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CHAPTER I 

 

INTRODUCTION AND BACKGROUND 

 

―For the limits to which our thoughts are confined, are small in respect of the vast 

extent of Nature itself; some parts of it are too large to be comprehended and some too 

little to be perceived. And from thence it must follow, that not having a full sensation 

of the Object, we must be very lame and imperfect in our conceptions about it, and in 

all the propositions which we build upon it; hence we often take the shadow of things 

for the substance, small appearances for good similitudes, similitudes for definitions; 
and even many of those which we think to be the most solid definitions, are rather 

expressions of our own misguided apprehensions then of the true nature of the things 

themselves. ....." 

 

                            -- Robert Hooke, Micrographia, 1665 

 

1.1  Imaging biological systems 

Establishing the reliability, or the accuracy, with which an image represents its 

subject, is a fundamental concern in all disciplines of microscopy.
1-4

  Microscopy of 

biological systems is particularly challenging due to the complexities and 

interdependence of the individual components.
5,6

  The role that an individual 

macromolecule or protein performs cannot be fully realized outside the context of its 

native environment.
6-10

  Thus, in order to develop an accurate understanding of such 

cellular function it is necessary to elucidate the distribution and organization of the 

protein and surrounding assemblies which form the machinery of the cell.  Although, in 

the ideal circumstances, images would be obtained without perturbing the subject or its 

environment, this is not typically feasible.  Biologically specific labels or tags, such as 

fluorescent dyes or nanoparticles must be introduced to render the subject of interest 

visible.  Cellular processes must be immobilized prior to imaging—either by 
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freezing
6,11,12

 or chemical fixation,
3,5,13,14

 which can lead to the formation of artifacts.  

In addition, many microscopy techniques require additional sample processing to 

withstand the radiation necessary to record an image.  Such processing alters the 

sample‘s native state, and increases the potential for artifacts or distortions within the 

sample.
7,15

  Thus, in order to elucidate what Robert Hooke termed as ―the true nature of 

things,‖ in a biological system it is necessary to develop new imaging methodologies 

that maintain or closely preserve a sample‘s native state while providing a resolution of 

a few nanometers.  

The requirements for imaging cellular systems are dictated by the system or 

subject to be imaged.  Ideally, in order to image a system under its native conditions, 

the microscopy technique employed would fulfill all eight of the requirements listed in 

Table 1; however, current microscopy methods meet these requirements at the expense 

of resolution.
16

 

 

Table 1:  Imaging Requirements16 

1 3D imaging 

2 In natural liquid environment, i.e., not frozen 

3 Single particles, i.e., no crystals 

4 Protein assemblies 

5 Time-resolved 

6 Intracellular, not only surface 

7 Reproducibility 

8 Fast imaging 

 

This trend, shown in Figure 1, highlights the decline in resolution as more of the 

requirements in Table 1 are realized by given microscopy techniques. For instance, 

although light microscopy (LM), meets the most requirements, it has the poorest 
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resolution (≥ 200 nm).  Conversely, although X-ray crystallography obtains angstrom 

(Å) resolution, it is restricted to crystallized specimens and is therefore not a viable 

candidate for to image proteins in their native, cellular environment.  Additionally, as 

the number of requirements that a technique fulfills decreases, the more severe is the 

change in the sample relative to its native state.  Thus, new methodologies are needed 

to fill the gap in resolution and imaging requirements in order to image individual 

proteins under biologically relevant conditions. 

 

 

Figure 1:  Resolution versus parameters for conventional imaging/microscopy techniques.   In general, 
techniques which meet larger a number of imaging parameters have lower resolution.  Adapted from de 

Jonge et. al. 16 
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1.2  Resolution 

The obtainable resolution of LM is inherently limited by diffraction.  The 

diffraction limit, (dmin), described by Ernst Abbe, shown in equation 1, defines the 

minimum lateral distance between two objects that is necessary to be able to resolve 

them,
17

 where λ0 is the wavelength of light in a vacuum and NA stands for the 

numerical aperture of the condenser and objective lenses.
17,18

  In practice the diffraction 

limit be may be approximated as λ / 2. 

 

 

 

Because ultraviolet (UV) light due damages biological specimens, and typically 

requires impractical optics, longer wavelengths (≥ 400 nm) are typically employed in 

LM.  Thus diffraction limits the obtainable resolution of LM techniques to ~ 200 nm 

and above.
2,19

 

The resolution of LM can be improved through super-resolution techniques
19-23

 

such as photoactivated localization microscopy (PALM),
24-27

 stochastic optical 

reconstruction microscopy (STORM),
28-31

 which  determine the position single particles 

(i.e. fluorescent dye or protein) with high precision, as well as stimulated emission 

depletion (STED), which selectively quenches fluorophores, thus constricting the 

centroid of the signal.
19,32-36

  These methods yield resolutions of 50 nm, or as high as 

10-20 nm for extended imaging times.  Essentially, resolution is improved at the 

expense of imaging speed, and the number of features which can be imaged in a single 

 
     

      

             
  

 

 
 (1) 
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sample is restricted due to the limited availability of fluorophores with suitable optical 

properties and resistance to photobleaching.
37

  

Unlike LM, which utilizes photons to image an object, electron microscopy uses 

electrons to form the image, and is thus capable of attaining sub-angstrom (Å) 

resolution.  The wavelength (λ0) of an electron can be calculated using de Broglie‘s 

hypothesis, shown in equation 2, where h is Planck‘s constant, m0 is the mass of the 

electron at rest, v is the velocity of the electron, and c is the speed of light in a vacuum.   

 

 

  
 

   
√  

  

  
 (2) 

 

Thus, for a 100 keV electron, its corresponding wavelength is 4 pm.
1
  Because the 

wavelength of an electron is approximately 5 orders of magnitude smaller than a 

wavelength of light, the theoretical limit of diffraction for an electron microscope is 

0.02 Å.  However, due to lens imperfections, this limit has not been achieved with 

current electron microscopes, and the actual resolution is much lower, closer to 1Å.
1
 

 

1.3  Principles of Electron Microscopy 

 

1.3.1  The Electron Microscope 

The electron microscope was developed in 1931 by Ernst Ruska.
38

  Generalized 

schematics of two types of electron microscopes, the transmission electron microscope 

and the scanning electron microscope are shown in Figure 2.   
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Figure 2:  Schematics comparing the electron beam paths (blue) of a transmission electron microscope 

(TEM) and a scanning transmission electron microscope (STEM).  Images are not to scale. 

 

In both systems the electron gun, emits a beam of electrons into an evacuated column.  

The beam‘s path is controlled by a series of magnetic lenses and apertures.   In the 

transmission electron microscope the specimen is located between the condenser and 

objective lenses.  Electrons that pass through the sample are dispersed by the projector 

lens onto a phosphor viewing screen (or camera).  In a scanning transmission 

microscope, the beam passes through the condenser lens and aperture, where it is 

manipulated by a pair of scanning coils which direct the beam through the objective 

lens and onto the sample.  The scanning coils condense the diameter of, and control the 

position of the beam, as it is rastered across the sample. 
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1.3.2  Interactions of Electrons with Matter 

Electrons can interact with matter several ways, as depicted in Figure 3, and a 

variety of microscopy techniques have been developed which exploit the information 

that can be obtained from the different types of interactions.
1
 

 

 

Figure 3:  Electron-sample interaction.  Adapted from Williams and Carey1 

 

The electron may interact with and be absorbed by the sample itself, be transmitted 

through the sample, or it may be scattered (deflected by an angle (β)) upon interaction 

with the sample.  Deflection of the electron can occur with or without a corresponding 

loss of energy.  Electrons which loose energy when deflected through the sample are 

inelastically scattered, while those that do not undergo a loss of energy are elastically 
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scattered.
1
  It is these later scattering events which form the primary signal in scanning 

transmission electron microscopy (STEM). 

Elastically scattered electrons may be detected by the angle at which they are 

scattered.  Electrons which pass through the sample (transmitted) at an angle, β, are 

detected by either a bright field or annular dark field (ADF, usually a ring shaped 

scintillation detector to which a photomultiplier is attached) detector as shown in  

Figure 4. 

 

 

Figure 4:  Schematic of electrons scattered onto bright field and annular dark field (ADF) detectors.  

Electrons enter the sample with a semiangle of α, where they are either scattered or transmitted 
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(unscattered) through the sample.  If the exit angle by which the electrons are scattered is between β1 and 

β2 (inner and outer detector semiangles, respectively), they are detected by the ADF detectors.  Electron 

that scatter at angles < β1 are detected by the bright field detector.  Image is not to scale.  Adapted from 

Demers et. al.
39 

 

The mean free path (l), or average distance an electron travels between 

scattering events is inversely related to the atomic number (Z) of the atom off which it 

is scattered.  Thus a higher proportion of these electrons are scattered onto the ADF 

detector by a high-Z material relative to a low-Z material.  This dependency on Z 

results in contrast which varies by ≈Z
2 

(Z-contrast).  Because the electron beam in a 

scanning transmission electron microscope is rastered across the sample, the signal 

reaching the ADF detector is position sensitive, enabling individual atoms to be 

differentiated by the change in contrast within a composite material.
39,40

 Thus, electrons 

which pass through the sample without interacting are not detected, improving the 

signal-to-noise ratio (SNR).   

Other emission events that occur, in addition to scatter, include the emission of 

secondary electrons, auger emission, x-ray emission, bremstrahlung radiation, and 

cathodoluminescence.  These later events are utilized in analytical EM techniques to 

identify signatures of specific elements 

 

1.5  Preparation of Biological Specimens  for Electron Microscopy 

The resolution, and overall quality, of an EM images is highly dependent on the 

characteristics of the sample,
41

 and is influenced by factors such as its structural 

preservation, thickness, and electron density.   

Preservation of the native 3D structure of a biological specimen is a primary 

concern in sample preparation.
2,3,7,15,42,43

  The aqueous environment of biological 
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specimens is unsuitable for EM applications due to the high vacuum of the electron 

microscope.  Therefore, cell samples must typically be chemically fixed and dried, or 

frozen prior to imaging to avoid evaporation.  Water is typically removed by 

exchanging it with ethanol, which is known to extract nonpolar components such as 

lipids.
3
  Following dehydration the sample is either embedded in resin to retain its 3D 

structure and sectioned, or dried by a process called critical point drying, which 

prevents the sample from collapsing.  Distortion of the structure during the drying or 

embedment processes can often occur, particularly if residual water remains trapped in 

the sample.
2
 

Freezing the sample in vitreous ice eliminates both chemical fixation, and 

avoids the artifacts introduced by drying.
41,44,45

  However, obtaining reliable formation 

of vitreous ice requires substantial practice and specialized equipment.
44

  

Much like phase contrast in the light microscope, the density differences among 

cellular features such as organelle membranes, can be visualized in the electron 

microscope.  Samples embedded in transparent, vitreous ice utilize this type of TEM 

phase contrast mechanism.
5,41,44,45

  Although highly detailed images of the cellular 

ultrastructure are obtained using cryo-prepared samples, the low electron doses          

(1-2 e
-
/Å

2
)

44
 required limit the obtainable resolution. 

Contrast can also be added to a sample by staining it with salts containing heavy 

metals salts such as osmium, uranium, and lead.  These stains bind preferentially to 

different cellular components increasing contrast in those regions.
2,3,46

  

Although both cryo-EM and heavy metal staining produce detailed images of 

ultrastructure, molecular tags are required to identify a specific protein, or cellular 
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component.
47

  Because an individual protein is not discernable from the surrounding 

cellular material, it must be tagged to distinguish it from the background.  Cellular 

labels employed in EM must be of sufficient size and electron density to ensure 

adequate an adequate SNR.  Gold nanoparticles are electron dense, available in 

multiple sizes, and can be electrostically passivated with biological material, such as 

antibodies.  Thus, gold-antibody complexes (immunogold) are the conventional label 

used in EM.
48

  However, the size of the gold-antibody complex can lead to steric 

hindrance between closely spaced epitopes, and thus lead to artificially low label 

density.  Additionally, antibodies and gold nanoparticles cannot pass through the cell 

membrane, making it is necessary to either permeabolize the membrane, or label the 

cell after fixation and sectioning—both of which disrupt the native environment of the 

cell.
2,49

   

 

1.6  Three Dimensional Electron Microscopy 

Electron microscopy images of the 3D distributions of proteins and cellular 

structures are typically acquired using tilt-series electron tomography.
44,45,50-55

 Multiple 

images of the sample are recorded over a series of tilt angles, from which a 3D 

reconstruction is produced.  However, because transmission electron microscopy 

(TEM) is limited to thicknesses less of ≤ 500 nm (≤ 1µm, if energy filtering techniques 

are employed
50,56,57

), the sample thickness that the electron beam sees increases as the 

tilt angle increases, thus limiting the area that can be imaged in any one sample.  Thus it 

is not possible to image a whole cell directly using tilt series tomography.  

Reconstruction of a single cell using multiple semi-thin, serially sectioned is extremely 
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laborious and time consuming.  A complete series of cellular sections must be obtained 

without damage to any one individual section, and each section must be individually 

imaged and reconstructed via tilt series tomography then aligned to produce a 3D 

dataset of the entire cell.
16

  Thus a considerable amount of time and labor must be 

invested to obtain a single sample.
55

 

 

1.7  Imaging Tagged Proteins in Whole Cells Using STEM 

Recently, STEM of thick biological specimens has been reported, utilizing both 

tomographic and focal series methodologies.
16,39,46,58-62

  Unlike TEM, STEM can be 

used to image thick specimens.  The ADF detector in the STEM is sensitive to Z-

contrast, thus it is possible to image specific, electron dense, labels inside a thick layer 

of low-Z material, such as tissue or water. The low-Z material (Figure 5a) which has a 

long mean free path length, Ɩlow-Z, relative to high Z-materials, has a much lower 

probability of high-angle elastic scattering resulting in a low ADF signal.  In contrast, 

the high-Z material (Figure 5b) has a much smaller mean free path length, Ɩhigh-Z, thus 

more electrons are elastically scattered at high angles, resulting in increased signal at 

the detector.  It is this differential in the mean free path length of the scattered electrons 

that enables an object composed of a high-Z material, such as gold, to be visible within 

a thick object composed of low-Z material, such as water.
63

  Figure 5 depicts such high 

angle electron scattering for both low and high-Z materials.  The low-Z material 

(Figure 5a), due to a larger value of l, scatters fewer electron at angles sufficient for 

them to be detected by the ADF detector.  Conversely, high-Z materials (Figure 5b) 
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scatter electrons much more efficiently onto the ADF detector, resulting in a larger 

signal.   

 

Figure 5:  High angle elastic scattering leading to Z-contrast.  (a)  Low-Z material.  (b)  High-Z-material.  

(c)  High-Z material within a thick layer of low-Z material.  

 

For the situation shown in Figure 5c, in which a small high-Z particle is located within 

a thick low-Z material, the total signal collected by the ADF detector can be calculated 

using equation 3.
63

  Equation 3 gives the total number of electrons detected by the ADF 

detector, where N is the number of electrons, z is the thickness (i.e. size) of the high-Z 

object, T is the thickness of the low-Z material, and ƖLow-Z and lHigh-Z are the mean free 

path length of electrons scattered by low-the Z and high-Z materials, respectively.
1,64
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It must be noted, however, that 3  is only valid for situations in which T – z  ≈ T, 

and both z/Ɩhigh-Z and T/Ɩlow-Z are small numbers.  Thus, when z is a nanoparticle 

(typically 10 nm or less) and T is 5-10 µm (such as a layer or liquid or cellular material) 

the approximation holds.  The minimum detectable size of a nanoparticle (z) within a 

thick material is given in (4): 

 

 

        √
  

        
 (4) 

 

Thus, a 1.9 nm diameter gold nanoparticle, whose elastic scattering mean free path 

length (Ɩgold) is 73 nm, will be visible in a 10 µm layer of water (Ɩwater = 10.5 µm) with a 

signal to noise ratio of 5.   

 

1.8  Correlative Light and Electron Microscopy 

Advances in both instrumentation and labeling techniques have led to the 

development of correlative imaging strategies which utilize either multiple or multi-

modal molecular probes.
57,65

 
66-71

  Electron microscopy images can be correlated with 

LM images to localize tagged proteins at a resolution of a few nanometers.
72

  

Correlative imaging, unlike super-resolution fluorescence imaging, is not constrained to 

a small subset of available labels.
35,37,73

  Rather, the sample is imaged by LM, then the 

same coordinates are imaged again with EM; each technique providing complementary 
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information.
74-76

  Because conventional fluorophores are not visible in the electron 

microscope, many correlative techniques tag the feature of interest with two separate 

labels.  In addition to the fluorophore, an electron-dense label, such as an antibody 

conjugated gold nanoparticle
50

 is introduced.  However using two separate probes 

introduces several sources of error.  The binding affinities of the two tags may be 

different, resulting in non-uniform labeling of the two tags.
50

  Additionally, common 

secondary antibodies, such as IgG, which link the gold nanoparticle to the primary 

antibody are large (12 nm for IgG) , thus the location of the gold tag may not be 

consistent with the protein‘s actual cellular location.
77

  As an alternative to multiple 

labels, several modified, transgenically expressed fluorescent proteins have been 

developed to visualize these proteins using EM without introducing a second label.  

These include tags which photooxidze to electron dense polymers or bind fluorescently 

tagged biaresnical labels.
75,78

  However, these methods require secondary treatment of 

of the sample, i.e. photooxidation, or addition of biarsenical fluorescein, after 

fluorescence imaging to render them visible for electron microscopy.   

A single, bi-modal probe, which contains both fluorescent and electron dense 

components, may be employed as well.  Correlative probes, such as dye-conjugated 

gold nanoparticles
79

 and quantum dots (QDs)
65

 are visible with both LM and EM and 

thus avoid the discrepancies introduced by multiple probes.
50

  

 

1.9  Overview 

The objective of this dissertation is to develop electron microscopy methods to 

image nanoparticle-tagged proteins in whole cells.  Chapter II introduces optical 
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properties of lanthanide chelates and their potential as a cell permeable probe for 

electron microscopy applications.  Chapter III describes a novel correlative approach 

capable of imaging whole eukaryotic cells in a layer of liquid with fluorescence 

microscopy and with STEM.  Thus, the native state of the proteins was preserved. 

Chapter IV describes a methodology to stabilize whole eukaryotic cells for 3D-

focal series imaging using STEM.  A quantitative method was developed to analyze the 

stability of the ultrastructure after electron beam irradiation using TEM.  Focal series of 

gold nanoparticles in whole cells were obtained of both thin and thick cellular regions 

using an aberration-corrected STEM, and a 3-D dataset was generated without tilting 

the specimen.  The data was deconvolved allowing the positions of the nanoparticles to 

be localized with a precision of 2.5 nm   
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CHAPTER II 

 

SYNTHESIS AND CHARACTERIZATION OF LANTHANIDE CHELATE 

BIMODAL MOLECULAR PROBES 

 

SECTION I: 

COUMARIN AND ACRIDINE FUNCTIONALIZED MACROCYCLIC LANTHANIDE (III) CHELATES 

WITH THE POTENTIAL FOR TWO PHOTON EXCITATION 

 

2-1.1  Introduction 

The optical properties of lanthanide ions are well suited for molecular imaging 

applications. They have a large Stokes shift,
80

 their emission spectrum is sharp and 

narrow, and they exhibit a wide range of lifetimes, from μsec for neodymium and 

ytterbium up to milliseconds for europium and terbium.
81

  Lanthanide (III) ions have 

inherently low extinction coefficients (< 10 M
-1

cm
-1

),
82,83

 therefore, chromophores with a 

high extinction coefficient are typically used as sensitizing agents or antennae.
81

  While 

the exact mechanism of energy transfer (through bond or through space) is still under 

debate,
84,85

  typically during sensitization, the absorbed energy induces population of the 

triplet state of the antenna molecule, followed by a transfer of energy to the lanthanide 

(III) ion.  The excited electrons then decay via a radiative process leading to emission of 

a photon.
86

  Typical antennae, such as quinoline, phenthrideine, coumarin, and others, 

increase the molar extinction coefficient of the lanthanide ion to a value of 1000-4000 M
-

1
cm

-1
, an increase of three orders of magnitude over the ion alone.

80
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Lanthanide chelates have attractive properties for biological and clinical 

applications.  The ion-chelate complex is stable at physiological pH, non-toxic, and has 

good aqueous solubility.
87

  Ligands such as diethylenetriaminepentaacetic acid 

(Magnevist™) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid  (Dotarem 

TM),  coordinated to the lanthanide ion, gadolinium, are routinely employed in the clinic 

as MRI contrast agents. 
88

  In addition to their clinical safety and high aqueous solubility, 

the optical properties of lanthanide chelates are also desirable.  Antenna sensitized, 

luminescent lanthanide chelates are resistant to photobleaching and have long 

luminescent lifetimes.
82

  The long luminescent lifetimes of lanthanide ions have been 

utilized in many assays
89,90

 by allowing the signal to be temporally separated from the 

background.
83

 

Our group and others 
91-93

 have demonstrated that biologically targeted lanthanide 

imaging agents can be used to monitor and potentially diagnose diseases.  While these 

compounds have shown initial promise, they require ultraviolet (UV) excitation (λex).  In 

addition to tissue damage and increased tissue autofluorescence, UV light has low (< 

1mm) tissue penetrability.
94

  In contrast, near infrared (NIR) wavelengths between 650 

and 900 nm are poorly absorbed by water, hemoglobin, and other tissue components, and 

thus are able penetrate more deeply.
95

  The relative transparency of tissue to NIR 

wavelengths results in less tissue autofluorescence and a lower background signal.
83

  

Because the lanthanide chelates are antenna sensitized, the excitation wavelength can be 

tuned by changing the antenna.   Utilizing an antenna with a large two-photon absorbance 

cross-section permits excitation using NIR wavelengths via a two photon absorbance 

process (2λex). 
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Here we present the results of using coumarin and acridine chromophores as 

sensitizers for lanthanide (III) ions, and their potential for two-photon using NIR 

excitation.  The lanthanide-chelate, 1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetate, 

was modified using several  coumarin compounds for the sensitization of europium. An 

analogous chelate was also prepared containing an acridine molecule for sensitization of 

lower energy lanthanide ions such as ytterbium and neodymium.  Because the absorbance 

of acridine is red shifted relative to the coumarin, it is expected to be a more robust 

candidate for two photon excitation in the NIR.  The length and presumed flexibility of 

the antenna moiety may allow it to coordinate with the lanthanide ion more effectively, 

and thus improve energy transfer between the antenna and the lanthanide ion as shown by 

the spectral data.  

