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Chapter 1  

1. Introduction 

1.1 History of optical communication  

In the last two centuries, our civilization has made incredible advances in the ways we send, 

receive, and process information, putting us in the midst of the Information Age. Specifically 

considering information transfer, light (optics) has historically played a vital role. Use of fire, 

reflecting optical signals off mirrors, and more advanced “opto-mechanical” communication 

systems (e.g., Chappe telegraph system whereby the physical orientation of a shutter on a tower 

was used to represent a message) were used until the nineteenth century. In the early 1800s, 

electricity began to gain traction as an effective medium for information transfer. On May 24, 

1844, Samuel F. B. Morse sent the first official telegram, a section of which is shown in Figure 

1.1(a), from Washington D.C. to Baltimore using his newly invented electric telegraph [1]. In 

Morse’s system, a human operator encoded and decoded messages via electrical currents in a 

metal wire. Although fairly slow, Morse’s system and successful transmission of this brief 

message laid the foundation for modern telecommunications. Over a century later, Charles Kao 

initiated a resurgence of optically dominated information transfer with his theoretical work 

suggesting high purity silica fibers could have relatively low optical attenuation (20 dB km-1) [2]. 

This, in addition to the development of the laser and erbium doped fiber amplifier, enabled the 

possibility of sending information over long distances with light via optical fiber in place of 

electricity via metal wires. In 1988, the first transatlantic optical fiber was laid between the 

United States and Europe. Since then, hundreds of submarine fiber optic cables have been laid 

and form the backbone of our modern, Internet-based, global connectivity. Figure 1.1(b) shows a 

2018 map of current submarine fiber optic cable systems. While optics has dominated 
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information transfer over long distances (i.e., several hundreds of kilometers) for more than two 

decades, more recently, optics is being utilized for increasingly shorter haul communications. 

Companies like Google, AT&T, and Verizon now offer fiber-to-the-home technology, where the 

last several kilometers of Internet connection to the home is routed with optical fiber instead of 

copper wire. 

 

 

Figure 1.1. (a) Portion of the first telegraphic message sent from Washington D.C. to 
Baltimore by Samuel F. B. Morse. The full message reads, “What hath God wrought?” 
Figure adapted from [1]. (b) Global map showing currently active submarine fiber optic 
cables. Figure taken from [3]. 
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1.2 Silicon photonics 

Similar to the previously mentioned long distance applications, the use of light as an 

information carrier for increasingly short distances is directly related to its information carrying 

capacity and power consumption metrics compared to electronics. Optical fibers and transceivers 

are currently being implemented within data centers to send information between individual 

server racks and server boards, while cutting-edge research efforts focus on integrating optical 

components between chips (interchip) and within chips (intrachip). Realization of optical data 

transfer and encoding for both interchip and intrachip applications requires the development of 

light sources, modulators, detectors, and splitters that meet energy consumption, operation speed, 

device footprint, and cost requirements [4]. While many architectures for optical information 

transfer and processing consider hybrid systems with the coexistence of electronic and optical 

(photonic) components, recently, there has been an emerging discussion of the extent to which 

photonic technologies can replace their electronic counterparts in entirety for information 

processing [5] and storage [6, 7]. Realization and implementation of these interchip and intrachip 

electronic-photonic and all-photonic systems is a non-trivial endeavor and is actively being 

pursued by a variety of academic and industry teams.  

While other material platforms, such as InP, have been used for photonic integrated circuits 

for fiber-optic communication, silicon photonic components are the most promising option for 

integration with chip-based systems due to the ubiquity of silicon in the semiconductor 

electronics industry. However, while silicon provides a platform for low-loss optical 

transmission in nanoscale silicon waveguides [8], efficient light emission and manipulation have 

been difficult to achieve due to silicon’s indirect band gap and relatively weak electro-optic 

properties. For these reasons, in addition to monolithic silicon only devices, there is active 
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research in the area of hybrid silicon-based devices that employ an additional material beyond 

silicon for their optical functionality. Such hybrid devices are being pursued for silicon-based 

interchip and intrachip lasing [9], modulation [10], and photodetection [11, 12]. In the following 

subsections, first, optical modulation, the primary target application of the work comprising this 

thesis, is described, and then additional details are provided on monolithic and hybrid silicon-

based electro-optic and all-optical modulator platforms. 

 

1.2.1 Optical modulators 

Modulators are devices that use an external stimulus to manipulate a specific parameter of an 

information carrier, which in the case of optical modulators is light. The external stimulus can be 

mechanical, acoustic, thermal, electrical, magnetic, or optical. This thesis focuses on electo-optic 

(i.e., electrical stimulus) and all-optical (i.e., optical stimulus) modulators, which are best suited 

to meet the speed requirements of interchip and intrachip optical communications. In order to 

modulate the amplitude or phase of light, modification of the real, imaginary, linear, and non-

linear components of the complex refractive index of material through which the light propagates 

must be performed. To first order, the complex refractive index is given by: 

 ñ = n + iκ                                  (1) 

where n (termed refractive index) and κ (often termed extinction coefficient) are the real and 

imaginary components of the complex refractive index. Modulators that rely primarily on 

changes in n are termed refraction-based modulators while modulators that rely primarily on 

changes in κ are termed absorption-based modulators. Figure 1.2 shows examples of both 

refraction-based and absorption-based modulators. Figure 1.2(a) shows a schematic of a 

refraction-based modulator, in this case a ring resonator (a photonic device structure discussed in 
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Section 1.2.3), which demonstrates a resonant feature, shown as a decrease in optical 

transmission in Figure 1.2(b). By changing n of the modulator, the resonant feature is shifted, 

leading to a change in transmission intensity at both the former and new wavelengths of the 

resonant feature. Operation at either of these wavelengths provides the optical modulation. For 

the case of an absorption-based modulator, κ is directly proportional to the absorption coefficient 

(α) in the material and can therefore be tuned to control transmission through the modulator. 

Generally, the change in κ is a broadband effect, so absorption-based modulators typically 

exhibit broadband operation. A schematic of an example electro-absorption modulator is shown 

in Figure 1.2(c) where germanium (Ge) is integrated on a silicon waveguide. In this example, 

broadband transmission through the device is controlled by actively changing the absorption in 

Ge via application of an electrical voltage. Figure 1.2(d) shows the extinction ratio, which is a 

measure of the change in optical transmission, for this Si/Ge modulator, demonstrating its 

modulation performance over a broadband wavelength range. 
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Figure 1.2. Examples of (a) refraction-based and (c) absorption-based optical modulators, 
including their corresponding optical performance in (b) and (d), respectively. (a) Silicon 
refraction-based ring resonator electro-optic modulator, whereby a resonant feature, 
shown in (b) can be shifted by modifying n to actively control transmission of light 
through the device. Figures reprinted with permission from [13]. © 2005 NPG. (c) Si/Ge 
electro-optic modulator, whereby κ of Ge, and therefore absorption in Ge, is controlled 
electrically and determines the optical transmission, presented as extinction ratio in (d) 
for various applied voltages. Figures reprinted with permission from [12, 14]. © 2010 
AIP. © 2012 OSA. 
 
 

When designing and fabricating an optical modulator, optimization of certain performance 

metrics must be taken into consideration. These metrics include modulation speed, extinction 

ratio (or modulation depth), optical bandwidth, insertion loss, device footprint, and energy/power 

consumption (or operating voltage) [10]. Modulation speed relates to how fast light can be 

manipulated to encode data. Extinction ratio, often reported in units of dB, is the ratio between 
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the maximum and minimum transmission of the modulator. Optical bandwidth determines the 

wavelength range for which the modulator functions. Insertion loss, device footprint, and 

energy/power consumption are measures of the amount of signal that is lost by adding the 

modulator into a given optical path, the physical size of the modulator, and the total 

energy/power necessary to operate the modulator, respectively. The optimal modulator will 

simultaneously maximize modulation speed, extinction ratio, and optical bandwidth while 

minimizing insertion loss, device footprint, and energy consumption. However, in practice, 

achieving all of these goals often proves to be difficult. For example, a modulator that utilizes a 

resonator geometry is able to minimize device footprint, but this comes at a cost to its optical 

bandwidth, as is shown in Figure 1.2(b) for the ring resonator modulator. 

 

1.2.1.1 Monolithic silicon optical modulators 

Both electro-optic and all-optical modulators have been realized in silicon-only nanophotonic 

structures. In an effort to overcome silicon’s weak refractive index response to free carrier 

concentration [15], these structures have primarily utilized compact resonant geometries such as 

ring resonators or large footprint (generally, millimeter scale) non-resonant geometries such as 

Mach Zehnder interferometers (MZIs). In the early 2000s, electro-optic silicon ring resonator 

[13] and MZI modulator [16] designs showed the first Gb/s operation, and efforts have continued 

to improve device performance. The first demonstration of a silicon-only all-optical modulator 

was also shown in the early 2000s in a 5 µm radius ring resonator, exhibiting ~ 12 dB extinction 

in < 500 ns at an operation energy of 25 pJ. For silicon electro-optic modulators, modulation 

speed performance improvement has been primarily due to operation using carrier depletion 

[17], which is intrinsically faster than carrier injection. For example, for both ring resonators and 
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MZI geometries, > 30 Gb/s operation has been demonstrated [18-20]. Figure 1.3(a) shows an all-

silicon electro-optic 10 µm radius ring resonator from which showed operation at 44 Gb/s at an 

operating voltage of 3 V [20]. Improvements with respect to device footprint and operating 

voltage have also been demonstrated. For example, by using a photonic crystal (PhC) waveguide, 

the device length of an MZI was reduced to 80 µm [21], and in a ring resonator geometry, low 

voltage operation of 0.5 V was demonstrated [22]. Regarding all-silicon, all-optical modulators, 

performance improvements have relied on enhancement of nonlinear processes in high Q/V 

photonic structures. For example, an all-silicon PhC nanocavity, shown in Figure 1.3(b), 

operating via two photon absorption (TPA), achieved all-optical ~ 10 dB extinction at a speed of 

50 ps and energy consumption of 100 fJ [23]. 

 

 

Figure 1.3. Examples of monolithic (silicon only) electro-optic and all-optical 
modulators. (a) Optical microscopy image of silicon ring resonator for implementation as 
an electro-optic modulator. Figure reprinted with permission from [20]. © 2012 IEEE. (b) 
Scanning electron microscopy (SEM) image of silicon PhC nanocavity for 
implementation as an all-optical modulator. Figure reprinted with permission from [23]. 
© 2005 AIP. 

 

 
1.2.1.2 Hybrid silicon optical modulators 

In an effort to further improve the performance metrics of silicon-based electro-optic and all-

optical modulators, additional active materials have been incorporated into the silicon photonic 
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platform. This hybrid integration approach allows for the continued use of the silicon platform 

for guiding light while utilizing a second material whose optical properties and carrier dynamics 

are superior to those of silicon. In particular, many hybrid silicon optical modulators are being 

investigated for their potential to increase modulation speed, reduce power consumption, and/or 

reduce device footprint. Implementation of a plasmonic/silicon hybrid structure, shown in Figure 

1.4(a), within an MZI geometry, reduced the device footprint (10 µm × 1 µm) and showed 

improved operation speed of > 70 GHz at 3 V, but this was demonstrated at a relatively high 

insertion loss of 8 dB [24]. Integration of nonlinear polymers has demonstrated speeds up to 100 

GHz [25], but these modulators still generally require large device footprints [26, 27]. Additional 

hybrid platforms that have recently received significant interest include the use of Ge [14, 28, 

29] and graphene [30-34]. Integration of Ge has demonstrated promise for low-power, high-

speed, large extinction operation in relatively small device footprints, but Ge/Si devices often 

exhibit relatively high absorption losses due to direct bandgap absorption in Ge. Of the 

modulators that integrate graphene, the most promising are likely from Ref. [30] and Ref. [31], 

whereby 5.9 GHz operation at a drive voltage of 2.5 V in a 50 µm x 10 µm linear geometry [30] 

and 30 GHz operation in a ring resonator geometry [31] were shown. However, in both cases, the 

modulation speed was not superior to silicon-only modulators and for the ring resonator 

geometry, operation was shown with a relatively large operation voltage of 7.5 V. Additionally, 

there has been interesting work integrating transparent conducting oxides (e.g. indium tin oxide) 

for use in silicon electro-optic modulators, but to date, high-speed operation has not been shown 

[33]. For all-optical modulators, integration of nonlinear polymers within silicon waveguides has 

resulted in faster signal processing, up to 170.8 Gb/s [35]. A cross section of this device is shown 

in Figure 1.4(b). However, this was in a device of length 4 mm. With the exception of this 
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demonstration, there has been little work for hybrid integration of silicon-based on-chip 

geometries. To date, the most successful route to improving performance metrics has been to 

replace the silicon PhC structure in Ref. [23] with InGaAsP, utilizing its strong carrier induced 

nonlinearity [36]. This geometry demonstrated 10 dB, 0.66 fJ modulation at approximately 30 

ps. However, this is incompatible with silicon processing. 

 

 

Figure 1.4. Examples of hybrid silicon electro-optic and all-optical modulators. (a) Top 
view SEM image of a Si/Au plasmonic Mach-Zehnder interferometer electro-optic 
modulator. Figure reprinted with permission from [24]. © 2015 NPG. (b) Cross-sectional 
SEM images of Si/polymer slot waveguide used for all-optical modulation. Figure 
reprinted with permission from [35]. © 2009 NPG. 

 
 

1.2.2 Polarization in silicon photonic waveguides 

Throughout this thesis, device operation for both transverse electric (TE) and transverse 

magnetic (TM) optical modes will be discussed. Optical modes for which the electric field is 

primarily oscillating parallel to the top surface of the waveguide are considered to have TE 

polarization, while optical modes for which the electric field is primarily oscillating orthogonal 

to the top surface of the waveguide are considered to have TM polarization. Figure 1.5 presents 

the electric field intensity profiles at a wavelength of 1.55 µm for both the fundamental TE (a) 

and TM (b) modes, respectively, for a silicon waveguide of cross-sectional dimensions 500 nm 
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(width) × 220 nm (height). The importance of polarization selection on the performance of 

optical modulators is discussed in more detail in subsequent sections of the thesis where 

applicable. 

 

 

Figure 1.5. Electric field intensity profiles for the fundamental TE (a) and TM (b) optical 
mode. Both field intensity profiles are taken at 1.55 µm for a silicon waveguide geometry 
of 500 nm (width) × 220 nm (height) using Lumerical Mode Solutions. 

 

 
1.2.3 Ring resonator theory 

With guidance from Ref. [37], this section provides a brief theoretical background to silicon 

ring resonators, as they will be discussed throughout the thesis. 
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Figure 1.6. (a) Schematic of an all-pass ring resonator. Figure reprinted with permission 
from [37]. © 2012 Wiley. (b) Example of optical spectrum of ring resonator, showing a 
distinct resonance and its defining features (resonant wavelength, FWHM, and resonance 
depth). 

 
 

The all-pass ring resonator, shown in Figure 1.6(a) along with a corresponding typical spectra in 

Figure 1.6(b), is the ring resonator geometry used in this work and consists of a linear bus 

waveguide and a circular ring waveguide. Radiation is coupled into the bus waveguide at the 

input. This radiation evanescently interacts with the adjacent circular waveguide. For radiation 

that couples into the resonator, wavelengths that constructively interfere are considered resonant. 

Resonant wavelengths, λres, are given by: 

 λres =
neffL
m

                                 (2) 

 
where neff is the effective refractive index, L is the geometric path length, and m is a positive 

integer. Therefore, the resonance wavelength is defined by the geometry of the ring and the 

refractive indices (n) of the materials composing the ring. The quality factor (Q) describes the 

width of the resonance and is directly proportional to the lifetime of a photon (τph) in the 

resonator. Q is given by: 
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 Q =
λres

FWHM
= 2πντ ph                                  (3) 

 
where FWHM is the full width half maximum of the resonance, ν is the optical frequency, and tph 

is the photon lifetime in the cavity. Therefore, the width of the resonance provides information 

about losses in the resonator, induced either by waveguide geometry (e.g., bending losses, 

scattering due to side wall imperfections) or the extinction coefficients (κ) of the materials 

composing the ring. The depth of the resonance (often given in units of dB) is dependent upon 

the coupling condition between the bus and ring waveguides (i.e., light coupling from the bus 

waveguide to the ring waveguide, and vice versa) and material absorption loss. Therefore, 

inducing losses in the ring will modify the coupling condition, and as a result, the depth of the 

resonance. Consequently, the distance between the bus and ring waveguides, waveguide 

geometry (e.g., bending losses, scattering due to side wall imperfections), and κ of the materials 

composing the ring dictate the resonance depth. 

 

1.3 Optical phase change materials 

Optical phase change materials (O-PCMs) have emerged as a unique class of materials that 

demonstrate large changes in their optical properties (Δn > 1, Δκ ~ order of magnitude) in 

response to an external stimulus (e.g., temperature, applied voltage, ultrafast optical excitation). 

These materials generally fall within classification as transition metal oxides or chalcogen-based 

alloys. Transition metal oxide O-PCMs, some of which are shown in Figure 1.7(a), generally 

undergo crystalline-crystalline transitions while chalcogen-based O-PCMs, shown in Figure 

1.7(b), undergo amorphous-crystalline transitions. There has been and continues to be extensive 

work investigating the nature of these transitions. For detailed theoretical analysis of these 

transitions, the reader is referred to [38] and [39] for transition metal oxide and chalcogen-based 
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O-PCMs, respectively. This thesis focuses on the utilization of the unique properties of a 

transition metal oxide O-PCM, vanadium dioxide (VO2), within silicon photonic devices for 

optical modulation applications. Details of VO2 are presented in the following subsection. 

 

 

Figure 1.7. (a) Selected transition metal oxide O-PCMs and the temperatures at which 
they demonstrate a change in their optical properties. Figure reprinted with permission 
from [40]. © 2011 Annual Reviews. (b) Ternary phase diagram for Te, Ge, and Sb, 
showing selected chalcogen-based O-PCMs. Figure reprinted with permission from [41]. 
© 2008 NPG. 

