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CHAPTER I 

 

INTRODUCTION TO LIPID PEROXIDATION, PHENOLIC ANTIOXIDANTS, 
FREE-RADICAL CLOCKS, AND THE ALLYLPEROXYL RADICAL 

REARRANGEMENT 
 
 
 

Lipid Peroxidation 

Swiss chemist de Saussure conducted the first studies of lipid oxidation 

around 1800.  Using a crude mercury manometer, de Saussure observed that a 

layer of walnut oil exposed to air could absorb nearly 150 times its own volume 

during a one year period.1  Although there was a clear implication that oxygen 

was involved in a reaction with some constituent of the oil, it was not until the 

early 1900s, when pure hydrocarbons were isolated from lard and vegetable oils, 

that the picture became somewhat clear.  In the 1920s, it was shown that linoleic 

acid was oxidized more rapidly than oleic acid,2 and linolenic acid was oxidized 

more rapidly than linoleic acid.3  Systematic studies of the mechanism of 

oxidation followed Stephens’ successful isolation of a cyclohexene derived 

peroxide.4 

In 1939, Creigee showed that hydroperoxides are the primary products of 

hydrocarbon oxidation.5 Ten years later, Bolland firmly established that the 

primary oxidation products of linoleic acid (the most common polyunsaturated 

fatty acid found in animals) are conjugated hydroperoxides substituted at the 9- 

and 13-positions of the linoleate chain.6  Later kinetic and thermodynamic studies 

provided a detailed and unified mechanism for hydrocarbon autoxidation.   
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The liquid phase autoxidation of organic compounds at temperatures less 

than 100oC can be represented by the general equation: 

R-H + O2 → ROOH     (1) 

Where R-H is a hydrocarbon or aldehyde and ROOH is the corresponding 

hydroperoxide or peracid.7  In cases in which the oxidizable material is a vinyl 

monomer, a copolymer of oxygen and the vinyl monomer is obtained.  The 

reaction has the characteristics of a free radical chain reaction because the rate 

of the reaction is strongly catalyzed by light and accelerated by compounds 

which decompose to form free radicals.8 

 Over the past three decades, interest in lipid peroxidation has intensified.  

Reasons for this increase of interest include, but are not limited to, the following: 

1. It was discovered that the reactive oxygen species (ROS) derived from 

superoxide radical lead to lipid peroxidation9,10 and that superoxide 

dismutase exists in order to scavenge superoxide radicals.11, 12  

Because of this, superoxide radicals are viewed as an important cause 

of oxygen toxicity and are known to lead to lipid peroxidation via ROS 

such as hydroxyl radicals. 

2. It was observed that products analogous to those expected from lipid 

peroxidation are formed enzymatically.  The fatty acid hydroperoxides 

derived from arachidonic acid by lipoxygenase enzymes are an 

example of such products.13  These fatty acid hydroperoxides serve as 

key intermediates in the biosynthesis of the leukotriene and lipoxin 

compounds that show immune response activity.14   
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3. Important enzymatic products with peroxide functionality are the 

prostaglandin endoperoxides.  Arachidonic acid is the precursor to 

these endoperoxide compounds that also serve as key intermediates 

to the prostaglandin and thromboxane families.15 

4. The involvement of lipid peroxidation in neoplastic transformation has 

also been suggested. Superoxide dismutase, for example, inhibits 

neoplastic transformations induced by X-rays or bleomycin in 

conjunction with phorbol myristyl acetate, and it has been speculated 

that events such as membrane lipid peroxidation are involved in these 

events.16     

5. Lipid peroxidation has been related to initiation of the oxidative 

metabolism of polynuclear aromatic hydrocarbons. Some of the 

metabolites of these compounds are extremely mutagenic and may be 

the ultimate carcinogenic form of the parent hydrocarbon.17   

6. It has been proposed that lipid peroxidation contributes to chemical 

debris that accumulates with age.  Lipofuscin may be some of that 

chemical debris and a significant effort has been directed towards 

developing an understanding of the nature of the age pigment and how 

it forms.18-20 

 The most convenient and widely used technique for the kinetic studies of 

the oxidation of hydrocarbons is the measurement of oxygen absorption as a 

function of time by oxygen saturated liquid solution of the hydrocarbon, neat, or 

in an inert solvent (e.g. benzene).  Because the absorption of oxygen is generally 
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a slow process, a compound that decomposes at a known rate and efficiency to 

form free radicals is usually added to these experiments.  These compounds are 

called radical initiators, and are added to the oxidations in an amount so that, 

over the course of the oxidation, the rate of radical generation is many orders of 

magnitude greater than the rate of radical formation from the decomposition of 

the product hydroperoxides.  Initiators that are commonly used for these 

purposes are 2,2’-azobis(isobutyrylnitrile) (AIBN), 2,2’-azobis(2-amidinopropane) 

dihydrochloride (AAPH) and 2,2’-azobis(2,4-dimethylvaleronitrile) (AMVN) seen 

in Figure I-1. 

 

 
Figure I-1: Radical initiators commonly used in autoxidation experiments. 

 

 In hydrocarbon autoxidation, the observed initial rates of oxygen 

absorption are found to be (1) independent of oxygen, as long as the partial 

pressure of oxygen above the solution exceeds 100 torr, (2) one half order with 

respect to the concentration of the initiator, and (3) first order with respect to the 

concentration of the hydrocarbon.  The classical mechanism for autoxidation 

(seen below) involves two propagation steps.  A fast step (equation 4) in which 

oxygen adds to the intermediate alkyl radical, and a slower step (equation 5) 

involving hydrogen atom transfer. 
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Initiation: 

R-N=N-R  →  2 R●  +  N2     (2) 

R●  +  R1-H  →  R-H  +  R1
●    (3) 

Propagation: 

R1
●  +  O2  →  R1OO●     (4) 

R1OO●  +  R1-H  →  R1OOH  +  R1
●   (5) 

Termination: 

R1OO●  +  R1OO●  →  non-radical products  (6) 

Where R-N=N-R is the initiator and R1
● and R1OO● represent the chain-

propagating carbon-centered radical and peroxyl radical respectively.  At normal 

oxygen pressures, the rate constant for equation 4 is at or near the diffusion-

controlled rate (between 108 and 109 M-1s-1) and the possible bimolecular 

termination carbon-centered radicals are not important.  Under these conditions, 

equation 5 is the rate-limiting reaction and can be expressed by the following 

kinetic equation: 

dO2/dt  =  k5[R1OO●][R1-H]     (7) 

Under steady state kinetics, the rate of formation of radicals from the 

decomposition of initiator (equation 2) is equal to the rate of disappearance of 

these radicals from the system via equation 8: 

2k2[R-N=N-R]  =  2k4[R1OO●]    (8) 

Solving for [R1OO●] and substituting into equation 7 gives: 

dO2/dt  =  (k5/(2k4)1/2)(2k2[R-N=N-R])1/2[R1-H]  (9) 

Which is in agreement with experiment.21-23 
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 Provided that the value of 2k2, the rate constant for decomposition of the 

azo initiator, also written as kd, is known, the ratio of the rate constants for 

propagation and termination, k5/(2k4)1/2, can be determined from autoxidation 

studies.  Howard and Ingold pioneered the rotating sector method,24 which uses 

a combination of photochemical initiation and non-steady state techniques to 

determine values for k5.25  Because this is the rate-limiting reaction, the rate 

constant for this reaction is typically referred to as the propagation rate constant, 

kp.  The magnitude of this rate constant is almost entirely dependent upon the 

strength of the weakest C-H bond of the hydrocarbon.   

 Howard and Ingold were also able to define a range of values for k6 (also 

referred to as the termination rate constant, kt) as a function of the structure of 

the hydrocarbon moiety of the peroxyl radical.  Primary peroxyl radicals have 

values of kt in the range of 108 M-1s-1, secondary peroxyl radicals are in the 106-

107 M-1s-1 range, and tertiary peroxyl radicals terminate between 103-105 M-1s-1 at 

303 K.  This ordering is consistent with the mechanism of peroxyl radical 

termination first proposed by Russell in his study of the oxidation of 

ethylbenzene.26  The mechanism involves the formation of an intermediate 

tetroxide, which in the case of primary and secondary peroxyl radicals, 

decomposes to yield molecular oxygen, an alcohol, and a carbonyl compound: 

2 ROO●  →  ROOOOR  →  ROH  +  O2  +  R=O  (10) 

This reaction is slowed tremendously in the case of tertiary peroxyl radicals, and 

termination of the reaction is highly inefficient and complex in nature.27 
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 Although hydrocarbon autoxidation has been studied for some time, and 

many of the mechanistic details have been well determined for two generations, 

the significance of lipid peroxidation in human health has only become evident 

over the last two decades.  Over this time period, there has been an explosion of 

research in the area of radical-mediated damage to biomolecules in general, and 

attempts have been made to connect these events to the onset or development 

of various pathophysiological conditions.  We now use the extent of lipid 

peroxidation as a marker of cellular oxidative stress.28,29 Cellular oxidative stress 

is recognized to contribute to oxidative damage resulting from the metabolism of 

xenobiotic compounds, as well as from inflammatory processes, such as 

ischemia and reperfusion injury.30,31 

 Lipid peroxidation has the potential to affect humans on many levels.  The 

peroxidation of membrane lipids can alter the structural dynamics of cell, 

organelle, and nuclear membranes, which affects cellular homeostasis and leads 

to apoptosis.32  The peroxidation of low-density lipoproteins (LDL) lipids has been 

implicated in the oxidative modification of LDL and its uptake by macrophages, 

which are the initiating events of cardiovascular disease, such as 

atherosclerosis.33  While the direct consequences of lipid peroxidation are of 

significance, the accumulation and fate of the secondary products of lipid 

peroxidation have the potential to be the most significant to human health. 

 Lipid hydroperoxides are the initial products of lipid peroxidation, but they 

are relatively short-lived species.  They can either be reduced by glutathione 

peroxidases to unreactive lipid alcohols or they can undergo metal-catalyzed 



 8

decomposition reactions to give way to a variety of products that are generally 

more reactive than the parent lipid hydroperoxide.  Most common among these 

are the electrophilic aldehydes acrolein (AC), malondialdehyde (MDA), and 4-

hydroxynonenal (HNE).34,35  Acrolein is known to cause DNA damage through 

cross-links.36  Malondialdehyde is mutagenic in bacterial and mammalian cells 

and carcinogenic in rats.37  4-hydroxynonenal is weakly mutagenic but appears to 

be the major toxic product of lipid peroxidation.34 

 

 

  

 

Figure I-2: Electrophilic aldehydes formed from lipid peroxidation. 

 

To help understand the magnitude of oxidation products that can 

potentially form in our bodies, it is necessary to remember that most 

phospholipids in every membrane of every cell contain an unsaturated fatty acid 

residue esterified to the 2-position of the glycerol backbone.  Many of these acids 

are polyunsaturated, and the presence of a methylene-interrupted diene such as 

in linoleic acid and arachidonic acid allows them to be easily oxidized.  The high 

local concentration of these polyunsaturated fatty acids (PUFAs) in phospholipids 

makes the lipid bilayer a prime target for reaction with oxidizing agents and also 

provides the opportunity for these PUFAs to participate in lengthy free radical 

chain reactions.  The susceptibility of the PUFAs in our membranes to oxidation 

O
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has prompted the evolution of an extensive framework of small molecule 

antioxidants (e.g. vitamins E and C) and enzymes (e.g. superoxide dismutase, 

catalase, and glutathione peroxidase) whose sole functions are to prevent radical 

chain oxidation of membrane lipids or to minimize damage caused by oxidation. 

 

Phenolic Antioxidants 

 In 1922, Evans and Bishop found that when feeding rats a semi purified 

diet they would grow well, but when the female rats became pregnant, their 

pregnancies would not go to term.38  Instead, their pups would either die in the 

womb and be resorbed, or they were born dead.  When they supplemented the 

rats’ diet with fresh lettuce, and in later studies wheat germ, healthy pups were 

born.39 

 Evans determined that the mysterious missing substance in the semi 

purified diet was present in the lipid extract of lettuce, and thus was a fat-soluble 

compound which prevented fetal resorption.40  Evans also found that a deficiency 

of this component in the lipid extract caused damaging lesions in the testis and 

uterus of rats.41,42  Dr. Barnett Sure at the University of Arkansas and Dr. H. A. 

Mattill at the University of Iowa, independently found that a missing factor in the 

diet made male rats sterile and atrophied their testis.43  Evans proposed in 1925 

that this mystery compound should be referred to as Vitamin E, as it was an 

essential element for life.44     

 Following these three influential studies, the next decade revealed several 

physiological consequences of Vitamin E deficiency beyond fetal resorption in 



 10

female rats and sterility in male rats.  The most profound were muscle atrophy 

and adverse affects on the nervous system.  Also described were chicken 

encephalomalacia, muscular dystrophy in guinea pigs and rabbits, and paralysis 

of baby rats suckling Vitamin E deficient mothers.45-48 

In 1926, Evans and his group isolated an alcohol by distillation from plant 

oils.  The properties of this alcohol were consistent with those of Vitamin E.49  His 

group proposed the correct formula for α-tocopherol, the first isolated form of 

Vitamin E, now known as the most potent form.  β- and γ-tocopherol were 

isolated by Evans in 1937.50  Olcott and Emerson found the tocopherols to have 

the following relative activity as antioxidants: α > β > γ.51  Fernholtz determined 

the structure of α-tocopherol in 1938 (Figure I-3).43 

 

Figure I-3:  The tocopherols. 

 

Early structure activity studies of phenolic antioxidants revealed qualitative 

results similar to what investigators have more recently found experimentally.  

These early studies, done largely by Mattill and Olcott, revealed the basic 

requirements for a good antioxidant by measuring the induction period in 

rancidity tests with either lard or mixtures of lard and cod liver oil as the substrate 

fats.52,53  Results were interpreted in terms of the ratio of the induction period with 

O
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inhibitor to that of the unprotected fat, known as the antioxidant index.  Some 

general structure-activity relationships were derived from these antioxidant 

indices: 

1. An alcohol group directly attached to an aromatic ring (i.e., a phenolic 

moiety) is absolutely required.  The monomethyl ether of hydroquinone 

was active, but the dimethylether was inactive. 

2. Substitution with electron-releasing groups at the ortho- and para-

positions relative to the phenolic group increases the effectiveness of 

the phenol.  Meta-substituents appeared to have no effect. 

The mechanism of the inhibition lipid autoxidation by phenolic antioxidants 

did not become clear until the appropriate physical methods were available to 

study autoxidation.  Much of this work, done by Ingold and co-workers in the 

1960s, and then for Vitamin E in the 1980s, provided our current understanding 

of this topic.54-62 

 It is well established that phenolic compounds act as antioxidants by 

interrupting the free radical chain process.63  This chain-breaking occurs by 

transfer of the phenolic hydrogen atom to a chain-carrying peroxyl radical, 

forming a hydroperoxide and phenoxyl radical: 

ArOH  +  ROO●  →  ArO●  +  ROOH   (11) 

The phenoxyl radical is sufficiently stabilized so that it can no longer propagate 

the chain reaction by either of the two propagation steps: reaction with another 

substrate (R-H) to generate a carbon centered radical (R●) or reaction with 
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oxygen to yield an intermediate that reacts with R-H.  The rate constant for 

equation 11 is commonly referred to as the inhibition rate constant, kinh. 

 It has been shown for some time that, during lipid autoxidation, two 

oxidative chains are broken for every one molecule of antioxidant consumed.64  

The second chain is broken according to equation 12: 

ArO● + ROO●  →  non-radical products   (12) 

Although this is quite general, the first reaction is likely to be addition of the 

peroxyl radical at the C4 position of the phenol to generate the product in 

equation 13. 

 

            (13) 

 

This final compound decomposes to form non-radical products.64 

 The intervention and sacrificial service of the phenolic compound as an 

antioxidant relies heavily on the relatively slow rate of chain propagation.25  

Typical second-order rate constants for the reactions of phenols with peroxyl 

radicals range from 103-106 M-1s-1.54-62  There are two main reasons for the 

speed with which these reactions occur: 1) the relatively high (88-90 kcal mol-1) 

O-H BDE in the hydroperoxide formed65 and the relatively low (<88 kcal mol-1) O-

H BDE of the phenol;66 and 2) the low triplet-repulsion in the transition state for 

hydrogen atom transfer reactions between two oxygen atoms.67,68 
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 The competition between the phenol and the other chain-propagating 

reaction, the addition of oxygen to the carbon-centered radical (equation 14), is 

generally less important: 

ArOH  +  R●  →  ArO●  + R-H          (14) 

This is due to the diffusion-controlled reaction of molecular oxygen with most 

carbon-centered radicals to generate the chain-carrying peroxyl radical.  In order 

for the antioxidant to compete effectively with oxygen addition the antioxidant 

must be present in a 104 to 105-fold higher concentration than oxygen because 

phenols react with primary alkyl radicals with second order rate constants in the 

range of 103 to 105 M-1s-1.69  Because the solubility of O2 in most non-polar 

organic solvents is 10-3 to 10-4 M, this is a condition rarely met, and only likely 

occurs in situations where the partial pressure of oxygen is very low. 

 Because the O-H BDEs of alkyl hydroperoxides are essentially constant 

around 88-90 kcal mol-1, the O-H BDEs of phenols are more important in 

predicting the rate with which a phenol will react with a peroxyl radical.  Good 

correlation between the O-H BDE and kinh for phenols has been known since the 

early calorimetric work of Mahoney and DaRooge.70  Since then, the O-H BDEs 

of a variety of substituted phenols have been measured in solution by various 

methods, including photoacoustic calorimetry,66 electrochemistry,71 and EPR 

using the radical equilibration technique.72  These methods have served to 

validate one another, and it is now well accepted that the O-H BDE in phenol is 

87-88 kcal mol-1, and the O-H BDE in α-tocopherol is 77-78 kcal mol-1.  The 
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substituents on the phenolic ring of α-tocopherol produce a bond-weakening 

effect of 10 kcal mol-1 on the O-H bond compared to the unsubstituted phenol. 

 Because free radicals have been implicated in virtually every degenerative 

disorder from heart disease to Alzheimer’s disease, there appears to be room for 

antioxidants to play a positive role, if not as therapeutic agents, then as 

preventative agents.  The strong case for a destructive role of lipid peroxidation 

in human health has been made by looking at the accumulation of oxidized 

biomolecules, the harmful effects of these biomolecules in vitro and in vivo when 

subjected to oxidations, and the effect that antioxidants have on these 

processes.  Because it has been shown in vitro that phenolic chain-breaking 

antioxidants such as α-tocopherol inhibit the oxidation of many lipids under 

various conditions, it stands to reason that they may do so in vivo as well. 

 The largest body of evidence for positive effects of α-tocopherol is derived 

from studies on its use as a preventative agent in the development of 

cardiovascular disease (CVD). CVD is the most common cause of death for both 

men and women in the United States each year.  High levels of total plasma 

cholesterol (>200 mg/dl) and low-density lipoprotein (LDL, >130 mg/dl) have 

been identified as primary risk factors in the development of CVD.  In contrast, 

low levels of high-density lipoprotein (HDL, <35 mg/dl) also correlate with an 

increase in CVD.73,74 

 Lipoproteins function as a vehicle for the body to transport insoluble, or 

slightly soluble, cholesterol and lipids through the bloodstream.  The most 

commonly studied lipoprotein in the human body is LDL (Figure I-4), but there 
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are four other types of lipoproteins in human blood plasma which are classified 

by their density.  Lipoproteins containing more lipids and less protein are of lower 

density, and those containing fewer lipids and more protein are of higher density.  

The classes of lipoproteins from lowest to highest density are: chylomicrons 

(CM), very-low density lipoproteins (VLDL), low density lipoproteins (LDL), 

intermediate density lipoproteins (IDL), and high density lipoproteins (HDL). 

Figure I-4:  A schematic representation of the structure and function of an LDL 
particle.75 
 
 
 
 



 16

 Each lipoprotein has a different role in cholesterol transport and 

metabolism.  Cholesterol is synthesized in the liver and is delivered to tissues 

throughout the body as fatty acid esters by LDL.  HDL collects excess or 

modified cholesterol and lipids from tissues to be removed from circulation.  

Therefore, LDL, commonly referred to as “bad” cholesterol, and HDL, considered 

the “good” cholesterol have attracted the most attention from the health science 

community for their potential involvement in CVD. 

It is generally thought that the oxidation of fatty acids within the LDL 

particle is the first essential step in the oxidative modification of LDL.  The 

oxidatively-modified LDL has different biological properties than the unmodified 

LDL, resulting in interactions with scavenger receptors on the surface of 

macrophages and smooth muscle cells.  These interactions induce the formation 

of “foam” cells overloaded with lipids, a major factor in arterial narrowing.  Given 

the implication of fatty acid oxidation in this mechanism, much work has gone 

into better understanding the role of the small molecule antioxidants in the LDL 

particle (α- and γ-tocopherol, ubiquinol-10, and carotenoids) in preventing LDL 

oxidation.76-84 

 

Free-Radical Clocks 

 Griller and Ingold stated in 1980 that there is no general method for 

measuring the absolute rate constants of radical-molecule reactions.85  One of 

the most common examples for measuring these rate constants is the rotating 

sector method.  However, this method is restricted to radical chain processes 
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that can be initiated photochemically and are terminated by radical-radical 

reactions.  The chain must be relatively long, and therefore the radical 

propagation steps must be quite rapid.  Although this technique has proved 

valuable in kinetic studies of autoxidation and radical polymerization, there are 

many radical-molecule reactions that would be difficult or impossible to make into 

the rate-controlling propagation step of a chain reaction.  Some of these types of 

reactions are amenable to study by flash photolysis, pulse radiolysis or other 

special techniques, but many are not.86 

 The 5-hexenyl radical cyclization (Figure I-5) is one of the better known 

radical clocks used to determine the rate constant kH, for abstraction of a 

hydrogen atom from a substrate A-H by a primary carbon-centered radical 

(equation 15). 

R●  +  A-H  →  R-H  +  A●    (15) 

Figure I-5:  The 5-exo-trig cyclization of the 5-hexen-1-yl radical as a radical 
clock. 
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A simple kinetic analysis of the competition of Figure I-5 reveals that the 

product ratio [3]/[4] is directly proportional to the unknown rate constant kH, with 

the proportionality constant being the rate constant for the radical cyclization (kR) 

over the concentration of A-H (equation 19). 

d[3]/dt  =  kH[A-H][1]     (16) 

d[4]/dt  =  kR[1]     (17) 

[3]/[4]  =  (kH[A-H])/kR    (18) 

kH  =  (kR/[A-H])([3]/[4])    (19) 

This is an incredibly powerful approach and has been used to study various 

radical-molecule reactions.87,88 

Due to the large volume of literature documenting kinetics of carbon-

skeleton rearrangements (including cyclizations) of alkyl radicals, the radical 

clock method is ideally suited for hydrogen atom abstractions by alkyl radicals.  

Because of this, dozens of clocks have been calibrated in order to determine rate 

constants for equation 15 anywhere from 0.1 to 1013 M-1s-1.  This methodology 

has been used to study the kinetics of phenolic and 5-pyrimidinolic radical 

scavengers (ArOH).89,90   

The reduction of alkyl radicals by phenolic compounds in equation 14 is an 

important chain-breaking reaction in radical polymerization, and as such, 

understanding the kinetics of the reaction is very important in the design of better 

polymerization inhibitors and/or monomer stabilizers.  A lot can be considered 

anecdotal about the usefulness of a phenol as an antioxidant from the kinetics in 

equation 14, because it is generally unimportant in the context of autoxidation 
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because alkyl radicals undergo diffusion-controlled reactions with molecular 

oxygen to produce peroxyl radicals.  Therefore, the more important chain-

breaking reaction for radical trapping antioxidants is the reduction of peroxyl 

radicals, seen in equation 11. 

Rate constants for equation 11, commonly referred to as inhibition rate 

constants, kinh, are typically determined by studying the antioxidant-inhibited 

autoxidation of an oxidizable substrate.64  Styrene is the most commonly used 

substrate for these experiments and the consumption of oxygen is monitored in 

the presence, and absence, of an antioxidant.  Unfortunately, these experiments 

are time-consuming and present some limitations.  They require a rather 

extensive experimental setup because oxygen consumption is usually monitored 

by either a pressure transducer or EPR spectroscopy using a nitroxide spin 

probe.91-93  For those antioxidants where no clear induction period exists, a 

series of autoxidations need to be performed with a wide range of antioxidant 

concentrations.94  Given the relative ease with which conventional radical clock 

methods are carried out, and the lack of any requirement for specialized 

equipment, it would be very convenient to have a radical clock approach for the 

measurement of rate constants for equation 11. 

  

The Allylperoxyl Radical Rearrangement 

 The principle chain-carrying radicals in the autoxidation of olefins are 

known as allylperoxyl radicals.  These allylperoxyl radicals undergo [1, 3]-

rearrangements in which the oxygen atoms migrate across the allylic backbone 
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(Figure I-6).  The [1, 3]-allylperoxyl rearrangement is believed to be free radical in 

nature because this rearrangement can be initiated and inhibited with known 

radical initiators and inhibitors.  Peroxyl radicals are known to propagate the free 

radical chain sequence by hydrogen atom transfer from a parent hydroperoxide 

to product peroxyl radicals.  The mechanism of the allylperoxyl rearrangement 

has long been debated with several mechanisms proposed. 

  

 
Figure I-6:  The [1, 3]-allylperoxyl rearrangement. 
 
 
 

The three most often suggested mechanisms for the [1, 3]-allylperoxyl 

rearrangement are shown in Figure I-7.  In 1965, Brill made the first concrete 

proposal for the [1,3]-allylperoxyl rearrangement mechanism when he suggested 

a stepwise mechanism involving a 1,2-dioxolan-4-yl radical intermediate, 5.95  It 

has also been recognized that other viable possibilities include a concerted 

pathway (transition state 6) or a stepwise mechanism involving fragmentation to 

a dioxygen-allyl radical pair, as shown in 7. 

The allylperoxyl rearrangement is frequently called the Schenck 

rearrangement because it was first described by Schenck and co-workers in 

1958 when a novel rearrangement of a steroidal allylic hydroperoxide (8) 

occurred, leading to its regioisomer (9) (Figure I-8).96  Fifteen years later, it was 

shown by Smith that a second, slower, rearrangement occurred leading to 

compound 10.97  In 1989, with the same steroidal system, Beckwith and Davies 
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performed the rearrangement under an atmosphere of 36O2 and observed no 18O 

incorporation into 9, whereas 10 contained 73-83% 18O.98  It was suggested by 

these authors that the rearrangement of 8 to 9 involved a concerted mechanism, 

and the rearrangement of 9 to 10 proceeded via a dissociative mechanism 

 

 

 

 

 

 

 

 

Figure I-7:  Suggested mechanisms for the [1, 3]-allylperoxyl rearrangement. 