 

2-1.2  Results and Discussion 

Three coumarin and one acridine antenna (Figure 6) were coupled to 1, 4, 7, 10-

tetraazacyclododecane-1, 4, 7- triacetate (DO3A), a well known chelator of lanthanide 

(III) ions 

 

 

Figure 6:  Antennae Used to Sensitize Lanthanide (III) Ions 
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The three coumarin antennas that were studied have excited energy states that are 

sufficient to sensitize lanthanide ions which emit in either the visible (europium) or near 

infrared (NIR) (ytterbium and neodymium) spectral region.  

 

2-1.2.1  Synthesis  

Coumarin-3-carboxylic acid, 7-amino-4-methyl coumarin, and 4-(bromomethyl)-

7-methoxy coumarin, were coupled to a t-butyl protected ligand, tri-tert-butyl 2,2',2''-

(1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (tbuDO3A) 
96

, using the procedures 

shown in Scheme 1. 

 

 

Scheme 1:  Synthesis of coumarin sensitized lanthanide chelates 
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Europium (III),2',2''-(10-(coumarin-3-carbonyl)-1,4,7,10-tetraazacyclododecane-1,4,7-

triyl) triacetate (2)  

Coumarin-3-carboxylic acid was converted in situ to an acyl chloride with thionyl 

chloride, and immediately coupled to tBuDO3A, to give 1.  The t-butyl protecting groups 

were removed by hydrolysis with neat trifluoroacetic acid (TFA), after which the TFA 

was removed via rotary evaporation, and the product was dried under high vacuum.  The 

complete removal of the t-butyl protecting groups was verified by with 1H NMR and the 

ligand was coordinated with europium (III) by dissolving the ligand in methanol 

containing a few drops of dimethyl sulfoxide (DMSO).  The ligand was stirred with 

europium triflate (Eu(CF3SO3)3)  overnight to chelate.  The product, europium (III) 

2,2',2''-(10-(coumarin-3-carbonyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetate 

(2) was dissolved in a minimal amount of methanol and triturated with diethyl ether.  The 

precipitate was collected and re-dissolved in DMSO.  The product was lyotholized to 

give a fluffy white powder.  

Europium(III) 2, 2', 2'' - (10- (2- ((4-methyl-coumarin)amino)-2-oxoethyl)-1 , 4, 7, 10-

tetraazacyclododecane-1, 4, 7 -triyl)triacetate (4)   

The second coumarin antenna, 7-amino-4-methyl coumarin, was acylated with 

chloroacetyl chloride to give a conjugable analogue 7-(2-chloro-N-methyl acetamide)-4-

methyl coumarin.  This ligand was coupled to t-BuDO3A to give 3. The t-butyl 

protecting groups were removed via hydrolysis with TFA, and the ligand was chelated 

with europium, using its triflate salt to yield 4.   

Europium(III) 2, 2', 2'' - (10- ((7-methoxy-Coumarin-4-yl)methyl)-1, 4, 7, 10-

tetraazacyclododecane-1,4,7-triyl)triacetate (6) 

The final coumarin antenna, 7-methoxy-(4-bromomethyl)-coumarin was attached 

directly to the tBu-DO3A ligand to give 5.  Excess starting material was removed using 
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flash chromatography, and the t-butyl protecting groups were subsequently removed by 

hydrolysis with TFA.  The remaining TFA and volatile hydrolysis products were 

removed by flowing nitrogen through the sealed reaction vessel until only product 

remained.   Removal of t-butyl groups was verified with NMR and the product was then 

immediately dissolved in methanol and stirred at room temperature with europium triflate 

to give 6.  The metal-chelator complex was triturated and lyotholized as described above. 

2, 2', 2'' - (10-(4-methyl acridine)-1, 4, 7, 10 - tetraazacyclododecane-1, 4, 7-triyl) 

triacetate (9) 

The fourth antenna, 4-(bromomethyl) acridine, 7, was prepared from the acridine 

precursor and coupled to the DO3A chelator as shown in Scheme 2.   

 

 

Scheme 2:  Synthesis of 4-methylacridine-DO3A 

 

Regioselective bromomethylation of the 4-position of acridine was accomplished 

using the synthesis described by Chiron and Galy. 
97

  Acridine was acidified to increase 

the reactivity of the nitrogen atom using sulfuric acid, then reacted with 1.5 equivalents 
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of bromo(methoxy)methane.  The product, 4-(bromomethyl) acridine was coupled to 

tBuDO3A to yield 8, and the t-butyl protecting groups were removed via acid hydrolysis 

with TFA to give 9.  

 

2-1.2.2  Optical Characterization 

Fluorescence, photoluminescence excitation (PLE) spectra, and quantum yield (QY) 

measurements were obtained using ISS PC1 photon counting fluorimeter equipped with a 

xenon arc lamp.    

 

Figure 7:  Spectra showing the photoluminescence linked excitation (dashed lines) and emission (solid line) 

of coumarin sensitized europium (III) chelates (250 µM) in methanol. 

 

The dashed lines in Figure 7 show the PLE spectra for the coumarin 

sensitized compounds (2, 4, and 6) for to the 615 nm emission line.  For fluorescence 
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measurements (solid line) each compound was excited at the wavelength which produced 

the strongest emission at the 615 nm.  Four additional emission peaks are also observed at 

577 nm, 590 nm, 643 nm, 700 nm. For each compound, a broad emission peak is also 

observed within the 380-440 nm range of the spectra.  This peak corresponds to the 

emission wavelength of the respective coumarin antenna, and is a result of energy that is 

not transferred to the lanthanide ion.  The smaller the ratio of the antennas‘ fluorescence 

peak is to the lanthanide fluorescence peak, the more energy is transferred to the 

lanthanide ion, indicating a more efficient transfer of energy from the sensitizer.   

Extinction coefficients (ε) were measured with a PharmaSpec UV-1700 

Spectrophotometer and calculated from Beer‘s Law.  Ligand 6, prepared with the antenna 

4-(bromomethyl)-7-methoxy coumarin, exhibited the best optical properties as a 

sensitizer. Its molar extinction coefficient, 8400 M
-1

cm
-1

, was the largest of the three 

coumarin antennas studied, and resulted in the strongest 615 nm line emission of the 

europium ion.  Additionally this chromophore is both inexpensive, soluble, and requires 

no further functionalization prior to conjugation to the chelate. Ligand 2, exhibited very 

good energy transfer from its coumarin antenna to the europium ion (as evidenced by the 

low antenna emission), its extinction coefficient was 4172 M
-1

cm
-1

.   Ligand 4 exhibited 

in the poorest antenna-to-lanthanide energy transfer, since the emission from the antenna 

(404 nm) is greater than the strongest emission of europium (615 nm). This is not 

unexpected due to the distance of the antenna from the DO3A cage (four bond lengths 

compared to two bond lengths).   The optical properties of the three coumarin sensitized 

europium chelates are summarized in Table 2. 
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Table 2:  Optical Properties of Coumarin Sensitized Europium Chelates 

Chelate λEx (nm) 
a
 ε (M

-1
cm

-1
) QY (%) 

2 347 4172 0.085 

4 357 1533 0.065 

6 345 
b
 8438 0.140 

a
photoluminescence excitation, 

b
strong absorbance past 360 nm 

 

For in vivo optical imaging and other biological applications the fluorescent 

imaging agents must be detectable against the background.  Additionally, the necessary 

excitation and emission signal must be able to penetrate the tissues.
95

  Fluorophores 

which excite and emit at wavelengths within NIR region of the spectrum (650-1000 nm) 

are the most desirable in vivo applications due to tissue transparency at NIR 

wavelengths.
82,98

  Thus, two photon upconversion of the lanthanide ion using 

wavelengths larger than 700 nm will increase tissue penetration, and decreases both auto-

fluorescence of endogenous species in the cell and damage by UV excitation 

wavelengths.
99

   

Two photon excitation occurs when a species enters an excited energy state by 

simultaneously absorbing two photons whose wavelength is 2λex.  Thus, a species which 

is normally excited using either UV or visible photons, can be excited with NIR light 

instead.  Highly conjugated species, such as coumarin and acridine, exhibit a large two 

photon cross-section, making them efficient targets for two-photon applications.
100

  Two 

photon excitation has several advantages in biological applications.
99

  The longer 

wavelengths used in two photon excitation impart less damage to cells and tissues, and 

greater tissue penetration is achieved when using NIR light. Using an antenna that can be 
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excited by two photon absorption will allow upconversion of europium (III) using 

wavelengths longer than 700 nm, thus reducing both auto-fluorescence of endogenous 

species in the cell, and tissue damage caused by UV excitation. 

The antenna, 4-(bromomethyl)-7-methoxy coumarin, was the best candidate for 

two photon excitation since it exhibited the most red-shifted absorbance.  Two photon 

excitation of  2, 2', 2'' - (10-((7-methoxy-2-coumarin-4-yl) methyl)-1, 4, 7, 10-

tetraazacyclododecane-1,4,7-triyl) triacetate  was performed using a Zeiss LSM510 laser 

scanning confocal microscope equipped with a Chameleon mode-locked titanium 

sapphire laser (Coherent).   

 

 

Figure 8:  One and two photon excitation of Eu(III)-methoxy-coumarin-DO3A 
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Although λmax of the ligand was 346 nm, it exhibited enough absorption at 360 

nm, as shown in by the dotted photoluminescence excitation spectra in Figure 8, for two 

photon excitation at 720 nm.  The 404 nm emission of the ligand after single photon 

excitation (shown by the solid line) correlates with emission after  two photon excitation 

at  λ= 720 nm (dashed line). 

A 3.7x10
-2

 M solution of the 4-methyl acridine ligand (9) was made in ethanol, 

and the absorption (blue) and emission (ex = 358 nm) of the ligand was measured.  The 

4-methyl acridine antenna has a broad emission profile that extends from 300 nm up to 

400 nm.  The emission profile for compound 9, using λex = 358 nm, results in a broad 

emission band with two distinct emission peaks at 450 and 472 nm.  The fluorescence 

from the lanthanide was not obtained due to insensitivity of the detector for wavelengths 

longer than 800 nm.   

 

Figure 9 shows the emission of the acridine sensitized ligand, 9, after both single 

(green), and two photon excitation (dashed lines).  The ligand was excited at 750 nm and 

the emission spectrum was recorded (orange).  It was found that excitation with 750 nm 

light produced a maximum emission centered at 472 nm, the second peak observed after 

single photon excitation of 9.  Two photon excitation, using a longer λex of 800 nm, 

yielded the same emission spectrum as λex with 750 nm, but at much lower intensity 

(red).  
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Figure 9:  Single and two photon excitation of 4-methyl-acridine-DO3A.  The absorbance 

spectrum is shown in blue and emission after single photon excitation is shown in green.  

Emission after two photon excitation with an excitation wavelength of 750 nm is shown 

by the dashed orange line.  Acridine fluorescence is still observable after excitation with 

800 nm light (dashed red line) although at a lower intensity than was observed with an 

excitation wavelength of 750 nm.  

 

2-1.3  Conclusions: 

The molar extinction coefficient of europium (III) 2,2',2''-(10-(coumarin-3-

carbonyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetate (6) at 8400 M
-1

cm
-1

, 

increased by 240% relative to our  previously published quinoline methyl antenna 
101

.  

The antenna, 7 – methoxy - (4-bromomethyl) - coumarin, is inexpensive, soluble, and 

requires no further functionalization prior to conjugation to the tetraazacyclododecane 

backbone.  Although 7 – methoxy - (4-bromomethyl) - coumarin showed potential as a 

two-photon active antenna for the sensitization of europium, its two photon absorbance 

(720 nm) is at the edge of the capability of the excitation laser.   

Utilizing 4-bromomethyl acridine, which is red-shifted relative to 7-methoxy-(4-

bromemotheyl) - coumarin, as the sensitizing antenna permitted upconversion with a λex 
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of 750 nm.  The ligand, 2, 2', 2'' - (10 - (acridin-4-ylmethyl) - 1, 4, 7, 10-

tetraazacyclododecane-1, 4, 7 - triyl) triacetate (9) was excited using two photons and 

resulted in an emission of 472 nm.  We expect that this ligand (10) complexed with a NIR 

emitting lanthanide ion such as ytterbium or neodymium will yield a lanthanide chelate 

which is both exited and emissive in the NIR, allowing better penetration and signal for 

in vivo applications. 

 

2-1.4  Experimental Details 

 

Tri-tert-butyl (2, 2’, 2”- (10-(coumarin-3-cabonyl) - 1, 4, 7, 10- tetraazacyclododecane 

diacetate) (1) 

Coumarin-3-carboxylic acid, (0.4003 g, 2.1 mmol) was combined with anhydrous 

thionyl chloride (3 mL, 15 mmol). Dichloromethane was added until the remaining solid 

dissolved (20 mL).  The reaction was stirred at room temperature overnight.  The solvent 

was removed by flowing argon through the sealed reaction then dissolved in acetonitrile 

(50mL) and combined with tri-t-butyl-tetraazacyclododecane bromide salt (0.8550 g, 

1.44 mmol). Potassium carbonate (0.63 grams) was added to the reaction flask. A 

catalytic amount of potassium iodide was added to the final reaction mixture. The 

reaction was stirred overnight, filtered, and the solvent was removed via rotary 

evaporation. The product was purified on silica gel using a Biotoge Flash 

Chromatography system (eluent: methanol/chloroform gradient beginning at 1% 

methanol and increasing to 8% methanol over  1,020 mL on a 40+M column). Solvent 

was removed via rotary evaporation and product, tert-butyl-(coumarin-3-carbonyl)-

DO3A (1), was dried under vacuum to give a clear yellow oil.  (0.4636 grams, 47% yield)  
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1
H NMR (300 MHz, CDCl3)  δ =   1.3 (s, 9H), 1.40 (s, 18H), 2.68(t, 8H), 2.89 (d, 4H), 

3.11 (s, 2H), 3.29 (d, 4H), 3.72 (m, 4H), 7.26 (m, 2H), 7.42(m, 2H), 7.78 (s, 2H) ppm. 

 

2,2',2''-(10-(coumarin-3-carbonyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetate   

The t-butyl protecting groups of 1 were removed by dissolving tert-butyl-

(coumarin-3-carbonyl)-DO3A in 10 mL of neat TFA. The reaction was stirred for five 

hours.  The TFA and hydrolysis products were removed via rotary evaporation and the 

product was dried under high vacuum for several hours to give coumarin-3-carbonyl-

DO3A in > 90% yield.   

1
H NMR (400 MHz, DMSO) δ = 8.144 ( br, 1H,), 7.765 (d, 1H), 7.680 (d, 1H), 7.447 (m, 

2H), 3.961-2.985 (22H) ppm. 

 

Europium (III) 2,2',2''-(10-(coumarin-3-carbonyl)-1,4,7,10-tetraazacyclododecane-1,4,7-

triyl) triacetate (2) 

Coumarin-3-carbonyl-DO3A (0.1534 g, 0.29 mmols) was dissolved in 1.5 mL of 

methanol and 0.5 mL (0.0497 g, 0.09 mmol). Europium triflate (1.1 eq., 0.0634 grams) 

and a few drops of DMSO were added to aid solubility.  The reaction was stirred 

overnight at room temperature.  Solvent was removed via rotary evaporation and 

redissolved in a minimal volume of methanol.  Diethyl ether was added dropwise to 

precipitate Eu- coumarin-3-carbonyl-DO3A (2).  Solid was isolated by centrifugation to 

yield 0.0398 grams, 61.8% yield. 
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2-(4-methyl-coumarin-7-yl) chloroacetamide 

To a flame dried 50 mL round bottom flask, 7-amino-4-methyl coumarin 

(0.1013g, 0.57mmol) and dissolved 5 mL of DMF with triethylamine (0.17 mL, 2 eq).  

Chloroacetyl chloride was added (0.060 mL, 1.3 eq) and the reaction was stirred for thirty 

minutes. Solvent was removed by rotary evaporation and recrystallized from acetonitrile 

and water.  

1
H NMR (DMSO) δ = 2.402 (3H), 4.324 (2H), 6.292 (1H), 7.506 (1H), 7.761 (2H), 

10.731 (1H) ppm.  

 

Tert-butyl-2, 2’ 2” - (10- (2- (4-methylcoumarin-7-amino) oxoethyl) - 1, 4, 7, 10-

tetraazacyclododecane diacetate (3):  

Next, the 2-(4-methyl-coumarin-7-yl) chloroacetamide (0.0469 g, 0.186 mmol) 

was added to a 50 mL round bottom flask. It was dissolved in 5 mL of DMF and 

tBuDO3A bromide salt (0.0997, 0.9 eq) was added.  Diisopropyl ethyl amine was added 

(0.055 mL), and the reaction was stirred overnight and the solvent was removed by rotary 

evaporation. (60 % yield).  Conjugation of the antenna to tBuDO3A was verified with 

LCQ-MS.  (M
+
+Na) = 752.2  

 

Europium (III) - 2, 2’, 2” - (10- (2- (4-methylcoumarin-7-amino) oxoethyl)-1, 4, 7, 10- 

tetraazacyclododecane (4)   

Tert-butyl - 2, 2 ‘2‖- (10- (2- (4-methylcoumarin -7-amino) oxoethyl) - 1, 4, 7, 

10-tetraazacyclododecane diacetate (0.0469 g)  was dissolved in ~10 mL of TFA and 

stirred at room temperature for 1-2 hours.  The TFA was evaporated, and the remaining 

product was dissolved in 3 mL of methanol.  DMSO (1 mL) was added to further 

solubilize.  Europium triflate (0.0394 g, 1 mmol) and triethylamine (0.050 mL) were 
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added and the reaction was stirred overnight.  Solvent was removed by rotary evaporation 

and the product was precipitated from methanol using diethyl ether to yield 0.0225 grams 

of product. (> 90% yield). 

 

Tri – tert - butyl 2, 2', 2'' - (10-((7-methoxy-coumarin-4-yl)methyl)-1, 4, 7, 10-

tetraazacyclododecane-1,4,7-triyl)triacetate (5): 

In a 50 mL round bottom flask 4-(bromomethyl)-7-methoxy coumarin (0.5062 g) 

was dissolved in 35 mL of DMF. Tri-t-butyl-tetraazacyclododecane bromide salt (0.9868 

g, 0.9 eq) was added to the flask. Diisopropyl ethyl amine (0.274 mL), and molecular 

sieves were added to the flask.  The reaction was capped under argon and stirred at 60°C 

overnight. Solvent was removed by rotary evaporation and the product was purified on 

silica using a Biotage SPI (Rf = 0.22, chloroform: methanol 85:15 to give 0.8135g (60%) 

of 5.  (M
+
+H) = 704.4 

1
H NMR (CHCl3) δ: 1.446 (27H), 2.279 (Broad, 9H), 3.027 (Broad, 15H), 3.871 (3H), 

6.351 (1H), 6.821 (1H), 6.911 (1H), 7.767 (1H) ppm.   

2, 2', 2'' - (10-((7-methoxy-2-coumarin-4-yl) methyl)-1, 4, 7, 10-tetraazacyclododecane-

1,4,7-triyl)triacetate  

Compound 5 (0.6998 g, 0.995 mmol) was dissolved in 4 mL of TFA and stirred 

twenty-four hours in a 10 mL round bottom flask to remove the t-butyl protecting groups.  

The reaction was dried via rotary evaporation to yield 0.5322 grams of 5 (99% yield).   

Removal of the t-butyl groups was verified by mass spectrometry and NMR.  (M
+
+H) = 

535.5.  

1
H NMR (DMSO) δ: 2.954 (s, 4H), 3.154 (t, broad,12H), 3.426 (s, 2H), 3.537 (s, broad, 

2H), 3.738 (s, 4H), 3.867 (s, 3H), 7.415 (m, 2H), 7.661 (t, 1H), 7.762 (d, 1H) ppm.   
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Europium (III) 2, 2', 2'' - (10-((7-methoxy-2-coumarin-4-yl) methyl)-1, 4, 7, 10-

tetraazacyclododecane-1,4,7-triyl)triacetate (6)  

The deprotected ligand (0.0560 g, .105 mmol) was dissolved in 10 mL of 

methanol and transferred to a 50 mL round bottom flask.  Europium triflate (0.0714 g) 

was added and the reaction was stirred for three days.  The solvent was removed by 

rotary evaporation and the product was precipitated from methanol using diethyl ether to 

yield 0.0619 grams of product (86%). 

 

4-(Bromomethyl)-Acridine (7) 

To a 50 mL round bottom flask was added 1.0072 g (5.62x10
-3

 mol) of acridine.  

