CHAPTER I

INTRODUCTION

Study of DNA and DNA Damage by Using NMR spectroscopy

Deoxyribonucleic acid (DNA) has been a very interesting and important compound for its unique biological function not only beginning at the time of its structural proposal by James D. Watson and Francis H. C. Crick in 1953, but from the origin of life on earth (Oliver, 1996; Watson and Crick, 1953). The threedimensional structure of DNA bridged the gap between chemical and genetic information, in other words, chemistry and biology.

Chemically, DNA is a polyanion at neutral pH . It normally has two separate helical chains of nucleotides consisting of a phosphate, a sugar, and a base. The base comes from one of four bases: adenine [A], thymine [T], guanine [G], and cytosine [C]. The nucleotides assemble into the DNA double helix with hydrogen bonds via Watson-Crick base pairing: A to T and G to C (Figure 1-1 and 1-2). Generally, DNA is a molecule that has flexibility with structural deviations since the base can rotate about glycosidic bond to adopt different conformations: A, B, H and Z form DNA (Crawford et al., 1980; Nelson and Cox, 2000; Stryer, 1988). Hydrogen bonding plays an important role for stabilizing base pairs as Watson-Crick (Figure 1-2) or alternate mis-matched base pairs (Figure 1-3). Moreover, other factors in addition to hydrogen bonding influence the duplex stability, such as van der Waals interactions, hydrophobic effects, base-stacking interactions and charge-charge interactions.

Figure 1-1. A diagrammatic figure and a 3-D model of deoxyribose nucleic acid.

Figure 1-2. Watson- Crick base pairs maintained by Hydrogen bondings (dotted lines).
A

B

C

Figure 1-3. Examples of Mis-paired Bases: (A) G:C Hoogstein base pair; (B) G:T mismatch base pair; (C) G:A mismatch base pair.

Biologically, DNA serves as a storage unit for genetic material. DNA is transcribed into RNA, which is translated into a protein. The base sequence of a gene is related to the amino acid sequence of a polypeptide. Therefore, the scientific significance of DNA is of the highest importance as a biological information storage material. DNA is replicated by DNA polymerases. When a DNA polymerase misreads a base moiety, mutations can be happened. If errors occur during the replication, the DNA sequence can be changed. The changes of the gene lead to amino acid change in the protein based on the genetic code. Normally, the frequency of such errors is very low, but can be increased by DNA damage.

Damage to DNA can occur in the cell by radiation and chemicals. The modification of DNA can be affected by the sequence and the conformation of DNA. These alterations to DNA include mismatched base pairs, double-strand breaks, and chemically modified bases, such as the formation of covalent adducts with DNA bases.

It is known that DNA damage by many sources plays a major role in mutagenesis and carcinogenesis if not repaired (Scheme 1-1). The accumulation of mutations due to DNA damage-induced genomic instability is responsible for most cases of cancers. For instance, it has been suggested that exocyclic DNA adducts are involved in carcinogenesis, as they have been detected in target tissues of rodents treated with carcinogens (Chung, F. L. et al., 1996).

When DNA damage induces errors in polymerase replication, base substitution or frameshift mutation can occur (Foster et al., 1983; Refolo et al., 1987; Schnetz-Boutaud et al., ; Topal and Fresco, 1976). Base substitutions are the results of the insertion of an improper base. This leads to a change in the genetic
code as a whole. Frameshifts occur because of the addition or deletion of one or more bases, causing a series of misread codons. A high level of DNA damage without proper repair, results in detrimental effects on the cell via mutations (Nath, R.G. and Chung, 1994). Moreover, if one could decrease the level of DNA damage, a decline in cancer and other diseases might be expected (De Bont and van Larebeke, 2004).

Scheme 1-1. A schematic illustration of DNA damage induced cancer development (Kastan and Bartek, 2004).

The structural information of DNA often has to be taken into account in connection with the functional consequences of DNA damage. Damage or structural alteration of DNA can block or slow down the replication process. It
has been a long range goal to correlate structural features with biochemical properties in the fields of mutagenesis and chemical carcinogenesis (Geacintov et al., 1997). For example, polycyclic aromatic hydrocarbons (PAH) diol epoxideDNA adducts have been suggested to exhibit different mutagenic and tumorigenic activities based on their stereochemistry and conformations (Geacintov et al., 1997). The significance of DNA adduct lesion-induced mutagenesis during DNA replication has been recognized in connection with the stability of mismatches as possible intermediates (Lukin and de Los Santos, 2006).

The structural study of site-specific DNA adducts in oligodeoxynucleotides can provide insight at the molecular level of understanding in the genetic world, even if the structural information may be not fully explain the biological aspects of the DNA damage. To explain the structural attributions of DNA damage to the mutagenicity, structural studies at the atomic level are required. To do that, two techniques are being widely used: X-ray crystallography and NMR spectroscopy.

X-ray crystallography has a longer history in science. It is well know that the first structure of DNA was determined from X-ray diffraction data. X-ray crystallography has no molecular size limitations, and once a crystal is obtained the structural information of the molecule can be rapidly interpreted. It is a common and popular method for structural study. NMR spectroscopy is a powerful tool for studying the structure of oligonucleotides as well as other biomacromolecules. While X-ray crystallography always depends on the ability of a certain sequence of DNA to be crystallized, this is not necessary for NMR. NMR is also advantageous because the sample can be studied in solution at
physiological conditions, which cannot be done in X-ray technique. In many cases, NMR has been used as a main tool for acquiring the structural information on DNA and DNA damage. However, X-ray can provide useful information on systmes such as DNA replication in combination with polymerases, which may be beyond the scope of NMR due to the size limitation.

As of October 11, 2005, the number of X-ray generated structures was higher than that of NMR generated macromolecules. NMR is competitive, however, in the study of nucleic acids: 663 nucleic acids were deposited in the Protein Data Bank by NMR techniques in comparison to 843 by X-ray crystallography, of which many are the Dickerson dodecamer and other specific sequences that readily crystallize (Table 1-1). Another featured advantage of studying nucleic acids by NMR is that there is no sequence limitation like that in X-ray crystallography. A detailed NMR-based strategy for the study of DNA adducts is described later in this chapter.

Table 1-1. The number of structures solved by X-ray and NMR techniques, which are deposited in Protein Data Bank as of Oct 11, 2005.

		Molecule Type				
		Proteins, Peptides, and Viruses	Protein/Nucleic Acid Complexes	Nucleic Acids	Carbohydrates	Total
Exp. Tech.	X-ray Diffraction and other	26172	1236	843	11	28262
	NMR	4021	117	663	2	4803
	Total	30193	1353	1506	13	33065

Many endogenous sources can cause DNA damage by electrophilic attack, resulting in structural alterations. Several hundred DNA damages per cell per
day are generated by those endogenous agents (Lindahl, 2000). One of the salient electrophiles is the α, β-unsaturated aldehyde family. These compounds are product of both exogenous and endogenous sources, ranging from polluted materials (Izard et al., 1980; Treitman et al., 1980) to lipid peroxidation (Chung, F. L. et al., 1999; Marnett, L. J., 1999; Nath, R. G. and Chung, 1994). Scheme 1-2 illustrates the lipid peroxidation pathways from the oxidation of polyunsaturated fatty acid to the decomposition of endoperoxide into malondialdehyde, which exists mainly as β-hydroxyacrolein, one of the common α, β-unsaturated aldehydes. Some of the α, β-unsaturated aldehyde family are shown in Figure 1-4. In most cases, altered DNA bases in the form of exocyclic base adducts are reported as the major DNA damage from this family (Chung, F. L. et al., 1996; Nath, R. G. et al., 1994; Nath, R. G. and Chung, 1994; Smith, R. A. et al., 1990). While the α, β-unsaturated aldehydes can react with cytosine or adenine, the majority of DNA adducts come from the reaction with guanine to form exocyclic propano deoxyguanosine due to guanine's high nucleophilicity (Marnett, L. J. , 2000; Marnett, L. J. et al., 2003). The mechanism of the $1, N^{2}$ propanodeoxyguanosine adduct via Michael addition followed by ring closure is shown in Figure 1-5.

Scheme 1-2. Lipid Peroxidation pathways (modified from (Marnett, L. J. , 1999))

Figure 1-4. Some α, β-unsaturated aldehydes.

Figure 1-5. Formation of exocyclic propano-dG adduct by the reaction between α, β-unsaturated aldehyde and deoxyguanosine via Michael addition.

DNA Adducts of acrolein and crotonaldehyde

The family of α, β-unsaturated aldehydes is one of the main sources of exocyclic propano adducts that have relatively high prevalence in human DNA via exogenous and endogenous pathways such as from lipid peroxidation and tobacco smoking (Chung, F. L. and Hecht, 1983; Chung, F. L. et al., 1999; Chung, F. L. et al., 1984; Nath, R.G. and Chung, 1994; Treitman et al., 1980). They can react with DNA and covalently bind to it to form adducts that induce DNA mutations (Cajelli et al., 1987; Fernandes et al., 2005; Kanuri et al., 2002). An exocyclic propano adduct was thought to be responsible for the instability of duplex DNA due to its ability to block the normal Watson-Crick hydrogen bonding.

Figure 1-6 presents the two major acrolein-derived deoxyguanosine adducts via Michael addition to the N 1 and N^{2} positions of dG , followed by ring closure, which are distinguished by the location of the hydroxyl group. These adducts were detected in liver DNA from humans and rodents by ${ }^{32} \mathrm{P}$ postlabeling methods using HPLC chromatography without carcinogen treatments (Chung, F. L. et al., 1999; Nath, R. G. et al., 1994; Nath, R. G. et al., 1996).

Figure 1-6. Major acrolein-derived dG adducts: γ-OH-PdG (left); α-OH-PdG (right)

Before a site-specifically synthesized DNA adduct was available (Khullar et al., 1999; Nechev et al., 2000), the stable 1, N^{2}-propanodeoxyguanosine (PdG) exocyclic adduct, in which the hydroxyl group had been removed, was used as a model of ring-closed exocyclic propano dG adducts like the malondialdehydederived PdG adduct $\left(\mathrm{M}_{1} \mathrm{dG}\right)$ and acrolein-derived PdG adducts (OH-PdG)for mutagenic and structural studies (Benamira et al., 1992; Chung, F. L. et al., 1999; Moriya, M. et al., 1994). The PdG adduct induced G to T and G to A mutations as well as frame-shift mutations (Benamira et al., 1992; Burcham and Marnett, 1994; Moriya, M. et al., 1994).

From various structural studies, the PdG adduct was discovered to exist in a syn glycosidic bond conformation while forming a Hoogstein base pair opposite dC and dA at acidic conditions, and dG at physiological conditions (Figure 1-7) (Kouchakdjian et al., 1990; Weisenseel, J. P., Reddy, G.R., Marnett, L.J., \& Stone, M.P., 2002; Weisenseel, J. P. et al., 1995).

Figure 1-7. Base pairing of PdG adduct with different opposite bases with syn (PdG)•anti (base) Hoogstein base pairing: (Top) PdG:dC; (middle) PdG:dA in an acidic condition; (bottom) PdG:dG in a physiological condition.

Without further ring-opening, PdG adduct is still regarded as the best model for such ring closed exocyclic propano adducts. Furthermore, as a ringclosed adduct, PdG inhibiys replication and is therefore believed to be a strong block to the polymerase activity. As a ring-closed model of the $M_{1} d G$ adduct, the PdG adduct is in a syn conformation, disrupting normal Watson-Crick hydrogen bonding and placing the exocyclic ring toward the major groove. In addition, the PdG adduct showed a high frequency of mutagenicity (Benamira et al., 1992; Velez-Cruz et al., 2005; Wolfle et al., 2005). The only discrepancy between the PdG and the $\mathrm{M}_{1} \mathrm{dG}$ adducts comes from the fact that the latter can open the ring in a duplex environment placed specifically opposite dC (Figure 1-8). Recent progress has enabled $\mathrm{M}_{1} \mathrm{dG}$ to be tested in a site-specifically synthesized DNA
sample. This sample showed frameshift mutations in bacteria and mammalian cells when positioned in a reiterated $(\mathrm{CpG})_{4}$ sequence but not in Escherichia coli and in COS-7 cells in a nonreiterated sequence with 2% frequency base substitutions ($\mathrm{M}_{1} \mathrm{dG}$ to T and $\mathrm{M}_{1} \mathrm{dG}$ to A) (VanderVeen, L. A. et al., 2003).

Figure 1-8. Different mechanisms between PdG and $M_{1} d G$ adduct in duplex DNA by ring-opening process. PdG adduct with opposite dC in Hoogstein base pairing (top); $\mathrm{M}_{1} \mathrm{dG}$ adduct with opposite dC conserves normal Watson-Crick pairing (bottom).

Acrolein, a mutagen and carcinogen (Chung, F. L. et al., 1999), is mutagenic in bacterial (Marnett, L.J. et al., 1985), mammalian (Smith, R. A. et al., 1990), and human (Curren et al., 1988; Kawanishi, M. et al., 1998) cells and carcinogenic in rats (Cohen et al., 1992 Jul 1). Crotonaldehyde is genotoxic and mutagenic in human lymphoblasts (Czerny et al., 1998) and fibroblast cells (Kawanishi, M. et al., 1998). It induces liver tumors in rodents (Chung, F. L. et al., 1986). The major adduct from both acrolein and crotonaldehyde was determined as the ring-closed exocyclic adduct via Michael type addition with
dG (Figure 1-6 and 1-9) (Chung, F. L. and Hecht, 1983; Chung, F. L. et al., 1984; Chung, F. L. et al., 1999; Eder et al., 1999). By treating the shuttle vector plasmids in human cells with acrolein or crotonaldehyde, they showed that the mutagenic spectrum consisted of base substitutions $(G \rightarrow T$ and $G \rightarrow A)$, deletion and insertion, and tandem substitution (Kawanishi, M. et al., 1998; Kawanishi, M. et al., 1998).

The acrolein adduct, based on the location of hydroxyl group, can be divided into 2 major adducts: α - and $\gamma-\mathrm{OH}-\mathrm{PdG}$ adducts (Figure 1-6). The 3-(2-deoxy- β-D-erythro-pento-furanosyl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-a]purin- $10(3 H)$-one, γ-OH-PdG adduct, was detected in animal and human tissue (Chung, F. L. et al., 1999), suggesting its involvement in mutagenesis and carcinogenesis (Nath, R.G. and Chung, 1994). For the crotonaldehyde adduct, based on the stereochemistry of the methyl group on C_{α} diasteromeric R - and S -α-methyl $-\gamma$-OH PdG adducts exist in a trans relationship between the methyl and hydroxyl groups (Figure 1-9) (Nath, R.G. and Chung, 1994; Nechev et al., 2001). These R - and $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-1, N^{2}$-propano-2'-deoxyguanosine adducts are also formed through the reaction of acetaldehdye, a mutagen and potential human carcinogen (IARC, 1999), and the main metabolite from alcohol consumption, with deoxyguanosine (Lao and Hecht, 2005; Wang et al., 2000). Therefore, the importance of the crotonaldehyde-derived adduct, CPdG, has been increased due to the fact that diverse forms can be mutagenic and it can be formed easily with the help of other cellular components such as histones, the basic amino acids arginine or lysine, or polyamines at physiological conditions (Sako et al., 2003; Sako et al., 2002; Theruvathu et al., 2005). Figure 1-10 introduces the
possible mechanism of crotonaldehyde formation from acetaldehyde via the aldol condensation reaction (Theruvathu et al., 2005). The R - and S-CPdG adducts were detected in human and rodent tissues (Budiawan and Eder, 2000; Chung, F. L. et al., 1999). In humans, these probably result from various endogenous and exogenous exposures, including lipid peroxidation (Chung, F. L. et al., 1999; Nath, R. G. and Chung, 1994; Nath, R. G. et al., 1996), exposure to tobacco smoke (Izard et al., 1980; Treitman et al., 1980), and exposure to Nnitrosopyrrolidine (Chung, F. L. and Hecht, 1983; Hecht et al., 1999). Likewise for the $\mathrm{M}_{1} \mathrm{dG}$ adduct, the question remained as to whether or not the ring can be triggered to open by the presence of an opposite dC in duplex DNA.

Figure 1-9. Major crotonaldehyde-derived dG adducts: $\mathrm{R}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ (left); $\mathrm{S}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ (right)

$$
2>0 \stackrel{2 \mathrm{RNH}_{2}}{-\mathrm{H}_{2} \mathrm{O}}>\stackrel{\mathrm{NR}^{\mathrm{H}}}{\stackrel{\mathrm{NR}}{ }}
$$

Figure 1-10. Proposed mechanism of the formation of crotonaldehyde via aldol type condensation reaction of acetaldehyde (modified from (Theruvathu et al., 2005)).

Although it has been known that these compounds are mutagenic, the relationship between their structures and toxicity has remained elusive. Recently, the ring-opening mechanism of the acrolein adduct (γ-OH-PdG) was reported by NMR studies (de los Santos, C. et al., 2001) to be similar to that of the $\mathrm{M}_{1} \mathrm{dG}$ adduct (Mao, H . et al., 1999). In both cases, the ring opening process was considered as one of the main reasons for low mutagenicity, as it keeps the integrity of duplex DNA by keeping the Watson-Crick hydrogen bonds. De los Santos et al. concluded that the hydrated aldehyde is a ring-opened major species that is in equilibrium with a minor aldehyde species. The possibility of the ringopened species was postulated to be responsible for less mutagenicity due to the fact that there was a conservation of Watson-Crick hydrogen bonding compared to the ring-closed species like the PdG adduct, which is deprived of normal Watson-Crick hydrogen bonding and that shows high mutagenicity (Benamira et al., 1992; Hashim and Marnett, 1996; Yang, I. Y. et al., 2002). The PdG adduct was also shown to inhibit the human Y family polymerases' extension activity (Wolfle et al., 2005) .

It was also hypothesized that the reactive aldehyde species of the $M_{1} G$ adduct leads to actual mutagenic lesion by stabilizing a slipped mispairing intermediate of frameshift mutagenesis (VanderVeen, L. A. et al., 2003). In addition, the cross-linked form was submitted as a feasible adducted form by the γ-OH-PdG adduct but not by $\alpha-\mathrm{OH}-\mathrm{PdG}$ adduct incapable of opening the ring. Chemical trapping experiments provided evidence for the formation of interstrand cross-links and suggested that the generation of a cross-link was sequence dependent: where the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ but not the $5^{\prime}-\mathrm{GpC}-3^{\prime}$ sequences were
capable of forming interstrand cross-links (Kozekov et al., 2003). Because of the fact that all other species such as aldehydes, hydrated aldehydes, and cross-links exist in equilibrium, monitoring the composition of the equilibrium mixtures in situ is of considerable interest. Indeed, NMR spectroscopy enabled the chemistry of these adducts to be monitored in DNA, in situ. In light of the interchain crosslinking study by Kim et al., the existence of carbinolamine cross-links was detected by ${ }^{15} \mathrm{~N}$ HSQC, NOESY-HSQC, and TOCSY-HSQC experiments (Kim, H. Y. et al., 2002).

Many carcinogens and drugs such as cisplatin, mitomycin C, and psoralen can generate DNA interstrand cross-links. Those cross-links are thought to induce recombination by inhibiting replication and are reported to cause futile repair synthesis in mammalian cell (Mu et al., 2000). Therefore the biological significance of these DNA interstrand cross-links has been increased as well as DNA-polypetide and DNA-protein cross-links. Acrolein is a known mutagenic compound, and can derive γ-OH-PdG adduct that can form an interstrand crosslink. Understanding the chemistry of both acrolein and crotonaldehyde-derived dG adducts may provide much insight, ultimately, into DNA mutagenesis and repair processes. Furthermore there has been a controversy about the major cross-link forms based upon the data from chemical trapping and mass spectrometery experiments showing that other possible forms could be detected. As is considered in the chemistry of this adduct, the carbinolamine cross-link should exist in equilibrium with the imine and, possibly, the pyrimidopurinone cross-links as shown in Scheme 1-3.

Scheme 1-3. Equilibrium Chemistry of the γ-OH-PdG Adduct in the $5^{\prime}-\mathrm{CpG}-3{ }^{\prime}$ Sequence Context in Duplex DNA. γ-OH-PdG(2) undergoes ring-opening to form aldehyde(3) and hydrated diol aldehyde (4), and aldehyde(3) can react with opposite dG to form interstrand cross-link carbinolamine(4), imine(5) and pyrimidopurinone(6) in equilibrium.

5

$$
-\mathrm{H}_{2} \mathrm{O}
$$

6
\uparrow

7

Crotonaldehyde has an extra methyl group in comparison to acrolein, and is genotoxic and mutagenic in human lymphoblasts (Czerny et al., 1998). Depending on the stereochemistry of the methyl group, it forms a pair of ringclosed propano diasteromers via Michael type addition: R - and $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-1$, N^{2}-propano-2'-deoxyguanosine adducts ($R-\mathrm{CPdG}$ and S-CPdG) (Figure 1-9). Both R-CPdG and S-CPdG were detected in human and rodent tissues (Budiawan and Eder, 2000; Chung, F. L. et al., 1999). Like the acrolein adduct, they were assumed to undergo the ring-opening process with the presence of an opposite dC in duplex DNA. In the $5^{\prime}-\mathrm{CpXpA}-3^{\prime}$ sequence context $(\mathrm{X}=R-\mathrm{CPdG}$ and S-CPdG), the ring of the exocyclic adducts was believed to be open and thus to form N^{2}-(3-oxopropyl)-dG aldehydes in the minor groove facilitating DNA interstrand cross-linking (Scheme 1-4). The formation of the cross-link resulted in enantioselective generation, where the R - stereoisomer cross-links but the S does not. The formation of cross-links of the $R-C P d G$ adduct was kinetically slower and occurred less than that of the acrolein adduct (Kozekov et al., 2003).

The chemical trapping method was utilized to identify the cross-links by NaCNBH_{3} reduction. It indicated the presence of saturated three-carbon interstrand N^{2}, N^{2}-dG linkages. Moreover, the γ-OH-PdG adduct formed crosslinks with the N-terminal amine of the small peptide KWKK (Kurtz and Lloyd, 2003). In general, the imine was observable by NMR spectroscopy in organic solution but not in in vitro metabolic experiments due to the rapid decomposition of the carbinolamine to a primary amine and acetone (Shetty and Nelson, 1985). The relatively stable imine metabolites of trifluoromethyl-substitued propranolol analogs were investigated by ${ }^{19} \mathrm{~F}$ NMR and mass spectrometry (Upthagrove and

Nelson, 2001). The Schiff base is one of the important intermediates in biochemical processes and its biological function and significance has been reported (Dickopf et al., 1995; Erskine et al., 1999; Longstaff and Rando, 1987; Sonar et al., 1994; Williams and David, 1998). Therefore, it was not anticipated that the spectroscopically stable carbinolamine cross-link species from α, β unsaturated aldehyde-derived-dG adducts in duplex DNA would be detected. NMR studies indicated that the carbinolamine cross-link is a major interstrand cross-link whereas the imine was below the level of detection (Cho, Y. J. et al., 2005; Kim, H. Y. et al., 2002). However, the chemistry of both acrolein and crotonaldehdye-derived dG adducts still suggested that three kinds of cross-links are possible: carbinolamine, imine and pyrimidopurinone (Scheme 1-3 \& 1-4).

Even though the ${ }^{15} \mathrm{~N}$ related NMR data provided evidence for a significant amount of carbinolamine cross-links, questions remained as to why other species do not exist or exist in such small amounts in comparison to the amount of carbinolamine species. To answer this issue, various types of experiments had been tried for crotonaldehyde-derived dG adducts. Like the acroelin adduct study, an enzyme digestion study supported the existence of the pyrimidopurinone type cross-link. In a mass spectrometry study, all three species were shown, but the imine or the pyrimidorpurinone type cross-links were proposed to be more favorable than the carbinolamine cross-link. The chemical reduction study supported the chain linked cross-link such as imine and possibly carbinolamine. However, it was hard to distinguish between those species.

Heteronuclear NMR experiments for the γ-OH-PdG adduct clearly supported the presence of the carbinolamine cross-link. The possible answer for this controversial issue may depend on the condition of the sample in each experiment. For example, enzyme digestion and mass spectrometer forces cause the disruption of DNA, thus if the duplex environment and conformation is one of the chief factors for supporting the carbinolamine cross-link, it might be a reasonable explanation for the discrepancy of experimental data. Because NMR is a non-invasive tool, it was used as the main tool for achieving structural information in situ.

To better understand and define the major cross-link, it was essential to acquire a separated and conformationally pure sample. The physical separation trials for cross-link by HPLC were not sufficient to obtain stable cross-links and to carry out structural study. An advantage of using NMR is that we can use specifically labeled samples to carry out various heteronuclear NMR experiments to abstract structural information. The site-specifically labeled samples $\left({ }^{13} \mathrm{C}\right.$ on C_{γ} and ${ }^{15} \mathrm{~N}$ on $\mathrm{N}^{2}-\mathrm{dG}$) were provided by the labs of Drs. Harris and Rizzo, which enabled various heteronuclear NMR experiments to be carried out.

As a cross-linked species was unable to be separated for use as a model of interstrand carbinolamine cross-link in the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence, the fully reduced cross-link could be used alternatively for structural analyses. Due to the absence of a hydroxyl group at C_{γ}, while it keeps the sp^{3} carbon conformation the same as that of the carbinolamine cross-link, it could be a good model for solving structural questions about carbinolamine type cross-links in duplex DNA. Previously, this kind of reduced cross-link was recognized as a model of an
imine type cross-link. However, maintaining the sp^{3} conformation is more like the carbinolamine cross-link than the Schiff base type cross-link, which possesses the sp^{2} conformation on the gamma carbon at physiological conditions.

Scheme 1-4. Equilibrium Chemistry of the R - and $S-\alpha-\mathrm{CH}_{3}-\gamma$-OH-PdG Adducts in the 5'-CpG-3' Sequence in Duplex DNA.

Synthesis of Modified Oligodeoxynucleotides

Synthesis of oligodeoxynucleotides containing site-specific ${ }^{13} \mathrm{C}$ in both acrolein and crotonaldehyde, and ${ }^{15} \mathrm{~N}$-deoxyguanosine are described in detail in Chapter II. The synthesis of the fully reduced cross-linked duplex is shown in Scheme 1-5. The fully reduced crotonaldehyde cross-links were used for the structural study as a real model of a carbinolamine type cross-link. Instead of an aldehydic moiety, the cross-linking reaction was forced by the reduction of the aldehyde into an amino group, which was annealed with a complementary sequence containing 2-fluoro- $O^{6}-\left[\left(\right.\right.$ trimethylsilyl)ethyl]-2'-deoxyinosine at the G^{19} position site specifically at $45^{\circ} \mathrm{C}$. While the reaction was carried out, the methyl stereochemistry was conserved. Both fully reduced R - and S-crotonaldehyde cross-linked duplexes were provided by the labs of Drs. Harris and Rizzo and were utilized for further NMR analysis. Chapter VI and VII are concerned with NMR elucidation of the fully reduced R - and S-crotonaldehyde-derived crosslinked duplex, respectively.

Scheme 1-5. Synthetic scheme of the fully reduced R-crotonaldehyde cross-link.

Structural Studies of Oigonucleotides by NMR Spectroscopy

Nuclear magnetic resonance spectroscopy is a powerful tool that can be used to acquire the solution structures of DNA and protein. In the following section, a brief description of the general methods of multi-dimensional and heteronuclear NMR techniques for the structural analysis of oligonucleotides
containing site-specific labeled adduct is discussed. More complicated NMR techniques share the same fundamental NMR theory.

Two dimensional Nuclear Overhauser Effect Spectroscopy (NOESY) spectra provide essential data on the distance information between protons. Theoretically, within about $5 \AA$, pairs of protons will display an NOE cross-peak proportional to $1 / r^{6}$ where r is the interproton distance. The intensity volume of the cross-peak can be used for the estimation of the interproton distance. For collecting NOESY data, a $\mathrm{D}_{2} \mathrm{O}$ environment is preferred for providing better digital resolution by using a narrow sweep width (SW). A deuterated water environment also offers simplicity by exchanging imino and amino protons for deuterium. As distance restraints are the main restraints for NMR derived structural determination, it is important to acquire a high quality and well processed NOESY spectrum.