  

 
Figure I-8:  The rearrangement of a steroidal allylic hydroperoxide.99 
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methyl-3-pentene (Figure I-9).  He observed that either the tertiary or the 

secondary isomer rearranges to an equilibrium mixture containing equal amounts 

of both hydroperoxides.  Brill concluded that the rearrangement involved the five-

membered cyclic dioxolanyl radical, 11.95,100 

 

 

  

 

 

 

 

Figure I-9:  Brill’s mechanism of the [1, 3]-allylperoxyl rearrangement. 

 

Subsequent work by Brill with the pinene derived hydroperoxides 12 and 

13 disputed the possibility of a dioxolanyl radical intermediate when it was shown 

that the proposed intermediate 14 would not fragment to give the rearranged 

product 15, nor be trapped by molecular oxygen to give 16 (Figure I-10).101  The 

lack of evidence for products 15 or 16 strongly suggested that intermediate 14 

was not involved in the [1, 3]-allylperoxyl rearrangement mechanism. 

The final convincing evidence against the dioxolanyl radical intermediate 

was provided by Porter and Zuraw who independently synthesized a localized 

dioxolanyl radical and demonstrated that it could be trapped with molecular 

oxygen and did not suffer ring opening to peroxyl radicals (Figure I-11).102  The 
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proposed intermediate 17 was synthesized from a mercuric bromide precursor 

and was successfully trapped with O2 to give 18.  These studies suggested that 

in Brill’s experiment (Figure I-9) oxygen entrapment should have occurred if the 

dioxolanyl radical was a discrete intermediate, and no such product was found. 

 

Figure I-10:  The [1, 3]-allylperoxyl rearrangement of pinene derived 
hydroperoxides. 
 
 

 

 

 

Figure I-11:  Oxygen entrapment of a localized dioxolanyl radical. 
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Chan has shown that thermal rearrangement of 18O labeled radical 19 

derived from methyl linoleate, undergoes rearrangement under an 32O2 

atmosphere to give products corresponding to 20 and 21 in which atmospheric 

oxygen has been incorporated (Figure I-12).103  This suggests a fragmentation 

mechanism to give a pentadienyl radical intermediate.  However, a direct 

expansion to the allylperoxyl rearrangement cannot be assumed because of the 

fact that the dienyl radical has a much larger driving force for fragmentation; 11-

14 kcal mol-1 more resonance stabilization energy than the allyl radical.104 

 

 
Figure I-12:  Chan’s thermal rearrangement of 18O labeled methyl linoleate 
hydroperoxides. 
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atmospheric oxygen incorporation.  The results of these studies are in contrast to 

those obtained by Chan in the dienyl peroxyl rearrangements, but do not rule out 

the possibility of a caged radical pair species or a concerted rearrangement 

mechanism. 

 Further experiments by the Porter group with optically pure methyl oleate 

hydroperoxides (Figure I-13B) showed the peroxyl radical 24 at 40oC in hexane 

rearranged to 25 with essentially complete retention of stereochemical integrity, 

and vice versa for 24 to 25.106  Based on the observed stereochemistry and the 

labeling studies, the authors proposed an envelope-type transition state which 

collapses with ubiquitous retention of configuration. 

 

 A. 

 

B. 

 

 

Figure I-13:  Porter’s studies of [1, 3]-allylperoxyl radical rearrangement in the 
oleate peroxyl system. 
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rearrangement.  However, it was found that dioxolanyl radicals are minima on the 

energy surface, but the barrier to their formation and opening is prohibitively high.  

These calculations suggest that the lowest energy pathway is a fragmentation to 

give an allyl radical and oxygen within a solvent cage.107  A more recent 

theoretical investigation by Olivella and Sole reinforces the findings of Boyd and 

shows that a loosely-bound radical-dioxygen caged pair is lower in energy than 

β-fragmentation to an allyl radical and molecular oxygen.108  The transition state 

to this caged pair however, was calculated to be higher in energy than the free 

allyl radical and oxygen. 

Another piece of evidence which has been obtained on the [1, 3]-

allylperoxyl rearrangement was conducted by Porter and Mills who reinvestigated 

the rearrangements of optically pure trans-oleate peroxyl radicals in solvents of 

differing viscosity under a 36O2 atmospheres.109,110  Purposes of this study were 

to determine if there are observable cage effects in the rearrangement, as an 

allyl radical-dioxygen caged pair mechanism would suggest; and if so, how does 

solvent viscosity and temperature affect the stereo selectivity? 

 The generation of optically pure radical 26 in hydrocarbon solvents of 

varying degrees of viscosity, and under a 36O2 atmosphere, gave rearranged 

products 27 and 28.  It was determined that products which did not contain 18O 

(27) were formed with retention of stereochemistry and products which did 

contain 18O (28) were formed with random stereochemistry, as Figure I-14 

shows.  It was also found that the ratio of products 27 and 28 was highly 

dependent on solvent viscosity.  In less viscous solvents there was more 28 
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formed with an identical decrease in the production of 27.  Lastly, the 

stereoselectivity of product 27 was found to be independent of solvent 

viscosity.109,110  

 

Figure I-14:  Porter and Mills’ investigation into the [1, 3]-allylperoxyl 
rearrangement using solvent with differing viscosity. 
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stereoselectivity.  Analogous stereochemical and solvent viscosity studies 

performed on cis-allyl hydroperoxides gave very similar results.110 

The use of unsymmetrically labeled hydroperoxides have also been 

employed to study the [1, 3]-allylperoxyl rearrangement.  Results of these studies 

show that a competition exists between a concerted [1, 3] transfer of oxygen, and 

an allyl-dioxygen pair (Figure I-15).  Solvent studies with unsymmetrically labeled 

hydroperoxides indicated that solvent viscosity affects the partitioning between 

escape and cage collapse of the allyl-dioxygen caged pair.  An increase in 

solvent viscosity results in a decrease in escape product and an increase in 

radical pair collapse.111  

 

Figure I-15:  The results of Lowe and Porter’s 18O unsymmetrically labeled 
allylperoxyl rearrangement experiments at 40OC with their proposed 
mechanism.112 
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3. To further discuss the allylperoxyl radical rearrangement.  To give 

more insight into the mechanism of the rearrangement as well as 

introduce different techniques and substrates that can aid in its 

elucidation. 

4. To introduce a peroxyl radical clock based upon methyl linoleate 

oxidation that can be used to determine rate constants for the 

propagation of hydrocarbons (R-H) in the range of 100 to 104 M-1s-1. 
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CHAPTER II 

 

THE EFFECT OF OLEFIN GEOMETRY ON THE NON-CONJUGATED DIENE 
SYSTEM DURING POLYUNSATURATED FATTY ACID OXIDATIONS 

 
 
 

Introduction 

As discussed in chapter I, the autoxidation of polyunsaturated fatty acids 

(PUFAs) and esters has been the focus of intense investigation due to its 

potential importance in biology.1-5  When PUFAs and their esters are exposed to 

oxidative stress, the primary products are hydroperoxides.6-8  This oxidation 

process is a free radical chain reaction, which targets the non-conjugated diene 

moiety of PUFAs, such as methyl linoleate (1).  Oxidation is initiated by 

abstraction of the bis-allylic hydrogen atom generating a pentadienyl radical (2).  

Upon formation of the pentadienyl radical in methyl linoleate, O2 adds to the 13, 

11, or 9 positions (Figure II-1).  A sufficient hydrogen atom donor will trap the 

peroxyl radicals 3-5 generating hydroperoxides 6-8.   

Even though lipid peroxidation has been the focus of much research, 

details of the chemical mechanisms involved in the process have been scarce 

until recent years.  Most biological studies of peroxidation have utilized 

calorimetric assays such as the formation of conjugated dienes9 or the reaction 

of a lipid oxidation product with thiobarbituric acid to give a colored adduct10,11 as 

a measure of autoxidation.  Titrimetric methods have also been used to measure 

peroxide formation in the oxidations.12  All of these assays give only a crude 

indication of the autoxidation mechanism, and the nature of the chemical events 
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involved in the autoxidation of fatty acids and unsaturated phospholipids have 

remained a “black box” so to speak.  With new analytical techniques, the nature 

of the chemical processes involved in the autoxidation of lipids could be 

revealed. 

 
Figure II-1:  General mechanism of the kinetically controlled linoleate oxidation. 

 
 
 
Product mixtures obtained in polyunsaturated fatty acid random 

autoxidation are complex.  However, the primary processes leading to products 

have been firmly established.8, 13-16  Nevertheless, some kinetic and product 

studies are needed to address the important mechanistic questions in free-

radical lipid oxidation. 

The hydroperoxides formed during the course of the oxidation are highly 

dependent on the efficiency and concentration of the hydrogen atom donor.  For 
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example, when methyl linoleate is oxidized in the presence of low concentrations 

of α-tocopherol (<10 mM); trans, cis conjugated hydroperoxides (6, 8) are the 

major products formed.  However, in the absence of any antioxidant, the 

thermodynamic products (the analogous trans, trans conjugated hydroperoxides) 

are the major products formed.16  Under these conditions, β-fragmentation of the 

intermediate peroxyl radicals leads to products having the more stable trans, 

trans diene geometry. 

Brash13 and Porter14 have independently shown that the bis-allylic 

hydroperoxide is the major product formed when oxidations of methyl linoleate 

are carried out in the presence of high concentrations of α-tocopherol (>0.05M).14  

The mechanism shown in Figure II-1 was used as a basis for the analysis of 

product distribution in these oxidations.  Because the peroxyl radical leading to 

the hydroperoxide undergoes a very rapid β-fragmentation (106 s-1), high 

concentrations of antioxidant are necessary in order to observe the bis-allylic 

product.  It was also shown that this β-fragmentation serves as a useful radical 

clock for antioxidant hydrogen atom transfer to peroxyl radicals with bimolecular 

rate constants of ca. 106 M-1 s-1.14  

This chapter discusses more detailed studies on the formation of the bis-

allylic peroxyl radical and the subsequent β-fragmentation in the oxidation of 

octadecadienoates and model diene systems.  In addition to studies involving 

methyl linoleate previously reported, the effect of olefin geometry (trans, cis and 

trans, trans) on the formation and reactivity of other bis-allylic peroxyl radicals is 

discussed.  Although little is known about their reactivity, there is evidence that 
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geometric isomers of methyl linoleate (i.e. trans fatty acids) can play a significant 

role in biological systems.17-19 

 

Synthesis of Octadecadienoates and Model Dienes 

 

Methyl linoleate (1) and linoelaidate (10) are commercially available, and 

the cis, trans octadecadienoates (9a, 9b) can be synthesized as reported by 

Porter and Wujek.16  The model dienes are not commercially available.  

However, they can be synthesized in a straightforward manner, as seen in Figure 

II-2.   

Figure II-2:  Synthesis of model dienes.  Reagents: a) 1-heptyne, CuI, NaI, 
K2CO3, DMF; b) Pd/BaSO4, H2, EtOAc; c) NH3/ether, Li0, (NH4)2SO4; d) 1-
heptyne, n-BuLi, DMPU, THF, -78oC. 
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The cis, cis (11) and trans, trans (13) dienes are synthesized from a 

common intermediate diyne (14).  The diyne (14) was synthesized by a copper 

cross-coupling of 1-heptyne with 1-chloro-2-octyne.20-22  Lindlar hydrogenation 

using the more reactive Pd/BaSO4 catalyst gave 11, and a buffered Birch 

reduction23 of 14 yielded 13.  1-heptynyl lithium was added to trans-1-bromo-2-

octene24 and followed by the Lindlar hydrogenation used above in order to 

synthesize the unsymmetrical diene 12.  The synthesis of 15 via copper coupling 

has been reported, 25 but it was found that this procedure resulted in a mixture of 

regioisomers.  The desired regioisomer can be reached exclusively through the 

coupling of 1-heptynyl lithium with the allylic bromide in the presence of DMPU.  

The model dienes were purified by column chromatography on silver nitrate 

impregnated silica gel (SNIS) to ensure high isomeric purity.26 

 

Oxidation of Octadecadienoates and Model Dienes 

Oxidations of the model dienes and octadecadienoates (0.2 M) were 

carried out in benzene in the presence of varying concentrations of α-tocopherol 

(0.05-1.8 M) and were initiated by 2,2’-azobis(4-methoxy-2,4-

dimethylvaleronitrile) (MeOAMVN).  The reaction vials were incubated at 37 ºC 

for 4 h.  The relatively short reaction times allowed for low conversion of the 

substrate so that α-tocopherol was not consumed to a significant extent during 

any of the oxidations, ensuring pseudo-first order conditions.  The 

octadecadienoate hydroperoxides were analyzed directly by normal phase 

HPLC.  The diene hydroperoxides from 11-13 were reduced to the corresponding 
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alcohols 24-28 with PPh3 and subsequently analyzed by GC.  Only the kinetic 

products (Figure II-3) were observed under these conditions. 

 

 

 

 

 

 

 

 

 

 

Figure II-3:  Oxidation products of octadecadienoates (1, 9-10) and dienes (11-
13) in the presence of α-tocopherol. 
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substrates generated only the cis, trans and trans, trans conjugated 

hydroperoxides, respectively. A mixture of the two conjugated hydroperoxides 

(17 and 18, 20 and 22) was generated upon oxidation of the cis, trans substrates. 

Methyl octadecadienoates (1, 9-10) and the analogous model diene 

compounds (11-13) were used to study the effect of olefin geometry on the 

formation of the bis-allylic hydroperoxides.  The generality of the proposed 

mechanism (Figure II-1) can be analyzed by following the oxidations of the model 

dienes and focusing on the reactivity of the non-conjugated diene moiety without 

possible interference from another functional group in the compound.  The ester 

group present in the octadecadienoates should be too far removed from the 

reactive site of interest to have any significant effect on the oxidation of the 

octadecadienoates.  This potential issue was addressed by using the model 

dienes in parallel oxidation experiments.  The oxidation profiles of these model 

dienes are identical to the octadecadienoates, suggesting that the ester has no 

influence at the site of oxidation. 

The plot of the ratio of bis-allylic to conjugated products versus the 

concentration of α-tocopherol is shown in Figure II-4.  The profile for the product 

distribution is essentially the same for the octadecadienoates and dienes.  This 

indicates that the ester functionality does not influence the site of oxidation.  The 

oxidation profiles are nearly identical regardless of the substrate or the method of 

analysis, validating the analytical procedure. 
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The data clearly shows that for all compounds studied, the amount of bis-

allylic hydroperoxide increases with increasing α-tocopherol concentration at the 

expense of the conjugated products until a maximum limit is reached.  This 

observation is consistent with the proposed mechanism for linoleate shown in 

Figure  II-1.14   

  

Figure II-4:  Oxidation profile of octadecadienoates and dienes, ratio of bis-
allylic/conjugated products versus [α-Tocopherol]:  A: Octadecadienoates ♦ 
methyl linoleate, ■ 9-cis-13-trans-methyl linoleate, ▲ 9-trans-13-cis-methyl 
linoleate, ● methyl linoelaidate; B:  Dienes ♦ 9, 13-cis, cis-pentadecadiene, ▲ 9-
trans-13-cis-pentadecadiene, ● 9, 13-trans, trans-pentadecadiene.  Conditions: 
[α-tocopherol] = 0.05-1.8 M, [MeOAMVN] = 0.01 M, [substrate] = 0.15 M, T = 
37oC, t = 4 h. 

 
 
 
In the proposed mechanism from Figure II-1, O2 is partitioned among the 

three positions of the pentadienyl radical as follows:  terminal = 1-α/2, bis-allylic = 

α, and terminal = 1-α/2.  The peroxyl radicals subsequently abstract a hydrogen 

atom from α-tocopherol to generate the hydroperoxides.  Under the oxidation 

conditions used in these studies, the conjugated peroxyl radicals do not undergo 

β-fragmentation to generate the thermodynamic trans, trans conjugated 
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hydroperoxides.  Since the rate constant for this β-fragmentation is so slow (620 

s-1),16 it cannot compete with trapping of the peroxyl radicals by α-tocopherol. 

In contrast to the conjugated peroxyl radicals, the non-conjugated peroxyl 

radical undergoes a rapid β-fragmentation (kβ), regenerating the pentadienyl 

radical.  Competing with this β-fragmentation is hydrogen atom transfer (kinh) to 

the peroxyl radical by α-tocopherol with a rate constant of 3.5 x 106 M-1s-1.27-29  β-

fragmentation becomes negligible and a limit is reached as the concentration of 

α-tocopherol increases.  At this limit, the product distribution reflects the O2 

partition to the three positions of the pentadienyl radical. 

From Figure II-4 it can be seen that olefin geometry influences the 

partitioning of O2 across the pentadienyl radical.  The ratio of products arising 

from the oxidation of trans, trans compounds reaches a higher limit than the 

other compounds.  This indicates that as the trans character of the pentadienyl 

radical increases, so does O2 addition at the bis-allylic position.  Analysis of the 

mechanism leads to a kinetic expression (equation 1), which describes the 

product ratio as a function of α, kβ, kinh, and [α-tocopherol].  Non-linear least 

squares analysis of the oxidation data, using equation 1, allows the determination 

of values for α and kβ for the octadecadienoates and the model dienes (Table II-

1).  The data clearly shows that olefin geometry has an effect on the O2 

partitioning (α) and on β-fragmentation (kβ) of the bis-allylic peroxyl radical. 

 

 

 

[bis-allylic]

[conjugated]

α

1-α

kinh [α-Toc]

kinh [α-Toc] + kβ
= (1)
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There is also a rather small influence of olefin geometry on the tendency 

for β-fragmentation of non-conjugated peroxyl radicals.  The BDEs for the 4-

peroxyl radical derived from cis, cis; cis, trans; and trans, trans-2,5-heptadiene 

have been calculated to be 7.4, 7.9, and 8.4 kcal/mol, respectively.30  Since the 

trans, trans peroxyl radical has a stronger C-OO● bond than the analogous cis, 

cis substrate; kβ is expected to be slower for the trans, trans peroxyl radical.  

However, the cis, trans substrates do not follow this trend.  These compounds 

have the highest observed kβ of the substrates studied. 

 

Table II-1:  Values for O2 partitioning to the bis-allylic position (α) and the rate 
constant for subsequent β-fragmentation (kβ) of the bis-allylic peroxyl radical. 

  
Substrate α kβ (x106 s-1) 

   
methyl linoleate 0.44 (± 0.01) 2.32 (± 0.09) 

9-cis-13-trans-methyl linoleate 0.48 (± 0.01) 2.74 (± 0.18) 
9-trans-13-cis-methyl linoleate 0.47 (± 0.01) 2.84 (± 0.14) 

methyl linoelaidate 0.55 (± 0.02) 2.18 (± 0.17) 

9, 13-cis, cis-pentadecadiene 0.43 (± 0.01) 2.36 (± 0.10) 
9-trans-13-cis-pentadecadiene 0.48 (± 0.01) 2.69 (± 0.11) 

9, 13-trans, trans-pentadecadiene 0.55 (± 0.01) 2.02 (± 0.09) 
                                                   

                

                  

The oxidation profile demonstrates the delicate balance between the 

prooxidant and antioxidant properties of α-tocopherol.31-33  The extent of 

oxidation of the substrate increases as the concentration of α-tocopherol 

increases, up to a certain point.  This tendency is indicative of the ability of the α-

tocopheroxyl radical to mediate oxidation.  However, when the concentration of 
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α-tocopherol is increased beyond this point, the extent of substrate oxidation is 

decreased, showing the ability of α-tocopherol to act as an antioxidant (Figure II-

5).  Peroxyl radicals are more effectively scavenged when higher concentrations 

of antioxidant are present, thereby interrupting the free radical chain propagation 

steps (equations 4 and 5, Chapter I).   

 
Figure II-5:  % Oxidation of octadecadienoates and dienes in the presence of α-
tocopherol.  A: Octadecadienoates ♦ methyl linoleate, ▲ 9-cis-13-trans-methyl 
linoleate, ▪ methyl linoelaidate; B:  Dienes ♦ 9, 13-cis, cis-pentadecadiene, ▲ 9-
trans-13-cis-pentadecadiene, ▪ 9, 13-trans, trans-pentadecadiene.  Conditions: 
[α-tocopherol] = 0.05-1.8 M, [MeOAMVN] = 0.01 M, [substrate] = 0.15 M, T = 
37oC, t = 4 h. 
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cis, trans; and trans, trans-2, 5-heptadiene have been calculated as 72.7, 73.1, 

and 73.5 kcal/mol, respectively.30  Since the trans, trans diene has the strongest 

C-H bond; it is less prone to oxidation than the other compounds.  This is also 

consistent with reports that trans fatty acids undergo less oxidation than their cis 

counterparts in LDL oxidations.17 

As the trans character of the pentadienyl radical increases, the addition of 

O2 at the bis-allylic position (α) increases, consistent with ESR and theoretical 

predictions.  ESR34,35 and theoretical calculations30  (Table II-2) indicate that the 

pentadienyl radical formed from the trans, trans diene precursor should have 

higher unpaired spin (38% from the ESR data) at the bis-allylic carbon compared 

to the unpaired spin of the pentadienyl radical formed from the cis ,cis diene 

(36%).  For this pair of reactants, unpaired electron spin density on the 

intermediate pentadienyl radical parallels trapping by O2 at the bis-allylic position 

and a higher value for α (0.55) is observed for the trans, trans diene oxidations 

compared to the cis, cis precursor (0.43).   Similarly, ESR experiments suggest 

that the pentadienyl radical formed from the trans, cis precursors has 37% 

unpaired spin at the bis-allylic position and the values of α obtained (0.47) for 

these substrates (9a, 9b, and 12) are consistent with the fact that unpaired spin 

density is important in controlling the kinetic product distribution during oxidations 

of the octadecadienoates and the model dienes.   

Although experiment and theory show the same trends, the experimentally 

determined values for α are somewhat higher than the spin density ratios that 

have been calculated for model compounds and for those that have been 
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observed by ESR experiments.  The calculations were carried out using 2,5-

heptadiene as the model for octadecadienoates and recently published 

experiments indicate that there is a significant substituent effect on the 

partitioning of oxygen to pentadienyl radicals.36, 37 

 

Table II-2:  Unpaired Spin as Determined by ESR and Theory on Isomeric 
Pentadienyl Radicals. 

                             
R1 R2

      
R2

R1

      
R2R1

 
 
ESRa                0.32 : 0.36 : 0.32       0.30 : 0.37 : 0.33        0.31 : 0.38 : 0.31 

Theoryb        0.326 : 0.353 : 0.326    0.31 : 0.36 : 0.33     0.313 : 0.365 : 0.313 

O2 Trappingc        0.28 : 0.44 : 0.28       0.34 : 0.48 : 0.18      0.225 : 0.55 : 0.225 

a R and R’= methyl35; b R and R’= methyl30; the values given here were the result 
of UB3LYP/6-311+G(2d,2p); c Average distribution from diene substrates having 
identical diene geometry:  (1 and 11), (9a, 9b and 12), and (10 and 13).15 

 

In addition to probing the generality of the oxidation mechanism, the use 

of the octadecadienoates and model dienes offers the opportunity to use 

complimentary methods of product analysis to validate the methodology.  The 

fatty acid ester hydroperoxides (16-23) were analyzed by HPLC, whereas the 

diene oxidation products (24-28) were analyzed by GC.  These two methods 

allow the product distribution from each substrate to be verified.  The oxidation 

products of the model dienes can be independently synthesized which offers 

another advantage to the confirmation and characterization of compounds 24-28. 

The product mixtures of the octadecadienoates (1, 9-10) were analyzed by 

HPLC-MS utilizing silver coordination ion spray mass spectrometry (Ag-CIS-
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MS)38,39  This method has proven to be very useful in identifying intact 

hydroperoxides, as well as distinguishing the regioisomers present in an 

oxidation mixture.40,41  Coordination of silver to the hydroperoxides provides a 

mild method of generating a positively charged species that is detectable by MS.  

The silver ions present promote Hock fragmentation42-45 of the 

hydroperoxides in the MS to generate two aldehydes (Figure II-6).  The 13- and 

9-hydroperoxides (16, 17) fragment to generate aldehydes having a mass of 333 

and 293, respectively.  The 11-hydroperoxide (18) undergoes fragmentation on 

either side of the bis-allylic hydroperoxide, generating a mixture of two aldehydes 

(m/z 319 and 307).  The characteristic fragments that arise from each 

hydroperoxide are diagnostic and allow the assignment of each regioisomer 

present in the oxidation mixture.46  It should be noted that only the aldehyde 

fragment containing the ester functionality is detected by MS.  In addition to the 

HPLC-MS analysis, the hydroperoxides were isolated and analyzed by 1H NMR 

to confirm the double-bond geometry. 

The products formed from oxidation of the model dienes 11-13 were 

identified and verified by independent synthesis of the diene alcohols (Figure II-

7).  The cis, cis bis-allylic alcohol (24) was synthesized by addition of 1-heptynyl 

lithium to ethyl formate, giving diynol 29, followed by a Lindlar hydrogenation with 

the mild Pd/CaCO3/Pb catalyst.47  Addition of 1-heptyne to trans-2-octenal 

yielded 30.  This intermediate was converted to the cis, trans (26) and trans, 

trans (28) alcohols by the same Lindlar hydrogenation and lithium aluminum 

hydride (LiAlH4) reduction, respectively. 
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Figure II-6:  Hock fragments of linoleate hydroperoxide silver adducts. 
 
 
 
Synthesis of the cis, trans conjugated alcohol was achieved through a 

cascade of reactions.48  First, cis-3-nonenol was converted to the selenide (31) 

by displacement of the mesylate.  Oxidation of the selenide to the selenoxide 

with m-CPBA increases the acidity of the α-protons.  Deprotonation of the 

selenoxide (not shown) followed by addition of hexanal generates the necessary 

intermediate, which undergoes a selenoxide elimination to yield the desired 

compound 25.  The trans, trans conjugated alcohol (27) was easily prepared in 

one step by addition of pentylmagnesium bromide to trans,trans-2, 4-decadienal. 
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Figure II-7:  Synthesis of diene alcohols. Reagents: a) 1-heptyne, n-BuLi, THF, -
78oC; b) Pd/CaCO3/PB, H2, EtOAc; c) LiAlH4, THF, reflux; d) MsCl, pyr; LDA, 
hexanal, -78oC, iPr2NH, reflux; e) (PhSe)2, LiAlH4, THF; f) m-CPBA, THF, -78oC; 
g) H11C5MgBr, THF. 
 