To that was added 20 mL of concentrated sulfuric acid and the reaction vessel purged 

with dry nitrogen gas.  To the stirring orange/red solution was added 0.685 mL (8.39x10
-3

 

mol) of bromomethyl methyl ether.  The reaction vessel covered with aluminum foil and 

allowed to stir for 24 hours at room temperature (25C).  The solution was poured into a 

beaker containing 400 mL of ice, stirred for 30 minutes after which another 100 mL of 

ice was added.  The solution was stirred for an additional 2 hours, washed with 

chloroform, the aqueous phase collected and the solvent removed.  The crude product 

was purified over silica gel eluted with 7:3 chloroform/hexane to yield 0.2291 g 

(8.42x10-4 mol) of 4-bromomethylacridine (15% yield).  

1
H NMR (CDCl3) δ = 5.429 (s, 2H), 7.558 (m, 2H), 7.806 (t, 1H), 7.937 (db, 1H), 7.989 

(t, 2H), 8.322 (d, 1H), 8.765 (s, 1H) ppm 
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2,2',2''-(10-(acridin-4-ylmethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (8) 

To a flame dried 50 mL round bottomed flask was added 10 mL of anhydrous 

acetonitrile.  To that was added 0.0501 g (1.84x10
-4

 mol) of 4-bromomethyl acridine 

followed by 0.1086 g (1.82x10
-4

 mol) of tBu-DO3A.  The solution was stirred for 5 

minutes followed by the addition of 121.45 µL (7.35x10
-4

 mol) of diisopropylethylamine.  

One milliliter of anhydrous dichloromethane was added to the solution which was then 

stirred at room temperature (25C) for 24 hours.  The solvent was removed and the crude 

yellow solid purified over silica gel eluted with an 8:2 toluene/methanol solution yielding 

0.0975 g (1.38x10
-4

 mol) of the dark brown product (75% yield).  LCQ-MS = 706.5 

(M
+
+H) 

1
H NMR (CDCl3) δ = 1.457 (s, 9H), 1.505 (s, 9H), 1.532 (s, 9H), 2.18 (b, 16H), 3.005 - 

3.385 (b, m, 8H), 7.642 (t, 2H), 7.772 (t, 2H), 8.245 (d, 2H), 8.693 (d, 2H) ppm 

The tert-butyl protecting groups were removed via stirring the protected product 

with trifluoroacetic acid for 3 hours followed by removal of the remaining solvent to 

yield the deprotected 2,2',2''-(10-(acridin-4-ylmethyl)-1,4,7,10-tetraazacyclododecane-

1,4,7-triyl)triacetate (9) (>99% yield).  LCQ-MS = 538.4 (M
+
+H)
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SECTION II: 

PRELIMINARY TRANSMISSION ELECTRON MICROSCOPY OF GADOLINIUM LOADED PAMAM 

DENDRIMERS 

 

2-2.1  Introduction: 

Bi-modal molecular probes, probes that are detectable by two different 

microscopy techniques, can increase the number of parameters and offer high resolution.   

Fluorescent, electron dense nanoparticles combine the advantages of light microscopy 

(LM), and the resolution of electron microscopy (EM).  Dendrimers, hyper-branched 

macromolecular nanoparticles,
102

 offer a number of advantages as a probe for cellular 

imaging applications:  (1) They are readily internalized by cells,
103,104

 (2) they have low 

toxicity,
103

 and (3) they contain multiple functional groups onto which a variety of 

species can be attached.
102,105

   Because the surface of the dendrimer is composed of 

multiple reactive functional groups, a variety of small ligands and imaging agents can be 

covalently coupled to the dendrimer scaffold for transport into the cell.
106

   

 

2-2.1.1  PAMAM  Dendrimer Molecular Probes 

Polyamido-amine (PAMAM) dendrimers are synthesized by iterative additions of 

methyl acrylate and ethylene diamine, to a central ethylene diamine core, as shown in 

Scheme 3. Successive iterations are denoted generation-0 (G(0)), generation-1 (G(1)) and 

so forth for each additional iteration.
103
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Scheme 3:  Synthesis of PAMAM dendrimer 

 

Using standard peptide coupling methodologies, small-molecule ligands, fluorophores, 

and metal chelators can be covalently anchored to the surface of the dendrimer.  A 

generalized scheme of the synthetic strategy for functionalizing amino-terminated 

PAMAM dendrimer is shown in Figure 10.   

 

 

Figure 10:  Synthetic Strategy for Dendrimer Functionalization 
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2-2.1.2  Molecular Targeting of the TSPO Receptor 

The 18 kDa translocator protein, TSPO, formerly referred to in literature as the 

peripheral benzodiazepine receptor, is an isoquinoline binding protein located on the 

outer mitochondrial membrane.
107

  TSPO is responsible for binding and transporting 

cholesterol into the mitochondria for steroid biosynthesis.  TSPO is also capable of 

binding and transporting other high affinity small molecules such as Ro-5864, PK11195, 

DAA1106, and DAA1097.
108,109

  TSPO is involved in a variety of processes, including 

steroidogenesis, cell proliferation, mitochondrial respiratory control, chemotaxis, and 

apoptosis.
70,108,110

  In addition to the many roles that TSPO plays in healthy cells, it has 

been shown to be upregulated in certain cancer cell lines, including colon, breast, and 

ovarian carcinomas.
108

  TSPO is an ideal candidate to study protein expression since it is 

subject to differential regulation in a variety of diseases.  The availability of small 

molecule ligands further increases its utility for molecular imaging.  Our group has 

synthesized several conjugable analogues of endogenous TSPO ligands
80,111

 which have 

demonstrated their utility for molecular imaging.
70,91,111

 

 

2-2.2  Results and Discussion 

 

2-2.2.1  Synthesis of a TSPO Targeted Bi-modal PAMAM Dendrimer 

A TSPO targeted PAMAM dendrimer nanoparticle containing chelated 

gadolinium and a lissamine fluorophores was prepared as shown in Scheme 4.  The 

synthesis was analogous to our previously reported results with the addition of the DO3A 

chelators for the attachment of gadolinium ions.
91

 



 

38 
 

 

Scheme 4:   Synthesis of a bimodal, TSPO targeted PAMAM dendrimer 

 

The TSPO ligand, ClPhIQ acid,
91

 was coupled to a generation-4 PAMAM 

dendrimer using reagent bis(2-oxo-3-oxazolidinyl)phosphinic chloride  (BOP) as the 

coupling agent to give ClPhIQ30-PAMAM.  The molecule was purified using centrifugal 

filtration with a 5,000 MW cutoff, and characterized by both NMR and matrix assisted 

laser desorption ionization (MALDI) mass spectrometry.   It was determined that each 

dendrimer was coupled to an average of 30 ClPhIQ ligands.  Next, twenty-three t-butyl 

protected DO3A chelators were attached to the surface through a reactive succinimide 

ester to produce ClPhIQ30-PAMAM-tbuDO3A23.  The t-butyl protecting groups were 

removed by acid hydrolysis in TFA to give ClPhIQ30-PAMAM-DO3A23 and gadolinium 

ions were chelated to the DO3A moieties to give the first product, Gd(III)-ClPhIQ30-

PAMAM-DO3A23.  To produce the bimodal analogue, a fluorescent dye, lissamine, was 
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coupled to Gd(III)-ClPhIQ30-PAMAM-DO3A23, to give the final product Gd(III)-

ClPhIQ30-PAMAM-DO3A23-Liss. 

 

2-2.2.2  Preliminary Electron Microscopy Studies 

The first product, Gd(III)-ClPhIQ30-PAMAM-DO3A23, was imaged using 

transmission electron microscopy (TEM) to determine if the gadolinium ions on the 

nanoparticle resulted in contrast at the mitochondria.  C6 glioblastoma cells were grown 

to 70% confluence then dosed with a 32 µM solution of Gd(III)-ClPhIQ23-PAMAM-

DO3A23 in media.  The cells were incubated with the compound overnight, following 

which, they were washed with cacadolyte buffer and fixed for one hour in 4% 

paraformaldehyde.  After aldehyde fixation, the cells were post fixed with 1% osmium 

tetroxide, dehydrated, embedded in resin, sectioned to a thickness of 80 nm and mounted 

on copper grids.  A control sample was also prepared.  The cells were imaged on copper 

grids using a Philips CM20 TEM, and the resulting images are shown in Figure 11. 
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Figure 11:  Comparison of TEM images of C6 cells dosed with Gd(III)-ClPhIQ23-PAMAM-DO3A23 and 

controls (a)  TEM image of a labeled cell.  (b).  Close up of the mitochondria of the labeled cells.  (c)  TEM 

image of a control cell  (d)  Close of up of the mitochondria of the control cell.   

   Images:  Bernard M. Anderson. 

 

Further analysis using electron diffraction spectroscopy, (EDS) showed that the increased 

mitochondrial contrast (identified by the square in Figure 12) was due to osmium, not 

gadolinium.   

 



 

41 
 

 

The secondary fixative, OsO4, which is used to stabilize and add contrast to lipid 

content, is a strong oxidizer, is capable of coordinating to nitrogen atoms.  The 

coordinated OsO4 can then react with additional OsO4 to form large electron dense 

polymeric structures.
2,112,113

 Since the G(4)-PAMAM dendrimer contains 238 secondary 

nitrogen atoms in its backbone, it presents an ideal scaffold for the formation of such 

osmium composite.  Thus, due to the absence of high-density material at mitochondria of 

the control, it was hypothesized that that during the postfixation process OsO4 reacts with 

dendrimers bound to TSPO receptors located on the mitochondria membrane causing the 

enhancement in contrast.  

We tested this hypothesis by treating samples of Gd(III)-ClPhIQ23-PAMAM-

DO3A23 with either a 1, 16, or 32 mole equivalent of OsO4.  A forth sample containing 

only a 32 mole equivalent of osmium tetroxide in water was made as a control.  Upon 

addition of the osmium tetroxide to the three Gd(III)-ClPhIQ23-PAMAM-

Figure 12:  Electron Diffraction Spectra of the mitochondria of C(6) cells dosed with compound Gd(III)-ClPhIQ30-

PAMAM-DO3A23 ( a)  STEM Image of sample.  (b) EDS spectra of the squared region in a.  Image:  Bernard M. 

Anderson 
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DO3A23solutions, a dark brown precipitate formed.  A 1 µL aliquot from each of the four 

samples was placed on 600 mesh, formvar coated copper grids, allowed to dry and 

imaged at 80 KeV using a Phillips CM12 TEM.  It was found that the size and amount of 

the brown precipitate was dependent on the amount of OsO4 added.  The 1 mole 

equivalent sample had very small structures ranging in length from 100 to 500 nm.  The 

16 and 32 mole equivalent samples were much larger with the 32 mole equivalent sample 

having macrostructures many microns long.  For the control, addition of the 32 mole 

equivalent of osmium tetroxide to water did not yield any brown precipitate during the 

duration of the experiment.  These results confirm our hypothesis that our compound, 

Gd(III)-ClPhIQ23-PAMAM-DO3A23, undergoes oxidation with OsO4 to form electron 

dense composites. 

In order to verify that our TSPO targeted dendrimers are localized at the 

mitochondria, a lissamine fluorophore was attached to Gd(III)-ClPhIQ23-PAMAM-

DO3A23 to give Gd(III)-ClPhIQ23-PAMAM-DO3A2-Liss (Scheme 4).  Incubation of 2.1 

µM of Gd(III)-ClPhIQ23-PAMAM-DO3A2-Liss with C6 glioma cells in conjunction with 

commercially available Mitotracker green overnight resulted in red fluorescence signal 

(Figure 13b), due to the lissamine dye.  Fluorescence images were obtained using a 

Nikon Eclipse TE2000-U fluorescence microscope (Lewisville,TX) equipped with Texas 

Red and FITC filter sets. 
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Figure 13:  Fluorescence characterization of cellular internalization of Gd(III)-ClPhIQ23-PAMAM-

DO3A23,.  (a) Differential interference contrast image of labeled cells.  (b)  Lissamine fluorescence.  (C)  

Co-registration of lissamine fluorescence with the mitochondria.  (d)  Green fluorescence due to 

Mitotracker Green in the mitochondria.  (e)  Differential interference contrast image of control cells  (f)  

Control cells do not exhibit fluorescence.  Image:  Lynn E. Samuelson 

 

To confirm that the dendrimer agent was targeting the mitochondria, the cells 

were co-incubated with Mitotracker Green (Figure 13d).  An overlay of the lissamine and 

Mitotracker Green fluorescence is shown in Figure 13c.  Co-registration at the 
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mitochondria was indicated by the orange color.  The control, G(4)-PAMAM- Liss, 

which did not contain the targeting ligand ClPhIQ showed no mitochondrial fluorescence.   

The fluorescence at the mitochondria clearly shows that the dendrimer agents are 

internalized in the cells, supporting our hypothesis that the high osmium density shown in 

the EDS spectra (Figure 12b) is a result of OsO4 forming composites with the PAMAM 

dendrimers.  

To determine if the Gd(III)-ClPhIQ23-PAMAM-DO3A23-Liss molecule is capable 

of producing EM contrast by itself, TEM samples were prepared as before, but with the 

OsO4 fixation step omitted.  C6 rat glial cells were prepared by plating twenty thousand 

cells per 35mm culture dish and allowing them to attach and grow for two days at 37°C 

and 5% CO2. The cells were incubated with 2.1 μM Gd(III)-ClPhIQ23-PAMAM-DO3A23-

Liss in cell media overnight at 37°C and 5% carbon dioxide. Control cells were also 

prepared in the same manner using a Gd(III)-PAMAM-DO3A15 molecule which did not 

contain the TSPO targeting ligand ClPhIQ.  The cells were washed three times (15 

minutes per wash) at room temperature with 0.1 M cacodylate buffer to remove media 

and unbound agent.  They were fixed for one hour using 4% paraformaldehyde in 

cacodylate buffer, to preserve them for sample preparation. No secondary fixation step 

with osmium tetroxide was performed.  The cells were dehydrated with ethanol, and 

embedded in resin.  Modestly thick, 300 nm sections were cut and mounted on copper 

grids.  TEM images were recorded at 80 keV using a Philips CM-12.  TEM images of 

both the OsO4 stained and unstained cells are shown in Figure 14.  Figure 14 shows 

increased contrast in the cells dosed with targeted compound (Figure 14a and Figure 14b) 
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over the control cells (Figure 14c and Figure 14d).  The loss of ultrastructure details in 

Figure 14b and Figure 14d is due to the absence of OsO4 secondary fixation. 

 

 

Figure 14:  Comparison of OsO4 stained and unstained C6 glioma cells dosed with Gd(III)-ClPhIQ23-

PAMAM-DO3A23-Liss.  (a)  TEM image of mitochondria of labeled C6 cells stained with OsO4.  (b)  TEM 

image of labeled cells that are not stained with OsO4.  (c)  TEM image of mitochondria of control cells 

stained with OsO4.  (d).  TEM image of control cells that are not stained with OsO4.  Images Bernard M. 

Anderson and Madeline J. Dukes 
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2-2.3  Conclusions:   

A TSPO targeted, bimodal dendrimer containing an organic fluorophore for 

optical signal and gadolinium ions for EM contrast was prepared and characterized.  This 

molecule was shown to be internalized by cells expressing the receptor of interest.  We 

have demonstrated that the molecule exhibits enhanced EM contrast both with and 

without OsO4 staining. 

In future, these imaging agents may be applied to electron microscopy of whole 

cells.  Dendrimers are readily internalized by live cells and their surface functional 

groups provide ample attachment points for chelators, therapeutics, or additional imaging 

modalities.  The gadolinium ions chelated to PAMAM dendrimers, discussed in the 

previous sections, offer an alternative to bulky metallic nanoparticles for labeling internal 

receptors. 
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CHAPTER III 

 

CORRELATIVE FLUORESCENCE MICROSCOPY AND SCANNING 

TRANSMISSION ELECTRON MICROSCOPY OF QUANTUM-DOT-LABELED 

PROTEINS IN WHOLE CELLS IN LIQUID 

 

Reprinted with permission from:  Acs Nano 2010, 4, 4110-4116 Copyright 2010 American Chemical 

Society 

 

3.1  Introduction 

Cellular function is governed by the interaction of molecules with dimensions in 

the nanometer range, such as proteins, lipids, and deoxyribonucleic acid (DNA).  Protein 

interactions in cells can be studied with fluorescence microscopy.
26

  However, the spatial 

resolution is limited by diffraction to about 200 nm, thus it is not possible to elucidate 

what happens at the level of individual molecules, for example, in protein complexes. 

Also, the recently introduced subdiffraction (nanoscopy) techniques
114

 do not reach a 

resolution in the required nanometer range (<10 nm). Cellular ultrastructure is 

traditionally investigated at the nanoscale with transmission electron microscopy (TEM). 

TEM imaging requires the preparation of the cells into conventional thin sections or into 

cryosections. 
115

  The cells are thus not in their liquid state and not intact (note that TEM 

imaging can be accomplished on cryogenically frozen samples at the very edge of intact 

cells).  Correlative microscopy is a strategy, developed in the past decade, to combine the 

functionality of LM with the high resolution of electron microscopy (EM).  By 

introducing fluorescent molecular probes, it is possible to image regions containing a 
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protein of interest with fluorescence microscopy and then to investigate the underlying 

ultrastructure with TEM, after preparing a conventional thin section, or a cryosection, of 

the cell.
50

  A certain intracellular process can first be followed with light microscopy 

(LM), the cell can be fixed, or frozen at a time point of interest, and the sample can then 

be further studied with TEM.
116

  Correlating LM and EM also allows one to search for a 

region of interest with LM prior to TEM imaging, thus reducing radiation damage 

induced by searching with TEM.
53

  In addition to fluorescence labels, a second tag 

consisting of an electron-dense material, such as a gold, may be employed. The spatial 

distribution of a certain type of protein of interest can then be investigated at the 

nanometer scale with TEM.
72,117

  It is also possible to use bimodal probes visible with 

both fluorescence and electron microscopy, such as dye-conjugated gold nanoparticles, or 

semiconductor nanocrystal quantum dots (QDs).
118

  Different types of proteins can be 

labeled with QDs of different sizes exhibiting different fluorescence signatures.
65

  

Finally, electron-dense materials for contrast in TEM may be precipitated via photo-

oxidation at the positions of fluorescent labels.
119

  The key limitation in correlative 

fluorescence microscopy and TEM is the need for thin sections, or for cryogenically 

frozen samples, which complicates experimental procedures and is prone to introducing 

artifacts. 

 

3.1.1  Liquid STEM 

We have recently introduced a novel EM technique for imaging whole eukaryotic 

cells in liquid
63

 or in a wet environment.
120

 Eukaryotic cells in liquid are placed in a 

microfluidic chamber with a thickness of up to 10 μm contained between two ultrathin 

and electron-transparent windows (see Figure 15a). The specimen is then imaged with a 
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scanning transmission electron microscope (STEM). Due to the atomic number (Z) 

contrast of the annular dark-field (ADF) detector of the STEM, nanoparticles of a high-Z 

material, such as gold, can be detected within the background signal produced by a 

micrometers-thick layer of a low-Z liquid, such as water. Specific protein labels 

consisting of nanoparticles can then be used to study the locations of individual proteins 

in whole cells in liquid. In our initial work,
63,120

 surface receptors were labeled with gold 

nanoparticles and a spatial resolution of 4 nm was achieved. 

 

 

 

Here we show that liquid STEM can be used to image QDs bound to surface 

proteins of eukaryotic cells, and that the STEM images can be correlated with 

fluorescence images. We also evaluate the signal-to-noise ratio of the liquid STEM 

images of QDs and determine the achievable resolution. The imaging methodology 

introduced here allows the imaging of whole fixed cells in liquid with both fluorescence 

Figure 15: Schematic of the experimental setup for correlative light microscopy and liquid scanning transmission 

electron microscopy (STEM). (a) Microfluidic chamber for liquid STEM consisting of two microchips each 

supporting an electron transparent window. Cells are directly grown on the top microchip.  The bottom microchip 

contains a spacer (not shown).  This chamber is placed in the vacuum of the STEM and imaged with a scanning 

electron beam.  Transmitted electrons are detected. (b)  Contrast is obtained in liquid STEM on nanoparticles 
specifically attached to surface proteins of the cell. (c)  For imaging with light microscopy, prior to liquid STEM 

imaging, the microchip with the attached cells is placed upside-down in a glass bottom culture dish and imaged 

using an oil immersion lens.  Images are not drawn to scale. 
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and EM. There is no additional sample preparation necessary for EM imaging. Cells are 

grown and labeled directly on the microchips of the microfluidic device.  Prior to and 

after fixation, the samples can be imaged with fluorescence microscopy.  Subsequently, 

the same sample is assembled into a microfluidic system and imaged with STEM, with 

only a few minutes delay with respect to the first light microscopic imaging.   

 

3.2  Materials and Methods 

 

 3.2.1   Preparing the Microchips with COS7 Cells  

COS7 (African green monkey fibroblast) cells were grown directly on the silicon 

microchips for the microfluidic chamber of the liquid STEM system.
63

 Each microchip 

(2.60 × 2.00 × 0.30 mm) supported a silicon nitride (SiN) window of a 70 × 200 μm area 

and 50 nm thickness (Protochips Inc.). The protective layer of resist coating of the 

microchips was stripped by rinsing with acetone and subsequent rinsing with ethanol. 

The microchips were then plasma cleaned to render the surfaces hydrophilic and coated 

with poly-L-lysine to enhance cell adherence and to maintain the hydrophilic surface. 

