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CHAPTER I 

 

INTRODUCTION 

Early detection of masses within the breast that may transform into 

malignancies is known to be essential for positive treatment and outcome.  The 

use of palpation in the physical exam is a widely accepted clinical practice for 

correlating relative stiffness with tissue health, and the advent of medical 

imaging has added a great amount of diagnostically relevant information to the 

screening process.  Recent research has demonstrated that the field of 

elastography provides an alternative means of interrogating soft tissue 

structures by creating a spatial mapping of material properties (e.g. elasticity) 

that can be inspected for the detection and assessment of lesions.  In 

particular, a novel inverse problem technique known as ‘modality-independent 

elastography’ (MIE) has been developed in the course of this work and holds 

much promise in combining the intuitive discrimination from manual detection 

with the superior depth of penetration and anatomical detail typically given by 

imaging. 

 

Breast Cancer: Overview 

Breast cancer is the most common cancer of women in the United 

States, the second most common cause of cancer death in women, and the 

leading cause of death in women ages 45 to 55.  Estimates for the year 2007 
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indicate that 178,480 American women will be diagnosed with the disease and 

40,910 women will die from it [1].  Worldwide, more than 700,000 women die 

of breast cancer annually, and it is estimated that eight to twelve percent of 

women will develop breast cancer in their lifetime [2, 3].  A number of risk 

factors and causative agents have been implicated in the development of the 

disease; these can be grouped by genetics (mutations in BRCA-1, BRCA-2, p53) 

[4-6], hormonal influences (early menarche, late menopause, exogenous 

estrogen) [7-11], and environment (socioeconomic status, obesity) [12, 13].   

An entire spectrum of neoplasms may arise within the adult human 

female breast from its various constituents, including epithelial, mesenchymal, 

and adipose cells.  The majority of breast cancers are carcinomas, which arise 

from the epithelium of breast ducts and lobules, allowing for histologic 

classification of ductal or lobular carcinomas as in situ or invasive [14].  The 

staging of breast carcinomas can range from stage 0 (in situ) to stage IV 

(distant metastases), with 5-year survival rates dropping from >90% for stage 0 

disease to as low as 20% for stage IV [1].  Current guidelines for the treatment 

of breast cancer have led to improved disease-free survival and quality of life, 

but early detection remains of paramount importance in the effort to decrease 

the overall mortality of patients with this disease.  The past decade or so has 

seen annual mortality rates drop by approximately 2.3% per year, and this 

decline can be attributed, in part, to improved and aggressive interventions 

resulting from more vigilant screening that allows for detection of the disease 

in its earlier stages [15-18].  Though histologic examination of tissue is a 
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necessary element of staging breast cancer, the collection of these tissues (i.e. 

biopsy) hinges upon on the ability of current radiographic methods to reliably 

locate lesions.  Therefore, there is a critical need for continued developments 

in clinical imaging to enhance our ability to detect and characterize breast 

lesions. 

 

Breast cancer detection and screening 

The two primary forms of screening and detection performed on a nearly 

routine basis are the physical examination, either by self-exam or by a 

physician, and X-ray mammography.  The physical examination is performed by 

careful palpation of the breast tissue and associated lymphatic structures, 

moving from the axilla to the midline.  Mammography involves compressing the 

breast firmly between a plate and an X-ray cassette containing film (physical or 

digital) that records a projection image of the tissue.  It is now considered to 

be a clinical standard because the majority of breast cancers are associated 

with abnormal findings in its interpretation [19, 20].  Although generally 

accepted to have had a significant role in recent statistics on earlier detection 

and consequent mortality reduction, the specificity and sensitivity of 

mammographic assessment is still of some debate.  Issues range from the 

difficulty in studying the various age groups and breast characteristics in 

populations to the perception of overly broad interpretations provided in BI-

RADS (the Breast Imaging Reporting and Data System) classification [21-27]. 
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Despite the dominance of mammography usage, palpation still plays an 

important part in a proper evaluation.  One study of women in their 50s found 

that careful clinical breast examination alone, when compared with evaluation 

by both physical examination and mammography, showed no difference in 

impacting the cancer mortality rate in 13 years of follow-up [28],[29].  A 

review of controlled trials and case-control studies estimated that the clinical 

breast examination had about 54% sensitivity and 94% specificity [30] but 

concluded that there was sufficient indirect evidence to support its use for 

breast cancer screening.  The National Breast and Cervical Cancer Early 

Detection Program also found that palpation detected about 5-10% percent of 

cancers that were not visible to mammography [31].  Finally, the National 

Cancer Institute’s recommendations currently note that both mammography 

and clinical examination have effectiveness in reducing breast cancer mortality 

[27].  Only the self-exam has become more widely acknowledged as having 

little or no benefit due to difficulties in teaching and performing proper 

technique [30],[32], though the primary motivation for women to seek further 

evaluation still comes from awareness of changes within their breasts. 

Beyond the relatively established practices of the physical exam and 

mammography, there is rapidly growing interest in developing and utilizing 

other methods of breast cancer detection and screening, particularly those 

involving imaging.  Ultrasound examination of the breast is becoming an 

important adjunct technique used to differentiate between solid and cystic 

masses that have been detected and to provide guidance in interventional 
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procedures.  The clinical benefit of ultrasound has been reported to be a 

reduction in false positive assessments by mammography and palpation [33, 

34], as well as the ability to characterize solid masses as benign or malignant.  

However, the variability of operators in performing a consistent exam and 

contrasting findings of specificity [35-37] have led to a consensus that despite a 

high negative predictive value in follow-up evaluations, ultrasound is not yet 

well-developed enough to be considered a screening tool [38].  Attention has 

also been given to exploring the use of magnetic resonance (MR) imaging for 

breast cancer detection.  It has been found that the majority of invasive breast 

carcinomas enhance with gadolinium contrast [39-41], with some clinical 

evidence indicating that it may have a role in evaluating women with dense 

breast tissue and detecting occult cancers not found by any other method [42].  

Recently, the use of MR has been advocated as a screening test for high-risk 

women [43, 44].  In one prospective study, researchers found that MR detection 

outperformed mammography [41], while others have determined that a wide 

range of specificities (37% to 97%) exist in the test [45].  As with ultrasound, 

the impact of MR screening is as of yet undetermined but evolving. 

 

Elasticity Imaging in Breast Cancer  

Given the current status of available detection and screening techniques 

and various imaging modalities for breast cancer, there is merit to an active 

investigation of alternative methods for breast tissue examination.  The desire 

to find other disease indicators has led to research in novel techniques which 
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attempt to analyze inherent properties of tissue that can be discovered through 

stimulation from various applied energy sources ranging from electromagnetic 

[46-51] (e.g. electrical impedance tomography and near-infrared tomography) 

to mechanical (i.e. elastography). 

The physical examination and medical imaging achieve their clinical 

value because fundamentally, cancer is a non-physiologic proliferation of tissue 

that often manifests as palpable and/or visible morphological abnormalities.  

Evidence suggests that elastic properties may differ by at least an order of 

magnitude within soft tissues between various physiological and pathological 

states [52-54].  A number of classic characteristics of a suspicious lesion found 

on physical examination have been described in the clinical literature, 

including solitary occurrence, a hard “marble-like” feel, relative immobility, 

irregular borders, and a size greater than or equal to 2 cm in diameter [55].  

This reasoning forwarded research to extend the range and sensitivity of 

palpation with imaging, thereby combining the relative strengths of each 

method.  Studies of the late 1980s using ultrasound [56-60] noted distinct 

changes in images of tissues in response to mechanical excitation.  These 

observations and others led to the development of a set of methods known as 

elastography, with seminal papers of this field often identified as those 

presented by Ophir, et al in 1991 [65] using ultrasound and Muthupillai, et al in 

1995 [66] with MR.  Elastography methods are highly varied but largely follow a 

common strategy: assuming that a tissue follows understood physical principles 

of mechanical behavior, apply a stress to the tissue, obtain measurements of 
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internal displacements, and translate those displacements into elasticity 

values.  Deformation can be applied using any number of static (e.g. step 

compression), dynamic (e.g. harmonic shear waves), or transient sources (e.g. 

acoustic radiation force) [61, 66-71].  Imaging is preponderantly accomplished 

through ultrasound and MR for the purpose of making displacement 

measurements in the tissue by capitalizing on phase sensitivity properties of 

the modalities.  Motion estimates can be obtained by speckle tracking, Doppler 

effects, and cross-correlation of ultrasound signals [72, 73], while MR 

techniques utilize motion-sensitive gradient encoding schemes [64, 74-76].  The 

creation of the final elasticity mapping involves reconstruction of variations in 

tissue response using direct (strain imaging) or indirect methods (inverse 

elasticity problem).  Strain images (often referred to as ‘elastograms’) are 

formed by a derivative operation on the displacement estimations, thereby 

indicating the presence of hard inclusions by a region of lower strain 

surrounded by stress concentration effects reminiscent of ultrasound 

enhancement artifacts occurring behind a cyst.  In contrast, the inverse 

elasticity problem requires a computational model with boundary conditions in 

order to spatially assign modulus values and reconstruct an elasticity image of 

the domain [77-79]. 

 While the use of elastography has been employed in other organ 

systems, the breast is of particular interest because of its relatively non-

invasive anatomic access and the intuitive concept of associating disease state 

with tissue elasticity.  Preliminary work in breast elastography in the late 1990s 
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found that ultrasound-based methods could distinguish solid tumors from their 

surroundings, and one group suggested that their method could correctly 

classify most benign and malignant masses [80-84].  A review of clinical usage 

of various ultrasound elastography techniques to date finds enthusiasm for 

further study and encouraging data for its ability to detect a lesion. Current 

evidence places most cancer discrimination sensitivities and specificities at 

approximately 70% and 90%, respectively [85-91], which is essentially 

equivalent to standard direct ultrasonic examination. With MR-based 

elastography methods, similar findings are available that show promise in 

detecting breast cancers confirmed by physical examination and/or 

mammography.  The most recent clinical trials [92-99] have generally been 

performed on small groups of patients for procedural validation studies, but 

their results qualitatively agree with those obtained by ultrasound elastography 

research groups.  Although it is difficult to evaluate the performance of 

elastography methods as a whole due to the wide spectrum of implementations 

and enhancements from each investigating group, virtually all characterizations 

of breast cancer show that disease often corresponds with higher stiffness 

values compared with normal tissue, and in most cases, malignancy of growth 

is associated with the stiffest mechanical behavior.  It should be noted that 

there appears to be an overlap of elasticity value ranges which may ultimately 

be a confounding factor in the differentiation of soft malignant tumors and stiff 

benign lesions, but the available data collectively suggests that there is a 
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clinical role for elastography methods in identifying and/or discriminating 

breast lesions. 

 

Modality Independent Elastography 

Because the aforementioned approaches to elastography rely heavily on 

the accuracy of estimated displacements, many researchers have focused on 

attempts to enhance a particular imaging modality through alternative 

hardware and specialized post-processing.  In response to this perceived 

dependence on acquisition technique, Miga [100] proposed a generalized 

framework of image analysis of an inverse elasticity problem utilizing an 

intensity-based intramodal non-rigid image registration guided by a finite 

element model of tissue mechanics.  By assuming sufficiency of image 

heterogeneity provided by inherent anatomical variation, any standard 

diagnostic image set of a tissue in two different states of mechanical loading as 

obtained from the major modalities is therefore theoretically suitable for 

analysis.  Washington and Miga [101] followed this work to further codify the 

paradigm by demonstrating an implementation with a two-dimensional 

approximation of deformation processes and the use of standard image 

similarity metrics on image data from X-ray computed tomography (CT) and 

MR, thereby coining the term ‘modality independent elastography’ (MIE).  
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Specific Aims 

The ideal elastography method would be accurate in identifying the 

presence of a lesion (or lesions) both in spatial position and extent, quantifying 

material properties, and making a specific and sensitive clinical judgment 

comparable to direct histologic assessment.  Because the simultaneous 

fulfillment of these qualities poses a significant challenge in the development 

of any such method, it is necessary to explore the capabilities of MIE and 

address the practical issues of feasibility for breast tumor detection and 

screening.  Therefore, the hypothesis of the proposed work was that testing 

and development of the MIE methodology will characterize this novel approach 

to elastography with respect to its clinical potential in breast lesion 

identification.  This was investigated through the following specific aims:    

Specific Aim 1:  To provide proof-of-concept characterization of the MIE 

framework  

• Apply the method using a two-dimensional approximation to a thin 

membrane phantom testing platform. 

• Demonstrate the ability of the method to detect multiple inclusions and 

utilize image data from various modalities. 

• Examine the sensitivity of the method to input quality in order to 

establish guidelines for appropriate data collection and processing. 

Specific Aim 2:  To expand and enhance the MIE framework 



 

 

11 

• Design and create an implementation of the method capable of handling 

fully three-dimensional data.  

• Develop strategies for enhancing computational performance and pre-

processing task efficiency through in silico studies. 

Specific Aim 3:  To assess the clinical feasibility of the MIE framework 

• Construct and test a data acquisition system suited to the MIE 

implementation.  

• Demonstrate detection of material inhomogeneity in a breast-mimicking 

phantom.  

• Study practicality of clinical system deployment.  
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Abstract 

The use of palpation information for skin disease characterization is not 

as commonly used as in other soft tissues, although mechanical differences 

within lesions have been noted.  For example, regions of hyperkeratosis have 

the potential to transform into cancerous lesions and likely feature different 

material properties from those of surrounding normal tissue due to varying 

cyto-architecture.  As a result, the spatial distribution of lesion mechanical 

properties may serve to assist diagnosis or enhance visualization of the 

complete extent of a cancerous region, i.e. accurate information regarding the 

margins of disease for surgical therapy.  In this work, a multi-resolution 

extension to a novel elastographic imaging method called Modality Independent 

Elastography (MIE) is used to characterize the mechanical properties of a skin-

like phantom embedded with a mock stiff lesion.  Simulation studies were also 
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performed to investigate the potential for characterizing realistic melanoma 

lesions.  Elasticity image reconstructions from the phantom experiments 

localized the stiff inclusion and had good correlation between the Young’s 

modulus contrast ratio and experimental measurements from material testing.  

In addition, multi-resolution MIE was shown to be a more robust framework 

than its single-resolution version.  Results from the melanoma simulation 

demonstrate the potential for using multi-resolution MIE with dermoscopic 

images. 

 

Introduction 

Skin cancers are a growing health concern in the United States, with 

total annual cases being reported in the millions by the American Cancer 

Society. There are three major types of skin cancers [basal cell carcinoma 

(BCC), squamous cell carcinoma (SCC), and melanoma], with melanoma 

estimated to be the sixth most prevalent cancer and an estimated 55,100 new 

cases swithin the United Statesd to be diagnosed in 2004 [1]. In general, skin 

cancers develop from precancerous lesions of the epidermis that have 

dysplastic changes due to the damage inflicted by ultraviolet solar radiation. As 

with other cancers, the dysfunctional cells may aggressively compete with 

normal tissue for nutrients and space. The progression from a benign to 

malignant state depends upon the degree of cellular differentiation and the 

spatial extent of the growth, which approximately translates into the 

pathological determination of grade and stage. 
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When skin cancers are identified at an early stage and are still small in 

size, surgical excision is usually straightforward and effective. If the disease 

has progressed to invade deeper levels of the skin, treatment becomes more 

difficult and may involve more invasive surgery, radiation, and/or 

chemotherapy.  It is clear that the early detection of cancer is critical in order 

to formulate a proper treatment plan and achieve the most favorable clinical 

outcome. However, detection and diagnosis still rely primarily on visual 

inspection followed by a biopsy of suspect areas for histological analysis. 

Therefore, a significant proportion of diagnostic technological advances have 

been concerned with obtaining a better view of the lesion via improved optics 

(i.e., dermoscopy) or more advanced and novel imaging systems ranging from 

high-frequency ultrasound to confocal laser microscopy [2,3]. Additional 

strategies involving electrical impedance mismatch [4], Raman spectroscopy 

[5], and cytological smears [3] have also been forthcoming. 

As opposed to other methods mentioned above which capitalize on 

electrical, optical, and biochemical phenomena, we have chosen to pursue an 

alternative approach to skin health assessment which is based on its 

mechanical behavior. Detecting changes in tissue by palpation and then 

associating them with a disease state has had a longstanding history in clinical 

medicine. Although a health assessment of skin from palpation is performed to 

a lesser degree, utilizing changes in the mechanical properties to characterize 

the skin does have precedent within clinical dermatology. One thoughtful 
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review by Edwards and Marks discusses the complex mechanical behavior of 

skin when subjected to in vitro and in vivo testing [6]. Their review highlights 

extensive methodologies being used to quantify skin mechanical properties 

(e.g., uniaxial and biaxial extensometry, torsion stimulators, indentometery, 

ballistometric tests, shear wave application devices, dynamic suction methods, 

ultrasonics, and electrodynamometry) and also indicates the difficulties in 

comparing across these methods. As a result, Edwards and Marks emphasize the 

necessity for quantitative, reproducible methods to assess skin health given the 

wide subjectivity in clinical analysis [6].  For example, the work by Draaijers et 

al. suggests that reliable subjective assessment of the pliability of scars 

requires more than one observer while measurements using a noninvasive 

suction device can be accomplished with a single observer [7].  This type of 

work qualitatively confirms the Edwards and Marks conclusion that the need for 

technology and automation in skin assessment will be essential for reducing 

inter-rater variability. 

While the characterization of skin cancer for diagnostic purposes and 

possibly surgical intervention is an interesting prospect, other investigations 

have begun to suggest relationships between skin elasticity parameters and 

other diseases. In a recent study using a noninvasive suction device, Pierard et 

al. demonstrated a correlation between bone mass density (BMD) and skin 

elasticity parameters. Specifically, in a 100-woman study in which a portion of 

the subjects were participating in hormone replacement therapy, a positive 

correlation existed between BMD of the hip and femoral neck and skin 
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elasticity parameters. The authors clearly state that their goal was not to 

develop a surrogate BMD assessment test, but the results are nevertheless 

intriguing [8,9].  Using a similar device, Yoon et al. demonstrated a relationship 

between skin elasticity parameters and patients afflicted with diabetes 

mellitus [10].  Other work has been forthcoming [11-16] that demonstrates the 

potential for using noninvasive measurements of skin mechanical parameters as 

diagnostic information. 

To this end, the field of elastography has established methods to 

spatially characterize the mechanical properties of tissues under various states 

of deformation with the goal of developing functional parameters to 

characterize disease [17, 18].  In skin cancer, increases in cell density, atypia in 

the morphology and orientation of cells, and compositional alterations (e.g., 

hyperkeratosis) contribute to changes in the local cytoarchitecture. These 

changes in mechanical structure can propagate from microscopic to 

macroscopic levels and may manifest as a distortion of the normal anatomy. 