 
 

Terminal Trapping of the Pentadienyl Radical 

The results for oxidation of the octadecadienoates with both alkenes 

having the same geometry (cis, cis or trans, trans) showed that O2 trapping at the 

terminal positions of the pentadienyl radicals (C9 and C13) were identical (Figure 

II-8A and D).  Due to the fact that the unpaired electron spin density is expected 

to be identical at the terminal pentadienyl positions for these substrates, this 

does not come as a surprise.  Unpaired spin density for the radicals derived from 

cis, trans dienes is not equal at the pentadienyl terminal positions (Figure II-8B 

and C), as indicated by theoretical calculations and ESR spectroscopy.30,34,35  
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Figure II-8:  Mole fractions of oxidation products.  A: oxidation of methyl 
linoleate; ♦ 13-cis, trans conjugated, ▲ 9-cis, trans conjugated, ● 11-cis, cis. B:  
oxidation of 9-cis-13-trans-methyl linoleate; ♦ 13-cis, trans conjugated, ▲ 9-trans, 
trans conjugated, ● 11-cis, trans. C: oxidation of 9-trans-13-cis-methyl linoleate; ♦ 
9-trans, cis, ▲ 13-trans, trans, ● 11-trans, cis; D: oxidation of methyl linoelaidate, 
▲ 9-trans,trans, ♦ 13-trans,trans, ● 11-trans,trans.  Conditions: [α-tocopherol] = 
0.05-1.8 M, [MeOAMVN] = 0.01 M, [substrate] = 0.15 M, T = 37oC, t = 4 h.  
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A previously reported study of the oxidations of 9a and 9b, in the absence 

of phenolic antioxidants, showed that twice as much trans, cis conjugated diene 

product was formed as compared to the trans, trans product.16  Data for O2 

trapping15 indicates that the trans, cis conjugated diene product is formed in 

preference to the trans, trans compound at the kinetic limit.   Theory and ESR 

experiments cannot account for the observed distribution of products based upon 

unpaired spin for these “unsymmetrical” systems.   

The data from Figures II-8B and C were analyzed under the assumption 

that formation of each conjugated hydroperoxide is a separate pathway, leading 

to Equations 2 and 3.  These equations are essentially the same as equation 1, 

but now it is not assumed that O2 is partitioned equally at the terminal positions 

of the pentadienyl radical.  The fraction of trapping at the bis-allylic position is still 

denoted as α, whereas trapping at the transoid and cisoid ends of the 

pentadienyl radical are denoted as β and γ, respectively (Table II-3).  Instead of 

collectively referring to terminal trapping as 1-α, the two termini are treated 

separately (i.e. β  + γ = 1-α).  Analysis of the data using these equations, in 

conjunction with Equation 1, gives the ratio of O2 trapping at the three positions 

of the “unsymmetrical” pentadienyl radical.  The data presented in Table II-3 

show the results of this analysis for 9a, 9b, and 12.  

If spin density controls the site of initial addition of oxygen to delocalized 

radicals, the major conjugated product would be expected to be the trans, trans 

conjugated diene hydroperoxide. Table II-4, and the results seen in Figures II-8 
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and II-10 (for the model dienes) show that spin appears to be slightly greater at 

the cisoid end of the pentadienyl radical compared to the transoid position for 

these unsymmetrical radicals.  Because of this discrepancy, the distribution of 

products formed from 9a, 9b, and 12 were analyzed as a function of antioxidant 

concentration by a more complex kinetic model (equations 2 and 3). 

 

    

 

 

Table II-3:  Kinetically controlled O2 trapping of unsymmetrical pentadienyl 
radicals. 

 
 

 
     Substrate       β    α    γ    

 

 9-cis-13-trans-methyl linoleate  0.35 0.48 0.16    

9-trans-13-cis-methyl linoleate  0.36 0.47 0.17  

9-trans-13-cis-pentadecadiene  0.32 0.48 0.21  

 

 

Figure II-9 shows the terminology used in classifying the sites of oxygen 

addition to an unsymmetrical pentadienyl radical.  The cisoid end (the parent cis-

double bond) of the pentadienyl radical is the position to which oxygen is added, 

leading to the trans, trans-conjugated product.  Likewise, the transoid end (the 
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parent trans-double bond) is where oxygen adds giving the trans, cis-conjugated 

product.  

 

 

Figure II-9:  Terminal Trapping of Pentadienyl Radical. 

 

The best-fit parameters for the analysis shown in Figure II-8 for 

octadecadienoates 9a and 9b and in Figure II-10 for diene 12 indicate that 

oxygen addition at the transoid end of a pentadienyl radical, β, is almost twice the 

value of oxygen addition at the cisoid end of the radical, γ.  This analysis is 

consistent with the earlier experimental results and confirms the conclusion that 

the unpaired spin density does not observably control the partitioning of oxygen 

in this geometrically unsymmetrical pentadienyl radical.  The product analysis of 

the cis, cis (1 and 11), trans, trans (10 and 13), and cis, trans (9a, 9b, and 12) 

octadecadienoates and dienes are identical to those substrates having the same 

double bond geometry around the pentadiene core (Figures II-8 and II-10). 
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Figure II-10:  Mole fractions of the model diene oxidation products.  A: 9, 13-cis, 
cis-pentadecadiene; ♦ 13-cis, trans conjugated, ▲ 9-cis, trans conjugated, ● 11-
cis, cis. B:  9-trans-13-cis-pentadecadiene; ♦ 13-trans, cis conjugated, ▲ 9-trans, 
trans conjugated, ● 11-cis, trans bis-allylic. C: 9, 13-trans, trans-pentadecadiene; 
▲ 13-trans, trans conjugated, ● 11-trans, cis bis-allylic.  Conditions: [α-
tocopherol] = 0.05-1.8 M, [MeOAMVN] = 0.01 M, [substrate] = 0.15 M, T = 37oC, t 
= 4 h. 
 
 
 

Dioxygen-Radical Complexes as Intermediates in Chain Oxidation 

The results from the oxidations of the octadecadienoates and model 

dienes have been analyzed with the assumption that a simple β-fragmentation of 
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the bis-allylic peroxyl radical, back to the parent pentadienyl radical, is the sole 

and decisive process that will interconvert the non-conjugated and conjugated 

peroxyl radicals.  However, there exists a large body of work on peroxyl radical 

rearrangements that should not be ignored when considering product 

distributions in autoxidations of unsaturated substrates.49-55   The use of 

isotopically labeled hydroperoxides or molecular oxygen in studies of 

hydroperoxide rearrangements has led to the conclusion that the rearrangement 

of conjugated diene hydroperoxides proceeds via a β-fragmentation.6,56  The 

rearrangement of simple allylic hydroperoxides, on the other hand, is more 

complex.   

A recent computational study has led to the proposal of an allyl-triplet 

dioxygen complex 32, as an intermediate in the rearrangement (Figure II-11).57  

Oxygen labeling and stereochemical studies of such rearrangements are 

consistent with this proposal.58-65  Calculations suggest that oxygen and an allyl 

radical are held in this complex by dispersion forces and that the observed 

degree of stereoselectivity of the rearrangement is due to the formation of 

complex 32, which prevents the allyl radical and triplet dioxygen complex from 

being released from the solvent cage, maintaining stereocontrol along the 

fragmentation-recombination processes.57  
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Figure II-11:  The allylperoxyl rearrangement mechanism with an allyl-triplet 
dioxygen intermediate. 
 
  

 It is speculated that such radical-dioxygen triplet complexes may intervene 

in the chemistry of the bis-allylic peroxyl radicals that are intermediates in this 

study.  The bis-allylic peroxyl radical derived from the oxidation of an 

unsymmetrical diene such as 12 from Figure II-3 could rearrange to the 

conjugated peroxyl radicals through two distinct isomeric radical-dioxygen 

complexes, 33 and 34 (Figure II-12). 

  

 

 

 

 

 

Figure II-12:  Bis-allylic peroxyl rearrangements through isomeric radical-
dioxygen intermediates. 
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The complex 33 derives from rearrangement across the trans-double 

bond, while 34 is formed from rearrangement across the cis-double bond.  The 

calculated low-energy conformation of 32 is a typical five-membered ring 

envelope structure and based upon that structure, one anticipates that the 

formation of 33 would be favored over the formation of 34.59  Substitution in 33 is 

di-equatorial on the ring while 34 must have one axial substituent.  Thus, product 

distribution in the oxidation may be biased due to the preferential formation of 33 

over 34, the consequence of which is the formation of the trans, cis 

hydroperoxide.  Experiments exploring the allylperoxyl radical rearrangement will 

be discussed in greater detail in Chapter III. 

 

 

Olefin Geometry Conclusions 

The autoxidations of cis, cis; cis, trans; and trans, trans non-conjugated 

dienes and their corresponding octadecadienoates give rise to kinetically 

controlled hydroperoxides.  Formation of the bis-allylic peroxyl radical and its 

subsequent β-fragmentation depends on the geometry of the alkene precursor 

and as a result the pentadienyl radical intermediate.  Significant unpaired 

electron spin density is present at the central carbon of the pentadienyl radicals 

and the bis-allylic hydroperoxide product that arises from addition at this position 

is the major kinetic product for each of the systems studied, provided a sufficient 

hydrogen atom donor is present.   
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Unpaired spin density is not the only factor that determines the position of 

oxygen addition to a delocalized radical, however.  We speculate that radical-

triplet dioxygen complexes may be intermediates in the formation and 

rearrangement of delocalized radicals.  Rearrangement of the bis-allylic peroxyl 

radicals to the conjugated peroxyl radicals occurs with rate constants between 

2.2 and 2.8 x 106 s-1.  This rearrangement can be used as a peroxyl radical clock 

regardless of the mechanism by which this rearrangement occurs.14 

  Although the previous studies were carried out using methyl linoleate, 

any of the substrates discussed here could be used in clocking experiments 

depending on the preference for HPLC or GC analysis.  This offers a very 

straightforward method for determining the rate constant of H-atom transfer to a 

peroxyl radical in the kinetic range of 105 to 106 M-1 s-1.14,66  Although the 

formation of bis-allylic hydroperoxides can only be observed at concentrations of 

α-tocopherol that are not normally encountered in vivo, the formation of these 

products may become important in confined systems, such as an enzyme active 

site,67 or a lipid particle having excellent H-atom donors present.29,66,68 

 

 

This work was completed with the help of Dr. Keri Tallman who conducted 

oxidation experiments on methyl linoleate, the cis, trans isomers of methyl 

linoleate, as well as the cis, cis- and cis, trans-pentadecadienes.  Dr. Tallman 

also synthesized the oxidation products of the cis, cis- and cis, trans-

pentadecadienes discussed in this chapter and described in detail below. 
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Experimental Methods 

 

General methods   

1H and 13C NMR spectra were collected on a 300 or 400 MHz NMR, using 

Bruker software.  HPLC analyses were carried out with a Waters 600 liquid 

chromatograph interfaced to a Waters 996 PDA detector.  Linoleate 

hydroperoxides were separated on a Beckman Ultrasphere silica column (0.46 x 

25 cm) using 0.5% iso-propanol/hexanes at 1.0 mL/min and detected at 207 nm.  

HPLC-MS analyses were carried out as previously described40 using a Beckman 

Ultrasphere narrow bore silica column (0.20 x 25 cm) with 0.5% iPrOH/hexanes 

(0.15 mL/min) and post-column addition of AgBF4/iPrOH (0.3 mM, 0.075 mL/min) 

(Figure II-13).  GC analyses were carried out with a Hewlett-Packard 6890 gas 

chromatograph equipped with a DB-5 (30 m x 0.32 mm x 0.25 mm) fused silica 

column from J&W Scientific.  The diene alcohols were separated using a 

temperature program of 100-180 ºC @ 5 º/min, 180-280 ºC @ 20 º/min (10 min) 

(Figure II-14).   
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Figure II-13:  Representative HPLC-MS chromatograms of a methyl linoleate 
oxidation mixture.  A:  HPLC-UV detection at 234 nm; B:  HPLC-UV detection at 
207 nm; C:  HPLC-MS (Ag CIS), intact hydroperoxides detected at 433.2 (M+Ag).   
HPLC-MS analyses were carried out using a Beckman Ultrasphere narrow bore 
(0.20 x 25 cm) silica column with 0.5% iPrOH/hexanes (0.15 mL/min) and post-
column addition of AgBF4/iPrOH (0.3 mM, 0.075 mL/min) as described in 
reference 40. 
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Figure II-14:  Representative GC chromatogram of the oxidation of 6, 9-trans, 
trans-pentadecadiene at 20x magnification.  The hydroperoxides formed in the 
oxidation were reduced to their corresponding diene alcohols with an excess of 
PPh3 and GC analyses were carried out on a Hewlett-Packard 6890 gas 
chromatograph equipped with a DB-5 (30 m x 0.32 mm x 0.25 mm) fused silica 
column from J&W Scientific.  The diene alcohols were separated using a 
temperature program of 100-180 ºC @ 5 º/min, 180-280 ºC @ 20 º/min (10 min).  
many of the peaks seen here are initiator derived, associated with α or present in 
the solvent, but do not interfere with the kinetic analysis. 
 
 
 

All synthetic reactions were carried out in oven-dried glassware under an 

atmosphere of argon.  All reagents were purchased from Aldrich unless 

otherwise specified.  Methyl linoleate and linoelaidate were purchased from Nu-
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Chek Prep and chromatographed on silica (10% EtOAc/hexanes) prior to use.  

The initiator, 2,2’-azobis(4-methoxy-2, 4-dimethylvaleronitrile) (MeOAMVN), was 

obtained from Wako and dried under high vacuum for 2 h.  α-Tocopherol was 

purchased from Aldrich and purified by flash chromatography (10% 

EtOAc/hexanes on silica), protected from light and oxygen.  It is crucial that the 

α-tocopherol be purified prior to use and dried overnight under high vacuum. 

THF and CH2Cl2 were dried using a solvent purification system from 

SolvTech.  Anhydrous DMF was used in the propargyl chloride copper coupling 

reactions.  Pyridine, Et3N, iPr2NH, and DMPU were distilled from CaH2.  Benzene 

was passed through a column of alumina.  NBS was recrystallized from H2O and 

dried under high vacuum overnight.  m-CPBA was purified by washing a benzene 

solution with phosphate buffer (pH 7.4).   

The synthesis of the cis, trans-octadecadienoates (9a and 9b) have been 

reported.16,69  All other compounds were synthesized and freshly 

chromatographed on silica (9a and 9b with 10% EtOAc/hexanes, the 

pentadecadienes with hexanes) prior to use to remove any oxidation products.   

All dienes were purified on silver nitrate impregnated silica gel (SNIS).26  

SNIS TLC plates were made by elution of silica plates in aqueous AgNO3 (10%).  

The plates were air-dried, then dried at 100 ºC for 1 h.  The silica gel was made 

by making slurry of silica gel in 10% AgNO3/MeOH and stirring for 10-15 minutes.  

CH3CN was added to aid in dissolution of the AgNO3.  The solvent was removed 

in vacuo and the silica gel dried overnight under high vacuum.  The TLC plates 

and silica gel were stored protected from light.  
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General Procedure for oxidations 

Stock solutions of each octadecadienoate or diene (1.5-1.7 M), 

MeOAMVN (0.1 M), and α-tocopherol (1.0 M) were made up in benzene.  For 

samples containing high concentrations, neat α-tocopherol (2.2 M) was used.  

Samples were made up in autosampler vials with a total reaction volume of 100 

µL.  It was important to add the solutions in the following order to avoid 

premature oxidation:  α-tocopherol (0.05-1.8 M), octadecadienoate or diene 

(0.15-0.17 M), MeOAMVN (0.01 M) and diluted to 100 µL with benzene.  The 

sealed samples were then incubated at 37 ºC for 4 h. 

After 4 h, the oxidation was stopped by the addition of BHT (50 µL of 1.0 

M solution in hexanes), followed by the addition of the internal standard (benzyl 

alcohol (5 mM) for octadecadienoates and tetradecane (5 mM) for dienes).  The 

octadecadienoate samples were diluted to 1.0 mL with hexanes and analyzed by 

HPLC as their hydroperoxides.  The diene samples were reduced with PPh3 (50 

µL of 1.0 M solution/hexanes) and analyzed by GC. 

 

Synthetic procedures 

Synthesis of (Z, Z)-6, 9-pentadecadiene (11).  

Pd/BaSO4 (0.26 g, 10% (wt)) and quinoline (0.90 mL, 

40% (wt)) were added to a solution of 6, 9-pentadecadiyne (2.56 g, 0.013 mol) in 

EtOAc (130 mL) and charged with H2.  After 7 h, the reaction mixture was filtered 

through Celite.  The organics were washed with 5% HCl (50 mL), saturated 

NaHCO3 (50 mL), brine, and dried over MgSO4.  The product was purified by 
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column chromatography (hexanes) and isolated as a colorless liquid (1.97 g, 

75%).  Product of higher purity (>95% by GC) was obtained after SNIS 

chromatography (9:1 to 4:1, hexanes: toluene). 1H NMR (CDCl3) δ 5.38 (m, 4H), 

δ 2.80 (t, 2H, J=6.1Hz), δ 2.08 (q,  4H, J=6.5Hz), δ 1.38 (m, 12H), δ 0.92 (t, 6H, 

J=6.6Hz); 13C NMR (CDCl3) δ  130.4, 128.2, 31.8, 29.6, 27.4, 25.9, 22.8, 14.3; 

HRMS (EI) calculated 208.2186, observed 208.2169. 

 

Synthesis of (6E, 9Z)-6, 9-pentadecadiene (12).  

Pd/BaSO4 (0.27 g, 10% (wt)) and quinoline (1.0 mL, 

40% (wt)) were added to a solution of cis-6-pentadecadien-9-yne (2.64 g, 0.013 

mol) in hexanes (65 mL) and the reaction mixture charged with H2.  After 3.5 h, 

the reaction mixture was filtered through Celite.  The filtrate was washed with 5% 

HCl (50 mL), brine, and dried over MgSO4.  The product (2.37 g, 88%) was 

purified by column chromatography (hexanes) and isolated as a colorless liquid.  

SNIS chromatography (9:1 to 4:1, hexanes: toluene) yielded product with purity 

>95%, as determined by GC. 1H NMR (CDCl3) δ 5.43 (m, 4H), δ 2.75 (t, 2H, 

J=5.1Hz), δ 2.03 (m,  4H), δ 1.33 (m, 12H), δ 0.913 (t, 3H, J=7.1Hz), δ 0.908 (t, 

3H, J=6.9Hz); 13C NMR (CDCl3) δ 131.0, 130.6, 128.5, 127.9,  32.8, 31.8, 31.7, 

30.7, 29.6, 29.5, 27.3, 22.8, 14.3; HRMS (EI) calculated 208.2186, observed 

208.2202. 
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Synthesis of (E, E)-6, 9-pentadecadiene (13).23  NH3 

(200 mL) was condensed into a flask at –78 °C.  A 

solution of 6, 9-pentadecadiyne (6.27 g, 0.031 mol) in ether (60 mL), tert-butanol 

(75 mL, 0.78 mol), and (NH4)2SO4 (41.5 g, 0.31 mol), was added to the NH3.  Li° 

(2.17 g, 0.31 mol) was subsequently added in portions.  The reaction mixture 

turned blue upon the addition of Li°, then slowly dissipated over time.  After 30 

min, NH4Cl (33.4 g, 0.61 mol) was added, the reaction mixture warmed to room 

temperature, and the NH3 allowed to evaporate.  The reaction mixture was 

diluted with H2O (200 mL) and extracted with hexanes (3 x 150 mL).  The 

organics were washed with 5% HCl (100 mL), brine, and dried over MgSO4.  

Column chromatography (hexanes) yielded the product as a colorless liquid (5.21 

g, 82%).  Higher purity (>95% by GC) product was obtained after SNIS 

chromatography (9:1 to 4:1, hexanes: toluene). 1H NMR (CDCl3) δ 5.42 (m, 4H), 

δ 2.69 (t, 2H, J=3.8Hz), δ 2.00 (q,  4H, J=6.8Hz), δ 1.32 (m, 12H), δ 0.90 (t, 6H, 

J=6.5Hz); 13C NMR (CDCl3) δ 131.3, 128.8, 35.9, 32.8, 31.7, 29.5, 22.8, 14.3; 

HRMS (EI) calculated 208.2186, observed 208.2202. 

 

Synthesis of 6, 9-pentadecadiyne (14).20-22  1-

Heptyne (7.2 mL, 0.055 mol) and 1-chloro-2-octyne 

(6.0 mL, 0.039 mol) were added to a suspension of K2CO3 (7.58 g, 0.055 mol), 

CuI (11.1 g, 0.058 mol), and NaI (8.83 g, 0.059 mol) in DMF (80 mL).  Upon 

stirring, the reaction mixture turned green.  The reaction was monitored by GC.  

After stirring overnight, the reaction mixture was diluted with ether (150 mL) and 
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filtered through Celite.  The organics were washed with NH4Cl (100 mL), then the 

aqueous layer was back-extracted with ether (150 mL).  The organic layer was 

washed with brine and dried over MgSO4.  Column chromatography (hexanes to 

19:1, hexanes: EtOAc) yielded the  product (7.39 g, 93%) as a yellow liquid. 1H 

NMR (CDCl3 ) δ 3.06 (p, 2H, J=2.4Hz), δ 2.10 (tt, 4H, J1=2.4Hz, J2=7.0Hz), δ 1.44 

(m, 8H), δ 1.28 (m, 8H), δ 0.85 (t, 6H, J=7.1Hz); 13C NMR (CDCl3) δ 80.4, 74.6, 

31.2, 28.5, 22.4, 18.8, 14.1, 9.7; HRMS (EI) calculated 204.1873,  observed 

204.1913. 

 

Synthesis of (E)-6-pentadecaen-9-yne (15).  n-BuLi 

(12.9 mL, 2.5 M/hexanes, 0.032 mol) was added to a 

solution of 1-heptyne (4.5 mL, 0.034 mol) in THF (100 mL) at –78 °C.  After 15 

min, DMPU (8.3 mL, 0.069 mol) and a solution of trans-1-bromo-2-octene (4.35 

g, 0.023 mol) in THF (5 mL) were added.  The reaction was allowed to warm 

slowly to room temperature.  After stirring overnight, the reaction mixture was 

poured into saturated NH4Cl (100 mL) and extracted with hexanes (3 x 100 mL).  

The organics were washed with brine and dried over MgSO4.  Column 

chromatography (hexanes) yielded the product (3.76 g, 80%) as a colorless 

liquid. 1H NMR (CDCl3) δ 5.67 (m, 1H), δ 5.39 (m, 1H), δ 2.86 (dt, 2H, J1=1.3Hz, 

J2=3.7Hz), δ 2.17 (tt, 2H, J1= 2.4Hz, J2=7.0Hz), δ 2.00 (q, 2H, J=6.8Hz), δ 1.50 

(m, 2H), δ 1.31 (m, 10H), δ 0.90 (t, 3H, J=6.9Hz), δ 0.88 (t, 3H, J=6.9Hz); 13C 

NMR (CDCl3) δ 132.0, 124.9, 82.2, 77.7, 32.5, 31.6, 31.3, 29.3,  29.0, 22.8, 22.5, 

22.2, 19.0, 14.3, 14.2; HRMS (EI) calculated 206.2029, observed 206.1987. 
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Synthesis of (Z, Z)-6, 9-pentadecadien-8-ol (24).  

Pd/CaCO3/Pb (0.19 g, 10% (wt)) and quinoline (1.0 

mL, 8.46 mmol) were added to a solution of 6, 9-pntadecadiyn-8-ol (1.83 g, 8.34 

mmol) in hexanes (40 mL) and charged with H2.  After 2 h, the reaction mixture 

was filtered through Celite.  The filtrate was washed with 5% HCl (25 mL), 

saturated NaHCO3 (25 mL), brine, and dried over MgSO4.  Column 

chromatography (5:1 to 4:1, hexanes:EtOAc) yielded the  product (1.57 g, 84%) 

as a pale yellow liquid. 1H NMR (CDCl3) δ 5.45 (m, 4H), δ 5.24 (dt, 1H, J1=1.9Hz, 

J2=7.4Hz), δ 2.11 (m, 4H), δ 1.64 (br s, 1H), δ 1.42-1.25 (m, 12H), δ 0.88 (t, 6H, 

J=7.0Hz); 13C NMR (CDCl3) δ 132.1, 131.3, 63.9, 31.7, 29.5, 28.0, 22.7, 14.2; 

HRMS (ES+) calculated (M+Na) 247.2032, observed 247.2040. 

 

Synthesis of (7E, 9Z)-7, 9-pentadecadien-6-ol 

(25).48 m-CPBA (1.41 g, 8.17 mmol) was added to a 

solution of 1-phenylseleno-3-nonene (2.04 g, 7.25 mmol) in THF (36 mL) at -

78OC.  After 30 min, LDA [prepared by the addition of n-BuLi (6.4 mL, 2.5 

M/hexanes, 16.0 mmol) to a solution of iPr2NH (2.3 mL, 16.4 mmol) in THF (3 

mL)] was added and the reaction mixture stirred for 10 min.  Hexanal (1.1 mL, 

9.16 mmol) was subsequently added dropwise.  After 1.5 h, iPr2NH (1.3 mL, 9.28 

mmol) and hexanes (30 mL) were added and the reaction mixture refluxed for 15 

min.  The reaction mixture was cooled to room temperature and diluted with 

hexanes (50 mL).  The organics were washed with 10% K2CO3 (50 mL), 5% HCl 

(50 mL), saturated NaHCO3 (50 mL), brine, and dried over MgSO4.  Column 
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chromatography (9:1, hexanes:EtOAc) yielded the product as a yellow liquid 

(1.13 g, 70%).  1H NMR (CDCl3) δ 6.48 (dd, 1H, J1=11.0Hz, J2=15.2Hz), δ 5.97 (t, 

1H, J= 11.0Hz), δ 5.65 (dd, 1H, J1=6.9Hz, J2=15.2Hz), δ 5.45 (dt, 1H, J1=7.6Hz, 

J2=10.7Hz), δ 4.12 (q, 1H, J=6.6Hz), δ 2.18 (q, 2H, J=7.1Hz), δ 1.66 (br s, 1H), δ 

1.50 (m, 2H), δ 1.41-1.31 (m, 12H), δ 0.89 (t, 6H, J=6.7Hz); 13C NMR (CDCl3) δ 

136.0, 133.2, 127.9, 126.0, 73.1, 37.5, 32.0, 31.7, 29.5, 27.9, 25.3, 22.8, 22.7, 

14.2; HRMS (ES+) calculated (M+Na) 247.2032, observed 247.2023. 

