
DEVELOPMENT OF NOVEL, CNS PENETRANT MGLU3 SELECTIVE NEGATIVE 

ALLOSTERIC MODULATOR PROBES DERIVED FROM A CLOSELY RELATED 

MGLU5 POSITIVE ALLOSTERIC MODULATOR  

 

BY 

 

JOSHUA ANDREW BRUNER 

 

Thesis 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

In partial fulfillment of the requirements 

For the degree of 

 

MASTER OF SCIENCE 

in 

Chemistry 

 

May, 2012 

Nashville, Tennessee 

 

Approved: 

Professor Craig Lindsley 

Professor Gary Sulikowski 



	
  

ii	
  	
  

 

 

 

 

 

 

 

 

To my parents, Pam and Lewis, for always being supportive 

and 

To my MRB IV 12th floor friends, who never let me have a dull day in lab 

 

  



	
  

iii	
  	
  

ACKNOWLEDGMENTS 

 

 First, I would like to thank my advisor, Professor Craig Lindsley.  He has always 

provided terrific insight into my project and job search.  I would also like to thank 

professor Gary Sulikowski, who in class and as the second half of my committee has 

taught me a myriad of organic chemistry lessons that provided a superb foundation for 

my master’s studies.  In addition, I would like to thank the VICB for funding my 

research. 

 My grandmother, Elsie, has always instilled in me a love for science.  From 

building model rockets to always asking me the details of what I had learned during my 

school day, I would like to thank her for teaching me how to explain what I was learning.  

My parents, Pam and Lewis, have always been infinitely supportive of all my decisions in 

life, especially in deciding to pursue a graduate degree at Vanderbilt University.  Without 

them, I would not be the person I am today.  In the same regard, my sisters, Jenifer and 

Brittany, have always been there for me and have shaped me into the middle sibling I 

have become.   

 It would be a complete oversight to not mention my friends from North Carolina 

State University who have always been there for me through thick and thin.  Luckily, I 

have also made many great friends here at Vanderbilt.  My fellow bay members, Sydney, 

Margie, and Mark (and honorary member Matt), and good friends Brandon, Kris, and 

Mike, have made my time at Vanderbilt something I would not trade for the world.   



	
  

iv	
  	
  

 

TABLE OF CONTENTS 

 
 Page	
  

DEDICATION	
  .............................................................................................................................................	
  ii	
  

ACKNOWLEDGMENTS	
  .......................................................................................................................	
  iii	
  

LIST OF TABLES	
  .....................................................................................................................................	
  vi	
  

LIST OF FIGURES	
  ..................................................................................................................................	
  vii	
  

LIST OF SCHEMES	
  ..............................................................................................................................	
  viii	
  

Chapter	
  
	
  
I. INTRODUCTION	
  ...................................................................................................................................	
  1	
  

1.1 Glutamate receptors – Introduction and structure ..................................................... 1	
  
1.2 Expression and function of mGlu3 ............................................................................ 4	
  
1.3 Allosteric ligands for mGlus ..................................................................................... 6	
  
1.4 Origin of mGlu allosteric modulators; the MPEP chemotype .................................. 8	
  
1.5 Allosteric modulation of mGlu3 .............................................................................. 10	
  
Notes on figures, tables, and compound numbering ..................................................... 13 

	
  
II. LEAD OPTIMIZATION AROUND DISTAL PHENYL RING	
  .......................................	
  14	
  

2.1 Synthesis of analogues around the distal phenyl ring ............................................. 14	
  
2.2 Pharmacological testing of compound 9l (VU0457299) ........................................ 16	
  
2.3 Chapter summary .................................................................................................... 18 

	
  
III. LEAD OPTIMIZATION AROUND AMIDE BOND	
  ..........................................................	
  20	
  

3.1 Synthesis of analogues around the proximal amide bond ....................................... 20	
  
3.2 Structure Activity Relationships (SAR) ................................................................. 21	
  
3.3 In vitro and in vivo pharmacological testing of 19 (VU0463597) .......................... 24	
  
3.4 Analog development using Grignard additions ...................................................... 28	
  
3.5 Analog development via O-alkylation of VU0092273 ........................................... 29	
  
3.6 Analog development via reductive aminations ....................................................... 30	
  
3.7 Chapter summary .................................................................................................... 32 

	
  
 



	
  

v	
  	
  

IV. CURRENT EFFORTS AND FUTURE DIRECTIONS	
  ......................................................	
  33	
  

4.1 Current efforts utilizing molecular switches ........................................................... 33	
  
4.2 Future efforts aimed at improving pharmacokinetics of mGlu3 probe ................... 36	
  
4.3 Chapter summary .................................................................................................... 38 

	
  
V. EXPERIMENTAL	
  .............................................................................................................................	
  39	
  

5.1 Methods and Materials ............................................................................................ 39 
	
  
Appendix	
  
	
  
A. REFERENCES CITED	
  ....................................................................................................................	
  54	
  

B. COMPOUND STRUCTURES	
  .......................................................................................................	
  57	
  

 

 

  



	
  

vi	
  	
  

LIST OF TABLES 

 
 

  Page                                              
Chapter II 
 
Table 
 
1. Selected analogs from Sonagashira coupling library ...................................................16 
 
 
 
Chapter III 
 
Table 
 
1. Structure and activity of analogs 14 .............................................................................21 
 
2. Representative reductive amination products 33 and activities at mGlu2 
 and mGlu3 ....................................................................................................................31 
 
 
 
 
 
 
 
 
 
 

 

  



	
  

vii	
  	
  

LIST OF FIGURES 

 
 

Page 
Chapter I 
 
Figure 

 
1.  Structural topology of typical orthosteric and allosteric sites of mGlus ........................3 
 
2. Cascade of agonist binding to group II mGlus ..............................................................5 
 
3.   Structures of mGlu5 allosteric modulators MPEP and MTEP .......................................8 
 
4.   The use of molecular switches to modify the mode of pharmacology  
 within mGlu5 ........................................................................................................................................................................10 
 
5.   Structures of mGlu3 NAMs RO4491533 (1) and LY2399575 (2) ...............................11 
 
6. PAM (mGlu5) and NAM (mGlu3) activity of VU0092273 (5) ....................................12 
 
 
 
Chapter II 
 
Figure 
 
1.   Library optimization for VU0092273 (5) ....................................................................15 
 
2. Activity of VU0402222 (9e) and VU0457299 (9l) ......................................................18 
 
 
 
Chapter III 
 
Figure 
 
1. Structure of VU0092273 ..............................................................................................22 
 
2. Structure of VU0459730 (15) and “PAM-like” response in GIRK assay ...................23 
 
3. In vitro molecular pharmacology characterization of 12 (VU0463597) .....................25 
 
4. Metabolite ID studies showed the major metabolite of 19 is phenol 21, via 
 O-dealkylation of the methyl ether ..............................................................................27 



	
  

viii	
  	
  

LIST OF SCHEMES 

 
Page 

Chapter II 

Scheme 
 

1.  Reagents and conditions for the synthesis of 9 ............................................................15 
 
 
 
Chapter III 
 
Scheme 
 
1.   Synthesis of 4-OMePh scaffold and general amide coupling ......................................20 
 
2. Synthesis and activities of (R)-19 and (S)-20 ..............................................................24 
 
3. Synthesis of O-demethylation product 21 ....................................................................27 
 
4. Synthesis of trifluoromethyl either analog 26 ..............................................................28 
 
5. Synthesis of Grignard products 28-29d .......................................................................29 
 
6. Synthesis of O-alkylation analogs 30-31d ...................................................................30 
 
7. Synthesis of generic amine 33 via reductive amination ...............................................31 
 
 
 
Chapter IV 
 
Scheme 
 
1. Synthesis of pyridinyl analogs VU0464192 (36), VU0464193 (39), and 42 
 from brominated nicotinic and picolinic acid derivatives ............................................34 
 
2. Synthesis of pyimidines 45 and 48 and pyrazine 51 ....................................................35 
 
3. Alternative route to arrive at pyrimidines 45 and 48 and pyrazine 51 .........................36 
 
 
 



	
  

ix	
  	
  

4. Proposed route to generic substituted alkyl ether 61 ...................................................36 
 
5. Route to obtain benzyl either 66 ..................................................................................37 
 
 
 
 

  



	
  

1	
  	
  

CHAPTER I 

 

INTRODUCTION 

 

mGlus have been proven to be therapeutic targets for a range of psychiatric 

disorders including schizophrenia, substance abuse, anxiety disorders, and depression.  