Given the influence of mechanical structure on the behavior of deforming 

tissue, elastographic imaging methods may be well suited for detecting and 

monitoring the growth of these cancerous anomalies. In fact, advances in 

applying ultrasound elastography and sonography techniques to skin are being 

reported [3, 19-22].   Most recently, Gennisson et al. demonstrated the use of a 

new sonoelastographic probe that measured a distinct difference between 

dermis and hypodermis shear wave velocities which was subsequently used to 

estimate Young’s modulus [22].  Although interesting, this work is not 
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completely applicable to the clinical goals of understanding the spatial extents 

of a melanoma lesion. 

Following previous work in Ref. 23, we are using a new elastographic 

method we have termed “modality-independent elastography” (MIE) that 

combines nonrigid image registration with an elasticity inverse problem. More 

specifically, image similarity metrics routinely used with image registration 

methods are recast within a nonlinear optimization algorithm whereby 

mechanical properties (e.g., Young’s modulus) within a biomechanical model of 

the deforming tissue become the driving parameters for improved image 

registration. In this way, the MIE method circumvents two potential limitations 

of current elastographic techniques. First, it is not inherently dependent on 

preprocessing steps such as homologous feature selection and tracking which 

drive active contour models [19-21] or other traditional displacement-based 

iterative methods [24-29] (however, it does require the determination of 

boundary conditions). Second, because it is an image processing technique, MIE 

is not reliant on a particular imaging modality such as in ultrasound and 

magnetic resonance elastography, as long as the acquired images provide a 

sufficient pattern to allow for registration. Building on recently completed 

work with a dual-mesh implementation [30], in this paper we present a 

simplified multiresolution elasticity imaging framework for Young’s modulus 

reconstruction. In addition, phantom and simulation experiments demonstrate 

its utility as a dermoscopic image analysis tool for evaluating skin lesions based 

on material elasticity. 
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As a final point, the work presented here represents a potentially new 

application of the MIE approach for the characterization of skin lesions using 

optical images. This may have significant implications at many length scales 

(subcellular, cellular, matrix level, and gross tissue). For example, properly 

designed, optically based MIE could be used to characterize the structural 

development of tissues at the cellular scale. This could be important for 

therapies such as Mohs micrographic surgery. Mohs is a surgical technique 

which combines surgery and pathological investigation to more effectively 

remove skin tumors. More specifically, after removing visibly cancerous 

regions, the surgeon removes an additional thin layer of the site margin and 

creates a “map” of the border. Upon pathological examination of the removed 

layer, the “map” can be used to target the remaining cancerous cells. 

Currently, the Mohs technique is a time-consuming procedure, but the success 

of the procedure is compelling and has been shown to be cost effective with 

certain considerations [39]. If MIE skin imaging could accurately assist or 

replace the pathologic characterization of the margin in less time, this would 

be of great value for this surgical therapy. 

  

Methods 
 

 

Model of Phantom/Skin Elasticity 

One critical component within all model-based inverse problem 

frameworks is the selection of a computational model to represent the 
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continuum of interest. In our phantom and simulation studies, we have elected 

to employ a linear elastic model to simulate the skin. These assumptions (e.g., 

symmetry, isotropy, etc.) allow the simplification of Cauchy’s law from 36 

stiffness constants to 2 and employ the equation 

 

where σ is the two-dimensional (2-D) Cartesian stress tensor and is defined as 

 

The constitutive relationships for the material can be written as 

 

where E is the Young’s modulus, ν is Poisson’s ratio, and υ, v are displacements 

in the x and y directions, respectively. For this work, Poisson’s ratio was 

assumed to be constant at 0.485 for our skin phantoms and tissue simulations. 

This value was found by searching the reconstruction parameter space for an 

optimal value that achieved maximum similarity when comparing the 

homogeneous model-deformed image to its acquired counterpart. The 

constitutive relationships expressed in (3) represent a two-dimensional 

approximation to a three-dimensional system which assumes a symmetric, 

isotropic, thin specimen in equilibrium and stresses that are constrained to lie 
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within the plane, i.e. the classic plane stress approximation [31].  Using the 

Galerkin method of weighted residuals to integrate this set of partial 

differential equations, a finite element framework is generated and can be 

solved to represent a displacement field for a given distribution of Young’s 

modulus values [32].  The boundary conditions for our studies below were either 

manually derived from a structured grid representation as in the phantom 

system or prescribed by the user in the case of the simulation studies. 

 

Modality-Independent Elastography (MIE)  

The MIE framework begins with the acquisition of a baseline pre-

deformed “source” image and a post-deformed “target” image. The “source” 

image set is  used to create a well-resolved finite element mesh of the tissue 

domain. In previous work, a second coarse mesh was also specified on the 

domain and was used specifically as the mechanical property reconstruction 

grid [30].  In this work, a new single-mesh region-based multi-resolution MIE 

approach has been employed which simplifies previous dual-grid techniques 

with the generation of a structured regionalization using a K-means clustering 

algorithm based on the element centroids of the well-resolved mesh. A K-

means clustering algorithm iteratively partitions the element centroids into a 

given number (K) of regions (where K is the user-defined number of desired 

clusters) such that the sum of all point-to-region centroid distances over all 

regions is minimized. The advantage of using the K-means clustering approach 

as opposed to a regular grid is that the clustering approach can more 
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appropriately fit irregular domains (e.g. the circular domain for the 

dermoscopic image set). For this work, the implementation in the MATLAB 

(MathWorks, Natick, MA—www.mathworks.com) statistics toolbox was used. 

Figure 1 illustrates an example of this approach on a circular domain whereby 

the element centroids have been clustered into 16 separate homogeneous, 

isotropic regions. 

The method has been adapted to a multiresolution strategy whereby 

coarser resolutions (i.e., fewer regions) can be initially reconstructed to 

provide better initial guesses to subsequent resolutions. The use of hierarchical 

multiresolution structures within both rigid and nonrigid registration algorithms 

has a longstanding precedent and lends credence to its application here [33-

35].  In this work, six progressively finer resolutions were used within each 

reconstruction (16, 36, 64, 144, 256, 400 regions). 

  

 

Figure 1.  K-means material property clustering for a circular domain with 16 property 
regions designated. 
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Once the mesh and K-means resolutions have been specified, the 

reconstruction algorithm begins by assigning an initial modulus value to each 

region (a homogeneous initialization is assumed) at the first resolution, 

weighted residual equations are integrated, boundary conditions are applied, 

and the matrix equation system is generated: 

 

where [ ( )]EA E
v

 represents the model stiffness matrix based on the current 

distribution of properties EE
v

, {u} is the vector of unknown tissue 

displacements, and {b} is the vector of known forces acting on the system and 

boundary conditions.  Upon the calculation of tissue displacements, the source 

image can be deformed. This model-deformed source image is then compared 

to the target image using an image similarity method [23,30] which is 

calculated over a number of discrete spatial zones (e.g., for all 

reconstructions, approximately 400 similarity zones were designated within the 

image for a comparison).  Modulus values in the regions are updated based on 

maximizing the similarity between the deformed source image and the target 

image over all the similarity zones until a tolerance is reached or the desired 

number of iterations has been completed. With respect to the optimization 

framework for MIE, it can be represented as a least squared error objective 

function: 
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where ( )tS E
v

 is the similarity value achieved when comparing the target image 

to itself (i.e., the maximum value for the similarity metric) and ( )ES E
v

 is the 

similarity between the model-deformed source image and the target image 

using the current estimate of the elastic modulus, EE
v

. Equation (5) can be 

solved by employing a Newton–Raphson-based approach: 

 

where [J] is the M x N Jacobian matrix of the form J = ( ) /ES E E∂ ∂
v v

, M is the 

number of similarity measurement zones, and N is the number of material 

property regions and is equivalent to K as designated in the K-means clustering 

algorithm. The details of Eq. (6) have been reported previously [23,30].  

Because [JT][J] (an approximation to the Hessian matrix) tends to be ill 

conditioned, it is regularized with an empirically determined a parameter 

found in the standard Levenberg–Marquardt approach [36].  The determination 

of this regularization parameter is described in Ref. 37. Figure 2 is a flow chart 

of the new multiresolution MIE approach.    
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Figure 2.  Multiresolution MIE algorithm flow chart where “R=1,2,3…,RMAX” is the 
resolution level with RMAX the most well resolved; and “K” is the number of material 
regions within a particular resolution “R”. 

 

 

In previous work, we have analyzed the performance of our MIE 

algorithm with respect to four standard image similarity metrics found within 

the literature: the sum of squared differences, normalized mutual information, 
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the correlation coefficient (CC), and the gradient correlation coefficient (GC) 

[30].  Within this work, the correlation coefficient and gradient correlation 

coefficient were used for the similarity measurements.  

Briefly stated, the CC operates on the distribution and mean intensity 

values of the overlapping regions of two images where I1 would represent the 

intensity values within the “target” image and I2 would be the model-deformed 

“source” image. The correlation coefficient can be calculated by the 

expression 

 

where 1I , 2I are the mean intensity values within each respective image, and i 

is the ith pixel within the respective image. The GC metric is calculated by 

applying the correlation coefficient to images that have been processed by any 

of the standard edge detection functions (e.g., Canny, Sobel, etc.). 

 

Phantom Construction 

A phantom was constructed that was approximately 25 cm long, 15 cm 

wide, and approximately 2 mm thick. The inclusion-surrounding bulk material 

of the phantom was Smooth-On™ Evergreen 10 polyurethane with an additive to 

allow permanent marker to adhere to the material surface (Smooth-On, 2000 

Saint John Street, Easton, PA). A cylindrical inclusion was placed centrally 

within the membrane phantom that was approximately 5 cm in diameter and 
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was made of a stiffer polyurethane material (Smooth-On™ Evergreen 50). The 

inclusion material was chosen for its relative stiffness to that of Evergreen 10 

and its color which is the same (to study the case of non-pigmented lesions). 

After the phantoms had set, a permanent marker was used to draw 15 cm x 15 

cm grid with 1 cm x 1 cm squares on the phantom surface. Figure 3(a) shows 

the skin phantom used for data collection in this series of experiments. 

 

 

Figure 3.  Experimental data from the skin-stretching setup shown in Fig. 4: (a) 
baseline, (b) 5 mm, (c) 10 mm, (d) 15 mm, (e) 20 mm. 

 

Image Acquisition Protocol  

To acquire the pre- and post-deformed images of the stretched skin phantom, 

the membrane was first secured in customized clamps attached to a milling 

vise to form a translation stage and then brought level with a nominal applied 

load to define the baseline position. Images were taken by a commercial web 

camera (Logitech QuickCam Pro 4000, 960 x 1280 pixel resolution) that was 
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rigidly mounted above the membrane at a single location to ensure a fixed field 

of view and frame of reference for the duration of the experiment.  A series of 

five total images was collected (eight-bit grayscale) via laptop control of the 

camera—the baseline predeformation position and four subsequent positions 

with incremental stretches of approximately 5 mm each.  Figure 4 is a 

schematic of the experimental setup, while Fig. 3(a) – 3(e) show an example 

dataset. 

 

Figure 4.  An illustration of the skin-phantom setup for image acquisition. 

 

Material Testing Protocol  

Material testing was performed in order to determine the accuracy of 

the reconstructed Young’s modulus values. When the phantoms were poured, 

specimens of both the bulk and stiff polyurethane were allowed to cure in 

separate containers from the membranes. These samples were then cut into 1 

cm x 1 cm x 1 cm cubes. Compression testing was performed on an EnduraTEC 

ELF 3200 material tester (EnduraTEC Systems Group, Minnetonka, MN). The 

polyurethane was assumed to be elastic, homogenous, and isotropic. 
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The Enduratec material testing protocol involved ramping the actuator 

linearly from the zero position to 24% strain at 2% strain increments. The max 

strain value was chosen to extend slightly beyond the range of observed strain 

in the experiment shown in Fig. 3 which was approximately 22% strain for the 

bulk material. Although the stiffer inclusion material only experienced 

approximately 1%–2% strain, stress values were reported for the full strain 

range up to 24%. Between each change in axial position a three second well 

time was imposed to allow viscoelastic responses to subside. Stress–strain plots 

were produced for both the bulk material and the inclusion material. Three 

samples of each material were tested and an average curve was calculated. 

 

Phantom Experiment  

To quantitatively test the MIE method within the context of dermoscopic 

applications using optical images, a series of studies using the elastic 

membrane of Fig. 3 were employed within the setup of Fig. 4. The single 

inclusion phantom was considered to be representative of a single lesion on the 

skin surface (nonpigmented in this case). The multiresolution MIE technique 

was used at each successive deformation for a total of four elasticity image 

reconstructions per similarity metric (in this case CC and GC only). The 

computational domain for these calculations involved 1051 nodes and 1973 

elements. Boundary conditions were generated by analyzing the pre- and post-

deformed structured grid and estimating the domain’s deformation. The 

Young’s modulus reconstructions were then compared to the elasticity values 
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as generated from the material testing protocol. It should be noted that only 

Young’s modulus contrast was compared in these evaluations. This is due to the 

manner in which boundary conditions are prescribed in the model system. 

Currently, the approach is driven by displacement boundary conditions (i.e., 

Dirichlet type) which consequently make the elastic model only sensitive to 

Young’s modulus contrast. Without knowledge of an applied stress at the 

boundary or a prescribed material property within the domain, absolute 

properties cannot be determined. In addition, it must also be noted that the 

reconstructions were constrained to a region of the phantom that was smaller 

than the overall phantom. This was a result from observing that at higher 

stretch states, out-of-plane distortions of the membrane became more 

prominent in the periphery. 

 

Simulation Experiments  

In an effort to test the algorithm within the context of a more realistic 

image acquisition scenario for skin cancer, a simulation study was performed 

on an image of the 1 cm melanoma lesion shown in Fig. 5(a). In addition, a grid 

structure was not specifically applied to the lesion image so as to test whether 

the natural skin-texture itself contained sufficient image information for 

reconstruction. The lesion was provided by the Dermatology Image Atlas 

project (www.dermatlas.org, Image Name: melanoma_1_040510, Contributed 

by Eric Ehrsam, M.D.) and represents a 1 cm pigmented melanoma plaque, 

located on the left arm of a 35-year-old woman [38].  For the simulation 
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boundary conditions, an annulus-shaped mechanical stretching device was 

assumed which would systematically stretch two semicircular regions apart by 

2 mm. The melanoma was assumed to have a 2:1 elasticity contrast level with 

normal tissue, i.e., the melanoma was twice as stiff as the surrounding skin. 

The computational domain for the inverse problem contained 1294 nodes and 

2459 elements. In addition, the mesh used to generate the forward-problem 

data was approximately 10% more resolved than the mesh used for 

reconstruction. This introduced a small degree of variability to the boundary 

conditions and image deformation to simulate potential acquisition noise. 

Figure 5(b) and Fig. 5(c) illustrates the localized application of the stretching 

and the simulated solution for both horizontal and vertical displacements, 

respectively. Upon completion, these image data was used as input to the 

multiresolution MIE algorithm. Results are reported using the CC and GC image 

similarity methods.  

 

Figure 5.  (a) Melanoma lesion, reproduced with the permission of Dr. Lehmann, MD., 
© Dermatlas, www.dermatlas.org, melanoma_1_040510. (b) Simulated horizontal and 
(c) vertical displacements shown (axis references are in meters while the gray scale is 
in microns).  It should be noted that the contained region within the border represents 
the spatial regions of the stiffness in this simulation and was not contained within 
image data provided to the MIE algorithm. 
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Results 

Material Testing 

During the material testing phase, additional cyclic testing was 

performed in which viscoelastic behavior was noted. As a result, a waiting 

period was utilized at each strain level to allow viscoelastic responses to 

subside. The stress/strain behaviors at these quasistatic time periods for the 

bulk material and inclusion are shown in Figs. 6(a) and 6(b). 

 

  

Figure 6.  (a) Stress versus strain behavior for bulk material, (b) stress versus strain 
behavior for inclusion material, and (c) inclusion-to-bulk contrast ratio at various 
levels of bulk material strain (for all ratio determinations, the inclusion’s 2% strain 
value for Young’s modulus was used which was the approximate maximum strain 
reached in the inclusion based on experiment observations). 
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In addition, discrete finite difference approximations were made at the 

various strain levels to estimate a Young’s modulus value. Table I represents a 

distribution of values calculated within the strain ranges tested. Once each 

modulus was calculated for each acquired strain level, a distribution of Young’s 

modulus contrast ratios was calculated and is expressed by Eq. (2): 

 

whereby the inclusion’s 2% strain value (approximate maximum strain reached 

in the inclusion based on experimental observations)  for Young’s modulus was 

used and the bulk material was allowed to vary over the entire strain range. 

This contrast ratio formulation reflects the reality of the membrane 

experiments shown in Fig. 3 whereby the soft surrounding material experienced 

the majority of deformation with the inclusion remaining relatively unchanged 

over all applications of stretch. The distribution of the contrast ratios as 

described by Eq. (8) at differing strain levels is shown in Fig. 6(c). 

To assist in determining inclusion-to-bulk contrast ratios for different 

bulk strain levels in each experimental stretch as reflected in Fig. 3, an 

exponential curve fit was prescribed:  

 

whereby A=4.0, B=5.0, C=13.8. The root mean square contrast ratio error 

between model and acquired data over the entire acquired strain range was 

0.093. The quality of the exponential model can be seen in Fig. 6(c). Using the 
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expression described in (9), a series of Young’s modulus contrast ratios values 

could be tabulated as a function of the specific strain levels used within the 

experiments of Fig. 1. These levels were determined by manually measuring 

strain levels within regions of the bulk material from the optical images. Table 

II reports the approximate contrast ratio for Young’s modulus at the various 

bulk material strain levels experience during the stretching experiments using 

Eq. (9). 

 

 

 

Multiresolution MIE Phantom Reconstructions 
 

Figures 7 and 8 are representations of the multiresolution elasticity 

image reconstruction performance for each of the different stretch states 

shown in Fig. 3 using CC and GC as the basis for image similarity, respectively. 
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The boundary contour represents the inclusion location as shown within the 

image. The contrast ratios designated within the transect images of Figs. 7 and 

8 were based on Table II. 

 

Figure 7.  An illustration of elasticity image reconstructions using CC where each 
column represents the respective stretch relative to Fig. 3 (e.g., 3a-3b represents the 
stretch from base to the first increment).  The top image shows the location of a 
transect as designated by the T and the gray scale associated with Young’s Modulus 
(Pa). The middle row represents the reconstructed elasticity images at each stretch 
state with the contour showing the actual inclusion location.  The bottom row shows 
the elastic property contrast ratio as compared to that predicted with the material 
testing (shown as a dark box-like contour) along the transect T. 
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Figure 8.  Illustration of elasticity image reconstructions using GC where each column 
represents the respective stretch relative to Fig. 3 (e.g., 3a-3b represents the stretch 
from base to the first increment).  The top row represents the reconstructed elasticity 
images at each stretch state.  The bottom row shows the elastic property contrast 
ratio as compared to that predicted with the material testing (shown as a dark box-
like contour) along the transect T which was designated in Fig. 7. 