In the case of oligodeoxynucleotides, there are typically characteristic fingerprint regions of the proton chemical shifts that are easily identified, which are arose due to the non-covalent environment such as base aromatic, anomeric and sugar protons. Those specific proton regions are presented in Figure 1-11. Among them is the NOESY walk region, which allows for assignments to be made based upon the stable base sequences. The rationale for the NOESY walk is illustrated in Figure 1-12. The complete NOESY walk can be achieved via base protons (H8/H6) to anomeric protons (H1'), $\mathrm{H}^{\prime} / \mathrm{H} 2^{\prime \prime}$, or $\mathrm{H} 3^{\prime}$ protons. In this way, one can expand the assignments to the rest of the proton resonances except the imino and amino peaks, which are observable in a NOESY in water environment.

The 2D NOESY in water can provide significant information on base stacking and pairing. If all bases are stacked well as a stable duplex, one can also make a complete NOESY walk in the imino proton region that represents the connectivity between the imino protons of dG's and T's. In addition, the amino protons of $d C$ couple to the imino proton of $d G$ and the H 2 proton of dA forms a strong cross-peak with imino proton of dT. All information can be useful by yielding more empirical restraints for the refinement process.

Figure 1-11. A typical 2D NOESY spectrum of a 12-mer oligonucleotide, 5'-(GCTAGCGAGTCC)-3' $\bullet 5^{\prime}-(G G A C T C G C T A G C)-3^{\prime}$.

Figure 1-12. Sequential assignment pattern of an oligodeoxynucleotide by NOESY spectroscopy. NOESY walk can be accomplished between aromatic protons and anomeric protons (red arrow), H2' and H2' protons (blue arrow), and H3' protons (gray arrow).

While NOESY spectra indicate proton-proton dipolar (through-space) couplings, Correlated Spectroscopy (COSY) related experiments exhibit the scalar (J, through-bond) couplings between neighboring protons. When two
protons are connected through two or three chemical bonds $(\mathrm{J}=0-18 \mathrm{~Hz})$, it will give rise to cross-peaks present in a 2D COSY spectrum. COSY spectra show much simpler cross-peak patterns than those in NOESY spectra, as it does not yield cross-peaks for those neighboring protons within a short distance that are not covalently bonded. It can be a useful method for the assignments of protons as the H5 and H6 of cytosine, $\mathrm{H} 2^{\prime}$ and $\mathrm{H} 2^{\prime \prime}$ and $\mathrm{H} 3^{\prime}$ and $\mathrm{H} 4^{\prime}$ of the sugar pucker and, especially, adduct site protons. Like the NOESY walk, the sugar proton connectivity can be drawn in a COSY spectrum. The H1' will have cross-peaks to the H2' and H2" protons, and H2' will have a cross-peak to H3'. A more detailed example is presented in Chapter VI (Figure 6-8) and VII (Figure 7-8). Furthermore, the double quantum filtered COSY, DQF-COSY can offer the coupling constant (J) values of sugar puckers, which is useful information for determining the geometry of the sugar ring needed for empirical restraints in rMD calculations. Indeed, those empirical values can be useful for the refinement.

While the COSY experiment presents the scalar couplings of neighboring protons through 1-3 bonds, longer through-bond spin systems can be detected in a total correlated spectroscopy, TOCSY spectrum. The magnetization can be transferred through multiple bonds with a longer spin lock process. The TOCSY spectrum appears more complex than a COSY spectrum but is simpler than a NOESY spectrum. Therefore, it can be very useful when confronted with adduct protons peaks in the populated cross-peaks area such as sugar proton coupling regions. It can therfore confer more information of interesting protons that are only connected through bonds.

The advantage of using a site-specifically labeled adduct sample is that it permits heteronuclear NMR experiments to be carried out. Since both ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ nuclei are NMR active with low abundance $\left({ }^{13} \mathrm{C}\right.$ at 1.11% and ${ }^{13} \mathrm{~N}$ at $\left.0.36 \%\right)$, the chemistry of the isotopically labeled DNA adduct can be monitored by heteronuclear NMR experiments. A heteronuclear single quantum coherence (HSQC) experiment is the basic technique for detecting the proton signal directly and the heteroatom signal indirectly, directly attached to the proton. A coupling constant value (J) of 90 Hz (between $\mathrm{H}-\mathrm{N}$) and $125-200 \mathrm{~Hz}$ (between $\mathrm{H}-\mathrm{C}$) is applied. The HSQC spectrum shows the chemical shifts of the proton in the direct dimension and the heteroatom $\left({ }^{15} \mathrm{~N}\right.$ or $\left.{ }^{13} \mathrm{C}\right)$ in the indirect dimension without having a diagonal peak. In general, these HSQC type experiments are routinely used for universally labeled protein samples for the assignments of the amide protons in peptides. Unlike those protein samples, the isotopically labeled DNA adduct sample would be expected to show clear and simple spectra based on the number of different chemical species. In particular, the correlation between the proton and the heteroatom or heteroatoms of the cross-link would be clearly revealed by the site-specifically, isotopically labeled sample on the gamma position of the carbon or N^{2} of dG . Therefore, much simpler but equally useful NMR data than those from typical uniformly labeled sample can be obtained, which provide important clues as to which species exist in situ in duplex DNA. Figure 1-13 displays the pictorial explanation of those heteronuclear NMR experiments that were performed for this study.

Figure 1-13. Heteronuclear NMR experiments. A Circle stands for NMR active nucleus and red lined bond or red arrow meant magnitization trasfer from the proton (red) attached to either ${ }^{15} \mathrm{~N}$ or ${ }^{13} \mathrm{C}$.

One of caveats for applying ${ }^{15} \mathrm{~N}$-HSQC type experiments is that there is no way to detect imine species, one of the possible candidates to be tested, due to the lack of a proton directly attached to ${ }^{15} \mathrm{~N}$. To tackle this problem, direct detection of imine ${ }^{13} \mathrm{C}$ was carried out using a probe with inner-coil ${ }^{13} \mathrm{C}$ geometry was carried out. This probe can detect the ${ }^{13} \mathrm{C}$ signal directly regardless of the existence of protons attached the ${ }^{13} \mathrm{C} .{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC type experiments were also feasible since each candidate possesses a proton directly connected to ${ }^{13} \mathrm{C}$, although its chemical shifts can be much closer to water peak ($\sim 4.7 \mathrm{ppm}$). To quantify each species, an inverse-gated decoupling pulse program was applied
(Figure 1-14). While collecting the FID in the carbon channel, the proton coupling was minimized by pulsing the proton channel using Waltz 16 decoupling. It reflects the avoidance of NOE effects during the acquisition time and can help to measure the ratio of ${ }^{13} \mathrm{C}$ relatively.

Figure 1-14. Inverse-gated decoupling pulse sequence: F_{1} carbon channel; F_{2} proton channel.

A site-specifically labeled sample allowed the use of more complex NMR experiments, such as NOESY-HSQC and TOCSY-HSQC, which provide more structural information for the cross-link. The former can show a NOESY spectrum only from the HSQC filtered proton, the latter shows a TOCSY spectrum from the HSQC filtered proton as shown in Figure 1-13. Sitespecifically labeled acrolein- and crotonaldehyde-derived dG adducts in duplex DNA were examined by the same methods that were tested previously for the γ -$\mathrm{OH}-\mathrm{PdG}$ adduct.

Other multi-dimensional experiments such as triple resonance experiments could also be carried out. The HCN and HNC type NMR experiments were applied for the confirmation of a cross-link species (Figure 1-
15). Those results are described in a related following chapter for the cross-link sample (Chapter IV).

Figure 1-15. A schematic view of the nuclei observed in triple resonance experiments: HNC (left) and HCN (right).

Structural Refinement of DNA

Once satisfactory NMR spectra are collected and analyzed, a 3Dimensional structure that satisfies the NMR data can be acquired by employing restrained molecular dynamics (rMD) calculations. Because of experimental uncertainties, the NMR restraints vary in allowed values. Therefore computational calculations create an ensemble of several structures where each structure reflects the input restraints equally well.

The typical procedure for refining oligodeoxynucleotide structure is outlined in scheme 1-6. At the initial step, the assignments must be completed. Once all possible protons of DNA are assigned properly, the volume of the peaks can be converted into the distance. For converting cross-peak volumes to distance restraints, the iterative relaxation matrix approach is applied by running Matrix Analysis of Relaxation for Discerning the Geometry of an Aqueous

Structure (MARDIGRAS). Torsion angle and distance restraints can be specified into empirical restraints from DQF-COSY and NOESY data, respectively (Figure 1-16).

Scheme 1-6. Strategy for the NMR-generated structural refinement of the oligodeoxynucleotides.

Figure 1-16. The backbone torsion angles in the mononucleotide in an oligodeoxynucleotide.

Prior to rMD calculations in AMBER, a non-standard base must have its own topology file: a coordinate file with its own library file that contains the atomic charges. Restrained electrostatic potential (RESP) charges can be calculated by running the GAUSSIAN 98 program. The Hartree Fock 6-31 G* method is recommended to develop those atomic charges. Finally, the unit of the adduct including the phosphate group should be kept to have -1 in total charge unless it had a charge on the adduct site.

Two starting structures, A-DNA and B-DNA, should be built and all restraints need to be applied while simulated annealing simulation is performed. Simulated annealing protocol heats the initial starting structures to high target temperature (600 K), and then slowly cools down to either room temperature or 0 K (Smith, J. A. et al., 2000). This process is used to search a wide range of conformational changes in the vicinity of the starting structure, and then find the
most stable conformation with regard to the input restraints. The root mean square deviation (RMSD) of the structures presents the preciseness of calculations. If the final structures converged well, those calculations can be finished. Otherwise, until obtaining a good convergence, those rMD calculations need to be repeated while modifying restraints with respect to NMR data. Determining not only A- or B-form DNA, but also the adduct conformation is always an important aspect by rMD calculations. The final result may possibly suggest to us the biological effects by structural information as well as defining the most feasible structure at physiological conditions. The final structure can be examined by the CORMA program for agreement between experimental intensities and theoretical values. The $R_{1}{ }^{x}$ value is defined in the formula below.

$$
R_{1}^{x}=\frac{\sum\left(I_{o}^{1 / 6}-I_{c}^{1 / 6}\right)}{\sum I_{o}^{1 / 6}}
$$

The final refined structure can be analyzed in detail using the X3DNA program.

Dissertation Statement

The objectives of this dissertation are 1) to explore the structural difference of both acrolein- and crotonaldehyde-derived γ-OH-PdG adducts existing in duplex DNA ($5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence), 2) to monitor each species by using isotopically labeled samples and various NMR techniques and 3) to investigate and elucidate each species: cross-link, aldehyde, hydrated aldehyde, and ringclosed by using NMR and restrained molecular dynamics calculations. Those studies will provide structural insight into these particular DNA adducts.

The underlying central hypothesis of this dissertation is that site-specific adducts of acrolein and crotonaldehyde in situ lie at the interface between chemistry and biology, and the structures and functions of these adducts. Although the biological role of each species is still in question, the chemical and structural differences of these adducts may give rise to different effects on DNA that can be strongly correlated with biological facts (mutagenicity).

The following chapters will present the structural studies of the acroleinand crotonaldehyde-derived dG adducts in the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence. In Chapter II, the materials and methods are described. Chapter III details the monitoring the acrolein γ-OH-PdG DNA adduct in situ using ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ NMR. The carbinolamine cross-link formation and its detection are addressed. Chapter IV describes the monitoring the chemistry of diastereomeric crotonaldehyde $1, N^{2}$ deoxyguanosine exocyclic adducts. Stereoselective formation of cross-link and detection of different species are discussed. Chapter V focuses on the structural study of an opened species by S-crotonaldehyde-derived dG adduct. Since all species are in equilibrium, it was not possible for the cross-link to be separated.

Therefore, the fully reduced cross-links from crotonaldehydes were used for more structural analyses in detail. Chapter VI states the structural study of the fully reduced R-crotonaldehyde cross-link. The NMR derived solution structures were examined. Chapter VII is concerned with the NMR study of the fully reduced S-crotonaldehyde cross-link. The thermodynamic stability of the cross-link by the methyl stereochemistry is addressed. The structural features are discussed as well as a recent heteronuclear NMR study for suggesting a kinetic basis for the lack of interstrand cross-link formation by this adduct.

Finally, the conclusion of the works in this dissertation and the future direction relevant to this project are discussed in Chapter VIII.

CHAPTER II

MATERIALS AND METHODS

Oligodeoxynucleotide Synthesis

The unmodified oligodeoxynucleotides were purchased from the Midland Certified Reagent Co. (Midland, TX) and purified by anion exchange chromatography. All modified oligodeoxynucleotides were provided by the laboratories of Professors Thomas M. Harris and Carmelo J. Rizzo. The synthesis of the ${ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$-labeled adducted oligodeoxynucleotides was accomplished using a postoligomerization strategy previously employed for related modified oligodeoxynucleotides (Kozekov et al., 2003; Nechev et al., 2001; Nechev et al., 2001). This involved the incorporation of an electrophilic base, 2-fluoro-O6-(2-trimethylsilylethyl)-2'-deoxyinosine (DeCorte et al., 1996), into an oligodeoxynucleotide using standard phosphoramidite chemistry followed by displacement of the fluoro group by an amine analogue of the mutagen via a nucleophilic aromatic substitution reaction. A vicinal diol unit was used as a surrogate for the aldehyde group, which was cleaved with sodium periodate after the adduction reaction to give the desired modified oligodeoxynucleotide. The syntheses of the ${ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$-labeled amino diols, 4 -amino- $2-{ }^{13} \mathrm{C}$-butane-1,2diol and $4-{ }^{15} \mathrm{~N}$-amino-2-butane-1,2-diol, are shown in Scheme 2-1 and 2-2.

The synthesis of the ${ }^{13} \mathrm{C}$-labeled amino diol began with the conversion of alcohol, tert-butyl N -(2-hydroxyethyl)carbamic acid, to the corresponding mesylate followed by displacement with ${ }^{13} \mathrm{C}$-labeled potassium cyanide (Scheme 2-1). Reductuion of the nitrile, N-tert-butyl [2-(${ }^{13} \mathrm{C}$-cyano)ethyl]carbamic acid,
with DiBAl-H at low temperature followed by hydrolysis gave the labeled aldehyde, N-(tert-butylcarbamoyl)-3-amino-1- ${ }^{13} \mathrm{C}$-propanal. Wittig olefination followed by treatment with osmium tetroxide installed the vicinal diol unit. Deprotection of the amino group then provided the desired amino diol, 4-amino-$2-{ }^{13} \mathrm{C}$-butane-1,2-diol, with the ${ }^{13} \mathrm{C}$-label in the proper location (Liu, Y.-S. et al., 1998).

The synthesis of the ${ }^{15} \mathrm{~N}$-labeled amino diol is outlined in Scheme 2-2. The hydroxyl group of alcohol, (4R)-4-(2-hydroxy-ethyl)-2,2-dimethyl-1,3-dioxolane, was converted to the corresponding mesylate, which was diplaced by potassium ${ }^{15} \mathrm{~N}$-phthalimide in DMF. Treatment with hydrazine and purification by ionexchange chromatography gave the desired $4-{ }^{-15} \mathrm{~N}$-amino-2-butane-1,2-diol.

The specifically labeled adducted oligodeoxynucleotides were prepared according to Scheme 2-3. Reaction of oligodeoxynucleotide containing the 2-fluoro- O^{6}-(2-trimethyl-silylethyl)-2'-deoxyinosine with either the ${ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$ labeled aminodiol under nucleophilic aromatic substituion conditions gave specifically adducted oligodeoxynucleotide. Periodate oxidation of the vicinal diol unit gave the corresponding aldehyde, which exists in the ring-closed form in single-stranded DNA.

The site-specific incorporation of an ${ }^{15} \mathrm{~N}^{2}$-dG label in the complementary strand involved the incorporation of the 2-fluoro- O^{6}-(2-trimethylsilylethyl)-2'deoxyinosine nucleotide into the desired position using phosphoramidite chemistry (DeCorte et al., 1996; Harris et al., 1991; Kozekov et al., 2003; Kozekov et al., 2001). This oligodeoxynucleotide was then deprotected using $6 \mathrm{M}^{15} \mathrm{NH}_{4} \mathrm{OH}$ which also displaced the fluoro group. Removal of the O^{6}-(2-trimethylsilyethyl) protecting group using 5\% acetic acid afforded the site-specifically ${ }^{15} \mathrm{~N}$-labeled
oligodeoxynucleotide. The concentrations of the single-stranded oligodeoxynucleotides were determined from calculated extinction coefficients at 260 nm .

For the synthesis of ${ }^{13} \mathrm{C}$-labeled crotonaldehyde adducts, the similar strategy was applied. A vicinal diol unit was used as a surrogate for the aldehyde group (Scheme 2-4); it was cleaved with sodium periodate after the adduction reaction to give the desired modified oligodeoxynucleotide. A significant advantage of this strategy was that access to both stereoisomers in the resulting adducted oligodeoxynucleotides was obtained by individually reactiong the (R)- and (S)-steroisomers of the amines with the same oligodeoxynucleotide containing the 2-fluoroinosine base (Scheme 2-5).

The synthesis of the ${ }^{13} \mathrm{C}$-labeled amino diols is shown in Scheme 2-4. Commercially available (S)-2-amino-1-propanol was N -protected as the corresponding Boc derivative. The hydroxyl group was then converted to the mesylate and displaced with ${ }^{13} \mathrm{C}$-labeled potassium cyanide to give nitrile. Reduction of the nitrile to the aldehyde was followed by Wittig methylenation to olefin in acceptable overall yield. Treatment of the olefin with osmium tetroxide gave diol as a mixture of stereoisomers. Because the diol was eventually cleaved to the aldehyde, the stereochemistry of the diol was of no consequence. Deprotection gave 4S-amino-pentane-1,2-diol. The antipodal $4 R$-enantiomer was prepared by an identical sequence starting from commercially available (R)-2-amino-1-propanol.

Scheme 2-1. Synthesis of the 4-Amino- $2{ }^{13} \mathrm{C}$-butane-1,2-diol. a. $(t \mathrm{BuCO})_{2} \mathrm{O}$, $\mathrm{NaOH}, \mathrm{b}) \mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, 70 \%$ c) $\mathrm{K}^{13} \mathrm{CN}, \mathrm{DMSO}, 40^{\circ} \mathrm{C}, 70 \%$ for two steps d) DiBAl$\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 30 \%$ e) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{I}^{-}, t-\mathrm{BuOK}^{+}, \mathrm{THF}, 65 \%$ f) $\mathrm{OsO}_{4}, \mathrm{NMO}$, THF, $\mathrm{H}_{2} \mathrm{O}, 69 \%$ g) Amberlyst-15 H ${ }^{+}$, 91% (By Rizzo \& Harris lab).

Scheme 2-2. Synthesis of $4-{ }^{15} \mathrm{~N}$-Amino-2-butane-1,2-diol (By Rizzo \& Harris lab).

1. $\mathrm{NH}_{2} \mathrm{NH}_{2} / \mathrm{EtOH}$

Reflux
2. Dowex-H resin
(59 \%)

Scheme 2-3. Synthesis of Oligodeoxynucleotides Containing Site-Specific ${ }^{15} \mathrm{~N},{ }^{13} \mathrm{C}$ Isotopes (By Rizzo \& Harris lab).

Scheme 2-4. Preparation of the stereoisomeric ${ }^{13} \mathrm{C}$-labeled amino diols used for site-specific synthesis of adducts in oligodeoxynucleotides. Reagents: (a) (Boc) ${ }_{2} \mathrm{O}, 1 \mathrm{M} \mathrm{NaOH}$, overnight, 81.5%, (b) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $2 \mathrm{hr} ; \mathrm{K}^{13} \mathrm{CN}$, DMSO, $40{ }^{\circ} \mathrm{C}$, $15 \mathrm{hr}, 69 \%$ over 2 steps, (c) DIBAH, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 32 \%$, (d) $\mathrm{Me}_{3} \mathrm{PCH}_{2} \mathrm{Cl}, \mathrm{t}-\mathrm{BuOK}, \mathrm{THF}, 70 \%$, (e) $\mathrm{OsO}_{4}, \mathrm{NMP}, \mathrm{THF} / \mathrm{t}-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}, 76 \%$, (f) Amberlist-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} ; 4 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{CH}_{3} \mathrm{OH}, 91 \%$ (By Rizzo \& Harris lab).

Scheme 2-5. Site-specific synthesis of the ${ }^{13} \mathrm{C}$-labeled oligodeoxynucleotides containing stereoselective crotonaldehyde adducts (By Rizzo \& Harris lab).

Sample Preparation

The modified oligodeoxynucleotide $5^{\prime}-\mathrm{d}($ GCTAGCGAGTCC $)-3^{\prime}, \quad \mathrm{X}=$ Adducted dG $\left(\gamma-{ }^{13} \mathrm{C}-\mathrm{OH}\right.$ PdG, $\mathrm{R}-\alpha-\mathrm{CH}_{3}-{ }^{13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}$, and $\left.\mathrm{S}-\alpha-\mathrm{CH}_{3}-{ }^{13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}\right)$ and its complementary strand $5^{\prime}-\mathrm{d}($ GGACTCGCTAGC $)-3^{\prime}$, $5^{\prime}-$ d(GGACTCTCTAGC) -3^{\prime}, or $5^{\prime}-\mathrm{d}\left(\right.$ GGACTCACTAGC) -3^{\prime} were annealed respectively in a buffer consisting of $10 \mathrm{mM} \mathrm{NaH}_{2} \mathrm{PO}_{4}, 0.1 \mathrm{M} \mathrm{NaCl}$, and $50 \mu \mathrm{M}$ Na_{2} EDTA at pH 7.0. Unless otherwise indicated, the same buffer condition was utilized for all duplexes samples. In the case of the mixture of single strand and duplex DNA, the duplex was eluted from DNA Grade Biogel hydroxylapatite (Bio-Rad Laboratories, Hercules, CA) with a gradient from 10 to 200 mM $\mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{pH} 7.0$. Between each steps, the duplex was lyophilized, resuspended in 1 mL of $\mathrm{H}_{2} \mathrm{O}$ and then desalted using Sephadex G-25. The purity of the duplex was analyzed using a PACE 5500 (Beckman Instruments, Inc., Fullerton, CA) instrument. Electrophoresis was conducted using an eCAP ssDNA 100-R kit applying $12,000 \mathrm{~V}$ for 30 min . The electropherogram was monitored at 254 nm . MALDI-TOF mass spectra were measured on a Voyager-DE (PerSeptive Biosystems, Inc., Foster City, CA) instrument in negative reflector mode. The matrix contained 0.5 M 3-hydrosypicolinic acid and 0.1 M ammonium citrate.

For the fully reduced sample, both R and S crotonaldehyde-dG adduct were reduced fully by sodiumborohydride forcing to generate reduced interchain cross-links as shown in Figure 1-7.

NMR Spectroscopy

The modified duplex was prepared at a concentration of 2 mM for acrolein adduct, 1 mM for each crotonaldehyde adducts and 1.8 mM for other reduced samples in 0.3 mL or 0.25 mL of 9:1 $\mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O}$ containing 10 mM $\mathrm{NaH}_{2} \mathrm{PO}_{4}, 0.1 \mathrm{M} \mathrm{NaCl}, 50 \mu \mathrm{M} \mathrm{Na} 2$ EDTA at pH 7.0 for observing exchangeable protons and amino protons of which is attached to labeled ${ }^{15} \mathrm{~N}$. The sample was exchanged three times with $99.96 \% \mathrm{D}_{2} \mathrm{O}$ and dissolved in $99.996 \% \mathrm{D}_{2} \mathrm{O}$ for observing non-exchangeable protons. Those samples were placed into a microNMR tube (Shigemi Glass, Inc., Allison Park, PA). NMR experiments were carried out at ${ }^{1} \mathrm{H}$ frequencies of $500.13,600.13$ or $800.23 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ frequencies of 125 or 150 MHz and ${ }^{15} \mathrm{~N}$ frequencies of 50 MHz) on Bruker spectrometers. Onedimensional ${ }^{13} \mathrm{C}$ NMR was conducted with a probe with inner-coil ${ }^{13} \mathrm{C}$ geometry using inverse-gated ${ }^{1} \mathrm{H}$ Waltz16 decoupling. Typical acquisition parameters were 16 K total data points, with a digital resolution of $1.3 \mathrm{~Hz} / \mathrm{pt}, 12 \mathrm{~K}$ scans, and a relaxation delay of 8 s . The ${ }^{13} \mathrm{C}$ HSQC experiments were performed using standard ${ }^{1} \mathrm{H}$-detected pulse programs with States-TPPI phase cycling and watergate water suppression (Piotto et al., 1992). Typical experimental parameters were 8 scans, 512 FIDs, each of 2 K points. The ${ }^{13} \mathrm{C}$ sweep width was varied from 20 to 180 ppm . The ${ }^{15} \mathrm{~N}$ HSQC spectra (Sklenar et al., 1993) were recorded with 8/180 scans per increment, using State-TPPI phase cycling, a delay time $1 / 2{ }^{1} \mathrm{~J}_{\mathrm{N}-\mathrm{H}}$ of 5.56 ms , 1536 complex data points for $10,000 \mathrm{~Hz}$ in the acquisition dimension and 256 points in the indirect dimension, covering 10,136.8 Hz , centered at 100 ppm . A relaxation delay of 1.5 s was used. ${ }^{15} \mathrm{~N}$ was fully decoupled during the acquisition time. The ${ }^{15} \mathrm{~N}$ TOCSY-HSQC experiments (Talluri, 1996) were recorded applying States phase cycling, 60 ms isotropic
mixing time applied with a $10,000 \mathrm{~Hz}$ dipsi spin lock pulse sequence optimized for a $90 \mathrm{~Hz}^{1} \mathrm{~J}_{\mathrm{N}-\mathrm{H}}$ coupling. Complex data points (1536) for $10,000 \mathrm{~Hz}$ in the acquisition dimension and 128 points in the indirect dimension, covering 1,000.0 Hz centered around 106 ppm , were measured. A relaxation delay of 1.2 s was used and ${ }^{15} \mathrm{~N}$ was fully decoupled during the acquisition time. The ${ }^{15} \mathrm{~N}$ NOESYHSQC experiments (Mori et al., 1995; Talluri, 1996) were recorded applying State phase cycling with a 150 ms mixing time, and were optimized for a $90 \mathrm{~Hz}^{1} \mathrm{~J}_{\mathrm{N}-\mathrm{H}}$ coupling. Complex data points (1536) for $10,000 \mathrm{~Hz}$ in the acquisition dimension and 128 points in the indirect dimension, covering $1,000 \mathrm{~Hz}$ centered at 106 ppm , were measured. A relaxation delay of 1.5 s was used, and ${ }^{15} \mathrm{~N}$ was fully decoupled during the acquisition time.

Two dimensional ${ }^{1} \mathrm{H}$ NOESY spectra of nonexchangealbe protons were recorded using TPPI phase cycling with mixing times of $60,80,150,250$, and 350 ms. These were recorded with 2048 complex data points in the acquisition dimension and 1024 real data points in the indirect dimension covering 9615.385 Hz. For each t1 increment, 32 scans were averaged with presaturation of the HDO resonance. The relaxation delay was 2 s . The data in the t_{1} dimension were zero-filled to five a matrix $2 \mathrm{~K} \times 2 \mathrm{~K}$ real points. While collecting data, in the case of S-COPdG, ${ }^{13} \mathrm{C}$ decoupling was applied in both dimensions. Two dimensional exclusive COSY (E-COSY), magnitude COSY, and double quantum-filtered ${ }^{1} \mathrm{H}$ correlation COSY (DQF-COSY) spectra were collected with 2048 complex points in the acquisition dimension and 512 points covering 6009.615 Hz and then zerofilled to 1024 points. For each t_{1} increment, 64 or 84 scans were averaged with presaturation of the HDO resonance. A squared sine-bell apodization was applied in both dimensions. Two dimensional water NOESY spectra for
exchangeable protons were collected in $\mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O}(95: 5)$ solution using Watergate water suppression. The spectra were acquired at $13{ }^{\circ} \mathrm{C}$ using States-TPPI phase cycling in the cryogenic probe with mixing times of 200 and 250 ms . A squared sine-bell with 72° shift apodization was applied in d_{2} dimension while cosinesquared bell apodization was applied in d_{1} dimension. 1536 real data points in d_{2} dimension and 512 points in d_{1} dimension were used with $92 / 128$ scans. A relaxation delay of 1 s was used. The ${ }^{1} \mathrm{H}$ chemical shifts were referenced to water. Both ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ chemical shifts were referenced indirectly (Chemistry, 1998; Markley et al., 1998; Wishart et al., 1995). The NMR data were processed on Silicon Graphics Octane workstations using the program FELIX 2000 (Accelrys, Inc., San Diego, CA), XWIN NMR or NMRPipe (Delaglio et al., 1995).

