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CHAPTER I 

 

INTRODUCTION 

 

Suicide is a major health problem in the United States. The latest statistics 

available on the Centers for Disease Control and Prevention (CDC) website have shown 

that a rate of 11.26 suicides out of every 100,000 population was recorded in 2007 and it 

was the highest since 1999. From 1991 to 2006, the suicide rate was consistently higher 

among males while among females, it has been gradually increasing from 2000 to 2006. 

According to 2007 data, suicide is the 11th leading cause of death in the United States 

and the number of suicides was twice that of homicides. More than 34,000 suicides were 

committed which is equivalent of 94 suicides per day [1]. Psychiatric disorders are 

prevalent among those who commit suicides. Shaffer et al. reported that more than 90% 

of the individuals who committed suicide were diagnosed with at least one psychiatric 

disorder [2]. Studies have also reported that depression, a typical psychiatric illness, is the 

most common antecedent to suicide [3, 4]. This close relationship explains the great 

amount of work conducted in eradicating depression because the hope is, by treating 

depression, suicide can be prevented. In essence, depression treatment is in fact suicide 

prevention. 

Preventing suicide has been the subject of extensive study by researchers, and a 

number of published works emphasize the role of clinicians in the task [5, 6]. The public 

expects clinicians to predict suicide attempts and to prevent suicide death from 

happening. However, this task is complicated and there is no guarantee that their 
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predictions will always be correct. Nevertheless, clinicians are responsible to make their 

best effort to predict and prevent suicide [7, 8].  

A common problem in predicting and preventing suicide is to determine the 

degree of suicidal risk in an individual patient. This process requires a considerable 

amount of commitment from the clinicians. They have to gather information about the 

clinical features of the patient, document this information, and then use it to formulate 

decisions on the patient’s suicidal risk and the plan for treatment. The information 

gathering process is laborious because clinicians have to maintain regular interaction with 

the patient to acquire as much and as current information as possible. All the relevant 

clinical information will be used to evaluate the degree of suicidal risk for that particular 

patient. Important information includes the history of the patient’s conditions, 

psychological testing records, self-report data, reports by other people, and also the 

current condition based on a clinical interview with the clinician. However, the decision 

made on the degree of suicidal risk of patients after all the information is acquired is still 

typically based on the experience and intuition of the clinician [9, 10, 11]. 

The procedure to assess the suicidal risk of patients is time-consuming and most 

of the time, clinicians cannot make drastic decisions in an instant. Important information 

needed to diagnose a patient may not always be available in urgent situations calling for 

immediate clinical judgment. Recent advancements have seen that computer-based 

diagnostic tools are able to provide additional data that can be useful to clinicians in 

making clinical judgment [9, 10, 11]. However, it is important to note that clinicians 

cannot use these computer-based diagnostic tools as a standalone instrument to make 

clinical judgment on patients. 
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The information about a patient’s risk of committing suicide is crucial in deciding 

whether or not the patient needs to be hospitalized. The risk assessment is also equally 

important in determining if a patient is safe to be discharged from hospital. Additional 

tools that can indicate suicidal risk can help to permit hospitalization of a patient whose 

risk might have been inaccurately diagnosed and to boost assessment accuracy before 

patient release. As a result, patients’ welfare is protected and the hospital image is 

safeguarded. Ultimately, suicide is more likely to be prevented [9, 11]. 

 One of the cues that can be used to help in making clinical decisions is a patient’s 

voice. The human voice is powerful as it can mirror the speaker’s physical, mental and 

emotional state. Studies have shown that non-content speech acoustics are able to reflect 

the level of a person’s psychological state [12]. Experienced clinicians have been using 

these vocal cues as symptoms in diagnosing abnormal behaviors or emotional conditions 

of patients [13]. Evidence has shown that changes in emotional state can also alter the 

speech production mechanism, namely the respiratory, phonatory and articulatory 

processes. These changes are then encoded into the acoustic signal that eventually can be 

heard. In short, vocalization reflects the many different features of the functioning 

neurophysiological structures of the human body [14]. 

Realizing the potential of the human voice in the clinical field, Drs. Stephen and 

Marilyn Silverman proposed the study of vocal properties in investigating suicidal 

conditions. The vocal properties of three different subject groups were studied. The 

sample for their study consisted of near term suicidal patients, major depressed patients, 

and non-depressed control subjects. Vocal features were extracted from the speech 

recordings and were analyzed to develop a classifier. The quality of a classifier is 
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determined by its differentiating ability, whether it can clearly separate between different 

subject groups [15]. Some of the vocal features that have been used in the non-content 

speech studies for determining suicidal states are mel-cepstral coefficients, power 

spectral density, formant frequency, vocal jitter, and glottal spectral slope [9, 10, 11, 15]. 

This thesis attempts to investigate some human vocal features to analyze their 

ability to distinguish between depressed female patients and high-risk suicidal female 

patients. The chosen vocal feature for our work is the power spectral density (PSD) of 

human speech. This paper is a continuation of Yingthawornsuk’s work [11] and others 

[12, 42, 9, 10, 43], where they have already analyzed the effectiveness of vocal features 

including the PSD in identifying high-risk suicidal patients from depressed patients.  

This thesis is organized as follows. Chapter 2 covers the background of the study 

starting with the physiology of the speech production process, followed by its working 

model. The background is capped with an explanation of how emotional arousal can 

affect the physiology of human speech thus enabling researchers to benefit from it. 

Chapter 3 elaborates on previous work done related to speech and emotion. 

Earlier studies investigate the correlation between human speech and emotions, 

particularly depression. Further research in this area resulted in the idea of identifying 

near-term high-risk suicidal patients by analyzing their vocal characteristics. The chapter 

ends with relaying the significance of this work in developing additional diagnostic tools 

to aid physicians in preventing suicides in order to protect human life. 

Chapter 4 explains the methodology implemented in acquiring and analyzing 

vocal features. The process of acquiring data starts with recording the interview session, 

followed by the pre-processing of the audio files to prepare the data for classification. 
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Types of classifications as well as statistical analysis methods being applied are also 

explained in this chapter. 

Results and analyses are presented in the final chapter, which is chapter 5. The 

percentages of correct classifications based on various statistical sampling methods are 

tabulated. These recorded outputs are analyzed to measure the effectiveness of the 

classifications. Ways to enhance classification results and possible future work are also 

discussed. The overall conclusion drawn from the study is finally stated at the end of this 

chapter. The paper concludes with a list of references and MATLAB code in the 

appendix. 
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CHAPTER II 

 

BACKGROUND 

 

2.1 The Physiology and the Process of Speech Production 

The speech waveform is an acoustic sound pressure wave, produced by 

autonomous movements of abdominal structures that form the human speech production 

system. Figure 1 illustrates the anatomical structures involved in the process of speech 

production. 

 

 

Figure 1: The anatomical structures involved in the speech production system [16]. 
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The vocal tract is between the vocal cords (or vocal folds) and the lips. It is 

composed of the pharynx (throat or pharyngeal cavity, which is the path from the 

esophagus to the mouth) and oral cavity. The cross-sectional area of the vocal tract varies 

depending on the positions of the velum, lips, jaw, and tongue. The nasal tract is the path 

between the velum and the nostrils. The nasal tract and the vocal tract are combined when 

the velum opens to produce nasal sounds of speech. Inevitably sometimes, in general, the 

term vocal tract represents these two tracts combined to accommodate nasal sounds and 

to simplify explanation. 

Figure 2 shows a simplified representation of the speech production mechanism. 

The three main paths that construct the speech production system are the pharyngeal 

cavity (or pharynx cavity), the nasal cavity, and the oral cavity. The speech production 

mechanism originates with the air inside the lungs from the normal breathing mechanism. 

First, the associated muscles apply force, thus pushing the air from the lungs through the 

trachea and bronchi. In Figure 2, this step is simplified as a piston-cylinder mechanism. 

The flow of air from the trachea heading up causes the tensed vocal cords within the 

larynx to vibrate. Because of the vibration, the air flow is split into quasi-periodic pulses 

for which the frequencies are adjusted when advancing through the pharyngeal cavity, the 

oral cavity and possibly the nasal cavity. Different sounds are produced depending on the 

positions of the articulators which include the jaw, velum, lips, tongue, and teeth [18].  

The vibration of the vocal cords produces voiced speech sounds such as the vowel 

sounds. On the other hand, the unvoiced sounds are produced when vocal cords are in a 

relaxed position and the air pushes its way through a tightened vocal tract causing a 

turbulent flow. Truncated transient sounds like “-ch” at the end of “peach” or “-ck” at the 
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end of “pack” have a unique mechanism which starts when pressure increases behind a 

total closure point anywhere in the vocal tract. Abrupt release of such pressure by 

opening the closure point produces these sounds [18]. 

 

 

Figure 2: Simplified representation of the functional components for speech production 

[17]. 

 

 

Vibration of the vocal cords produces quasi-periodic air pulses, known as the 

glottal airflow waveform which is shown in Figure 3. Two commonly accepted theories 

that explain how the phonation (the vibration of the vocal cords) is initiated are the 

myoelastic theory and the aerodynamic theory. Van den Berg [20] was noted as the 
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originator of these theories which he called “the myoelastic-aerodynamic theory” in his 

paper.  

 

 

Figure 3: Glottal flow waveform with the corresponding phases of vocal cords [19]. 

 

 

The myoelastic theory explains that when the sub-glottal (below glottis – the 

glottis is the vocal cords together with the space in-between the cords) air accumulates 

until enough pressure is acquired; it pushes the vocal cords causing them to open. The 

escape of sub-glottal air reduces the pressure, thus the muscle tension recoil causes the 

vocal cords to converge back again. Then, the sub-glottal air pressure accumulates again, 

and the whole cycle repeats. The aerodynamic theory, which is based on the Bernoulli 

law, states that when the air flows through the glottis and overcomes the muscle of the 

vocal cords, it creates a push-pull effect that induces an oscillation. The push effect 

occurs when the vocal cords are opening from a closed position and the pull effect 

happens when the vocal cords are converging back from the glottal opening position. The 

airflow is cut off during glottal closure but the sub-glottal air pressure will push the vocal 

cords apart and the airflow starts up again, thus repeating the cycle. Figure 4 shows the 

grayscale images of vocal cords in the open and closed positions [21]. 
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Figure 4: Vocal cords in closed position (left) and open position (right) [22]. 

 

 

2.2 The Source-Filter Model of Speech Production 

Speech production can be explained with a simple source-filter model. At the 

most primitive level, the source-filter model can take the form shown in Figure 5. 

 

Figure 5: A basic speech model [23]. 

 

An example to illustrate this model is when a person blows a saxophone. The air 

pressure from the mouth is the source and the saxophone itself is a filter. The sounds 

made are equivalent to speech in the speech model. Figure 6 shows a more refined model 

of speech production. The voiced speech and unvoiced speech are produced by the 

impulse train generator and the random noise generator respectively. The switch position 

points to the normalized excitation source depending on the characteristics of the voice 

(voice/unvoiced). 
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Figure 6: A more refined source-filter model tied to Linear Predictive Coding (from 

[18]). 

 

 

A gain factor (G) is measured from the speech signal and is used to scale the 

normalized excitation source, u(n). The scaled source then goes through the time-varying 

digital filter. The filter represents the vocal tract which has varying cross-sectional area 

throughout the tract. In the source-filter model, this varying size corresponds to the 

different values of the vocal tract parameters. The output of the digital filter is the speech 

signal, s(n). 

The use of the source-filter model to represent speech production is often linked 

with the linear predictive coding (LPC) model. LPC is a source-filter analysis-synthesis 

technique that estimates the generation of sound as an excitation source that goes through 

an all-pole resonant filter. The details of LPC are explained in many places such as in 

Rabiner’s textbooks [18, 24], Bradbury’s paper [25] and in Howitt’s Otolith homepage 
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[26]. Here, the basic idea behind the LPC model is described based on Rabiner’s textbook 

[18]. 

 ( )  ∑   (   )    ( )

 

   

                         (   ) 

 

With Figure 6 as reference, equation (2.1) shows that a speech sample at time n is 

equal to a linear combination of the previous p speech samples with an added excitation 

term, Gu(n), where u(n) is a normalized excitation and G is the excitation gain. The ai 

terms are assumed to be constant coefficients over the speech analysis frame. Speech 

signals vary with time, so this process is conducted on short chunks of the speech signal 

called frames. 30 to 50 frames per second is normally used as that is enough to give 

intelligible speech with good compression [26]. Converting the equation using the Z-

transform, equation (2.2) is obtained: 

 

 ( )  ∑   
  

 

   

 ( )    ( )                        (   ) 

 

Rearranging the terms from the equation above produces a transfer function H(z) 

shown in equation (2.3): 
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  ∑      
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                          (   ) 
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The transfer function H(z) represents the time-varying digital filter shown in 

Figure 6.  This is basically an all-pole, autoregressive (AR) model of speech production, 

where the vocal tract is represented by non-uniform cylindrical tubes concatenated 

together as shown in Figure 7. The terms ai are the filter coefficients that can be 

calculated using LPC analysis and p is the number of poles. Further in-depth analysis on 

LPC can be found in [18, 24, 25, 26]. 