 
 

1.3.1 Vanadium dioxide 

In 1959, F. J. Morin demonstrated a discontinuity in electrical conductivity of approximately 

three orders of magnitude in VO2 single crystals near 340 K [42]. In subsequent work, 

substantive changes in the optical properties of VO2 (at 1550 nm, n and κ go from 3.3 and 0.3 to 

1.8 and 3.3, respectively) [43] were shown. A breadth of research has elucidated some of the 

fundamental physics responsible for these interesting properties, pointing to the existence of a 

structural phase transition (SPT) from a low temperature, semiconducting, monoclinic (VO2:M) 

phase to a high temperature, metallic, rutile (VO2:R) phase. The VO2:R phase is achieved via 
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breaking of the V-V dimers exhibited in the VO2:M phase and the straightening of the V atoms 

along the c axis, shrinking the unit cell twofold. 

Figure 1.8 shows the crystal structures of the VO2:M and VO2:R phases in addition to the 

optical properties of VO2 in both phases from 1450 – 1600 nm. Throughout the body of the text, 

VO2:M and VO2:R are used interchangeably with semiconducting and metallic VO2, 

respectively, to refer to the optical properties exhibited in the two phases of VO2. In addition, 

transitions from the optically transmissive, electrically resistive VO2:M phase to the optically 

opaque, electrically conductive VO2:R phase and from the optically opaque, electrically 

conductive VO2:R phase to the optically transmissive, electrically resistive VO2:M phase are 

labeled as the semiconductor-metal transition (SMT) and metal-semiconductor transition (MST), 

respectively. 
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Figure 1.8. Optical properties and atomic structures of VO2. (a,c) Three-dimensional 
schematics of the (a) low temperature (T < 68°C), monoclinic and  (c) high temperature 
(T > 68°C), rutile (top right) crystal structures. Vanadium atoms are shown in light blue. 
The orange shadows highlight the V-V dimers exhibited in the monoclinic crystal 
structure. Oxygen atoms are not shown. Figures are adapted and reprinted with 
permission from [44]. © 2012 APS. The monoclinic and rutile phases of VO2 are labeled 
VO2:M and semiconducting VO2 and VO2: R and metallic VO2, respectively. (b) Optical 
properties (n and κ) of VO2. Dashed lines represent the VO2:M phase (semiconducting 
VO2) and solid lines represent the VO2:R phase (metallic VO2). Optical properties were 
taken and repotted from [43]. 

 
 

For optical modulation applications, the focus of this thesis, the dynamic change of the 

optical properties of VO2 is of the most importance. Recently, numerous ultrafast optical studies 

on VO2 thin films have revealed unique ultrafast dynamics [44-51]. These studies, of which 

some explore the decoupling of atomic structural changes and the change in optical properties, 

demonstrate the change in optical properties of VO2 can be accessed on ~ femtosecond (“on”) 

and ~ 1-10 picosecond (“off”) times. Two examples of optically induced ultrafast dynamics are 

shown in Figure 1.9. In Ref. [49], the authors clearly demonstrate the decoupling of the optical 

properties and the SPT. Shown in Figure 1.9(a), for incident fluences below ~ 9 mJ/cm2, electron 

diffraction reveals no atomic structural change. However, the inset clearly demonstrates changes 

in IR transmissivity for fluences below 9 mJ/cm2, showing MST times on the order of a 
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picosecond for the lowest fluences. Although the atomic structure is not transiently monitored, 

similar optical behavior (~ 10 ps MST times) is observed for low fluences in Ref. [51], shown in 

Figure 1.9(b). 

 

 

Figure 1.9. (a) Relative change in electron diffraction intensity and IR transmissivity for a 
VO2 thin film. The 302 diffraction peak is only allowed in the VO2:R phase, while the 
220 diffraction peak is allowed in both the VO2:R and VO2:M phase. The hatched region 
represents fluences for which no SPT is observed. However, the inset demonstrates for 
these fluences, there is modulation of the IR optical properties, demonstrating the SMT is 
taking place. Figure is reprinted with permission from [49]. © 2014 AAAS. (b) 
Differential transmission (centered at 3.1 µm) of a VO2 thin film on a-cut sapphire for 
varying incident pump fluences. Pump wavelength is centered at 825 nm. Differential 
transmission demonstrates ultrafast (~ 10 ps) recovery dynamics for low fluences. Figure 
is reprinted with permission from [51]. © 2016 IOP. 

 

 
While these ultrafast dynamics have been demonstrated for all-optical excitation, the ultimate 

temporal dynamics in response to an electrical pulse remain to be determined. However, in 

purely electrical measurements, the SMT and MST transitions have been shown to be no more 

than 2 [52, 53] and 3 ns [52]. Specifically for the SMT, in Ref. [53], the authors perform 

electrical measurements through a 400 nm film of VO2. The device geometry is shown in Figure 

1.10(a). In their measurements, the switching time (τ) is defined as the time it takes for the VO2 

to change its electrical resistivity by 90% in log scale and is measured to be ~ 1.9 ns, shown in 

Figure 1.10(b). Assuming the change in optical properties occurs simultaneously with the change 
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in electrical conductivity, this suggests electrically induced optical changes in VO2 can occur on 

similar time scales. It is expected operation in this regime of fractional optical and electrical 

(here, 90%) change in VO2 will provide a faster pathway to the VO2:M phase, giving faster MST 

times in device geometries. In addition, as seen in Figure 1.10(b), in the electrical measurement, 

the current density appears to increase linearly from the start of the voltage pulse until τ, 

demonstrating that the SMT, although of a lesser magnitude (measured by electrical 

conductivity), is taking place on time scales faster than 1.9 ns. This suggests even faster device 

operation, albeit with potentially reduced optical properties, can be potentially be achieved. 

 
 

 

Figure 1.10. (a) Schematic of VO2 device used for probing electrical dynamics. (b) 
Current density response of a VO2 device in response to a voltage pulse, showing 90% of 
maximum change in conductivity after τ = 1.9 ns. Figures reprinted with permission from 
[53]. © 2013 IEEE. 

 
 
 
1.4 Si/VO2 Photonic Devices 

Due to its unique optical properties and intrinsically ultrafast dynamics presented in Section 

1.3.1, VO2 has been both proposed and realized in a variety of silicon-based photonic devices. In 
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this section, resonant and non-resonant silicon photonic devices, both in simulation and 

experiment, which utilize integration of VO2 for their active functionality, are presented. An 

emphasis is placed on Si/VO2 device platforms with potential implementation as electro-optic or 

all-optical modulators. The presented devices are classified by the mechanism (thermal, 

electrical, or optical) used to induce the SMT. Devices using continuous wave photothermal 

heating are classified under thermo-optic functionality (Section 1.4.1) while those which use 

optical pulses to induce the SMT are classified under all-optical functionality (Section 1.4.3). 

Devices which use resistive heating through the VO2 are classified under electro-optic 

functionality (Section 1.4.2). Simulation based devices are categorized under what is deemed to 

be the most plausible experimentally realized mechanism to actuate the SMT. 

 

1.4.1 Thermo-optic Si/VO2 photonic devices 

Due to the relatively low temperature (~ 68°C) required to initiate the SMT, active tunability 

of hybrid Si/VO2 waveguide and resonant based devices has been experimentally demonstrated 

through thermal mechanisms including external substrate heating [54, 55] and photothermal 

heating [56]. In Ref. [54], the authors integrated a 2 µm long VO2 patch on a 400 µm diameter 

silicon ring resonator [Figure 1.11(a)]. Using an external substrate heater, the temperature 

dependent optical response was measured [Figure 1.11(b)] and used to extract the induced 

absorptive optical loss resulting from the SMT. Specifically, for a 2 µm long, 65 nm thick VO2 

patch atop a linear rib waveguide, the authors calculate induced losses of 2 and 9 dB when VO2 

is in its VO2:M and VO2:R phases, giving expected insertion loss and extinction ratio of 2 dB 

and 7 dB, respectively. Subsequent work drastically reduced the device footprint, integrating 

VO2 on ultracompact silicon ring resonators [56]. For a 500 nm long VO2 patch on a TE mode 
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ring resonator of radius of 1.5 µm, the authors demonstrated > 10 dB extinction ratio by 

photothermally inducing the SMT and utilizing the resulting changes in both refraction and 

absorption [Figure 1.11(c)]. Although these experimental demonstrations are slow due to their 

thermal actuation of the SMT, they demonstrate a platform for high extinction ratio (~10 dB), 

low loss (~1-2 dB) operation. With the demonstrated ultrafast dynamics of VO2 [44-51], it is 

expected these Si/VO2 hybrid ring resonators can be directly leveraged to realize high-speed 

optical modulation with out-of-plane ultrafast excitation. Additionally, for slower speed routing 

of light, [57] suggests a design for a 2×2 optical switch using a Si/VO2 hybrid ring resonator, 

shown in Figure 1.11(d). The authors in Ref. [58] propose modification of the silicon waveguide 

dimensions, VO2 location and dimensions, and silica spacer thickness to achieve selective 

interaction with the TE and TM modes. While the proposed application is for efficient pass 

polarization [proposed device design in Figure 1.11(e)], this waveguide optimization can also be 

implemented for modulation applications to maximize extinction ratio.  
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Figure 1.11. (a) Schematic and SEM images of VO2 coated silicon ring resonator. Figure 
reprinted with permission from [54]. © 2010 OSA. (b) Temperature-dependent 
transmission of Si/VO2 ring resonator in (a), demonstrating the change in optical 
response as VO2 undergoes its SMT. Data reprinted with permission from [54]. © 2010 
OSA. (c) Optical transmission of 1.5 µm radius Si/VO2 ring resonator (SEM inset top left 
with VO2 false colored maroon). At the selected wavelength (dashed line), optical 
transmission is low with no laser-induced photothermal heating (“laser off” inset) while 
transmission is high with laser induced photothermal heating (“laser on” inset) due to the 
resonance shift induced by the SMT. Small scale bar in SEM image inset is 250 nm. 
Figure and data reprinted with permission from [56]. © 2012 OSA. (d) Proposed 2×2 
Si/VO2 microring switch. Figure reprinted with permission from [57]. © 2016 IEEE. (e) 
Demonstration of pass polarizer using VO2 on a designed silicon waveguide (blue). 
Purple and gray blocks represent VO2:M and VO2:R, respectively. TE and TM light are 
represented by blue and red arrows, respectively. Figure reprinted with permission from 
[58]. © 2015 OSA. 

 

 
1.4.2 Electro-optic Si/VO2 photonic devices 

Vanadium dioxide has been proposed and realized for integration in electro-optic silicon 

photonic devices. Experimentally, electrical actuation of the SMT of a VO2 patch coating a 

silicon waveguide has been demonstrated [52, 59]. In Ref. [52], for a Si/VO2 device geometry 
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shown in Figure 1.12(a), the authors provide experimental evidence Poole-Frenkel emission is 

responsible for electrically inducing the SMT. In addition, they suggest metallic VO2 filaments 

initially form between the electrical contacts and additional portions of VO2 outside of the metal 

contacts can undergo the SMT via Joule heating. The time dynamics for switching the VO2 

domains outside the contacts is slower than switching the VO2 domains between the contacts, 

and this is demonstrated in the device performance. By applying longer voltage pulses, the 

amount of VO2 undergoing the SMT is increased giving increased extinction ratio. However, this 

comes with longer response times. In the geometry presented, the authors demonstrate 

modulation approaching 1 dB in response to a 10 ns voltage pulse. In Ref. [59], the authors 

explore shrinking the silicon waveguide width to 300 nm to delocalize the mode and therefore 

force increased optical interaction with VO2:R. An optical microscope image of the sample using 

this design is shown in Figure 1.12(b). With this optimized design, increased optical contrast is 

demonstrated, giving 12 dB extinction ratio with a 1 µm long VO2 patch. In this work, response 

times of > 1 µs are shown. This device is also characterized as a photodetector, giving a 

responsivity > 10 A/W.  
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Figure 1.12. (a) SEM image of Si/VO2 electro-optic waveguide device. VO2 and Au are 
false colored purple and gold, respectively. Figure reprinted with permission from [52]. 
© 2015 ACS. (b) Optical microscope image of Si/VO2 electro-optic waveguide device 
which delocalizes the optical mode to increase interaction with VO2:R. Figure reprinted 
with permission from [59]. © 2015 OSA. 
 
 

In addition, there have been interesting proposed geometries [60-62] which embed VO2 

within a silicon waveguide. Specifically in Ref. [60], the author proposes a device geometry 

where optical transmission is controlled by electrically actuating a thin film of VO2 in a 

Si/SiO2/VO2/SiO2/Si hybrid plasmonic waveguide adjacent to the input silicon waveguide. The 

authors suggest that by directional coupler theory, radiation from the input silicon waveguide 

will couple into the hybrid plasmonic waveguide. By applying a voltage across the top and 

bottom silicon components of the hybrid plasmonic waveguide to actuate the SMT, the VO2 in 

the hybrid plasmonic waveguide becomes metallic and the optical loss is increased before the 

radiation couples back into the input silicon waveguide. The proposed device geometry is shown 

in Figure 1.13(a) and suggests implementation as a modulator will give > 3 dB extinction ratio 

with ~ 1 dB insertion loss over the entire C-band (1.53-1.565 µm). In Ref. [61], a similar 

geometry is proposed, shown in Figure 1.13(b). Here, the VO2 segment is placed in the 

propagating waveguide and is positioned between the silicon waveguide and a top copper 

electrode. The authors analyze both TE and TM operation, suggesting in a 500 nm long device, 
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insertion loss and extinction ratios of 2.7 (1.79) dB and 3.87 (8.7) dB are expected for TE (TM) 

polarizations, respectively.  

 

 

Figure 1.13. (a) Proposed Si/VO2 electro-optic modulator design based on directional 
coupler theory. Figure reprinted with permission from [60]. ©  2014 OSA. (b) Proposed 
Si/VO2 hybrid plasmonic electro-optic waveguide modulator. Figure reprinted with 
permission from [61]. © 2015 IEEE. (c) Proposed Si/VO2 electro-optic design including 
a vertically embedded VO2 section within the silicon waveguide. Figure reprinted with 
permission from [62]. © 2017 IEEE. (d) Proposed Si/Au/VO2 electro-optic modulator 
design based on near field plasmonic coupling. Figure reprinted with permission from 
[63]. © 2015 OSA. 

 
 

In Ref. [62], the authors propose an embedded design where a vertical slot of VO2 is placed in 

the center of a heavily doped silicon waveguide [Figure 1.13(c)]. The authors determined the 

optimal device geometry for maximum changes in propagation losses (α) by sweeping the widths 

of the silicon waveguide and VO2 section. As an electro-absorption modulator, simulations for 

the optimized design suggest very large extinction ratio (21 dB) and modest insertion loss (3 dB) 

are possible for a device length of 1 µm. In addition to these embedded designs, a Si/VO2/Au 
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plasmonic-photonic electro-optic modulator, shown in Figure 1.13(d), was proposed suggesting 

~ 9 dB/µm extinction ratio/length and the potential for reduced power consumption [63]. 

 

1.4.3 All-optical Si/VO2 photonic devices 

As a continuation of the work described in Section 1.4.1 where VO2 was integrated on an 

ultrasmall silicon ring resonator and linear silicon waveguides [56], transient functionality was 

demonstrated using a nanosecond optical pulse (~ 25 ns FWHM) to initiate the SMT of VO2 

[64]. Figure 1.14(a) presents the Si/VO2 ring resonator in addition to the transient optical 

transmission as a function of incident fluence. For lower fluences, the optical response 

approaches the temporal envelope of the excitation pulse. With increasing fluence, the maximum 

transmission increases as a result of accessing the full SMT of VO2, and for the highest fluences 

shown, the longer device response times are associated with VO2 experiencing a thermal 

environment beyond what is required to access its SMT, forcing longer times to return to the 

temperature required to undergo the MST. Additionally, recent work has proposed the use of a 

Au/VO2 hybrid pattern on a silicon waveguide for all-optical modulation with in-plane excitation 

[65] [Figure 1.14(b)]. Although this design suggests large extinction ratio/length (24 dB/µm), it 

exhibits large insertion loss (~ 7 dB) and is expected to require relatively complex fabrication. 
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Figure 1.14. (a) Transient response of Si/VO2 ring resonator for increasing pump fluence. 
Fluences range from 0.45-4.74 mJ/cm2 and are increasing from blue to red. SEM image 
of Si/VO2 ring resonator in top right (VO2 is false colored maroon). Small scale bar in 
SEM image inset is 250 nm. Figures taken and adopted with permission from [56, 64]. © 
2012 OSA, ©  2013 OSA. (b) Schematic for proposed Si/Au/VO2 all-optical modulator. 
Figure reprinted with permission from [65]. © 2018 IEEE. 

 
 

1.5 Objectives and dissertation overview 

The objective of this thesis is to continue to push forward the practical functionality of 

integrated Si/VO2 photonic devices, in particular for implementation as electro-optic and all-

optical modulators. In Chapter 2, platforms for Si/VO2 electro-optic modulation are presented, 

including the design, fabrication, and characterization of a Si/VO2 electro-optic ring resonator 

device. In Chapter 3, platforms for Si/VO2 all-optical modulation are presented, including the 

design, fabrication, and characterization of a hybrid waveguide comprising a VO2 patch 

embedded within a silicon waveguide. While only voltage-driven thermal actuation is 

demonstrated in Chapter 3, the embedded design provides a potential platform for in-plane all-

optical modulation. In Chapter 4, expected performance of the device presented in Chapter 3 as 

an all-optical modulator with in-plane excitation is presented in comparison to other in-plane all-

optical modulators. In addition, further improvements for practical implementation of Si/VO2 
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electro-optic and all-optical modulators are proposed and discussed, including an analysis of 

waveguide geometry considerations, transient mode propagation, and polarization independent 

operation. Lastly, in Chapter 5 a brief conclusion of this thesis is presented and future research 

avenues are suggested. 
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Chapter 2  

2. Platforms for Si/VO2 electro-optic modulation 

2.1 Introduction 

As mentioned in Section 1.2, integration of on-chip optical and electrical components 

provides a potential pathway to continue to improve the performance of traditional information 

processing systems [66]. Considering only silicon-based platforms, realization of these 

electronic-photonic systems requires the development of silicon-based chip-scale lasers [9], 

photodetectors [11, 12], and electro-optic modulators [10]. Platforms for electro-optic 

modulators, which serve to imprint an electrical signal on an optical signal, are the focus of this 

chapter. As mentioned in Section 1.2.1, there have been two primary types of proposed silicon-

based photonic electro-optic modulators: (i) silicon-only electro-optic modulators and (ii) hybrid 

electro-optic modulators which integrate a second active material with optical properties superior 

to silicon within a silicon photonic platform. The designs in this chapter fall within the second 

type, specifically integrating vanadium dioxide (VO2) into silicon photonic devices. Described in 

detail in Section 1.3.1, VO2 is a transition metal oxide optical phase change material which 

demonstrates dynamic optical tunabilty (at 1550 nm, n and κ go from 3.3 and 0.3 to 1.8 and 3.3, 

respectively) [43]. While its SMT and MST have been shown to be no more than 2 [52, 53] and 

3 ns [52], respectively, when electrically actuated, sufficient optical modulation (4-5 dB) at these 

time scales has remained evasive [52, 59]. In this chapter, VO2 is first integrated on top of a 

silicon photonic ring resonator device with the goal of achieving improved optical modulation 

while maintaining the temporal device response. Additionally, a design for a Si/VO2 electro-

absorption modulator with fundamental TM mode operation is presented and characterized. 