Schizophrenia, especially, is a complex mental disorder that affects approximately 1% of 

the world’s population.1 The core symptoms of the disorder are subdivided into four 

distinct groups including positive, negative, cognitive, and affective2.  The NMDA 

receptor hypofunction hypothesis is generally the favored pathophysiological model for 

the disease mechanism for schizophrenia.  As a result, multiple approaches to enhance 

the glutamate/NMDA system continue to be pursued as a means to ameliorate the major 

symptom dimensions of the disease.3,4 Recently, several findings have suggested that 

group II mGlus are involved in the pathophysiology of schizophrenia especially.  

However, little is know of whether this group II mGlu involvement is attributed to mGlu2 

or mGlu3.5 As a result, molecular probes that selectively target mGlu3 are necessary to 

determine its involvement in disease pathogenesis.    

 

1.1 Glutamate receptors – Introduction and structure 

 Glutamate is the primary excitatory neurotransmitter in the human central nervous 

system.2 It is essential in many physiological processes and affects a diverse group of 

receptors including ionotropic and metabotropic glutamate receptors.   The ionotropic 

glutamate receptors (iGluRs) are ligand-gated ion channels and are responsible for fast 
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synaptic transmission.  In the presence of an agonist, these channels are permeable to 

cations.  Ionotropic receptors consist of a tetramer of subunits and are categorized into 

three subtypes based on pharmacological and electrophysiological data.  These include α-

amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, kainite (KA) 

receptors, and N-methyl-D-aspartate (NMDA) receptors.  Ionotropic glutamate receptors 

contain an extracellular amino terminal domain, bi-lobed agonist binding domain, and a 

pore forming membrane-residing domain, which forms a reentrant loop entering from and 

exiting the cytoplasm.6 The metabotropic glutamate receptors (mGlus) belong to G-

protein coupled receptor (GPCR) family C.  Eight mGlus have been cloned, sequenced 

and assigned to three groups based on their sequence homology, pharmacology, and 

coupling to effector mechanisms.6,7  These include: group I – mGlu1 and mGlu5; group II 

– mGlu2 and mGlu3; and group III – mGlu4, mGlu6, mGlu7 and mGlu8.  mGlus within the 

same group maintain approximately 70% homology while intergroup homology is 

maintained at about 45%.8 These receptors are similar in that each contains an 

intracellular, an extracellular, and a 7-transmembrane domain each of which is shown in 

Figure 1.9,10   
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The carboxy-terminal intracellular domain of mGlus is highly variable and is the 

location of the binding site for a variety of intracellular proteins involved in receptor 

signaling, receptor desensitization, and receptor targeting.6 The extracellular domain 

consists of the venus-flytrap domain and the cysteine-rich domain.  The venus-flytrip 

contains the highly conserved orthosteric-binding site, which consists of two large 

globular domains and a connecting hinge region.  The two globular domains are capable 

of folding together in order to bind glutamate and other orthosteric ligands.  The cysteine 

rich domain of the extracellular segment connects the venus-flytrap domain to the 

Figure 1. Structural topology of typical orthosteric and allosteric sites of mGlus 
highlighting representative orthosteric and allosteric ligands by the beige and green 
ovals respectively (Melancon, et al 2012). 

generally hydrophilic, as would be anticipated for amino acids
exposed to the phospholipid-rich membrane and the water-rich
environments, respectively. The seven transmembrane helices are
each approximately two-dozen amino acids long, while the C- and
N-terminal tails as well as the loops can vary widely in length with
up to hundreds of amino acids.4−7,16−32 On the basis of sequence
homology and functional roles, 7TMRs commonly are divided
into three main families (or classes): A (e.g., M1 mAChR), B (e.g.,
CRF1), and C (e.g., mGlu5) (Figure 2). The families are readily
distinguished by comparing their amino acid sequences. Family B
is distinguished from family A by the presence of a larger
extracellular loop, and family C has a large, bi-lobed N-terminal
Venus fly trap (VFT) domain. A second major difference
between the families concerns the location of the orthosteric
binding site and the nature of the orthosteric ligand. As shown in
Figure 2, the orthosteric binding site of many family A 7TMRs is
located with the 7TM domain whereas the orthosteric binding
site is located in the large extracellular loop within family B and
within the VFT domain in family C. The orthosteric ligands
for families A and C are neurotransmitters, for example, 5
(acetylcholine, for the mAChRs) and 9 (glutamate, for the
mGluRs), respectively.4−7 The orthosteric ligands for family B
7TMRs are large peptide ligands with usually >30 amino acids,
such as the 41 amino acid peptide 7 (hCRF) for corticotrophin
releasing factor 1 (CRF1). In contrast, allosteric ligands are
structurally distinct from orthosteric ligands and bind at distinct
sights, often, but not always, topologically distant from the
orthosteric site.4−7 For example, the family A M1 mAChR PAM 6
(BQCA)33 is believed to bind in a region above the TMs among
the extracellular loops, whereas the family B PAM, 8 (DMP696),34

and the family C NAM, 10 (MPEP),35,36 bind within the TM
domains.
Are there naturally occurring allosteric modulators? This

question is invariably posed during any discussion of allosteric
modulators, and one must understand the complexity of
identifying such ligands within the chemical diversity of ligands
within the human body.1,2,37 However, a few natural allosteric
modulators have been described, including the unnatural amino
acid D-serine (an allosteric modulator of the NMDA receptor),38

L-phenylalanine, and L-tryptophan (allosteric modulators of
the calcium receptor)39 and the tetrepeptide Leu-Ser-Ala-Leu,
also known as 5-HT moduline (an allosteric modulator of the
5-HT1B receptor).

40,41

1.3. Orthosteric and Allosteric 7TMR Pharmacology.
Historically, almost all of the FDA-approved drugs that act at
7TMRs bind at the orthosteric site and regulate receptor
function by classical agonism (directly stimulating a receptor
response), inverse agonism (blocking constitutive receptor
activity), or competitive antagonism (blocking the binding of
the native agonist).4−8 This is somewhat expected, as the many
of these ligands were discovered by employing assays that biased
targeting of the orthosteric binding site. Despite this success,
synthetic ligands exist for only a fraction of the known 7TMRs,
and many efforts have failed to produce highly selective com-
pounds suitable as drug leads because of the highly conserved
orthosteric binding site across a family of 7TMRs and/or
because of unfavorable physicochemical and drug metabolism/
pharmacokinetic (DMPK) properties of synthetic orthosteric
ligands. In many cases, direct acting agonists are toxic or lead to

Figure 2. Structural topology of typical orthosteric and allosteric sites of families A, B, and C 7TMRs, highlighting representative orthosteric and
allosteric ligands for each family.

Journal of Medicinal Chemistry Perspective

dx.doi.org/10.1021/jm201139r | J. Med. Chem. 2012, 55, 1445−14641446
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transmembrane domains.  The nineteen cysteine residues in this region are conserved 

among all mGlus, and it is thought that these residues play a key role in three-

dimensional structure, intramolecular transduction, and receptor dimerization.  In 

addition to carboxy-terminal intracellular domain and the extracellular domain, all family 

C GPCRs contain a 7-transmembrane domain (7TMD), which consists of seven 

membrane spanning α-helices that are connected via short intra- and extracellular loops.6    

mGlus exist exclusively as homodimers that are held together by their 

extracellular domains through disulfide bonds in addition to the hydrophobic interface of 

the constituents.  In the inactive state, the extracellular domains of the constituents exist 

in a physically separated and open confirmation.  Upon ligand binding the domains close 

together forming the homodimer.  Intracellular signal transduction is initiated by the 

rotation of the extracellular domains in relation to one another upon ligand binding which 

leads to the stabilization of the transmembrane domain.6   

 

1.2 Expression and function of mGlu3 

mGlu3 consists of 879 amino acids and has a predicted molecular weight of 

approximately 95 kDa.  Its intracellular domain couples via Gi and Go to inhibit adenylate 

cyclase, which is responsible for the formation of cyclic adensosine monophosphate 

(cAMP).  The intracellular C-terminal tail also interacts with a number of regulatory 

proteins.10 This cascade of events has been shown to generate secondary messengers and 

activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and phophoinositide 3-

kinase (PI3K) (Figure 2) .11   
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In general, the group II mGlus play an important role is synaptic plasticity, which 

directly effects learning and memory among other things.  The effects of group II mGlus 

occur primarily presynaptically via their inhibition of glutamate release.  These effects 

can also be ascribed to the inhibition of non-vesicular glutamate release from glia.  It is 

suggested that mGlu3 is involved with regulating non-synaptic glutamate since it is 

localized away from active synaptic zones.5 

Figure 2.  Cascade of agonist binding to group II mGlus leading to G-protein 
inhibition of adenyl cyclase and the production of cAMP from ATP.  The binding of 
an agonist to group II mGlus leads to an increase in amyloid-β42 generation, tau 
phosphorylation and an exacerbation of the cognitive deficits in an AD mouse model 
via Gαi/o signaling through ERK1/2 and PI3K (Thathia and Strooper 2011) 
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Results from mGlu3 expression and function studies largely overlap between 

human and rat studies.  mGlu3 in humans is localized to neurons in the cerebral cortex, 

dentate gyrus granule cells, Golgi and basket/stellate cells in the cerebellum and neurons 

of the thalamic reticular nucleus. Species differences include the finding that expression 

in subcortical white matter and reticluar thalamic nucleus is much less prominent in 

humans than in rodents.5 

Few compounds have shown selectivity within group II mGlus.  Particularly only 

selective mGlu2 positive allosteric modulators (PAMs) have been identified.12 One 

exception is the low-affinity endogenous agonist N-acetylaspartylglutamate (NAAG).5 

Selectivity of available antibodies has also been too poor to target one group II mGlu 

over another.  Therefore, the individual roles of mGlu2 and mGlu3 have been difficult to 

evaluate and are poorly understood.  Thus, it is necessary to develop selective analogs to 

study each receptor individually.  This could be accomplished by developing allosteric 

ligands that bind outside the highly conserve orthosteric binding site, taking advantage of 

regions with reduced homology. 