 

2.3 The Effects of Emotion on the Physiological Structure of Speech Production 

The respiratory, phonatory, and articulatory movements involved in speech 

production are mainly controlled by the respiratory organs, the laryngeal muscles and the 

various articulators. The neocortex is the part of the brain that mostly controls specific 

motor commands producing the corresponding muscle movements leading to the desired 

speech sequence [31]. On the other hand, the effects of emotional arousal that can 

influence the speech production mechanism, even against the speaker’s will, are 

controlled mainly by the limbic system. Emotional arousal effects the speech production 

via the activation of the somatic nervous system and the autonomic nervous system. The 

latter consists of the sympathetic and parasympathetic nervous systems (SNS and PNS) 

[13, 14, 32]. Changes in the activation of SNS and PNS result in variations in blood 

pressure, heart rate, muscle tension, respiratory patterns, and motor coordination. All 

these variations eventually modify the respiratory, phonatory, and articulatory systems in 

speech production [33]. Figure 7 shows a simplified version of the emotional arousal 

effect on speech production. Clearly the physiology of speech production can be altered 

by changes in emotions. 
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The activation of SNS and PNS increases the possibility of changes happening in 

speech acoustic characteristics, and these changes can be captured by extracting some 

speech parameters. Modification in respiratory patterns can cause differences in sub-

glottal pressure and this, together with changes in muscle tension can alter the pattern of 

vocal cord vibrations and the articulation process. Besides that, disturbances in the 

coordination of muscular activity involved in producing speech can also result in 

variations which can be reflected by measurable speech parameters [34]. 

 

 

Figure 7: The emotional arousal effect on speech production [10]. 
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The respiratory, phonatory, and articulatory systems are handled by 

neuromuscular control that has to be tuned accordingly to ensure smooth vocal cord 

vibration and seamless adjustments between articulatory positions. Changes in respiratory 

muscles, coordination, and laryngeal musculature can alter the shape of glottal flow 

waveform. Disturbances in coordination and phonatory muscles could also lead to 

changes in fundamental frequency, irregularities in the successive glottal cycle durations 

(vocal jitter), and variations in intensity (shimmer). Changes in articulatory musculature 

such as increased muscle tone would cause tenseness in the structure of the vocal tract 

(such as vocal tract resonance walls) and articulators which would eventually affect the 

resulting frequency spectrum of the speech. These, together with increased tension in the 

laryngeal musculature, were suggested to cause higher energy in the upper harmonics. 

Lack of coordination in the articulatory structures on the other hand would decrease the 

precision of articulation thus producing relatively narrower formant ranges. This is due to 

the inability of articulators to reach their targets smoothly [10, 13, 35]. 

The validity of this research is supported by the known effects of emotional 

arousal on speech production physiology. Serious suicidal thoughts represent a major 

change in a human’s mental condition. This change includes a wide range of complex 

emotions and thus, the suicidal vocal patterns are expected to be different from non-

suicidal [10]. 
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CHAPTER III 

 

RELATED WORK AND SIGNIFICANCE 

 

3.1 Correlation between Speech and Depression 

The study of speech characteristics in psychiatry has been done by many 

researchers since the thirties. In 1938, Newman and Mather [36] explored the effect of a 

number of psychiatric disorders to the speech of patients. There were three groups of 

patients whose speech were studied: patients having classical depression, patients with 

states of dissatisfaction, self-pity, and gloom, and patients with manic syndromes. Two 

types of speech, spontaneous and non-spontaneous, were recorded by doing interview 

and reading sessions (whenever possible), the same way our study was done. There were 

many forms of speech characteristics that were studied such as articulatory movements, 

pitch range, and speech tempo. The result from this study verifies that human speech can 

be affected by psychiatric disorders. 

Hargreaves and Starkweather [37] used power spectrum analysis in their study as 

parameters to characterize the speech. The mood of eight patients with depression 

syndrome was tracked by observing the power spectrum. The result suggests that the 

power spectrum of the speech changes as the mood sways. The study also showed that 

power spectrum analysis is reliable in evaluating changes in mental and emotion states. 

There were a number of studies that also have used the distribution of the energy 

spectrum as one of the speech characterizing properties [13, 38, 37, 39, 40, 9]. These 

studies have shown that the overall energy is low in the speech of patients with 
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depressive state and high for patients whose depression has been treated. However, in 

terms of the energy level increase across the speech frequencies (after the depression has 

been treated), studies have shown less consistent results. Some studies [38, 39] reported 

that greater energy increase occurred in the low frequency bands (less than 500 Hz), 

while other studies [37, 36] said that it occurred in the higher formants. France et al. [9] 

observed greater energy in the higher frequency range for depressed patients, compared 

to healthy patients where the greater energy resides in lower frequency. 

Another study conducted by Tolkmitt et al. [39] revealed that the formant 

frequencies of speech for depressed patients before treatment were closer to neutral 

formant frequencies (500 Hz, 1500 Hz, and 2500 Hz) that are normally found when the 

vocal tract is in its usual resting position. This finding shows that before treatment, the 

patients’ speech was made with less articulatory effort, which was mirrored by their first 

format frequencies being closer to 500 Hz. After treatment, greater articulatory effort is 

present, which means that the vocal tract shape varies more frequently and significantly 

during speech. As a result, the formant frequencies reach the expected values. Tolkmitt’s 

study concurred with the suggestion that disturbance in muscular coordination of 

articulatory structures reduces articulatory precision producing narrower formant 

frequency ranges. This is due to the inability of the articulators to move and reach the 

appropriate positions needed to shape crisp vowel sounds [13, 35]. 

Moore et al. [41] selected prosody, formants, and glottal ratio/spectrum as 

classifying features in their study to discriminate between depressed and non-depressed 

subjects. The best separation was obtained with the application of glottal ratio/spectrum 

and formant bandwidths as discriminating features. The glottal ratio/spectrum analysis 
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resulted in 97.3% and 97.8% accuracy, while the formant bandwidths analysis produced 

98.7% and 98.9%, for male and female respectively in each analysis. 

 

3.2 Correlation between Speech and Suicidal Risk 

The study of speech in psychiatry has advanced a step further from the analysis of 

depression to the analysis of suicide. The first investigation of vocal correlates of suicidal 

risk was initiated by Drs. Stephen and Marilyn Silverman [12], who have been involved 

in the treatment of severely depressed patients as well as suicidal patients for more than 

forty years since the sixties. They obtained the recordings of suicide notes and interviews 

made shortly before the patients attempted suicide. The result of the study showed that 

speech characteristics can provide important information on immediate mental and 

emotional state. It was discovered that the vocal qualities of the depressed patients 

change significantly when they move into the near-term suicidal state. This proposes the 

idea of near-term suicidal patients having their own set of speech characteristics that are 

different from the depressed patients, as a result of the change in articulation and speech 

production mechanism. Apart from providing tape recordings for the earlier study 

database, the Silvermans also contributed financially. Their efforts made continuing 

research on this area possible. 

Campbell [42] continued the investigation by doing acoustical analysis to 

determine the suicidal risk of patients. She studied the statistical properties of the 

fundamental frequency distribution of 1 female patient and 2 male patients. The speech 

recordings were made at the time when these patients were considered suicidal and also 

at times when they were considered non-suicidal, so they were actually acting as their 
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own experimental and control subjects in this particular study. The statistical properties 

and variations in fundamental frequency distribution served as the discriminating features 

in this study and a result of 22.7% misclassification error was obtained. This promising 

result was the base for further statistical study of various other acoustical properties in 

speech. 

France [9] investigated multiple acoustical properties of speech in his study: 

fundamental frequency, amplitude modulation (AM), formants, and PSD. Different 

features were extracted and their discriminating abilities were analyzed. Those features 

are mean, variance, range, skewness, and kurtosis of fundamental frequencies and 

amplitude modulation, locations and bandwidths of the formants, as well as PSD ratio 

analysis similar to our study. The result of the male study has shown that AM and PSD 

ratio analysis were effective in discriminating suicidal subjects from major depressed 

subjects. On the other hand, normal subjects can be differentiated from major depressed 

subjects and high-risk suicidal subjects with formant and PSD features. 

Ozdas [10] divided her feature analysis into source domain analysis and filter 

domain analysis. The source domain method analyzed the effectiveness of vocal jitter and 

glottal flow spectrum in detecting depression and near-term high risk suicidal risk while 

the filter domain analysis investigates vocal tract characteristics including the mel-

frequency cepstral coeffients (MFCC). The source domain glottal flow spectrum analysis 

resulted in 75% correct classification between major depressed and near-term suicidal 

patients. On the other hand, in the MFCC analysis where Ozdas employed a Gaussian 

mixture model (GMM), 80% correct classification was obtained. Combining the source 
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domain and filter domain features resulted in tremendous improvement, where a total of 

90% correct classification was successfully reached. 

Keskinpala et al. [43] did a follow-up to Ozdas’ study where a new set of data 

with a controlled recording environment was investigated. The previous database 

included recordings from suicide notes left and interviews of patients who had actually 

attempted suicide. The new set of data was from clinical interviews where a practitioner 

would have greater control of the recording environment. During these interview 

sessions, usually both spontaneous (interview) and non-spontaneous speech (passage 

reading) were recorded. This is the type of data that has been used in future consequent 

studies including that in this paper. 

Yingthawornsuk [11] continued the PSD-based study where he also used features 

extracted from a new proposed method of GMM spectral modeling in his analysis. In the 

male reading speech PSD ratio only analysis, four 500 Hz PSD ratios were used to build 

the classifier and a result of 82% correct classification was obtained between depressed 

and high risk suicidal patients. When the PSD ratio features were combined with the 

features from the GMM model, 86% classification accuracy was obtained in depressed-

suicidal analysis for both male and female interview speech. Reading speech 

classification produced 88.50% and 90.33% for male and female subjects respectively. 

These accuracy rates obtained in the analysis of integrated features were obtained by the 

statistical cross validation approach. 
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3.3 Significance of the Paper 

Suicide is a major health problem that has caused a lot of deaths in Unites States 

as proven by the facts in the introduction section. In order to save lives and protect 

human beings, more effort is needed to prevent suicide. The conservative method to 

assess a patient’s suicidal risk is laborious and time-consuming, urging a need for 

additional tools that can aid and expedite the risk assessment process. Previous studies 

have shown that vocal characteristics can reflect the psychological state of patients and 

can be used as cues for determining suicidal risk. Therefore, studying the acoustic 

features extracted from the speech of depressed and suicidal patients could lead to a 

development of an objective diagnostic tool that can assess suicidal risk in a short amount 

of time. This tool can be used to aid physicians in making quick but precise clinical 

judgments on potentially suicidal patients.  

This study represents a small but significant effort in the development of the 

desired diagnostic tool. The main focus of this paper is the analysis of acoustic features 

extracted from the speech of patients to determine whether the high-risk suicidal patients 

can be distinguished from the depressed patients. 
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CHAPTER IV 

 

METHODOLOGY 

 

Our original database consisted of four different categories: depressed patients, 

near-term high-suicidal risk patients, patients who are remitted from depression, and 

patients who had suicide ideations. For simplification, these groups are called depressed, 

high-risk, remitted, and ideation respectively. Out of all groups, only the first two groups 

mentioned are used in the experiment, as we are focusing on the relationship between 

depressed and high-risk in this paper. From this point forward, whenever the database is 

mentioned, it excludes the ideation group and the remitted group.  

For each patient in every category, there are two types of speech samples: speech 

samples from an interview which represent spontaneous speech, and speech samples from 

a text-reading session which represent automatic speech. Usually both types of samples 

were obtained during the same meeting time between the patient and the interviewer. The 

interviewer would have some questions for the patient to answer and then, after the 

interview session is finished, the interviewer would ask if the patient could read a 

standardized text called “The Rainbow Passage” [27]. This passage is very widely used in 

language studies, articulation trainings, and many other parts of speech science. The 

reason for its popularity is that it is phonemically balanced (some say phonetically 

balanced), where the ratios of assorted phonemes mirror the ones in normal speech (A 

phoneme is the smallest unit of sound that forms meaningful variations between 

utterances [28]). The passage also contains all the usual sounds in spoken English. By 
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doing both interview and reading, different kinds of speech were able to be extracted and 

used in the risk analysis.  

The interview and the text-reading sessions were conducted in the Vanderbilt 

University Psychiatric Hospital with its medical personnel as interviewers. All sessions 

were conducted with consent from the patients where their identities and privacy were 

guaranteed to be protected. Some patients declined to do the reading session, which 

explains why the number of patients is different for the two sessions, as shown in Table 

1. These three different categories of patients were specified by experienced physicians, 

where the decision on a patient was made after a procedural analysis. 

 

Table 1: The sample size for each category of patients. 

 

Group 

 

Number of patients 

Interview Reading 

High-risk 12 10 

Depressed 20 18 

 

 

Because these data have been accumulated over time since 2003, the same audio 

acquisition system has been employed to ensure consistency and for convenience. The 

audio acquisition apparatus used consists of a Sony VAIO laptop, audio signal software 

and a microphone. The laptop specifications are as follows: Pentium IV 2GHz CPU, 512 

Mb memory, 60 GB hard drive, 20x CD/DVD read/write unit, 250 GB external hard 

drive, and Windows XP OS. The software used are the ProTools LE digital audio editor 
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and Digital Audio Mbox for audio signal acquisition, while the microphone used is the 

Audix SCX-one cartiod. Before the interview, an experienced practitioner will setup the 

audio acquisition apparatus properly to ensure clean recording. The patient was asked to 

count from one to a certain number (usually more than ten) at a normal speaking rate and 

while this happened, the practitioner adjusted the recording system accordingly to make 

sure that the recording volume was consistent with previous recordings.  