 



 29 

2.2 Si/VO2 electro-optic ring resonator modulator 

With optical excitation, prior work, presented in Section 1.4.3, demonstrated the potential for 

implementation of ring resonator structures to enhance the light-matter interaction with VO2, and 

therefore demonstrate improved optical performance [64]. Specifically, for a given VO2 patch 

length of 500 nm, in a linear geometry, ~ 2 dB extinction ratio was achieved, while for an 

identical VO2 patch in a ring resonator structure, ~ 7 dB extinction ratio was achieved. With this 

knowledge, in addition to the demonstrated ability to modify optical waveguide transmission by 

electrically initiating the SMT of VO2 atop a silicon waveguide [52, 59], here, electrical 

actuation of the SMT of a patch of VO2 on a silicon ring resonator is explored. 

 

2.2.1 Si/VO2 ring resonator fabrication 

The Si/VO2 ring resonators were fabricated in three lithography steps, the results of which 

are presented in schematics in Figure 2.1(b-d). The first lithography step defined the silicon ring 

resonator photonic structure and silicon supports to ensure continuous electrical contacts in a 

SOITEC silicon-on-insulator (SOI) wafer (220 nm Si layer; 3 µm SiO2 box layer). These silicon 

supports proved to be integral in improving device reliability in the Si/VO2 electro-absorption 

design in Ref. [52], as device failure often occurred without them, likely due to electrical contact 

burnout when the electrical contacts were patterned on the side walls of the silicon waveguides. 

The SOI wafer was cleaved into a small square (e.g., 30 mm × 30 mm) and excess particulates 

were removed with N2 gas. ZEP 520A electron beam resist was spun at 6000 rpm and 

subsequently prebaked for 2 minutes at 180°C. In order to define the silicon structures, the 

pattern was exposed using a JEOL 9300FS 100kV electron beam lithography system at the 

Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory. Samples 
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were then developed for 30 seconds in Xylenes, rinsed multiple times with isopropyl alcohol 

(IPA), and dried with N2. The wafer was etched using a C4F8, SF6, Ar gas mixture in an Oxford 

Plasmalab 100 RIE system at CNMS. The etch recipe consisted of a 3 second strike step at RF 

and ICP powers of 50 and 1800 W with gas flows of 50 sccm C4F8, 12 sccm SF6, and 50 sccm 

Ar followed by a 2 minute, 15 second etch (RF and ICP powers of 30 and 1200 W with gas 

flows of 60 sccm C4F8, 25 sccm SF6, and 5 sccm Ar). With a measured silicon etch rate of ~ 160 

nm/minute, this etch likely etches into the SiO2 layer. However, it is expected this is insignificant 

due to the low etch rate of SiO2 for this etch recipe. The table temperature was set to 20°C during 

both the strike and etch steps. Following the silicon etch, a ten-minute O2 descum was performed 

(100 W RF power and 20 sccm O2 at 20°C table temperature) to strip remaining ZEP 520A 

resist. 
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Figure 2.1. Multilayer lithography patterning of Si/VO2 electro-optic ring resonator 
modulator. Throughout the figures, Si, SiO2, VO2, Cr/Au, and the resist are light gray, 
dark gray, green, gold, and red, respectively. (a) Patterning and development of resist in 
preparation of etching of silicon photonic ring resonator. (b) Silicon photonic ring 
resonator after etching and subsequent liftoff of resist. (c,d) Silicon photonic ring 
resonator after resist patterning, deposition of VO2 (c) and Cr/Au (d), and subsequent 
liftoff of resist. 

  
 

Before the second lithography step, the sample was soaked in piranha solution (H2SO4/H2O2 

3:1) for one minute at room temperature and subsequently rinsed with deionized (DI) H2O to 

ensure that no residual ZEP 520A remained on the sample surface. The VO2 patch and metal 

contacts were placed on the device in the second and third lithography steps. For both steps, 950 

PMMA A4 electron beam resist was spun at 500 rpm for 5 seconds, 2000 rpm for 45 seconds, 

and prebaked for 90 seconds at 180°C in the Vanderbilt Institute of Nanoscale Science and 

Engineering (VINSE). The resist-coated samples were then exposed using a Raith eLine electron 
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beam lithography system in VINSE. The dosing parameters (dose, aperture, step size, voltage) 

were 750 µC/cm2, 30 µm, 10 nm, and 20 kV and 300 µC/cm2, 30 µm, 20 nm, and 20 kV for the 

second and third lithography steps, respectively. For patterning of the large electrical contact 

features [everything outside of the blue box in Figure 2.2(a)], an aperture of 100 µm was used to 

reduce the write time to ~ two minutes per pair of electrical contacts. After exposure, samples 

were developed in methyl isobutyl ketone (MIBK)/isopropyl alcohol (IPA) 1:3 for 45 seconds 

and 90 seconds for the second and third lithography steps, respectively. After the second and 

third lithography steps, residual 950 PMMA A4 was removed in a short O2 clean to ensure the 

VOx and metal contacts were deposited on a clean surface. Surface cleanliness is expected to be 

very important for consistent electrical performance. For the VO2 deposition, a vanadium-metal 

target was RF sputtered at 6 mTorr pressure with 20 sccm Ar and 1 sccm O2 in a multipurpose 

Angstrom deposition tool in VINSE. The chamber pressure was initially set to 40 mTorr to ignite 

the plasma after which it was returned to 6 mTorr. After deposition of VOx, room temperature 

liftoff was performed in acetone for ~ one hour, followed by rinsing with acetone and IPA (front 

and back of sample multiple times), and drying with N2. To form polycrystalline VO2, the 

sample was annealed for 9 minutes at 450°C in a vacuum-sealed tube furnace at 250 mTorr O2 

pressure. For the metal contacts, resistive evaporation was used in VINSE to deposit chromium 

for adhesion to the silicon surface and gold for electrical contact. Another room temperature 

liftoff was then performed in acetone for ~ three hours, followed by thorough rinsing with 

acetone and IPA and drying with N2. VO2 and Cr/Au deposition thicknesses were measured by 

profilometry (Veeco Dektak 150 profilometer) on witness samples in VINSE. Figure 2.2 shows a 

fully fabricated device. The VO2 patches were 500 nm wide (covering the width of the ring 

resonator waveguide), ~ 100 nm thick, and of variable length (LVO2). Gold/chromium thickness 
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(desired target deposition of 5 nm Cr and 50 nm Au) was measured to ~ 65 nm. The silicon ring 

resonator was 5 µm in radius with a 500 nm (wide) × 220 nm (thickness) waveguide geometry. 

The silicon supports were ~ 100 nm in width at their connection point to the silicon ring 

resonator. 

 

 

Figure 2.2. (a) SEM image of fully fabricated Si/VO2 ring resonator modulator, including 
gold contact pads (100 µm × 100 µm) for electrical access. (b) Zoomed-in SEM image to 
show detail of Si/VO2 ring resonator. (c) Zoomed-in SEM image showing patterned VO2 
and Au on silicon ring resonator structure. Patterned VO2 patches are of variable lengths 
(LVO2). The VO2 patch shown in this image has LVO2 = 1 µm. In both images, VO2 and 
Au are false colored green and yellow, respectively. 
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2.2.2 Characterization of VO2 

2.2.2.1 Optical characterization of VO2 

To verify that the VOx films had formed stoichiometric VO2 under annealing, the switching 

temperature for the SMT (TSMT) was measured by temperature-dependent reflectometry. 

Measurements were performed on a thin film of VO2 on a silicon substrate that experienced 

identical processing conditions as the VO2 deposited on the modulator devices. A fiber coupled 

3000 K tungsten-halogen light source (Spectral Products – Model ASBN-W-L) was incident on 

the sample. The sample temperature was controlled by a Peltier heater attached to the stage and 

temperature-dependent reflected power was detected using an InGaAs photodetector (Thorlabs 

PDA10CS). Figure 2.3(a) shows the experimental result. As the temperature is increased, VO2 

undergoes the SMT around 65°C, which is typical for VO2 films. This is exhibited by an increase 

in the measured reflectance as the VO2 is more reflective in the VO2:R phase. As the VO2 film 

temperature returns to room temperature, reflectance drops to its original baseline as the VO2 

undergoes the MST.  
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Figure 2.3. (a) Temperature-dependent reflectometry of a thin film VO2 witness sample 
on silicon, demonstrating TSMT ~ 65 °C. (b) Typical IV curve from voltage sweep applied 
to a Si/VO2 ring resonator device. Schematic of electrical measurement is shown in inset. 
The in-series resistor is 3 kΩ for the measurement shown. Discontinuity in current is 
indicative of the SMT of VO2. Figures reprinted with permission from [67]. © 2016 
SPIE. 

  
 

 
2.2.2.2 Electrical characterization of VO2 

The VO2 switching voltage was determined by performing IV measurements [schematic for 

electrical measurement is shown in inset of Figure 2.3(b)] on the Si/VO2 ring resonator using a 

Keithley 2400 Sourcemeter. For the curve shown in Figure 2.3(b), a 3 kΩ in-series resistor was 

used to limit current passing through the device after the VO2 undergoes the SMT. The 

discontinuity in current is indicative of the SMT as the sharp increase in current is a result of 

VO2 switching from the more electrically resistive VO2:M phase to the more electrically 

conductive VO2:R phase. The constant 600 µA current after the discontinuity is due to the 

current limit of 600 µA programmed with the Keithley 2400 Sourcemeter to protect from device 

failure. Assuming negligible resistance in the gold contacts and subtracting the voltage drop 

across the 3 kΩ resistor (3 kΩ multiplied by the measured current just before the discontinuity), 

the switching voltage is 3.06 V. With approximately 100 nm between contacts, this switching 
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voltage corresponds to a threshold electric field of 3.06 × 107 V/m, which is in agreement with 

previously measured values [53, 68]. 

 
2.2.3 Experimental setup 

Electro-optic and thermo-optic characterization of the Si/VO2 ring resonators was performed, 

and the experimental setup for each characterization is presented below. For all measurements, 

TE polarized light from a tunable laser (Santec TSL-510) was coupled into the device via butt 

coupling of a lensed tapered fiber (OZ Optics 39318 TPMJ-3U-1550-8/125-0.25-10-2.5-14-1). 

Methods of polarization control and characterization can be found in Appendix A.1. The optical 

signal was coupled out of the device via a lensed tapered fiber and received by a power meter 

(Newport 2936-C). All transmission spectra were acquired using the Santec Swept Test System 

STS-510 software package. Figure 2.4 shows an image of the full fiber-coupled, optical 

characterization setup for passive device characterization. Below, modifications to this setup to 

allow for active (i.e., electro-optic, thermo-optic) characterization are presented. 
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Figure 2.4. Fiber-coupled optical setup for passive characterization of integrated silicon 
photonic devices. Polarization of tunable laser input from Santec TSL-510 is determined 
with variable orientation of a linear polarizer and half-wave plate, shown in the bottom 
right. Optical input is coupled into and out of the device with lensed tapered fibers. This 
is achieved with visual aid from a live monitor image, using a Mitutoyo M Plan Apo NIR 
20X microscope objective. Outcoupling signals are received by a power meter (Newport 
2936-C).  

 
 

2.2.3.1 Electro-optic experimental setup 

For all electro-optic measurements, the sample was mounted to a high-speed sample holder 

[Figure 2.5(a)]. Electrical connections to the Au pads were made using a Westbond 7476D wire 

bonder. The electrical source was connected at one terminal while the other was grounded 

through an in-series resistor. Steady-state electro-optic measurements were performed using a 

Keithley 2400 Sourcemeter. High-speed electro-optic measurements were performed using a 

Stanford Research Systems DG535 pulse generator. Figure 2.5(b) shows the high-speed sample 

holder integrated into the optical fiber-coupled setup. For high-speed measurements, the output 
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optical signal was converted to an electrical signal with a high-speed photodetector (Menlo 

Systems FPD 510) and then read out on an oscilloscope (Tektronix TDS 2024C). 

 

 

Figure 2.5. Electro-optic experimental setup. (a) Sample holder including a mounted 
device. For electro-optic characterization, electrical connection to the sample holder was 
made with electrical cables. Electrical connection to the device was achieved via wire 
bonding from the electrical strips to the patterend contact pads on the device. (b) Electro-
optic sample holder integrated into fiber-coupled, optical setup. Optical input and output 
coupling are achieved using lensed tapered fibers, and the electrical signal is supplied via 
connection to the right and left SMA ports of the sample holder. The left port is 
connected to the electrical supply and the right port is grouded through an in-series 
resistor. 

 
 

2.2.3.2 Thermo-optic experimental setup 

For thermo-optic measurements, the sample was mounted on a Physitemp TS-4MP thermal 

stage, shown in Figure 2.6(a). Active stage temperature control (20°C - 100°C) was supplied by 

a water-based Physitemp PTU-3 pump and tank unit, shown in Figure 2.6(b). For these thermo-

optic measurements, thermal fluctuations were reduced by ensuring all components of the 

sample, stage, and lensed tapered fibers were tightly secured. In addition, reducing the distance 
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by which the fibers extend from the copper casing and extending the distance between fibers and 

the sample (while still maintaining optical coupling) minimized thermally induced transmission 

fluctuations. 

 

 

Figure 2.6. Thermo-optic experimental setup. (a) Si/VO2 ring resonator sampled mounted 
on Physitemp TS-4MP thermal stage, showing optical input and output coupling using 
lensed tapered fibers. (b) Physitemp PTU-3 pump and tank unit for controlling the sample 
temperature. Here, the sample temperature is set to 60°C. 

 
 

2.2.4 Results and discussion 

Steady-state electro-optic measurements were performed to initially characterize the Si/VO2 

ring resonator response to an applied voltage. The experimental setup used for these experiments 

is described in Section 2.2.3.1. Figure 2.7(a) shows the transmission spectra for applied voltages 

of 0 V and 3.2 V on a device with LVO2 = 3 µm. Corresponding results from a high-speed electro-

optic measurement are shown in Figure 2.7(b). Figure 2.7(c) and Figure 2.7(d) show steady-state 



 40 

and high-speed electro-optic measurements on a device with LVO2 = 1 µm. All devices in Figure 

2.7 were measured with a 3 kΩ in-series resistor. 

 

 

Figure 2.7. (a) Steady-state and (b) high-speed electro-optic measurements for a Si/VO2 
ring resonator device with LVO2 = 3 µm. (c) Steady-state and (d) high-speed electro-optic 
measurements for a similar device with LVO2 = 1 µm. In (a) and (c), the dashed vertical 
lines represent the wavelength at which the high-speed measurement was taken in (b) and 
(d), respectively. The yellow block in (b) and (d) highlights the time duration when the 
square voltage pulse is on. Figures reprinted with permission from [67]. © 2016 SPIE. 

 
 

As the VO2 patch undergoes the SMT, a blueshift of the resonance is expected. The SMT 

decreases the refractive index of the VO2 patch and therefore reduces the modal index for the 

light in the ring resonator. The decreased modal index leads to a blueshift of the resonant 

wavelength of the ring, as demonstrated in previous thermo-optic and all-optical measurements 
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[56, 64]. Figure 2.7(a) and Figure 2.7(c) indeed show blueshifted resonances when VO2 switches 

from the VO2:M to the VO2:R phase. A larger blueshift is observed with the larger VO2 patch 

and it is expected believe the entire VO2 patch is being switched in both cases, as discussed in 

the next paragraph. In the steady-state measurement shown for the LVO2 = 3 µm device [Figure 

2.7(a)], an extinction ratio of 10 dB is measured between applied voltages of 0 V and 3.2 V at a 

probe wavelength of 1554.16 nm. At this wavelength, in response to a 10 ns square voltage 

pulse, extinction ratios of ~ 3 – 4.5 dB are measured depending on the applied voltage. This 

indicates the entire 3 µm VO2 patch does not undergo the SMT, suggesting 10 ns is not sufficient 

time for the Joule heating mechanism proposed by Ref. [52], described in Section 1.4.2, to 

switch the entire patch. In the steady-state measurement shown for the LVO2 = 1 µm device 

[Figure 2.7(c)], an extinction ratio of 2.9 dB is measured between applied voltages of 0 V and 3 

V at a probe wavelength of 1620.38 nm. At this wavelength, in response to a 10 ns square 

voltage pulse, extinction ratios of ~ 1.5 – 2.6 dB are measured depending on the applied voltage, 

suggesting for the highest voltages, 10 ns is sufficient time for nearly all 1 µm of the VO2 patch 

to undergo the SMT. Additionally, Figure 2.7(b) and Figure 2.7(d) give important insight into the 

device recovery times. In both devices, it is apparent that recovery times become longer for 

higher applied voltages. This is most likely attributable to two effects: (i) the portion of VO2 

which is switched to the VO2:R phase and (ii) the temperature of the VO2 patch. For the LVO2 = 1 

µm device, at an applied voltage of 2.5 V, just above the switching voltage for this device, an 

extinction ratio of ~ 1.5 dB is measured. However, increasing the voltage to 3.1 V results in an 

extinction ratio of ~ 2.6 dB which is nearly equivalent to the steady state measurement of 2.9 dB, 

suggesting nearly all of the VO2 patch is in the VO2:R phase. Therefore, for the LVO2 = 1 µm 

device, as the voltage is increased from 2.5 to 3.1 V, the volume of the VO2 that is in the VO2:R 
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phase is increasing, resulting in larger extinction ratios but also longer recovery times. The VO2 

patch temperature increase that is associated with increasing applied voltages is also expected to 

increase recovery times. Before the VO2 patch can return to the VO2:M phase and the 

transmission intensity can return to its initial value, the temperature of the VO2 patch must fall 

below TSMT. Hence, thermal dissipation is a key consideration in these devices. For the LVO2 = 3 

µm device, the recovery times are ~ 5x longer than for the LVO2 = 1 µm device, suggesting more 

than 1 µm of the 3 µm long VO2 segment is in the VO2:R phase for all applied voltages. For the 

LVO2 = 3 µm device, for increasing voltages, larger extinction ratios and longer recovery times 

are also exhibited, as was seen in the LVO2 = 1 µm device. 

