neuron degeneration, with the most robust suppression of missing CEP 
soma. Quantification of the components of CEP DA neuron degeneration for A. truncations/breaks 
in GFP, B. shrunken CEP soma, C. missing CEP soma, and D. total degeneration phenotype, 
inclusive of all three degeneration measures.  *, ***, and **** indicates P<0.05, P<0.001, and 
P<0.0001 respectively, and ns = non-significant (P>0.05), error bars represent ± SEM, with 
n=105-150 animals per strain. 
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6-OHDA induced DA neuron degeneration [375]. In contrast, we found that genetic 

disruption of individual genes associated with ced-1/ced-6 and ced-10 had no effect on 

measures of swip-10 DA neuron degeneration (Fig. 44). These findings suggest that swip-

10 DA neuron degeneration arises from the activation of a cell-autonomous apoptotic 

pathway, one that draws little observable support from known engulfment mechanisms. 

 

Discussion 

Overall, our findings reveal that loss of glial-expressed swip-10 results in DA 

neuron degeneration through a process supported by excess Glu signaling through Ca2+-  

permeant ionotropic Glu receptors and Ca2+-dependent cell death mechanisms that 

engage apoptotic cell death pathways, as summarized in Fig. 45.  

Having generated evidence for an age-dependent degenerative process impacting 

the morphology of swip-10 DA neurons, we pursued mechanistic studies through a  

combination of genetic and imaging techniques. Such approaches have provided for a 

systematic elucidation of mechanisms underlying both programmed and environmentally-

triggered cell death [160, 291, 296, 376, 377]. In addition to the apoptotic pathways that 

drive programmed cell death during development, molecular determinants of later stage 

necrotic neuronal death, that arise as a result of the constitutive activity of mutant ion 

channels [314, 317] and ligand-gated Glu receptors [378], have been investigated. A 

potential role for excess Glu signaling in swip-10 DA neuron degeneration seemed 

plausible given the contribution of Glu receptors and Glu transporters to Swip reported in 

our prior study [146]. In this regard, the groups of Driscoll and Mano have provided 

evidence that necrotic cell death arises with excess Glu signaling that occurs from a 
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Fig. 44. Genetic evidence for swip-10 degeneration engagement of apoptotic genes 
independent of the cell-corpse engulfment of programmed cell death. Genetic disruption of 
genes involved in cell-corpse engulfment had no effect on the observed DA neuron degeneration 
of swip-10 mutants. Analyzed by one-way ANOVA with Sidak’s post-tests, ns = non-significant 
(P>0.05), error bars represent ± SEM, with n=105-150 animals per strain. 
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Fig. 45. A suggested mechanism of swip-10 Glu-induced excitotoxic DA neuron 
degeneration. Our findings are consistent with glial expressed swip-10 leading to an elevation of 
extracellular Glu arising from changes in aat-1 mediated Glu/Cys exchange or vglu-3 mediated 
vesicular Glu release, resulting in the involvement of excess Glu activation of the Ca2+-permeable 
iGluRs, nmr-2 and glr-1. Elevated tonic iGluR stimulation then drives pathological elevations in 
intracellular Ca2+-levels, increases cellular stress and activates apoptotic cell death pathways.  
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combined loss of Glu clearance and a hyperactive, constitutively active form of the alpha 

subunit of the G-protein, Gs  [321-323]. Although swip-10 DA neuron death shares 

features associated with the degeneration described in Mano’s studies, specifically the 

contributions from the iGluR, glr-1 (Fig. 36A), and the intracellular Ca2+ sequestering 

protein, crt-1 (Fig. 38), our analysis also reveals a number of differences. Thus, besides 

a lack of morphological evidence of swollen, vacuolated soma seen in prior studies (Fig. 

42), we found no evidence for a contribution to swip-10 induced DA neuron degeneration 

of the adenyl cyclase ortholog, acy-1, nor could we implicate the autophagy-associated, 

cell death protein kinase, dapk-1 (Fig. 46) [321, 323]. 

We also obtained evidence that the damaging effects of swip-10 mutation are quite 

distinct from those observed with 6-OHDA induced DA neuron cell death. As a DA neuron 

specific toxin, 6-OHDA induced DA neuron degeneration is a commonly used in 

mammalian and C. elegans model for Parkinson’s disease. Similar to the mammalian  

mechanism of 6-OHDA toxicity, Nass and colleagues demonstrated that in the nematode 

6-OHDA is transported selectively into DA neurons via the DA transporter, DAT-1, and 

genetic loss of dat-1 protects against 6-OHDA neurodegeneration [52, 156]. 

Morphologically, swip-10 mutant induced, progressive DA neuron degeneration 

resembles the morphological hallmarks of 6-OHDA induced degeneration. In swip-10 

mutants, DA neuron degeneration progressively worsens from early morphological 

aberrations, such as dendritic truncations and breaks in dendritic GFP, to the later, more 

severe measures of degeneration, shrunken/rounded soma, and ultimately missing soma 

(Fig. 29). Similarly, the earliest and most readily detectible morphological changes due to 

6-OHDA toxicity include blebbing of the CEP dendrites and rounding of the CEP soma,  
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Fig. 46. Mutation of genes previously implicated in Glu-dependent necrotic cell death do 
not alter swip-10 induced DA neuron degeneration. Data were analyzed by one-way ANOVA 
with Sidak’s post-tests, ns = non-significant (P>0.05), error bars represent ± SEM, with n=105-
150 animals per strain. 
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with later observation of complete loss of GFP expression in the CEP cell bodies [52]. 

Despite the morphological parallels in the progression of DA neuron degeneration, our 

data demonstrate that the mechanism driving DA neuron cell death in swip-10 mutant 

animals is distinct from the mechanism of 6-OHDA DA neuron cell death.  For example, 

the degeneration of DA neurons that arises within a day following 6-OHDA administration 

to wildtype worms lacks contributions from genes that participate in programmed cell 

death mechanisms [52], whereas, as we discuss below, contributions of these genes are 

evident in the swip-10 model. Moreover, recent studies indicate that ced-6 and ced-10 

dependent engulfment pathways support 6-OHDA induced loss of DA neurons [375], 

whereas we found no contribution of these engulfment genes to swip-10 effects (Fig. 44). 

Moreover, Offenburger and colleagues have reported that 6-OHDA induced DA neuron 

death is exacerbated by mutation of the Ca2+ chaperone crt-1 whereas we demonstrated 

that crt-1 mutation confers neuroprotection in the swip-10 model [379]. Together, these 

findings indicate that the DA neuron degeneration induced by swip-10 mutation is an 

altogether unique form of neural degeneration as compared to prior glutamatergic and 

exogenous neurotoxin models. 

Our prior studies [146] assessing Swip behavior in swip-10 mutants provided 

evidence of perturbed glial control of extracellular Glu that we hypothesized was 

responsible for the iGluR and mGluR dependence of Swip in these animals. We therefore 

considered the possibility that perturbed buffering of extracellular Glu by swip-10 glia also 

underlies DA neuron degeneration. Mammalian literature emphasizes the critical role of 

glial Glu buffering mechanisms as protective against Glu excitotoxicity. As first described 

by Olney and colleagues, Glu excitotoxicity derives from excessive synaptic Glu acting 
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on post-synaptic iGluRs [380-382], a process recapitulated by the actions of iGluR 

agonists such as kainic acid and ibotenate [383-385]. Moreover, inhibition of Glu 

transporters and increased extracellular Glu recapitulates the pathological hallmarks of 

PD in animal models, including DA neuron degeneration [386]. Our findings that 

mutations in the Ca2+ permeant iGluRs, nmr-2 and glr-1, protect against swip-10 DA 

neuron degeneration (Fig. 36A), that overexpression of these receptors leads to DA 

neuron degeneration in wildtype animals (Fig. 36C), and overexpression of these 

receptors exacerbates the DA neuron degeneration of swip-10 mutants (Fig. 37), provides 

strong supportive evidence that glial mechanisms dictating the availability of extracellular 

Glu are likely disrupted in swip-10 animals. 

Mammalian glia have been reported to modulate extracellular GLU by vesicular 

release [387], GLU-permeable channels [388], synaptic clearance of Glu by Na+-coupled 

Glu transporters (GLTs) [241], and extrasynaptic Glu buffering by the cystine/Glu 

exchanger (xCT) [255, 266]. We found that a mutation in the vesicular Glu transporter 

vglu-3 attenuates swip-10 DA neuron degeneration (Fig. 34A). We were surprised that an 

eat-4 mutation did not contribute to swip-10 induced degeneration, as such a mutation 

reduced Swip behavior [146]. Although the expression pattern and role for vglu-3 is 

undetermined, these findings raise the possibility that EAT-4 supports Glu signaling in the 

neural circuitry that drives DA neuron excitation in response to water, whereas VGLU-3 

contributes to Glu release directly onto DA neurons, including SWIP-10 expressing glia, 

and drives tonic activation of Glu receptors on DA neurons and over time, excitotoxicity. 

Consistent with this model, distinct Glu receptors support Swip (GLR-4, GLR-6 and MGL-

1) versus DA neurodegeneration (GLR-1 and NMR-2). Although we did not observe DA 
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neurodegeneration with genetic loss of single GLT orthologs in the nematode (Fig. 34B, 

unlike Swip [146], this may be due to genetic redundancy among the six GLTs. Indeed, 

studies by the Driscoll lab demonstrated that loss of one or two GLTs is insufficient to 

drive Glu-dependent neurodegeneration [389]. In contrast to our inability to implicate 

specific GLTs, we found that genetic disruption of the xCT related gene, aat-1, 

significantly reduced swip-10 DA neuron degeneration (Fig. 34C). As with vglu-3, the 

expression pattern for aat-1 in the worm is undefined, and thus additional studies are 

needed to determine site(s) of expression that contribute to our results. The effects of aat-

1 mutation were not additive with those of vglu-3, suggesting that both genes act to 

support DA neurodegeneration through a common mechanism (Fig. 35), which we 

propose is through the control of tonic, extracellular Glu providing tonic excitation of DA 

neuron expressed Glu receptors. Finally, it is important to note that mammalian xCT is 

upregulated by the beta lactam antibiotic ceftriaxone [267, 277, 390], which we have 

shown binds directly to the putative swip-10 ortholog MBLAC1 [182]. Moreover, research, 

initiated by findings of Rothstein and colleagues [202], has demonstrated that ceftriaxone 

is neuroprotective, including in models of DA neuron degeneration [276].  

 Although not exclusive, Glu-induced neural degeneration often involves activation 

of Ca2+-permeable NMDA type iGluRs [209, 391, 392] and, as noted, our studies 

demonstrate an important contribution of Ca2+-permeable C. elegans iGluRs, the NMDA-

type iGluR, nmr-2, as well as the AMPA-type iGluR, glr-1 in swip-10 neural degeneration 

[358] (Fig. 36A). Expression profiling data provides evidence that nmr-2 and glr-1 are 

expressed in DA neurons [393]. Since swip-10 mutant animals with loss of both nmr-2 

and glr-1 do not demonstrate enhanced suppression of DA neural degeneration as 
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compared to single receptor mutations (Fig. 36B), we suggest that the flux of Ca2+ through 

one of these receptors is sufficient to increase intracellular Ca2+ to initiate downstream 

signaling pathways that lead, over time, to neurodegeneration. Aberrant intracellular Ca2+ 

regulation and signaling has been implicated in excitotoxic cell death [219], with evidence 

supporting a role for Na+/Ca2+-permeable degenerin/epithelial sodium channels 

(DEG/ENaCs) [148, 222, 223], Ca2+-dependent proteases such as calpain [225, 226], and 

deficiencies in ER Ca2+ buffering [317, 318] in cell death mechanisms. We found that 

disrupting ER Ca2+ storage, by mutation of crt-1, or mutation of the C. elegans calpain 

ortholog, clp-1, significantly reduced swip-10 DA neural degeneration (Fig. 38). 

Additionally, we found combined loss of crt-1 and clp-1 resulted in enhanced suppression 

of swip-10 DA neural degeneration (Fig. 38), suggesting swip-10 dysregulated 

intracellular Ca2+ signaling leading to cell death arises via activation of Ca2+-dependent 

proteins, such as calpain, and suggests that in swip-10 mutants Ca2+ normally 

sequestered in the ER may be released and cause further cell damage.  

Ca2+ dysregulation following excessive Glu stimulation has also been shown to 

engender multiple indications of cell stress including oxidative stress and ER stress [230, 

394], which swip-10 mutants display. The observed increase in the basal level of oxidative 

stress throughout the entire swip-10 mutant animal supports that loss of swip-10 does not 

selectively affect the viability of the DA neurons (Fig. 39). Although we do not see 

increased sensitivity to the pharmacological inducer of oxidative stress, paraquat, we 

suspect that this could be a result of a maximum response for the selected paraquat 

concentration in our experimental conditions. Although swip-10 mutants did not display 

basal, global ER stress, they were more sensitive to the ER stress inducer, tunicamycin 
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(Fig. 40). These findings suggest that swip-10 mutant animals retain the ability to regulate 

normal ER function despite excitotoxic signaling, but an added stressor overwhelms swip-

10 mutant animals’ capacity to protect against ER stress, thus rendering swip-10 mutants 

more sensitive to ER stress. As in mammals, there are several C. elegans neuroprotective 

pathways to protect against oxidative and ER stress, including induced transcription of 

detoxifying enzymes. Once such pathway in the nematode is through the insulin signaling 

pathway and translocation of DAF-16 to the nucleus to induce expression of enzymes 

such as GST-4. Though our studies exploring swip-10 mutant induction of stress 

pathways are in their infancy, we do not observe basal changes in DAF-16 localization 

compared to N2 (Fig. 41), suggesting that the basal oxidative stress we observe in swip-

10 mutants does not engage the DAF-2/DAF-16 signaling mechanism although more 

thorough, future studies are required to definitively rule out a role for DAF-16 in swip-10 

induced oxidative stress.  

Finally, although acute Glu excitotoxicity has been more typically associated with 

necrosis [207, 209], evidence suggests that chronic dysregulation of Glu signaling and 

altered intercellular Ca2+ homeostasis can lead to activation of apoptotic pathways [395, 

396], and a recent study by Anilkumar and colleagues has demonstrated that external 

factors, such as nutrient availability, determine whether or not excess Glu signaling 

triggers apoptotic or necrotic cell death [217]. Consistent with this idea, genetic disruption 

of apoptosis in C. elegans [291] significantly reduced the DA neurodegeneration of swip-

10 mutants (Fig. 43). ced-9, ced-3, and ced-4 mutation most robustly suppress the 

missing CEP soma measure of swip-10 DA neuron degeneration (Fig. 43C). We suggest 

this finding provides support for progressive DA neurodegeneration, such that as swip-10 
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DA neuron experience excitotoxic stress and viability is reduced, the dendrites become 

truncated and/or broken, and ultimately apoptotic mechanisms of cell death are engaged, 

resulting in missing CEP soma. The progressive DA neuron degeneration we detect in 

swip-10 animals supports the occurrence of a chronic insult and thus is in line with our 

genetic findings of apoptotic program engagement. However, our data suggests that 

swip-10 involvement of apoptotic cell death associated genes differs from the involvement 

of these genes in developmental programmed cell death, as loss of genes critical for cell-

corpse engulfment during programmed cell death did not alter the levels of swip-10 DA 

neuron degeneration (Fig. 44). Although lack of a reliance on engulfment genes could be 

a reflection of the partial redundancy of the two major engulfment pathways, we suspect 

that these findings are indicative of a slower engagement of apoptotic genes in the swip-

10 model. Additionally, the majority of our assays are conducted at a mid-point, with 

degeneration in progress, to capture various degrees of degeneration in swip-10 animals, 

it is possible that we have simply not assessed the correct temporal window for 

engulfment. 

Although we present clear evidence for a significant role of excess Glu signaling 

in the degeneration of swip-10 DA neurons, other mechanisms besides changes in 

extracellular Glu homeostasis are likely to contribute to our observations since Glu 

homeostasis and signaling mutants afford incomplete suppression of swip-10 DA 

neurodegeneration. The elucidation of the normal role and genetic pathway for wildtype 

swip-10 in C. elegans glial cells will likely clarify other contributors to swip-10 induced 

neural degeneration. For example, mammalian glia have been shown to support neurons 

by buffering ions such as potassium (K+) and hydrogen (H+) [397], and by providing 
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metabolic support via lactate, glutathione, and ATP shuttling [236]. Although only limited 

data speaks to glial-neuronal crosstalk in worms, we suspect that one or more of these 

mechanisms contribute to the diminished viability of DA neurons in swip-10 animals. As 

our transcriptional stress reporter data indicate a systemic increase in cellular stress 

mechanisms, it seems entirely likely that the perturbations induced by swip-10 mutation 

extend beyond the deficits observed in CEP (and OLL) neuron viability. Since wholesale 

degeneration is not evident, we suspect that the premature degeneration of DA neurons 

reflects a more dependent relationship of these cells on glia. The selective loss of 

nigrostriatal DA neurons in idiopathic PD has been suggested to derive from an intrinsic 

vulnerability to stress, possibly arising from the reactivity of DA itself, as well as inefficient 

anti-oxidant protection, ultimately rendering these cells more vulnerable than others to 

Glu-induced cell death [398]. Since genetic elimination of the capacity to synthesize DA 

did not reduce swip-10 DA neuron degeneration, we feel it more likely that excess Glu 

signaling drives degeneration due to a parallel loss of glial metabolic or trophic support 

required by DA neurons. 

In summary, our findings reveal a previously unreported dependence of DA 

neurons on C. elegans glia, one that when disrupted leads to neuronal degeneration. DA 

degeneration triggered by glial loss of swip-10 appears to be progressive and dependent 

on excess Glu signaling through Ca2+ permeant iGluRs. We propose that these effects 

lead to perturbed intracellular Ca2+ homeostasis and, progressively, the engagement of 

apoptotic cell death pathways. Our work adds support to studies in mammals that indicate 

a critical role of proper glial function in DA neuron viability [399-402] and reveals a new 

worm model of Glu excitotoxicity, one likely amenable to pharmacological manipulation 
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that could provide insights to novel therapeutics to treat human neurodegenerative 

disorders.  
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Chapter VI 

GLOBAL UNTARGETED SERUM METABOLOMIC ANALYSES NOMINATE 

METABOLIC PATHWAYS DEPENDENT ON THE EXPRESSION OF THE ORPHAN 

METALLO-b-LACTAMASE, MBLAC13 

 

Introduction 

Despite the availability of a human genomic blueprint for nearly two decades, over 

50% of proteins remain to be functionally annotated [403-405]. Many of these undefined 

proteins have predicted structural domains that suggest a potential, but undefined, 

physiological function. Both SWIP-10 protein, and its putative mammalian ortholog, 

MBLAC1, contain a single metallo b-lactamase (MBL) domain [146, 406]. Supporting the 

hypothesis that both SWIP-10 and MBLAC1 proteins function as enzymes, the MBL 

domains of both proteins possess the core motif (HxHxDH) found in prokaryotic and 

eukaryotic metallo-hydrolases that supports the coordination of metal ions to allow water 

polarization and substrate hydrolysis [407, 408]. The substrates for both SWIP-10 and 

MBLAC1, however, have yet to be identified, and further progress on their contribution to 

cell physiology will require their identification and elucidation of the molecular pathways 

within which they act.  

In eukaryotes, the MBL domain has been repurposed to support hydrolysis of a 

diverse array of substrates ranging from intermediary metabolites (i.e. glyoxalase II 

																																																								
3	Adapted from Gibson CL, Codreanu SG, Schrimpe-Rutledge AC, Retzlaff CL, Wright 
J, Mortlock DP, et al. Global untargeted serum metabolomic analyses nominate 
metabolic pathways dependent on expression of the orphan, metallo b-lactamase, 
MBLAC1. Molecular Omics. Resubmitted. 
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hydrolyzes the toxic 2-oxoaldehyde, methylglyoxal) and lipids to RNA and DNA [181, 406, 

409]. As such, prediction of the substrate(s) targeted by SWIP-10/MBLAC1 remains a 

challenge.  

In theory, clues to potential SWIP-10/MBLAC1 substrates and associated 

metabolic pathways may be gathered through evaluation of molecular differences 

emerging from a comparison of normal animals and animals deficient in enzyme 

expression. Although we have significant functional information in worms concerning the 

cellular and physiological impact of swip-10 mutations, the gene is expressed in a small 

number of cells, making a biochemical comparison between wildtype and mutant strains 

problematic. In contrast, the murine Mblac1 gene is widely expressed. Thus, we opted to 

characterize biochemical differences between wildtype (WT) and Mblac1 knockout (KO) 

mice, produced using a CRISPR/Cas9 approach [410, 411]. Here, we report both our 

successful generation of viable Mblac1 knockout (KO) mice and our efforts to use these 

animals to investigate the in vivo biochemical impact of loss of MBLAC1 expression.  

Here we present the results of our efforts to interrogate the serum metabolome of 

MBLAC1 KO and age-matched WT mice. To resolve serum small molecules responsive 

to loss of MBLAC1 expression, we implemented an ultra-performance liquid 

chromatography coupled to mass spectrometry (UPLC-MS/MS)–based analysis. We 

report the presence of unique biosignatures that distinguish the sera of MBLAC1 KO from 

WT mice, with replicated, over-representation of features linked to primary bile acid 

biosynthesis, and linoleate metabolism. We discuss these networks in the context of the 

emerging biology of the MBLAC1 ortholog SWIP-10, as well as the neuroprotective 

actions of chronic Cef administration. 
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Materials and Methods 

Generation of Mblac1 KO mice 

Initial untargeted metabolomics experiments and generation of the Mblac1 KO 

mice were performed under a protocol approved and annually reviewed by the Vanderbilt 

Institutional Animal Care and Use Committee. For a subsequent pathway validation 

metabolomic study, experiments were performed under a protocol approved and annually 

reviewed by the Florida Atlantic University Institutional Animal Care and Use Committee. 

In all experiments, mice were housed on a 12:12 LD cycle with food and water available 

ad libitum. To implement a CRISPR/Cas9 based strategy for producing Mblac1 KO mice, 

we utilized software developed in the Zhang laboratory (Massachusetts Institute of 

Technology, http://crispr.mit.edu.proxy.library.vanderbilt.edu) to evaluate sequences in 

the first exon, where we identified an optimal protospacer adjacent motif (PAM) sequence 

located 43-45 bp 3’ of the ATG start site. We generated a guide RNA with sequence that 

matched the protospacer adjacent to the PAM - 3’ to 5’: 

GGAAACGACCGCAGGTCGCCG (PAM site underlined). Sense and antisense 

oligonucleotides (Sigma Aldrich, St. Louis, MO) encoding the guide RNA were annealed 

and inserted into the plasmid pX330, a gift from Feng Zhang (Addgene plasmid #42230) 

which also encodes CAS9 [412]. Injection of the plasmid into C57BL6/J embryos was 

performed in the Vanderbilt ES/Transgenic Mouse Core. From these injections one male 

pup was identified as having a 5 bp deletion at the targeted site, deleting bp 46-50, and 

another male pup was identified as having a 14 bp deletion at the targeted site, deleting 

bp 44-57, as verified by Sanger sequencing (Genewiz). KO mice referred to in the present 
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study represent progeny of the 5bp deletion founder. Genotyping of MBLAC1 KO mice 

was performed by TransnetYX, Inc (Cordova, TN, USA) using separate PCR reactions to 

genotype for WT (forward primer: GACAGCGATAGTTTAGTTTC, and reverse primer: 

TTGCTGGCGTCCAGCGGC), 5 bp deletion MBLAC1 KO (forward primer: 

GACAGCGATAGTTTAGTTTC and reverse primer: TCCCTGGCGTCCAGCGGC) and 

14 bp deletion MBLAC1 KO (forward primer: CGAGCCCCTGCATCCT and reverse 

primer: GCCGCGCAGCAGAAC). KO mice were mated with WT C57BL6/J females and 

heterozygous KO pups were outcrossed to C57BL6/J mice for 3 additional generations 

to limit the presence of off-target mutations in mice used for analysis.  

 

Evaluation of MBLAC1 protein expression by western blotting 

All chemicals used in tissue homogenization and immunoblotting assays, unless 

otherwise specified, were obtained from Sigma-Aldrich (St. Louis, MO, USA). For western 

blots, male mice were killed by rapid decapitation and whole brains were removed to an 

ice-cold metal plate and dissected into specific regions. Freshly dissected brain regions 

were homogenized in RIPA buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% 

TRITON X-100, 1% sodium deoxycholate, 0.1% SDS) with a Dounce homogenizer and 

then solubilized for 1 hr at 4°C while rotating. Protein lysates were centrifuged at 4°C for 

30 min at 15,000xg to remove insoluble material. Protein concentrations of supernatants 

were determined using the BCA method (ThermoFisher, Waltham, MA, USA) and 40 µg 

of brain (cortical tissue) protein and 60 µg of liver protein was separated by 10% SDS-

PAGE, transferred to PVDF membranes (Miillipore Sigma, Billerica, MA, USA). 

Membranes were blocked using 5% dry milk in TBS/0.1% Tween (TBST) for 1 hr at room 
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temperature (RT) prior to incubation with affinity-purified MBLAC1 #4980 antibody 

(1:1000 dilution in 5% milk with TBST – incubated overnight at 4°C followed by 4 x 5 

minutes with TBST) [182]. HRP-conjugated, mouse anti-rabbit secondary antibody 

(Jackson ImmunoResearch, West Grove, PA) was used at 1:10000 dilution. b-actin was 

detected using a 1:20,000 dilution of b-actin-HRP antibody (Sigma-Aldrich, St. Louis, 

MO). Immuno-reactive bands were identified by chemiluminescence (Clarity, BioRad, 

Hercules, CA, USA) and imaged with an LAS4000 imager (GE Healthcare Life Sciences, 

Pittsburg, PA, USA) and analyzed with associated ImageQuant™ software (GE 

Healthcare Life Sciences, Pittsburg, PA, USA). 