 

4.1 Data Pre-processing 

A 32-bit analog to digital converter with 44.1 kHz sampling rate was used to 

digitize the speech samples. The speech samples were then edited using Audacity, where 

the long pauses (silent period that is more than 0.5 seconds) and unwanted sounds such as 

the interviewer’s voice, the sound of coughing or sneezing, and background noise of 

people talking were removed from the raw audio. To avoid abrupt transitions between 

speech segments that can cause unwanted spurious frequency artifacts, the starting point 

and the ending point of each segmentation were done at zero crossings where no speech 

is present. Basically, the raw audio files were edited to eliminate unwanted sounds and 

silent periods, leaving a clean audio ready for further processing and analysis. The 

resulting audio data was then processed through a voiced-unvoiced detector that separates 

them into voiced data and unvoiced data. Only the voiced data was kept while the 

unvoiced data was removed. Then, the voiced data was detrended by subtracting the 

mean signal, and the output was divided into 20-second segments. The last segments that 

are less than 20-seconds were removed from the database. The whole process up to this 

point is called pre-processing [11]. 
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4.2 Extracting Features 

 The features chosen for this study are PSD ratios as its reliability has been shown 

in previous studies [9, 10, 11, 15]. A simple method of calculating the periodogram was 

used to estimate the PSD. For every patient there was a set of 20-second segments. The 

number of 20-second segments varies depending on the length of the original interview 

and reading session. The longer the interview and reading session, the more segments 

that patient would have.  

Each 20-second signal segment of a patient is divided into frames using 

MATLAB with 40-millisecond non-overlapping windows. As a result, 500 frames with 

size of 1764 points were obtained for each segment. Next, the PSD was calculated for all 

500 frames. For our purpose, we only kept the PSD region spanning from 0 to 2000 Hz 

(considered as the total PSD region) for analysis as this range was typically found to 

provide enough required acoustic information. Eight PSD bands based on frequency 

segments of the same size were extracted from the total PSD region, which means each 

band would cover a span of 250 Hz. Only the first seven bands were used from this point 

forward. The energy of each band and the total energy from 0 Hz to 2000 Hz were then 

calculated by finding the area under the curve. The mean energy for each band was 

calculated across 500 frames as well as the mean energy of the total PSD. After that, the 

energy ratio of each band to the total PSD was calculated by dividing each band’s mean 

energy with the mean energy of the total PSD. The final result is seven energy ratios 

denoted as PSD1, PSD2 until PSD7. The procedure to extract PSD features (modified 

based on [11]) is summarized as follows: 
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1) Extract only the voiced part of each patient’s speech sample by running the 

original audio through a voiced/unvoiced detection filter. 

 

2) Subtract the mean signal from the voiced speech signal to detrend it and 

separate the output signal into 20-second segments. 

 

3) Divide each 20-second segment into 500 frames with a 40-millisecond non-

overlapping window. 

 

4) Calculate the PSD of each frame with the periodogram method. 

 

5) Divide the PSD region within the frequency range of 0-2,000 Hz into eight 

equal 250 Hz bands and only use the first seven bands in the next steps. 

 

6) Calculate the energy (area under the PSD curve) in 0-2,000 Hz range and also 

the energy in each 250 Hz band. 

 

7) Calculate the energy ratio of each 250 Hz band to the total energy from 0 to 

2,000 Hz. 

 

8) Repeat step #4 to step #7 until all 40-msec frames of the signal have been 

analyzed. 

 

9) Calculate the mean energy ratio of each band across all 500 frames for the 

present 20-second segment and then store them for further analysis. 

 

10) Repeat from step #3 until all 20-second segments have been analyzed for the 

current patient. 

 

11) Repeat from step #1 for the next patient’s speech sample. 

 

Figure 8 shows the flowchart of PSD feature extraction from a speech sample. 
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Figure 8: Flowchart of PSD features extraction. 
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4.3 Statistical Analysis of Features 

 Seven acoustic features (PSD1 through PSD7) that have been acquired from each 

20-second segment of a patient were stored in a 1x7 row-vector. For each patient, there 

are a certain number of these row-vectors depending on the number of segments. These 

row-vectors are stacked according to their sequence of segments. The row-vector that 

was produced by the first 20-seconds segment would be at the top and the row-vector that 

was produced by the next segment would be under the first row-vector. The same process 

was done until the last row vector that was produced by the last 20-seconds segment, 

which would reside at the bottom of the stack. Doing this for all patients would produce a 

representative matrix NxM for each patient, where N is the number of vectors 

(representing the number of 20-seconds segments) for a particular patient, and M is the 

number of PSD ratios which in our case would be seven for all patients. The accumulated 

total number of vectors in our database is listed in Table 2. 

 

Table 2: The accumulated total number of vectors in database. 

 

    Number of vectors 

  Condition Depressed High-risk 

Speech       

Interview 

 

194 77 

Reading   42 26 

 

 

 The statistical classification method used in this study is Fisher’s Linear 

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) that are 

represented by the linear and quadratic classifier included in the MATLAB Statistics 
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Toolbox under the command “classify”. These two classifiers are derived from a 

Bayesian classifier and the only significant difference between them is that in QDA, the 

covariance is assumed to be different for every class, while the covariance is assumed to 

be the same for all classes in LDA. Generally in statistical data analysis, QDA allows 

more flexibility for the covariance matrix and as a result, it may fit the data better than 

LDA. However, since the covariance matrices are different (which means it has more 

than one covariance matrix), the number of parameters to estimate increases. In QDA, 

more classes means more covariance matrices and this might not be the best option in the 

case of many classes with a few sample points, because it can be computationally 

expensive and numerically unstable. In short, there is a trade-off between having a simple 

model (represented by LDA) and fitting the data well. Sometimes a simple model can 

produce the same result as a complicated model does. Even if the simple model does not 

fit as well, it might be better for the data because it is more robust, faster, and 

computationally cheaper [29]. 

 In this study, both LDA and QDA were used in order to see which one would give 

the best result. There were three statistical analysis approaches in the implementation of 

LDA and QDA in this study: cross-validation, jackknife, and the same test-train all-data 

method. Before diving into these approaches, the meaning of “training and testing” data 

should be explained as they are basic terminology in statistical classification.  

Training data is a set of data that are already labeled with their own corresponding 

classes (which means we know which data belongs to which class), that are being used in 

a classification process. On the other hand, testing data is an unlabeled set of data, which 

we want to classify based on their relationship with the given training data, in a 
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classification process. The relationship between these two types of data, whether they 

belong to the same class or not, is determined by the parameters describing that particular 

class. In order for the classifier to make the comparison, the number of describing 

parameters must be the same in the testing data and in the training data. In our database, 

all the data are pre-labeled with their class, whether they belong to depressed or high risk. 

Depending on the approach, we could “unlabel” some or all of these data, making them 

into a testing data set in the classification process. Based on the basic concepts and 

terminology explained, the different approaches are described next. 

 The same test-train all-data method, as the name suggests, is using the same data 

in the training data set and the testing data set. All available data are used in both testing 

and training in this method. Because of that, the result of the classification would be the 

same regardless of how many times it is being done. Since the same data is used for 

training and testing, the results are typically overly optimistic. 

 The cross validation method separates all data into desired proportions of testing 

and training data. For example, a researcher can pick 20% of all data as testing data, and 

the remaining 80% as the training data. These proportions of data are randomly sampled 

from all the available data each time the classification process is done and because of 

that, the result would be different for each iteration. To get proper results, the 

classification is done repeatedly in many iterations and the average result is obtained as 

the final output. 

 The jackknife method, also known as the hold-one-out method, can also be 

considered as a subset of the cross validation method but with a few differences. It uses 

only one sample as the testing data and the remaining samples as training data. In our 
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case, during each classification process, one patient was chosen for testing and the others 

would make up the training data. One by one each patient would be classified until there 

were no more patients to classify, and then the results are accumulated. Using the 

Jackknife method, the randomness associated with the cross validation method is not 

present. 

 All three resampling methods were implemented and coded with MATLAB. For 

the classification process (LDA and QDA), the built-in MATLAB function “classify” 

was used and the detailed documents regarding how it can be used can be found on the 

MathWorks website [30]. 
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CHAPTER V 

 

RESULTS AND ANALYSES 

 

5.1 Result Evaluation  

Yingthawornsuk [11] in his work analyzed three out of four bands of PSD ratios 

and he obtained a good classification result separating different groups of patients. He 

also concluded that the more bands used, the better the results. Continuing from his 

observation, this paper investigates the effect of using eight bands (i.e., eight PSD ratios) 

in discriminating between depressed and high-risk suicidal female patients. The 

spontaneous speech (Interview) and the automatic speech (reading) are analyzed 

separately. 

  

5.1.1 Classification of Spontaneous Speech 

 In our investigation of the spontaneous speech, our analysis is divided into two: 

classification including all available patients and classification by excluding some 

patients. The reasons for this division are explained later on in this chapter. 

 

5.1.1.1 Analysis of All Data 

 The mean and standard deviations of all PSD ratios are listed in Table 3. The 

general trend shows that the band mean decreases when going from depressed to high-

risk, except for PSD1 where the opposite happens, and PSD6 where the value stays the 

same. This shows that more energy from the overall spectrum resides within 250 Hz for 
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high-risk suicidal speech compared to depressed speech. Generally, above 250 Hz, the 

energy level of suicidal speech is low compared to depressed speech. 

 

Table 3: PSD ratio mean and standard deviation for high risk and depressed patients. 

 

  Depressed High-risk 

  Mean Std. Dev. Mean Std. Dev. 

PSD1 0.382 0.212 0.484 0.140 

PSD2 0.377 0.118 0.366 0.100 

PSD3 0.171 0.100 0.098 0.052 

PSD4 0.040 0.025 0.025 0.017 

PSD5 0.010 0.007 0.008 0.008 

PSD6 0.006 0.005 0.006 0.007 

PSD7 0.007 0.005 0.005 0.005 

 

  

Research on statistics have shown that, to obtain reliable results, the minimum 

number of subjects providing useful data for analysis should be five times the number of 

the variables being analyzed [44]. Using all seven PSD ratios would give better results 

but our sample size (i. e., 32, the total number of depressed and high-risk patients) is not 

big enough to be adequately analyzed by the seven variables. Using only one PSD ratio 

on the other hand would produce low accuracy results. We decided to analyze the results 

of not more than three bands combined together to compensate between dimension size 

and accuracy. We examined the performance for all possible 2 and 3 band combinations. 

The result of same test-train all data can serve as an indication to whether the 

cross validation and jackknife method may give good results. The assumption is that the 
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cross validation result and the jackknife result will give lower correct classification rate 

than the same test-train all data method because more known information about the data 

is present in the testing data set. However, the same test-train all data approach gives a 

measure of the separability of the data. Therefore the first classification analysis is done 

with the same test-train all data approach. However, the outcome is not as convincing as 

what we have expected. The top three results using linear and quadratic classifiers are 

shown in Table 4. Note that the “All” row is the overall correct classification rate, while 

the “High Risk” row denotes sensitivity, which is the ability of the classifier to correctly 

classify high-risk suicidal patients from depressed patients. The “Depressed” row is the 

specificity of the classification, which is the rate of correctly identifying depressed 

patients among all high-risk suicidal patients. 

 

 

Table 4: Percentage (%) of correct classifications between depressed and high-risk 

suicidal patients. 

 

Band PSD3, PSD5, PSD6 PSD1, PSD2, PSD6 PSD4, PSD6, PSD7 

Classifier Linear Quadratic Linear 

All 69.00 69.74 70.48 

High-risk 79.22 77.92 81.82 

Depressed 64.95 66.49 65.98 

 

 

We decided that there may be data outliers, and that we might achieve better 

results by eliminating some patients' data. These data outliers may have affected the 

result. One possible explanation is the existence of a subpopulation whose vocal qualities 
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do not reflect the actual condition diagnosed by physicians. For example, a patient who 

was diagnosed as high-risk suicidal by a physician but the way the patient speaks would 

always have closer resemblance to that of depressed patients, causing the patient to be 

misclassified. Another possibility is damage to some of the organs involved in speech 

production such as the vocal cords, where they cannot accurately reflect the emotional 

condition of the patient, leading to misclassification. However it is important to note that 

these are just possibilities and we do not have enough information to make any 

conclusion.  

In an effort to find the possible outliers, we proceed by investigating deeper into 

the best same-test all data result which is given by bands 4, 6, and 7. These bands gave 

the highest overall and high-risk classification percentage accuracy. Using the same 

bands, we run the cross validation a hundred times to obtain an error histogram. Our 

cross validation approach takes 3 patients randomly from each category (depressed and 

high-risk) and uses them as the testing data set. The proportions of testing and training 

data sets from the overall data are about 19% and 81% respectively. From this process, 

we recorded the number of times that a particular patient shows up in the testing data set 

and what is the misclassification error rate. These two parameters make the error 

histogram. The error histogram of high-risk patients that resulted from the cross 

validation of the PSD4, PSD6, and PSD7 combination is shown in Figure 9.   
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Figure 9: Error histogram of high-risk patients resulted from cross validation of PSD4, 

PSD6, and PSD7 combination (spontaneous speech). 

 

 

 As we can see clearly from the error histogram above, the two high-risk patients 

with the most misclassification errors are patient 4 and patient 12. The error histogram of 

depressed patients is not shown here because none of the patients has a clear distinction 

in terms of having significantly more errors than the others. Therefore we can only pick 

possible outliers from the high-risk patients based on the error histogram, and those are 

patient 4 and patient 12.  

 We proceeded in the effort of detecting possible outliers by using the jackknife 

method. The jackknife method is run for the same bands combination and the result was 

observed. Table 5 shows the number of total vectors, correctly classified vectors, and 

misclassified vectors as a result of jackknife classification. 
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Table 5: The number of total vectors, correctly classified vectors, and misclassified vectors as a 

result of jackknife classification. 