Molecular modeling

Modeling was performed on Silicon Graphics Octane workstations using the program AMBER 8.0 (Case et al., 2002). Classical B-DNA was used as a reference structure to create starting structures for potential energy minimization (Arnott and Hukins, 1972). DNA structures were constructed using the BUILDER module of INSIGHT II (Accelrys, Inc., San Diego, CA). The ANTECHAMBER program was used, and the atom types were based on AMBER atom types for parametrization. Atomic charges were calculated by using GAUSSIAN98 (Frisch et al., 1998) Hartree-Fock calculations with 6-31G* basis set, followed by an atom-centered fit of the electrostatic surface potential with the RESP program. The Appendix A contains the parameterization of the carbinolamine, pyrimidopurinone, N^{2}-(3-oxo-1(S)-methyl-propyl)-dG adduct, and fully reduced cross-link for the AMBER 8.0 forcefield. Potential energy
minimization was carried out with the SANDER program, using the generalised Born continuum solvent model (Bashford and Case, 2000; Tsui and Case, 2000) and the AMBER 8.0 force field.

Distance and Torsion Angle Restraints

Non-exchangeable interproton distances were acquired by running MARDIGRAS (Borgias and James, 1990; Liu, H. et al., 1996) from NOESY spectra. Footprints were drawn around cross-peaks for the NOESY spectrum measured at a mixing time of 250 ms to define the size and shape of individual cross-peaks, using the program FELIX2000. Identical footprints were transferred and fit to the cross-peaks obtained at the other two mixing times. Determined cross-peak intensities were combined with intensities generated from complete relaxation matrix analysis of a starting DNA structure to generate a hybrid intensity matrix. The program MARDIGRAS (v. 5.2) was used to refine the hybrid matrix by iteration to optimize the agreement between the calculated and the experimental NOE intensities. The molecular motion was assumed to be isotropic. The noise level was set at the weakest cross-peak. The RANDMARDI procedure was used while evaluating uncertainties in the distance estimations (Gotfredsen et al., 1996 Nov-Dec; Liu, H. et al., 1995 Dec). To generate hybrid intensity matrices, two starting models, A-form (IniA) and B-form (IniB) structures, were used. A total of 50 RANDMARDIGRAS runs were performed with 2,3 , and 4 ns isotropic correlation times. The minimum number of the best resolved cross-peaks were used for the calculations. The cytosine H5-H6 interproton distance of $2.46 \AA$ was used as a reference. In addition, some distance restraints from cross-peaks of water NOESY and longer mixing time NOESY were added by rough estimation
based on peak intensity. In most case, the lower bounds were set at $1.8 \AA$, however, in the case of the reduced S-crotonaldehyde cross-link, two boundaries were imposed with different classes. In the case of torsion angle restraints, Pseudorotation phase angle (\boldsymbol{P}) were estimated from COSY and NOESY spectra as described elsewhere (Kim, S. G. et al., 1992; Van De Ven and Hilbers, 1988). The intensities of the $\mathrm{H} 2^{\prime}-\mathrm{H} 3^{\prime}, \mathrm{H} 2^{\prime \prime}-\mathrm{H}^{\prime}$, and $\mathrm{H} 3^{\prime}-\mathrm{H} 4^{\prime}$ multiplets help to constrain sugar pucker in the restricted ranges since the intensities of the corresponding cross-peaks depend directly on the magnitude of the coupling constants. If H2'H4' NOESY cross-peak is more intense than $\mathrm{H}^{\prime \prime}$ - $\mathrm{H} 4^{\prime}$ cross-peak, \boldsymbol{P} values greater than 126°. For $P \geq 144^{\circ}$, the intensity of $\mathrm{H} 1^{\prime}-H 4^{\prime}$ should be less than that of H1'-H2' cross-peak (Kim, S. G. et al., 1992). The pseudorotation and amplitude ranges were converted to the five dihedral angles v_{0} to v_{4}. Most cases in here, the minimum number of torsion angle restraints were used. Hydrogen bonding constraints were included including terminal base pairs in the calculation, which are consistent with NOESY spectra in water.

Restrained Molecular Dynamics Calculations

Classical A-DNA and B-DNA were used as starting structures. The adduct was constructed using the BUILDER module of INSIGHT II (Accelrys Inc., San Diego, CA). Without experimental restraints, 250 steps using steepest descent energy minimization followed by 250 steps of conjugate gradient minimization were performed in the SANDER module of AMBER 8 on a Silicon Graphics computer to relieve any bad van der Waals contacts with a constant dielectric. The restraint energy function included terms describing distances
and dihedral restraints as square-well potentials. The Generalized Born solvent model was used for rMD SA calculations with 0.1 M salt concentration, and the SHAKE algorithm was on for the fixed hydrogen bond length (Bashford and Case, 2000; Tsui and Case, 2000).

Calculations were initiated by coupling to a heating bath rapidly up to 600 K and maintained for first 5 ps , followed by steady cooling to 100 K over 15 ps for equilibrium dynamics. During the final 5 ps of cooling, the temperature was reduced to 0 K . The force constants were scaled up during 5 ps of the heating period and maintained during the rest of time. Coordinate sets were archived every 0.2 ps , and 10 structures from the last 5 ps were averaged in total. An average structure was subjected to 500 iterations of conjugate gradient energy minimization to obtain the final structure. For the fully reduced R crotonaldehyde cross-link sample, the lower and upper distance bounds were all set calculated from MARDIGRAS with $30 \mathrm{kcal} / \mathrm{mol} \bullet$ A force constants for class1 and hydrogen bonding constraints. Throughout the calculations, the force constants $2,3,4$, and 5 were set to $25,20,15,10 \mathrm{kcal} / \mathrm{mol} \cdot \mathrm{A}$. For the fully reduced S-crotonaldehyde cross-link sample, the lower and upper distance bounds were all set calculated from MARDIGRAS with $50 \mathrm{kcal} / \mathrm{mol} \bullet \mathrm{A}$ force constants for class1 and hydrogen bonding constraints. Throughout the calculations, the force constants $2,3,4$, and 5 were set to $45,40,35,30$ $\mathrm{kcal} / \mathrm{mol} \cdot \mathrm{A}$. The empirical restraints were set to $35 \mathrm{kcal} / \mathrm{mol} \cdot \mathrm{A}$ unless otherwise noticed. The weight of force constants were increased from 0.1 to 1.5 over the first 3 ps and reduced back to 1.0 over the rest of calculations. Until acquiring
the nice convergence from the starting structures, those values slightly modified in each cases.

Once the final structure was derived from rMD calculations, from which the Complete Relaxation Matrix Analysis (CORMA)(v. 5.2) was utilized for the back calculation of theoretical ${ }^{1} \mathrm{H}$ NOE intensities (Keepers and James, 1984). For all of the analyses, isotropic correlation time $\tau_{c}=3 \mathrm{~ns}$ was used. A sixth root residual $\left(\mathrm{R}_{1}{ }^{x}\right)$ factor was calculated for each final structure to measure the fit of the NOESY data to the final structure: Basically, it measures the relative error between the calculated from the final structure and observed NOE intensities from the real sample. Helicodial parameters were examined using 3DNA (Lu and Olson, 2003).

CHAPTER III

SPECTROSCOPIC CHARACTERIZATION OF INTERSTRAND CARBINOLAMINE CROSS-LINKS FORMED IN THE 5'-CpG-3' SEQUENCE BY THE ACROLEIN-DERIVED γ-OH-1, N^{2}-PROPANO-2'-DEOXYGUANOSINE DNA ADDUCT ${ }^{\text { }}$

Introduction

The major acrolein-derived dG adduct, γ-OH-PdG adduct, was studied by using NMR with site-specifically labeled samples. The adduct exhibits an array of chemistry in DNA, which includes the formation of cyclic hydroxylated $1, N^{2}$ propanodeoxyguanosine (OH-PdG) adduct, and DNA interchain cross-links (Scheme 1-2). DNA-peptide (Kurtz and Lloyd, 2003) and DNA-protein crosslinks (Sanchez et al., 2003) are also formed. The 3-(2-deoxy- β-D-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2a]purin-10(3H)-one, γ -OH-PdG adduct (Chung, F. L. et al., 1999; Nath, R. G. et al., 1996) was detected in animal and human tissue (Chung, F. L. et al., 1999), suggesting its involvement in mutagenesis and carcinogenesis (Nath, R. G. and Chung, 1994). When placed into duplex DNA opposite dC at neutral pH , it opens spontaneously to aldehyde, in equilibrium with diol (de los Santos, C. et al., 2001).

The presence of aldehyde in duplex DNA leads to the potential for formation of both DNA-DNA and DNA-protein cross-links. Kozekov et al. (Kozekov et al., 2003; Kozekov et al., 2001) trapped a trimethylene cross-link upon insertion of γ-OH-PdG adduct into an oligodeoxynucleotide duplex at a 5'-

[^0]CpG-3' sequence, followed by NaCNBH_{3} treatment. This implied the presence of cross-linked imine, in equilibrium with cross-linked carbinolamine, and crosslinked pyrimidopurinone. Enzymatic digestion of the cross-linked DNA afforded cross-linked pyrimidopuinone (Kozekov et al., 2003). In contrast, ${ }^{15} \mathrm{~N}$ HSQC NMR detected the presence of carbinolamine 4 in situ, in the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence (Kim, H. Y. et al., 2002). The interstrand carbinolamine, imine, and pyrimidopurinone cross-links formed in 5'-CpG-3' sequences exist in equilibrium (Scheme 1-2) and monitoring the composition of the equilibrium mixture in situ is of considerable interest. All three cross-linked species may contribute to the mutagenic spectrum of acrolein, and interfere with DNA replication.

This chapter extends upon the earlier NMR studies (Kim, H. Y. et al., 2002). The site-specific introduction of a ${ }^{13} \mathrm{C}$ label at the γ carbon of acrolein, and of a ${ }^{15} \mathrm{~N}$ label at N^{2}-dG of γ-OH-PdG, enabled the equilibrium chemistry of γ-OHPdG adduct to be monitored, in situ. The results reveal that the previously detected (Kim, H. Y. et al., 2002) carbinolamine is in fact the major cross-linked species present in duplex DNA, in situ. At equilibrium, the amounts of imine crosslink and pyrimidopurinone cross-link remain below the level of detection. Molecular modeling suggests carbinolamine cross-link maintains Watson-Crick hydrogen bonding at both of the tandem $C \bullet G$ base pairs, with minimal distortion of the duplex.

Results

Epimerization of $\boldsymbol{\gamma}$-OH-PdG. The single-stranded 5^{\prime} -$\mathrm{d}(\mathrm{GCTAGCXAGTCC})-3^{\prime} \gamma^{13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}$ oligodeoxynucleotide was examined
using ${ }^{13} \mathrm{C}$ HSQC NMR (Figure 3-1). At $37{ }^{\circ} \mathrm{C}$ two $\gamma^{-13} \mathrm{C}$ resonances were observed, at $\delta 71.3 \mathrm{ppm}$. The corresponding ${ }^{1} \mathrm{H}$ resonances were observed at $\delta 6.12$ and 6.01 ppm. These two resonances were assigned as the R - and S-epimers of cyclic adduct, embedded in oligodeoxynucleotide. No resonance for $\gamma-{ }^{13} \mathrm{C}$ aldehyde or hydrated aldehyde was observed, suggesting that, at equilibrium, the levels of these ring-opened species remained below the spectroscopic limit of detection.

Figure 3-1. (A) ${ }^{1} \mathrm{H}$-decoupled ${ }^{13} \mathrm{C}$ HSQC spectrum of single-stranded oligodeoxynucleotide $5^{\prime}-\mathrm{d}(\mathrm{GCTAGCXAGTCC})-3^{\prime} ; ~ X=\gamma{ }^{13} \mathrm{C}-\mathrm{OH}$ PdG adduct; (B)

H S Q C
spectrum.

C

Figure 3-1 (continued) (C) ${ }^{13} \mathrm{C}$ spectrum of single-stranded oligodeoxynucleotide $5^{\prime}-\mathrm{d}(\mathrm{GCTAGCXAGTCC})-3^{\prime} ; \mathrm{X}=\gamma{ }^{13} \mathrm{C}-\mathrm{OH}$ PdG adduct

Equilibrium Chemistry of the $\boldsymbol{\gamma}$-OH-PdG Adduct in Duplex DNA. The single-stranded $5^{\prime}-\mathrm{d}(\mathrm{GCTAGCX} A G T C C)-3^{\prime} \gamma{ }^{13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}$ oligodeoxynucleotide was annealed with the complementary strand to form the duplex 5'$\mathrm{d}(\mathrm{GCTAGCX} A G T C C)-3^{\prime} \bullet 5^{\prime}-\mathrm{d}\left(G G A C T \underline{G C T A G C)}-3^{\prime}\right.$ at pH 7 , in which APdG adduct was placed opposite dC, and the sample was allowed to equilibrate at 37 ${ }^{\circ} \mathrm{C}$ (Figure 3-2). After 6 days, no further spectroscopic changes were observed. At equilibrium, the $\gamma_{-}{ }^{13} \mathrm{C}$ resonance in duplex DNA appeared as a mixture of three species. Furthest downfield, at approximately 207 ppm , was a resonance assigned as $\gamma-{ }^{13} \mathrm{C}$ aldehyde. A second $\gamma-{ }^{13} \mathrm{C}$ resonance, assigned as hydrated aldehyde (Ramu et al., 1995), was observed at approximately 90 ppm . The third resonance, assigned as carbinolamine cross-link, was observed at 76 ppm . The two diastereomers of carbinolamine were not resolvable in the ${ }^{13} \mathrm{C}$ spectrum. The secure assignment of the cross-linked resonance as carbinolamine and not pyrimidopurinone was accomplished by annealing ${ }^{15} \mathrm{~N}$-labeled oligodeoxynucleotide with the complementary strand at pH 7 . An ${ }^{15} \mathrm{~N}-\mathrm{HSQC}$ filtered NOESY spectrum revealed the presence of an NOE between $X^{715} \mathrm{~N}^{2} \mathrm{H}$ and the imino proton $X^{7} \mathrm{~N} 1 \mathrm{H}$, consistent with a carbinolamine assignment, but not a pyrimidopurinone, for the cross-linked species (Figure 3-3). Supporting evidence for the assignment of carbinolamine was derived from a triple resonance HCN experiment conducted after annealing ${ }^{13} \mathrm{C}$-labeled oligodeoxynucleotide with ${ }^{15} \mathrm{~N}$-labeled complementary strand (data not shown). Cross-link formation resulted in bonding between the ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ isotopes. A correlation was observed between the $76 \mathrm{ppm} \gamma-{ }^{13} \mathrm{C}$ resonance and a ${ }^{15} \mathrm{~N}$ resonance at 106 ppm , establishing that carbininolamine cross-link observed in the ${ }^{13} \mathrm{C}$ experiments (Figure 3-2) arose from the same chemical species observed in ${ }^{15} \mathrm{~N}$ HSQC experiments, and assigned as carbinolamine (Kim, H. Y. et al., 2002). The ~ 5 $\mathrm{ppm}{ }^{13} \mathrm{C}$ chemical shift difference of carbinolamine as compared to cyclic adduct
was consistent with the expectation that the $\gamma^{13} \mathrm{C}$ nuclei in APdG adduct and carbinolamine cross-link, both of which were bonded to hydroxyl groups, should exhibit similar chemical shifts.

Figure 3-2. ${ }^{13} \mathrm{C}$ spectrum of oligodeoxynucleotide annealed with its complement to yield the duplex $5^{\prime}-\mathrm{d}(G C T A G C X A G T C C)-3^{\prime} \bullet 5^{\prime}-\mathrm{d}(G G A C T C G C T A G C)-3^{\prime}, X=$ $\gamma^{13} \mathrm{C}-\mathrm{OH}$ PdG adduct. The bottom spectrum was collected in the first day after annealing the duplex. The top spectrum was collected after 6 days at $37^{\circ} \mathrm{C}$. Assignments of resonances: (a) aldehyde; (b) hydrated-aldehyde; (c) carbinolamines

Figure 3-3. ${ }^{15} \mathrm{~N}$-NOESY HSQC spectra indicate that both base pairs in the 5'-CpG$3^{\prime} \gamma$-OH-PdG induced interstrand cross-link remain intact. (A) ${ }^{15} \mathrm{~N}$-NOESY HSQC spectrum for ${ }^{15} \mathrm{~N}^{2}$-dG labeled oligodeoxynucleotide annealed with its complement to yield the duplex $5^{\prime}-\mathrm{d}\left(\mathrm{G}^{1} \mathrm{C}^{2} \mathrm{~T}^{3} \mathrm{~A}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \underline{X}^{7} \mathrm{~A}^{8} \mathrm{G}^{9} \mathrm{~T}^{10} \mathrm{C}^{11} \mathrm{C}^{12}\right)-3^{\prime} \bullet 5^{\prime}-$ $\mathrm{d}\left(\mathrm{G}^{13} \mathrm{G}^{14} \mathrm{~A}^{15} \mathrm{C}^{16} \mathrm{~T}^{17} \mathrm{C}^{18} Y^{19} \mathrm{C}^{20} \mathrm{~T}^{21} \mathrm{~A}^{22} \mathrm{G}^{23} \mathrm{C}^{24}\right)-3^{\prime}, \mathrm{X}^{7}=\gamma$-OH-PdG adduct; $\mathrm{Y}={ }^{15} \mathrm{~N}^{2}-\mathrm{dG}$. Cross-peaks (a) $\mathrm{Y}^{19}{ }^{15} \mathrm{~N}^{2} \mathrm{H} \rightarrow \mathrm{X}^{7} \mathrm{~N} 1 \mathrm{H}$ (weak); (b) $\mathrm{Y}^{19}{ }^{15} \mathrm{~N}^{2} \mathrm{H} \rightarrow \mathrm{Y}^{19} \mathrm{~N} 1 \mathrm{H}$ (strong). (B) ${ }^{15} \mathrm{~N}$-NOESY HSQC spectrum for $\gamma-\mathrm{OH}-{ }^{15} N^{2}-\mathrm{PdG}$ labeled oligodeoxynucleotide annealed with its complement to yield the duplex duplex 5'$d\left(G^{1} C^{2} T^{3} A^{4} G^{5} C^{6} X^{7} A^{8} G^{9} T^{10} C^{11} C^{12}\right)-3^{\prime} \cdot 5^{\prime}-d\left(G^{13} G^{14} A^{15} C^{16} \mathrm{~T}^{17} \mathrm{C}^{18} \mathrm{G}^{19} \mathrm{C}^{20} \mathrm{~T}^{21} \mathrm{~A}^{22} \mathrm{G}^{23} \mathrm{C}^{24}\right)-3^{\prime}$, $X^{7}=\gamma-\mathrm{OH}^{15} N^{2}$-PdG adduct. Cross-peaks (c) $\mathrm{X}^{7} \gamma-\mathrm{OH}-\mathrm{PdG}{ }^{15} N^{2} \mathrm{H} \rightarrow \mathrm{X}^{7} \gamma$-OH-PdG N 1 H (strong); (d) $\mathrm{X}^{7} \gamma-\mathrm{OH}-\mathrm{PdG}^{15} \mathrm{~N}^{2} \mathrm{H} \rightarrow \mathrm{G}^{19} \mathrm{~N} 1 \mathrm{H}$ (weak).

Rate of Interstrand Crosslink Formation. An inverse-gated ${ }^{13} \mathrm{C}$ spectrum was obtained immediately upon annealing ${ }^{13} \mathrm{C}$-labeled oligodeoxynucleotide with its complement. The $\gamma-{ }^{13} \mathrm{C}$ resonances from aldehyde and hydrated aldehyde were detected, indicating that opening of APdG adduct was complete before the ${ }^{13} \mathrm{C}$ spectrum could be collected. The $\gamma{ }^{13} \mathrm{C}$ resonance assigned as carbinolamine cross-link was observed as a weak signal in the day 1 spectrum. It increased in intensity over a period of 6 days at $37^{\circ} \mathrm{C}$. The failure to observe a γ ${ }^{13} \mathrm{C}$ resonance in the $140-160 \mathrm{ppm}$ spectral region, the range in which a resonance arising from $\gamma-{ }^{13} \mathrm{C}$ imine would be anticipated, indicated that the amount of imine in equilibrium with carbinolamine was below the level of detection by ${ }^{13} \mathrm{C}$ NMR. This placed an upper limit on the amount of imine crosslink in equilibrium with carbinolamine crosslink, estimated to be $\leq 5 \%$. At longer acquisition times, the natural abundance ${ }^{13} \mathrm{C}$ spectrum of the duplex oligodeoxynucleotide was observed.

Figure 3-4 shows the inverse-gated ${ }^{13} \mathrm{C}$ spectrum of the equilibrated sample as a function of temperature. At lower temperature, the intensity of the resonance arising from hydrated aldehyde increased, concomitant with a decrease in intensity of the resonance arising from aldehyde. At $37^{\circ} \mathrm{C}$, a 1:1 aldehyde: hydrated aldehyde ratio was observed, while a 1:2 aldehyde: hydrated aldehyde ratio was observed at $25^{\circ} \mathrm{C}$. Below the T_{m} of the duplex, the integrated area of the resonance arising from carbinolamine cross-link did not vary. It did, however, undergo line broadening as temperature was lowered. Above $65{ }^{\circ} \mathrm{C}$ thermal denaturation of the duplex oligodeoxynucleotide occurred and only the resonance arising from cyclic adduct was observed. No resonance arising from a transiently formed $\gamma_{-}{ }^{13} \mathrm{C}$ imine was detected through this range of temperature.

Figure 3-4. ${ }^{13} \mathrm{C}$ spectrum of oligodeoxynucleotide annealed with its complement to yield the duplex $5^{\prime}-\mathrm{d}(G C T A G C X A G T C C)-3^{\prime} \bullet 5^{\prime}-\mathrm{d}(G G A C T C G C T A G C)-3^{\prime}, X=$ $\gamma-{ }^{13} \mathrm{C}-\mathrm{OH}$ PdG adduct, collected as a function of temperature. The bottom spectrum was collected at $4{ }^{\circ} \mathrm{C}$, the middle spectrum, at $25^{\circ} \mathrm{C}$, and the top spectrum, at $37{ }^{\circ} \mathrm{C}$. Assignments of resonances: (a) aldehyde; (b) hydratedaldehyde; (c) carbinolamines.

Mispairing of T and dA Opposite the γ-OH-PdG Adduct. The acrolein γ ${ }^{13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}$ adducted oligodeoxynucleotide was annealed with the mismatched oligodeoxynucleotides placing a T opposite adduct in 5^{\prime}-d(GCTAGCXAGTCC)$3^{\prime} \bullet 5^{\prime}-\mathrm{d}(\mathrm{GGACTTGCTAGC})-3^{\prime}$, and placing dA opposite adduct in 5'-$\mathrm{d}\left(\mathrm{GCTAGCXAGTCC)}-3^{\prime} \cdot 5^{\prime}-\mathrm{d}(\mathrm{GGACT} \underline{A G C T A G C)}-3\right.$ ', at pH 7 . The degree of ring-opening to aldehyde and hydrated aldehyde was monitored by ${ }^{13} \mathrm{C}$ NMR (Figure 3-5). When placed opposite T, at equilibrium, a mixture of aldehyde, hydrated aldehyde, and cyclic adduct was observed. When placed opposite dA, no opening of cyclic adduct was observed.

Formation of DNA-Peptide Complexes by the γ-OH-PdG Adduct Placed Opposite to T and dA. Borohydride trapping probed for the presence of aldehyde in the mismatched duplex DNAs containing either dA or T opposite to cyclic adduct. The sing-strand oligodeoxynucleotide containing adduct was assayed as a reference. The 58-mer DNAs containing adduct were incubated with excess KWKK tetrapeptide in the presence of NaCNBH_{3}, and accumulation of the trapped DNA-peptide complexes was monitored using PAGE (Figure 3-6). In agreement with previous results (Kurtz and Lloyd, 2003), when adduct correctly paired with dC, it efficiently formed DNA-peptide complexes (data not shown). In reactions with single-stranded DNA, accumulation of DNA-peptide complexes was low (Figure 3-6) (Kurtz and Lloyd, 2003). When adduct was mispaired with T or dA , it also formed DNA-peptide complexes, albeit with different efficiencies. Specifically, initial rates of peptide cross-link formation
were 1.64, 0.14 , and $0.27 \mathrm{fmol} \mathrm{min}^{-1}$ when cyclic adduct was mismatched opposite T, dA, or in single-stranded DNA, respectively.

Figure 3-5. (A) ${ }^{13} \mathrm{C}$ spectrum of oligodeoxynucleotide annealed with its mismatched complement to yield the $\mathrm{X} \bullet \mathrm{T}$ duplex 5^{\prime}-d(GCTAGCXAGTCC)-3' $\bullet 5^{\prime}-$ d(GGACTTGCTAGC) -3 ', $X=\gamma-{ }^{13} \mathrm{C}-\mathrm{OH}$ PdG adduct. (B) ${ }^{13} \mathrm{C}$ spectrum of oligodeoxynucleotide annealed with its mismatched complement to yield the $X \bullet$ A duplex $5^{\prime}-\mathrm{d}(G C T A G C X A G T C C)-3^{\prime} \bullet 5^{\prime}-\mathrm{d}(G G A C T A G C T A G C)-3^{\prime}, X=\gamma-{ }^{13} \mathrm{C}-$ OH PdG adduct.

Figure 3-6. Accumulation of the trapped DNA-peptide complexes formed by $\mathrm{OH}-\mathrm{PdG}$ modified oligodeoxynucleotides in single-stranded (ss $\gamma-\mathrm{OH}-\mathrm{PdG}$) and double-stranded DNAs containing either $\gamma-\mathrm{OH}-\mathrm{PdG} \bullet \mathrm{A}$ or $\gamma-\mathrm{OH}-\mathrm{PdG} \bullet \mathrm{T}$ mismatch. (A) PAGE analyses of the trapping reactions. The positions of the 58-mer oligodeoxynucleotides and the 58 -mer oligodeoxynucleotides cross-linked with KWKK tetrapeptide are indicated. (B) Kinetic analyses of the accumkulation of the trapped complexes (By Lloyd lab).

Thermal Stability of the Interstrand Cross-Link. ${ }^{15} \mathrm{~N}$-labeled oligodeoxynucleotide was annealed with the complementary adducted oligodeoxynucleotide. A ${ }^{15} \mathrm{~N}$-NOESY-HSQC experiment (Mori et al., 1995; Talluri, 1996) revealed that the $5^{\prime} C \bullet G$ base pair of the cross-link maintained Watson-Crick hydrogen bonding (Kim, H. Y. et al., 2002), which, as will be discussed below, was consistent with molecular modeling of carbinolamine. The T_{m} of the cross-linked duplex increased to $90^{\circ} \mathrm{C}$ (Kozekov et al., 2003), in support of the molecular modeling studies and suggesting that carbinolamine stabilized the duplex with respect to thermal denaturation.

Molecular Modeling. Two diastereomers of the 5'-CpG-3' carbinolamine interstrand cross-link were modeled and compared to the corresponding unmodified oligodeoxynucleotide sequence. The model structures were subjected to potential energy minimization using the conjugate gradients algorithm in AMBER 8.0 (Figure 3-7). The potential energy minimization predicted that both diastereomers of carbinolamine cross-link maintained Watson-Crick hydrogen bonding at both of the tandem $\mathrm{C} \bullet \mathrm{G}$ base pairs involved in the interstrand cross-links. The modeling studies suggested that the sp^{3} hybridization at the γ-carbon of the acrolein moieties allowed the cross-links to form without substantial perturbation of duplex structure. For the S diastereomer of the carbinolamine cross-link, the molecular modeling predicted the possibility of an additional hydrogen bond between the carbinolamine hydroxyl and $N^{3}-\mathrm{dG}$ of the $5^{\prime} \mathrm{C} \bullet \mathrm{G}$ base pair of the crosslink. In contrast, imine mandated sp^{2} hybridization at the γ-carbon of the crosslink, which would require
breaking the Watson-Crick hydrogen bond between the amine proton of N^{2}-dG and $\mathrm{O}^{2}-\mathrm{dC}$ of the $5^{\prime} \mathrm{C} \bullet \mathrm{G}$ base pair in the crosslink. Formation of either diastereomer of pyrimidopurinone cross-link prevented Watson-Crick hydrogen bonding at the $3^{\prime} \mathrm{G} \bullet \mathrm{C}$ base pair of the cross-link. It also disrupted Watson-Crick hydrogen bonding at the $5^{\prime} C \bullet G$ base pair of the cross-link, which, as noted above, was not consistent with ${ }^{15} \mathrm{~N}$-NOESY-HSQC NMR experiments revealing that the $5^{\prime} \mathrm{C} \bullet \mathrm{G}$ base pair of the cross-link was intact (Kim, H. Y. et al., 2002). The parameterization of the carbinolamine and the pyrimidopurinone cross-links, for the AMBER 8.0 forcefield, is provided in the Appendix A.