 

Synthesis of (6E, 9Z)-6, 9-pentadecadien-8-ol (26).    

Pd/CaCO3/Pb (1.18 g, 20% (wt)) and quinoline (2.1 

mL, 40% (wt)) were added to a solution of 6-pentadecadien-9-yn-8-ol (5.79 g, 

0.026 mol) in EtOAc (260 mL) and charged with H2.  After 2 h, the reaction 

mixture was filtered through Celite.  The filtrate was washed with 5% HCl (50 

mL), saturated NaHCO3 (50 mL), brine, and dried over MgSO4.  After column 

chromatography (9:1 to 4:1, hexanes:EtOAc), the  product was isolated as a pale 

yellow liquid (4.82 g, 82%).  1H NMR (CDCl3) δ 5.69 (dt, 1H, J1=6.6Hz, 

J2=15.3Hz), δ 5.44 (m, 3H), δ 4.88 (t, 1H, J=7.0Hz), δ 2.08 (q, 2H, J=6.5Hz), δ 

2.01 (q, 2H, J=7.0Hz), δ 1.75 (br s, 1H), δ 1.41-1.28 (m, 12H), δ 0.87 (t, 6H, 

J=6.4Hz); 13C NMR (CDCl3) δ 132.1, 131.7, 131.3, 69.0, 32.4, 31.65, 31.57, 29.4, 

29.0, 27.8, 22.6, 14.2; HRMS (ES+) calculated (M+Na) 247.2032, observed 

247.2037. 
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Synthesis of (7E, 9E)-7, 9-pentadecadien-6-ol (27).  

Pentylmagnesium bromide (4.2 mL, 2.0 M/ether, 8.40 

mmol) was added to a solution of trans, trans-2, 4-decadienal (1.0 mL, 5.63 

mmol) in THF (28 mL) at –78 °C, then warmed to room temperature.  After 

stirring overnight, the reaction mixture was poured into saturated NH4Cl (50 mL) 

and extracted with hexanes (3 x 70 mL).  The organics were washed with brine 

and dried over MgSO4.  Column chromatography (4:1, hexanes:EtOAc) yielded 

the product as a pale yellow liquid (1.21 g, 96%).  1H NMR (CDCl3) δ 6.13 (dd, 

1H, J1=10.4Hz, J2=14.9Hz), δ 5.99 (dd, 1H, J1= 10.5Hz, J2=14.9Hz), δ 5.65 (dt, 

1H, J1=6.9Hz, J2=14.9Hz), δ 5.53 (dd, 1H, J1=7.0Hz, J2=15.0Hz), δ 4.05 (q, 1H, 

J=6.3Hz), δ 2.33 (s, 1H), δ 2.05 (q, 2H, J=6.8Hz), δ 1.48 (m, 2H), δ 1.41-1.27 (m, 

12H), δ 0.87 (t, 6H, J=6.9Hz); 13C NMR (CDCl3) δ 135.3, 133.9, 130.9, 129.7, 

72.8, 37.4, 32.7, 31.9,  31.5, 29.1, 25.3, 22.7, 22.6, 14.14, 14.12; HRMS (ES+) 

calculated (M+Na) 247.2032, observed 247.2040. 

 

Synthesis of (E, E)-6, 9-pentadecadien-8-ol (28).  

LiAlH4 (0.28 g, 7.43 mmol) was added to a solution of 

6-pentadecadien-9-yn-8-ol (0.54 g, 2.45 mmol) in THF (12 mL) and refluxed.  

The reaction was monitored by GC.  After 30 min, the reaction mixture was 

cooled to room temperature and quenched with H2O (2 mL) and NaOH (2 mL), 

then diluted with additional H2O (25 mL).  The aqueous layer was extracted with 

hexanes (3 x 40 mL).  The organics were washed with brine and dried over 
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MgSO4.  The product (0.33 g, 60 %) was isolated as a pale yellow liquid after 

column chromatography (9:1, hexanes:EtOAc). 1H NMR (CDCl3) δ 5.64 (t, 2H, 

J1=6.6Hz, J2=15.4Hz), δ 5.48 (dd, 2H, J1=1.0Hz, J2=6.3Hz, J3=15.4Hz), δ 4.50 (t, 

1H, J=6.3Hz), δ 2.01 (q, 4H, J=6.6Hz), δ 1.88 (s, 1H), δ 1.39-1.24 (m, 12H), δ 

0.87 (t, 6H, J=6.7Hz); 13C NMR (CDCl3) δ 132.2, 131.8, 73.8, 32.3, 31.5, 28.9, 

22.7, 14.2; HRMS (ES+) calculated (M+Na) 247.2032, observed 247.2045. 

 

Synthesis of 6, 9-pentadecadiyn-8-ol (29).47  n-BuLi 

(21.0 mL, 2.5 M/hexanes, 0.053 mol) was added to a 

solution of 1-heptyne (7.5 mL, 0.057 mol) in THF (100 

mL) at –78 °C.  After 10 min, ethyl formate (2.0 mL, 0.025 mol) was added and 

the reaction mixture allowed too warm slowly to room temperature.  After 2 h, the 

reaction mixture was poured into saturated NH4Cl (70 mL) and extracted with 

EtOAc (3 x 100 mL).  The organic layer was washed with brine and dried over 

MgSO4.  The product (5.24 g, 96%) was isolated as a yellow liquid after column 

chromatography (5:1 to 4:1, hexanes:EtOAc). 1H NMR (CDCl3) δ 5.06 (dt, 1H, 

J1=2.0Hz, J2=6.9Hz), δ 2.58 (d, 1H, J= 7.0Hz), δ 2.18 (dt, 4H, J1=1.7Hz, 

J2=7.1Hz), δ 1.48 (p, 4H, J=7.1Hz), δ 1.29 (m, 8H), δ 0.86 (t, 6H, J=7.0Hz); 13C 

NMR (CDCl3) δ 84.9, 78.2, 52.4, 31.1, 28.1, 22.2, 18.7, 14.0. 
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Synthesis of (E)-6-pentadecadien-9-yn-8-ol (30).  n-

BuLi (13.0 mL, 2.5 M/hexanes, 0.033 mol) was added 

to a solution of 1-heptyne (4.6 mL, 0.035 mol) in THF 

(100 mL) at –78 °C.  After 15 min, trans-2-octenal (4.0 mL, 0.027 mol) was 

added.  After 30 min, the reaction mixture was poured into saturated NH4Cl (100 

mL) and extracted with hexanes (3 x 130 mL).  The organic layer was washed 

with brine and dried over MgSO4.  The product was purified by column 

chromatography (9:1 to 4:1, hexanes:EtOAc) and isolated as a pale yellow liquid 

(5.79 g, 97%).  1H NMR (CDCl3) δ 5.84 (dt, 1H, J1=6.7Hz, J2=15.2Hz), δ 5.55 (dd, 

1H, J1=  6.0Hz, J2=15.2Hz), δ 4.79 (br s, 1H), δ 2.21 (dt, 2H, J1=1.8Hz, J2=7.1Hz), 

δ 2.19 (s, 1H), δ 2.03 (q, 2H, J=6.9Hz), δ 1.51 (p, 2H, J=7.0Hz), δ 1.43-1.20 (m, 

10H), δ 0.88 (t, 3H, J=7.0Hz), δ 0.87 (t, 3H, J=6.8Hz); 13C NMR (CDCl3) δ 133.5, 

129.7, 86.8, 79.9, 63..2, 32.0, 31.5, 31.2,  28.7, 28.4, 22.6, 22.3, 18.8, 14.1, 14.0; 

HRMS (ES+) calculated (M+Na) 245.1876, observed 245.1882. 

 

Synthesis of (Z)-1-phenylseleno-3-nonene (31).  

LiAlH4 (20 mL, 1.0 M/THF, 0.020 mol) was added slowly 

to a solution of (PhSe)2 (7.50 g, 0.024 mol) in THF (80 mL).  The solution turned 

from dark orange to a cloudy yellow.  After 20 min, a solution of (Z)-3-nonen-1-ol 

methanesulfonate (3.50 g, 0.016 mol) in THF (10 mL) was added.  After stirring 

overnight, the excess (PhSe)2 was reduced by the addition of LiAlH4 until the 

yellow color dissipated and TLC showed the disappearance of the (PhSe)2.  The 

reaction was quenched with saturated NaHCO3 (100 mL), and extracted with 
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hexanes (3 x 150 mL).  The organics were washed with brine and dried over 

MgSO4.  The product was purified by column chromatography (9:1, 

hexanes:EtOAc) and isolated as a yellow liquid (2.67 g, 60%).  1H NMR (CDCl3) 

δ 7.41 (m, 2H), δ 7.16 (m, 3H),  δ 5.33 (m, 2H), δ 2.82 (t, 2H, J=7.4Hz), δ 2.35 (q, 

2H, J=6.8Hz), δ 1.27-1.15 (m, 6H), δ 0.80 (t, 3H, J=6.5Hz); 13C NMR (CDCl3) δ 

132.7, 132.0, 130.6, 129.2, 128.0, 126.9, 31.7,  29.5, 28.1, 27.6, 27.5, 22.7, 14.3; 

HRMS (EI) calculated 282.0881, observed 282.0916. 

 

Synthesis of trans-1-bromo-2-octene.24  NBS (4.28 g, 0.024 

mol) was added to a solution of (E)-2-octen-1-ol (3.0 mL, 

0.020 mol) and PPh3 (5.77 g, 0.022 mol) in CH2Cl2 (100 mL) at –20 °C, then the 

reaction mixture was allowed to warm to room temperature.  The reaction turned 

yellow-orange upon warming to rt.  After 1.5 h, the reaction mixture was 

concentrated to half the volume and diluted with hexanes (200 mL) to crash out 

most of the Ph3P=O, then filtered.  The organics were washed with H2O (75 mL), 

brine, and dried over MgSO4.  Chromatography (9:1, hexanes:EtOAc) through a 

short plug of silica yielded the product (2.91 g, 77%) as a colorless liquid. 1H 

NMR (CDCl3) δ 5.72 (m, 2H), δ 3.95 (d, 2H, J= 7.0Hz), δ 2.06 (q, 2H, J=6.8Hz), δ 

1.38 (m, 2H), δ 1.29 (m, 4H), δ 0.89 (t, 3H, J=6.7Hz); 13C NMR (CDCl3) δ 136.9, 

126.4, 33.8, 32.2, 31.5, 28.6, 22.7, 14.2; HRMS (EI) calculated 190.0352, 

observed 190.0340. 
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Synthesis of (Z)-3-nonen-1-yl methanesulfonate.  

Methanesulfonyl chloride (1.1 mL, 0.014 mol) was added 

dropwise to a solution of cis-3-nonen-1-ol (2.0 mL, 0.012 mol) in pyridine (50 

mL).  After 4 h, the reaction mixture was diluted with H2O (100 mL) and extracted 

with ether (3 x 100 mL).  The organic layer was washed with 5% HCl (100 mL), 

saturated NaHCO3 (100 mL), brine, and dried over MgSO4.  The product was 

purified by column chromatography (2:1, hexanes:EtOAc) and isolated as a 

yellow liquid (2.19 g, 84%).  1H NMR (CDCl3) δ 5.54 (m, 1H), δ 5.33 (m, 1H), δ 

4.19 (t, 2H, J=6.9Hz), δ 2.99 (s, 3H), δ 2.49 (1, 2H, J=7.5Hz), δ 2.03 (q, 2H, 

J=7.0Hz), δ 1.37-1.24 (m, 6H), δ 0.87 (t, 3H, J=6.7Hz); 13C NMR (CDCl3) δ 134.4, 

122.7, 69.5, 37.6, 31.6, 29.3, 27.5, 22.7, 14.2; HRMS (ES+) calculated (M+Na) 

243.1025, observed  243.1038. 
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CHAPTER III 

 

ALLYLBENZENE DERIVED PEROXYL RADICAL CLOCKS AND STUDIES 
TOWARDS THE ALLYLPEROXYL RADICAL REARRANGEMENT 

 
 
 

Introduction 

 In Chapter I, free radical clocks were discussed as an indirect method for 

determining radical-molecule reaction kinetics by competition between a 

unimolecular reaction that has a known rate constant and a bimolecular 

reaction with an unknown rate constant.  Figure I-3 showed the 5-hexenyl 

radical cyclization clock for determining kH of abstraction of a hydrogen atom 

from a substrate A-H by a primary carbon-centered radical, through competition 

kinetics.  The product ratio of non-cyclized to cyclized product is directly 

proportional to kH and therefore allows kH (bimolecular) to be determined as 

long as kR (unimolecular) is known.1 

The first peroxyl radical clock developed in the Porter laboratory was the 

non-conjugated product of methyl linoleate oxidation seen in Chapter II.2 Using 

this non-conjugated β-fragmentation, which has a unimolecular rate for β-

fragmentation of 2.6x106 s-1 (calibrated to α-tocopherol, 3.5 x 106 M-1s-1), the 

Porter group has been able to determine the inhibition rate constants of 

antioxidants that donate hydrogen atoms nearly an order of magnitude faster 

than α-tocopherol (106-107).3, 4  Though these initial experiments have proven 

to be useful in being able to do what EPR and oxygen consumption 

experiments have not been able to, most commercially useful antioxidants do 
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not have kinh values so high.  Commercial antioxidants typically have a kinh 

value in the range of 104 to 105 M-1s-1, and because of this, a clock with a 

unimolecular rate constant of either 104 or 105 s-1 is required for these 

compounds. 

It is well established that phenolic compounds, commonly referred to as 

chain-breaking antioxidants, act as antioxidants by interrupting the free radical 

chain process.5  This chain-breaking occurs by transfer of the phenolic 

hydrogen atom to a chain-carrying peroxyl radical forming a hydroperoxide and 

phenoxyl radical: 

ArO-H  +  ROO●  →  ArO●  +  ROO-H   (1) 

The phenoxyl radical is sufficiently stabilized so that it can no longer 

propagate the chain reaction by either of the two propagation steps: reaction 

with another substrate (R-H) to generate a carbon centered radical (R●) or 

reaction with oxygen to yield an intermediate that reacts with R-H.  The rate 

constant for Equation 1 is commonly referred to as the inhibition rate constant, 

kinh.  These rate constants are typically determined by studying the antioxidant-

inhibited autoxidation of an oxidizable substrate.6  Styrene is the most 

commonly used substrate for these studies, and the consumption of oxygen is 

monitored in the presence and absence of an antioxidant.   

Unfortunately, these experiments are time-consuming and present some 

limitations.  They require a rather extensive experimental setup (as oxygen 

consumption is usually monitored by either a pressure transducer or EPR 

spectroscopy using a nitroxide spin probe).7-9  Also, for those antioxidants 
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where no clear induction period exists, a series of autoxidations need to be 

performed with a wide range of antioxidant concentrations.10  Given the relative 

ease with which conventional radical clock methods could be carried out, and 

the lack of any requirement for specialized equipment, it would be very 

convenient to have a radical clock approach for the measurement of rate 

constants for equation 1. 

In this chapter, the discussion will focus on the use of allylbenzene as a 

peroxyl radical clock.  Many allylbenzene derivatives were designed in order to 

determine substituent effects on the peroxyl radical β-fragmentation, but after 

the experiments were completed, it was found that their was a negligible effect 

on kβ between allylbenzene and these derivatives. 

The following discussion begins with the initial experiments conducted in 

order to determine α and kβ for the oxidation of allylbenzene, the synthesis of 

the allylbenzene derivatives, and the initial clocking experiments of 

allylbenzene and its derivative α-methyl allylbenzene (10).  When it was 

discovered that α-tocopherol (as well as the other phenols tested) were being 

consumed, the calibration and clocking experiments had to be redesigned in 

order to ensure pseudo-first order kinetics, and as a result, accurate 

determinations of kinh.  The middle of Chapter III discusses the corrected 

experiments as well as the new, accurate clocking data.  The final part of this 

chapter discusses the use of specific allylbenzene derivatives to give 

supporting evidence to the allylperoxyl radical rearrangement mechanism. 
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Design of Allylbenzene as a Peroxyl Radical Clock 

Little is known about the thermochemistry of the C-OO● bond that is 

made (and eventually broken) in the reaction in equation 2: 

R●  +  O2  →  ROO●     (2) 

Many groups have worked to address the lack of information regarding this 

biologically important process.  Two of the more recent studies have provided 

somewhat unexpected results.11,12  The Knyazev study showed that increasing 

alkyl substitution at the peroxyl-bearing carbon leads to a stronger C-OO● 

bond, favoring the right-hand side of equation 2, which is contrary to the trends 

in radical stability of carbon-centered radicals.  Mulder’s data show a modest 

correlation with the stability of the carbon-centered radical.  However, there are 

many notable exceptions.11  To account for these differences, the possibility of 

an anomeric effect has been suggested in structures where a heteroatom is 

bonded to the peroxyl-bearing carbon, such as in a peroxyl radical derived from 

triethylamine and tetrahydrofuran. 

Pratt and Porter have shown that C-OO● BDEs are largely unrelated to 

the stability of the alkyl radical formed by β-fragmentation.13  Instead, in methyl 

peroxyls substituted with electron-donating groups, C-OO● BDEs are affected 

by substantial hyperconjugative interactions between the substituents on the 

peroxyl-bearing carbon and the C-O bond.14  This hyperconjugative effect of 

electron-donating groups relies on a filled n or π orbital on the substituent, and 

can have very large effects on the equilibrium between alkyl radicals and their 
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corresponding peroxyl radicals.  In methylperoxyls substituted with electron-

withdrawing groups the remaining effect involves the inductive withdrawal of 

electrons from, and therefore the destabilization of, the polarized C-O bond 

because there is no interaction with the empty σC-O* orbital.  Therefore, despite 

the fact that both electron-withdrawing and electron-donating groups stabilize 

carbon-centered radicals, they mediate the equilibrium between a peroxyl 

radical and the parent alkyl radical very differently.   

The design of these slower peroxyl radical clocks was aided in large part 

by theoretical work done by Derek Pratt.15  From his calculations it was found 

that peroxyl radical clocks based on the allylbenzene molecule would lower the 

β-fragmentation of the C-O peroxyl bond by at least one order of magnitude 

compared to the β-fragmentation of the non-conjugated product from methyl 

linoleate oxidation.  By adding an electron donating substituent to the benzylic 

position, one should be able to lower the β-fragmentation by an order of 

magnitude further, down to 104 s-1.13 

 Competition kinetics can be applied to the oxidation of allylbenzene (1), 

following the mechanism in Figure III-1.  By monitoring the oxidation of 

allylbenzene and specific derivatives, kβ (the rate of fragmentation of the C-O 

peroxyl bond) and α (the amount of radical trapped at the benzylic position) 

were determined using a non-linear least squares analysis (equation 3). 

 

 

 

[6]

[7]

α

1 - α

kinh [α-Toc]

kinh [α-Toc] + kβ
= (3)
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Figure III-1: Mechanism of oxidation of allylbenzene in the presence of α-
tocopherol.  For our purposes, the product hydroperoxides are reduced with tri-
phenylphosphine giving the corresponding alcohols 6 and 7. 

 
 
 
The mechanism for the autoxidation of allylbenzene is very similar to that 

of methyl linoleate (Figure II-1).  Hydrogen atom abstraction from the benzylic 

position yields an α-vinylbenzyl radical, which is trapped by O2 generating the 

nonconjugated and conjugated peroxyl radicals 2 and 3, respectively.15  The 

fraction of α-vinylbenzyl radicals trapped at the benzylic position and leading to 

the nonconjugated peroxyl radical is defined as α, analogous to the partitioning 

of O2 at the central position of the nonconjugated dienes.  Similarly, this 

nonconjugated peroxyl radical (2) undergoes β-fragmentation (kβ) in 

competition with hydrogen atom transfer (kinh), setting up the “intermediate” 

peroxyl radical clock for hydrogen atom donor processes that occur at or near 

105 M-1s-1.  Kinetic analysis of the mechanism in Figure III-1, using equation 3, 

leads to the same relationship between product ratio, α, kβ, kinh, and 
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concentration of hydrogen atom donor as defined in Chapter II for the kinetically 

controlled autoxidation of methyl linoleate. 

 

Synthesis of Allylbenzene Derivatives and Oxidation Products 

Allylbenzene (1) is a commercially available room temperature liquid, 

and extremely inexpensive, as are the oxidation products (following 

triphenylphosphine (PPh3) reduction) α-vinylbenzyl alcohol and cinnamyl 

alcohol (6 and 7, respectively).  Allylanisole (8) is also commercially available.  

The other allylbenzene derivatives (Figure III-2), as well as their oxidation 

products were synthesized.  This section briefly describes the synthetic 

methodology used to obtain the compounds necessary for the oxidation and 

rearrangement experiments described in this chapter.  Detailed synthetic 

procedures can be found in the Experimental Methods section at the end of the 

chapter. 

 

 

 

 

 

 

 
Figure III-2:  Allylbenzene derivatives used as peroxyl radical clocks. 8; 
allylanisole. 9; 2-octenylbenzene. 10; α-MeAB.  11; 2-cis-phenylbutene. 12; 2-
trans-phenylbutene. 
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α-MeAB has been prepared in literature; typically by organometallic 

reactions involving ethylene to install the terminal olefin,16 and also by the 

coupling of α-methyl benzyl magnesium chloride (or the corresponding 

organozinc reagent) with vinyl bromide.17  The second coupling procedure 

afforded very low yields due to the formation of 2, 3-diphenylbutane as a side-

product in the preparation of the α-methyl benzyl magnesium chloride 

precursor.  Wittig olefination using 2-phenylpropionaldehyde and methyl 

triphenylphosphonium bromide however proceeded smoothly in good yield 

(Figure III-3A).  It should be noted that the Wittig reaction was unsuccessful 

when butyllithium was used to deprotonate the methyl triphenylphosphonium 

bromide, while the use of potassium t-butoxide proved successful.  Distillation 

of α-MeAB from the reaction mixture yielded a large amount of the isomerized 

product α, β-dimethylstyrene.  However, it was quickly discovered that a short 

silica gel column eluted with pentane worked much better for purification 

purposes.  2-octenylbenzene (9) was synthesized by a similar Wittig reaction 

using phenylacetaldehyde and hexyl triphenylphosphonium bromide (Figure III-

3B). 

 

A. 
 
 
 
 
B. 
 
 
 
Figure III-3:  The synthesis of α-MeAB and 2-octenylbenzene. 
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Preparation of the phenylbutenes (11 and 12) followed a different 

synthetic route (Figure III-4).  11 and 12 have been reported in the literature for 

use as mechanistic probes of antibody-catalyzed elimination reactions.18  The 

synthetic procedure was quite simple, coupling benzyl bromide to either cis- or 

trans-propenylmagnesium bromide using tetrakis(triphenylphosphine)-

palladium.  However, this synthesis was both time consuming and low yielding 

for our purposes.  An easy alternative route was to switch the reagents, using 

benzylmagnesium chloride and cis- or trans-bromopropene.  This improved the 

yields and lowered the reaction times compared to the literature procedure.  

Changing the palladium catalyst from tetrakis(triphenylphosphine)palladium to 

Pd(dppf)Cl2 greatly improved the overall yield of the reaction as well as 

dramatically shortening the reaction times.  Although Pd(dppf)Cl2 is not as 

commonly used at tetrakis(triphenylphosphine)palladium, it is commercially 

available and not too expensive, allowing this new synthetic procedure to be 

scaled up quite easily.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III-4:  The synthesis of 2-cis- and 2-trans-phenylbutene. 
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In addition to the substrates discussed above, authentic standards of the 

expected oxidation products were prepared.  The oxidation products of 2-

octenyl benzene (13 and 14, Figure III-5) were easily synthesized, each in one 

step.  The non-conjugated product (13) was synthesized through a Grignard 

reaction of phenylmagnesium bromide and trans-2-octenal, while the 

conjugated product 14 was obtained by the addition of pentylmagnesium 

bromide to cinnamaldehyde, both in very good yields.  

 

 
Figure III-5:  The synthesis of the oxidation products of 2-octenyl benzene. 

 

The conjugated alcohol product of α-methyl allylbenzene (16) was 

obtained by a Horner-Wadsworth-Emmons reaction between 2-phenyl-

propionaldehyde and triphenylphosphonoacetate with sodium hydride in THF.  

The intermediate ester 15 was then reduced with di-iso-butylaluminum hydride 

(DIBAL) to give the conjugated product 16.  The non-conjugated product (17) 

was synthesized by a Grignard reaction with vinyl magnesium bromide and 

phenylpropionaldehyde (Figure III-6). 
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Figure III-6:  The synthesis of the oxidation products of α-methylallylbenzene. 

 

The oxidation products of 11 and 12 were synthesized according to 

Figure III-7 in good yields, and easily purified on a silica gel column.  The 

conjugated product 18 was obtained in one step by a sodium borohydride 

reduction of the corresponding ketone with cesium chloride in methanol.  The 

cis- and trans-non-conjugated products, 20 and 21 respectively, were 

synthesized independently because both products are possible during an 

oxidation of 11 or 12.  It should be noted that through the course of the 

oxidation experiments it was found that oxidation of 11 led to 18 and 20 

exclusively, while oxidation of 12 led to 18 and 21.  Compounds 20 and 21 

were obtained in one step from the intermediate alkynol 19.  Alkynol 19 was 

obtained from the addition of benzaldehyde to propynylmagnesium bromide in 

THF.  20 was obtained exclusively by the catalytic hydrogenation using 

palladium on calcium carbonate, while 19 was reduced with lithium aluminum 

hydride (LiAlH4) giving the trans-product 21. 
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Figure III-7:  Synthesis of the cis- and trans-phenylbutene oxidation products. 

 

The oxidation products of allylanisole (8) were quite easy to prepare as 

well (Figure III-8).  The non-conjugated product (22) was easily prepared 

through Grignard reaction in one step using anisaldehyde and vinylmagnesium 

bromide in THF.  The conjugated product 23 was obtained by the reduction of 

the corresponding aldehyde following the procedure used to obtain 16 in Figure 

III-6.  Both products were obtained in good yields and excellent purity, >98% by 

GC. 

 

 

 

 

 

  

Figure III-8:  Synthesis of the allylanisole oxidation products. 
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With the oxidation products in hand, analysis of the oxidation mixtures 

was straightforward.  All non-conjugated products easily separated from their 

conjugated isomers on normal phase HPLC, and a common standard (benzyl 

alcohol) was used in all cases as a reference which allowed for accurate 

determination of the concentration of the oxidation products.  Equation 3 was 

used to determine α and kβ for allylbenzene and its derivatives 8 through 13 as 

discussed below. 