 

Serum sample preparation  

Our initial untargeted study made use of the serum collected from three, age- (12-

16 wks) and sex-(female) matched WT and KO mice. WT mice were commercially 

obtained C57BL/6J mice (Jackson Labs, Bar Harbor Maine, USA). Our subsequent 

pathway validation study reported is derived from serum collected from four sex-(female) 

matched WT and KO littermates (aged 12-16 weeks). Following rapid decapitation of 

mice, 0.5-0.75 mL trunk blood (blood immediately collected from the body at the site of 

decapitation) was collected, allowed to coagulate on ice for 30 min and centrifuged (15 

min at 5,000 rpm). Serum (50 µL) was collected into fresh tubes followed by addition of 

ice cold 80% methanol (5x by volume), then stored at -80°C overnight. On the next day 

samples were centrifuged at 10,000 rpm for 15 min to eliminate precipitate proteins. This 

methanol precipitation step was repeated and the metabolite containing supernatant was 

dried via speed-vacuum and stored at -80°C until analysis.  
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Global, untargeted UPLC-MS/MS analysis 

For mass spectrometry analysis, dried extracts were reconstituted in 100 μL of 

acetonitrile/water (80:20, v/v) and centrifuged for 5 min at 15,000 rpm to remove insoluble 

material. Quality control (QC) samples were prepared by pooling equal volumes from 

each experimental sample. Full MS (FMS) data was acquired for this QC pool, in both 

HILIC-POS and HILIC-NEG methods, to use as a retention time alignment reference 

within Progenesis QI for subsequent normalization and data quantitation. MS/MS 

acquisitions for pooled QCs were run to assess instrument performance over time and 

used for feature annotation (described below).  

MS analyses were performed on a Q-Exactive HF hybrid mass spectrometer 

(Thermo Fisher Scientific, Bremen, Germany) equipped with a Vanquish UHPLC binary 

system and autosampler (Thermo Fisher Scientific, Germany). Extracts (5uL injection 

volume) were separated on a SeQuant ZIC-HILIC 3.5 μm, 2.1 mm × 100 mm column 

(Millipore Corporation, Darmstadt, Germany) held at 40°C. Liquid chromatography was 

performed at a 200 μL min−1 using solvent A (5 mM ammonium formate in 90% water, 

10% acetonitrile) and solvent B (5 mM ammonium formate in 90% acetonitrile, 10% water) 

with the following gradient: 90% B for 2 min, 90-40% B over 16 min, 40% B held 2 min, 

and 40-90% B over 10 min, 90% B held 10 min (gradient length 40 min). Full MS analyses 

were acquired over a mass range of m/z 70-1050 under an ESI positive profile mode and 

separately under an ESI negative profile mode. Full mass scan was used at a resolution 

of 120,000 with a scan rate at �3.5 Hz. The automatic gain control (AGC) target was set 

at 1 × 106 ions, and maximum ion injection time (IT) was at 100 ms. Source ionization 
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parameters were optimized with the spray voltage at 3.0 kV, and other parameters were 

as follows: transfer temperature at 280 °C; S-Lens level at 40; heater temperature at 325 

°C; Sheath gas at 40, Aux gas at 10, and sweep gas flow at 1. Data dependent (DD) 

MS/MS spectra were acquired using a data dependent scanning mode in which one full 

MS scan (m/z 70-1050) was followed by 2 MS/MS scans. MS/MS scans are acquired in 

profile mode using an isolation width of 1.3 m/z, stepped collision energy (NCE 20, 40, 

60), and a dynamic exclusion of 6 s. MS/MS spectra were collected at a resolution of 

15,000 with an AGC target set at 2 × 105 ions, and IT of 100 ms. To assess instrument 

performance and reproducibility throughout our experimental run sequence, we 

monitored the retention times and peak areas for a subset of identified endogenous 

molecules (n=10) observed in the QC pool runs (visualized using Skyline 

(www.skyline.ms)(MacLean, Tomazela et al. 2010)). These data (Fig. 47-50) 

demonstrate the reliability of our UPLC-MS/MS platform. 

 

Metabolite data processing and analysis 

UPLC-MS/MS raw data were imported, processed, normalized, and reviewed 

using Progenesis QI v.2.1 (Non-linear Dynamics, Newcastle, UK). All FMS sample runs 

were aligned against a FMS QC pool reference, with alignment to the reference being ≥ 

97% aligned, demonstrating the reproducibility of the HILIC column separation method. 

Peak picking, with a minimum threshold of 250,000 ion intensity, was performed for 

individual aligned runs based on an aggregate run (representative of all ion peaks 

detected in all samples). Unique ions (retention time and m/z pairs) were grouped (a sum  
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Fig. 47: Comparison of ten endogenous molecules in replicate injections of a pooled 
sample for QC assessment prior to and after the experimental sample data acquisition for 
HILIC-POS collection, discovery sample set. A. The retention time and B. peak area for the 
ten endogenous compounds are reliable and reproducible (compound legend indicates respective 
%CVs). Figures were generated in Skyline software. 
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Fig. 48: Comparison of ten endogenous molecules in replicate injections of a pooled 
sample for QC assessment prior to, during, and after the experimental sample data 
acquisition for HILIC-POS collection, validation sample set. A. The retention time and B. peak 
area for the ten endogenous compounds are reliable and reproducible (compound legend 
indicates respective %CVs). Figures were generated in Skyline software.  
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Fig. 49: Comparison of ten endogenous molecules in replicate injections of a pooled 
sample for QC assessment prior to and after the experimental sample data acquisition for 
HILIC-NEG collection, discovery sample set. A. The retention time and B. peak area for the 
ten endogenous compounds are reliable and reproducible (compound legend indicates respective 
%CVs). Figures were generated in Skyline software.  
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Fig. 50: Comparison of ten endogenous molecules in replicate injections of a pooled 
sample for QC assessment prior to, during, and after the experimental sample data 
acquisition for HILIC-NEG collection, validation sample set. A. The retention time and B. peak 
area for the ten endogenous compounds are reliable and reproducible (compound legend 
indicates respective %CVs). Figures were generated in Skyline software.  
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of the abundancies of unique ions) using both adduct and isotope deconvolutions to 

generate unique “features” (retention time and m/z pairs) representative of unannotated 

metabolites. Data were normalized to all features using Progenesis. Briefly, all runs have 

a measurement for every feature ion, therefore a ratio can be taken for the feature ion 

abundance in a particular run relative to the value in the normalization reference. 

Progenesis applies a Log10 transformation to the ratio to yield a normal distribution on all 

ratio data within each run for all samples, and scalar estimations shift the Log10 

distributions onto that of the normalization reference. Resulting FMS data was utilized for 

relative quantitation. The minimum percent coefficient of variance (%CV) was determined 

for all features across sample groups. Data was exported to EZ Info (Umetrics Software) 

and unsupervised (% of mean) Principle Components Analysis (PCA) was used to 

visualize clustering of data groups prior to statistical tests of significance. Additionally, 

within Progenesis QI, One-way analysis of variance (ANOVA) was used to assess 

significance between WT and KO groups and returned a P-value for each feature 

(retention time_m/z descriptor), with a nominal P-value ≤0.05 taken as significant. 

Significant features were further filtered using a fold change threshold calculated by 

Progenesis from combined abundance data, with a cutoff of FC ≥ │1.2│deemed as 

significant. Visualizations of dysregulated metabolites were represented by volcano plots 

(log2 (fold change) vs. –log10 (P-value)). Tentative and putative annotations were 

determined within Progenesis using accurate mass measurements (< 5 ppm error), 

isotope distribution similarity, and manual assessment of fragmentation spectrum 

matching (when applicable) from the Human Metabolome Database (HMDB) [413], Metlin 

[414], MassBank [415], and the National Institute of Standards and Technology (NIST) 
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database [416]. Additional putative annotations were assigned using Compound 

Discoverer 2.0 (Thermo Scientific, Waltham, MA, USA). Briefly, the DDA data was 

uploaded to Compound Discoverer 2.0, deconvoluted to group isotopes/adducts of the 

same feature, and features were assigned an m/z Cloud spectral match score based on 

feature spectral matches against the mzCloud [417] spectral libraries [418]. Within 

Progenesis, individual fragmentation (MS/MS) spectra peak shape and intensity of the 

putatively identified statistically significant features were visually assessed for quality 

control. For Level 3 confidence features (i.e., annotations supported by MS1 level data 

that may match multiple candidate annotations), mummichog 2.0 

(www.mummichog.org/index.html) [419] was utilized to rank the most likely species within 

our samples. mummichog 2.0 predicts biological activity from MS1 data rather than formal 

manual curation of MS-2-dependent identifications. The MetaboAnalyst 3.0 program 

(www.metaboanalyst.ca/) was used for pathway and metabolite set enrichment analyses 

using the list of statistical significance annotated features in the discovery dataset [418, 

420]. KEGG metabolite pathways were visualized using Cytoscape 3.4.0 (The Cytoscape 

Consortium, USA). Increased confidence in the annotation of many features was 

achieved by manually assessing spectral match and RT consistencies between 

experimental data and chemical standards within a curated in-house library. Chemical 

standards (purchased from Sigma Aldrich (St. Louis, MO) unless otherwise specified) 

were prepared at a concentration of 10 ng/uL in acetonitrile/water (80/20, v/v). 
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Validation of pathway disruptions via metabolomic UPLC-MS/MS analysis 

UPLC-MS/MS raw data were imported, processed, normalized, and reviewed 

using Progenesis QI v.2.1 as described in detail above for the initial discovery dataset. 

After the raw data was imported and processed in Progenesis, mummichog 2.0 [419] was 

used to perform pathway enrichment analysis by predicting biological activity from MS1 

data allowing a focused assessment and validation of specific pathways sensitive to 

Mblac1 KO. 

 

Results and Discussion 

Generation and validation of MBLAC1 KO mice 

To eliminate expression of MBLAC1 in vivo and initiate a metabolomic 

interrogation of MBLAC1-linked pathways, we used a non-homologous end joining 

(NHEJ) CRISPR/Cas9 strategy to introduce deletions in the Mblac1 gene, disrupting 

sequences that encode the N-terminus of the MBLAC1 protein as described in the 

Methods [421, 422]. This effort yielded two different deletion lines with either 5 bp or 14 

bp deletions. The studies described in this report, derive solely from experiments with 

mice that harbor the 5 bp deletion, which lies 46 bp downstream of the MBLAC1 protein 

start site (Fig. 51A). The resulting frame shift results in the generation of 27 amino acids 

of ectopic sequence prior to strand termination (Fig. 51B). As shown in Fig. 51C, 

immunoblots of brain (cortical tissue) and liver extracts prepared from 5 bp deletion-

containing KO mice, using affinity-purified MBLAC1 antibody, demonstrated complete 

loss of the 27 kDa band predicted to encode MBLAC1 protein (Fig. 51C) [182]. Whereas 

a more detailed characterization of the phenotypes of the MBLAC1 KO animals will be   
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Fig. 51: CRISPR/Cas9 generation of the MBLAC1 KO mouse. A. Gene diagram depicts the 
target sequence used to direct DNA cut sites in the Mblac1 genomic sequence. The protospacer 
adjacent motif (PAM) and protospacer sequences are highlighted and 5 bp deletion and 14 bp 
deletion of the KO are underlined. B. Beginning of the protein sequences for WT and the 5 bp 
MBLAC1 KO, highlighting the frameshift/missense amino acid sequence and early truncation of 
the 5 bp MBLAC1 KO line generated and used in the present study. C. MBLAC1 immunoblot of 
protein lysates prepared from WT and KO brain (cortical tissue) and liver tissue. MBLAC1 KO 
mouse tissue lacks the specific 27 kDa MBLAC1 band. Work performed in collaboration with Jane 
Wright (MBLAC1 KO mouse generation) and Cassie Retzlaff (western blots). 
  

5’ATGAACGGTCCAGTGCGCACCGAGCCCCTGCATGGTGAGATCCCTTTGCTGGCGTCCAGCGGCTCCTACTC 3’
3’TACTTGCCAGGTCACGCGTGGCTCGGGGACGTACCACTCTAGGGAAACGACCGCAGGTCGCCGAGGATCAG 5’

PAM (NGG)
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WT: M N G P V R T E P L H G E I P L L A S S G S Y S V V V L L R G Y A E P Q G A G D A V R… 260AA protein
5bp KO: M N G P V R T E P L H G E I P G V Q R L L L R G G S A A R L R G A A G S G R R G A C* (Opal STOP) 42AA protein
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B
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WT 34.25 (25%) 32.25 (25%) 66.5 (25%)
Het 68.5 (50%) 64.5 (50%) 133 (50%)
Homo 34.25 (25%) 32.25 (25%) 66.5 (25%)

Male Female Total
Observed
WT 29 (21.17%) 25 (19.38%) 54 (20.30%)
Het 69 (50.36%) 63 (48.84%) 132 (49.62%)
Homo 39 (28.47%) 41 (31.78%) 80 (30.08%)

Chi Squared 1.467 4.039 5.098
P-value 0.48 0.133 0.078

Brain Liver
+/+  -/- +/+  -/-

37kDa
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50kDa

IB: MBLAC1
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provided in future reports, we note here that the founder mouse, as well as subsequent 

heterozygous and homozygous KO progeny, were viable, produced offspring at normal 

Mendelian ratios (Fig. 51D), and exhibited no visible physical or behavioral abnormalities. 

Our discovery experimental design, from serum collection through data analysis, 

is depicted in Fig. 52. Serum samples were collected from WT and MBLAC1 KO mice 

and metabolites were separated by polarity using HILIC-POS and -Neg UPLC-MS/MS. 

For confidence in metabolite detection and putative identification of features, we pursued 

two complementary data processing and analysis platforms, Progenesis QI and 

Compound Discoverer 2.0 as described in Methods. Briefly, Progenesis QI was used for 

peak-picking, normalization and statistical analysis to determine uniqueness of MBLAC1 

KO and WT sera metabolomes. Both Progenesis QI and Compound Discoverer 2.0 were 

used to assign annotations to features of interest based on database searches and 

spectral library matching. The compiled list of annotated, significantly regulated features 

was subsequently analyzed by MetaboAnalyst 3.0. where we assessed enrichment of 

known metabolic pathways. This approach was designed to identify metabolic pathways 

affected by loss of MBLAC1 expression, and thereby provide a physiological context for 

contributions of MBLAC1 subtrate(s).  

 

Elucidation of an MBLAC1-dependent serum metabolome  

UPLC-MS/MS methods are now commonly used for metabolomic studies owing to 

their high-resolution and sensitivity capabilities [423]. As many endogenous metabolites 

found in serum samples are expected to be polar/hydrophilic, we initiated our efforts using 

HILIC to retain and resolve polar analytes [424, 425]. We used both HILIC-positive (POS)  
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Fig. 52: Illustration of the workflow for the global, untargeted MBLAC1 KO serum 
metabolomic discovery and validation studies. The workflow begins with serum sample 
preparation from age- and sex-matched controls for the discovery set, and serum sample 
preparation from littermate age- and sex-matched controls for the validation set. This diagram 
illustrates the steps required for the discovery-based analysis of a multidimensional dataset 
across several analysis platforms to curate tentative and putative feature annotations and 
prioritize metabolic pathways altered by loss of MBLAC1. Additionally, this illustration describes 
the validation analysis to identify replicable metabolic pathways sensitive to MBLAC1 loss. 
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ion mode (Fig. 53A) and HILIC-negative (NEG) ion mode (Fig. 53B) MS methods to 

increase the molecular breadth of detected metabolites. Future studies may benefit from 

complementary reverse-phase liquid chromatography (RPLC)-MS methods [426].  In Fig. 

53A-B, we show representative total ion chromatograms for serum samples derived from 

WT and KO mice. We used the Progenesis QI data processing platform, to inspect these 

runs for reproducible, genotype-dependent differences by normalizing to all feature 

abundances (each feature abundance is a sum of feature ion abundances comprised of 

grouped adduct forms). While not a direct indicator of efficacy, these analyses detected 

many molecular features (with unique mass to charge ratios (m/z)) in our data set, 2002 

features in HILIC-POS and 2336 features in HILIC-NEG. Within Progenesis QI, feature 

sample variance is defined by the minimum percent coefficient of variance (min %CV) 

from any experimental group such that a low %CV value represents less abundance 

variance among biological samples. Based on other untargeted metabolomic studies 

[427, 428], we considered features with a min %CV ≤30% as having acceptable 

abundance variation, with 69% of the features in HILIC-POS have a min %CV ≤30% and 

57% of the features in HILIC-NEG have a min %CV ≤30%. The binning of features by min 

%CV ranges is shown in Fig. 54. Subsequent, unsupervised PCA of these data revealed 

clear and consistent segregation of WT and KO biological replicates (Fig. 53C-D) distinct 

from the QC-pooled reference sample.  

Next, a one-way ANOVA was used to nominate features that demonstrated 

genotype-dependent abundance differences between WT and KO samples, with a 

nominal P-value of ≤0.05 taken as significant. For HILIC-POS data, ANOVA analysis 

revealed 326 features as significant, 16% of the total number of features. For samples  
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Fig. 53: Data representative of the UPLC-MS/MS characterization of WT and MBLAC1 KO 
serum and multivariate statistical analysis. Representative total ion chromatograms separated 
by A. HILIC-POS ion mode and by B. HILIC-NEG ion mode, WT shown in black and MBLAC1 KO 
shown in red. Global, unsupervised, principal component analysis (PCA) of the C. HILIC-POS 
and D. HILIC-NEG data illustrating distinct metabolic profiles observed between the WT control 
samples (black) and the MBLAC1 KO samples (red) with the alignment reference QC sample 
(green). 
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Fig. 54. Features detected by untargeted UPLC-MS/MS approach binned according to 
minimum percent coefficient of variance (min %CV). A. HILIC-POS and B. HILIC-NEG. For 
both ion modes, about 60% of the detected features have a min %CV ≤ 30%. 
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analyzed by HILIC-NEG, 287 features, 12% of the total, reached significance. These 

features are displayed in Volcano plots in Fig. 55, showing significance on the x-axis and 

magnitude of change on the y-axis, and highlighting the upper, outer features for 

prioritization for subsequent identification and pathway analysis. In these discovery 

experiments, we used a liberal fold change [(FC) ≥ |1.2|] as our filtering threshold, based 

on previous plasma metabolomics studies [429]. Supplementary Tables 5 and 6 

(Appendix A) summarize the features significantly dysregulated between WT and KO 

samples from HILIC-POS and -NEG respectively.  

 

Nomination of biomarkers of loss of MBLAC1 expression 

Metabolite identification was pursued for significant features, with a nominal P-

value ≤0.05 and a FC ≥ |1.2|. The experimental m/z measurement of each feature was 

queried against several published metabolite databases (i.e., HMDB, MassBank, Metlin, 

NIST, mzCloud) to match feature m/z within a ± 5 ppm window. We assigned various 

levels of confidence to our metabolite annotations (Table 3) based on the levels of 

metabolite identification first outlined by Sumner et al. 2007 and the Metabolomics 

Standard Initiative [430, 431], and the more recent adaptations of this approach [418, 

432]. Several of the prioritized molecules do not match any current database entries, 

either representing novel metabolites (unknown unknowns) or unknown degradation or 

breakdown products that are absent from existing databases. These are classified most 

broadly as level 5 (L5) for a feature annotated with a unique m/z. A subset of the 

significantly regulated molecules in our data, classified as level 4 (L4), could be assigned 

multiple potential molecular formulas and thus render multiple candidate annotations.  



	 156 

 

Fig. 55: Volcano plots of UPLC-MS/MS datasets. A. HILIC-POS and B. HILIC-NEG combining 
the statistical test (y-axis: -log (P-value)) and the magnitude of the change (x-axis: (log 2(FC)) of 
metabolites on a scatter plot. Points in the blue shaded area represent metabolites with a P-value 
<0.05, and FC<-1.2 in MBLAC1 KO samples. Points in the red shaded area represent metabolites 
with a P-value <0.05, and FC> 1.2 in MBLAC1 KO samples.  
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Table 3: Metabolites of the identified pathways of interested to be confirmed and utilized for a future targeted Mblac1 KO 
metabolomics studies. ID levels for each listed metabolite is based on the degree of confidence of putative identification (based on 
database identification and fragmentation data supporting ID) described in Sumner et al., 2007 [430] and Schrimpe-Rutledge et al., 
2016 [418]. Metabolites significantly reduced in MBLAC1 KO serum are highlighted in blue, and those significantly elevated in MBLAC1 
KO serum are highlighted in red.

↓ in MBLAC1 KO ↑ in MBLAC1 KO

* Isomeric metabolites cannot be differentiated in our data by MS2 or retention time, thus both potential candidates are indicated and denoted as
L3.

** L3 confidence level indicates that a feature has multiple candidate identifications. Mummichog 2.0 was used to rank the most likely species,
denoted in Table 1.

Pathway Name Formula KEGG ID Mol. Wt.

Retention 
Time (mins) P -value

Confidence 
level

Pyruvic acid** C3H4O3 C00022 88.0160 6.974 0.552 L3
L-alanine C3H7NO2 C00041 89.0477 10.435 0.667 L2
Taurine C2H7NO3S C00245 125.0146 11.111 0.770 L2
Hypotaurine C2H7NO2S C00519 109.0197 10.834 0.558 L1
3-Sulfinoalanine C3H7NO4S C00606 153.0096 8.552 0.306 L2
Taurohyocholic acid*/Taurocholic acid* C26H45NO7S C15516/C05122 515.2917 5.294/5.811 0.032/0.035 L3
2-Hydroxyethanesulfonate C2H6O4S C05123 125.9980 9.039 0.003 L2
Glycine C2H5NO2 C00037 75.0320 11.348 0.846 L1
Taurine C2H7NO3S C00245 125.0144 11.120 0.770 L2
Cholic acid C24H40O5 C00695 408.2880 2.723 0.206 L2
Chenodeoxycholic acid*/Deoxycholic acid* C24H40O4 C02528/C04483 392.2927 1.794 0.455 L3
Chenodeoxycholic acid*/Deoxycholic acid* C24H40O4 C02528/C04483 392.2927 2.395 0.027 L3
Taurohyocholic acid*/Taurocholic acid* C26H45NO7S C15516/C05122 515.2917 5.294/5.811 0.032/0.035 L3
Taurochenodeoxycholic acid C26H45NO6S C05465 499.2967 2.776 0.027 L2
L-glutamate C5H9NO4 C00025 147.0532 11.913 0.383 L1
Glycine C2H5NO2 C00037 75.0320 11.348 0.846 L1
Ascorbic acid** C6H8O6 C00072 176.0321 13.798 0.009 L2
Ornithine C5H12N2O2 C00077 132.0899 11.804 0.192 L2
gamma-L-Glutamyl-L-cysteine** C8H14N2O5S C00669 250.0623 6.534 0.193 L3
Pyroglutamic acid C5H7NO3 C01879 129.0426 12.642 0.010 L2
Dehydroascorbic acid** C6H6O6 C05422 174.0164 12.542 0.007 L3
Linoleic acid C18H32O2 C01595 280.2402 1.768 0.040 L2
13(S)-HpODE C18H32O4 C04717 312.0230 1.895 0.095 L2
13(S)-HODE*/ 9(10)-EpOME* C18H32O3 C14762/C14825 296.2347 1.833 0.069 L3
13-OxoODE** C18H30O3 C14765 294.2195 1.829 0.018 L3
13(S)-HODE*/ 9(10)-EpOME* C18H32O3 C14762/C14825 296.2347 1.833 0.069 L3

Glutathione Metabolism

Taurine and hypotaurine 
metabolism

Primary bile acid biosynthesis

Linoleic acid metabolism

Initial Untargeted UPLC-MS/MS 
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Level 3 (L3) features are classified based on a confident molecular formula and accurate 

mass. We assigned tentative identifications to many L3 features by using mummichog 

2.0 to predict the species found in our samples, and denoted these putative annotations 

in Table 3. Features are classified as level 2 (L2) when experimental fragmentation data 

is consistent with a spectral library match upon manual assessment and curation, 

rendering a putative identification (Supplementary Figs. 60-71, Appendix A). We have in-

house experience that pure reference standards generate match scores ranging from 

20/100 to >99/100 against external spectral libraries. Thus, we set an arbitrary threshold 

of 45/100 to facilitate curation. A lower fragmentation score match was accepted for 

features with a low (<100) m/z that matched a single metabolite, in which case the low 

fragmentation score is likely a result of minimal fragmentation as well as potential MS/MS 

fragments being below the detection limit of our instrumentation platform. Together, 

Progenesis QI and Compound Discoverer 2.0 facilitated annotations for 16% (92 out of 

593) of the significantly different features. The highest identification, confidence level (L1), 

is achieved by comparison of experimental data with that of a standard reference 

compound to confirm the structure with retention time, isotope pattern, and fragmentation. 

 

Nomination of MBLAC1-dependent metabolic pathways  

To identify metabolic pathways altered by MBLAC1 KO, we pursued analysis with 

features of interest exhibiting moderate to high confidence levels of identification (L1-L3). 

MetaboAnalyst 3.0 [420, 433] was used to map the 92 significantly dysregulated, 

putatively-identified metabolites to Kyoto Encyclopedia of Genes and Genomes (KEGG) 

defined pathways. The most over represented KEGG pathways are highlighted in  
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Fig. 56A. After identifying these dysregulated pathways, we determined the total coverage 

of each pathway that was identified in our dataset which allowed us to increase our 

confidence in KEGG pathway assignment (Fig. 56B). HILIC-MS/MS provides effective 

retention, separation, and elution of polar molecules and consequently, lower 

representation of non-polar molecules is expected, and thus we would not expect to 

obtain full coverage of metabolic pathways. Several pathways, however, were identified 

as warranting further inspection, including taurine and hypotaurine metabolism, primary 

bile acid biosynthesis, glutathione metabolism, and linoleate metabolism. 

The KEGG defined pathway for taurine and hypotaurine metabolism overlaps at 

multiple points with the pathway supporting primary bile acid homeostasis. The pathway 

intersection (containing 31 metabolites) is highlighted in our user-defined, hybrid “taurine, 

hypotaurine and primary bile acid metabolism” pathway (Fig. 57A) with the highest (68%) 

coverage of metabolites in our dataset. Furthermore, 16% of the metabolites (i.e., 5 

features) in this combined pathway are putatively identified as significantly reduced in KO 

samples (Fig. 57A and Table 3) with large fold changes (i.e. Taurochenodeoxycholic acid 

FC = |49.1|) observed, underscoring these pathways as particularly sensitive to the 

absence of MBLAC1 expression. Furthermore, the two linked pathways noted can also 

be associated with glutathione (GSH) metabolism. Thus, although no change is observed 

in cysteine, this amino acid is a key precursor to the synthesis of taurine related 

metabolites and is also a key amino acid in the GSH pathway, which MetaboAnalyst 3.0 

KEGG pathway analysis revealed to be significantly impacted by loss of MBLAC1 

expression, with 8% (3 features) of KEGG GSH metabolites altered in KO serum (Fig. 