 

1.3 Allosteric ligands for mGlus 

G-protein-coupled receptors (GPCRs) have proven themselves as successful drug 

targets; however, selective ligands have yet to be developed for the majority of these 

receptors.  Several issues have slowed the successful development of highly selective 

ligands for GPCRs.  These include that the orthosteric binding sites across families of 

GPCRs are highly conserved and that native ligands for orthosteric sites of many GPCRs 

have properties that are incompatible with commonly used scaffolds in small-molecule 
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drug discovery.12 Alternatively, one could create allosteric modulators that bind outside 

the highly conserved orthosteric region to target the individual subtypes of GPCRs.  This 

strategy would allow for one to tune selectivity where sequence homology is much lower 

in the allosteric region of the receptors (Figure 1).8 

Small molecules that target allosteric regions of GPCRs could potentiate or inhibit 

activation of the receptor by its native ligand.  Upon binding, allosteric GPCR modulators 

can exhibit several different pharmacological properties.  These include: affinity 

modulation, efficacy modulation, and agonism/inverse agonism. Affinity modulation 

involves a change in the association and/or dissociation rate of an orthosteric ligand with 

its binding pocket, resulting from a conformational change caused by an allosteric 

modulator.  Efficacy modulation, in the regard of allosteric modulation, is an alteration of 

the intracellular responses leading to a change in the signaling capacity within the 

cascade.  Finally, agonism is the perturbation of a signaling cascade in a positive manner, 

while inverse agonism is the same in a negative way.  mGlus are a prime examples of 

GPCRs that exhibit high sequence homology within their orthosteric binding pockets.  

Because of this binding pocket homology and the fact that little is known about the true 

pathology of many CNS disorders and how their pathology may be affected by 

modulating mGlus, it is desirable to develop probes that target each subtype of the mGlus 

selectively.12 

Highly subtype selective allosteric ligands (both positive and negative allosteric 

modulators, PAMs and NAMs respectively) have been developed for mGlu1, mGlu2, 

mGlu4, and mGlu5.8, 12-18 Until now, in regard to Group II ligands, only selective mGlu2 

PAMs have been discovered.  Most Group II ligands do not discriminate between mGlu2 
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and mGlu3 in lieu of the fact that these two receptors share divergent expression and 

functional differences.18-21 Due to the lack of selective small molecule probes for the 

Group II mGlus it has been difficult to discern distinct pharmacological roles for mGlu3.  

However, numerous studies suggest mGlu3 is involved in glial-neuronal communication 

and may have therapeutic potential for the treatment of schizophrenia, alzheimer’s 

disease, and depression, therefore, making it an ideal target for the development of 

selective allosteric modulators.8, 12 13, 19, 23-25 

 

1.4 Origin of mGlu allosteric modulators; the MPEP chemotype 

 The discovery of SIB-1893 and 2-Methyl-6-(phenylethynyl)pyridine (1, MPEP) 

(Figure 3) in the late 1990s by scientists at SIBIA Neurosciences and Novartis, 

respectively,  began the blossoming of selective allosteric modulators of mGlus.26,27 

MPEP was initially reported as a potent, selective, and systemically active antagonists of 

mGlu5.  This antagonism comes with limited activity at mGlu1, Group II, and Group III 

receptors as well as at ionotropic glutamate receptors.27 

 

 
Figure 3. Structures of mGlu5 allosteric modulators MPEP and MTEP 

N

S

N

1, MPEP 2, MTEP
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Due to several shortcomings of MPEP as an in vivo therapeutic agent such as off-

target activity and poor aqueous solubility, it was necessary to discover new antagonists 

that offered improved pharmacological properties.  This effort led to the discovery of the 

more potent mGlu5 antagonist by Merck & Co., 3-((2-Methyl-4-

thiazolyl)ethynyl)pyridine (2, MTEP).28 MTEP (Figure 3) was initially reported as a 

potent and selective antagonist of mGlu5 with fewer off-target effects than MPEP.  In 

vivo rat models also demonstrated that MTEP was more potent in receptor occupancy 

studies as well as in the fear-potentiated startle model of anxiety.28 

 With MPEP and MTEP in hand, and a more thorough understanding of how 

allosteric modulation could be utilized to affect mGlus, a plethora of “MPEP-like” 

compounds have been reported by our group and others that have high propensity of 

displaying “molecular switches”. This molecular switch phenomena is described as a 

modulation in activity or even the mode of pharmacology by single molecular changes 

within a scaffold.29-32 The use of molecular switches as they pertain mGlu5 modulation 

can be seen in Figure 4.32 The MPEP-chemotype of allosteric modulators has 

demonstrated this phenomena across mGlus, and will be the foundation of our studies 

targeting mGlu3. 
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Figure 4. The use of molecular switches to modify the mode of pharmacology within 
mGlu5 (Wood 2011) 

 
 
1.5 Allosteric modulation of mGlu3 

 To date, only two mGlu3 NAMs have been reported (Figure 5).33, 34    The first, 

reported by Addex, was RO4491533 (3), a dual mGlu2/mGlu3 NAM (mGlu2 IC50 = 296 

nM, mGlu3 IC50 = 270 nM) based on a benzodiazepine nucleus that was efficacious in 

preclinical cognition and depression models.33  At the same time, Lilly disclosed 

LY2389575 (4), as a selective mGlu3 NAM;34 however, in our hands, 4 is only ~4-fold 

selective for mGlu3 over mGlu2 (mGlu2 IC50 = 17 mM, mGlu3 IC50 = 4.2 mM) when 

measuring native coupling of these receptors to G protein inwardly rectifying potassium 

(GIRK) channels via thallium flux.35  Thus, there is a critical need for potent and 

selective mGlu3 ligands. 
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Figure 5.  Structures of mGlu3 NAMs RO4491533 (1) and LY2399575 (2), both dual 
mGlu2/mGlu3 NAMs. 
 
 
 

In the absence of an HTS campaign to identify novel mGlu3 NAMs, we elected to 

take advantage of the propensity of certain mGlu5 PAM chemotypes to induce molecular 

switches and easily modulate the mode of pharmacology or mGlu subtype selectivity 

with subtle structural alteration.29-32, 36, 37 One such chemotype that we, and others, have 

reported on with a high propensity for displaying ‘molecular switches’ is represented by 

VU0092273 (5).   Compound 5 a very potent MPEP-site mGlu5 PAM (Figure 6) and 

highly selective across six of the mGlus.  However, 5 possessed weak mGlu3 NAM 

activity (IC50 ~ 10 mM, inhibits EC80 by 72%) providing a lead compound from which to 

develop a potent and selective mGlu3 NAM.    

 

N

HN

F3C

O

N

4, LY2399575

LY mGlu2 IC50 > 12.5 µM
LY mGlu3 IC50 = 190 nM

VU mGlu2 IC50 = 17 µM
VU mGlu3 IC50 = 4.2 µM

NN
HCl

Cl
N

N

Br

3, RO4491533

mGlu2 IC50 = 296 nM
mGlu3 IC50 = 270 nM
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Figure 6.  PAM (mGlu5) and NAM (mGlu3) activity of VU0092273 (5) (A) Structure of 
VU0092273 (5), a potent mGlu5 PAM (EC50 = 10 nM).  (B) mGlu5 PAM concentration-
response curve (CRC) in presence of an EC20 of glutamate. (C) mGlu3 antagonist CRC.  5 
displayed weak NAM activity at mGlu3 (IC50 >10 mM, inhibits EC80 ~ 72%)  
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Notes on figures, tables, and compound numbering 

 

 Throughout the remaining Chapters, all figure and table numbering is specific to 

each Chapter.  Put differently, each Chapter’s figure and table numbering begins with 

“1”.  Similarly, compound numbering formats and nomenclature is specific for each 

Chapter.  Arbitrary numbering (e.g. Compound 1 or (1)) is used interchangeably 

throughout each Chapter.  These are used in place of the VU registration codes (e.g. 