 

Calibration of Allylbenzene and Derivatives 

Calibration of allylbenzene was initially set-up following the parameters 

for the oxidation of methyl linoleate2 discussed in Chapter II with 0.2 M 

allylbenzene and 0.01 M MeOAMVN in benzene at 37oC for 4 h with the 

concentration of α-tocopherol ranging from 0.013 to 1.76 M.  These reactions 

were unsuccessful in producing any noticeable amount of oxidation products.  

The substrate concentration was then increased approximately 10-fold to 2.3 M 

and the initiator concentration was increased slightly to 0.015 M, while the 

duration of the oxidation was increased to 6 hours.  Under these new 

conditions, ample amounts of oxidation products were formed, and were easily 

detected by normal phase HPLC, and, when reduced with PPh3, by GC as well. 

It was immediately clear from the data that β-fragmentation of the 

intermediate α-vinylbenzyl peroxyl radical (2) was much slower than that of the 

bis-allylic peroxyl radical reported for methyl linoleate (2.6x106 s-1) because the 

ratio of non-conjugated to conjugated oxidation products were unchanged for 
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most of the data points in the same range of α-tocopherol (0.013 M to 1.76 M).  

Decreasing the concentration of α-tocopherol to 0.01 through 0.55 M shown in 

Figure III-9 gave kβ = 1.4x105 s-1 and α = 0.69, when fit using equation 3.   

Figure III-9:  Calibration of allylbenzene and its derivatives in the presence of 
α-tocopherol. 1; allylbenzene. 8; allylanisole. 9; 2-octenylbenzene. 10; α-MeAB.  
11; 2-cis-phenylbutene. 12; 2-trans-phenylbutene.  [substrate] = 2.3 – 3.4 M; [α-
tocopherol] = 0.01 – 0.55 M; [MeOAMVN] = 0.015 M; T = 37oC; t = 6 h. 

 
 
 

 When it was discovered that α-tocopherol was being consumed in the 

calibration experiments, the methodology had to be analyzed and changed 

accordingly to allow for pseudo-first order kinetics.  Without pseudo-first order 

kinetic conditions being met, the peroxyl radical clock method will not allow for 

accurate clocking of phenols and other hydrogen atom donors.  Therefore, the 

data presented in Table III-1 are not necessarily accurate.  However, from 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

[α-tocopherol] (M-1s-1)

[n
on

-c
on

ju
ga

te
d-

O
H

] /
 [c

on
ju

ga
te

d-
O

H
]

1 8 9 10 11 12



 92

Table III-1 it can be seen that the most interesting clocks will be allylbenzene 

and αMeAB due to the fact that these compounds are the easiest to obtain and 

analyze, as well as having the greatest difference in kβ. 

 

Table III-1:  Calibrated values for allylbenzene derived peroxyl radical clocks. 

Clock α kβ (s-1) 
 

allylbenzene 0.73 (±0.07) 1.3(±0.2)x105 

allylanisole 0.76 (±0.10) 2.4(±0.4)x105 

2-octenylbenzene 0.66 (±0.09) 1.4(±0.3)x105 

αMeAB 0.61 (±0.07) 1.6(±0.4)x104 

2-cis-phenylbutene 0.42 (±0.06) 1.8(±0.2)x105 

2-trans-phenylbutene 0.44 (±0.05) 2.7(±0.2)x105 

  
 
 
 The reaction time, and α-tocopherol concentrations would be the first 

conditions to adjust in order to make the necessary changes to the allylbenzene 

calibrations.  It turned out that only the α-tocopherol concentration needed to 

be changed.  As can be seen in Figure III-10, when the α-tocopherol 

concentration is above 0.15 M, less than 5% consumption of hydrogen atom 

donor is seen, ensuring the necessary condition of pseudo-first order kinetics.  

Similarly with αMeAB, when α-tocopherol concentration is greater than 0.15 M, 

almost all of the α-tocopherol (>95%) remains in the oxidation, assuring 

pseudo-first order kinetics. 
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Figure III-10:  Consumption of α-tocopherol during the calibration of 
allylbenzene and αMeAB.  [α-tocopherol] = 0.1-1.2 M; [substrate] = 2.3 M; 
[MeOAMVN] = 0.015 M; T = 37oC; t = 6 h. 
 
 
 
 Once these appropriate conditions were determined, calibration of 

allylbenzene and αMeAB proceeded smoothly (Figure III-11).  While the α and 

kβ values had little to no change when calibrating allylbenzene, the calibration 

of αMeAB showed dramatic change in both α and kβ (Table III-2).  This was 

initially unfortunate due to the fact that αMeAB showed promise to be very 

useful in clocking slower phenols (104 to 103 M-1s-1), and now it became 

obvious that αMeAB would not be an improvement to allylbenzene at these 
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Figure III-11:  Calibration of allylbenzene and αMeAB under new conditions.  
[α-tocopherol] = 0.17-1.17 M; [substrate] = 2.3 M; [MeOAMVN] = 0.015 M; T = 
37oC; t = 6 h. 
 
 
 
Table III-2:  α and kβ values for allylbenzene and αMeAB without consumption 
of α-tocopherol. 
 

Substrate α kβ (M-1s-1) 
   

allylbenzene (new) 0.74(±0.12) 2.6(±0.3)x105 
allylbenzene (original) 0.73(±0.07) 1.3(±0.2)x105 

   
αMeAB (new) 0.69(±0.14) 1.7(±0.4)x105 

αMeAB (original) 0.61(±0.07) 1.6(±0.4)x104 
 
 
  
 Because αMeAB showed little difference in the rate of β-fragmentation 

when compared to allylbenzene, and because allylbenzene is commercially 

available, it was decided that allylbenzene would be used for clocking 
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experiments of intermediate hydrogen atom transfer processes, 106-104 M-1s-1.  

Another reason to exclude αMeAB from further clocking experiments was that 

the ratio of non-conjugated product versus conjugated product in oxidations of 

αMeAB showed very little drop off at lower concentrations of α-tocopherol.  

This trend is a necessity in the calibration experiments and, although not 

pronounced, the calibration of allylbenzene did show this trend.  It was not 

initially known if the β-fragmentation of allylbenzene would be slow enough to 

clock hydrogen atom transfer processes in the 104-103 M-1s-1 range, however, 

as can be seen in the next section, this issue proved to be inconsequential. 

 

Clocking Experiments with Allylbenzene 

Autoxidations of allylbenzene, initiated by 2,2’-azobis-(4-methoxy-2,4-

dimethylvaleronitrile) (MeOAMVN), were carried out in benzene or 

chlorobenzene at 37 ºC in the presence of varying concentrations of hydrogen 

atom donor.  Appropriate conditions were determined above such that a 

negligible amount (<5%) of hydrogen atom donor was consumed because the 

kinetic analysis assumes a constant concentration of hydrogen atom donor.  

Higher concentrations of substrate and longer reaction times were required for 

allylbenzene, as compared to autoxidations of methyl linoleate, to obtain 

sufficient yields of oxidation products for analysis.  This is consistent with the 

higher C-H BDEs predicted for the allylbenzene derived compounds.19  

In addition to measuring the product ratio derived from each oxidation 

(Figure III-12), the product ratios (conjugated/nonconjugated) for each clock 
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were plotted as a function of the hydrogen atom donor concentration (Figure III-

13).  When the data was fit using equation 3, the values for the rate constants 

of inhibition (kinh) of the different hydrogen atom donors were determined.  The 

consumption of hydrogen atom donors was also monitored by HPLC (Figure III-

14) and presented in Figure III-15. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III-12:  Representative HPLC chromatogram at 207 (top) and 234 
(bottom) nm of an allylbenzene oxidation in the presence of α-tocopherol.  
Benzyl alcohol (0.01 M) was used as the internal standard.  [α-tocopherol] = 0.8 
M; [allylbenzene] = 2.3 M; [MeOAMVN] = 0.015 M; T = 37oC; t = 6 h. 
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Figure III-13:  Plot of hydrogen atom donor vs. product ratio (conjugated/non-
conjugated) used for determining kH’s of hydrogen atom donors in allylbenzene 
clocking experiments. [NMBHA] = 0.02-0.45 M; [2,4,6-TMP] = 0.02-0.45 M; 
[BHT] = 0.22-1.33 M ; [allylbenzene] = 2.3 M; [MeOAMVN] = 0.015 M; T = 
37oC; t = 6 h. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III-14:  Representative HPLC chromatogram at 365 nm monitoring 
2,4,6-trimethyl phenol consumption in allylbenzene clocking experiments.  
2,4,6-tri-tert-butyl phenol (0.05 M) was used as the internal standard.  [2,4,6-
trimethyl phenol] = 0.33 M; [allylbenzene] = 2.3 M; [MeOAMVN] = 0.015 M; T = 
37oC; t = 6 h. 
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Figure III-15:  Consumption plots of allylbenzene clocking experiments in 
chlorobenzene.  [NMBHA] = 0.1 M, 0.3 M; [2,4,6-TMP] = 0.15 M, 0.41 M; [BHT] 
= 0.11 M, 0.62 M; [allylbenzene] = 2.3 M; T = 37oC; t = 4 h. 

 
 
 
The three hydrogen atom donors chosen, represent a range of 

compounds, as well as a range of kinh’s.  These examples show the ability of 

allylbenzene to determine inhibition rate constants from 106 (α-tocopherol) to 

104 (BHT) M-1s-1. 

For those compounds whose inhibition rate constants are available in 

the literature, those obtained by the allylbenzene peroxyl radical clock method 
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temperature differences (Table III-3).  While literature values have been 
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or chlorobenzene at 37ºC by a single method.  As a result, comparison of the 

trends in kinh is straightforward and reliable.  Furthermore, little is required to 

determine a rate constant in terms of quantity of antioxidant, equipment, and 

time investment.  Therefore, the allylbenzene peroxyl radical clock method 

developed here offers several advantages over the traditional methods. 

 

Table III-3:  Inhibition rate constants of H-atom donors clocked by allylbenzene. 
 

H-atom donor kinh (Clock, 303 K) kinh (Lit.) 
   

N-methylbenzohydroxamic acid 3.1(± 0.6)x105 M-1s-1 N/A 
2,4,6-tri-methylphenol 2.3(± 0.5)x105 M-1s-1 8.5x104 M-1s-1 20 

2,6-di-t-butyl-4-methylphenol 2.4(± 2.0)x104 M-1s-1 1.4x104 M-1s-1 20 
 
 
                     

Allylperoxyl Radical Rearrangement 

 In Chapter I, the allylperoxyl radical rearrangement was discussed. This 

rearrangement can be initiated and inhibited with known radical initiators and 

radical inhibitors.  Peroxyl radicals are known to propagate the free radical chain 

sequence by hydrogen atom transfer from a parent hydroperoxide to product 

peroxyl radicals.  Therefore, the [1, 3]-allylperoxyl rearrangement is believed to 

be free radical in nature.  The mechanism of the allylperoxyl rearrangement has 

long been debated with several mechanisms proposed. 

The allylperoxyl rearrangement, frequently called the Schenck 

rearrangement, because it was first described by Schenck and co-workers in 

1958 has been studied extensively over the last 40 years.  The three most often 
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suggested mechanisms for the [1, 3]-allylperoxyl rearrangement are shown in 

Figure III-16.   

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure III-16:  Suggested mechanisms for the [1, 3]-allylperoxyl rearrangement. 

  

In 1965, Brill made the first concrete proposal for the [1, 3]-allylperoxyl 

rearrangement mechanism when he suggested a stepwise mechanism involving 

a 1,2-dioxolan-4-yl radical intermediate.21  Brill continued his work by looking at 

the rearrangement of other allylic hydroperoxides such as (E)-2-hydroperoxy-2-

methyl-3-pentene,21,22 as well as pinene derived hydroperoxides.23  Brill’s 

conclusions did not allow for the dioxolanyl radical intermediate.  Porter and 

Zuraw provided additional evidence against the dioxolanyl radical intermediate 

when they synthesized a localized dioxolanyl radical and demonstrated that it 

could be trapped with molecular oxygen and did not suffer ring opening to form 

peroxyl radicals.24  

Alternative hypotheses to the dioxolanyl radical were advanced for the 

allylperoxyl rearrangement, and encompass a concerted 1, 3-shift and a β-
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fragmentation mechanism giving an allyl radical and dioxygen.  Chan has shown 

that thermal rearrangement of an 18O labeled radical derived from methyl 

linoleate, undergoes rearrangement under an 32O2 atmosphere to give products 

that have incorporated atmospheric oxygen.25  This suggests a fragmentation 

mechanism to give a pentadienyl radical intermediate.  However, a direct 

expansion to the allylperoxyl rearrangement cannot be assumed because of the 

fact that the dienyl radical has a much larger driving force for fragmentation by 

11-14 kcal/mol more resonance stabilization energy compared to the allyl 

radical.26 

 

Figure III-17:  Porter and Wujek’s rearrangement of 18O labeled (E)-9-
hydroperoxyoctadec-10-enoic acid under 36O2 atmosphere.27 

  
 
 
 Porter and Wujek, showed that the rearrangement of 18O labeled (E)-9-

hydroperoxyoctadec-10-enoic acid under an atmosphere of 32O2 led to no 16O 

incorporation into the rearrangement product (Figure III-17).27  Results of these 

studies are in contrast to those obtained by Chan in the dienyl peroxyl 

rearrangements, but do not rule out the possibility of a caged radical pair species 

or a concerted rearrangement mechanism.  Further experiments by the Porter 

group with optically pure methyl oleate hydroperoxides showed that a peroxyl 
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stereochemical integrity.28  Based on the observed stereochemistry and the 

labeling studies, the authors proposed an envelope-type transition state which 

collapses with complete retention of configuration. 

High level molecular orbital calculations by Boyd failed to find a concerted 

transition state as either minima or maxima on the energy surface of the 

rearrangement.  It was found that dioxolanyl radicals are minima on the energy 

surface, but the barrier to their formation and opening is prohibitively high.  These 

calculations suggest that the lowest energy pathway is a fragmentation to give an 

allyl radical and molecular oxygen within a solvent cage.29  A more recent 

theoretical investigation by Olivella and Solé reinforces the findings of Boyd and 

shows that a loosely-bound radical-dioxygen caged pair is lower in energy than 

an allyl radical and molecular oxygen.30  The transition state to this caged pair 

however, was calculated to be higher in energy than the free allyl radical and 

molecular oxygen.   

Another piece of evidence which has been obtained on the [1, 3]-

allylperoxyl rearrangement was conducted by Porter and Mills who investigated 

the rearrangements of optically pure trans-oleate peroxyl radicals in solvents of 

differing viscosity under a 36O2 atmosphere.31,32  The generation of these optically 

pure allylperoxyl radicals in varying hydrocarbon solvents gave rearranged 

hydroperoxide products.  The products that did not contain 18O were formed with 

retention of stereochemistry and the products which did contain 18O were formed 

with random stereochemistry.   
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The simplest mechanism based on these rather complex yet well-

designed experiments, coupled with theoretical calculations, involves an allyl 

radical-dioxygen caged pair that collapses with stereochemical memory at a rate 

faster than the diffusion controlled process (Figure III-18).  Allyl radicals which 

diffuse into solution incorporate labeled oxygen with racemization of 

stereochemistry, suggesting a planar allyl radical which escapes the initial 

solvent cage.  These studies indicate that solvent viscosity affects the partitioning 

between escape and collapse as the pair collapsed product forms with a high 

degree of stereoselectivity.  Analogous stereochemical and solvent studies 

performed on cis-allyl hydroperoxides gave very similar results.31 

 

 

 

 
Figure III-18:  The allyl radical-dioxygen caged pair rearrangement. 
 
 
 

The use of unsymmetrically labeled hydroperoxides have also been 

employed to study the [1, 3]-allylperoxyl rearrangement.  Results of these studies 

show that a competition exists between a concerted [1, 3] transfer of oxygen, and 

an allyl-dioxygen pair.  Solvent studies with unsymmetrically labeled 

hydroperoxides indicated that solvent viscosity affects the partitioning between 

escape and cage collapse of the allyl-dioxygen caged pair.  An increase in 

solvent viscosity results in a decrease in escape product and an increase in 

radical pair collapse.33  
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 An understanding of allylperoxyl radicals is of significant value because 

of their propensity to form from the autoxidation of PUFA chains and in 

cholesterol head groups.34  Due to a difference in β-fragmentation of methyl 

linoleate isomers and 9, 12-pentadecadiene isomers35 it became necessary to 

try to determine to what extent rearrangement is occurring across both cis- and 

trans-double bonds.  Even with the number of studies that exist looking into the 

mechanism of the allylperoxyl rearrangement, there is continued interest to 

study the behavior of this intermediate when generated on a lipid chain.  Both 

the autoxidation of oleate and linoleate have shown that allylic hydroperoxides 

do form.2,36,37  A more detailed and involved study of the rearrangement of the 

allylic hydroperoxides and allylperoxyl radicals is necessary to determine the 

likely mechanism of rearrangement.  

  To do this, it became necessary to synthesize substrates that, upon 

oxidation, would lead to unsymmetrical allylic hydroperoxides neighboring 

either a cis- or trans-double bond, but not both.  The simplest compound with 

these characteristics seemed to be 1-phenyl-2-butene.  Referring back to Table 

III-1, it can be seen that the oxidation of 2-cis-phenylbutene and 2-trans-

phenylbutene do have slightly different kinetics.  That is, while the α values 

(0.42, 0.44 respectively) do not vary, the kβ value for 2-trans-phenylbutene 

(2.7x105 s-1) is 1.5 times faster than 2-cis-phenylbutene (1.8x105 s-1).  The 

allylbenzene derived substrates without a functional group at the benzylic 

position (allylanisole and 2-octenylbenzene) do not have kβ values that differ 

greatly from allylbenzene (Table III-1).  The question then arises: Is the 
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difference between the kβ values of 2-cis-phenylbutene and 2-trans-

phenylbutene due to the expected faster allylperoxyl rearrangement across a 

trans-double bond? (Figure III-19).  

  

 

 
 
Figure III-19:  Allylperoxyl rearrangement in 2-cis- and 2-trans-phenylbutene. 
 
 
 
 In order to study the rearrangement of the allylperoxyl radical, a single 

enantiomer of the benzylic hydroperoxide of 2-cis-phenylbutene and 2-trans-

phenylbutene needed to be synthesized.  Despite the importance of 

unsaturated hydroperoxides in chemistry, biology, and medicine, no general 

method for the preparation of these compounds have been reported.  Chemical 

synthesis of optically pure hydroperoxides have been attempted,38-40 but no 

general chemical approach has been found to prepare allylic and dienylic 

hydroperoxides like those formed from lipoxygenase enzymes.  For example, 

nucleophilic displacement of mesylates or tosylates by hydrogen peroxide has 

been reported in the synthesis of 2-octyl hydroperoxide, but allylic and dienylic 

mesylates are unstable and reactions with these compounds give racemic 

hydroperoxide products.   

 The hydroperoxides 24 and 25 were obtained by using a modified 

version of the procedure published by Nagata et al (Figure III-20), beginning 

with the trans-non-conjugated alcohol.41  Chlorodiethylphosphite and 

OOOO OOkR"fast" kR"slow"
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triethylamine, in a 2 to 3 ratio respectively, were added to 1-phenyl-1-hydroxy-

trans-2-butene in hexanes at -78oC.  After 30 minutes, the hexanes were 

removed and the filtrate was allowed to react with anhydrous hydroperoxide 

extracted from a 30% H2O2 solution in water with methylene chloride.  It was 

found that the use of methylene chloride afforded no conversion of the 

intermediate phosphite to product hydroperoxide.  Changing the solvent to 

diethyl ether allowed the reaction to proceed as expected giving products 24 

and 25 in combined yields near 40%. 

Figure III-20:  Synthesis of hydroperoxides 24 and 25.  
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1-butene) used as starting material for the hydroperoxidation reaction, the 
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position possesses the most spin resonance energy,15 which leads to addition 

of hydroperoxide at this position, giving compound 24. 

 The resolution of unsaturated hydroperoxide enantiomers by liquid 

chromatography of diastereomeric derivatives reported by Porter and Dussault 

offers a general solution to this problem.42  This method allows for the non-

enzymatic preparation of optically pure allylic or dienylic hydroperoxide natural 

products through conversion of the racemic hydroperoxide to diastereomeric 

perketals by the reaction with the vinyl ether 28 (Figure III-21), followed by 

separation of the perketal diastereomer by liquid chromatography, and 

deprotection of the separated perketals giving the optically pure 

hydroperoxides. 

  

 

 

 

 

 

 

 

Figure III-21:  Synthesis of the diastereomeric perketal 29. 
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structural similarities with 1-hydroperoxy-1-phenyl-trans-2-butene (24).  The 

starting ethynyl ether (27) was synthesized by the addition of (-)-trans-2-

phenylcyclohexanol (26) to a solution of potassium hydride in THF.  

Trichloroethylene was then added and the reaction was quenched with 

methanol giving 27 in excellent yield.  Addition of methylmagnesium bromide to 

a solution of copper bromide in THF, followed by the slow addition of 27 gave 

28 in very good yield.  The final step in the perketal formation is the addition of 

28 and pyridinium p-toluenesulfonate to the hydroperoxide 24 in methylene 

chloride, which gave the desired perketal 29 in quantitative yield. 

 This technique will be especially useful for our purposes because the 

hydroperoxide oxidation products of 2-cis- and 2-trans-phenylbutene cannot be 

prepared enzymatically.  Therefore, chemical synthesis of the racemic 

hydroperoxide mixture, followed by diastereomeric separation is needed to 

obtain the optically pure benzylic hydroperoxides of 2-cis- and 2-trans-

phenylbutene.  The optically pure hydroperoxides were analyzed on a chiral 

HPLC column (discussed further in Experimental Methods) to determine the 

extent of rearrangement as well as the stereochemical integrity of the oxidation 

mixture. 

With compound 29 (as well as the corresponding perketal of 

hydroperoxide 25) in hand, separation of the diastereomers on reverse phase 

HPLC as described by Porter and Dussault was attempted.42  The perketals 

were isolated on a silica gel column treated with triethylamine, and fractions 

containing ~20mg of perketal were injected on a Supelco Discovery C-18 
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column beginning with neat acetonitrile at 10mL/min as the mobile phase.  

Increasing the concentration of water in the mobile phase up to 50% did not 

improve the separation of the diastereomers.  Methanol was used as the 

primary mobile phase with an increasing concentration of water.  This proved to 

be unsuitable for separation of the diastereomers as well.  Using the best 

(although not sufficient) separation conditions (70:30 acetonitrile:water) 

determined on a semi-preparative column, an analytical Discovery C-18 column 

was used in an attempt to purify any amount of the diastereomers.  This failed 

to be sufficient for our purposes, and although the diastereomers could be 

separated on an analytical column, the time frame needed to collect enough 

material to be used in the rearrangement studies was extremely prohibitive. 

Knowing that the hydroperoxides 24 and 25 formed from the reaction in 

Figure III-21 would give a racemic mixture of enantiomers, an attempt was 

made to separate these enantiomers directly on a chiral-HPLC column.  The 

chiral-HPLC columns tested were a CHIRALCEL-OJ and a CHIRALPAK-AD 

analytical column from Daicel Chemical, Ind., Ltd.  Because of the specialized 

packing material in each column, typical normal phase conditions could not be 

used.  1% methanol in hexanes was used as the mobile phase and gave 

separation of the conjugated hydroperoxide enantiomers 25-A and 25-B, and 

near baseline separation of the nonconjugated hydroperoxide enantiomers 24-

A and 24-B (Figure III-22). 
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Figure III-22:  Separation of the enantiomers of hydroperoxides 24 and 25 on a 
CHIRALPAK-AD chiral HPLC column using 1% methanol in hexanes as the 
mobile phase at 207 (top) and 234 (bottom) nm.  
  
 
 
 Because all four enantiomers produced in the hydroperoxidation reaction 

from Figure III-21 could be isolated from a chiral HPLC analytical column after 

multiple injections, a CHIRALPAK-AD semi-preparative column was purchased 

and used to isolate each hydroperoxide enantiomer.  The fractions containing 

the enantiomers of 24 were combined, concentrated and re-injected to provide 

the enantiomers 24-A and 24-B (R and S were never assigned, therefore A and 

B denotes the retention of each enantiomer, i.e. A came off the column before 

B) in greater than 98% enantiomeric excess.  The enantiomers 25-A and 25-B 
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did not need to be re-injected after the combining of fractions because they 

were easily obtained in greater than 98% e.e. 

 The first experiments on the allylperoxyl radical rearrangement were set-

up to determine suitable conditions.  The racemization of 25-A was examined 

with varying concentrations of initiator, with and without α-tocopherol (Figure III-

23).  From these experiments it was determined that the rearrangement studies 

should be conducted at both room temperature and 37oC with 0.1mM 

MeOAMVN, 1mM α-tocopherol, and >10mM substrate.  The enantiomer 24-B 

was used as the substrate because it was the easiest non-conjugated 

hydroperoxide to obtain in high e.e. 

 

 

Figure III-23: Racemization of 25-A at 37oC in chlorobenzene.   [25-A] = 10 
mM; [MeOAMVN] = 0.1-0.2 mM; [α-tocopherol] = 0 mM or 1 mM; T = 37oC; t = 
1-9 h. 
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 The initial rearrangement experiments were conducted on 24-B at room 

temperature over 36 hours.  Aliquots were taken every 2 hours for the first 12 

hours and then at 12 hour intervals up to 36 hours.  It can be seen in Figure III-

24 that, without α-tocopherol, the non-conjugated enantiomer 24-B readily 

rearranges to both conjugated enantiomers 25-A and 25-B.  Although there is 

an initial 2 hour lag time before rearrangement occurs, after 36 hours an equal 

amount of 25-A and 25-B (~60% combined product composition) is formed.  It 

can also be seen that none of the other non-conjugated enantiomer 24-A is 

formed during the oxidation which indicates that β-fragmentation is occurring 

when there is not a sufficient hydrogen atom donor present to trap the benzylic 

peroxyl radical, or prevent rearrangement to the conjugated hydroperoxides. 

 

Figure III-24:  Rearrangement of the non-conjugated hydroperoxide 24-B at 
room temperature with no α-tocopherol in chlorobenzene.  [24-B] = 16 mM; 
[MeOAMVN] = 0.1 mM; T = room temperature.  Aliquots taken at 0, 2, 4, 6, 8, 
12, 24 and 36 hours. 
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 Figure III-25 shows similar experiments conducted at 37oC.  It can be 

seen here that similar results to the rearrangement experiments at room 

temperature are obtained.  First, there is no 24-A being formed in the product 

mixture, which is to be expected from the lack of any sufficient hydrogen atom 

donor present in the oxidation.  Second, 25-A and 25-B are still being formed in 

relatively equal amounts throughout the entire 24 hours.  However, the relative 

% of each enantiomer in the product mixture is increased (~40%) compared to 

the oxidations at room temperature (~30%) which is to be expected due to the 

increase in reaction temperature.  Lastly, there is no noticeable lag time at the 

beginning of the oxidation as was seen during the oxidations at room 

temperature showing the oxidation proceeds rapidly at a higher temperature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure III-25: Rearrangement of the non-conjugated hydroperoxide 24-B at 
37oC with no α-tocopherol in chlorobenzene.  [24-B] = 16 mM; [MeOAMVN] = 
0.1 mM; T = 37oC.  Aliquots taken at 0, 2, 4, 6, 8, 12, 24 hours. 
 
