Error Estimation and Error Reduction with Input-Vector Profiling for Timing Speculation

in Digital Circuits

By

Xiaowen Wang

Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering
May 10, 2019

Nashville, Tennessee

Approved:

William H. Robinson, Ph.D.
Bharat Bhuva, Ph.D.
Daniel Loveless, Ph.D.
Marcus H. Mendenhall, Ph.D.

Aniruddha Gokhale, Ph.D.

ACKNOWLEDGEMENTS

This is a long journey. I am glad that I finally here after all difficulties and obstacles
during these years. For this important achievement in my life, the first and foremost person
I would like to thank is my dear advisor, Dr. William H. Robinson, for his continuous
guidance and support not only in academic field but also in my life. He always encourage
me to follow my curiosity and been there when I need help. I also want to thank all of my
committee members, Dr. Bhuva, Dr. Mendenhall, Dr. Loveless, and Dr. Gokhale, for their
insightful comments. Thank Vanderbilt University and National Science Foundation for
providing all resources and financial support.

Along this journey, I am so grateful to my husband, Zhengyu, for his hearted
encouragement during my down time. Without his love and fully support, I am not sure if I
have the strength to make to this point.

Lastly, thanks to my parents for always believe in me, you guys are awesome!

To my son, Marvin, and my grandparents, I love you!

il

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ucuiiniisinsensunssissisissessessessess i

LIST OF FIGURES . .cutevtirerruisuisnisrisissessessssssssssssississesssnsssosssss v

LIST OF TABLES ...ttt sttt ettt ettt eaeene s vi
CHAPTER

L. INTRODUCTION ...ttt sttt sttt ese et ae e s sae e 1

Better-Than-Worst-Case deSIZN.......cccueeriieriieriieniieiieeie ettt eveeiee e eeeeseae e 1

Variations that impact tIMING.........cceeeuiiriiieiierieeiieee e 4

IMIOBIVATION ..ottt ettt et sb et ettt et et e bt et st e b enees 6

Research CONITDULIONSc..eevuiiiiiiiiiiiieriiecee e 7

11 BACKGROUND AND RELATED WORKScccooiiiiiiiiieeeeeeeee e 9

TIMING ANALYSIS ...eeviiiiieiie ettt ettt e beebeeeabeeseeenseeseeenne 9

Path activation probability analysis..........cccceeeieriieiiienieeiieie e 12

Timing speculation methodologies and error resilience in BTWC design 15

Evaluation Methods for BTWC designscccevveeiieniieiieiieeieeiieeieeiee e 24

Multi-threshold technology in VLSI designs.........cccceevveeciieniiieiienieeieeieeeveeneen 27

Timing speculation vs. Instruction speculation............ccceecveeviiencieenieniieenieeeieenen. 29

III. RESEARCH METHODOLOGY AND BTWC DESIGN FLOW............ccccevennnnee. 30

General EDA design flow and the customized design flow in this work 30

Value change dump fllesc.coooiiiiiiiiiiieiee e 33

IV. ALL-CLOCK-FREQUENCY ERROR-ESTIMATION.......cccccteirieieieieieeeene 36

Obtaining outputs settling behaviorccoeiieiiiiiiiiniiiieeeeeeee e 36

Categories Of Primary OULPULSc.eeeeveerireriieniieeiieeieeieeeiteeteesreeeeeseeeesseesnneensees 39

Error count estimation and error rate calculation.............ccceevvevevienieniieenienienen. 43

Error estimation results diSCUSSION.......ccueriiriieriirieniieieeie st 47

CONCIUSION. ...ttt ettt ettt b et st e sttt s et enee b enee 53

il

V. OFF-LINE ERROR-CHECKING METHOD.........cccccceviiiiiiiiiiiiiiiiniiciccicee, 55

General error checking and off-line error checking methodology comparison55

Reformatting .ved file for off-line error-checkingccccoeeviiniiieniininnennen. 58
Implementing the off-line error-checker............cocevieviniiniiniiiiiceeeee 60
Error estimation vs. error checking results comparisonc.ccceeceeeeveerieenneennen. 61
CONCIUSION. ..ttt ettt st b et sttt et st e b et e b enee 63

VI. DUAL-THRESHOLD VOLTAGE APPROACH FOR TIMING ERROR

REDUCTION ..ottt ettt sttt sttt ettt st sbeebe e st ent et ensensenaesseenes 64
Dual-threshold voltage approach for re-timing............ccceeeveevierciienieecieenieeieenen. 64
Identification of critical CellS..........cemiiiiiiiiiieiiiieeieee e 65
Error reduction results comparison and diSCUSSION..........ccueeruieeveeneeniieerieeereennen. 68
CONCIUSION. ...ttt ettt sttt et sttt et st enbe et be e 73

VII. SUMMARY AND FUTURE WORKS........cootiiioieieeecteeeetete e 74

APPENDIX ...ttt ettt ettt ettt ne ettt e bbb 76

REFERENCES ...ttt sttt ettt e b e b e enes 84

v

LIST OF TABLES

Page
Table 1: Summary of several EDAC methodologiesccocueevieiiiiiiieniiiiecieeeeeeee, 24
Table 2: Overview of the circuits used in the analysis.........cccceevveriiieniinciiinieniieeeeeeee, 30

Table 3: Comparison of C1908 static delay, switching activity rate and active cycles rate.
Output N2899 has longest delay and Output N2891 is the greatest error-contributor. 41

Table 4: Benchmark circuit static propagation delay of all error-possible outputs.............. 48

Table 5: Comparison of error composition from critical path and greatest error-contributing
PO other than the critical path...........ccccoeiiiiiiiiiie e 52

Table 6: Total error numbers and the Dynamic Replacement improvement 72

Table 7: Low-V;cell usage comparison between Full Path Replacement (FPR) and Selected
Cells Replacement (SCR)....cc.uiiiiiiiiiiieeie ettt ettt s esaesanaens 73

Table 8: Leakage power (WW) comparison of baseline, Full Path replacement (FPR) and
Selected Cells Replacement (SCR)ccuiiiieiiiiiiiieiieeiieeeeieee e 74

LIST OF FIGURES

Figure 1: Block diagram of BTWC design general Structure............cc.ceceveeriervieneenieenenenn 2

Figure 2: An example of critical path delay distributions: (a) Before the variations (b) After
the VATTATIONS [7].uviiieiiieeeiieeeciiee ettt ettt e et e e e v e e e eaaeeetaeeetaeesaaseesaseeesareeenns 3

Figure 3: An example to illustrate the relationship of the timing error probability with
circuit performance (a) Timing error probability versus clock frequency, (b) Circuit

performance versus clock frequency [8].cocovvvoiieiieiiiiiiieeieeee e 4
Figure 4: Dynamic behavior curve of two paths with the same static delay time. [17]....... 13
Figure 5: Block diagram of Razor 10gic. [22] ..c.coviriiriiiiiiinieieececeeeee e 17
Figure 6: The circuit-level schematic of the shadow latch used in Figure 5. [22]............... 17

Figure 7: The pipeline recovery using global clock gating. (a) The pipeline structure. (b)
The pipeline operation timing. [28].......cccuierieriiierieeiieiie ettt eeee e ens 18

Fig. 8: The pipeline recovery using counterflow pipelining. (a) The pipeline structure. (b)
The pipeline operation timing.[28]........ccceerieriiierieeieeie e ens 18

Figure 9: Circuit-level schematic of Razor II flip-flop. (a) Flip-flop schematic. (b)
Transition detector schematic. (¢) Detection clock generator. [29]cccceevvveiiennnnne 19

Figure 10: Different ways to implement Razor flip-flop to detect timing errors. [32] 20

Figure 11: Schematic of TIMBER flip-flop. (a) Main flip-flop part. (b) Clock signal control

and generating Part.[33] ..oveioiieiieeii ettt enbaens 21
Figure 12: TIMBER latch schematic. (a) Main latch part. (b) Clock signal control and

generating PArt.[33] ...eeoii ettt ereeeabaens 22
Figure 13: The customized EDA flow with Synopsys tools.cccceeiereiienieniiienienieenen. 31
Figure 14: The proposed design flow chart..........c.ccoceviiiiiiiniiniiieceeeeeeen 33

Figure 15: An example of value change dump file. (a) is the header part, and (b) is the body
Figure 16: Algorithm flow chart of switching time stamp extraction for a specific node. ..38

Figure 17: The total active cycles out of 1 million cycles of error-possible outputs.
Benchmark circuits (a) C432, (b) C880, (c) C1908 and (d) C6288.cccceveerienuennen. 40

vi

Figure 18: Benchmark C1908 outputs with the average active cycles out of 10,000 cycles
(using 100 simulation trials), and the total error counts for 1 million cycles at clock
PEIIOA OF 1.7 NIS. 1eiiiiiiiieie ettt ettt ettt e et e e b e e nbeensees 42

Figure 19: Benchmark C1908 settling time histogram of each error-possible PO. The x-axis
is the settling time in picoseconds, and the y-axis is the accumulated number within
CACK DIMN..c.iiiiiiiii e e 44

Figure 20: Benchmark C1908 stablization probability of each error-possble PO. 45

Figure 21: Benchmark C1908 settling time histogram and stabilization probability density
function of outputs N2891, N2911, N28O2.......ciiiiiiiieieeiieieeeee ettt 46

Figure 22: Outputs settling time histogram with 1 million random input vectors of four
benchmark circuits C432, C880, C1908 and CO288.ccovevvvveivniiiieeeeiieiieiiiieeeeeen, 49

Figure 23: Zoomed settling time histogram between 70% of orignal clock to the error-free
clock of four benchmark CIFCUILS........cc.ccueviirininiiiiiiicicccee e 50

Figure 24: Estimated error count of each error possible outputs of (a) C432, (b) C880, (c)

012 L0 T« PRSPPSO RRURI 51
Figure 25: The stabilization probability of four tested benchmark circuits for the given

workload from start to end of the clock period.c.oocvievieiiiiniiiiiieee, 54
Figure 26: The general structure of (a) transition detection method............ccceveririennenne. 56
Figure 27: The general structure of (b) duplication module/path methodcc.c.e... 56
Figure 28: The general structure of (c) proposed off-line error checking method............... 57
Figure 29: Algorithm flow chart of data preparation SCript.cceeevvevieeciieneeeiieiieeieenee. 59
Figure 30: The example of partial activity file extracted from .ved file.c.cooeeienieneene. 60
Figure 31: The flow chart of the Extract and Compare script’s algorithm. 61

Figure 32: The comparison between simulated results and total error estimation trends of
four tested benchmark CITCUILS.coueiviriiriiriiiieeeeeeeeee e 63

Figure 33: A partial circuitery to differentiate three types of critical cells that are going to
be replaced in thisS WOTK.........ccciiiiiiiiiii e 67

Figure 34: Benchmark C1908 critical path’s cells actiVityccccoevvievieeiienieeiieieeeeenen. 68

Figure 35: Error counts of each error-possible PO before and after error reduction method
Full Path Replacement and Selected Cell Replacement. The operating clock period of
C432 is 1.7 ns (70% of 2.41 ns), C880 is 1.4 ns (70% of 2.01 ns), C1908 is 1.5 ns
(68% of 2.2 ns), and C6288 is 3.4 nS (70% 0f 4.82 01S). .eevvvrereeeiieiieeiieieeieeee e, 70

vii

Figure 36: Total error reduction improvement from Full Path Replacement to Selected
Cells Replacement, when operating at 70% of original clock period.cccccueee.e. 72

Figure 37: Error Free speed up comparison of Full Path Replacement method and Selected
Cells Replacement Method.cocuieiiiiiiiniieiiieie e 73

viii

CHAPTER I

INTRODUCTION

With nanometer fabrication technologies, system-on-a-chip (SoC) design enables
the potential of billions of transistors to implement a wide range of functionality. But
along with the size scaling, transistors are becoming more sensitive to environmental
conditions [1], within die variations [2][3], and even input workload variations. Designs
reliability has become a greater concern for integrated circuits (ICs) [4][5]. The design
corners are analyzed to determine the worst-case delay possibility. Based on these design
corners, designers include additional timing margins as a guard band on critical paths.
However, using the worst-case design plus guard bands can be very pessimistic, which

translates into a loss of performance while executing real applications [6].

Better-Than-Worst-Case Design

To avoid performance loss because of infrequently-occurring, worst-case
scenarios, Better-Than-Worst-Case (BTWC) design was introduced to bridge the gap. It
is a design style that was first introduced by Bob Colwell, architect of the Intel Pentium
Pro and Pentium IV processor. A traditional design methodology sacrifices performance
to contain the extreme cases, so as to ensure an error-free design. The essential idea of
BTWC design emphasizes operating on average-cases. BTWC design improves
performance by allowing certain timing errors to occur during the normal operation,

while preserving the correct operation by adding error detection and correction to the

design. By controlling the probability of the timing errors to a desired level, a trade-off
can be made that results in an overall net performance gain with the error correction
penalty.

Figure 1 illustrates a general approach for BTWC design that includes a core
computational component coupled with a checker mechanism that validates the semantics
of the core’s operations [8]. The additional circuitry of a BTWC design will consume
extra power and take time to correct any errors. Thus, several features the
Checker/Corrector must be considered: (1) small area, (2) power efficiency, and (3) fast

correction capability.

Well-defined
operations

Input Performance/
E— Power Optimized
Core Component

Output

Checker/
Corrector

7\

Detects and corrects
operations faults

Figure 1: Block diagram of BTWC design general structure

Figure 2(a) is an example of a critical path delay distribution of a circuit under a
certain workload. Figure 2(b) shows the change of the delay distribution of the same path
after considering all types of variation. Instead of using clock /" as operating clock

frequency, BTWC design will select clock / to operate at an ultra-high speed, as shown in

Figure 2(b). The gray area represents the error probability. Traditional designs will
require a slower clock frequency (i.e., a longer clock period) to avoid errors caused by the
probability within the gray area. The advantage of BTWC design is the capability to
derive additional performance based upon typical operation cases, and use the error
detection and correction (EDAC) circuitry to handle the errors that occur occasionally.
However, it will always need a checker/corrector module as long as it contains the
possibility of errors. The extra circuitry of the EDAC module will consume extra power
and take time to correct any errors. Thus, making the EDAC module small and efficient
is important, but selecting a well-balanced operating clock frequency to keep the errors at

an ideal level is also the key to maximize performance gain.