57B and Table 3). Lastly, our MetaboAnalyst 3.0 KEGG pathway analysis identified  
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Fig. 56: MetaboAnalyst 3.0 identified metabolic pathways significantly altered by loss of 
MBLAC1. A. The percent differing metabolites (number of metabolites in pathway with P-value 

≤0.05 and FC ≥|1.2| out of the total number of KEGG specified metabolites in the metabolic 

pathway. B. Percent of total pathway coverage determined by the number of metabolites found in 

serum metabolite samples (both significantly different and unchanged metabolites) / total number 

of KEGG specified metabolites in the metabolic pathway.
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Fig. 57: Loss of MBLAC1 disrupts the abundance of metabolites residing in several KEGG defined metabolic pathways. A. 
The user-defined intersection between taurine and hypotaurine metabolism and primary bile acid biosynthesis metabolic pathways 
based on individual KEGG pathways. B. The KEGG-defined glutathione metabolism pathway. C. The KEGG-defined linoleate 
metabolism pathway. All metabolic pathways are visualized via Cytoscape 3.4 (Arrows denote enzymatic directionality defined by 
KEGG). Metabolites are colored per their FC abundance differences (blue indicates decreased abundance in MBLAC1 KO, red 
indicates increased abundance in MBLAC1 KO).
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linoleate metabolism, depicted in Fig. 57C, as a pathway with changes in a sizable 

number of metabolites detected (40% total metabolic pathway coverage (Fig. 56A) and 

identified to have 13% over-representation of significantly dysregulated metabolites (Fig. 

56B). Together these findings encouraged a follow up experiment of MBLAC1 KO 

metabolic changes to validate the impact of the Mblac1 KO on the metabolic pathways 

highlighted above (pathways of interest). 

 

Validation of metabolic pathway disruptions induced by loss of MBLAC1 

Using an independent set of serum samples prepared from four age- and sex-

matched (female) littermate MBLAC1 KO and four WT mice, we conducted a follow-up 

metabolic pathway based analysis to provide preliminary validation of MBLAC1 sensitive 

metabolic pathways determined from our initial age and sex-matched, but non-littermate 

derived serum samples. Our validation dataset corroborated the presence of 80% (19/24) 

of the unique features putatively identified in pathways of interest (Table 4) in the 

discovery set of serum samples by Progenesis QI, though some features were not 

detected. Utilizing our second set of serum samples to pursue validation of our discovery 

dataset at the specific metabolic pathway level, we again used mummichog 2.0, to 

determine the metabolic pathways impacted by loss of MBLAC1 (Fig.53) [419]. The 

software predicted bile acid biosynthesis (P-value =0.042, 5 significant features out of 18 

pathway features) and linoleate metabolism (P-value =0.0002, 7 significant features out 

of 14 pathway features), reproducing two of the pathways from our initial discovery 

findings that the top metabolic pathways affected by loss of MBLAC1 include primary bile 

acid biosynthesis and linoleate metabolism (Table 4). Multiple other pathways were  
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Table 4: Network activity prediction analysis validates metabolic pathways sensitive to 
constitutive loss of MBLAC1. Serum samples from a second cohort of mice were analyzed by 
mummichog 2.0[419] to determine the global metabolic pathways altered in the context of 
MBLAC1 KO for HILIC-POS and HILIC-NEG. This analysis supported the previous metabolic 
pathways identified by MetaboAnalyst 3.0 as significantly altered by KO of MBLAC1 (highlighted 
in green).  
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nominated as significantly impacted by MBLA1 KO, though almost all of these derive from 

2-3 molecules within their designated network. A notable exception is a pathway linked 

to urea cycle/amine group metabolism, where 9 of 38 features were nominated, though 

this pathway had not been identified in our earlier discovery analysis. In our validation 

analysis, we did not identify a significant perturbation of GSH metabolism following loss 

of MBLAC1. As the bile acid synthesis pathway, which retained significance, shares 

molecules with that of the GSH metabolic pathway, we suspect that the lack of 

significance of the latter network likely reflects an overall weaker effect of Mblac1 

genotype that becomes insignificant in the context of the more stringent, littermate based 

design of the validation experiment. Alternatively, this difference could derive from 

unknown variables associated with animal housing and husbandry at the two sites where 

samples were derived.   

 

Potential significance of perturbation of taurine-derived metabolites within the 

primary bile acid biosynthesis pathway 

As noted above, MBLAC1 KO appears to result in a consistent reduction in the 

abundance of many taurine derived metabolites such as taurochenodeoxycholic acid and 

taurocholate (Fig. 57A) that reside in the primary bile acid metabolism pathway. Indeed, 

these features represent the most significantly altered and putatively identified 

metabolites in our dataset, with the greatest magnitude of change due to loss of MBLAC1 

(Table 5 and 6, Appendix A). Our pathway validation data provided additional support for 

bile acid biosynthesis and taurine derived metabolites as highly sensitive to MBLAC1 

expression (Table 4). Taurine and related metabolites have many important biological 
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roles, ranging from essential contributions to bile acid conjugation in the liver, to the 

regulation of cardiac and skeletal muscle function, and evidence suggests that they can 

cross the blood brain barrier and regulate neurotransmission [434, 435]. Taurine has been 

shown to be as protective against oxidative stress induced cell death in peripheral tissues 

such as liver in several animal models of hepatotoxicity [436, 437]. Likewise, 

tauroursodeoxycholic acid (TUDCA), a bile acid derivative of taurine, has been shown to 

be neuroprotective in in vitro and in vivo models of cell death such as retinal degeneration 

by reducing cellular stress and preventing release of pro-apoptotic factors [438-440]. 

Therefore, loss of these molecules from the serum of MBLAC1 KO mice may indicate a 

role played by the MBLAC1 substrate in triggering pathways protective against cell stress 

and cell death. This is an interesting conclusion in the context of the reported 

neuroprotective action of Cef [202, 441, 442], which we have determined to bind MBLAC1 

[182], likely as a functional antagonist due to the b-lactam structure of Cef. Chronic Cef 

treatment of cells has been reported to act via a Nrf2 pathway to induce expression of the 

cysteine/Glu exchanger and the Na+-dependent Glu transporters that can diminish the 

threat of excitotoxic insults and oxidative stress [277]. We hypothesize that short term Cef 

blockade of MBLAC1 is detected as a stressful event by Nrf2, whereas the lifelong 

absence of MBLAC1 may preclude cells from mounting an appropriate stress response, 

as revealed in the bile acid pathway molecules lacking in the serum of Mblac1 KO mice. 

 

Potential significance of alterations in linoleate metabolism 

In our validation analysis, we confirmed that linoleate metabolism is one of the 

metabolic pathways sensitive to loss of MBLAC1 (Fig. 57C and Table 4). Linoleic acid is 
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an essential poly-unsaturated, omega-6 fatty acid (PUFA) primarily known as a precursor 

for the biosynthesis of arachidonic acid. Alterations in linoleic acid levels have been 

associated with a wide variety of health consequences ranging from perturbations in skin 

and hair health, as well as obesity and cardiovascular disease [443-445]. As our ongoing 

and future efforts are focused on identifying a role for MBLAC1 in the brain, we particularly 

note that linoleic acid crosses the blood-brain barrier [446, 447], and that brain levels of 

linoleic acid and derived fatty acids are resistant to dietary fluctuations in linoleate intake, 

suggesting that precise control of linoleic acid abundance in the brain is essential for 

normal brain function [448, 449]. Moreover, linoleic acid and other PUFAs have been 

reported to be reduced in patients with Alzheimer’s disease, multiple sclerosis, mood 

disorders [450-452], and a recent metabolomics study of serum from subjects with 

epilepsy identified reductions in linoleic acid and its metabolites [453]. This body of work 

supports the hypothesis of Cocchi et. al., suggesting that reduced membrane linolenic 

acid concentrations in neurons and glia may reflect a pathological state [454]. In this 

regard, as we observe changes in the metabolites of the linoleic acid metabolism pathway 

in MBLAC1 KO mice (Fig. 57C), we hypothesize that MBLAC1 KO mice may be more 

susceptible to abnormal brain health, a hypothesis that can be assessed through disease-

mimicking pharmacological and genetic challenges. 

 

Study limitations and future directions 

 We acknowledge that there are several limitations to utilizing a global, untargeted 

metabolomic approach as a pilot study determine the metabolic pathway disrupted by 

genetic loss of an orphan enzyme. However, our data suggests that knock-out of Mblac1 
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is sufficient to significantly alter the murine serum metabolome and provides directionality 

to subsequent targeted analyses. The biggest limitation to this study is the small sample 

size and resultant challenges in drawing definitive conclusions without the statistical 

power of a larger sample size. However, despite the low number of biological replicates, 

we are able to identify replicable metabolic pathways reliant on MBLAC1. Rather than 

increase the “N” associated with our initial discovery analyses, we decided to pursue 

validation experiments using age- and sex-matched, littermate control WT mice as a more 

rigorous WT control that was unavailable when the discovery experiment was performed, 

due to the early stage of our MBLAC1 KO colony. The inclusion of an independently 

conducted validation study provides the opportunity to evaluate whether the pathways 

identified in the discovery phase of our efforts are strong enough to survive attempts at 

replication in a separate co-hort of mice. We also note that, in between the discovery and 

validation studies, the laboratory relocated, so we must also consider false negative 

results that may have arisen from differences in animal housing and husbandry. 

 Global, untargeted metabolomic studies are becoming increasingly popular as 

exploratory, hypothesis-generating experiments that provide an unbiased opportunity to 

uncover networks perturbed by genetic, pharmacological or environmental insults [455-

459]. Importantly, metabolomic approaches can provide key data that allow for the “de-

orphanization” of enzymes [460, 461]. Our samples for analysis, however, only derive 

from serum, which collects molecules from all tissues and thus may be seen as limiting 

the specificity of our conclusions. Serum is a frequent source of material for such studies, 

owing to its relative ease of preparation and ability to report system-level biochemical 

changes without assumptions as to specific sites of gene/drug action. Serum has also 
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been utilized to search for pathological biomarkers and insults arising from genetic 

mutations [462-464]. Finally, serum is also a reasonable starting point for the current 

analyses as Mblac1 mRNA is expressed widely, including expression in both brain and 

peripheral tissues [146]. 

 As a pilot study, with restricted serum sample availability, we selected a metabolite 

extraction method and metabolite separation column (HILIC) well suited to retention and 

separation of polar metabolites typically found in the predominately aqueous serum [424, 

465]. We utilized a methanol (MeOH) protein precipitation step, in which polar metabolites 

are retained in the MeOH supernatant, subsequently dried down, and resuspended for 

analysis by mass spectrometry. It is likely that some hydrophobic metabolites and lipids 

are lost in the protein pellet or not retained by the HILIC column, which is primarily used 

for the separation and elution of polar compounds [425, 466, 467]. In future metabolomic 

experiments we will use complementary extraction methods as well as RPLC to increase 

the breadth of compound coverage thus expanding the analysis presented here.  

 An inherent challenge to investigating an orphan enzyme, is designing simple yet 

powerful hypothesis generating pilot studies that will inform future studies without leading 

to pursuit of false positives. Our knowledge of Mblac1 is derived from our previous studies 

demonstrating a role for the C. elegans ortholog of MBLAC1, SWIP-10, in Glu signaling 

[146, 468], and our study showing a specific and selective binding interaction between 

MBLAC1 and Cef, a b-lactam antibiotic with non-microbial, neuroprotective actions [202, 

469, 470]. Cef affords neuroprotection in many brain disorders by preventing pathology 

such as oxidative stress and excitotoxicity arising from dysregulated Glu signaling. Cef 

regulates astroglial expression of multiple Glu transporters, specifically the Na+-
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dependent Glu transporter EAAT2/GLT1 (SLC1A2) and the cysteine/Glu exchanger 

(xCT, SLC7A11) [202, 277]. We are currently pursuing experimental studies to test our 

hypothesis that MBLAC1 plays a role in mediating the neuroprotective actions of Cef. To 

this we will conduct biochemical studies to determine if constitutive loss of MBLAC1 

affects the expression of the Glu transporters regulated by Cef, and we will conduct 

behavioral studies on MBLAC1 and KO mice treated with saline or ceftriaxone, to see if 

constitutive loss of MBLAC1 disrupts the behavioral phenotypes associated with Cef 

treatment (i.e. how do MBLAC1 KO mice respond to cocaine sensitization and 

reinstatement paradigms). We chose not to include Cef treated WT and MBLAC1 KO 

mice in the presented untargeted metabolomics experiments as we wanted an unbiased 

study aimed at de-orphanizing MBLAC1, and identifying endogenous biologically relevant 

pathway(s) reliant on MBLAC1, independent of Cef, to guide future research.   

 

Conclusion 

Using an unbiased metabolomic approach, based on an UPLC-MS/MS, we 

evaluated serum metabolome changes arising from constitutive elimination of MBLAC1, 

an enzyme of yet undetermined function. Ninety-two annotations were assigned to 

features of interest that significantly differed in abundance in the serum of MBLAC1 KO 

mice compared to WT controls. MetaboAnalyst 3.0 and KEGG pathway analysis 

nominated multiple metabolic pathways impacted in the KO, with several linked to 

neuroprotective, oxidative stress reducing pathways. In an independent validation study, 

we confirmed the impact of MBLAC1 on bile acid biosynthesis and linoleate metabolism, 

pathways that share cell protective actions in the face of metabolic and oxidative cellular 
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stress. Our studies designate metabolic pathways that should be pursued in future 

targeted analyses and that may ultimately reveal the endogenous substrate(s) for 

MBLAC1/SWIP-10. We speculate that the reported neuroprotective actions of Cef, a 

demonstrated MBLAC1 ligand, may derive from the induction of cell defense mechanisms 

such as those designed to limit oxidative stress, effects that cannot be sustained in the 

context of a full loss of the enzyme.  
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Chapter VII 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Summary and Conclusions 

 The studies described here demonstrate the power of using C. elegans as a model 

to characterize conserved genes. Due to its genetic tractability, transparent cuticle, and 

highly described/ stereotyped nervous system development and structure, the nematode 

is an excellent model to study genetic regulation of neuronal morphology and 

degeneration. Our studies reveal that loss of glial-expressed swip-10 induces cell non-

autonomous, progressive, age-dependent DA neuron degeneration in the worm. 

Additionally, we provide initial evidence that the role for swip-10 in glial maintenance of 

neuronal viability is not limited to DA neurons but likely extends to other neuronal types 

with close apposition to glial support cells in the worm, as loss of swip-10 results in 

degeneration of the glial-ensheathed OLL neurons but not the BAG neurons. Our 

previous swip-10 studies revealed that the hyperdopaminergic behavior observed in swip-

10 mutants arises due to DA neuron hyperexcitation and increased DA secretion due to 

altered Glu signaling mechanisms [146]. These findings, in concert with the mammalian 

literature describing a critical glial role in regulating extracellular Glu availability, led to our 

hypothesis that the DA neuron degeneration observed in swip-10 mutants arises due to 

excitotoxic Glu signaling and activation of cell death mechanisms. The data described in 

the chapters above, demonstrate that disrupting Glu signaling via loss of the vesicular 

Glu transporter, vlgu-3, or loss of the putative xCT homolog, aat-1, significantly attenuates 

the DA neuron degeneration of swip-10 mutant animals. Our strongest evidence 
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supporting swip-10 loss induced Glu excitotoxicity, is that loss of the Ca2+-permeable 

ionotropic Glu receptors, nmr-2 and glr-1, significantly reduced swip-10 DA 

neurodegeneration, and selective overexpression of these Glu receptors in wildtype DA 

neurons induced neurodegeneration. In the pursuit of defining a swip-10 mutant induced 

Glu excitotoxicity model, we provide a mechanistic framework for the observed reduced 

DA neuron viability and cell death. In keeping with mammalian Glu excitotoxicity literature, 

we demonstrate that swip-10 loss induced DA neurodegeneration results in dysregulated 

intracellular Ca2+, as genetic disruption to ER Ca2+ storage or loss of the Ca2+-dependent 

protease, clp-1, significantly and in combination, additively suppress swip-10 DA neuron 

degeneration. Using fluorescent stress reporters, we provide evidence that swip-10 

mutant animals experience increased levels of basal oxidative stress and are more 

susceptible to ER stress inducers, suggesting that loss of glial-expressed swip-10 has a 

more global effect on C. elegans health, and that the DA neurons are likely more 

intrinsically reliant on glial neuronal support. The observed progressive, age-dependent 

DA neuron degeneration of swip-10 mutants is reminiscent of mammalian models of 

chronic Glu excitotoxicity suggesting that cell death occurs via an apoptotic mechanism. 

In addition to swip-10 mutants lacking the distinct morphological features of necrotic cell 

death (including cell swelling and vacuolization), our data demonstrates that mutations to 

canonical genes in the apoptotic cell death pathway (ced-9, ced-4, and ced-3), suppress 

swip-10 mutant DA neurodegeneration. Lack of observed involvement of programmed 

cell death cell-corpse engulfment pathways, indicates that swip-10 mutant DA neuron 

degeneration via apoptosis is distinct from the engagement of apoptosis that occurs 

during developmental cell death. In conclusion, swip-10 induced neuronal degeneration 
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provides a novel model of glial regulated, Glu-induced excitotoxicity in the worm, and this 

model is highly amenable to genetic manipulation to further understand the molecular 

mechanism of glial support of neuronal viability as well as chronic Glu-induced cell death 

mechanisms.  

Discerning novel roles for conserved genes in the worm provides valuable insight 

to the potential roles of previously undescribed genes in the mammalian brain. Previously 

we identified the mammalian ortholog of SWIP-10 to be the metallo b-lactamase domain 

contain protein, MBLAC1 [146]. The discovery of a C. elegans glial regulator of neuronal 

signaling with homology to a mammalian protein with a putative enzymatic domain 

theorized to interact with b-lactam rings, resonated with the recently described 

neuroprotective upregulation of glial Glu transporters by the b-lactam antibiotic, Cef. 

Despite extensive work demonstrating the neuroprotective effects of Cef across a broad 

spectrum of brain disorders, the target(s) of Cef was, until recently, unknown. A study by 

Retzlaff and colleagues, demonstrates that Cef interacts specifically and selectively with 

MBLAC1 in murine brain lysates [182]. This interaction supports our hypothesis that the 

neuroprotective upregulating of Glu transporter expression by Cef mechanistically 

originates via Cef interaction with MBLAC1, likely disrupting MBLAC1 from interacting 

with an endogenous substrate. Ongoing studies aim to further characterize the 

MBLAC1/Cef interaction, and using CRISPR/Cas9 methods we created the MBLAC1 KO 

mouse model. One of the primary objectives of utilizing the MBLAC1 KO model is to 

determine the endogenous enzymatic substrate(s) of MBLAC1 or the identify the 

metabolic pathway(s) sensitive to loss of MBLAC1. To this end we employed a global, 

untargeted metabolomics approach and found that the sera of MBLAC1 KO mice are 
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distinct from their WT counterparts. These studies provide evidence that the metabolic 

pathways, taurine/hypotaurine metabolism, primary bile acid biosynthesis, and linoleic 

acid metabolism are sensitive to loss of MBLAC1, as the abundancies of several 

metabolites within these pathways are altered by loss of MBLAC1. Strikingly, as 

described in the previous chapter, metabolites within these pathways have been 

associated with brain disorders and cell stress mechanisms. These pathways will be 

pursued in future targeted analyses, which may reveal the substrate(s) for 

MBLAC1/SWIP-10.  

The characterization of swip-10 in the nematode and pioneering studies utilizing 

the MBLAC1 KO mouse model suggest a role for SWIP-10/MBLAC1 in pathways 

associated with monitoring and regulating cell stress, including Glu homeostasis and 

excitotoxicity prevention as well as taurine-related metabolite neuroprotection. Using 

model organisms, including the nematode and rodents, allowed us to identify and initially 

characterize a target potentially relevant in the context of a variety of human brain 

disorders including neurodegenerative diseases. By further exploiting these model 

systems using more advanced neurophysiological approaches (electrophysiology, 

optogenetics, Ca2+ signaling dynamics, etc) we can more fully describe a functional role 

for SWIP-10/MBLAC1, ideally presenting these proteins as drugable targets to impart 

neuroprotection in the CNS.  
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Future Directions to Further Characterize swip-10 in C. elegans  

Assess a potential developmental role for swip-10 

 The studies described above provide evidence for the progressive, age-dependent 

DA neuron degeneration induced by genetic loss of swip-10. Our explorations into the 

neurodegenerative phenotype of swip-10 mutants are very informative but by no means 

comprehensive. Perhaps the most apparent future direction, given the evidence of swip-

10 mutant DA neurodegeneration as early as L1, is to evaluate CEP neuron development 

during embryogenesis. Our findings indicate that swip-10 may play a biphasic role in 

regulating DA neuron viability, first a developmental role, and a second, later role in 

maintaining neuronal health. Interestingly, unreported findings by Hardaway indicate that 

the swip-10 expression pattern changes, with highest embryonic swip-10 expression in 

the hypodermis, and predominately glial expression by the L4 stage that persists in adult 

animals, suggesting this change in expression may be relevant to age-dependent roles 

for swip-10. To initiate developmental studies, we will use fluorescence light microscopy 

to assess the morphology of the CEP DA neurons of N2 and swip-10 mutant animals 

during embryogenesis. We are interested in determining the temporal requirement for 

swip-10 in the context of either the hyperdopaminergic, Swip phenotype or DA neuron 

degeneration. To address this question, we can genetically create an knock-in nematode 

model, such that wildtype swip-10 expression could be induced at various developmental 

stages (i.e. induced expression by heatshock-sensitive promotors) to determine when 

swip-10 expression is required to rescue mutant swip-10 phenotypes.  Additionally, using 

methods described below, gene expression profiling of swip-10-expressing cells of N2 

and swip-10 mutant animals, across various developmental stages, may reveal different 
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gene expression profiles early in development versus the gene expression profile 

observed in adult animals.   

 

Future experiments to assess cellular stress pathways in swip-10 mutant animals 

 As described in a previous chapter, we have demonstrated that swip-10 mutant 

animals display increased basal oxidative stress and increased sensitivity to ER stress. 

These assays were conducted using transcriptional reporters to assess gene expression 

levels of genes whose expression increases under genetic or environmental stress 

conditions, gst-4 and hsp-4 expression increases under oxidative and ER stress 

respectively. To more fully characterize swip-10 loss induced indices of cellular stress, a 

more complete assessment of stress reporters can narrow down selective types of stress 

associated with swip-10 mutation. For example, in future, we will assay the engagement 

of SKN-1 transcriptional regulation of detoxifying enzymes, in swip-10 mutant stress 

susceptibility. SKN-1 is of particular interest in future studies as it is the nematode ortholog 

of the mammalian transcriptional regulator Nrf2 [471]. Under basal WT conditions, Nrf2 

(SKN-1) is retained in the cytosol by interaction with Keap1 (mammals), exposure to 

oxidants and electrophiles results in Keap1 release of Nrf2 and subsequent Nrf2 

translocation to the nucleus where it interacts with DNA sequence antioxidant response 

elements to increase expression of detoxifying enzymes and proteins [472, 473]. 

Relevant to our studies, Cef treatment results in Nrf2 mediated increased expression of 

the cystine/Glu exchanger (xCT) as a means to increase GSH production in a mouse 

derived hippocampal cell line [277]. Using a translational reporter, we can assess the 

localization of SKN-1::GFP (cytosolic or nuclear) in swip-10 mutant animals compared to 
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N2, under basal or pharmacologically induced stress [474] to determine if loss of swip-10 

induces engagement of antioxidant and stress defense pathways. We will also use a gain 

of function skn-1 mutant to determine if increasing expression of detoxifying enzymes and 

proteins will suppress swip-10 mutant DA neuron degeneration. 

 We provide evidence for basal levels of oxidative stress in swip-10 mutants and 

future studies will determine if the observed oxidative stress is associated with 

mitochondrial dysfunction. Oxidative stress is characterized by increased levels of 

reactive oxygen species (ROS) which can be derived from Glu excitotoxic signaling, 

environmental toxicant exposure, and dysfunction of normal cellular detoxifying 

pathways. Oxidative stress can induce mitochondrial dysfunction, damaging the 

mitochondrial respiratory change, and can trigger increases mitochondrial derived ROS, 

which has been associated the pathology of several neurodegenerative disorders [475]. 

Again, we can take advantage of the genetic-tractability and transparency of C. elegans, 

to assess mitochondrial morphology and mitochondrial fusion and fission, especially as 

mitochondrial fission was shown to play a role in apoptosis and neurodegenerative 

diseases. Globally, we can use fluorescence microscopy to visualize mitochondrial 

dynamics using mitochondrial membrane potential-sensitive dyes such as MitoTracker 

Red or methyl-rhodamine B in swip-10 mutants versus N2 [476]. Using cell specific 

promotors, we can assess mitochondria using Mito:GFP expressed selectively in glia or 

DA neurons of swip-10 mutant and N2 animals [476]. With our data supporting swip-10 

loss induced Glu excitotoxicity resulting in apoptotic DA neuron degeneration, we 

hypothesize that loss of swip-10 results in damaged mitochondria within DA neurons.  
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 Though monitoring the mitochondrial morphology would be informative and 

suggest a role for mitochondrial dysfunction in swip-10 mutants, in order to support a 

mitochondrial role in swip-10 loss induced oxidative stress, we can envisage experiments 

designed to assess cellular respiration and ATP production as a measure of 

mitochondrial/metabolic health in swip-10 mutants. In order to measure, in vivo, 

fundamental parameters of the mitochondrial respiratory chain (ATP-linked respiration, 

basal oxygen consumption, spare respiratory capacity and proton leak) in swip-10 

mutants compared to N2, we propose utilizing the Seahorse XFe24 analyzer (Agilent) 

previously used to measure mitochondrial function in genetic and pharmacological 

models of mitochondrial dysfunction in C. elegans [477, 478]. 

In the past, we have shied away from assessing metabolic processes in the whole 

animal, with the caveat that swip-10 expression is limited to a relatively small number of 

cells and changes induced by loss of swip-10 may be masked by the contribution of whole 

animal metabolic processes, however our whole animal oxidative stress marker data 

demonstrates that loss of swip-10 induces basal changes that are evident by assessing 

the entire animal. We have initiated a collaboration with the Miller lab at Emory University, 

whose recent work includes improving the biological metabolic map for C. elegans 

metabolites, to conduct a high-resolution metabolomics analysis to identify potential 

metabolic pathway differences between N2 and swip-10 mutant animals. 