 
 

0

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Time (h)

%
 c

om
po

si
tio

n 
of

 is
om

er
s % 24-B (S.M.)

% 25-A

% 25-B



 114

Finally, the rearrangement of 24-B was carried out at room temperature 

in the presence of 1mM α-tocopherol (Figure III-26).  It can be seen here, that 

some of the non-conjugated enantiomer 24-A (~7%) is being formed in the 

early stages of the oxidation (<5 h), which is expected due to the fact that a 

sufficient hydrogen atom donor is available to trap the non-conjugated peroxyl 

radicals.  The amount of 25-A or 25-B formed during this reaction (~15%) is 

much lower than the amount of 25-A or 25-B formed (~30%) when there is no 

α-tocopherol present and the amount of 24-B lost to rearrangement (~35%) is 

also much lower when compared to the results seen in Figure III-25. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure III-26: Rearrangement of the non-conjugated hydroperoxide 24-B at 
room temperature with 1mM α-tocopherol in chlorobenzene.  [24-B] = 20 mM; 
[α-tocopherol] = 1 mM; [MeOAMVN] = 0.1 mM; T = 37oC.  Aliquots taken at 0, 
1, 2, 3, 4, 16, and 24 hours. 
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 These experiments seem to support the theory that the rearrangement of 

the allylperoxyl radical proceeds via a β-fragmentation pathway (Figure III-27).  

However, some other conclusions can be drawn: 

1. The temperature of the reaction plays a vital role in the control of the 

rearrangement.  That is, the higher the temperature, the more likely 

the rearrangement will occur at a faster rate and to a greater extent.   

2. Antioxidants such as α-tocopherol not only impede the extent of 

oxidation, but also inhibit the peroxyl radical rearrangement.  Perhaps 

due to the rapid hydrogen atom transfer, trapping the kinetic 

products. 

 
Figure III-27:  The β-fragmentation pathway of the allylperoxyl radical 
rearrangement in a phenylbutene system. 
 
 
 
 Finally, the results here closely parallel the theoretical investigations of 

Olivella and Solé who showed that an allyl radical oxygen pair was lower in 

energy than any possible transition states leading to the rearranged allylperoxyl 

radical.30  The experimental work by Porter and Mills31-33 with symmetrically 18O 

labeled hydroperoxides as well as Lowe’s unsymmetrically labeled 

hydroperoxides (Figure III-28)33,43, coupled with the theoretical work of Olivella 

and Solé, and the experimental work presented here, strongly suggest the β-

OO O O OO
β-fragmentation rearrangement

"caged pair"
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fragmentation of the peroxyl radical, leading to a caged pair of molecular 

oxygen and an allyl radical as the most plausible mechanism for allylperoxyl 

radical rearrangement.  

 

Experimental Methods 

 

General methods 

1H and 13C NMR spectra were collected on a 300 or 400 MHz NMR, 

using Bruker software.  HPLC analyses were carried out with a Waters 600 

liquid chromatograph interfaced to a Waters 996 PDA detector.  Oxidation 

products were separated on a Beckman Ultrasphere silica column (0.46 x 25 

cm).  The mobile phase was either 0.4% iso-propanol in hexanes or 0.5% iso-

propanol in hexanes.  The absorbance for the alcohols and hydroperoxides that 

formed during the oxidations was corrected based upon the oxidation products 

that were synthesized and their response factor to an internal standard (benzyl 

alcohol) at 207nm.  GC analyses were carried out with a Hewlett-Packard 5890 

or 6890 mass spectrometer (flame ionization detection) equipped with a DB-5 

(30 m x 0.32 mm x 0.25 µm) fused silica column from J&W Scientific. 

 

Materials   

All solvents were bulk solvents from Fisher Scientific except for HPLC 

hexanes (Burdick and Jackson) and THF (Solv-Tek Inc.).  HPLC solvents were 

filtered before use.  All chemicals were purchased from Aldrich Chemicals 
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unless otherwise noted.  Vitamin-E (Fluka) was purified a day before use by 

flash column chromatography in 5-7% ethyl acetate in hexanes under nitrogen 

and stored in vacuo overnight.  All glassware was cleaned and dried overnight 

in either a 60ºC or 200ºC constant temperature oven. 

The initiator, 2,2’-azobis-(4-methoxy-2, 4-dimethylvaleronitrile) 

(MeOAMVN), was obtained from Wako and dried under high vacuum for 2 h.  

Benzene and chlorobenzene were passed through a column of neutral alumina 

and stored over 4Å molecular sieves.  Hexanes used in HPLC analysis and 

column chromatography was HPLC grade from Burdick & Jackson. 

Allylbenzene (1), allylanisole (8), α-vinylbenzyl alcohol (6), and cinnamyl 

alcohol (7) were purchased from Aldrich.  1 and 8 were chromatographed on 

silica in hexanes immediately before use to remove any oxidation products.  

NMBHA (32) was synthesized by literature procedures.  All other antioxidants 

used in this study were purchased from Aldrich and were used as received.  

 

General procedure for allylbenzene clock calibrations   

The oxidations were carried out with allylbenzene (2.26 M), MeOAMVN 

(0.02 M), and α-tocopherol (0.20–1.07 M) in chlorobenzene.  The samples 

were incubated at 37 ºC for 6 h.  The oxidations were stopped by the addition 

of excess BHT, followed by the addition of the internal standard (10 mM benzyl 

alcohol).  The hydroperoxides were reduced to their corresponding alcohols 

with PPh3 and the samples were diluted with hexanes (1.8 mL).  HPLC 

analyses were carried out with a Waters 600 liquid chromatograph interfaced to 
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a Waters 996 PDA detector with using a Beckman Ultrasphere silica column 

(0.46 x 25 cm) using 0.5% iso-propanol/hexanes at 1.0 mL/min and detected at 

207 nm for BHT (26) and NMBHA (32).  GC analysis was carried out for BHT 

(26) and 2,4,6-tri-methyl phenol (31) on a Hewlett-Packard 5890 or 6890 mass 

spectrometer (flame ionization detection) equipped with a DB-5 (30 m x 0.32 

mm x 0.25 µm) fused silica column from J&W Scientific using the following 

temperature program: 75 ºC, 5 min-150 ºC @ 5 º/min, 150-280 ºC @ 25 º/min, 

2.8 min.  The values for α and kβ are derived from the y-intercept and slope, 

respectively, using Equation 3. 

 

General procedure for hydrogen atom donor consumption experiments   

The oxidations were carried out with allylbenzene (2.26 M) or αMeAB 

(3.43 M), MeOAMVN (0.02 M), and hydrogen atom donor (0.20–1.07 M) in 

chlorobenzene.  The samples were incubated at 37 ºC for 6 h.  The oxidations 

were stopped by the addition of excess 2, 4, 6-tri-t-butylphenol followed by the 

addition of the internal standard (10 mM of 4-methoxyphenol).  The 

hydroperoxides were reduced to their corresponding alcohols with excess 

trimethylphosphite and the samples were diluted with methanol (1.8 mL).  

HPLC analyses were carried out with a Waters 600 liquid chromatograph 

interfaced to a Waters 996 PDA detector with a SUPELCO Discovery C-18 

(25cm x 4.6mm, 5 µm) RP-HPLC column.  Methanol and water were used as 

the mobile phase and the gradient was: (Methanol:water) 90:10 for 5 min, ramp 

to 75:25 in 10 min, ramp to 20:80 in 15 min, ramp to 90:10 in 10 min.  
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Consumption was monitored at a wavelength >260 nm to ensure no peak 

contamination from the oxidation products.  When consumption of NMBHA was 

monitored, acetonitrile was used instead of methanol in the mobile phase and 

sample preparation due to solubility issues. 

 

General procedure for clocking experiments   

The samples were prepared as described above for each clock in 

benzene or chlorobenzene and varying the hydrogen atom donor 

concentration.  The samples were incubated at 37 ºC for 6 h.  Following the 

oxidation, BHT (50 mM) and 5 mM benzyl alcohol were added to each sample.  

Oxidation mixtures of allylbenzene were reduced with PPh3 (50 mM) and 

analyzed by HPLC: Beckman Ultrasphere silica column (0.46 x 25 cm) using 

0.5% iso-propanol/hexanes at 1.0 mL/min and detected at 207 nm, or by GC: 

75 ºC, 5 min-150 ºC @ 5 º/min, 150-280 ºC @ 25 º/min, 2.8 min.  The rate 

constants kH were derived from Equations 3 and presented in Table III-3. 

 

Error analysis   

All errors reported are 95% confidence limits of the rate constant as 

determined by t tests, i.e. best fit ± (standard error)(t*).  The standard error was 

determined from SigmaPlot or Origin and multiplied by t*.  The value for t* was 

calculated in Excel using the equation TINV (0.05, df), where df is the degrees 

of freedom.  The degrees of freedom were calculated by subtracting the 
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number of parameters (2) from the total number of data points.  The error in 

literature values for α-TOH (±10%) was also propagated into the error. 

 

Allylperoxyl Rearrangement Experimental Conditions 

A 0.1mM solution of MeOAMVN azo-initiator was added to a 10-20 mM 

solution of a single enantiomer of the conjugated hydroperoxide 25 isolated 

from the method above.  Aliquots were removed every 30 minutes after the first 

hour to determine the extent of β-fragmentation of 25.  After suitable conditions 

were determined, similar experiments were conducted at both room 

temperature and 37oC using a single enantiomer of hydroperoxide 24 in the 

presence of either 1 mM or no α-tocopherol, described below. 

24-B (16 mM) was oxidized with MeOAMVN (0.1 mM) at room 

temperature and at 37oC in the presence and absence of α-tocopherol 

Separation of the enantiomers of 24 and 25 was achieved using a 

CHIRALPAK-AD semi-preparative chiral HPLC column (1cm x 25cm) with 1% 

methanol in hexanes as the mobile phase at 5 mL/min, and analyzed at 207 

nm.  Relative product ratios were determined by integration of the enantiomer 

peaks for 24-A, 24-B, 25-A, and 25-B respectively.  24-B was always the 

oxidation substrate because it was the nonconjugated hydroperoxide most 

readily available in the greatest quantity and purity.  Aliquots were removed 

every 2 hours for the first 12 hours and then again at 24 and 36 hours.  

Analytical chiral-HPLC analysis described above was used to determine the 

extent of rearrangement of a single enantiomer of 24 to any of the other three 
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possible isomers (one more from 24 and two from 25).  Relative product ratios 

were plotted as a function of time. 

  

Synthetic Procedures 

Analytical Data:  All known compounds that were synthesized below compare 

favorably with previously reported 1H and 13C NMR spectra.  Only commercially 

available materials were ultimately used for publication purposes, therefore full 

analytical characterization (elemental analysis, high resolution mass 

spectrometry) was not fulfilled on the unknown compounds synthesized in this 

section.  The unknown compounds were not fully characterized due to the fact 

that they were not ultimately used in the resulting publication.  All known 

compounds compare favorably with previously published NMR spectra. 

 

2-octenylbenzene (9):44 Hexyltriphenylphosphonium 

bromide (4.7 g, 11 mmol) was dissolved in 100 mL 

THF, and potassium t-butoxide (11 mL, 11 mmol) was added slowly.  After 1 

hour, phenylacetaldehyde (1.12 mL, 10 mmol) was added slowly and stirred for 

an additional 2 hours at room temperature under argon.  The solvent was 

evaporated, the residue was washed with hexanes and filtered over silica gel.  

Evaporation of the hexanes gave 1.34 g (71%) of a clear and colorless liquid.  

NMR (CDCl3) 300 MHz; 1H:  δ 7.27-7.16 (m, 5H, C6H5), δ 6.08-5.41 (m, 2H, 

CH=CH), δ 3.22 (d, J=6.1Hz, 2H, PhCH2), δ 1.96 (m, 2H, CH2), 1.33-1.29 (m, 
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6H, 3xCH2), 0.96 (t, J=6.9Hz, 3H, CH3).  13C:  δ 137.4, 132.1, 129.0 (2C), 128.7 

(2C), 126.1, 125.8, 47.9, 33.7, 31.9, 29.6, 22.8, 14.1. 

 

3-phenyl-1-butene (10):45  Methyl triphenylphosphonium 

bromide (3.0 g, 8.3 mmol) was dissolved in 25 mL THF, and 8.3 

mL of a 1.0 M solution of potassium t-butoxide (8.3 mmol) was added slowly.  

When solution changed from red to milky-white, 2-phenylpropionaldehyde (1.0 

mL, 7.5 mmol) was added and allowed to stir at room temperature under argon 

for 2 hours.  The solvent was then evaporated, and the residue was washed 

with pentane and filtered through silica.  Evaporation of the pentane gave 904 

mg (91%) of a clear liquid.  NMR (CDCl3) 300 MHz; 1H:  δ 7.35-7.12 (m, 5H, 

C6H5), δ 6.30 (m, 1H, PhCH), δ 4.94 (m, 2H, CH=CH2), δ 3.63 (m, 1H, 

CH=CH2), δ 1.44 (d, J=6.7Hz, 3H, CH3).  13C:  δ 140.7, 139.4, 128.7 (2C), 127.7 

(2C), 126.0, 116.4, 47.7, 21.0. 

 

1-phenyl-cis-2-butene (11):18  Pd(dppf)Cl2 (482 mg, 0.59 mmol) 

was added to 20 mL THF.  To this, 1.0 mL (11.8 mmol) of cis-

bromopropene and 6 mL (12.0 mmol) of a 2.0 M solution of benzyl magnesium 

chloride were added.  The reaction stirred under nitrogen at room temperature 

for 48 h.  The reaction was filtered through celite washed with saturated NH4Cl, 

NaHCO3, water, and NaCl.  A column in hexanes afforded 692.4 mg (45%) of a 

clear colorless liquid.  NMR (d6-DMSO) 300 MHz; 1H:  δ 7.29-7.14 (m, 5H, 

C6H5), δ 5.59-5.49 (m, 2H, CH=CH), δ 3.35 (d, J=5.5Hz, 2H, CH2), δ 1.68 (d, 
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J=4.9Hz, 3H, CH3).  13C: δ 140.8, 129.1, 128.4, 128.2, 125.8, 124.4, 32.50, 

12.7.   

 

1-phenyl-trans-2-butene (12):18  Pd(dppf)Cl2 (2.4 g, 2.07 mmol),  

was added to a solution of trans-bromopropene  (5.0 g, 41.33 

mmol) in THF (100 mL).  To this, 43.4 mL (43.4 mmol) of a 1.0 M solution of 

benzyl magnesium chloride was added and stirred at room temperature for 24 h 

under nitrogen.  The reaction was filtered through celite washed with saturated 

NH4Cl, NaHCO3, water, and NaCl.  A column in hexanes afforded 3.82 g (70%) 

of a clear liquid.  NMR (d6-DMSO) 300 MHz; 1H:  δ 7.29-7.14 (m, 5H, C6H5), 

5.59-5.43 (m, 2H, CH=CH), δ 3.27 (d, J=5.8, 2H, CH2), δ 1.63 (d, J=6.2 Hz, 3H, 

CH3).  1H decoupled NMR (d6-DMSO, 500 MHz): irradiating –CH2- protons (δ = 

3.27); δ 5.52 (d, 1H, J=15.2Hz, CH2CH), δ 5.49-5.43 (dq, 1H, J1= 15.2Hz, 

J2=6.2Hz, CHCHCH3).  13C: δ 140.6, 130.3, 128.3, 128.2, 125.8, 125.7, 38.3, 

17.6.   

 

1-phenyl-2-octen-1-ol (13):46  2-t-octenal (1 mL, 6.7 

mmol) was dissolved in 10 mL THF.  

Phenylmagnesium bromide (2.5 mL, 7.4 mmol) was added slowly and allowed 

to stir under argon at room temperature for 1 hour.  The reaction was quenched 

with saturated ammonium chloride and extracted with diethyl ether.  The ether 

layer was washed with water and saturated sodium chloride and dried over 

magnesium sulfate.  Column chromatography with 10% ethyl acetate in 

OH



 124

hexanes yielded 1.01 g (67%) of a pale-yellow liquid.  NMR (CdCl3) 300 MHz; 

1H:  δ 7.37-7.19 (m, 5H, C6H5), δ 5.41 (m, 2H, CH=CH), δ 5.19 (dd, J1=6.0Hz, 

J2=2.5Hz, 1H, ArCH), δ 2.08 (d, J=2.9Hz, 1H, OH), δ 1.99 (m, 2H, CHCH2), δ 

1.33-1.29 (m, 6H, 3xCH2), δ 0.96 (t, J=6.6Hz, 3H, CH3).  13C:  δ 141.6, 131.3, 

129.0 (2C), 128.6, 127.7, 127.1 (2C), 73.2, 34.0, 31.9, 29.6, 22.8, 14.1. 

 

1-phenyl-1-octen-3-ol (14):48 Cinnamaldehyde (1 mL, 

7.9 mmol) was dissolved in 25 mL THF.  

Pentylmagnesium bromide (4.4 mL, 8.7 mmol) was added slowly and the 

reaction was allowed to stir for 2 hours under argon at room temperature.  The 

reaction was quenched with saturated ammonium chloride and extracted with 

diethyl ether.  The ether layer was washed with water and saturated sodium 

chloride and dried over magnesium sulfate.  Column chromatography with 10% 

ethyl acetate in hexanes yielded 1.11 g (69%) of a pale-yellow liquid.  NMR 

(CDCl3) 300 MHz; 1H:  δ 7.37-7.19 (m, 5H, C6H6), δ 6.08 (d, J=16.0Hz, 1H, 

PhCH), δ 5.41 (dd, J1=16.0Hz, J2=6.8Hz, 1H, PhCH=CH), δ 5.19 (dt, J1=6.3Hz, 

J2=6.3Hz, 1H, PhCH=CHCH), δ 1.99 (m, 3H), δ 1.33-1.29 (m, 6H), δ 0.96 (t, 

J=6.6Hz, 3H, CH3).  13C:  δ 135.2, 129.0, 128.7 (2C), 128.5, 128.0, 126.4 (2C), 

72.7, 37.5, 32.2, 23.2, 22.7, 14.1. 

 

Ethyl-3-phenyl-2-butenoate (15):47  Sodium hydride (377 

mg, 9.4 mmol) was added to a 100mL RBF and dissolved 

in 40 mL THF.  Solution was cooled to 0oC and triphenylphosphonoacetate (2.1 

OH

O

O
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mL, 10.3 mmol) was added dropwise.  Acetophenone (1 mL, 8.6 mmol) was 

diluted in 5 mL THF and added slowly.  Reaction was allowed to stir overnight 

at room temperature under Argon.  The reaction was washed with saturated 

sodium bicarbonate and saturated sodium chloride and dried over magnesium 

sulfate.   Both the E- and Z-isomers are formed in this reaction, however, 

column chromatography on silica gel with 10% ethyl acetate in hexanes yielded 

1.4 g (86%) of a yellowish liquid. According to NMR data, this isolated 

compound was the E-isomer.  NMR (CDCl3) 300 MHz; 1H:  δ 7.41-7.20 (m, 5H, 

C6H5), δ 6.11 (s, 1H, C=CH), δ 4.19 (q, J=7.0Hz, 2H, OCH2CH3), δ 1.71 (s, 3H, 

CH3), δ 1.30 (t, J=7.0, 3H, OCH2CH3).  13C:  δ 166.5, 155.4, 139.4, 128.7 (2C), 

128.0, 126.4 (2C), 117.5, 61.4, 15.1, 14.2. 

 

3-phenyl-2-buten-1-ol (16):46  Ethyl-3-phenyl-2-butenoate 

(850 mg, 4.5 mmol) was dissolved in 25 mL diethyl ether.  

Di-iso-butyl aluminum hydride (9 mL, 8.9 mmol) was added slowly and the 

reaction was allowed to stir overnight at room temperature under an argon 

atmosphere.  Brine was added slowly until the aluminum was quenched.  Once 

the reaction was quenched, concentrated hydrochloric acid was added 

dropwise until phase separation occurred.  The reaction mixture was extracted 

with diethyl ether, washed with saturated sodium chloride, and dried over 

anhydrous magnesium sulfate.    Column chromatography on silica gel with 

10% ethyl acetate in hexanes yielded 550 mg (82%) of a white solid.  NMR 

(CDCl3) 300 MHz; 1H:  δ 7.30-7.14 (m, 5H, C6H5), δ 5.97 (dt, J1=6.7Hz, 

OH
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J1=1.5Hz, 1H, C=CHCH2), δ 4.20 (d, J=6.8Hz, 2H, CH2OH), δ 1.92 (bs, 1H, 

OH), δ 1.41 (s, J=6.5Hz, 3H, CH3). 13C:  δ 139.4, 134.1, 128.7 (2C), 127.2, 

126.4 (2C), 58.5, 15.7. 

 

2-phenyl-3-buten-2-ol (17):46 Vinyl magnesium bromide (10.3 

mL, 10.3 mmol) was dissolved in 10 mL THF and cooled to 0oC.  

Acetophenone (1 mL, 8.6 mmol) was dissolved in 5 mL THF and added slowly 

to the vinyl magnesium bromide solution.  The reaction was allowed to stir 

overnight at room temperature under an argon atmosphere.  The reaction was 

quenched with saturated ammonium chloride and extracted with diethyl ether.  

The organic layer was washed with water and saturated sodium chloride and 

then dried over anhydrous magnesium sulfate.  Silica gel column with 10% 

ethyl acetate in hexanes afforded 0.99 g (78%) of a clear, pale-orange liquid.  

NMR (CDCl3) 300 MHz; 1H:  δ 7.37-7.190 (m, 5H, C6H5), δ 6.30 (dd, J1=17.1Hz, 

J2=10.9Hz, 1H, CH=CH2), δ 4.96 (dd, J1=17.2Hz, J2=1.4Hz, 2H, CH=CH2), δ 

4.93 (m, 1H, OH), δ 1.69 (s, 3H, CH3).  13C:  δ 144.0, 140.5, 129.0 (2C), 127.7, 

127.1 (2C), 116.4, 75.4, 29.2. 

 

1-phenyl-3-hydroxy-trans-1-butene (18):48  4-phenyl-3-

butene-2-one (731 mg, 5 mmol) and cerium trichloride 

heptahydrate (1.86 g, 5 mmol) were dissolved in 13 mL MeOH.  Sodium 

borohydride (189 mg, 5 mmol) was added in one portion while stirring.  

Reaction quenched after 5 minutes with the addition of dilute HCl to a pH of 

HO

OH
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7.0.  The solution was extracted with ether and passed through a plug of 

alumina to give 355.7 mg (48%) of a clear liquid that becomes a white solid 

once cooled.  NMR (d6-DMSO) 300 MHz; 1H:  δ 7.41-7.20 (m, 5H, Ph), δ 6.48 

(d, 1H, J=16.7 Hz, PhCHCH), δ 6.29 (dd, 1H, J1= 16.0Hz, J2=5.4Hz, 

CHCHOH), δ 4.87 (d, 1H, J=5.6Hz, OH), δ 4.33-4.24 (m, 1H, CHOH), δ 1.21 (d, 

3H, J=6.3Hz, CH3). 13C (CDCl3): δ 137.9, 133.8, 130.1 (2C), 129.2, 127.8 (2C), 

126.5, 69.2, 23.9. 

 

1-phenyl-1-hydroxy-2-butyne (19):49 4.4 mL (43.3mmol) of 

benzaldehyde in THF (25mL) was added to 94 mL (47mmol) of 

a 0.5 M solution of propynyl magnesium bromide in THF.  The 

reaction was stirred overnight under nitrogen and was quenched with saturated 

ammonium chloride yielding viscous yellow oil.  A silica column with 20% 

EtOAc in hexanes as the mobile phase yielded 5.23 g (83%) of 1-phenyl-1-

hydroxy-2-butyne as a pale yellow liquid.  NMR (d6-DMSO) 300 MHz; 1H: δ 

7.46-7.23 (m, 5H, Ph), δ 5.84 (d, 1H, J=7.9Hz, OH), δ 5.32-5.28 (m, 1H, PhCH), 

δ 1.83 (d, 3H, J=2.3Hz, CH3).  13C: δ 142.8, 128.1, 127.3, 126.3, 81.3, 81.0, 

62.7, 3.2. 

 

1-phenyl-1-hydroxy-cis-2-butene (20):50  Quinoline (1.35 mL, 

38%/wt) and Pd/CaCO3 (100 mg, 20%/wt) was added to 1-

phenyl-1-hydroxy-2-butyne (500 mg, 3.42 mmol) in 25 mL of 

ethyl acetate.  The reaction was charged with H2 and stirred for 4 hrs. at room 

OH

OH
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temperature.  The reaction was filtered through celite, washed with HCl, 

NaHCO3, and NaCl.  A column of 20% EtOAc/hex yielded 390.6 mg (77%) of 

an orange-yellow liquid.   NMR (d6-DMSO) 300 MHz; 1H:  δ 7.35-7.20 (m, 5H, 

Ph), δ 5.52-5.32 (m, 4H) δ 1.71 (d, 3H, J=5.5Hz, CH3).  13C: δ 145.3, 134.8, 

128.0, 126.6, 125.7, 123.2, 67.7, 13.1. 

 

1-phenyl-1-hydroxy-trans-2-butene (21):50  LAH (130 mg, 

3.42 mmol) was added to 1-phenyl-1-hydroxy-2-butyne (250 

mg, 1.71 mmol) in 10 mL THF and allowed to reflux for 30 

minutes.  After cooling to room temperature, the reaction was quenched with 

water and 10% NaOH and extracted with hexanes.  A column of 20% EtOAc in 

hexanes yielded 97.9 mg (39%) of yellow oil.  An alternative method began with 

4.7 mL (57 mmol) of crotonaldehyde dissolved in 25 mL THF that was added 

slowly to 20 mL (60 mmol) of a 3.0 M (THF) solution of phenyl magnesium 

bromide in 100 mL THF after being cooled to 0oC.  Reaction was allowed to stir 

overnight under nitrogen and was quenched with saturated ammonium 

chloride, extracted with diethyl ether and chromatographed in 20% 

EtOAc/hexanes to yield 6.31 g (75%) of a pale-yellow liquid. Both methods 

gave the identical NMRs once purified by column chromatography.  NMR (d6-

DMSO) 300 MHz; 1H: δ 7.30-7.15 (m, 5H, Ph), δ 5.65-5.50 (m, 2H, 

CH=CHCH3), δ 5.31 (d, 1H, J=4.4Hz, OH), δ 4.96-4.99 (m, 1H, PhCH), δ 1.62 

(d, 3H, J=5.5Hz, CH3).  13C: δ 143.3, 133.6, 128.4, 127.4, 127.3, 126.1, 75.12, 

17.7. 