 

Depressed patients     

 
High-risk patients     

  Total Correct Wrong 

 
  Total Correct Wrong 

Patient 1 7 5 2 

 

Patient 1 5 5 0 

Patient 2 5 5 0 

 

Patient 2 6 4 2 

Patient 3 7 3 4 

 

Patient 3 11 11 0 

Patient 4 17 16 1 

 

Patient 4 6 0 6 

Patient 5 28 21 0 

 

Patient 5 4 4 0 

Patient 6 13 0 13 

 

Patient 6 5 2 3 

Patient 7 6 0 6 

 

Patient 7 2 2 0 

Patient 8 13 0 13 

 

Patient 8 5 5 0 

Patient 9 9 3 6 

 

Patient 9 5 5 0 

Patient 10 10 10 0 

 

Patient 10 4 4 0 

Patient 11 10 8 2 

 

Patient 11 6 6 0 

Patient 12 10 8 2 

 

Patient 12 18 3 15 

Patient 13 5 0 5 

     Patient 14 4 4 0 

     Patient 15 8 8 0 

 

  Depressed patient with  

Patient 16 15 12 3 

  

most misclassified vectors 

Patient 17 9 7 2 

     Patient 18 3 1 2 

 

  High-risk patient with  

Patient 19 9 6 3 

  

most misclassified vectors 

Patient 20 6 6 0 

       

 

The classification of depressed patients using jackknife approach produced a 

useful result. From Table 5, we can observe that patient 6 and patient 8 have the most 

vectors classified wrongly. These two patients can now be considered as possible outliers 

for the depressed group. The result of the jackknife approach for high-risk patients also 

gave an encouraging result where patient 4 and patient 12 have the highest number of 

vectors with wrong classifications. This agrees with our previous high-risk patients’ 
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analysis using the error histogram method. Having four overall possible outliers, we 

proceeded by redoing the classification process excluding the four patients. 

 

5.1.1.2 Analysis of Data Excluding Four Patients 

 The mean and standard deviation were calculated and recorded again after 

removing the four patients. The result is shown in Table 6. 

 

Table 6: The mean and standard deviation of PSD ratios after four patients were removed. 

 

  High-risk Depressed 

  Mean Std. Dev. Mean Std. Dev. 

PSD1 0.509 0.151 0.337 0.178 

PSD2 0.360 0.109 0.397 0.100 

PSD3 0.099 0.061 0.188 0.097 

PSD4 0.017 0.009 0.045 0.024 

PSD5 0.004 0.003 0.011 0.007 

PSD6 0.003 0.002 0.006 0.005 

PSD7 0.003 0.001 0.007 0.005 

 

 

 The trend of PSD ratio mean after four patients have been removed is mostly the 

same as when all patients’ data were used where only PSD1 decreases going from high-

risk to depressed while others increase. However, the mean difference between each PSD 

ratio value is bigger after the four patients have been removed than before, as 

demonstrated in Table 7. Based on this fact alone we can at least already predict that the 

separation will probably be better if we redo the classification. 
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Table 7: Mean difference for each PSD ratio when going from high-risk to depressed. 

 

  Before removing 4 patients After removing 4 patients 

PSD1 

 

-0.102   

 

-0.172   

PSD2 

 

0.011   

 

0.036   

PSD3 

 

0.073   

 

0.089   

PSD4 

 

0.015   

 

0.028   

PSD5 

 

0.002   

 

0.007   

PSD6 

 

0   

 

0.004   

PSD7   0.002   

 

0.005   

  

 

We continued by redoing the linear and quadratic classifications and were able to 

obtain much better results in all three approaches (same test-train all data, jackknife, and 

cross validation). The quadratic classifier has shown to produce better overall results than 

the linear classifier. Table 8 shows the best results using 2 band and 3 band combinations 

for each approach and they were obtained using the quadratic classifier. For 2 bands, the 

combination of bands 5 and 7 produced the best results while bands 4, 5, and 7 yielded 

the best results for the 3 bands combination.  
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Table 8: Best correct classification results (%) for 2 bands and 3 bands after removing four 

patients. 

 

          

    Bands 2D (PSD5, PSD7) 3D (PSD4, PSD5, PSD7) 

Method         

  

 

All 82.81 84.62 

Same test-train High Risk 94.34 98.11 

all data   Depressed 79.17 80.36 

    All 81.43 81.41 

Cross validation High Risk 86.66 80.13 

    Depressed 77.40 80.66 

    All 80.54 82.35 

Jackknife 

 

High Risk 86.79 88.68 

    Depressed 78.57 80.36 

 

 

 The good results obtained with low dimensionality enabled us to visualize the 

classification. From the classification of the two bands, 5 and 7, we can produce a 2D 

scatter plot that can help us observe the distribution of data and the line separating the 

two classes. Figure 10 shows the scatter plot of the bands 5 and 7 all data classification 

using the quadratic classifier. Figure 11 is a zoomed view of the same scatter plot. Based 

on these two plots, we can clearly see the separation between high-risk and depressed 

patients. 
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Figure 10: Scatter plot of band 5 and 7 data classification (spontaneous speech). 

 

 

 

Figure 11: Zoomed view of band 5 and 7 data classification (spontaneous speech). 
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5.1.2 Classification of Automatic Speech 

 Automatic speech, represented by the passage reading, is speech made without the 

patient having to think about what to say beforehand. The reason that the automatic 

speech is being analyzed independently is because the brain mechanism activated during 

automatic speech is different from the spontaneous speech. Intuitively, patients might not 

put as much emotion in reading a written passage compared to when they tell their own 

stories. 

The same test-train all data classification produced reasonable results for some of 

the two and three bands combination. The best results for each of two band and three 

band combinations are shown in Table 9. The combination of bands 2 and 7 produces the 

best result in 2D while the 3D best result is obtained from bands 2, 3, and 7 combined 

together. Because these results fulfill our expectations, we assume that there are no 

outliers in the dataset thus it is not necessary to remove patients and redo classification as 

we did in the interview speech analysis. 

 

Table 9: The best results in 2 and 3 bands combination for automatic speech using the same test-

train all data method. 

 

Band 2D (PSD2, PSD7) 3D (PSD2, PSD3, PSD7) 

Classifier Linear Linear 

All 76.47 80.88 

High-risk 76.92 80.77 

Depressed 76.19 80.95 
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 The above results show that the classification is very consistent as it produces 

nearly identical numbers for all classification, high-risk classification, and depressed 

classification. The scatter plot for the 2D result is shown in Figure 12. 

 

Figure 12: The scatter plot from 2D (2,7) linear classification (automatic speech). 

 

 

The final goal is to obtain appropriate results using the cross validation method 

because they would represent the data very well. Because there is no need to remove any 

possible outliers, we can immediately implement the cross validation approach of 

classification. The top three results are listed in Table 10. 
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Table 10: The top three correct classification percentages from cross validation approach in 

automatic speech. 

 

Bands PSD2,PSD3,PSD4 PSD2,PSD4 PSD2,PSD7 

Classifier Linear Linear Linear 

All 72.05 73.20 74.20 

High-risk 76.69 76.59 75.83 

Depressed 65.29 68.02 70.21 

 

 

Based on the results, the linear classifier works best for automatic speech in 

contrast to spontaneous speech where the best result is produced when using the 

quadratic classifier. 

 

5.2 Discussion and Conclusion 

 The spontaneous speech and automatic speech have different characteristics thus 

they were analyzed separately. We first observed the results of classification for 

spontaneous speech using all the available patients’ data. The highest percentage of 

correct classification through the same test-train all data approach is 70.5%. After the 

removal of some patients’ data as possible outliers, classification was redone and the best 

result of 81.4% correct classification was successfully obtained through the cross 

validation method. Eliminating some of the patients’ data in spontaneous speech analysis 

enabled us to gain better results. There is a possibility that these data were outliers 

because their removal improved the classification result tremendously. However, there is 

simply not enough information (i. e., a large enough database) to make a definite 

conclusion that these data are truly outliers.  
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 The classification results of automatic speech data were satisfactory. The highest 

percentage of correct classification using same test-train all data approach is 80.9%. The 

cross validation method yielded 74.2% correct classification. These results were very 

reasonable thus there was no need to find and remove outliers. 

 If the patients’ data removed in spontaneous speech classification were not 

considered as outliers, the overall result from the classification of both types of speech 

indicates that automatic speech simply has a stronger ability to discriminate between 

depressed and high-risk female patients rather than spontaneous speech. However, it is 

highly possible that the removed data were outliers, because including them in the 

classification yielded result which is below expectation. The possibility of them being 

outliers is also supported by the fact that there is one patient whose audio file was present 

in the spontaneous speech dataset but not in the automatic speech dataset, while most of 

the other patients have audio files in both datasets. The below expectation initial result 

yielded from spontaneous speech classification might be also caused by patients 

sometimes switching between depressed vocal patterns and high-risk vocal patterns 

during the same interview session. This is based on the observations of Drs. Marilyn and 

Stephen Silverman [5] where they explained that a patient cannot always be in near-term 

high-risk suicidal state all the time during his or her speech, and they do change between 

states during the same session. These changes of states might also influence the 

classification result, as demonstrated in the initial outcome of spontaneous speech 

analysis. 

 In the future, more data should be collected in order to obtain better classification 

results. The strictness of the patient labeling or patient grouping procedure can also be 
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increased, especially in deciding whether a patient is in near-term high-risk class. The 

Silvermans’ [5] data was obtained under a strict procedure where only patients who have 

actually attempted suicide were labeled as near-term high-risk suicidal. Improving this 

procedure may increase the discriminating ability of data because the assignment of any 

patient to a certain class is more definite and specific. An obvious idea for future work is 

to include a combination of different types of features as Yingthawornsuk [11] and others 

did. Vocal jitter, formants, and PSD are just some of the possible different features that 

can be combined together in the classification process. Another possibly interesting 

future work is to conduct a longitudinal study where the same patient is analyzed for a 

defined period of time which is typically long. The last suggestion for future work is to 

identify the high-risk period and the non-high-risk periods in an interview session. 

 As an overall conclusion, automatic speech has more discriminating power than 

the spontaneous speech, provided that the removed patients are not outliers. If they are 

really outliers, then both types of speech can be utilized confidently in classifying 

depressed and near-term high-risk patients. This work has completed its objective by 

showing that the female speech can indicate high-risk suicidal patients from depressed 

patients and vice versa. This result can be improved on with future studies to make the 

conclusion more concrete. 
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APPENDIX A 

 

SELECTED SPONTANEOUS SPEECH CLASSIFICATION RESULTS 

 

Same test-train all data classification result using the data of all available patients 

 
Band: 1:7 1:6 1:5 1:4 1:3 1:2 1 2:3 2:4 

Same test-train                     

  All 71.22 68.63 66.42 65.68 62.36 62.73 58.67 61.62 66.05 

(Linear) High Risk 76.62 79.22 79.22 79.22 75.32 72.73 66.23 77.92 77.92 

  Depressed 69.07 64.43 61.34 60.31 57.22 58.76 55.67 55.15 61.34 

Same test-train                     

  All 74.54 71.96 73.06 67.53 66.42 64.21 63.84 57.20 61.62 

(Quadratic) High Risk 89.61 87.01 87.01 77.92 89.61 89.61 84.42 87.01 89.61 

  Depressed 68.56 65.98 67.53 63.40 57.22 54.12 55.67 45.36 50.52 

 

2:5 2:6 2:7 2 3:4 3:5 3:6 3:7 3 4:5 4:6 4:7 

                        

66.42 68.27 70.48 54.98 67.53 66.79 68.27 69.00 63.84 64.21 64.94 71.59 

80.52 79.22 79.22 51.95 81.82 77.92 72.73 74.03 84.42 81.82 76.62 83.12 

60.82 63.92 67.01 56.19 61.86 62.37 66.49 67.01 55.67 57.22 60.31 67.01 

                        

66.79 70.11 70.48 49.82 60.15 63.47 67.16 67.16 58.67 60.52 63.10 66.42 

84.42 80.52 90.91 75.32 87.01 83.12 81.82 85.71 89.61 90.91 87.01 89.61 

59.79 65.98 62.37 39.69 49.48 55.67 61.34 59.79 46.39 48.45 53.61 57.22 

 

4 5 5:6 5:7 6 6:7 7 1,3 1,4 1,5 1,6 1,7 

                        

59.78 57.93 56.46 63.47 48.71 58.67 58.30 62.73 62.73 59.04 65.68 57.56 

74.03 71.43 75.32 80.52 25.97 83.12 79.22 81.82 74.03 66.23 63.64 58.44 

54.12 52.58 48.97 56.70 57.73 48.97 50.00 55.15 58.25 56.19 66.49 57.22 

                        

54.24 61.62 56.46 61.99 66.79 53.87 60.52 61.25 66.05 64.58 66.42 62.36 

83.12 66.23 80.52 90.91 19.48 92.21 72.73 84.42 83.12 84.42 41.56 81.82 

42.78 59.79 46.91 50.52 85.57 38.66 55.67 52.06 59.28 56.70 76.29 54.64 
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2,4 2,5 2,6 2,7 3,5 3,6 3,7 4,6 4,7 5,7 1,2,4 1,2,5 

                        