 
 

Figure 9 shows elasticity images at varying stage resolutions within the 

multiresolution MIE reconstruction (reconstruction shown is the GC–3a–3b 

stretch regime).  

 

Figure 9.  Elasticity image reconstruction for the GC 3a-3b reconstruction case 
at various resolutions of the multiresolution algorithm.  The gray scale is the 
same is in Fig. 7. 
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To test the effect of the multiresolution framework, the same optical 

images were provided to our algorithm using a 400 property region resolution 

with an initial guess of homogeneity (i.e., coarser resolution solutions were not 

used as initial guesses). In results not reported here, the CC reconstruction was 

able to localize and quantify the stiff region similar to that of Fig. 7 at the high 

stretch states but was much worse with respect to the initial stretch state 

(i.e., 3a–3b image reconstruction).  

Figure 10 represents the GC result for the four stretch states using the 

single 400 region high resolution parametrization.  In Fig. 10(a) (3a–3b stretch 

state), the inclusion is localized but the contrast resolution is poor compared 

with its multiresolution counterpart in Fig. 8, first column. At subsequent 

stretch states (3a–3c, 3a–3d, and 3a–3e), the elasticity image has not converged 

to an acceptable representation of the inclusion. Interestingly, the distance 

traveled by grid squares within the homogenous regions near the stretching 

edge within the second stretch state (3a–3c) is approximately the size of one 

grid square (~1 cm). 

It is evident that by using a single high resolution parametrization as 

opposed to a multiresolution approach, a local minimum is found and the 

elasticity image degrades considerably. Consequently, the error magnitude for 

the image shown in Fig. 8, the second column is a factor of 50% smaller than 

that of Fig. 10(b) thus demonstrating that Fig. 10(b) indeed represents a local 

minimum (it should be noted that all parameters were identical—number of 

similarity zones, filtering, regularization, relaxation, etc.). 
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Figure 10.  GC reconstructions using single 400 property zone resolution for (a) 3a-3b, 
(b) 3a-3c, (c) 3a-3d, and (d) 3a-3e, respectively.  The gray scale is the same as in Fig. 
7. 

 

Multiresolution MIE Melanoma Reconstructions 

 
In addition to the experimental results shown above, several similar 

simulations were executed using a pigmented melanoma image. Figure 11 

shows the elasticity image reconstruction and transect results using the 

multiresolution MIE framework for both CC and GC. Figure 12 illustrates the 

inter-resolution results from the GC reconstruction shown in Fig. 11. 
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Figure 11.  Elasticity image reconstruction of melanoma using (a) CC and (b) GC with 
contrast ratio values along the transect for (c) CC and (d) GC, respectively.  The 
location of transect is designated by the T shown in (a) and (b). 

 

 

Figure 12.  An example of multi-resolution solution development using GC for 
melanoma simulation. 
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Discussion 

The elasticity image results from phantom (Figs. 7–9) and simulation 

(Figs. 11 and 12) studies demonstrate the utility of the multiresolution MIE 

approach. In addition, comparing the results in Figs. 8 and 10 clearly illustrates 

that instances can exist in which a single-resolution approach will fail whereas 

the multiresolution succeeds. A separate but related concern which is still 

under investigation is the degree and content of the image pattern needed to 

facilitate reconstruction; however, the preliminary elasticity image results 

from the melanoma simulations reported herein suggest that a sufficient 

intensity content exists in standard dermoscopic images. 

Another important advance in this paper over previous work is the 

comparison between reconstructed elastic properties and their separately 

measured counterparts. The stress–strain curves shown in Figs. 6(a) and 6(b) 

and modulus values in Table I demonstrate a nonlinear elastic behavior. A good 

representative exponential fit to the Young’s modulus contrast ratio data was 

achieved in Fig. 6(c) and provides a direct comparison to MIE-derived Young’s 

modulus properties. One shortcoming is that because MIE is completely driven 

by displacement boundary conditions, only the contrast in Young’s modulus 

values can be compared. However, the goal within this work is to investigate 

elastic properties as a mechanism for contrast within medical images.  

Overall, the elastic image reconstructions shown in Figs. 7 and 8 

demonstrated good localization with a varied performance in maintaining 
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lesion shape integrity for both the CC and GC similarity methods, respectively. 

It appears that at high strain levels, MIE was less successful at capturing the 

anticipated contrast ratio. In fact, in both CC and GC, the ratio was 

overestimated, thus producing more contrast. It should be noted that the 

reconstructions shown were performed on a domain that represented only a 

portion of the image that surrounded the inclusions (3–4 cm from the inclusion 

border). This was due to our inability to completely control the physical 

boundaries of the phantom given the large mismatch between the stiffness 

values of the two materials. This manifested itself as out-of-plane warping of 

the phantoms, i.e., a wrinkling at edges as the strain on the skin phantoms 

increased. The spatial location of these membrane distortions was more 

prominent with the distance from the inclusion. By making a more localized 

reconstruction region, the influence of these distortions was minimized 

although some effects are undoubtedly present. Ultimately, these out-of-plane 

motions would be interpreted as planar strains in the optical image acquisition 

system shown in Fig. 4. Although this variability in shape integrity existed, 

successful localization was achieved for all stretch states. It was encouraging 

that at small stretch states, where the model is most appropriate, proper 

quantitative contrast ratios were achieved (stretch states 3a–b, 3a–c in Figs. 7 

and 8). Further encouragement was provided by successful localizations at high 

stretch states whereby nonlinear behavior is undoubtedly present and the 

small-strain assumptions are compromised (although the quantitative contrast 

ratio was not as satisfying). Undoubtedly, a large-deformation model is 
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necessary at these higher strains to match contrast ratios at this level; 

however, if proper empirical characterizations could be done using the linear 

model over many stretch states, effective contrast thresholds could be 

determined for the characterization of lesions. In addition, these results were 

also promising in that successful Young’s modulus contrast and localization was 

achieved with a nonpigmented lesion. This indicates that only the deflections 

of the surrounding image pattern and not the lesion image intensity itself are 

responsible for the changes in the elastic modulus values. This enthusiasm must 

be tempered by the realization, however, that the in vivo model may require 

more thought with respect to boundary conditions. Undoubtedly, the influence 

of subcutaneous tissue connectivity would influence the results here if these 

additional constraints were applied. Given the inherent link between the image 

formation and the validity of the computational model, more work needs to be 

performed prior to clinical deployment. 

Although these results are encouraging, not all reconstructions exhibited 

the same peak modulus or lesion localization. One reason could be the 

accuracy to which boundary conditions were determined for each stretch state. 

It is possible that the manual delineation of boundary conditions or the 

observed wrinkling at high stretch states resulted in some boundaries being 

mapped less precisely than others. In some of the reconstructions, significant 

boundary artifacts can be observed. For example, in the second and fourth 

column of Fig. 7, a Young’s modulus peak is shown in the lower right hand 

region of the boundary. A second candidate for reconstruction inaccuracies 
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across stretch states could be the degree of model-data mismatch. It is 

interesting to note the correlation between increased stretch and the marked 

decrease in accuracy of the contrast-ratio transect plots. At the smaller 

stretches, 3a–b and 3a–c, both CC and GC reconstructions perform better in 

both localization and quantification while both show overpredictions within 

transects for stretch states, 3a–d and 3a–e. A model-data mismatch would seem 

a likely source for this change in performance, considering that the elastic 

model used is a small-strain model and the levels of strain are less in the first 

two stretch states. One somewhat qualitative observation that can also be 

made is that the GC-based method appears to reconstruct somewhat better 

than the CC-based method. This is also the case within the melanoma 

simulations. Interestingly, in Ref. 30, a similar experience was found in that 

the GC method outperformed other methods with respect to our phantom 

reconstructions. The principal difference between the CC and GC similarity 

methods is the form of the image to be used when calculation the correlation 

coefficient. GC employs the edge map of the image while CC uses the raw 

acquired image. The increased performance by GC may indicate that areas of 

structured sharp gradient intensities influence the MIE approach more 

significantly than more gradual intensity changes. However, this statement 

must be tempered with the realization of Fig. 10 whereby structural 

decorrelation has occurred although arguably at much larger length scales as 

compared to those in traditional USE.  
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The results from the melanoma simulations provide a more realistic 

representation of the types of images that can be acquired within the clinic. 

These images provide their own challenge in that although the lesion is 

pigmented, the surrounding structured pattern of the grid used in the phantom 

was not present. In this case, it was desirable to test MIE without the presence 

of the structured grid. Overall, the elasticity images and transects were 

satisfying, with the GC qualitatively outperforming the CC method. One 

interesting observation is related to the apparent suppression of modulus noise 

within the GC elasticity image as compared to the CC. This is more than likely 

due to the suppression of low-frequency image characteristics associated with 

extracting edges within the source and target images.  

Figures 9 and 12 demonstrate the multiresolution aspect to our approach 

by showing the reconstructions at all six resolutions used within the generation 

of our images. One beneficial aspect is the availability of intraresolution 

elasticity images which represent accurate, albeit coarse, assessments of 

image progression. In addition, these intraresolution images could be used to 

dynamically alter the K-means clustering approach to locally refine the 

reconstruction process for the next resolution (although not done in this study). 

This would alter the algorithm representation in Fig. 2 by replacing 

precomputed resolution maps with an internal process block which calculated 

K-means regions dynamically based on areas of interest found during the 

reconstruction process. 
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Conclusions 

In this paper, a novel multiresolution extension to Modality Independent 

Elastography (MIE) has been implemented which simplifies previous work (a 

dual-grid technique) and is shown to be more robust than the single-resolution 

version. In addition, the multi-resolution architecture implemented facilitates 

the monitoring of reconstruction quality at intermediate resolutions. To test 

the approach, a membrane experimental setup was created which utilizes sets 

of optical images for the reconstruction process. The use of optical images to 

generate Young’s modulus reconstructions does represent a new modality 

within MIE development and could potentially be used within dermoscopic 

applications.  Results from phantom and simulation experiments demonstrated 

that the multiresolution MIE approach is viable within the context for both 

nonpigmented and pigmented lesions, respectively. The nonpigmented 

phantom experiment highlighted direct comparisons between images of 

Young’s modulus contrast and their independently measured counterparts, as 

provided by mechanical testing. Overall, the results indicated good localization 

and quantification. However, results did indicate a dependence on the fidelity 

of the reconstruction and the degree of applied deformation. In addition to the 

phantom experiment, a simulation using a clinical image of a pigmented 

melanoma was reported and illustrated excellent localization and 

quantification. Despite potential limitations in elasticity image resolution when 

compared to traditional MRE and USE, MIE’s adaptability to an optical image-

registration platform at multiple scales is an intriguing possibility. 
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Furthermore, this extension to another modality demonstrates that MIE-based 

approaches to elastography represent a new class of algorithms that may yield 

potentially new frameworks for disease characterization. 
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Abstract  

 
This work extends a recently realized inverse problem technique of 

extracting soft tissue elasticity information via non-rigid model-based image 

registration. The algorithm uses the elastic properties of the tissue in a 

biomechanical model to achieve maximal similarity between image data 

acquired under different states of loading. A new multi-resolution, non-linear 

optimization framework has been employed which allows for improved 

performance and object detection. Prior studies have demonstrated successful 

reconstructions from images of a tissue-like thin membrane phantom with a 

single embedded inclusion that was significantly stiffer than its surroundings. 

For this investigation, a similar phantom was fabricated with two stiff 

inclusions to test the effectiveness of this method in discriminating multiple 

smaller objects.  Elasticity values generated from both simulation and real data 
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testing scenarios provided sufficient contrast for detection and good 

quantitative localization of the inclusion areas.    

 

Introduction 

The practice of palpating soft tissue structures in the course of the 

clinical physical exam has had a long-standing history of providing correlation 

of improper stiffness with pathology.  The ability to characterize the 

mechanical properties of tissue is a potential source of additional information 

relevant for detection and diagnosis of a disease process, and has implications 

for the assessment of treatment.  One way in which this could be achieved in a 

minimally invasive manner is by analyzing tissue deformation through imaging 

and/or image processing techniques, which is a central goal of the field of 

elastography [1].  Application of such methods to the interrogation of the 

breast [2,3], skin [4-6], prostate [7], and other accessible organ systems is an 

emerging area of research.   

Many of the current elastography methods are founded in ultrasound 

(US) and magnetic resonance imaging (MR) and involve the estimation of 

induced displacements within the tissue of interest to infer the elasticity 

distribution.  We have pursued the development of a reconstruction method 

utilizing quasi-static deformation and image similarity metrics that has been 

termed 'modality-independent elastography’ (MIE) [8-10] because of its 

potential to handle native anatomical image data from different modalities 
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with simple modification to the acquisition procedure.  Common problems 

facing all of these methods involve limitations with the accurate recovery of 

elastic property values, detection of small lesions in tissue, and the resolution 

of multiple discrete lesions [11,12].  Building upon recent study involving a 

single focal lesion [6], the objectives of this work were to challenge the ability 

of the MIE method to reconstruct a scenario of two small inclusions embedded 

in a homogeneous domain and to further explore the feasibility of the method 

in handling image data from different imaging modalities.  This was 

accomplished by performing simulated reconstructions using images obtained 

from X-ray computed tomography (CT), MR, and digital photography and then a 

reconstruction from a real-world experiment using a thin phantom membrane. 

 

Methods 
 

Elastographic reconstruction framework 

The conceptual framework for our elastographic reconstruction has been 

previously described in [6,8-10]. In brief, an image of a tissue of interest 

(source) is deformed by a biomechanical computer model and compared 

against an acquired image of the same tissue in a mechanically loaded state 

(target). The deformation and comparison is repeated using systemic updates 

of elasticity parameters until a suitable match in intramodal image similarity is 

achieved in a least squares manner to satisfy a multi-resolution, non-linear 

optimization scheme. This process can be classified as an inverse problem, with 

model-based deformation of the source image representing the forward 
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problem. Each of the three major components (model, image comparison, and 

optimization) is described in more detail in the following sections, and a flow 

chart representation of the overall process is included in Figure 13. 

 

Figure 13.  Flow chart of elastographic reconstruction framework. 

 

Elastographic reconstruction framework: Biomechanical model 

A central component to the model-based inverse problem is the manner 

in which the continuum is represented. While the constitutive model that best 

describes tissue deformation mechanics is more complex, for this work, linear 

isotropic elasticity has been employed. The partial differential equation that 

expresses a state of mechanical equilibrium can be written as [13]: 

0=•∇ σ  (1) 

where σ is the Cartesian stress tensor.  

For the purposes of the following experimentation, we also apply either the 

plane stress or plane strain approximations to the thin membrane and breast 

cross-section trials, respectively.  The direct consequence of this is a reduction 

of the 36 stiffness constraints in the general 3D formulation of Cauchy’s Law to 
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the two parameters of Young’s modulus (E) and Poisson’s ratio (ν) in 2D.  These 

simplifications, while significant, are appropriate descriptions of sufficiently 

thin and thick systems under planar loading.   In plane stress, 
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describes the constitutive relationship between the Cartesian stress tensor [σx, 

σy, τxy] and strain tensor [εx, εy, γxy].  Similarly, in plane strain,  
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A finite element (FE) model using triangular elements is constructed from the 

source image and assigned appropriate boundary conditions based on estimated 

displacement or stress (i.e. Dirichlet and Neumann conditions, respectively).  

The standard Galerkin method of weighted residuals [14] is used to construct 

and solve the system. 

 

Elastographic reconstruction framework: Image deformation and comparison 

To further describe the reconstruction process, we introduce some 

additional terminology at this point.  The model domain is equivalent to the 

total area of the FE mesh constructed using the source image as stated above 
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and contains the relevant elasticity information.  The model domain is 

partitioned by a K-means clustering of the element centroids (MATLAB R14, 

Mathworks, Natick, MA) into N number of regions, each of which has a distinct 

set of spatially homogeneous elastic properties.  Subdividing in this manner 

allows for the implementation of the multi-resolution reconstruction whereby 

progressively finer spatial distributions of elasticity parameters are utilized in 

the process, a method that improves upon previous versions using only a single 

resolution [8-10].  Analogously, the comparison domain is an area specified by 

semi-automated segmentation on the target image and contains information 

pertaining to image similarity.  The comparison domain is separated into M 

number of rectangular zones containing approximately equal numbers of pixels. 

The reconstruction algorithm begins by assigning an initial Young’s modulus 

value to each of the regions at the coarsest resolution. Poisson’s ratio is held 

constant at ν = 0.485 to represent a nearly incompressible material.  The FE 

model is solved to determine the nodal mesh displacements, which are in turn 

used to deform the source image. This model-deformed image is then 

compared to the target image for every zone using an intensity-based image 

similarity metric.  While a number of methods are available for such a task, 

here, we utilize the correlation coefficient (CC) [15] throughout, as it has 

empirically demonstrated superior performance over other metrics such as the 

sum of squared differences and normalized mutual information. 
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Elastographic reconstruction framework: Optimization scheme 

Let T be a function that represents the model-based image deformation 

and takes as its input a vector of elastic modulus values E of length N that 

corresponds to the current distribution of regions in the model domain. Then 

for two distributions of modulus values E1 and E2, the similarity between the 

images produced by T(E1) and T(E2) is the vector S of length M containing 

evaluations of the correlation coefficient corresponding to the distribution of 

zones in the comparison domain. The elasticity parameter optimization can be 

written as the minimization of the least squares error objective function 

2
ESTTRUE SS −=Ψ  (4) 

 

where STRUE is the set of similarity values achieved when comparing the target 

image to itself, SEST is the similarity between the model-deformed source and 

the target images using current estimates of the elastic modulus distribution, 

and |•| denotes the vector L2 norm. By definition, STRUE is the maximum value 

for the similarity metric (max CC = 1). Using a Levenberg-Marquardt approach, 

the residual form of equation (4) becomes 

[ ]{ } [ ]{ }ESTTRUE
TT SSJEIJJ −=Δ+ α  (5) 

 

where J = ∂SEST/∂E is the Jacobian matrix of size M x N and I is the N x N 

identity matrix. Because JTJ is typically an ill-conditioned term, the 

regularization parameter α is determined using the methods described in [16].  
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Modulus values of the regions at a given resolution are updated by ΔE until an 

error tolerance is reached or a maximum number of iterations have been 

completed. Upon reaching a stopping criterion, the material property 

description is interpolated onto the next (i.e. finer) resolution and the above 

steps are repeated. Spatial averaging of modulus values within the model 

domain and solution relaxation between successive resolution levels are also 

utilized to improve the stability of the optimization. 