To verify that the entire patch is switching in the steady-state electro-optic measurements in 

Figure 2.7, thermal measurements were performed on the LVO2 = 3 µm device measured in 

Figure 2.7(a). The resonance shift as a function of temperature is shown in Figure 2.8(a). The 

raw data reveal contributions from the SMT of VO2 (blueshift contribution) and the thermo-optic 

coefficient of silicon (redshift contribution). For temperatures below the SMT, the silicon 

thermo-optic coefficient leads to an overall redshift of the ring resonator resonance while for 

temperatures near the SMT, the change in refractive index of the VO2 dominates the silicon 

thermo-optic effect and leads to an overall blueshift of the resonance. Significantly above the 

SMT, a slight redshift can again be observed due to the silicon thermo-optic effect. Figure 2.8(a) 

also shows normalized data that subtracts the contribution from the silicon thermo-optic effect 

and therefore reflects the resonance shift due only to the contribution from the SMT of VO2. The 

data were normalized by carrying out a linear fit of the first five raw data points to account for 

the thermo-optic effect and subsequently subtracting that contribution from the data set. The 

normalized resonance shift of 6.1 ± 0.6 nm is in good agreement with the measured resonance 
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shift of ~ 5.5 nm between 0 V and 3.2 V in Figure 2.7(a), suggesting that the entire patch is in 

the VO2:R phase after applying a steady-state voltage.  

In order to gain further insight into the dependence of VO2 switching performance on the 

portion of the VO2 patch in the VO2:R phase, which relates to the applied voltage, a 10 kΩ in-

series resistor was used in order to limit the current passing through a different LVO2 = 3 µm 

device. Figure 2.8(b) demonstrates an incremental blueshift for this device as the voltage is 

increased up to 6 V, indicating a proportional switching of VO2. Between 6 and 7 V, there is no 

change in resonance wavelength, indicating that at 6 V the entire patch has switched. In Figure 

2.8(b), an applied voltage of 6 V corresponds to a measured current of 429 µA whereas 440 µA 

was measured at 3.2 V in Figure 2.7(a). Therefore, although different resistors were used and 

consequently the applied voltages were different, the voltage drop and current passing through 

the VO2 is nearly identical, suggesting that the current is the driving factor in the extent of the 

VO2 patch that switches, discussed further in the next paragraph. 

 
  



 44 

 

Figure 2.8. (a) Measured resonance shift as a function of temperature for the LVO2 = 3 µm 
device presented in Figure 2.7(a,b). (b) Transmission spectra for an additional LVO2 = 3 
µm device at various voltages (10 kΩ in-series resistor). (c) Three-dimensional FDTD 
calculations of the resonance shift of an LVO2 = 3 µm Si/VO2 ring resonator device where 
the portion of VO2 in the VO2:R phase is varied. (d) Measured resonance shift as a 
function of I2 for the LVO2 = 3 µm device presented in (b). Figures reprinted with 
permission from [67]. © 2016 SPIE. 
 
 

Figure 2.8(c) and Figure 2.8(d) provide additional confirmation that the full patch of VO2 is 

switching in the steady-state voltage regime, and further evidence that the fraction of the VO2 

patch that switches depends on the current passing through the patch. Figure 2.8(c) displays 

three-dimensional finite-difference time-domain (FDTD) simulation results (Lumerical FDTD 

Solutions) for a LVO2 = 3 µm device where the fraction of the VO2 patch that is in the VO2:R 

phase is varied. A linear dependence of the resonance shift on the fraction of the VO2 patch in 
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the VO2:R phase is found. In the simulation, VO2 optical constants were taken from [69]. The 

calculated resonance shift of ~ 8 nm is in reasonable agreement with the measured resonance 

shifts of ~ 5.5 nm and ~ 7 nm for the LVO2 = 3 µm devices reported in Figure 2.8(a) and Figure 

2.8(b), respectively. The slight differences in resonance shift are most likely attributable to the 

coarse mesh rendering that was implemented for efficient computation as well as slight 

variations in the thickness of the VO2 deposited on the two devices measured in Figure 2.8(a) 

and Figure 2.8(b). In Figure 2.8(d), the measured resonance shift for the LVO2 = 3 µm device 

from Figure 2.8(b) is plotted as a function of I2. Error bars are calculated from resonance shifts 

of multiple resonances. A linear trend is observed from 3 V to 6 V, suggesting that the 

magnitude of the resonance shift depends linearly on I2 in this regime, and saturation of the 

resonance shift occurs at 6 V and 7 V when the VO2 patch is presumed to be fully switched. 

Comparison of Figure 2.8(c) and Figure 2.8(d) shows that I2 is associated with a linear change in 

the VO2 patch size, suggesting mainly a Joule heating contribution, which is governed by PJoule = 

I2R, in this region. 

 

2.2.4.1 Considerations of the coupling condition 

A limitation of the Si/VO2 ring resonator presented in this work is the induced optical loss in 

the ring resonator in its passive state (i.e., with no applied voltage). The VO2:M phase, although 

more optically transmissive than the VO2:R phase, has non-negligible absorption (κ = 0.3 at 1550 

nm) [43]. This absorption, in addition to loss avenues from the silicon supports and the metallic 

contacts, gives non-trivial optical insertion loss. Assuming negligible loss at the coupling 

interface between the bus waveguide and ring resonator, critically coupling (i.e., perfect 

extinction) is achieved when the total power loss in the ring is matched to the power coupled 
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from the bus waveguide into the ring [37]. To increase the optical coupling from the bus 

waveguide into the resonator, in the work presented above, a physical coupling connection was 

employed between the bus waveguide and the ring resonator, shown in Figure 2.9 for a device 

with LVO2 = 3 µm. The length of the coupling connection is labeled Lcoupling. 

 

 

Figure 2.9. (a) SEM image of Si/VO2 ring resonator electro-optic modulator with LVO2 = 
3 µm. (b) Zoomed-in SEM image of coupling area, shown in black box in (a), between 
the bus waveguide and ring resonator, showing the physical coupling connection between 
the two. The length of this coupling connection is labeled Lcoupling. 

 
 

For example, for the LVO2 = 3 µm device characterized in Figure 2.8(b), Lcoupling = 1.25 µm. 

While this design method allows for maximized resonance depths in the passive state, the 

physical coupling condition provides an additional loss mechanism, reducing the resonator Q 

factor, broadening the resonance, and therefore requiring large resonance shifts (> 5 nm) to 

achieve substantive extinction ratios. Maintaining narrow (~ 100 nm) contact spacing to retain 

low voltage operation leads to more metal interacting with the optical mode, further increasing 

losses and broading the resonance. Consequently, realization of resonance shifts > 5 nm has 

required use of volumes of VO2 that extend beyond the electrical contacts, which limits the 

temporal performance of the device as discussed above. In the next section, a design approach 
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for a Si/VO2 electro-absorption modulator to potentially address this concern is proposed and 

demonstrated. 

 

2.3 Transverse magnetic mode Si/VO2 electro-absorption modulator 

For typical silicon waveguide geometries where the waveguide width is larger than the 

waveguide height, the TE mode is better guided than the TM mode. For this reason, typical 

silicon photonic device design is for TE polarization to minimize propagation losses. However, 

with recent demonstrations of efficient, compact devices for polarization conversion [70, 71], 

components designed for TE and TM polarization can likely be integrated onto the same chip 

with relative ease. With this in mind, a TM mode Si/VO2 electro-absorption modulator (i.e., 

straight silicon waveguide with VO2 patch on top) with the potential to operate at low voltages, 

high speeds, and respectable extinction ratio is proposed and demonstrated. In particular, the 

importance of both polarization and waveguide geometry for interaction with VO2 are analyzed. 

For this, the transmission for a VO2 patch in its VO2:M and VO2:R phases for four 

polarization/waveguide thickness combinations [(i) TE: 220 nm, (ii) TM: 220 nm, (iii) TE: 270 

nm, and (iv) TM: 270 nm] was simulated (Lumerical FDTD Solutions). In the simulation, VO2 

optical constants were taken and imported from [69]. All waveguides were 500 nm wide. The 

VO2 patches were placed on top of the silicon waveguide and have dimensions 500 nm (width) × 

350 nm (length) × 60 nm (height). The inset in Figure 2.10(a) provides a schematic of the 

simulated structure. Figure 2.10(a) gives the induced optical loss (i.e., summation of scattering, 

absorption, and reflection) when VO2 undergoes the SMT for each waveguide 

geometry/polarization combination. 
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Figure 2.10. (a) Induced optical loss when VO2 undergoes the SMT for four waveguide 
geometry/polarization combinations. Inset is a schematic of the simulated device design. 
Dark gray is SiO2, light gray is Si, and green is VO2. (b-e) Electric field intensity cross-
sections for varying waveguide geometries, polarizations, and VO2 phase (VO2:M or 
VO2:R). White and green lines give the outline for the Si/VO2 structure. VO2 is 
represented by the green rectangle, Si is under the VO2, SiO2 is the substrate, and air is 
cladding. 

 
 

The increase in loss for TM polarization (for both 220 and 270 SOI) can be explained by the 

electric field mode profiles shown in Figure 2.10(b-e). Here, as a comparison, the TE and TM 

mode profiles for the waveguide geometry and wavelength that give the greatest loss (i.e., TE: 

220 SOI at 1630 nm, TM: 270 SOI at 1500 nm) are shown. Qualitatively, it is clear TM 

polarization has more interaction with the top of the waveguide, and therefore the VO2. For the 

two cases shown in Figure 2.10(b-e), the VO2:M cases give 82.6% and 72.5% transmission, for 

TE and TM polarizations, respectively. However, for VO2:R, TM polarization gives 27.9% 

transmission while TE polarization gives 70.6% transmission. Therefore, TM and TE 

polarizations exhibit extinction ratios of 4.15 dB and 0.68 dB while both give nearly equivalent 

insertion loss (1.4 dB for TM, 0.83 dB for TE). This is attributed to the enhanced interaction 

between the optical mode and the metallic VO2 at the Si/VO2 interface for the TM mode. 

To experimentally verify these results, a Si/VO2 TM mode electro-absorption waveguide 

modulator was fabricated following processing steps similar to those outlined in Section 2.2.1. 
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Figure 2.11(a) shows the fully fabricated device. The silicon waveguide, in addition to silicon 

supports (to ensure continuous gold contacts) was formed in 270 nm SOI, and has a width of 500 

nm. The VO2 patch is of dimensions 500 nm (width) × 350 nm (length) × 80 nm (height). For 

both TE and TM polarizations, optical transmission was measured at no applied bias (VO2:M) 

and above the switching voltage (VO2:R). Methods of polarization control and characterization 

can be found in Appendix A.1. Extinction ratio for both polarizations is shown in Figure 2.11(b), 

demonstrating higher extinction ratio for TM polarization consistent with expectations from the 

simulations. 

 

 

Figure 2.11. (a) SEM image of fully fabricated Si/VO2 TM mode electro-absorption 
waveguide modulator. Si, SiO2, VO2, and Au are light gray, dark gray, green (false 
colored), and gold (false colored), respectively. (b) For TE and TM polarizations, 
difference in optical transmission with no voltage applied (VO2:M) and a voltage greater 
than the switching voltage applied (VO2:R), plotted as extinction ratio. 

 
 

At 1500 nm, TM polarized light shows an extinction ratio of ~ 3 dB, demonstrating promise that 

this geometry modification and polarization selection has the potential to improve the extinction 

ratio. Additional waveguide optimization is expected to give further improvement, as presented 

in simulation in Ref. [58]. In the geometry shown in Figure 2.11(a), since the VO2 patch 
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necessary to achieve the demonstrated extinction is between the contacts, this geometry has the 

potential for temporal operation that pushes the intrinsic limits of VO2. Unfortunately, high-

speed measurements resulted in failure of this device. The cause for failure is unclear, but it may 

be a result of the thermal environment from repeated electrical testing.  

 

2.4 Conclusions 

In this chapter, Si/VO2 ring resonator electro-optic modulators were fabricated and 

characterized. Experimental results reveal the role of VO2 patch size in device performance. In a 

device with a 3 µm long VO2 patch, a steady-state extinction ratio of 10 dB was measured. 

However, in high speed testing of this device, long recovery times are observed mainly due to 

Joule heating contributions and the slow relaxation time of the VO2:R phase. By reducing the 

VO2 patch size from 3 µm to 1 µm, in response to a 10 ns, 2.5 V voltage pulse, an extinction 

ratio of ~ 1.5 dB that appears to recover to baseline optical transmission after 10 ns is 

demonstrated. While this is a slight improvement to previous demonstrations of Si/VO2 electro-

optic modulators, this design poses challenges. In particular, for electrical actuation of the SMT, 

additional losses in Si/VO2 ring resonator from implementation of additional design features 

(silicon supports, metallic contacts) suggest it may be difficult to achieve the device performance 

shown in a thermo-optic or all-optical geometry [56, 64] in an electro-optic geometry. With this 

in mind, Si/VO2 electro-absorption designs may be the most suitable geometry. Here, the 

importance of waveguide geometry and polarization selection was demonstrated in an electro-

absorption geometry, showing enhanced performance for TM polarized light for a 500 nm × 270 

nm silicon waveguide coated with a 350 nm (long) × 500 nm (wide) × 80 nm (thick) VO2 patch. 

Further optimization of this design may provide an avenue for large extinction ratios using small 
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patches of VO2, pushing toward Gb/s operation. In Chapter 4, an additional proposed Si/VO2 

geometry for TE polarized light that may also achieve this goal is presented. 
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Chapter 3  

3. Platforms for Si/VO2 all-optical modulation 

3.1 Introduction 

In light of the discussion of the extent to which photonic components can replace their 

electronic counterparts in entirety for information processing [5] and storage [6, 7], here, Si/VO2 

photonic platforms with the potential for all-optical control are explored. In particular, the 

demonstration of a geometry whereby VO2 is placed within a silicon waveguide, therefore 

enhancing optical interaction with VO2 and giving large extinction ratios for short device 

lengths, is highlighted. The optical performance of this structure is characterized by thermally 

actuating the SMT of the embedded VO2 patch. The potential implementation of this structure as 

an all-optical modulator with in-plane excitation is discussed. In addition, based off the 

demonstration in Chapter 2 of enhanced interaction with VO2 for TM polarization, experimental 

results of a TM mode Si/VO2 ring resonator device, and its potential implementation as an all-

optical modulator with out-of-plane excitation, are presented. 

 

3.2 VO2 embedded silicon waveguide 

In this section, a geometry to more effectively utilize the large optical tunability of VO2 is 

theoretically and experimentally presented. By integrating VO2 within a silicon waveguide, the 

interaction of the guided mode in silicon with VO2 is maximized. Figure 3.1 shows cross 

sectional electric field intensity profiles of light propagating through a VO2 coated silicon 

waveguide [Figure 3.1(a)] and through a silicon waveguide with VO2 embedded inside of it 

[Figure 3.1(b)], demonstrating the increased interaction with VO2. 
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Figure 3.1. Electric field intensity optical mode profiles (Lumerical MODE Solutions) for 
the TE mode propogating through (a) a silicon waveguide coated with a patch of VO2 and 
(b) a waveguide where the guiding material is VO2. In both cases, VO2 is outlined in 
green, and the enhanced interaction with the optical mode for (b) is clearly demonstrated. 

 

 
As discussed in Section 1.3.1, ultrafast studies on VO2 thin films have revealed unique ultrafast 

dynamics [44-51], demonstrating the SMT and MST of VO2 can be accessed on ~ femtosecond 

and ~ 1-10 picosecond times, respectively. The geometry proposed here may provide a platform 

where those same ultrafast dynamics can be accessed within a silicon photonic all-optical 

modulator. With the demonstration of optically inducing the SMT with near infrared 

wavelengths (e.g., 1650 nm) [72], it is expected the SMT can be actuated by pump light within 

the silicon waveguide. In order to explore the feasibility of this geometry, in this section, silicon 

waveguides with embedded VO2 sections of variable length are simulated, fabricated, and 

characterized. Additionally, it is expected this design will initiate embedded integration of VO2 

within silicon photonic devices, in particular for electro-optic modulation, and will be discussed 

in Section 4.2.2. 

 

3.2.1 Device Simulation 

All simulations were performed using three-dimensional FDTD analysis (Lumerical FDTD 

Solutions). Simulations were run with an auto non-uniform meshing parameter of 6 and perfectly 

matched layer boundary conditions for the fundamental TE mode source. The simulated structure 
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consisted of a silicon ridge waveguide on a silicon dioxide substrate with a VO2 patch of the 

same cross sectional dimensions embedded within the silicon waveguide, as shown in Figure 

3.2(a). The width and height of both the waveguide and VO2 patch were 700 nm and 220 nm, 

respectively. The length of the VO2 patch in the direction of propagation (LVO2) was varied from 

0 to 1000 nm in steps of 100 nm. Transmission through each waveguide was calculated using 

frequency-domain field and power monitors; both the semiconducting and metallic states of VO2 

were considered. Optical constants for VO2 were taken from [43] and imported into Lumerical 

for the simulations while optical properties of silicon and silicon dioxide were taken from 

Lumerical Solutions’ material database [73]. Figure 3.2(b) shows transmission at 1550 nm as a 

function of LVO2 for the hybrid waveguide when the VO2 patch is in its semiconducting (blue 

circles) and metallic (red squares) phases. When the VO2 patch is in the semiconducting phase, 

there is a nearly perfect refractive index match between VO2 and silicon, and reflection at the 

Si/VO2 interface is simulated to be less than 1%. Therefore, transmission through the VO2 

embedded silicon waveguide is dictated by absorption in VO2 when VO2 is in the 

semiconducting phase. Accordingly, the curve fit for the transmission data is a single exponential 

function obeying Beer’s law for κ = 0.31, which is in good agreement with the optical properties 

of semiconducting VO2 films at 1550 nm. The curve fit for the transmission data with metallic 

VO2 patches does not simply follow Beer’s law for light transmitted through an equivalent 

thickness metallic VO2 thin film because the spread in the optical mode profile as light passes 

through the low refractive index metallic VO2 section of the waveguide causes a significant 

portion of the mode to propagate in the cladding region outside the lossy VO2 patch. In depth 

consideration of transient modal propagation in this VO2 embedded silicon waveguide geometry 

is presented in Section 4.3.3. 
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For the VO2 embedded silicon waveguide, calculated insertion loss (IL) and extinction ratio 

(ER) are presented in Figure 3.2(c,d) and are given by 

 
IL = −10× log
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where 𝑇!" , 𝑇!"!!"#$%&'()%*$'+,!! , and 𝑇!"!!"#$%%&'(!!  are the optical transmission through a 

silicon waveguide with no VO2, a silicon waveguide with embedded semiconducting VO2, and a 

silicon waveguide with embedded metallic VO2, respectively. The trend in extinction ratio as a 

function of VO2 length that shows a maximum extinction ratio for a VO2 patch length of 400 nm 

can be explained by considering the saturation in the transmission intensity of light through the 

VO2 embedded silicon waveguide for metallic VO2 patch lengths greater than about 400 nm. 