(a)

Dlogic

pdf

Dvarlogic

pdf

Figure 2: An example of critical path delay distributions: (a) Before the variations and
(b) After the variations [7].

The operating clock frequency can be categorized into three regions, as illustrated
in Figure 3. Region One is the error-free zone, where the clock frequency is usually
selected as shown as point a. Region Two is where applying timing speculation has a
positive performance gain. Timing errors begin to appear beyond point b. Point ¢ is the
optimized clock frequency to maximize performance. Region Three is where
performance gain becomes negative when applying timing speculation. BTWC designs

work within Region Two, therefore identifying the point ¢ is the ultimate goal of BTWC

design.
A 1 2 3 A 1 2 o 3
, . by .
= : = a/ . .
& 5 8 -
a b L
A f A A ;
fr f0 fr fO

Figure 3: An example to illustrate the relationship of the timing error probability with
circuit performance (a) Timing error probability versus clock frequency, (b) Circuit
performance versus clock frequency [8].

Variations That Impact Timing
The guard-band is the traditional design approach that tries to contain the timing
uncertainties with extra design space. Those timing uncertainties are mostly caused by all
kinds of variations, which influences on circuit timing. They can be categorized into

static and dynamic sources.

Static variation sources:

Static variation does not change with time and depends on physical factors, such
as internal connections and device dimensions. The geometry of the circuit’s layout and
structure determines the operational parameters. Physical parameter variations (e.g.,
critical dimension, oxide thickness, channel doping, wire width, wire thickness) lead to
electrical parameter variation (e.g., saturation current, gate capacitance, threshold
voltage, wire resistance, wire capacitance), and electrical variations result in delay
variation. The inability to control precisely the fabrication parameters during
manufacturing is called process variation [9]. The partially correlated process variations
make the problem complicated to solve. A model of process variation and a model of
timing errors for a processor’s microarchitecture was described in [7]; it predicts the
failure rate of micro-architectural blocks as a function of clock frequency and the amount
of variation. A novel approach was proposed in [10] that isolated the failing path to avoid
timing errors caused by process variation for fabricated chips.

Dynamic variation sources:

Dynamic variations, on the contrary, are time-related and depend upon the
operating conditions, like the fluctuation of: (i) V. droops, (ii) temperature, (iii)
transistor drain current, (iv) cross-coupling capacitance, and (v) multiple inputs switching
(MIS) in logic gates [11]. V. droops are induced from the internal switching activity, and
lead to current transients. Dynamic voltage (IR) drop under real switching activity was
analyzed in [12]. Temperature depends on input workload, environmental conditions, and

heat-control methods. An adaptive system was discussed in [1] that accurately estimates

the temperature-induced delay variation to avoid an overly conservative design.
Transistor drain current aging is related to the gate bias and temperature. Cross-coupling
capacitance change due to the adjacent wires switches will cause RC delay on the wire.
MIS is related to input workload that affects the circuits’ internal activity and the settling
time of the outputs. Paths with the same static propagation delay could have dramatically
different distributions of their settling time because of the input workload variation.
There are researches like [13] and [14] who have studied the circuit behavior curve under

input workload.

Motivation

If the worst static propagation delay of an output is longer than the operating
clock period, then there is a probability to observe errors at this output. But a timing error
occurs only when the output settling time extends later than the specified clock period.
However, when increasing the operating clock frequency, the error probability increases
are not linear. Estimating error probability just based on the circuit’s static delay
information may lead to a severe misunderstanding of the circuit’s behavior. The error
probability is highly related with the output settling time and the operating clock period.
As introduced earlier, there are many factors, including input workload variation, that
could influence an output settling time. Most of influences are subtle. It is the input
vectors that determine the path usage. Together with circuit’s previous status, the basic
shape of the circuit dynamic activity curve is formed.

BTWC design is all about finding the optimal operation clock frequency. Timing

speculation is associated with errors, but a well-balanced operating clock frequency will

contain the error rate at a desired level, so as to realize performance improvement. An
accurate error estimation method based on the circuit’s dynamic behavior gives BTWC
designers insight on how the error trends occur with the increase of clock frequency.
The error rate from each output may vary with different input workload. When a
circuit operates at an ultra-high clock frequency, an understanding of the dynamic
activity for each circuit path will help to identify the most error-prone output, thereby
making the error reduction more efficient. BTWC design requires error estimation for all
potential clock frequencies for the given input workload. Therefore, a design flow for
BTWC design has been developed to extend the capability of commercial electronic
design automation (EDA) tools for dynamic path activity and output settling analysis.
The design flow utilizes customized scripts that process standard output files from the

commercial EDA tools.

Research Contributions

This research focused on performance improvement in digital integrated circuits
(ICs) by considering path activity behavior under a given input workload. Timing
analysis and timing closure are critical steps in digital circuit design. Many factors affect
the delay distribution of the outputs, but the input workload determines the basic shape of
the distribution. The longest static delay path(s) may not be very active for a certain input
workload, and therefore would not frequently generate timing errors. Obtaining the actual
delay distribution of the outputs for given workload could help designers to estimate the
error rate for each output so as to select the well-balanced operating clock frequency,

which is the fundamental challenge for BTWC design.

This work contributes the following: (1) The Off-line error checking method that
enables detailed statistical analysis on selected cells activities. Design and verifications
does not require test bench that compares models operating in system work; (2) The All-
clock-frequency error estimation method that predicts error rate for all-possible operation
frequency of each PO. Characterizes each PO settling curve under given input workload.
Identifies the typical-case error contributor according to circuit internal activity. (3) Dual-
V; method for effective error reduction on selected cells. The selection focuses on the
fan-in cone of identified error contributors by using weights determined with circuit
activity level. [15].

The rest of this dissertation is organized as follows. Chapter II describes related
methodologies and related backgrounds, including: (1) static timing analysis (STA) and
statistical static timing analysis methods (SSTA), (2) path stabilization probability
analysis for given input workload, and (3) general EDA design flow. Chapter III provides
information about the research methodology, simulation setup environment, and the
overall design flow used in this work. Chapter IV describes the error-estimation method
and the error-checking method used in this research, which aided in identifying the
greatest error-contributing primary outputs (POs) and the critical standard library cells
that contribute to the propagation delay for the given input workload. Chapter V
describes the error reduction method of using multi-threshold standard cells and analyzes
the error-reduction results. Chapter VI summarizes the work and offers some future
extensions of this work. The customized Python scripts for error checking and error

estimation are provided in the Appendix.

CHAPTER II

BACKGROUND AND RELATED WORK

Device reliability is an important concern for the operation of integrated circuits
(ICs). Design margins are incorporated into the final design to ensure an error-free IC.
BTWC design can be used with timing speculation to reclaim the lost performance when
incorporating the design margins associated with corner cases. Timing analysis and path
activation probability analysis are necessary to prepare for BTWC design. Understanding
the circuit behavior under typical cases is the key to success. The timing error rate of a
BTWC design needs to be controlled at an optimized level in order to have an
improvement in performance while avoiding the negation of the performance gain
because of the error correction penalty.

This chapter provides background on techniques for timing analysis. It also
discusses the analysis of path activation probability, which is used to determine how the
input workload can affect the visible errors at the primary outputs. The chapter also
reviews techniques for timing speculation with error detection and correction (EDAC)

circuitry.

Timing Analysis
The original Static-Timing Analysis (STA) was brought into very-large-scale-
integration (VLSI) chip design in the early 1990s, and it has been one of the successful

and matured tools in digital circuits design [16]. This timing analysis tool could be

widely accepted because the runtime is linear to the circuit size, and the results are
relatively safe for traditional digital circuit design. The original STA tools are
deterministic and calculate circuit delay with one specified corner case to represent the
design boundary. However, the transistor size scaling amplified the impact from process
variation. The deterministic attribute of traditional STA causes inaccuracies for digital
circuits.

The fundamental weakness of traditional STA is that there is no statistically
rigorous method for modeling multiple corner files. Therefore, Statistical-Static-Timing-
Analysis (SSTA) emerged to improve the timing analysis method. Rather than giving a
single result, SSTA evaluates the timing of gates and interconnects with probability
distributions. Over the past decade, there are hundreds of papers published in this field,
and D. Blaauw et al. [16] discussed the evolution of STA to SSTA. The basic goal of
traditional STA is to find the delay of the longest path in the circuit, and the SSTA aims
to find the latest arrival-time distribution of the output. The SSTA can be generally
categorize into three approaches:

1. Numerical-Integration Method: The delay distribution of a set of paths that
approach the maximum delay can be expressed as a function of physical
parameters in order to select a certain region under a specific circuit delay.
That region is then integrated numerically to explore the possible physical
parameter space, and then compute the circuit’s statistical results of the
timing. This approach is generic and can include different types of models to

account for process variation, but the significant amount of computation time

10

2.

3.

is a problem, especially for a well-balanced circuit with a large set of paths
that approach the maximum delay.

Monte Carlo simulation method: The basic idea behind this approach is to
perform sufficient independent sampling for the circuit delay using traditional
STA using the probability distribution function (PDF) of the physical
parameters. The circuit delay distribution can be found by sweeping the
timing constraint. Like numerical integration, this method is completely
general. Because the traditional STA methods are mature, Monte Carlo
simulation is faster than the numerical integration method. However, due to
the inner loop calculation inside of the simulation for STA, the run times are
still significant. The second weakness of Monte Carlo simulation method is
the difficulty to perform incremental analysis. If any change is made to the
circuit, then the whole simulation procedure needs to be restarted to obtain an
updated circuit delay distribution.

Probabilistic analysis method: Unlike the previous two methods that are
based on the sample space, this method models the gate delay and the arrival
time of signals with random variables. There are two main approaches to
implement probabilistic analysis.

a. Path-based approaches: This approach selects a set of most-likely
critical paths, and then adds the gates and interconnection delays of
each path within the set to approximate the circuit delay distribution.
The paths selection must be done before the statistical analysis, so the

accuracy of the approximation depends on the selection of likely high-

11

delay paths. This approach, therefore, has two split steps: First, find
the paths, and second, calculate the path delay. The difficult task is
how to find the best set of paths.

b. Block-based approaches: This approach is based on the traditional
STA algorithm, and deals with the circuit graph in a topological
manner. To compute the arrival time for each node, the edge delay is
added with the source node arrival time for each fan-in edge, and then
the latest arrival time is selected as the final result for each node. The
block-based approach has a runtime advantage, especially because
incremental analysis is allowed by using this method.

Although SSTA makes the analysis more comprehensive, there are challenges and
limitations associated with it. It is too complex when dealing with realistic delay
distributions. It is also very difficult to apply within an optimized algorithm or flow.

Both of traditional STA and SSTA method are designed to avoid the impact from
input vectors. It is good for traditional design because including rare cases when testing
design limitations makes the design more reliable. However, this advantage becomes an
obstacle when using a BTWC design style that optimizes a design according to circuit

behavior for typical input workloads.

Path Activation Probability Analysis
Because the rare cases are not emphasized for BTWC design, information from
regular timing analysis tools are not enough for BTWC design. Two Primary Outputs

(POs) with the same static path delay, according to timing analysis tool, could have

12

dramatically different distributions of path stabilization (i.e., settling time) in a real

application [17].

A .
¢<—Cycle time———,

=5 P,=99%
£ 6100%— — — — — — — — s=99%
QT
£ R |
o O 0 i/
a g™ B_“P=53%
%
S |

© 0% |

>
A A\ Time
t tcycle

Figure 4: Dynamic behavior curve of two paths with the same static delay time. [17]

Figure 4 shows an example that the path delay time does not equal to the path
settling time. The labels A and B represent two outputs that have the same worst-case
propagation delay. However Output A and Output B have distinct probability curves for
their settling time. With the same input workload, Output A has a 99% probability that it
will settle by time #, while Output B has a 53% probability to be settled at time ¢. This
means Output B is more dynamically critical and should be weighted higher when
analyzed for errors during the BTWC design process. By enhancing the speed along the
path to only Output B, assuming the circuit only has two paths, then most errors will be
reduced, and the circuit could operate at cycle time ¢ with very little penalty for error
correction.

The circuit’s dynamic stabilization curve will be affected by many types of
variations, but the curve’s basic shape is decided by the input workload. A rigorous

analysis of path activation probability, which describes the typical dynamic behavior of

13

the circuit’s response to a common-case workload, would provide insight that helps the
BTWC designers to maximize the performance gain. Wan and Chen proposed several
circuit optimization techniques for timing speculation based on the circuit’s dynamic
activity in [17], [18], [19].

In [18], Wan and Chen proposed a circuit-level optimization tool called
DynaTune that combined TCF (Timed Characteristic Function) [20], an ATPG
(automatic test pattern generation) method, and BDD (binary decision diagram) [21] to
derive the circuit’s dynamic behavior curve to understand the impact of input workload
on a circuit’s settling time; based on that information, it selects a targeted operating clock
frequency and the corresponding settling probability. Then, it selectively resynthesized
the cells along the timing-critical paths that exceed the threshold for delay and activity
probability so as to improve performance while mitigating errors. The timing speculation
techniques used in DynaTune are the Razor logic [22] (which is discussed in more detail
later in the chapter) or the Telescopic Unit [23].

DynaTune has several drawbacks: (1) The use of Global BDD is only suitable for
small circuits; (2) TCF analysis is sensitive to the node’s value, and it requires structural
information of the circuit to perform the analysis. (3) During the analysis, the input was
set to a static probability, which likely is not representative of the real application input
workload, which could have distinct phases of operation.