 

Reconstruction Experiments 

A two-material phantom membrane of simulated skin had been 

previously constructed [6] using Smooth-On™ polyurethanes (Smooth-On, 

Easton, PA) designated by the manufacturer as Evergreen 10 and Evergreen 50. 

These materials have essentially indistinguishable colors but vary significantly 

in their elastic modulus values, so the former was used as the bulk material 

and the latter for stiff objects. From material testing, the elastic modulus 

contrast was expected to be approximately 5.7:1.  The phantom was made to 

contain two circular stiff inclusions 1.5 cm in diameter embedded near 

opposing corners of a rectangular field of bulk material measuring 15 cm x 14 

cm. A black permanent marker was used to place a pattern of regularly spaced 

(~1 cm) grid lines across the membrane. The thin membrane was securely 

clamped along two opposite edges and then subjected to a uniaxial tensile 

displacement (~8% strain) by means of a milling vise. A commercial webcam 

(Logitech QuickCam Pro 4000, 960 x 1280 pixel resolution) was rigidly mounted 
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above the membrane to acquire image pairs of the pre- and post-stretched 

states. 

To initially test the method regarding the two-inclusion scenario, a 

simulation using the source image of the membrane was performed by 

deforming it with a prescribed model (plane stress) of known boundary 

displacements and elasticity parameters to generate a target image; high 

modulus values were assigned to elements bounded by a segmentation of the 

inclusion locations. A reconstruction was then performed using the actual 

image data acquired as described above. In both cases, resolutions of N = 16, 

64, 256, 512, and 800 regions and M = 400 zones were used.  The results of the 

idealized and real data reconstructions are shown in Figures 16 and 17, with 

further quantitative evaluation in Table 3.   

 

 
 
Figure 14.  (Left to right): Phantom membrane in undeformed state (source image), 
under deformation (target image), and difference image.  Arrows in the left panel 
indicate the positions of the two stiff inclusions. 
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Figure 15.  Images slices of breast tissue extracted from a CT volume (left) and MR 
volume (right) used in simulation study of the ability of the reconstruction method to 
utilize disparate image data types. 

 

 

 

 

Figure 16.  Reconstruction of the simulated membrane deformation using idealized 
model parameters, progressing through finer resolution distributions (a)-(d) of 64, 256, 
512, and 800 regions. 
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Figure 17.  Reconstruction of the actual membrane data. A faint contour in (d) is 
present to demarcate the actual position of the stiff inclusions.  Again, panels (a)-(d) 
demonstrate the effect of the multi-resolution method in utilizing 64, 256, 512, and 
800 regions to better capture the shape and location of the inclusions. 

 

 

Table 3.  Quantitative reconstruction evaluations. 
 Avg CR Max CR CNR QRS (%) 
Simulation 2.7 4.0 4.4 97.7 
Phantom 2.6 4.1 2.8 88.5 

 

 

In order to examine the robustness of the method regarding its use of data 

from differing sources, simulation reconstructions were performed using image 

slices extracted from breast image volumes obtained from CT and MR scans 

(see Figure 15).  Although these were taken from two different patients, the 

images were selected to be approximately corresponding slices ~2 cm away 

from the chest wall in the coronal orientation of the standard anatomical 

position.  The simulations were set up in the same manner as for the digital 
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photographs, using either one or two inclusions of about 1 cm in diameter 

embedded within the true elasticity distribution and a small compression (~8% 

strain) in the cranial-caudal direction.  The relative stiffness of the inclusions 

was designated to be 5.7:1 for consistency with the material testing data and 

also because the value is fairly representative of breast tumor properties [17].  

The plane strain model approximation was used in the breast simulation trials, 

progressing through resolutions of N = 24, 64, 256, and 576 regions using M = 

200 zones. The reconstruction method was then run for all four test cases, and 

the results are presented in Figures 18 and 19 and Table 4. 

 

 

 

 

Figure 18.  Reconstructions of simulation trials for the CT breast slice using a single 
inclusion (left) and two inclusions (right). The true inclusion boundaries are overlaid in 
each elasticity image. 
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Figure 19.  Reconstructions (bottom row) of simulation trials for the MR breast slice 
using a single inclusion (left) and two inclusions (right).  The true elasticity 
distributions are also shown (top row) for comparison. 

 

 

 

Table 4.  Quantitative reconstruction evaluations. 

 Avg CR Max CR CNR QRS (%) 
CT (1 inclusion) 2.1 3.1 3.0 97.6 
CT (2 inclusions) 2.0 2.6 3.5 96.9 
MR (1 inclusion) 2.8 3.7 20.0 100 
MR (2 inclusions) 2.7 3.7 5.7 99.8 
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Reconstruction evaluation 

The fidelity of the elasticity reconstruction was evaluated on its ability 

to detect the presence of an inclusion based on classification of the material 

property distribution, and the retrospective accuracy of localizing the lesions.  

The elastic properties as a whole were treated as a Gaussian mixture of two 

classes and separated by a threshold established via the method described in 

[18].  The likelihood of detecting a lesion in the elasticity image was found 

using the contrast-to-noise ratio as defined by [12,19]: 

 

22

2)(2

BL

BLCNR
σσ
μμ

+
−

=  
(6) 

 

where μ and σ 2 are the sample mean and variance of a material property 

distribution and the subscripts L and B denote the lesion and bulk material 

classes, respectively.  As a quantitative assessment of the localization of the 

lesion(s), the positive predictive value of correctly identifying a lesion material 

within the known segmented region of the inclusions was used as a 'quality of 

reconstruction score' (QRS).  This value is significant because identification of 

the lesion border and material classification are done independently, so any 

user knowledge of the test scenario does not influence the performance of the 

measure.  Cutoffs for successful detection and localization were set at CNR≥2.2 

as noted by [12] and QRS≥80% as determined by prior study in our laboratory.  

The average modulus contrast is found from the ratio of the means of the two 
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material classes, and a peak modulus contrast value is also reported by taking 

the ratio of two manually selected homogeneous regions of approximately 

equal area known to be representative of the two materials.  It should be 

noted that in other work not presented here, the definition of QRS included a 

weighting factor provided by the estimated reconstruction modulus contrast, 

but for the current purposes, only localization accuracy was considered to 

maintain an objective evaluation of inclusion detection. 

 

Results 

Figure 16 demonstrates the ability of the reconstruction method to 

produce an elasticity map from the simulation data with good localization of 

the inclusions that are easily visually distinguishable from the surrounding bulk 

material. The progression through resolutions of N = 64, 256, 512, and 800 

regions shows improving delineation of the inclusions and elastic contrast.  

Figure 17 demonstrates a similar behavior for the reconstruction of the 

acquired phantom membrane data, with both spatial definition and modulus 

contrast increasing with the finer discretization.  Table 3 summarizes the 

quantitative evaluation of the reconstructions in both simulation and phantom 

trials, including CNR, contrast ratio, and QRS values.  The CNR values are 

sufficient to allow for discrimination of the two materials and the identification 

of the inclusions was determined to be accurate in both cases.  The 

reconstruction of the phantom membrane does show some misclassification 
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along the border where the deformation was applied as well as in the corner 

adjacent to one of the inclusions (see Figure 17d).  

Figures 18 and 19 show the final reconstruction results for the CT and MR 

breast slice simulations using either one or two inclusions.  In both test 

scenarios, the resolvability of the stiffer material was found to be adequate 

according to the CNR threshold, but definitely higher in the MR-derived 

elasticity images.  Localization of the inclusions yielded excellent QRS values in 

reconstructions using either modality, again higher (though slightly) for the MR 

images. 

 

Discussion 

The results of the phantom membrane experiment are encouraging 

because of their similarity to the idealized simulation. Despite nonlinear 

model-data mismatch, out-of-plane distortions during stretching, and possible 

boundary condition inaccuracies, the elasticity reconstruction demonstrated 

good localization of the two small inclusions.  The majority of the problems in 

reconstruction are mostly likely due to noise incurred in the mapping of the 

boundary displacements. It should be noted that the phantom reconstruction 

was achieved with a non-pigmented lesion (see Figure 14, arrows), indicating 

that deflections of the image structure are capable of driving the image 

similarity metric of the reconstruction process.  This does intuitively suggest 

that some metric for rating the complexity and density of image pattern in 

relation to algorithm success may be important and is currently under 
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investigation.  Preliminary data not presented in this work indicates that such a 

threshold does exist for image data that can be properly analyzed by the 

current framework.  The modality independence of the method is also 

supported by the results here; clearly, the Hounsfield units of CT, floating 

point values from an MR volume, and the luminance captured by the CCD 

sensor of a digital camera are quite different types of data to handle because 

they are based on different physical principles.  The simulation reconstructions 

demonstrate that the method is indifferent to these differences by treating the 

data as an arbitrary range of intensities and will converge towards the true 

elasticity distribution based on the image pattern available.  This is a possible 

explanation for the qualitatively more satisfactory results from the MR 

simulations compared to the CT trials because the distribution of intensities 

from the former modality yielded a more diversified histogram, an attribute 

that should naturally aid an intensity-based metric. 

While an ideal reconstruction would also be accurate in characterizing a 

lesion by its modulus contrast, our focus in the study was to test the ability of 

the method to detect and localize the inclusions.  In previous experimentation 

with reconstructions of single focal lesions, we have been generally successful 

in achieving a contrast ratio within 25% of the true/expected value. It is 

somewhat troubling that the contrast ratios calculated here did not meet that 

criterion, although the experiments with the phantom membrane came fairly 

close (28%).  However, these results underscore the difficulty of the scenarios 

in not only having to deal with multiple inclusions but quite small ones in both 
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the true physical sense and also the scale of the domain.  Any of the given 

inclusions tested in simulation and with the real data were detected within a 

homogeneous domain approximately an order of magnitude larger (e.g., 1.5-cm 

lesions in a 15 cm x 14 cm domain for the phantom).  The expectation of being 

able to identify with any confidence the presence of the inclusion is 

comparable to the observations made in [12] where the test of finding a single 

5-mm lesion within a 4 cm x 5 cm domain proved to be the most problematic.  

Therefore, the localization of the lesions as determined by the CNR and QRS 

metrics is deemed to be a success, and further investigation into the nature of 

the method with respect to the scale of the lesion and domain is warranted. 

 

Conclusions 

In this work, we have presented further testing of a method for 

recovering elasticity parameters by maximizing the similarity between images 

of a tissue of interest acquired under two different states of quasi-static 

loading within the context of an inverse problem.  The specific experiments 

presented here examined the effectiveness of the technique for the detection 

of multiple small discrete focal lesions embedded in an otherwise homogeneous 

medium, as well as further proof-of-concept work in its applicability to utilize 

image data from various modalities.  In both cases, the method provided 

accurate localization of the lesions based on the reconstruction of relevant 

elasticity contrast.  Because the biomechanical model, multi-resolution 

optimization, and image acquisition are each modular components of the 
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framework, this elastographic reconstruction technique is readily extensible for 

added sophistication, and there is ongoing work to enhance the methodology 

with more complex models and advances in imaging technology. 
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Abstract  

An elastographic reconstruction method has been developed to recover 

the material properties of soft tissue by model-based analysis of image data 

acquired at different states of mechanical loading. The algorithm utilizes 

image similarity as part of the cost function for a multi-resolution, non-linear 

optimization. Previous work with a phantom membrane used for simulated 

dermoscopic application has prompted this preliminary investigation of the 

relative effects of additive image noise and boundary condition determination 

errors on the performance of the method. The results as quantified by 

elasticity contrast and localization accuracy indicate that the reconstruction 

process is robust in the presence of realistic levels of image corruption and 

tolerates the majority of boundary condition mapping errors. 
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Introduction 

The practice of palpating soft tissue structures in the course of the 

physical exam for assessing tissue health has had a long-standing clinical history 

of providing correlation between improper stiffness and pathology. The ability 

to characterize the mechanical properties of tissue is therefore a potential 

source of information relevant for both diagnosis and prognosis. One way in 

which this could be achieved in a non-invasive manner is through analysis of 

tissue deformation with imaging and image processing techniques, which is a 

central goal of the field of elastography [1].  

The conceptual framework for our elastographic reconstruction has been 

previously described in [2-4]. In brief, images of a tissue of interest are 

acquired in an initial (source) and then mechanically loaded state (target). The 

source image is deformed by a prescribed computational model and compared 

to the target. This is repeated in an iterative process using updates to the 

elasticity parameters of the model as generated by a multi-resolution, non-

linear optimization scheme in order to achieve a suitable match in image 

similarity. Because the goal of the reconstruction is to determine a spatial 

mapping of tissue elasticity, this process can also be classified as an inverse 

problem.   

Our observations during the ongoing development and testing of this 

method have prompted questions concerning the quality of data necessary and 

sufficient to achieve satisfactory results (i.e. fidelity of the reconstructed 
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elasticity image). The primary inputs to the reconstruction method are the 

acquired images and the delineated boundary conditions on the region of 

interest. While it is clearly preferable to have idealized data, in reality, both 

inputs involve varying levels of manual interaction. As an initial study, we have 

sought to test the effects of degradation in data quality on the end 

reconstruction by using additive image noise and randomized boundary 

condition selection error. 

 

Methods 

Elastographic Reconstruction Framework 

There are three major components in the reconstruction framework: a 

biomechanical model of tissue response to applied deformation, a method of 

image comparison, and an optimization scheme. For the current version, a 

continuum-based model of mechanical equilibrium using isotropic Hookean 

linear elasticity with a plane stress approximation is employed [5]. This allows 

for a reduction of the general 3D formulation of Cauchy’s Law to the two 

parameters of Young’s modulus and Poisson’s ratio in 2D. The displacement 

solution of the finite element representation of the model, solved using the 

standard Galerkin method of weighted residuals [6], is then applied to the 

nodes of a simple triangular mesh based on the source image domain in order 

to perform image deformation. The mesh is partitioned by K-means clustering 

(MATLAB R14, Mathworks, Nattuck, MA) into N number of regions, each of 

which describes a distinct set of homogeneous elastic properties for a grouping 
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of adjacent elements. This allows for implementation of the multi-resolution 

approach by creating a hierarchy of increasingly finer spatial distributions of 

elasticity parameters, which has been shown to be an improvement upon 

previous versions using only a single resolution [2,3]. A second discretization is 

performed to divide the target image into M number of rectangular zones 

containing approximately equal numbers of pixels. The deformed source image 

is compared to the target using an intensity-based image similarity metric 

(here, the correlation coefficient [7]) in the evaluation of the least squares 

error objective function  

∑
=

−
M

m
ESTTRUE SS

1

2)(  

 

(1) 

 

where STRUE is an Mx1 vector of the (maximum) similarity values achieved when 

comparing the target image to itself and SEST is the Mx1 vector of similarity 

between the target and model-deformed source image created using current 

estimates of the elastic modulus distribution. It should be noted that STRUE has 

by definition a value of 1 for the correlation coefficient. 

The minimization of equation (1) using a Levenberg-Marquardt approach 

takes the form  

[ ]{ } [ ]{ }ESTTRUE
TT SSJEIJJ −=Δ+ α  (2) 
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where J is the Jacobian matrix of size MxN estimating ∂S/∂E, ΔE is the Nx1 

vectors of updates to the current elasticity values, and α is the scalar 

regularization term for the Hessian matrix as described in [8].  

 

Material Preparation and Image Acquisition 

For our simulation purposes, a two-material skin phantom had been 

previously constructed [2] as a thin membrane measuring 15 cm x 15 cm, with 

a single 5-cm circular stiff inclusion embedded in the center (Figure 20). The 

phantom was manufactured with Smooth-On™ polyurethanes (Smooth-On, 

Easton, PA) Evergreen 10 and Evergreen 50. These materials have essentially 

indistinguishable colors but vary significantly in their elastic modulus values, so 

the former was used as the bulk material and the latter for the inclusion. Based 

on material testing, the expected contrast ratio of Young's modulus values was 

determined to be approximately 5.7:1.  A black permanent marker was used to 

place a pattern of regularly spaced (~1 cm) grid lines on the membrane. The 

membrane was clamped along two opposite edges and then stretched in a 

uniaxial fashion by means of a milling vise. A commercial webcam (Logitech 

QuickCam Pro 4000) was mounted above the assembly to acquire image pairs of 

the membrane in pre- and post-stretched states (960 x 1280 pixel resolution, 8-

bit grayscale). 
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Reconstruction Experiments 

Based on prior work, a data set consisting of a particular image pair and 

associated boundary conditions known to produce a satisfactory reconstruction 

was designated as the gold standard for the remainder of the experiments 

(Figure 20). In order to test the effect of increasing amounts of additive noise 

on the reconstruction algorithm, Gaussian random fields of 1, 5, 10, 15, 20, 25, 

and 30% noise were applied to the base target image in three separate trials. 

This presents a challenge that ascertains the ability of the similarity metric and 

objective function to discern a proper match.  

 

Figure 20.  Experimental phantom membrane system (left) and input image with 
overlaid finite element mesh (right). The inclusion location is indicated by the arrow 
and dotted line. The mesh designates the actual region reconstructed. 

 

The current method for selecting Dirichlet boundary conditions on the finite 

element mesh is semi-automated and requires the user to make a final 

determination on point correspondence. The second experiment was intended 

to simulate the targeting error of the user (e.g. visual cues and input device 

control). Each test involved applying randomized vectors of equal magnitude to 

alter the boundary conditions of the gold standard data set. Errors of 0.1, 0.2, 

0.3, 0.5, 0.75, 1.0, 1.5, and 2.0 mesh units (scaled to be equivalent to pixel 
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coordinates) were used in two separate trials for a total of 16 reconstructions. 

Sub-pixel magnitudes were included after determining that the accuracy of 

selecting a feature point in the image/mesh was typically less than or equal to 

0.5 units for users ranging from moderate to expert skill. 

For all reconstructions, resolutions progressing through N = 16, 36, 64, 

144, 256, and 400 regions and M = 9 similarity zones were used; domains were 

initialized to homogeneous elasticity and Poisson’s ratio held constant at 0.485 

to represent nearly incompressible material(s).  

 

Reconstruction Analysis 

The final reconstructed elasticity values were modeled as a mixture of 

two Gaussian distributions, and a threshold was established to maximize inter-

class variation [9] and subsequently classify each region as bulk or stiff 

material. Because Dirichlet boundary conditions are exclusively used in these 

reconstructions, the method is only sensitive to relative differences in 

elasticity. The quantities used in evaluating reconstruction success are the 

elasticity contrast ratio, localization accuracy of the inclusion, and an overall 

measure designated the ‘quality of reconstruction score’ (QRS).  The elasticity 

contrast ratio (CR) was calculated from the mean values of the two material 

classes, and the positive predictive value of identifying stiff material within the 

independently segmented boundary of the inclusion gives a measure of 

localization accuracy (LA). The quality of reconstruction is simply then the 
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product QRS = CR*LA, which allows the user to consider the other two measures 

in conjunction. 