59.78 56.46 52.77 58.30 63.10 65.31 63.10 64.94 58.67 57.93 63.10 64.58 

72.73 70.13 54.55 79.22 83.12 77.92 83.12 76.62 74.03 77.92 72.73 79.22 

54.64 51.03 52.06 50.00 55.15 60.31 55.15 60.31 52.58 50.00 59.28 58.76 

                        

58.67 57.20 68.63 63.84 58.67 61.62 58.67 62.73 55.72 54.24 60.89 67.53 

83.12 71.43 31.17 64.94 88.31 84.42 89.61 83.12 90.91 85.71 89.61 84.42 

48.97 51.55 83.51 63.40 46.91 52.58 46.39 54.64 41.75 41.75 49.48 60.82 

 

1,2,6 1,2,7 2,3,5 2,3,6 2,3,7 2,4,5 2,4,6 2,4,7 2,5,6 2,5,7 2,6,7 3,4,6 3,4,7 

                          

66.42 62.73 63.10 64.58 61.99 62.73 64.94 59.41 56.09 57.93 61.62 68.27 67.16 

77.92 79.22 80.52 80.52 79.22 80.52 76.62 70.13 62.34 77.92 84.42 72.73 80.52 

61.86 56.19 56.19 58.25 55.15 55.67 60.31 55.15 53.61 50.00 52.58 66.49 61.86 

                          

69.74 68.63 63.10 66.42 63.84 64.21 68.27 66.05 64.58 63.84 62.73 64.94 60.89 

77.92 88.31 85.71 79.22 85.71 81.82 71.43 88.31 61.04 88.31 89.61 81.82 84.42 

66.49 60.82 54.12 61.34 55.15 57.22 67.01 57.22 65.98 54.12 52.06 58.25 51.55 

 

3,5,6 3,5,7 3,6,7 4,5,7 4,6,7 

          

69.00 63.84 66.42 63.47 70.48 

79.22 83.12 80.52 80.52 81.82 

64.95 56.19 60.82 56.70 65.98 

          

66.42 61.25 60.52 64.21 62.73 

85.71 87.01 85.71 90.91 89.61 

58.76 51.03 50.52 53.61 52.06 

 

 

 

 

 

 

 

 

 



49 
 

Classification result using all three approaches after removing the data of selected 

patients 

a) Linear Classification 

Linear Band: 1:4 1:3 1:2 2:4 2:5 3:4 3:5 3:6 4:5 

Same test-train                     

  All 75.11 74.21 70.59 75.57 75.57 74.66 76.02 76.02 72.85 

  High-risk 90.57 90.57 84.91 94.34 88.68 92.45 88.68 90.57 92.45 

  Depressed 70.24 69.05 66.07 69.64 71.43 69.05 72.02 71.43 66.67 

Cross-val                     

  All   72.55 69.01 70.56   76.49 72.61   74.27 

  High-risk   84.89 76.70 77.24   86.29 84.68   91.84 

  Depressed   63.60 62.06 63.99   69.58 63.81   62.95 

Jackknife                     

  All   71.95   72.40   72.85 72.85   71.49 

  High-risk   86.79   84.91   86.79 86.79   92.45 

  Depressed   67.26   68.45   68.45 68.45   64.88 

 

4:6 4:7 4 5:6 5:7 6:7 7 1,4 1,5 2,4 2,7 3,5 4,6 

                          

73.76 78.28 71.49 71.04 71.95   70.59 74.21 70.59   72.85 71.04 74.66 

92.45 96.23 92.45 86.79 90.57   94.34 90.57 84.91   96.23 86.79 92.45 

67.86 72.62 64.88 66.07 66.07   63.10 69.05 66.07   65.48 66.07 69.05 

                          

69.63   72.83 70.25 73.01   76.01         70.86 73.97 

88.38   90.52 85.03 90.81   95.40         80.35 92.11 

57.01   60.81 60.69 61.36   63.19         63.73 62.97 

                          

68.78   71.04                     

92.45   90.57                     

61.31   64.88                     

 

4,7 5,7 1,2,4 1,2,5 2,3,5 2,4,5 2,4,6 2,4,7 2,5,6 2,5,7 3,4,6 3,4,7 3,5,6 

                          

75.11 69.23 75.11 71.49 71.04 75.11 74.21 75.11 72.85   74.66 75.57 71.49 

94.34 92.45 92.45 88.68 86.79 90.57 92.45 94.34 86.79   92.45 96.23 86.79 

69.05 61.90 69.64 66.07 66.07 70.24 68.45 69.05 68.45   69.05 69.05 66.67 

                          

76.26 72.56 74.31     73.12 71.78 73.54     71.84 75.08   

94.32 90.05 84.23     88.53 86.27 92.14     87.81 89.55   

63.69 61.33 65.47     63.35 61.96 61.05     60.25 65.18   
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4,5,7 4,6,7 1,3,4 1,4,5 1,4,6 1,4,7 1,5,6 

              

75.11 76.47 74.21 75.11 74.21 76.47 73.76 

94.34 96.23 90.57 90.57 90.57 98.11 86.79 

69.05 70.24 69.05 70.24 69.05 69.64 69.64 

              

77.19 75.62           

94.11 96.35           

65.99 62.08           
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b) Quadratic Classification 

Quadratic Band: 1:4 1:3 1:2 2:4 2:5 3:4 3:5 3:6 4:5 

Same test-train                     

  All 76.47 75.57 69.68 74.21 79.19 73.76 76.92 83.71 78.73 

  High-risk 96.23 92.45 86.79 92.45 92.45 88.68 94.34 92.45 94.34 

  Depressed 70.24 70.24 64.29 68.45 75.00 69.05 71.43 80.95 73.81 

Cross-val                     

  All   68.54 64.47 69.37   74.92 72.45   75.62 

  High-risk   66.90 66.82 70.77   80.47 70.53   80.53 

  Depressed   68.24 61.81 66.84   70.47 72.13   71.83 

Jackknife                     

  All   68.33   69.68   71.49 71.49   75.57 

  High-risk   67.92   79.25   81.13 71.70   81.13 

  Depressed   68.45   66.67   68.45 71.43   73.81 

 

4:6 4:7 4 5:6 5:7 6:7 7 1,4 1,5 2,4 2,7 3,5 

                        

84.16 86.88 73.30 74.21 82.81   72.40 75.11 75.57   72.40 73.76 

94.34 98.11 90.57 90.57 94.34   94.34 92.45 88.68   94.34 84.91 

80.95 83.33 67.86 69.05 79.17   65.48 69.64 71.43   65.48 70.24 

                        

80.63   73.41 75.23 80.97   76.05         70.99 

79.45   86.77 84.48 85.10   92.23         74.97 

80.82   63.72 69.03 77.80   65.23         66.93 

                        

81.45   72.85 72.40 80.54 73.30 72.85 71.49 72.85 71.04   71.49 

83.02   88.68 83.02 86.79 88.68 94.34 83.02 79.25 81.13   75.47 

80.95   67.86 69.05 78.57 68.45 66.07 67.86 70.83 67.86   70.24 

 

4,6 4,7 5,7 1,2,4 1,2,5 2,3,5 2,4,5 2,4,6 2,4,7 2,5,6 2,5,7 3,4,6 3,4,7 

                          

77.83 80.09 82.81 74.66 73.76 71.95 81 78.28 80.54 73.76 82.81 74.66 80.54 

96.23 94.34 94.34 92.45 86.79 84.91 94.34 96.23 96.23 94.34 94.34 92.45 98.11 

72.02 75.60 79.17 69.05 69.64 67.86 76.79 72.62 75.6 67.26 79.17 69.05 75.00 

    
 

                    

76.63 78.96 81.43 71.40     77.85 76.61 75.25   77.00 72.75 76.63 

85.27 83.53 86.66 73.23     82.17 80.26 80.90   81.13 78.63 75.60 

71.19 73.97 77.40 67.95     74.67 74.22 70.54   73.58 68.07 75.66 

    
 

                    

75.57 78.28 80.54       76.47 76.02 76.92   79.64   76.47 

86.79 86.79 86.79       81.13 86.79 86.79   81.13   81.13 

72.02 75.60 78.57       75.00 72.62 73.81   79.17   75.00 
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3,5,6 3,5,7 3,6,7 4,5,7 4,6,7 1,3,4 1,4,5 1,4,6 1,4,7 1,5,6 1,5,7 

                      

77.38 81.00 74.21 84.62 81.90 75.57 81 78.73 80.54 75.11 82.35 

90.57 90.57 92.45 98.11 98.11 92.45 94.34 96.23 96.23 94.34 92.45 

73.21 77.98 68.45 80.36 76.79 70.24 76.79 73.21 75.6 69.05 79.17 

      
 

              

71.63 78.65 73.70 81.41 77.11   74.35 75.15 76.54 72.59 78.73 

74.14 79.89 85.44 80.13 86.30   75.42 78.45 80.45 78.78 78.8 

68.46 77.01 64.79 80.66 71.06   73.02 72.58 72.54 68.33 77.13 

      
 

              

72.85 78.73   82.35 78.28   74.21 73.3 77.83   79.19 

75.47 81.13   88.68 86.79   77.36 83.02 86.79   81.13 

72.02 77.98   80.36 75.60   73.21 70.24 75   78.57 

 

 

The bolded and underlined numbers denote those that were presented in the result 

and analysis chapter. The grayed spaces represent results that are not as good as what we 

were expecting. These results were observed but not recorded. 
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APPENDIX B 

 

SELECTED AUTOMATIC SPEECH CLASSIFICATION RESULTS 

 

Selected classification result using the data of all available patients 

a) Linear Classification 

Linear Band: 1:7 1:6 1:5 1:4 1:3 1:2 1 2:3 2:4 

Same test-train                     

  All 79.41 73.53 73.53 79.41 73.53 75.00 51.47 75.00 75.00 

  High Risk 76.92 76.92 76.92 80.77 76.92 84.62 61.54 76.92 76.92 

  Depressed 80.95 71.43 71.43 78.57 71.43 69.05 45.24 73.81 73.81 

Cross-val                     

  ALL           71.04   70.65 72.05 

  High Risk           74.23   72.32 76.69 

  Depressed           64.95   66.74 65.29 

 

2:5 2:6 2:7 2 3:4 3:5 3:6 3:7 3 4:5 4:6 4:7 

                        

73.53 73.53 77.94 73.53 67.65 67.65 67.65 73.53 67.65 64.71 66.18 70.59 

76.92 76.92 76.92 76.92 80.77 73.98 80.77 88.46 73.08 80.77 88.46 84.62 

71.43 71.43 78.57 71.43 59.52 64.29 59.52 64.29 64.29 54.76 52.38 61.90 

                        

                        

                        

                        

 

4 5 5:6 5:7 6 6:7 7 1,3 1,4 1,5 1,6 1,7 

                        

61.76 61.76 66.18 66.18 57.35 61.76 64.71 73.53 70.59 58.82 51.47 64.71 

88.46 80.77 88.46 80.77 76.92 84.62 84.62 76.92 80.77 73.08 73.08 76.92 

45.24 50.00 52.38 57.14 45.24 47.62 52.38 71.43 64.29 50.00 38.10 57.14 
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2,4 2,5 2,6 2,7 3,5 3,6 3,7 4,6 4,7 5,7 1,2,4 1,2,5 

                        

73.53 69.12 72.06 76.47 67.65 64.71 64.71 61.76 69.12 66.18 77.94 76.47 

80.77 69.23 73.08 76.92 69.23 65.38 73.08 84.62 92.31 80.77 76.92 84.62 

69.05 69.05 71.43 76.19 66.67 64.29 59.52 47.62 54.76 57.14 78.57 71.43 

                        

73.20     74.20                 

76.59     75.83                 

68.02     70.21                 

 

1,2,6 1,2,7 2,3,5 2,3,6 2,3,7 2,4,5 2,4,6 2,4,7 2,5,6 2,5,7 2,6,7 3,4,6 

                        

75.00 77.94 73.53 73.53 80.88 69.12 70.59 73.53 69.12 73.53 76.47 66.18 

84.62 84.62 76.92 76.92 80.77 69.23 73.08 73.08 69.23 76.92 76.92 76.92 

69.05 73.81 71.43 71.43 80.95 69.05 69.05 73.81 69.05 71.43 76.19 59.52 

                        

  71.65           70.72   71.75 70.41   

  76.20           70.20   71.14 67.81   

  64.74           69.30   70.69 70.87   

 

3,4,7 3,5,6 3,5,7 3,6,7 4,5,7 4,6,7 1,3,7 

              

66.18 66.18 61.76 64.71 70.59 67.65   

80.77 76.92 65.38 76.92 92.31 92.31   

57.14 59.52 59.52 57.14 57.14 52.38   

              

            71.05 

            72.01 

            68.37 
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b) Quadratic Classification 

Quadratic Band: 1:7 1:6 1:5 1:4 1:3 1:2 1 2:3 2:4 

Same test-train                     

  All 79.41 77.94 79.41 70.59 70.59 76.47 48.53 72.06 69.12 

  High Risk 100.0 96.15 100.0 84.62 84.62 92.31 65.38 84.62 84.62 

  Depressed 66.67 66.67 66.67 61.90 61.90 66.67 38.10 64.29 59.52 

Cross-val                     

  ALL                   

  High Risk                   

  Depressed                   

 

2:5 2:6 2:7 2 3:4 3:5 3:6 3:7 3 4:5 4:6 4:7 

                        

73.53 77.94 79.41 70.59 64.71 67.65 69.12 76.47 63.24 64.71 64.71 75.00 

96.15 96.15 100.0 65.38 92.31 96.15 92.31 100.0 80.77 88.46 88.46 96.15 

59.52 66.67 66.67 73.81 47.62 50.00 54.76 61.90 52.38 50.00 50.00 61.90 

                        