Wan and Chen also purposed a method to analysis circuit-level dynamic behavior
with new data structure, called timed Ternary Decision Diagram (tTDD) [17]. The tTDD
is created based on the TDD and TCF. Ternary Decision Diagram is similar to Binary

Decision Diagrams (BDDs). BDD’s basic idea is Shannon expansion, and it is a graph

14

based rooted but directed data structure that is used to represent Boolean functions.
Bryant [24] added restrictions on the ordering of decision variables in vertices, which
enables BDD to manipulate representations in a more efficient manner. Ternary decision
diagram, As discussed by Sasao in [25], has three possible outgoing branches for each
node, which solves BDD incapability of modeling not settled cases. But this method
requires circuit partitioning, and the partitioning algorithm is crucial because it will affect
both structure correlation and calculation cost. The estimation error complexity becomes
relative high when dealing with larger circuits. Detailed timing model that extracted from
standard delay format (SDF) was used in this method, but input change impaction on cell
delay did not include yet.

CCP [19] resynthesizes a circuit according to a probabilistic manner that creates
functionally equivalent but shorter logic paths for paths with high activity. The rarely
active paths are resynthesized with a longer delay. To identify the common cases, a
global behavior profile is obtained by generating a set of primary input vectors according
to given typical case characteristics [8] [26], and then it uses the synthesis engine in ABC
[27]. Input vectors are selected according to the typical-case characteristics. The global
behavior profile can be reused for all sub-circuits. To promote the common case, the TCF
information of common cases is used to build redundant sub-functions for common cases,

and the sub-functions are merged into the original design to improve performance.

Timin jon Meth jes And Error Resilience in BTWC Design
A BTWC design can be separated into two main parts: Timing speculation part

and Error resilience part. Timing speculation is the part to improve the performance (e.g.,

15

increase speed, or reduce power usage), which could be implement at different design
level. Error resilience part aims to preserve the reliability of the design. In this work, we
are focus on the circuit-level timing speculation, and the most popular one is Razor logic
structure, like Razor [28], Razor II [29].

Timing speculation methodologies:

Researchers at the University of Michigan developed a circuit-level approach
called Razor to implement Dynamic Voltage Scaling (DVS) processors [22][30][29]. It
combines a circuit-level error detection mechanism with a microarchitecture-level error
recovery technique.

Razor [22] proposed a more aggressive but realistic approach to DVS. It tunes the
supply voltage by monitoring the error rate during the operation. The timing error
detection is implemented by using a delayed latch, called a shadow latch, to compare
with the corresponding state element in the design. The value in the shadow latch is
guaranteed to be correct since it uses the worst-case timing (Figure 5). Figure 6 shows
how the Razor flip-flop was designed. When an input signal transitions at the same time
as the clock, meta-stability may occur in the Razor flip-flop.

Razor relies on both the combinational circuit and the architecture for an efficient
EDAC method. It has been applied with a pipeline structure to correct timing errors. Two
recovery mechanisms have been proposed [28]. The mechanisms use either clock gating
or a counterflow pipeline, as shown in Figure 7 and Figure 8 respectively. The clock
gating mechanism simply asserts a global stall for all stages in the next cycle after the
error flag is issued. However, global clock gating is not ideal for the clock tree, so the

counterflow pipelining approach is introduced. When an error is detected, a bubble signal

16

propagates to next stage, and a pipeline flush is initiated from this stage back to the first
stage. The pipeline restarts from the first stage.

The voltage is increased or decreased according to the error rate. A low error rate
means that the voltage could be reduced. A high error rate suggests that the supply
voltage violates the timing constraints too much and should be increased. A properly

selected reference error rate is very important to maximize the performance gain.

Ma

Figure 5: Block diagram of Razor logic. [22]

ck ck_b
_[>°_Q

Meta-stability detector

Error_L

clk_del_b J]D Error_L

7.
clk_del

Shadow Latch

Figure 6: The circuit-level schematic of the shadow latch used in Figure 5. [22]

17

WwB

(reg/mem)

MEM

Stabilizer FF

recover

N

clock

a)
Razor latch gets Correct value
. . correct EX value provided to MEM
Time (in cycles) P
@ / P
s IF ID EX MEM ST‘;’ stall .~ wB
= x
§ IF 1D EX* MEM* MEM ST WB
@D
£ IF 1D EX stall MEM ST wB
IF 1D stall EX MEM ST
b)

Figure 7: The pipeline recovery using global clock gating. (a) The pipeline structure. (b)
The pipeline operation timing. [28]

IF MEM ST el wB
[N [N
e (read-only) w 5 (reg/mem)
£ : g =
S| &2 | emor bubble §
< &l
Flush flushiD flushiD flushiD
o222 JCT o) JC L v JCE L e
a)
Razor detects fault,
forwards bubble toward WB, Pipeline flush
. . initiates flush toward IF completes
Time (in cycles) ; ;
7 7
1) / {
S| F D EX MEM ST/ wB /
E IF ID EX* pubbe MEM ST WB /
® v
£ IF ID EX flushgy flush, flush, IF 1D
IF ID IF

Fig. 8: The pipeline recovery using counterflow pipelining. (a) The pipeline structure. (b)
The pipeline operation timing.[28]

18

The original Razor design not only detects errors but also restores the correct
results from the shadow latch. However, generating the restore signal from the pipeline
makes it harder to implement an aggressively clocked microprocessor. Razor II [29]
proposed a new flip-flop that only detect errors, and uses the technique of architectural
replay to handle the correction. Because it uses architectural replay, the Razor II flip-flop
is smaller in size and complexity but pays a higher penalty on recovery, as measured by
the throughput, Instructions Per Cycle (IPC). The advantage of architectural replay is that

it is a mature technique used in many existing speculative processors [31].

CLK

D

L T
Q
N
Detection Clock Transition _%?ROR
(DC) generator Detector (TD)

Rising transition
dp —od; delay chain

DC

b) c)

Figure 9: Circuit-level schematic of Razor II flip-flop. (a) Flip-flop schematic. (b)
Transition detector schematic. (c) Detection clock generator. [29]

The Razor II flip-flop is a positive level-sensitive latch. Since it is level-sensitive,

when the clock is high, any input change will be captured. In Razor II, any transition that

19

happens during the latch’s transparent phase is considered an error. Figure 9 illustrates
the circuit structure of the Razor II flip-flop.

Other than Razor and Razor II, there are several EDAC flip-flops that use
transition detection with time borrowing (TDTB) as in Figure 10(b), and double sampling
with timing borrowing (DSTB) as in Figure 10(c). These techniques were proposed to
solve the meta-stability issue that exists in the previous Razor design [32]. Figure 10(a)

shows the regular structure of Razor flip-flop.

LATCH ERROR ERROR MSFF ERROR
[S
— —
i msrr |— Qa Q i atcH|— Q
LATCH
S _*
CLlK ' CLK
@ CLK ©

(b)

Figure 10: Different ways to implement Razor flip-flop to detect timing errors. [32]

TIMBER [33] proposed two timing elements to provide online masking of timing
errors for a pipelined structure. The author found that timing errors due to dynamic
variations often only span one pipeline stage on successive clock cycles and therefore can
be masked by timing borrowing. TIMBER has flip-flop version and latch version, and
both are illustrated in Figure 7 and Figure 8. When EN is high, the TIMBER flip-flop
works in the timing-borrowing mode. Node M0 and M1 are designed for error checking.
If they are not the same, then the value sampled by M1 will mask the previous value after
the delay time. The delay time is controlled by S;Sy. Similar in TIMBER latch, when EN

is high, the latch is in the timing-borrowing (TB) mode. The input value is latched by

20

transmission gate M during the TB time interval, while transmission gate L is always on
for entire checking period in the timing-borrowing mode. If signal arrives after the TB
interval ends, then the timing error will be masked without an error flag. If signal
switching occurred during ED interval, then the error flag will be inserted. Both the

TIMBER flip-flop and the TIMBER latch do not have meta-stability issue.

. . AP
ML 3 Ej_ . Error flag
L » and
e Pi Error relay
DCK (a)

DCK
"Da

(b)

Figure 11: Schematic of TIMBER flip-flop. (a) Main flip-flop part. (b) Clock signal
control and generating part.[33]

21

[E:‘-Error flag

(@)
CK - - —D_

EN

»n

Y

ata et (b)

Figure 12: TIMBER latch schematic. (a) Main latch part. (b) Clock signal control and
generating part.[33]

TEAtime [34] (Timing error avoidance) uses a methodology that in situ adjusts
the clock frequency to avoid operating a circuit at an unnecessarily low frequency. The
longest critical path is used as a checker for the main circuitry to ensure correct operation,
shown in Figure 13. A toggle flip-flop feeds into the checker to test whether the results
could propagate beyond the longest delay under the current clock period. When the
checker remain equal, the counter increments, the voltage increases, and the clock
frequency increases. The clock frequency can be decreased by implementing the process
in reverse. A bi-directional counter, a digital-to-analog (D/A) converter, and a voltage-
controlled oscillator (VCO) are used in TEAtime. The prototype design can experience

meta-stability.

22

Error resilience mechanisms:

Error resilience is another part of BTWC designs. The mechanism of each

methodology could be categorized as follow:

1.

2.

Error detection + Rollback/Instruction replay: Normally the approaches that use
this scheme include duplicated registers or a transition detection mechanism with
a delayed clock to capture signals that violate timing. To recover from the timing
errors, the main system is suspended and restored to the correct value from either
the duplicated register or a replay of the instruction. Pitfalls of this scheme
normally are: (1) a limited detection window, (2) a prolonged hold time
requirement, and (3) the issue of meta-stability.

Error masking: For a given logic circuit, errors can be masked by an approximate
logic circuit that predicts the correct value [35], [36]. For every output, the logic
could be either expressed with a O-implication or a 1-implication approximate
function. These functions are used to detect 1-to-0 or 0-to-1 errors. The type of
approximate function for the output is determined by computing the dominant

type of errors.

The work for this dissertation first needed to identify the optimized operating

clock frequency (with the assumption of a known threshold value for maximum error

tolerance). Then, the design is modified to reduce errors according to the typical activity

for the given input workload. The traditional EDAC modules cannot provide an

estimation of the error rate for a speculative operating clock frequency unless the

simulation is actually performed. However, conducting simulation sweeps through all-

23

possible clock frequencies is too inefficient to accept in a real-world design flow.

Therefore, an all-clock-frequency error estimation method has been developed as part of

this dissertation research, which enables an accurate error prediction for all-possible

speculative operating clock frequencies of each primary output with only one simulation

at the original, error-free operating frequency.

Table 1: Summary of several EDAC methodologies

Detection Recovery Application
Methods EDAC type Method Structure Pros and Cons
Razor Shadow Detection Restmte from Pipeline Meta-stablhty;
latch register Complexity
Architecturally
Transition . handle . .
Razor I1 detection Detection instruction Pipeline Complexity
replay
Bubble Shadow . o Less hold time
Razor latch Detection Local replay Pipeline to Testore
Duplicate | detections Standard Limited
TIMBER | “Fuplicate | detection, No sequential .
paths Partial Error .. functions
: circuit
masking
Monitor . Standard One path
. .\ Error Instruction . :
TEAtime critical maskin repla sequential monitor;
path & play circuit Meta-stability
E jon Methods For BTWC Design

Circuit’s performance can be evaluated from three aspects: (1) operational speed,

(2) power consumption, and (3) operational reliability. BTWC designs attempt to either

enhance computational efficiency or lower the energy usage while maintaining a robust

design.

24

Performance:

The metric for operational speed can use the clock frequency (f), but normally the
throughput is used to measure the performance of a BTWC design. The input may need
to stall several cycles for the correction penalty when a timing error occurs in a BTWC
design. For a traditional design, all the primary outputs (POs) are bounded with the
desired cycle time (7,c.), so the probability (F;) of each PO to stabilize (i.e., settle)
within the cycle time is 1. Therefore, assuming that one operation is completed per cycle,
the throughput for the traditional design should be [19]:

Throughput =P, - f = f = 1/T¢yce

However, idea of BTWC design is to make the highly active paths with a long delay to
settle before the cycle time, while permitting some of the less time-critical paths to
exceed the boundary on occasion. Thus, considering the error correction penalty (), the

equation to calculate BTWC design throughput is [19]:

Throughput =P;- f + (1 - F,) -;,
and the energy cost of BTWC designs is inversely proportional to the throughput.
Power:
The power consumption in the conventional CMOS digital circuit can be separated into
three types of dissipation [37][38][39][40]: (1) switching power, (2) short-circuit power,
and (3) leakage power consumption. The switching power represents the power
dissipated during the signal transitions when energy is drawn from the power supply to

charge-up the device capacitances. Short-circuit power is produced during the moment

that both the PMOS network and the NMOS network are simultaneously on in CMOS

25

logic. The MOSFETs in CMOS logic normally will have some non-zero reverse leakage
and sub-threshold current, which causes the leakage power dissipation. The sum of
switching power and short-circuit power can be categorized as dynamic power, while the
leakage power is also called static power dissipation [41]. Dynamic power is dominated
by switching power, while leakage mainly comes from the sub-threshold leakage current.
The static power increases faster than dynamic power with the shrinking of feature size.
Reducing supply voltage is an efficient way to reduce total power consumption, but it
may lead to timing delay and exponential leakage increase [29][31]. Multi-threshold
voltage, where a low-threshold voltage is used with cells on critical paths and a high-
threshold voltage is used for the other cells, is a widely accepted technique to reduce

power [43]. It has also been used in BTWC design to improve power.

Reliability:

The reliability in BTWC design focuses on the detection and correction of timing
errors. Because of the nature of BTWC design, timing errors would invalidate the results
during the operation. An effective error detection and correction (EDAC) mechanism is
crucial. The evaluation criteria includes answering the following questions:

* How complex is the implementation of the method?
* What penalty is the design going to pay?
* What is the detection/correction rate for the method?

Timing speculation is the idea where various methodologies are used to enhance
the operational speed to the point where timing errors occur while equipping the design

with techniques to detect and correct those timing errors [44][8]. Based on this idea,

26

BTWC design allows the timing error rate to a certain point where the performance gain
(either in speed or in power) is effectively balanced with the penalty cost for reliability.
BTWC design has adopted a cross-layered approach [45][46][47] from the architectural

level down to circuit level.