  

Results 

Figures 21 and 22 show examples of reconstructions achieved under 

various image noise and boundary condition errors, and individual localization 

errors and contrast ratio values are listed in Table 5. Note that the data for the 

image noise experiment was averaged from the three trials, and that the data 

presented for the boundary condition experiment is from one [representative] 

trial. Figure 23 is a plot of the reconstruction quality decreasing with 

increasing image noise, and Figure 24 shows the reconstruction quality trend 

plotted against the change in initial alignment error (detailed in the following 

section) relative to that of the gold standard. 

 

 

Figure 21.  Representative reconstructions with image noise. From top left: 1, 5, 10, 
20, 25, and 30% additive Gaussian noise. The reconstructions are visualized as two 
materials, with whiter areas indicating higher elasticity contrast values. 
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Figure 22.  Representative reconstructions with boundary condition error. Left to 
right: 0.1, 0.2, 0.3 units (top row); 0.75, 1.0, 2.0 units (middle row, trial #1); 0.75, 
1.0, 2.0 units (bottom row, trial #2). Error magnitudes greater than or equal to 0.5 
mesh units are not accurate predictors of reconstruction quality. 

 

Table 5.  Reconstruction quality under noise conditions 

Additive image noise 
% Noise 1 5 10 15 20 25 30 

LA 0.92 0.90 0.91 0.70 0.69 0.66 0.56 
CR 3.56 3.45 3.45 3.24 2.88 2.83 2.68 

 

Gold standard: LA = 0.95, CR = 3.60 

Boundary condition error 
Err 0.1 0.2 0.3 0.5 0.75 1.0 1.5 2.0 
AE 0.96 3.32 2.21 102 0.93 32.2 12.6 7.66 
LA 0.87 0.92 0.88 0.59 0.94 0.86 0.86 0.96 
CR 3.63 3.68 3.44 2.91 3.46 3.71 3.78 3.30 
CR = elasticity contrast ratio, LA = localization accuracy 
AE = initial alignment error (%), Err = error magnitude. 
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Figure 23.  Reconstruction quality vs. percent additive image noise.  The drop-off after 
10% additive noise indicates the threshold of tolerance for the method. 

 

 

Figure 1 

 

Figure 24.  Reconstruction quality vs. percent change in initial alignment relative to 
gold standard.  The majority of errors tested produced satisfactory reconstructions. 
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Discussion 

From visual inspection of Figure 21, it is apparent that the achieved 

reconstruction becomes more inaccurate with increased image noise. However, 

the ability to identify and localize the stiff inclusion is not significantly 

impaired until a noise field of greater than 10% is applied. The threshold was 

found by determining which level of noise provided the best minimum sum 

squared error fit of two lines to the distribution of reconstruction quality in 

Figure 23.  This would indicate that the similarity metric and objective 

function are robust to intensity deviations of about 6 gray levels. While 

Gaussian noise is one of several possible types and may not always be an ideal 

model, it is still relevant to acquisition inaccuracy and corruption processes 

that may be encountered across several medical imaging modalities. The use of 

an intensity-based similarity metric appears to give the method an advantage 

in being generally insensitive to reasonably expected amounts of image noise.  

Figure 22 demonstrates that because of the random nature of the 

boundary condition errors, the magnitude is itself not an accurate indicator of 

reconstruction quality. This necessitated the introduction of a more suitable 

parameter that accounts for the net effect of the altered boundary conditions 

in order to perform fair evaluations. In essence, randomizing the vectors at 

every node causes the optimization to use an unpredictable starting pose and 

increases its chance of converging to an improper minimum. Therefore, the 

‘initial alignment error’ (AE) is defined as the relative percent change between 

the objective function evaluation using the gold standard boundary conditions 
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and those of the test case. An as example, it could be assumed that vectors of 

magnitude 0.5 would be a much more tolerable error than 2.0, but it is the 

significantly larger AE of the former that actually predicts the poor outcome. 

However, it should also be noted (results not shown here) that even if the same 

set of error vectors are scaled over varying magnitudes, there is no clear trend 

in alignment error or reconstruction quality. This appears to imply that certain 

boundary nodes, most likely those in the direction of largest strain, have a 

greater effect on reconstruction and merit particular care in selection. Other 

factors influencing unfavorable reconstructions are most likely nonlinear 

effects not predicted by the current model as well as an inherent lack of 

discrimination by intensity-based similarity metrics in analyzing the regularity 

of the imposed grid pattern. Nevertheless, for the error magnitudes tested that 

best approximate realistic inaccuracies (i.e. <0.5 units), the alignment errors 

were small and quality of the end reconstruction was seen to be quite good. 

This qualitatively validates the current method of determining point 

correspondence as a reasonable procedure with an accommodating margin 

(factor of four) in light of typical user interaction.  

 

Conclusions 

In this work, we have presented a method for recovering elasticity 

parameters from image data of thin membrane structures by maximizing the 

image similarity between two different states of mechanical loading within the 

context of an inverse problem. The biomechanical model, multi-resolution 
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optimization, and image acquisition are each modular components of this 

elastographic reconstruction framework, making it extensible to added 

sophistication. Tests were conducted to examine the tolerance of the method 

to degraded or improper inputs. The results indicate that the gold standard 

data set was mostly optimal for obtaining a successful reconstruction. Widening 

disparities in either image data or boundary condition selection from that in 

the gold standard caused observable trends of declining reconstruction    

quality.  Based on these observations, it appears that the method handles most 

expected variations encountered in image acquisition as well as the majority of 

typical user inaccuracies. Because there are complicated effects associated 

with mapping of the Dirichlet boundary conditions in constraining the 

displacement solution of the model, further study on inter-rater variability in 

selection as well as comparisons with more automated point correspondence 

methods is ongoing.  
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Abstract  

This paper reports on the development and preliminary testing of a 

three-dimensional implementation of an inverse problem technique for 

extracting soft tissue elasticity information via non-rigid model-based image 

registration.  The modality independent elastography (MIE) algorithm adjusts 

the elastic properties of a biomechanical model to achieve maximal similarity 

between images acquired under different states of static loading.  A series of 

simulation experiments with clinical image sets of human breast were 

performed to test the ability of the method to identify and characterize a 

radiographically occult stiff lesion.  Because boundary conditions are a critical 
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input to the algorithm, a comparison of three methods for semi-automated 

surface point correspondence was conducted in the context of systematic and 

randomized noise processes.  The results illustrate that 3D MIE was able to 

successfully reconstruct elasticity images using data obtained from both 

magnetic resonance and X-ray computed tomography systems.  The lesion was 

localized correctly in all cases and its relative elasticity found to be acceptably 

close to the true values.  In addition, the inaccuracies of surface registration 

performed with thin-plate spline interpolation did not exceed empiric 

thresholds of unacceptable boundary condition error. 

 

Introduction 

Breast cancer is the most common cancer of women in the United 

States, the second most common cause of cancer death in women, and the 

leading cause of death in women ages 45 to 55. Estimates for the year 2007 

indicate that 178,480 American women will be diagnosed with the disease and 

40,910 women will die from it (ACS, 2007).  While many advances have been 

made in the treatment of the disease, the ability to detect its presence for 

either screening or diagnostic purposes remains an area of active research 

involving many novel forms of imaging.  The characterization of the mechanical 

properties of breast tissue is an important potential source of clinical 

information because of the long-standing association of palpable differences in 

stiffness with possible pathological states.  A minimally invasive methodology 

for analyzing tissue elasticity through imaging and/or image processing 
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techniques is a central goal of the field of elastography (Parker et al., 2005), 

with the application of various techniques being found not only in the 

interrogation of the breast (McKnight et al., 2002; Melodelima et al., 2006; 

Sinkus et al., 2000), but also skin (Miga et al., 2005; Tsap et al., 1998; Zhang 

et al., 2004), prostate (Curiel et al., 2005; Egorov et al., 2006), and other 

accessible organ systems.  

Many of the current elastography methods are founded in ultrasound 

(US) (Ophir et al., 1991; Ophir et al., 2000) and magnetic resonance (MR) 

(Manduca et al., 2001; Muthupillai et al., 1995) imaging and involve the 

estimation of induced displacements within the tissue of interest to infer the 

elasticity distribution.  We have recast the problem as a physically-constrained, 

non-rigid image registration utilizing numerical models of static deformation 

with image similarity metrics to reconstruct the spatial distribution of elasticity 

parameters.  This technique has been termed 'modality-independent 

elastography’ (MIE) (Miga, 2002, 2003; Washington and Miga, 2004) because of 

its ability to handle anatomical images from different sources with relatively 

simple modifications to the acquisition procedure.  To date, data from MR, X-

ray computed tomography (CT), and digital photography have been used to 

successfully drive the algorithm in two-dimensional (2D) work.  Others have 

also pursued similar approaches within the context of ultrasound elastography 

(Garra et al., 1997; Gokhale et al., 2004; Sarvazyan et al., 1995), optical 

image analysis (Tsap et al., 1998), and to a lesser degree magnetic resonance 

elastography (Fowlkes et al., 1995).  While the use of MIE in 2D has been 
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illuminating for algorithmic development and may have its own applications in 

studying the more planar system of the skin, ultimately, translation of the 

method to utilize volumetric data is desirable (if not necessary) in order to 

provide an accurate representation of organs such as the breast as a whole.  In 

this work, we present a newly realized three-dimensional (3D) version of MIE 

along with simulation experiments to evaluate its performance.  In addition, 

some potential effects of degraded input quality are addressed by examining 

robustness of the algorithm to inaccuracies in specified boundary conditions 

and then comparing the reconstruction fidelity of three different techniques 

developed for semi-automatic generation of boundary conditions. 

 

Methods and Materials 
 

MIE reconstruction framework 

The conceptual framework for our elastographic reconstruction has been 

previously described in (Miga, 2002, 2003; Miga et al., 2005; Washington and 

Miga, 2004).  To review, an image of a tissue of interest (source) is deformed 

by a biomechanical model and compared against an acquired image of the 

same tissue in a mechanically loaded state (target).  Iterative updates of 

elasticity parameters to the model are performed until a suitable match in 

image similarity is achieved in a least squares manner to satisfy a non-linear 

optimization scheme.  This process as illustrated in Figure 25 can be classified 

as an inverse problem, with model-based deformation and registration of the 

source image representing the forward problem.  
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Figure 25.  Schematic of MIE framework.  After acquisition of image data, surface 
representations are segmented from the pre- and post-deformation volumes (source 
and target, respectively).  A number of pre-processing steps are performed to 
generate boundary conditions for the biomechanical model, which produces a 
deformed image that can be compared with the true target volume.  The optimization 
routine updates the elasticity distribution until the best similarity is achieved. 

 

The three major components of the reconstruction algorithm are the 

biomechanical model, image comparison, and optimization.  Although there are 

a number of models for soft-tissue mechanics, it is reasonably appropriate to 

begin with a general elastic body.  The partial differential equation that 

expresses a state of mechanical equilibrium is 
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0=⋅∇ σ  (1) 

 

where σ  is the Cartesian stress tensor (Boresi and Chong, 1999).  We have 

elected to describe the constitutive tissue behavior using Hooke’s Law of linear 

elasticity, which states that the strain is proportional to the applied stress, and 

further assume that materials are isotropic and nearly incompressible in 

nature.  The description of the constitutive relationship between stress and 

strain is ultimately expressed in terms of the elasticity parameters E (Young’s 

modulus) and ν (Poisson’s ratio). 

A finite element representation of the model is constructed from the 

source image.  Elements of the mesh are grouped using a K-means algorithm by 

initializing a number (N) of seed points that are the centers of the clusters and 

iteratively minimizing their summed distance to all element centroids in the 

mesh.  This process defines a set of nearly equally-sized but spatially non-

uniform regions that are homogeneous with respect to their material properties 

and establish the ‘resolution’ of the reconstructed elasticity image.  After 

assigning appropriate boundary conditions based on estimated displacement or 

stress, the standard Galerkin method of weighted residuals (Lapidus and 

Pinder, 1982) is used to construct a matrix system.  The solution of that system 

yields displacements that are used to deform the source image.  A second 

discretization is performed by binning the target image into M groups of 

contiguous voxels termed zones.  The model-deformed image is then compared 

to the target by summing the similarity metric evaluated for all zones.  The 
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correlation coefficient (Fitzpatrick et al., 2000) is used throughout this work as 

it has empirically demonstrated better performance for our method over other 

intensity-based metrics such as the sum of squared differences and normalized 

mutual information.  Optimization of the elasticity parameters is taken as the 

minimization of the objective function 

2
ESTTRUE SS −=Ψ  (2) 

 

where STRUE is the set of similarity values achieved when comparing the target 

image to itself, SEST is the similarity between the target and model-deformed 

source images using current estimates of the elastic modulus distribution, and 

|•| denotes the vector L2-norm.  Note that by definition, STRUE for the 

correlation coefficient has a constant value of 1.  Differentiating (2) with 

respect to the elasticity distribution and setting the resulting expression equal 

to zero generates a series of nonlinear equations that can be solved using the 

Levenberg-Marquardt method,  
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where J is the Jacobian matrix of size M x N, and ΔE is the vector of updates to 

the material property distribution defined by the regions.  The regularization 

parameter α  uses an empirical scalar factor λ as determined by the methods 
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described in (Joachimowicz et al., 1991).  Each column of the Jacobian matrix 

is a finite difference approximation of the change in image similarity over all 

zones due to the perturbation of a single material property region, such that 
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(4) 

 

Modulus values contained in E are updated by ΔE until an error tolerance on the 

relative objective function error evaluation is reached or a maximum number 

of iterations are completed.  Spatial averaging of elasticity values in the model 

and solution relaxation between iterations are also utilized to improve the 

stability of the optimization.  

 

Parallel computing framework 

The transition of this method from 2D to 3D entails a much higher 

computational overhead that affects all parts of the reconstruction.  The mesh 

needed to describe the entire breast as opposed to a single slice is at least 20-

40 times greater in the number of structural components (nodes and elements), 

and the model must account for an additional degree of freedom.  The 

resulting system of equations to be solved is thus nearly two orders of 

magnitude larger.  The finite difference approximation of each column of the 

Jacobian matrix requires a “forward solve” consisting of the biomechanical 
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model, image deformation, and evaluation of the similarity metric.  Because 

this must be done for every elasticity region, attempting to adequately sample 

the spatial domain makes the building of this matrix the primary expenditure of 

computing resources.   

In order to achieve a reasonable level of performance, the Message 

Passing Interface standard for parallel processing is used to distribute 

formation of the Jacobian among a number of communicating nodes controlled 

within a static SPMD (single process, multiple data) scheme.  The Portable 

Extensible Toolkit for Scientific Computation (PETSc) (Balay et al., 2004; Balay 

et al., 1997) has provided the necessary coding base for interfacing sparse 

matrix system solvers with our C/C++ Gauss-Newton optimization routine.  This 

design scales readily to the number of processors available; it has been tested 

on a homogeneous cluster of eighteen processors (2.0 GHz Pentium4 Xeon, 1GB 

RAM) located in the laboratory, as well as a heterogeneous cluster of hundreds 

of processors available through the Vanderbilt Advanced Computing Center for 

Research and Education project.  The use of many processors is capable of 

producing a nearly linear speedup and otherwise agrees in principle with the 

performance impact suggested by Amdahl’s Law (Ahmdahl, 1967). 

 

Simulation experiment setup 

For this work, a simulation experiment is defined by the creation of an 

idealized target image volume from a deformation achieved by specification of 

boundary conditions at the surface of the breast.  This ensures data fidelity in 
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order to effectively evaluate reconstruction performance in the optimization 

and model characteristics.  Two image volumes of human breast were made 

available to further test the modality independence of the algorithm.  The first 

was obtained from a dedicated breast CT scanner (256 x 256 x 130, voxel size 

0.6 mm3) as described in (Boone et al., 2006; Boone and Lindfors, 2006; Boone 

et al., 2001), and the second from a Philips Achieva 3.0-T MR unit (256 x 256 x 

98, voxel size 1.0 mm3) using a clinically-approved transmit-receive double-

breast coil to acquire a 3D T1-weighted exam with a fat-nulling inversion pulse 

(TR/TE/a/NEX=4.6 ms/2.3 ms/10o/1) (Yankeelov et al., 2007).  The surfaces of 

the breast were segmented (ANALYZE 6.0, Mayo Clinic, Rochester, MN) to 

create tetrahedral meshes composed of 39,013 nodes connected in 214,163 

elements for the CT volume and 20,623 nodes and 111,142 elements for the MR 

volume.  A 2-cm spherical tumor was synthetically implanted in the center of 

each mesh by assigning a stiff modulus to appropriate member elements that 

was six times higher than the surrounding material (Krouskop et al., 1998; 

Samani et al., 2007).  Tissue deformation was performed  by creating a set of 

displacements calculated to approximate a Gaussian stress distribution applied 

to a rectangular area on lateral surface of the breast.  The displacements were 

then applied to the original volumes in order to create the desired target 

images.  Figure 26 illustrates the setup of the simulation data. 
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(a) (b) 
 
Figure 26.  (a) CT data set and (b) MR data set used for 3D MIE simulations. Surface 
renderings of the image volumes (top row) and meshes (bottom row) are shown for the 
pre- (source) and post-deformation (target) scenarios. 

 

Reconstruction experiments 

Reconstructions using spatial a priori knowledge of the location and size 

of the inclusion were first performed in order to constrain the problem, as well 

as the computational expense of the Jacobian matrix, to a two-material 

discrimination of relative stiffness (elastic contrast).  A second set of 

experiments were then used to address the viability of the method to perform 

a generalized detection of the lesion with no knowledge of the actual structure 

of the domain.  To run these naïve reconstructions for the CT data set, 3180 

material regions and 733 voxel similarity zones were partitioned, while in the 

MR data set, 3166 regions and 768 zones were used.  In all cases, the 

reconstruction was initialized with a homogeneous elasticity distribution and 
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the value of Poisson’s ratio held constant at ν = 0.485 to represent a nearly 

incompressible material. 