COS7 cells were grown in Dulbecco‘s modified Eagle medium (DMEM) (Gibco) 

supplemented with 10% fetal bovine serum (FBS) (Sigma), penicillin/streptomycin 

antibiotics (100 units/mL and 100 μg/mL, Gibco), and additional l-glutamine (2 mM, 

Gibco) at 37 °C in a 5% CO2 atmosphere. Confluent COS7 cells were harvested by 

rinsing in Dulbecco‘s phosphate buffered saline (PBS) and dissociating the adherent layer 

with CellStripper (Mediatech), followed by a quench in supplemented media. The cells 

were seeded onto the microchips and incubated in medium at 37 °C and 5% CO2 for 1 
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day. Prior to labeling, the cells were incubated in serum-free medium for 4 h at 37 °C and 

5% CO2. 

 

 3.2.2  Preparing the Spacer Microchips  

Each microfluidic chamber for liquid STEM consisted of a microchip with cells 

and a second microchip with spacers to provide a gap between the microchips for the 

specimen and for liquid flow. The microchips to be used with the spacer were first 

stripped of their protective coating with acetone and ethanol. While the surfaces were still 

hydrophobic, 0.2 μL droplets of an 8 μm diameter polystyrene microsphere suspension in 

water were pipetted onto the four corner regions of each microchip. The droplets of the 

suspension were dried, leaving the microspheres stuck to the four corners of the 

microchips‘ surfaces. The chips were then plasma cleaned to render the surfaces 

hydrophilic and coated with poly-L-lysine. 

 

3.2.3   EGF-QD Labeling  

QDs with 655 nm emission (QD655)were coupled to EGF molecules via 

biotin−streptavidin binding.
121

  The EGF-QD complexes were formed by incubating 

EGF-biotin (Invitrogen) in a 6:1 molar ratio with streptavidin-QD655 (Invitrogen) for 2 h 

at room temperature in a solution of 1.3 μM QD in 50 mM borate buffer, pH 8.3 (the QD 

stock solution was first centrifuged to remove aggregates). Free EGF-biotin was removed 

with a microcentrifuge purification column (Ultracel-100YM, Millipore). For specific 

labeling of the EGF receptors, the cells were incubated with 5 nM EGF-QD655 in 

Tyrode‘s buffer (Sigma), supplemented with 0.1% BSA (Sigma) and 50 mM d-glucose 

(Sigma-Aldrich) for 5 min at room temperature by immersing the microchips in 
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incubation liquid.
63

  The cells were then washed three times in PBS (Gibco) and fixed for 

20 min with 4% glutaraldehyde in PBS. After fixation, the cells were washed three times 

with PBS and once in 10% PBS. The aldehydes in the fixative were quenched by 

incubating the microchips in 100 mM glycine in 10% PBS, followed by three rinses of 

the microchips in 10% PBS. Two different control experiments confirmed specific EGF 

labeling with QDs. The first control started with the above-described labeling of the cells 

with EGF-QDs. The control samples were then desalted, dried, and imaged with TEM.  It 

was found that QDs were co-located with regions of the microchips containing cellular 

material. The second control involved the incubation with QD655-streptavidin without 

EGF-biotin. This control was also desalted, dried, and imaged with TEM. Only a very 

low amount of nonspecifically bound QDs was observed. 

 

 3.2.4  Light Microscopy  

The microchips with the labeled cells were placed upside-down in a 35 mm 

culture dish with thin glass bottom (Mat-tek), containing 2 mL of 10% PBS in water. 

Differential interference contrast (DIC) and fluorescent images (5 s exposure time) were 

recorded with a 40× oil immersion objective using a wide field microscope (TE300, 

Nikon) equipped with a far-red band-pass excitation filter (hq615/40 ×) and a far-red 

band-pass emission filter set (hq710/100 m). Fluorescence of the glutaraldehyde fixative 

was reduced prior to imaging by photobleaching, using the light source of the 

fluorescence microscope. The images were adjusted for optimum brightness and contrast, 

overlaid, and colored using ImageJ software (NIH). 
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3.2.5  Liquid STEM Imaging  

For liquid STEM imaging, a microfluidic chamber containing a sample was 

assembled in a liquid specimen holder for STEM imaging (Protochips Inc.). This holder 

connected the specimen chamber to a syringe pump (Harvard Scientific) via microfluidic 

tubing (Upchurch Scientific). Before assembly, the tubing was cleaned with purified 

water and then the slot for the microchips was dried. The spacer microchip was first 

loaded with the spacer facing up. A droplet of 0.5 μL 10% PBS was pipetted onto the 

surface, wetting it completely. The microchip with cells was then placed in the slot on the 

spacer microchip with the cells facing downward. The loading was done rapidly to 

prevent the chips from drying. The lid of the holder was then closed, the buffer solution 

was rinsed off the outer surface of the microchip to prevent the formation of a salt crust, 

and a 1−2 μL/min flow of 10% PBS in water was initiated. The STEM (CM200, FEI 

Company, Oregon) was set to 200 kV, and a beam semiangle α of 11 mrad, a pixel dwell 

time of 20 μs, a probe current of 0.6 nA, a detector semiangle β of 70 mrad, and an image 

size of 1024 × 1024 pixels were chosen. The probe size containing 50% of the current 

was estimated to be d50 = 0.6 nm.
122

  Contrast and brightness were adjusted for maximum 

visibility, and a convolution filter with a kernel of (1, 1, 1; 1, 5, 1; 1, 1, 1) was applied 

(using ImageJ) to reduce the noise in the STEM images; however, the data analysis via 

line scans was performed on the original, unfiltered data. The image of Figure 16c was 

recorded at the edge of the SiN window where the window bulged in the vacuum toward 

the center of the window, resulting in a change of the background signal level as a 

function of the vertical coordinate. This increase in background signal was compensated 

for by using image processing (Digital Micrograph, Gatan). 
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3.3  Results and Discussion 

 

3.3.1  Correlative Fluorescence Microscopy and Liquid STEM of QD-Labeled Cells 

COS7 fibroblast cells were grown on silicon microchips with electron transparent 

windows for liquid STEM imaging.
63

  The cells were incubated for 5 min at room 

temperature with EGF conjugated to QD (EGF-QD) and then fixed with glutaraldehyde. 

The incubation with EGF-QD and the fixation were done directly on the microchips. The 

cells on one microchip were imaged with LM with the microchip placed upside-down in 

a cell culture dish with phosphate buffered saline water (Figure 15c).  Figure 16a shows a 

direct interference contrast (DIC) image and overlaid fluorescence image of a window 

section partly covered with adhered cells.  The cells have flattened-out on the SiN surface 

of the microchip. The DIC signal is visible through the SiN window only, while the 

fluorescence signal is visible over the whole surface. The fluorescence signal is co-

located with cellular material visible in the DIC signal.  Figure 16b shows the 

fluorescence image separately. The QD labels light up as bright spots against a dark 

background of regions without cells. The cellular regions contain a faint fluorescence 

signal from the glutaraldehyde fixative. Bright spots indicate the locations of single QDs 

and/or bigger clusters of QDs, distributed over the entire surface of the cell, as expected 

for the used incubation time.
123

 The fluorescence image (Figure 16b) was also used to 

locate the position of the cell with respect to the window, in order to correlate the light 

microscope and STEM images. Fluorescence and DIC images were recorded for six other 

samples.  



 

55 
 

 

 

Selected microchips with labeled cells in the window region were assembled into 

microfluidic chambers for liquid STEM and imaged with a 200 kV STEM at a 

magnification M = 48000, while a continuous flow of buffer was maintained over the 

cells. Figure 16c shows a STEM image recorded at the edge of the same cell in the 

fluorescence image in Figure 16b. The lower two-third of the image contains bright spots 

of similar sizes that we associate with the presence of QDs.  These bright spots are absent 

in the upper part of the image.  We interpret the indicated transition line as the edge of 

 

Figure 16:  Correlative light microscopy and liquid STEM of intact fixed eukaryotic cells in saline water. (a) Direct 

interference contrast (DIC) image (gray) with overlaid fluorescent signal (red) of a microchip with COS7 cells 

showing the regions with quantum dot (QD)-labeled epidermal growth factor (EGF) receptors. The rectangular 

shape outlines the silicon nitride window. (b) Fluorescent signals (red) showing cellular regions with EGF receptors. 

Some fluorescence from the fixative is also visible. (c) Liquid STEM image of the region indicated with a square #1 

in (b). Individual QDs along the edge of the cell can be discerned as yellow spots on a blue background. Some 

debris can be seen, as well. The magnification was M = 48 000. The signal intensity was color-coded to increase the 

visibility of the labels. 
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the cell. Some debris from the microchip processing is visible, as well. Similar debris 

material was observed incidentally on microchip windows before cells were seeded and is 

residual material from the microchip processing that was not entirely washed off. 

The QD-labeled EGF receptors were distributed almost evenly over the surface of 

the cell, consistent with the well-known behavior of the EGF receptor. Prior to EGF 

binding, the EGF receptor is known to be homogeneously distributed on the plasma 

membrane, as was shown by others via thin section TEM imaging of ferritin-labeled 

EGF
124

 and of immuno-gold-labeled EGF receptors.
125

  Incubation with EGF leads to 

ligand binding, activation of the receptor, and eventually internalization of the receptor 

via the formation of endocytotic vesicles after typical incubation times on the order of 30 

min at room temperature.
123

  The distribution of the labels thus changes with time from a 

homogeneous distribution to clusters of labels. The receptor distribution cannot be 

studied at the single-receptor level using fluorescence microscopy, so a microscopy 

technique with a resolution in the nanometer range is needed, for which traditionally 

TEM on thin sections is used. Figure 16c demonstrates that liquid STEM imaging 

provides information about the distribution of the individual EGF receptors correlated 

with the fluorescence image. 

 

3.3.2  Liquid Thickness 

To verify the presence of liquid in the microfluidic chamber, we have determined 

the fraction, N/N0, of electrons in the probe, N0, scattered onto the ADF detector by the 

liquid in the microfluidic chamber. A fraction of N/N0 = 0.44 was measured during 

imaging. The thickness of the liquid T follows from this fraction as
63

 with Ɩ(β) being the 

mean free path length for elastic scattering in opening semiangle β or larger.  
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           (  

 

  
) (5) 

 

Equation 5 assumes that most of the signal in the ADF detector is formed by 

single elastic scattering events and thus neglects multiple scattering and inelastic 

scattering. It was demonstrated in a recent study that the values of T obtained with 5 were 

accurate within 30% compared to thickness measurements performed via tilting the 

sample.
126

  Water has lwater = 10.5 μm for β = 70 mrad.
63

  Note that the mean free path 

length for the total elastic cross section (scattering by angles of 0−π) for water at 200 kV 

is 0.43 μm, but most scattering events lead only to minor angular changes of the electron 

trajectories and do not cause electrons to scatter into the ADF detector. The larger mean 

free path length for the partial elastic cross section (scattering by angles of β−π) applies 

for angular changes sufficient to scatter electrons into the opening angle of the ADF 

detector. The value of lwater approximately equals the value of the buffer solution used 

here. The thickness of the liquid at the position of Figure 16b was calculated to be 6 ± 1 

μm. This number is smaller than the diameter of the applied microspheres serving as 

spacer between the two microchips. Presumably, a compression of the microspheres 

occurred. 

Localizing the same region in both a LM and an EM image often requires 

dedicated procedures in correlative microscopy.
65,127

  For liquid STEM, the localization 

was accomplished with a simple procedure as described in the following. The positions of 

features in the fluorescence image were measured with respect to the frame of the SiN 

window, visible in Figure 16a as rectangular shape and visible as a thin line in Figure 

16b. Because the magnification used for the STEM imaging was too high to display the 
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entire window area, the position of one corner of the SiN window was located first. The 

stage position at this point was recorded, and the scan rotation was aligned such that the 

scan direction of the electron beam ran parallel to the short side of the SiN window.  

During STEM imaging, the stage position of each image was recorded and correlated 

with the prior determined frame position of the SiN window. The position of Figure 16c 

corresponds to the square #1 in Figure 16b. The position of the square in the fluorescent 

image is at the edge of the cell, consistent with the finding of a separation line between 

regions with and without QDs in Figure 16c, interpreted as a cell edge. 

A second region of the same cell is shown in square #2 of Figure 16b. Several 

STEM images were recorded in this area. Figure 17a shows an image recorded at M = 

16000. The thickness of the liquid at this position was measured to be 5 ± 1 μm, 

consistent with the thickness determined for the region of Figure 16b within the accuracy 

of the measurement. The cellular material is visible as white irregular shapes, and the 

signal intensity increases toward the upper left corner to a level where the detector 

clipped. Cellular material has a shorter Ɩ value than water (Ɩcell < Ɩwater) due to the higher 

average density and the higher average atomic number of protein, lipid, and DNA. Thus, 

a cellular region with a high density of protein, lipid, or DNA is expected to produce 

more scattering than water. The region in the upper left corner of Figure 17a can thus be 

interpreted as a region of the cell where it is denser or thicker than in the remaining 

region. This finding is consistent with the fluorescence image of Figure 16b, where the 

square #2 is located in proximity to the nucleus. It can thus be concluded that correlative 

fluorescence microscopy and liquid STEM was accomplished on QD-labeled EGF 
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receptors in whole COS7 cells in liquid. STEM images of two other samples also showed 

QDs in the cellular regions of the corresponding fluorescence image. 

 

 

 

 

Figure 17:  Liquid STEM images of a COS7 cell labeled with EGF-QD. (a) Cellular region at the position of the 

square #2 in Figure 16 recorded at M = 16000. (b) Image recorded at a region just at the bottom of the figure in (a) 

at M = 32000. QDs are visible as bright spots. (c) Image recorded at M = 160 000 revealing the shape of the QDs. 

(d) Line scan over the QD indicated with the arrow in (c) over the short dimension of the QD. (e) Line scan over 

the same QD as in (d), but over the long dimension. The background level was set to zero. 
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3.3.3  Resolving the Shape of the QDs  

Liquid STEM images were recorded at higher magnifications, as well, to 

determine the shape of single QDs. Figure 17b was recorded at M = 32000, where some 

of the cellular material can still be discerned and the QDs are visible as small bright 

spots. Figure 17c, recorded at M = 160000, reveals the oval shape of the individual QDs. 

While the cellular material cannot be distinguished anymore, some of the debris is 

visible. A third type of object is the larger oval shape, center right, which is caused by 

electron beam contamination; that is, it appeared during imaging. The QD at the arrow 

was further analyzed. The line profile over the short dimension is shown in Figure 17d 

with a full width at half-maximum (FWHM) of 7 nm. The line profile over the long 

dimension has a FWHM of 12 nm, as shown in Figure 17e. The oval shape of the QDs 

was also detected by others, and STEM images at atomic resolution showed a bullet-like 

shape of QDs of the CdSe/CdZnS core/shell materials
40

 that are used by the supplier 

(Invitrogen). 

A total of 10 QDs was analyzed via line scans over their small dimensions, and it 

followed that the average FWHM was 8 ± 1 nm. The measured FWHM of the small 

dimension is consistent with the size of the CdSe core (7.3 nm) surrounded by a ZnS 

shell, which adds an additional 1−2 nm.
40,128

  The protein coating of the QDs is not 

visible in the STEM image due to the lower atomic number of this material compared to 

the core, and the resulting lower contrast in STEM. It can thus be concluded that QDs 

were indeed observed with liquid STEM and that the resolution was sufficient to resolve 

the oval shape of the QDs in a 5 μm thick layer of water (buffer). 
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3.3.4  Evaluation of the Signal-to-Noise Ratio of the Liquid STEM Images  

The signal-to-noise-ratio (SNR) of the peak of the signals at the QD with respect 

to the background level was 9 ± 1. The noise level was the standard deviation of the 

signal in a line scan over the background near the QD. The experimental SNR can be 

compared with a theoretical prediction. From the equations for elastic scattering
129

 and 

assuming 100% detection efficiency, it follows for the imaging of QDs in several 

micrometers of water that the noise-limited spatial resolution, d, obtained on the QDs is 

given in equation 6.
63,126
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This equation gives the relationship between the QD size and the SNR in the image. With 

the density of the CdSe core of 5.8 g/cm
3
,
130

 and a molecular weight of 14 g/mol, it 

follows that lQD = 0.40 μm. Equation 6 predicts QDs with d = 9 nm to be visible with 

SNR = 9 for T = 5 μm and the microscope settings used here. This theoretical value 

corresponds to the experimental fwhm values of 7 and 12 nm for the short and long side, 

respectively. The FWHM is a measure of the size of the QD but is not necessarily equal 

to the actual diameter. The line scan represents a convolution of the object with the 

electron probe from the STEM imaging, but for our microscope settings, the electron 

probe size was about 0.6 nm, measured as the diameter containing 50% of the current, 

d50, and the FWHM can be considered as a sufficiently accurate measure of a QD 
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dimension. It can thus be concluded that the theoretical model predicts the outcome of the 

measurements within the accuracy of the measurements and of equation 6. 

 

3.3.5  Resolution of Liquid STEM on QDs  

We have also determined the spatial resolution achieved in this experiment. For a 

situation where the electron probe is much smaller than the imaged object, a measure 

often used to determine the spatial resolution is the 25−75% edge width, r25−75.
131

 Values 

of r25−75 were measured from the line scans over the QDs. Each r25−75 was determined 

from the average of the opposite edges of a line scan over the QD. The values of r25−75 for 

the QD of Figure 17:  Liquid STEM images of a COS7 cell labeled with EGF-QD.d 

amounted to r25−75 = 3 nm. This value was the same for line scans over the long and short 

dimensions. The average over the small dimension of 10 QDs was 3.0 ± 0.5 nm.  Thus, 

the spatial resolution achieved with liquid STEM of QDs on cells in buffer for T = 5 μm 

was 3 nm. This estimate applies for QDs in the upper region of the specimen with respect 

to the beam entrance. Interactions of the electron beam with the water will lead to beam 

broadening.  At a depth of 0.5 μm, the electron probe will have increased to 4 nm,
63,120

 

still providing sufficient resolution, but at a depth of 1 μm, the probe size will be 9 nm 

and the QDs will be on the onset of visibility.  QD-labeled receptors can thus be detected 

in many sections of the cells flattened on the SiN membrane. 

Biological EM is mostly limited by electron beam damage, and the resolution is 

then not limited by the electron probe size, but rather by the available electron dose.  The 

minimum size, d, of a nanoparticle that can be resolved with a certain electron dose is 

calculated with 6.  The Rose criterion
132

 sets the limit SNR = 5, and the electron dose 
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determines N0.  The pixel size in Figure 17 was 0.85 nm, larger than the d50, and the 

electron dose was thus 1.0 × 10
5
 e

-
/nm

2
. This value is an order of magnitude larger than 

the limit of 8.0 × 10
3
 e

-
/nm

2
 used in cryo-TEM of whole cells

133
 and about a factor of 4 

less than the limit used for the imaging of conventional thin sections.
134

  A dose of 7 × 

10
4
 e

-
/nm

2
 applies for STEM imaging of fixed cells in liquid. An electron dose of 1.0 × 

10
5
 e

-
/nm

2
, SNR = 5, and T = 5 μm, yield d = 5 nm. QDs with a smallest dimension of 5 

nm would thus be visible with sufficient SNR for detection. 

 

3.3.6  Difference between STEM and TEM  

The STEM has a key advantage over TEM when imaging molecular labels of 

heavy materials, such as gold nanoparticles or QDs, and the obtained images are different 

than those obtained with TEM. The molecular labels are visible with high contrast, while 

the underlying ultrastructure is visible with much less contrast than in TEM. This 

―absence‖ of information has the advantage that the background levels are relatively low, 

thus promoting the visibility of the labels when imaging whole cells. The difference 

between STEM and TEM has its analogue in LM, where fluorescence microscopy is used 

to image specifically labeled proteins and, for example, phase contrast is used to image 

the cellular structure. Correlative fluorescence microscopy and liquid STEM thus 

provides different information than correlative microscopy involving TEM. 

 

3.4  Conclusions 

These results demonstrate that liquid STEM is capable of imaging individual QDs 

used as specific protein labels on whole eukaryotic cells in liquid, and that the liquid 
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STEM images can be readily correlated with their fluorescent counterparts. The sample 

preparation method used for liquid STEM is similar to standard methods used for LM 

with the difference that nanoparticle labels of heavy materials are needed to provide 

contrast in STEM. Liquid STEM has two key advantages over state-of-the-art correlative 

LM and TEM, requiring thin sections, or thin frozen samples: (1) Artifacts introduced by 

dehydration, post-staining, freezing, or sectioning are avoided. (2) In liquid STEM, cells 

are labeled live and fixed, after which no further sample processing is required. As a 

consequence, fluorescence microscopy can be used to monitor tagged proteins in living 

cells to determine the desired time point of the fixation. It is thus possible to examine a 

certain specific state of the cell by subsequent liquid STEM imaging. Currently, liquid 

STEM is limited to surface proteins and proteins that internalize as was shown for the 

EGF receptor,
63

 but strategies for introducing nanoparticles into live cells, such as 

membrane penetrating peptides,
135

 may be used to label intracellular proteins in the 

future. The spatial resolution of 3 nm demonstrated here is sufficient to discriminate 

nanoparticles differing in size, shape, and electron density for multilabel experiments to 

study the constituents of protein complexes within cells. 
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CHAPTER IV 

 

THREE-DIMENSIONAL LOCATIONS OF GOLD-LABELED PROTEINS IN A 

WHOLE MOUNT EUKARYOTIC CELL OBTAINED WITH 2.5 NM PRECISION 

USING ABERRATION CORRECTED SCANNING TRANSMISSION ELECTRON 

MICROSCOPY. 