Multi-threshold Techn In VLSI Design

Threshold voltage is the minimum voltage applied on a MOSFET gate to create a
conducting path between the source and the drain. The MOSFET acts like a switch
ideally. However, during the OFF stage, there are mobile carriers (i.e., electrons or holes)
that travel through the semiconductor junctions, which is called sub-threshold leakage.
With the technology scaling, the leakage power consumption is now a major concern for
current semiconductor industry, and the sub-threshold leakage is the main contributor to
the leakage current.

The sub-threshold leakage is directly related to the threshold voltage as it controls
the size of the depletion region. A higher threshold voltage could reduce the sub-
threshold leakage, but it limits the cell’s response speed. On the other hand, a lower
threshold voltage reduces the propagation delay but will result in a dramatic increase of
leakage power with such small geometry devices.

Many previous works studied how to use multiple threshold voltages on one
design. Mutoh et al. [48] introduced the multi-threshold technology for 0.5-um CMOS
that uses low-threshold MOSFETSs to enhance speed while high-threshold MOSFETs are
used to reduce leakage power. Wang and Vrudhula [49] introduced a heuristic algorithm

based on circuit graph enumeration to effectively reduce leakage power of CMOS digital

27

circuit without too much impact on speed. Wei et al. [50] proposed a dual threshold
approach to reduce leakage power by assigning high-threshold voltage cells to non-
critical paths, and using low-threshold voltage cells on critical paths, and introduced an
algorithm to optimize the selection.

The tradeoffs for dual Vi CMOS circuits has been has been explored by Wang and
Vrudhula in [51]. The detailed simulation has performed to investigate short circuit
power dissipation of dual V; technology, and the short current impact of low-V;
MOSFETs on gate delay. Multiple power models of dual V; technology create challenges
to EDA tool development as well.

Jayakuamr and Khatri [52] prepared pull-up circuit and a pull-down circuit with
different V, standard cells for standby mode. After the traditional mapping using regular
cells, they then replace the cells with prepared low-leakage cells according to the
simulation results of each gate’s output. The methodology is compared with regular
multi-threshold CMOS methodology and shows better performance on leakage reduction.

Most of previous Dual-V, /Multi-V; methodologies were targeted to reduce power
consumption or to ensure resiliency when applying dynamic voltage scaling (DVS). In
this research, the Dual-V; technology will be used to adjust the timing of specific paths to

precisely reduce timing errors during timing speculation.

Timin jon vs. Instruction jon
Speculation could have different interpretations for people from different research
fields. One ambiguity comes from the computer architecture field where researchers

commonly refer to the speculative execution based on the branch prediction or out-of-

28

order executions. Based on the history of branch executions, the speculative execution
schemes allow the instructions to be scheduled ahead when the outcome of a conditional
branch has not yet been determined, in order to utilize the microarchitectural resources in
a more efficiently way [31]. However, this widely used optimization technique in modern
computer architecture shows security vulnerabilities in January 2018, which affects Intel
x86 microprocessors, IBM POWER processors, and some ARM-based microprocessors.
One of the vulnerability, Meltdown [53], occurs between memory accesses and privilege
checking during instruction processing. The microprocessor’s cache holds the
unauthorized address because of the out-of-order execution, from which the data can be
recovered. The other vulnerability, Spectre [54], uses the information leakage from
branch predictions via cache timing as a side-channel attack to manipulate the target
process.

The timing speculation discussed in this dissertation is approached from the
circuit-level. The traditional clock frequency is bounded by the worst-case delays.
Operating the circuit at a higher clock frequency to gain execution speed is the purpose of
circuit-level timing speculation. There is no structural modification to the circuit, or out-
of-order instruction manipulation in this work to achieve circuit-level timing speculation.
Therefore, it does not enable the side-channel attack that has been used for Spectre and

Meltdown.

29

CHAPTER III

RESEARCH METHODOLOGY AND BTWC DESIGN FLOW

This chapter introduces the details of the methodology used for the research in
this dissertation. The chapter describes the simulation environment setup as well as the
BTWC design flows used to evaluate the approach. Four benchmark circuits from
ISCASS8S5 [48][49] were used to represent four different types of functions (Table 2).

Table 2: Overview of the circuits used in the analysis

Name Function Input # Output # Cell #
C432 27-channel interrupt 36 7 160
controller
C880 8-bits ALU 60 26 383
C1908 16-bit SEC/DED 33 25 880
C6288 16x16-bit multiplier) 32 32 2406
neral EDA Flow And The Design I, In Thi rk

The General EDA flow with Synopsys tools [57] is shown in Figure 13 to give a
brief introduction to using the Synopsys design tool kit. Circuit functionality is verified
during RTL simulation. Design Compiler (DC) synthesizes the benchmark source file
with standard cell modules to generate a gate-level netlist. IC compiler (ICC) performs

Place-and-Route, which will generate accurate timing information and store the

30

information in the .sdf file. The post-simulations are performed in VCS with back-
annotated timing information (.sdf). The .vcd file stores the simulation results with all the
switching activity information for the circuit across the entire simulation time; this file is

the essential raw data for the research.

Standard cell
models

(V)

Verilog
testebnch file

(V)

Verilog
source file

(v)

Standard cell library
(.db, .fr, .tf, .map)

Constraints

DC
te level
Timing & Gi;“z\t/e Constraints
Area (v) (.sdc)

AN
N

Standard Gate level Timing &
delay format netlist '?I"ng Layout
(.sdl) (v) >

v

VCS |«

'

Post P&R
simulation

'

.ved

Figure 13: The customized EDA flow with Synopsys tools.

31

In Figure 14, the customized design flow used in this research is shown. The

whole design flow uses the Synopsys Design tool suite (Design Compiler, IC Compiler,

PrimeTime, and VCS) with the Synopsys 32-nm library and customized Python scripts to

implement, simulate, and analyze the designs.

After implementation with Design Compiler, the test circuit is place and routed by IC
Compiler. The whole circuit delay information, including wire interconnection delay,
is saved in the standard delay format file (.sdf file). The gate-level net-list from IC
Compiler is simulated in VCS with timing information .sdf file back-annotated. After
simulation, the value change dump file (.ved file) is generated, which records all
nodes’ switching activity during the simulation time. For the same given input
workload of a test circuit, each possible operating clock frequency will have a .vcd
file.

There are several customized scripts to process the .ved files, which perform the
following tasks: (1) Process the .ved files to prepare and extract the important
information for later use; (2) Produce error estimation for a specific speculative clock
frequency based on the statistical histogram of each PO’s settling time to identify the
real error-contributing PO for the given workload; and (3) Calculate the desired
internal cells activity level to identify the critical cells.

According to the cell replacement rule, re-synthesize the test circuit with low
threshold voltage (Low-Vy) cells on identified critical cells.

After the Dual-V; resynthesis method, use the proposed error-checking method to test
the real error rate. The error-checking method uses the same activity .txt file

processed from .vcd files as error-estimation. Compare the POs’ settling status of the

32

speculative clock frequency’s .ved file with the golden copy’s .ved file cycle by
cycle, and calculate the error count of the POs.

The details of each step are discussed in more detail in the following Chapters.

Benchmark
Verilog file

Design
Compiler

Path timinginfo [

I N

IC Compil =>
omprer Standard Delay

l Format file (.SDF)
f

ves e

Value Change .
Dump flle (.VCD) Off-line error

checker

All-clock error Cell activity
estimator monitor

odify
-«
L]

Figure 14: The proposed design flow chart.

Value Change Dump Files

The .ved file was a significant component in this work. It was used not only for the

error checking method, but it was also the basis for error estimation and other activity

33

analysis in this work. The .vcd file contains both the switching activity and the timing
information that is generated during the simulation. The .vcd file used in this work is
generated from the Synopsys simulator. Figure 15 is an example of a .ved file from an
actual simulation. A .vcd file records the switching activity of all the nodes or a selected
hierarchy. Figure 15(a) is the header file that defines the corresponding relationship
between the node name and the symbol that is used later in the .vcd file. Each node has
an assigned symbol. Figure 15(b) records the value change activity of all nodes
throughout the simulation time. The entries starting with the symbol “#” are timestamps.
The subsequent entries are the nodes that switched at the time point. The first digit is the
current value of the node, and the remaining digits are the corresponding symbol of the

node. The time unit is ps. One node may change multiple times within one cycle.

$scopg module U100 $end #0494
$var wire 1 E'Y $end ot
$var wire 1 g A1 $end o
$var wire 1 ~A2 $end 0Os
$var wire 1 "! A3 $end #0457
$upscope $end 0"C
#2463
0"E
$scope module U101 $end 0#3
$var wire 1 u'Y $end #0485
$var wire 1 Y A $end O~
$upscope $end o'
#2486
0"4
$scope module U102 $end #2493
$var wire 1tY $end ol
$var wire 1 m A $end #9539
$upscope $end o'W

(a) (b)

Figure 15: An example of value change dump file. (a) is the header part, and (b) is
the body part.

With the understanding of the .ved file contents, the special customized error

estimator and error checker in this work are all based on the information contained in

34

.ved file. More details about error estimation and error checking methods will be

introduced in Chapter IV and Chapter V.

35

CHAPTER IV

ALL-CLOCK-FREQUENCY ERROR-ESTIMATION

In traditional design, the designer normally focuses on the task of reducing
propagation delay of the static critical paths in order to improve the operating speed of
the circuit. The timing errors are observed at the PO when: (1) the PO is activated by an
input vector during that cycle, and (2) the settling time is longer than the current
operating clock frequency. The PO corresponding to the static critical path may not
always lead to the largest error-contributor. The identification of the real error-
contributors will help to reduce errors more effectively. However, no existing
commercial EDA tool directly provided internal activity analysis coupled with error
estimation information. In this chapter, the detailed methodology of the all-clock-

frequency error-estimation is described, and error estimation results are discussed.

Obtaining Quiputs Settling Behavior
As shown in Chapter III, the .ved file contains all nodes switching activity and
switching time stamps. A timing error occurs when an output has settled after the
required clock time. For each PO, only the last switching time of each cycle is important
for error estimation. By processing and analyzing the switching information of the output
nodes saved in the .ved file, it is possible to characterize the settling behavior of the

primary outputs.

36

The error estimation methodology in this work is designed to analyze each PO
individually. To realize the error estimation methodology, the first step is to extract all of
the switching timestamps of the selected PO node. Each cycle has an entry. Then, the last
switching time stamp is recorded for this PO at every cycle. A histogram can then be
plotted to obtain this PO’s settling behavior for the given input workload. The histogram
helps to predict the real error contributing POs for the given workload. Figure 16 is the
flow chart of the algorithm to take the raw .vcd file and process it in order to extract the
timestamps and node activity. The example codes of Benchmark C1908, PO N892 are
listed in Appendix Part A. In Part A Section (1), the code prepares all transition
timestamps of the given PO, and in Part A Section (2), the code extracts the settling
timestamps of the given PO. The bash scripts to automate the process were not included

in the Appendix.

37

»| Read in one line of .VCD file [% <
Is this line body No
part (start with °$°)2 A

Is this line time stamp No
(start with '#)?

Is this a new No

cycle?
Start a new —»| Read in next line
entry
Is the line record node status No

(NOT start with ’#)?

Is this line about
interested node?

\ 4

Save the current
time stamp

A

Is the last line
of .VCD file?

Figure 16: Algorithm flow chart of switching time stamp extraction for a specific
node.

38

Categories Of Primary Qutputs
The operating speed of a circuit has traditionally been based on the longest static
propagation delay. However, this path may not always be the most active one. This
discrepancy can lead to faster, highly active paths that produce more observable errors.
Commercial EDA tools do not directly provide the internal activity analysis for the
various paths of the circuit. Knowing how frequent a PO will be active by the given input
workload, and how likely the PO settles later than the required clock time are the key
factors to identify the real error-contributor POs. Then, the information can be used to
optimize for BTWC design.
In a circuit, the POs can be categorized into several types:
I. Safe-POs: all paths to the output have a shorter propagation delay than the
clock period.
II. Error-possible-POs: The worst case to the output has a longer propagation
delay than the clock period.
III. Error-prone-POs: The worst case to the output that has a longer
propagation delay than the clock period and has high switching activity.
Category II and Category III have overlap when only considering the PO’s
activity level, because activity does not directly indicate the error rate. In fact, using just

the output’s activity level to predict the real error-contributors is not accurate enough.

39

C432 C880

1000000 1000000
900000 900000
800000 800000
720091
681107 703406 "Ng78
700000 a7 N1 700000 STE
587248 = N866
00000 Naz2 500000 574023 56172 571337
488683 =Ng79
500000 = N43L 500000 —
uN8so
400000 HN430 400000 — = ng7a
300000 "N370 300000 — nses
200000 200000 —
100000 100000 —
0 0
C1908 C6288
1000000 1000000
914844 236484
884705
900000 900000 841215 —

781367

— W N6288

800000 W N2899 800000

=N2887 | 700000 . mNe2s?

W N2890

700000

606567 590824 EN6280

600000 600000
HN2888 HN6270
500000 500000
N2889 N6260
400000 2891 400000 N6250
300000 N2811 300000 HN6240
200000 N2892 200000 N6230
100000 100000
7015 6384 5798 6061 5818 6632 5437 6627

0 0

Figure 17: The total active cycles out of 1 million cycles of all error-possible outputs.
Benchmark circuits (a) C432, (b) C880, (c) C1908 and (d) C6288. Y-axis shows active
cycles with maximum limit 1,000,000 cycles.

Figure 17 shows the total active time of each output, which reflects the activity
level of each output under a given input workload. An output could change multiple
times during a cycle, and the active cycle count is increased by exactly one when there is
one or multiple switches within a cycle. The most active output may not be the largest
error contributor during the timing speculation.

For benchmark C1908 as an example in Table 3, PO N2891 is the greatest error-
contributor, however neither the switching activity rate nor the active cycles rate
indicates the trends. Figure 18 shows the activity level and the actual error count of each

output of Benchmark C1908 at the clock period of 1.7 ns. Note that the original clock

40

period is 2.1 ns. The outputs are listed in increasing order of static propagation delay

from smallest to largest. Output N2899 has the longest static delay, and the N2886 is the

most active one. However, N2891 is the largest error-contributor.