Taking into account both extinction ratio and insertion loss, Figure 3.2 suggests that a favorable 

geometry is a 200 nm embedded VO2 patch, which enables nearly 14 dB extinction ratio with 

approximately 2 dB insertion loss.  
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Figure 3.2. (a) Schematic for simulation of VO2 embedded silicon waveguide shown in 
gray (silicon) and green (VO2) on a silicon dioxide (dark gray) substrate. The purple 
arrow surrounded by the gray box and yellow box represent the optical source and 
monitor, respectively. For the fundamental TE mode, (b) simulated transmission as a 
function of LVO2 through VO2 embedded silicon waveguide with VO2 in its 
semiconducting (blue circles) and metallic (red squares). Optical properties of VO2 are 
taken from [43]. (c) Insertion loss and (d) extinction ratio of VO2 embedded silicon 
waveguide as a function of LVO2, calculated from transmission data shown in (b). With 
the exception of the semiconducting VO2 curve fit in (b) which is a single exponential fit, 
the corresponding curve fits in (b), (c), and (d) serve as guides to the eye. Figures 
reprinted with permission from [74]. © 2017 OSA. 

 
 

3.2.2 Device Fabrication 

Fabrication procedures very similar to those outlined in Section 2.2.1 were followed to 

fabricate the VO2 embedded silicon waveguides and are shown in Figure 3.3. In particular, the 

first step to use to define the base silicon photonic structure was identical. Cartoon schematics of 
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the device after development, etch, and the resist strip are shown in Figure 3.3(a,b). In addition, 

similar to the second and third lithography steps in Section 2.2.1, localized VO2 deposition in the 

trenches was achieved by opening windows of the requisite dimensions using electron beam 

lithography (Raith eLine). This step was performed in two identical iterations to ensure complete 

O2 diffusion during the annealing step to form stoichiometric VO2. For both steps, dosing 

parameters (dose, aperture, step size, voltage) of 400 µC/cm2, 30 µm, 10 nm, and 20 kV were 

used. The results of each VO2 deposition are shown in Figure 3.3(c,d). Figure 3.3(d) shows a 

cartoon schematic assuming perfect fabrication. In reality, there are imperfections, and the 

morphology and thickness of the deposited VO2 films embedded in waveguides with differing 

trench lengths is discussed in Section 3.2.3.1. 
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Figure 3.3. Multilayer lithography patterning of VO2 embedded silicon waveguide. In 
each schematic, Si, SiO2, VO2, and the resist are light gray, dark gray, green, and red, 
respectively. (a) Patterning and development of resist in preparation of etching of silicon 
photonic structure. (b) Silicon waveguide with trench after etching and subsequent liftoff 
of resist. (c,d) VO2 embedded silicon waveguide resist patterning and (c) first and (d) 
second deposition of VO2, including liftoff of resist after each deposition. 

 
 

For characterization of the VO2 embedded silicon waveguides, the complete design, shown in 

Figure 3.4, included bifurcated waveguides and integrated resistive heaters. For the bifurcated 

waveguides, the upper waveguide in each pair includes the VO2 embedded silicon waveguide 

structure (Figure 3.4 – left inset), while the lower waveguide is a standard, continuous ridge 

waveguide for control measurements (Figure 3.4 – right inset). The resistive heaters, serving to 

thermally actuate the SMT, are false colored gold in Figure 3.4 and were fabricated adjacent to 

the waveguides using electron beam lithography patterning (Raith eLine), thermal evaporation of 

a 5 nm Cr adhesion layer and a 120 nm Au layer, and liftoff. The integrated heaters were 

patterned using an aperture of 100 µm to reduce the write time of the electron beam exposure. 
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Additionally, another set of bifurcated silicon waveguides was fabricated with VO2 deposited on 

top of the control waveguides in order to compare their performance with the VO2 embedded 

silicon waveguides. These results are presented in Section 3.2.7. All devices were cleaved to 

access both input and output waveguides for fiber coupled measurements. The post-cleaved 

devices measured ~ 3 mm in length. 

 

 

Figure 3.4. SEM image of bifurcated silicon waveguides (false colored navy) and 
integrated heaters (false colored gold). In the center of the figure, the small boxes 
highlight VO2 embedded silicon waveguides (orange) and control waveguides (light 
blue). The left inset with orange outline shows an SEM image of the VO2 embedded 
silicon waveguide. For clarity, VO2 is false colored green. The right inset outlined in light 
blue shows the control silicon waveguide. Figure adapted and reprinted with permission 
from [74]. © 2017 OSA 

 
 

3.2.2.1 Design parameters for integrated heaters 

Figure 3.5 shows zoomed-in SEM images of the integrated resistive heaters. The designed 

heaters consist of two square pads of side dimension (Lpad) 70 µm to be accessed by electrical 

probes. These two blocks are connected by sixteen pairs of a repeating structure (shown in inset 

of Figure 3.5). This repeating structure has a gold wire width (wAu) of 8 µm, gold wire length 

(LAu) of 65 µm, and the gap between gold wires (wgap) is 9 µm. The edge of the gold wires is ~ 8 
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µm from the edge of the silicon dioxide trench which defines the silicon waveguide. The silicon 

dioxide trench is 8 µm wide in the case of the bifurcated waveguides. 

 

 

Figure 3.5. SEM image of the integrated resistive heaters. The metallic components are 
false colored gold. Any gold coloring appearing on the waveguide surfaces is an artifact 
of the false coloring method used for image processing. The right inset shows a zoomed-
in SEM of a unit cell of the integrated heater. The gold wire width, gold wire length, and 
gap between gold wires are labeled wAu, LAu, and wgap, respectively. The white scale bar 
in the bottom left of the inset is 20 µm. 

 
 
 
3.2.3 Device characterization 

3.2.3.1 Characterization of waveguides 

The VO2 embedded silicon waveguides were characterized by tilted SEM imaging and 

atomic force microscopy (AFM). As shown in Figure 3.6(a), the VO2 deposition was not 

sufficient to completely fill the trenches. The shorter trenches with higher aspect ratio of depth to 

width had thinner VO2 films compared to the longer trenches, most likely due to known 

challenges with depositing material into high aspect-ratio holes. Atomic force microscopy 

measurements for a waveguide with LVO2 = 1000 nm suggest that the VO2 film thickness in the 

lowest aspect-ratio trench is approximately 180 nm [Figure 3.6(b,c)], which is less than the 
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220 nm height of the silicon waveguide. The deposition of VO2 on top of the silicon waveguide 

at one end of the trench [Figure 3.6(a)] was due to a slight misalignment of the resist window 

during fabrication. Atomic force microscopy measurements also revealed that the VO2 patches 

on top of the control waveguides have a thickness of approximately 210 nm, which is slightly 

less than the thickness (250 nm) of a 100 µm × 100 µm VO2 film patterned adjacent to the 

waveguides. This difference is expected to be due to shadowing effects of the resist. 

 

 

Figure 3.6. a) Tilted SEM images of VO2 embedded silicon waveguides with LVO2 = 300, 
600, and 900 nm. VO2 is shown in false colored green. (b) AFM image of VO2 embedded 
silicon waveguide with LVO2 = 1000 nm. Vertical profile of line cut (black line outlined 
in white) is presented in (c), showing a VO2 thickness of ~ 180 nm within the trench. (d) 
Temperature-dependent transmission measurements on a thin film VO2 witness sample 
on a glass substrate. The red and blue curves show transmission with increasing and 
decreasing temperature, respectively. Figures reprinted with permission from [74]. © 
2017 OSA. 
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3.2.3.2 Characterization of VO2 

To verify the optical switching properties of VO2, temperature-dependent transmission 

measurements were performed on a thin film of VO2 on a glass substrate that underwent 

identical processing steps to the VO2 embedded silicon waveguides. With the exception that 

transmission is measured instead of reflection, the experimental setup used for this 

characterization is identical to that described in Section 2.2.2.1. Figure 3.6(d) shows the 

measured transmission through the VO2 film for both heating (red) and cooling (blue) curves. As 

the temperature is increased, transmission through the film decreases due to the increased 

reflection and absorption of the VO2 as it is undergoes the SMT. As the VO2 film temperature 

returns to room temperature, transmission increases to its original value as the VO2 undergoes 

the MST. The onset of the SMT is measured to be near 65°C, typical for VO2 films. 

 

3.2.4 Experimental setup 

Fiber-coupled transmission measurements were carried out using the Santec Swept Test 

System STS-510 software package with a tunable laser (Santec TSL-510) and power meter 

(Newport 2936-C). Primarily TE polarized (98% TE; 2% TM) near infrared light (1500-1630 

nm) was coupled into and out of the waveguides using lensed tapered fibers (OZ Optics). An 

infrared camera (Sensors Unlimited SU320M) was used to aid alignment. Free space polarization 

control of the optical input was maintained using a linear polarizer and half wave plate. 

Transverse electric (TE) polarization was used for all measurements. Methods of polarization 

control and characterization can be found in Appendix A.1. As a modification to the 

experimental setup used in Section 2.2.3.1, to more rapidly characterize the VO2 embedded 

silicon waveguides, an integrated electrical probe station was constructed within the existing 
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fiber coupled optical setup to actuate the patterned integrated on-chip heaters shown in Figure 

3.5. This probe station provides high precision (can easily access patterned electrical pads 

between waveguides which are spaced by 100 µm), high durability (eliminated waveguide 

damage caused during wire bonding process), and rapid testing capability as there is no need for 

wire bonding or use of a custom sample holder. An image of the experimental setup, including 

the electrical probe station, is shown in Figure 3.7. Figure 3.7(b) shows a zoomed-in image of the 

electrical probes integrated into the fiber-coupled setup. The positioning of these electrical 

probes is controlled by individual XYZ stages. With this control, electrical connections to square 

metal pads with lateral dimension as small as ~ 50 µm can be accomplished. Figure 3.7(c) shows 

a display monitor readout from a Sensors Unlimited SU320M camera image collected through a 

Mitutoyo M Plan Apo NIR 20X microscope objective. The image, showing the left electrical 

probe above the integrated heaters and VO2 embedded silicon waveguides, serves to show how 

the electrical probes can be used to make electrical connection to photonic devices. 
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Figure 3.7. Fiber-coupled optical setup, including integrated electrical probe station, for 
active characterization of VO2 embedded silicon waveguides. (a) Image of entire 
experimental setup, showing optical input/output, polarization control, and components 
for electrical probing of photonic devices. (b) Zoomed-in image on the sample, showing 
optical coupling to and from the pohotonic device via optical fiber in addition to 
electrical connections from the two electrical probes. (c) Image taken from a monitor 
reading an image from a Sensors Unlimited SU320M camera through a Mitutoyo M Plan 
Apo NIR 20X microscope objective. This image shows the left electrical probe just above 
one of the contact pads of the resistive heaters. The horizontal lines represent the VO2 
embedded silicon waveguides. 
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3.2.5 Results and discussion 

3.2.5.1 Transmission results 

High contrast Fabry-Perot fringes were observed in the transmission spectra [thin lines in 

Figure 3.8(a)], which are attributed to reflections from stitching errors in the waveguides that 

occurred during the first step of electron beam lithography, roughness at the Si-VO2/Si-air 

interfaces, and the bifurcated waveguide design. These high contrast Fabry-Perot fringes were 

also observed in the continuous, control silicon waveguide, indicating that the fringes are not 

primarily caused by the VO2 embedded design. To minimize the effect of the Fabry-Perot 

fringes, the data were smoothed with a moving average across 10 nm for each data point (i.e., 5 

nm to each side of the data point, totaling 10,001 data points). An example of this smoothing is 

shown by the thick lines in Figure 3.8(a). These smoothed curves were used for all insertion loss 

and extinction ratio calculations. Temperature-dependent transmission measurements were 

carried out by varying the applied electrical power supplied to the resistive heaters. Figure 3.8(b) 

shows the extinction ratio, which is reported based on the ratio of transmission through the VO2 

embedded silicon waveguide with and without an applied voltage, for varying applied voltages. 

The SMT of VO2 is initiated with approximately 0.73 W applied, as indicated by the change in 

extinction ratio, and is completed with 1.41 W applied. Accordingly, for all calculations in the 

next section, we assume that VO2 is in the semiconducting state when no electrical power is 

applied to the resistive heaters and VO2 is in the metallic state when 1.41 W is applied. Since 

VO2 is fully switched at ~ 80°C, the VO2 patch must be at or above that temperature when the 

maximum extinction ratio is achieved. The temperature is likely much higher near the heater 

since the heat must be transferred through SiO2 before reaching the VO2 patch. Figure 3.8(b) also 

demonstrates the broadband (exceeding 100 nm) operation of the VO2 embedded silicon 
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waveguides as expected from simulation due to the relatively small variation in optical constants 

of VO2 from 1510-1620 nm. 

 

 

Figure 3.8. (a) Raw (thin lines) and smoothed (thick lines) data for transmitted power 
through a VO2 embedded silicon waveguide with LVO2 = 600 nm. Blue curves correspond 
to 0 W applied electrical power (i.e., VO2 in semiconducting state) and red curves 
correspond to 1.41 W applied electrical power (i.e., VO2 in metallic state). (b) Extinction 
ratio of same sample for various applied electrical powers, calculated from the smoothed 
spectra. Figures reprinted with permission from [74]. © 2017 OSA. 

 
 

After carrying out multiple transmission measurements on each of the VO2 embedded silicon 

waveguides with different trench lengths, trends in the transmitted intensity, insertion loss, and 

extinction ratio as a function of LVO2 were analyzed at a wavelength of 1550 nm, as shown in 

Figure 3.9. Error bars in Figure 3.9 were calculated based on the standard deviation of multiple 

(> 3) measurements on each device. The experimental results deviate from the simulation data 

presented in Figure 3.2(b) that assume complete filling of VO2 in the trench because the 

fabricated structures have only partially filled VO2 trenches (seen in Figure 3.6). Accordingly, 

the simulation results presented alongside the experimental data in Figure 3.9 assume VO2 

thicknesses from 90 nm for LVO2 = 100 nm to 180 nm for LVO2 = 1000 nm, with a linear 

interpolation between these values (i.e., 10 nm increase in VO2 height per 100 nm increase in 
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LVO2). As in Figure 3.2, for all simulation results shown in Figure 3.9, the optical properties of 

VO2 were taken from [43] and imported into Lumerical. Our experimental data in Figure 3.9 

show good agreement with the simulated curves for silicon waveguides with partially filled VO2 

trenches. The deviation between experiment and simulation for extinction ratio [Figure 3.9(d)] 

can be attributed in large part to the slightly higher measured transmission of the waveguide 

compared to simulation when the VO2 patch is in the metallic state. The data in Figure 3.9 reveal 

a clear tradeoff between insertion loss and extinction ratio. Due to the absorption of VO2 in the 

semiconductor state, longer VO2 filled trenches lead to higher insertion losses. At the same time, 

the longer VO2 filled trenches allow more reflection, scattering, and absorption of light when 

VO2 is in the metallic state, leading to a larger extinction ratio. For the partially filled VO2 

embedded silicon waveguide with LVO2 = 500 nm, extinction ratio of 9.7 ± 0.8 dB with a 

corresponding insertion loss of 6.5 ± 0.9 dB is demonstrated. 
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Figure 3.9. Measured transmission through VO2 embedded silicon waveguide as a 
function of LVO2, normalized to transmission through a reference silicon waveguide, for 
VO2 in its (a) semiconducting and (b) metallic state. Calculated (c) insertion loss and (d) 
extinction ratio of VO2 embedded silicon waveguide as a function of LVO2 based on 
measured data in (a) and (b). The solid curves present Lumerical simulation results (VO2 
optical properties from [43]) that assume partial VO2 filling of the silicon trench, as 
described in Section 3.2.5.1. Figures reprinted with permission from [74]. © 2017 OSA. 

 
 

As the primary focus of this work was to demonstrate a nanophotonic platform for all-optical 

modulation, the integrated heater design was not optimized for high-speed or low-power 

operation. With an optimized heater design, it is expected this platform will be able to achieve 

operation with response times of order µs, commensurate with what has been demonstrated in 

previous work with VO2 optical switches [59]. 
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3.2.5.2 Transmission results for non-bifurcated waveguides 

Additional waveguide samples without the bifurcated design were fabricated and 

characterized to help elucidate the cause of the fringes shown in Figure 3.8(a). Figure 3.10 shows 

the optical response of a non-bifurcated VO2 embedded silicon waveguide with LVO2 = 500 nm. 

In comparison with Figure 3.8, the Fabry-Perot fringes are largely reduced. While it is unclear if 

this reduction is due to reduced stitching error, removal of the bifurcated design, or another 

variable, it does provide further evidence the Fabry-Perot fringes shown in Figure 3.8 are not an 

intrinsic property of the VO2 embedded silicon waveguide design. In addition, Figure 3.10(b) 

shows that without any data averaging, for almost all wavelengths from 1500 nm – 1630 nm, the 

exhibited extinction ratio is ≥ 10 dB. Across this wavelength range, the average extinction ratio 

is 15 dB. 

 

 

Figure 3.10. (a) Transmission through a VO2 embedded silicon waveguide with LVO2 = 
500 nm in a non-bifurcated device geometry for semiconducting (blue) and metallic 
(orange) VO2. (b) Measured extinction ratio corresponding to the data in (a), without any 
data averaging. 