Figure 3-7. Molecular modeling studies acrolein-induced interstrand crosslinking in the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ DNA sequence context. In all instances the 5^{\prime}-flanking base pair to the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ DNA sequence context is a $\mathrm{C} \cdot \mathrm{G}$ base pair; the 3^{\prime} flanking base pair is a $\mathrm{T} \bullet \mathrm{A}$ base pair. (A) R-diastereomer of carbinolamine crosslink, viewed from the minor groove. (B) R-diastereomer of carbinolamine crosslink, base stacking interactions. (C) S-diastereomer of carbinolamine cross-link, viewed from the minor groove. (D) S-diastereomer of carbinolamine cross-link, base stacking interactions. (E) R-diastereomer of pyrimidopurinone cross-link, viewed from the minor groove. (F) R-diastereomer of pyrimidopurinone crosslink, base stacking interactions. (G) S-diastereomer of pyrimidopurinone crosslink, viewed from the minor groove. (H) S-diastereomer of pyrimidopurinone cross-link, base stacking interactions.

Discussion

Epimerization of the γ-OH-PdG Adduct in the 5^{\prime}-CpG-3' Sequence. In single-stranded DNA, γ-OH-PdG adduct existed as an equal mixture of two epimers. This suggested that in this $5^{\prime}-\mathrm{CpXpA}-3^{\prime}$ single-stranded DNA sequence the two configurations of the γ-hydroxyl group were equally favored energetically. This was consistent with the notion that in the single-stranded DNA, there was little steric hindrance to either configuration due to the fact that the $1, N^{2}$-cyclic ring faced away from the phosphodiester backbone. This contrasted with the situation in duplex DNA, in which the $1, \mathrm{~N}^{2}$-cyclic ring of adduct clashed sterically with its complement and disrupted Watson-Crick hydrogen bonding. The failure to observe a $\gamma-{ }^{13} \mathrm{C}$ resonance corresponding to ring-opened aldehyde in single-stranded DNA was consistent with the observation that at pH 7 , cyclic adduct was favored as compared to ring-opened aldehyde. The data suggested that in single-stranded DNA, adduct spontaneously epimerizes, but slowly on the NMR time scale, without accumulation of aldehyde.

Ring Opening of the γ-OH-PdG Adduct in the 5 - $-\mathrm{CpG}-\mathbf{3}^{\prime}$ Sequence.

 When placed into duplex DNA at pH 7 and $37^{\circ} \mathrm{C}$, with dC opposite γ-OH-PdG adduct, ring-opening yielded approximately equal amounts of aldehyde and hydrated aldehyde. De los Santos et al. reported two resonances for the H_{γ} proton of the ring-opened adduct, resonating at $\delta 9.58 \mathrm{ppm}$ and $\delta 4.93 \mathrm{ppm}$, assigned as aldehyde and hydrated aldehyde (de los Santos, C. et al., 2001). The equilibrium ratio of aldehyde: hydrated aldehyde increased with temperature,consistent with expectation. The presence of significant levels of aldehyde in the minor groove at pH 7 and $37{ }^{\circ} \mathrm{C}$ was significant with regard to its propensity for forming cross-links under physiological conditions.

Interstrand Cross-Link Exists as a Carbinolamine, in situ. It had been concluded that the interstrand acrolein cross-link must be comprised of an equilibrium mixture of carbinolamine, imine, and pyrimidopurinone. Carbinolamine was detected by ${ }^{15} \mathrm{~N}$ HSQC NMR (Kim, H. Y. et al., 2002), and the presence of imine was inferred because the crosslink was reductively trapped in the presence of NaCNBH_{3} (Kozekov et al., 2003; Kozekov et al., 2001). The present NMR studies show that the predominant form of the acrolein cross-link in situ is, in fact, carbinolamine. The amount of imine remained below the level of spectroscopic detection. Since the reduction of the interstrand cross-link occurred slowly in the presence of NaCNBH_{3} (Kozekov et al., 2003; Kozekov et al., 2001), these data suggest that dehydration of carbinolamine to the reducible imine is rate limiting in duplex DNA. Enzymatic digestion of duplex DNA containing cross-link afforded a bis-deoxyguanosine conjugate, characterized by NMR as pyrimidopurinone arising from annelation of imine with N1-dG in the 5'-CpG-3' sequence (Kozekov et al., 2003). The likely explanation is that the position of the equilibrium between carbinolamine, imine, and pyrimidopurinone depends on the conformational state of the DNA. Upon enzymatic degradation of duplex DNA, the equilibrium shifts to favor the pyrimidopurinone bis-nucleoside crosslink. The time required for cross-link to reach equilibrium at pH 7 and $37^{\circ} \mathrm{C}$ was approximately 6 days, with approximately 40% cross-linking observed. These results corroborated studies in which the interstrand cross-linking reaction was
monitored by reverse-phase HPLC with gradient elution, using acetonitrile. In those studies, equilibrium was reached within 7 days, and cross-link was present at a level of approximately 50\% (Kozekov et al., 2003).

DNA Duplex Maintains the Interstrand Carbinolamine Cross-Link.

 Molecular modeling provided a rationale as to why the carbinolamine interstrand cross-link predominated, in situ. It was predicted to conserve Watson-Crick hydrogen bonding at both of the tandem $\mathrm{C} \bullet \mathrm{G}$ base pairs, with minimal structural perturbation of the DNA duplex (Figure 3-7). The carbinolamine linkage maintained the $\mathrm{N}^{2}-\mathrm{dG}$ amine proton, necessary for maintaining Watson-Crick hydrogen bonding at the 5 '-side of the interstrand 5^{\prime} -CpG-3' cross-link. In addition, the carbinolamine hydroxyl group was predicted to be positioned such that it could allow an additional hydrogen bond at the 5'side of the interstrand $5^{\prime}-\mathrm{CpG}-3^{\prime}$ cross-link. This provided an explanation as to both why elimination of water to form the reducible imine was disfavored in duplex DNA and why the reversible 5'-CpG-3' cross-link was extraordinarily stable with respect to thermal denaturation (Kozekov et al., 2003). Thus, the formation of imine was predicted to require disruption of Watson-Crick hydrogen bonding at both tandem $C \bullet G$ base pairs, whereas thermal strand dissociation to release the interstrand cross-link required breaking an additional hydrogen bond at the 5 -side of the interstrand cross-link. This was consistent with observations that oligodeoxynucleotides containing cross-link, once isolated, were relatively stable under conditions that maintained duplex DNA structure. However, they reverted completely to the single-stranded oligodeoxynucleotides within 1 h in unbuffered $\mathrm{H}_{2} \mathrm{O}$, conditions that favoredduplex denaturation (Kozekov et al., 2001). The molecular modeling predicted that formation of pyrimidopurinone cross-link in duplex DNA required disruption of Watson-Crick hydrogen bonding at both tandem $\mathrm{C} \bullet \mathrm{G}$ base pairs. It resulted in a distorted conformation of the duplex, which was not consistent with the thermal stabilization of the duplex DNA afforded by the cross-link.

Mispairing of the $\boldsymbol{\gamma}$-OH-PdG Adduct. In the nucleoside, or in the singlestranded oligodeoxynucleotide, equilibrium between cyclic adduct and the ringopened aldehyde or hydrated aldehyde adducts favored ring-closed adduct at neutral pH (Figure 3-1); under basic conditions ring-opening was favored (de los Santos, C. et al., 2001). In duplex DNA, when APdG adduct was placed opposite dC at neutral pH , opening of APdG adduct to the aldehyde or hydrated aldehyde adducts was favored (de los Santos, C. et al., 2001); vide supra (Figure 3-2). It is thought that when paired opposite dC at neutral pH , the equilibrium shifts because the aldehyde or hydrated aldehyde adducts orient into the minor groove, conserving Watson-Crick hydrogen bonding (de los Santos, C. et al., 2001).

Chemically, γ-OH-PdG adduct is similar to the pyrimidopurinone $M_{1} d G$ adduct formed in DNA upon exposure to malondialdehyde (Basu et al., 1988; Marnett, L.J. et al., 1986; Reddy and Marnett, 1996; Seto et al., 1983; Seto et al., 1986) or base propenals (Dedon et al., 1998). When placed in duplex DNA opposite dC at neutral $\mathrm{pH}, \mathrm{M}_{1} \mathrm{dG}$ spontaneously opened to N^{2}-(3-oxopropenyl)dG (OPdG) (Mao, H. et al., 1999). Similar to γ-OH-PdG adduct, it is thought that when paired opposite dC at neutral pH , the equilibrium between $\mathrm{M}_{1} \mathrm{dG}$ and

OPdG favors the latter, because it orients into the minor groove, conserving Watson-Crick hydrogen bonding (Mao, H. et al., 1999; Mao, H. et al., 1999). However, in duplex DNA, the rate at which $M_{1} d G$ converted to OPdG was negligible unless $\mathrm{M}_{1} \mathrm{dG}$ was opposite dC in the complementary strand. When $\mathrm{M}_{1} \mathrm{dG}$ was placed opposite T , rather than dC , OPdG did not form at a measurable rate, although OPdG itself was stable opposite T (Mao, H. et al., 1999). Likewise, when $\mathrm{M}_{1} \mathrm{dG}$ was placed opposite a two-base bulge, conversion to OPdG was not observed (Schnetz-Boutaud et al., 2001). Riggins et al.(Riggins et al., 2004; Riggins et al., 2004) proposed that the N3-dC imine activates a molecule of water that then adds to the γ-carbon of $\mathrm{M}_{1} \mathrm{dG}$ and catalyzes its conversion to OPdG.

Unlike $\mathrm{M}_{1} \mathrm{dG}$, the cyclic ring of γ-OH-PdG adduct is not conjugated with the purine ring of dG. Consequently, for $\gamma-\mathrm{OH}-\mathrm{PdG}$, the activation energy barrier with respect to interconversion between cyclic adduct and the aldehyde and hydrated aldehyde adducts is anticipated to be lower. The present results suggest that this is in fact the case. When γ-OH-PdG adduct was mispaired with T, an equilibrium mixture of cyclic adduct and the aldehyde and hydrated aldehyde adducts was observed (Figure 3-3), suggesting that the presence of dC in the complementary strand was no longer required to facilitate ring-opening.

When T was placed opposite APdG adduct, partial ring-opening was observed at equilibrium, indicating that opposite T, cyclic adduct and its ringopened counterparts exhibit similar energetics in duplex DNA. It seems possible that when placed opposite T , the aldehyde and hydrated aldehyde adducts stabilize $\mathrm{G} \bullet \mathrm{T}$ wobble pairing. We surmise that $\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct re-orients into
the syn conformation about the glycosyl bond (Kim, H. Y. et al., 2002) when mispaired opposite T, placing the cyclic ring into the major groove, a position in which it does not clash sterically with the mispaired T. This may account for the observation that when placed opposite T , cyclic adduct and aldehyde and hydrated aldehyde adducts are in slow exchange on the NMR time scale. It is of interest to note that in the $\mathrm{G} \bullet \mathrm{T}$ wobble pair (Brown et al., 1985; Hare et al., 1986; Kalnik et al., 1988; Kennard, 1985; Kneale et al., 1985), the nucleophilic N1-dG imine of aldehyde adduct hydrogen bonds with O^{2} of the mispaired T , positioning it to readily attack the carbonyl of aldehyde and re-cyclize to APdG adduct.

When dA was placed opposite APdG adduct, no ring-opening was observed at equilibrium, suggesting that, opposite A, the equilibrium in duplex DNA between APdG adduct and its ring-opened counterparts strongly favors the cyclic adduct. We surmise that when mispaired with $\mathrm{dA}, \mathrm{APdG}$ adduct orients into the syn conformation about the glycosyl bond, thus placing the cyclic ring in the major groove and allowing the mispaired dA to hydrogen bond with the Hoogsteen edge of the modified dG in a $G(s y n) \bullet A(a n t i)$ pair (Gao and Patel, 1988). In duplex DNA, the G(anti) •A(anti) (Kan et al., 1983 Jul; Patel, D. J. et al., 1984 Jul 3) and $G($ anti $) \bullet A(s y n)$ (Hunter et al., 1986) mismatches have also been characterized as to structure. However, these conformations of the $G \bullet A$ mismatch utilize the N1-dG imine as a hydrogen bond donor, which is not possible for APdG adduct.

Formation of DNA-Peptide Complexes. Previous studies showed that γ -OH-PdG formed DNA-peptide cross-links mediated by aldehyde and the N -
terminal amines of peptides (Kurtz and Lloyd, 2003). These Schiff base intermediates were reduced by incubation with sodium cyanoborohydride. Thus, monitoring the formation of DNA-peptide complexes allows the presence of aldehydic DNA adduct to be probed. When APdG adduct was examined by ${ }^{13}$ C HSQC NMR in single-stranded oligodeoxynucleotide (Figure 3-1), the two epimeric forms of the adduct were detected, but no aldehyde was observed. The presence of low levels of the aldehydic intermediate was inferred from the peptide trapping experiments (Figure 3-6), consistent with the slow epimerization of APdG adduct in single-strand DNA (Kurtz and Lloyd, 2003). Similarly, when placed opposite dA in duplex DNA, the amount of aldehyde remained below the level the level of detection by ${ }^{13} \mathrm{C}$ NMR (Figure 3-5). Nevertheless, the presence of low levels of the aldehyde intermediate can be inferred from the result of peptide trapping experiments (Figure 3-6). These data are consistent with the epimerization of APdG adduct.

CHAPTER IV

STEREOSPECIFIC FORMATION OF INTERSTRAND CARBINOLAMINE DNA CROSS-LINKS BY CROTONALDEHYDE- AND ACETALDEHYDE-DERIVED $\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-1, N^{2}$-PROPANO-2'-DEOXYGUANOSINE ADDUCT IN THE 5'-CpG-3' SEQUENCE ${ }^{\dagger}$

INTRODUCTION

Crotonaldehyde is one of α, β-unsaturated aldehydes, and is known to be one of major sources of exocyclic propano adducts that have relatively high prevalence in human DNA via exogenous and endogenous pathways such as lipid peroxidation and tobacco smoking (Chung, F.-L. et al., 1999; Nath, Raghu G. and Chung, 1994; Nath, Raghu G. et al., 1996). Michael type addition can lead the crotonaldehyde into two diastereomeric propano adducts based on the stereochemistry of the methyl group on α position: R - and $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-1, N^{2}-$ propano-2'-deoxyguanosine adducts (Figure 1-9) (Chung, F. L. and Hecht, 1983; Chung, F. L. et al., 1999; Eder et al., 1999). In comparison to the acrolein adducts, it does not provide any α - hydroxyl attached propano adducts (Chung, F.-L. et al., 1999; Nechev et al., 2001). Acetaldehyde, a mutagen and potential human carcinogen (IARC, 1999), can also form the diastereomeric R - and $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-$ 1, N^{2}-propano-2'-deoxyguanosine adducts (Lao and Hecht, 2005; Wang et al., 2000).

After learning the molecular flexibility via ring-opening process with the presence of an opposite dC of the acrolein adduct in duplex DNA (Cho, Y.-J. et

[^1]al., 2004; de los Santos, Carlos et al., 2001; Kim, H.-Y. H. et al., 2002), the followup questions were arisen to the crotonaldheyde adducts including the possibility of generation of cross-links due to the similarity between APdG and CPdG adducts except the additional methyl group. As following the acrolein study in Chapter III, site-specifically synthesized R - and S-crotonaldehyde adducts in the same sequence of oligonucleotides were used and examined in duplex DNA. We could follow the cross-linking chemistry as well as the distribution of each species as shown in Scheme 1-4, in situ (Cho, Y.-J. et al., 2004; Nechev et al., 2001).

This chapter describes the spectroscopic studies that prove the enantioselective cross-link generation by substituted methyl group as well as structural hypothesis for the carbinolamine interstrand DNA cross-links.

Results

Epimerization of R - and $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ Oilgodeoxynucleotide Adducts. The single stranded $5^{\prime}-\mathrm{d}(G C T A G C X A G T C C)-3^{\prime}$, modified with either R - or $S-\alpha-\mathrm{CH}_{3}-\gamma$-OH-PdG adducts, was examined using ${ }^{13} \mathrm{C}$ HSQC NMR (Figure $4-1)$. At pH 7 and $15{ }^{\circ} \mathrm{C}$, a single cross-peak was observed for $\mathrm{R}-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct at a ${ }^{13} \mathrm{C}$ chemical shift of 71.9 ppm and a ${ }^{1} \mathrm{H}$ chemical shift of 5.96 ppm . This cross-peak was assigned as the epimer in which the $\alpha-\mathrm{CH}_{3}$ and γ-OH groups are in the trans configuration. For $\mathrm{S}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct, two cross-peaks were observed at pH 7 and $15{ }^{\circ} \mathrm{C}$. The major cross-peak was observed at a ${ }^{13} \mathrm{C}$ chemical shift of 71.5 ppm and a ${ }^{1} \mathrm{H}$ chemical shift of 5.89 ppm , also assigned as the epimer in which the $\alpha-\mathrm{CH}_{3}$ and $\gamma-\mathrm{OH}$ groups were in the trans configuration. The minor cross-peak was observed at a ${ }^{13} \mathrm{C}$ chemical shift of 71.6 ppm and a ${ }^{1} \mathrm{H}$
chemical shift of 6.12 ppm . It was assigned as the hydroxyl epimer at the γ carbon in which the $\alpha-\mathrm{CH}_{3}$ and $\gamma-\mathrm{OH}$ groups were in cis configurations. In both instances, as temperature was increased to $37^{\circ} \mathrm{C}$, increasing amounts of the cis epimers appeared in the ${ }^{13} \mathrm{C}$-HSQC spectra, as measured by comparative volume integrations of the two resonances as a function of temperature. For $R-\alpha-\mathrm{CH} 3-\gamma-$ OH-PdG adduct, the cis epimer cross-peak was observed at a ${ }^{13} \mathrm{C}$ chemical shift of 71.3 ppm , and a ${ }^{1} \mathrm{H}$ chemical shift of 6.10 ppm . No resonances for opened forms (aldehyde or hydrated aldehyde) were observed, suggesting that at equilibrium, the levels of these ring-opened species remained below the spectroscopic limit of detection.

To detect the transient presence of aldehyds, a series of peptide trapping experiments were performed. The single-stranded oligodeoxynucleotide 5'$\mathrm{d}($ GCTAGCXAGTCC $)-3^{\prime}$ containing either R - or a $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct was treated with the peptide KWKK for 0-120 min in the presence of NaCNBH_{3}. Reaction mixtures were quenched at the designated time points by adding NaBH_{4} to reduce the aldehyde substrate. A gel-shifted complex was observed by denaturing PAGE analysis and designated as DNA-peptide cross-link (Figure 42; 12-mer + KWKK), consistent with the transient presence of aldehydes in single-stranded DNA. The accumulation of this product banc was monitored over a 2 h time course (Figure 4-2), at $4,15,37$, or $50^{\circ} \mathrm{C}$. Higher temperatures facilitated faster formation of the peptide-DNA conjugate. At $4{ }^{\circ} \mathrm{C}$, there was little complex accumulation over the 2 h time course, whereas at $50{ }^{\circ} \mathrm{C}$ a substantial amount of complex accumulated over this time period. These results were consistent with the NMR data, in which the rate of epimerization of the R -
or $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adducts increased at higher temperatures in singlestranded DNA.

On the millisecond time scale of the NMR experiments, the two epimers of the γ-hydroxyl groups of the $1, \mathrm{~N}^{2}-\mathrm{dG}$ adducts were in slow exchange. A series of ${ }^{13} \mathrm{C}$ HSQC spectra collected as a function of temperature enabled van't Hoff analysis (Figure 4-3). These studies revealed that, for the R-adduct, the value of ΔH for the cis to trans interconversion was $-14 \mathrm{kcal} / \mathrm{mol}$ and the value of ΔS for the interconversion was $-42 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$. For the S-adduct, the value of ΔH for the cis to trans interconversion was $-10 \mathrm{kcal} / \mathrm{mol}$ and the value of ΔS for the interconversion was $-29 \mathrm{cal} / \mathrm{mol} \mathrm{K}$.

Figure 4-1. ${ }^{13} \mathrm{C}$ HSQC spectra of R -and $\mathrm{S}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adducts in the oligodeoxynucleotide $5^{\prime}-\mathrm{d}(G C T A G C X A G T C C)-3^{\prime}$ at $15^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$. A. $\mathrm{S}-\alpha-\mathrm{CH}_{3}-$ γ-OH-PdG adduct; B. $\mathrm{S}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct.

A

B

Figure 4-2. DNA-peptide cross-linking involving R - and $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adducts. A. For trapping reactions, single-stranded crotonaldehyde-adducted oligodeoxynucleotides (75 nM) were incubated with 1.0 mM KWKK the presence of 50 mM NaCNBH 3 at $4,15,37$ or $50^{\circ} \mathrm{C}$. Reactions were carried out in 100 mM HEPES (pH 7.0) and 100 mM NaCl and were incubated for $0,15,30,60,90$ or 120 min. Reactions were quenched at the end of the incubation period by the addition of $100 \mathrm{mM} \mathrm{NaBH}_{4}$. Labels indicate the positions of the substrate 12-mer DNAs and the major reduced Schiff base conjugates (12-mer + peptide) following denaturing PAGE analysis. B. Kinetics of trapped conjugate formation are plotted over the 2 h time course at $4{ }^{\circ} \mathrm{C}\left(R-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}, \pi ; S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\right.$ PdG, ρ), $15{ }^{\circ} \mathrm{C}\left(R-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}, \quad ' ; S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}, \leq\right), 37{ }^{\circ} \mathrm{C}\left(R-\alpha-\mathrm{CH}_{3}-\gamma-\right.$ OH-PdG, ; S- $\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$,), and $50^{\circ} \mathrm{C}\left(R-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}, \theta ; S-\alpha-\mathrm{CH}_{3}-\right.$ γ-OH-PdG, σ) (By Lloyd lab).

Figure 4-3. van't Hoff analysis of the epimerization of R-and $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adducts in the oligodeoxynucleotide $5^{\prime}-\mathrm{d}(G C T A G C X A G T C C)-3^{\prime}$. A. R-and $R-\alpha-$ $\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct $\Delta H_{\text {cis } \rightarrow \text { trans }}=-14 \mathrm{kcal} / \mathrm{mol} ; \Delta S_{\text {cis } \rightarrow \text { trans }}=-42 \mathrm{cal} / \mathrm{molK}$. B. $S-\alpha-$ $\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct. $\Delta H_{\text {cis } \rightarrow \text { trans }}=-10 \mathrm{kcal} / \mathrm{mol} ; \Delta S_{\mathrm{cis} \rightarrow \mathrm{trans}}=-29 \mathrm{cal} / \mathrm{molK}$.

Equilibrium Chemistry of the $\mathrm{R}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ Adduct in Duplex

DNA. The $R-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct was placed opposite dC in $5^{\prime}-$ $\mathrm{d}\left(\mathrm{GCTAGCX}\right.$ XAGTCC) $-3^{\prime} \bullet 5^{\prime}-\mathrm{d}(G G A C T C G C T A G C)-3^{\prime}$ at pH 7 , and the sample was allowed to equilibrate at $37{ }^{\circ} \mathrm{C}$. An inverse-gated ${ }^{13} \mathrm{C}$ spectrum was obtained immediately upon annealing the duplex. The $\gamma-{ }^{13} \mathrm{C}$ resonances from aldehyde and hydrated aldehyde were detected, indicating that opening of R-CPdG occurred before the ${ }^{13} \mathrm{C}$ spectrum could be collected. At pH 7, however, opening of the crotonaldehyde-derived $1, N^{2}-\mathrm{dG}$ adduct to aldehyde and hydrated aldehyde was incomplete. After 20 days, no further spectroscopic changes were observed. At equilibrium, the $\gamma-{ }^{13} \mathrm{C}$ resonance appeared as a mixture of four species (Figure 4-4). Furthest downfield, at 208 ppm , was a resonance assigned as $\gamma-{ }^{13} \mathrm{C}$ aldehyde. A second $\gamma-{ }^{13} \mathrm{C}$ resonance, assigned as hydrated aldehyde, was observed at 90 ppm . The third resonance, identified as carbinolamine cross-link, was observed at 73 ppm . This resonance increased in intensity over a period of 20 days at $37{ }^{\circ} \mathrm{C}$. The two γ-hydroxyl diastereomers of cross-link were not resolvable in the ${ }^{13} \mathrm{C}$ spectrum, but were resolved using ${ }^{1} \mathrm{H}$ and ${ }^{15} \mathrm{~N}$ NMR, as will be discussed below. The failure to observe a $\gamma-{ }^{13} \mathrm{C}$ resoncance in the 140-160 ppm spectral region, the range in which a resonance arising from $\gamma-{ }^{13} \mathrm{C}$ imine would be anticipated, indicated that the amount of imine in equilibrium with carbinolamine in a duplex was below the level of detection by ${ }^{13} \mathrm{C}$ NMR. This placed an upper limit on the amount of $5^{\prime}-\mathrm{CpG}-3^{\prime}$ imine cross-link in equilibrium with carbinolamine cross-link estimated to be not more than 5%. A fourth resonance, assigned as cyclic adduct ($R-\mathrm{CPdG}$), was observed at 72 ppm . The ~ 1 ppm ${ }^{13} \mathrm{C}$ chemical shift difference of carbinolamine as compared to $R-\mathrm{CPdG}$ was
consistent with the expectation that the $\gamma^{-13} \mathrm{C}$ nuclei, in both cases, of which were bonded to hydroxyl groups, should exhibit similar chemical shifts.

Confirmation of the assignment of carbinolamine cross-link came from a series of ${ }^{15} \mathrm{~N}$ HSQC, ${ }^{15} \mathrm{~N}$ NOESY-HSQC, and ${ }^{15} \mathrm{~N}$ TOCSY-HSQC experiments (Figure 4-5). The ${ }^{15} \mathrm{~N}$ HSQC experiment revealed cross-peaks corresponding to the anticipated diastereomers of carbinolamine cross-link. The stronger of these two cross-peaks exhibited a ${ }^{15} \mathrm{~N}$ chemical shift of 106 ppm and a ${ }^{1} \mathrm{H}$ chemical shift of 8.4 ppm . This cross-peak exhibited a 90 Hz coupling constant. The weaker of the two cross-peaks were observed at a ${ }^{15} \mathrm{~N}$ chemical shift of 96 ppm and a ${ }^{1} \mathrm{H}$ chemical shift of 8.7 ppm . Two additional weaker cross-peaks in the ${ }^{15} \mathrm{~N}$ HSQC spectrum were assigned as arising from noncross-linked oligodeoxynucleotide, in which ${ }^{15} N^{2}$-dG-labeled base pair $\mathrm{C}^{6} \bullet \mathrm{Y}^{19}$ retained Watson-Crick hydrogen bonding. The cross-peak at 8.0 in the ${ }^{1} \mathrm{H}$ dimension was assigned as arising from the hydrogen-bonded amino proton, whereas that at 6.5 in the ${ }^{1} \mathrm{H}$ dimension arose from the nonhydrogen-bonded amino proton. An additional minor ${ }^{15} \mathrm{~N}$ HSQC, labeled as peak e in Figure 4-5a, remained unidentified.

The ${ }^{15} \mathrm{~N}$-HSQC-filtered TOCSY experiment (Figure 4-5) established that the ${ }^{1} \mathrm{H}$ signal at 8.35 ppm , assigned as $\mathrm{Y}^{19} \mathrm{~N}^{2} \mathrm{H}$ in carbinolamine cross-link, exhibited scalar coupling to protons of the cross-link crotonaldehyde moiety. The signal observed at 5.79 ppm indicated coupling to H_{γ} of the crotonaldehyde cross-link. Cross-peaks at 1.5 and 2.2 ppm were observed to $\mathrm{H}_{\beta^{\prime}, \beta^{\prime \prime}}$ crotonaldehyde cross-link protons. No cross-peaks were observed for the minor diasteromer of the carbinolamine cross-link, presumably due to its low abundance.