Table 3: Comparison of C1908 static delay, switching activity rate and active cycles rate.
Output N2899 has longest delay, while Output N2891 is the greatest error-contributor.

. Total . Stabilization
Statl(;gelay Sv.vtihing E(;t?lt?g;:: proba_bility at
Activity Rate CLK=1.7 ns
N2899 2.20 1.02% 0.7% 100%
N2887 2.18 0.86% 0.64% 100%
N2890 2.18 0.71% 0.58% 100%
N2888 2.17 0.76% 0.61% 100%
N2889 2.17 0.71% 0.58% 100%
N2891 2.07 0.92% 0.66% 99.9987%
N2811 1.97 0.63% 0.54% 99.9996%
N2892 1.81 0.95% 0.66% 99.9999%

41

N2781
N2892
N2811
12
N2891
N2886
N2889
N2888
N2890
N2887

N2899

[Averge active cycles out of 10000 cycles
[Error count of 1 million cycles
T T T

0 20 40 60 80 100 120

Figure 18: Benchmark C1908 outputs with the average active cycles out of 10,000 cycles
(using 100 simulation trials), and the total error counts for 1 million cycles at clock
period of 1.7 ns.

Determining the real error-contributing output based only upon the output’s
activity rate is misleading, because errors only occur when the PO settles after the
required clock period. We need to have the settling behavior of error-possible outputs to
estimate the error rate for the given workload, and then a prediction can be made for the
error-contributors.

Therefore, an analysis of the settling time of each PO is necessary to identify the
error-contributor POs, thus Category IV is added:

IV. Error-contributor-POs: The worst case to the output that has a longer

propagation delay than the clock period, and is highly likely to settle after

the required clock period.

42

Setting the threshold value of stabilization probability to identify Category IV POs
depends upon the level of error tolerance of the EDAC module that will be incorporated
into the design. The stabilization probability is directly linked with the settling time for

each cycle.

Error Count Estimation And Error Rate Calculation

Based on the settling time histogram, one can calculate the stabilization probability
and predict the error rate for all POs and all possible clock frequencies. In this section,
the detailed method of how to obtain the error count and to calculate the error rate is
discussed.

Figure 19 shows the settling time histogram of all error-possible POs for
Benchmark C1908. The settling time histogram of the desired outputs can be plotted with
an appropriate bin size. In this work, the bin size is 50 ps, because it is the average
propagation delay of a NAND gate for the Synopsys 32-nm library. The histogram is
plotted based on the .vcd file of original clock period. The error estimation rate is
calculated for each small range of clock frequency based on the bin size. In this work, the
error estimation essentially matches the simulation result because 50 ps is also the step

size of the swept simulation as in Chapter V.

43

1000000

800000

600000

400000

200000

Accumulate count

Figure 19: Benchmark C1908 settling time histogram of each error-possible PO. The x-
axis is the settling time in picoseconds, and the y-axis is the accumulated number within
each bin.

1500 2000
c\ock period (pS)

For Benchmark C1908, most of cycles the POs settled at 0 ns, which means that
most POs in C1908 are not active with the given input workload during the simulation
time. Errors only occur during those cycles that settled after the required clock period.
Figure 20 shows the stabilization probability curve of each PO; the thick black line is for
the whole circuit. The stabilization probability curve is the cumulative distribution
function (CDF) of the output’s settling histogram. The error-contributing POs can be

identified based on the stabilization probability curves.

44

1.0

0.8

o
o

Likelihood of settling
o
sy

0.2

0.0

Figure 20: Benchmark C1908 stablization probability of each error-possble PO.

Continuing with the example of Benchmark C1908, if the operating clock period is
1.7 ns, for example, then outputs N2891, N2811, and N2892 are the error-contributor
POs, because their stabilization probability did not reach 1 by 1.7 ns. Figure 21 shows the
stabilization probability of error-contributor POs: N2891, N2811 and N2892 in full and
zoom-in versions. The exact error count can be calculated by summing the histogram bins
that stabilize later than the selected operating clock frequency. According to the
histogram, the estimated error counts for output N2891 = 13, N2811=4, N2892 =1,
while the simulation results of error count of output N2891 = 12, N2811 = 3, and N2892

=1.

45

g —————— 2500
0.8} 42000
o
£
g 0.6 b 150045
o 3
5 S
3 z
goa 41000 ®
-
0.2 4500
00T 0 ©® O O O PP PO D D PO S SO0
A7 A & A qo\9000’\,}000}“?'&@&6\/0’@9\90@0'99 '
Clock period ¢ps) |
Phd L}
- '
.
_-' .
1.010 . - . . 10
— N2891
— N2811
1.0051 — N2892||,
2 1.000
B 16 €
& 3
5 S
3 0.995 2z
e 2
= 14 &
] ©
X
5 0.990
0.985 ‘ 1?
: 1
0.980'3 S I S S 0
Q' O Q' Q
< < 3 v
Clock period (ps)

Figure 21: Benchmark C1908 settling time histogram and stabilization probability density
function of outputs N2891, N2911, N2892.

Each PO has a different error rate with the same operating clock frequency. The
formula used to calculate the error rate:

Error_rate = 1 — Stabilization_probability (1)

46

Error Estimation Results Discussion

As discussed previously, the static longest path does not always impact the
observed errors of the circuit. It may not be active for a certain input workload. When
evaluating the capabilities of existing commercial EDA tools, it was found that they did
not directly provide path activity information. As part of this dissertation work, a method
was developed to obtain each output’s settling behavior curve by analyzing the .ved file.
The error count and the error rate trend of each output is predicted.

A circuit could have multiple outputs, but only the Category II - error-possible
outputs - have the probability to experience errors. Therefore, analysis has performed on
the output settling behavior of error-possible outputs in order to obtain the error rate
estimation; this analysis enables the identification of the Category IV - error-contributing
POs. Customized scripts extract the settling timestamp for every cycle of the tested
outputs, and the histogram of the results indicate the error count of the tested outputs. The
accuracy of this method is confirmed later with the simulation results. Each output has
one histogram of the settling time probability.

Table 4 shows the longest delay for each of the Category II error-possible outputs
for C432, C880, C1908 and C6288. The static critical delays of each benchmark are 2.41
ns, 2.01 ns, 2.20 ns, and 4.82 ns respectively. As an example, assume that the goal is to
operate the circuit at 70% of original clock period, which corresponds to clock periods of
1.70 ns, 1.40 ns, 1.50 ns, and 3.40 ns respectively. Any output propagation delay that is
longer than the operating clock period has the potential to generate errors. The maximum

clock speculation explored in this work is 30% higher than the original, error-free design.

47

Notes that the desired performance improvement would ultimately be determined by the

design team.

Table 4: Benchmark circuit static propagation delay of all error-possible outputs

N421 N432 N431 N430 N370

C432

241ns 225ns 224ns 2.11ns 1.75ns

N878 N866 N879 N880 N874 N863

2.0lns 189ns 1.85ns 1.82ns 1.7 ns 1.48 ns

N2899 NN2887 N2890 N2888 IN2889 N2886 N2891 N2811 N2892 N2781

220ns 2.18ns 2.18ns 2.18ns 2.17ns 2.15ns 2.07ns 197ns 1.81ns 1.67ns

N6288 N6287 N6280 N6270 N6260 N6250 N6240 N6230 N6220 N6210

4.82ns 4.74 ns 4.7 ns 457ns 444ns 432ns 4.19ns 4.06ns 3.93ns 3.81ns

To obtain the actual error count, the settling histogram of each output gives more
direct and detailed information. Figure 22 shows the settling time histogram of each
tested benchmark circuit with the original clock period. Because of the large number of
inactive cycles for some benchmarks, the histogram in Figure 22 did not include the
inactive cycles, and the y-axis is different in scale for different benchmarks to display the
settling behavior better. The error rate calculation is based on the stabilization probability
curve, which contains the inactive cycles. The two vertical lines on each graph in Figure
22 mark the 70% of original clock period and the latest settling time on record. The latest
settling time for circuit C421 is 2.35 ns, for C880 is 1.90 ns, for C1908 is 1.95 ns, and for

C6288 15 4.00 ns.

48

p N421
1 N432
I N431 |
P N430
B N370

100000

| NN |

80000

60000

activity count

40000

20000

200000

150000
100000
50000
o il il 1m0 20m
& o o $

clock period (pS)

activity count

S £

Y
§
» >

E N2899
=3 N2887

= N2890
2000 = N288s
. N2889
. N2891
1500 B N2811
. N2892

activity count

clock period (pS)

300000

= Ne28s
== N6287

== N6280
230000 =3 N6270
. N6260
= N6250
= N6240
= N6230

200000

150000

100000
50000
ol JJ ddiaa.
O 00

o o o o o o Ny o $ o o o o o
S s S & o & IS < § o S S S $
SR A N S e O A S VA S . SR S A4
clock period (pS)

Figure 22: Outputs settling time histogram with 1 million random input vectors of four
benchmark circuits C432, C880, C1908 and C6288. The x-axis is the clock period. The y-
axis is the activity count. The right vertical line represents the maximum recorded settling

time. The left vertical line represents 70% of the original clock period.

activity count

S & &
S &
e W@

49

Error prediction chart of error-possible outputs of C432 with 30% timing speculation

2500
o N N421
N432
< [N431
2000 > 3 N430||
EEm N370
o
2
]
T
5 1500 S - |
s 3)
= b R >
E <V 5
- = &
T ~
2
£ >
3 1000 ta
g
& &
©
500 o T <
< 1
K
&
Jeg
o 2 o o FTo [loo oo boo fooce Mooss Rocscs
1700 1750 1800 185 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350
clock period (pS)
o Error prediction chart of error-possible outputs of C880 with 30% timing speculation
&
= m N878
[N866
600 [N879
[N8so
. NS74
§ 500 . N863
5 v
<
§
< 400
E
e
£ 300
8
g
& 200,
100
&
o o 0
i o Bhoo Sr2e0s sonacs 20sss
1400 1450 1500 1550 1600 650 1700 1750 1800 1850 1900
clock period (pS)
30 Error prediction chart of error-possible outputs of C1908 with 30% timing speculation
I N2891
3 N2811
Il N2892
g
]
s
9
c
2
£
-
£
8
€
5
3
S
g
&
o
° S i_o o 000 ie o
1500 1550 1600 1650 1700 1750 1800 1850 1900 1950
clock period (pS)
Error prediction chart of error-possible outputs of C6288 with 30% timing speculation
®
B N6288
20 [0 N6287
[N6280
[0 N6270
» - N6260
N N6250
30 [N6240
BN N6230

N
B

N
S

&

Error counts in 1 million cycles

3

° 700 3750
clock period (pS)

oolhoooo oo NV NN
3850 3950

Figure 23: Zoomed settling time histogram between 70% of orignal clock to the error-
free clock of four benchmark circuits. The x-axis is the clock period. The y-axis is the
error count observed in 1 million cycles.

50

Figure 23 shows the zoomed view of the area between those two marked lines.

Each of the error possible outputs is shown in Figure 22 and Figure 23, and the legends

are in descending order of the propagation delay from top to bottom. According to the

data in Figure 23, the output that contained the longest path will be the first output to

observe errors when the operating clock period is reduced. However, if the operating

clock period is reduced further, then the dominant error contributor may change to the PO

that settled more frequently after the selected clock period.

12000

10000

8000

6000

4000

2000

Estimated error count

Estimated error count

(a)

N421
N432||
N431
N430
N370|

© L P L O
S & L P S
S P >

9
Clock period (
(c)

S
o
<

s)

ko)

— N2891

— N2892

Clock period (ps)

Estimated error count

Estimated error count

(b)

2000

1500

1000

o o o o] o] o
) O \e) o) ANy 5 N
SRR RPN G

2
Clock period (ps)
(d)

O 8]
S
A A S

o)
Clock period (ps)

QS L S O S O oS
P & P L P S S
LS A

L S) 8] O
O) O J L
I A A

Figure 24: Estimated error count of each error possible outputs of (a) C432, (b) C880, (c)
C1908, and (d) C6288, from 70% of original clock period to the error-free clock period.

Figure 24 displays the error count estimation out of 1 million cycles of each error-

possible PO from 70% original clock period to the error-free clock period. The largest

51

error-contributing PO changes with the operating clock period. Errors may concentrate to
certain POs, or they may evenly distribute across different POs. For Benchmark C432,
the static longest output, N421, is the most error-prone output for all clock periods. For
Benchmark C880, the most error-prone output shifts from the static longest path, N878,
to N879 when the clock period is reduced to 75% of the original clock period. The same
observation is made for Benchmark C6288, the largest error-contributing PO shifts to a
lower bit along with a reduction in clock period. This result is because of the ripple
structure of the multiplier, where results in the higher-order bits depend on the lower-
order bits.

Table 5: Comparison of error composition from critical path and greatest error-
contributing PO other than the critical path.

C432 C880 C1908 Co6288

Operating clock 1 7 & 1 4ns 15ns 3.4ns
period
Errors 1;;)311 critical 207% 21.9% 0% 13.7%

Errors from the
greatest error
contributor other
than critical path

Total errors 20,455 6,400 158 562

23.2% 28.5% 37.3% 22.1%

Table 5 takes 70% of the original clock period as an example to show the errors
from the static critical path and the total errors. For the tested four benchmark circuits,
only C432’s critical path is the largest error-contributor PO. The application of an error-
reduction method on the identified error-contributor POs specifically will help to reduce

errors effectively. In this work, it is assumed that the error-tolerant threshold value is

52

0.1% (i.e., total error count < 1,000) for the whole system. The targeted timing
speculation level is 70% of the original clock period. The error reduction method and

results will be discussed in detail in the next chapter.

Conclusion
In summary, there are three steps of the all-clock-frequency error estimation method in
this work:

1. Identify POs in Category II based on the static timing delay.

2. Extract each PO’s settling time for each cycle from the .vcd file.

3. Plot the settling time histogram of each PO and calculate the probability

density function to estimate each PO’s stabilization probability.