 
 



 70 

3.2.6 Considerations of fabrication imperfections 

Motivated by the work above, to better understand how the modulator performance will be 

affected by imperfect fabrication (e.g., not fully filling the waveguide with VO2), Si/VO2 

embedded waveguide modulators with LVO2 = 200 nm and variable VO2 thickness were 

simulated in a three-dimensional Lumerical FDTD Solutions simulation. Vanadium dioxide film 

heights (hVO2) from 0 nm to 220 nm, in 20 nm steps, were calculated in the simulations. The 

device geometry for the case of hVO2 = 220 nm is shown in Figure 3.2(a). For an incident 

wavelength of 1550 nm, Figure 3.11(a) shows transmission, absorption, and reflection for the 

Si/VO2 embedded waveguide when VO2 is in the semiconducting and metallic states as a 

function of hVO2. To understand the transmission, absorption, and reflection curves in Figure 

3.11(a), cross section electric field intensity profiles were taken at the center of the VO2 section 

of the modulator considering both semiconducting and metallic VO2, as shown in Figure 3.11(b) 

and Figure 3.11(c), respectively, for different values of hVO2. In the semiconducting state, for 

decreasing hVO2, there is less modal overlap with the VO2, resulting in less absorption, as seen in 

Figure 3.11(a). However, for the semiconducting state, transmission is relatively constant (0.4 – 

0.54) across all VO2 heights. This is because for small VO2 thicknesses (hVO2 < ~ 60nm), there is 

significant reflection due to the large impedance mismatch between the silicon-air interface, 

while for larger VO2 thicknesses, the impedance mismatch is reduced, which decreases 

reflection, but absorption is increased. Considering transmission in the metallic state, for 

decreasing hVO2, more of the optical mode is pushed outside of the VO2, giving less interaction 

with the metallic VO2 and resulting in higher transmission. At larger values of hVO2, above 

100 nm, reflection and absorption from the VO2 dominate, giving transmission of less than 10% 

of the incident power. Figure 3.11(d) demonstrates the effect of VO2 thickness on insertion loss 
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and extinction ratio. Insertion loss is not strongly affected by VO2 thickness, consistent with the 

discussion above for the relatively constant optical transmission through the modulator with 

semiconducting VO2. Due to this relatively constant optical transmission when VO2 is in the 

semiconducting state, extinction ratio is dictated primarily by the optical transmission of metallic 

VO2. Therefore, since optical transmission through metallic VO2 is significantly reduced with 

increasing hVO2, extinction ratio increases with increasing hVO2, as expected. 

 

 

Figure 3.11. (a) Transmission, absorption, and reflection for VO2 embedded silicon 
waveguide with the embedded VO2 in the semiconducting (blue) and metallic (orange) 
state as a function of VO2 thickness. (b,c) Electric field intensity profile of optical mode 
at the center of the modulator (i.e., cutting through the VO2 section), considering (b) 
semiconducting and (c) metallic VO2 for hVO2 = 40, 100, 160, and 220 nm. The 
transparent purple section represents the VO2. (d) Insertion loss and extinction ratio for 
the Si/VO2 all-optical modulator as a function of VO2 thickness. Figures reprinted with 
permission from [75]. © 2017 SPIE. 
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3.2.7 Comparison of VO2 placement location 

To demonstrate the advantage of placing the VO2 patch within the silicon waveguide instead 

of on top of the waveguide, a direct experimental comparison was carried out, shown in Figure 

3.12. As expected, the integrated geometry provides a larger extinction ratio for all VO2 patch 

lengths due to the improved interaction of the guided mode with the VO2. Here, the reader is 

reminded that the waveguides were processed in an identical manner (even though the resulting 

VO2 thicknesses were slightly different as discussed in Section 4.1) to isolate the effect of the 

location of the VO2 patch. However, prior work suggests that an optimized waveguide geometry 

may be able to further improve the extinction ratio and insertion loss metrics. Using a Si/VO2 rib 

waveguide design that supports a delocalized TE mode, 12 dB extinction with 5 dB insertion loss 

was reported with a 1000 nm long patch of VO2 on top of the Si waveguide while 4 dB 

extinction was reported for a 500 nm long VO2 patch [59]. For our design presented in Figure 3.2 

which assumes complete filling of VO2, our simulated results with LVO2 = 200 nm show 

extinction ratio and insertion loss of 13.8 dB and 2.2 dB, respectively. Therefore, with improved 

silicon waveguide design, in addition to improved fabrication procedures that allow more 

complete filling of VO2 in a silicon trench, it should be possible to achieve even larger extinction 

ratios with lower insertion losses using the VO2 embedded silicon waveguide platform. This 

work, in combination with prior work integrating a 2 µm long segment of Ge2Sb2Te5 (GST) 

within a silicon waveguide [76], serves to push forward design approaches which integrate 

tunable materials within silicon photonic waveguides. In particular, the embedded trench 

approach is expected to be a promising platform to explore emerging, engineered O-PCMs with 

optimized properties, such as GSS4T1 [77], which by minimizing κ can further reduce insertion 

loss while maintaining a large extinction ratio. 
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Figure 3.12. Measured extinction ratio for Si/VO2 waveguides with VO2 on top of (red 
data points and upper right SEM image) and embedded within (blue data points and 
lower right SEM image) the silicon waveguide. Figure adapted and reprinted with 
permission from [74]. © 2017 OSA. 

 
 
 
3.2.8 Proposed implementation as all-optical modulator with in-plane excitation 

As mentioned in Section 3.2, with the demonstration that the SMT can be induced with near 

infrared wavelengths (e.g., 1650 nm) [72], it is expected radiation within the silicon waveguide 

can induce the SMT of the embedded VO2 section. Figure 3.13 shows cartoon schematics of this 

proposed device operation. In Figure 3.13(a), continuous wave (CW) near-infrared radiation 

(light blue) is transmitted through the VO2 embedded silicon waveguide. For this case, the VO2 

is in the semiconducting state and is shown in green. In Figure 3.13(b), ultrafast near-infrared 

pump pulses, shown in purple, are injected into the silicon waveguide. These pulses induce the 

SMT of VO2, transiently switching the VO2 into the metallic phase (shown in red). To mimic the 

free-space optical experiments which induced the SMT of thin films of VO2 [44-51, 72], 

fabrication improvements will likely be necessary to achieve smooth Si/VO2 interfaces and 
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successfully fill the trenches with high aspect ratios. Inducing the SMT of the embedded VO2 

section results in modulation of the incident CW radiation and is seen at the output in Figure 

3.13(b). For clarity, two different colors are used to represent the incident CW radiation and the 

pump pulses. However, these can be centered at the same wavelength, which is most suitable for 

practical implementation [5]. Further analysis of this VO2 embedded silicon waveguide geometry 

as an in-plane, ultrafast all-optical modulator, including its projected comparison to other state-

of-the-art all-optical modulators, is presented and discussed in Section 4.3. In addition, for 

electro-optic applications, it is expected modification of the proposed embedded geometry that 

allows for integration of electrodes can be used to realize high-speed, small-footprint electro-

optic modulators. This is discussed in Section 4.2.2. 

 

 

Figure 3.13. Schematic of proposed operation of VO2 embedded silicon waveguide 
geometry as an all-optical modulator with in-plane excitation. (a) VO2 embedded silicon 
waveguide in its passive state, showing transmission of radiation (light blue) through 
silicon (gray) and semiconducting VO2 (green). (b) VO2 embedded silicon waveguide 
showing optical modulation. Ultrafast pulses (purple) induce the SMT of VO2, switching 
the VO2 to its metallic state (shown in red), resulting in modulation of the incident 
radiation at the output of the waveguide. 
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3.3 Transverse magnetic mode Si/VO2 ring resonator 

In this section, an experimental demonstration of a TM mode Si/VO2 ring resonator structure 

that has the potential to support ultrafast optical signal modulation is presented. As described in 

Section 2.3, in comparison to TE polarization, TM polarized light has increased interaction with 

VO2 atop a silicon waveguide. By operating a TM-mode Si/VO2 ring resonator in the near 

critical coupling regime, large extinction ratios can be achieved with small patches of VO2. This 

is demonstrated in Figure 3.14 using a 10 µm radius Si/VO2 ring resonator (waveguide 

dimensions are 500 nm width × 220 nm height) with a 350 nm long × 500 nm wide × ~ 80 nm 

thick VO2 patch atop the silicon waveguide. Thermo-optic characterization (see Section 2.2.3.2 

for experimental setup) was performed on both Si/VO2 and control (silicon only) ring resonators. 

The results are shown in Figure 3.14(b-d). Figure 3.14(b) shows the raw transmission data for the 

Si/VO2 ring resonator. The redshift is a result of the thermo-optic effect of silicon while the 

changes in resonance depth for T ≥ 60°C are attributed to the SMT of VO2. Although the TSMT of 

VO2 is typically ~ 68°C, a change in the resonance condition is likely seen at 60°C due to the 

thermal stage heating above 60°C before stabilizing at 60°C. To clearly see the effect of VO2, the 

data are replotted in Figure 3.14(c) with the thermo-optic effect of silicon subtracted out. This 

figure represents the performance expected to be demonstrated by using ultrafast out-of-plane 

optical excitation for which no transient heating is expected. In this device geometry, assuming 

operation at room temperature (i.e., no effect from silicon), ~ 9 dB extinction can be achieved 

with a VO2 percent ring coverage of only 0.55%. The observed change in resonance depth occurs 

due to modification of the ring coupling condition by tuning the losses in the ring when the VO2 

transitions to the metallic phase. The idea of modifying the coupling condition of a ring resonator 

to achieve high extinction modulation was previously demonstrated in a graphene coated silicon 
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nitride ring resonator [31]. To understand the impact of polarization, as a comparison, ~ 10 dB 

was achieved in a 1.5 µm radius TE mode Si/VO2 ring resonator, also operating in the near 

critical coupling regime, using a 500 nm patch of VO2 (VO2 percent ring coverage of 5%) [56]. 

Figure 3.14(d) shows data for the control (silicon only) TM mode ring resonator as clarification 

that the effects seen in Figure 3.14(b,c) are primarily from VO2. The data shown in Figure 

3.14(d) also have the thermo-optic effect of silicon subtracted out. 

 

 

Figure 3.14. (a) SEM image of 10 µm radius TM mode Si/VO2 ring resonator. The VO2 
patch (false colored green) is 350 nm long and is shown in the inset. The white scale bar 
in the inset is 200 nm.  (b) Raw data from thermo-optic measurement of resonance in 
Si/VO2 ring resonator. (c,d) Thermo-optic measurement of resonance in (c) Si/VO2 and 
(d) Si ring resonator with the thermo-optic effect of silicon subtracted out to clearly 
demonstrate the effect of the SMT of VO2. 
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3.3.1 Proposed implementation as all-optical modulator with out-of-plane excitation 

Figure 3.15 presents cartoon schematics for implementation of the TM mode Si/VO2 ring 

resonator as an all-optical modulator with out-of-plane excitation. This proposed experimental 

geometry is very similar to that used in Ref. [64] which showed optical modulation of a Si/VO2 

ring resonator with 25 nanosecond optical pulses. Figure 3.15(a) shows the ring resonator for the 

case where the VO2 patch is semiconducting (shown in green). For the example shown, CW 

input light (shown in blue) resonant with the ring is selected. Therefore, in the passive state (i.e., 

semiconducting VO2 atop the ring resonator), there is no optical transmission through the device. 

To induce transmission through the device, ultrafast optical pulses with pulse lengths on the 

order of 100 femtoseconds, shown in orange in Figure 3.15(b), are incident on the VO2 patch. By 

inducing the SMT of VO2, the resonance condition in the resonator is broken, and light is 

transmitted through the device. In this way, the optical pulse sequence from the orange pulses 

can be imprinted on the blue light within the bus waveguide. By selecting pulses in fluence 

regimes that allow for the ultrafast dynamics in VO2 [44-51], it is expected individual pulses on 

the order of a picosecond can be generated within the bus waveguide. Since this geometry 

utilizes out-of-plane excitation, photon energies above the band gap of silicon may be used. 

However, especially if a large beam spot is used, care must be taken to ensure effects resulting 

from the SMT of VO2 will dominate in comparison to induced linear or nonlinear optical 

responses in silicon. 
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Figure 3.15. Schematic of proposed operation of TM mode Si/VO2 ring resonator an all-
optical modulator with out-of-plane excitation. (a) For semiconducting VO2 (shown in 
green), the input wavelength is resonant and there is no optical transmission. (b) Ultrafast 
optical pulses (shown in orange) induce the SMT of VO2, switching the VO2 to its 
metallic state (shown in red). This results in modification of the resonant condition, 
resulting in optical transmission through the device that mimics the sequence of the 
incident optical pulses. 

 
 

3.4 Conclusions 

In summary, in this chapter, a compact, non-resonant, broadband hybrid Si/VO2 integrated 

photonic device was first demonstrated by embedding VO2 within a silicon waveguide for 

improved modal overlap with VO2. With thermal activation of the SMT, devices with VO2 

lengths varying from 100 nm to 1000 nm were characterized, showing ~ 10 dB extinction at 

1550 nm in experiment for a VO2 length of only 500 nm. With fabrication improvements, 

calculations suggest an extinction ratio of nearly 14 dB with approximately 2 dB insertion loss 

can be achieved. This steady-state characterization provides insight into expected device 

performance for high-speed applications, and proposed implementation as an all-optical 

modulator with in-plane excitation was presented. Chapter 4 serves to extend that discussion, 

presenting its projected performance with other state-of-the-art all-optical modulators. In 
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addition, within in this chapter, experimental results for a TM mode Si/VO2 ring resonator device 

were presented, demonstrating improved extinction ratio per VO2 fractional coverage of the 

silicon ring (in comparison to a Si/VO2 TE ring resonator) as a result of using TM polarization. 

Its proposed implementation as an all-optical modulator with out-of-plane excitation was also 

briefly presented. 
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Chapter 4  

4. Perspectives on Si/VO2 optical modulators 

4.1 Introduction 

In Chapter 2 and Chapter 3, work with the potential to push forward the realization of 

practical, high-speed Si/VO2 electro-optic and all-optical modulators was presented. This chapter 

serves to summarize the perspectives on Si/VO2 electro-optic and all-optical modulators while 

also providing additional considerations for further performance improvement. First, building on 

the experimental demonstration of embedding VO2 within a silicon waveguide reported in 

Chapter 3, an embedded Si/VO2 electro-optic device geometry with the potential to improve 

electro-optic Si/VO2 modulator performance is proposed. Second, pushing toward more practical 

implementation of Si/VO2 all-optical modulators, a more detailed analysis of the device 

geometry presented in Chapter 3 which allows for in-plane, ultrafast excitation is presented. Its 

expected optimal performance is compared to state-of-the-art all-optical modulators. In addition, 

design considerations to allow for more effective operation for both TE and TM input 

polarizations are examined, in particular by consideration of waveguide geometry and transient 

mode propagation. 

 

4.2 Si/VO2 electro-optic modulators 

While the work in Chapter 2 pushed forward the understanding of electrically inducing the 

SMT of VO2 in silicon photonic devices, there remains potential for improvement. In particular, 

to date, no Si/VO2 electro-optic device has demonstrated sufficient (> 4 dB) extinction ratio 

performance using the fastest known time dynamics of the electrically induced SMT (< 2 ns) [52, 

53] and MST (< 3 ns) [52]. The two Si/VO2 electro-optic devices demonstrating the fastest 
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temporal responses have been silicon waveguide [52] [Figure 1.12(a)] and ring resonator [67] 

structures (Chapter 2) that integrate a patch of VO2 on top of the respective silicon photonic 

structure. These geometries utilize a small gap (~ 100 nm) between the electrical contacts to 

reduce the required applied voltage; however, achieving sufficient extinction ratios (> 4 dB) 

required triggering the SMT of volumes of VO2 outside the electrical contacts. Because the SMT 

of the portion of the VO2 film residing outside the electrical contacts is likely activated by Joule 

heating, which results from the heating of metal filaments of VO2 formed between the electrical 

contacts by a voltage-driven effect, suggested in Ref. [52] and discussed in Section 1.4.2, the 

time dynamics for switching the VO2 domains outside the contacts is slower than switching the 

VO2 domains between the contacts. The work in Ref. [59], briefly presented and discussed in 

Figure 1.12(b) and Section 1.4.2, suggests it is only using VO2 between the electrical contacts to 

achieve the demonstrated modulation. However, > 1 µs response times are demonstrated, and it 

is possible this is a result of the relatively long (≥ 100 ns) voltage pulses used which are expected 

to cause significant Joule heating, forcing longer MST times. Here, a Si/VO2 electro-optic 

modulator device design is proposed whereby the VO2 patch is embedded within the silicon 

waveguide. In this geometry, nearly all of the active VO2 volume is between the electrical 

contacts, suggesting the fastest SMT and MST dynamics can be fully utilized. 

 

4.2.2 Si/VO2 electro-optic modulator embedded design 

In the proposed design, the first step of lithography will be to simultaneously define a rib 

waveguide and a void for backfilling with VO2. This is done by etching 130 nm into a 230 nm 

SOI wafer, leaving 100 nm silicon slab thickness adjacent to the waveguide and a void of 

dimensions 300 nm (width) × 500 nm (length) × 130 nm (thickness) within the rib waveguide for 
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subsequent filling with VO2. Due to the higher thermal conductivity of silicon in comparison to 

silicon dioxide, the silicon slab in the rib waveguide geometry is expected to provide more rapid 

heat dissipation to enable faster MST times. In the second step of lithography, the void will be 

backfilled with VO2. The aspect ratio of this void is not expected to limit its filling with typical 

physical vapor deposition methods (e.g., sputtering, pulsed laser deposition). The third and final 

step of lithography will serve to pattern electrical contacts on top of the backfilled VO2 section. 

To allow for low voltage operation, the metallic contacts are patterned with 250 nm spacing, 

overlapping each side of the VO2 patch by 25 nm. In the fully fabricated device, the metallic 

contacts are 70 nm thick on top of the silicon waveguide and slab and 50 nm thick on the 

waveguide side walls. Figure 4.1 shows schematics for the proposed fabrication steps for the 

fully fabricated device. 
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Figure 4.1. Multiple lithography steps for proposed Si/VO2 embedded electro-optic 
design. Resist, Si, SiO2, VO2, and Au are shown in red, light gray, dark gray, purple, and 
gold. (a-c) First step of lithography, showing (a) resist spun on the silicon substrate, (b) 
patterning and development of the resist, and (c) etching of rib waveguide and void in the 
center of the waveguide. (d) Final device structure after two additional lithography steps 
(resist patterning and deposition of VO2; resist patterning and deposition of Au).  