                        

                        

                        

 

4 5 5:6 5:7 6 6:7 7 1,3 1,4 1,5 1,6 1,7 

                        

60.29 55.88 64.71 69.12 51.47 55.88 60.29 72.06 61.76 58.82 51.47 61.76 

88.46 80.77 88.46 84.62 92.31 80.77 92.31 80.77 88.46 84.62 76.92 76.92 

42.86 40.48 50.00 59.52 26.19 40.48 40.48 66.67 45.24 42.86 35.71 52.38 

                        

                        

                        

                        

 

2,4 2,5 2,6 2,7 3,5 3,6 3,7 4,6 4,7 5,7 1,2,4 1,2,5 

                        

67.65 66.18 72.06 75.00 72.06 63.24 63.24 60.29 63.24 66.18 70.59 70.59 

88.46 69.23 73.08 76.92 84.62 76.92 76.92 88.46 88.46 80.77 88.46 84.62 

54.76 64.29 71.43 73.81 64.29 54.76 54.76 42.86 47.62 57.14 59.52 61.90 

                        

      71.02                 

      73.43                 

      66.23                 
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1,2,6 1,2,7 2,3,5 2,3,6 2,3,7 2,4,5 2,4,6 2,4,7 2,5,6 2,5,7 2,6,7 3,4,6 

                        

73.53 76.47 69.12 72.06 75.00 64.71 69.12 69.12 72.06 72.06 67.65 63.24 

84.62 88.46 80.77 80.77 84.62 88.46 88.46 84.62 80.77 76.92 80.77 88.46 

66.67 69.05 61.90 66.67 69.05 50.00 57.14 59.52 66.67 69.05 59.52 47.62 

                        

                        

                        

                        

 

3,4,7 3,5,6 3,5,7 3,6,7 4,5,7 4,6,7 

            

66.18 75.00 73.53 67.65 70.59 70.59 

92.31 88.46 80.77 92.31 92.31 96.15 

50.00 66.67 69.05 52.38 57.14 54.76 

            

            

            

            

 

 

 

The bolded and underlined numbers denote those that were presented in the result 

and analysis chapter. The grayed spaces represent results that are not as good as what we 

were expecting. These results were observed but not recorded. 
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APPENDIX C 

 

EXAMPLE OF MATLAB CODES IMPLEMENTED 

 

Steps for features extraction and analysis using Matlab: 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

1
Trimmed data are speech samples that were collected after removing interviewer’s voice, cutting long 

pauses and removing other irrelevant noises such as door slam, coughing, and sneezing.  

main.m 

 

 

Trimmed data
1
 

split20sec.m 

 

mean_energy.m 

 

ratio_collect.m 

 

simplevuv.m 

pdgm_meaneachband.m 

getlabel.m 

 

getalldepresseddata.m 
getallhighriskdata.m 
Class_code.m 

 

crossval.m 
errorhist.m 
percentMean.m 
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simplevuv.m: Identifying voiced and unvoiced data 

%Code by Mitch Wilkes, modified by Nik Nur Wahidah Nik Hashim and  
%Wan Ahmad Hasan Wan Ahmad Sanadi 
%Spring 2011 
%---------------------------------------------------------------------- 

  
% function [X,justvoiced,unv,sil] = simplevuv(s,Nwin,fs) 
function [X,justvoiced] = simplevuv(s,Nwin,fs) 

  
% Set the frame length 
 %Nwin = 200; 

  
% Compute the number of nonoverlapping windows 
Nlen = length(s); 
Nwins = floor(Nlen/Nwin); 

  
% Force the signal, x, to have exactly Nwins frames 

  
x = s(1:(Nwins*Nwin)); 
Nlen = length(x); 

  
%This is main part of the voiced/unvoiced/silence detection 

  
 [B1,A1] = butter(3, [2500 5000]/(fs/2)); 
 [B2,A2] = butter(3, [720 2340]/(fs/2)); 
 [B3,A3] = butter(3, [320 1080]/(fs/2)); 
 [B4,A4] = butter(3, [160 540]/(fs/2)); 
 [B5,A5] = butter(3, [80 260]/(fs/2)); 

  
% Put the signal, x, into a matrix, X, where each column is a 
% frame. The frames are not overlapping. 

  
X = reshape(x, Nwin, Nwins); 

  
% For each frame, compute the energy in each of the frequency bands. 
% The result is a vector of energies for each frequency band.   
% These vectors are row vectors. 

  
E1 = zeros(1,Nwins); 
E2 = zeros(1,Nwins); 
E3 = zeros(1,Nwins); 
E4 = zeros(1,Nwins); 
E5 = zeros(1,Nwins); 

  
for i=1:Nwins 
    E1(i) = sum(filter(B1,A1, X(:,i)).^2); 
    E2(i) = sum(filter(B2,A2, X(:,i)).^2); 
    E3(i) = sum(filter(B3,A3, X(:,i)).^2); 
    E4(i) = sum(filter(B4,A4, X(:,i)).^2); 
    E5(i) = sum(filter(B5,A5, X(:,i)).^2); 
end 

  
% Combine the energy band vectors into a matrix where each row 
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% is an energy band vector 

  
E = [E1 ; E2 ; E3 ; E4 ; E5]; 

  
% Results of the analysis are the vectors that indicate which frames 

are  
% voiced, unvoiced, and silence. 
% These are the vectors computed below: unvoiced, voiced and silent 

  
unvoiced = max(E) == E1; % unvoiced(i) = 1 means ith frame is unvoiced 
thresh = median(E3); 
voiced = (E3 >= thresh) & (1 - unvoiced); % voiced(i) = 1 means ith 

frame  
%is voiced 
silent = (E3 < thresh) & (1 - unvoiced); % silent(i) = 1 means ith 

frame  
%is silence (background noise onlyl) 

  
%This is the end of the main part.  The rest is for plotting results. 

  
nnn = 0:(Nlen -1); 
mmm = (0:(Nwins-1))*Nwin; 
maxscale = max(abs(x)); 
figure(1), 

plot(nnn,x,mmm,silent*maxscale,mmm,voiced*maxscale,mmm,unvoiced*maxscal

e) 

  
% ------- 
% collecting the voiced part 
justvoiced = zeros(Nwin,1); 
k = 1; 
for j = 1:Nwins 
    if voiced(j) == 1 
        justvoiced(:,k) = X(:,j); 
        k = k+1; 
    end 
end 

  
%collecting unvoiced part 
% m = 1; 
% for n = 1:Nwins 
%     if unvoiced(n) == 1; 
%         unv(:,n) = X(:,n); 
%         m = m+1; 
%     end 
% end 
%  
% %collecting silence part 
% u = 1; 
% for t = 1:Nwins 
%     if silent(t) == 1; 
%         sil(:,t) = X(:,t); 
%         u = u+1; 
%     end 
% end 
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main.m: Collecting voiced data 
  
%Code by Nik Nur Wahidah Nik Hashim and  
%Wan Ahmad Hasan Wan Ahmad Sanadi 
%Spring 2011 
%----------------------------------------------------------------------

--- 

  
% function 

[X,justvoiced,sumjustvoiced,sumunvoiced,sumsilent,cepsvoiced] = main   
% ceps = main  
function [sumjustvoiced] = main(filename)  % ceps = main  
[s,fs] = wavread(filename); 
s = s(:,1); % for stereo typed files 
s = s - mean(s); 
Twin = 0.040; 
Nwin = round(Twin*fs); 

  

  
% Each column of X is a non overlapping frames of size Nwin. 
% Justvoiced consist of only voiced part of the signal with each column 

is 
% the Nwin frame size of the voiced part. 

  
[X,justvoiced] = simplevuv(s,Nwin,fs); 

  
% collect all the voiced terms into one row 
sumjustvoiced = []; 
[r,c] = size(justvoiced); 
for m = 1:c 
    sumjustvoiced = [sumjustvoiced justvoiced(:,m)']; 
end 

  
% %collect all unvoiced terms into one row 
% sumunvoiced = []; 
% [r,c] = size(unv); 
% for a = 1:c 
%     sumunvoiced = [sumunvoiced unv(:,a)']; 
% end 
%  
% %collect all silence terms into one row 
% sumsilent = []; 
% [r,c] = size(sil); 
% for l = 1:c 
%     sumsilent = [sumsilent sil(:,l)']; 
% end 

  
% reads in MFCC to give coef for each frames (all and voiced only) 

  
% mfcc for only voiced collected signals per frame 
% mfcc using Malcolm Slaney 
%cepsvoiced = mfcc(sumjustvoiced,fs,Nwin); % using fftsize = 2048 
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split20sec.m: Dividing voiced data into 20-second segments 

%Code taken from: 
%http://www.mathworks.com/matlabcentral/newsreader/view_thread/292920 
%Spring 2011 
%----------------------------------------------------------------------

--- 

  
% function split20sec(fileName,fileNamewav) 
function split20sec 

  
files = dir('*.wav'); 

  
for i = 1:length(files) 
    [path, name, ext] = fileparts(files(i).name); 
    [fileName b] = strread(name, '%s %s', 'delimiter','.'); 
    fileName = char(fileName); 
    fileNamewav = char(strcat(fileName,'.wav')); 

  
    %format shortG %turns off scientific notation 
    format long 

  
    %fileName='112105nt2_readingVUV.wav'; 
    [y, Fs, nbits] = wavread(fileNamewav); 
    [size_r,size_c]=size(y); 
    j=[]; 
    k=0; 
    wavefilesplit=[]; 

  
    for i=1:20*Fs:size_r, %build array of desired ranges 
        j(end+1,:)=i; 
    end; 

  
    j(end+1,:)=size_r; %adds the end of the sound file to the end of 

the j array 

  
    [size_rj,size_cj]=size(j); %used to get size of j array 

  
    for i=1:1:size_rj-1,k=k+1; 
        wavefilesplit=y(j(k):j(k+1),:); %get range from j array example 

1-8001 
        wavefn=strcat(fileName, num2str(k)); %build filename dynamiclly 
        wavwrite([wavefilesplit],Fs,32,strcat('D:\niknwan\3vuv 20 sec 

segments only\male interview\',wavefn)); 
    end; 
end 
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pdgm_meaneachband.m: Extracting PSD ratio  

%Code by Nik Nur Wahidah Nik Hashim and  
%Wan Ahmad Hasan Wan Ahmad Sanadi 
%Spring 2011 
%----------------------------------------------------------------------

--- 

  
function [mean_energy] = pdgm_meaneachband(s,fs) 
% [s,fs] = wavread('011706nt1_readingVUV1.wav'); 

  
Twin = 0.040; %window size 
Nwin = round(Twin*fs); 

  
% Compute the number of nonoverlapping windows 
Nlen = length(s); 
Nwins = floor(Nlen/Nwin); 

  
% Force the signal, x, to have exactly Nwins frames 
x = s(1:(Nwins*Nwin)); 
Nlen = length(x); 

  
% Each column w of X is a non overlapping frames of size Nwin. 
X = reshape(x, Nwin, Nwins);    %1764x500 

  
[Xr,Xc] = size(X); 
psd = []; 

  
for i = 1:Xc 
    % Pwelch 
%     [Pxx,w] = pwelch (X (:,i),Nwin,0,fs); 
%     psd = [psd Pxx]; 

     
    % periodogram 
    Xmag = (abs(fft(X(:,i),fs)).^2)/Nwin; 
    psd = [psd Xmag];     
end 
%  
% % %Plot of 1-2000hz 
% figure(1),plot(freq(2:2001,:),psd(2:2001,:)) 
% %  
% % %Plot of 1-500hz 
% figure(2),plot(freq(2:500,:),psd(2:500,:)) 
% %  
% % %Plot of 500-1000hz 
% figure(3),plot(freq(501:1000,:),psd(501:1000,:)) 
% %  
% % %Plot of 1000-1500hz 
% figure(4),plot(freq(1001:1500,:),psd(1001:1500,:)) 
% %  
% % %Plot of 1500-2000hz 
% figure(5),plot(freq(1501:2001,:),psd(1501:2001,:)) 

  
%assigning variables for 4 bands and full range 
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total_band1=[]; 
total_band2=[]; 
total_band3=[]; 
total_band4=[]; 
total_band5=[]; 
total_band6=[]; 
total_band7=[]; 
total_band8=[]; 

  

  
total_area=[]; 
total_ratio1=[]; 
total_ratio2=[]; 
total_ratio3=[]; 
total_ratio4=[]; 
total_ratio5=[]; 
total_ratio6=[]; 
total_ratio7=[]; 
total_ratio8=[]; 

  
fr1 = 2:251; 
fr2 = 252:501; 
fr3 = 502:751; 
fr4 = 752:1001; 
fr5 = 1002:1251; 
fr6 = 1252:1501; 
fr7 = 1502:1751; 
fr8 = 1752:2001; 
ftotal = 2:2001; 

  
allband1area=[]; 
allband2area=[]; 
allband3area=[]; 
allband4area=[]; 
allband5area=[]; 
allband6area=[]; 
allband7area=[]; 
allband8area=[]; 
totalallarea=[]; 

  
for j=1:Xc;  

  
    psdtotal=psd(2:2001,j); %in index 48 for freq,the value is 2000Hz  

  
    psdr1=psd(2:251,j); 
    psdr2=psd(252:501,j); 
    psdr3=psd(502:751,j); 
    psdr4=psd(752:1001,j); 
    psdr5=psd(1002:1251,j);     
    psdr6=psd(1252:1501,j); 
    psdr7=psd(1502:1751,j); 
    psdr8=psd(1752:2001,j); 