A ${ }^{15} \mathrm{~N}$ HSQC-filtered NOESY experiment (Figure 4-5) revealed that for the major diastereomer of cross-link, the $\mathrm{Y}^{19} \mathrm{~N}^{2} \mathrm{H} \rightarrow \mathrm{Y}^{19} \mathrm{~N} 1 \mathrm{H}$ NOE was observed at 12.8 ppm , in the expected chemical shift range for this imino proton involved in Watson-Crick hydrogen bonding. For the major diastereomer, NOEs were observed from $Y^{19} N^{2} H$ to $H_{\alpha} \quad H_{\beta^{\prime}, \beta^{\prime \prime}}, H_{\gamma}$ and the methyl protons of the crotonaldehyde cross-link. For the minor diastereomer of crosslink, the $\mathrm{Y}^{19} N^{2} \mathrm{H}$ $\rightarrow \mathrm{Y}^{19} \mathrm{~N} 1 \mathrm{H}$ NOE was observed at 13.0 ppm , also in the expected chemical shift range for a Watson-Crick hydrogen-bonded imino proton.

The assignment of carbinolamine cross-link was corroborated by a triple resonance HNC experiment, in which the complementary strand of the duplex was site-specifically labeled with ${ }^{15} N^{2}-\mathrm{dG}$ at the cross-linked dG residue (Figure 4-6). This experiment exploited the fact that cross-link formation resulted in bonding between the ${ }^{15} N^{2}-\mathrm{dG}$ and the $\gamma^{13} \mathrm{C}$ isotopes. A correlation was observed between the $73 \mathrm{ppm} \gamma{ }_{-}{ }^{13} \mathrm{C}$ resonance and a ${ }^{15} \mathrm{~N}$ resonance at 106 ppm , establishing that these resonances arose from the same chemical species observed in ${ }^{15} \mathrm{~N}$ HSQC experiments, and assigned as carbinolamine. No correlation was observed between the signal arising from the minor diastereomer observed at 96 ppm in the ${ }^{15} \mathrm{~N}$ HSQC spectrum, and ${ }^{13} \mathrm{C}$, presumably because of the low abundance of the minor diastereomer of cross-link observed in the ${ }^{15} \mathrm{~N}$ HSQC experiments. ${ }^{1}$

[^2]

Figure 4-4. ${ }^{13} \mathrm{C}$ NMR spectra of oligodeoxynucleotide annealed with its complement to yield the duplex $5^{\prime}-\mathrm{d}(G C G A G C X A G T C C)-3^{\prime} \bullet 5^{\prime}-$ $\mathrm{d}(\mathrm{GGACTCGCTAGC})-3^{\prime}, \quad \mathrm{X}=\mathrm{R}-\alpha-\mathrm{CH}_{3}-\gamma-{ }^{13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}$ adduct. The bottom spectrum was collected in the first day after annealing the duplex. The top spectrum was collected after 6 days at $30^{\circ} \mathrm{C}$. Assignments of resonances: a, aldehyde; b, hydrated-aldehyde; c, carbinolamines; d, cyclic adduct.

Figure 4-5. A. ${ }^{15} \mathrm{~N}$ HSQC spectrum of $R-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ in the oligodeoxynucleotide 5'-d(GCTAGCXAGTCC)-3'•5'-d(GGACTCYCTAGC)-3'. Cross-peaks: a, major stereoisomer of the carbinolamine cross-link; b, minor stereoisomer of the carbinolamine cross-link; c and d, hydrogen- and nonhydrogen-bonded ${ }^{15} N^{2} \mathrm{H}$ protons of non-cross-linked base pair $\mathrm{C}^{6} \bullet \mathrm{Y}^{19}$; e, unidentified cross-peak. B. ${ }^{15} \mathrm{~N}$ NOESY HSQC spectrum. Cross-peaks: a, Y^{19} ${ }^{15} N^{2} \mathrm{H} \rightarrow \mathrm{Y}^{19} \mathrm{~N} 1 \mathrm{H} ;$ b, $\mathrm{Y}^{19}{ }^{15} N^{2} \mathrm{H} \rightarrow \mathrm{X}^{7} \mathrm{~N} 1 \mathrm{H} ;$ c, $\mathrm{Y}^{19}{ }^{15} N^{2} \mathrm{H}$ autocorrelation; d, Y^{19} ${ }^{15} N^{2} \mathrm{H} \rightarrow \mathrm{X}^{7} N^{2} \mathrm{H} ;$ e, $\mathrm{Y}^{19}{ }^{15} N^{2} \mathrm{H} \rightarrow \mathrm{H}_{\mathrm{g}} ;$ f, $\mathrm{Y}^{19}{ }^{15} N^{2} \mathrm{H} \rightarrow \mathrm{H}_{\mathrm{a}} ;$ g, $\mathrm{Y}^{19}{ }^{15} N^{2} \mathrm{H} \rightarrow \mathrm{H}_{\mathrm{bb}} ; ~ \mathrm{~h}, \mathrm{Y}^{19}$ ${ }^{15} N^{2} \mathrm{H} \rightarrow \mathrm{a}-\mathrm{CH}_{3}$; I and j, hydrogen-and nonhydrogen-bonded ${ }^{15} N^{2} \mathrm{H}$ protons of noncross-linked pair $\mathrm{C}^{6} \bullet \mathrm{Y}^{19}$. C. ${ }^{15} \mathrm{~N}$ TOCSY HSQC spectrum. Cross-peaks: a, autocorrelation peak for major stereoisomer of carbinolamine cross-link; b, coupling to H_{g}; and c , couplings to $\mathrm{H}_{\mathrm{b}^{\prime}, \mathrm{b}^{\prime \prime}}$, two resonances.

Figure 4-6. Triple resonance ${ }^{1} \mathrm{H}^{15} \mathrm{~N}^{13} \mathrm{C}$ spectrum of $R-\alpha-\mathrm{CH}_{3}-\gamma$-OH-PdG in the oligodeoxynucleotide 5 '-d(GCTAGCXAGTCC)-3'• 5 '-d(GGACTCYCTAGC)-3', confirming the presence of cross-linked carbinolamine.

Equilibrium Chemistry of the $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ Adduct in Duplex
DNA. The $S-\alpha-\mathrm{CH}_{3}-\gamma-{ }^{13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}$ adduct differed from the $\mathrm{R}-\alpha-\mathrm{CH}_{3}-\gamma-{ }^{13} \mathrm{C}-\mathrm{OH}-$ PdG adduct. At equilibrium, only low levels of interstrand cross-links were observed in the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence, as demonstrated by reductive trapping with NaCNBH_{4} (Kozekov et al., 2003). The $\mathrm{S}-\alpha-\mathrm{CH}_{3}-\gamma_{-}{ }^{13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}$ adduct was placed opposite dC in $5^{\prime}-\mathrm{d}\left(G C T A G C \underline{X A G T C C)}-3^{\prime} \bullet 5^{\prime}-\mathrm{d}(G G A C T C G C T A G C)-3^{\prime}\right.$ at pH 7 and $37{ }^{\circ} \mathrm{C}$. Similar to the $\mathrm{R}-\alpha-\mathrm{CH}_{3}-\gamma_{-}{ }^{13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}$ adduct, the $\gamma-{ }^{13} \mathrm{C}$ resonances from aldehyde and hydrated aldehyde were detected. Thus, opening of cyclic adduct occurred before the ${ }^{13} \mathrm{C}$ spectrum could be collected. At pH 7 , opening of crotonaldehyde-derived $1, N^{2}-\mathrm{dG}$ adduct to aldehyde and hydrated aldehyde was incomplete. After 20 days, both the $R-\alpha-\mathrm{CH}_{3}-\gamma^{-13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}$ and the $\mathrm{S}-\alpha-\mathrm{CH}_{3}-\gamma-$ ${ }^{13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}$ exhibited similar quantities of the cyclic adducts in equilibrium with aldehyde and hydrated aldehyde, suggesting that the positions of the equilibria involving the cyclic adducts and their ring-opened converted products were independent of stereochemistry at C_{α} of the crotonaldehyde moiety. Significantly, however, and corroborating the reductive trapping experiments (Kozekov et al., 2003), ${ }^{13} \mathrm{C}$ NMR failed to detect carbinolamine cross-link, confirming that formation of the interstrand cross-link in the $5^{\prime}-\mathrm{CpG}^{\prime}-3^{\prime}$ sequence was dependant upon stereochemistry at C_{α} of the crotonaldehyde moiety.

Figure 4-7 shows the ${ }^{13} \mathrm{C}$ NMR spectrum of the $S-\alpha-\mathrm{CH}_{3}-\gamma^{-13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}$ adduct when placed opposite $d C$ in $5^{\prime}-d\left(G C T A G C \underline{X A G T C C)}-3^{\prime} \bullet 5^{\prime}-\right.$ d (GGACTCGCTAGC) -3^{\prime} at $37^{\circ} \mathrm{C}$, at pH values of 4.7, 9.3, and 10.7. At pH 4.7 , the equilibrium between cyclic adduct ($1, N^{2}$-dG adduct) and N^{2}-(3-oxopropyl)dG (S-COPdG) aldehyde and its hydrate favored cyclic adduct. Increasing the
pH to 9.3 favored formation of S-COPdG aldehyde and its hydrate. At pH 10.7, denaturation of the oligodeoxynucleotide duplex occurred, and only cyclic adduct was observed.

Mispairing of T Opposite the $\mathrm{S}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ Adduct. Figure 4-8 shows the ${ }^{13} \mathrm{C}$ NMR spectrum of the $\mathrm{S}-\alpha-\mathrm{CH}_{3}-\gamma^{-13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}$ adduct when placed opposite T in $5^{\prime}-\mathrm{d}\left(G C T A G C \underline{X A G T C C)}-3^{\prime} \cdot 5^{\prime}-\mathrm{d}\left(G G A C T \underline{T G C T A G C)}-3^{\prime}\right.\right.$ at $37{ }^{\circ} \mathrm{C}$ and pH 7 . Under these conditions, cyclic adduct was favored, with S-COPdG aldehyde and its hydrate remaining below the level of detection by ${ }^{13} \mathrm{C}$ NMR.

Figure 4-7. Chemical species arising from $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ in the oligodeoxynucleotide $5^{\prime}-\mathrm{d}\left(G C T A G C \underline{X A G T C C)}-3^{\prime} \bullet 5^{\prime}-\mathrm{d}(G G A C T C \underline{Y C T A G C)}-3\right.$ ' as a function of pH . A. pH 9.3, B. pH 10.7 , and C. pH 4.7 . Cross-peaks: a, aldehyde; b , hydrated aldehyde; and c, cyclic adduct.

Figure 4-8. ${ }^{13} \mathrm{C}$ NMR of $\mathrm{S}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ in the oligodeoxynucleotide 5^{\prime} $\mathrm{d}(\mathrm{GCTAGCX} A G T C C)-3^{\prime} \bullet 5^{\prime}-\mathrm{d}($ GGACTTGCTAGC $)-3$ '. Only cyclic adduct is observed.

Molecular Modeling. The two carbinolamine cross-links arising from interstrand cross-linking by R - and $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$, respectively, were modeled in $\quad 5^{\prime}-\mathrm{d}($ GCTAGCXXAGTCC $)-3^{\prime} \bullet 5^{\prime}-\mathrm{d}($ GGACTCGCTAGC $)-3^{\prime} . \quad$ Starting conformations for the energy minimizations were built such that there were no bad steric contacts between the cross-links and the DNA duplex. The model structures were subjected to potential energy minimization using the conjugate gradients algorithm in AMBER 8.0 (Figure 4-9). The potential energy minimization suggested that for cross-link arising from $R-C P d G$, the methyl group projected into the minor groove, without disruption of duplex DNA structure. In contrast, the calculations suggested that for cross-link arising from S-CPdG, the methyl group interfered with the 3^{\prime}-neighbor base pair $\mathrm{A}^{8} \cdot \mathrm{~T}^{17}$, presumably reducing the stability of the cross-linked duplex.

Additionally, the two COPdG aldehydes were modeled in the same sequence and compared to the corresponding AOPdG aldehyde, lacking the sterocenter at C_{α} of the AOPdG (Figure 4-10). The model structures were subjected to potential energy minimization using the conjugate gradients algorithm in AMBER 8.0. The potential energy minimization suggested that all OPdG aldehydes maintained Watson-Crick hydrogen bonding at both base pairs $\mathrm{C}^{6} \cdot \mathrm{Y}^{19}$ and $\mathrm{X}^{7} \cdot \mathrm{C}^{18}$ involved in the interstrand $5^{\prime}-\mathrm{CpG}-3^{\prime}$ cross-links. The modeling studies suggested that for the R-COPdG aldehyde, the C_{α} methyl group oriented within the minor groove in the 3^{\prime}-direction from the adducted nucleotide X^{7}. This oriented the reactive aldehyde group into the 5^{\prime}-direction, placing it proximate to the cross-linking target N^{2}-dG in base pair $\mathrm{C}^{6} \bullet \mathrm{Y}^{19}$. The favored orientation of the corresponding acrolein-derived N^{2}-(3-oxopropyl)-dG
aldehyde was similar, placing the aldehyde group in the 5^{\prime}-direction, proximate to the cross-linking target $N^{2}-\mathrm{dG}$ in base pair $\mathrm{C}^{6} \bullet \mathrm{Y}^{19}$. In contrast, the modeling studies suggested that for the S-COPdG aldehyde, the C_{α} methyl group oriented within the minor groove in the 5^{\prime}-direction from the adducted nucleotide X^{7}. This oriented the aldehyde group in the 3^{\prime}-direction, placing it distal to the crosslinking target N^{2}-dG in base pair $\mathrm{C}^{6} \bullet \mathrm{Y}^{19}$.

The two γ-hydroxyl diastereomers of the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ carbinolamine crosslink arising from $R-C P d G$ adduct were modeled and compared to the corresponding unmodified oligodeoxynucleotide sequence. The model structures were subjected to potential energy minimization using the conjugate gradients algorithm in AMBER 8.0 (Figure 4-11). The potential energy minimization predicted that both diasteromers of carbinolamine cross-link maintained Watson-Crick hydrogen bonding at both of the tandem $C \bullet G$ base pairs involved in the interstrand carbinolamine cross-links. The modeling studies suggested that the sp^{3} hybridization at the γ-carbon allowed the crosslinks to form without substantial perturbation of duplex structure. For the S diastereomer of the carbinolamine cross-link, the molecular modeling predicted an additional hydrogen bonds between the carbinolamine hydroxyl and the N3dG of the $5^{\prime} \mathrm{C} \bullet \mathrm{G}$ base pair of the cross-link. ${ }^{2}$ In contrast, the imine in cross-link mandated sp^{2} hybridization of the amino group, which would require breaking the Watson-Crick hydrogen bond between the amine proton of $N^{2}-\mathrm{dG}$ and $O^{2}-\mathrm{dC}$ of the $5^{\prime}-\mathrm{C} \cdot \mathrm{G}$ base pair in the cross-link. Formation of either diastereomer of pyrimidopurinone cross-link prevented Watson-Crick hydrogen bonding at the

[^3]$3^{\prime}-\mathrm{G} \bullet \mathrm{C}$ base pair of the cross-link. It also disrupted Watson-Crick hydrogen bonding at the $5^{\prime}-\mathrm{C} \cdot \mathrm{G}$ base pair of the cross-link. The parameterization of the carbinolamine and the pyrimidopurinone cross-links, for the AMBER 8.0 forcefield, are provided in Appendix A.

Figure 4-9. Molecular modeling of carbinolamine interstrand cross-links formed in the $5^{\prime}-\mathrm{CpG}-3$ ' sequence by the R - and $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adducts A. Crosslink formed by R adduct. B. Cross-link formed by S adduct.

Figure 4-10. Molecular modeling of aldehydes formed in duplex DNA when adducts are placed opposite dC in the complementary strand. A. S-COPdG aldehyde arising from $\mathrm{S}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct, illustrating the 5'-minor groove orientation of the a -carbon methyl group. B. The N^{2}-(3-oxo-propyl)-dG aldehyde formed by the acrolein-derived g-OH-PdG adduct in duplex DNA. C. R-COPdG aldehyde arising from $R-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct, illustrating the $3^{\prime}-$ minor groove orientation of the a-carbon methyl group.

Figure 4-11. Molecular modeling of diastereomeric carbinolamine and pyrimidopurinone cross-links formed by $R-C O P d G$ aldehyde, arising from $R-\alpha-$ $\mathrm{CH}_{3}-\gamma$-OH-PdG adduct. A. The R-diastereomer at the α-carbon of the carbinolamine cross-link. B. The R-diastereomer at the α-carbon of the pyrimidopurinone cross-link. C. The S-diasteromer at the α-carbon of the carbinolamine cross-link. D. The S-diastereomer at the α-carbon of the pyrimidopurinone cross-link.

Discussion

Epimerization of the Stereoisomeric R - and $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ Adducts

 in the 5^{\prime}-CpG-3' Sequence. At equilibrium in single-stranded DNA, the R - and S-CPdG adducts existed as mixtures of diastereomers of the $1, N^{2}-\mathrm{dG}$ adduct at C_{γ} in slow exchange on the NMR time scale. In both instances, the trans orientation of the $\alpha-\mathrm{CH}_{3}$ and $\gamma-\mathrm{OH}$ groups predominated. This observation was consistent with previous observations in the NMR spectra of the nucleosides (Eder and Hoffman, 1992; Eder and Hoffman, 1993). This differed from the acrolein-derived γ-OH-PdG adduct lacking the CH_{3} group at C_{ω} which exhibited equal amounts of both epimers.The failure to observe a $\gamma^{13} \mathrm{C}$ resonance corresponding to ring-opened aldehydes in single-stranded DNA was consistent with the observation that at pH 7 cyclic adducts were favored as compared to ring-opened aldehydes. The NMR data suggested that in single-stranded DNA, CPdG adducts spontaneously epimerized but slowly on the NMR time scale, without accumulation of aldehydes. Nevertheless, the peptide-trapping data revealed the transient presence of the aldehydes (Figure 4-2).

Ring Opening of the R - and $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ Adducts in Duplex

 DNA in the 5^{\prime}-CpG-3' Sequence. For both the R - and S-CPdG adducts, the presence of duplex DNA was required for the stable formation of the aldehydes, as observed for the acrolein-derived γ-OH-PdG adduct (de los Santos, Carlos et al., 2001). In duplex DNA, the aldehydes, and their hydrates, similar to the acrolein γ-OH-PdG adduct (de los Santos, Carlos et al., 2001) and themalondialdehyde $\mathrm{M}_{1} \mathrm{dG}$ adduct (Mao, H. et al., 1999; Mao, H. et al., 1999), are accommodated in the minor grove of DNA, enabling maintenance of WatsonCrick hydrogen bonding at the adducted base pair. Significantly, in comparing the chemistry of the R - and S-CPdG adducts when placed into duplex DNA opposite dC at pH 7 with the corresponding acrolein-derived APdG (de los Santos, Carlos et al., 2001), ring opening of the R - and S-CPdG adducts to the aldehydes and the hydrated aldehydes was incomplete. As described previous chapter, when the APdG adduct was placed opposite dC in duplex DNA, equilibrium favored the ring-opened AOPdG aldehyde and its hydrate, to the extent that the APdG cyclic adduct was no longer detected (de los Santos, Carlos et al., 2001). The incomplete opening of the R - and S-CPdG adducts in duplex DNA, when placed opposite dC, might be explained by the fact that cyclic adducts position the methyl group to avoid steric clash with N3 of the adducted guanine. This becomes an issue upon formation of the COPdG aldehydes. The stabilization of cyclic adducts might also arise from the Thorpe-Ingold effect. For the R - and S-CPdG adducts in duplex DNA, the degree to which the cyclic adducts opened to the COPdG aldehydes increased significantly at pH 9.3 (Figure 4-7). In duplex DNA at pH 7, cross-link formed between the N-terminal peptide amine and the aldehyde rearragement products of the R - and $S-C P d G$ adducts at $4{ }^{\circ} \mathrm{C}$ (Kurtz and Lloyd, 2003).

One factor with regard to the ring opening of the CPdG adducts to COPdG aldehyde in duplex DNA was the identity of the identity of the nucleotide opposite the CPdG adduct. When placed opposite to T in duplex DNA, the S-CPdG adduct did not undergo ring-opening to S-COPdG aldehyde (Figure 4-8), whereas the APdG adduct, when mispaired with T, existed as a
mixture of the cyclic APdG adduct and the ring-opened AOPdG aldehyde (Cho, Y.-J. et al., 2006). When mispaired with T, the $M_{1} d G$ adduct remained as the cyclic form (Mao, H. et al., 1999). Similar to the acrolein-derived γ-OH-PdG adduct, the ratio of aldehyde to hydrated aldehyde for the crotonaldehydederived adducts increased with temperature. ${ }^{3}$

Role of Stereochemistry in Interstrand Cross-linking in the 5^{\prime}-CpG-3'

Sequence Context. The presence of aldehydes in the minor groove at pH 7 and $37^{\circ} \mathrm{C}$ was significant with regard to their potential for forming interstrand carbinolamine cross-links under physiological conditions in the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence. The present NMR studies corroborate the stereospecific preference for DNA interstrand cross-linking by the R-CPdG adduct, as opposed to the S-CPdG adduct (Kozekov et al., 2003). The time required for cross-link to reach equilibrium at pH 7 and $37^{\circ} \mathrm{C}$ was approximately 20 days, with approximately 26% cross-linking observed by ${ }^{13} \mathrm{C}$ NMR.

To examine why interstrand cross-linking was much more extensive for the $R-C P d G$ adduct than for the $S-C P d G$ adduct in the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence context, a molecular modeling approach was employed (Figure 4-9). The modeling studies suggested that the low levels of cross-linking observed for the S-CPdG adduct in the 5^{\prime}-CpG-3' sequence can be attributed to the fact that the carbinolamine cross-link was of lower stability than that of cross-link from R CPdG adduct, presumably due to the differential orientation of the CH_{3} group at the α-carbon of the cross-link. Anecdotally, Lao and Hecht reported conducting

[^4]molecular dynamics studies of pyrimidopurinone cross-links arising from R-and S-CPdG adducts, respectively, and reaching a similar conclusion, i.e., that the pyrimidopurinone cross-link arising from the R-CPdG adduct was of greater stability, due to a more favorable orientation of the α-carbon methyl group within the minor groove (Lao and Hecht, 2005). The modeling studeies also suggested that aldehyde, arising from S-CPdG adduct in duplex DNA, would not be oriented favorably for reaction with the cross-linking target $N^{2}-\mathrm{dG}$ in base pair $C^{6} \bullet Y^{19}$ (Figure 4-10). NMR studies designed to examine these structural hypotheses are described in Chapter V.

Formation of an Interstrand Carbinolamine Cross-Link by the $R-\alpha-\mathrm{CH}_{3}-$ $\boldsymbol{\gamma}$-OH-PdG Adduct. At equilibrium in duplex DNA, the interstrand the $R-\alpha-\mathrm{CH}_{3}-$ γ-OH-PdG cross-link comprises a mixture of carbinolamine, imine, and pyrimidopurinone. The presence of some of imine was inferred since the crosslink was reductively trapped in the presence of NaCNBH_{3} (Kozekov et al., 2003). Lao and Hecht, using negative ion mode ESI-Q-TOF-MS analysis of a crosslinked oligodeoxynucleotide, observed m / z values corresponding to carbinolamine and either imine or pyrimidopurinone, with the lower m / z signal corresponding to imine or pyrimidopurinone predominating (Lao and Hecht, 2005). The present NMR studies suggested that the predominant form of the R CPdG cross-link in situ is not imine. The amount of imine remained below the level of spectroscopic detection in duplex DNA. The reduction of cross-linked imine was slow in the presence of NaCNBH_{3} (Kozekov et al., 2003), consist with
the notion that conversion of carbinolamine to the reducible imine was rate limiting in reductively trapping the cross-link in duplex DNA.

Similar to the acrolein-derived γ-OH-PdG interstrand cross-link (Cho, Y. J. et al., 2005), molecular modeling revealed that the carbinolamine linkage of cross-link maintained Watson-Crick hydrogen bonding at both of the tandem $\mathrm{C} \bullet \mathrm{G}$ base pairs (Figure 4-11). In contrast, dehydration of the carbinolamine crosslink to imine (Schiff base) cross-link, or cyclization of the latter to form pyrimidopurinone cross-link, required disruption of Watson-Crick hydrogen bonding at one or both of the tandem cross-linked $C \bullet G$ base pairs. The NMR studies supported this conclusion, suggesting intact Watson-Crick base pairing at the cross-linked $X^{7} \bullet C^{18}$ (Figure 4-5). In contrast, enzymatic digestion of duplex DNA containing cross-link afforded a bis-deoxyguanosine conjugate, characterized by a combination of mass spectrometry and NMR as pyrimidopurinone arising from annelation of imine with N1-dG in the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence (Kozekov et al., 2003). The likely explanation is that the equilibrium between carbinolamine, imine, and pyrimidopurinone depends on the conformation state of the DNA. Enzymatic degradation of duplex DNA favors collapse of the carbinolamine cross-link to the pyrimidopurinone bis-nucleoside cross-link.

Structure-Biological Activity Relationships. Site specific mutagenesis in COS-7 mammalian cells using the single-stranded pMS2 shuttle vector (Fernandes et al., 2005) indicated that both R - and S-CPdG adducts yielded mutations at a $5-6 \%$ frequency. These were predominantly $\mathrm{G} \rightarrow \mathrm{T}$ transversions,
corroborating experiments utilizing a randomly modified shuttle vector and replicated in human cells (Kawanishi, M. et al., 1998). In the same mammalian site-specific mutagenesis system, the acrolein-derived γ-OH-PdG adduct showed a greater frequency of mutations, also predominantly $\mathrm{G} \rightarrow \mathrm{T}$ mutations (Kanuri et al., 2002). The propensity of cyclic adducts to undergo ring opening to the N^{2}-(3-oxopropyl)-dG aldehydes may facilitate lesion bypass, as reported for the acrolein-derived γ-OH-PdG adduct (Sanchez et al., 2003; VanderVeen, L. A. et al., 2001 ; Yang, I.-Y., Johnson, R., Grollman, A.P., \& Moriya, M., 2002; Yang, I. Y. et al., 2002; Yang, I. Y. et al., 2001). On the other hand, in duplex DNA, incomplete conversion of crotonaldehyde-derived adducts to the opened forms, aldehydes and hydrated aldehydes, may result in more efficient block to DNA replication, possibly reducing their mutagenicity. The R - and $S-C P d G$ adducts were reported to block trans-lesion synthesis by the Klenow (exo-) fragment of DNA polymerase I and DNA polymerase ε (Fernandes et al., 2005). The enzymes responsible for trans-lesion synthesis of the R - and $S-\mathrm{CPdG}$ adducts remain to be identified. However, Washingto et al. (Washington et al., 2004; Washington et al., 2004) showed that the Y-polymerase pol ι in conjunction with pol κ or $\operatorname{Rev} 1$ in combination with pol ζ could efficiently bypass the acrolein-derived γ-OH-PdG adduct. Minko et al. showed that pol η could bypass the γ-OH-PdG to a lesser extent (Minko et al., 2003). It seems plausible that these error-prone polymerases might also bypass the R - and $S-C P d G$ adducts.

CHAPTER V

ORIENTATION OF THE CROTONALDEHYDE-DERIVED N^{2}-(3-OXO-1(S)-METHYL-PROPYL)-DEOXYGUANOSINE DNA ADDUCT HINDERS INTERSTRAND CROSS-LINK FORMATION IN THE 5'-CpG-3' SEQUENCE

Introduction

The conformation of the crotonaldehyde-derived N^{2}-(3-oxo-1(S)-methyl-propyl)-deoxyguanosine adduct in the oligodeoxynucleotide 5'-$\mathrm{d}(\mathrm{GCTAGCXAGTCC})-3^{\prime} \cdot 5^{\prime}-\mathrm{d}\left(\mathrm{GGACTCGCTAGC)}-3^{\prime} ; \mathrm{X}=N^{2}\right.$-(3-oxo-1(S)-methyl-propyl)-dG (Scheme 5-1) is investigated. This adduct arises from opening of the cyclic $N^{2}-\left(S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-1, N^{2}\right.$-propano-2')-dG adduct when placed opposite dC in duplex DNA. Generation of different cross-link was previously recognized based on the different stereochemistry of the α-methyl group of the crotonaldehyde-dG adduct in the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence (Chapter IV). For the lack of cross-link generation, it has been hypothesized based on molecular modeling studies in chapter IV. The orientation of methyl group may interfere with the reaction between aldehydic moiety of the adduct and amino group of the opposite 5^{\prime}-side dG in a duplex. In other words, the metyl stereochemistry plays an important role that results in dramatically different amounts of interstrand cross-link by the different orientation of the methyl group of a ring opened species.