 

 
Since the proposed design patterns the metallic contacts on the top surface and side walls of 

the waveguide, non-negligible absorption and reflection from the contacts is expected, especially 

when the waveguide width is narrow and the optical mode significantly extends outside of the 

silicon guiding layer. Increasing the waveguide width is expected to reduce the interaction with 

the metallic contacts as a result of the increased optical confinement. However, for the fixed 

volume of VO2 in the proposed design, extending the waveguide width is also expected to give 

reduced extinction ratios due to the reduced optical interaction with VO2. To verify this 

hypothesis, the silicon waveguide width was swept from 500 nm to 1500 nm in 100 nm intervals 
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and the waveguide transmission was monitored for the fundamental TE mode in a three-

dimensional FDTD simulation (Lumerical FDTD Solutions). Optical properties for VO2 were 

taken and imported from [43] while optical properties of silicon, silicon dioxide, and gold were 

taken from Lumerical Solutions’ material database [73, 78]. Figure 4.2(a) shows a perspective 

view of the Si/VO2 embedded electro-optic design, explicitly showing the silicon waveguide 

width, which was swept during the simulation. Figure 4.2(b) presents the extinction ratio as a 

function of the silicon waveguide width for incident wavelengths spanning 1500 nm – 1630 nm 

and reveals a silicon waveguide width of ~ 700 nm is optimal, giving extinction ratios greater 

than 6 dB from 1530 nm – 1630 nm. In addition, Figure 4.2(c) shows both the insertion loss and 

extinction ratio as a function of the silicon waveguide width for a wavelength of 1550 nm. The 

results in Figure 4.2(b,c) assume the entire VO2 segment is undergoing the SMT. For high-speed 

operation (with reduced Joule heating), if the expected extinction ratio is not observed, it could 

be due to a bottom portion of the VO2 not undergoing the SMT as it will have an electric field 

environment different to the top portion of the VO2. As expected, shown in Figure 4.2(c), the 

device exhibits an inverse relationship between insertion loss and waveguide width. For 

example, for a waveguide width of 500 nm, there is significant interaction with the metal 

contacts, giving an insertion loss of approximately 9 dB. This large insertion loss also results in 

low (~ 1.5 dB) extinction ratio. As the waveguide width increases, a maximum extinction ratio of 

6.1 dB is shown for a waveguide width of 700 nm. Further increasing the waveguide width 

beyond 700 nm gives reduced extinction ratio (and reduced insertion loss) as less of the mode 

interacts with both the metallic contacts and the VO2. Operation at a waveguide width of 700 nm 

is recommended, where at 1550 nm, the insertion loss and extinction ratio are 4.4 and 6.1 dB, 

respectively. It is expected this design geometry could operate with the fastest electrically 
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induced SMT and MST dynamics. The performance metrics presented here are inferior to those 

for the VO2 embedded silicon waveguide (Chapter 3) as a result of the integration of the metal 

contacts. 

 

 

Figure 4.2. (a) Perspective view of Si/VO2 embedded electro-optic modulator design, 
showing the silicon waveguide width (labeled wwg) which is swept during the 
simulations. Si, SiO2, VO2, and Au are shown in light gray, dark gray, purple, and gold. 
(b) Extinction ratio as a function of silicon waveguide width from 1500 nm - 1630 nm. 
(c) Insertion loss and extinction ratio at 1550 nm as a function of wwg. 

 
 

While the design proposed above demonstrates promise by means of combining the Si/VO2 

designs in Ref. [52] and Chapter 3, other proposed Si/VO2 electro-optic modulator designs [60-

63], discussed in Section 1.4.2, which utilize VO2 only between the electrical contacts may also 

provide avenues to push the limits of high-speed, high extinction ratio Si/VO2 electro-optic 
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modulators. However, feasibility of the proposed modulator in Ref. [62] will require fabrication 

improvements for depositing VO2 in high aspect ratio nanoscale gaps. In addition, for these 

proposed geometries [60-62] whereby at least one of the electrical contacts is silicon, it must be 

confirmed that high-speed electrical performance is not compromised when using doped silicon 

for electrical actuation of the SMT since the electrical conductivity of highly p-doped silicon 

(1020 cm-3 dopant concentration) is three orders of magnitude less than that of gold at room 

temperature [79, 80], and it is expected there will be increased insertion loss in these proposed 

geometries if extremely high doping is required to actuate the SMT. 

 

4.3 Si/VO2 all-optical modulators with in-plane excitation 

Considering all-optical modulator geometries, out-of-plane excitation is the most readily 

translatable method to demonstrate ultrafast tunability of Si/VO2 photonic devices. For example, 

as mentioned in Section 1.4.3, Ref. [64] demonstrated active tunability of Si/VO2 ring resonators 

and waveguides by actuating the SMT transition with a 25 nanosecond optical pulse. It is 

expected these Si/VO2 device geometries, in addition to the geometry presented in Section 3.3, 

can also be used as platforms to realize modulation on fast time scales (~ femtosecond “on”, ~ 

picosecond “off”) with the large quantity of ultrafast studies on VO2 thin films [44-51]. 

However, for more practical implementation, an interchip or intrachip all-optical modulator will 

likely require in-plane excitation. With experimental evidence the SMT can be induced with near 

infrared wavelengths [72], it is expected the VO2 embedded silicon waveguide geometry can be 

implemented as an all-optical modulator with in-plane excitation (i.e., within the silicon 

waveguide), as introduced in Section 3.2.8. In this section, expected modulator performance is 



 87 

compared with state-of-the-art modulators and methods for more effective polarization 

independent operation are explored. 

4.3.1 Calculation of energy consumption 

Using the design described in Chapter 3 for LVO2 = 200 nm and assuming perfect fabrication 

(i.e., hVO2 = 220 nm), the threshold incident energy (𝐸!"#,!!) needed to induce optical changes in 

the VO2 is given by: 

 Einc,th =
Fabs,th × (w ×h)

A
                                 (6) 

where 𝐹!"#,!! is the measured threshold absorbed fluence (0.25 mJ/cm2), taken from [72], w and 

h are the cross-sectional width and height of the Si/VO2 waveguide (700 nm and 220 nm, 

respectively), and A is the absorbed fraction of the simulated input light when VO2 is in the 

semiconducting state [shown in Figure 3.11(a)]. Calculation gives an expected 𝐸!"#,!! of ~ 880 fJ 

at a wavelength of 1550 nm. 

 

4.3.2 Comparison to state-of-the-art all-optical modulators 

As discussed in Section 1.2.1, the ideal modulator simultaneously maximizes modulation 

speed, extinction ratio, and optical bandwidth while minimizing insertion loss, device footprint, 

and energy consumption. Table 1 compares these performance metrics for five state-of-the-art 

all-optical modulators along with the embedded Si/VO2 all-optical modulator design described in 

Chapter 3 for LVO2 = 200 nm and hVO2 = 220 nm, assuming the embedded Si/VO2 all-optical 

modulator can be modulated at a speed commensurate with the optically-activated switching 

speed of VO2 thin films. This table only considers modulators with in-plane pump pulses; no all-

optical modulators with out-of-plane pumping are considered. Modulation speed is presented in 
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both units of picoseconds (total “on” and “off” time) and Gb/s to include metrics for modulators 

that were tested for individual pulses (picoseconds) and for data streams (Gb/s). For a general 

comparison, a full “on-off” cycle corresponds to 2 bits. With this assumption, as an example, a 

total “on-off” time of 50 picoseconds corresponds to a 40 Gb/s data stream. 

 

All-Optical Modulators Footprint 
(µm2) 

Insertion 
Loss 
(dB) 

 Incident 
Switching 

Energy 
(fJ) 

Speed  
(ps : Gb/s) 

Optical 
bandwidth 

(nm) 

Extinction 
Ratio 
(dB) 

Si PhC nanocavity [23] < 10 NA ~ 100 - 450 ~ 67 : NA < 0.5 ≤ 10 

Si-organic hybrid slot 
waveguide [35] ~ 4000 NA ~ 9,500 NA : 170.8 > 80 7.7 

InGaAsP PhC nanocavity 
[36] 0.125 NA 0.42 – 2.88 ~ 55 : NA < 1 3 - 10 

GaAs PhC nanocavity [81] < 10 NA ~120 ~ 15 : NA < 2 10 

Si-nc/SiO2 filled Si slot ring 
resonator [82] 1600 NA ~10,000 20 : NA  < 1 3.6 

This work (simulated) 0.14 2.2 ~ 880 ~ 10 : NA > 200 13.8  
(upper limit) 

Table 1. All-optical modulator performance metrics (device footprint, insertion loss, 
incident switching energy, operation speed, optical bandwidth, and extinction ratio) 
experimentally measured for modulators in Refs. [23, 35, 36, 81, 82] and theoretically 
expected for our proposed Si/VO2 all-optical modulator. Table reprinted with permission 
from [75]. © 2017 SPIE. 

 
 

Inspection of Table 1 reveals the promise of the Si/VO2 in-plane all-optical modulator, 

projecting a device footprint, operation speed, optical bandwidth, and extinction ratio equivalent 

or superior to the other modulators in each of these categories. For extinction ratio, it is unclear 

whether the full change in optical properties will be observed when accessing the short-lived 

(~1-10 ps) transient state of VO2. For example, in Ref. [49], it appears there is reduced optical 

contrast at lower incident fluences, but in Ref. [51], it appears lower fluences demonstrate the 

same magnitude of optical response as high fluences. This can be seen in Figure 1.9(a-b). 
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Therefore, in Table 1, 13.8 dB is suggested as the upper limit for the expected extinction ratio. 

While resonator-based, high Q/V structures (e.g., PhC nanocavities in Refs. [23, 36, 81]) show 

lower incident switching energy, these structures have reduced bandwidths. Moreover, the 

modulators fabricated in Ref. [81] and Ref. [36] were patterned in GaAs and InGaAsP, 

respectively, and are therefore not easily compatible with silicon photonics fabrication. For 

applications where low switching energy is of paramount importance and optical bandwidth can 

be compromised, integrating VO2 in a high Q/V photonic structure (e.g., [83]) could reduce the 

required incident energy to a few fJ. 

 

4.3.3 Design considerations for polarization independent operation 

While the work presented in Chapter 3 and the above analysis have considered only TE 

operation, here design considerations to achieve large extinction ratios for both TE and TM 

polarization are examined. In Chapter 3 and above, a waveguide width of 700 nm was chosen 

because it increases the effective index (forcing more interaction with the VO2) while not clearly 

supporting the second order TE mode. The second order TE mode is clearly supported for a 

waveguide width of 800 nm. However, for this waveguide geometry (220nm × 700nm), the 

fundamental TM mode is poorly guided (neff = 1.678 at λ = 1550nm) and is largely confined to 

the silicon dioxide substrate. This is demonstrated in Figure 4.3(a) which shows the electric field 

intensity mode profile for a silicon waveguide of both fundamental TE and TM modes 

(Lumerical MODE Solutions). In Figure 4.3(b), insertion loss and extinction ratio at λ = 1550 nm 

are presented for both the fundamental TE and TM modes for LVO2 spanning 0 to 400 nm in 50 

nm intervals. While both polarizations demonstrate comparable extinction ratios for LVO2 = 50 
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nm, for longer VO2 patches, there is quickly a saturation in extinction ratio for TM polarization. 

Below, design methods to improve operation for TM polarization are explored. 

 

 

Figure 4.3. (a) Electric field intensity mode profiles of the fundamental TE (top) and 
fundamental TM (bottom) optical modes in a silicon waveguide of dimensions 700 nm 
(width) × 220 nm (height), generated using Lumerical MODE Solutions. Reduced 
confinement in the silicon is observed for the fundamental TM mode and is demonstrated 
in the reduced effective refractive index, neff. (b) Insertion loss and extinction ratio for 
both the fundamental TE and TM optical inputs for varying LVO2 [device geometry is 
shown in Figure 3.2(a)], showing a saturation in extinction ratio for the fundamental TM 
mode for LVO2 ≥ 100 nm. 

 
 

4.3.3.1 Considerations of mode propagation through VO2 

In this section, to further understand the extinction ratio saturation for TM polarization, 

transmission through the VO2 embedded silicon waveguides for TE and TM polarizations are 

analyzed and compared, considering both semiconducting and metallic VO2. To understand 

propagation losses for the case of semiconducting VO2, optical modes of a waveguide composed 

entirely of semiconducting VO2 are examined using Lumerical MODE Solutions. In addition, for 

TE and TM polarizations and both semiconducting and metallic VO2, transient propagation of 

the mode through the VO2 section of a Si/VO2 waveguide is investigated by actively monitoring 

the mode in a three-dimensional FDTD simulation (Lumerical FDTD Solutions). 
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Figure 4.4(a) presents transmission through the Si/VO2 waveguide as a function of LVO2, for 

TE and TM polarizations, considering both semiconducting and metallic VO2. To understand 

transmission for semiconducting VO2, the transmission [T(z)] data were fitted to a single 

exponential corresponding to Beer’s law, of the form: 

 T (z) =T0e
−αz                                  (7) 

 

where z, α, and To are the propagation distance into the semiconducting VO2 section, the 

absorption coefficient, and optical the transmission for a VO2 patch length of 0 nm, respectively. 

For TE polarization, α = 2.47 µm-1 (R2 = 1), while for TM polarization, α = 1.47 µm-1 (R2 = 

0.995). Converting to extinction coefficient (κ): 

 κ =
αλ
4π

                                 (8) 

 

gives κ of 0.31 and 0.18 for TE and TM polarizations, respectively. These values can be 

understood by inspection of the electric field intensity mode profiles for both polarizations, 

shown in Figure 4.4(b). Similar to Figure 4.3(a), Figure 4.4(b) presents the electric field intensity 

mode profiles (Lumerical MODE Solutions) for a waveguide composed entirely of 

semiconducting VO2 (instead of for silicon as was shown in [Figure 4.3(a)]) and includes the 

complex effective refractive index (ñeff) for both TE and TM polarizations. The complex 

effective refractive index is given by: 

 
 ñeff = neff + iκeff                                  (9) 
 

where neff and κeff are the real and imaginary components of the effective refractive index, 

respectively. Since the real components of the refractive indices of silicon and semiconducting 
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VO2 are very similar at 1550 nm (nsemi-VO2 = 3.3 [43] ; nSi = 3.476 [73]), the mode profiles in 

Figure 4.4(b) appear very similar to those in Figure 4.3(a). This is represented in the real 

component of the neff of the modes. Considering TE polarization, neff is 2.61 and 2.418 for silicon 

and semiconducting VO2 waveguides, respectively, while for TM polarization, neff is 1.678 and 

1.547 for silicon and semiconducting VO2 waveguides, respectively. However, in contrast to 

silicon, κ of semiconducting VO2 is non-zero at 1550 nm. Therefore, the mode profiles for both 

polarizations have non-zero κeff values. The electric field intensity mode profiles give κeff values 

of 0.332 and 0.158 for TE and TM modes, respectively, which is in good agreement with the 

results from the fit of the transmission data in Figure 4.4(a) (κ of 0.31 and 0.18), demonstrating 

the optical mode is largely unchanged as it propagates through the semiconducting VO2. 

 

 

Figure 4.4. (a) Transmission through Si/VO2 waveguide for both fundamental TE and 
TM optical inputs for varying LVO2, considering both semiconducting VO2 (blue) and 
metallic VO2 (orange). The waveguide dimensions are 700 nm (width) × 220 nm 
(height). The fundamental TE mode is represented by circles while the fundamental TM 
mode is represented by squares. Single exponential fits (dashed line for fundamental TE 
mode; solid line for fundamental TM mode) are shown for both semiconducting VO2 
curves. (b) Electric field intensity mode profiles of the fundamental TE (top) and 
fundamental TM (bottom) optical modes in a 700 nm (width) × 220 nm (height) 
waveguide composed entirely of semiconducting VO2, generated using Lumerical MODE 
Solutions. 
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While semiconducting VO2 supports a propagating (although with non-zero loss) optical 

mode, metallic VO2 does not. Since metallic VO2 does not support a propagating mode, 

transmission through a metallic VO2 section of waveguide cannot be modeled with Beer’s law. 

For this reason, transmission for metallic VO2 is not fit with a single exponential in Figure 

4.4(a), for either polarization. To better understand the transmission through the VO2 embedded 

silicon waveguide for the case of metallic VO2, cross sectional electric field intensity profiles at 

50, 150, 250, and 350 nm into a 400 nm long metallic VO2 segment are taken within a three-

dimensional FDTD simulation (Lumerical FDTD Solutions). These profiles are shown in Figure 

4.5 for both the fundamental TE [Figure 4.5(b)] and TM [Figure 4.5(c)] modes. 

 

 

Figure 4.5. (a) Schematic of Si/VO2 waveguide. VO2, Si, and SiO2 are green, light gray, 
and dark gray, respectively. (b,c) Cross sectional electric field intensity profiles of 
propagating optical mode (Lumerical FDTD Solutions) at different propagation distances 
in the VO2 block, for both the fundamental TE (b) and TM (c) modes. 
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Figure 4.5 demonstrates the different behavior for the fundamental TE and TM modes as a 

function of propagation distance (z) in the VO2 region of the waveguide. For both incident 

polarizations, the field is pushed out of the metallic VO2 into the surrounding air and the silicon 

dioxide substrate. Specifically, after approximately 350 nm, the field has been almost entirely 

pushed out of the metallic VO2 for both polarizations, as seen in the bottom right profiles of 

Figure 4.5(b) and Figure 4.5(c). However, for the fundamental TM mode, due to the orientation 

of the polarization, more of the optical mode incident at the silicon/metallic VO2 interface is 

already within the silicon dioxide cladding, whereby it continues to propagate. For this reason, 

considering the fundamental TM mode, there is minimal interaction with metallic VO2 for z ≥ 

100 nm, resulting in the relatively constant transmission (~ 22-30%) shown for LVO2 = 100 to 

LVO2 = 400 nm in Figure 4.4(a). 