     
    %Area calculation 
    totalarea=trapz(ftotal,psdtotal); 
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    band1area=trapz(fr1,psdr1); 
    band2area=trapz(fr2,psdr2); 
    band3area=trapz(fr3,psdr3); 
    band4area=trapz(fr4,psdr4); 
    band5area=trapz(fr5,psdr5); 
    band6area=trapz(fr6,psdr6); 
    band7area=trapz(fr7,psdr7); 
    band8area=trapz(fr8,psdr8); 

     
    allband1area=[allband1area; band1area]; 
    allband2area=[allband2area; band2area]; 
    allband3area=[allband3area; band3area]; 
    allband4area=[allband4area; band4area]; 
    allband5area=[allband5area; band5area]; 
    allband6area=[allband6area; band6area]; 
    allband7area=[allband7area; band7area]; 
    allband8area=[allband8area; band8area]; 

     
    totalallarea=[totalallarea; totalarea]; 

     
end 

  
meanband1=mean(allband1area); 
meanband2=mean(allband2area); 
meanband3=mean(allband3area); 
meanband4=mean(allband4area); 
meanband5=mean(allband5area); 
meanband6=mean(allband6area); 
meanband7=mean(allband7area); 
meanband8=mean(allband8area); 
meantotalarea=mean(totalallarea); 

  
energy1ratio=meanband1/meantotalarea; 
energy2ratio=meanband2/meantotalarea; 
energy3ratio=meanband3/meantotalarea; 
energy4ratio=meanband4/meantotalarea; 
energy5ratio=meanband5/meantotalarea; 
energy6ratio=meanband6/meantotalarea; 
energy7ratio=meanband7/meantotalarea; 
energy8ratio=meanband8/meantotalarea; 

  
mean_energy=[energy1ratio energy2ratio energy3ratio energy4ratio 

energy5ratio energy6ratio energy7ratio energy8ratio]; 
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mean_energy.m: Collecting all PSD ratios  

%Code by Nik Nur Wahidah Nik Hashim and  
%Wan Ahmad Hasan Wan Ahmad Sanadi 
%Spring 2011 
%----------------------------------------------------------------------

--- 

  
function mean_energy 

  
%mean_energy = []; 
files = dir('*.wav'); 

  
for i = 1:length(files) 
    [s,fs] = wavread(files(i).name); 

     
    [mean_energy] = pdgm_meaneachband(s,fs); 
    [path, name, ext] = fileparts(files(i).name); 
    filename = fullfile(path, [name []]); 
    filename = strcat('C:\Users\Desktop\4psdratio\female interview pdgm 

6band\DEP\',filename); 
    save(filename,'mean_energy'); 
end 
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ratio_collect.m: Grouping the PSD ratios of each patient and label based on their 

category. 

%Code by Nik Nur Wahidah Nik Hashim and  
%Wan Ahmad Hasan Wan Ahmad Sanadi 
%Spring 2011 
%----------------------------------------------------------------------

--- 

  
function ratio_collect 

  
files = dir('*.mat'); 
ratiolist=[]; 
names=[]; 

  
load(files(1).name); 
[path, name, ext] = fileparts(files(1).name); 
[a b] = strread(name, '%s %s', 'delimiter','_'); 
names=[names;a]; 
ratiolist=[ratiolist;mean_energy]; 

  
for i = 2:(length(files)-1) 
    load(files(i).name); 
    [path, name, ext] = fileparts(files(i).name); 
    [a b] = strread(name, '%s %s', 'delimiter','_'); 
    names=[names;a]; 
    c=char(names(i-1)); 
    a=char(a); 

     
    if strcmp(c,a)==1 
        ratiolist=[ratiolist;mean_energy]; 
    else 
        ratiolist=ratiolist(:,1:7); 
        filename = strcat('C:\Users\Desktop\5psd combine\female rea 

8band\','d',c);%d for depressed 
        save(filename,'ratiolist'); 
        clear ratiolist; 
        ratiolist=[]; 
        ratiolist=[ratiolist;mean_energy];         
    end    
end 

  

  
load(files(length(files)).name); 
[path, name, ext] = fileparts(files(length(files)).name); 
[a b] = strread(name, '%s %s', 'delimiter','_'); 
c=char(names(length(files)-1)); 
ratiolist=[ratiolist;mean_energy]; 
ratiolist=ratiolist(:,1:7); 
filename = strcat('C:\Users\Desktop\5psd combine\female rea 

8band\','d',c);%d for depressed 
save(filename,'ratiolist'); 

 



67 
 

getalldepresseddata.m: Loading all depressed data into a matrix 

%Code by Mitch Wilkes 
%Spring 2011 
%----------------------------------------------------------------------

--- 
 

dfiles = dir('d*.mat'); 
Nd = length(dfiles); 
Dmean_energy = []; 
for i=1:Nd 
    load( dfiles(i).name ); 
    Dmean_energy = [Dmean_energy ; ratiolist]; 
end 

  

 

 

getallhighriskdata.m: Loading all high-risk data into a matrix 

%Code by Mitch Wilkes 
%Spring 2011 
%----------------------------------------------------------------------

--- 
 

hfiles = dir('h*.mat'); 
Nh = length(hfiles); 
Hmean_energy = []; 
for i=1:Nh 
    load( hfiles(i).name ); 
    Hmean_energy = [Hmean_energy ; ratiolist]; 
end 
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Class_code.m: Classification by same test-train all data method and jackknife method 

%Code by Nik Nur Wahidah Nik Hashim, 
%Wan Ahmad Hasan Wan Ahmad Sanadi, and Mitch Wilkes (jackknife part) 
%Spring 2011 
%----------------------------------------------------------------------

--- 

  
clear;clc 
getalldepresseddata 
getallhighriskdata 

  
% all data 
% % one  
% data = [Hmean_energy(:,7); Dmean_energy(:,7)]; 

  
% two 
a=1 ; b=3; 
data = [[Hmean_energy(:,a) Hmean_energy(:,b)]; [Dmean_energy(:,a) 

Dmean_energy(:,b)]]; 

  
% % three 
% a=1 ; b=5; c=6; 
% data = [Hmean_energy(:,a) Hmean_energy(:,b) Hmean_energy(:,c); 

Dmean_energy(:,a) Dmean_energy(:,b) Dmean_energy(:,c)]; 
% 

  
lab = [ones(194,1); zeros(77,1)]; 

  
% plot3(data(1:123,1), data(1:123,2), 

data(1:123,3),'ro',data(124:218,1), data(124:218,2), 

data(124:218,3),'bo'); 
% [C,err,P,logp,coeff] 
[idxl,err,P,logp,coeff] = classify(data,data,lab,'linear'); 
all = sum(idxl==lab)/length(lab)*100 
hr = sum(idxl(1:109)==lab(1:109))/123*100 
dep = sum(idxl(110:204)==lab(110:204))/95*100 

  
[idxq,errq,Pq,logpq,coeffq] = classify(data,data,lab,'quadratic'); 
all = sum(idxq==lab)/length(lab)*100 
hr = sum(idxl(1:109)==lab(1:109))/123*100 
dep = sum(idxl(110:204)==lab(110:204))/95*100 

  
% figure,plot(data(1:194,3), data(1:194,4),'bo',data(195:271,3), 
% data(195:271,4),'ro'); 

  
figure,plot(data(1:109,1),data(1:109,2),'ro',data(110:204,1),data(110:2

04,2),'o') 
hold on 

  
K = coeffq(1,2).const; 
L = coeffq(1,2).linear;  
Q = coeffq(1,2).quadratic; 
% Function to compute K + L*v + v'*Q*v for multiple vectors 
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% v=[x;y]. Accepts x and y as scalars or column vectors. 
f = @(x,y) K + [x y]*L + sum(([x y]*Q) .* [x y], 2); 

  
h2 = ezplot(f,[0.1 0.8 0 0.5]); 
set(h2,'Color','m','LineWidth',2) 
hold off 

  
%% jackknife HR-DEP 
clear;clc 
getalldepresseddata 
getallhighriskdata 
myData = [Hmean_energy(:,5); Dmean_energy(:,5)]; 
labels = [ones(123,1); zeros(95,1)]; 

  
%linear 
htotal=[];dtotal=[]; 

  
idxm = classify( myData(1:9,:), myData( 10:218,:), labels(10:218) 

);h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(10:18,:), [myData( 1:9,:) ; myData(19:218,:)], 

[labels(1:9) ; labels(19:218)] );h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(19:25,:), [myData( 1:18,:) ; myData(26:218,:)], 

[labels(1:18) ; labels(26:218)] );h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(26:32,:), [myData( 1:25,:) ; myData(33:218,:)], 

[labels(1:25) ; labels(33:218)] );h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(33:51,:), [myData( 1:32,:) ; myData(52:218,:)], 

[labels(1:32) ; labels(52:218)] );h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(52:69,:), [myData( 1:51,:) ; myData(70:218,:)], 

[labels(1:51) ; labels(70:218)] );h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(70:84,:), [myData( 1:69,:) ; myData(85:218,:)], 

[labels(1:69) ; labels(85:218)] );h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(85:108,:), [myData( 1:84,:) ; 

myData(109:218,:)], [labels(1:84) ; labels(109:218)] 

);h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(109,:), [myData( 1:108,:) ; myData(110:218,:)], 

[labels(1:108) ; labels(110:218)] );h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(110:123,:), [myData( 1:109,:) ; 

myData(124:218,:)], [labels(1:109) ; labels(124:218)] 

);h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(124:132,:), [myData( 1:123,:) ; 

myData(133:218,:)], [labels(1:123) ; labels(133:218)] 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(133:146,:), [myData( 1:132,:) ; 

myData(147:218,:)], [labels(1:132) ; labels(147:218)] 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(147:154,:), [myData( 1:146,:) ; 

myData(155:218,:)], [labels(1:146) ; labels(155:218)] 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(155:163,:), [myData( 1:154,:) ; 

myData(164:218,:)], [labels(1:154) ; labels(164:218)] 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(164:175,:), [myData( 1:163,:) ; 

myData(176:218,:)], [labels(1:163) ; labels(176:218)] 

);d=sum(idxm==0);dtotal=[dtotal d]; 
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idxm = classify( myData(176:178,:), [myData( 1:175,:) ; 

myData(179:218,:)], [labels(1:175) ; labels(179:218)] 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(179:183,:), [myData( 1:178,:) ; 

myData(184:218,:)], [labels(1:178) ; labels(184:218)] 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(184:196,:), [myData( 1:183,:) ; 

myData(197:218,:)], [labels(1:183) ; labels(197:218)] 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(197:206,:), [myData( 1:196,:) ; 

myData(207:218,:)], [labels(1:196) ; labels(207:218)] 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(207,:), [myData( 1:206,:) ; myData(208:218,:)], 

[labels(1:206) ; labels(208:218)] );d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(208:218,:), myData( 1:207,:), labels(1:207) 

);d=sum(idxm==0);dtotal=[dtotal d]; 

  

  
hall = sum(htotal); 
dall = sum(dtotal); 
all = hall + dall; 

  
per_all = all/length(labels)*100 
per_hr = hall/123*100 
per_dep = dall/95*100 

  
% quadratic  
htotal=[];dtotal=[]; 

  
idxm = classify( myData(1:9,:), myData( 10:218,:), 

labels(10:218),'quadratic' );h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(10:18,:), [myData( 1:9,:) ; myData(19:218,:)], 

[labels(1:9) ; labels(19:218)],'quadratic'  

);h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(19:25,:), [myData( 1:18,:) ; myData(26:218,:)], 

[labels(1:18) ; labels(26:218)],'quadratic' 

);h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(26:32,:), [myData( 1:25,:) ; myData(33:218,:)], 

[labels(1:25) ; labels(33:218)],'quadratic' 

);h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(33:51,:), [myData( 1:32,:) ; myData(52:218,:)], 

[labels(1:32) ; labels(52:218)],'quadratic' 

);h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(52:69,:), [myData( 1:51,:) ; myData(70:218,:)], 

[labels(1:51) ; labels(70:218)],'quadratic' 

);h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(70:84,:), [myData( 1:69,:) ; myData(85:218,:)], 

[labels(1:69) ; labels(85:218)],'quadratic' 

);h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(85:108,:), [myData( 1:84,:) ; 

myData(109:218,:)], [labels(1:84) ; labels(109:218)],'quadratic' 

);h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(109,:), [myData( 1:108,:) ; myData(110:218,:)], 

[labels(1:108) ; labels(110:218)],'quadratic' 

);h=sum(idxm==1);htotal=[htotal h]; 
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idxm = classify( myData(110:123,:), [myData( 1:109,:) ; 

myData(124:218,:)], [labels(1:109) ; labels(124:218)],'quadratic' 