 

Evaluating boundary condition influence 

 In addition to image acquisition, the other major input to the 

reconstruction algorithm is the delineation of boundary conditions on the 

region of interest over which the model is applied.  While relatively easy to 

control in simulation, in a real clinical situation, this presents the challenge of 

accurately determining point correspondences between the source and target 

breast surfaces.  The effect of any inaccuracies is cumulative, as errors are 

propagated from the model to the image deformation and finally the similarity 

measurements.  In previous 2D work, manual delineation of boundary 

conditions was possible with guidance and correction using standard computer 

input devices (i.e. a mouse).  However, the increased complexity of mesh 

geometry in 3D necessitates a more automated technique of determining 

correspondence between two surfaces.  Potentially non-trivial random and/or 

operator-dependent noise is introduced into the generated boundary 

conditions.  Therefore, the following experiments were performed to examine 

the ability of the algorithm to tolerate various types of mis-mappings. 

 

Robustness to randomized boundary errors 

The gold standard boundary conditions used to create the simulated 

target image volumes were deliberately disrupted to examine the effect of 
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random noise on reconstruction fidelity.  A series of magnitudes ranging from 

0.01 to 2.0 voxel units (mesh coordinates normalized by their respective 

spacing in image space) were applied to the CT and MR data sets.  Therefore, 

every boundary position is displaced by the same amount but in a completely 

unpredicted manner, as illustrated in Figure 27.  These altered boundary 

conditions sets were utilized in the reconstruction of the a priori two-material 

test case, and the tolerance of the method was evaluated by calculating the 

average reconstructed elasticity contrast ratios over four trials of each level of 

noise, with deviations less than 20% from the true stiffness being deemed 

acceptable. 

 

 
(a) (b) 

 

Figure 27.  Examples of distortion due to additive randomized error. For effect, noise 
of 2.0 voxel units is shown as applied to the gold standard boundary condition set for 
CT (a) and MR (b).  At these extreme levels, the smooth surface of the breast as 
originally captured in Figure 26 is completely lost, and the forced reconfiguration of 
internal elements in the finite element mesh adversely affects all aspects of the 
reconstruction. 

 
 
 
 

 



 

 

108 

Feasibility of automated boundary condition generating methods 

Three methods of surface registration and point correspondence were 

considered as the basis of a semi-automated method for determining boundary 

conditions input to the reconstruction algorithm.  Two were specifically 

developed for this work by attempting to use potential energy distributions 

derived from classic partial differential equations (PDEs) for surface matching, 

and the other is a free-form geometrical warping.  

If the flow of a hypothetical substance over both the source and target 

breast surfaces is taken to be a conserved process and modeled using potential 

theory, correspondence can be assigned by matching areas of similar energy 

deposition, that is, the equivalent level sets.  The algorithm for the PDE-based 

surface matching methods can be summarized in the following steps:  

1.  Determine an energy distribution for each surface.    Laplace’s 

equation is commonly used to describe the steady-state distribution of 

potential energy Φ in a system: 

    02 =Φ∇−      (5) 

Similarly, the diffusion equation describes the temporal change in 

potential over a region: 

    Φ∇=
∂
Φ∂ 2D
t

     (6) 

where D is the diffusion coefficient.  Each PDE is solved over both breast 

surfaces (source and target).  For both equation (5) and (6), the nipple is 
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assigned as an area of high potential energy.  Additionally, with equation 

(5), nodes at the chest wall are assigned a value of 0 in order to obtain a 

non-trivial solution, whereas the propagating front produced by (6) is 

artificially halted at the chest wall boundary.  While both PDE solutions 

similarly establish an energy gradient over the breast surfaces, their 

application in the following steps results in more apparent differences. 

2.  Determine correspondence between energy distributions.  From the 

solution of the PDEs on the source surface, a series of spatially 

distributed isocontours representing distinct potentials are determined.  

For each level set, an isocontour of equivalent potential energy is found 

on the target surface, and the two curves matched according to the 

symmetric closest point method described by (Papademetris et al., 

2002).   

3.  Generate boundary conditions.  By extracting a number of 

isocontours of different values, the resulting point correspondence 

vectors define a relatively dense three-dimensional displacement field.  

The displacement for each boundary node can then be interpolated from 

the set of its nearest neighbors.  

The final method employs thin-plate splines (Goshtasby, 1988) to generate a 

set of boundary conditions.  In this well-established method of non-rigid 

transformation, a number of control points with known correspondences 

establish constraints on the deflection of a hypothetical thin sheet of material 

in order to best warp the two surfaces together.  Displacements at each 
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boundary node are then simply interpolated from the calculated fit.  For these 

simulation experiments, a subset of boundary nodes was used to represent 

physical markers on the breast surface.  Forty points were uniformly 

distributed over the CT mesh and eighty for the MR mesh in order to handle the 

more highly variegated shape of the latter data set. 

The automated methods were initially evaluated according to their 

target registration error (TRE), which was calculated as the average Euclidean 

distance between the generated and true boundary conditions.  Because the 

deployment of these fits represents a more correlated form of noise, these 

boundary conditions were also applied to the two-material scenario, and the 

reconstructed elasticity contrast values compared to the trials of additive 

randomized error for which the magnitude was approximately equal to the 

TRE.  Finally, a mapping of the objective function space was performed by 

calculating the similarity values for model-based image deformations over a 

range of elasticity contrasts from 0.5:1 to 30:1.  An interpolating curve was fit 

to extract the minimum objective function value and associated contrast ratio 

to determine a theoretical optimal reconstruction as constrained by the 

estimated boundary conditions. 

 
Results 

 
MIE reconstructions 

Because the use of a priori spatial information about the inclusion limits 

the reconstruction to a two-material system, the fidelity of the reconstruction 
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is simply evaluated by examining the elastic contrast between the inclusion and 

the normal tissue of the breast (ideal of 6:1).  Figure 28 demonstrates the 

behavior of the algorithm in optimizing the objective function while 

successfully characterizing the  stiffness of the inclusion to within 5% of the 

actual value (6.02:1 and 6.21:1 for the CT and MR data sets, respectively).   

The fidelity of the generalized reconstruction experiments (using no a priori 

knowledge of the domain) was primarily evaluated on its ability to detect the 

presence of an inclusion based on classification of the material property 

distribution as well as the retrospective accuracy of localizing the lesion. The 

final elasticity values were treated as a Gaussian mixture of two classes and 

separated by a threshold established via the method described in (Otsu, 1979).  

The likelihood of discriminating a lesion in the resulting elasticity image was 

found using the contrast-to-noise ratio (CNR) as defined by (Bilgen, 1999; 

Doyley et al., 2003): 

22

2)(2

BL

BLCNR
σσ
μμ

+
−

=  
 

(7) 

 

where μ and σ 2 are the sample mean and variance of a material property 

distribution and the subscripts L and B denote the lesion and normal material 

types, respectively.  As a quantitative assessment of the localization of the 

lesion, the positive predictive value of correctly identifying a lesion material 

within the known segmented region of the inclusions was also calculated as a 

'quality of reconstruction score' (QRS).  This value is significant because 
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identification of the lesion border and material classification are done 

independently, so user knowledge of the test scenario does not influence the 

performance of the measure.  The ‘true positive’ (TP) elements of the mesh 

are counted as the number correctly identified as tumor and lying within the 

known segmentation of the lesion, while the ‘false positive’ (FP) elements are 

those identified as tumor but in an incorrect location.  Thus, the calculation of 

QRS is simply TP/(TP+FP).  Cutoffs for successful detection and localization 

were set at CNR≥2.2 as noted by (Doyley et al., 2003) and QRS≥80% as 

empirically determined by a prior study in 2D MIE work (Ou et al., 2006a, b), 

and both the CT and MR reconstructions successfully identified the embedded 

lesions according to these criteria (see Table 6).   

The peak modulus contrast value of a reconstruction was calculated by 

taking the ratio of the average elasticity for manually selected homogeneous 

regions of approximately equal area known to be representative of the two 

materials.  As reported in Table 6, the characterization of the relative stiffness 

is less than the true elasticity contrast by nearly a factor of three in both 

cases.  This reveals a difficulty with large inverse problems in 3D where a need 

for reasonable performance can lead to a tradeoff in accuracy.  By choosing 

approximately 3,200 regions to cover the domain of the breasts for the naïve 

reconstructions, the number of degrees of freedom presented to the 

optimization scheme is quite high.  However, this is also relatively coarse in 

the sense of visualizing the reconstruction, as it roughly corresponds to a 

15x15x15 image volume.  Because the elasticity regions do not conform 
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perfectly to the actual lesion borders and furthermore are comprised of both 

tumor and healthy tissue, it seemed reasonable to surmise that in this mis-

estimation of spatial extents, the algorithm was forced to attempt a best-fit 

compromise.  To test this hypothesis, we agglomerated all regions in the 

original partitioning that overlapped the tumor and then ran the reconstruction 

again as a two-material characterization.  Upon inspection, this regrouping was 

clearly a larger entity than the tumor itself (closer to 3 cm in diameter) and 

resulted in a shift of the global optimum to a lower elasticity contrast.  In 

effect, the model reacted to this new, oversized tumor by reducing its stiffness 

in order to achieve the proper image similarity match.  When viewed in light of 

this analysis as summarized in Table 6, the elasticity contrast found by the 

naïve reconstruction is then actually quite accurate.  
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(a) 

 

(b) 

 
(c) 

 
(d) 

 
Figure 28.  Optimization behavior of reconstructions using a priori knowledge of the 
inclusion location.  For the CT simulation, the objective function evaluation 
(normalized to the initial dissimilarity value of a homogeneous elasticity distribution) 
and elastic contrast over several iterations of the algorithm are shown in panels (a) 
and (b), respectively.  Similarly, this behavior for the MR data set is displayed in (c) 
and (d).  In each case, the minimum value is achieved quickly and stably, with the 
corresponding contrast ratio matching the true value of 6:1 very closely (6.02:1 and 
6.21:1 for CT and MR, respectively). 
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Figure 29.  Reconstruction used for lesion detection in the CT data set.  (a) Orthogonal 
views taken through the center of the elasticity image volume are shown along with a 
projection surface rendering (lower right).  The simulated inclusion implanted in the mesh 
is visually distinguished from surrounding tissue.  The colorbar indicates the range of 
elasticity values (~7-42 kPa) designated by the reconstruction, with higher (stiffer) values 
shown in the white end of the grayscale mapping. (b) Transect plots through the center of 
the volume along the cardinal directions show the profile of elasticity contrast (dotted 
lines) overlaid by the true profile of the simulation (solid lines). 

 

 

Figure 30.  Reconstruction used for lesion detection in the MR data set.  (a) Orthogonal 
views taken through the center of the elasticity image volume are shown along with a 
projection surface rendering (lower right).  Once again, the inclusion appears to have a 
recognizably different elasticity, with values on the colorbar ranging from ~10-57 kPa. (b) 
Transect plots through the center of the volume along the cardinal directions show the 
profile of elasticity contrast (dotted lines) overlaid by the true profile of the simulation 
(solid lines). 
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Table 6.  Evaluation of reconstruction fidelity for lesion detection 

 CNR QRS (%) Max CR (×:1) Optimal CR (×:1) 
CT 3.55 99.4 2.66 3.01 
MR 3.93 99.7 2.02 2.26 

 

Max CR = maximum elasticity contrast between lesion and normal tissue in naïve 
reconstruction  

Optimal CR = optimal elasticity contrast after accounting for overlap in elasticity 
region partitioning 

 

Evaluating boundary condition influence: Robustness to randomized noise 

Table 7 demonstrates that as the magnitude of the applied randomized 

noise vectors was increased, changes in the reconstructed elasticity contrast 

reflected a decreased ability to achieve a successful result (recall that the 

correct ratio is 6:1).  For the CT simulation, on average, errors of 0.5 voxel 

units or greater showed a dramatically reduced ability to accurately 

characterize the stiffness of the lesion.  Similarly, though at a much smaller 

scale, the MR simulation began to have noticeable difficulty in achieving a 

reasonable reconstruction at noise levels of 0.05 voxel units.  These values 

were taken as suitably conservative measures for evaluating the efficacy of 

boundary conditions generated by the semi-automated methods. 
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Table 7.  Effect of applied random boundary condition noise on objective 
function space and reconstructed elasticity contrast ratio. The respective 
ranges where a cutoff in reconstruction tolerance was observed are listed for 
each simulation set. 

CT MR 
Randomized 

vector magnitude 
(voxel units) 

Mean optimal elasticity 
contrast value 

 (×:1) 

Randomized vector 
magnitude 

(voxel units) 

Mean optimal 
elasticity contrast 

value  
(×:1) 

0.1 5.62 ± 0.421 0.01 6.33 ± 0.096 
0.2 5.70 ± 0.588 0.02 6.75 ± 0.058 
0.3 5.97 ± 0.846 0.03 6.93 ± 0.634 
0.5 2.36 ± 0.393 0.05 7.60 ± 0.821 
1.0 2.47 ± 0.266 0.1 9.35 ± 1.27 
2.0 2.17 ± 0.422 0.2 11.3 ± 0.866 

 

 

Evaluating boundary condition influence: Reconstruction effects of generated 
boundary conditions 

 

The accuracy of each automated boundary condition technique 

described in Section “Feasibility of automated boundary condition generating 

methods” was assessed by the target registration error with the gold standard 

boundary condition set and its ability to characterize the elastic contrast in the 

two-material reconstruction test case.  Figure 31 depicts the deformation fields 

as applied to the CT data.  Qualitatively, the displacements found by the 

diffusion method are quite different from the true set, while the results from 

the solution of Laplace’s equation and the thin-plate spline interpolation 

appear to be more satisfactory.  The mean TRE of the three methods confirms 

that the spline-based method has the best performance (0.26 mm), the Laplace 

method next (0.52 mm), and the diffusion method being the worst (1.5 mm).  

Inspection of Figures 32 and 33 further demonstrates that the imposition of an 
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inexact boundary condition set on the model has a distinct effect on the 

optimization by shifting the objective function minimum value to a different 

optimal elastic contrast ratio.  Additionally, the convexity of the objective 

function is lost in the cases with a higher TRE.  The differences in the 

generated boundary condition sets for the MR simulation are not easily 

visualized but follow a similar performance trend (TRE of spline 0.023 mm, 

Laplace method 0.48 mm, diffusion 0.61 mm).  For both simulations, there 

exists a direct relationship between a low TRE and increased reconstruction 

fidelity in characterization of the elasticity contrast of the lesion. 

 

Table 8.  Reconstruction performance as affected by semi-automated boundary 
condition generation methods.  The mean error of surface registration is 
related to the accuracy of characterizing the lesion stiffness. 

 CT MR 
Method TRE (mm) Elasticity contrast 

 (×:1) 
TRE(mm) Elasticity contrast

(×:1) 
Diffusion 1.5 17.5 0.61 348. 
Laplace 0.52 5.02 0.48 673. 

Thin-plate 
spline 

0.26 5.66 0.023 6.26 
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Figure 31.  Three candidate automated methods for MIE boundary condition generation 
applied to simulation CT data. Top row, from left to right: surface deformations 
calculated from diffusion energy matching, Laplace solution energy, and thin-plate 
spline interpolation.  Bottom row: target registration error (TRE) distribution for each 
method when compared against the gold standard of known correspondence. The 
diffusion-based mesh is both qualitatively and quantitatively the worst performer. The 
Laplace solution appears to capture the shape of the bladder indentation more 
precisely, but the thin-plate spline has the best overall accuracy in determining point 
correspondence. 
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(a)  (b) 

(c) 

Figure 32.  Mappings of objective function value vs. elasticity contrast ratio 
(tumor:breast) affected by the boundary condition sets generated from the different 
automated methods of surface point correspondence as applied to the CT data set.  
The minimum value of each curve corresponds to the altered optimal elasticity 
contrast when constrained by the inaccuracies of the methods: (a) diffusion, (b) 
Laplace, and (c) thin-plate spline interpolations.  The ordinate is normalized to the 
initial value of each case.  The global minimum of (a) is out of range of the plot. 
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 (a)  (b) 

 (c) 

Figure 33.  Mappings of objective function value vs. elasticity contrast ratio 
(tumor:breast) affected by the boundary condition sets generated from the different 
automated methods of surface point correspondence as applied to the MR data set.  
The minimum value of each curve corresponds to the altered optimal elasticity 
contrast when constrained by the inaccuracies of the methods: (a) diffusion, (b) 
Laplace, and (c) thin-plate spline interpolations.  Again, the ordinate is normalized to 
the initial value and should not be interpreted as an equivalent scale for each case.  
The global minima of (a) and (b) are out of range of the plot. 

 

 

 

 

 



 

 

122 

Discussion 

As other researchers have noted, the incorporation of a priori 

information can greatly enhance the performance of their elastography 

methods (Doyley et al., 2006; Doyley et al., 2005).  We recognize that the 

judicious use of information regarding lesion morphology as obtained from 

conjunctive imaging studies and post-processing would potentially aid MIE as 

well, especially in reducing the number of search parameters and improving 

initialization of the algorithm.  The reconstructions using a priori spatial 

knowledge of the inclusion were initially intended to simply illustrate that the 

objective function space formed by using an image similarity metric was 

smooth and readily traversed by the algorithm in a manner expected for a 

Gauss-Newton optimization.  However, they also provide a stark contrast to the 

naïve lesion detection test cases, which were performed to evaluate the 

inverse problem framework and demonstrate its ability to analyze the full 3D 

domain of the breast.  The results of the generalized reconstructions are very 

encouraging in having successfully identified and localized the inclusions.    

Although the discretizations of the meshes did not achieve particularly 

accurate material characterizations, the optimal elasticity contrast as dictated 

by the available objective function was matched in each case to within 12%.  

The observation that mis-estimation of the lesion extent altered the underlying 

test scenarios suggests that investigating methods of dynamically adjusting 

region assignment could facilitate shape resolution and concomitantly better 

elasticity contrast ratio values.  
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In translating MIE and its associated technologies to a clinical setting, a 

number of factors must be considered for realistic deployment.  From an 

implementation and performance perspective, the large size of the inverse 

problem necessitated the careful selection of matrix solvers and programming 

of parallel computing routines that proved effective with the availability of a 

number of processors.  Initial predictions based on sequential execution times 

needed to handle the high degrees of freedom in the naïve reconstructions 

were thus reduced from two weeks to several hours.  Additional challenges 

were eventually overcome in the pre-processing load of image segmentation, 

model generation, and partitioning schemes.   

The results presented in this paper also further our understanding of how 

the loss of input data quality, whether through design limitations or 

unpredictable factors, could have a significant impact on the end 

reconstruction.  In particular, the proper application of accurate boundary 

conditions plays a critical role in MIE reconstruction success.  This is due to the 

link between surface shape matching and subsequent interpolation of internal 

displacements in affecting sub-surface image intensities and similarity 

measurements.  The results of the boundary condition noise experiment are 

interesting because they indicate that some level of improper localization of 

surface point correspondence is reasonably tolerated by the algorithm.  