In this chapter, the previous hypothesis was examined by using NMR spectroscopy. The goal is to test this hypothesis if it is a feasible explanation with regard to generating cross-links, and restrained molecular dynamics calculations
were employed with NMR generated distance restraints for achieving the structure of an opened form of $S-C P d G$ adduct in $5^{\prime}-\mathrm{d}\left(\right.$ GCTAGCXAGTCC) $-3^{\prime} \bullet 5^{\prime}-$ (GGACTCGCTAGC)-3'. The pH was maintained at 9.3 for maximizing the S COPdG adduct in the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence.

Scheme 5-1. Oligonucleotide sequence (top) and the chemical structure of the $N^{2}-\left(S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-1, N^{2}\right.$-propano-2')-deoxyguanosine adducts and nomenclature.

$$
\begin{aligned}
& 5^{\prime}-G^{1} C^{2} T^{3} A^{4} G^{5} C^{6} X^{7} A^{8} G^{9} T^{10} C^{11} C^{12}-3^{\prime} \\
& 3^{\prime}-C^{24} G^{23} A^{22} T^{21} C^{20} G^{19} C^{18} T^{17} C^{16} A^{15} G^{14} G^{13}-5^{\prime}
\end{aligned}
$$

Results

When $S-\alpha-\mathrm{CH}_{3}-\mathrm{OH}-\mathrm{PdG}$ adduct was placed opposite dC in $5^{\prime}-$ d(GCTAGCXXAGTCC)-3' $\bullet 5^{\prime}-\mathrm{d}\left(\right.$ GGACTCGCTAGC) -3^{\prime} at $30^{\circ} \mathrm{C}$, the presence of aldehyde and hydrated aldehyde, in equilibrium with cyclic adduct, was immediately detected by NMR. Thus, opening of cyclic adduct occurred rapidly. At pH 7 , the opening of the S-CPdG adduct to aldehyde and its hydrate was incomplete at equilibrium. At pH 9.3 , equilibrium strongly favored the conversion of S-CPdG adduct to aldehyde and its hydrate; moreover, at pH 9.3 the duplex remained sufficiently stable for the present NMR studies. At pH 9.3, aldehyde exists in equilibrium with its hydrate; thus the NMR spectra show resonances arising from both species, as well as a trace of the cyclic adduct. The duplex oligodeoxynucleotide containing the S-stereoisomer of N^{2}-(3-oxopropyl)dG aldehyde was sufficiently stable at pH 9.3 to provide excellent NMR data.

Assignment of nonexchangeable DNA protons. The sequential NOE connectivity between the aromatic and anomeric protons of the modified oligodeoxynucleotide duplex is shown in Figure 5-1. A complete NOE connectivity series was observed for both strands of the duplex. The completion of the NOESY walk in this region was indicative of a stable and ordered DNA conformation at pH 9.3 and $30^{\circ} \mathrm{C}$. These assignments were extanded into other regions of ${ }^{1} \mathrm{H}$ NOESY spectrum to yield complete ${ }^{1} \mathrm{H}$ assignments for the H 2 ', H2", H3', and H4' protons (Patel, D.J. et al., 1987; Reid, 1987). The assignments of the non-exchangeable protons are detailed in Table 5-1.

Figure 5-1. Expanded plot of a NOESY spectrum in $\mathrm{D}_{2} \mathrm{O}$ buffer at a mixing time of 250 ms showing the sequential NOE connectivities for the N^{2}-(3-oxo-1(S)-methyl-propyl)-dG adduct at pH 9.3 . The base positions are indicated at the intranucleotide cross-peaks of the aromatic proton to its own anomeric proton. (Top) Sequential NOE connectivities for nucleotides $\mathrm{G}^{1} \rightarrow \mathrm{C}^{12}$. (Bottom) Sequential NOE connectivities for nucleotides $\mathrm{G}^{13} \rightarrow \mathrm{C}^{24}$.

Table 5-1. Chemical shifts (ppm) of non-exchangeable protons in the oligodeoxynucleotide 5’-d(GCTAGCXAGTCC)-3'•5’-(GGACTCGCTAGC)-3'.

BASE	H1 ${ }^{\prime}$	H2'	H2"	H3'	H4'	H5'	H5"	H6/H8	Me/H5
G^{1}	6.01	2.67	2.79	4.85	4.25	3.74		7.98	
C^{2}	6.06	2.12	2.51	4.82	4.25	4.20	4.16	7.53	5.40
T^{3}	5.57	2.14	2.42	4.88	4.15	4.09	4.06	7.41	1.68
\mathbf{A}^{4}	6.04	2.75	2.89	5.05	4.40	4.15	4.04	8.22	
G^{5}	5.69	2.46	2.61	4.95	4.35	4.20	4.18	7.65	
C^{6}	5.56	1.88	2.29	4.78				7.22	5.22
X^{7}	5.75	2.56	2.72	4.97	4.28	4.09	3.97	7.76	
\mathbf{A}^{8}	5.82	2.61	2.81	4.99	4.13	4.20	3.97	8.02	
G^{9}	5.84	2.42	2.67	4.84	4.34	4.20	4.13	7.50	
T^{10}	6.04	2.12	2.51	4.85	4.22	4.17	4.10	7.22	1.23
C^{11}	6.09	2.22	2.49	4.83	4.21	4.17	4.09	7.59	5.70
C^{12}	6.25	2.25	2.29	4.56	4.17	4.05		7.68	5.81
G^{13}	5.64	2.45	2.64	4.80	4.16	3.65		7.82	
G^{14}	5.58	2.69	2.79	5.02	4.37	4.14	4.06	7.83	
A^{15}	6.27	2.74	2.91	5.06	4.50		4.19	8.20	
C^{16}	5.80	1.94	2.47	4.84	4.34	4.20	4.12	7.25	5.20
T^{17}	6.00	2.13	2.51	4.87				7.38	1.53
C^{18}	5.81	2.02	2.40	4.85	4.34	4.22	4.04	7.40	5.60
G^{19}	5.77	2.56	2.63	4.94	4.18	4.12	4.02	7.85	
C^{20}	5.86	1.99	2.42	4.86		4.11	4.04	7.37	5.30
T^{21}	5.54	2.08	2.37	4.84	4.17	4.10	4.03	7.35	1.65
A^{22}	6.03	2.73	2.88	5.04	4.39	4.13	4.03	8.21	
G^{23}	5.80	2.46	2.64	4.94	4.34	4.22	4.04	7.67	
C^{24}	6.13	2.11	2.19	4.45	4.22	4.04		7.40	5.38

$\mathrm{X}^{7} \mathrm{H}_{\alpha}$ (3.83); Me (0.99); $\mathrm{H}_{\beta} \mathrm{S}$ (2.38); H_{γ} (9.60)

Exchangeable Protons. An expanded view of the far downfield region of the ${ }^{1} \mathrm{H}$ NOESY spectrum, showing the resonances arising from the Watson-Crick hydrogen bonded imino protons, is shown in Figure 5-2. For aldehyde adduct, the imino resonance arising from the $\mathrm{C}^{6} \bullet \mathrm{G}^{19}$ base pair was assigned at 12.7 ppm , the $X^{7} \cdot \mathrm{C}^{18}$ base pair was assigned at 12.6 ppm , and the $\mathrm{A}^{8} \bullet \mathrm{~T}^{17}$ imino resonance was assigned at 13.8 ppm , all within the anticipated chemical shift ranges. Imino proton resonances arising from the terminal base pairs $G^{1} \cdot C^{24}$ and $C^{12} \cdot G^{13}$ were not observed, presumably due to rapid exchange with solvent. The presence of a measurable amount of the diol adduct in equilibrium with aldehyde adduct was demonstrated by the presence of the cross-peak at 12.4 ppm . This resonance was assigned as arising from the X^{7} imino proton of the geminal diol. Its identity was established by NOEs to the imino protons of the adjacent $C^{6} \bullet G^{19}$ and $A^{8} \bullet T^{17}$ base pairs. It also exhibited an NOE to the CH_{3} protons of the crotonaldehyde adduct, the latter which was shifted approximately 0.1 ppm with respect to the crotonaldehyde CH_{3} resonance arising from aldehyde. A complete set of sequential NOEs was observed for the oligodeoxynucleotide containing aldehyde, indicating the conservation of Watson-Crick hydrogen bonding at base pairs $C^{6} \bullet G^{19}, X^{7} \bullet C^{18}$, and $A^{8} \bullet T^{17}$. Sequential assignment of the amino protons (Boelens et al., 1985) from base pairs $\mathrm{C}^{2} \cdot \mathrm{G}^{23} \rightarrow \mathrm{C}^{11} \cdot \mathrm{G}^{14}$ was obtained. Each of the peaks identified in the amino region exhibited a cross-peak with the appropriate imino proton as expected for Watson-Crick base pairing.

Figure 5-2. Expanded plot of a NOESY spectrum at a mixing time of 250 ms showing NOE connectivities for the imino protons for the base pairs from $\mathrm{C}^{2} \cdot \mathrm{G}^{23}$ to $\mathrm{C}^{11} \cdot \mathrm{G}^{14}$.
N^{2}-(3-oxo-1(S)-methyl-propyl)-dG Adduct. The adduct protons of adduct were assigned from a combination of ${ }^{1} \mathrm{H}$ COSY and NOESY experiments (Figure 5-3). The crotonaldehyde-derived CH_{3} resonance was observed at 0.99 ppm . It exhibited a COSY cross-peak to a resonance at 3.83 ppm , assigned as arising from the H_{α} proton. The H_{α} proton exhibited an additional COSY cross-peak to a resonance at 2.38 ppm . Likewise, in the NOESY spectrum, the H_{α} proton also exhibited a cross-peak to the resonance at 2.38 ppm . Accordingly, this resonance was assigned as arising from a superposition of the $\mathrm{H}_{\beta, \beta \ni}$ proton resonances. The H_{γ} aldehyde proton resonance was identified at 9.6 ppm . The aldehyde proton exhibited NOESY cross-peaks to $\mathrm{H}_{\beta, \beta \nexists} \mathrm{H}_{\alpha}$ and CH_{3} protons, and a COSY crosspeak to the $\mathrm{H}_{\beta, \beta \ni}$ protons. The spectral linewidths of the adduct protons were comparable to those of the oligodeoxynucleotide, suggesting that the correlation times of these protons were similar to those of the overall duplex.

Chemical Shift Perturbations. Chemical shift differences between the aldehyde adduct and unmodified oligodeoxynucleotide are shown in Figure 5-4. These were localized at the adducted base pair $X^{7} \bullet G^{18}$, and the 5^{\prime} - and 3^{\prime} neighboring base pairs $\mathrm{C}^{6} \bullet \mathrm{G}^{19}$ and $\mathrm{A}^{8} \bullet \mathrm{~T}^{17}$, respectively. The largest perturbations were observed for the minor groove deoxyribose H1' resonances arising from the adducted nucleotide X^{7}, and A^{8} in the modified strand, and nucleotides G^{18} and G^{19} in the complementary strand. Of these, the greatest perturbation was less than 0.3 ppm . The chemical shifts of the aromatic base protons were essentially unchanged.

Figure 5-3. Expanded plots showing the assignments of the opened form resonances. (A) NOESY spectrum (B) magnitude COSY spectrum (C) E-COSY spectrum.

Figure 5-4. Chemical Sifts Differences of nonexchangeable aromatic and sugar protons of the modified and unmodified oligodeoxynucleotides.

Adduct-DNA NOEs. Five NOEs were observed between the N^{2}-(3-oxo-1(S)-methyl-propyl)-dG adduct and non-exchangeable DNA protons, shown in Figure 5-5. The crotonaldehyde-derived methyl protons showed NOEs in the 5' direction to $\mathrm{C}^{18} \mathrm{H} 1^{\prime}, \mathrm{G}^{19} \mathrm{H} 1^{\prime}$, and $\mathrm{G}^{19} \mathrm{H} 4^{\prime}$ in the complementary strand of the duplex. The aldehyde proton of the adduct exhibited NOEs in the 3 ' direction to $\mathrm{A}^{8} \mathrm{H} 1^{\prime}$ and A 8 H 4 ' in the modified strand. All of these NOEs involved DNA protons facing the minor groove.

Torsion Angle Measurements. The NOE between the X^{7} imidazole and $\mathrm{X}^{7} \mathrm{H} 1$ ' protons was of normal intensity, indicating that the X^{7} glycosyl torsion angle was in the anti conformation, consistent with B type DNA helix (Kim, S. G. et al., 1992). The ${ }^{31} \mathrm{P}$ spectrum showed no unusual chemical shift perturbations, suggesting that the backbone was not significantly perturbed by the N^{2}-(3-oxo-$1(S)$-methyl-propyl)-dG adduct. The pseudorotation (P) of each of the deoxyribose rings, estimated graphically by monitoring the ${ }^{3} J_{\mathrm{HH}}$ couplings of sugar protons (Salazar et al., 1993), was found to be within the C2'-endo conformational range, also consistent with a B type DNA helix.
rMD Calculations. At pH 9.3 the N^{2}-(3-oxo-1(S)-methyl-propyl)-dG adduct represented the major species present in the sample, in equilibrium with diol, and a trace of cyclic adduct. At base pairs $C^{6} \cdot G^{19}, X^{7} \cdot C^{18}$, and $A^{8} \cdot T^{17}$, this resulted in the observation of NOE cross-peaks arising from each of these three species. At the remaining base pairs more distal to the adduct, only one set of NOE cross-peaks was observed. To account for the lower intensities of NOE cross-peaks arising from S-COPdG adduct at base pairs $C^{6} \bullet G^{19}, X^{7} \bullet \mathrm{C}^{18}$, and
$\mathrm{A}^{8} \bullet \mathrm{~T}^{17}$, as compared to the remainder of the molecule, these three base pairs were considered separately from the remainder of the oligodeoxynucleotide duplex. At base pairs $\mathrm{C}^{6} \bullet \mathrm{G}^{19}, \mathrm{X}^{7} \bullet \mathrm{C}^{18}$, and $\mathrm{A}^{8} \bullet \mathrm{~T}^{17}$ a total of 27 NOE cross-peaks specifically arising from S-COPdG adduct were identified. The volume integrals of these cross-peaks were utilized for a series of calculations using the program MARDIGRAS, to yield distance restraints for base pairs $C^{6} \cdot G^{19}$ and $X^{7} \cdot C^{18}$, and $\mathrm{A}^{8} \bullet \mathrm{~T}^{17}$. In separate calculations, volume integrals of NOE cross-peaks from base pairs $G^{1} \bullet C^{24}, C^{2} \bullet G^{23}, T^{3} \bullet A^{22}, A^{4} \bullet T^{21}$, and $G^{5} \bullet C^{20}$, and from base pairs $G^{9} \cdot C^{16}$, $\mathrm{T}^{10} \bullet \mathrm{~A}^{15}, \mathrm{C}^{11} \bullet \mathrm{G}^{14}$, and $\mathrm{C}^{12} \bullet \mathrm{G}^{13}$ were utilized for a series of calculations using the program MARDIGRAS, to yield distance restraints for the remainder of the oligodeoxynucleotide duplex. Utilizing this approach, a total of 308 distance restraints were obtained. Of these, 89 were internucleotide restraints and 219 were intranucleotide restraints. The five NOEs observed between the N^{2}-(3-oxo-1(S)-methyl-propyl)-dG adduct and DNA served to orient the adduct within the minor groove. In addition to the NOE-derived distance restraints, a total of 90 sugar pucker restraints were obtained from the analysis of deoxyribose pseudorotation. These experimental restraints were augmented with 52 empirical hydrogen bonding restraints derived from the AMBER 8.0 force field that were included on the basis of spectroscopic evidence for the presence of Watson-Crick hydrogen bonds (Figure 5-2).

These were used to restrain molecular dynamics calculations that utilized a simulated annealing protocol. The parameterization for the N^{2}-(3-oxo-1(S)-methyl-propyl)-dG adduct was as previously described. Sets of randomly seeded rMD calculations were initiated from two starting structures, in which adduct was oriented in the minor groove. In the IniA starting structure, the
adducted duplex was in the A-DNA conformation, whereas in the IniB starting structure, the adducted duplex was in the B-DNA conformation. The rmsd between the two starting structures was $6.3 \AA$. The choice of A-form and B-form starting structures, as opposed to initiating the calculations from random coil DNA structures, was based upon the spectroscopic observations that the adducted duplex was relatively unperturbed as compared to its non-adducted counterpart (Figure 5-4).

A stereoview of superimposed structures which emerged from the rMD calculations, beginning either with the A- or B-DNA starting structures, is shown in Figure 5-6. The structural statistics are listed in Table 5-2. Irrespective of starting structure, the rMD calculations yielded right-handed DNA helices with the N^{2}-(3-oxo-1(S)-methyl-propyl)-dG adduct oriented in the minor groove. These structures were more similar to B-form DNA than to A-form DNA, as indicated by rmsd analysis. Thus, the average structure that emerged from the rMD calculations showed a $5.2 \AA$ rmsd as compared to A-form DNA, and a $1.7 \AA$ rmsd as compared to B-form DNA.

The accuracies of the structures that emerged from the rMD calculations with respect to ${ }^{1} \mathrm{H}$ NOEs were assessed using complete relaxation matrix analysis with the program CORMA. This yielded sixth root residuals ($\mathrm{R}_{\mathrm{x}}^{1}$ values) between the theoretical NOE intensities predicted by the calculated structures and the experimental NOE data obtained at a mixing time of 150 ms . The total $\mathrm{R}_{\mathrm{x}}^{1}$ value was 7.94×10^{-2}. The agreement was somewhat better for intra-nucleotide NOEs, with an R_{x}^{1} value of 6.65×10^{-2}, whereas for internucleotide NOEs an $R^{1}{ }_{x}$ value of 9.00×10^{-2} was obtained. Figure 9 shows R_{x} values for each of the
nucleotides. At base pairs $C^{6} \bullet G^{19}, X^{7} \bullet C^{18}$, and $A^{8} \cdot T^{17}$ both intra- and internucleotide $\mathrm{R}_{1}{ }^{\mathrm{x}}$ values were about 10% or less, indicative of good agreement with the experimental NOE data.

Figure 5-5. Expanded tile plots showing NOEs between the DNA and opened form adduct protons ($\tau_{\mathrm{m}}=350 \mathrm{~ms}$). a, $\mathrm{X}^{7} \mathrm{H}_{\gamma} \rightarrow \mathrm{X}^{7} \mathrm{H}_{\mathrm{Me}} ; \mathrm{b}, \mathrm{C}^{18} \mathrm{H} 1^{\prime} \rightarrow \mathrm{X}^{7} \mathrm{H}_{\mathrm{Me}} ; \mathrm{c}, \mathrm{G}^{19} \mathrm{H}{ }^{\prime} \rightarrow$ $X^{7} \mathrm{H}_{\text {ме }} ;$ d, $\mathrm{G}^{19} \mathrm{H} 4 \rightarrow \mathrm{X}^{7} \mathrm{H}_{\text {Ме }} ;$ e, $\mathrm{X}^{7} \mathrm{H}_{\alpha} \rightarrow \mathrm{X}^{7} \mathrm{H}_{\text {ме }} ; f, X^{7} \mathrm{H}_{\beta} \rightarrow \mathrm{X}^{7} \mathrm{H}_{\text {ме }} ;$ g, $X^{7} \mathrm{H}_{\gamma} \rightarrow \mathrm{X}^{7} \mathrm{H}_{\beta} ; \mathrm{h}$, $X^{7} \mathrm{H}_{\alpha} \rightarrow \mathrm{X}^{7} \mathrm{H}_{\beta} ;$ i, $\mathrm{X}^{7} \mathrm{H}_{\mathrm{Me}} \rightarrow \mathrm{X}^{7} \mathrm{H}_{\beta} ;$ j, $\mathrm{X}^{7} \mathrm{H}_{\gamma} \rightarrow \mathrm{X}^{7} \mathrm{H}_{\alpha} ; k, \mathrm{X}^{7} \mathrm{H} 1 \rightarrow \mathrm{X}^{7} \mathrm{H}_{\alpha} ; 1, \mathrm{X}^{7} \mathrm{H}_{\beta} \rightarrow \mathrm{X}^{7} \mathrm{H}_{\alpha} ; \mathrm{m}$, $\mathrm{X}^{7} \mathrm{H}_{\mathrm{Me}} \rightarrow \mathrm{X}^{7} \mathrm{H}_{\alpha} ; \mathrm{n}, \mathrm{X}^{7} \mathrm{H}_{\gamma} \rightarrow \mathrm{A}^{8} \mathrm{H} 4^{\prime} ;$ o, $\mathrm{A}^{8} \mathrm{H} 8 \rightarrow \mathrm{~A}^{8} \mathrm{H} 4 ; ; \mathrm{p}, \mathrm{X}^{7} \mathrm{H} 1^{\prime} \rightarrow \mathrm{A}^{8} \mathrm{H} 4^{\prime} ; q, \mathrm{X}^{7} \mathrm{H}_{\gamma} \rightarrow$ $\mathrm{A}^{8} \mathrm{H} 1^{\prime} ; r, \mathrm{~A}^{8} \mathrm{H} 8 \rightarrow \mathrm{~A}^{8} \mathrm{H} 1^{\prime}$.

Figure 5-6. Stereoview of five superimposed structures emergent from the simulated annealing rMD protocol of IniA.

Figure 5-7. Stereoview of five superimposed structures emergent from the simulated annealing rMD protocol of IniB.

Figure 5-8. A CPK representation of the part of the S-COPdG adduct in a duplex. This is the averaged and energy minimized using the conjugate gradients algorithm. The adduct residues are in yellow with protons in white and oxygen in red. The amino nitrogen in an opposite dG is in blue.

Table 5-2. Root Mean Square Deviations (RMSD).

Analysis of the rMD-Genrated Structures of the opened S-crotonaldehyde aldehyde adduct in the 5 ' $-\mathrm{CpG}-3$ ' sequence

NMR restraints
Total number of distance restraints 308
Interresidue distance restraints 89
Intraresidue distance restraints 219
DNA— adduct protons distance restraints 5
Adduct protons distance restraints 5
H -bonding restraints 52
Sugar pucker restraints 90
pairwise rmsd (\AA) over all atoms
IniA vs. IniB 6.316
$<$ rMDA ${ }^{\text {a }}$ vs. $<$ rMDA $>\quad 0.29 \pm 0.14$
$<$ rMDB $>^{\text {b }}$ vs. $<$ rMDB $>\quad 0.29 \pm 0.14$
$\mathrm{rMDA}_{\text {avg }}{ }^{\text {c }}$ vs. $\mathrm{rMDB}_{\text {avg }}{ }^{\mathrm{d}} \quad 1.881$
$\mathrm{rMDA}_{\text {avg }}$ vs. $\mathrm{rMD}_{\text {avg }}{ }^{\mathrm{e}} \quad 1.81$
$\mathrm{rMDB}_{\text {avg }}$ vs.rMD $_{\text {avg }} \quad 2.16$
IniA vs. $\mathrm{rMD}_{\text {avg }} \quad 5.244$
IniB vs. $\mathrm{rMD}_{\text {avg }} \quad 1.679$
${ }^{\text {a }}<$ rMDA $>$ represents the set of 5 structures that emerged from rMD calculations starting from IniA. ${ }^{\text {b }}<$ rMDB $>$ represents the set of 5 structures that emerged from rMD calculations starting from IniB. ${ }^{c} \mathrm{rMDA}_{\text {avg }}$ represents the average structure of all five $<\mathrm{rMDA}>$. ${ }^{\mathrm{d}} \mathrm{rMDB}_{\text {avg }}$ represents the average structure of all five $<\mathrm{rMDB}>$. ${ }^{\mathrm{e}} \mathrm{rMD}_{\text {avg }}$ represents the potential enery minimized average structure of all 10 structures of $<\mathrm{rMDA}>$ and $<\mathrm{rMDB}>$.

Figure 5-9. Complete relaxation matrix calculations on the average structure emergent from the simulated annealing rMD protocol showing sixth root residuals ($\mathrm{R}_{1}{ }^{x}$) for each nucleotide: The adducted strand (top); the complementary strand (bottom). The black bars represent intranucleotide $\mathrm{R}_{1}{ }^{\text {a }}$ values, and the gray bars represent internucleotide $\mathrm{R}_{1}{ }^{\times}$values.

Discussion

Previously, the two N^{2}-(3-oxopropyl)-dG aldehyde adducts (R and S) were modeled in $5^{\prime}-\mathrm{d}\left(G C T A G C \underline{X A G T C C)}-3^{\prime} \bullet 5^{\prime}-\mathrm{d}(G G A C T C G C T A G C)-3 '\right.$ in Chapter IV. The potential energy minimization predicted that both adducts maintained Watson-Crick hydrogen bonding at both base pairs $C^{6} \bullet Y^{19}$ and $X^{7} \bullet C^{18}$. The modeling studies suggested that the for the S-stereoisomer of N^{2}-(3-oxopropyl)dG aldehyde, the methyl group oriented within the minor groove in the 5 'direction from the adducted nucleotide X^{7}. This oriented the aldehyde group in the 3 '-direction, placing it distal to the cross-linking target $N^{2}-\mathrm{dG}$ in base pair $C^{6} \bullet Y^{19}$. In contrast, the modeling studies suggested that for the R-stereoisomer, the methyl group oriented within the minor groove in the 3 '-direction from the adducted nucleotide X^{7}. This oriented the reactive aldehyde in the 5 '-direction, placing it proximate to the cross-linking target N^{2}-dG in base pair $\mathrm{C}^{6} \bullet \mathrm{Y}^{19}$. Significantly, the favored orientation of the corresponding acrolein-derived N^{2} -(3-oxopropyl)-dG aldehyde also placed the aldehyde in the 5'-direction, proximate to the cross-linking target $N^{2}-\mathrm{dG}$ in base pair $\mathrm{C}^{6} \bullet \mathrm{Y}^{19}$. The present study provides experimental evidence, which corroborate the predictions of the previously conducted modeling studies.

Conformation of the S-stereoisomer of N^{2}-(3-oxopropyl)-dG aldehyde.

 Several lines of evidence supported the conclusion that the S-stereoisomer of N^{2} -(3-oxopropyl)-dG aldehyde adduct oriented in the minor groove with minimal perturbation of the B-family DNA duplex. The ${ }^{1} \mathrm{H}$ NOE data revealed a complete set of NOE connectivities at base pairs $C^{6} \bullet G^{19}, X^{7} \bullet C^{18}$, and $A^{8} \bullet T^{17}($ Figure 5-1). Inaddition, the observation of imino ${ }^{1} \mathrm{H}$ resonances at base pairs $\mathrm{C}^{6} \cdot \mathrm{G}^{19}, \mathrm{X}^{7} \cdot \mathrm{C}^{18}$, and $A^{8} \cdot T^{17}$, and NOEs between the imino protons of each base pair and the C^{6} $\mathrm{NH}_{2}, \mathrm{C}^{18} \mathrm{NH}_{2}$, and $\mathrm{A}^{18} \mathrm{H} 2$ protons of each base pair, respectively, indicated that the presence of S-COPdG adduct did not disrupt Watson-Crick base pairing at the lesion site. Finally, analysis of chemical shift perturbations, deoxyribose pseudorotation, and ${ }^{31} \mathrm{P}$ chemical shift perturbtations, all indicated little adductinduced perturbation as compared to the unmodified duplex. Within the minor groove, the 3'-orientation of the aldehyde proton of the crotonaldehdye-derived adduct at X^{7} was indicated by the observation of dipolar coupling with $A^{8} H 1^{\prime}$ and A 8 H 4 ' in the modified strand. In contrast, the methyl protons of the adduct showed dipolar coupling with $\mathrm{C}^{18} \mathrm{H} 1$, $\mathrm{G}^{19} \mathrm{H} 1$ ', and $\mathrm{G}^{19} \mathrm{H} 4$ ' in the complementary strand of the duplex, consistent with their 5'-orientation in the minor groove with respect to X^{7}. The fact that no spectral linebroadening was observed for the adduct protons as compared to the DNA protons, combined with the observed directionality of NOEs between the CH_{3} and aldehyde protons with respect to minor groove DNA protons, suggests that the orientation of the N^{2}-(3-oxopropyl)-dG aldehyde adduct within the minor groove is fixed at pH 9.3 and $30^{\circ} \mathrm{C}$.