 

Adapted with permission from: Three-Dimensional Locations Of Gold-Labeled Proteins in a Whole Mount 

Eukaryotic Cell Obtained with 3 nm Precision Using Aberration-Corrected Scanning Transmission 

Electron Microscopy, Journal of Structural Biology  2011, In Press Copyright 2011 Elsevier Inc. 

 

 

4.1  Introduction 

The biological processes responsible for cellular function are controlled by 

complex macromolecular systems, which are assembled from individual proteins and 

other biological components such as lipids and DNA.  Accurate three dimensional (3D) 

maps of the spatial organization(s) of such bio-molecular assemblies within a whole cell 

provide a blueprint for investigating biological mechanisms.
6,136

  Tomographic 

techniques using transmission electron microscopy (TEM) are typically employed to 

obtain nanometer-scale reconstructions of cellular structures in 3D;
5,115

 however TEM 

tomography is limited to maximum sample thicknesses of ~300 nm,
137

 or a maximum of 

~1 µm when using energy filtering techniques.
6
  TEM imaging of a -in terms of electron 

microscopy (EM)- large structure, such as a whole cell, is not possible with tilt-series 

TEM tomography, because the beam must penetrate through micrometers of cellular 

material at the high tilt angles.  Thus, TEM imaging of whole eukaryotic cells is 

generally confined to the periphery, where the cellular material is thin enough to be 
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contained within a single plastic section, or thin enough for reliable formation of vitrified 

ice for cryo-TEM preparation.
138

  One procedure to image the cytoskeleton of whole 

mount cells involves the extraction of the cellular membrane and cytosolic proteins.
138

  

However, such procedure eliminates the possibility of imaging membrane or cytosolic 

structures and thus cannot be considered for imaging an intact system.  

 Although long assumed to be too damaging for imaging biological 

structures,
60

 scanning transmission electron microscopy (STEM) has begun to gain 

acceptance as a technique for imaging thicker biological samples by both tomographic 

and focal-series techniques.
16,60,137

    Recently, our group introduced the use of 

aberration-corrected STEM to obtain 3D reconstructions of biological structures with 

nanometer resolution.
16,59

  Spherical aberration corrections allows electron beam opening 

semi-angles (α) of up to 40 mrads, compared to conventional STEM with α  10 mrad, 

while maintaining a high lateral resolution.  On account of the increased opening angle a 

depth of field of several nanometers is obtained.
139

  3D information of a biological 

specimen is obtained via the recording of a series of 2D images at different focus 

positions (Figure 18), a so-called focal series, and subsequent deconvolution
59

  

 Here we present an optimized method to prepare whole mount eukaryotic 

cells for TEM or STEM imaging.  Existing protocols
3,9,42,140

 were optimized so that 

critical point dried, whole cells remained stable under the irradiation conditions of the 

STEM.  We developed a quantitative method to analyze the sample stability in response 

to the electron dose using TEM imaging.  The whole mount samples were imaged with 

aberration-corrected STEM, and several 3D focal series were obtained.  
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Figure 18:  Image acquisition using aberration-corrected three-dimensional (3D) scanning transmission 

electron microscopy (STEM).  The electron beam is scanned across the sample in the x,y plane at different 

focus positions, z.  The cells are grown on a silicon nitride support window on a silicon microchip.  Strong 

contrast is obtained on gold nanoparticles used as specific protein labels.  

 

The contrast mechanism of STEM using the annular dark field detector is especially 

suited to image heavy nanoparticles in a thick layer of a light material.
59

  For this reason 

we have labeled the epidermal growth factor (EGF) receptor with gold nanoparticles.  

The datasets were analyzed for the 3D positions of the labels on the cell. 
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4.2  Materials and Methods 

 

4.2.1  Sample Preparation 

Cells were grown directly on the EM sample supports, silicon microchips each 

with an electron transparent silicon nitride (SiN) window of an area of 250 x 250 µm
2
, 

and 100 nm thickness (Protochips Inc, NC, and Nordaca Inc., Canada).  The microchips 

were rinsed in ethanol for 2 minutes and then plasma cleaned (Harrick Plasma, NY) for 5 

minutes.  Next, the microchips were coated with poly-L-lysine (0.01%, Sigma, MO) to 

promote cell adherence to the SiN, by incubating them in solution for 5 minutes at room 

temperature.  The microchips were then rinsed three times with HPLC-grade water 

(Fisher Scientific, PA) and placed, with the SiN surface facing upwards, into wells of a 

96 well plate filled with Dulbecco‘s modified eagle medium (DMEM) (Invitrogen, CA) 

supplemented with 10% fetal bovine serum (FBS) (Sigma, MO). 

Confluent COS7 cells (green monkey kidney fibroblast) were harvested from a 25 

mL culture flask after detachment with trypsin and re-suspended in 5 mL of serum 

supplemented DMEM.  A droplet of the suspended cell solution was added to each well, 

and cell adherence to the microchip was monitored using an inverted microscope (TS100 

Nikon Instruments).  The microchips were then transferred to new wells containing fresh 

media.  Cells were grown in an incubator for four hours at 37 ºC in air with 5% CO2.  

Thereafter they were rinsed with serum-free DMEM, and transferred to wells filled with 

serum-free DMEM, where they were incubated overnight at 37º C in air with 5% CO2. 
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4.2.2  Receptor Labeling 

EGF receptors were tagged using EGF conjugated to 10 nm gold nanoparticles 

(EGF-Au).  Gold-streptavidin nanoparticles (KPL, MD) were coupled to biotin labeled 

EGF (Invitrogen, CA) using a previously described method.
63

  The cells were incubated 

with 5 nM EGF-Au solution for 5 minutes at room temperature, followed by rinsing and 

fixation.   

 

4.2.3  Primary Fixation 

COS7 cells were fixed directly on the EM support using 4% glutaraldehyde in 

phosphate buffered saline (PBS, Electron Microscopy Sciences, PA).
63

  Samples were 

immersed at room temperature in fixative for periods of 15, 30, 45, or 60 minutes.  After 

fixation, they were rinsed three times with PBS (5 minutes each) followed by three rinses 

with 0.1 M cacodylate buffer (Ted Pella, CA), 5 minutes each, to remove residual 

fixative. 

 

4.2.4  Staining and Secondary Fixation 

Fixed cells were stained with OsO4 by immersing the samples in solutions of 

either 40 mM, or 40 nM OsO4  (Ted Pella, CA) in 0.1 M cacodylate buffer at room 

temperature for one hour.
3
  Controls without OsO4 were incubated in cacodylate buffer 

only.  Samples prepared from different concentrations (0, 40 nM, and 40 mM) were 

processed separately from one another to prevent cross-contamination from OsO4 vapor.  

After staining with OsO4, the samples were rinsed three times with 0.1 M cacodylate 

buffer followed by three rinses with HPLC-grade water to remove salts.   
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4.2.5  Ethanol Dehydration 

Cells were dehydrated with EM-grade ethanol (Ted Pella, CA).  Microchips 

supporting fixed and stained cells were immersed sequentially in the following 

concentrations of ethanol: 25% for 5 minutes; 50% for 5 minutes; 70% for 5 minutes; 

85% for 5 minutes; 95% for 5 minutes (twice); 100% ethanol for 10 minutes (three 

times).
3
   

 

4.2.6  Critical Point Drying 

Samples were critical point dried (EMS 850, Electron Microscopy Sciences, PA).
2
  

The loading of the microchips into the sample holder and into the chamber of the critical 

point dryer (CPD) was done under ethanol to prevent air-drying of the samples.  The 

chamber was sealed and cooled to 5 ºC.  The ethanol in the chamber was replaced with 

liquid CO2 via a series of fluid exchanges.  Each fluid exchange consisted of a 1-minute 

flush of the chamber with liquid CO2 followed by a five minutes immersion in CO2 with 

no flow.  The CO2 fluid level was adjusted so that the sample holder remained submerged 

at all times.  After the removal of the ethanol the chamber was heated to the critical point 

of CO2 (31 ºC, 73 atm), and the chamber was depressurized over a period of 45 minutes.  

The dry samples were stored in a desiccator prior to imaging to prevent the absorption of 

water from the air.
2
 

 

4.2.7  Carbon Coating 

Critical point dried whole mount cell samples were coated with a thin layer of 

amorphous carbon using a home built electron beam carbon evaporator.  The carbon 
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deposition rate was ~0.2 Å/s.  The vacuum level at the onset of evaporation was 10
-7

 torr, 

which decreased to 10
-4

 torr upon carbon evaporation.   

 

4.2.8  Electron Microscopy  

TEM imaging was performed at 80 kV using a TEM (CM12, FEI, OR) equipped 

with a 2k×2k CCD camera (Advanced Microscopy Techniques (AMT), MA). The 

electron dose wasmeasured as follows: the diameter of the electron beam illuminating the 

phosphor screen was determined, and the current (I) collected on the phosphor screen was 

measured. The electron dose per unit time (D/t) was calculated via the CM12 software 

using the equation: 

  D/t =
  2.5        

 

      
        

 
 

 (7)

 

where, M is the magnification, 2.5 is a correction factor to account for backscatter 

electrons, Dscreen is the diameter of the screen, e is the electron charge, Dmeas is the 

measured diameter of illuminated region on the screen, and Ascreen is the total area of the 

screen. After determination of the electron dose the specimen was inserted, whereby the 

diameter of the illuminated area on thephosphor screen was kept constant. The 

cumulative electron dose in an experiment was then determined from the irradiation  

time, t. 

3D focal series data sets were recorded with a 200 kV aberration-corrected 

STEM/TEM (2200 FS, JEOL). The corrector was aligned at 17.3 mrad opening semi-

angle (α), and then a second round of correction was done at α = 26.5 mrad. Finally, α 
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was set to 41 mrad. The corresponding probe current was Ip = 83 pA. Each image 

contained 512×512 pixels, and the pixel dwell time was τ = 8 μsec. 

 

4.2.8.1  Alignment of TEM images 

The individual TEM images of a series were arranged in order of increasing 

electron dose, merged into a single stack, and then aligned to correct for stage drift using 

the following procedure.  Several individual objects that remained visible throughout the 

image series were used as alignment references.  The positions of these objects were 

tracked for each frame in the series using the ImageJ
141

  plugin, MTrackJ.
142

  Figure 19 

shows an example of the observed drift of a sample containing COS7 cells coated with 10 

nm of amorphous carbon.   

 

 

Figure 19:  Stage drift over a transmission electron microscopy (TEM) image series.  (a) Overlay of two 

TEM images after irradiation doses of 103 e-/nm2 and 106 e-/nm2.  Drift vectors are shown as arrows. (b).  

Coordinates of the reference objects in the TEM image series.  The stage drifted approximately 229 nm.  

(c) Reference object coordinates after image alignment by lateral shifts only.   
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TEM images taken after electron doses of 10
3
 and 10

6
 e

-
/nm

2
 were overlaid; the observed 

drift vectors are indicated by the arrows (Figure 19a).  Stage drift presumably resulted in 

the translation of the objects between images.  The coordinates (x,y) of several objects in 

Figure 19a were recorded for each frame in the image series (Figure 19b).  The objects 

drifted by an average total of 229 nm.  The direction and magnitude of the shift was 

approximately the same for all reference objects, which confirmed that the shift was a 

result of stage drift and not sample distortion.  The images were then aligned using the 

average drift vector.  The accuracy of the alignment was tested by re-plotting the 

coordinates of the same objects using the aligned image stack.  Figure 19c shows that the 

reference objects did not exhibit notable shifts after alignment.  The above procedure was 

used instead of cross-correlation,
52

 since we wanted to measure the drift of multiple 

reference objects simultaneously to be able to check for radiation damage.  

 

4.2.9  Stability Analysis Using Linescan Comparison 

The following analysis was used to assess the sample stability in successive TEM 

images.  The contrast of each image was inverted in ImageJ so that regions without 

cellular material had a corresponding signal intensity of 0.  Changes to an ultrastructure 

as a result of electron beam irradiation were measured using linescans, measuring the 

signal S(x) versus position x, at certain locations in the images.  The S(x) values of the 

linescan in the first image of a series served as the reference (Sref(x)) against which the 

linescans profiles in subsequent images were normalized.  The normalized difference in 

the signal intensity for each position in the linescan profile, ∆SN(x), was calculated using 

equation 7:  
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 (8) 

 

The individual values of ∆SN(x) were averaged in order to assign a single 

numerical value for the difference in the profile of the linescan (∆SN) as shown in 

equation 8:   

 

 
 (9) 

 

The average stability of the sample or sample region was expressed as the mean ∆SN of 

multiple linescans in a region, with the standard deviation providing a measure of the 

variance within a given sample.   

 

4.2.10  Image processing of STEM images 

The 3D STEM data sets were processed using the following image processing 

steps.
59

  The noise in the image was reduced using a convolution filter (Kernel: 1,1,1; 

1,5,1; 1,1,1) using the software Digital Micrograph (Gatan).  The data was then 

automatically aligned slice-by-slice using the Autoquant software (Media cybernetics 

Inc.). The alignment algorithm used was particle alignment with respect to the nearest 

neighbor, with an alignment setting of ‗no warp.‘  The maximal lateral drift was 70 nm.  

To increase the axial resolution, the 3D datasets were deconvolved using the Autoquant 

software 
59

 via  three cycles of deconvolution: (1) 50 iterations of adaptive deconvolution 

to estimate the object and the point spread function (PSF), (2) 50 iterations with fixed 

DSN (x) =1-
Sref (x)- S(x)

Sref (x)

DSN =
1

x
DSN (x)

x

å
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PSF, and (3) 50 iterations of axial adaptive deconvolution.  For the image processing of 

the datasets presented in the study, the first 100 and the last 100 images were removed 

from the focal series as these slices contained blurred information only, and removing 

these images improved processing speed. 

 

4.3  Results and Discussion 

Whole mount cell samples were optimized for stability under electron beam 

irradiation, and their stability under electron beam irradiation was assessed using TEM.  

The following sample preparation steps were optimized: OsO4 staining, primary fixation 

time, and carbon coating.  After sample optimization, the stability was determined over 

an electron dose series of 10
3
 to 10

6
 e

-
/nm

2
.  Cellular samples, in which EGF receptors 

were labeled with 10 nm gold nanoparticles, were then imaged using aberration-corrected 

STEM.  The acquired 3D data set was deconvolved and analyzed.  

 

4.3.1  Stability Analysis 

We developed a method to measure sample stability via linescan analysis.  The 

method was tested on a sample containing ethanol dehydrated, critical point dried COS7 

fibroblast cells grown on EM sample supports.  Prior to dehydration the COS7 cells were 

fixed with glutaraldehyde for 15 minutes, stained with OsO4 (40 nM), and the saline was 

removed by rinsing the samples in water.  The analysis of sample stability was performed 

as follows.  A reference image was recorded with an initial electron dose of 10
2
 e

-
/nm

2
.  

After the reference image was recorded, a second image was recorded after a cumulative 

electron dose of 10
5
 e

-
/nm

2
 at the same position of the sample.  We expected the thicker 
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regions of the cells near the nucleus to be more sensitive to electron beam damage than 

the thin regions at the edge of the cells.  For this reason, thick and thin cellular regions 

were analyzed independently.  Two regions of different thickness within the same sample 

are shown in Figure 20.  The first region, near the edge of the cell (Figure 20, a and b), 

remained stable during irradiation, as can be seem from the high degree of overlap of the 

linescans shown Figure 20c.  A thick region, near the nucleus envelope, is shown in 

Figure 20d and Figure 20e. 

 

 

Figure 20:  Linescan analysis of TEM images of critically point dried COS7 cells during irradiation series.  

(a) TEM image of a thin cellular region recorded with an electron dose of 102 e-/nm2.  (b) TEM image of 

the same region after receiving a cumulative electron dose of 105 e-/nm2.  (c) Signal versus position S(x) of 
the linescan indicated by the dashed white line shown in images (a)  and (b).  Both profiles exhibit  a high 

degree of, with only a minimal decrease in signal intensity at the higher electron dose. (d) TEM image of a 

thick region in the same sample recorded with an electron dose of 102 e/nm2.  (e) TEM image of the same 

region shown in (d) after receiving a cumulative electron dose of 105 e/nm2.  (f) Profile of the linescan 

indicated by the dashed white line shown in images (d)  and (e).  The  changes in the profile resemble 

structural changes corresponding to the two regions in the indicated by arrows in the TEM images. 

The two linescans across this region show several differences (Figure 20f).   



 

77 
 

The largest changes in the profile occur at regions indicated by the arrows.  The 

difference in the linescan profiles was quantified as the normalized change with respect 

to the first image in the series, and averaged for the pixels in a line scan (∆SN; see 

methods section).  The ∆SN values the linescans of Figures 3C and 3f are 0.90 and 0.89, 

respectively.   

The overall sample stability was determined by analyzing several line scans and 

calculating the mean ∆SN.  For the thin cellular region the mean ∆SN was 0.83 ± 0.02 (for 

a total of n = 7 averaged linescans), while the region near the nuclear envelope had a 

mean ∆SN 0.80 ± 0.08 (n = 14).  In addition to having a lower mean ∆SN value, the 

standard deviation of the thick region was fourfold larger than for the thin cellular region, 

indicating that thick sample regions exhibited a larger variance in stability relative to thin 

regions.  Thus, the stability measure, mean ∆SN, is sensitive to a stability difference 

between two regions within a sample.  

 

4.3.1.1  Osmium Tetroxide Staining 

Staining with 1% OsO4 (40 mM) is the standard in TEM sample preparation used 

to stabilize the lipid content and enhance contrast 
3
.  We reasoned that the standard 

concentration of OsO4 could possibly result in too much metal in the thicker regions of a 

whole cell sample, thus obstructing imaging in those regions.  Therefore, staining with an 

ultra-dilute solution of OsO4 (40 nM) was used.  Cells were fixed for 45 minutes in 4% 

glutaraldehyde in PBS, and then incubated in 40 nM OsO4 in cacodylate buffer for 1 

hour.  The samples were dehydrated with ethanol, critical point dried, and coated with 10 

nm of carbon.  For comparison we also tested the standard OsO4 concentration of 40 mM 
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(1%), and no OsO4 at all, see Figure 21.  Regions of darker contrast (as indicated by the 

arrow) were present in the unstained control sample (Figure 21a), but several organelles, 

such as the mitochondria, were not identifiable.  The mitochondria are clearly visible in 

both the OsO4-fixed samples (Figure 21b, c). Yet, we did not observe a difference in 

contrast between the low and high concentrations of OsO4, and, therefore, we chose the 

lower (40 nM) concentration for further the experiments described in this study.   

 

 

Figure 21:  Comparison of OsO4 staining conditions in TEM images.  (a) No OsO4.  (b) 40 nM OsO4.  (c) 

40 mM OsO4.  Cellular features in the unstained control (a), such as the mitochondrial envelope, were 
indistinct in comparison to the samples treated with OsO4 (b and c). However, a clear advantage in contrast 

or ultrastructure preservation was not observed between the samples stained with 40 nM (b) or 40 mM of 

OsO4 (c). 

 

4.3.1.2  Glutaraldehyde Fixation Time 

The length of the primary fixation was varied to determine if the fixation time 

influenced the sample stability.  COS7 cells were fixed at room temperature in 4% 

glutaraldehyde for 15, 30, 45, or 60 minutes.  The fixed cells were stained for one hour 

with 40 nM OsO4, rinsed, then dehydrated with ethanol and critical point dried.  For each 

condition 10 linescans were analyzed.  The mean ∆SN values are shown in Figure 22.  

There was no significant difference amongst the four fixation times examined, and, 
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therefore, subsequent experiments utilized a standard fixation time of 45 minutes in 4% 

glutaraldehyde.
2,3

 

 

 

Figure 22:  The sample stability measure, mean ∆SN, as function of the glutaraldehyde fixation time.  TEM 

images were recorded after the samples had received an electron dose of 102 e-/nm2 and 105 e-/nm2, and 

analyzed for stability.  

 

4.3.1.3  Influence of Carbon coating on Stability 

Additional samples were prepared to test if coating the samples with a layer of 

amorphous carbon improved the sample stability.  A continuous layer of carbon provides 

electrical conductance, and mechanical stability.  Samples were fixed for 45 minutes with 

4% glutaraldehyde in PBS followed by OsO4 staining for 1 hour (40 nM).  Following 

ethanol dehydration and critical point drying, the samples were coated with 10, 20, or 50 

nm of amorphous carbon, and then imaged using TEM (Figure 23).  In an area near the 

cell grains of deposited material are visible on the SiN window surface, for the samples 

coated with either a 20, or a 50 nm layer of carbon.  The average sizes of these grains 

were 6 ± 1 nm, and 20 ± 2 nm, for the 20 and 50 nm layers, respectively.  For the sample 

coated with 10 nm of carbon the deposited material did not exhibit distinguishable grains. 
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Figure 23:  TEM images of carbon coated critical point dried cells.  (a) 10 nm carbon coating.  (b) 20 nm 

carbon coating.  (c) 50 nm carbon coating.  Grain-like particles indicated by the arrows measured were 

observed for both the 20, and the 50 nm layer, but were not visible for 10 nm of carbon.   

 

The carbon-coated samples were analyzed for stability, and compared with an uncoated 

control sample.  For each sample, a TEM reference image was recorded using an electron 

dose was 10
2
 e

-
/nm

2
.  The same region was then recorded after a receiving a cumulative 

electron dose of 10
6
 e

-
/nm

2
.  Linescans throughout both thin and thick cellular regions 

were analyzed to measure the difference in stability between the coated and uncoated 

samples.  Figure 24 compares the stability of samples with, and without, a coating of 

amorphous carbon.  TEM images of the uncoated control sample (Figure 24a) shows a 

loss of cellular material near the region indicated by the arrow in after irradiation (Figure 

24b).   