 

Future directions to identify a glial, cell-autonomous genetic pathway for swip-10  

Our studies describe a cell non-autonomous role for swip-10 in glial-mediated 

support of DA neuron viability, however the precise cell autonomous role of swip-10 
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remains unknown. We hypothesize that SWIP-10 acts in C. elegans glia to maintain Glu 

homeostasis and glial support of neuronal morphology and function. One approach to 

identifying a role for swip-10 is a candidate gene approach, where a list of candidate 

genes thought to act in a swip-10-related pathway based on previous data are assessed 

for Swip behavior and/or DA neuron degeneration. More recently, mammalian models of 

Parkinson’s disease implicate astrocytic dysfunction in contributing to DA neuron 

degeneration as summarized in Fig. 58. Also, mammalian literature, and more recently, 

C. elegans studies indicate that glia play important roles in supporting neuronal health 

through trophic support such as lactate shuttling and glutamine provision as well as ion 

buffering and Glu homeostasis. For example, in the mammalian brain, glycolysis-

produced lactate is shuttled from astrocytes and oligodendrocytes to neurons as a 

substrate for oxidation and ATP production [479]. Researchers demonstrate the 

importance of the astrocyte-neuron lactate shuttle, as pharmacological inhibition of the 

monocarboxylate transporter (MCT-1), responsible for lactate uptake in neurons, results 

in impaired memory processing and deficits in long- term memory formation [480, 481] 

and astrocytic lactate shuttling-related gene expression declines with age in humans 

[482]. Using BLAST nucleotide sequence alignment and protein sequence alignment 

tools, 7 C. elegans genes (mct-(1-7) and slcf-1) have been identified as belonging to the 

monocarboxylate transporter (SLC16) superfamily that contains the mammalian 

astrocytic and neuronal plasma membrane lactate transporters [483] (wormbase.org). In 

a candidate gene approach, we would assess loss of function mutation alleles in these 

genes for paralysis behavior and DA neurodegeneration, and additionally determine the 

effects of combined genetic loss of swip-10 and these putative monocarboxylate  
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Fig. 58. Cartoon depicting the contributions of astrocyte dysfunction to neural toxicity in 
the context of Parkinson’s Disease. This schematic depicts the five main mechanisms by which 
astrocyte dysfunction elicits neuronal toxicity. (Figure from Booth et al., 2017).  
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transporters. In order to further prioritize among paralogs, we will review the literature for 

known expression patterns, for example, mct-6 could prioritized above the other paralogs 

as it is putatively expressed within the C. elegans nervous system. The example of lactate 

shuttling between glial and neurons is only one of example of a glial pathway we will 

assess via a candidate approach. The candidate gene approach, however, is biased as 

the researcher must select the genes/ mutants for assessment, therefore an unbiased 

approach may be better suited to the elucidation of a swip-10 related genetic pathway.  

One unbiased approach to identifying a functional cell-autonomous role for swip-

10, is the implementation of a glial specific suppressor screen. Starting with a known 

mutation and a readily observable phenotype, a suppressor screen is used to identify 

second-site mutations that suppress the original mutant phenotype, and reveal additional 

information about the genetic path or gene of interest [484]. Recently, as an alternative 

to traditional mutagenesis based screens, RNA-mediated interference (RNAi) methods 

are used in forward genetic screens and suppressor/enhancer screens [485-487]. The 

advantages of a RNAi feeding screen are 1) the convenience of simply feeding animals 

E. coli expressing a library of dsRNA and 2) that the molecular identify of the suppressing 

clones are known, however one caveat is that RNAi inactivation of genes is not always 

effective. In order identify a glial-specific role for swip-10, a glial-specific RNAi feeding 

suppressor screen could be envisioned. A global RNAi suppressor screen was utilized to 

identify transcriptional regulators of an amphid sheath glial specific expressed gene [488], 

however, to date, a glial-cell specific RNAi screen has not been reported. Adapting the 

techniques described for tissue- and neuron- specific RNAi screens, using the pan-glial 

promoter, pptr-10, to restore RNAi transport and efficacy selectively to glial cells on a RNAi 
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resistant- and swip-10- mutant background strain may reveal a functional genetic 

interactor with swip-10 [489, 490]. Assessing clones for suppression of the swip-10 

mutant induced DA neuron degeneration phenotype is technically challenging and time 

consuming as individual clones need to be immobilized on sides, imaged by fluorescence 

light microscopy, and recovered. Therefore, a two-tier suppressor screen is better suited 

for swip-10 mutants, first using the Swip phenotype to quickly identify glia-specific genetic 

suppressors of swip-10 mutant paralysis, and an additional phenotype screening step to 

identify which paralysis suppressors also suppress the swip-10 mutant DA neuron 

degeneration phenotype. While we have not yet determined if the extent of the impact of 

swip-10 loss on the truncation of other ciliated neurons, such as the amphid neurons, we 

propose utilizing the ciliated neuron DiI dye filling method [329, 491], previously described 

to identify mutants with cilia defects, as a quicker, alternative method for the secondary 

phenotypical screening step. The two-tier suppressor screen strategy presents a caveat 

that we would miss mutants that selectively suppress swip-10 mutant DA 

neurodegeneration but not Swip. Using a glial-cell specific RNAi approach will help 

overcome the caveat of finding already known cell non-autonomous suppressors of swip-

10 phenotypes. For example, a traditional suppressor screen may reveal a mutation to 

cat-2, a gene previously shown to suppress the paralysis behavior of swip-10 mutants but 

not the DA neurodegeneration phenotype. As cat-2 expression is limited to the DA 

neurons of the worm, a glial-specific RNAi approach would eliminate identification of 

downstream DA neuron viability genes or DA signaling genes (i.e. DA neuron expressed 

Glu receptors, or the DA receptor, dop-1). While our current data supports differences in 

downstream mediators of swip-10 mutant induced paralysis versus DA 
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neurodegeneration, our data also supports that both phenotypes are reliant on 

dysregulated Glu signaling and glial expression of SWIP-10. Ideally, a suppressor screen 

will reveal close genetic interactors with the swip-10 gene such that both phenotypes are 

robustly suppressed, and provide new insight to a glial function for swip-10.  

An alternative, unbiased approach to identify glial-specific changes due to loss of 

swip-10 is to compare the glial gene expression profiles of swip-10 mutants to wildtype 

animals [492]. Cell-type specific gene expression profiling was previously utilized to 

identify genes specifically expressed in various tissue such as the pharynx, male tail rays, 

neurons and others [493-495]. Early gene expression profiling studies utilized mRNA 

microarrays to detect mRNA level changes in transcripts corresponding to existing 

genomic sequence information. More recently, Spencer and colleagues describe the use 

of RNA-sequencing to transcriptionally profile specific C. elegans cell types (SeqCeL), 

which has reduced background signal compared to the tiling array method and facilitates 

investigation of known and previously unknown transcript levels [495], therefore in order 

to promote discovery of all transcriptional changes due to glial swip-10 loss, RNAseq 

gene expression profiling is the preferred method. Heretofore, researchers isolated tissue 

specific mRNA transcripts via two methods 1) RNA immunopurification, such that 

cytosolic mRNAs are isolated via affinity tag purification, where an epitope tagged RNA 

binding protein is expressed selectively in the cell-type of interest, and after immuno-

precipitating the protein-mRNA complex, the mRNA is isolated for subsequent microarray 

or RNAseq analysis; or 2) Fluorescence Activated Cell Sorting (FACS), such that 

following whole nematode dissociation, cell-type specific promoter driven fluorescent 

markers are used to isolate cell of interest using FACS, and from these FACS separated 
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cells, mRNA can be purified and analyzed by microarray or RNAseq. Unique challenges 

and caveats are associated with these two complementary methods, for example the 

mRNA tagging approach is associated with higher levels of non-specific RNA species 

[496] and the FACS approach requires the dissociation of cells from their native context, 

potentially inducing gene expression changes. Recently, Heiman and colleagues 

described a new method for the isolation of cell-type-specific mRNA for in situ profiling of 

gene expression termed Translating Ribosome Affinity Purification (TRAP) [497]. Briefly, 

cell-type-specific promotors are used to drive expression of EGFP-tagged ribosomes in 

cells of interest for affinity purification of translating ribosomes bound to translated 

mRNAs and subsequently, these mRNAs are purified for analysis (qPCR, microarray, or 

RNAseq) [497]. The TRAP method for cell-type specific gene expression profiling has 

been utilized in C. elegans [498], and we propose that future swip-10 studies would 

benefit from the implementation of TRAP to determine the gene expression profile 

differences between swip-10 mutant glia compared to wildtype. Additionally, Gracida and 

Calarco already describe a C. elegans transgenic strain with DA-neuron specific EGFP 

tagged ribosomes [498], and crossing this strain with swip-10 mutants will allow us to 

either profile the global DA neuron gene expression profile of swip-10 mutant animals, or 

isolate DA neuron specific mRNA for qPCR evaluation of gene transcript levels for genes 

we have previously described as playing a role in swip-10 loss induced DA neuron 

degeneration, such as Glu receptor genes or apoptotic genes. 
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Future Directions to Further Characterize Mammalian MBLAC1 

Alternative methods to identify the MBLAC1 substrate(s) 

The global, untargeted metabolomics approach used to identify metabolic 

pathways sensitive to loss of MBLAC1 provided several pathways to investigate as reliant 

on normal Mblac1 function, however as addressed above there are several caveats to 

hypothesis-generating untargeted approaches. Recently, we initiated a new experimental 

design coupling affinity captured MBLAC1 incubation with brain lysates to mass 

spectrometry-based small molecule detection, with the specific aim of identifying the 

specific endogenous MBLAC1 substrate(s) or immediate enzymatic product(s). Although 

not shown here, we can successfully express and purify HA tagged MBLAC1 from HEK 

293t cells, and couple the enzyme to HA beads, and we demonstrated that MBLAC1 

retains the ability to interact with Cef despite conjugation to HA beads, suggesting some 

level of retained function. We will acutely incubate MBLAC1 conjugated beads and 

unconjugated control beads with freshly prepared MBLAC1 KO mouse cortical brain 

lysate. Following incubation, we will remove the beads, precipitate out the proteins and 

obtain the high-speed small molecule containing supernatant. These supernatants will be 

dried down and re-suspended in appropriate buffers for positive and negative ion mode 

HILIC and RPLC chromatographic separation methods for LCMS/MS, allowing for 

comprehensive metabolite coverage. We hypothesize that the MBLAC1 KO brain lysate 

lacks the immediate product of putative MBLAC1 enzymatic activity, and following acute 

incubation of KO lysate with MBLAC1 conjugated beads should result in either decreased 

abundance of the substrate(s) for MBLAC1 or increased abundance of the product of 

MBLAC1 enzymatic activity. As we do not know the identity of the substrate(s)/products(s) 
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of MBLAC1, using untargeted metabolomics to assess abundancy differences in small 

molecules exposed to MBLAC1 beads or control beads allows us remain unbiased, and 

query both known metabolites and unidentified metabolites.  

Mblac1 does not hydrolyze prokaryotic b-lactamase substrates via established 

colorimetric assays (unpublished findings by Hardaway), however, by exploiting the 

previously described binding interaction between MBLAC1 and the b-lactam antibiotic, 

Cef [182], we can envision designing competitive displacement assays to identify the 

endogenous substrate(s) of MBLAC1. While we have not fully characterized the Cef-

MBLAC1 binding interaction, using BSI, Retzlaff and colleagues determined that 

MBLAC1-Cef binding, over a range of Cef concentrations, fit well to a single site binding 

equation with a KD of about 2µM [182]. Briefly, this method would monitor the 

displacement of radio-labeled Cef bound to MBLAC1 in the presence of increasing 

concentrations of crude small molecule extracts prepared from brain lysates. In order to 

further narrow down the types of endogenous small molecules interacting with MBLAC1, 

the small molecule extracts can be purified into fractions based on polarity and molecular 

mass using column chromatography [499]. After identifying a particular fraction(s) that 

displaces radiolabeled-Cef binding from MBLAC1, the metabolites within the fraction can 

be determined via mass spectrometry, and pure standards can be utilized in competition 

binding assays to validate the endogenous small molecule substrate(s) that interact with 

MBLAC1. There are several caveats to this biochemical substrate identification technique 

including troubleshooting the purification of active MBLAC1 protein for these binding 

studies and the high cost of creating and using radiolabeled Cef in competition assays 
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when the binding affinity between Cef and MBLAC1 is in the micromolar range, rather 

than the nanomolar range better suited to displacement/competition binding assays [500].  

 

Future directions utilizing the MBLAC1 KO mouse model 

 As described in a previous chapter, we generated a CRISPR/Cas9 mediated 

MBLAC1 KO mouse model to characterize, in vivo, the biochemical and behavior 

consequences to constitutively loss of MBLAC1 expression. Heterozygous and 

homozygous MBLAC1 KO animals are viable, reproduced normally, and display no overt 

physical or behavioral abnormalities (assessed by a modified Irwin-screen) [501]. This 

mouse model presents a large variety of future directions, and here I will briefly describe 

several ongoing or top priority experimental pursuits. 

 In the chapters above, we extensively describe the nematode DA neural 

degeneration induced by loss of swip-10. To expand our initial characterization of the 

MBLAC1 KO mice, we will assess the DA neuron morphology of KO vs WT animals. 

Given that the KO animals display no overt phenotypes, including no signs of movement 

aberrations associated with mouse models of PD, MBLAC1 KO animals may not display 

overt signs of DA neuron degeneration, however we will also examine the MBLAC1 KO 

mice for sensitivity to neurotoxins such as 6-OHDA and MPTP. Given our hypothesis that 

constitutive loss of MBLAC1 may result in a reduced capacity to handle cell and oxidative 

stress, MBLAC1 KO mice may be more sensitive to neurotoxins, displaying more severe 

phenotypes at a lower concentration of neurotoxin than their WT counterparts.  

We have initiated biochemical investigations to determine the tissue biogenic 

amines levels in MBLAC1 KO mice versus WT littermate controls. As described in our 
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previous studies, swip-10 mutant animals have reduced DA content compared to WT 

[180], therefore determining the content of DA and its metabolites across various brain 

regions may provide initial support of a conserved role for MBLAC1 in alterations in DA 

availability/signaling. Tissue level biogenic amine content and amino acid levels, such as 

Glu, can be readily detected using HPLC methods. As measuring synaptic DA or Glu in 

vivo in the worm is not feasible, in future, we may employ an in vivo microdialysis 

technique coupled to HPLC methods to monitor synaptic neurotransmitter release, 

comparing basal levels and release of DA and/or Glu in WT and MBLAC1 KO animals 

(van der Zeyden et al., 2008). Microdialysis-HPLC coupled methods were utilized by 

Trantham-Davidson and colleagues to demonstrate that Cef restores basal Glu levels in 

cocaine self-administering rats and Cef treatment attenuates the observed Glu increase 

during a cocaine-primed reinstatement test [441]. As our MBLAC1 studies progress, we 

can determine if constitutive loss of MBLAC1 disrupts the previously described 

biochemical changes attributed to chronic Cef treatment. Along these lines we will use 

specific antibodies and immuno-blotting techniques to evaluate the expression of proteins 

previously shown to be sensitive to Cef treatment, in particular GLT-1 and xCT [202, 442], 

in protein lysates prepared from WT and MBLAC1 KO brain regions. 

In addition to the literature supporting the neuroprotective biochemical effects of 

Cef, such as restoring Glu transporter protein expression and restoration of basal Glu 

levels, there is a substantial body of work describing the behavior changes associated 

with Cef treatment in vivo. We propose that Cef interaction with MBLAC1 (depicted in Fig. 

59) may be responsible for imparting neuroprotection in a variety of behavioral paradigms, 

such as reducing behavioral deficits associated with excitotoxic cell death [202] and  
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Fig. 59. Schematic depicting the specific and high affinity interaction between MBLAC1 
and the neuroprotective b-lactam antibiotic, ceftriaxone. (Figure adapted from Retzlaff et al., 
2017).  
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preventing psychostimulant reinstatement [275]. Following this hypothesis, will utilize 

MBLAC1 KO and WT littermate controls to determine if loss MBLAC1 expression disrupts 

the Cef induced restoration of WT-like behavior first in a locomotor sensitization to 

cocaine paradigm [502] with following investigations utilizing a cocaine self-administration 

and reinstatement paradigm [441].   
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Appendix A 

SUPPLEMENTARY MATERIAL FROM THE UNTARGETED METABOLOMIC STUDY 

OF MBLAC1 KO AND WT SERA4 

 

 The data here includes the supplemental material relating to the untargeted serum 

metabolomics study of MBLAC1 KO and WT mice. Tables 5 and 6 provide the full list of 

features significantly dysregulated between MBLAC1 KO and WT serum samples from 

HILIC-POS and HILIC-NEG respectively. In future, these datasets may be useful in 

comparing results from targeted metabolic approaches designed to assess MBLAC1 KO 

induced changes to specific metabolic pathways such as bile acid biosynthesis and 

linoleic acid metabolism. Many of the significantly dysregulated features with large fold 

changes in abundancy due to loss of MBLAC1 were unidentified/ not annotated in our 

untargeted metabolomics approach, but these features may be important in future 

studies. As described in chapter VI, in order to assign higher levels of confidence in 

feature annotation (L2), we compare the fragmentation spectra (MS/MS data) of 

experimentally obtained data with the fragmentation spectra available from several 

databases, as well as assess spectra obtained from chemical standards within an in-

house chemical library. Figures 60-71 show the spectral matches for putatively annotated 

features of the L2 and L1 confidence levels described in Table 3.   

																																																								
4	Adapted from Gibson CL, Codreanu SG, Schrimpe-Rutledge AC, Retzlaff CL, Wright 
J, Mortlock DP, et al. Global untargeted serum metabolomic analyses nominate 
metabolic pathways dependent on expression of the orphan, metallo b-lactamase, 
MBLAC1. Molecular Omics. In revision.	
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72.0808 24.3304 0.0008 1.5097 2.65 1527.9695
84.9113 15.5174 0.0208 1.2970 6.27 59760.4019
86.0601 3.0987 0.0056 1.6484 8.15 25196.5012

Piperidine 86.0964 7.8332 0.0163 1.2849 6.99 97875.8230
86.9087 15.5174 0.0178 1.2859 5.12 26318.1293
90.0550 25.9629 0.0081 1.3095 4.79 285.7980
90.0550 25.7472 0.0257 1.3041 4.63 120.0458

102.0338 21.4942 0.0010 3.6246 2.05 15575.7780
102.0339 20.1411 0.0006 3.9267 3.34 46155.6713
102.0662 6.0664 0.0458 1.3123 3.09 36995.2371
102.0914 17.7501 0.0382 -1.2137 3.33 41998.5576
103.5480 6.0971 0.0388 -2.3249 17.78 19545.4642
110.0713 14.2781 0.0030 -2.2716 9 52273.8934
112.0505 22.4858 0.0185 -1.4408 5.01 848.9945

Uracil 113.0345 4.8326 0.0119 1.5763 5.5 35935.3869
113.0509 6.0971 0.0430 -2.4483 18.89 44568.2828
118.0650 17.1449 0.0093 -2.0016 12.46 230.5511
118.1226 20.9556 0.0260 -3.2038 7.79 60.5905

Phenylethanolamine 120.0808 21.8640 0.0045 -3.7220 20.93 157.8819
121.0720 6.0708 0.0104 2.0676 18.99 11538.5787
122.0812 10.2071 0.0302 -1.3135 5.83 8582.6247
122.5538 6.0840 0.0218 -2.7261 4.75 73452.5597
125.9862 9.2787 0.0004 2.9679 5.14 1115138.4580
128.1070 2.4502 0.0005 443.9184 1.88 457442.7315

 Pyroglutamic acid 130.0500 12.6417 0.0098 -1.6532 7.09 19733.1430
Isoquinoline 130.0652 8.6000 0.0308 -1.4577 9.18 11636.4586

131.0532 25.4295 0.0112 8.5494 18.64 3.5737
Isoleucine 132.1019 7.8288 0.0203 1.2494 7.02 1217198.3970

Beta-Leucine 132.1020 6.9833 0.0044 1.8026 3.81 57713.3395
Asparagine 133.0608 11.5800 0.0201 -1.9034 14.2 155042.5263
Ornithine 133.0972 18.0221 0.0094 -1.3621 3.41 134476.5912

133.1052 22.1486 0.0411 -4.4619 36.36 57.0306
133.1053 7.8332 0.0223 1.2431 6.81 84064.7167

Aspartic acid 134.0448 12.1474 0.0286 1.5079 4.71 18705.6345
2-Oxindole 134.0600 5.9915 0.0084 6.4142 16.41 35651.4697

3-hydroxynorvaline 134.0812 3.6866 0.0260 1.2676 8.25 47303.4018
134.1175 22.3807 0.0007 -1.6468 4.82 351.5656
136.0481 20.1937 0.0246 -1.9074 1.91 359.4855
136.0481 21.5074 0.0280 -2.6921 6.47 252.7366
137.0458 21.8903 0.0008 -3.3856 11.94 346.7277

6-Methylnicotinamide 137.0710 9.4145 0.0010 2.8755 13.44 113229.0988
138.0549 21.9910 0.0251 -1.7770 8.95 113229.0988
138.0549 23.2658 0.0206 -1.7132 14.47 499.3708
138.0550 6.2158 0.0423 2.2970 12.41 359.7119

Trigonelline 138.0550 7.9563 0.0314 2.2603 7.51 11230.4328
Urocanic acid 139.0502 23.8801 0.0283 -1.3562 9.11 560.0547

139.0502 22.5384 0.0076 -1.6784 6.61 1509.9422

Coefficient of 
Variance (% min CV)

Maximum 
Abundance

Fold Change 
(relative to KO)

Appendix A: Table 5: HILIC-POS

Putative identification
Mass to charge 

ratio (m/z)
Retention time (min)

ANOVA nominal 
Pvalue
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139.0502 19.8774 0.0058 -1.7691 9.07 2096.3818
139.0502 18.5301 0.0076 -1.8629 11.28 2999.5175
139.0584 7.9519 0.0319 2.3045 8.23 60694.8195
140.0706 7.2810 0.0002 3.4767 2.34 27609.5768
141.0659 9.2306 0.0069 2.9551 1.21 66428.1188
142.9386 14.4883 0.0005 -1.8773 6.26 28638.5131
143.9969 22.0391 0.0004 3.1270 2.22 844610.0416
144.0656 12.6417 0.0333 -1.5411 4.86 212221.4363
145.1052 22.3588 0.0102 -5.8816 10.87 33.5617
145.1052 20.9819 0.0013 -6.6723 20.13 62.7757

4-Indolecarbaldehyde 146.0601 8.5956 0.0093 -1.6577 6.52 22938.8431
146.0924 26.1775 0.0253 1.8395 10.04 54.2462
146.1176 8.9503 0.0051 1.6383 3.26 10597.2192
147.0765 12.6636 0.0085 -1.7145 4.98 65514.6191
148.0604 27.2481 0.0455 -1.4232 7.1 86.2407
148.0969 8.3460 0.0032 1.8251 3.33 13933.0070
149.0186 20.3294 0.0009 -251.6765 15.34 276.8682

Methionine 150.0584 3.0987 0.0035 1.7578 9.44 133815.6424
151.0353 21.3059 0.0041 -2.3191 12.49 2802998.3220
151.0391 10.1808 0.0448 1.6120 17.22 16717.4903
153.0659 3.5415 0.0254 1.6873 7.48 1210138.8260
154.0693 3.5415 0.0260 1.7099 8.15 92614.0237

Histidine 156.0769 14.2694 0.0025 -2.4030 8.34 1754177.0270
Histidine 156.0769 12.9139 0.0107 -1.9207 15.01 656943.8390
Histidine 156.0769 17.5875 0.0002 -2.4286 7.34 118857.1933

156.9841 10.3647 0.0005 3.2622 10.6 113178.0513
4,4'-Bipyridine 157.0761 8.5869 0.0091 -1.4519 2.99 47635.1287

157.0802 14.2694 0.0023 -2.3341 7.36 127742.4635
158.9811 10.3472 0.0005 3.4214 8.69 31546.9234
159.0277 20.4827 0.0000 -2.2228 2.37 233.2619

Hydroxymethyl-5,5-dimethylhydantoin 159.0765 11.7825 0.0169 -1.6381 11.07 432814.5646
159.0917 22.5909 0.0131 -1.8824 7.51 229.4109

1,5-Naphthalenediamine 159.0917 8.5956 0.0120 -1.4035 5.1 164181.4598
159.1208 21.9165 0.0274 -2.0365 20.96 210.2518
159.1209 20.5089 0.0066 -2.9371 20.97 134.4952

Trigonelline 160.0370 7.9957 0.0180 2.2066 20.85 204796.4498
160.0798 11.7825 0.0184 -1.7235 13.72 29276.8428
160.0951 8.5869 0.0225 -1.3321 4.22 20297.0346
160.0969 8.7576 0.0070 -1.3960 5.99 54350.7068
160.0969 3.0812 0.0073 1.8385 10.03 100948.6660

Acetyl-β-methylcholine 160.1332 9.0773 0.0004 2.4929 7.01 7404291.8100
N. epsilon-methyl-l-lysine 161.1285 16.5788 0.0406 1.2864 1.71 187535.4151

161.1365 9.0729 0.0005 2.4906 7.18 674108.0717
162.1123 23.4366 0.0132 -1.3923 6.44 1053.6724

7-Methylguanine 166.0724 6.3647 0.0078 1.3395 3.9 13446.5150
166.0863 21.8596 0.0373 -1.4187 8.83 4186.6128
167.0128 9.3619 0.0052 2.6850 6.59 12399554.4800
167.0895 23.1598 0.0137 -1.7285 14.98 197.7171
168.0656 3.4189 0.0408 1.3963 3.02 118122.0100
168.9607 10.3472 0.0002 4.0787 13.62 39181.3629

3-Methylhistidine 170.0925 11.0283 0.0259 -1.4575 11.78 185237.0920
171.1128 6.0577 0.0287 -1.4204 11.91 95477.5259
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171.1129 10.2071 0.0248 -1.3428 3.26 5933.1285
Citrulline 176.1030 11.7825 0.0146 -1.6769 12.54 1713598.8360

176.1282 8.0570 0.0040 -1.7260 4.73 62088.9565
176.1282 9.9049 0.0007 2.6891 3.76 24988.2374
177.1063 11.7825 0.0156 -1.6964 12.99 113904.0181
178.0897 2.5685 0.0202 2.5059 3.31 38704.2115
180.0994 21.9691 0.0001 -4.0221 2.47 173.0888
180.0994 20.5659 0.0002 -2.7754 2.17 160.0383
181.0260 17.7944 0.0004 3.9708 2.1 1802.6445
185.0234 9.1780 0.0004 3.1523 10.68 26646.3552
185.0235 8.7270 0.0074 2.7752 7.97 7579.7091
186.0186 21.5030 0.0032 5.1092 29.07 171.6159
188.0705 22.5909 0.0026 -4.1739 12.35 1894.0624
188.0706 23.9601 0.0049 -1.4890 5.61 5168.9108