OH
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1-(4-methoxyphenyl)-2-propen-1-ol (22):51  Anisaldehyde 

(0.5 mL, 4.1 mmol) was dissolved in 25 mL THF and cooled to 

0oC.  Vinyl magnesium bromide (5.0 mL, 5.0 mmol) was added 

slowly and the reaction was allowed to stir at room temperature under argon for 

3 hours.  The reaction mixture was quenched with saturated ammonium 

chloride and extracted with diethyl ether.  The ether layer was then washed with 

water and saturated sodium chloride and dried over anhydrous magnesium 

sulfate.  Silica gel chromatography with 10% ethyl acetate in hexanes as the 

mobile phase yielded 557 mg (82%) of a pale yellow liquid. NMR (CDCl3) 300 

MHz; 1H:  δ 7.37 (d, J=8.6Hz, 2H), δ 6.91 (d, J=8.7Hz, 2H), δ 6.09 (m, 1H, 

CH=CH2), δ 5.30 (dd, J1=17.2Hz, J2=1.6Hz, 1H), δ 4.96 (dd,  J1=11.8Hz, 

J2=1.6Hz, 1H), δ 4.93 (s, 1H, OH), δ 3.69 (s, 3H, OCH3), δ 1.81 (m, 1H, PhCH).  

13C:  δ 159.5, 138.6, 133.9, 128.1 (2C), 116.4, 114.5 (2C), 73.4, 55.8. 

 

3-(4-methoxyphenyl)-2-propen-1-ol (23):52  4-meth-

oxycinnamaldehyde (500 mg, 3.1 mmol) was dissolved 

in 50 mL THF.  DIBAL (6.5 mL, 6.2 mmol) was added slowly and the reaction 

mixture stirred overnight at room temperature under argon.  Brine was added 

slowly to the reaction mixture forming a cloudy gel.  When the aluminum was 

quenched, concentrated hydrochloric acid was added dropwise until phase 

separation occurred.  The reaction mixture was extracted with diethyl ether, and 

the ether layer was washed with water and saturated sodium chloride, and 

dried over magnesium sulfate.  Column chromatography on silica gel with 10% 

OH

O

OH

O
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ethyl acetate in hexanes gave 258 mg (51%) of an off-white powder.  NMR 

(CDCl3) 300 MHz; 1H:  δ 7.19 (d, J=8.5Hz, 2H), δ 7.09 (d, J=8.4Hz, 2H), δ 6.62 

(d, J=16.2Hz, 1H, ArCH), δ 6.25 (m, 1H, ArCH=CH), δ 5.56 (bs, 1H, OH), δ 4.20 

(d, J=3.5Hz, 2H, CH2OH), δ 3.85 (s, 3H, OCH3).  13C:  δ 159.8, 129.7, 127.5, 

127.4 (2C), 123.8, 114.2 (2C), 65.0, 55.8. 

 

(2-(1-propen-2-yloxy)cyclohexyl)benzene (24):42  CuBr 

(985.5 mg, 6.87 mmol) was added to THF (15 mL) and cooled 

to -40OC.  3.6 mL of 1.4 M MeMgBr in 3:1 toluene/THF was 

added.  After 10 minutes, (2-(ethynyloxy)cyclohexyl)benzene was added.  After 

30 minutes the solution was warmed to 0OC and stirred for 1 hr.  The reaction 

was quenched with 1:1 (NH4Cl: 2 M NH4OH) and stirred for an additional hour.  

The reaction was diluted with pet ether and washed with ammonia buffer.  The 

aqueous layers were extracted with pet ether, dried over MgSO4 and distilled in 

a Kugelrohr apparatus to give 657.2 mg (66%) of clear-colorless oil.  1H NMR 

(300 MHz, CD2Cl2):  δ 7.33-7.20 (m, 5H, Ph); δ 4.10 (m, 1H, HCO); δ 3.87, 3.81 

(s, 2H, CH2=CCH3); δ 2.72 (m, 1H, PhCH); δ 1.97-1.86 (m, 4H); δ 1.56 (s, 3H, 

CH3); δ 1.45-1.34 (m, 4H).  13C NMR (300 MHz, CD2Cl2):  δ 158.7, 144.8, 

128.4, 127.8, 126.4, 81.5, 78.6, 50.7, 34.7, 31.5, 26.6, 25.2, 21.4. 

 

(2-(ethynyloxy)cyclohexyl)benzene (26):42  To a suspension 

of 1.5 g of KH (30% in oil) in THF (30 mL) was added two 

crystals of imidazole and 1.0 g (5.67 mmol) of (-)-trans-2-

O

O
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phenylcyclohexanol (25) in ~200 mg portions over 30 minutes.  The solution 

was cooled in an ice bath and trichloroethylene (510 µL, 5.67 mmol) was added 

resulting in an immediate brown color.  The cooling bath was removed and the 

reaction mixture became a deep brown suspension.  A small amount of THF 

had to be added to aid stirring.  After 30 minutes, the reaction was cooled to -

78OC and 6.14 mL of 2.4 M BuLi/hexane (14.7 mmol) was added.  The reaction 

was warmed to -40OC and quenched with MeOH.  The suspension was diluted 

with water, warmed to room temperature and extracted 2x with pet ether.  The 

aqueous extract was washed with saturated NaCl and the organic washes were 

dried over MgSO4.  A column of 5% EtOAc/1% Et3N/Pet Ether on Silica gel 

equilibrated in 2.5% v/v Et3N gave 917.5 mg (81%) of yellow oil.  1H NMR (300 

MHz, CD2Cl2):  δ 7.36-7.22 (m, 5H, Ph); δ 4.14 (dt, 1H, J1=4.5Hz, J2=6.4Hz, 

HCO); δ 2.76 (dt, 1H, J1=2.7Hz, J2=6.4Hz, PhCH); δ 2.41 (m, 1H, C≡CH); δ 

1.95-1.90 (m, 2H, OCHCH2); δ 1.81-1.32 (m, 6H, 3xCH2).  13C NMR (300 MHz, 

CD2Cl2): δ 143.0, 128.8, 127.8, 127.0, 90.2, 89.2, 49.3, 34.3, 31.1, 28.0, 25.8, 

25.0. 

 

(E)-(1-Hydroperoxy-2-butenyl)benzene (27):  430 mg (2.90 

mmol) of 1-hydroxy-1-phenyl-trans-2-butene was added to 

hexane at cooled to -78OC.  Diethylchlorophosphite (671 µL, 4.64 mmol), and 

triethylamine (687 µL, 4.93 mmol) was added and allowed to stir for 1 hr at -

78OC.  Hydrogen peroxide (extracted in ether from 30% in water) was added 

and the reaction was allowed to warm to room temperature and stirred for 2 

O OH
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hrs.  The reaction was diluted with hexanes, washed with water and saturated 

NaCl, dried over MgSO4.  A column of 5% EtOAc/1% Et3N/Pet Ether yielded 

103.2 mg (22%) of clear oil.  1H NMR (300 MHz, CD2Cl2):  δ 7.37-7.19 (m, 5H); 

δ 6.08 (dd, 1H, J); δ 5.41 (m, 1H); δ 5.19 (d, 1H); δ 2.00 (bs, 1H); δ 1.71 (d, 3H).  

13C NMR (300 MHz, CD2Cl2): δ 141.6, 130.1, 129.0 (2C), 127.7, 127.1 (2C), 

125.9, 84.2, 19.5.  PPh3 was added to the pure product in order to reduce the 

hydroperoxide to the corresponding alcohol.50  NMR (d6-DMSO) 300 MHz; 1H: δ 

7.30-7.15 (m, 5H, Ph), δ 5.65-5.50 (m, 2H, CH=CHCH3), δ 5.31 (d, 1H, 

J=4.4Hz, OH), δ 4.98 (m, 1H, PhCH), δ 1.62 (d, 3H, J=5.5Hz, CH3).  13C: δ 

143.3, 133.6, 128.4, 127.4, 127.3, 126.1, 75.12, 17.7. 

 

(E)-(3-Hydroperoxy-1-butenyl)benzene (28):  430 mg 

(2.90 mmol) of 1-hydroxy-1-phenyl-trans-2-butene was 

added to hexane at cooled to -78OC.  Diethylchlorophosphite (671 µL, 4.64 

mmol), and triethylamine (687 µL, 4.93 mmol) was added and allowed to stir for 

1 hr at -78OC.  Hydrogen peroxide (extracted in ether from 30% in water) was 

added and the reaction was allowed to warm to room temperature and stirred 

for 2 hrs.  The reaction was diluted with hexanes, washed with water and 

saturated NaCl, dried over MgSO4.  A column of 5% EtOAc/1% Et3N/Pet Ether 

yielded 103.2 mg (22%) of clear oil.  1H NMR (300 MHz, CD2Cl2):  δ 7.39-7.24 

(m, 5H); δ 6.62 (d, 1H, J); δ 6.25 (dd, 1H); δ 4.08 (m, 1H); δ 2.00 (bs, 1H); δ 

1.31 (d, 3H).  13C NMR (300 MHz, CD2Cl2): δ 135.2, 129.7, 128.7 (2C), 128.0, 

126.4 (2C), 125.4, 77.4, 17.4.  PPh3 was added to the pure product in order to 

O
OH
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reduce the hydroperoxide to the corresponding alcohol.48  NMR (d6-DMSO) 300 

MHz; 1H:  δ 7.41-7.20 (m, 5H, Ph), δ 6.48 (d, 1H, J=16.7 Hz, PhCHCH), δ 6.29 

(dd, 1H, J1= 16.0Hz, J2=5.4Hz, CHCHOH), δ 4.87 (d, 1H, J=5.6Hz, OH), δ 4.33-

4.24 (m, 1H, CHOH), δ 1.21 (d, 3H, J=6.3Hz, CH3). 13C (CDCl3): δ 137.9, 133.8, 

130.1 (2C), 129.2, 127.8 (2C), 126.5, 69.2, 23.9. 

 

The desired racemic mixture of hydroperoxides 27 and 28 were synthesized 

from the same reaction in a 5:1 ratio (28:27, by NMR).  The yields reported 

here are the overall yields of the reaction, not of each specific hydroperoxide. 

 

(E)-(2-(2-(1-phenylbut-2-enylperoxy)propan-2-yloxy) 

cyclohexyl)benzene formation (29):  78.2 mg (0.48 

mmol) of hydroperoxide was dissolved in 1 mL of 

CH2Cl2.  3 mg (2.5 mol %) of pyridinium p-

toluenesulfonate and 114.6 mg (0.53 mmol) of (2-(1-propen-2-

yloxy)cyclohexyl)benzene was added.  After 5 min, an additional 20 µL of (2-(1-

propen-2-yloxy)cyclohexyl)benzene was added and the reaction was diluted 

with CCl4.  The methylene chloride was removed by a nitrogen stream and a 

flash column on 20 g of silica gel (5% EtOAc/Pet Ether) yielded 148.1mg 

(81.3%) of a colorless liquid with some solid white specs.  Semi-Prep HPLC (95 

acetonitrile: 5 water: 1 triethylamine) was used to attempt to separate the 

diastereomers.  1H NMR (300 MHz, CD2Cl2):  δ 7.37-7.13 (m, 5H,); δ 6.08 (dd, 

1H); δ 5.41 (m, 1H); δ 5.19 (d, 1H); δ 3.17-3.04 (m, 2H); δ 1.86-1.39 (m, 14H).  

O
O

O

Ph
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13C NMR (300 MHz, CD2Cl2): δ 144.6, 141.6, 130.1, 129.0 (2C), 128.5 (2C), 

127.7, 127.1 (2C), 126.5 (2C), 126.0, 125.9, 104.4, 82.6, 81.4, 49.2, 32.3, 27.4, 

25.7, 22.4, 23.1, 19.5.  Perketal 29 was not useful for our purposes, therefore 

the exact mass was not determined.  However, both 1H and 13C NMR are 

similar to both (E)-(1-hydroperoxy-2-butenyl)benzene (27) and (2-(1-propen-2-

yloxy)cyclohexyl)benzene (24). 
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CHAPTER IV 

 

CONJUGATED METHYL LINOLEATE PEROXYL RADICAL β-
FRAGMENTATION TO CLOCK kp’S OF HYDROCARBONS, AND kinh’S OF 

PHENOLS 
 
 
 

Introduction 

 Lipid peroxidation is a complex process in which molecular oxygen and a 

lipid react by a free-radical chain sequence.  This process, known as 

autoxidation, leads to the degradation of naturally occurring fats and oils, and has 

been of interest to the chemical and biological community ever since lipids were 

first purified and shown to be reactive with oxygen.1 

Toxicity by oxygen radicals has been suggested to be involved in a variety 

of biological events such as aging, heart disease and cancer.2,3  Lipid 

peroxidation has been proposed to play a considerable role in these events, and 

because of this, the mechanism of lipid peroxidation has attracted considerable 

interest.4  A better understanding of the mechanism of lipid peroxidation can 

come from careful examination of hydroperoxide products formed in the 

autoxidation of polyunsaturated fatty acids. 

Although hydrocarbon autoxidation has been studied for some time, and 

many of the mechanistic details have been well determined for two generations, 

the significance of lipid peroxidation in human health has only become evident 

over the last two decades.  Over this time period, there has been an explosion of 

research in the area of radical-mediated damage to biomolecules, and attempts 
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have been made to connect these events to the onset or development of various 

pathophysiological conditions.  The extent of lipid peroxidation is now considered 

a biological marker of cellular oxidative stress.5,6 Cellular oxidative stress is 

recognized to contribute to oxidative damage resulting from the metabolism of 

xenobiotic compounds, as well as from inflammatory processes, such as 

ischemia and reperfusion injury.7,8 

 Lipid peroxidation has the potential to affect humans on many levels.  The 

peroxidation of membrane lipids can alter the structural dynamics of cell, 

organelle, and nuclear membranes, which affects cellular homeostasis and leads 

to apoptosis.9  The peroxidation of lipids in LDL particles has been implicated in 

the oxidative modification of LDL, as well as the initiating events of 

cardiovascular disease; LDL uptake by macrophages.10  While the direct 

consequences of lipid peroxidation are of significance, the accumulation and fate 

of the secondary products of lipid peroxidation have the potential to be the most 

significant to human health. 

 Lipid hydroperoxides are the initial products of lipid peroxidation, but they 

are relatively short-lived species.  They can either be reduced by glutathione 

peroxidases to unreactive lipid alcohols or they can undergo metal-catalyzed 

decomposition reactions to give way to a variety of products that are generally 

more reactive than the parent lipid hydroperoxide.  Most common among these 

are the electrophilic aldehydes acrolein, malondialdehyde, and 4-hydroxynonenal 

(Figure IV-1).11,12   
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Figure IV-1:  Electrophilic aldehydes formed from lipid peroxidation. 

 

To help understand the magnitude of oxidation products that can 

potentially form in our bodies, remember that most phospholipids contained in 

every cellular membrane are known to possess an unsaturated fatty acid residue 

esterified to the 2-position of the glycerol backbone.  Many of these acids are 

polyunsaturated, and the presence of a methylene-interrupted diene such as in 

linoleic and arachidonic acid allows them to be easily oxidized.  The high local 

concentration of these PUFAs in phospholipids makes the lipid bilayer a prime 

target for reaction with oxidizing agents and also provides the opportunity for 

these PUFAs to participate in lengthy free radical chain reactions.  The 

susceptibility of the PUFAs in our cellular membranes to oxidation has prompted 

the evolution of an extensive framework of small molecule antioxidants and 

enzymes whose sole functions are to prevent radical chain oxidation of 

membrane lipids and to minimize damage caused by oxidation. 

Even though lipid peroxidation has been the focus of much recent 

research, details of the chemical mechanisms involved in the process have been 

limited until recent years.  Most biological studies of peroxidation have utilized 

calorimetric assays such as the formation of conjugated dienes13 or the reaction 

of a lipid oxidation product with thiobarbituric acid to give a colored adduct14,15 as 
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a measure of autoxidation.  Titrimetric methods have also been used to measure 

peroxide formation in the oxidations.16  The assays mentioned above only give a 

crude indication of the oxidation process, and the nature of the chemical events 

involved in the autoxidation of fatty acids and unsaturated phospholipids have 

remained unclear. 

Product mixtures obtained in polyunsaturated fatty acid random 

autoxidation are complex.  However, the primary processes leading to products 

have been firmly established.17-21  The four major products formed from methyl 

linoleate (1) autoxidation are conjugated diene hydroperoxides (Figure IV-2).22  

Two products (2 and 3) have trans, cis-stereochemistry, while the other two (4 

and 5) have trans, trans-stereochemistry.  Together, these four products account 

for over 97% of the oxygen consumed during the autoxidation.  Other minor 

products that are formed in the autoxidation of linoleate include nonconjugated 

diene hydroperoxides formed by abstraction of allylic hydrogens at the C8 and 

C14 positions of the linoleate precursor.23  

The distribution of the primary products of methyl linoleate autoxidation 

depends upon the conditions used for the autoxidation.24,25 The following 

observations concerning the products formed are relevant to a consideration of 

the mechanism of the autoxidation: 

1. The sum total of products formed from oxygen addition at C9 (3 

and 4) is the same as the products formed from oxygen addition at 

C13 (2 and 5). 
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2. Higher autoxidation temperatures give rise to more trans, trans 

products. 

3. Higher concentrations of linoleate give rise to more trans, cis 

products. 

4. Product distributions are independent of oxygen pressure between 

10 and 100 mm O2. 

The hydroperoxide 2 rearranges to a mixture of the four hydroperoxides 

by a free-radical mechanism and during this rearrangement, atmospheric oxygen 

and the hydroperoxide oxygen exchanges.26 

 
Figure IV-2:  Mechanism of methyl linoleate autoxidation. 

 

In a previously proposed kinetic scheme,19,24 hydrogen atom abstraction 

occurs at the bis-allylic carbon of the diene system to generate the pentadienyl 

radical 6.  Oxygen addition at either end of the delocalized radical system occurs 
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at the diffusion-controlled rate (109 s-1) in the absence of a sufficient hydrogen 

atom donor, leading to peroxyl radicals 7 and 8, which are immediate precursors 

to hydroperoxides 2 and 3, respectively.  Hydroperoxides 4 and 5 most likely 

occur from loss of oxygen from peroxyl radicals 7 and 8 to give isomerized 

carbon radicals.  Oxygen adds to the ends of these new pentadienyl radicals to 

give the corresponding peroxyl radicals 9 and 10, which are, again, immediate 

precursors to hydroperoxides 4 and 5 (Figure IV-2). 

The data concerning linoleate autoxidation is consistent with this 

mechanism.  Products are formed from oxygen addition at either end of the 

intermediate pentadienyl radicals and consequently the pseudosymmetry of the 

system leads to equal amounts of 9- and 13-substituted hydroperoxides.  At 

higher temperatures, β-fragmentation pathways become competitive with 

hydrogen atom transfer reactions and more thermodynamic (trans, trans) 

products are formed.  Higher concentrations of linoleate lead to more kinetic 

(trans, cis) products because increasing the concentration of the hydrogen atom 

donor [H●] favors hydrogen atom addition to peroxyl radical 8, giving 

hydroperoxide 3.  Product distributions of hydroperoxide products are 

independent of oxygen concentration at pressures above 10 mm O2 because all 

carbon centered radicals are trapped at these concentrations of oxygen and the 

important stereochemical branch point in the sequence involves the peroxyl 

radicals 7-10 and not the pentadienyl radical 6.  Lastly, the kinetic 

hydroperoxides (2 and 3) rearrange to give a mixture of all four hydroperoxide 

products.  During this rearrangement, atmospheric oxygen is exchanged with the 
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hydroperoxide oxygen via a β-fragmentation process seen in Figure IV-2 and IV-

3. 

Figure IV-3:  Newman projection of oxygen addition to the pentadienyl radical 6. 

 

Previous studies have suggested that the distribution of products in fatty 

acid or ester autoxidation may be understood by a reversible oxygen addition to 

intermediate pentadienyl radicals.  This reversible addition results in the 

isomerization of the pentadienyl radical.  Figure IV-3 shows a Newman projection 

of oxygen addition to radical 6.  Oxygen addition occurs via an approach 

perpendicular to the plane of the π radical to give peroxyl radical 8, which is now 

free to undergo conformational equilibrium.  A new, isomerized carbon radical is 

formed from loss of oxygen from the opposite side of the π system from which 

oxygen entered.  Similar arguments apply for the isomerization of 6 to 10. 

The allylbenzene derived peroxyl radical clocks described in Chapter III 

are useful over a range of kinh’s from 104 to 106 M-1 s-1.  These clocks, coupled 

with the non-conjugated methyl linoleate β-fragmentation, will allow hydrogen 

atom transfer processes to be clocked over a range of four orders of magnitude 

(104-107 M-1 s-1).  A peroxyl radical clock has been developed in the Porter lab 

based on the conjugated linoleate β-fragmentation described in Figure IV-2.  
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Because this fragmentation occurs much slower21 than the non-conjugated 

linoleate fragmentation and the allylbenzene derived fragmentation, it has proven 

to be useful in clocking hydrogen atom transfer processes from 100-104 M-1 s-1.  

For our purposes, the hydroperoxides 2 through 5 were reduced with 

triphenylphosphine (PPh3) to give the alcohols 11 through 14 (Figure IV-4).  

Analysis of the alcohols provided better chromatography, as well as easier 

manipulation of the oxidation mixture.  Reduction to the alcohols has no effect on 

the product distribution or kinetics of the following experiments.  

 

Figure IV-4: Alcohol autoxidation products of methyl linoleate. 

 

The Use of N-MBHA to Calibrate the Slow Methyl Linoleate Peroxyl 
Radical Clock 

 
It became evident for the selective synthesis of trans, cis hydroperoxides 

from catalytic autoxidation, a catalyst that was a better H-atom donor than N-

hydroxyphthallimide (NHPI) would be required.  2,2,6,6-tetramethyl-N-

piperidine, which leads to the persistent N-oxyl radical TEMPO, was the first 

such compound looked at by the Porter group due to its low O-H BDE, 

approximately 70 kcal/mol.27  Coseri and Ingold have demonstrated that 

TEMPO-like radicals react with cyclohexene primarily through initial abstraction 

OMe

OHO

11

OMe

OOH

12

OMe

ΟOH

13

OMe

Ο

14

OH



 145

of an allylic hydrogen atom under mild conditions (70oC) rather than by addition 

to the olefinic bond.28  Unfortunately, the persistent nitroxyl radicals then couple 

with the newly formed carbon-centered radicals at close to the diffusion-

controlled limit.  TEMPO can therefore serve as a strong inhibitor of 

autoxidation, a fact that diminishes its use for the synthesis of regiochemically 

specific hydroperoxides of methyl linoleate. 

N-methyl-benzohydroxamic acid (NMBHA) has an O-H BDE value of 

79.2 kcal/mol,29 which is intermediate between N-hydroxypiperidine (~70 

kcal/mol) and NHPI (88.1 kcal/mol).27  The rate of hydrogen abstraction from 

the O-H bond in NMBHA by peroxyl radicals has been determined to be 

3.1x105 M-1s-1, by the peroxyl radical clock method described in Chapter III.  

NMBHA thus appears to be a viable candidate for use as an autoxidation 

catalyst based on its O-H BDE and its predisposition for being an excellent H-

atom donor.  NMBHA can be easily synthesized in one step by the addition of 

benzoyl chloride to a mixture of N-methylhydroxylamine and potassium 

carbonate in benzene at 0oC, as seen in Figure IV-5.  

 

 

 

Figure IV-5:  Synthesis of NMBHA.  

 

Results from the Porter group indicate that NMBHA is an effective 

catalytic system for the synthesis of hydroperoxides.30  As shown in Figure IV-
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6, the nitroxyl radical derived from NMBHA catalyses the hydrogen abstraction 

from the bisallylic position of the lipid since the BDE of the NMBHA O-H bond is 

approximately 6 kcal/mol higher than that of the C-H bond.31  Because NMBHA 

is a good hydrogen atom donor, the slower β-fragmentation or cyclization (~102 

to 103 M-1s-1) of the intermediate peroxyl radicals is minimized, conferring a 

higher selectivity to the system and generating the free radical chain while 

forming the kinetically favored hydroperoxide. 

 

Figure IV-6:  Peroxidation of fatty acid methyl esters in the presence of 
NMBHA. 
 
 
 

The rates of β-fragmentation (kβII and kβIII) in Figure IV-2 had to be 

calibrated.  Values for kβII and kβIII have been reported previously by Wujek and 

Porter21, however there is some uncertainty as to the accuracy of these values.  

It was decided that NMBHA would be used as the hydrogen atom donor/pro-

oxidant due to NMBHA’s ability to effectively oxidize methyl linoleate to give all 

four oxidation products (2 through 5). 
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Equation 1 was used to determine both kβII and kβIII by keeping the 

concentration of methyl linoleate ([ML] constant and varying the concentration of 

NMBHA ([RH]). The kp of methyl linoleate used in the calibration was 62 M-1s-1, 

first determined by Howard.32  kβII can be derived from the slope of the plot in 

Figure IV-7, and kβIII can be derived from the y-intercept.  From figure IV-7, kβII  

and kβIII were determined to be 625 and 69 M-1s-1, respectively. 

 

 

 
 
 

Figure IV-7:  Calibration of the conjugated methyl linoleate clock using NMBHA.  
[methyl linoleate] = 0.2 M; [MeOAMVN] = 0.01 M; [NMHBA] = 0.5-4 mM; T = 
37oC; t = 1 h. 
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The consumption of NMBHA was initially thought to not be an issue due 

to the fact that NMBHA was believed to act as a catalytic pro-oxidant, and 

therefore it would be continuously regenerated throughout the course of the 

oxidations (Figure IV-6).  As can be seen in Figure IV-8 this was not the case, 

as a great majority of NMBHA was being consumed (60-95%) over the 

relatively short time course of the reaction.   

Figure IV-8:  Consumption of NMBHA during the calibration of the conjugated 
methyl linoleate peroxyl radical clock.  [methyl linoleate] = 0.2 M; [MeOAMVN] = 
0.01 M; [NMHBA] = 0.5-4 mM; T = 37oC; t = 1 h. 