However, perturbations greater than an empirically observed threshold can 

impair its ability to determine the underlying elasticity distribution.  This is a 

similar result to prior work done in two-dimensional systems for which 
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successful reconstructions correlated to boundary condition selection errors 

limited to half a pixel length (Ou et al., 2006b).  It also confirms that 

randomizing the vectors for the additive noise experiments poses a 

considerable challenge to the algorithm because of the introduction of grossly 

non-physical deformations in the finite element mesh that decrease the 

stability of the numerical model.  We observed that the threshold for the MR 

simulation was an order of magnitude less than that of the CT set and initially 

seemed to require an unfeasible level of accuracy, as well as quite a few more 

fiducials.  These key differences are likely related to image resolution (the MR 

volume had fewer slices and a larger voxel spacing) and to the inherent 

differences in soft-tissue contrast between the two modalities.  Both issues 

present interesting challenges that will be explored in future work. 

The implausibility of performing manual selection on all boundary nodes 

of a three-dimensional mesh (there were 6,319 points for the CT and 5,416 for 

the MR set) underscores the importance of finding an automated method for 

determining point correspondences.  In general, energy matching from the 

solutions of the diffusion and Laplace equations yielded boundary condition 

sets that were inadequate for reconstructing a proper elasticity contrast.  This 

can be partly explained because the TRE of those surface registration 

techniques (as compared to the gold standard) was typically greater than the 

permissible value established by the robustness tests.  The primary 

manifestation of these poor matches was that the model often had difficulty in 

obtaining a stable solution.  Indeed, only the boundary conditions generated by 
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thin-plate spline method, which had the least error, were able to consistently 

achieve successful reconstructions while also satisfying the putative cutoffs.  

Overall, the reconstruction behavior for this method was consistent to within 

6% of the true value.  This appears to recommend the use of thin-plate spline 

interpolation as a strong candidate for generating boundary conditions for MIE.   

 
Conclusion 

 
In this work, we have presented the first fully three-dimensional 

realization of the MIE algorithm and preliminary evaluation of accompanying 

strategies for automated boundary condition deployment.  The use of parallel 

processing enabled a practical implementation of a computational problem 

that might otherwise prove intractable.  Simulation experiments demonstrate 

the viability of the method to utilize images obtained from different sources in 

reconstructing an embedded lesion with or without the benefit of a priori 

information concerning its location and size.  We have also characterized the 

robustness of the elastography method to inaccuracies in boundary condition 

inputs derived from either random noise or by surface point correspondence 

methods.  These results should prove valuable in the customization and 

streamlining of data acquisition and pre-processing for forthcoming clinical 

tests. 
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Abstract  

This paper reports on the creation of a tissue-mimicking breast phantom 

system and its use in the preliminary testing of a three-dimensional inverse 

problem technique for extracting soft tissue elasticity information.  The modality 

independent elastography (MIE) algorithm determines the spatially distributed 

material properties of a domain via a non-rigid model-based image registration 

between images acquired under different states of loading.  Previous simulation 

experiments with clinical image sets of human breast were able to identify and 

characterize a radiographically occult lesion.  Therefore, a real-world study was 

performed using two polyvinyl alcohol cryogels designed with an embedded stiff 

inclusion and appropriate imaging properties for X-ray computed tomography.  

Data acquisition was accomplished with a customized chamber that delivered a 
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static compression to the phantoms.  MIE reconstructions were evaluated by 

independent mechanical instrumentation testing as well as retrospective 

localization accuracy.  The phantom experiencing a near-field deformation with 

respect to the subsurface position of the inclusion had a more successful 

performance (5.5% error in elasticity contrast, 80% positive localization) in 

comparison with the one under far-field deformation (24%; 58%). 

 

Introduction 

Early detection of breast lesions with malignant potential plays an 

important role in patient prognosis and survival.  While X-ray mammography is the 

current clinical standard for screening and detection of breast cancer, physicians 

also continue to use palpation during the physical exam as a means of identifying 

lesions that are distinct from the tactile properties of unremarkable breast tissue.  

Although palpation is a purely qualitative evaluation of a lesion’s firmness and 

motility, the concept of utilizing movement in tissue to deduce its constituent 

stiffness was effectively refined with advances in ultrasound (US) [1] and magnetic 

resonance (MR) [2] imaging which led to the creation of the field of elastography.  

Recent and ongoing research [3-9] has indicated that this diverse family of 

methods may have a viable clinical role in the process of identifying breast lesions.   

Most elastography techniques are grounded in specific imaging sequences 

and protocols for the particular modality of acquisition, usually for the purpose of 

encoding precise measurements of displacements in the domain of interest.  In 

contrast, a quantitative technique known as ‘modality-independent elastography’ 
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(MIE) has been introduced [10-12] with the intent of analyzing typical diagnostic 

image sets as a generalized inverse problem using only image similarity.  The 

forward problem is a non-rigid, intramodal image registration performed via a 

biomechanical computer model, and the inferred parameters of the system 

constitute the spatial distribution of elasticity.  The end result is a reconstructed 

mapping of the material properties that can be inspected for the assessment of 

lesions.  To accomplish this goal, an image of a tissue of interest (source) is 

deformed by the model and compared against an image of the same tissue in a 

mechanically loaded state (target).  Iterative updates of elasticity parameters to 

the model are applied until a suitable match in image similarity is achieved in a 

least squares manner to satisfy a non-linear optimization scheme.   

A recent development for MIE has been the implementation of the algorithm 

to handle fully three-dimensional data that would be expected from the majority 

of modern medical imaging platforms, especially MR and X-ray computed 

tomography (CT).  In simulation studies presented in [13], the method was able to 

identify a radiographically occult lesion within images of human breast obtained 

from both MR and CT scanners.  The relative success of these experiments 

provided the impetus for us to initiate this study of real-world performance of the 

algorithm.  Because a clinical trial is at this stage still potentially premature, the 

next logical step is to create a phantom system.  The objectives were to 1) create 

a phantom with suitable material and imaging characteristics 2) build a test 

platform that could reliably deliver necessary compression to the phantom during 

imaging acquisition 3) perform independent mechanical testing to provide a gold 
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standard for evaluating reconstructed elasticity parameters and 4) evaluate MIE 

performance in characterizing the material composition of the phantom and 

detecting an embedded inclusion.  This paper reports on recent experimental work 

with a simple phantom of the breast constructed from polyvinyl alcohol cryogel 

(PVA-C) and containing a single spherical tumor.   

 

Methods 

Material preparation 

A variety of tissue-mimicking materials have been utilized by researchers 

[14, 15] attempting to replicate characteristics of the breast.  However, a number 

of these substances involve the use of potentially hazardous crosslinking and 

stabilizing reagents.  In contrast, polyvinyl alcohol is generally non-toxic and 

biocompatible.  It also has the known property of becoming progressively stiffer 

with the application of repeated phases of freezing and thawing, making it well-

suited for elastography-related research [8, 16-19]. 

The basic polymer mixture was prepared by creating a 7% w/v suspension of 

hydrolyzed polyvinyl alcohol powder (Flinn Scientific, Batavia, IL) in cold water 

and heating to 80oC.  A 10% by volume addition of glycerol (Fisher Scientific, 

Pittsburgh, PA) was then incorporated until clear and fluid.  The container was 

covered tightly to minimize dehydration and allowed to cool to room temperature 

while gently agitated on a magnetic stir plate.  To create the cryogel, full 

polymerization was achieved by the application of sequential freeze-thaw cycles 
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(FTCs), where the material was brought to -37oC over the course of 12 hours and 

then naturally returned to approximately 20oC over another 12 hours.  

 

Phantom construction 

The manufacturing of a phantom began by mixing 400 cc of the above 

formulation.  To achieve separation in material elasticity, it was decided that the 

tumor would be created from PVA-C that underwent two FTCs in total, with the 

bulk of the rest of the phantom encasing it in a single freeze-thaw cycle.  Initial 

experimentation had indicated that differing numbers of applied FTCs had no 

discernable impact on the resulting CT units, probably because the cryogel is 

primarily composed of water and therefore did not have a detectable change in 

density.  Therefore, a relatively small amount of radiopaque contrast was 

introduced to dope the polymer mix for the tumor with a 6% v/v quantity of 

barium sulfate suspension (Lafayette Pharmaceuticals, Lafayette, IN).  The tumor 

was initially manufactured in a silicone mold to produce a 25-mm diameter sphere 

using a single freeze-thaw cycle.  It was then suspended by very thin plastic wires 

to be slightly off-centre inside a polystyrene mold used to simulate the shape of a 

pendant breast.  The entire system was filled with about 250 cc of the basic liquid 

polymer.  Approximately 5cc of the remaining mixture was enhanced with 3% v/v 

barium and gently injected into the system to distribute a few random streams for 

image texture in the bulk material.  The whole phantom was then subjected to 

another full freeze-thaw cycle and the wires removed to produce the final semi-

anthropomorphic phantom with an embedded stiff tumor.  In order to provide 
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tracking of displacements, required as a pre-processing input to the algorithm 

described below, approximately 30 polytetrafluoroethylene spherical beads 

(McMaster-Carr, Atlanta, GA) measuring 1.6 mm in diameter  were embedded just 

below the surface of the phantom. 

 

Material testing protocol 

To obtain gold-standard values of the elastic moduli for the two types of 

gel, independent mechanical tests were performed on samples of the materials.  

Using the remaining portion of polymer mixture from the batch used to make the 

phantom, a polymer mixture was poured into standard 24-well polystyrene cell 

culture plates (Corning Inc., Corning, NY) and then freeze-thawed for either one or 

two cycles to produce regular cylindrical blocks approximately 15 mm x 15 mm 

(diameter x height) in size.  For this study, the PVA-C was subjected to 

compression testing to match the usage of the chamber on the phantom.  An 

ElectroForce 3100 test instrument (Bose, Eden Prairie, MN) adapted for biological 

tissues was programmed to provide fixed displacements to the cryogels.  Each 

sample was mounted on a platform over a load cell rated at 25 N and subjected to 

five cycles of a half-triangle charge with a speed of 0.15 mm/s followed by a hold 

of 300 s (‘ramp-dwell’).  This control protocol was calibrated for each sample to 

test a range of applied strains at 2, 5, 10, and 15%, in keeping with small 

deformation theory.  The transducer in line with the direction of compression 

provided a temporal tracking of force measurement.  The elastic modulus values 
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were thus obtained from the slope of the derived stress-strain curves in the region 

of nearly steady-state loading. 

 

Device construction 

Because a basic requirement for acquisition of data for MIE is a static 

loading of the subject, a chamber was designed to hold the breast phantom in 

place during imaging while applying a gentle compression to its surface.  The 

primary structural component is a rectangular housing of clear acrylic with an 

adjustable wall that can slide to trap the phantom and then be locked in place 

with nylon set screws.  The opposing face contains a neoprene air bladder adapted 

from the inflation bag of a sphygmomanometer (W.A. Baum, Copiague, NY) that is 

positioned such that its center is nearly tangent to the midpoint of the height of 

the phantom.  With the use of extended tubing, this system is capable of safely 

delivering compression from a distance of up to 25 feet, thus allowing the 

chamber to remain undisturbed between pre- and post-deformation acquisitions.  

The choice of materials used in the construction of the unit was intended to be 

compatible with different imaging modalities.  Figure 34 below shows the device 

components and an example of a phantom mounted within the apparatus.   
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(a) (b) 

 
Figure 34.  MIE compression chamber setup for PVA-C breast phantom.  The device used to 
deliver static loading to the phantoms is shown (a) in a perspective view with key 
components labeled and (b) angled top view with a phantom mounted within ready for 
imaging.  The phantom rests on a cylindrical silicone platform in order to raise its height 
to be at the level of the inflation bladder. 

 

 

Data acquisition 

Two phantoms were constructed for this study and differed in the relative 

position of the tumor to the surface being deformed.  The first (hereafter 

designated as Phantom1) contained a tumor embedded approximately 12 mm 

below the outer surface, while the second (Phantom2) was made with the tumor 

approximately 26 mm away.  This variance in depth from the air bladder was 

designed in order to observe any behaviors related to near- or far-field 

compression. 

In order to properly position a phantom within the compression chamber, a 

platform was constructed to elevate it to approximately the level of the air 

bladder.  The platform was made from a cylinder of VytaFlex 10 urethane rubber 
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(Smooth-On, Easton, PA) and a thin cardboard spacer.  This provided a stable base 

for the phantom to rest on and had advantageous imaging characteristics by being 

visibly distinct from the PVA-C while introducing minimal artifacts.  After securing 

the sliding wall of the chamber to hold the phantom in place without being 

deformed, the unit placed in the CT scanner (Philips Medical, Bothell, WA).  The 

pre-compression image was acquired using a high-resolution abdominal spiral 

sequence at 140 kVp/200 mAs.  Phantom1 was reconstructed as a 512x512x143 

volume with voxel spacing of 0.26 x 0.26 x 0.8 mm, while Phantom2 was obtained 

as a 512x512x139 volume with spacing 0.27 x 0.27 x 0.8 mm.  The bladder was 

then inflated to approximately 200 mm Hg and the imaging protocol repeated to 

obtain the respective post-compression sets. 

 

Reconstruction experiments 

There are three primary components to the MIE reconstruction framework: 

a finite element representation of the model, an image comparison methodology, 

and a computational optimization routine.  We utilize a finite element 

representation of a continuum model of mechanical equilibrium [20] and posit that 

the materials are isotropic Hookean solids and nearly incompressible in nature.  

While more complex models certainly exist, these assumptions are a reasonable 

starting point and have been made by other research groups working with PVA-C 

[19].  To create the models, the source image volumes were segmented from the 

compression chamber structures using semi-automatic techniques available in a 

commercial software package (ANALYZE 7.0, Mayo Clinic, Rochester, MN).  The 
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resulting surface descriptions were then used to create tetrahedral meshes 

(Phantom1: 30,900 nodes and 166,509 elements; Phantom2: 33,930 nodes and 

183,609 elements).  Boundary conditions for the models were generated from the 

beads implanted just under the surface of the phantom.  The positions of these 

physical markers were localized in both the source and target volumes by 

thresholding the images and finding the centroids of the voxels identified as part 

of the beads.  Because the correspondence is known, these coordinates were used 

as the control points of a thin-plate spline [21] that provided an interpolation of 

displacements between the two surfaces.  In this manner, all Type I (Dirichlet) 

conditions were specified for the model.  The solution of the model using the 

Galerkin method of weighted residuals [22] was used to deform the source image.  

Image comparison was performed by the evaluation of local similarity, based on 

the correlation coefficient, between the model-deformed source image and the 

acquired target image over a number of groups of contiguous voxels termed zones.  

The change in these measures was used to guide a Levenberg-Marquardt 

optimization scheme (initialized as a homogeneous domain) to adjust the elasticity 

parameters until either a maximum number of iterations have been completed, or 

the relative change in similarity has converged to a threshold value of 1e-8.  

Further details of these processes and their implementation have been discussed 

previously in [10-12, 23] and extended to the current version described in [13]. 

The nature of the MIE algorithm is flexible depending on the amount of 

spatial a priori information used to constrain the problem.  On one hand, full 

awareness of the composition of the domain reduces the computational burden of 
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the reconstruction process and focuses the task to a characterization of relative 

differences in material properties.  At the other end of the spectrum, total lack of 

such knowledge requires the simultaneous optimization of a large number of 

parameters in order to perform a ‘naïve’ detection.  We attempted both types of 

analyses with the data collected.  For the a priori experiments, the elements 

comprising the tumor and bulk materials were identified according to a 

segmentation of the inclusion margin and assigned as their respective type within 

the model.  The reconstruction was used to determine the elasticity contrast 

between the two forms of PVA-C based on the minimum objective function 

evaluation obtained by the optimization.  In order to observe the effect of 

Poisson’s ratio on the characterization, a range of values from ν = 0.3, 0.35, 0.4, 

0.45, and 0.485 were tested.  The naïve reconstructions require a separate pre-

processing step using a basic K-means algorithm [24] to partition the domain by 

grouping the elements of the mesh into nearly equally-sized but spatially non-

uniform regions.  This sets the ‘resolution’ of the final reconstructed elasticity 

image and defines the degree of refinement for detection.  In all experiments, 80 

zones were used to discretize the images for similarity measurements, and 3200 

regions created in breaking down the domains for the naïve reconstructions.  
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Results 

MIE data acquisition 

 

(a) (b) 

(c) (d) 
 
Figure 35.  Surface renderings and selected cross-sectional views of PVA-C breast phantom 
acquired during MIE experiment.  Panels (a) and (b) illustrate the deformation applied by 
the inflation system that distinguish the source and target image volumes, respectively.  
Panels (c) and (d) show the embedded inclusion enhanced by contrast agent as well as 
distributed amounts of barium sulfate that provide some image texture.  Note in panel (d) 
the beads implanted just below the surface that are used for motion tracking.  Phantom2 
is shown as an example here. 
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Figure 35 shows an example of the imaging data acquired during an MIE 

experiment.  The PVA-C breast phantom was visually distinct from the acrylic 

compression chamber and urethane rubber platform and therefore readily 

segmented.  In addition, the figure shows that contrast within the phantom was 

reasonably achieved, with the bulk of the gel having CT numbers ranging from 

approximately 40-65, barium sulfate streams from 214-256, and the tumor at 

around 800-877 Hounsfield units.  

 

Material testing 

The elastic moduli of the two different forms of PVA-C as obtained from the 

ELF-3100 data are listed in Table 9.  The values of the more pliable single freeze-

thaw cycle material (FTC1) appear to be relatively stable over the range of 

applied strains, while the samples that experienced two cycles (FTC2) exhibit a 

stiffening behavior in resistance to higher compression.  Comparison of the mean 

elasticity of each type shows that the materials differ by a factor of 4.03, which 

was set as the reference elasticity contrast ratio for evaluating subsequent 

reconstructions. 

 

Table 9.  Elastic modulus values (kPa) obtained from mechanical testing on 
samples of PVA-C for varying strain and freeze-thaw cycle. 

Strain FTC1 FTC2 
2% 3.00 ± 0.758 7.92 ± 2.30 
5% 4.73 ± 1.56 12.4 ± 0.998 

10% 2.81 ± 0.265 15.1 ± 0.625 
15% 3.01 ± 0.336 20.4 ± 0.295 

Mean FTC1: 3.39 ± 1.14 
Mean FTC2: 13.9 ± 4.77 
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MIE Reconstructions 

Recalling that the boundary conditions of the models are applied as all 

displacements, the relevant value for characterization of the phantoms is the 

elasticity contrast between the two materials (tumor:bulk).  Table 10 summarizes 

the results of the reconstructions performed with full a priori spatial knowledge.  

The lowest objective function evaluation of the trials was used to determine 

optimally fitted elasticity parameters for each phantom.  As the value of ν was 

increased, there was a concomitant decreasing trend in the objective function 

minimum.  Figures 36 (a) and (b) illustrate the objective function spaces traversed 

by the algorithm where the best Poisson’s ratio was found to be 0.485 for both 

phantoms, with a contrast ratio of 3.81 for Phantom1 and 3.06 for Phantom2.   