Trans-3-Indoleacrylic acid 188.0707 8.5956 0.0149 -1.5147 9.36 502369.1469
188.1282 8.2628 0.0016 1.6481 4.28 52867.7668
189.0739 8.5956 0.0118 -1.4813 5.91 66852.1910

N-Acetylglutamic acid 190.0710 12.6417 0.0009 -4.4546 16.19 90436.0654
193.9737 15.9247 0.0012 3.4638 8.38 16007.5213
194.0812 19.7187 0.0100 -1.3963 7.26 446.2450

Phenylacetylglycine 194.0813 5.6266 0.0010 4.7199 9.35 159655.7546
196.1544 2.5904 0.0219 3.4807 35.16 24978.1814

N-Acetylornithine 197.0898 10.0801 0.0171 -2.8528 14.77 236639.8666
198.0106 10.3297 0.0009 3.2813 7.9 128239.4865
198.0973 9.7955 0.0238 1.3044 8.09 49264.6020
200.0077 10.3297 0.0010 3.3413 13.46 53932.5720
200.0443 10.1940 0.0193 1.9934 18.77 43445.3835

3-Amino-5-morpholinomethyl-2-oxazolidinone 202.1187 7.7408 0.0278 1.3616 1.63 94536.9337
203.0525 24.0083 0.0071 -1.7794 8.31 963.2424
203.0525 24.3448 0.0083 -2.2814 13.34 232.1943
203.0526 10.1808 0.0122 1.3629 5.18 965813.4034
204.1229 22.9650 0.0081 -2.5421 20.82 156.6340
204.1230 21.5906 0.0063 -5.9464 10.57 393.8988
204.1344 8.4292 0.0262 1.5297 5.04 45288.0000
205.0925 16.5394 0.0090 1.4937 7.26 31803.8072
205.0971 22.5909 0.0318 -3.4646 14.82 98.6836

L-Tryptophan 205.0972 8.5956 0.0138 -1.5205 8.75 1587172.9730
206.1006 8.5869 0.0129 -1.5523 8.91 194164.5283
208.0394 9.3619 0.0028 2.7061 8.36 3972270.1760

Kynurenine 209.0922 8.1665 0.0074 -1.9649 5.52 43337.3666
209.1384 1.9986 0.0357 1.4366 1.73 297633.9539
209.9873 10.3297 0.0007 3.5180 11.08 55465.0656
211.0391 8.0439 0.0396 1.9867 8.01 252318.4061
211.9843 10.3122 0.0008 3.4911 7.76 28969.6339
212.1004 11.2035 0.0377 -1.5556 12.06 29034.0494

Acetylarginine 217.1296 10.6979 0.0020 -2.5566 5.89 40209.9826
218.0925 8.5869 0.0059 -1.9389 10.18 86385.1647
218.1136 11.7558 0.0170 -5.5326 23.5 38462.8449
218.9748 14.4883 0.0008 2.9675 5.41 46369.3364
218.9843 12.6417 0.0002 2.5866 7.26 104161.3225
219.0177 10.1808 0.0000 3.0887 1.78 21399.2071

N-(1-deoxy-1-fructosyl)glycine 220.0816 12.6417 0.0051 -2.6983 20.89 132361.8612
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220.1179 22.5909 0.0488 -8.7455 7.46 19.6660

220.1179 21.1921 0.0255 -23.6202 56.94 98.8283

220.5576 10.1852 0.0305 1.7415 9.93 52106.6322

220.9346 16.4115 0.0005 2.6254 6.05 339451.6681

N-Acetyl-D-galactosaminitol 224.1129 13.2948 0.0047 -3.1589 5.4 856291.6159

225.0547 6.3428 0.0175 1.9483 1.54 129068.8627

225.1163 13.3036 0.0040 -3.3562 6.02 73821.1661

226.0499 11.2472 0.0001 3.5945 6.98 127997.2504

226.1649 2.0030 0.0327 1.4332 4.06 193532.5957

232.1543 21.5512 0.0352 -3.1353 21.01 196.7651

234.0770 24.0083 0.0065 -1.4622 4.05 7154.7143

234.0770 24.3217 0.0169 -1.3343 7.21 6508.1870

234.0770 22.6172 0.0118 -2.4543 11.83 7054.3141

234.0770 23.0985 0.0085 -1.6827 10.23 5093.0352

234.0771 22.2975 0.0177 -2.2727 13 175090.3796

234.0771 10.1370 0.0456 1.2698 7.49 1074703.2330

235.0804 11.3699 0.0174 1.5141 12.63 82809.0030

235.0805 10.1414 0.0423 1.2851 8.04 90808.2970

235.1651 21.4592 0.0231 -1.4069 11.14 310.3121

236.0729 10.1414 0.0493 1.2533 6.5 49331.2710

240.1805 2.3845 0.0455 2.6564 14.25 142321.5451

241.0496 8.8277 0.0493 1.8123 5.81 41365.6592

242.9253 30.2278 0.0179 2.0081 21.24 121.5675

243.0653 8.9284 0.0006 1.7853 0.73 31049.0823

2-Fluoro-6-(4-methoxyphenoxy)benzonitrile 244.0793 8.0395 0.0284 1.3192 7.83 125739.2037

246.0221 11.1071 0.0001 3.4987 7.56 118036.1375

N-Acetyl-D-galactosaminitol 246.0949 8.7489 0.0065 -1.8095 9.84 174654.8642

246.1699 19.7494 0.0007 -3.6919 11.41 282.4559

246.1700 21.1658 0.0084 -1.8851 4.59 787.1396

N-Acetyl-DL-tryptophan 247.1078 6.3428 0.0042 -2.4639 12.03 122502.9659

249.0456 9.7955 0.0256 -3.3418 29.27 225555.2801

249.0457 10.1808 0.0388 -2.6350 28.43 127665.7877

250.0510 11.6638 0.0073 1.6769 11.63 82423.0785

252.0656 8.0395 0.0477 1.9183 10.7 169682.2730

Muramic acid 252.1078 11.4925 0.0023 -3.1686 6.9 294734.3357

255.9441 9.1561 0.0001 4.6616 9.41 69971.6374

256.1307 19.8292 0.0024 -4.1212 21.85 5670.6077

256.1307 21.2402 0.0028 -2.8244 8.87 7050.5758

260.0013 14.4883 0.0015 2.7162 4.21 86413.6318

Hexanoylcarnitine 260.1857 5.3201 0.0485 -1.5227 4.73 452802.3734

262.1649 7.5044 0.0442 -1.3049 4.73 117010.5394

262.8880 14.4664 0.0028 -2.6307 13.46 44204.5315

263.0850 25.9323 0.0233 1.3026 6.89 945.9356

265.0232 9.7823 0.0001 2.8607 3.99 578896.0953

265.0232 10.1896 0.0000 3.1879 6.62 436771.2469

266.1863 2.0952 0.0243 -1.4961 8 87949.2892

267.0765 11.2560 0.0000 3.4924 7.17 81473.9106

N5-(4-Methoxybenzyl)glutamine 267.1339 9.3182 0.0051 2.4413 2.46 35569.9041

N-(1-Deoxy-1-fructosyl)serine 268.1027 12.6417 0.0048 -2.8838 22.09 50167.5354

276.1443 10.5837 0.0056 -1.7616 6.69 24909.3274

280.1544 5.8683 0.0002 6.7137 9.59 85078.0937

281.2475 1.7184 0.0045 1.6335 0.51 41234.3942
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288.9219 16.3764 0.0002 2.9128 2.71 1072933.3060
290.0758 9.7955 0.0480 1.6566 20.72 64068.3349
290.0759 10.1983 0.0080 2.8555 7.59 39609.3846
290.1598 5.7405 0.0015 53.5854 6.34 124821.1447
296.0209 10.1940 0.0003 2.4935 7.13 177189.2705
296.9707 9.1868 0.0014 4.4974 10.44 622783.7509
296.9707 8.4117 0.0345 4.2427 12.95 272770.7159
298.0179 10.1940 0.0001 2.6329 4.41 54225.3070
305.5881 10.1983 0.0039 2.6634 8.01 10202.0532

Cytidine monophosphate 306.0496 9.7867 0.0001 2.8331 3.99 713444.4227
306.0496 10.1896 0.0001 3.1219 6.54 364876.7289
307.9975 10.2421 0.0000 3.0403 6.29 38997.2949
309.0493 10.1764 0.0001 3.1551 5.59 103575.6782
309.0493 9.8042 0.0009 2.4400 11.06 132448.7939
309.1290 26.9318 0.0261 1.4201 7.42 224.3408
309.1290 27.0993 0.0332 1.5076 13.83 265.1554
309.1291 11.7251 0.0044 -5.7711 14.15 1131586.5380
309.1292 11.5625 0.0045 -3.4984 23.61 861836.9430
309.1292 12.6680 0.0123 -2.3209 18.46 321470.6683
309.9945 10.2421 0.0001 3.0693 6.97 24396.4703
310.0574 6.3428 0.0475 1.2234 4.36 146023.9123
310.1325 11.7295 0.0045 -6.2037 13.01 161500.5683
312.9528 10.2377 0.0304 -1.2831 5.38 18906.4671

9-Decenoylcarnitine 314.2325 3.1338 0.0190 -1.5900 7.94 184895.9756
Decanoylcarnitine 316.2483 3.0243 0.0191 -1.6039 6.87 128888.3498

331.0924 11.2472 0.0008 2.6628 5.49 168308.8444
331.1111 11.5757 0.0013 -6.3516 21.51 709074.0270
343.9966 8.0439 0.0342 2.5197 13.04 95898.5223
345.2060 2.1302 0.0347 3.0101 19.94 64530.7750
351.1986 11.8000 0.0164 -4.2033 31.23 63398.6294
353.0226 6.0796 0.0224 5.8393 11.58 130820.5570
356.9093 16.2225 0.0023 3.9565 8.56 62129.4052

3-Beta-Hydroxy 5-cholenoic acid 357.2787 2.4108 0.0359 -9.0123 12.12 170272.7135
 367.1500 10.2071 0.0098 -3.0953 10.6 57654.5831

385.0230 8.0526 0.0301 2.5213 15.57 92387.9515
389.0431 6.3428 0.0160 2.7103 3.66 118566.6699
395.0248 11.0984 0.0115 3.0744 12.66 70269.1407

O-Palmitoleoeoylcarnitine 398.3265 2.8049 0.0315 -1.7906 3.07 411580.6742
399.0811 10.1896 0.0001 2.9738 4.28 81030.3740
400.2363 17.0344 0.0154 -47.8724 89.27 175.4606
402.3578 2.9188 0.0400 1.9019 16.49 48283.3917
413.9982 11.1071 0.0005 2.7184 1.97 99034.3286
418.0544 10.1764 0.0000 5.3538 4.75 108739.0114
424.8967 16.2575 0.0001 3.7398 5.3 521237.3083
432.2240 1.8454 0.0497 -1.6887 19.42 17557.9825
432.2376 15.8765 0.0474 1.7155 19.07 3425.3245
435.0577 10.1940 0.0013 2.3688 6.04 222122.1189
437.0548 10.1940 0.0014 2.5516 5.64 69784.0881
445.0865 10.1896 0.0002 2.5422 0.28 169544.6088
445.0865 9.8042 0.0007 2.3335 9.46 202871.3361

LysoPE(16:0/0:0) 454.2928 3.1868 0.0290 1.4517 5.58 1921929.1770
456.1071 11.2210 0.0041 1.4884 6.42 67679.4105
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Table 5. HILIC-POS ion mode features with a P-value <0.05 and FC ≥ │1.2│. Many of the genotype-dependent features, assigned 
unique m/z, remain unidentified using the data analyses described in the text. These molecular features are reported both for 
completeness and as reference points for future studies.  

460.2691 1.7534 0.0177 2.0028 18.97 3383562.3140

462.2672 5.7803 0.0308 -117.8194 16.33 735044.6422

477.1618 11.2648 0.0041 2.0787 8.16 240952.5565

Taurocholic acid 480.2779 5.6748 0.0338 -66.9070 13.47 4249432.6640

494.3242 2.8837 0.0494 -1.2209 6.44 3777191.9810

496.2734 2.9144 0.0100 -6270367.6742 11.64 768638.4006

496.4208 1.7359 0.0319 -1.2080 3.89 90960.1046

Taurodeoxycholic acid 500.3041 3.4671 0.0157 -67.9795 9.18 15338520.0400

LysoPE (20:4/0:0) 502.2927 2.9451 0.0111 1.4954 4.34 1430033.2480

LysoPC(O-18:1/0:0) 508.3763 2.8618 0.0184 1.8463 3.2 173835.1744

Taurocholic acid 516.2991 5.8110 0.0348 -59.1276 12.75 12881412.1600

Taurocholic acid 516.2991 5.2938 0.0323 -124.1226 12.53 10241569.7100

518.3047 5.8110 0.0368 -107.0283 16.55 346920.1167

LysoPC(18:1) 522.3459 2.8750 0.0104 -3.5137 4.49 191992.2924

LysoPE(20:4/0:0) 524.2751 2.9669 0.0037 1.6688 7.36 153161.0696

LysoPE(20:3/0:0) 526.2929 2.9232 0.0281 1.5831 14.74 3346118.4420

531.3099 2.9100 0.0191 -9598.9417 77.59 337047.0832

531.3100 19.1694 0.0002 4.1366 3.93 37361.0245

531.3100 4.7669 0.0265 -120.4138 9.59 858644.7160

531.3101 3.8098 0.0222 -112.5155 3.3 2518978.9320

533.3255 5.8110 0.0312 -104.8941 14.49 32257473.3200

533.3256 5.2938 0.0348 -125.5704 11.24 9328470.4510

535.3309 5.8110 0.0272 -162.7887 15.08 1283473.3730

PC(19:0/0:0) 538.3868 2.7217 0.0029 -2.1878 4.39 789146.5787

548.2749 2.9275 0.0042 2.1214 11.78 156413.9815

552.4026 2.6736 0.0337 -1.7089 3.03 669659.2306

554.3186 2.6079 0.0428 -13.7141 13.57 172372.0757

575.1424 11.7470 0.0420 -3.1168 23.02 136939.8644

575.4669 1.7096 0.0107 -1.5161 5.65 74650.1050

576.3320 1.6877 0.0257 2.3018 21.85 155257.0983

584.4734 1.7359 0.0425 -1.2281 3.87 64900.7151

PC(16:0/5:0(CHO)) 594.3767 2.3977 0.0292 -1.8902 20.74 157721.8480

599.3400 8.2716 0.0120 -3.4079 11.85 5812329.2970

600.4683 1.7359 0.0372 -1.7911 16.45 74731.2088

601.3464 8.2716 0.0128 -3.8649 13.98 274445.9963

621.3219 8.1446 0.0077 -8.2267 14.56 612193.8903

PC(16:0/9:0(CHO)) 650.4392 2.2090 0.0264 -1.6782 16.74 612841.5591

675.5437 2.4853 0.0396 -1.8578 3.24 345179.9695

PS(P-16:0/13:0) 678.4705 2.1608 0.0447 -1.8680 16.77 287422.3268

689.5593 2.4196 0.0452 -2.2085 6.2 826867.0542

726.5301 1.6395 0.0358 2.0477 6.46 757434.6709

758.2215 16.9940 0.0424 -1.5552 17.64 14996.9020

761.3928 8.9635 0.0056 -12.0677 20.24 440764.5039

773.0775 11.0984 0.0432 -2.2131 26.51 140967.6458

PC(16:0/18:2(11Z,13Z)) 780.5533 1.9899 0.0119 -1.3117 2.89 8102151.3070

800.6167 1.9461 0.0388 -4.2020 9.29 434972.1395

832.2404 1.6395 0.0479 1.3624 5.24 2698869.6870

1021.6252 2.9100 0.0370 1.9712 19.45 203859.8066

1029.6874 2.8356 0.0368 -1.3550 5.44 145463.4559
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79.9570 2.6884 0.0161 8.8829 59.04 2463.2541
79.9571 2.3683 0.0002 1480.0348 17.26 2200.0673
79.9571 6.0023 0.0159 4.0733 14.34 6818.7494
87.0086 6.0420 0.0038 -4.7318 14.87 8915.7965
88.9880 20.7710 0.0388 17.2295 67.72 1307.8757
93.0343 2.6489 0.0066 6.9925 46.09 28199.8376

Sulfate 96.9599 14.4442 0.0166 -1.2722 3.67 978172.3007
97.0042 8.8155 0.0034 1.5114 6.79 2449.9059
97.0293 9.8127 0.0393 1.3072 10.24 3302.1746
98.9557 14.4485 0.0119 -1.2770 3.25 44198.8961

106.0408 13.7186 0.0374 -1.4557 6.33 60.8436
106.0409 4.4868 0.0214 -8.1944 66.62 4248.2874
106.0409 2.5260 0.0285 -10.9351 59.48 5352.8612
106.0409 26.2068 0.0460 -1.8041 10.13 18552.9795
106.0409 29.3988 0.0084 -1.4702 9.21 20337.8979
107.0362 27.2757 0.0115 1.4473 1.8 961.9447
107.0362 28.1162 0.0492 -2.3063 26.76 2373.6588

4-Methylphenol 107.0499 2.3683 0.0004 259.4036 15.19 18271.9300
Imidazole acetaldehyde 109.0405 26.2068 0.0481 -1.5667 10.83 1181.2989

2-Furoic acid 111.0086 14.2989 0.0157 1.2377 5.95 40046.9049
114.0307 8.8155 0.0053 1.4418 6.87 7716.5786

3-Hydroxyvaleric acid 117.0555 4.7025 0.0025 1.5376 6.51 211849.3395
117.0708 2.5304 0.0020 5.0136 17.47 40860.8548
119.0348 8.5648 0.0363 1.3929 12.18 22090.3856

4-Hydroxybenzaldehyde 121.0293 3.7058 0.0093 1.3489 7.58 29047.9739
2-Hydroxyethanesulfonate 124.9912 9.0388 0.0028 -1.4049 2.82 50500.4717

4-Hydroxy-6-methyl-2-pyrone 125.0242 4.5353 0.0404 -2.5634 24.12 38793.6614
N-Acetylalanine 130.0508 7.7016 0.0223 1.4748 3.55 40749.9103

Isoleucine 130.0871 7.8243 0.0037 1.3687 2.05 199139.3285
DL-beta-leucine 130.0871 8.1176 0.0041 1.3403 5.44 105411.7415

131.0349 12.3786 0.0464 1.2834 7.57 1306.8043
131.0460 9.7689 0.0406 1.7067 4.18 14584.5517
131.0905 7.8243 0.0028 1.4089 2.32 12898.5462

D-aspartic acid 132.0301 12.1587 0.0178 1.8744 8.01 46596.2451
L-aspartic acid 132.0301 20.5441 0.0464 3.8046 22.92 193.7417

132.0450 6.0023 0.0199 4.3542 13.91 7942.7952
133.0505 7.7192 0.0106 2.2384 4.01 5884.4360
134.8946 18.8303 0.0084 1.2293 0.46 1136.5361
141.0392 9.4436 0.0327 3.8618 21.62 9538.9853
144.0025 9.4567 0.0297 1.8711 13.16 7498.1210
144.0665 14.3339 0.0388 -1.2654 8.67 139.4714
144.8695 10.2075 0.0304 -1.6660 7.26 21229.7807

3-Methylglutaric acid 145.0504 6.0201 0.0002 -3.3155 9.46 111698.5542
145.0981 17.7387 0.0170 1.3844 7.88 260158.0208
146.0246 2.2195 0.0442 2.4125 28.39 28266.9484

L-4-Hydroxyglutamate 146.0457 9.2497 0.0487 1.3511 7.13 6639.5919
146.0458 20.2602 0.0100 1.2740 3.32 384.7539

Appendix A: Table 6: HILIC-NEG

Putative identification Mass to charge 
ratio (m/z) Retention time (min) ANOVA nominal 

Pvalue
Coefficient of 

Variance (% min CV)
Maximum 

Abundance
Fold change 

(relative to KO)
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146.0821 8.7142 0.0349 1.2977 5.99 11030.2346
146.1014 17.7387 0.0159 1.3976 7.66 17398.3656
146.8666 10.2031 0.0403 -1.6611 11.17 21535.4547
147.0661 6.1340 0.0491 1.3484 11.08 17375.8675

D-(-)-Lyxose 149.0453 7.1993 0.0429 -1.2725 3.8 9666.5846
D-(-)-Lyxose 149.0453 10.0889 0.0392 1.4475 10.68 57830.4890

151.0399 5.6377 0.0315 2.9028 24.49 16893.1455
Orotic acid 155.0097 8.8592 0.0103 1.7313 11.98 6752.3903

155.0712 2.6052 0.0254 -2.2322 23.23 10067.1902
157.0364 8.8155 0.0102 1.4097 8.47 241852.2128
157.0868 2.5085 0.0194 -1.6932 10 45062.4937
157.9007 5.1895 0.0361 -2.1823 20.88 11951.2181
158.0398 8.8023 0.0035 1.4687 7.24 11241.0982
159.0409 10.4222 0.0317 -1.3897 11.02 6251.2269

Daminozide 159.0773 9.8259 0.0363 3.5325 20.94 11779.3137
161.0454 9.8040 0.0250 1.2830 8.22 2723604.4620
161.0454 18.1422 0.0276 1.2820 4.13 94882.3434

3-(4-Hydroxyphenyl)propionic acid 165.0555 3.7233 0.0117 -2.5589 23.76 158359.7077
Noradrenochrome o-semiquinone 166.0507 3.3730 0.0470 1.3066 6.92 25154.8528

Uric acid 167.0208 10.6109 0.0369 -1.5121 14.86 600403.9205
167.0209 18.9424 0.0340 -1.3304 9.57 2234.9378
172.8299 10.1681 0.0406 -1.2602 9.18 8798.0032

4-Phenolsulfonic acid 172.9911 2.6752 0.0076 6.7151 47.51 6330597.1140
cis-Aconitic acid 173.0089 12.5419 0.0069 1.3292 6.14 6712.9901

174.9558 8.3497 0.0444 -1.4671 7.94 154508.6864
174.9868 2.6665 0.0075 6.8452 47.38 277847.5865
174.9975 2.6796 0.0099 10.6444 27.25 4749.2081

Ascorbate 175.0246 13.7985 0.0095 3.8646 30.93 15129.6630
N-Formylmethionine 176.0384 6.4632 0.0146 1.5927 2.13 13343.1001

179.0560 18.1159 0.0260 1.3354 3.79 13274.3897
2,4-Dinitrophenol 183.0045 2.3640 0.0204 -1.5658 4.63 7204.5390

183.1024 2.3946 0.0120 -1.6853 10.09 10857.0773
185.0429 4.6539 0.0055 2.4356 8.51 49089.3782
187.0068 2.3596 0.0000 97.7069 15.65 4761696.6280
188.0101 2.3596 0.0000 114.6441 15.39 355503.8634

DL-alpha-Aminosuberic acid 188.0926 6.9824 0.0407 1.3492 8.92 9807.0479
189.0025 2.3640 0.0000 120.3912 15.32 210000.8987
189.0132 2.3552 0.0001 1825.6884 12.02 7529.0520

Phenylacetylglycine 192.0665 5.6640 0.0026 6.9120 23.62 353634.6842
193.0697 5.6596 0.0040 10.1710 23.66 40709.9547
194.9272 14.4442 0.0142 -1.2916 1.47 2317671.3280

Gluconic acid 195.0507 7.2080 0.0252 -1.3345 7.77 12206.6306
Gluconic acid 195.0508 11.6722 0.0353 1.2866 5.87 399076.0035

195.1388 1.8946 0.0448 -1.4727 10.62 20734.1470
196.0224 8.9950 0.0034 1.3747 3.56 6852.4739
196.9230 14.4442 0.0136 -1.3024 1.6 197664.2736
198.0745 7.7761 0.0055 1.3114 5.3 21240.2496
199.0190 10.3345 0.0477 1.3822 13.28 45958.6888

N-Acetyl-aminooctanoic acid 200.1290 2.6708 0.0090 -1.7955 12.55 31523.6604
201.0225 2.0877 0.0001 2592.6209 53.36 1848689.3340
203.0559 11.2863 0.0479 -2.9126 14.73 30552.0367
203.0559 10.1944 0.0059 -2.8762 19.72 3394.0507
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D-(+)-Tryptophan 203.0824 8.5780 0.0221 -1.3611 7.86 423450.5591
Indole-3-lactic acid 204.0663 6.8147 0.0058 -1.9789 11.44 58188.1261

204.0856 8.5780 0.0188 -1.3796 7.06 50339.9680
204.9809 2.1713 0.0461 -4.9686 53.04 12781.1513
207.0508 10.4791 0.0251 1.3009 8.14 1158068.8730
207.0509 18.8260 0.0303 1.2602 4.03 38913.4362
207.0509 18.2481 0.0369 1.2479 3.54 20293.6247
209.0850 1.8596 0.0176 -1.5449 13.01 4677.2375
209.9687 9.0475 0.0005 -1.7203 3.8 16618.9289
211.1337 2.1801 0.0273 -1.5322 14.96 17826.2259

3-Indoxyl sulphate 212.0020 6.0201 0.0173 4.0662 13.98 9737671.1760
213.0052 6.0154 0.0174 4.1838 14.06 986357.7973
213.0855 17.7475 0.0261 1.2133 4.15 34525.4040
213.1494 2.1100 0.0101 -1.9844 4.98 110731.2483
213.9977 6.0110 0.0180 4.1774 14.64 476835.5745
214.0084 5.9848 0.0383 3.7385 14.1 8165.7013
214.0487 10.4572 0.0403 -1.7033 6.12 8300.6576

12-Hydroxydodecanoic acid 215.1649 2.0877 0.0152 -1.6423 11.4 52814.9569
217.0173 2.0877 0.0008 25.9925 42.13 7534.2635
217.0173 4.6539 0.0200 2.4233 29.88 53338.0732
217.0295 18.6526 0.0493 1.3534 10.47 288.2223
218.9819 8.0607 0.0455 -1.5992 9.24 36449.7649
224.7626 9.9747 0.0176 -1.2024 5.04 6846.3369
225.0239 8.8155 0.0063 1.5383 5.86 9682.1120
225.0614 20.3183 0.0242 1.3604 6.66 3093.4898
225.0615 18.1203 0.0208 1.3565 2.33 7167.4758
226.1446 2.6008 0.0297 -1.5630 6.55 13774.1149