VU0075630) in order to increase the ease and readability and to reduce space.  Table 1 in 

the Appendix contains the Thesis numbering and VU registration code listed for each 

compound (by Thesis numbering) to allow for ease in requesting compounds from 

universal storage or referencing laboratory notebooks.   
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CHAPTER II 

 

LEAD OPTIMIZATION AROUND DISTAL PHENYL RING 

 

2.1 Synthesis of analogues around the distal phenyl ring 

Initial optimization efforts were focused around the distal phenyl ring.  As we 

have previously reported, due to the steep nature of allosteric modulator SAR (especially 

in series prone to ‘molecular switches’), we pursued a targeted iterative parallel synthesis 

approach for the chemical optimization of 5.7,8 Creating a library using this approach 

stems from the idea of generating fewer, but specifically designed compounds based on a 

desired structural motif and physiochemical properties.  In turn, a balance is established 

with the ability to synthesize targeted libraries while highly optimized biological test 

systems allow us to produce an abundance of data.  Ultimately this creates an efficient 

workflow that greatly reduces the length of timelines in medicinal chemistry projects.38 

Previous work in this scaffold (5) indicated that mGlu5 PAM activity could be 

greatly diminished with substitution other than fluorine on the distal aryl ring, as well as 

with modifications to the amide moiety.29 Therefore, our first generation library design 

(Figure 1) initially held the 4-hydroxypiperidine amide constant, while surveying a 

diverse array of functionalized aryl/heteroaryl rings as well as other aliphatic groups.  

Once mGlu3-prefering modifications were identified, these were maintained and an 

amide scan was performed to both improve mGlu3 NAM activity while eliminating 

mGlu5 PAM activity. 
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Figure 1. Library optimization strategy for VU0092273 (5) to improve mGlu3 NAM 
activity while simultaneously eliminating mGlu5 PAM activity.   
 
 
 
 Our first 48-member library was prepared as shown in Scheme 1, and purified, to 

>98% purity, by reverse phase chromatography.39 Commercially available 4-iodobenzoic 

acid 6 was coupled to 4-hydroxypiperdine 7, under standard EDC/HOBt conditions, to 

provide amide 8 in 95% yield.  Once in hand, 8 underwent 48 microwave-assisted 

Sonogashira coupling reactions with a diverse array of functionalized terminal acetylenes 

to provide analogs 9 (Scheme 1).  Selected analogs are shown in Figure 1 and an 

exhaustive list of analogs can be found in appendix B. 

 

  

!"#!"#

Scheme	
  1.	
  	
  	
  Reagents	
  and	
  conditions:	
  (a)	
  EDC,	
  DMAP,	
  DCM,	
  DIPEA,	
  95%;	
  (b)	
  20%	
  CuI,	
  
5%	
  Pd(PPh3)4,	
  48	
  acetylenes	
  (1.1	
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Table 1. Selected analogs from Sonagashira coupling library 

 
 

 

2.2 Pharmacological testing of compound 9l (VU0457299) 

 All 48 analogs were screened using a thallium flux assay that takes advantage of 

the ability of Gβγ subunits in the Gi and Go heterotrimer to interact with G-protein 

regulated inwardly rectifying potassium channels (GIRKs).  With prior knowledge that 

group II mGlus are coupled to Gi/o, this assay allows for the detection of various types of 

pharmacophores including agonists, antagonists, and allosteric modulators of group II 

and III mGlus, notably including mGlu3 for this research project.40 
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In order to test for antagonism at mGlu3, the thallium flux assay is modified by 

treating cells with a dose of glutamate to elicit an EC80 response, followed by treatment 

with the test compound in hopes of observing a dose dependent decrease in thallium 

flux.40 True to allosteric modulator SAR, 47 of 48 of the analogs were either inactive on 

mGlu3 (IC50 >10 mM) or only afforded modest inhibition (5-50% Glu Min) of the 

glutamate EC80.  Only one compound, 9l (VU0457299) possessing a 4-methoxyphenyl 

moiety, displayed mGlu3 NAM potency below 10 µM (mGlu3 IC50 = 4.42 µM, 7.43% 

Glu Min) (Figure 2).  Interestingly, the regioisomeric 2-OMe (9m) (Figure 2) and 3-

OMe (9n) congeners were inactive as mGlu3 antagonists.  Lastly, the tert-butyl acetylene 

derivative 9j was found earlier as an mGlu5 PAM and showed slight activity in an mGlu3 

counter screen.  However, this compound was resynthesized and failed to show activity 

in our studies.  Overall, 9l was the only active mGlu3 NAM from this series of 

compounds and became the new lead compound to which further modifications were 

made. 
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Figure 2. Activity of VU0402222 (9e) and VU0457299 (9l) 

 

2.3 Chapter summary 

With the understanding that a series of analogs based on 5 would be prone to 

molecular switches for altering activity, an iterative parallel synthesis approach was taken 

to improve on the mGlu3 NAM activity of 5.  The initial synthetic strategy involved 

generating a 48-membered library via the means of Sonagashira couplings of iodide 8 

with a series of acetylene derivatives.  True to typical allosteric modulator SAR studies, 

47 of 48 compounds were inactive as mGlu3 NAMs.  However, the p-methoxyphenyl 

analog 9l displayed mGlu3 NAM potency below 10 µM (mGlu3 IC50 = 4.42 µM, 7.43% 

Glu Min).  With this data in hand, the 9l analog then became the lead compound.  We 
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then sought to improve mGlu3 NAM activity and selectivity by exploring alternative 

amides to be discussed in Chapter III.   
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CHAPTER III 

 

LEAD OPTIMIZATION AROUND AMIDE BOND 

 

3.1 Synthesis of analogues around the proximal amide bond 

 Based on the medicinal chemistry profiling conducted in Chapter 2, varying the 

substituents connected via the amide bond was explored next.  With the p-methoxy 

moiety from the western region of the scaffold held constant, the strategy was aimed at 

exploring what structural features were necessary to maintain and improve mGlu3 

negative allosteric modulation (NAM) activity.  The goal then was to choose a suitable, 

selective compound with which in vivo studies could be used to confirm the observed in 

vitro pharmacology.  An iterative analogue library synthesis approach was utilized to 

prepare a 48-member library.  To arrive at these compounds, 4-ethynylanisole 10 first 

underwent a microwave-assisted Sonogashira reaction with ethyl 4-iodobenzoate 11 

followed by saponification of 12 and a series of amide couplings with carboxylic acid 13 

to yield the generic amide 14 in 31-75% overall yield (Scheme 1).   

Scheme	
  1.	
  	
  Synthesis	
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3.2 Structure Activity Relationships (SAR) 

 SAR within this library provided much insight to the functionalities required for 

mGlu3 NAM activity.  The initial aim was to incorporate a variety of structurally distinct 

moieties into this region of the molecule.  Various aliphatic and aromatic amines were 

coupled to carboxylic acid 13 using HATU amide coupling conditions to develop the 

library (Table 1).  An exhaustive list of the amines used in generating this library can be 

found in Appendix B.   

 

Table 1. Structure and activity of analogs 14 
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Upon screening this library in mGlu3 NAM optimized G protein inwardly 

rectifying potassium (GIRK) channel thallium flux assay, it was evident that structural 

elements similar to that of 5 (VU0092273) (Figure 1) are required for maintaining  

 

activity.  This second library was far more productive, providing several analogs 14 with 

mGlu3 NAM potencies below 10 mM; however, SAR was still quite steep.  It became 

evident that polar and basic groups separated from the nitrogen of the amide bond by one 

to three carbons generally displayed activity (i.e. 14a,b,e).  Several aliphatic moieties that 

lacked polar functionalities showed no activity.  The case was the same with most of the 

aromatic and extremely bulky amines coupled to the acetylene scaffold.  Interestingly, 

VU0459730 (15) showed potential as a positive allosteric modulator (Figure 1).  

However, further testing in necessary to confirm this mechanism.   

 

N

O

5, VU0092273

OH

Figure 1. Structure of VU0092273 (5).  This previous lead compound was used a guide 
as to the structural features that need to be maintained in amide coupling library. 
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Figure 2. Structure of 15, VU0459730 and "PAM-like" response in GIRK assay 

 

The most potent mGlu3 antagonist from this series of compounds was the 3-

hyrdoxymethylpiperidine analog VU0459726 (14e).  In addition, we found that 

enantioselective mGlu3 inhibition was displayed by the (S)-piperidine carboxylic acid 14c 

(IC50 = 5.8 mM) while the (R)-enantiomer 14d (IC50 >>10 mM) was essentially inactive.  