However, TEM images of samples coated with a 10 nm layer of amorphous 

carbon (before: Figure 24c, after: Figure 24d) show no visible structural change upon 

electron beam irradiation.  A comparison of the mean ∆SN values for both thick and thin 

regions samples coated with different carbon thicknesses is shown in Figure 24e.  The 

control sample (no carbon) was the least stable, with a mean ∆SN of 0.85 ± 0.02, while 

each of the carbon coated samples had a mean ∆SN of 0.93 ± 0.02 or above.  Thus, the 
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application of the carbon coating significantly improved the stability, but only a small 

difference was found between the tested coating thicknesses. 

 

 

Figure 24:  Evaluation of the sample stability obtained with carbon coating.  (a) TEM image of a control 

(no carbon), recorded with an electron dose was 102 e-/nm2.  (b) TEM image of the same region of the 

control sample after cumulative irradiation of 106 e-/nm2.  The arrows indicate a region that underwent 

distortion.  (c) TEM image a sample coated with 10 nm of carbon and recorded with and electron dose of 

102 e-/nm2.  (d) TEM image of the same region of the carbon coated sample after irradiation with a dose of 

106 e-/nm2, demonstrating the high degree of structural preservation.  (e) Stability measure, mean ∆SN, of 
samples coated with different thicknesses of carbon.  The stability was tested for two different cellular 

regions.  
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4.3.1.4  Stability Range: Electron Dose 

In order to determine the dose resistance of the optimized samples coated with 10 

nm carbon to high electron doses, we tested the following series of electron doses: 10
3
, 

10
4
, 10

5
, and 10

6
 e

-
/nm

2
.  The mean ∆SN for both thick and thin cellular regions at each 

electron dose are shown in Figure 25.  

 

 

Figure 25:  The sample stability, measured with ∆SN, as function of the electron dose, separated by cellular 

region.  

 

Thick regions remained stable for each dose in the series with values of mean ∆SN 

remaining at 0.93 or higher, with a standard deviation of less than ± 3% for all data 

points.  Thin and thick sample regions were of the same stability within the standard 

deviation.  From these results we conclude that the samples should withstand the electron 

dose needed for the recording of a focal-series dataset with STEM with a dose of up to 

10
6
 e

-
/nm

2
.  
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4.3.2  3D STEM Imaging of Nanoparticles on Whole Cells 

Samples of whole mount COS7 cells were prepared with gold-tagged EGF 

receptors localized at the cell surface.  The cells were fixed, stained, critical point dried, 

and coated with 10 nm of amorphous carbon.  3D focal series were recorded over several 

cellular regions at a magnification of 100,000 and a probe semi angle of 41 mrad, with an 

aberration corrected STEM.  The sample was first pre-irradiated with an electron dose of 

110
5
 e

-
/nm

2 
to reduce contamination and sample shrinkage during imaging.  The first 

dataset was collected at the edge of the cell. It contained N = 500 images, acquired with 

focus steps of dz = 2.5 nm, and a pixel size of s = 2.8 nm (magnification of 100k). The 

image series was acquired such that sufficient focal positions above and below the 

specimen were obtained to allow deconvolution.
16

  The total imaging time was 30 

minutes. Since the divergence of the electron beam over the entire vertical range of the 

focal series was much smaller than the image size, the average electron dose during the 

focal series acquisition can be approximated by: 

 

              D = 
    

    

 

(10)

with electron charge e. It followed that D = 2.6×105 e-/nm2 for the settings used in this 

experiment. The cumulative dose the sample was irradiated with at this location was thus 

3.6×10
5
 e

-
/nm

2
. 

Before and after the recording of a focal -series dataset we also took an image 

with the cell mostly in focus, to test for possible radiation damage.  We analyzed the 

stability of the sample by comparing these two STEM images.  Figure 26 shows selected 
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areas of 256 x 270 pixel of STEM images recorded before (Figure 26a) and after (Figure 

26b) the focal series acquisition.  From these images it can be seen that the ultrastructure 

was mostly preserved after the 3D imaging.  The only visible change was a shift along 

the fold-like feature highlighted by the dotted line at arrow #1.  Also the positions of gold 

nanoparticles were conserved, as shown, for example, at the arrow #2.  Linescans were 

taken along the dashed lines in Figure 26a and b, and their profiles compared in Figure 

26c.  The linescan analysis demonstrates a good structural stability as indicated by the 

overlap of the two profiles.  The nanoparticle at arrow #2 is also visible in the linescans.  

The region with less stability clearly shows at arrow #1.  Since the less stable region at 

arrow #1 was surrounded by overlapping regions in the linescan, we suggest that the 

sample distortion was a movement of a cellular structure, possibly a membrane 

protrusion.  Further analysis of the images via linescans resulted in a mean ∆SN value of 

0.90 ± 0.03 (n = 21) in most section of the images Figure 26a and b, except for the region 

along the dashed line, where the mean ∆SN was 0.82 ± 0.09 (n=11).  The specimen thus 

remained mostly stable during the recording of a focal series with STEM. 
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Figure 26:  Sample stability during the recording of a STEM focal series of COS7 cells.  (a) STEM image 

recorded prior to the acquisition of the focal series.  The celluar structure is visible in grey.  The round 

spots indicate gold nanoparticles.  (b) Same region as shown in (a), images after the recording of the focal 

series.  The cumulative electron dose was 3.6·105 e-/nm2. (c) Intensity profiles of the linescan shown as 

dashed line in (a) and (b).  The arrows indicate the regions in the STEM images indicated by #1 and #2.  

The dotted line in (a) indicates a structural feature that underwent a shift as observed in the profile in (c) at 

arrow #1.   

 

Selected frames from the focal series are shown in Figure 27.  Initially, the 

nanoparticles appear blurred and out-of-focus.  However, as the image series progresses, 
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individual particles begin to come into focus, with the most particles in focus at an axial 

position between 272.5 nm and 422.5 nm.   

 

 

Figure 27:  Selected frames of STEM focal series.  The gold nanoparticles, visible as bright white dots, begin 

coming into focus in frames 272.5 to 422.5, after which they begin to move out-of-focus.  The cell structure is 

visible as grayish white material. 
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Figure 28a shows an image obtained from a projection of the focal series at the 

same coordinates as Figure 26.  The focal series was projected in axial direction on the 

lateral plane as the sum of the individual slices to obtain the image (using ImageJ).  This 

dataset was recorded in a cellular region close to the edge of a cell, where several 

filaments are visible.  A total of 26 gold nanoparticles can be distinguished as bright 

spots.  These are homogenously dispersed, as expected for the short period of 

incubation.
123

  Because 3D STEM is a wide field imaging methodology each image 

contains also out-of-focus information of the adjacent slices, and the axial resolution is 

limited.  To optimize the axial information in the 3D data set we have applied adaptive 

deconvolution 
59

.  To enhance the processing speed the first 100 and the last 100 images 

were removed from the focal series as these slices contained only out-of-focus 

information, beyond that which was necessary for deconvolution.  Figure 28b depicts a 

projection on the lateral plane of the deconvolved data at the same position as Figure 28a.  

The labels are visible with more contrast.  Some of the information of the ultrastructure 

was lost while the deconvolution functions optimal for objects with a strong contrast.   

The increase in axial resolution due to deconvolution was evaluated with axial 

linescans over nanoparticles, as exemplified in Figure 28c for nanoparticles #1 and #3 

(indicated in Figure 28b).  The average full width half maximum (FWHM) of the axial 

intensity peaks (signal intensity versus axial position) of 10 nanoparticles was 340 ± 75 

nm.  The deconvolution procedure reduced the noise and increased the axial resolution, 

as shown in Figure 28d.  After deconvolution, the average FWHM over the intensity 

peaks in the axial linescans of 10 nanoparticles was 99 ± 28 nm.  The precision at which 
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a position of a single nanoparticle can be determined is much higher than the resolution, 

as long as the nanoparticles are well separated.   

 

 

Figure 28:  STEM focal series of COS7 cells. The epidermal growth factor (EGF) receptor at the cellular 
surface with labeled with gold nanoparticles conjugated to EGF.  (a) Projection of the images of the focal 

series on the lateral plane, showing both the ultrastructure and the nanoparticles.  (b) The dataset was 

deconvolved to increase the axial resolution obtained on the nanoparticles.  The image resembles the 

projection of the focal series on the lateral plane.  (c) Axial profiles (intensity versus vertical position) over 

adjacent nanoparticles (#1 and #3) before deconvolution.  (d) The plot profiles of the same linescan after 

deconvolution.  (e) Histogram of the vertical locations of the gold nanoparticles with axial increments of 25 

nm.  The axial region that contained the largest number of gold nanoparticles was between 400 nm and 425 

nm.  Image contrast and brightness was adjusted to increase visibility of the gold nanoparticles. 
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The increase in the axial resolution after deconvolution can be observed in Figure 29.  

The out-of-focus signal is reduced, and the largest number of in-focus nanoparticles is 

contained within the frame corresponding to 422.5 nm. 

 

 

 

Figure 29:  The same image frames, as shown in Figure 27, after deconvolution.  The image contrast and brightness 

have been adjusted to highlight the positions of the gold nanoparticles.  The majority of the particles are in focus in 

frame 170.   The deconvolved images contain less noise than the non-deconvolved images.  
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The axial positions of the 26 gold nanoparticles were determined from the maximum in 

the axial intensity profile, see Table 3.   

 

Table 3:  Axial Locations of Gold Nanoparticles 

Particle 
Axial Position 

(nm) 
Particle 

Axial 

Position (nm) 
Particle 

Axial 

Position 

(nm) 

1 260 ± 2.5 11 385 ± 2.5 21 442.5 ± 2.5 

2 265 ± 2.5 12 392.5 ± 2.5 22 450 ± 2.5 

3 282.5 ± 2.5 13 395 ± 2.5 23 467.5 ± 2.5 

4 312.5 ± 2.5 14 400 ± 2.5 24 467.5 ± 2.5 

5 317.5 ± 2.5 15 405 ± 2.5 25 470 ± 2.5 

6 330 ± 2.5 16 407.5 ± 2.5 26 482.5 ± 2.5 

7 337.5 ± 2.5 17 415 ± 2.5 
  

8 350 ± 2.5 18 415 ± 2.5 
  

9 352.5 ± 2.5 19 422.5 ± 2.5 
  

10 357.5 ± 2.5 20 425 ± 2.5 
  

 

The precision was estimated to be ± 2.5 nm, which corresponded to the focal step size.  

The two labels, #1 and #3, shown in Figure 10d, were located at vertical positions of 260 

nm and 282 nm, respectively.  The positions of the gold nanoparticles range from 260 ± 

2.5 nm (label #1) to 482.5 ± 2.5 nm (label #26).  A histogram of the distribution of the 

axial locations (Figure 10e) shows that the largest number of nanoparticles is located at a 

depth of 400 - 425 nm.  The cells face towards the point of beam entry, and a smaller 

axial value resembles a vertical position closer to the surface of the SiN membrane.  Thus 

the smaller the axial position the farther the nanoparticle is relative to the SiN support.   

Thus we can conclude that the topography of the cell surface is inhomogeneous. 

A 3D dataset was also recorded at a thicker cellular region, near the nuclear 

envelope is shown in Figure 30.  This dataset was recorded with the following 
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Figure 30:  STEM focal series of a COS7 cell recorded in a thick cellular region at the edge of the nuclear envelope 
(indicated by dashed line).  (a) Projection of the focal series on the lateral plane.  (b) Projection of the deconvoled 

dataset.  A total of 9 gold nanoparticles is visible. 

microscope settings, N = 400 images, dz = 5 nm, and s = 4.6 nm (magnification of 100k).  

The total dose after pre-irradiation was 1.8×10
5
 e

-
/nm

2
. All images were used in the 

doconvolution. The mean delta SN was 0.91± 0.03 (n =25), indicating that also this 

cellular region was stable during the recording of the focal series.  Prior to deconvolution 

(a), the gold nanoparticles are not visible within the increased signal from the cellular 

material compared to imaging at the edge of the cell (Figure 28).  After deconvolution the 

nanoparticles were visible (Figure 30b). 

  

 

 

A total of 9 gold labels was observed, and their axial positions are shown in Table 4.  

Nanoparticles # 2 and #6 were separated by an axial distance of 730 nm.  Thus the 

cellular surface curved from the region near the nucleus towards the nuclear region 

causing its surface to rise by 730 nm.  The thickness of the cell thus must have been 

thicker than 730 nm.  Obtaining 3D information with nanometer precision from cellular 
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specimens of this thickness is very difficult with conventional TEM tomography, even 

with energy filtering.
6
 

 

Table 4:  Axial Locations of Gold Nanoparticles 

at the Nuclear Envelope 

Particle 
Axial Position 

(nm) 

1 1230 ± 5 

2 1335 ± 5 

3 760 ± 5 

4 800 ± 5 

5 645 ± 5 

6 605 ± 5 

7 650 ± 5 

8 665 ± 5 

9 790 ± 5 

 

We have successfully applied 3D STEM the imaging of whole-mount cellular 

samples, and detected the vertical locations of the labels with high precision (3 nm). In 

our sample we found the labels to be mainly at the cellular surface, but several labels 

were probably located just below the surface, or within membrane regions of high 

curvature. It is important to notice that the STEM detected electrons transmitted through 

the entire sample. It does not matter for the STEM if the labels are located at the surface, 

or within the cell, as long as the labels are not so deep in the sample that beam blurring 

prevents their imaging, which does not happen until at least depth of 2 µm depending on 

the density of the specimen.
39

   

An example of a STEM focal series of a control sample which was not coated 

with amorphous carbon is shown in Figure 31.  Although the control was imaged with an 
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electron dose of 1×10
5
 e

-
/nm

2
, more than threefold lower than the dose used to image the 

carbon coated samples, the cellular material was unstable during imaging.  The white 

arrows in Figure 31 highlight the regions where damage was sustained during the focal 

series. 

 

 

Figure 31:  Selected frames of a control sample which was not coated with carbon.  The arrows indicate regions in 

which the cellular material undergoes damage as the focal series progresses.  The total electron dose was of the 

focal series was 1×105 e-/nm2. 
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4.3.3  Axial Distribution of Labels 

 

An important question is what the cause of the variation in the axial positions of 

the gold nanoparticle labels; was this caused by (1) passive diffusion through the 

membrane (2) internalization of the EGF receptor or (3) vertical inhomogeneity of the 

cellular surface?  Diffusion of the nanoparticles through the membrane of cells is unlikely 

to occur in glutaraldehyde fixed cells without first permeabilizing them with a detergent, 

such as saponin or tritonX.
49

  Also, endocytosis of the EGF labeled gold nanoparticles is 

unlikely to occur during the five-minute incubation at room temperature.
63,123,143

  Thus 

the difference in axial position of the nanoparticles in Figure 28 is presumably due to the 

topography of the cellular membrane.  Because EGF is internalized via endocytosis of 

clathrin coated pits,
144

 one possibility is that some of the nanoparticles are localized 

within clathrin enriched buds, or invaginations within the cellular surface that occur 

during the first step of vesicle formation.  Although internalization of the EGF ligand-

receptor complex occurs within minutes of binding at 37ºC, the process of endocytosis is 

much slower at room temperature.
145,146

  Furthermore, clusters of gold nanoparticles, 

which form prior to vesicle formation, are absent, which suggests that the difference in 

axial height is not due to pit formation.
124,144,146,147

 

A second possibility is that the difference in axial height is due to ruffling of the 

cellular membrane.
148

  Ruffling is the formations of transient, fold-like protrusions of the 

membrane, particularly near the edge of the cell.  Stimulation of COS7 cells, as well as 

other cell lines, with EGF is well known to induce ruffling of the cellular membrane 1-2 

minutes after binding of EGF.
149-151

  The cellular ultrastructure observed in Figure 9 is 

similar to the long fold-like structure of membrane ruffles observed by others using 
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SEM.
148,150,152

  Two pairs of adjacent nanoparticles are located on such fold, for example, 

the structures:  #5 and # 21, and #2 and #19.  Interestingly, the individual nanoparticles 

that comprise each pair are separated by an axial distance greater than 100, despite their 

lateral proximity.  The difference in axial position of these nanoparticle pairs is likely due 

to the slope of the membrane ruffle on which they are bound.  Thus, we conclude that the 

difference in axial heights among the gold nanoparticles is a result of the surface 

topography of the membrane, specifically membrane ruffles, rather than internalization of 

the receptor ligand complex.  

The presence of membrane ruffling may also account for the localized instability 

of the sample described in Figure 28.  Because the ruffle structure protrudes out, away 

from the cellular surface, it is capable of being deflected by the electron beam.  Thus the 

shift in the linescan observed in Figure 28c may have resulted from a change in position, 

such as folding, of the membrane ruffle structure, while the main cellular body was 

stable.   

In Figure 30, two nanoparticles located on the nucleus, # 1 and #2, have an axial 

position relative to the remaining nanoparticles of 730 nm at most.  This vertical 

difference can be explained by the vertical protrusion of the nuclear envelope.  The 

vertical positions of nanoparticles near the nuclear envelope differ by a maximum of 185 

nm, which indicates a high degree of membrane surface roughness near and bending of 

the membrane towards the nucleus.    

 



 

96 
 

4.5  Conclusions 

A procedure was developed for stabilizing whole mount eukaryotic cell samples 

grown on SiN windows for imaging with STEM.  The key step was the coating of the 

critical point dried cells with amorphous carbon.  The stability of the samples was 

measured quantitatively by analyzing linescans obtained from TEM images.  The samples 

remained stable during the acquisition of a 3D focal series using aberration-corrected 

STEM with an electron dose of 3.610
5
 e

-
/nm

2
.  The 3D datasets highlighted different 

cellular regions containing gold nanoparticles tagging the EGF receptor.  The gold 

nanoparticles were resolved on the surface of the whole cell at a range of vertical 

positions, and an axial precision of  2.5 nm was achieved after deconvolution.  From 

analysis of the variation of the axial positions of the labels we concluded that the cellular 

surface was ruffled. 



 

 

CHAPTER V 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Imaging techniques which are capable of imaging individual proteins in their 

physiological environments are key to the development of our understanding cellular 

structure and function.  Conventional electron microscopy (EM), however it is limited to 

by sample thickness ( < 500 nm).  Thus thin sections (< 100 nm) are typically prepared 

from cells embedded in resin or ice, which can result in extensive changes to the native 

structure.
2,44

  In addition to sample preparation, labeling intracellular features using 

conventional immunogold labels, requires either-sectioning of the cell prior to labeling, 

or permeabolization of the membrane.  Thus, designing targeted molecular probes which 

can be internalized without disrupting the cell‘s structure is desirable.  One such strategy 

would be to utilize flexible polymeric nanoparticles that are interspersed with high-Z 

metal ions.  Due to their biomimetic qualities, these structures, such as dendrimers, have 

been shown to have enhanced membrane penetrability in comparison to metal 

nanoparticles,.
91,104,153-156

  Thus, they can be delivered into a living cells. 

Combining multiple imaging modalities in a single probe significantly increases 

the overall performance of the molecular probe.
75

  Thus, combining both fluorescent and 

electron dense moieties into a single biologically targeted nanoparticle would allow both 

real-time imaging, via light microscopy (LM), and high resolution via EM.  Chapter I 

introduced the use of lanthanide metal ions as both luminophore and EM contrast agents.  

Due to the low extinction coefficient of europium, it was necessary to sensitize the ion by 



 

 

attaching an organic chromophore to the chelate scaffold.  Several coumarin sensitized 

europium chelates were synthesized and their fluorescence was characterized.  One such 

complex (III) 2,2',2''-(10-(coumarin-3-carbonyl)-1,4,7,10-tetraazacyclododecane-1,4,7-

triyl) triacetate exhibited a molar extinction at 8400 M
-1

cm
-1

, increased by 240% relative 

to our  previously published quinoline methyl antenna.
101

  Additionally, it was found that 

two antennas, 7 – methoxy - (4-bromomethyl) - coumarin and 4-bromomethyl acridine, 

showed potential as a two-photon active antennae for near infrared (NIR) excitation.  

Thus, when complexed with a NIR emitting lanthanide ion such as ytterbium or 

neodymium, we expect these compounds will both excite and emit in the NIR, allowing 

better penetration and signal for in vivo applications labeling.  As a proof of concept, the 

synthesis and characterization of a membrane permeable, metal-loaded dendrimer 

nanoparticle was presented.  This particle, a TSPO targeted, bimodal dendrimer 

containing an organic fluorophore for optical signal and gadolinium ions for EM contrast 

was shown to be internalized by cells expressing the receptor of interest.  Enhanced EM 

contrast was shown in cells labeled with this compound, both with, and without OsO4 

staining, relative to the contrast of controls.  Such lanthanide containing dendrimers-

could be utilized to label live cells for whole cell imaging with EM.  Furthermore, the 

affinity of OsO4 for PAMAM dendrimers suggests that biologically targeted PAMAM 

dendrimers themselves could be utilized as site specific contrast enhancement agents for 

OsO4 stained samples.  