2'-Deoxyuridine 227.0671 4.7730 0.0177 1.9666 11.75 352474.6785
227.1650 2.0702 0.0287 -1.9914 23.2 17273.6853
227.2014 1.7983 0.0047 -1.9837 13.87 94235.7736
228.0705 4.7112 0.0034 2.1236 14.64 43276.1979
228.1601 2.5873 0.0138 -1.5464 3.74 5698.6131
229.0020 10.4616 0.0049 -2.3680 8.83 8451.6618
229.1805 2.0527 0.0377 -1.5612 14.88 15740.4235
229.8606 5.1676 0.0152 1.9071 18.25 106450.4267

2,4-Dihydroxyacetophenone 5-sulfate 230.9965 2.5785 0.0002 -6.8160 6.47 19482.5660
237.1493 2.0746 0.0129 -1.7733 9.51 21691.2456

Indole-3-carboxilic acid-O-sulphate 239.9970 2.7234 0.0005 -318.4697 29.91 47047.5522
241.0916 18.1956 0.0481 1.3449 8.59 40828.2828
242.0126 2.5917 0.0003 -23.1126 28.06 62926.1858
242.0517 18.4254 0.0144 1.2242 3.06 744.1482

Pseudouridine 243.0619 8.1527 0.0007 1.3447 3.18 120672.4755
243.1962 1.9253 0.0096 -1.9428 7.16 47625.4798
245.0775 6.3581 0.0102 1.6437 4.27 13584.7034

N-Acetyl-DL-tryptophan 245.0927 6.2479 0.0052 -2.7479 6.18 72281.2950
249.0318 2.5348 0.0036 -39.0426 25.84 21570.9225
249.0877 6.0420 0.0026 -4.5924 25.85 46537.9157
249.1160 1.8377 0.0393 -3.2556 44.67 24779.1309
250.1241 1.9826 0.0064 -10.4267 43.69 42445.9994
251.1285 6.5599 0.0354 -1.4534 9.54 42760.3354
252.9478 2.6708 0.0315 647.8418 86.09 14742.2133
253.0925 6.4720 0.0003 -1.5936 2.65 10783.6918
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253.0926 5.2508 0.0019 -1.3515 2.22 189075.1589
253.1442 2.2720 0.0336 -1.4731 8.34 62281.2772

Palmitoleic acid 253.2170 1.7808 0.0078 -2.3848 17.43 741023.2017
Ascorbic acid-2-sulfate 254.9815 15.6392 0.0255 -1.9242 22.01 719.9750

254.9942 2.3683 0.0025 1817.6010 36.81 15537.1762
255.2327 1.7677 0.0073 -1.4515 8.38 2029174.5820
259.1295 9.7908 0.0151 2.1678 13.46 8089.7206
259.8390 14.4879 0.0465 -1.5905 6.57 19834.0029
261.0980 2.4734 0.0006 -13.1732 11.6 144144.8107
263.0437 4.9218 0.0195 2.7168 15.15 77241.5797
263.0576 9.3424 0.0154 1.6888 6.82 43475.1816
265.0732 9.3467 0.0376 1.5434 14.84 13028.1040
265.1805 1.8903 0.0320 -1.5519 8.45 13754.5838
267.1046 1.8377 0.0020 -14.8879 37.66 66043.7821
267.1962 1.8596 0.0025 -1.7670 4.43 44613.8287
269.0874 7.8987 0.0063 2.0951 14.35 26963.0214
269.2119 1.8684 0.0021 -1.8971 6.75 131811.8347

16-Hydroxyhexadecanoic acid 271.2276 1.8596 0.0064 -1.8774 4.28 315917.4100
273.0725 4.7594 0.0048 1.9197 13.4 791870.6193
274.0759 4.7730 0.0046 2.0705 15.07 89217.1255

Norophthalmic acid 274.1042 12.4224 0.0317 1.3423 4.43 89197.0527
275.1075 12.4267 0.0205 1.3956 4.66 9833.1131
278.9156 2.0089 0.0261 -1.3272 2.64 31290.5097

13-Hydroxyabscisic acid 279.1234 1.8859 0.0050 1.8658 12.56 68914.3004
279.1631 1.7107 0.0422 1.9687 11.25 76345.6819

Linoleic acid 279.2325 1.7677 0.0399 -1.6136 18.12 4410173.3990
279.9892 5.9935 0.0234 2.7976 11.83 38562.2381

p-Cresol glucuronide 283.0819 7.3849 0.0007 200.4614 31.44 153066.7082
283.2275 1.8465 0.0424 -1.7568 21.21 10406.0137
285.2432 1.8640 0.0136 -1.4910 1.96 5656.2599
290.0626 4.9087 0.0137 2.2445 10.56 92316.0704
291.0829 6.3537 0.0060 1.6782 1.14 17667.3612
292.6899 9.9528 0.0064 -1.3353 6.69 27701.1758
292.9445 14.3033 0.0063 1.2597 2.21 94175.9672

13-OxoODE 293.2119 1.8290 0.0176 -1.6164 13.46 52971.1891
299.2223 1.8202 0.0164 -2.1674 16.67 34792.6810
301.2378 1.7764 0.0083 -1.5853 10.38 102994.4831
302.6820 9.9441 0.0324 -1.3283 10.37 109091.1861
303.1267 2.6008 0.0130 1.9519 13.59 10019.0101
304.6798 9.9397 0.0414 -1.3204 11.22 159641.0499
305.1424 2.5785 0.0026 3.0117 17.05 103471.4689
306.6776 9.9397 0.0389 -1.3275 11.22 117830.7975
307.1580 1.8202 0.0159 -6.1266 39.15 20371.2815
307.1945 1.6799 0.0354 2.1406 22.76 95479.7318
308.0983 8.9862 0.0097 2.8412 23.42 19006.3738
308.6756 9.9441 0.0310 -1.3004 8.7 46846.2365
310.1139 9.7689 0.0007 3.1271 7.67 8799.2921
311.1092 9.7777 0.0326 1.7062 2.77 162476.4668
311.1858 1.8815 0.0363 -2.0940 22.75 11739.5465

12,13-DiHOME 313.2381 1.8903 0.0076 -2.1094 16.22 157191.6765
315.2535 1.8859 0.0230 -1.7902 12.89 31962.8451
323.1893 1.6976 0.0228 2.2094 17.83 27358.8944
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323.2221 1.8027 0.0159 5.2889 40.79 7962.0882
325.2377 1.7677 0.0104 -1.7904 15.39 76874.7269
327.2532 1.7501 0.0319 -1.5483 11.26 201775.4366
329.1754 1.8946 0.0296 -2.2827 26.14 16768.9709
332.1094 8.1833 0.0170 -1.2307 2.46 12516.0660
336.0523 10.6065 0.0479 -1.9376 23.55 14842.3449
344.1344 7.8505 0.0085 2.0338 11.41 20462.5927
345.2429 1.8202 0.0406 -1.5375 17.41 58479.7590
346.0775 7.4024 0.0013 5602.6355 48.06 29900.1634
346.9894 2.6446 0.0214 34.2469 22.49 105404.5862
349.0383 1.8552 0.0027 -11.8190 31.05 15768.0943
351.0539 2.2195 0.0384 1.5944 17.45 18452.8792
351.2204 1.6799 0.0247 2.3301 24.49 49746.1361
351.8278 1.7545 0.0014 -13.4028 28.07 69520.7268
353.8257 1.7458 0.0034 -5.4201 24.83 90660.0420
355.8237 1.7458 0.0043 -14.6483 33.45 67143.7439
360.1479 2.5873 0.0287 -1.9720 20.64 17210.8090

Adhumulone 361.2015 1.6274 0.0374 -3.7953 39.05 23937.5621
367.2153 1.7020 0.0236 2.2387 24.6 16884.7482
377.0694 2.0833 0.0079 4.4343 14.36 31326.2977
379.1756 2.1319 0.0387 -1.8231 22.98 38315.1890

12-Ketodeoxycholic acid 389.2692 2.1231 0.0146 -10.5894 46.62 51439.3893
Deoxycholic acid 391.2849 2.3946 0.0265 -6.5699 51.95 1271555.6700

392.0473 2.6402 0.0172 29.1677 7.98 188548.5464
395.2465 1.6799 0.0204 2.7878 25.18 40070.2287
401.0749 10.1199 0.0184 1.5804 19.01 16587.4272

Indoxyl sulfate 425.0113 5.9629 0.0096 45.9841 21.99 274859.6181
Cysteineglutathione disulfide 425.0801 13.9976 0.0494 1.9968 15.91 65040.9617

431.7359 1.6976 0.0269 -587.7488 159.22 30904.3652
433.7339 1.7020 0.0473 -337.7808 126.66 28246.6543
434.2363 1.8377 0.0130 -1.7140 7.56 177754.9858
435.2744 2.1713 0.0393 -13.5603 47.15 49631.1714
439.2726 1.6932 0.0317 3.4031 29.06 26724.6999

LysoPE(16:0/0:0) 452.2775 4.5747 0.0291 1.4180 11.95 100416.3578
Glycerophospho-N-palmitoyl ethanolamine 452.2776 2.8154 0.0468 1.3835 7.84 286564.4703

458.1877 18.0931 0.0439 7.8849 64.04 8.5165
470.0688 5.9410 0.0130 35.1084 5.49 505029.3275
473.2680 2.3070 0.0051 -15.8256 40.14 45095.6005
496.2730 2.6971 0.0306 -88.7313 106.83 1273298.7020

Taurochenodeoxycholic acid 498.2887 2.7759 0.0268 -49.1351 99.74 9996673.0720
498.9294 1.5661 0.0095 -1.5333 10.29 509013.6642
510.2520 2.7190 0.0220 -424.5775 103.69 152917.4938
512.2678 2.7628 0.0334 -134.3214 78.69 60505.8581
512.9589 1.6099 0.0133 -1.7486 11.9 3396404.1950

Taurohyocholate 514.2833 4.5222 0.0273 -167.7197 31.35 40151.1487
514.2835 5.5848 0.0282 -83.8225 63.43 34863736.1200

PE(22:6/0:0) 516.2878 4.5660 0.0335 -521.8970 87.19 93867.1032
524.2773 2.7759 0.0377 1.9347 17.78 608030.7137

538.3143 2.7759 0.0333 -1.3576 5.82 196626.9271
545.3146 2.6971 0.0455 -456.8610 126.34 158935.7617

83.28 119514.1686
2-[4,6-Bis(2,4-dimethylphenyl)-1,3,5-triazin-

2-yl]-5-(octyloxy)phenol 530.2781 6.0639 0.0470 -246.4345
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Table 6. HILIC-NEG ion mode features with a P-value <0.05 and FC ≥ │1.2│. Many of the genotype-dependent features, assigned 
unique m/z, remain unidentified using the data analyses described in the text. These molecular features are reported both for 
completeness and as reference points for future studies.

562.9560 1.6099 0.0095 -1.8557 13.07 21189.2306
582.2712 4.6058 0.0176 -365.8585 79.68 891759.1281
582.2713 5.6070 0.0129 -37.3944 66.63 452355.1928
597.3247 8.2227 0.0060 -3.7810 29.27 1754949.7590
604.4608 1.7107 0.0023 -12155.2483 80.69 33071.3752
613.3741 1.8465 0.0029 1.8621 9.09 22177.5278
679.8444 18.7633 0.0365 5.4625 46.58 5.8398
692.1083 5.9278 0.0115 20.6904 22.31 402492.9470
697.4688 1.7896 0.0233 1.3773 7.47 1172561.8360
759.3778 8.9600 0.0116 -9.7413 49.62 105776.7311
888.5624 2.5785 0.0014 -4.3651 12.41 159152.2372
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Fig. 60:Experimentally measured (shown above): Putative identification: L-alanine 
    Progenesis Fragmentation Score: 17.7* 
             Reference (not shown) matched fragments in red): HMDB: L-alanine: C3H7NO2  
 

 
Fig. 61:Experimentally measured (Top): Putative identification: Taurine:  

Compound Discoverer Fragmentation Score: 92.4 
Reference (Bottom): mzCloud library: Taurine: C2H7NO3S 

 



	 205 

 
Fig. 62:Experimentally measured (Top): Putative identification: Hypotaurine:  

Compound Discoverer Fragmentation Score: 82.4 
   Reference (Bottom): mzCloud library: Hypotaurine: C2H7NO2S 
 

 
 
Fig. 63:Experimentally measured (Top): Putative identification: 3-Sulfinoalanine 
   (syn: L-Cysteinesulfinic acid):  
  Compound Discoverer Fragmentation Score: 60.1 
   Reference (Bottom): mzCloud library: L-Cysteinesulfinic acid: C3H7NO4S 
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Fig. 64:Experimentally measured (Top): Putative identification: 2-Hydroxyethanesulfonate:  
   Progenesis Fragmentation Score: 92.6 
   Reference (Bottom): In-house library: 2-Hydroxyethanesulfonate: C2H6O4S 
 
 

 
 
Fig. 65:Experimentally measured (shown above): Putative identification: Glycine 
  Progenesis Fragmentation Score: 0.0* 
   Reference (not shown) matched fragments in red: HMDB: Glycine: C2H5NO2 
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Fig. 66:Experimentally measured (Top): Putative identification: Cholic Acid:  
   Progenesis Fragmentation Score: 82 
   Reference (Bottom): In-house library: Cholic Acid: C24H40O5  
 
 
 
 

 
 
Fig. 67:Experimentally measured (Top): Putative identification: Taurochenodeoxycholic acid:  
   Compound Discoverer Fragmentation Score: 81.3 
   Reference (Bottom): mzCloud library: Taurochenodeoxycholic acid: C26H45NO6S 
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Fig. 68:Experimentally measured (Top): Putative identification: L-Glutamate:  
   Compound Discoverer Fragmentation Score: 89.4 
   Reference (Bottom): mzCloud library: L-Glutamic acid: C5H9NO4 
 
 

 
 
Fig. 69:Experimentally measured (Top): Putative identification: Pyroglutamic acid:  
   Compound Discoverer Fragmentation Score: 83.0 
   Reference (Bottom): mzCloud library: Pyroglutamic acid: C5H7NO3 
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Fig. 70:Experimentally measured (Top): Putative identification: Linoleic acid:  
   Compound Discoverer Fragmentation Score: 87.1 
   Reference (Bottom): mzCloud library: Linoleic acid: C18H32O2 
 
 
 
 
 
 
 

 
 
Fig. 71:Experimentally measured (Top): Putative identification: 13(S)-HpODE:  
   Progenesis Fragmentation Score: 48.6 
   Reference (Bottom): Metlin: 13(S)-HpODE: C18H32O4  
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Appendix B 

A TARGETED/UNTARGETED METABOLOMICS APPROACH TO DETERMINE THE 

METABOLIC EFFECTS OF CEFTRIAXONE TREATMENT OF MURINE FIBROBLAST 

CELLS5 

 

Introduction 

In order to maintain normal brain health, control of excitatory Glu signaling must 

be tightly regulated. Excess Glu signaling through ionotropic Glu receptors has been 

shown to lead to Glu-induced excitotoxicity. Many chronic brain disorders such as ALS, 

PD, and schizophrenia [200, 202, 203] as well as the acute excitotoxicity associated with 

stroke and glioblastoma, involve dysregulated excitatory signaling ultimately leading to 

cell death [264, 503]. Regulation of Glu signaling is primarily achieved by glial Glu 

transporters; the SLC1 (e.g. GLT1) family Glu transporters, responsible for fast Glu 

clearance at synaptic release sites and the SLC7A11 cystine/Glu exchanger (xCT) that 

regulates basal extrasynaptic Glu levels [255]. To identify novel therapeutic strategies to 

regulate Glu signaling, Rothstein and colleagues sought to repurpose FDA-approved 

medications that altered expression of GLT1 in vitro and in vivo and alleviated phenotypes 

of an in vivo ALS mouse model [202]. b-lactam antibiotics, including the CNS penetrant 

Ceftriaxone (Cef), were demonstrated to elevate expression of GLT1. Consequently, 

many researchers have implemented Cef as a neuroprotective agent in many models of 

neural diseases, including but not limited to addiction, stroke, PD, epilepsy, etc. 

																																																								
5	The unpublished study described here was conducted in collaboration with the Michigan 
Regional Comprehensive Metabolomics Resource Core (MRC2) at the University of Michigan. 
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 While Cef has been shown to derive its neuroprotective effects by elevating 

expression of GLT1 and xCT to normalize extracellular Glu levels by induction of the 

NFκB and ARE-1 transcriptional programs respectively [277, 278], a molecular target for 

this drug, until recently, has remained unidentified. Recently, we have identified that 

mutations in the C. elegans gene, swip-10, results in Glu-dependent DA neuron hyper-

excitability and degeneration. The protein, SWIP-10, and its putative mammalian 

ortholog, MBLAC1 contain a conserved metallo b-lactamase domain [146]. Furthermore, 

we have shown that MBLAC1 is a cytosolic protein expressed in the periphery and CNS, 

and is an endogenous, and specific binding partner for Cef [182]. To date however, the 

endogenous substrate for MBLAC1 enzymatic activity remains unknown and the 

mammalian metabolic alterations due to Cef treatment have not been explored.  

 In this study, we utilized a targeted/untargeted metabolomic mass spectrometry 

approach to determine the metabolic changes arising from acute and sustained Cef 

treatment of the MBLAC-1 expressing mouse fibroblast derived cell line (NIH3T3). We 

demonstrate that Cef treatment of mammalian cells significantly dysregulates many 

unidentified features, and these unknowns may represent the endogenous substrate(s) 

of the Cef interaction partner, MBLAC1.  

 

Materials and Methods 

Materials 

All biochemical reagents, salts and buffers were obtained from Sigma-Aldrich (St. 

Louis, MO) unless otherwise specified, and were of the highest quality available.  
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Sample preparation 

The embryonic fibroblast mouse cell line NIH 3T3 was cultured in DMEM 

containing 20 mmol/l Glucose, 10% fetal bovine serum, 100 U/ml penicillin and 100 µg 

streptomycin at 37°C in CO2 cell culture incubators. Cells were seeded onto twelve 10 

cm dishes at a density of 1.5 x 106/plate. After 24-48 hrs of recovery and adhesion (60-

70% cell confluency), fresh culture media was added, and for 4 of the 10cm dishes fresh 

media supplemented with 50 µM Ceftriaxone (Cef) for 24 hrs. At about 90-100% 

confluency (23 hrs post media change) 4 x 10 cm dishes were treated with 50 µM Cef or 

sterile water vehicle for 1 hr. Samples were prepared for metabolite extraction according 

to previous studies [504]. Briefly, Media was thoroughly aspirated via vacuum aspirator 

and very rapidly, deionized water rinse buffer was added to the cells and immediately 

aspirated. Liquid nitrogen was added directly to the cells to quickly quench metabolism 

and freeze the cells. Cells were stored on dry ice or at -80°C until metabolite extraction. 

 

Metabolite extraction 

On dry ice, 1 mL of ice cold extraction buffer (Methanol:Acetonitrile:Acetone, 1:1:1, 

containing the following internal, exogenous standards; epibrassinolide, Gibberellic acid 

L-[15N] Anthranilic acid, L-Tryptophan-15N2, and Zeatin) was added to each dish, and 

the cells were scraped and transferred to a sterile 1.5 mL micro-centrifuge tube on dry 

ice. Harvested cells were lysed in ice using a probe sonicator and subjugated to a high 

speed-spin (15,000 rpm) at 4°C for 10 min to precipitate proteins and cellular debris. The 

metabolite containing supernatant was dried via nitrogen stream and stored at -80°C until 

analysis.  
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LC-MS chromatography 

For mass spectrometry analysis, dried extracts were reconstituted in 100 µl 

reconstitution solvent (Methanol:H2O 2:98) by vortexing for 5 mins. Following a high-

speed spin (15,000 rpm for 5 mins), supernatants were transferred to glass inserts within 

autosampler vials. Quality control samples were prepared by pooling equal volumes from 

each experimental sample. Extracts (5-10 µl injection volume) were separated on a 1290 

Infinity Binary LC System from Agilent with Waters Acquity UPLC HSS T3 1.8 µm 2.1 x 

100 mm column in connection with a Waters Acquity UPLC HSS T3 1.8 µm VanGuard 

pre-column. Liquid chromatography was performed at a 450 µl min-1 at 55°C for 34 mins 

(7 min equilibration time, 27 min data acquisition time) using solvent A (0.1% formic acid 

in water) and solvent B (0.1% formic acid in methanol) with the following gradient: 98% A 

: 2% B for 20 min, 25% A : 75% B for 2 min, 2% A : 98% B for 8 min, 98% A : 2% B for 7 

min. The same chromatography method was used for both positive and negative ion 

mode.  

 

Mass spectrometry  

Full MS analyses were acquired over a mass range of m/z 50-1000 under an ESI 

positive profile mode and separately under an ESI negative profile mode using Agilent 

Technologies 6530 Accurate-Mass Q-TOF with a dual ASJ ESI ion source used as the 

mass detector. The mass spectrometer settings were as follows; Ion source: 325°C gas 

temperature, drying gas flow at 10 l/min, nebulizer pressure at 45 psig, 400°C sheath gas 

temperature, sheath gas flow at 12 l/min, 4000V capillary voltage, 140V gragmentor 



	 214 

voltage, 65V skimmer voltage, 2 spectra/sec acquisition rate. Inline mass calibration was 

performed using debrisoquine sulfate (m/z 176.1182) and HP-0921 from Agilent (m/z 

922.0098) in positive mode and 4-NBA (m/z 166.0146) and HP-0921 from Agilent (m/z 

966.0007, formate adduct) in negative mode.  

 

Data analysis 

Raw data processing was done using Agilent software (MassHunter Qual and 

ProFinder, Agilent, Santa Clara, CA). Data analysis was performed with Agilent 

MassProfiler Pro package using recursive analysis workflow. Custom R and PHP scripts 

were used to remove redundant data (MRC2 Metabolomics Core at the University of 

Michigan, Ann Arbor, MI). Quality of analysis was accessed by visual inspection of the 

chromatographic traces (total ion chromatograms) and relative quantification of the 

internal standards. Data normalization was performed using feature-by-feature LOESS 

(Locally Weighted Scatterplot Smoothing) fitting to pooled samples. The normalized data 

set is limited to the features detected in every pooled sample. Unsupervised Principal 

Component Analysis (PCA) and subsequent Analysis of Variance (ANOVA) were used to 

find the statistically significant differences between experimental groups. Feature 

annotation is based on comparing observed m/z and retention time to the in-house library 

of ~850 compounds, sampling a wide variety of metabolic pathways (MRC2 

Metabolomics core at the University of Michigan). Unidentified/unmatched features are 

assigned putative molecular formula when possible. Data visualization performed using 

Venny 2.1 (bioinfogp.cnb.csic.es/tools/venny) and Cytoscape 3.0 (The Cytoscape 

Consortium, USA). Identification of putative metabolic networks and metabolic pathways 
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effected by Cef treatment was done using the metabo-informatic tool, mummichog 1.0 

[419]. 

 

Results and Discussion 

Generation of an in vitro model to assess the effect of ceftriaxone on metabolic 

pathways 

We chose to utilize an in vitro model to assess the effect of ceftriaxone on 

mammalian cell metabolism due to its ease of manipulation and accessibility. Many of the 

initial studies that demonstrate Cef’s ability to regulate transcriptional programs that 

increase expression of Glu transporters, GLT-1 and xCT, was done utilizing immortalized 

cell culture lines such as hippocampal neuron derived line and the embryonic murine 

fibroblast NIH 3T3 cells [277]. Additionally, in our initial efforts to characterize the binding 

interaction between the mammalian protein, MBLAC1, and Cef, we determined that 3T3 

cells endogenously express MBLAC1, detectible via immunoblot [182]. Furthermore, 

pharmacological manipulation of glutathione production (associated with xCT expression 

and closely associated with the neuroprotective actions of Cef) via buthionine sulfoximine 

and N-Acetylcysteine [505, 506] resulted in treatment time course dependent changes in 

MBLAC1 expression in NIH 3T3 cells (C.L. Retzlaff, unpublished findings). We chose to 

continue with the NIH 3T3 cell line for our metabolomics study, as other researchers have 

utilized these cells in other metabolomics studies [507] and to exploit the MBLAC1/Cef 

binding interaction. We hypothesized that Cef interaction with MBLAC1 would disrupt the 

enzyme’s interaction with its endogenous small molecule substrate and reveal Cef-

dependent changes in mammalian cell metabolism. This pilot study is a hypothesis-
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generating endeavor designed to identify both known and unknown metabolites altered 

by acute (1 hr) or semi-chronic (24 hr) Cef in order to further characterize molecular 

pathways responsible for the neuroprotective actions of Cef (Fig. 72). 

 

Elucidation of ceftriaxone-dependent 3T3 cell metabolome changes 

Liquid chromatography coupled to mass spectrometry (LC-MS) approaches are 

frequently being utilized in metabolomic studies due to their high resolution and sensitivity 

[508]. In this study, we utilized an established reverse phase liquid chromatography 

(RPLC) method using both positive (POS) ion mode and negative (NEG) ion mode to 

increase the breadth of detected metabolites [426]. 

 In order to have confidence in our experimental chromatographic data and feature 

detection, we utilized vigorous quality control measures including the use of a pooled 

sample (containing equal volumes of each experimental sample) to determine sample 

separation and mass spectrometer induced retention time drift. Additionally, each 

experimental sample was spiked with a mixture of non-endogenous internal standards. 

To ensure we had achieved high quality and reproducible feature resolution we 

determined the relative standard deviation of the internal standards across all 

experimental runs for both RPLC-POS and RPLC-NEG. Table 7 shows that we achieved 

high quality feature detection as the relative standard deviation of the internal standards 

across samples was low. We thus have higher confidence in assessing the relative ion 

abundance differences across our different treatment groups.  
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We used the Agilent software platforms MassHunter Qual and ProFinder to 

analyze our raw data and we detected many molecular features with unique mass to 

chare ratios (m/z) in our dataset, 1834 features in RPLC-POS ion mode and 1836 features  

 
 

Fig. 72. Experimental design for assessing the effects of ceftriaxone on mammalian 
cellular metabolism. A. Schematic depicting the hypothesis that ceftriaxone may enact its 
neuroprotective action (increasing glial Glu transporter expression) via selective and specific 
interaction with MBLAC1 (Adapted from Retzlaff et al., 2017). B. Experimental design describing 
the in vitro model utilized to study the effects of ceftriaxone on murine cell metabolism.  

 
  

A 

B 



	 218 

 

Table 7. Quality of analysis is assessed by the quantification relative standard deviations 
of the internal standards within experimental samples. 