Structure-Activity Relationships. The 5'-orientation of the crotonaldehdye-derived methyl group as predicted by molecular modeling and now confirmed by NMR spectroscopic analysis provides a plausible rationale for the differential interstrand cross-linking capabilities of the $R-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct and $\mathrm{S}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct in the $5^{\prime}-\mathrm{CpG}-3$ ' sequence context. In this
sequence, the $\mathrm{R}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct generated about 26% of a carbinolamine cross-link while the $\mathrm{S}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct failed to yield significant levels of the cross-link (Cho, Y.-J. et al., 2006; Kozekov et al., 2003). The present results support the idea that stereochemistry at C_{α} of the crotonaldehyde adduct plays an important role in facilitating interchain DNA cross-link generation by controlling the positioning of the reactive aldehyde in N^{2}-(3-oxo-1(S)-methyl-propyl)-dG adduct with respect to the exocyclic amine of dG in the complementary strand.

The present results suggest a kinetic basis for the lack of interstrand crosslink formation by N^{2}-(3-oxo-1(S)-methyl-propyl)-dG adduct. In fact, the adduct exists in equilibrium with carbinolamine cross-link. When samples of $S-\alpha-\mathrm{CH}_{3}-\gamma-$ OH-PdG adduct were monitored for periods of several months at $37{ }^{\circ} \mathrm{C}$, presumably allowing sufficient time to reach equilibrium, only small amounts of carbinolamine cross-link arising from the N^{2}-(3-oxo-1(S)-methyl-propyl)-dG adduct were observed. Thus, it can be concluded either that the rate of interstrand cross-linking is extremely slow at pH 7 and $37^{\circ} \mathrm{C}$, or that the crosslink arising from N^{2}-(3-oxo-1(S)-methyl-propyl)-dG adduct must also be thermodynamically disfavored. This question is presently under investigation. Previous molecular modeling suggested that carbinolamine cross-link was of lower stability than that of cross-link, presumably due to the differential orientation of the CH_{3} group at the a-carbon of the cross-link. Anecdotally, Lao and Hecht reported conducting molecular dynamics studies of pyrimidopurinone cross-links, formed from adducts $\mathbf{2 a}$ and $\mathbf{2 b}$ (Scheme 1-4), respectively, and reaching a similar conclusion, i.e., that the pyrimidopurinone
cross-link arising from the $\mathrm{R}-\alpha-\mathrm{CH}_{3}-\gamma_{-}{ }^{13} \mathrm{C}-\mathrm{OH}-\mathrm{PdG}$ adduct was of greater stability, due to a more favorable orientation of the a-carbon methyl group within the minor groove (Lao and Hecht, 2005).

Formation of Peptide-DNA Conjugates. Peptide trapping experiments demonstrated that both $\mathrm{R}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct and $\mathrm{S}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct formed DNA-peptide conjugates (Kurtz and Lloyd, 2003). The amount of peptide conjugate formed by $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct was comparable to that formed by the $\mathrm{R}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-\mathrm{PdG}$ adduct (Kurtz and Lloyd, 2003). Thus, it is concluded that while stereochemistry at C_{α} modulates interstrand DNA crosslink formation in the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence by positioning the aldehyde functionality distal to the exocyclic amine of dG in the complementary strand, it appears to play little role in modulating the formation of peptide-DNA conjugates.

However, the location of an aldehyde group by the methyl stereochemistry of S-CPdG adduct may correlate the interaction with polymerases during replication process. It will be of interest if such biological experiments are designed to investigate the effect of stereochemistry of crotonaldehyde-derived dG adducts in conjunction with enzymes.

Figure 5-10. A side view of the refined structure, $\mathrm{rMD}_{\mathrm{avg}}$ from the minor groove.

Figure 5-11. The comparison of Base stacking of the base pairs $\mathrm{C}^{6} \cdot \mathrm{G}^{19}, \mathrm{X}^{7} \cdot \mathrm{C}^{18}$, and $\mathrm{A}^{8} \cdot \mathrm{~T}^{17}$ the oligodeoxynucleotide containing the N^{2}-(3-oxo-1(S)-methyl-propyl)-dG adduct (Top), and unmodified oligodeoxynucleotide (Bottom).

CHAPTER VI

SOLUTION STRUCTURE OF THE FULLY REDUCED DNA INTERSTRAND CROSS-LINK ARISING FROM RING OPENING OF CROTONALDEHYDEDERIVED $\mathrm{R}-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-1, \mathrm{~N}^{2}$-PROPANO-2'-DEOXYGUANOSINE ADDUCT IN THE 5'-CpG-3' SEQUENCE

Introduction

Crotonaldehyde yields the enantiomeric R - and $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-1, N^{2}-$ propano-2'-deoxyguanosine adducts (R-CPdG and S-CPdG). The ring-opening process via opened aldehyde form in the minor groove facilitated DNA interstrand cross-linking. In the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence context, $\gamma-\mathrm{OH}-\mathrm{PdG}$ and $R-$ CPdG formed cross-links that were identified as carbinolamines (Chapter III and IV).

A cross-link is a salient phenomenon for DNA replication and repair. To understand the biological effect by a structural changes from crotonaldehyde adduct, such as structural study of cross-link is a sine qua non. However, there were other species to be reckoned with since all species are in equilibrium. It was not possible to single out carbinolamine cross-link for a structural analysis. In complement to monitoring R-CPdG adducts by NMR, sodiumborohydride was utilized to fully reduce the carbinolamine cross-link, which can be used as a model of carbinolamine type cross-link. In the case of imine, due to the fact that sp^{2} is required on $\mathrm{C}=\mathrm{N}$, it is presumed that sp^{3} carbon at γ position of this reduced cross-link chain would instead reflect the feature of carbinolamine crosslink than that of imine species. Unmodified $5^{\prime}-\mathrm{d}(\mathrm{GCTAGCGAGTCC})-3^{\prime} \bullet 5^{\prime}-$ (GGACTCGCTAGC)-3' oligodeoxynucleotide was referenced as the control.

In this chapter, I describe structural elucidation by 2D NMR investigations of the fully reduced R-crotonaldheyde cross-link (Scheme 6-1) in 5'-$\mathrm{d}(\mathrm{GCTAGCXAGTCC})-3^{\prime} \bullet 5^{\prime}$-(GGACTCYCTAGC)-3'. The pH was maintained at 6.8. NMR data suggest how such carbinolamine type interchain cross-link can exist in a duplex without disrupting internal base hydrogen bonds.

Scheme 6-1. 5'-CpG-3' Oligonucleotide and the chemical structure of the fully reduced R-crotonaldehyde cross-link. β_{1} and γ_{1} present left sided protons, and β_{2} and γ_{2} are right sided protons.

$$
\begin{aligned}
& 5^{\prime}-\mathrm{G}^{1} \mathrm{C}^{2} \mathrm{~T}^{3} A^{4} \mathrm{G}^{5} \mathrm{C}^{6} \mathrm{X}^{7} \mathrm{~A}^{8} \mathrm{G}^{9} \mathrm{~T}^{10} \mathrm{C}^{11} \mathrm{C}^{12}-3^{\prime} \\
& 3^{\prime}-\mathrm{C}^{24} \mathrm{G}^{23} A^{22} \mathrm{~T}^{21} \mathrm{C}^{20} \mathbf{Y}^{19} \mathrm{C}^{18} \mathrm{~T}^{17} \mathrm{C}^{16} \mathrm{~A}^{15} \mathrm{G}^{14} \mathrm{G}^{13}-5^{\prime}
\end{aligned}
$$

Results

Assignments of non-exchangeable DNA protons. As shown in Figure 61, the complete sequential connectivity between the aromatic and the anomeric protons for both strands of the duplex was accomplished in the NOESY walk region. All cytosine $\mathrm{H} 5 / \mathrm{H} 6$ cross-peaks were numbered (pink) on each peak. The small numbers (blue) nearby cross-peaks indicate 5^{\prime} - base proton numbers that have a NOE with 3 '-side cytosine H5. Two dimensional NOESY and DQFCOSY spectra were used for further assignments. All data were collected at 30 ${ }^{\circ} \mathrm{C}$. A minor overlap occurred for C^{6} and $\mathrm{X}^{7} \mathrm{H} 1^{\prime}$ resonances, however, other than that, most peaks were well-resolved including adduct protons. Figure 6-2 presents another sequential connectivities between the aromatic and the H3' protons was completed. The completion of NOESY walk in those regions was indicative of a stable and ordered DNA conformation. In addition, these assignments were expanded into other regions of ${ }^{1} \mathrm{H}$ NOESY spectrum to yield complete ${ }^{1} \mathrm{H}$ assignments for the $\mathrm{H} 2^{\prime}, \mathrm{H}^{\prime \prime}$, $\mathrm{H} 3^{\prime}$, and H 4 ' protons (Patel, D.J. et al., 1987; Reid, 1987). Table 6-1 details the assignments of the non-exchangeable protons.

Figure 6-1. Expanded plot of a NOESY spectrum in $\mathrm{D}_{2} \mathrm{O}$ buffer at a mixing time of 150 ms showing the sequential NOE connectivities from the aromatic to anomeric protons. The base positions are indicated at the intranucleotide crosspeaks of the aromatic proton to its own anomeric proton. (Top) Sequential NOE connectivities for nucleotides $G^{1} \rightarrow C^{12}$. (Bottom) Sequential NOE connectivities for nucleotides $\mathrm{G}^{13} \rightarrow \mathrm{C}^{24}$.

Figure 6-2. Expanded plot of a NOESY spectrum in $\mathrm{D}_{2} \mathrm{O}$ buffer at a mixing time of 150 ms showing the sequential NOE connectivities from the aromatic to H3' protons. The base positions are indicated at the intranucleotide cross-peaks of the aromatic proton to its own H3' proton. (Top) A sequential NOE connectivities for nucleotides $G^{1} \rightarrow C^{12}$. (Bottom) A sequential NOE connectivities for nucleotides $\mathrm{G}^{13} \rightarrow \mathrm{C}^{24}$.

Table 6-1. Chemical shifts (ppm) of non-exchangeable protons in the oligodeoxynucleotide $5^{\prime}-\mathrm{d}\left(\mathrm{GCTAGCXAGTCC)}-3^{\prime} \bullet 5^{\prime}-(G G A C T C Y C T A G C)-3^{\prime}\right.$.

BASE	H1'	H2'	H2"	H3'	H4'	H5'	H5"	H6/H8	Me/H5
G^{1}	6.02	2.68	2.79	4.85	4.26	3.75		7.99	
C^{2}	6.06	2.15	2.53	4.83	4.26	4.16	4.21	7.55	5.40
T^{3}	5.58	2.16	2.43	4.88	4.15	4.09	4.10	7.43	1.69
\mathbf{A}^{4}	6.03	2.75	2.90	5.05	4.41	4.05	4.15	8.22	
G^{5}	5.70	2.44	2.59	4.95	4.35	4.22	4.18	7.66	
C^{6}	5.48	1.21	1.83	4.69	4.01		4.18	7.07	5.17
X^{7}	5.47	2.78	2.78	4.97	4.32	3.92	4.01	7.84	
\mathbf{A}^{8}	6.00	2.66	2.90	5.01	4.34	4.16	4.18	8.08	
G^{9}	5.78	2.42	2.68	4.86	4.33	4.18	4.21	7.53	
T^{10}	6.01	2.11	2.50	4.83	4.20	4.12	4.23	7.20	1.26
C^{11}	6.09	2.24	2.49	4.84	4.17	4.09	4.06	7.60	5.70
C^{12}	6.24	2.29	2.31	4.56	4.06	4.26	4.17	7.70	5.81
G^{13}	5.64	2.47	2.64	4.81	4.17	3.66		7.82	
G^{14}	5.57	2.71	2.79	5.02	4.37	4.06	4.14	7.86	
A^{15}	6.27	2.75	2.92	5.06	4.50	4.20	4.25	8.22	
C^{16}	5.81	1.96	2.47	4.66	4.22	4.18	4.33	7.29	5.22
T^{17}	6.03	2.09	2.43	4.85	4.18	4.06	4.09	7.37	1.50
C^{18}	5.49	1.65	2.10	4.79	4.01	4.03	4.08	7.28	5.54
\mathbf{Y}^{19}	6.00	2.81	2.69	5.00	4.39	4.04	4.07	7.94	
C^{20}	5.84	1.98	2.46	4.67	4.17	4.17	4.28	7.43	5.39
T^{21}	5.56	2.08	2.39	4.84	4.11	4.03	4.39	7.40	1.69
A^{22}	6.02	2.73	2.87	5.03	4.38	4.03	4.11	8.21	
G^{23}	5.81	2.47	2.63	4.93	4.35	4.18	4.22	7.68	
C^{24}	6.12	2.13	2.20	4.46	4.22	4.03	4.26	7.40	5.36

$X^{7} H_{\alpha}$ (3.82); Me (1.03); $\beta_{1}(1.82) ; \beta_{2}(1.63) ; \gamma_{1}(3.71) ; \gamma_{2}(2.82)$

Adduct-DNA NOEs All adduct protons were well resolute and had 10 NOEs with DNA protons shown in Figure 6-3 and Figure 6-4. The adduct protons were assigned from a combination of ${ }^{1} \mathrm{H}$ COSY and NOESY experiments (Figure 6-3). The adduct CH_{3} resonance was observed at 1.03 ppm that exhibited a COSY cross-peak to a resonance at 3.82 ppm , assigned as arising from the $\mathrm{H} \alpha$ proton. The H_{α} proton manifested an additional COSY cross-peak to a resonance at 1.63 ppm , assigned as arising from the β_{2}. The β_{2} proton had a strong geminal coupling to a resonance at 1.82 ppm , the $\beta 1$, and weak coupling to a resonance at 3.71 ppm , the γ_{1}. The γ_{1} and the H α were most deshielded, presumably, due to the trans location from the hydrogen-bonded $N^{2} \mathrm{H}$ of deoxyguanosines. All dipolar couplings were observed to other adduct protons. The γ_{1} proton also exhibited a geminal coupling to a resonance at 2.82 ppm , the γ_{2} proton. The conformation of the adduct protons differentiated the COSY spectrum by the presence of scalar couplings whereas all dipolar couplings were present in the NOESY spectrum as shown in Figure 6-3. The methyl protons gave useful information for the geometry of this cross-link. The methyl protons interacted with A^{8} protons in primer strand intensely while left small interactions with Y^{19} and C^{20} protons in the complimentary strand except other adduct protons (Figure $6-4)$. It indicates that the methyl group in the proximity into 3^{\prime} direction of the primer strand, while they showed small cross-peaks to such as H^{\prime} of C^{20} and X^{7}, and H 2 and H 4 ' of A^{8} (Figure 6-4).

Figure 6-3. Expanded plot of a NOESY and DQF-COSY spectra in $\mathrm{D}_{2} \mathrm{O}$ buffer. All adduct protons were assigned.

Figure 6-4. Tile plot of a NOESY spectrum in $\mathrm{D}_{2} \mathrm{O}$ buffer at a mixing time of 350 ms. a. $\mathrm{A}^{8} \mathrm{H} 8 \rightarrow \mathrm{X}^{7} \mathrm{Me}$; b. $\mathrm{A}^{8} \mathrm{H} 2 \rightarrow \mathrm{X}^{7} \mathrm{Me}$; c. $\mathrm{A}^{8} \mathrm{H} 1^{\prime} \rightarrow \mathrm{X}^{7} \mathrm{Me} ;$ d. $\mathrm{C}^{20} \mathrm{H} 1^{\prime} \rightarrow X^{7} \mathrm{Me}$; e. $\mathrm{X}^{7} \mathrm{H} 1^{\prime} \rightarrow \mathrm{X}^{7} \mathrm{Me}$; f. $\mathrm{A}^{8} \mathrm{H} 4^{\prime} \rightarrow X^{7} \mathrm{Me} ;$ g. $\mathrm{A}^{8} \mathrm{H} 5^{\prime} \rightarrow X^{7} \mathrm{Me}$; h. $\mathrm{C}^{20} \mathrm{H} 1^{\prime} \rightarrow \mathrm{X}^{7} \beta 2$; i. C^{20} $\mathrm{H} 1^{\prime} \rightarrow \mathrm{X}^{7} \beta 2 ;$ j. $\mathrm{A}^{8} \mathrm{H} 1^{\prime} \rightarrow \mathrm{X}^{7} \mathrm{H} \alpha$; k. $\mathrm{C}^{20} \mathrm{H} 1^{\prime} \rightarrow \mathrm{Y}^{19} \gamma 1$; 1. $\mathrm{C}^{20} \mathrm{H} 1^{\prime} \rightarrow \mathrm{X}^{7} \mathrm{H} \alpha ;$ m. $\mathrm{X}^{7} \mathrm{H} 1^{\prime}$ $\rightarrow X^{7} \mathrm{H} \alpha$; A. $X^{7} \mathrm{H} \alpha \rightarrow \mathrm{X}^{7} \mathrm{Me}$; B. $\mathrm{Y}^{19} \gamma 1 \rightarrow X^{7} \mathrm{Me}$; C. $\mathrm{Y}^{19} \gamma 2 \rightarrow X^{7} \mathrm{Me}$; D. $X^{7} \beta 1 \rightarrow X^{7}$ Me; E. $X^{7} \beta 2 \rightarrow X^{7} \mathrm{Me} ;$ F. $X^{7} \mathrm{H} \alpha \rightarrow X^{7} \beta 2$; G. $Y^{19} \gamma 1 \rightarrow X^{7} \beta 2$; H. $Y^{19} \gamma 2 \rightarrow X^{7} \beta 2$; I. X^{7} $\beta 1 \rightarrow X^{7} \beta 2$; J. $X^{7} \mathrm{H} \alpha \rightarrow X^{7} \beta 1 ;$ K. Y ${ }^{19} \gamma 1 \rightarrow X^{7} \beta 1$; L. Y ${ }^{19} \gamma 2 \rightarrow X^{7} \beta 1 ;$ M. $X^{7} H \alpha \rightarrow Y^{19}$ $\gamma 2 ;$ N. $Y^{19} \gamma 1 \rightarrow Y^{19} \gamma 2 ; \mathrm{O} . X^{7} \mathrm{H} \alpha \rightarrow \mathrm{Y}^{19} \gamma 1$.

Assignments of exchangeable DNA protons. In the expanded imino proton region of the ${ }^{1} \mathrm{H}$ NOESY spectrum, Figure $6-5$ presents the resonances arising from the Watson-Crick hydrogen bonded imino protons: the complete sequential NOE connectivity was observed between imino protons of duplex except terminal bases due to fast exchange between N and H . The imino resonance arising from the $\mathrm{C}^{6} \bullet \mathrm{Y}^{19}$ base pair was assigned at 12.6 ppm , the $\mathrm{X}^{7} \cdot \mathrm{C}^{18}$ base pair was assigned at 12.5 ppm . The conservation of normal Watson-Crick hydrogen bondings is another indicative of the stable duplex DNA in compatible with non-exchangeable NOESY data. The expanded tile plot (Figure 6-6) presents the correlations among base protons in the $X^{7} \cdot C^{18}$ and $C^{6} \bullet Y^{19}$ including NOEs to adduct protons. Each imino proton has a strong NOE to amino proton (peak E and peak C). Further, 4 strong A:T base pairings were present (peak a, b, c, and d).

Chemical Shift Perturbations NMR data suggest that DNA duplex is minimally perturbed by showing locally influenced chemical shifts differences from the unmodified duplex DNA (Figure 6-7). The largest difference was about 0.6 ppm , suggesting that the minimal and localized effect on DNA in the presence of interchain DNA cross-link. Overall, the chemical shifts of 5'- side cytosine protons were shielded in both strands whereas sugar protons of adducted bases were deshielded about 0.2 ppm , of which results are similar to what Dooley et al. observed with there carbon tethered cross-link adduct but with a different sequence (Dooley, P. A. et al., 2001).

Figure 6-5. Expanded plot of a NOESY spectrum at a mixing time of 200 ms showing NOE connectivities for the imino protons for the base pairs from $\mathrm{C}^{2} \cdot \mathrm{G}^{23}$ to $\mathrm{C}^{11} \cdot \mathrm{G}^{14}$.

Figure 6-6. Expanded tile plot of a NOESY spectrum at a mixing time of 200 ms showing couplings from selected imino protons to DNA protons. A. $\mathrm{C}^{18} \mathrm{~N} 4 \mathrm{Ha}$; B. C^{6} N4Ha; C. $Y^{19} \mathrm{~N}^{2} H$; D. A ${ }^{8} \mathrm{H} 2$; E. $X^{7} \mathrm{~N}^{2} \mathrm{H}$; F. $\mathrm{C}^{18} \mathrm{~N}^{4} \mathrm{Hb}$; G. $\mathrm{C}^{6} \mathrm{~N}^{4} \mathrm{Hb} ; \mathrm{H} . \mathrm{X}^{7} \mathrm{Ha}$; I. $X^{7} \gamma 1$; J. $X^{7} \gamma 2$; K. $X^{7} \beta 1$; L. $X^{7} \beta 2$; M. T ${ }^{17} \mathrm{Me}$; N. X^{7} Me; a. $A^{15} \mathrm{H} 2 / \mathrm{T}^{10} \mathrm{~N} 3 \mathrm{H} ;$ b. A^{8} $\mathrm{H} 2 / \mathrm{T}^{17} \mathrm{~N} 3 \mathrm{H}$; c. $\mathrm{A}^{22} \mathrm{H} 2 / \mathrm{T}^{3} \mathrm{~N} 3 \mathrm{H} ;$ d. $\mathrm{A}^{4} \mathrm{H} 2 / \mathrm{T}^{21} \mathrm{~N} 3 \mathrm{H}$.

Figure 6-7. Chemical Sifts Differences of non-exchangeable aromatic and sugar protons of the unmodified and cross-liked oligodeoxynucleotides. A: Aromatic H5, H6, and H8 protons. B: Sugar protons (continued on next page)

B

Figure 6-7. Chemical Sifts Differences of non-exchangeable aromatic and sugar protons of the unadducted an dcross-liked oligodeoxynucleotides. A: Aromatic H5, H6, and H8 protons. B: Sugar protons.

Torsion Angle Measurement. All of experimental data were consistent with B-like DNA helix. From NOESY and COSY data, there was no clear evidence of neither syn conformation nor A type DNA helix (Kim, S. G. et al., 1992). The ${ }^{31} \mathrm{P}$ spectrum showed no unusual chemical shifts perturbations (data not shown), suggesting that even the backbone was not significantly perturbed by the existence of the fully reduced R-crotonaldehyde interstrand cross-link. In Figure 6-8, the connectivity between $\mathrm{H} 1^{\prime}$ to $\mathrm{H} 2^{\prime}$ and $\mathrm{H} 2^{\prime \prime}$ to $\mathrm{H} 3^{\prime}$ are present. The chemical shifts of $\mathrm{H} 2^{\prime}$ and $\mathrm{H} 2^{\prime \prime}$ of Y^{19} were reversed compared to other sugars, however, still suggesting like a B-form DNA.
rMD Calculations. The NOE generated 303 distance restraints and 52 empirical Watson-Crick restraints were incorporated in rMD calculations. Starting structures, IniA and IniB, were built and used in MARDIGRAS calculations (Borgias and James, 1990; Liu, H. et al., 1995 Dec). The stereoview of five convergent structures originating from rMD calculations initiated from a B-form and an A-form starting structures can be viewed in Figure 6-9 and 6-10 respectively. An initial rmsd between starting structures was $6.371 \AA$, the pairwise rmsd between averaged structures from IniA and IniB was $1.555 \AA$. The final averaged and energy-minimized structure was compared to starting structure: $2.676 \AA$ between IniB and $\mathrm{rMD}_{\text {avg, }}$ and $4.067 \AA$ between IniA and $\mathrm{rMD}_{\text {avg. }}$. Detailed results are listed in Table 6-2. A CPK structure of the averaged structure is shown in Figure 6-11.

Finally, Figure 6-12 presents $R_{1}{ }^{\times}$values for each of the nucleotides. The 150 ms intensity data were used for CORMA calculations. The total $\mathrm{R}_{1}{ }^{x}$ value was $7.04 \times 10^{-2}: 6.47 \times 10^{-2}$ for intra-residues and 7.72×10^{-2} for inter-residues.

Figure 6-8. Expanded plot of DQF-COSY spectrum. The chemical shift ranges for H1' and H3' are indicated by the arrows at the bottom, those for H2' and H2" on the left. For each nucleotide the cross-peaks H1'-H2' and H1'-H2" are connected by a solid vertical line, and the cross-peaks $\mathrm{H}^{\prime}-\mathrm{H} 2^{\prime}$ and $\mathrm{H} 2^{\prime}-\mathrm{H} 3^{\prime}$ by a broken vertical line.

Figure 6-9. Streoview of five superimposed structures emergent from the simulated annealing rMD protocol of IniA.

Figure 6-10. Streoview of five superimposed structures emergent from the simulated annealing rMD protocol of IniB.

Figure 6-11. A CPK representation of the fully reduced R-crotonaldehyde crosslink. This is the averaged and energy minimized using the conjugate gradients algorithm. The cross-linked residues in pink with protons in white.

Table 6-2. Root Mean Square Deviations (RMSD).

Analysis of the rMD-Genrated Structures of the fully reduced R-crotonaldehyde crosslink in the $5^{\prime}-\mathrm{CpG}-3$ ' sequence

NMR restraints
Total number of distance restraints 246
Interresidue distance restraints 119
Intraresidue distance restraints 127
DNA- adduct protons distance restraints 10
Adduct protons distance restraints 14
H -bonding restraints 52
Backbone torsion angle restraints 0
pairwise rmsd (A) over all atoms

IniA vs. IniB	6.371
$<$ rMDA $>^{\text {a }}$ vs. $<$ rMDA $>$	0.53 ± 0.27
$<$ rMDB $>^{\text {b }}$ vs. $<$ rMDB $>$	0.47 ± 0.24
$\mathrm{rMDA}_{\text {avg }}{ }^{\text {c }}$ vs. $\mathrm{rMDB}_{\text {avg }}{ }^{\text {d }}$	1.376
rMDA ${ }_{\text {avg }}$ vs. $\mathrm{rMD}_{\text {avg }}{ }^{\text {e }}$	0.795
$\mathrm{MMDB}_{\text {avg }}$ vs.rMD ${ }_{\text {avg }}$	1.006
IniA vs. $\mathrm{rMD}_{\text {avg }}$	4.338
IniB vs. $\mathrm{rMD}_{\text {avg }}$	2.623

${ }^{\text {a }}<$ rMDA $>$ represents the set of 5 structures that emerged from rMD calculations starting from IniA. ${ }^{\text {b }}<$ rMDB $>$ represents the set of 5 structures that emerged from rMD calculations starting from IniB. ${ }^{c} \mathrm{rMDA}_{\text {avg }}$ represents the average structure of all five $<\mathrm{rMDA}>$. ${ }^{\mathrm{d}} \mathrm{rMDB}_{\text {avg }}$ represents the average structure of all five $<\mathrm{rMDB}>$. ${ }^{\mathrm{e}} \mathrm{rMD}_{\text {avg }}$ represents the potential enery minimized average structure of all 10 structures of $<\mathrm{rMDA}>$ and $<\mathrm{rMDB}>$.

Figure 6-12. Complete relaxation matrix calculations on the average structure emergent from the simulated annealing rMD protocol showing sixth root residuals ($\mathrm{R}_{1}{ }^{x}$) for each nucleotide: The adducted strand (top); the complementary strand (bottom). The black bars represent intranucleotide $\mathrm{R}_{1}{ }^{\mathrm{x}}$ values, and the gray bars represent internucleotide $R_{1}{ }^{\mathrm{x}}$ values.

Discussion

As was expected, the fully reduced R-crotonaldehyde-derived cross-link was structurally stable to form a B-form DNA while maintaining Watson-Crick hydrogen bondings (Figure 6-13 and 6-14). This implies that thermodynamically DNA interstrand cross-links are stable which is consistent with a UV melting study (Kozekov et al., 2003). Secondly, carbinolamine type cross-links can exist in a duplex without disrupting Watson-Crick hydrogen bondings. Since other possible cross-links such as imine and pyrimidopurinone require disruption of normal base pairing. It can be inferred that they are not appropriate for duplex environment. On the contrary, the carbinolamine type interstrand cross-links can only satisfy Watson-Crick base pairings between adducts and corresponding opposite bases. Although all 3 possible cross-link forms are in equilibrium, NMR studies of site-specifically labeled APdG and CPdG adducts proved the carbinolamine cross-links predominated as described in the previous chapters. The presence of cross-links increases the melting temperature and thus postulated to interfere with DNA replication and repair process.