Scanning transmission electron microscopy (STEM) enables electron dense (high-

Z) structures, such as nanoparticles, to be imaged within several micrometers of low-Z 

material, such as a whole cell, or a layer of liquid.  Chapter III demonstrates correlative 



 

 

light and electron microscopy imaging of quantum dots on a whole cells using wide field 

fluorescence microscopy followed by STEM.  Additionally, the cell was maintained in a 

native (liquid) environment during imaging by enclosing it within a vacuum isolated, 

microfluidic chamber.  STEM images of individual QDs on whole eukaryotic cells were 

correlated with the fluorescent images of the same sample.  Correlative liquid STEM 

requires no additional sample processing beyond that which is needed for fluorescent 

imaging.  Thus, it has two key advantages over state-of-the-art correlative LM and TEM, 

requiring thin sections, or thin frozen samples: (1) Artifacts introduced by dehydration, 

post-staining, freezing, or sectioning are avoided. (2) Because additional sample 

processing between imaging modalities is not required, fluorescence microscopy can be 

used to monitor tagged proteins in living cells to determine the desired time point of the 

fixation.  Although liquid STEM has so far been limited to either surface proteins or 

proteins that internalize via endocytosis,
63

 strategies for introducing nanoparticles into 

live cells, such as membrane penetrating peptides,
135

 or metal loaded dendrimers (such as 

those discussed in Chapter II), may be used to label intracellular proteins in the future. 

The spatial resolution of 3 nm demonstrated with liquid STEM is sufficient to 

discriminate nanoparticles differing in size, shape, and electron density for multi-label 

experiments to study the constituents of protein complexes within cells.   

The next objective was to extract three dimensional (3D) data from whole cells 

using EM, which is desirable for elucidating the arrangement of protein assemblies.  The 

3D distributions of tagged proteins on whole cells were obtained utilizing STEM as 

shown in Chapter IV.  Whole COS7 fibroblast cells were imaged and remained stable 

during the acquisition of a 3D focal series using an aberration-corrected STEM which 



 

 

resulted in an axial precision of   3 nm deconvolution. From analysis of the variation of 

the axial positions of the labels features of the cellular surface, such as membrane ruffling 

were identified, highlighting the potential of this technique to identify structural features 

in addition to localizing positions of individual proteins. 

 Table 5 summarizes the imaging requirements that are met by both liquid 

STEM and 3D focal series STEM.   

 

* Indicates feasible, but not demonstrated 

 

Although seven of the eight requirements are obtained with either technique, dynamic 

processes cannot be observed in real time using STEM because the electron beam 

initiates rapid cell death.
157

 However, this limitation is mediated when combining whole 

cell STEM with light microscopy for correlative imaging.  Dynamic cellular processes 

can be observed initially with light microscopy, following which high resolution 

―snapshots‖ can be recorded at the same position using liquid or 3D focal series STEM.  

 

Table 5:  Summary of Attained Imaging Requirements 

Requirements Met Liquid STEM 3D Focal Series

Native State Conditions P P*
3D P* P

Resolve Protein Position P P

Whole Assemblies P P

Time Resolved

Intracellular P P

Reproducible P P

Speed P P



 

 

The development of high-Z, membrane permeable labels, such as the lanthanide chelate 

imaging agents discussed in Chapter II, is expected to further increase the utility these 

EM techniques.  Additionally, the observed affinity of OsO4 for PAMAM dendrimers 

offers a second labeling strategy that omits the need to chelate high-Z ions.  Such an 

approach could utilize biologically targeted PAMAM dendrimers to provide site-specific 

contrast enhancement in specific regions after OsO4 staining.  Because changes in the 

cellular quantities of many proteins act as identifying markers for a number of disease 

states, such as cancer 
158,159

and Alzheimer‘s disease
108

, accurate quantification of the 

concentration and spatial distributions of these markers is important in both diagnostic 

and therapeutic monitoring. For instance, the TSPO targeted PAMAM dendrimer, 

discussed in Section II of Chapter II, could be employed to enhance the visibility of the 

mitochondria for both liquid and 3D focal series STEM.  The contrast of the 

mitochondria would be preferentially enhanced after osmium staining, thus enabling 

changes in TSPO expression to be more easily identified.  

The results presented in this dissertation demonstrate that utilizing STEM enables 

whole cells to be imaged under both dry and wet conditions; thus minimizing structural 

and environmental disruption of the native state of cellular proteins. 



 

 

APPENDIX A 

 

WHOLE-CELL ANALYSIS OF THE EFFECT OF CHOLESTEROL ON LOW 

DENSITY LIPOPROTEIN - GOLD NANOPARTICLE UPTAKE IN MACROPHAGES 

BY STEM TOMOGRAPHY AND 3D STEM:  PRELIMINARY RESULTS 

 

This appendix is adapted from the abstract submitted to the 2011 Microscopy and Microanalysis Meeting 

entitled ―Whole-Cell Analysis of the Effect of Cholesterol on LDL-Gold Nanoparticles Uptake in 

Macrophages by STEM Tomography‖ by J.P. Baudoin, M.J. Dukes, W.G. Jerome, and N. de Jonge. 

 

A.1  Introduction 

Macrophage cholesterol accumulation is considered a critical process in the 

development of atherosclerotic plaques, the cause of most heart attacks and strokes.  Low 

density lipoprotein (LDL), the main carrier of blood cholesterol, enters blood vessels 

where monocyte-derived  macrophages take it up, converting macrophages into so-called 

foam cells.
160

  Most of the studies about cholesterol accumulation by macrophages use 

LDL-gold nanoparticle uptake to monitor the amount of LDL taken up by the cells.  

Semi-thin sections provide an elegant way to look by conventional transmission electron 

microscopy (TEM) at the localization of LDL-gold nanoparticles along the endocytic 

pathway and to quantify them.
161

  But such quantifications are time consuming and an 

accurate quantification of LDL-gold uptake at the whole cell level is still missing.  Tilt-

series TEM is the traditional methodology to resolve unique parts of the three 

dimensional (3D) cellular ultra-structure.
115

  A cubic volume is reconstructed from 

projections obtained by mechanically tilting the sample stage. The resolution of the 

reconstruction is in the range of 1–20 nm.
114

  A new development in 3D electron 



 

 

microscopy (EM) is the use of scanning transmission electron microscopy (STEM), 

which can detect high atomic number elements inside an embedding medium of a low 

atomic number.
58-60,137

 

In this study we are utilizing an approach combining the advantages of tilt-series 

STEM and focal-series STEM to image gold-nanoparticles within the 3D context of 

whole cells.  We applied this new methodology to quantify the effect of cholesterol on 

LDL-gold nanoparticles uptake by macrophages. 

 

A.3  Preliminary Results 

The LDL-gold was prepared and purified following standard literature 

procedures.
162,163

.  The final product was negative stained with and imaged with TEM to 

verify adsorption of the lipoprotein to the surface of the gold nanoparticle (Figure 32).   

 

 

Figure 32:  TEM image of negative stained LDL-gold 

 



 

 

THP1 monocytes differentiated as macrophages were grown for 6 days directly 

on silicon microchips supporting thin silicon nitride (SiN) windows and then loaded with 

10 nm LDL-gold for 1 day (5 µM).
164

  After two rinses with PBS, cells were fixed with a 

mixture of Glutaraldehyde 2,5% in cacodaylate 0,1M/CaCl20,005% buffer for 1 hour, 

post-fixed with OsO4 1% for 1 hour, ethanol dehydrated, air dried and finally coated with 

50nm of carbon. The obtained data describes the localization and quantification of gold-

nanoparticles inside whole-cells with a nanometer resolution. 

The samples were first inspected by TEM at 120 KeV (CM12, FEI) to 

characterize at the whole-cell level the nanoparticles internalization pattern  (Figure 33)..   

 

 

Figure 33:  TEM images of low density lipoprotein (LDL)-gold nanoparticles contained in macrophage cell 

lysosomes.  (a). TEM view of a whole macrophage containing low density lipoprotein (LDL)-gold 

nanoparticle (n = nucleus).  (b) Close up of the the area indicated by the dashed box from (a) depicting 

nanoparticles (arrow), likely localized within in a vesicle. 

 

To obtain 3D information while optimizing for reduced damage we recorded a 

tilt-series with minimal acquisitions/angle range using a 200 KeV STEM (CM200, FEI) 



 

 

(Figure 34a).  The tilt-series reconstruction was processed with the Etomo/3Dmod 

software, (Figure 34b).
165

  

 

 

Figure 34:  Scanning transmission electron microscopy (STEM) images of low density lipoprotein (LDL)-

gold contained in macrophage vesicles.  (a) STEM view of low density lipoprotein (LDL)-gold 

nanoparticles in the peri-nuclear region of a macrophage.  (b). XYZ view of a 3D tomogram depicting 

single gold-nanoparticles (arrow). n = nucleus. 

 

A.4  Preliminary Conclusions and Future Directions 

As a second 3D approach focal series using aberration corrected STEM  was also 

recorded using  200 KeV (JEOL 2200 FS).  These results are currently undergoing 

deconvolution, after which they will be compared  with the results obtained with tilt-

series STEM.  We expect that combining the results obtained by both 3D approaches will 

provide an improved methodology for whole cell analysis by electron microscopy.
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APPENDIX B 

 

SILICON NITRIDE WINDOWS SAMPLE SUPPORTS FOR ELECTRON 

MICROSCOPY OF CELLS 

 

This appendix is adapted from ―Silicon Nitride Windows for Electron Microscopy of Cells‖ by Elisabeth 

A. Ring, Diana B. Peckys, Madeline J. Dukes, Jean-Pierre Baudoin, and Niels de Jonge, it is currently in 

press by The Journal of Microscopy. 

 

B.1  Introduction 

Transmission electron microscopy (TEM) has traditionally been used to study the 

ultrastructure of cells via the preparation of conventional thin sections, where a cellular 

sample is fixed, stained, embedded in plastic resin, and sliced.
2
  Cells can also be 

prepared into amorphous ice via high-pressure freezing and cryo-sectioning,
54,115

 

although the involved protocols are rather complex.  For many questions in cell biology it 

is useful to study samples containing whole cells with both light microscopy (LM) and 

TEM, which can be accomplished by growing cells directly on 3 mm support grids with 

carbon or formvar thin films.
53

  However, these thin films are typically difficult to handle 

with cell culture procedures.  In recent years, semiconductor-manufacturing processes 

have resulted in a new type of support film for TEM: thin silicon nitride (SiN) 

membranes.
166,167

  These films are highly homogeneous in thickness, extremely robust, 

and are biocompatible, meaning that cells can be cultured directly on them.  In addition, 

SiN windows can be used as separation windows for vacuum chambers, such that cells in 

liquid can be studied with electron microscopy (EM).
63,168

  The use of microchips as 

support for cellular samples
169

 is especially beneficial for correlative LM and EM, 
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wherein lower-resolution images are obtained via LM, and EM is used to ―zoom in‖ on a 

section of interest with nanometer resolution.
170

 

Here, we describe the design and fabrication of the microchips, and details of how 

to prepare biological samples to be imaged on them, including specific labeling with 

nanoparticles, and drying procedures for use with TEM.  We provide examples of images 

of whole eukaryotic cells, obtained using LM, TEM, scanning TEM (STEM), and liquid 

STEM.  In all examples, the cells were prepared directly on the microchips.  We also 

discuss correlative approaches.  This paper serves as a detailed guide for those interested 

in using silicon microchips with SiN windows as support for cellular samples. 

 

B.2  Microchips 

 

B.2.1  Design and testing 

The microchips (manufactured by Protochips Inc, NC) were made of silicon with 

dimensions of 2.00 mm in height, 2.60 mm in length, and 0.30 mm in thickness, with a 

SiN window in the middle,
171

 see Figure 35. 
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Figure 35:  The design of the spacer microchip.  Both the top view and the side-view cross-section are 

shown.  All dimensions are in mm.  The microchip had a width of 2.00 mm, a length of 2.60 mm, and a 

thickness of 0.30 mm.  The tolerances were 10 m.  The black area in the middle indicates the 50 nm 
thick silicon nitride (SiN) window.  A patterned spacer is shown in dark grey, providing a flow channel 

over the SiN window. 

 

SiN is a commonly used material in micro electro mechanical systems (MEMS) 

fabrication.  To determine the optimum SiN window thickness, we deposited gold 

nanoparticles on the top and bottom of a 50 nm thick test window and imaged the 

window at high magnification in an aberration corrected 200 kV STEM (JEOL 2200 FS) 

in a previous study.
62

  Gold fringes with a spacing of 0.2 nm were visible for particles 

both at the bottom and at the top, thus we concluded that the 50 nm thick window had a 

negligible effect on the electron beam.  A 100 nm-thick test window was also imaged, but 

the image of the gold layer at the bottom of the window appeared blurred.  This is 

attributed to elastic scattering of the electron beam in the SiN material.  With TEM, the 

resolution would be slightly decreased due to inelastic scattering.  Using standard 

equations,
64

 it was calculated that the resolution in TEM would be limited to maximal 0.5 

nm for 50 nm-thick SiN, which is more than sufficient for many biological applications.  
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However, when higher resolution is required, for example, for single particle 

tomography, then thinner SiN windows, or carbon windows should be considered. 

Several sizes of the SiN window were tested.  Windows spanning several 

hundreds of micrometers allow a large field, but are prone to rupture during cell culture 

processing steps.  The rigidity of the windows is of particular importance for liquid EM, 

where two windows are placed in the vacuum of the electron microscope, and enclose a 

liquid at atmospheric pressure.  The windows have to withstand this pressure difference, 

and each window should not bulge by more than ~1 µm for liquid STEM imaging, as the 

bulging could render the sample too thick to image.  Furthermore, if the thickness 

throughout the sample varied due to bulging, then the image contrast would vary 

correspondingly, preventing high-resolution imaging.  To optimize window strength and 

field of view, we tested rectangular windows, since the degree of bulging is mainly 

determined by the short dimension.
171

  Two windows with dimensions of 50×200 µm
2
 

and 50 nm thickness were used to enclose a liquid at atmospheric pressure in the vacuum 

of the electron microscope.  The windows were found to bulge by about a micrometer 

each, which was deemed acceptable.  However, windows with dimensions of 70×200 

µm
2
 were found to bulge by about 2 µm each, which was considered too large to allow 

for high resolution imaging.
171

 

The dimensions were chosen such that at least one entire eukaryotic cell could be 

viewed within the window.  It is not uncommon for typical surface adhering eukaryotic 

cells to spread out to a length of 50 µm.
172

  Thus we aimed for a window with a width 

that was no smaller than 50 µm.  The length of 200 µm facilitated the imaging of multiple 

cells, which is desirable for biological experiments.  Because the width of the window is 
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the limiting dimension in terms of resistance to bulging and breaking, the length can be 

altered to fit the user‘s needs.  Additionally, for experiments that involve smaller objects, 

the width can be made smaller.  

For use in liquid EM, two microchips have to be positioned on top of each other.  

In this application it is crucial to ensure that the windows of both microchips are aligned 

as closely as possible, in order to maintain a sufficiently large field of view for the 

transmitted electron beam.  A precise overlap of the windows was obtained by 1) 

manufacturing microchips with precisely diced side edges, 2) defining the SiN windows 

in the center of each microchip, and 3) aligning the microchips in a slot in the specimen 

holder at their sides.   All dimensions of the microchips were manufactured within ±10 

µm precision.  An additional benefit was that the precision-made vertical sides of the 

microchips allowed for a much easier handling, compared to commercially available 

microchips.  Certain commercially available microchips have tapered sides, which seem 

to be difficult to secure with tweezers without damaging the sample at the top surface.  If 

a small field of view is acceptable, then a different solution to the alignment problem is to 

use one of the standard chips, and one chip where the window is oriented perpendicular 

to that of the standard model.  We have successfully used windows with widths as small 

as 20 µm.  Because these windows bulge less than 1 µm each, they can be used for TEM 

imaging of liquid specimens, which requires thinner samples and has stricter maximum 

bulging restrictions for the windows than liquid STEM.  

 

B.2.1.1  Design of spacer layer 

To prevent compression of the sample when the microchips are assembled into 

the microfluidic device, a spacer is needed between the microchips.  Two different types 
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of spacers were used.  Microspheres were placed between the microchips, with the 

advantage being that the gap between the microchips was customizable by choosing 

microspheres of the desired size.
63

  The microspheres were positioned at the four corners 

of one microchip (not at the window, otherwise rupture is likely to occur), which created 

a fluid path from the input tubing, through the microchips and surrounding area of the 

holder, and out through the output tubing.  This method accommodated fluid flow, but 

did not allow for control of the fluid path.  

In order to precisely control the rate at which fluid injected into the system 

reaches the sample, we created a system with a defined fluid path 
173

.  This consisted of a 

microchip with a patterned spacer layer (Figure 35) paired with a flat base microchip, 

providing a straight liquid flow channel with a width of 300 µm over the long side of the 

microchip.  The spacer wall width was 100 µm and its thickness was 6 µm. 

Cells were typically grown on base microchips, which have no spacer and provide 

a flat surface over the whole microchip, allowing the cells to spread and cover the most 

of this surface.  During assembly of the microfluidic chamber the spacer microchip was 

pressed, with the spacer layer facing down, onto the base microchip containing cells 

inside the slot in the specimen holder.  We patterned a void into the spacer to provide an 

area for excess cellular material.  The wall around the void included an opening at the 

side where excess cellular material could flow out.  Furthermore, the spacer did not 

extend to the end of the microchips, because in that case, the dicing process (see below) 

led to detachment of the spacer.  The specific design of the spacer layer can be varied by 

changing the photolithography mask, and the thickness can also be changed, if desired. 
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B.2.1.2  Fabrication 

The microchip fabrication procedure was based on standard methods,
174

 the main 

difference being the highly specified side tolerances, both for the smoothness of the sides, 

and also for the location of the window with respect to the sides.  A schematic of the 

fabrication of the microchips is shown in Figure 36a for the base microchip, while Figure 

36b describes the spacer microchip.  A 300 µm thick, double side polished, n-type 

Si(100) wafer was cleaned using the two step, standard cleaning procedure used in the 

semiconductor industry, which removes all organic and metal particles, and strips the 

microchips of their native oxide layer (Step i).
174

  A low-stress SiN layer was then 

deposited on both sides of the wafer via low-pressure chemical vapor deposition at 810ºC 

(Step ii).  The thickness of the SiN layer was confirmed using ellipsometry.  A layer of 

resist was applied, and the window was then defined by photolithography using a mask 

made of soda lime glass (Step iii).  The SiN layer was isotropically dry-etched (Step iv), 

which resulted in a second mask, allowing for an anisotropic KOH etch of the silicon 

(Step v).  This defined the ―front‖ and ―back‖ sides of the microchips – the front side 

containing the SiN window.   
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Figure 36:  Schematic of the workflow of the fabrication of (a) the base microchips and (b) the spacer 

microchips.  The arrows indicate lithographic exposure.  Drawings not to scale. 

 

The edges of the microchips were defined with a tolerance of ±10 µm with 

respect to the window position.  Grooves were etched in the silicon for guidance of the 

saw-blade.  The location of the grooves was patterned into the SiN on the front side of the 

wafer using CHF3 reactive ion beam etching (Step vii(a)).  The silicon was then 

anisotropically etched to create the groove (Step viii(a)).  Before the final step, a resist 

coating was applied to protect the microchips from damage and from collecting debris.  

Then, the microchips were placed with the backside down onto double-sided adhesive 

tape, and were separated by dicing along the grooves with a precision saw. 

For the microchips with the spacer layer, the front side of the microchip was 

coated in a layer of SU-8 photoresist, and the spacer pattern was defined by 
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photolithography (Step vi(b)).  The grooves were then established using the same 

methods as for the base microchips (Steps vii(b)-x(b)), and the microchips were coated 

with a protective resist layer, and then diced using the same method as the base 

microchips. 

 

B.2.1.3  Cleaning 

To allow for high resolution imaging, the SiN window surfaces must be free of 

any contamination, such as dust particles or material fragments.  Both types of 

contamination are easily collected during manufacturing (especially during dicing), and 

also during exposure outside of a clean room environment.  To keep the microchips clean 

until they were ready to be used, a resist coating was applied on the SiN during the 

fabrication process.  Once the microchips were ready to be used, the coating was 

removed by washing for 2 minutes in acetone followed by a 2 minute wash in ethanol, 

taking care that the acetone did not dry during the transfer of the microchips between the 

two liquids.  About 150 mL of each fluid was sufficient to clean up to 12 microchips at a 

time, and HPLC grade liquids were always used. Figure 37a shows a window covered in 

the resist coating and debris from manufacturing, as compared to a clean window, shown 

in Figure 37b.   
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Figure 37:  Photographs showing the difference between coated and clean microchips.  (a) A microchip 

with a protective resist coat, covered in debris is shown.  (b) The same microchip after washing with 

acetone, ethanol, and water. 

 

The windows were hydrophobic after stripping the resist, but were made 

hydrophilic for use with biological samples by plasma cleaning for several minutes, 

usually 3-7.  The hydrophilicity lasted for about a day.  After plasma cleaning, the 

microchips were washed with H2O (also HPLC grade) to remove any remainders of 

debris and salt.  Next, the microchips were coated with poly-L-lysine to extend the 

duration of their hydrophilicity and to promote cell adhesion.  This coating was 

accomplished by immersing the microchips in a solution of 0.01% poly-L-lysine for five 

minutes at room temperature.  Excess poly-L-lysine was removed by soaking the 

microchips three times briefly in fresh volumes of HPLC grade water.  The microchips 

were inspected under an optical microscope after each cleaning step.   

If polystyrene microspheres were used for a spacer layer, they needed to be 

applied on hydrophobic microchips, thus before plasma cleaning.  0.2 µl droplets 

containing the beads in aqueous solution were placed at the corners of a microchip.  If the 

droplets were applied after plasma cleaning, the entire microchip surface was wetted, and 



 

116 
 

the microspheres were not confined to the corners.  There should be ~5-20 beads in each 

droplet, depending on the size of microspheres used.   