 
 
 
Even at concentrations 10x the initial calibration concentrations, more 

than 70% of the hydrogen atom donor was being consumed.  A 10-fold 

increase in the concentration of NMBHA not only continues to yield a large 

0

10

20

30

40

50

60

70

80

90

100

110

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

[NMBHA] (M)

%
 N

M
B

H
A

 re
m

ai
ni

ng

initial calibration
10x [initial calibration]



 149

amount of consumed hydrogen atom donor, but also prevents NMBHA from 

being a catalytic pro-oxidant.  That is, only the kinetic products 2 and 3 could be 

identified.  Hydroperoxides 4 and 5 were never obtained unless a very small 

amount of NMBHA was used.  It would seem that at these concentrations 

(0.005 to 0.035 M), NMBHA is acting solely as an antioxidant. 

Again, because NMBHA was being consumed so readily during the 

calibration experiments, it became necessary to determine kβII and kβIII with 

another hydrogen atom donor in order to use the conjugated methyl linoleate 

peroxyl radical clock to determine kp’s of hydrocarbons and slower phenols.  It 

was decided that methyl linoleate (ML) could be used to calibrate the 

conjugated methyl linoleate clock because the kp of ML is known to be 59.9 M-1 

s-1 at 37oC.33  It is possible to use ML for this calibration because ML is a 

hydrogen atom donor, and by substituting the kp of ML into equation 1, the only 

remaining variables are kβII and kβIII, which are easily solved for from the slope 

and y-intercept of the line in Figure IV-9. 

The values for kβII and kβIII were derived from controlled autoxidations of 

methyl linoleate.  The oxygen partition coefficient, α, has already been 

established at 0.686.20  α-tocopherol would have been the most desirable 

hydrogen atom donor for the calibration of the conjugated methyl linoleate clock 

because its bimolecular rate constant is so well established.  However, the rate 

constant for α-tocopherol is too high to reliably determine product ratios for the 

conjugated methyl linoleate clock. 

 



 150

Figure IV-9:  Calibration of the conjugated methyl linoleate peroxyl radical 
clock by controlled autoxidations of methyl linoleate.  [ML] = 0.3-1.8 M; 
[MeOAMVN] = 0.01 M; T = 37oC; t = 1 h. 
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concentrations, as well as over varying reaction times in order to find the most 
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Figure IV-10:  Consumption of ML during conjugated methyl linoleate peroxyl 
radical clock calibration.  [ML] = 0.3-1.7 M; [MeOAMVN] = 0.01 M; T = 37oC; t = 
1 h. 

 
 
 
Autoxidations with varying concentrations of methyl linoleate, initiated by 

2,2’-azobis-(4-methoxy-2,4-dimethylvaleronitrile) (MeOAMVN), were carried out 

in chlorobenzene at 37 ºC.  Conditions were chosen such that a negligible 

amount of hydrogen atom donor was consumed since the kinetic analysis 

assumes a constant concentration of hydrogen atom donor.  The products of 

methyl linoleate oxidation were measured by HPLC analysis (Figure IV-11) 

described in the experimental section at the end of this chapter.  Reduction of 

hydroperoxides 2 through 5 with triphenlyphosphine to the alcohols 11 through 

14 was necessary in order to obtain optimal separation of the trans, cis and 

trans, trans oxidation products. 
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Figure IV-11:  Representative HPLC of methyl linoleate autoxidations monitored 
at 234 nm.  Cinnamyl alcohol (5 mM) was used as the internal standard.  [ML] = 
0.2 M; [MeOAMVN] = 0.01 M; T = 37oC; t = 1 h.   

 
 
 
As can be seen from Figure IV-9, the calibration of the conjugated 

methyl linoleate clock with ML was very reproducible.  Table IV-1 shows values 

for kβII and kβIII derived from the slope and y-intercept of the line in Figure IV-9 

using equation 1, as well as the α value determined by Tallman et al20 used in 

the conjugated methyl linoleate clocking experiments.  The α, kβII, and kβIII 

originally reported by Porter and Wujek21 are included in Table IV-1 for 

comparison.  It can be seen that the experimental values of α, kβII, and kβIII from 
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the calibration of the conjugated methyl linoleate peroxyl radical clock are in 

good agreement with the accepted values of the past twenty years.   

 

Table IV-1:  α, kβII, and kβIII of the conjugated methyl linoleate peroxyl radical 
clock. 

 
Variable Porter and Wujek21 Peroxyl Radical Clock 

 
α 0.67 0.686 20 

kβII 430 s-1 660(±172) s-1 
kβIII 27 s-1 42(±11) s-1 

 
 
 

Clocking Experiments with the Conjugated Methyl Linoleate Clock 

 In order to demonstrate the utility of the peroxyl radical clocks, a series of 

compounds were studied (Figure IV-12) to determine their rate constants by the 

radical clock method using the conjugated methyl linoleate clock. The 

compounds that have been clocked in this section have known rate constants 

reported elsewhere.24,32,34,35  This provides an opportunity to validate the radical 

clock method.  These specific hydrogen atom donors were chosen to study the 

hydrogen atom transfer processes through different structures (phenols, 

hydrocarbons) and spanning a wide range of rate constants (100 – 104 M-1s-1).  

This provides the opportunity to explore the general application of the radical 

clock method.  The phenols that were studied fall into the antioxidant class given 

their ability to inhibit autoxidation processes (kinh), whereas the hydrocarbons are 

known to propagate radical chemistry (kp).  Regardless of the different 

compounds classification as an antioxidant or hydrocarbon (kinh or kp, 
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respectively), the fundamental reaction is still a hydrogen atom transfer and the 

overall kinetics remain unchanged. 

 

 
 
 
 
 
 
 
 
 
 
Figure IV-12:  Phenols and hydrocarbons clocked with the conjugated methyl 
linoleate peroxyl radical clock. 
 
 
 
 The conjugated methyl linoleate peroxyl radical clock experiments were 

carried out in a similar manner to the calibration experiments described above.  

The hydrogen atom donor of interest was first monitored for consumption using 

reverse phase HPLC (Figure IV-13, described in the experimental section).  The 

clocking experiments were conducted once suitable conditions (concentration of 

donor, time of oxidation, etc.) were established based upon the results of the 

consumption experiments.  Again, by ensuring that a negligible amount of the 

hydrogen atom donor is being consumed, we can ensure pseudo-first order 

kinetics, and the steady-state approximation that gave equation 1 will hold true. 
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Figure IV-13:  Consumption of H-atom donors during clocking experiments with 
the conjugated methyl linoleate peroxyl radical clock.  5 mM internal standard 
(different for each hydrogen atom donor) was used.  [MeOAMVN] = 0.012 M; 
[methyl linoleate] = 0.2 M; T = 37oC; t = 1 – 4 h.  [BHT] = 0.02, 0.05 M; [2,4,6-tri-t-
butylphenol] = 0.02, 0.05 M; [2,6-di-t-butylphenol] = 0.03, 0.05 M; [9,10-DHA] = 
0.25, 0.45 M; [1,4-CHD] = 0.41, 0.84 M; [allylbenzene] = 2.26, 6.04 M. 

 
 
 
The values obtained by the peroxyl radical clock method are in good 

agreement with previously reported values for the inhibition and propagation rate 

constants that are available in the literature, as seen in Table IV-2, taking into 

account the temperature differences.  While literature values have been 

measured in experiments that vary widely in solvent, temperature, and method, 

the values reported here were derived from experiments carried out in benzene 

or chlorobenzene at 37ºC by a single method.  As a result, comparison of the 

trends in kH is straightforward and reliable.  Furthermore, little is required to 
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determine a rate constant in terms of quantity of antioxidant, equipment, and time 

investment.  Therefore, the conjugated methyl linoleate peroxyl radical clock 

method developed here offers several advantages over the traditional methods. 

 

Table IV-2:  kinh’s of phenols and kp’s of hydrocarbons determined by the 
conjugated methyl linoleate peroxyl radical clock compared to literature and 
theoretical kH’s. 
 

H-atom donor Exp. kH (clock) 
(M-1s-1) 

Lit. kH 
(M-1s-1) 

Theor. kH
31  

(M-1s-1) 
 

BHT 1.9(±0.9)x104 1.4(±0.2)x104 35 N/A 

2,4,6-tri-tert-butylphenol 1.7(±0.6)x104 1.6(±0.2)x104  34 N/A 

2,6-di-tert-butylphenol 3.2(±0.3)x103 3.1(±0.3)x103  35 N/A 

9,10-dihydroanthracene 384(±46) 397 24 85 

1,4-cyclohexadiene 265(±33) 362(±17) 24 314 

allylbenzene 5.5(±0.6) 10  32 109 

 
 
 

The theoretical kH’s in Table IV-2 were predicted using Equation 2 

published by Pratt, et al.31: 

Log kp = -0.0219(C-H BDE) + 18.9   (2) 

Knowing the C-H BDE (kcal/mol) of a specific hydrocarbon, an approximate kp 

can be determined.  It can be seen from Table IV-2 that the theoretical kH’s vary 

quite dramatically from the literature and experimental data for 9,10-

dihydroanthracene and allylbenzene.  This is not a concern because Equation 2 

was derived from the line of best fit from C-H BDE (kcal/mol) data obtained 



 157

from theoretical investigations31 and from kp’s that contain significant 

associated error.32  The theoretical investigations also did not take into account 

the effect of aromatization on the energetics of 9,10-dihydroanthracene (which 

was dramatically under predicted), nor did the calculations take into account 

initially breaking the aromatization of allylbenzene (which was dramatically over 

predicted).  Therefore, the line of best fit of all this data may not be as reliable 

as desired, but it does provide a good starting point for the theoretical 

determination of kp’s of hydrocarbons that are unknown.  The literature values 

were typically collected using the rotating sector method.32  This method 

requires that rates of initiation and termination be determined as well as the 

rate of substrate and/or oxygen consumption.  The experimental values using 

the peroxyl radical clock method, are more uniform in nature, but have yet to be 

validated.  It should be understood that there is error associated with the 

calculations, as well as experimental error, that must be propagated in these 

predictions.31,36   

As the rate constant for hydrogen atom donation (kH) increases, it can be 

seen in Table IV-2, that the relative error associated with that compound 

increases.  This presents somewhat of a limitation of the conjugated methyl 

linoleate peroxyl radical clock.  That is, the conjugated methyl linoleate clock has 

a “window” of rate constants that it is capable of clocking.  This window is 

approximately one order of magnitude greater and lower than the rate of β-

fragmentation (kβII and kβIII, for this example) associated with a particular clock.  

Therefore, while the allylbenzene peroxyl radical clock (Chapter III) was capable 
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of determining rate constants from 106 to 104 M-1s-1 (kβ = 2.6x105 s-1), the 

conjugated methyl linoleate peroxyl radical clock is capable of determining rate 

constants of hydrogen atom donation reactions in the 100 to low 104 range (kβII = 

6.6x102 s-1 and kβIII = 4.2x101 s-1).  This observation will help in future 

experiments when trying to determine the appropriate clock for a specific 

hydrogen atom transfer reaction that is unknown. 

Another requirement of the peroxyl radical clock system is that the 

substrate must propagate the free radical chain.  This is not typically a problem 

for hydrocarbons such as 9,10-dihydroanthracene or 1,4-cyclohexadiene, or 

phenols such as α-tocopherol or 2,4,6-tri-methylphenol.  However, with bulky 

ortho substituents like the tert-butyl groups in BHT, 2,4,6-tri-t-butylphenol, or 2,6-

di-t-butylphenol, propagation does not occur as easily.  Therefore these phenols 

are slightly more difficult to clock with reproducible results, and have more 

associated error than the easily propagating compounds. (Table IV-2, Table III-

3). 

  

Conclusions 

Clock selection should be paired to the substrate being investigated.  The 

peroxyl radical clock approach involves a competition leading to two different 

products, and the essential part of the experiments is the determination of the 

relative amounts of these two products formed at a known concentration of 

hydrogen atom donor.  As a general guide, a unimolecular clock reaction should 
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be selected to time H-atom transfer reactions having bimolecular rate constants 

that are 0.05 to 20 times the rate of the clock reaction.   

Conditions should be selected such that the concentration of the hydrogen 

atom donor is known and the ratio of products can be reliably determined.  If the 

oxidation reactions are carried out to low conversions of hydrogen atom donor 

one can, within the errors of the method, assume a constant concentration of the 

donor in the experiment.  Typically, oxidations should be carried out to 0.5 – 2% 

oxidation, depending on the concentration of the clock used in the experiment, to 

meet both of these requirements.  The oxidation conditions should never result in 

the consumption of a significant amount of the hydrogen atom donor.  This is 

typically not a problem with the peroxyl radical clock method because the 

oxidation relies on propagation by the ArO•.  As a result, the hydrogen atom 

donor is regenerated during the course of an oxidation.   

 A final caveat concerns the fact that the clocks are themselves oxidizable 

compounds, which is a requirement of the approach.  This can give rise to 

problems in the analysis if sufficient care is not taken to ensure the appropriate 

purity of the clock.  Commercial methyl linoleate may have substantial amounts 

(1-2%) of oxidation products as received and blank analyses should always be 

performed to assure that clock substrates are uncontaminated by the very 

products that are formed in the clock experiment. 
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Experimental Methods 

 

Materials 

The initiator, 2,2’-azobis-(4-methoxy-2, 4-dimethylvaleronitrile) 

(MeOAMVN), was obtained from Wako and dried under high vacuum for 2 h.  

Benzene and chlorobenzene were passed through a column of neutral alumina 

and stored over 4Å molecular sieves.  Hexanes used in HPLC analysis and 

column chromatography was HPLC grade from Burdick & Jackson.  Methyl 

linoleate was purchased from NuChek Prep and chromatographed on silica (10% 

EtOAc/hexanes) prior to use.  NMBHA was synthesized as described below 

following a literature procedure.37  All other hydrogen atom donors used in 

conjugated methyl linoleate clocking experiments were purchased from Aldrich 

and were used as received except for 9, 10-dihydroanthracene which was 

recrystallized twice from ethanol.  The oxidation products of methyl linoleate have 

been characterized in previous publications.18,19,21,30 

 

Procedure for the conjugated methyl linoleate peroxyl radical clock calibration   

The oxidations were carried out using methyl linoleate (0.1 M) MeOAMVN 

(0.01 M) in chlorobenzene for 2 h @ 37oC.  The oxidations were stopped by the 

addition of excess BHT, reduced with PPh3, and followed by the addition of the 

internal standard (5mM cinnamyl alcohol). HPLC analyses were carried out with 

a Waters 600 liquid chromatograph interfaced to a Waters 996 PDA detector at 

234 nm.  Oxidation products were separated on a Beckman Ultrasphere silica 
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column (0.46 x 25 cm), using 0.5% iso-propanol in hexanes as the mobile phase 

at 1.0 mL/min.  The values for kβII and kβIII were determined from the slope and 

the y-intercept respectively, using equation 1. 

 

Procedure for clocking experiments using the conjugated methyl linoleate clock  

The samples were prepared as described above for each clock in 

chlorobenzene with varying concentrations of hydrogen atom donor 

concentration (0.02-6.04 depending on the substrate).  The samples were 

incubated at 37 ºC for 0.5-2 h.  Following the oxidation, BHT (50 mM) and 

internal standard (5 mM cinnamyl alcohol, except for allylbenzene, 5 mM benzyl 

alcohol) were added to each sample.  Methyl linoleate oxidation mixtures were 

reduced with PPh3 and analyzed by HPLC (0.5 % i-PrOH/hexanes, 1 mL/min, 

and detection at 234 nm). 

 

General procedure for hydrogen atom donor consumption experiments   

The oxidations were conducted with methyl linoleate (0.1-0.2 M), 

MeOAMVN (0.01 M), and hydrogen atom donor (0.02–6.04 M, depending on 

compound) in chlorobenzene.  The samples were incubated at 37 ºC for 0.5-2 

h.  The oxidation was stopped by the addition of excess 2,4,6- tri-t-butylphenol 

(except for the tri-t-butyl phenol experiments when 2,4,6-tri-methylphenol was 

added), followed by the addition of the internal standard (10 mM of BHT).  In 

the BHT experiments, 10 mM 2,4,6-tri-methylphenol was added.  The 

hydroperoxides were reduced to their corresponding alcohols with excess 
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trimethylphosphite and the samples were diluted with methanol (1.8 mL).  

HPLC analyses were carried out with a Waters 600 liquid chromatograph 

interfaced to a Waters 996 PDA detector with a SUPELCO Discovery C-18 

(25cm x 4.6mm, 5 µm) RP-HPLC column.  Methanol and water were used as 

the mobile phase and the gradient was: (Methanol:water) 90:10 for 5 min, ramp 

to 75:25 in 10 min, ramp to 20:80 in 15 min, ramp to 90:10 in 10 min.  

Consumption was monitored at a wavelength >250 nm to ensure no peak 

contamination from the oxidation products (Figure IV-14).  When consumption 

of NMBHA was monitored, acetonitrile was used instead of methanol due to 

solubility issues. 

 

Figure IV-14:  Representative HPLC chromatogram of the consumption of DHA 
monitored at 255 nm.  [methyl linoleate] = 0.1 M; [DHA] = 0.25 M; [MeOAMVN] 
= 0.01 M; [BHT] = 0.01 M; T = 37oC; t = 0.5 h. 
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Error analysis  

All errors reported are 95% confidence limits of the rate constant as 

determined by t tests, i.e. best fit ± (standard error)(t*).  The standard error was 

determined from SigmaPlot or Origin and multiplied by t*.  The value for t* was 

calculated in Excel using the equation TINV (0.05, df), where df is the degrees of 

freedom.  The degrees of freedom were calculated by subtracting the number of 

parameters (2) from the total number of data points.  The error in literature values 

for α-TOH (±10%) was also propagated into the error. 

 

Synthesis of N-Methylbenzohydroxamic Acid (NMBHA)37 

3.9 mL (33 mmol) of benzoyl chloride was added slowly, over one 

hour, to a slurry solution of N-methyl Hydroxylamine (3.17 g, 38 

mmol) and potassium carbonate (18 g, 120 mmol) in 80 mL of 

benzene at 0oC.  The reaction was allowed to warm to room temperature over 

two hours.  Upon completion, the solvent was removed under vacuum, without 

warming, in order to avoid thermal decomposition.  100 mL of water was added 

to the remaining oil, and the pH was corrected to 6.0 with 37% aqueous 

hydrochloric acid.  The acidic solution was extracted three times with 100 mL of 

diethyl ether, and the solvent was evaporated under vacuum, again without 

warming.  The product was purified by Silica gel flash column chromatography 

using a 9 to 1 mixture of methylene chloride and diethyl ether mobile phase.  The 

concentration of diethyl ether was rapidly increase to 100% diethyl ether, and 3.7 

g (74%) of the desired product was eluted shortly thereafter as an orange oil, that 

O

N
OH
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slowly solidified when stored at -78oC.  1H NMR (300 MHz, CDCl3): δ 7.42-7.48 

(m, 5H, Ph); δ 3.36 (s, 3H, CH3).  13C NMR (300MHz; CDCl3): δ 166.9, 132.4, 

130.8, 128.4 (2C), 127.9 (2C), 38.3. 
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CONCLUDING REMARKS 

 

Olefin Geometry 

 The autoxidations of cis, cis; cis, trans; and trans, trans non-

conjugated dienes and their corresponding octadecadienoates give rise to 

kinetically controlled hydroperoxides.  Formation of the bis-allylic peroxyl radical 

and its subsequent β-fragmentation depends on the geometry of the alkene 

precursor and as a result the pentadienyl radical intermediate.  Significant 

unpaired electron spin density is present at the central carbon of the pentadienyl 

radicals and the bis-allylic hydroperoxide product that arises from addition at this 

position is the major kinetic product for each of the systems studied, provided a 

sufficient hydrogen atom donor is present.1   

However, unpaired spin density is not the only factor that determines the 

position of oxygen addition to a delocalized radical.  We speculate that radical-

triplet dioxygen complexes may be intermediates in the formation and 

rearrangement of delocalized radicals.  Rearrangement of the bis-allylic peroxyl 

radicals to the conjugated peroxyl radicals occurs with rate constants between 

2.2 and 2.8 x 106 s-1.  This rearrangement can be used as a peroxyl radical clock 

regardless of the mechanism by which this rearrangement occurs.2,3 

The octadecadienoates studied in Chapter II are present in biological 

samples.  Particularly methyl linoleate which is a very common lipid found in LDL.  

An understanding of the oxidation mechanism of methyl linoleate (and methyl 

linoelaidate) will give rise to a better understanding this oxidation process in vivo.  
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As discussed in Chapter I, oxidation of lipids in the body can have potentially 

harmful effects on the body.  A better understanding of the mechanism of 

oxidation, and in turn, the breakdown products after lipid oxidation will give a 

better understanding to the pathogenesis of certain age-related diseases. 

 

Allylperoxyl Radical Rearrangement 

 Many studies have been conducted trying to determine the nature of the 

allylperoxyl radical rearrangement (Chapter III).  Many different mechanisms 

and theories have been proposed regarding the allylperoxyl radical 

rearrangement.  Studies conducted in the Porter group for the last twenty 

years, as well as independent theoretical studies all seem to indicate that the 

most plausible mechanism for the allylperoxyl radical rearrangement is a β-

fragmentation of the initial C-O bond of the peroxyl radical leading to a “caged 

pair” intermediate, followed by rearrangement to the isomerized peroxyl radical. 

 Using 1-phenyl-2-butene isomers it was very easy to see that in the 

presence of α-tocopherol, isomerization and racemization occurred very slowly 

if at all.  However, when no antioxidant was present, isomerization and 

racemization occurred quite rapidly.  From these studies, two major conclusions 

can be drawn regarding the mechanism of the allylperoxyl radical 

rearrangement: 

1. The temperature of the reaction plays a vital role in the control of the 

rearrangement.  That is, the higher the temperature, the more likely 

the rearrangement will occur at a faster rate and to a greater extent.   
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2. Antioxidants such as α-tocopherol not only impede the extent of 

oxidation, but also inhibit the peroxyl radical rearrangement.  Perhaps 

due to the rapid hydrogen atom transfer, trapping the kinetic 

products. 

 
 The results presented in this work closely parallel theoretical 

investigations4 as well as the experimental work by Porter5,6 using 

symmetrically and unsymmetrically 18O labeled hydroperoxides.  The results of 

each of these studies strongly suggest the β-fragmentation of the peroxyl 

radical, leading to a caged pair of molecular oxygen and an allyl radical as the 

most plausible mechanism for allylperoxyl radical rearrangement.  

 

Peroxyl Radical Clocks 

 Oxidation of allylbenzene was shown to be useful in determine rates of 

hydrogen atom transfer (kH) for processes occurring from 106 M-1s-1 to 104 M-1s-1.  

Many commercially useful antioxidants, such as 2,6-di-t-butyl-4-methylphenol 

(BHT) and α-tocopherol (αTOH), donate a hydrogen atom in this range.  

Oxidation of allylbenzene proceeds via a mechanism similar to methyl linoleate; 

however the hydroperoxide oxidation products, once reduced to their 

corresponding hydroxy products, are easier to analyze by normal phase HPLC.3 

 When using allylbenzene as a peroxyl radical clock, one must take into the 

account the possibility of allylbenzene, as well as the hydrogen atom donor of 

interested, being consumed.  Conditions should be selected such that the 

concentration of the hydrogen atom donor remains relatively constant, and the 
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clocking substrate (allylbenzene) is not competing with the hydrogen atom 

transfer process of interest.  If the oxidation reactions are carried out to low 

conversions of hydrogen atom donor and the concentration of the oxidation 

products can be reliably determined; one can, within the errors of the peroxyl 

radical clock method, assume a constant concentration of the donor in the 

experiment, and therefore accurately determine the kH for the hydrogen atom 

donor of interest.   

 The oxidation conditions should never result in the consumption of a 

significant amount of the hydrogen atom donor.  This is typically not a problem 

with the peroxyl radical clock method because the oxidation relies on propagation 

by the ArO•.  As a result, the hydrogen atom donor is regenerated during the 

course of an oxidation.  When using allylbenzene, oxidations should be carried 

out to 0.5% conversion of allylbenzene to oxidation products, and hydrogen atom 

consumption should remain less than 5%.  This will assure pseudo-1st order 

kinetics in the oxidation system.  

 Clock selection should be paired to the substrate being investigated.  The 

peroxyl radical clock approach involves a competition leading to two different 

products, and the essential part of the experiments is the determination of the 

relative amounts of these two products formed at a known concentration of 

hydrogen atom donor.  As a general guide, a unimolecular clock reaction should 

be selected to time H-atom transfer reactions having bimolecular rate constants 

that are 0.05 to 20 times the rate of the clock reaction. 
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 While the allylbenzene clock works well for hydrogen atom transfer 

processes in the 106 - 104 M-1s-1 range, another useful clock is the “slow” methyl 

linoleate clock.  This clock is based upon the isomerization of the parent 

pentadienyl radical affording the four thermodynamic products of methyl linoleate 

oxidation discussed in Chapter IV.   

 This “slow” methyl linoleate clock has proven useful in determining rates of 

hydrogen atom donation for processes that occur in the 104 – 100 M-1s-1 range.  

This allows the “slow” methyl linoleate clock to be useful for both commercially 

common antioxidants, as well as rates of propagation (kp) for hydrocarbons such 

as 1,4-cyclohexadiene.3 

 Conditions should be selected such that the concentration of the hydrogen 

atom donor is known and the ratio of products can be reliably determined.  If the 

oxidation reactions are carried out to low conversions of hydrogen atom donor 

one can, within the errors of the method, assume a constant concentration of the 

donor in the experiment.  Typically, oxidations should be carried out to 2-4% 

conversion of methyl linoleate in order to reliably determine the concentration of 

oxidation products.  Again, the oxidation conditions should never result in the 

consumption of a significant amount of the hydrogen atom donor. 

 A final caveat concerns the fact that the clocks are themselves oxidizable 

compounds, which is a requirement of the approach.  This can give rise to 

problems in the analysis if sufficient care is not taken to ensure the appropriate 

purity of the clock.  Commercial methyl linoleate may have substantial amounts 

(1-2%) of oxidation products as received and blank analyses should always be 
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performed to assure that clock substrates are uncontaminated by the very 

products that are formed in the clock experiment. 

 Ultimately the peroxyl radical clock method has proven to be a very 

efficient technique for the rapid determination of hydrogen atom processes over a 

broad range (106 – 100 M-1s-1).  The methodology is straight forward and unified, 

and allows any organic or analytical lab reliably determine rate constants for 

reactions that have typically only been studies in a physical chemistry lab with 

specialized equipment.   
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