 

Table 10.  Reconstructed elasticity contrast ratios for MIE a priori experiments 
with varying Poisson’s ratio. 

 Phantom1 Phantom2 
ν Min obj func eval MIE contrast ratio Min obj func eval MIE contrast ratio 
0.3 50.8146 21.9 45.3893 3.72 
0.35 50.5398 8.97 45.2009 2.94 
0.4 50.1303 7.59 44.9367 4.97 
0.45 49.6868 9.27 44.4318 2.59 
0.485 49.6762 3.81 43.8620 3.06 
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(a) (b) 
 

Figure 36.  Objective function spaces of a priori MIE reconstruction experiments 
performed on (a) Phantom1 and (b) Phantom2.  In both cases, the trials using ν = 0.485 
produced the minimal values of the objective function (shown on the ordinate) and were 
used to determine the optimal elasticity contrast ratios reported in the text.  The range 
of elasticity contrasts (abscissa) are shown over approximately an order of magnitude 
[0.5,10] for the ratio of tumor:bulk materials. 

 

 

Table 11.  MIE naïve reconstruction performance summary. 

 CNR CR QRS (%) 
Phantom1 2.97 2.03 80 
Phantom2 2.61 1.91 58 
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Figure 37.  MIE naïve reconstruction of Phantom1.  Higher (stiff) values of elasticity are 
shown at the white end of the grayscale mapping of the full range (~4-27 kPa). Top panel: 
orthogonal sections of the elasticity image volume taken through the center of the tumor.  
The margin of the tumor is indicated by the superimposed dotted line.  Bottom panel: 
corresponding transect profiles through the tumor, demonstrating the profile of elasticity 
contrast overlaid by the true distribution (rectangular waveform). 
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Figure 38.  MIE naïve reconstruction of Phantom2.  Higher (stiff) values of elasticity are 
shown at the white end of the grayscale mapping of the full range (~6-32 kPa).  Top 
panel: orthogonal sections of the elasticity image volume taken through the center of the 
tumor.  The margin of the tumor is indicated by the superimposed dotted line.  Bottom 
panel: corresponding transect profiles through the tumor, demonstrating the profile of 
elasticity contrast overlaid by the true distribution (rectangular waveform). 
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The success of the naive reconstruction experiments was primarily 

evaluated on three criteria: the ability to detect the presence of two materials, 

the contrast between the materials based on classification of the material 

property distribution, and the retrospective accuracy of localizing the lesion as a 

distinct member of one of the material types.  To obtain these measures, the final 

elasticity values obtained by the MIE algorithm were first treated as a Gaussian 

mixture of two classes and separated by a threshold established via the method 

described in [25].  The likelihood of discriminating a lesion within the resulting 

elasticity image was found using the contrast-to-noise ratio (CNR) as defined by 

[26, 27]: 

22

2)(2
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μμ

+
−

=  
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where μ and σ 2 are the sample mean and variance of a material property 

distribution and the subscripts L and B denote the lesion (FTC2 PVA-C) and bulk 

material types, respectively.  Both Phantom1 and Phantom2 successfully identified 

the embedded stiff tumors as being distinct materials according to the cutoff of 

CNR≥2.2 as noted by [27]. Next, the mean modulus contrast value of a 

reconstruction was calculated by selecting equally sized areas representative of 

the two materials and taking the ratio of the average elasticity contained within.  

In both phantoms, this was approximately 2:1 as reported in Table 11.  Finally, the 
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localization of the lesion was assessed by comparing the 'true positive' (TP) rate of 

correctly identifying a stiffer element within the known location of the inclusion 

(the dotted lines in Figures 37 and 38) against the 'false positive' (FP) rate of 

finding the stiff material elsewhere.  These quantities are used to define the 

'quality of reconstruction score' (QRS) as simply TP/(TP+FP).  We continue to 

utilize a criteria of success as QRS≥80% as empirically determined in prior study of 

MIE [13, 28, 29].  Phantom1 appears to nearly satisfy this condition, while 

Phantom2 clearly falls below the desired level. 

 

Discussion 

From the mechanical testing data presented in Table 9, we observed a four-

fold increase in mean elasticity between the first and second freeze-thaw cycles, 

which was used as the gold standard of elasticity contrast in evaluating subsequent 

reconstructions.  It is interesting to note that [19] also identified a comparable 

4.2-fold increase in elastic modulus for their PVA-C material from FTC1 to FTC2.  

In our characterization experiments using a priori spatial designation of the 

material types, it was determined (from tracking the minimum value of the 

objective functions) that the most appropriate Poisson’s ratio was ν = 0.485.  This 

is typically the highest value we have empirically assigned in previous work for 

reasons of numerical stability, and the observed improvement in reconstruction 

performance over the lower values tested here is consistent with the expected 

behavior of a material with high water content.  Despite some differences in 
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cryogel formulation, our finding is in line with the conclusions of [19] where the 

Poisson’s ratio of their PVA-C was measured to be 0.499.  Recent analyses by [30] 

indicate that values approaching 0.5 may incur problems with locking phenomena 

in the solution of the finite element model.  Therefore, our use of ν = 0.485 is a 

suitable approximation of near incompressibility for a tissue-mimicking material 

like PVA-C while maintaining favorable convergence properties in iterative matrix 

solvers. 

 The analysis presented in Table 10 also reveals some interesting behavior in 

the reconstructed elasticity contrast as linked to the variation in Poisson’s ratio.  

This is most noticeable for Phantom1, where the contrast ratio shows a marked 

improvement with the decrease in objective function evaluation, producing a final 

value within 5.5% of that indicated by material testing.  For Phantom2, the 

elasticity contrasts appear to fluctuate within a much smaller range of values.  

Although one trial for Phantom2 exhibited a similarly close match in contrast ratio, 

this occurred at the extreme lower limit of ν = 0.3 (a physically unlikely value) and 

had the highest objective function evaluation in the experiment.   

For Phantom2, the optimal contrast ratio had a 24% relative difference 

when compared to the “gold standard.”  However, this difference may be 

accounted for by the far-field compression, since the applied stresses have been 

more thoroughly dissipated by the bulk material.  The consequent lack of force 

distributed to the area of the inclusion could cause less displacement to be 

generated, leading to a less distinct deformation in local image texture.   



 

 

151 

 The naïve reconstructions were able to differentiate two distinct materials 

in the phantom by their CNR that differed in average elasticity by a factor of 2.  

From visual inspection of Figures 37 and 38, the stiffer material can be seen to 

mostly fall within the inclusion boundaries.  According to the standards of 

localization currently set for the QRS, Phantom1 lay within the cutoff; however, 

Phantom2 did not meet the criteria.  One explanation for this is that the 

discretization provided by the K-means regions is the only guidance for the 

algorithm in searching for the tumor.  Without bias in the spatial partitioning, the 

likelihood of multiple regions intersecting the tumor leads to mis-estimation of the 

borders of the inclusion.  Because these regions are comprised of both stiff and 

bulk materials, the reconstruction is forced to make best-fit compromises in 

elasticity throughout the domain.  It is therefore not expected that the elasticity 

contrast ratio should accurately match the gold standard or even the a priori 

experiments.  By examining the layout of the 3200 regions used in each phantom, 

we observed that grouping all regions overlapping the tumor produces an entity 

that overestimates the size of the inclusion by several millimeters.  As a result, 

the algorithm was essentially attempting to reconstruct a 33 mm inclusion in 

Phantom1, while the agglomeration in Phantom2 was slightly larger at 35 mm, 

corresponding to its comparatively poorer localization.  These findings emphasize 

the fact that the naïve reconstructions in MIE represent the highest degree of 

difficulty in utilizing a large-scale inverse scheme for both 3D detection and 

characterization.  It is interesting to note that other applications in similar classes 

of problems, such as diffuse optical tomography, also experience marked 
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reductions in error with the incorporation of spatial priors to constrain the 

inherently ill-posed system [31, 32].   

 This phantom study has provided several other interesting pieces of 

information and elucidated some areas for future work.  In the course of 

experimentation, we actually created and tested two different formulations of 

polyvinyl alcohol using 7% and 10% w/v of monomer.  For material testing of the 

10% material, the four-fold increase in stiffness between freeze-thaw cycles as 

seen for the 7% PVA-C was nearly exactly preserved, and the higher concentration 

had modulus values approximately doubled by comparison.  This expands the range 

of elasticity values available for the design of newer phantoms, since the 

literature indicates that there are certainly variations in properties among tumors 

as well as normal breast tissue [33].  The 7% solution was eventually selected for 

its ease of handling and because the resulting cryogel had a tactile quality 

comparable to the palpation of breast tissue.  We note that the use of glycerol in 

our mixtures was a successful improvement upon previous recipes tested, as the 

addition of the cryoprotectant aided in stabilizing the freezing process, thereby 

producing a more homogeneous medium.  Another challenge encountered in the 

creation of the phantoms was the introduction of suitable imaging contrast and 

texture with which the reconstruction algorithm could make viable comparisons.  

The majority of work with PVA-C has been done with US and MR.  Here, the 

injection of barium streams was able to add intensity variation to the phantom for 

CT imaging that would be otherwise provided by the normal lobulated breast 

parenchyma.  While the end products created performed reasonably well, further 
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study into the distribution and characteristics of image pattern is an interesting 

avenue to pursue in the production of even more realistic phantoms.  Finally, we 

confirmed that the use of implanted fiducials and thin-plate spline interpolation 

for boundary condition assignment was a reasonably practical application as 

suggested by our previous simulation work, as no non-physical deformations were 

forced upon the solution of the finite element model.  Ongoing refinements are 

expected to further improve the accuracy of these estimates. 

 

Conclusion 

This paper represents an important advancement in the development of the 

MIE method for use in assessment of breast lesions.  We have demonstrated a 

proof-of-concept system by creating a tissue-mimicking phantom with an 

embedded inclusion that was imaged within a customized compression chamber.  

The algorithm was able to reasonably characterize the elasticity of the phantom 

with the use of spatial priors as compared with independent material testing.  In 

detection experiments without a priori information, the reconstruction was able 

to discriminate stiff components at a lower elasticity contrast.  The phantom 

subjected to near-field compression (relative to the tumor location) overall had a 

more successful performance, especially in localization of the lesion as compared 

to the far-field compression.  The results of this study are promising and will 

continue to guide our latest efforts to understand MIE behavior and ultimately its 

utility in a clinical setting.  
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Abstract  

We report on the use of an inverse elasticity problem technique of image 

analysis to perform material property characterization of an ex vivo model of 

murine hepatic fibrosis.  The tissue was embedded within a polyacrylamide gel 

block and subjected to a compression while being scanned in a microCT unit.  

These results were compared to two previously published methods of elasticity 

measurement taken on the same experiment.  The elastography reconstruction 

matched the stress analysis to within 3% and was able to identify the global 

minimum of its objective function space within six iterations. 
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Introduction 

Modality-independent elastograpy (MIE) is a novel inverse problem 

technique of using an iterative non-rigid, model-constrained image registration to 

reconstruct the spatial distribution of elastic properties.  We have previously 

performed experiments in simulation and on phantom systems that demonstrate 

its ability to distinguish objects of differing elastic properties.  The pathologic 

deposition of collagen in fibrotic processes over time can lead to a progressive 

stiffening of an organ such as the liver, making it a logical choice for material 

elasticity experiments.  In this technical note, we extend MIE to another clinically 

relevant purpose by performing an ex vivo tissue characterization of a fibrotic 

murine liver sample embedded in a polyacrylamide gel matrix.   

 

Methods 
 

Sample preparation 

As per the protocol reported in [1], an adult C57 mouse was treated with 

weekly intraperitoneal injections of a 1:4 suspension of 1 mL/kg carbon 

tetrachloride in olive oil and sacrificed on approximately day 35 of the experiment 

cycle.  The resulting fibrotic liver was excised and the two largest lobes 

submerged in a 5% polyacrylamide gel (BioRad Laboratories, Hercules, CA) doped 

with a 2% v/v addition of ioversol X-ray contrast enhancement agent (Opitray, 

Mallinckrodt, Hazelwood, MO).  The other lobes were reserved for independent 

material characterization (described below).  The total liver-gel preparation was 

allowed to polymerize and fill the volume of a standard 35-mm polystyrene cell 
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culture dish (BD Biosciences, San Jose, CA) to create a cylindrical sample 

approximately 10 mm in height.  

 

Material tests 

Compression testing was previously performed using an ELF 3100 (Bose, 

Eden Prairie, MN) calibrated for displacement control and equipped with a 250-g 

transducer that recorded the in-line force.  The liver-gel sample was mounted 

between two platens and subjected to a series of six sequential cycles of a 0.05-

mm step excitation followed by a 60-s hold (‘ramp-dwell’).  A control sample of 

equal size but fabricated only out of polyacrylamide was tested in the same 

manner, and its elastic modulus obtained from analysis of the linear regions of its 

resulting stress-strain curves.  This value was used as a fixed reference input to a 

finite element model of the composite sample in order to fit the elastic modulus 

of the liver according to an average surface stress match to the collected force 

data. 

 

Image acquisition 

An acrylic cage measuring approximately 50 mm x 50 mm x 20 mm (Figure 

39a) was used to hold the sample dish with the liver-gel in place.  A piston 19 mm 

in diameter was initially placed to rest just on the surface of the gel and was 

manually driven by machined nylon set screws to deliver a 1.4-mm compression to 

the exposed surface.  Pre- (source) and post-compression (target) images of this 

setup were obtained from microCT scans (MicroCAT II, Imtek Inc., Knoxville, TN) 
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and reconstructed as a 512x512x512 volumes with isotropic spacing of 142 μm.  In 

order to reduce computer memory requirements, 104 corresponding slices from 

both images known to be air were cropped out and the volumes downsampled by a 

factor of two.  Before proceeding to the reconstruction, the target image was 

rigidly registered to the source in order to remove any unintended motion incurred 

between scans. 

 

MIE Reconstruction 

A tetrahedral mesh (91,116 nodes and 503,028 elements) was generated for 

the model from a segmentation of the source image (ANALYZE 7.0, Mayo Clinic, 

Rochester, MN), with each element being assigned as either gel or liver.  Boundary 

conditions for the model were assigned such that all surfaces of the sample in 

contact with the dish were treated as fixed positions (Type I), those in contact 

with the piston displaced according to the compression (Type I), and the free 

surface not impinged as pure Neumann (Type II).  Two elasticity regions defined by 

the spatial priors of the internal liver-gel interface along with 568 similarity zones 

were prescribed according to the procedures described in [2].  The finite element 

model (illustrated in Figure 40) was used to deform the source image and 

compared to the acquired target using the correlation coefficient [3] as the local 

similarity metric.  The reconstruction was initiated with a homogeneous elasticity 

distribution and updated until either the completion of a maximum number of 

iterations or a convergence in the objective function evaluation to a relative 

tolerance of 1e-8.  
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Results 

(a) 

(b) (c) 

 
Figure 39.  MIE data acquisition.  (a) Photograph of compression chamber, (b) transverse 
CT slice of setup, and (c) liver-gel block under compression. 

 

 

 

 

 



 

 

164 

(a) (b) 

(c) 

 
Figure 40.  Wireframe renderings of the finite element model derived from segmentations 
of the acquired image volumes. (a) Pre-compression (source) mesh, (b) post-compression 
(target) mesh, and (c) internal boundary of the embedded mouse liver. 
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Figure 41.  Objective function mapping of aggregate similarity as encountered by the MIE 
algorithm over an order of magnitude of elasticity contrast ratios.  Values on the ordinate 
have been normalized to the evaluation at 1:1 (homogeneity). 

 

 

Table 12.  Elasticity contrast ratios obtained by different material property 
analyses 
 

 Elasticity contrast (gel:liver) 
Compression/stress 4.23:1 
MIE 4.09:1 

 

 

Discussion 
 

This experiment represents a new and unconventional application of MIE 

due to the reversal of stiffness between lesion and surrounding material.  The 

typical presenting problem in MIE has been the characterization and/or detection 
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of a firm object (e.g. a solid tumor) embedded within a pliable matrix.  In this 

case, however, the surrounding polyacrylamide gel was actually stiffer than the 

fibrotic liver.  We found that although there was sufficient contrast between the 

liver and gel that allowed for segmentation of boundaries, the overall variation in 

intensity was somewhat less than expected.  Because the MIE algorithm depends 

on the presence of image texture in order to calculate similarity measures that 

drive the optimization, this sparsity of gray-level values is reflected in the shallow 

nature of the objective function and the presence of several local minima as 

shown in Figure 41.  Despite this challenge, the reconstruction was still able to 

find the global minimum within six iterations (a runtime of approximately 24 

minutes on a single 3.0 GHz Pentium4 Xeon CPU).  The final elasticity contrast 

ratio results as displayed in Table 12 show a very close agreement between the 

two methods to within 3.3%.   

 

Conclusion 

This work represents the first attempt to utilize MIE for the material 

characterization of a biological tissue sample.  The preliminary results compare 

well with previously published testing and indicate that the image registration 

technique of this algorithm is capable of producing elasticity contrast values 

equivalent to those derived from directly measured force data on a sample.  As 

refinement in our data acquisition protocol progresses, the success of this initial 

experiment is of interest for providing further correlative analysis to the 

interrogation of soft-tissue systems.  
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CHAPTER VIII 
 
 

SUMMARY 
 
 

This work documents the process undertaken to develop and study a novel 

approach to elastography in the context of its possible clinical application for 

mammographic imaging.  In contrast to the predominant techniques of the field 

that encode the spatial displacement of a tissue, we have investigated a recasting 

of the problem as an inverse methodology of iterative non-rigid, model-

constrained image registration termed ‘modality-independent elastography’ (MIE).  

Chapters II, III, and IV detail the testing of MIE in detecting inclusions within a 

nearly planar geometry as well as further simulations with differing image 

acquisition modalities.  The success of these experiments in two-dimensional 

systems provided a proof-of-concept platform for the method, helped formalize 

evaluation procedures of results, and provided insight into the factors affecting 

the fidelity of reconstructed elasticity images.  Chapter V describes the creation 

of the first implementation of the MIE method that addressed issues involved with 

the transition to a fully three-dimensional algorithm.  The performance of this new 

version was tested first in simulation and then in phantom experiments reported in 

Chapter VI.  Finally, the diversity of application for MIE for tissue characterization 

is explored in Chapter VII.   

The progress made in the course of this research has elucidated key 

elements for future study and demonstrates significant promise for its application 

in breast cancer detection.  Indeed, at the time of this writing, a prototype system 
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derived from this work has been constructed and is undergoing refinement for 

preliminary clinical trial.  