 

B.3  Biological sample preparation 

After the microchips had been prepared for cell culture, they were transferred to a 

ninety-six well cell culture plate, as shown in Figure 38a, for biological experiments, 

including cell seeding, labeling, fixation, staining and dehydration.   

 

B.3.1  Cell seeding 

Each step of the cell seeding process was accomplished by transferring the 

microchips to a new well of the 96 well plate.  The microchips were transferred between 

wells using Teflon coated tweezers with flat tips, to minimize adherence of the 

microchips to the tweezers, and to prevent damage to the edges of the microchips.  They 

were held such that the microchips remained upright (flat-side up) at all times, and the 

tweezers did not come into contact with the surface of the microchip, except at the edges, 

as shown in Figure 38a.  If a microchip was placed into a well with a solution and then 

immediately (within ~10 seconds) placed into a new well, that was termed ―rinsing‖ 

whereas if a microchip was placed into a well and left for a longer amount of time, that 

was termed ―immersing‖ or ―incubating‖.   

The microchips were first immersed in ~150 µL of cell media per well.  Confluent 

cells were detached from a culture flask using a cell stripper solution such as trypsin, and 

then re-suspended in cell media.  We typically re-suspended cells grown in a 25 cm
3
 

culture flask in 5 mL of media, which we counted to be ~(1-3)×10
5
 cells/mL for COS7 

cells, as determined using a hemocytometer.   
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Figure 38:  Seeding cells onto microchips and labeling the cells.  (a) Microchips in a 96 well plate, where 

they will be seeded with cells, and the cells will be fixed.  Note the orientation of the tweezers gripping 

microchips by their sides and not their top surfaces.  Tweezers with a teflon coated flat tips are 

recommended.  (b) COS7 cells on windows after ~5 minutes of incubation.  (c) COS7 cells that have 
adhered to a window, after ~1 hour of incubation.  (d) Microchips in labeling device are inclined against a 

drop of labeling solution to reduce the amount of non-specifically bound label on the sample. 

 

A droplet of the cell suspension was added to each well containing a microchip 

and media.  After ~1 minute the microchips were inspected with an inverted light 

microscope to verify that cells had begun to adhere to the windows.  A microchip should 

have no more than ~1 adhered cell per 50 x 50 µm
2
 area.  The presence of more cells than 

this inhibits them from flattening against the window.  If after ~5 minutes, the desired 

amount of cells had not begun to adhere to the window, we added another droplet of the 

cell suspension.  If too many cells were present, we typically discarded the microchips, 

although the amount of cells could sometimes be sufficiently reduced by transferring the 
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chip into a new well with fresh media, which washed away cells that had not yet tightly 

adhered to the window surface.  

Once the desired amount of cells had begun adhering to the window, as seen in 

Figure 38b, the microchips were immersed in a new well with media and incubated for at 

least 4 hours at 37°C in 5% CO2.  For certain experiments, the cells were incubated in 

serum-free media for 2-12 hours prior to labeling, as this enhances the cells‘ ability to 

uptake certain protein-coupled labels.  An example of cells adhered to the surface is 

shown in Figure 38c. 

 

B.3.2  Cell labeling 

Just as fluorescent tags can be used to image specific proteins in LM, 

nanoparticles made of high atomic number materials, such as gold, can be used to image 

specific proteins in EM.  For example, it has been shown that epidermal growth factor 

(EGF) coupled to either quantum dots (QD) or gold nanoparticles could be used to label 

the EGF receptor.
63,169

 

To label the cells with protein-coupled labels, the following method was used, 

based on live cell labeling protocols developed by others.
175,176

  The microchips with 

adhered cells were first rinsed with Tyrode‘s buffer containing 1-3% Bovine Serum 

Albumen (BSA) to reduce non-specific label binding.  The chips were then placed in the 

labeling solution.  Incubating the microchips in an inclined position, with the cells facing 

downwards, was found to reduce unspecific binding with certain labels, such as larger 

diameter gold nanoparticles, probably by reducing the effect of gravity on the labels.  The 

rim of the 96 well plate wells are too high to allow for the maneuvering of the microchips 

into such a position, so we made simple labeling devices using lids of 0.2 mL 
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microcentrifuge tubes that were clipped from the tubes and fixed with tape onto a large 

glass microscope slide, as shown in Figure 38d.   

 

+  

Figure 39:  Detail of labeling using a droplet of labeling solution.  The droplet is placed at the edge of the 

well, such that it is in contrast with both the side and bottom of the well.  The SiN microchip is then leaned 

against the droplet with the cell side submerged.   

 

For the labeling, a droplet of gold nanoparticle label solution was deposited at the edge of 

such a plastic well, and a microchip was inclined against the droplet, as shown in Figure 

39.  The microchip was inclined against, rather than immersed in, the labeling solution in 

order to reduce background due to the gravitational settling of gold nanoparticles.  We 

have found that other labels, such as streptavidin-QDs or lipoprotein bound gold 

nanoparticles, undergo negligible settling.  In such instances the microchip may simply 

be immersed in a well containing labeling solution.  For long incubation times (longer 

than 5 minutes) these labeling devices were placed into a humid environment, such as a 

plastic box containing damp paper towels, to prevent evaporation of the labeling solution.  

The duration of incubation was defined by the protein-label pair used, and the purpose of 

the experiment.  For example, to examine membrane bound EGF with gold nanoparticles 
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(EGF-Au) before internalization occurs,
123

 the microchips were incubated for 5 - 10 

minutes at room temperature.
63

  After incubation with the label, the microchips were 

rinsed with Tyrode‘s buffer containing BSA to remove any unbound label, and further 

processed for fixation.   

 

B.2.3  Cell fixation and staining 

Fixation of biological samples can help to protect them from degradation during 

sample preparation and imaging.  Fixation of cells attached to SiN windows for EM is 

analogous to the fixation of fluorescence microscopy samples.  However, instead of the 

typical LM fixatives (i.e. paraformaldehyde, formalin), glutaraldehyde is used, as it is a 

stronger EM fixative.
13

 

For fixation, the microchips were immersed in a 4% glutaraldehyde solution in 

Phosphate Buffer Saline (PBS) at room temperature for at least 20 minutes.  After this 

step, the cells were rinsed three times in PBS to remove excess glutaraldehyde, followed 

by three five-minute immersions in 10% PBS in water to remove excess salt.  If the cells 

were to be air dried, an additional soaking step in pure water was performed. 

In some cases it was required to post-fix and stain the samples with osmium 

tetroxide, which aids fixation by increasing lipid stability, and also increases contrast 

during EM. 
3
  In that case, the microchips were first rinsed with cacodylate buffer (0.1M, 

pH 7.4) , and then immersed in a osmium tetroxide solution 1%  in cacodylate buffer for 

1 hour at 37 ºC with 5% CO2.  We later found that a much lower osmium tetroxide 

concentration of 0.001% provided sufficient contrast and sample stability; and also that 

the required time could be lower to 30 min, even at room temperature.  Because the 

sample consists of a monolayer of thin cells only, presumably the fixation conditions are 
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relaxed as compared to tissue samples.  The microchips were then rinsed for 5 minutes 

each, first 3 times in cacodylate buffer, and then 3 times in water times to remove salts.  

The samples were stored in the refrigerator overnight before use. 

 

B.3.4  Sample drying 

For standard EM imaging, the sample must first be dried before it can be imaged 

in the vacuum of the electron microscope.  Any water left in a sample will evaporate 

upon exposure to vacuum, resulting in structural damage and instability of the sample.
2
 

The sample can be air dried in principle (after removal of salts via soaking in pure 

water), but the high surface tension of water typically causes cellular damage that can be 

seen in high-resolution imaging.  Preferably, the water is replaced by ethanol, which 

causes less damage upon drying as it has a smaller surface tension than water.  A graded 

ethanol series was used for dehydration.  The samples were immersed in each of the 

following grades of ethanol for 5 minutes: 20%, 30%, 50%, 70%, 95%; and then 

immersed 3 times in 100% ethanol for 10 minutes each.  EM-grade ethanol, with a very 

low concentration of water, was used.  Samples were then air dried for 30 min, and used 

for imaging.  We have also used hexamethildisilazane (HMDS) 
8
 to replace the ethanol 

for a further reduction of the surface tension, and thus to reduce the  damaging occurring 

during drying.  Just after ethanol dehydration, microchips were immersed for 5 minutes 

in an ethanol/HMDS (1:2) mixture, then 2 times in pure HMDS, and allowed to air dry 

for 30 minutes.   

An alternate way to dry samples with minimal damage to the cellular structure is 

critical point drying.  Critical point drying is the process of drying a sample by raising the 
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temperature and pressure such that the sample transitions from the liquid phase to the gas 

phase above the critical point.  This eliminates damage deriving from the surface tension 

effects that occur if the sample crosses the phase boundary,
2
 and thus prevents collapse of 

the sample during dehydration.  For critical point drying the microchips were placed in 

the chamber of the critical point drier (CPD) after the graded ethanol dehydration, while 

remaining immersed in 100% ethanol.  Liquid CO2 was flushed through the chamber of 

the CPD for one minute, followed by a five-minute soak, a cycle that was repeated until 

the fluid exchange was complete.  The chamber was then heated under pressurized 

conditions to the critical point of CO2 (31.1 ºC, 1072 psi), and once this point was 

reached, the pressure was reduced over a period of 45 minutes.  After any drying method 

that was used, samples were always stored under desiccated conditions until imaging. 

B.3.5  Comparison to current techniques 

The sample preparation process using SiN windows shares some similarities to 

current TEM preparation procedures,
2,3

 but also offers several advantages.  Most 

conventional cell preparations involve fixation, post-staining, and drying of the samples.  

The cells are typically embedded in resin, such that they can be sliced into thin sections 

using an ultramicrotome.  The embedded sections are transferred to metal or carbon 

grids, typically by floating the sample on water above a grid, and then draining that 

water.  The inclusion of fluorescent tags can be used for correlative fluorescence 

microscopy and TEM of thin sections.
119,170

 

Whole-mount cell samples can be prepared on grids coated with a thin film such 

as carbon.
177

  Cells can be cultured, fixed, stained, and dried, for example, with critical-
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point drying.
2
  Alternatively, wet samples can be rapidly frozen for cryo TEM.  This type 

of sample preparation is often used in correlative microscopy.
53,74

 

The silicon microchips are compatible with both LM and EM and provide the 

most robust sample support.  All steps in the preparation process are compatible with 

current biological protocols and equipment, e.g., the microchips fit in the well of a 

standard 96 well plate, and live cells on the microchips can be imaged with LM.  When 

the size and the thickness of the SiN windows are chosen correctly, they do not break, or 

wrinkle, although the window area is limited.  The cells are cultured, labeled, fixed, 

stained, dried, and imaged directly on the microchip.  In order to visualize labels, the 

samples can be easily air-dried, or critical-point drying can be used.  We have shown that 

the microchips can be used to image fixed cells in a liquid environment,
63

 which is not 

possible when using grids.  We have not tested if cryo samples can be prepared, but this 

should be possible in principle. 

 

B.4  Microscopy 

The cells prepared on microchips accommodate several different imaging 

modalities.  The cells can be imaged with LM (dry or wet), either placed in a standard 

dish, or in the liquid (S)TEM specimen holder.  Dry microchips can be examined with 

both STEM and TEM.  Eukaryotic cells in the microfluidic chamber can be imaged with 

liquid STEM.  Figure 40 summarizes the possible imaging modalities, of which examples 

are provided in the following section. 
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Figure 40:  Schematics showing different ways microchips can be used for imaging.  (a) The microchip can 

be imaged in liquid in a standard dish with LM.  (b) Two microchips enclosing a sample in liquid can be 

imaged with LM.  (c) A dry sample on a microchip can be imaged with transmission electron microscopy 

(TEM), or the scanning TEM (STEM).  (d) Two microchips enclosing a cell in liquid can be imaged with 
STEM; thin samples can be imaged in liquid TEM as well.  Drawings not to scale. 

 

B.4.1  Light microscopy 

For LM imaging, the microchip with the cellular sample can simply be inverted 

onto a glass bottom culture dish containing saline water, and imaged in an inverted LM, 

following typical LM protocols, as shown in Figure 40a.  A fluorescence image of QD 

labeled EGF receptors on COS7 cells in 10% PBS in water buffer is shown in     

Figure 41a.
169
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Figure 41:  Examples of micrographs of cellular samples on microchips obtained with different microscopy 

modalities.  (a) Fluorescence image showing epidermal growth factor (EGF)-quantum dot (QD) labeled 

COS7 fibroblast cells in saline water.  (b) TEM image of EGF-Au nanoparticles in a vesicle in a fixed and 

dried COS7 cell.  (c) Liquid STEM image recorded at the location of the arrow in (a).  Individual QDs are 

visible on a background of biological material.  (d) Dry STEM image of EGF-QD labels on the edge of a 

COS7 cell. 

 

The sample was incubated with labeling solution for 5 minutes, and then fixed with 

glutaraldehyde, such that the E GF-QDs remained on the cell membrane.
63,123

  The 

cellular surface is covered with bright spots.  Possibly, activated EGF receptors at the cell 

membrane were in the process of forming clusters and coated pits at the onset of 

endocytosis.  Additional fluorescence is visible in the nuclear region, presumably 

autofluorescence of the fixative.  The image in Figure 40a was recorded using a widefield 

microscope (TE300, Nikon), with a 40X oil immersion objective, equipped with a far-red 

bandpass exitation filter (hq615/40 X) and a far-red emission filter set (hq710/100 m).  
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The exposure time was 5 seconds.  To reduce the autofluorescence of the glutaraldehyde 

fixative the samples where illuminated with the light source of the microscope for several 

minutes.  The brightness and contrast of all images were optimized for contrast and 

brightness using ImageJ software (NIH). 

The sample can also be assembled in a microfluidic chamber in the tip of the 

liquid (S)TEM holder, and the holder can be positioned on a microscope stage to study 

the sample with LM, as illustrated in Figure 41b.  The best microscopy results were 

obtained with a water immersion objective (data not shown).  The space between the lens 

and the lower window was filled with water.  Water immersion objectives allow working 

distances of several mm for a large numerical aperture (NA) values (typically NA = 1).  

A dry objective (with a lower NA than the water immersion objective) was also used, 

leaving an air gap between the lens and the window.  It turned out to be impractical to use 

an oil immersion objective, because it was difficult to 1) ensure that the gap was entirely 

filled with oil, and 2) remove the oil from the microchips and specimen holder for 

subsequent liquid STEM.  

 

B.4.2  Transmission electron microscopy 

Dried samples can be viewed with standard TEM and STEM.  The imaging setup 

for TEM, as well as for (dry) STEM imaging is shown schematically in Figure 41c.  

Figure 41b shows an example of TEM of an EGF-Au labeled COS7 cell.  The sample 

was incubated with the labeling solution for 10 minutes, and then with Tyrode‘s Buffer 

for 10 minutes more.  After fixation, it was post-fixed with osmium tetroxide, and dried 

using a graded ethanol series/HMDS drying method.  The EGF coupled nanoparticles are 

visible, concentrated in a large vesicle located near a filipodium, consistent with the idea 
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that filipodia may be found in proximity of receptors like the EGF receptor.
178

  This 

image was taken on a TEM (CM12, Philips) operating at 120 kV equipped with a 2k X 

2k CCD camera.  The microchip was placed in the TEM specimen holder with the cells 

facing downward; thus the SiN window did not interfere with the electron beam between 

the specimen and the projection system.   

 

B.4.3  Scanning transmission electron microscopy 

One of the main advantages of these microchips is the ability to assemble cellular 

samples in buffer solution into a microfluidic chamber placed in a specimen holder for 

liquid STEM.
63,169

  The specimen holder accommodates liquid flow in the specimen 

region,
173

 such that the microfluidic chamber is entirely filled with liquid even when 

placed in the vacuum of the electron microscope, and this system opens the possibility of 

live-cell experiments.  We have previously demonstrated nanometer resolution on gold 

nanoparticles and QDs used to tag EGF on whole fixed eukaryotic cells (COS7) in their 

native liquid state.  A schematic of the imaging setup is shown in Figure 40d. 

Liquid STEM is particularly useful in correlation with LM.  Cells can be 

maintained in liquid in the microfluidic chamber and imaged with LM to provide 

overview images of the cells.  Cellular regions can then be imaged at high resolution with 

liquid STEM, zooming-in on regions of interest with nanoscale resolution.  If bi-modal 

labels are used, LM can reveal the locations of regions of tagged proteins with respect to 

the cellular structure, while liquid STEM provides information of the distribution of the 

labels at the level of individual proteins.  We have for example, imaged the same cell of 

which the fluorescence image is shown in Figure 41a, with liquid STEM.  Figure 41c 

reveals the locations of individual QDs on a background of signal from the biological 
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material (the resolution obtained on the cellular material is much lower than that obtained 

on the labels, because the contrast mechanism of STEM depends on the atomic number(s) 

of the material(s) in the sample).  The QDs are densely packed, which suggest that the 

EGF receptor had begun to concentrate together at the cellular surface, which is a step 

preceding the formation of endocytotic pits.
146

  Thus, where we observed a bright spot in 

the LM image, we found a high density of QDs in the liquid STEM image.  We did not 

find QDs in regions outside of the cell.  Fig. 6c was recorded with a 200 kV STEM 

(CM200, FEI), a pixel-dwell time of 20 µs, 1024×1024 pixels, a probe current of 0.68 

nA, an electron probe semi-angle of 11 mrad, an annular dark field detector semi-angle of 

70 mrad, a pixel size of 1.6 nm, and a magnification of 80,000.  The noise in the mage 

was reduced by using a convolution filter (in ImageJ) with a kernel of (1, 1, 1; 1, 3, 1; 1, 

1, 1).  In Figure 41a and c we assembled the microfluidic chamber after LM, but we have 

also successfully tested LM and subsequent liquid STEM of cells already in the 

microfluidic chamber.  In that case, the amount of time needed for the transfer between 

the two microscopy modalities can be as short as a minute, mainly set by the vacuum 

pumping time, and this time determines the temporal correlation.  Shorter times can be 

obtained using integrated LM and (S)TEM.
179

  For samples thinner than about 1 µm 

liquid samples can also be viewed with TEM 
180

. 

The microchips can also be used for imaging dried samples in the STEM, as 

shown schematically in Figure 40c.  An example of an image of a dried STEM sample is 

shown in Figure 41d.  The sample was prepared in the same way as that shown in Figure 

41a and c, (i.e., used EGF-QDs), and then dehydrated using a graded ethanol series, and 

air-dried.  Individual EGF-QDs are visible along the edge of a dried COS7 cell.  In this 
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case, the cellular ultrastructure is visible with a much better contrast and resolution than 

in the case of liquid STEM, since the contrast is now obtained against a background of 

the SiN window only, instead of against a column of liquid as in liquid STEM.  Figure 

40d was recorded at the same microscope settings as Figure 40c, but with a magnification 

of 48,000 and a pixel size of 2.7 nm.  The microchip was placed in a modified single-tilt 

specimen holder that had a 0.2 mm deeper sample slot.  The microchip was positioned 

with the cell side facing upwards, such that the STEM probe was unperturbed by the SiN 

window, and the sample was imaged at the highest possible resolution.   

An important benefit of using SiN membranes for EM imaging is their versatility.  

Typically, biological sample preparation techniques are chosen based on the type of 

imaging modality desired, and the possibility for using different or additional modalities 

may be limited based on the type of support chosen.  However, this is not a problem 

when microchips supports are used.  As illustrated in Figure 42, starting with the same 

basic cell culture steps, essentially any desired imaging modality may be used.   
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Figure 42:  Diagram illustrating the versatility of the silicon microchip support for whole mount cell 
samples for imaging with different modalities.  Cells are seeded onto a clean poly-L-lysine coated 

microchip, and grown and labeled (if needed) directly on the support.  Live cells can be imaged with LM.  

The cells can then be fixed, or frozen (freezing was not yet tested and this branch in the schematics is, 

therefore, indicated with a dashed line).  Fixed cells can undergo additional sample preparation steps for 

EM processing such as staining, dehydrating and evaporative coating, as needed.  This sample preparation 

system permits multiple samples to be prepared under the same conditions, and efficiently processed for 

cryo EM, liquid STEM, TEM, and dry STEM.  Thin biological samples can also be imaging with liquid 

TEM.  The cells can be imaged at different stages with LM enabling correlative imaging studies to be 

performed.  Drawings not to scale. 

 

Cells are grown and labeled directly on the microchips, and may be viewed in the light 

microscope at any point after this.  While sample freezing and cryo-EM have not yet been 

demonstrated, we expect that this should be possible.  Alternatively, the samples could be 

fixed and then imaged using both LM and STEM for samples in liquid, with no further 

preparation steps required.  If imaging the samples in liquid is not desired, the samples 
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could be prepared using any other standard (S)TEM sample preparation procedure, and 

be imaged in both light and electron microscopes.  The silicon microchips are compatible 

with all current biological protocols and equipment.  Thus, they can be easily 

incorporated into current practices, streamlining laboratory procedures.   

 

B.5  Conclusions  

Silicon microchips with thin electron transparent SiN windows provide robust 

supports for both LM and EM of whole eukaryotic cells in vacuum, or liquid.  These 

microchip supports are suitable for a range of imaging modalities including LM, TEM, 

and dry, and liquid STEM, without imposing the need for different preparation protocols, 

except for the drying step, if desired.  This minimizes sample processing.  When using 

liquid STEM, the sample preparation is similar to standard LM sample preparation using 

fixation.  Most importantly, the presented microchip sample support can be used for 

experimental series where samples are studied with different microscopy modalities in 

correlative approaches.  
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