Due to the enantioselective activity of 14c and 14d, it was then necessary to determine if 

14e displayed enantioselective inhibition.  Following Scheme 2, both the (R)- and (S)-

enantiomers of 14e, 19 (VU0463597) and 20 (VU0463593) were synthesized and assayed 

in the mGlu3 GIRK assay.  Here, 19 (IC50 = 2.4 µM) was 2-fold more potent than 20 (IC50 

= 4.9 µM), but both afforded full blockade (% Glu Mins of -0.4).  Efforts now shifted 

towards more fully characterizing 19 (VU0463597). 
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Scheme 2.  Synthesis and activities of (R)-19 and (S)-20, mGlu3 NAMs. Both the (R)- 
and (S)- enantiomers of 16 were used for the synthesis 
 
 
 
3.3 In vitro and in vivo pharmacological testing of 19 (VU0463597) 

We next evaluated the selectivity of 19 (VU0463597) between mGlu2 and mGlu5. 

Utilizing our mGlu2 GIRK line, the IC50 was much greater than 10 mM, with the CRC 

not reaching baseline at this highest concentration (Figure 2A, triangles).  Similarly, 19 

had no effect on potentiating an EC20 concentration of glutamate in our standard mGlu5 

calcium assay (Figure 2A, diamonds).  As our calcium assays typically drive our mGlu 

drug discovery programs, we also evaluated 19 (VU0463597) in an mGlu3 calcium assay 

in which mGlu3 is co-expressed with the promiscuous G protein Gα15 (Figure 2B-D).   

Here, we see improved mGlu3 NAM potency (IC50 = 649 nM), with high selectivity 

versus mGlu2 (~15-fold) and mGlu5 in both PAM and NAM modes.  Thus, we were able 

to optimize and develop a potent and selective mGlu3 NAM starting from a very potent 

mGlu5 PAM. 
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Figure 3.  In vitro molecular pharmacology characterization of 12 (VU0463597).  (A) 
Cconcentration-response curves  of mGlu2 and mGlu3 GIRK (antagonist mode) and 
mGlu5 calcium (PAM mode). (B) mGlu3 calcium (antagonist mode) and mGlu5 calcium 
(antagonist mode). (C)  mGlu3 calcium (antagonist mode) and mGlu5 calcium (PAM 
mode). (D) mGlu3 calcium selectivity versus mGlu2 (antagonist mode).    
 
 
 

With a potent and selective mGlu3 NAM, we began profiling 19 in a battery of 

ancillary pharmacology and DMPK assays to assess the quality of this probe for potential 

in vivo studies.  A Lead Profiling Screen at Ricerca41 (68 GPCRs, ion channels and 

transporters screened at 10 µM in radioligand binding assays) failed to identify any off 

target activities for 19 (no inhibition >25% @ 10 µM).   In our tier 1 in vitro DMPK 

assays, 19 had a very clean CYP profile (>30 µM vs. CYPs 3A4, 2C9, 2D6 and 1A2), 

had plasma free fractions of ~1% in rat and 2% in human with a fu in rat brain of ~1%.  

Intrinsic clearance experiments in both rat and human microsomes suggested that 19 

would be a rapidly cleared compound (rat: t1/2 = 11.6 min, CLint = 240 mL/min/kg, CLhep 
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= 54.2 mL/min./kg; human: t1/2 = 2.18 min, CLint = 571.8 mL/min/kg, CLhep = 20.3 

mL/min./kg).   To determine if the in vitro experiment accurately predicted in vivo 

disposition, we performed rat IV PK (1 mg/kg) and found 19 to be a moderately cleared 

compound (CL = 32.9 mL/min/kg) but with a short half-life (t1/2 = 16.8 min) and low 

volume of distribution (VD = 0.6 L/kg).  Metabolite ID studies in rat microsomes shed 

light on the disposition profile of 19 (Figure 3).  The major route of metabolism was a 

CYP-mediated O-demethylation of 19 to generate the free phenol 21.  In order to test the 

activity of the free phenol 21, O-demethylation of 19 was carried out in the presence of 

BBr3 (Scheme 3).  Upon being screened in the mGlu3 GIRK channel thallium flux assay, 

this derivative was found to be inactive.   

As our earlier SAR work indicated, the methyl ether was critical for mGlu3 NAM 

activity.  Therefore, we performed an IP plasma:brain level (PBL) study to determine if 

we could achieve meaningful CNS exposure if we bypassed first-pass metabolism.  

Significantly, in a 10 mg/kg (10% Tween80 in 0.5% methylcellulose) IP plasma:brain 

level (PBL) study, we observed a BrainAUC(16.3 mM):PlasmaAUC(9.7 mM) of 1.67, 

indicating that 19 (VU0463597) was indeed centrally penetrant. Based on brain 

homogenate binding studies, this correlates to ~163 nM free drug in rat brain at a 10 

mg/kg IV dose, a value below the mGlu3 IC50 (649 nM).  Therefore, a 50 mg/kg dose 

may be required for in vivo efficacy with this first generation mGlu3 NAM probe.    
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Figure 4.  Metabolite ID studies in rat microsomes showed the major metabolite of 19 is 
phenol 21, via O-dealkalyation of the methyl ether. 

 

 

 

 

 

 

 

 

 

 

Scheme 3. Synthesis of O-demethylation product 21 
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In an effort to avoid the O-demethylation, it was desired to synthesize the 

trifluoromethyl ether derivative 26 shown in Scheme 4.  Preliminary DMPK data has 

shown that the trifluoromethyl functionality prevents dealkylation, however 26 is inactive 

as a mGlu3 antagonist.   

 

3.4 Analog development using Grignard additions 

 In an effort to further explore SAR around the eastern portion of the molecule 

several different strategies were utilized.  First, using a Grignard addition strategy shown 

in Scheme 5, we were able to arrive at a variety of tertiary alcohols based on the structure 

of VU0092273 (5).  Methyl (28) and ethyl (29a) Grignard addition products were 

screened and showed modest mGlu3 antagonist activity.  The bulkier Grignard addition 

products were inactive (i.e. 22e).   

 

Scheme 4. Synthesis of trifluoromethyl ether analog 26 
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Scheme 5. Synthesis of Grignard products 28-29d 

 

3.5 Analog development via O-alkylation of VU0092273 

In keeping with the strategy of maintaining structural similarities to VU0092273 

(5), the next series of reactions examined was the O-alkylation of 5.  O-alkylation was 

achieved via sodium hydride deprotonation of the scaffold in DMF followed by addition 

of the alkyl iodide that was either commercially available or synthesized in situ via 

Finklestein conditions (Scheme 6).  Yields and time of reaction were acceptable when 

methyl iodide and allyl iodide were the reacting alkyl halides.  However, the alkyl 

bromides under Finklestein conditions required excess of potassium iodide and alkyl 

bromide, and reaction times were at least 16 hours.  None of these derivatives were active 

as mGlu3 antagonists.   
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3.6 Analog development via reductive aminations 

 The final 23-membered library explored derivatives that do not involve changes 

to the basic diphenylacetylene scaffold.  These analogs were obtained via NaBH(OAc)3 

mediated  reductive aminations onto aldehyde 32, which was obtained by IBX oxidation 

of 14e  (Scheme 7).  Interestingly, 22 of the 23 analogs showed at minimum weak 

antagonist activity at mGlu3, however this was without selectivity over mGlu2 (Table 2).  

It will be of future interest to explore other amines in this reaction in order to improve 

activity as mGlu3 antagonists while dialing out activity at mGlu2. 

 

Scheme 6.  Synthesis of O-alkylation analogs 30-31d 
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Scheme 7. Synthesis of generic amine 33 via reductive amination 

Table 2.  Representative reductive amination products 33 and activities at mGlu2 and mGlu3 
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3.7 Chapter summary 

 In summary, mGlu3 NAM activity of the p-OMePh scaffold has been improved 

greater than 2-fold by optimizing the eastern region of the lead compound so that the new 

lead is the 3-hydroxymethyl analog 14e.  Resolution of the racemic 3-hydroxymethyl 

analog led us to find that the (R)-enantiomer 19 was about 2-fold more potent than the 

(S)-enantiomer 20 in the mGlu3 GIRK assay.  Further pharmacological characterization 

showed that the major metabolite of VU0463597 was the O-dealkylation product of the 

methyl ether to form 21.  This O-dealkylation product was inactive in the mGlu3 GIRK 

assay; however, the metabolite profile provides guidance for the syntheses of new 

analogs that are necessary before in vivo studies commence.   
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CHAPTER IV 

 

CURRENT EFFORTS AND FUTURE DIRECTIONS 

 

4.1 Current efforts utilizing molecular switches 

 In effort to continue improving the potency and selectivity of our mGlu3 negative 

allosteric modulator (NAM) lead compound and possibly finding other modes of 

pharmacology, we are investigating the use of subtle molecular switches within the 

diphenylacetylene scaffold.  By modifying the phenyl groups of the diphenylacetylene 

scaffold with nitrogen heterocycles we seek to access a scaffold with improved potency 

and pharmacokinetics.  To this point, these efforts have included substituting the 

proximal phenyl ring with pyridinyl moieties to access compounds shown in Scheme 1.  