  

Internal Standard Positive Mode – Relative 

Standard Deviation (%) 

Negative Mode – Relative 

Standard Deviation (%) 

Epibrassinolide 9.8 2.7 

Gibberellic acid 15.5  2.0 

L-[15N] Anthranilic acid  6.5 

L-Tryptophan-15N2 4.6 4.7 

Zeatin 3.6 11.2 
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in RPLC-NEG ion mode. Unsupervised principal component analysis (PCA) revealed 

segregation of untreated and Cef-treated biological replicates (Fig. 73). PCA also reveals 

segregation of 1 hr and 24 hr Cef treated biological replicates, however this separation is 

less distinct than the separation from untreated replicates (Fig. 73A-B). Our pooled quality 

control samples cluster nicely at the center of the PCA plot (Fig. 73A-B). In order to 

compare ion abundances within treatment groups, we normalized the raw data via feature 

to feature LOESS fitting to pooled sample data to adjust for instrumental drift during the 

sample run sequence. Subsequent PCA analysis of the normalized data shows a tight 

clustering among the pooled samples (Fig. 73C-D) and separation of the experimental 

groups. After LOESS normalization, the separation between the three experimental 

conditions (untreated(basal), 1 hr Cef, and 24 hr Cef) becomes more distinct (Fig. 73C-

D). 

 Following normalization, we utilized a one-way ANOVA analysis to nominate 

features that differ among 0 hr, 1 hr, or 24 hr Cef treatment groups, and a corrected P-

value < 0.05 was deemed significant. For RPLC-POS, 76 features (4.2%) and for RPLC-

NEG, 70 features (3.8%) were revealed to be significantly different across one or both 

Cef treatment groups. Due to the restricted number of statistically different features due 

to Cef treatment, we did not impose a fold change threshold on our data for analysis. The 

ANOVA analysis allowed us to identify features that changed (increased or decreased) 

across three experimental condition comparisons for both RPLC-POS and RPLC-NEG. 

We compared the features that changed from 0 hr to 1 hr Cef treatment, 0 hr to 24 hr Cef 

treatment, and changed from 1 hr to 24 hr Cef. To visualize which features were 

consistent across these analyses, we utilized Venn diagrams to see which groups shared  
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Fig. 73. Global, unsupervised principal component analysis (PCA) illustrates distinct 
metabolomes across ceftriaxone treatment groups. A. POS and B. NEG raw data 
unsupervised PCA shows distinct metabolic profiles observed between 3T3 cells treated 0 hr (red) 
1 hr (blue) and 24 hr (brown) 50 µM Cef for. The pooled control samples cluster at the center of 
all the experimental data (grey). C. POS and D. NEG unsupervised PCA on the LOESS 
normalized data shows more distinct separation across experimental conditions [0 hr (red) 1 hr 
(blue) and 24 hr (brown) 50 µM Cef], and tighter clustering of the pooled quality control samples 
(grey).  
  

POS NEG 

POS NEG 

A B 

D C 
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features with similar directional changes for Cef treatment induced increases and 

decreases in feature abundances for RPLC-POS and RPLC-NEG (Fig. 74). Tables 8 and 

9 summarize the features that significantly differ between Cef treatment groups, and show 

their relative fold change abundance differences.  

 

Nomination of known/targeted compounds dependent on ceftriaxone 

 Untargeted metabolomic studies are designed to provide broad coverage of the 

metabolome and allow researchers to interpret data and generate hypotheses without 

being limited to pre-conceived ideas. As a caveat to this approach, the analysis conditions 

cannot be optimized for all types of metabolites that exist in a complex mixture, and thus 

quantitation is relative to internal standards and ion abundance differences among 

different groups. Utilization of an in-house metabolite/compound library helps assign 

feature annotations within experimental samples that match m/z and retention times to 

known compounds run on the same RPLC-MS platform. We used a library of 

approximately 850 compounds, by no means comprehensive, that samples metabolites 

present in most known metabolic pathways. The degree of confidence in this type of 

identification is high, however it is possible to wrongly annotate compound identifications, 

especially for structural isomers with similar chromatographic behavior. Tables 8 and 9 

show that 6 of the 76 (7.9%) and 4 of the 70 (5.7%), RPLC-POS and RPLC-NEG 

respectively, significantly different features were assigned compound annotations based 

on library comparison. Most the features significantly altered by Cef treatment are 

unknown features requiring further efforts to assign putative annotations to these 

metabolites.  
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Fig. 74. Venn Diagrams demonstrating the relationship of significantly different 
compounds in comparison across Cef treatment groups. A. Venn diagrams representing the 
number of significantly dysregulated compounds (% of total) that are common among treatment 
conditions (0 hr, 1 hr, 24 hr Cef) either increasing or decreasing in abundance with Cef treatment 
in POS ion mode. B. Venn diagrams representing the number of significantly dysregulated 
compounds (% of total) that are common among treatment conditions (0 hr, 1 hr, 24 hr Cef) either 
increasing or decreasing in abundance with Cef treatment in NEG ion mode.
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INOSINE 5'-PHOSPHATE (M+H)+ 0.00E+00 0.00E+00 1.443 ⬆ 1.516 ⬆ 1.051 ⬆
MANNOSE-6-PHOSPHATE (M+Na)+ 0.00E+00 0.00E+00 1.416 ⬆ 1.487 ⬆ 1.051 ⬆
STEAROYLCARNITINE (*) (M+H)+ 0.00E+00 0.00E+00 -1.195 ⬇ 2.413 ⬆ 2.885 ⬆
GUANOSINE (M+H)+ 0.00E+00 0.00E+00 8.594 ⬆ 4.189 ⬆ -2.052 ⬇
SERINE (M+H)+ 0.00E+00 0.00E+00 -1.356 ⬇ -1.072 ⬇ 1.265 ⬆
DECANOATE (2M+Na)+ 0.00E+00 0.00E+00 1.739 ⬆
367.0735@7.4286165 0.00E+00 0.00E+00 -1.075 ⬇
866.3625@18.450949 0.00E+00 0.00E+00
281.1322@15.849048 1.60E-04 4.06E-02 -2.077 ⬇ -2.047 ⬇ 1.015 ⬆
624.0129@6.620663 0.00E+00 0.00E+00 1.065 ⬆
301.2731@15.149294 3.80E-05 2.80E-02 -1.757 ⬇ -2.592 ⬇ -1.475 ⬇
548.007@6.6272955 0.00E+00 0.00E+00 1.072 ⬆
272.2465@16.167345 3.30E-04 4.12E-02 -1.690 ⬇ -2.095 ⬇ -1.239 ⬇
102.0322@9.968514 0.00E+00 0.00E+00 -3.809 ⬇ -9.241 ⬇ -2.426 ⬇
302.2934@21.512459 0.00E+00 0.00E+00 1.112 ⬆ -1.494 ⬇ -1.660 ⬇
413.2782@17.004766 4.74E-05 2.80E-02 -1.893 ⬇ -2.475 ⬇ -1.307 ⬇
1146.04@6.61318 0.00E+00 0.00E+00 1.144 ⬆
424.1072@16.48971 0.00E+00 0.00E+00 -185.562 ⬇
901.9806@8.293228 0.00E+00 0.00E+00 -1.835 ⬇ -1.624 ⬇ 1.130 ⬆
445.2596@19.39078 1.87E-04 4.10E-02 -2.201 ⬇ -3.126 ⬇ -1.420 ⬇
863.5051@14.397863 0.00E+00 0.00E+00
824.4396@14.097162 0.00E+00 0.00E+00 1.153 ⬆
337.2275@21.292797 0.00E+00 0.00E+00
136.0392@1.8396631 0.00E+00 0.00E+00 1.626 ⬆ 1.636 ⬆ 1.007 ⬆
221.1395@12.586486 1.15E-04 3.39E-02 -1.828 ⬇ -2.217 ⬇ -1.213 ⬇
207.0909@7.7049866 0.00E+00 0.00E+00 1.002 ⬆ -1.170 ⬇ -1.172 ⬇
250.1652@11.600299 3.72E-04 4.12E-02 -2.091 ⬇ -2.341 ⬇ -1.119 ⬇
422.3495@21.358208 0.00E+00 0.00E+00 1.017 ⬆
323.2084@16.724348 0.00E+00 0.00E+00 1.559 ⬆
642.2728@21.910091 3.51E-04 4.12E-02 -1.751 ⬇ -2.108 ⬇ -1.204 ⬇
370.355@22.19751 0.00E+00 0.00E+00 -1.226 ⬇ -1.468 ⬇ -1.198 ⬇
726.1914@1.7489973 0.00E+00 0.00E+00 -4.047 ⬇
736.3847@13.413046 0.00E+00 0.00E+00
723.4868@23.76065 0.00E+00 0.00E+00 1.134 ⬆ 1.564 ⬆ 1.380 ⬆
413.0474@4.310522 0.00E+00 0.00E+00 1.029 ⬆
823.5415@25.355928 0.00E+00 0.00E+00 1.330 ⬆
352.1969@12.278598 0.00E+00 0.00E+00 1.400 ⬆ -1.963 ⬇ -2.749 ⬇
294.1727@15.150035 8.66E-05 3.39E-02 -1.709 ⬇ -2.270 ⬇ -1.328 ⬇
1595.0359@24.10364 0.00E+00 0.00E+00 1.132 ⬆ 1.479 ⬆ 1.306 ⬆
310.2513@22.332325 0.00E+00 0.00E+00 1.018 ⬆ 1.181 ⬆ 1.159 ⬆
462.3193@11.861967 0.00E+00 0.00E+00
330.2516@12.347871 0.00E+00 0.00E+00 -1.609 ⬇ -5.274 ⬇ -3.277 ⬇
482.1148@3.2675698 0.00E+00 0.00E+00 1.220 ⬆
443.1184@7.057534 0.00E+00 0.00E+00 1.758 ⬆
767.4986@24.062334 0.00E+00 0.00E+00 -1.051 ⬇ 2.128 ⬆ 2.237 ⬆
572.426@23.118162 0.00E+00 0.00E+00 1.327 ⬆
495.2169@11.41645 1.08E-04 3.39E-02 -2.555 ⬇ -2.902 ⬇ -1.136 ⬇
780.4109@13.770803 0.00E+00 0.00E+00
907.5307@14.675709 0.00E+00 0.00E+00
448.2321@6.7490387 3.18E-04 4.12E-02 -4.328 ⬇ -3.334 ⬇ 1.298 ⬆
276.0619@6.943566 0.00E+00 0.00E+00 2.643 ⬆
606.9598@6.6288924 0.00E+00 0.00E+00 1.151 ⬆
328.2632@22.345112 0.00E+00 0.00E+00 1.648 ⬆
234.1066@3.701553 0.00E+00 0.00E+00
306.0854@6.706207 2.89E-05 2.80E-02 -1.641 ⬇ -1.729 ⬇ -1.054 ⬇

Fold Change                  
[0hr] vs [24hr]

Regulation 
direction due to 

Cef treatment 
[0hr] vs [24hr]

Fold Change                  
[1hr] vs [24hr]

Regulation 
direction due to 

Cef treatment 
[1hr] vs [24hr]

COMPOUND                                                                   
(Identification or m/z@Retention 

time)
ANOVA Pvalue ANOVA Pvalue(Corr) 

Fold Change                  
[0hr] vs [1hr]

Regulation 
direction due to 

Cef treatment 
[0hr] vs [1hr]
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continued from above… 
 

 
 

Table 8. RPLC-POS identified features significantly dysregulated in 3T3 cells due to 1 hr or 24 hr treatment of 50µM 
ceftriaxone. 
  

268.0853@1.8109964 0.00E+00 0.00E+00 1.031 ⬆ 1.343 ⬆ 1.303 ⬆
821.5259@25.0419 0.00E+00 0.00E+00 1.344 ⬆ -1.105 ⬇ -1.485 ⬇
418.2336@18.634743 2.95E-04 4.12E-02 -1.578 ⬇ -2.080 ⬇ -1.318 ⬇
504.3901@22.6173 0.00E+00 0.00E+00 -1.021 ⬇ 2.435 ⬆ 2.486 ⬆
527.4653@22.619268 0.00E+00 0.00E+00 1.475 ⬆ 2.467 ⬆ 1.673 ⬆
250.1779@10.713075 0.00E+00 0.00E+00 -5.601 ⬇ -6.821 ⬇ -1.218 ⬇
720.1482@5.4102445 0.00E+00 0.00E+00 -2.173 ⬇
1467.7577@15.830882 0.00E+00 0.00E+00 1.553 ⬆ 1.757 ⬆ 1.131 ⬆
244.063@1.9501071 0.00E+00 0.00E+00 -44.549 ⬇
214.0082@0.7559997 0.00E+00 0.00E+00 1.829 ⬆ 2.700 ⬆ 1.476 ⬆
441.2533@20.427996 0.00E+00 0.00E+00 -1.153 ⬇ -1.461 ⬇ -1.267 ⬇
104.0559@16.489931 0.00E+00 0.00E+00 -2.107 ⬇
316.1815@12.818161 2.08E-04 4.10E-02 -3.523 ⬇ -3.211 ⬇ 1.097 ⬆
366.2128@13.920004 0.00E+00 0.00E+00 2.185 ⬆ 1.254 ⬆ -1.742 ⬇
262.0671@4.4064107 3.58E-04 4.12E-02 -1.871 ⬇ -2.018 ⬇ -1.079 ⬇
731.5817@25.344143 0.00E+00 0.00E+00 1.271 ⬆ 1.323 ⬆ 1.041 ⬆
822.5664@22.942669 0.00E+00 0.00E+00 1.365 ⬆ 1.315 ⬆ -1.038 ⬇
429.0287@7.176194 0.00E+00 0.00E+00 -1.192 ⬇
324.1658@8.666974 0.00E+00 0.00E+00
444.3304@21.357094 0.00E+00 0.00E+00 1.277 ⬆ -1.176 ⬇ -1.501 ⬇
709.3885@22.861954 2.63E-04 4.12E-02 -2.178 ⬇ -3.471 ⬇ -1.593 ⬇

Fold Change                  
[0hr] vs [24hr]

Regulation 
direction due to 

Cef treatment 
[0hr] vs [24hr]

Fold Change                  
[1hr] vs [24hr]

Regulation 
direction due to 

Cef treatment 
[1hr] vs [24hr]

COMPOUND                                                                   
(Identification or m/z@Retention 

time)
ANOVA Pvalue ANOVA Pvalue(Corr) Fold Change                  

[0hr] vs [1hr]

Regulation 
direction due to 

Cef treatment 
[0hr] vs [1hr]
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ADENOSINE (M+HCOO)- 0.000 0.000 1.025 ⬆ 1.160 ⬆ 1.132 ⬆
2-DEOXY-D-GLUCOSE (M+Cl)- 0.000 0.000 1.875 ⬆
GLYCEROL 2-PHOSPHATE (M-H)- 0.000 0.000 2.703 ⬆
(S)-DIHYDROOROTATE (M-H)- 0.000 0.000 -1.507 ⬇ -4.304 ⬇ -2.857 ⬇
159.0101@6.593837 0.000 0.000 1.084 ⬆
278.1297@5.311839 0.000 0.000 6.296 ⬆
542.465@22.933786 0.000 0.000 -1.780 ⬇ 1.478 ⬆ 2.631 ⬆
576.0268@6.5964527 0.000 0.000 1.076 ⬆
404.0233@15.811854 0.000 0.044 -2.215 ⬇ -2.231 ⬇ -1.007 ⬇
970.1923@1.0228755 0.000 0.000 1.820 ⬆
446.2058@19.357637 0.000 0.036 -1.979 ⬇ -2.917 ⬇ -1.474 ⬇
292.1915@15.114112 0.000 0.036 -1.710 ⬇ -2.582 ⬇ -1.509 ⬇
368.2192@16.974476 0.000 0.036 -1.791 ⬇ -2.469 ⬇ -1.379 ⬇
284.8834@2.1985018 0.000 0.000 -1.470 ⬇
425.0533@1.3450001 0.000 0.000 1.036 ⬆
306.9479@1.2585719 0.000 0.000 2.035 ⬆ 1.020 ⬆ -1.995 ⬇
443.1171@7.0362487 0.000 0.000 -1.069 ⬇
626.4736@23.956873 0.000 0.000 1.897 ⬆ 1.372 ⬆ -1.383 ⬇
460.2076@17.569336 0.000 0.000 -1.391 ⬇
553.3162@22.38335 0.000 0.000 1.735 ⬆ 2.665 ⬆ 1.536 ⬆
656.1193@0.70741683 0.000 0.000 -1.149 ⬇ -1.549 ⬇ -1.348 ⬇
559.3392@22.896551 0.000 0.000 1.703 ⬆ 1.187 ⬆ -1.434 ⬇
744.4468@22.81848 0.000 0.000 2.123 ⬆ 1.191 ⬆ -1.783 ⬇
597.5319@24.62577 0.000 0.000 1.631 ⬆ -1.520 ⬇ -2.480 ⬇
915.5274@24.820147 0.000 0.000 1.272 ⬆ 1.112 ⬆ -1.144 ⬇
791.5591@24.818466 0.000 0.000 -1.075 ⬇ 1.252 ⬆ 1.346 ⬆
946.5132@24.320225 0.000 0.000 1.371 ⬆ -2.070 ⬇ -2.838 ⬇
799.5551@24.617138 0.000 0.000 1.614 ⬆ -1.710 ⬇ -2.761 ⬇
460.2105@19.269295 0.000 0.000 -1.636 ⬇
562.3508@22.832893 0.000 0.000 -1.900 ⬇ 1.467 ⬆ 2.786 ⬆
829.657@25.73587 0.000 0.000 -1.772 ⬇ 2.099 ⬆ 3.719 ⬆
159.0109@3.6284626 0.000 0.000 1.105 ⬆
155.0623@0.638125 0.000 0.000 2.754 ⬆ -1.275 ⬇ -3.512 ⬇
222.0889@10.084981 0.000 0.000 -11.664 ⬇
955.6147@24.605923 0.000 0.000 1.137 ⬆ 1.910 ⬆ 1.679 ⬆
644.1237@2.332101 0.000 0.000 2.767 ⬆
472.0136@6.6148376 0.000 0.036 -2.810 ⬇ -2.644 ⬇ 1.063 ⬆
476.3125@11.839342 0.000 0.000
330.256@22.89567 0.000 0.000 2.547 ⬆ -1.371 ⬇ -3.493 ⬇
817.5094@23.655851 0.000 0.000 -1.054 ⬇ 1.921 ⬆ 2.025 ⬆
636.4966@25.14244 0.000 0.000 1.240 ⬆ 2.047 ⬆ 1.650 ⬆
324.0331@0.7223639 0.000 0.000 -1.180 ⬇
302.2248@21.647848 0.000 0.000 1.405 ⬆ 1.511 ⬆ 1.075 ⬆
835.4988@23.618195 0.000 0.000 1.034 ⬆
655.132@0.9965006 0.000 0.000 1.926 ⬆
830.0662@0.7553333 0.000 0.036 -2.046 ⬇ -2.078 ⬇ -1.016 ⬇
399.2418@22.625801 0.000 0.000 -2.102 ⬇
901.5789@24.35239 0.000 0.000 -1.179 ⬇ 1.109 ⬆ 1.307 ⬆
502.0514@10.025292 0.000 0.000 -1.177 ⬇ -1.789 ⬇ -1.520 ⬇
468.0991@2.070501 0.000 0.000 1.070 ⬆
939.4553@23.718113 0.000 0.000 -1.064 ⬇ -1.065 ⬇ -1.001 ⬇
270.0952@0.876929 0.000 0.036 -1.715 ⬇ 1.103 ⬆ 1.893 ⬆
469.1364@1.1947509 0.000 0.000 1.842 ⬆
520.0633@3.481776 0.000 0.000 1.322 ⬆
468.1003@1.3843333 0.000 0.000 1.335 ⬆
734.1448@7.3576193 0.000 0.000 -1.245 ⬇
437.2902@22.489838 0.000 0.000 -1.815 ⬇ -1.341 ⬇ 1.354 ⬆

Regulation 
direction due to 

Cef treatment 
[0hr] vs [24hr]

Fold Change                  
[1hr] vs [24hr]

Regulation 
direction due to 

Cef treatment 
[1hr] vs [24hr]

COMPOUND                                                                   
(Identification or m/z@Retention 

time)
ANOVA Pvalue ANOVA Pvalue(Corr) 

Fold Change                  
[0hr] vs [1hr]

Regulation 
direction due to 

Cef treatment 
[0hr] vs [1hr]

Fold Change                  
[0hr] vs [24hr]
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continued from above… 
 

 
 

Table 9. RPLC-NEG identified features significantly dysregulated in 3T3 cells due to 1 hr or 24 hr treatment of 50µM 
ceftriaxone.

637.356@22.820833 0.000 0.000 2.710 ⬆ 1.634 ⬆ -1.659 ⬇
155.0948@3.6401944 0.000 0.036 -7.017 ⬇ -8.705 ⬇ -1.241 ⬇
362.1137@1.5893586 0.000 0.000 1.105 ⬆
811.483@23.784182 0.000 0.000 1.040 ⬆ 1.388 ⬆ 1.335 ⬆
578.0533@0.91933364 0.000 0.000 -1.023 ⬇ 2.154 ⬆ 2.204 ⬆
160.0197@0.7131251 0.000 0.000 1.169 ⬆
696.3406@22.518839 0 0 -4.03924 ⬇ -3.1474435 ⬇ 1.2833399 ⬆
116.0113@1.2591112 0.000179588 0.0356938 1.5743606 ⬆ 1.1658546 ⬆ -1.350392 ⬇
438.1991@22.53578 0.000307822 0.045609005 -2.9547791 ⬇ -2.8971426 ⬇ 1.0198942 ⬆
117.0388@24.58583 0 0 -1.1377398 ⬇ -1.937237 ⬇ -1.7027067 ⬇
438.9882@10.267615 0.000215355 0.03829017 -1.9021002 ⬇ -1.6964253 ⬇ 1.1212401 ⬆
819.5079@24.270622 0 0 1.0555607 ⬆ 1.2885303 ⬆ 1.2207069 ⬆
555.1298@1.1776925 9.28396E-05 0.0356938 -2.4145498 ⬇ -1.9539046 ⬇ 1.2357563 ⬆

Fold Change                  
[0hr] vs [24hr]

Regulation 
direction due to 

Cef treatment 
[0hr] vs [24hr]

Fold Change                  
[1hr] vs [24hr]

Regulation 
direction due to 

Cef treatment 
[1hr] vs [24hr]

COMPOUND                                                                   
(Identification or m/z@Retention 

time)
ANOVA Pvalue ANOVA Pvalue(Corr) 

Fold Change                  
[0hr] vs [1hr]

Regulation 
direction due to 

Cef treatment 
[0hr] vs [1hr]
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Unknown metabolites changing in response to acute or semi-chronic ceftriaxone 

treatment 

 The process of assigning correct annotations to features detected in LCMS-based 

metabolomic studies, remains a difficult obstacle in analyzing these datasets. Unlike 

proteomics, where each protein has a unique amino acid sequence, the m/z ratio of a 

detected small molecule feature likely matches the m/z ratio attributed to many different 

metabolites. The experimental m/z ratio of unknown features can be queried against 

several established metabolite databases (e.g. HMDB (Human metabolome data base), 

MassBank, and Metlin) to generate a list of candidate annotations. In a communication 

by A. C. Schrimpe-Rutledge and colleagues, the process and caveats to feature 

annotation is described in depth. In many cases, feature annotation requires MS2-

dependent (fragmentation) data for comparison with known fragmentation data of 

standards [418]. As our LCMS dataset primarily consists of MS1 (parent ion) data, we 

utilized the program, mummichog, an informatics strategy designed to predict biological 

activity from MS1 data in order to bypass the typical, labor intensive identification pipelines 

in order to rapidly generate quality hypotheses to drive future research [418, 419]. 

mummichog is designed more specifically to look at comparisons and differences in ion 

abundances based on comparisons between two groups, therefore we limited our 

mummichog analysis to two comparisons; 0 hr vs 1 hr Cef treated samples or 0 hr vs 24 

hr Cef treated samples, for both RPLC-POS and RPLC-NEG.  

 The mummichog data output provides two complementary ways to biologically 

understand the significant differences among experimental groups based on 1) 

MetaFishNet human reference metabolic pathway analysis or 2) undefined networks  
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(known as modules) [509]. The pathway analysis of mummichog is based on predefined 

human metabolic pathways and determines pathway enrichment after unique m/z are 

converted to putatively annotated features. Higher pathway enrichment increases 

confidence in putative feature identification [509, 510]. Table 10 lists the metabolic 

pathways (defined by MetaFishNet) significantly altered by Cef treatment for either 1 hr 

or 24 hrs (each compared to 0 hr) for RPLC-POS and RPLC-NEG. Within this table, 

pathways that are significantly enriched across ion modes and treatment time, serve as 

a metabolic pathway to target in future studies as important for the actions of Cef. One 

caveat to the pathway analysis is the unknown directionality of the changes of the 

metabolites contributing to nominating an enriched pathway, although subsequent 

versions of mummichog address this issue. In both Cef treatment comparisons, and for 

both RPLC-POS and RPLC-NEG ion mode, the metabolic pathways, pyrimidine 

metabolism and vitamin B5 CoA biosynthesis, contain significant enrichment of 

metabolites dysregulated by Cef treatment (Table 10). Subsequent, targeted 

metabolomic based experiments can be utilized to confirm the effect of Cef on metabolites 

within these pathways.  

 

Potential significance of Cef-induced alterations in the metabolic pathways, 

pyrimidine metabolism and vitamin B5 CoA biosynthesis 

 Interestingly, pyrimidine treatment has been shown to be neuroprotective in 

several animal models of brain disorders for which Cef is neuroprotective [511]. 