In this work, a PO is considered as an error-contributor (Category 1V) if the error
rate of the PO is twice the average error rate of the whole circuit. Therefore, if the
operating clock period is set at a speculation level of 70% of the original clock period,
then the steps to identify Category IV POs are: (1) Find out all error-possible POs
according to the static propagation delay; (2) Calculate (estimate) each error-possible PO
stabilization probability at the targeted speculating clock period; then (3) Determine that
according to the error rate calculation formula, the Stabilization_probability = 1 —

error_rate. This stabilization probability value is the threshold value for identifying
Category IV error-contributor POs. Figure 25 shows the stabilization probability curve of
the four benchmark circuits for the given input workload. Designers can then identify the

error-contributing POs for a desired clock period.

53

1.0 T

=
o o
£ £ 1
= E=1
@ @
2] »
— —
o o
o ° 1
o o]
o o]
£ <
2 2
i 4
N421 A
C880 N866
0.2+ E - N432 0.2 N879 [
N431 N880
N430 — N874
— N370 — N863
OAOQ O PLLELLELL,L, I LELELLEL,L,LELEL,L LIPS 0.0 C P P PP PP
SO S S S S S S S S S S S S R R RO R R
Clock period (ps) (ps)
1
08l
o o
£ £
= E=1
® os 1]
— —
o o
o °
S]
% 0al — asool % — N6288
i 4
C1908 N2890 6288
N2888 N6270
0.2 — N2889 — N6260
L
— — N6250
N2891 .
— N2811 = — N6240
— N2892 — N6230
PO T I O P P R S O A O A e e e
SRS I I I I I I S I S IS I S) 0 L LR ELESE S S E L L L AL L ELLLLL O SL SIS S F S L PSS S S S
PSS E P PP F P F SO F L R O B R R
Clock period (ps) Clock period (ps)

Figure 25: The stabilization probability of four tested benchmark circuits for the given
workload from start to end of the clock period. The x-axis is the clock period. The y-axis
is the likelihood of settling.

54

CHAPTER V

OFF-LINE ERROR CHECKING METHOD

As discussed in Chapter I, many kinds of error detection circuits exist, which
require special circuitry for parallel comparison. The proposed error-checking module
was developed to perform statistical analysis of errors after simulation in order to inform

the mitigation approach and to confirm the error estimation results.

Approaches For General Error-Checking An ~Line Error-Checkin
The regular error checking method requires either the golden circuit or the delay
element in the simulation to detect errors and to preserve correct results and detect errors.
Therefore a special wrap circuit needs to be modified accordingly for every DUT. Figure
26 and Figure 27 show the general structure of two existing error-checking methods, and

Figure 28 shows the off-line error-checking method used in this work.

55

Inpyt
workldads
FF
DUT |7>
Clock ,
Delay FE
element >

Simulator

Error
flag

Figure 26: The general structure of (a) transition detection method

InpuL
workloads
DUT S FF
Clock
Baseline
Design > FF

Simulator

(b)

Error
flag

Figure 27: The general structure of (b) duplication module/path method

Input
workloads

v

Simulator

Baseline design / DUTs

Golden DUTs

.ved .ved |d jd
file file |e

S

Error Checker /
Analyzer

'

Statistical
Error results

(c)

Figure 28: The general structure of (c) proposed off-line error checking method.

The off-line error checking method uses customized Python scripts to extract
information from the value change dump (.vcd) file, and compares the settled value of
each output between golden copy and the tested one after the simulation. To detect errors,
each output’s settled value at the end of each cycle is extracted from the tested circuit’s
.ved file; a comparison is made with the golden results cycle by cycle. Both the saved
golden .vcd file and the tested ones can be used multiple times for different analysis and
comparison. This off-line error checking method enables the possibility of on-demand

post-simulation error analysis and saves on run time. This proposed error detection

57

method does not need a customized test-bench, and cell activity analyses are all based on

extracting and processing the .ved file.

Reformatting Th File For Error-Checkin

The .vcd file saves complete information during the simulation in the body part.
However, only the PO’s final status of each cycle is important to implement the offline
error-checker. Reformatting the raw .ved file information is the first step to implement
the off-line error-checker.

Figure 29 is the algorithm flow chart of the data preparation scripts. After reading
in the original text of the .vcd file, a customized Python script is used to restructure it into
the appropriate formation to later process. The header part will be removed, and the
switching nodes status of each cycle is saved in one entry without the timestamp. Figure
30 shows an example of the extracted activity file. Each entry records the status for all
nodes for one clock cycle without timestamps. The Appendix Part B (1) shows the
example code to prepare the activity information from raw .ved files to a formatted txt
file for further usage. The bash scripts to automate the process were not included in the

Appendix.

58

A

Read in one line of .vcd file

No

Is it the body
part?

Read in next
line

'

Is this the end
End of .ved file?
Yes s this line a time No
stamp?
Yes No Save current line
to output file 4
\ {V
Start a new entry Save current line
in output file to output file
R

Figure 29: Algorithm flow chart of data preparation script.

59

OM 0Q 0U OV OW OE OL 0B OF 0C 0T 0D 0G 0P 00 ON OH 01 0J 0SOK 0Z 1Y 1R 1X
1F1B1E1J 111D 1K1Z0R 1V 1S0Z 1T 0Y 0S
OEOJODOK1Q1M1CIN1R 1Y 1W 1S 1Z 1U 0Z
OION 1E OV 0T 10 1J OU 1K OW 0S 1L 0Y OX 1X
OF 0OBOE 0O 0JOMOC 1TH1G 1POL INOX 1X 1Y
OHOPOQ1B1E10 1M 1J111D1C1V1T1S1L1Z0Y0Z0S 1W1S1YO0S 1Z
0G 0J OD OM OC 1H 1F 1Q 1P OL OR 0Z OW OT OV 1S
0P 0B 00O OI1GOK1C 1L1Z1T 1V 0S 0X 0Y 0T 1S 0Z
0G0QOCOL1M1K1ROVOS 1X1Y
OHOE 1GON 1P 1J 110X 1V 1U 1W 1X OR 1S OU OW 0X
0GOI1TH1Q1E1L1R OV 0S 1X

Figure 30: The example of partial activity file extracted .from .vcd file.

Implementation Of Th ~Line Error-Checker

After the raw .vcd file is processed, the formatted activity text file of both the test
circuit and the golden copy are read into the Extract and Compare script. A LUT (Look
Up Table) is pre-defined with the selected nodes of interest and the notation used in the
.vcd file. For each cycle, the switching activity of the selected nodes are saved into the
LUT in sequence. Although one node could change multiple times within one cycle, only
the final (i.e., settled) value is directly related to the correctness of operation. Therefore, a
subsequent switching activity in the cycle always overwrites the previous one in the LUT.
The scripts first identify whether any switching activity of selected nodes are contained in
this cycle, and then the LUT is modified accordingly. Then, a comparison is made
between the test LUT and the golden LUT; the error count is increased accordingly for
each PO whenever it detects a cycle that does not match. Figure 31 shows the algorithm
flow chart for the Extract and Compare script that is given in Appendix Part B (1). The

bash scripts to automate the process were not included in the Appendix.

60

Activity .txt file LUT of interested Activity .txt file
of test circuit nodes initial of gold circuit
] status -

Read-in one
cycle activity |«
from each file

Is the end of the

End file?

\
Modify the
status of both
test and gold
LUT

Y

re there node
status different
om test to gol

Yes

-

Increase error
count of those
nodes in LUT

No

Figure 31: The flow chart of the Extract and Compare script’s algorithm.

mparison Of Error Estimation vs, Error Checking R
According to the error estimation method introduced in Chapter V, there are error
count estimation results for all clock frequencies. This section presents the results of the
simulation data of the error count. The accuracy of the error estimation method is

confirmed by simulation data.

61

For the evaluation, the circuits are synthesized, placed, routed, and simulated with
Synopsys tools and the Synopsys 32-nm library. The simulation clock period is swept
from the error-free clock period to 70% of the original clock (i.e., the static critical path
delay time). The simulation step size is 50 ps, however, Figure 32 show step size is 0.1 ns
for a clear view in graph.

Figure 32 shows the error trend with the decrease of the clock period and the
comparison of simulation and prediction errors counts. With the knowledge of each
output’s settling information, designers could select a speculative clock period at an
acceptable error rate tolerance. Because the error estimation method is made based on
settling time histogram of each output with original clock period.

For the binning procedure, the larger the bin size, the less the total bin number. If
the bin size increased from 50 ps to 100 ps, the bin number will be halved. Since the
sampling data stay the same, therefore the value of each bin will change. However,
whether the bin size will affect on the estimation results is depending on the targeting
clock period precision and the bin size. As long as the bin size is smaller than the
targeting clock period precision, the estimation results will not be affected, because the
estimation is calculated by the sum of bin value that settling time above the targeting
clock.

For example, if we are trying to estimate error count for clock period 1.8 ns
(precision at 100 ps). Changing bin size from 50 ps to 100 ps will not affect the
estimation results, since all the sampling data over 1.80 ns will fall into the bins that
counted as error. On the other side, if we are trying to estimate error count of 1.85 ns

(precision at 50 ps) clock period, changing bin size from 50 ps to 100 ps, it will lead to

62

some ambiguous sampling point of bin (1.80 — 1.90) for error estimation. For instance, if

there is a clock cycle, an output settled at 1.82 ns (no error) and 1.88 ns (error) will fall

into one bin.

c432 simulation vs. prediction

¢880 simulation vs. prediction

30000 ,, 7000 A 6416
g A 24702 < B % 6400
S 25000 A g'6000 ’
° A~ 19951 2.0
2 20000 : XX 20239 g
H K 18274 = 4000
=
= 15000 A 13 % simulation L % simmuilatoin
g # % 13866 = A
8 " € 3000 2569 A oredict
2 A-prediction 3 VAN prediction
3 10000 A 6972 8 X 2580
2000
N A qag % K 6979 £
£ 5000 A u A 893
i A~ 1977 1064 47 %3505 1000 A 206 F % 804
0 L emrigg 2 1090 o L s
23ns 2.2ns 2.1Ins 20ns 19ns 1.8ns 1.7ns 1.7ns 1.6ns 1.5ns 1.4ns
¢1908 simulation vs. prediction €6288 simulation vs. prediction
180 700
~¥— 156 |
160 —&— 160 —¥—simulation —— 562
600 —A— 588
140 —A—prediction

Error count for 1 million cycles
e

5 o ® © D

& 8 8 8 8

N
[S]

o

—»—simulation

—&— prediction

1.7ns

1.6ns 1.5ns

Error count for 1 million cycles
8
o

100

4.0ns

3.9ns 3.7ns 3.5ns 3.4ns

Figure 32: The comparison between simulated results and total error estimation trends of
four tested benchmark circuits.

Conclusion
The off-line error-checking method allows a designer to check errors and perform
specific analysis after simulation, which suits the demand in this work perfectly. The
Python implementation of the error-checking module was developed to process the

raw .vcd file, so that it can be used universally on all types of circuits, and it does not

63

require any test wrap circuit during simulation. To ensure the correctness of error
estimation, the bin size should not be larger than the clock period precision during circuit

behavior curve statistical analysis.

64

CHAPTER VI

DUAL-THRESHOLD VOLTAGE APPROACH FOR TIMING ERROR REDUCTION

In this work, a dual-threshold voltage approach is used on selected cells to
improve the propagation delay of identified error contributing POs. For the given input
workload in this work, Category IV - the real error-contributing POs — have been
identified in Chapter IV. However, the fan-in cone contains multiple paths that feed into a
PO. Replacing all the cells on the fan-in cone is impractical due to the leakage power
increase of using Low-Vt cells. Therefore, consideration must be given to improving

error rate in a cost-effective manner.

Dual-Thresh Approach For Re-Timin

The Synopsys SAED EDK 32/28 CORE digital standard cell library [57] was
used in this work. The library includes typical miscellaneous combinational and
sequential logic cells for different drive strengths. It also contains cells with different
versions (multi-voltage, multi-threshold, etc.) for low power designs. In order to
implement multi-threshold low power techniques High-V; (HVT), Low-V, (LVT) and
Standard-V, (SVT) versions of the library was created.

Multi-threshold / Dual-threshold technology mostly uses to reduce leakage power
by using the HVT cells whenever performance goals allow, and in this work, the LVT

cells will be used to where necessary to meet timing.

65

According to the analysis of circuit typical case timing behavior, selected cells to

be replaced with LVT version in the net-list file generated synthesis. Because the

modification of the net-list did not structurally change the circuit connection, there are

minimum impacts on the circuit activity behavior. The error-contributing POs timing

closure improved as desired to specifically reduce timing errors. The steps to implement

the dual-threshold voltage approach to improve certain paths/ POs delay are listed:

1.

2.

7.

8.

List all error-possible POs.

Identify the error-contributing POs using the error-estimation method.

List the fan-in paths that have longer propagation delay than the clock period.
Identify the convergence point of paths listed in Step 3.

Replace cells after the convergence point with low-V; cells.

Perform cell activity analysis as described previously on the remaining cells.
Weight each cell’s activity level.

If the activity level is higher than 50%, then replace the cells with low-V, cells.

The detail of critical cell identification is introduced in next section.

Identification of Critical Cell

The goal of this work is to reduce the error rate more efficiently by shortening the

propagation delay of the identified error-contributing POs. With the knowledge of the

circuit behavior under a given input workload, there are two competing objectives that

need to be met: reducing more errors while using fewer Low-V;, cells.

66

Finding the right cells to replace is the key to reduce errors effectively in this
approach. After identified error-possible PO, we have to working on the whole fan-in
cone of the PO to select cells to replace.

The critical cells as defined in this work can be categorized into three types:

A. Stem cells (Green): the cells after the convergence point with an active rate
greater than 50% for the given workload.

B. Shared cells (Yellow): the cells shared by more than one branch or shared by
other fan-in cones with an active rate greater than 50% for the given workload.

C. Highly active branch cells (Blue): the cells only used by one fan-in cone, but

have an active rate greater than 50% for the given workload.

>0.5
AND b Converge point
1
> 0.5 <0.5 E >0.5 <05 >0.5 > 05
SR EE, S S
> 05 <0.5 !

| |

I
]
I
AND !
|

Figure 33: A partial circuitery to differentiate three types of critical cells that are going to
be replaced in this work.