Upon testing the activity of these compounds in the GIRK assay, these derivatives were 

found to be inactive at both mGlu3 and mGlu2. 
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Scheme 1.  Synthesis of pyridinyl analogs VU0464192 (36), VU04964193 (39), and 42 
from brominated nicotinic and picolinic acid derivatives 
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We have also worked to synthesize derivatives containing pyrazine, pyrimidine, 

and pyridazine moieties within the proximal aromatic ring (Scheme 2).  Amides 44, 47, 

and 50 are readily obtainable via HATU mediated amide coupling reactions, however, 

upon utilizing Sonagashira coupling conditions to couple 4-ethynyl anisole 10, no 

appreciable products were recovered.  It will be advantageous to attempt arriving at these 

desired products via the Sonagashira coupling of 10 with the esters of 43, 46, and 49 

(Scheme 3). 

 

 

 

 

Scheme 2.  Synthesis of  pyrimidines 45 and 48 and pyrazine 51 
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4.2 Future efforts aimed at improving pharmacokinetics of mGlu3 probe 

 With a potent and selective mGlu3 NAM in hand (19), it will be advantageous to 

discover a probe with improved in vivo properties.  Since the primary metabolism 

pathway of 19 is dealkylation of the methoxy ether it will be necessary to install 

functionality that prevents this CYP mediated dealkylation.  As discussed in Chapter 3, 

the first effort at approaching this issue was to substitute the methyl ether of 19 with 

trifluoromethyl ether 26.  Since 26 was inactive as an mGlu3 NAM, the next strategy will 

be to incorporate substituted alky ethers (Scheme 4).  Starting with commercially 

Scheme 3.  Alternative route to arrive at pyrimidines 45 and 48 and pyrazine 51 
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available TMS acetylene 58 it is proposed that we could arrive at 61 via an amide 

coupling with 25 to provide amide 59 followed by TMS deprotection and a Sonagashira 

coupling with a range of p-brominated aryl ethers (60) to furnish 61. 

 It has been postulated that mGlu allosteric modulators of the MPEP-chemotype 

are not suitable for therapeutic development due to the metabolic and toxicologic liability 

constituted by the potentially reactive acetylene linker.42 As a consequence, it is desirable 

to remove the acetylenic linker while designing analogs that maintain the relative 

geometry of the two aryl rings.  Recent studies toward developing mGlu5 positive 

allosteric modulators (PAMs) in our group have shown that the acetelynic linker can be 

replaced by a benzyl ether and maintain activity.  An effort is currently underway to 

investigate the applicability of this strategy to mGlu3 NAMs (Scheme 5).   Beginning 

with commercially available methyl ester 62 and benzyl bromide 63, benzyl ether 64 

could be obtained under Finklestein conditions.  Saponification of the methyl ester of 64, 

followed by the coupling of amine 25 with acid 65 one could arrive at benzyl ether 66. 
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4.3 Chapter summary 

Utilizing our knowledge of the molecular switch phenomenon in regard to mGlu 

allosteric modulation, we aim at improving the activity, potency, and pharmacokinetics of 

our current mGlu3 NAM lead 19.  Modifying the diphenylacetylene scaffold by 

incorporating nitrogen heterocycles has, thus far, not yielded any active mGlu3 NAMs.  

Future efforts will be aimed at reducing the rate of metabolism of our lead compound 19 

so that we can conduct further in vivo studies regarding the selective modulation of 

mGlu3.  The strategies for reducing CYP metabolism are currently aimed at substituting 

the methyl ether and acetylene moieties of 19.  Reduced metabolism and mGlu3 NAM 

activity preservation could potentially be achieved by substituting the methyl ether and 

acetylene with a branched alkyl group and benzyl ether moiety respectively.   

From this work, we have reported the first selective mGlu3 NAM.  However, it is 

necessary to improve the therapeutic value of these modulators through further 

modifications.  Ultimately, developing a more potent and bioavailable mGlu3 negative 

allosteric modulator will allow us to gain a better understanding of mGlu3 function in the 

pathogenesis of CNS disorders.   
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CHAPTER 5 

 

EXPERIMENTAL 

 

5.1 Methods and Materials 

 

General experimental. All NMR spectra were recorded on a Bruker 400 mHz 

instrument. 1H chemical shifts are reported in d values in ppm downfield from DMSO as 

the internal standard in DMSO. Data are reported as follows: chemical shift, multiplicity 

(s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), integration, 

coupling constant (Hz). 13C chemical shifts are reported in d values in ppm with the 

DMSO carbon peak set to 39.5 ppm. Low resolution mass spectra were obtained on an 

agilent 1200 series 6130 mass spectrometer. High resolution mass spectra were recorded 

on a Waters Q-TOF API-US.  Analytical HPLC was performed on an Agilent 1200 

series. Preparative purification was performed on combi-flash companion. Solvents for 

extraction, washing and chromatography were HPLC grade.  
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Standard experimental procedures for key compounds: 

 

(4-hydroxypiperidin-1-yl)(4-phenylethynyl)phenyl)methanone, VU0092273 (5). To a 

solution of acid 9 (1.40 g, 6.30 mmol) and DIPEA (2.70 g, 20.8 mmol) in DMF (25 mL) 

was added EDC (1.41 g, 7.56 mmol), HOBt (850 mg, 6.30 mmol) and 4- 

hydroxypiperidine hydrochloride (1.29 g, 9.46 mmol). The reaction was stirred at room 

temperature for 18 h. The reaction was diluted with water (100 mL) and isolated amide 

3a (1.84 g, 98%) as a white solid by vacuum filtration: mp 157.7 °C; 1H-NMR (400 

MHz, CDCl3) δ 7.58 (d, J = 8.0 Hz, 2H), 7.56-7.52 (m, 2H), 7.44-7.34 (m, 5H), 4.21-4.08 

(m, 1H), 4.03-3.96 (m, 1H), 3.81-3.48 (m, 1H), 3.47-3.16 (m, 2H), 2.08-1.79 (m, 3H), 

1.71-1.42 (m, 2H); 13C-NMR (100 MHz, CDCl3) δ 169.7, 135.5, 131.6, 131.5, 128.5, 

128.3, 126.9, 124.7, 122.8, 90.8, 88.5, 66.9, 44.8, 39.3, 34.4, 33.8; LC (214 nm) 2.86 min 

(>98%); MS (ESI) m/z = 306.1; HRMS = 306.1496 (calc. 306.1494), C20H20N1O2. 

 

(4-hydroxypiperidin-1-yl)(4-iodophenyl)methanone, (8). To a solution of acid 6 (1.56 

g, 6.30 mmol) and DIPEA (2.70 g, 20.8 mmol) in DMF (25 mL) was added EDC (1.41 g, 

N

O

OH

5, VU0092273

N

O

OHI
8
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7.56 mmol), HOBt (850 mg, 6.30 mmol) and 4-hydroxypiperidine hydrochloride (1.29 g, 

9.46 mmol). The reaction was stirred at room temperature for 18 h. The reaction was 

diluted with water (100 mL) and the organic phase was dried over MgSO4, filtered and 

concentrated under vacuum. The crude product was purified by column chromatography 

(silica gel) using 0 to 10 % MeOH/EtOAc to afford amide 8 (1.67 g, 80%). 

 

 

Representative experimental for the synthesis of (4-hydroxypiperidin-1-yl)(4-((4-

methoxyphenyl)ethynyl)phenyl)methanone (9l) and functionalized acetylene analogs 

(9).  To a solution of (4-hydroxypiperidin-1-yl)(4-iodophenyl)methanone 8 (20 mg, 0.06 

mmol) in DMF (0.54 mL) was added 4-ethynyl anisole 10 (9.90 mg, 0.075 mmol), 

Pd(Ph3P)4 (2.3 mg, 0.002 mmol), CuI (0.5 mg, 0.003 mmol) and diethylamine (7.2 µL). 

The reaction vessel was sealed and heated at 60 °C for 1h in a microwave reactor. The 

reaction was cooled to rt, diluted with EtOAc:hexanes (2:1, 3 mL) and washed with water 

(2 x 5 mL) and brine (5 mL). The organic phase was dried over MgSO4, filtered and 

concentrated under vacuum. The crude product was purified by preparative HPLC to 

afford 9l.   