 

4.3.3.2 Design considerations to improve interaction with metallic VO2 

In this section, two methods of enhancing the modal interaction with metallic VO2 are 

considered: (i) adjusting the waveguide geometry and (ii) considering the use of multiple small, 

isolated segments in place of one single block of VO2 to allow for mode regeneration. It is well 

known that increasing the silicon waveguide dimensions will increase the effective index of all 

propagating modes. Here, to improve the modal interaction with VO2 for TM input while 

remaining within fabrication norms (silicon thickness from ~ 220 – 270 nm), the waveguide 

height is increased to 270 nm to increase the effective index of the TM mode. Due to the 

emergence of higher order modes for a waveguide geometry of 270 nm × 700 nm, to ensure 

single mode operation regime for both TE and TM polarizations, a waveguide geometry of 270 

nm (height) × 500 nm (width) is used here. Figure 4.6(a) shows the optical mode profiles 
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(Lumerical MODE Solutions) of a silicon waveguide of this geometry for both the fundamental 

TE and TM modes. The effective index of the fundamental TM mode is increased to 2.013 [from 

1.678 for the 220 nm × 700 nm geometry in Figure 4.3(a)]. This is exhibited in the improved 

extinction ratio for the fundamental TM mode [Figure 4.6(b)] compared to the prior geometry. 

For example, for LVO2 = 100 nm, this geometry exhibits 6.4 dB extinction while the prior 

geometry showed 4.4 dB extinction. However, there is still a saturation of the extinction ratio for 

LVO2 ≥ 100 nm. Optical performance of the TE mode remains largely unchanged, as expected 

from the relatively small difference in the effective index for the two waveguide geometries 

[2.61 for the 220 nm × 700 nm in Figure 4.3(a) and 2.55 for the 270 nm × 500 nm geometry in 

Figure 4.6(a)]. 

 

 

Figure 4.6. (a) Electric field intensity mode profiles of the fundamental TE (top) and 
fundamental TM (bottom) optical modes in a silicon waveguide of dimensions 500 nm 
(width) × 270 nm (height), generated using Lumerical MODE Solutions. (b) Insertion 
loss and extinction ratio for both the fundamental TE and TM optical inputs for varying 
LVO2. Increasing the neff of the fundamental TM mode by modifiying the waveguide 
geometry gives increased extinction ratio, but a saturation for LVO2 ≥ 100 nm is still 
observed. 
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To further increase the interaction with metallic VO2, mode regeneration (i.e., after 

interaction with metallic VO2, transient recovery of the propagating mode to its original electric 

field intensity distribution) is explored. To understand the transient propagation of the optical 

mode before and after its interaction with a 100 nm long segment of metallic VO2, the electric 

field intensity mode profile in a three-dimensional FDTD simulation (Lumerical FDTD 

Solutions) was monitored. Figure 4.7 shows these profiles before and 50, 100, 500, 1000, and 

2000 nm after interaction with the metallic VO2. From this analysis, Figure 4.7(f) shows the 

mode returns to its original electric field distribution approximately 2 µm after its interaction 

with metallic VO2. 

 

 

Figure 4.7. Cross sectional electric field intensity profiles of the fundamental TM optical 
mode (Lumerical FDTD Solutions) before (a) and 50 nm (b), 100 nm (c), 500 nm (d), 1 
µm (e), and 2 µm (f) after interaction with a 100 nm long patch of metallic VO2. After 2 
µm, the fundamental TM mode has returned to its original electric field distribution. 

 
 

By arranging individual 100 nm VO2 segments spaced by 2 µm, the optical mode can recover 

before interacting with the next segment of VO2, therefore increasing interaction with metallic 
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VO2 in comparison to a single VO2 block. A similar design was used in Ref. [84] to get a more 

uniform field distribution for fixed pulse energy optical switching of GST islands on top of a 

Si3N4 waveguide. Figure 4.8(a) and Figure 4.8(b) show cartoon schematics of two proposed 

Si/VO2 device geometries. Here, both have waveguide dimensions of 500 nm (width) × 270 nm 

(height). Figure 4.8(a) presents a single VO2 block Si/VO2 waveguide design, as presented up to 

this point. Figure 4.8(b) shows the proposed device geometry whereby there are individual 100 

nm VO2 blocks spaced by 2 µm within the Si/VO2 waveguide design. Figure 4.8(c) and Figure 

4.8(d) show the insertion loss and extinction ratio for both the fundamental TE and TM modes, 

respectively, comparing responses between the two proposed geometries. The solid lines show 

the performance of the geometry shown in Figure 4.8(a) while the data points represent 

performance of the geometry shown in Figure 4.8(b). Use of the geometry in Figure 4.8(b), 

which allows for mode regeneration, shows an increase in the extinction ratio for both the 

fundamental TE and TM modes. Specifically, the extinction ratio saturation is no longer 

observed for the fundamental TM mode for LVO2 ≥ 100 nm. There is a modest (< 1 dB) increase 

in insertion loss for the fundamental TM mode. 
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Figure 4.8. (a,b) Schematics of Si/VO2 waveguide devices with (a) a single VO2 
embedded block of a given length and (b) multiple 100 nm long embedded VO2 blocks 
spaced by 2 µm. VO2, Si, and SiO2 are green, light gray, and dark gray, respectively. 
(c,d) Insertion loss and extinction ratio comparison for waveguide geometries in (a) and 
(b) for the fundamental (c) TE and (d) TM optical modes. 

 

Figure 4.8 serves to demonstrate the capability of mode regeneration and increased extinction 

ratios as a consequence. For high-speed applications, accessing the fast (~ 1-10 ps) transient 

recovery dynamics in VO2 is achievable within a finite range of incident fluences, as shown in 

Figure 1.9. Therefore, incident pump fluences must be selected to ensure fluences only within 

this range are incident at each segment of VO2. For example, in Ref. [51], the authors show a 

range of fluences from 0.28 to approximately 1.12 mJ/cm2 give a fast (~ 10 ps) transient 

recovery [see Figure 1.9(b)]. Implementing the design shown in Figure 4.8(b), for an incident 

excitation fluence of 1.12 mJ/cm2 and assuming the excitation pulse only interacts with 

semiconducting VO2, simulation gives 44.3% transmission through the third segment of VO2. 
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This corresponds to a fluence of 0.5 mJ/cm2 incident at the fourth segment of VO2, suggesting all 

four of the VO2 segments would receive fluences which will access the ultrafast MST dynamics. 

 

4.4 Conclusions 

In this chapter, design considerations to push forward the practicality of both Si/VO2 electro-

optic and all-optical modulators were presented. Specifically for electro-optic modulation, a 

platform with simulated ~ 6 dB, broadband (~ 100 nm) extinction is proposed in a geometry with 

the potential to access the fastest electrically induced SMT and MST dynamics. For all-optical 

modulation, the expected performance of the device presented in Chapter 3 as an all-optical 

modulator with in-plane excitation was compared to other state-of-the-art all-optical modulators 

with in-plane excitation. Methods to improve device performance in response to TM light, in 

particular by modifying waveguide dimensions and understanding transient mode propagation, 

were also investigated. 
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Chapter 5  

5. Conclusions and future avenues 

5.1 Conclusions 

The focus of this thesis has been to push forward the practicality of silicon-based modulators, 

both electro-optic and all-optical, that integrate vanadium dioxide (VO2) for their active 

functionality. In Chapter 2, the first demonstration of electro-optic modulation of a patch of VO2 

atop a silicon ring resonator was presented. A tradeoff between extinction ratio and device 

response time was observed by examining rings with different VO2 patch lengths and applied 

voltages. Using a 10 µm diameter silicon ring resonator with a VO2 patch length of 1 µm, an 

extinction ratio of ~ 1.5 dB was measured with a response time of ~ 10 ns, matching the duration 

of the 2.5 V excitation voltage pulse. A broadband Si/VO2 electro-absorption modulator design 

was also discussed; the design is comprised of a straight silicon waveguide with a 350 nm long 

patch of VO2 on top, By selecting TM-polarized light and modifying the waveguide height 

accordingly, ~ 3 dB modulation was demonstrated using gold electrical contacts to resistively 

heat the structure. Since the VO2 patch is almost entirely between the electrical contacts, this 

design may enable realization of faster temporal dynamics for electrically actuated switching of 

VO2 by mitigating Joule heating of VO2. In Chapter 3, Si/VO2 photonic device platforms with 

potential implementation as all-optical modulators were presented. Specifically, a platform 

where VO2 was embedded within a silicon waveguide, increasing modal interaction in 

comparison to a geometry where VO2 is placed on top of the silicon waveguide, was explored. 

The experimental performance for varying lengths of VO2 was presented using thermal initiation 

of the SMT of VO2 via integrated resistive heaters. For an embedded VO2 length of 500 nm, ~ 10 

dB extinction was achieved. Projected implementation as an all-optical modulator with in-plane 
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excitation was discussed. In addition, a Si/VO2 TM mode ring resonator was presented, 

demonstrating similar extinction ratio to a Si/VO2 TE ring resonator with 1/10th the VO2 

fractional coverage of the silicon ring as a result of using TM polarization. In addition, its 

projected implementation as an all-optical modulator with out-of-plane excitation was discussed. 

In Chapter 4, as a continuation of the demonstration of embedding VO2 within a silicon 

waveguide in Chapter 3, a design for a TE mode Si/VO2 electro-optic modulator was proposed 

where a small section of VO2 was embedded within a silicon rib waveguide. Simulations suggest 

it can be implemented to improve device response times with sufficient extinction ratios (> 4 

dB). In addition, the expected performance of the VO2 embedded silicon waveguide as an all-

optical modulator with in-plane excitation is compared with other state-of-the-art all-optical 

modulators. Detailed analysis of waveguide geometry and transient mode propagation through 

this structure was also analyzed, suggesting methods to increase device performance for all 

incident polarizations.  

 

5.2 Future Avenues 

While VO2 has been studied for over half of a century, its implementation in silicon photonic 

structures has only been pursued within the last decade. This work pushes forward 

implementation of Si/VO2 integrated photonic structures, but it is expected fabrication 

improvements and additional tuning of the optical properties will enable additional and improved 

functionalities. For example, demonstrations of atomic layer deposition of VO2 [85-87] can 

likely be utilized in the VO2 embedded silicon waveguide geometry proposed in Chapter 3 to 

successfully grow VO2 in high aspect ratio trenches, allowing realization of the simulated optical 

performance shown in Figure 3.2(b). This method of successfully filling high aspect ratio 
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trenches can enable additional integrated photonic designs. For example, in Figure 5.1, a design 

idea is proposed for a Si/VO2 all-optical ring resonator structure which could exhibit “fan-out” 

behavior, a necessary requirement of a proposed all-optical transistor [5], whereby a small input 

can provide an increase in device transmission. In this example design, using ALD, a patch of 

VO2 (e.g., 50 nm wide × 300 nm long × 220 nm tall) is embedded within a ring resonator. In the 

passive state, the VO2 is semiconducting (shown in green) and an incident wavelength (shown in 

blue) resonant with the ring is selected, giving no transmission through the bus waveguide. By 

switching the VO2 to the metallic phase (shown in purple) with an in-plane pump of the same 

wavelength, the resonance condition of the ring is changed, and the incident wavelength which is 

no longer resonant, is transmitted through the device. 

 

 

Figure 5.1. Proposed Si/VO2 photonic device with potential implementation as an all-
optical transistor, showing an embedded patch of VO2 within a silicon ring resonator. (a) 
There is no incident pump on the VO2 patch, leaving it in the semiconducting state 
(shown in green), and blue probe light is resonant, giving no transmission through the bus 
waveguide. (b) Pump light is incident, switching the VO2 to its metallic state (shown in 
purple), and the blue probe light is no longer resonant, giving transmission through the 
bus waveguide. 
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Concerning tuning of the optical properties of VO2, there has been extensive work focused 

on shifting the temperature of the SMT or tuning the optical properties of VO2, particularly for 

smart window applications [88-90]. Specifically for integrated silicon photonic applications, 

explorations of reducing κ of semiconducting VO2 would be instrumental in reducing insertion 

loss, especially for Si/VO2 electro-optic devices. For all-optical devices with in-plane excitation, 

κ should be tuned appropriately to ensure the semiconducting VO2 can be switched with incident 

radiation within the silicon waveguide. In addition, shifting the temperature of the SMT or using 

other vanadium oxide species could prove beneficial for use in low temperature or high 

temperature on-chip environments. 
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Appendix 

A.1 Polarization in fiber-coupled optical setup 

This section outlines the method used to control and characterize the polarization at the 

sample location for the fiber-coupled measurements presented in Chapter 2 and Chapter 3. Key 

components for control and characterization of the polarization are highlighted in Figure A.1. 

These are a linear polarizer (1), a half-wave plate (2), a fiber rotator (3), a polarization beam 

splitter cube (4), and a germanium photodetector (5). In general, the process is as follows. First, 

free-space polarization manipulation is achieved as light is coupled from the fiber into free-space 

(in the bottom right of Figure A.1), interacts with the linear polarizer (1) and half-wave plate (2), 

and is coupled into another fiber. Second, the polarization injected into the photonic devices is 

tuned via the positioning of the fiber rotator (3). The polarization beam splitter cube (4) transmits 

TE and reflects TM at 90°, so the polarization state is characterized by measuring the 

photocurrent generated in the germanium detector (5) when it is placed at 0° and 90° with 

respect to the beam path exiting the lensed tapered fiber. These steps are outlined in detail below. 
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Figure A.1. Image of fiber-coupled optical setup showing components used for 
polarization control and characterization.  

 
 

Figure A.2 shows a zoomed-in image of the area of free-space polarization control. The inset 

in the top right shows the entire setup, highlighting the zoomed-in area with a blue box. Tunable 

laser input (from a Santec TSL-510 in the current setup) is coupled from the fiber into free space. 

The linear polarizer serves to ensure the polarization is purely linear and should be rotated to 

maximize transmission of linearly polarized light. This can be done by removing the half-wave 

plate and measuring transmission through the linear polarizer with the germanium photodetector. 

In the current setup, this is achieved with the linear polarizer at an angle of 0°. This step can 

potentially be omitted since the laser light emitted is highly linearly polarized, but it is a useful 

step to ensure the light is linearly polarized and that the linear polarization is at 0° or 90°, as this 
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is helpful knowledge for use of the half-wave plate. The half-wave plate serves as the mechanism 

to switch between TE and TM operation of the photonic devices, as a half-wave plate at a 45° 

offset of the incident linear polarization will convert the linear polarization by 90°. Therefore, for 

measurements of integrated photonic devices, the two orientations of the half-wave plate should 

be (i) equal to the orientation of the linear polarizer and (ii) a 45° rotation in comparison to the 

orientation of the linear polarizer. For example, with the linear polarizer set to 0°, the half-wave 

plate should be set to 0° (or removed) and 45° for TE and TM measurements, or vice versa, 

depending on the fiber orientation, discussed in the following paragraph. 

 

 

Figure A.2. Image showing free-space polarization control using a linear polarizer and 
half-wave plate. The top right inset shows the full fiber-coupled system, highlighting the 
region in this image with a blue box. 
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To this point, which half-wave plate orientation is associated with which polarization (i.e., 

TE or TM) has not been defined. This is because the orientation of the polarization maintaining 

(meaning linear polarization is maintained as light propagates through the fiber) lensed tapered 

fiber, which is adjusted using the fiber rotator, determines the polarization injected into the 

photonic device. Figure A.3 shows a zoomed-in image of the area of the measurement setup that 

includes the fiber rotator, lensed tapered fiber, and polarization beam splitter cube (sitting on the 

stage where the photonic sample would be located). The inset in the top left shows the entire 

setup, highlighting the zoomed-in area with an orange box. With the linear polarizer and half-

wave plate fixed (e.g., linear polarizer at 0° and half-wave plate at 45°), the fiber should be 

rotated to maximize the intensity of light for either TE or TM polarization. To do this, the fiber 

should be placed close to the edge of the polarization beam splitter cube. Care should be taken to 

avoid damaging the fiber tip and polarization beam splitter cube. After ensuring the fiber rotator 

is fastened tightly to the copper casing holding the fiber, the copper casing should be loosened 

from the Newport 561-GM fiber chuck positioner. This can be achieved by lightly unscrewing 

the screw securing it at the top of the fiber chuck positioner. 
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Figure A.3. Image of lensed tapered fiber adjacent to the polarization beam splitter cube. 
The fiber rotator shown controls the orientation of the fiber and therefore the polarization 
incident on a photonic sample during measurement. The top left inset shows the full 
fiber-coupled system, highlighting the region in this image with an orange box. 

 
 

To characterize the polarization, the transmitted power through or the reflected power (at 

90°) off the polarization beam splitter cube should be monitored with the germanium 

photodetector while rotating the fiber orientation. Figure A.4 shows the germanium 

photodetector in these two positions [i.e., parallel to the direction of the optical fiber in Figure 

A.4(a) and 90° relative to the direction of the optical fiber in Figure A.4(b)] and includes cartoon 

schematics of how light incident on the polarization beam splitter cube will be transmitted and 
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reflected. As mentioned before, the cube transmits TE (shown in red in Figure A.4) and reflects 

TM (shown in yellow in Figure A.4) at 90°. With the germanium photodetector in one position, 

the detector should be adjusted in the two dimensions perpendicular to the beam propagation 

direction to achieve maximum photocurrent. Once maximized, the fiber should be rotated to 

maximize transmission for the desired polarization (determined by where the germanium 

detector is located). Periodically after rotating the fiber, it should be verified the germanium 

detector is still positioned in a location that maximizes photocurrent. As an example, to get TE 

polarization (e.g., with the linear polarizer at 0° and half-wave plate at 45°), the fiber should be 

rotated to get maximum photocurrent with the germanium detector at 0° (measuring light 

transmitted through the polarization beam splitter cube). To verify the result, this process can be 

repeated with the linear polarizer at 0° and half-wave plate at 0° (or removed), and photocurrent 

for the germanium detector at 90° (measuring light reflected at 90° off the polarization beam 

splitter cube) should read a maximum for the same fiber orientation. The same process can also 

be used to verify minimum transmissions are achieved for the opposite polarizations, and this 

method can be used to characterize the polarization purity if the spacing between the germanium 

detector and the polarization beam splitter cube is made to be identical for the two cases shown 

in Figure A.4. 
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Figure A.4. Images of the fiber-coupled setup with the germanium detector in locations 
for TE (parallel to the direction of the optical fiber, shown in the left image) and TM (90° 
to the direction of the optical fiber, shown in the right image) polarizations. TE and TM 
polarizations are shown in red and yellow, respectively. 
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