);h=sum(idxm==1);htotal=[htotal h]; 
idxm = classify( myData(124:132,:), [myData( 1:123,:) ; 

myData(133:218,:)], [labels(1:123) ; labels(133:218)],'quadratic' 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(133:146,:), [myData( 1:132,:) ; 

myData(147:218,:)], [labels(1:132) ; labels(147:218)],'quadratic' 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(147:154,:), [myData( 1:146,:) ; 

myData(155:218,:)], [labels(1:146) ; labels(155:218)],'quadratic' 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(155:163,:), [myData( 1:154,:) ; 

myData(164:218,:)], [labels(1:154) ; labels(164:218)],'quadratic' 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(164:175,:), [myData( 1:163,:) ; 

myData(176:218,:)], [labels(1:163) ; labels(176:218)],'quadratic' 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(176:178,:), [myData( 1:175,:) ; 

myData(179:218,:)], [labels(1:175) ; labels(179:218)],'quadratic' 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(179:183,:), [myData( 1:178,:) ; 

myData(184:218,:)], [labels(1:178) ; labels(184:218)],'quadratic' 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(184:196,:), [myData( 1:183,:) ; 

myData(197:218,:)], [labels(1:183) ; labels(197:218)],'quadratic' 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(197:206,:), [myData( 1:196,:) ; 

myData(207:218,:)], [labels(1:196) ; labels(207:218)],'quadratic' 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(207,:), [myData( 1:206,:) ; myData(208:218,:)], 

[labels(1:206) ; labels(208:218)],'quadratic' 

);d=sum(idxm==0);dtotal=[dtotal d]; 
idxm = classify( myData(208:218,:), myData( 1:207,:), 

labels(1:207),'quadratic' );d=sum(idxm==0);dtotal=[dtotal d]; 

  

  
hallq = sum(htotal); 
dallq = sum(dtotal); 
allq = hallq + dallq; 

  
per_all = allq/length(labels)*100 
per_hr = hallq/123*100 
per_dep = dallq/95*100 
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getlabel.m: Appending a label column in the data for cross validation and error 

histogram 

%Code by Nik Nur Wahidah Nik Hashim and  
%Wan Ahmad Hasan Wan Ahmad Sanadi 
%Spring 2011 
%----------------------------------------------------------------------

--- 

  
clear;clc; 
%total = 22; 
%test = 6; 

  
Hvec = dir('h*.mat'); 

  
for i = 1:length(Hvec) 
    load(Hvec(i).name); 
    [r,c] = size(ratiolist); 
    ratiolist = [ratiolist ones(r,1)];   
    filename = strcat('C:\Users\wanahmwa\Desktop\6crossval\female int 

6band\',Hvec(i).name); 
    save(filename,'ratiolist'); 
end 

  
Dvec = dir('d*.mat'); 

  
for i = 1:length(Dvec) 
    load(Dvec(i).name); 
    [r,c] = size(ratiolist); 
    ratiolist = [ratiolist zeros(r,1)];   
    filename = strcat('C:\Users\Desktop\6crossval\female int 

6band\',Dvec(i).name); 
    save(filename,'ratiolist'); 
end 
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crossval.m: Classification by cross validation and identifying classification error 

%Code by Nik Nur Wahidah Nik Hashim and  
%Wan Ahmad Hasan Wan Ahmad Sanadi 
%Spring 2011 
%----------------------------------------------------------------------

--- 

  
%  function 

[percent_all,percent_hr,percent_dep,percent_allq,percent_hrq,percent_de

pq,countHR,countDEP] = crossval 
function 

[percent_all,percent_hr,percent_dep,percent_allq,percent_hrq,percent_de

pq,idxHR,idxDEP,roHR,roDEP,sumHRerr,sumDEPerr] = crossval % for error 

histogram evaluation 
% function 

[percent_all,percent_hr,percent_dep,percent_allq,percent_hrq,percent_de

pq] = crossval % for crossval evaluation only 
clear;clc; 

  
testlength = 3; 
trainstart = testlength + 1; 

  

  
Hfiles = dir('h*.mat'); 

  
Hlength = length(Hfiles); 
Htemp = randn(Hlength,1); 
[a,idxH] = sort(Htemp); 

  
Hname = []; 
for i = 1:Hlength 
    Hname = [Hname; Hfiles(i).name];   
end 

  
% choose 3 random HR files for testing  
Htest = []; 
countHR = zeros(1,Hlength); 

  
for t = 1:testlength 
    load(Hname(idxH(t),:)); 
    Htest = [Htest; ratiolist]; 

       
    for m = 1:Hlength 
        compare = strcmp(Hfiles(idxH(t)).name,Hfiles(m).name); 
        if compare == 1 
            countHR(1,m) = countHR(1,m) + 1; 
        else 
        end 
    end        

     
end 
Htestlabel = Htest(:,8); 
% ---- 
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Htest = Htest(:,1:7); 
% ---- 

  

  
Htrain = []; 
for t = trainstart:Hlength 
    load(Hname(idxH(t),:)); 
    Htrain = [Htrain; ratiolist]; 
end 
% % ---- 
% Htrain = [Htrain(:,1:3) Htrain(:,4)]; 
% % ---- 

  
% ---------------------------------------------------------------------

---- 
Dfiles = dir('d*.mat'); 

  
Dlength = length(Dfiles); 
Dtemp = randn(Dlength,1); 
[a,idxD] = sort(Dtemp); 

  
Dname = []; 
for i = 1:Dlength 
    Dname = [Dname; Dfiles(i).name]; 
end 

  
% choose 3 random DEP files for testing  
Dtest = []; 
countDEP = zeros(1,Dlength); 

  
for t = 1:testlength 
    load(Dname(idxD(t),:)); 
    Dtest = [Dtest; ratiolist]; 

     
    for n = 1:Dlength 
        compare = strcmp(Dfiles(idxD(t)).name,Dfiles(n).name); 
        if compare == 1 
            countDEP(1,n) = countDEP(1,n) + 1; 
        else 
        end 
    end  

     

     
end 
Dtestlabel = Dtest(:,8); 
% ---- 
Dtest = Dtest(:,1:7); 
% ---- 

  
Dtrain=[]; 
for t = trainstart:Dlength 
    load(Dname(idxD(t),:)); 
    Dtrain = [Dtrain; ratiolist]; 
end 
% % ---- 
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%  Dtrain = [Dtrain(:,1:3) Dtrain(:,4)]; 
% % ---- 
%----------------------------------------------------------------------

---- 
%classify 
alltrain = [Htrain ; Dtrain]; 
alltest = [Htest; Dtest]; 
testlabel = [Htestlabel; Dtestlabel]; 
% % %  
% band = 7; 
% class = classify(alltest(:,band), alltrain(:,band), alltrain(:,8)); 
% classq = classify(alltest(:,band), alltrain(:,band), 

alltrain(:,8),'quadratic'); 
%  
% a=3; 
% b=4; 
% class = classify([alltest(:,a) alltest(:,b)], [alltrain(:,a) 

alltrain(:,b)], alltrain(:,8)); 
% classq = classify([alltest(:,a) alltest(:,b)], [alltrain(:,a) 

alltrain(:,b)], alltrain(:,8),'quadratic'); 

  
a=4; b=6; c=7; 
class = classify([alltest(:,a) alltest(:,b) alltest(:,c)], 

[alltrain(:,a) alltrain(:,b) alltrain(:,c)], alltrain(:,8)); 
classq = classify([alltest(:,a) alltest(:,b) alltest(:,c)], 

[alltrain(:,a) alltrain(:,b) alltrain(:,c)], 

alltrain(:,8),'quadratic'); 

  
percent_all = sum(class == testlabel)/length(testlabel)*100; 
percent_hr = sum(class(1:length(Htestlabel)) == 

testlabel(1:length(Htestlabel)))/length(Htestlabel)*100; 
percent_dep = sum(class(length(Htestlabel)+1:length(testlabel)) == 

testlabel(length(Htestlabel)+1:length(testlabel)))/length(Dtestlabel)*1

00;  

  
percent_allq = sum(classq == testlabel)/length(testlabel)*100; 
percent_hrq = sum(classq(1:length(Htestlabel)) == 

testlabel(1:length(Htestlabel)))/length(Htestlabel)*100; 
percent_depq = sum(classq(length(Htestlabel)+1:length(testlabel)) == 

testlabel(length(Htestlabel)+1:length(testlabel)))/length(Dtestlabel)*1

00;  

  

  

  
%-------HR error calculation------------------------------------------ 
roHR = []; 
counterrHR = []; 
for t = 1:3 
    load(Hfiles(idxH(t)).name) 
    [r c] = size(ratiolist); 
    roHR = [roHR; r]; 
end 

  
for j=1:length(Htestlabel) 
       if class(j) == 0 
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           counterrHR = [counterrHR; 1]; 
       elseif class(j) == 1 
           counterrHR = [counterrHR; 0]; 
       end 
end 

  
rH1 = roHR(1); rH2 = roHR(2); rH3 = roHR(3); 

  
sumHRerr = [sum(counterrHR(1:rH1, 1)); sum(counterrHR(rH1+1:rH1+rH2, 

1)); sum(counterrHR(rH1+rH2+1:rH1+rH2+rH3, 1))]; 

  

  
%-------DEP error calculation------------------------------------------ 
roDEP = []; 
counterrDEP = []; 
for t = 1:3 
    load(Dfiles(idxD(t)).name) 
    [r c] = size(ratiolist); 
    roDEP = [roDEP; r]; 
end 

  
for j=1:length(Dtestlabel) 
       if class(j) == 1 
           counterrDEP = [counterrDEP; 1]; 
       elseif class(j) == 0 
           counterrDEP = [counterrDEP; 0]; 
       end 
end 

  
rD1 = roDEP(1); rD2 = roDEP(2); rD3 = roDEP(3); 

  

  
sumDEPerr = [sum(counterrDEP(1:rD1, 1)); sum(counterrDEP(rD1+1:rD1+rD2, 

1)); sum(counterrDEP(rD1+rD2+1:rD1+rD2+rD3, 1))]; 

  
%----------------------------------------------------------------------

---- 

  
idxHR = idxH(1:3); 
idxDEP = idxD(1:3); 
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errorhist.m: Calculating error histogram from cross validation iterations 

%Code by Nik Nur Wahidah Nik Hashim and  
%Wan Ahmad Hasan Wan Ahmad Sanadi 
%Spring 2011 
%----------------------------------------------------------------------

--- 

  
% function [patientHR, patientDEP, vectorHR, vectorDEP, sumerrorHR, 

sumerrorDEP,allpatientHR,percentErrorHR] = errorhist 
function [cHR,percentErrorHR,cDEP,percentErrorDEP] = errorhist 
clear;clc; 

  
testrun = 100; 

  
patientHR = []; 
vectorHR = []; 
sumerrorHR = []; 

  
patientDEP = []; 
vectorDEP = []; 
sumerrorDEP = []; 

  
for i = 1:testrun 
    

[percent_all,percent_hr,percent_dep,percent_allq,percent_hrq,percent_de

pq,idxH,idxD,roHR,roDEP,sumHRerr,sumDEPerr] = crossval; 

     
    patientHR = [patientHR idxH]; 
    vectorHR = [vectorHR roHR]; 
    sumerrorHR = [sumerrorHR sumHRerr]; 

     
    patientDEP = [patientDEP idxD]; 
    vectorDEP = [vectorDEP roDEP]; 
    sumerrorDEP = [sumerrorDEP sumDEPerr]; 
end 

  
numHR = 12; 
numDEP = 20; 

  
allerrorHR = zeros(1,numHR); % number of HR patient 
allerrorDEP = zeros(1,numDEP); % number of DEP patient 
cHR = zeros(1,numHR); % how many HR times patient show up 
cDEP = zeros(1,numDEP); % how many DEP times patient show up 

  
% HR 
for k = 1:testrun 
    for l = 1:3 
        for g = 1:numHR %12 patient for HR 
            if patientHR(l,k) == g 
                allerrorHR(g) = allerrorHR(g) + sumerrorHR(l,k); 
                cHR(g) = cHR(g) + 1; 
            end 
        end 
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    end 
end 

  
% --- ratio/percentage             
HRvec = [5 6 11 6 4 5 2 5 5 4 6 18]; 
allpatientHR = cHR.*HRvec; 
percentErrorHR = (allerrorHR./allpatientHR)*100; %if 100%, all wrong 

  
% DEP 
for k = 1:testrun 
    for l = 1:3 
        for g = 1:numDEP %20 patient for DEP 
            if patientDEP(l,k) == g 
                allerrorDEP(g) = allerrorDEP(g) + sumerrorDEP(l,k); 
                cDEP(g) = cDEP(g) + 1; 
            end 
        end 
    end 
end 

  
% --- ratio/percentage             
DEPvec = [7 5 7 17 28 13 6 13 9 10 10 10 5 4 8 15 9 3 9 6]; 
allpatientDEP = cDEP.*DEPvec; 
percentErrorDEP = (allerrorDEP./allpatientDEP)*100; %if 100%, all 

wrong9 
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percentMean.m: Calculating mean classification result from cross validation method 

 
 %Code by Nik Nur Wahidah Nik Hashim and  
%Wan Ahmad Hasan Wan Ahmad Sanadi 
%Spring 2011 
%----------------------------------------------------------------------

--- 

  
% average percentage 

  
function [mean_all, mean_hr, mean_dep, mean_allq, mean_hrq, mean_depq] 

= percentMean 
clear;clc; 
testrun = 100; 

  
all = []; 
hr = []; 
dep = []; 

  
allq = []; 
hrq = []; 
depq = []; 
for j = 1:testrun 
     

[percent_all,percent_hr,percent_dep,percent_allq,percent_hrq,percent_de

pq] = crossval; 
    all = [all percent_all]; 
    hr = [hr percent_hr]; 
    dep = [dep percent_dep]; 

     
    allq = [allq percent_allq]; 
    hrq = [hrq percent_hrq]; 
    depq = [depq percent_depq]; 
end 

  
% mean percentage 
mean_all = mean(all); 
mean_hr = mean(hr); 
mean_dep = mean(dep); 

  
mean_allq = mean(allq); 
mean_hrq = mean(hrq); 
mean_depq = mean(depq); 
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