 

N

O

OH
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Ethyl 4-(phenylethynyl)benzoate (12). To a solution of ethyl 4-Iodobenzoate 11 (5.0 g, 

18.2 mmol) in DMF (8 mL) was added 4-ethynyl anisole 10 (2.25 g, 22.1 mmol), 

Pd(Ph3P)4 (502 mg, 0.45 mmol), CuI (172 mg, 0.91 mmol) and diethylamine (2 mL). The 

reaction vessel was sealed and heated at 60 °C for 1h in a microwave reactor. The 

reaction was cooled to rt, diluted with EtOAc:hexanes (2:1, 150 mL) and washed with 

water (2 x 100 mL) and brine (100 mL). The organic phase was dried over MgSO4, 

filtered and concentrated under vacuum. The crude product was purified by column 

chromatography (silica gel) using 0 to 10 % EtOAc/hexanes to afford ester 2 (7.89 g, 

86%) as a pale yellow solid: 1H-NMR (400 MHz, CDCl3) δ 8.05 (d, J = 8.0 Hz, 2H), 7.61 

(d, J = 8.0 Hz, 2H), 7.56 (dd, J = 8.0, 2.0 Hz, 2H), 7.41-7.37 (m, 3H), 4.41 (q, J = 7.0 Hz, 

2H), 1.44 (t, J = 7.0 Hz, 3H); LC (214 nm) 5.79 min (>98%); MS (ESI) m/z = 250.9. 

 

4-(phenylethynyl)benzoic acid (13). To a solution of ester 12 (7.81 g, 31.2 mmol) in 

THF (80 mL) was added MeOH (15 mL) and a solution of LiOH (5.24 g, 124 mmol) in 

water (15 mL). The reaction was stirred at room temperature and for 4h. The reaction was 

O

O

O

12

O

OH

O

13
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acidified with 1 N HCl (50 mL) and isolated benzoic acid (5.78 g, 83%) as a white solid: 

mp 190.1 °C; 1H-NMR (400 MHz, CDCl3) δ 8.11 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 8.0 Hz, 

2H), 7.62-7.56 (m, 2H), 7.52-7.47 (m, 1H), 7.43-7.36 (m, 3H); 13C-NMR (100 MHz, d6- 

DMSO) δ 167.3, 138.0, 134.5, 131.9, 131.4, 130.9, 130.6, 130.2, 130.0, 129.6, 127.0, 

122.15, 101.6, 92.3, 89.0; LC (214 nm) 5.12 min (>98%); MS (ESI) m/z = 222.9. 

 

 

Representative experimental for the synthesis of (3-(hydroxymethyl)piperidin-1-

yl)(4-((4-methoxyphenyl)ethynyl)phenyl)methanone (14e) and amide analogs (14).  

To a solution of acid 13 (30 mg, 0.12 mmol) and DIPEA (0.1 mL, 0.6 mmol) in DMF 

(0.3 mL) was added HATU (45.6 mg, 0.12 mmol).  The reaction was stirred for 20 min at 

rt, then 3-(hydroxymethyl)piperidine (15.0 mg, 0.13 mmol) was added. The reaction was 

stirred at room temperature for 18 h. The reaction was diluted with water (2 mL) and the 

organic was dried over MgSO4, filtered and concentrated under vacuum. The crude 

product was purified by preparative HPLC to afford 14e. 

 

 

 

 

 

O

N

O

14e, VU0459726

OH

O

N

O

14

R1

R2



	
  

44	
  	
  

 

(R)-ethyl piperidine-3-carboxylate ((R)-17).  To a suspension of acid (R)-16 (100 mg, 

0.775 mmol) in EtOH (10 mL) was added concentrated sulfuric acid (33 µL).  The 

mixture was heated to reflux for 24 h.  The reaction was concentrated in vacuo and the 

residue was brought to pH 8 with saturated sodium bicarbonate.  The mixture was 

extracted with EtOAc (3 x 10 mL).  The organic extracts were combined and washed 

with brine (5 mL). The organic phase was dried over MgSO4, filtered, and concentrated 

under vacuum.  The residue (R)-17 was carried to the next step without purification. 

 

(R)-3-(hydroxymethyl)piperidine ((R)-18). To a solution of LAH (14.4 mg, 0.39 mmol) 

in THF (0.5 mL) at 0 °C flashed with argon was added R-17 (30 mg, 0.19 mmol) as a 

solution in THF (0.5 mL).  THF (0.5 mL) was added, and the reaction was heated to 

reflux under argon for 4 h.  The reaction was quenched by adding saturated sodium 

sulfate dropwise.  The mixture was filtered and washed with diethyl ether.  The organic 

phase was dried over Na2SO4, and concentrated in vacuo to afford R-18 (82.5% over 2 

steps). 

 

 

HN O

O

(R)-17

HN OH
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(R)-(3-(hydroxymethyl)piperidin-1-yl)(4-((4-methoxyphenyl)ethynyl)phenyl) 

methanone (19).  To a solution of acid 6 (30 mg, 0.12 mmol) and DIPEA (0.1 mL, 0.6 

mmol) in DMF (0.3 mL) was added HATU (45.6 mg, 0.12 mmol).  The reaction was 

stirred for 20 min at rt, then (R)-18 (15.0 mg, 0.13 mmol). The reaction was stirred at 

room temperature for 18 h. The reaction was diluted with water (2 mL) and the organic 

was dried over MgSO4, filtered and concentrated under vacuum. The crude product was 

purified by preparative HPLC to afford 19. 

 

 

(R)-(3-(hydroxymethyl)piperidin-1-yl)(4-((4-hydroxyphenyl)ethynyl)phenyl) 

methanone (21).  To a solution of 19 (20 mg, 0.057 mmol) in CH2Cl2 (0.5 mL) cooled to 

0 °C and flashed with argon was added BBr3 (21.65 µL, 0.229 mmol) dropwise.  The 

reaction was allowed to warm to room temperature and stirred for 4h. The reaction was 

diluted with DCM (2mL) and then washed sequentially with 1M HCl (0.5 mL), saturated 

aq. NaHCO3 (1 mL) and 1N NaOH (1 ml).  The organic layer was dried over Na2SO4, 

O

N

O

OH

19

HO

N
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OH

21
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filtered and concentrated under vacuum.  The crude product was purified by preparative 

HPLC to afford 21 (4.2 mg, 22%). 

 

 

Ethyl 4-((4-(trifluoromethoxy)phenyl)ethynyl)benzoate (23).  To a solution of ethyl 4-

Iodobenzoate 11 (177.9 mg, 0.645 mmol) in DMF (3 mL) was added 1-ethynyl-4-

(trifluoromethoxy)benzene 22 (82.3 µL, 0.537 mmol), Pd(Ph3P)4 (62.4 mg, 0.054 mmol), 

CuI (10.3 mg, 0.054 mmol) and diethylamine (61.1 µL, 0.591 mmol). The reaction vessel 

was sealed and heated at 60 °C for 1h in a microwave reactor. The reaction was cooled to 

rt, diluted with EtOAc:hexanes (2:1, 3 mL) and washed with water (2 x 2 mL) and brine 

(2 mL). The organic phase was dried over MgSO4, filtered and concentrated under 

vacuum. The crude product was purified by column chromatography (silica gel) using 0 

to 5 % EtOAc/hexanes to afford ester 26. 

 

 

4-((4-(trifluoromethoxy)phenyl)ethynyl)benzoic acid (24).  To a solution of ester 23 

(179.51 mg, 0.537 mmol) in THF (2 mL) was added MeOH (0.5 mL) and a solution of 

OF3C

O

O

23

OF3C

O

24

OH
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LiOH (51.44 g, 2.148 mmol) in water (0.5 mL). The reaction was stirred at room 

temperature and for 4h. The reaction was acidified with 1 N HCl (50 mL) and isolated 

benzoic acid 24. 

 

(3-(hydroxymethyl)piperidin-1-yl)(4-((4-(trifluoromethoxy)phenyl)ethynyl)phenyl) 

methanone (26).  To a solution of acid 24 (25 mg, 0.082 mmol) and DIPEA (45 µL, 

0.245 mmol) in DMF (0.3 mL) was added HATU (31.06 mg, 0.082 mmol).  The reaction 

was stirred for 20 min at rt, then 3-(hydroxymethyl)piperidine (15.0 mg, 0.13 mmol). The 

reaction was stirred at room temperature for 18 h. The reaction was diluted with water (2 

mL) and the organic was dried over MgSO4, filtered and concentrated under vacuum. The 

crude product was purified by preparative HPLC to afford 26. 