Figure 33 shows an example of the three types of critical cells in a fan-in cone to
give a more intuitive definition. For C1908, the traditional critical path leads to the PO
N2899 with 2.20 ns propagation delay. The identified error contributor POs are N2891,

N2892, and N2811. Take PO N2891 as an example, the longest 5 paths to the PO are

67

from inputs: N4, N1, N7, N13, N19. These 5 inputs are the start point of longest paths of
PO N2899, N2887, N2890, N2888, N2889, N2886, N2811, N2892. The cell selection
After identifying the stem cells and the shared cells, the activity of each cell was analyzed
to determine replacement selection.

Figure 34 shows the activity level of cells on the traditional critical path. The cells
activity analysis is similar as the output activity process. First, the activity of those
selected cells from the golden .vcd file are extracted using the same algorithm that was
used to extract the activity of POs for circuit stabilization probability analysis in Chapter
IV. However, the representation symbol of selected cells is needed to update in side of

testing script.

80 |

[=2]
o

Ny
o

average switching activity

0
U287U289U290U291U292U233U293U296U297U298U367U368U374U392U394U229U398U408U426 U243U427

Figure 34: Benchmark C1908 critical path’s cells activity.

68

Error Reduction Results Comparison And Discussion

To evaluate the effectiveness of the error reduction results, each circuit has three
versions of implementation:

1. Baseline Circuit — uses the standard threshold voltage cells for all cells.

2. Full-Path Replacement (FPR) — replaces all cells on the static longest path with
low-threshold voltage cells.

3. Selected Cell Replacement (SCR) — replaces cells selectively on the fan-in cone of
the identified error-contributing POs with low-threshold voltage cells based on
activity level.

The Full-Path Replacement represents the method that did not include the knowledge
of circuit behavior for the given input workload. The Selected Cell Replacement
represents the method that has benefited from understanding the circuit’s typical behavior.

In this section, the error rate and improved error rate were compared at 70% of the
original clock period. The maximum error-free clock frequency speed up was also

compared between two methods.

69

000 o C432 2000 1826 C880

6000 1800

4751 1600 1402
5000 4613

4584
1400 1251
1112
4000 ” 1200
3000 2 1000
800 595
94
39
2000 600
£
1000 26 o o 216 o ¢ 400 00 214
J L e l— 200 8 47 9 0 713 E 0
0 #
0 -~

N421 N432 N431 N430 N370

N878 N866 N879 N880 N874 N863
W Baseline circuit “ Full path replacement Selected cell replacement i Baseline circuit & Full path repl | 1 cell
140
- 58 C1908 120
60 120
98
50 100 =
38 37 77
40 2 e 80 -
30 60
9 7 7
20 40
10 ? 2}
1 20 9
} 0.0 s | ho [ba
[L

N2891 N2811 N2892 N2779 N6288 N6287 N6280 N6270 N6260 N6250 N6240 N6230

W Baseline circuit M Full path replacement \/Selected cell replacement “Baseline circuit 4 Full path repl. I Selected cell repl

Figure 35: Error counts of each error-possible PO before and after error reduction method
Full Path Replacement and Selected Cell Replacement. The operating clock period of
C4321s 1.7 ns (70% of 2.41 ns), C880 is 1.4 ns (70% of 2.01 ns), C1908 is 1.5 ns (68%
of 2.2 ns), and C6288 is 3.4 ns (70% of 4.82 ns).

Figure 35 shows four tested circuits with error comparison of three different the
implementation. For each circuit, all error-possible POs are listed in the figures in
descending order of propagation delay, from left to right. During the analysis, we
observed that some POs would not generate any error even if their propagation delay was
longer than the operating clock period. The error count numbers are marked on top.
According to the results, the Selected Cell Replacement reduces more errors than the Full
Path Replacement in general. The error reduction will be more obvious if the static
critical path PO is not the identified error-contributing PO. Also, the PO that is more

error concentrated will be more responsive on the Selected Cell Replacement method.

70

For C432, the static critical path PO is N421, and it is also the identified error-
contributing PO. The Selected Cell Replacement method’s advantage on output N421 is
diminished, because most of replaced cells are the same as the Full Path Replacement
method.

For C880, N879 is identified as the largest error-contributing PO, while N878 is
the static critical path PO. By using the Selected Cell Replacement method, 80% more
errors have been removed just for output N879.

For C1908, N2891 and N2811 are identified as error-contributing POs. Their
propagation delays are the 7th and 8th longest path respectively. The static critical path
leads to output N2899, but it does not generate any errors for the given input workload
(one million random vectors) with the tested operating clock period (70% of the original).
The Selected Cells Replacement method removes 58.8% more errors for output N2811
and 40.6% more for output N2891.

For C6288, the Selected Cells Replacement removes 50% and 16.7% more errors
for the identified error-contributing POs N6260 and N6270. Also, 37.5% more errors
have been removed in total. The results are relatively low compared to the other circuits
because of the special structure of this multiplier. The paths to error-prone output N6260

and N6270 are just a subset of the critical path to output N6288.

71

Total Error Reduction to Baseline design

110%

. —4& -95.73% —tl '97.33%
100% = —
9 —9 —9—98.43%
90% . 9
% K - 85.31%
I
70% > o ’:::gg% 72.78%
60% === c432
50% 880
45.57% 21908
40%
=4 -c6288

30%

Static replacement method Dynamic replacement method

Figure 36: Total error reduction improvement from Full Path Replacement to Selected
Cells Replacement, when operating at 70% of original clock period.

Table 6: Total error numbers comparison and the Selected Cells Replacement (SCR)
improvement verses Full Path Replacement

C432 C880 C1908 C6288
Full Path Replacement 6154 317 4 24
Selected Cells 2941 100 1 15
Replacement
Improvement 52.2% 68.4% 75% 37.5%

Figure 36 shows error reduction results comparison between Full Path

Replacement and Selected Cells Replacement. The actual total error counts and the

improvement from the Full Path Replacement method to Selected Cells Replacement

method are shown in Table 6. The Selected Cells Replacement method shows efficiency

72

on error reduction when operating at 70% of the original clock period. Designers could
select the timing speculation level based on the ability of the EDAC module. The error-
free timing speculation clock is also tested. Figure 37 displays the speed increase
comparison of Full Path Replacement and Selected Cells Replacement methods at the
maximum error-free timing speculation clock period. Table 7 lists the Low-V, cells usage

in total number, and Table 8 shows the leakage power.

i 37.71%
& 33.90%
i 25.63% 25.63% £ 30.27%
0 22.21%
£ 20.50%
£ 15.79%
c432 c880 c1908 c6288
& Full path replacement i Selected cell replacement

Figure 37: Error Free speed up comparison of Full Path Replacement method and
Selected Cells Replacement method.

Table 7: Low-V; cell usage comparison between Full Path Replacement (FPR) and
Selected Cells Replacement (SCR)

Total cell Low-V; cell Low-V; cell
number number of FPR number of SCR
C432 81 18 6
C880 167 20 12
C1908 211 21 11
C6288 516 32 16

73

Table 8: Leakage power (W) comparison of baseline, Full Path replacement (FPR) and
Selected Cells Replacement (SCR)

Leakage power Leakage power Leakage power
of Baseline (uW) of FPR (W) of SCR (W)
C432 0.353 0.432 0.380
C880 0.953 1.04 1.00
C1908 1.33 1.40 1.39
C6288 0.546 0.832 0.717
Conclusion

This section compared the typical case workload behavior based timing
optimization method Selected Cells Replacement (SCR) with baseline implementation
and worst case (traditional critical path) timing optimization Full path Replacement (FPR)
from many different aspects. Like the error reduction ability to a certain timing
speculation percentage (30% up tested in this work), the tested all Benchmark circuits
maximum error free operation point improvement of the SCR method, the Low-V, cells

ratios and leakage power dissipation.

74

CHAPTER VII

SUMMARY AND FUTURE WORKS

Higher chip performance is a constant demand in the semiconductor industry. The
traditional design methodology sets a conservative guard band according to the worst
case to ensure the correct operation. The impact of this constraint leads to lost
performance. The BTWC design methodology optimizes a circuit based on the average
case, and then it allows an error correction module to handle the errors. In this case, it is
given the ability to cover the penalty for error correction by knowing the circuit’s
dynamic activity behavior for a given workload. Every error correction process has a
penalty, therefore maximizing the operating clock frequency while controlling the total
error counts leads to an overall gain. Based on the circuit’s typical behavior under a given
input workload, certain circuit timing paths be optimized to help effectively reduce errors
during timing speculation.

This work introduced an error-estimation method for all-clock-periods without
tedious simulations, and described a novel off-line error-checking method that does not
require special test wrap circuit and simultaneous simulation. Both the error-estimation
method and the error-checking method are based on extracted information from the
raw .ved file generated from simulating the circuit. The circuit’s internal cell activity
analysis is also obtained from the .vcd file. After understanding the circuit’s dynamic
activity under a given input workload, it can be re-synthesized with low-threshold voltage

cells in the fan-in cones affecting the identified error-contributing outputs.

75

The results demonstrated that the error estimation method is accurate, and the
error checking method provides a convenient way to detect and analyze errors for any PO.
This error-reduction approach reduces a majority of errors while maintaining the
minimum usage of low V; cells. This work demonstrated the advantage of using the
knowledge of the circuit’s typical behavior and its impact on improving the performance
and the error-reduction process.

The entire design flow was based on the typical commercial approach for
synthesizing designs with standard cell libraries; the flow was augmented with
customized Python scripts and is well incorporated with commercial EDA tools:
Synopsys Design Complier, IC Compiler, Primetime and VCS.

The input workload used in this work was pure randomly generated input vectors
on ISCAS85 Benchmarks. The random vector generator comes from Python library to
modify the test bench stimuli. For a more realistic analysis, with the given benchmark
circuit, apply typical application to the testbench and obtain circuit stabilization
probability curve and error estimation to analyze the data with introduced methodology in
this work.

This input workload variation caused timing behavior change has also been
explored by Kevin E. Murray [58]. They introduced a new timing analysis formulation to
form the circuit stabilization behavior with consideration of input combinations and
compare the results with traditional SAT and Monte-Carlo simulation. Actually the big
data analysis method could also be applied on circuit stabilization curve generation with
regular usage of DUT. The stabilization curve will provide the insight of timing error

estimation.

76

On the other hand, because of the reconfigurable character of field-programmable
gate arrays (FPGAs), researchers could also explore the behavior analysis methodology
described in this work on an FPGA board, and compare the performance improvements

on timing, power, and errors.

77

APPENDIX

PART A:

(1) The script to extract the given PO all transition timestamps, each cycle has an entry.

#!/usr/bin/env python
encoding: utf-8

import sys
import os
import string
import math
import numpy as np
ft = open(sys.argv[—-2],"'a") #### Define
transition timestamps
fl = open(sys.argv[—1],"'r") #### Define
sbl=sys.argv[-3] ###4# Define
symbol used in .VCD
p = sys.argv[—-4] #### Define
lines=fl.readlines () 44
1 = len(lines) o
i=0
for i in range (0,1):

line = lines[i]

if line[0] == 'S': FH44

continue

if line[0] == '"#': Fh4

current line
TimePoint = float (line]

residue temp =
status within this cycle
if residue temp != 0.0:
if not
inner count = i+1;
linel =

Read in raw

if current line is a

1:]
TimePoint % int (p) ###4

output file of interested POs

input file of raw .VCD file

the interested PO's representing

the clock period
.VCD file

Get .VCD file length

Skip the header part

time stamp, Read-in

Obtain the timing

Check if it is a new cycle,

lines [inner_count] #### Continue reading the
next line of .VCD file
while 1linel[0] != '"#': #### Check if this line is
a timestamp, if not,
if linel [1] == gsbl: #### Check if this line is

the intrested node switching record, if vyes,

ft.write(str(int (residue temp))+" ")

Save current timestamp into the output file

inner count =
Read-in next line.

78

inner

count+1

if inner count >= 1:
###4# Chenk if the end of the .VCD file

linel = lines[inner count]

else: #### if current timestamp is a new cycle, start a new entry in
the output file.

ft.write ("\n")

(2) The script to extract settling timestamp of every cycle for the given PO (with
example of Benchamrk C1908, PO 2892).

#!/usr/bin/env python
encoding: utf-8

import sys

import os

import string
import math

import numpy as np

ft

=open ('cl908 output N2892 rvt 2200 transition time.txt',6'r')
fs

=open ('cl908 output N2892 rvt 2200 settling time.txt',6 'wb')

lines ft=ft.readlines()
1 ft=len(lines ft)
settle time=[]

7=0
for j in range (0,1 ft):
list ft=lines ft[j].split()
if list ft == []:
continue
else:
settle time.append(list ft[-1:])
fs.write(str(list ft[-1:])+"\n")

print settle time

fs.close ()
ft.close ()

79

PART B:

(1) The script to extract switched nodes for each cycle in sequence.

#!/usr/bin/env python
encoding: utf-8

import sys

import os

import string
import math

import numpy as np

vcd index = sys.argv[-1]
txt index sys.argv[-2]
f0 = open(sys.argv[-1],'r+")

tran = open(sys.argv[-2],'wb'")
p = sys.argv[-3]
lines = f0.readlines/()
1 = len(lines)
i=20
for i in range(0,1)
line = lines[i]
if line[0] == 'S':
continue
if line[0] == '"#':
TimePoint = float (line[l:])
residue temp = TimePoint % int (p)
if residue temp != O:
inner count = i+1;
linel = lines[inner count]
while 1linel([0] != "#':

tran.write(linel[0:-1]+" ")
switched node symbol

inner count=inner count+l
if inner count>=l:

break
linel = lines[inner count]

else:
tran.write ("\n")

80

Record the

(2) The script to detect and calculate errors.
#!/usr/bin/env python

encoding: utf-8

import sys

import os

import string

import math

import numpy as np

import matplotlib.mlab as mlab

import matplotlib.pyplot as plt

#Initialize primary outputs of golden copy and test copy; po diff is the comparison
results for each cycle; er output is the set showing errors for each cycle; er count is

the accumilative error count of output.