Researchers demonstrate that injection or ingestion of citicoline, or 
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Pathways Metabolite Overlap (#) Pathway Size (#) Pvalue (raw) Pvalue
Caffeine metabolism 5 5 0.012 0.000
Vitamin E metabolism 9 16 0.165 0.002
Vitamin B5 - CoA biosythesis 4 6 0.196 0.004
Xenobiotics metabolism 6 11 0.274 0.005
Glutathione metabolism 4 7 0.314 0.009
Pyrimidine metabolism 5 10 0.399 0.012
Pyruvate metabolism 2 2 0.170 0.012
Prostaglandin from dihomo gamma-linoleic acid 3 5 0.340 0.015
Hexose phosphorylation 3 5 0.340 0.015
Starch and sucrose metabolism 4 8 0.436 0.017
N-Glycan biosynthesis 4 8 0.436 0.017
Fatty acid activation 5 1 0.503 0.020
Glycolysis and gluconeogenesis 3 6 0.483 0.030
Pentose phosphate pathway 4 9 0.550 0.031
N-Glycan degradation 2 3 0.370 0.033
Phosphatidylinositol phospate metabolism 2 3 0.370 0.033
CoA Catabolism 2 3 0.370 0.033

Pathways Metabolite Overlap (#) Pathway Size (#) Pvalue (raw) Pvalue
Alanine and aspartate metabolism 3 8 0.024 0.000
Beta-alanine metabolism 2 4 0.038 0.000
Prostaglandin from dihomo gamma-linoleic acid 2 5 0.060 0.000
Vitamin B5 - CoA biosythesis 2 5 0.060 0.000
Pyrimidine metabolism 3 19 0.215 0.000
Urea cycle/amino group metabolism 3 25 0.361 0.003
Leukotriene metabolism 3 27 0.409 0.005
Aspartate and asparagine metabolism 3 28 0.433 0.007
Bile acid biosynthesis 2 18 0.464 0.033
Arginine and proline metabolism 2 19 0.493 0.043

POS Ion Mode                                                                                                                                                                                                                     
0hr vs 1hr Cef

NEG Ion Mode                                                                                                                                                                                                                         
0hr vs 1hr Cef
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continued from above… 

 

Table 10. Mummichog pathway analysis reveals putative metabolic pathways significantly enriched for metabolites affected 
by 1 hr or 24 hr Cef treatment or both. Fisher exact tests computes a contingency table based on fraction of metabolites within a 
defined pathway identified in the experimental compound list, the more hits on a pathway, the more significant enrichment. Corrected 
P-values are calculated by resampling the data as a Gamma distribution and EASE scores therefore adjusting the raw P-value on the 
cumulative distribution function.

Pathways Metabolite Overlap (#) Pathway Size (#) Pvalue (raw) Pvalue

Caffeine metabolism 5 5 0.012 0.002
Vitamin E metabolism 9 16 0.165 0.007
Vitamin B5 - CoA biosyntheis 4 6 0.197 0.018
Xenobiotics metabolism 6 11 0.274 0.020
Glutathione metabolism 4 7 0.314 0.037
Pyrimidine metabolism 5 10 0.399 0.048
Pyruvate metabolism 2 2 0.170 0.050

Pathways Metabolite Overlap (#) Pathway Size (#) Pvalue (raw) Pvalue

Alanine and aspartate metabolism 3 8 0.024 0.000
Beta-alanine metabolism 2 4 0.038 0.000
Prostaglandin from dihomo gamma-linoleic acid 2 5 0.605 0.000
Vitamin B5 - CoA biosythesis 2 5 0.060 0.000
Pyrimidine metabolism 3 19 0.215 0.001
Urea cycle/amino group metabolism 3 5 0.361 0.003
Leukotriene metabolsim 3 27 0.409 0.004
Aspartate and asparagine metabolism 3 28 0.433 0.004
Bile acid biosynthesis 2 18 0.464 0.009
Arginine and proline metabolism 2 19 0.493 0.011
Purine metabolism 2 22 0.574 0.017
Prostaglandin formation from arachidonate 3 43 0.730 0.025

POS Ion Mode                                                                                                                                                                                                                     
0hr vs 24hr Cef

NEG Ion Mode                                                                                                                                                                                                                         
0hr vs 24hr Cef
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cytidine-5’-diphosphocholine, is neuroprotective in preclinical models of brain ischemia 

[512], Glu excitotoxicity [513, 514], and neurodegenerative disorders including AD [515]. 

Also, similar to Cef neuroprotective models, the pharmacological mechanism of citicholine 

is not well described, however it is known that before crossing the blood brain barrier, 

citicholine is hydrolyzed and phosphorylated to two intermediate products, cytidine 

monophosphate and phosphocholine, both of which are pharmacologically active. Other 

studies provide support that pyrimidines nucleotides may function as pyrimidinergic 

neurotransmitters, as uridine administration enhanced cholinergic neurotransmission and 

increased DAG and IP3 levels in the rat brain [516], uridine administration has sleep-

promoting and anti-epileptic actions [517], and uridine was shown to activate microglia 

and stimulate thromboxane A2 release from cultured glial cells [518]. Further investigation 

to more fully understand the specific Cef-treatment induced changes in pyrimidine 

metabolism potentially will reveal insight into both Cef and pyrimidine pharmacological 

mechanisms of action.  

 Vitamin B5 (pantothenate) is the key precursor for the biosynthesis of coenzyme 

A (CoA), a cofactor essential for a variety of metabolic reactions [519] and dysregulation 

of pantothenate and CoA has adverse effects on normal brain functions. The literature 

clearly describes that disrupting CoA biosynthesis leads to neurodegeneration in humans, 

and the best characterized example of this is due to genetic mutations disrupting the 

function of mitochondrial pantothenate kinase (PANK2) resulting in pantothenate kinase-

associated neurodegeneration, PKAN, which is associated with pathological iron 

accumulation and gliosis in the brain [520, 521]. Future studies aimed at elucidating the 
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effects of Cef treatment on vitamin B5 CoA biosynthesis may implicate key metabolic 

processes sensitive to the neuroprotective action of Cef.  

 

Modular mummichog analysis indicates that Cef treatment influences steroid 

metabolite abundancies 

The modular analysis is less biased by known metabolic pathways, as modules 

comprise of compounds linked within or between several pathways. Figures 75 and 76 

demonstrate the significant modular output from our mummichog analysis of the 

comparisons of 0 hr vs 1 hr Cef and 0 hr vs 24 hr Cef, respectively, for RPLC-POS (no 

statistically significant, Pvalue<0.05, modules were generated from RPLC-NEG data). 

Metabolites increasing in abundance with Cef treatment are in red, and those decreasing 

in abundance following Cef treatment are in blue. As these analyses are based on 

putative feature annotations derived from m/z and biological metabolite connectivity, 

several putative identifications could be attributed to a single m/z (each node) therefore 

each node has several metabolite names, with the first listed as the best candidate (Fig. 

75 and 76). Findings from both comparisons indicate that perturbations in compounds 

identified with steroid-associated chemical structures may contribute to the metabolic 

effects of Cef treatment. According to an expanding set of literature, steroid hormones, 

both originating from the periphery or synthesized in neurons or glia, clearly play 

important roles in normal brain function, including developmental neuronal connectivity 

and differentiation, as well as influencing memory and behavior. Lipophilic steroid 

hormones readily cross the BBB, and interact with neuronal and glial plasma membranes 

as well as steroid-receptors expressed throughout the brain to regulate general brain 
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Fig. 75: Modular network analysis and suggested identification of biologically associated 
compounds altered by 1 hr 50uM Cef treatment. The mummichog modular networks shows 
putative identifications of compounds affected by 1 hr Cef treatment visualized via Cytoscape 3.4. 
Metabolites are colored per their FC abundance differences (blue indicated decreased following 
1 hr Cef treatement, red indicates increased in 1 hr Cef treated samples). Statistics are based on 
repeated sampling of randomized m/z from experimental reference list to generate a null 
distribution, P-values are calculated using the random background modeled as a Gamma 
distribution, with P-value <0.05 taken as significant. A. Module populated by the most compounds 
effected by 1 hr Cef treatment with many connections (enzymatic activity) denoted between 
nodes, 18 metabolites, Pvalue=0.007. B. Significant module network comprised of 9 metabolites, 
Pvalue=0.019. C. Significant module network comprised of 8 metabolites, Pvalue =0.028. 
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Fig. 76. Modular network analysis and suggested identification of biologically associated 
compounds altered by 24 hr 50uM Cef treatment. The mummichog modular networks shows 
putative identifications of compounds affected by 24 hr Cef treatment visualized via Cytoscape 
3.4. Metabolites are colored per their FC abundance differences (blue indicated decreased 
following 24 hr Cef treatement, red indicates increased in 24 hr Cef treated samples). Statistics 
are based on repeated sampling of randomized m/z from experimental reference list to generate 
a null distribution, P-values are calculated using the random background modeled as a Gamma 
distribution, with P-value <0.05 taken as significant. A. Module populated by the most compounds 
effected by 24 hr Cef treatment with many connections (enzymatic activity) denoted between 
nodes, 18 metabolites, Pvalue=0.004. B. Module network comprised of 9 metabolites, 
Pvalue=0.012. C. Module network comprised of 8 metabolites, Pvalue=0.02. D. Module network 
comprised of 24 metabolites, Pvalue=0.04. E. Module network comprised of 5 metabolites, 
Pvalue=0.049. 
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health [522]. Steroid-based treatments (e.g. progesterone) are shown to be efficacious in 

models of neurodegenerative diseases (PD, AD, MS) [523, 524] as well as models of 

stroke, depression, drug dependence and acute brain trauma [525, 526]. As we know the 

directional change induced by Cef treatment in the modular output from mummichog, 

future studies can validate metabolite alterations and further study how constitutive loss 

of MBLAC1 either induces changes in similar metabolites or disrupts Cef-induced 

changes.  

 

Conclusion 

 Using a targeted/untargeted RPLC-MS metabolomic approach, we assessed the 

effect of acute and semi-chronic Cef treatment on the metabolome of NIH3T3, MBLAC1 

expressing cells. Our analysis provided reliable, reproducible sequence runs as 

determined by comparing spiked-in exogenous compounds across pooled quality control 

and experimental samples. Unsupervised PCA analysis revealed distinct separation of 

our samples, grouped according to Cef treatment (0 hr, 1 hr, or 24 hr), and ANOVA 

analysis revealed significantly altered features due to Cef treatment. Although the majority 

of the significantly changed features remained unannotated after comparison with the in-

house compound library, we used mummichog to nominate the most likely candidate 

metabolic pathways effected by Cef treatment. Our analysis suggests that Cef treatment 

induced changes in the metabolic pathways of pyrimidine metabolism and vitamin B5 

CoA biosynthesis as well as changes in metabolites with steroid-chemical structures. 

These pathways should be pursued in future, targeted analyses, and the annotation of 

mummichog nominated metabolites should be validated using mass spectrometry 
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methods comparing fragmentation data as well as m/z and RT consistencies with 

available standards. This hypothesis generating study leads us to suspect that Cef has a 

role in regulating metabolic processes previously indicated as important in maintaining 

normal brain health.  

 

Future Directions 

Global untargeted metabolomic approach to compare the brain metabolomes of 

WT and MBLAC1 mice treated with saline or ceftriaxone 

 Together, our previous metabolomic studies, Cef treated cells and assessment of 

the sera metabolomes of WT and MBLAC1 KO mice, provided us with several metabolic 

pathways to pursue in future targeted studies, however both studies were conducted as 

pilot studies, with relatively low sample number. In order to actively follow our hypothesis 

that Cef mediated changes in the brain are a result of the Cef/MBLAC1 binding 

interaction, we can couple Cef treatment studies with our newly developed MBLAC1 KO 

mouse model. We can envision using primary embryonic fibroblast cells derived from 

MBLAC1 KO and WT mice to monitor the metabolic and/or biochemical effects of Cef 

treatment in vitro. Alternatively, future experiment, we could chronically treat, in vivo, 

MBLAC1 KO and WT littermate controls with Cef, and extract the small molecules from 

one or more specific brain regions for subsequent metabolomic mass spectrometry-based 

analysis. Ideally, we will determine 1) specific mass peaks sensitive to constitutive loss 

of MBLAC1 in the brain, 2) identify specific metabolites within the brain sensitive to Cef 

treatment, and 3) determine if loss of MBLAC1 disrupts metabolite changes induced by 

Cef treatment in WT animals.  
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Appendix C 

LIST OF EXPERIMENTS ATTEMPTED OR IN PROGRESS 

 

Swip Related Experiments 

1. Swip rescue experiment with N’termSWIP-10::MBLAC1 MBD domain fusion. 

a. BY1155 and BY1156 [swip-10(tm5915); Ex 248 and Ex249 (Pptr-10::swip-
10(Pro280)cDNA::(Val21)MBLAC1cDNA::GFP, punc122::RFP, pBSK)] 

b. BY1157, BY1158, BY1159, and BY1160[swip-10(tm5915);Ex250-
Ex253(Pptr-10::swip10(Ser313)cDNA::(Iso80)MBLAC1cDNA::GFP, 
punc122::RFP, pBSK)] 

c. Summary: Neither of the fusion expression constructs described above 
were sufficient to rescue the Swip of swip-10(tm5915) mutant animals. This 
is not entirely suprising, as these fusion constructs were not edited to 
account for organism specific codon preferences for the encoding of amino 
acids. Additionally, we chose fusion sites at conserved amino acids 
however a smaller portion of the Mammalian MBLAC1 fused into the SWIP-
10 coding sequence may be better suited to a rescue experiment 

2. Swip rescue experiment with N-term signal sequence removed. BY1161-BY1164 
[swip-10(tm5915); Ex254-Ex257 (Pptr-10::(D18AA)swip-10cDNA::GFP, 
punc122::RFP) 

a. Summary: Interesting, loss of the first 20 amino acids after the Met start 
codon of the swip-10 coding sequence resulted in a reduced capacity to 
rescue the Swip phenotype of swip-10(tm5915) animals. The first 20 AAs 
of the SWIP-10 protein were bioinformatically predicted to encode a 
secretion signal. As we are unable to see the translational fusion protein 
however we cannot rule out mosaicism as contributing to this reduction in 
rescue. This data may suggest that the signal sequence at the N’ terminus 
of the SWIP-10 is essential for the function of the protein. We could also 
speculate that loss of the N’ terminus results in a misfolded protein that is 
degraded via UPR mechanisms.  

3. Basal aat(s), and aat(s);swip-10(tm5915) Swip assays 

a. Summary: Loss of the amino acid transporters alone do not demonstrate 
Swip, and loss of aat-1, or aat-3 (the closest to xCT in sequence homology) 
or combinatorial loss of aat-1 and aat-3 did not alter swip-10(tm5915) levels 
of paralysis. 

4. Basal Kundra line Swip assays 
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a. Summary: As described below, we collaborated with the company Kundra 
employ CRISPR/Cas9 techniques to tag the SWIP-10 with C’ terminal 
MCherry fluorescent protein and a 3X Flag tag with the goal of visualizing 
the sub-cellular localization of SWIP-10. Three lines genetically positive for 
the endogenous tags were test for basal Swip. Interestingly we do see a 
significant level of Swip compared to N2 counterparts, with all three 
independent lines demonstrating about 75% of animals swimming after 10 
mins. We believe that the small level of paralysis observed is due to the tag 
on the SWIP-10 protein, such that it may slightly but not completely impair 
SWIP-10 function. 

 
 

swip-10 DA Neuron Degeneration Related Experiments 

1. Another OLL neuron marker. TV12498 [wgIs328 (pser2prom3::myrGFP::unc453'UTR, 
prab-3::mCherry, podr-1::RFP)X, and BY1207 [wgIs328;swip-10(tm5915) 

a. Summary: The TV12498 OLL neuron marker also allowed us to compare 
the morphology of the OLL neurons between N2 and swip-10(tm5915) 
mutant animals, and as with the background strain described in Ch. IV, this 
marker also revealed significant levels of OLL neuron degeneration in swip-
10 mutant animals. 

2. Role for the p38 MAPK ortholog, pmk-1, in swip-10 mutant induced DA neuron 
degeneration. BY1250 [vtIs7;pmk-1(km25);swip-10(tm5915)] 

a. Summary: Loss of pmk-1 significantly reduced the DA neuron degeneration 
of swip-10 mutants, the suppression observed was modest and only 
observed in the measure of shrunken soma, and the total degenerative 
measure (about 13% reduction in swip-10 degeneration). 

3. Role for asic-1 in swip-10 mutant induced DA neuron degeneration. BY1251 
[vtIs7;asic-1(ok415);swip-10(tm5915)] 

a. Summary: Loss of the acid sensing ion channel expressed in C. elegans 
DA neurons, asic-1 had no effect on the swip-10 mutant induced DA neuron 
degeneration. 

4. Chronic pharmacology on DA neuron degeneration 

a. Treatments with: 

i. Methylglyoxal 

ii. N-acetylcysteine (NAC) 

iii. Guanosine 

b. Summary: For all of the above chronic treatments, the drugs were added at 
various increasing concentrations within the NGM/OP-50 plates on which 
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synchronized swip-10 mutants were grown from the L1 stage.  None of 
these drugs had a significant effect on the DA neuron degeneration of GA 
swip-10 animals, and N2 controls did not demonstrate altered DA neuron 
morphology. We test methylglyoxal, a toxic dicarbonyl hydrolyzed by 
another beta-lactamase, which the Bose lab previously described as 
resulting in neuronal degeneration. Our hypothesis was that swip-10 
mutants would be more sensitive to methylglyoxal than N2. Our chronic 
treatment of swip-10 mutants arose via the literature supporting a 
neuroprotective role for NAC via its transport through xCT to act as a 
precursor for GSH, however we do not see any reduction in swip-10 DA 
neuron degeneration after chronic NAC treatment. Guanosine was a 
metabolite found to be increased in 3T3 fibroblast cells following both 1 hr 
and 24 hr treatment with 50µM Cef, but no effect of Guanosine on N2 or 
swip-10 DA neurons was observed.  

5. Other archived strains: 

a. BY1178 [vtIs7;glr-4(tm3239);swip-10(tm5915) glr-6(tm2729)] 

i. Summary: Combined loss of glr-4 and glr-6 did not suppress the DA 
neuron degeneration of swip-10 mutant animals.  

b. BY1214 [vtIs7;eat-4(ky5) vglu-3(tm3390);swip-10(tm5915)] 

i. Summary: Combined loss of eat-4 and vglu-3 did suppress swip-10 
mutant DA neuron degeneration beyond that described for loss of 
vglu-3 alone. Generation of the triple VGLUT mutant animal with loss 
of swip-10 was attempted but no quadruple mutants were identified. 

c. BY1270 [vtIs7;glr-1(n2461);crt-1(ok948);swip-10(tm5915)] 

i. Summary: Combined loss of glr-1 and crt-1 does not enhance 
suppression of swip-10 mutant DA neuron degeneration, with a 
similar suppression phenotype to loss of crt-1 alone. This suggests 
and is in line with the data described in Ch V. that glr-1 and crt-1 act 
in the same pathway to mediate DA neuron degeneration in the 
context of loss of swip-10. 

d. Stress reporters:  

i. MT17370 [lin-15(n765);nIs242(pgcy-33::GFP)], and BY1193 
[nIs242;swip-10(tm5915)] 

1. Summary: nIs242 is an integrated transgene for a 
transcriptional reporter sensitive to oxidative stress. This 
strain has been crossed to swip-10(tm5915) mutants and 
archived but has not been characterized.  

ii. SKN-1 localization reporter. LD1 [IdIs7 (SKN-1b/c::GFP)], and 
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BY1254 [IdIs7;swip-10(tm5915)]. 

1. Summary: IdIs7 is an integraged transgene for a translational 
report used to monitor localization of SKN-1. SKN-1 is 
transcriptional regulator of detoxifying enzymes, and oxidative 
stress results in nuclear localization of SKN-1. This strain has 
been crossed to swip-10(tm5915) mutants and archived but 
has not been characterized for basal levels or 
pharmacologically induced levels of SKN-1 nuclear 
localization. 

 
 

Other swip-10 Related Experiments 

1. Created C. elegans transgenic strain with DA neuron specific expression of the 
fluorescent Glu reporter, GluSNFR. [BY1113 [lin-15(n765ts); ex221 (pdat-

1::GluSNFR, pdat-1::mcherry, pJM239(lin15+))] 

a. Summary: This line has been generated and archived but not characterized 
or used in experimentation. 

2. Serotonin stimulated pharyngeal pumping 

a. Summary: swip-10 mutants show significantly increased pump frequency 
and pump duration and significantly decreased inter-pump interval 
compared to N2. This work done in collaboration with Peter Rodriguez and 
Kundra (NemaMatrix). 

3. Collaboration with Knudra to use CRISPR/CAS9 to swip-10 at the endogenous 
genomic locus. SWIP-10::mCHERRY::3XFLAG 

a. Strains: COP1615 (NV1480.2.4.5), COP1616 (NV1480.3.1.3), COP1617 
(NV1480.4.1.3) 

i. Summary: These lines have been imaged using confocal 
microscopy, however no visible mCherry fluorescence was 
observed. It is possible that pharmacological or environmental stress 
may induce expression of SWIP-10, and these lines should be 
imaged in various stress paradigms.  

4. Immunostaining to visualize the endogenously tagged SWIP-
10::mCHERRY::3XFLAG (anti-FLAG primary antibody) 

a. Peroxide tube fixation method with b-ME permeablization and 
formaldehyde fixation 

b. Freeze crack slide fixation method with acetone/methanol fixation 

c. Freeze crack slide fixation method with Paraformaldehyde fixation 
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d. Summary: These preliminary immunostaining experiments were aimed at 
determining the most effective protocol to permeablize and fix C. elegans 
for immunostaining detection of C’ terminally mCherry and 3XFLAG tagged 
SWIP-10 protein using anti-FLAG primary antibody. The freeze cracking 
method with fixation via MeOH/Acetone or 30mins 4%PFA worked for the 
immunostaining of GFP expressed in BY250 gravid adult and L4 animals. 
The endogenously tagged SWIP-10 lines generated by Knudra, display less 
definitive staining, however some specific staining was suggested. Our 
preliminary efforts indicate that the staining of Knudra lines L4 animals was 
more successful than L1 or GA animals. It remains undetermined which 
fixation method is best. These experiments are very preliminary, and there 
are many variables and protocol options to text in order to find the most 
effective method for immunostaining these particular strains. As a note, 
overall morphology of the freeze-cracked animals is extremely distorted, 
with many animals broken/bent or ripped apart. The vast majority of animals 
stained (GFP or FLAG) in all protocols attempted did not show any specific 
staining, indicating inefficient staining methods.  

5. Initiated flow-cytometry based sorting of C. elegans glia from N2 and swip-10 
mutants, utilizing the nsIs108 (pptr-10::myrRFP). 

a. Summary: After multiple attempts to dissociated and flow-sort both glia and 
DA neurons from swip-10 mutants and N2 animals, we were able to better 
troubleshoot our dissociation protocol, however, due to the time and effort 
needed to conduct these experiments, this line of research is still at a 
preliminary state, with further method tuning and better controls required.  

 
 

MBLAC-1 Related Experiments 

1. Amino Acid measurements 

a. 3T3 cells +/- 24 hr 50 µM ceftriaxone 

i. Summary: No changes in the measured amino acids (via HPLC) 
were observed in 3T3 cells due to Cef treatment. 

b. Tissue amino acid levels from hippocampus, cortex, striatum, cerebellum 
and serum from MBLAC1 KO and WT littermates. 

i. Summary: One cohort of tissue extracted from 4 MBLAC1 KO and 4 
littermate WT controls, amino acids measured via mass 
spectrometry methods at the Vanderbilt Neurochemistry Core. Our 
preliminary results show no change in amino acid level in different 
brain regions, however taurine serum levels were significantly 
reduced in MBLAC1 KO animals, in line with data provided in Ch VI.  

2. MBLAC-1 viral-mediated KD in cell culture 
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a. Summary: Work conducted in collaboration with Dave Poulsen’s lab, we 
generated a plasmid for viral-mediated knock-down (KD) of MBLAC1 in cell 
culture. We treated glioma cell lines (with high levels of MBLAC1 
expression) with various concentrations of the viral KD vector, however we 
did not see a reduction in MBLAC1 expression assessed by western blot. 
This was conducted before the generation of the MBLAC1 KO mouse, and 
our efforts now focus on characterization of the KO animals.  

3. Na+-dependent and Na+-independent Glu uptake in Mblac1cDNA transiently 
transfected HEK 293t cells. 

a. Summary: These uptakes were inconsistent in their results but hinted at a 
potential increase in Na+-independent Glu uptake. In order to pursue other 
experiments, these studies were not continued. Cassie Retzlaff continued 
the investigation of the MBLAC1 effect on Glu uptake in synaptosomes 
prepared from MBLAC1 KO and WT animals.  

4. xCT, GLT-1, and MBLAC1 expression in human derived glioma cell lines. 

a. Summary: Via western blotting, we preliminarily demonstrated that xCT, 
GLT-1, and MBLAC1 are expressed in several human derived glioma lines, 
but no further experiments were performed. 

5. Monoamine and metabolite measurements in MBLAC1 KO and WT littermates  

a. Summary: These experiments are on-going in the Blakely lab by Paul Gresh 
and Rania Katamish. 

6. MBLAC1 substrate Identification: 

a. HA tagged MBLAC1 expression in HEK 293t cells. 

i. Summary: The HA-MBLAC1_pCDNA plasmid was generated by 
Andrew Hardaway, and shown to be successfully transfected and 
expressed in HEK 293t cells via western blot in collaboration with 
Samara Vilca. Futhermore, HA:MBLAC1 can be conjugated to HA-
beads. 

b. Cef interacts with HA:MBLAC1: 

i. Summary: Work done with Cassie Retzlaff and Samara Vilca 
demonstrates that the HA:MBLAC1 construct retains its ability to 
bind Cef-conjugated beads. 

c. RPLC-POS and -NEG LCMS/MS analysis of small molecules extracted 
from MBLAC1 KO cortical lysates incubated with MBLAC1 conjugated or 
unconjugated HA:beads control. 

i. Two sample sets: High salt buffer vs low salt buffer 
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ii. HILIC-POS and –NEG samples prepared 

1. Summary: Ongoing work in collaboration with the Vanderbilt 
Center for Innovative Technology (Simona Codreanu and 
Alex Shrimpe-Rutledge). We have run samples prepared in 
both low and high salt buffers, for 4 biological replicates, 
MBLAC1 KO brain lysate incubated with either HA beads 
conjugated to HA:MBLAC1 or unconjugated beads for 30mins 
at room temp. Following the removal of conjugated or 
unconjugated beads, samples were split into two tubes, 
proteins precipitated and small molecule contain fraction dried 
down for subsequent mass spectrometry. One set of samples 
was re-suspended for RPLC-POS and –NEG LCMS/MS. Our 
results revealed a limited number of features significantly 
different in samples incubated with MBLAC1 enzyme. These 
experiments are ongoing, and we have not pursued 
identification of the unknown features. As described in Ch VII, 
we expect only a few number of features to appear after acute 
exposure to MBLAC1, ideally revealing a decrease of the 
substrate for MBLAC1 or an increase in the product of 
MBLAC1. We have samples prepared but not run for HILIC-
POS and –NEG to provide more comprehensive metabolite 
coverage.   
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