 

 

1-(4-((4-methoxyphenyl)ethynyl)benzoyl)piperidin-4-one (27).  To a solution of acid 

13 (100 mg, 0.4 mmol) and DIPEA (0.2 mL, 1.2 mmol) in DMF (1.0 mL) was added 

HATU (167.2 mg, 0.44 mmol).  The reaction was stirred for 20 min at rt, then 4-

O

N

O

OH

26
F3C

O

N

O

27

O
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piperidinone (43.67 mg, 0.44 mmol). The reaction was stirred at room temperature for 18 

h. The reaction was diluted with water (5 mL) and the organic was dried over MgSO4, 

filtered and concentrated under vacuum. The crude product was purified by column 

chromatography (silica gel) using 0 to 5 % EtOAc/hexanes to afford amide 27 (121 mg, 

91%) as a white solid. 

 

 

Representative experimental for the synthesis of (3-(hydroxymethyl)piperidin-1-

yl)(4-((4-methoxyphenyl)ethynyl)phenyl)methanone (28) and amide ananologs (29).  

To a solution of methyl magnesium bromide (47 µL, 1.4 M in diethyl ether) cooled to -78 

°C and purged with argon was added ketone 27 (20 mg, 0.06 mmol) as a solution in THF 

(0.5 mL) at -78 °C.  The reaction was allowed to warm to rt and stirred for 6 h.  The 

reaction was quenched with saturated NH4Cl and extracted with EtOAc (3 x 5 mL).  The 

combined extracts were washed with brine (5 mL), dried over MgSO4, filtered, and 

concentrated under vacuum.  The crude product was purified by preparative HPLC to 

afford 28. 

 

O

N

O

28

OH

O

N

O

29

OH
R



	
  

49	
  	
  

 

Representative experimental for the synthesis of (4-((4-methoxyphenyl)ethynyl) 

phenyl)(4-methoxypiperidin-1-yl)methanone (30) and O-alkylation analogs (31).  To 

a solution of 5 (25 mg, 0.075 mmol) in DMF (2 mL) at 0 °C was added NaH (2.16 mg).  

The reactions stirred for 10 min, then methyl iodide (7.03 µL, 0.113 mmol) was added 

dropwise.  The reaction was partitioned between water and EtOAc.  The organic phase 

was washed with brine (2 mL), dried over MgSO4, filtered and concentrated under 

vacuum. The crude product was purified by preparative HPLC to afford 30 (23.5 mg, 

89.8%) as a white solid. 

 

 

1-(4-((4-methoxyphenyl)ethynyl)benzoyl)piperidine-3-carbaldehyde (32).  To a 

solution of 14e (200 mg, 0.573 mmol) in acetonitrile (3 mL) was added acetic acid (164.3 

µL, 2.87 mmol) and IBX (1.6 g, 5.8 mmol).  The suspension stirred at rt for 4 h.  The 

reaction was quenched by the addition of saturated NaHCO3.  The crude material was 

N
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R
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filtered through a pad of silica and concentrated under vacuum to afford 32 (195 mg, 

93%). 

 

 

Representative experimental for the synthesis of (3-(((2-hydroxyethyl)amino) 

methyl)piperidin-1-yl)(4-((4-methoxyphenyl)ethynyl)phenyl)methanone (33a) and 

reductive amination products (33).  To a solution of 32 (8.5 mg, 0.025 mmol) in 

dichloroethane (0.4 mL) was added ethanolamine (2.22 µL, 0.037 mmol), glacial acetic 

acid (2.8 µL, 0.049 mmol), and NaBH(OAc)3 (6.75 mg, 0.032 mmol).  The reaction 

stirred for 16 h and was quenched by the addition of water (1 mL).  The mixture was 

extracted with EtOAc (3 x 5 mL), and the combined extracts were washed with brine (2 

mL) and saturated NaHCO3 (2 mL).  The organic phase was dried over MgSO4, filtered, 

and concentrated under vacuum.  The crude product was purified by preparative HPLC to 

afford 33a. 
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Representative experimental for the synthesis of (5-bromopyridin-2-yl)(3-

(hydroxymethyl)piperidin-1-yl)methanone (35) and nitrogen heterocycle analogs 

(38), (41), (44), (47), and (50).  To a solution of acid 34 (50 mg, 0.25 mmol) and DIPEA 

(0.13 mL, 0.74 mmol) in DMF (1.0 mL) was added HATU (94.3 mg, 0.25 mmol).  The 

reaction was stirred for 20 min at rt, then 3-(hydroxymethyl)piperidine (34.3 mg, 0.30 

mmol). The reaction was stirred at room temperature for 18 h. The reaction was diluted 

with water (5 mL) and the organic was dried over MgSO4, filtered and concentrated 

under vacuum.  The crude product was purified by preparative HPLC to afford 35 (18 

mg, 24.4%). 

 

 

Representative experimental for the synthesis of (3-(hydroxymethyl)piperidin-1-

yl)(6-((4-methoxyphenyl)ethynyl)pyridin-3-yl)methanone (36) and nitrogen 

heterocycle analog 39.  To a solution of 35 (28 mg, 0.134 mmol) in DMF (1 mL) was 

added 4-ethynyl anisole 10 (20.9 µL, 0.161 mmol), Pd(Ph3P)4 (15.5 mg, 0.013 mmol), 

CuI (2.55 mg, 0.013 mmol) and diethylamine (16.65 µL). The reaction vessel was sealed 

NBr
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OH
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and heated at 60 °C for 1h in a microwave reactor. The reaction was cooled to rt, diluted 

with EtOAc:hexanes (2:1, 3 mL) and washed with water (2 x 5 mL) and brine (5 mL). 

The organic phase was dried over MgSO4, filtered and concentrated under vacuum. The 

crude product was purified by preparative HPLC (basic method) to afford 36 (8.9 mg, 

19.0%).   

 

In vitro profiling 
 
Human Embryonic Kidney (HEK-293) cell lines co-expressing rat mGlu3 and G protein 

inwardly rectifying potassium (GIRK) channels were grown in Growth Media containing 

45% DMEM, 45% F-12, 10% FBS, 20 mM HEPES, 2 mM L-glutamine, 

antibiotic/antimycotic, non-essential amino acids, 700 µg/ml G418, and 0.6 µg/ml 

puromycin at 37ºC in the presence of 5% CO2. All cell culture reagents were purchased 

from Invitrogen Corp. (Carlsbad, CA) unless otherwise noted. Compound activity at the 

mGlu3 was assessed using thallium flux through GIRK channels, a method that has been 

described in detail.1 Briefly, cells were plated into 384-well, black-walled, clear-

bottomed poly-D-lysine-coated plates at a density of 15,000 cells/20 µl/well in DMEM 

containing 10% dialyzed FBS, 20 mM HEPES, and 100 units/ml penicillin/streptomycin 

(assay media). Plated cells were incubated overnight at 37°C in the presence of 5% CO2. 

The following day, the medium was exchanged to Assay Buffer [Hanks’ balanced salt 

solution (Invitrogen) containing 20 mM HEPES, pH 7.3] using an ELX405 microplate 

washer (BioTek), leaving 20 µL/well, followed by addition of 20 µL/well 2X FluoZin-2 

AM (330 nM FINAL) indicator dye (Invitrogen, prepared as a DMSO stock and mixed in 

a 1:1 ratio with pluronic acid F-127) in Assay Buffer, and incubation for 1 h at room 
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temperature. The dye was then exchanged to Assay Buffer using an ELX405, leaving 20 

µL/well.Compounds were serially diluted in assay buffer for a final 2X stock in 0.6% 

DMSO (0.3% final). A Glutamate EC80 was prepared at a 5X stock solution in Thallium 

Buffer [125 mM sodium bicarbonate (added fresh the morning of the experiment), 1 mM 

magnesium sulfate, 1.8 mM calcium sulfate, 5 mM glucose, 12 mM thallium sulfate, and 

10 mM HEPES, pH 7.3] prior to addition to assay plates. Thallium flux was measured at 

37°C using a kinetic imaging plate reader (FDSS 6000; Hamamatsu Corporation, 

Bridgewater, NJ) according to the following protocol. Baseline readings were taken (10 

images at 1 Hz; excitation, 470 ± 20 nm; emission, 540 ± 30 nm) and test compounds 

were added in a 20 µL volume and incubated for 144s before the addition of 10 µL of 

Thallium Buffer with or without an EC80 concentration of Glutamate. Control wells also 

received a maximal Glutamate concentration (100 µM) for eventual response 

normalization. After the addition of agonist, data was collected for an additional 2.5 min 

and analyzed using Excel (Microsoft Corp, Redmond, WA). The slope of the 

fluorescence increase beginning 5 s after thallium/agonist addition and ending 15 s after 

thallium/agonist addition was calculated, corrected to vehicle and maximal Glutamate 

control slope values, and plotted using XLfit (ID Business Solutions Ltd) to generate 

concentration−response curves. Potencies were calculated from fits using a four-point 

parameter logistic equation. 
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APPENDIX B 
 
 
 

COMPOUND STRUCTURES 
 
 
 

Structure VU # Notebook 
Reference 
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