Define symbol used in .VCD file to represent POs.

po_name =

['N545', "N1581"', "N1901"', "N2223"', "'N2548"', 'N2877"', 'N3211"', "N3
552"','N3895"', 'N4241"', 'N4591"', 'N4946"', 'N5308"', 'N5672"', 'N5971

', 'N6l123', 'N6150', 'N6l60', 'N6170', 'N6180"', 'N6190', 'N6200"', "

81

N6220"', 'N6230"', 'N6240', 'N6250"', 'N6260"', 'N6270"', 'N6280"', 'N62
87','N6288"'] # Define the PO name of tested Benchmark

po_g =
(0, 0,
0,0,0] # Initial the golden copy’s LUT

po t =
(0, 0,
0,0,0] # Initial the tested copy’s LUT

po diff = []

gold vcd = sys.argv[-1]

test vcd sys.argv[-2]

f0 = open(sys.argv[-1],'r+")
fl = open(sys.argv[-2],'r+")
linesO0 = f0.readlines()

fl.readlines ()

linesl

1 = len(linesO0)
i=20
3 =20
k=20

er count =
o,o,0,0,09,0,

0,0,0]

82

compare settlized output of two copies for each cycle; text file is processed with

another python script, which sumarized internal transitions into one line one cycle.

for i in range (0,1):

line g = linesO[1i]
line t = linesl[i]
3 =20
k=20

po diff = [int(po_g[n])-int(po_t[n]) for n in
range (0, len(po_t))] #find differences
er output=[abs(po diff[m]) for m in
range (0, len(po _diff))] #each output could have one error for each cycle
er count = [sum(x) for x in zip(er count,er output)]

while j < len (llne_g) -2 # -2 because the last two symbol is '/n',

if do not remove, it will affect the iternation.

if line g[j] == "' ':
j = 341
elif line g[3j] == '0':
j = 341
elif line g[j] == '1"':
j = 341
else: #find output symbol in text file
g _index = po.index(line g[]J]) #find the right index

in output list, and record current value in po g

po_glg index] = line g[j-1]

83

while k < len(line t)-2:
#print 7
#print line g[j]

if line t[k] == "' ':

k = k+1

elif line t[k] == '0':
k = k+1

elif line t[k] == '1"':
k = k+1

else:
t index = po.index(line t[k])
po_t[t index] = line t[k-1]
k = k+1
print er count
#print zip(po,er count)
#print zip(po _name,er count)
er rate = float(sum(er count))/float (10000)

print er rate

po data = open('./po data mvt 2410.txt','a"')

rate data = open('./rate data mvt 2410.txt','a"')

84

po data.write(str(er count)+'\n')
po_data.close ()
rate data.write(str(er rate)+'\n')

rate data.close()

85

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

S. Krishnamurthy, S. Paul, and S. Bhunia, “Adaptation to Temperature-Induced
Delay Variations in Logic Circuits Using Low-Overhead Online Delay Calibration,”
in 8th International Symposium on Quality Electronic Design (ISQED’07), 2007, pp.
755-760.

M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bernstein, “Scaling ,
Power , and the Future of CMOS,” in IEEE International Electron Devices Meeting
(IEDM 2005), 2005, pp. 9—15.

S. Bhunia, S. Mukhopadhyay, and K. Roy, “Process variations and process-tolerant
design,” in 20th International Conference on VLSI Design, 2007, pp. 699-704.

S. Borkar, “Designing reliable systems from unreliable components: the challenges
of transistor variability and degradation,” in IEEE Micro, 2005, vol. 25, no. 6, pp.
10-16.

S. Ghosh and K. Roy, “Parameter Variation Tolerance and Error Resiliency: New
Design Paradigm for the Nanoscale Era,” in Proceedings of the IEEE, 2010, vol. 98,
no. 10, pp. 1718-1751.

P. Asenov, N. a. Kamsani, D. Reid, C. Millar, S. Roy, and A. Asenov, “Combining
process and statistical variability in the evaluation of the effectiveness of corners in

digital circuit parametric yield analysis,” in The European Solid-State Device
Research Conference (ESSDERC), 2010, pp. 130-133.

S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas,
“VARIUS: A Model of Process Variation and Resulting Timing Errors for
Microarchitects,” IEEE Trans. Semicond. Manuf., vol. 21, no. 1, pp. 3—13, 2008.

B. Greskamp, L. Wan, U. R. Karpuzcu, J. J. Cook, J. Torrellas, D. Chen, and C.
Zilles, “Blueshift: Designing processors for timing speculation from the ground up.,”
in I[EEE 15th International Symposium on High Performance Computer Architecture
(HPCA 2009), 2009, pp. 213-224.

V. Mehrotra and D. S. Boning, “Modeling the effects of systematic process variation
on circuit performance,” Massachusetts Institute of Technology, 2001.

L. Xie and A. Davoodi, “Post-Silicon Failing-Path Isolation Incorporating the
Effects of Process Variations,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol.
31, no. 7, pp. 1008-1018, Jul. 2012.

K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu, T. Karnik, V. De, and S. Borkar,
“Circuit techniques for dynamic variation tolerance,” 46th Annu. Des. Autom. Conf.,
pp- 4-7, 2009.

S. K. Nithin, G. Shanmugam, and S. Chandrasekar, “Dynamic voltage (IR) drop
analysis and design closure: Issues and challenges,” in 1 /th International
Symposium on Quality Electronic Design (ISQED’11), 2010, pp. 611-617.

86

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

L. Wan and D. Chen, “Analysis of circuit dynamic behavior with timed ternary
decision diagram,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2010, pp. 516-523.

J. A. Kumar and S. Vasudevan, “Formal Probabilistic Timing Verification in RTL,”
in IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2013, vol. 32, no. 5, pp. 788-801.

X. Wang and W. H. Robinson, “A Dual-Threshold Voltage Approach for Timing
Speculation in CMOS Circuits,” in 2016 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), 2016, pp. 691-696.

D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical Timing Analysis :
From Basic Principles to State of the Art,” IEEE Trans. Comput. Des. Integr.
Circuits Syst., vol. 27, no. 4, pp. 589-607, 2008.

L. Wan and D. Chen, “Analysis of Digital Circuit Dynamic Behavior With Timed
Ternary Decision Diagrams for Better-Than-Worst-Case Design,” in /[EEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012,
vol. 31, no. 5, pp. 662—675.

L. Wan and D. Chen, “DynaTune : Circuit-Level Optimization for Timing
Speculation Considering Dynamic Path Behavior,” in 2009 International
Conference on Computer-Aided Design (ICCAD), San Jose, CA, 2009, pp. 172—179.

L. Wan and D. Chen, “CCP: common case promotion for improved timing error
resilience with energy efficiency,” in IEEE/ACM international symposium on Low
Power Electronics and Design (ISLPED’12),2012, p. 135.

Y. Kuo, Y. Chang, and S. Chang, “Efficient Boolean Characteristic Function for
Fast Timed ATPG,” in 2006 IEEE/ACM International Conference on Computer
Aided Design, 2006, pp. 96-99.

R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-decision
diagrams,” ACM Comput. Surv., vol. 24, pp. 293-318, 1992.

D. Ermest, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K.
Flautner, “Razor: circuit-level correction of timing errors for low-power operation,”
IEEFE Micro, vol. 24, pp. 10-20, 2004.

L. Benini, E. Macii, M. Poncino, and G. De Micheli, “Telescopic units: a new
paradigm for performance optimization of VLSI designs,” IEEE Trans. Comput.
Des. Integr. Circuits Syst., vol. 17, no. 3, pp. 220-232, Mar. 1998.

R. E. Bryant, “Algorithms for Boolean Function Manipulation,” vol. C, no. 8, 1986.

T. Sasao, “Ternary decision diagrams. Survey,” in Proceedings 1997 27th
International Symposium on Multiple- Valued Logic, 1997, pp. 241-250.

A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack Redistribution for Graceful
Degradation under Voltage Overscaling,” in Proceeding of ASP-DAC, 2010, pp.
825-831.

87

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Berkely Logic Synthesis and Verification Group, “ABC: A system for sequential
synthesis and verification.”

D. Emst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T.
Austin, K. Flautner, and T. Mudge, “Razor : A Low-Power Pipeline Based on
Circuit-Level Timing Speculation,” in 36th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-36), 2003, pp. 7—-18.

S. Das, C. Tokunaga, S. Pant, W. Ma, S. Kalaiselvan, K. Lai, D. M. Bull, and D. T.
Blaauw, “Razorll : In Situ Error Detection and Correction for PVT and SER
tolerance,” in IEEE Journal of Solid-State Circuits, 2009, vol. 44, no. 1, pp. 32-48.

S. Das, S. Member, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner,
and T. Mudge, “A Self-Tuning DVS Processor Using Delay-Error Detection and
Correction,” J. Solid-State Circuits, vol. 41, no. 4, pp. 792—-804, 2006.

P. Kocher, D. Genkin, D. Gruss, W. Haas, and M. Hambury, “Microarchitectural
innovations: boosting microprocessor performance beyond semiconductor
technology scaling,” Proc. IEEE, vol. 89, pp. 1560-1575, 2001.

K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson, S.-L. L. Lu,
T. Karnik, and V. K. De, “Energy-Efficient and Metastability-Immune Resilient

Circuits for Dynamic Variation Tolerance,” in IEEE Journal of Solid-State Circuits,
2009, vol. 44, no. 1, pp. 49-63.

M. Choudhury, V. Chandra, K. Mohanram, and R. Aitken, “TIMBER: Time
borrowing and error relaying for online timing error resilience,” in Design,
Automation & Test in Europe Conference & Exhibition, 2010, pp. 1554—1559.

A. K. Uht, “Going Beyond Worst-Case Specs with TEAtime,” in Computer, 2004,
vol. 37, no. 3, pp. 51-56.

M. R. Choudhury and K. Mohanram, “Approximate logic circuits for low overhead,

non-intrusive concurrent error detection,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE ’08), 2008, no. 0, pp. 903-908.

M. R. Choudhury and K. Mohanram, “Low Cost Concurrent Error Masking Using
Approximate Logic Circuits,” in IEEE Transactions on computer-aided design of
integrated circuits and systems, 2013, vol. 32, no. 8, pp. 1163—-1176.

M. Pedram, “Power minimization in IC design: principles and applications,” ACM
Trans. Des. Autom. Electron. Syst., vol. 1, no. 1, pp. 3-56, 1996.

V. Venkatachalam and M. Franz, “Power reduction techniques for microprocessor
systems,” ACM Comput. Surv., vol. 37, no. 3, pp. 195-237, 2005.

L. Chang, D. J. Frank, R. K. Montoye, S. J. Koester, B. L. Ji, P. W. Coteus, R. H.
Dennard, and W. Haensch, “Practical strategies for power-efficient computing
technologies,” Proc. IEEE, vol. 98, pp. 215-236, 2010.

R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, “Near-
Threshold Computing: Reclaiming Moore’s Law Through Energy Efficient

88

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Integrated Circuits,” Proc. IEEE, vol. 98, no. 2, pp. 253-266, Feb. 2010.

S. M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and
Design, 3rd ed. Mc Graw Hill, 2003.

H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar, “Near-
threshold voltage (NTV) design: opportunities and challenges,” 49th
ACM/EDAC/IEEE Des. Autom. Conf., pp. 1149-1154, 2012.

M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power Methodology
Manual: For System-on-Chip Design. Springer Publishing Company, Incorporated,
2007.

Y. Liu, R. Ye, F. Yuan, R. Kumar, and Q. Xu, “On Logic Synthesis for Timing
Speculation,” pp. 591-596, 2012.

N. P. Carter, H. Naeimi, and D. S. Gardner, “Design techniques for cross-layer
resilience,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2010, pp. 1023-1028.

A. DeHon, H. M. Quinn, and N. P. Carter, “Vision for cross-layer optimization to
address the dual challenges of energy and reliability,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2010, pp. 1017-1022.

S. Mitra, K. Brelsford, and P. N. Sanda, “Cross-layer resilience challenges: Metrics
and optimization,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2010, pp. 1029-1034.

S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, “I-V
power supply high-speed digital circuit technology with multi-threshold-voltage
CMOS,” IEEE J. Solid-State Circuits, vol. 30, pp. 847-854.

Q. W. Q. Wang and S. B. K. Vrudhula, “Static power optimization of deep
submicron CMOS circuits for dual V1 technology,” 1998 IEEE/ACM Int. Conf.
Comput. Des. Dig. Tech. Pap. (IEEE Cat. No.98CB36287), pp. 490-496, 1998.

L. Wei, Z. Chen, M. Johnson, and K. Roy, “Design and optimization of low voltage
high performance dual threshold CMOS circuits,” in IEEE proceedings of Design
Austomation Conference, 1998, pp. 535-549.

S. B. K. Vrudhula, “An investigation of power delay trade-offs for dual V/sub t/
CMOS circuits,” Proc. 1999 IEEE Int. Conf. Comput. Des. VLSI Comput. Process.
(Cat. No.99CB37040), pp. 556-562, 1999.

N. Jayakumar and S. P. Khatri, “A Predictably Low-Leakage ASIC Design Style,”
vol. 15, no. 3, pp. 276285, 2007.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D.
Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” ArXiv e-prints, 2018.

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T.
Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks: Exploiting Speculative

&9

[55]

[56]

[57]

[58]

Execution,” 2018.

F. Brglez, “A neutral netlist of 10 combinational benchmark circuits and a target
translation in FORTRAN,” IEEE Int. Symp. Circuits Syst., 1985.

M. Hansen, H. Yalcin, and J. Hayes, “Unveiling the ISCAS-85 benchmarks: a case
study in reverse engineering,” IEEE Des. Test Comput., vol. 16, pp. 72—-80, 1999.

“Synopsys. Synopsys University Program. Available:
http://www.synopsys.com/Community/UniversityProgram/Pages/default.aspx.” .

K. E. Murray, A. Suardi, V. Betz and G. Constantinides, "Calculated Risks:
Quantifying Timing Error Probability with Extended Static Timing Analysis,"
in IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems.

90