This NMR study of the fully reduced cross-linked DNA supports the idea that the chain form of interstrand DNA cross-link, with an sp^{3} carbon at γ position, is favored in a duplex environment. With the absence of hydroxyl group at C_{γ}, this reduced cross-link is regarded as a suitable model for the carbinolamine cross-links. Further, the refined structure strongly supports the involvement of endo- ${ }^{1} \mathrm{H}$ of the two amino protons at the exocyclic amino group of guanine (X^{7} and Y^{19}) into hydrogen bonding while the cross-linked chain attached onto the exo- ${ }^{1} \mathrm{H}$ site. This contrasts the study of the trimethylene cross-
link study by Dooley et al. (Dooley, P. A. et al., 2001; Dooley, P. A. et al., 2003). However, it is believed that the exo- ${ }^{1} \mathrm{H}$ displaced structure is more reasonable while it allows the endo- ${ }^{1} \mathrm{H}$ to participate in hydrogen bonding. The NMR data support this: the presence of both NOEs between guanosine iminos and cytidine amino protons peaks is indicative of Watson-Crick hydrogen bondings of X:C. Furthermore, the presence of NOEs between thymidine imino and adenosine H2 protons are also support Watson-Crick hydrogen bondings of A:T base pairs are well conserved as shown in Figure 6-6. This indicates the involvement of the amino protons as the endo- ${ }^{1} \mathrm{H}^{\prime}$ s. These are consistent with the structural studies of other N^{2}-dG adducts such as mitomycin, anthramycin and bezo[a]pyrene diol epoxide that leave the endo- ${ }^{1} \mathrm{H}$ available to participate in normal Watson-Crick hydrogen bonding (Kopka et al., 1994; Kozack and Loechler, 1997 Aug; Norman et al., 1990). Moreover, the same patterned observances are discovered with the different stereochemistry of the methyl group (Chapter VII).

Additional comparisons with different stereochemistry of the methyl group from $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-1, N^{2}$-propano-2'-deoxyguanosine adducts are discussed in the next chapter.

Figure 6-13. A side view of the refined structure $\mathrm{rMD}_{\text {avg }}$ from the minor groove.

Figure 6-14. A top view of the refined structure, $\mathrm{rMD}_{\text {avg }}$ for base stacking interaction.

CHAPTER VII

SOLUTION STRUCTURE OF THE FULLY REDUCED DNA INTERSTRAND CROSS-LINK ARISING FROM RING OPENING OF $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-1, N^{2}-$ PROPANO-2'-DEOXYGUANOSINE ADDUCT IN THE 5'-CpG-3' SEQUENCE.

Introduction

While the $R-C P d G$ adduct formed interstrand carbinolamine cross-links in the 5^{\prime}-CpG-3' sequence, the $S-\alpha-\mathrm{CH}_{3}-\gamma-\mathrm{OH}-1, N^{2}$-propano-2'-deoxyguanosine (S CPdG) did not show as high a tendancy to cross-link. It has been thought that thisis due to hindrance by the methyl stereochemistry of the opened aldehidic form while it also possesses the allylic strain for reacting with the amino group of the targeting dG in the opposite strand, and a possible instability of the cross-link in a duplex that can be issued by the methyl stereochemistry. In the previous Chapter V the structure of the stable aldehyde opened form, S-COPdG aldehyde adduct was determined, which supports the hindering effect for generating interstrand cross-link by the methyl group. The fully reduced R-CPdG induced interstrand cross-linked structure suggests the stability of the cross-link by R CPdG in the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence. A question remained about the stability of the S-CPdG induced cross-links in the same sequence since relatively low amounts of the cross-link was found (Cho, Y.-J. et al., 2006; Kozekov et al., 2003; Lao and Hecht, 2005). Instability of this cross-link may suggest a different amount of cross-link generation by the R - and S-crotonaldehyde. Otherwise, the kinetic issue is more important that the thermodynamic point for the generation of cross-link. To answer for this question, NMR study has been carried out for the
fully reduced S-crotonaldehyde cross-link that was synthesized as shown in Scheme 1-5. Unlike sequence dependent interchain cross-link study, the fully reduced S-crotonaldehyde cross-link has a high melting temperature about 2 degree higher than that of R-crotonaldehyde cross-link indeed, which may imply the stability of the cross-link.

In this chapter, the NMR studies and the structural refinement of the fully reduced S-crotonaldehyde interstrand cross-link is described.

Scheme 7-1. 5'-CpG-3' Oligonucleotide and the chemical structure of the fully reduced S-crotonaldehyde cross-link. β_{1} and γ_{1} present left sided protons, and β_{2} and γ_{2} are right sided protons.

$$
\begin{aligned}
& 5^{\prime}-G^{1} C^{2} T^{3} A^{4} G^{5} C^{6} X^{7} A^{8} G^{9} T^{10} C^{11} C^{12}-3^{\prime} \\
& 3^{\prime}-C^{24} G^{23} A^{22} T^{21} C^{20} \mathbf{Y}^{19} C^{18} T^{17} C^{16} A^{15} G^{14} G^{13}-5^{\prime}
\end{aligned}
$$

Results

Assignments of nonexchangeable DNA protons. As shown in Figure 71, the complete sequential connectivity between the aromatic and the anomeric protons for both strands of the duplex was accomplished in the NOESY walk region. All cytosine $\mathrm{H} 5 / \mathrm{H} 6$ cross-peaks were numbered (pink) on each peak. The small numbers (blue) nearby cross-peaks indicate 5^{\prime} - base proton numbers that have a NOE with 3'-side cytosine H5. Two dimensional NOESY and DQFCOSY spectra were used for further assignments. All data were collected at 30 ${ }^{\circ} \mathrm{C}$. In comparison to the fully reduced R-crotonaldehyde cross-link adduct, the S-cross-link has distinct chemical shifts for C^{6} and $\mathrm{X}^{7} \mathrm{H} 1^{\prime}$ resonances. The completion of NOESY walk in this region was indicative of a stable and ordered DNA conformation. In addition, these assignments were expanded into other regions of ${ }^{1} \mathrm{H}$ NOESY spectrum to yield complete ${ }^{1} \mathrm{H}$ assignments for the H 2 , H2', H3', and H4' protons (Patel, D.J. et al., 1987; Reid, 1987). Table 7-1 details the assignments of the non-exchangeable protons.

Figure 7-1. Expanded plot of a NOESY spectrum in $\mathrm{D}_{2} \mathrm{O}$ buffer at a mixing time of 250 ms showing the sequential NOE connectivites from the aromatic to anomeric protons. The base positions are indiceted at the intranucleotide crosspeaks of the aromatic proton to its own anomeric proton. (Top) Sequential NOE connectivities for nucleotides $G^{1} \rightarrow C^{12}$. (Bottom) Sequential NOE connectivities for nucleotides $\mathrm{G}^{13} \rightarrow \mathrm{C}^{24}$.

Figure 7-2. Expanded plot of a NOESY spectrum in $\mathrm{D}_{2} \mathrm{O}$ buffer at a mixing time of 250 ms showing the sequential NOE connectivites from the aromatic to anomeric protons. The base positions are indiceted at the intranucleotide crosspeaks of the aromatic proton to its own anomeric proton. (Top) Sequential NOE connectivities for nucleotides $G^{1} \rightarrow C^{12}$. (Bottom) Sequential NOE connectivities for nucleotides $\mathrm{G}^{13} \rightarrow \mathrm{C}^{24}$.

Table 7-1. Chemical shifts (ppm) of non-exchangeable protons in the oligodeoxynucleotide $5^{\prime}-\mathrm{d}\left(\mathrm{GCTAGCXAGTCC)}-3^{\prime} \bullet 5^{\prime}-(G G A C T C Y C T A G C)-3^{\prime}\right.$.

BASE	H1'	H2'	H2"	H3'	H4'	H5'	H5"	H6/H8	Me/H5
G^{1}	6.00	2.67	2.77	4.84	4.26	3.73		7.98	
C^{2}	6.05	2.14	2.51	4.82	4.25	4.20	4.15	7.54	5.40
T^{3}	5.55	2.15	2.41	4.87	4.13			7.42	1.68
A^{4}	6.01	2.74	2.90	5.04	4.40	4.04	4.14	8.21	
G^{5}	5.68	2.44	2.59	4.94	4.35	4.18		7.65	
C^{6}	5.49	1.33	2.00	4.71	3.99	4.20	4.04	7.07	5.19
X^{7}	5.78	2.73	2.81	4.99	4.33	3.96	4.04	7.84	
\mathbf{A}^{8}	5.86	2.51	2.86	4.99	4.19	4.19	4.15	8.00	
G^{9}	5.78	2.39	2.66	4.84	4.33			7.48	
T^{10}	6.01	2.10	2.49	4.82	4.20	4.12		7.20	1.23
C^{11}	6.09	2.23	2.48	4.84	4.17	4.08		7.60	5.70
C^{12}	6.23	2.29		4.55	4.05	4.26	4.17	7.71	5.81
G^{13}	5.63	2.44	2.61	4.80	4.16	3.65		7.80	
G^{14}	5.55	2.70	2.78	5.01	4.36	4.05	4.13	7.85	
A^{15}	6.26	2.75	2.91	5.05	4.50	4.19	4.24	8.22	
C^{16}	5.80	1.99	2.50	4.65	4.23	4.33	4.19	7.27	5.20
T^{17}	6.02	2.14	2.51	4.86	4.20			7.38	1.49
C^{18}	5.61	1.73	2.30	4.83	4.03			7.28	5.52
\mathbf{Y}^{19}	5.96	2.76	2.64	4.99	4.39	4.09	4.03	7.93	
C^{20}	5.81	1.94	2.46	4.68	4.16	4.30		7.42	5.34
T^{21}	5.55	2.09	2.39	4.84	4.11			7.40	1.66
A^{22}	6.01	2.72	2.86	5.03	4.38	4.02	4.12	8.20	
G^{23}	5.80	2.47	2.62	4.93	4.34			7.68	
C^{24}	6.11	2.12	2.20	4.45	4.03	4.45		7.40	5.35

$X^{7} H_{\alpha}$ (3.28); Me (1.17); $\beta_{1}(1.09) ; \beta_{2}(2.77) ; \gamma_{1}(4.06) ; \gamma_{2}(2.84)$

Adduct-DNA NOEs All adduct protons were well resolved and had several NOEs with DNA protons. Unlike the fully reduced R-crotonaldehyde cross-link adduct protons, adduct protons exhibit different chemical environment that results in different chemical shifts. The difference is compared in Table 7-2. A major distinct difference is the shielding effect on β protons. In particular the β_{1} proton is shielded over the methyl resonances. As listed on Table 7-1, the trans positioned from the hydrogen-bonded $N^{2} H$ was the most deshielded: $\mathrm{H} \gamma_{1}(4.00 \mathrm{ppm})$ and Me (1.17 ppm, in the case of Me , the deshielding effect is not distinctive due to the higher order of bonds but it is slightly deshielded than that of the fully reduced R-crotonaldehyde cross-link). Vice versa, (E) positioned proton from $N^{2} \mathrm{H}$ shows upfield chemical shifts: $\gamma_{2}(2.84$ ppm) and H_{α} (3.28 ppm) respectively. The DQF-COSY data were helpful for assigning those adduct protons while providing through-bond coupling information (Figure 7-3). Further, TOCSY experiments also provided other clear information for assigning adduct protons (data not shown). It turned out that β protons are most sensitive protons to the configurations of the cross-link: β_{1} is the most shielded proton as of 1.09 ppm and β_{2} is the most deshielded proton as of 2.77 ppm in comparison to those of the fully reduced R-crotonaldehyde crosslink. In Figure 7-4, adduct-DNA cross-peaks were shown. The methyl protons show much intense cross-peaks to the primer strand especially to $\mathrm{A}^{8} \mathrm{H} 2$ and H 1 '. The β and the γ protons were overlapped with other sugar protons, but β_{1}, Me and H_{α} presents relatively well-resolved peaks that were useful for understanding geometry of the cross-link.

Figure 7-3. Expanded plot of a NOESY ($\tau_{\mathrm{m}}=60 \mathrm{~ms}$) and DQF-COSY spectra in $\mathrm{D}_{2} \mathrm{O}$ buffer. All adduct protons are assigned.

Figure 7-4. Tile plot of a NOESY spectrum in $\mathrm{D}_{2} \mathrm{O}$ buffer at a mixing time of 350 ms. Cross-peaks between adduct protons and DNA protons were shown. a. C^{20} $\mathrm{H} 1 \rightarrow \mathrm{X}^{7} \beta_{1}$; b. $\mathrm{A}^{8} \mathrm{H} 8 \rightarrow \mathrm{X}^{7} \mathrm{Me}$; c. $\mathrm{A}^{8} \mathrm{H} 2 \rightarrow \mathrm{X}^{7} \mathrm{Me} ;$ d. $\mathrm{A}^{8} \mathrm{H} 1^{\prime} \rightarrow \mathrm{X}^{7}$ Me; e. $\mathrm{C}^{20} \mathrm{H} 1 \rightarrow \mathrm{X}^{7}$ Me; f. $X^{7} \mathrm{H} 1^{\prime} \rightarrow X^{7} \mathrm{Me} ;$ g. $\mathrm{A}^{8} \mathrm{H} 3^{\prime} \rightarrow X^{7} \mathrm{Me} ;$ h. $X^{7} \mathrm{H} 4^{\prime} \rightarrow X^{7} \mathrm{Me} ;$ i. $\mathrm{A}^{8} \mathrm{H} 4^{\prime} \rightarrow X^{7} \mathrm{Me}$; j. C^{20} $\mathrm{H} 4^{\prime} \rightarrow \mathrm{X}^{7} \mathrm{Me}$ (overlapped); k. $\mathrm{C}^{20} \mathrm{H} 1^{\prime} \rightarrow \mathrm{X}^{7} \mathrm{H}_{\alpha}$ 1. $\mathrm{C}^{20} \mathrm{H} 4^{\prime} \rightarrow \mathrm{X}^{7} \mathrm{H}_{\alpha}$; A1. $\mathrm{X}^{7} \gamma_{1} \rightarrow \mathrm{X}^{7} \beta_{1}$; A2. $X^{7} H_{\alpha} \rightarrow X^{7} \beta_{1}$; A3. $X^{7} \gamma_{2} \rightarrow X^{7} \beta_{1} ;$ A4. $X^{7} \beta_{2} \rightarrow X^{7} \beta_{1} ;$ A5. $X^{7} \mathrm{Me} \rightarrow X^{7} \beta_{1} ; B 1$. $X^{7} \gamma_{1} \rightarrow X^{7}$ Me; B2. $X^{7} H_{\alpha} \rightarrow X^{7} \mathrm{Me}$; B3. $X^{7} \gamma_{2} \rightarrow X^{7} \mathrm{Me} ; \mathrm{B} 4$. $X^{7} \beta_{2} \rightarrow X^{7} \mathrm{Me} ; \mathrm{C} 1 . X^{7} \mathrm{H}_{\alpha} \rightarrow X^{7} \beta_{2}$; C2. $X^{7} H_{\alpha} \rightarrow X^{7} \gamma_{2} ; D 1 . X^{7} \gamma_{1} \rightarrow X^{7} H_{\alpha}$.

Assignments of exchangeable DNA protons. In the expanded imino proton region from a ${ }^{1} \mathrm{H}$ NOESY experiment, the complete sequential NOE connectivity was observed between imino protons of duplex except terminal bases due to fast exchange between N and H (Figure 7-5). Including NOE to adduct protons, expanded tile plot (Figure 7-6) presents the correlations among base protons in the $X^{7} \bullet C^{18}$ and $C^{6} \bullet Y^{19}$. As pointed out in previous chapters, the conservation of normal Watson-Crick hydrogen bondings is another indicator of the stable duplex DNA. Each imino proton has a strong NOE to amino proton (peak D and peak C). Further, 4 strong A:T base pairings were indicated as peak $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d .

Chemical Shift Perturbations NMR data suggest that the DNA duplex is minimally perturbed as shown by locally influenced chemical shifts differences from the unmodified duplex DNA (Figure 7-7). The largest difference was about 0.7 ppm , suggesting a minimal effect on DNA in the presence of interchain DNA cross-link. The chemical shifts of 5^{\prime} - side cytosine protons were shielded in both strands, which is the similar to the fully reduced R-crotonaldehyde cross-link study. The peculiar observation is that A^{8} sugar protons were affected by the presence of cross-link that resulted in upfield shifts on $\mathrm{H} 1^{\prime}$ and $\mathrm{H} 2^{\prime}$ protons. The methyl orientation may be attributed to this.

Figure 7-5. Expanded plot of a NOESY spectrum at a mixing time of 250 ms showing NOE connectivities for the imino protons for the base pairs from $C^{2} \bullet G^{23}$ to $\mathrm{C}^{11} \bullet \mathrm{G}^{14}$.

Figure 7-6. Expanded tile plot of a NOESY spectrum at a mixing time of 250 ms showing couplings from selected imino protons to DNA protons. A. $\mathrm{C}^{18} \mathrm{~N}^{4} \mathrm{Ha}$; B. $\mathrm{C}^{6} \mathrm{~N}^{4} \mathrm{Ha}$; C. Y ${ }^{19} N^{2} \mathrm{H}$; D. $X^{7} N^{2} \mathrm{H}$; E. A ${ }^{8}$ H2; F. $\mathrm{C}^{18} \mathrm{~N}^{4} \mathrm{Hb}$; G. C ${ }^{6} \mathrm{~N}^{4} \mathrm{Hb}$; H. $\mathrm{X}^{7} \gamma_{1}$; I. X 7 H_{a} J. $\mathrm{X}^{7} \gamma_{2} ;$ K. $\mathrm{X}^{7} \beta_{2} ;$ L. $\mathrm{T}^{17} \mathrm{Me} ; \mathrm{M} . X^{7} \mathrm{Me} ; \mathrm{N} . X^{7} \beta_{1} ;$ a. $\mathrm{A}^{15} \mathrm{H} 2 / \mathrm{T}^{10} \mathrm{~N} 3 \mathrm{H} ; \mathrm{b}$. $\mathrm{A}^{8} \mathrm{H} 2 / \mathrm{T}^{17}$ N3H; c. $A^{22} \mathrm{H} 2 / \mathrm{T}^{3} \mathrm{~N} 3 \mathrm{H}$; d. $\mathrm{A}^{4} \mathrm{H} 2 / \mathrm{T}^{21} \mathrm{~N} 3 \mathrm{H}$.

A

Figure 7-7. Chemical Sifts Differences of non-exchangeable aromatic and sugar protons of the unadducted and cross-liked oligodeoxynucleotides. A: Aromatic H5, H6, and H8 protons. B: Sugar protons (continued on next page).

B

Figure 7-7. (continued) Chemical Sifts Differences of non-exchangeable aromatic and sugar protons of the unadducted and cross-liked oligodeoxynucleotides. A: Aromatic H5, H6, and H8 protons. B: Sugar protons.
rMD Calculations. The NOE generated 270 distance restraints and 52 empirical Watson-Crick restraints were incorporated in rMD calculations (Case, D. A. et al. 2004). Starting structures, IniA and IniB, were built and used in MARDIGRAS calculations (Borgias and James, 1990; Liu, H. et al., 1995 Dec). The stereoview of five convergent structures originating from rMD calculations initiated from a B-form and an A-form starting structures, which were archived each 1 ps over the final 5 ps of the rMD simulation can be viewed in Figure 7-9 and 7-10 respectively. An initial rmsd value between starting structures was 6.39 \AA, the pairwise rmsd value between averaged structures from IniA and IniB was $1.555 \AA$. The final averaged and energy-minimized structure was compared to starting structure: $2.50 \AA$ between IniB and $\mathrm{rMD}_{\text {avg }}$ and $4.26 \AA$ between IniA and $\mathrm{rMD}_{\text {avg. }}$. Detailed results are listed in Table 7-2. A CPK structure of the averaged structures is shown in Figure 7-11.

Finally, Figure 7-12 presents $\mathrm{R}_{1}{ }^{\mathrm{x}}$ values for each of the nucleotides. The 60 ms intensity data were used for CORMA calculations. The total $R_{1}{ }^{x}$ value was $5.70 \times 10^{-2}: 5.03 \times 10^{-2}$ for intra-residues and 7.03×10^{-2} for inter-residues.

Figure 7-8. Expanded plot of DQF-COSY spectrum. The chemical shift ranges for H1' and H3' are indicated by the arrows at the bottom, those for H2' and H2" on the left. For each nucleotide the cross-peaks $\mathrm{H} 1^{\prime}-\mathrm{H} 2^{\prime}$ and $\mathrm{H} 1^{\prime}-\mathrm{H} 2^{\prime \prime}$ are connected by a solid vertical line, and the cross-peaks $\mathrm{H} 1^{\prime}-\mathrm{H} 2^{\prime}$ and $\mathrm{H} 2^{\prime}-\mathrm{H} 3^{\prime}$ by a broken vertical line.

Figure 7-9. Streoview of five superimposed structures emergent from the simulated annealing rMD protocol of IniA.

Figure 7-10. Streoview of five superimposed structures emergent from the simulated annealing rMD protocol of IniB.

Figure 7-11. A CPK representation of the fully reduced R-crotonaldehyde crosslink. This is the averaged and energy minimized using the conjugate gradients algorithm. The cross-linked residues in pink with protons in white.

Table 7-2. Root Mean Square Deviations (RMSD).

Analysis of the rMD-Genrated Structures of the fully reduced S-crotonaldehyde crosslink in the $5^{\prime}-\mathrm{CpG}-3$ ' sequence

NMR restraints
Total number of distance restraints 362
Interresidue distance restraints 161

Intraresidue distance restraints 201

DNA- adduct protons distance restraints 10
Adduct protons distance restraints 13
H -bonding restraints 52
Backbone torsion angle restraints 0
pairwise rmsd (\AA) over all atoms

IniA vs. IniB	6.39
<rMDA> ${ }^{\text {a }}$ vs. $<$ rMDA>	0.44 ± 0.23
$<\mathrm{rMDB}>^{\text {b }}$ vs. $<$ rMDB $>$	0.26 ± 0.14
$\mathrm{rMDA}_{\text {avg }}{ }^{\text {c }}$ vs. $\mathrm{rMDB}_{\text {avg }}{ }^{\text {d }}$	1.17
rMDA ${ }_{\text {avg }}$ vs. $\mathrm{rMD}_{\text {avg }}{ }^{\text {e }}$	0.77
$\mathrm{rMDB}_{\text {avg }}$ vs.rMD ${ }_{\text {avg }}$	0.74
IniA vs. $\mathrm{rMD}_{\text {avg }}$	4.26
IniB vs. $\mathrm{rMD}_{\text {avg }}$	2.50

${ }^{\text {a }}<$ rMDA $>$ represents the set of 5 structures that emerged from rMD calculations starting from IniA. ${ }^{\text {b }}<$ rMDB $>$ represents the set of 5 structures that emerged from rMD calculations starting from IniB. ${ }^{c} \mathrm{rMDA}_{\text {avg }}$ represents the average structure of all five $<\mathrm{rMDA}>$. ${ }^{\mathrm{d}} \mathrm{rMDB}_{\text {avg }}$ represents the average structure of all five $<\mathrm{rMDB}>$. ${ }^{\mathrm{e}} \mathrm{rMD}_{\text {avg }}$ represents the potential enery minimized average structure of all 10 structures of $<\mathrm{rMDA}>$ and $<\mathrm{rMDB}>$.

Figure 7-12. Complete relaxation matrix calculations on the average structure emergent from the simulated annealing rMD protocol showing sixth root residuals ($\mathrm{R}_{1}{ }^{\times}$) for each nucleotide: The adducted strand (top); the complementary strand (bottom). The black bars represent intranucleotide $\mathrm{R}_{1}{ }^{\times}$ values, and the gray bars represent internucleotide $R_{1}{ }^{\mathrm{x}}$ values.

Discussion

The structural study of the fully reduced S-crotonaldehyde-derived crosslink supported the stable B-form-like duplex DNA with containing cross-link (Figure 7-13). The stereochemistry of the methyl group did not cause the absolute instability of duplex DNA nor have two species in equilibrium for the reduced S-crotonaldehyde cross-link in a duplex.

At first, the upfielded β_{1} proton was mis-interpreted as a possible minor form of the cross-links, which may be caused by instability of the duplex by the S-crotonaldehyde cross-link. However, NMR data clearly led to the conclusion that there is a single stable species that enabled the assignment of all adduct protons reasonably, as shown in DQF-COSY (Figure 7-3) and TOCSY data (data not shown). The water NOESY spectrum also supported not only duplex formation with the presence of a single conformation but also the stable base pair alignments by the presence of NOEs between the imino protons of dG and the amino protons of dC , and imino protons of dT and H 2 protons of dA . The imino to imino connectivity was completed, which is the indicative of maintenance of Watson-Crick hydrogen bondings (Figure 7-5 and Figure 7-6). The UV melting study also supported the stability of this duplex through oservation of a single $\mathrm{T}_{\mathrm{m}}=92^{\circ} \mathrm{C}$. In the case of tethered cross-link studies, 5^{\prime}-flickering sugar protons are, in general, upfielded, however, the fully reduced S-crotonaldehyde crosslink featured additional upfield chemical shift for the β_{1} resonance that is even more shielded than that of methyl protons (Table 7-1).

Figure 7-13. A side view of the refined structure, $\mathrm{rMD}_{\mathrm{avg}}$ from the minor groove.

Figure 7-14. A top view of the refined structure, $\mathrm{rMD}_{\text {avg }}$ for base stacking interaction.

Based on NMR study and rMD calculated structures, they suggest that the lack of cross-link generation by the S-CPdG adduct should come from either a high energy barrier from the aldehidic opened form (S-COPdG adduct) to the cross-link due to a steric hindrance in conjunction with allylic strain, or an instability induced by the hydroxyl group into the cross-linked structure. The current data do not allow us to determine which pertains. Since both reduced R and S-crotonaldehyde interstrand cross-links were stable in duplex DNA, both refined structures could be achieved. Therefore, the cross-link generation by the methyl stereochemistry issue may need to be considered as a potential kinetic issue rather than a thermodynamic issue. The NMR study in this chapter seemed to support the possibility of the stable cross-link even by the S-CPdG adduct that may expel the instability of crotonaldehyde-induced cross-link by methyl stereochemistry. However, it did not consider the effect on stability in conjuction with the hydroxyl group. It may also need to focus the aldehydic species to understand the cross-link generation or hydroxyl group effect on the cross-link combining with the methyl stereochemistry that is not provided by current study. The fact that the reduced S-crotonaldehyde cross-link influenced A^{8} sugar protons that resulted in chemical shifts changes (Figure 7-7). One question still remains how much hydroxyl group influences the stability of this cross-link in combination with the methyl group.

Additionally, one thing should pointed out is the conformation of the cross-link. In comparison with the fully reduced R-crotonaldehyde cross-link, the S-crotonaldehdye cross-link presents somewhat different conformation of β protons. Although it can have flexibility on the chain, the averaged-refined structure shows the different preference of β proton location that induced
chemical shift changes. The most shielded proton, β_{1}, was turned out the most out of helix hydrogen that was not much influenced by neighbor bases. Also the conformation of 5^{\prime}-side sugars are affected by the cross-link, for instance, the sugar rings of C^{6} and C^{18} of the fully reduced cross-link was analized as O^{\prime} 'endo conformation.

As both reduced cross-links formed stable duplexes, the duplex environment tolerated the interstrand three carbon tethered cross-link with additional methyl group without losing duplex integrity. The conservation of Watson-Crick base pairs also supports the stability of these cross-links. Taken together, the methyl stereochemistry was in conjunction with local conformational changes of the interstrand cross-link chain but did not seem to affect the stability of a whole duplex. The flexibility of methyl in duplex may cause different effects on duplex, which is not spectroscopically observable using NMR. The conformational differences between two cross-link chains are illustrated as following projection pictures in Figure 7-15. The conformations of each reflect the effect of the methyl stereochemistry that allows the conformational changes onto the cross-link chain. All protons about 180° dihedral angle resulted in strong J couplings that are consistent with DQF-COSY data (Figure 7-3). Furthermore this may explain why the β_{1} proton chemical shift is most shielded. Therefore, two resonances of β_{2} / γ_{1} and H_{α} / β_{2} in a DQF-COSY spectrum are reflected about 180° dihedral angle relationships. Moreover, all geminal couplings also exhibited strong couplings: $\beta_{1} / \beta_{2}, \gamma_{1} / \gamma_{2}$ and $\mathrm{Me} / \mathrm{H}_{\alpha}$ (Figure 7-3). Table 7-3 details the comparison of chemical shifts.

(R)

(S)

Figure 7-15. Conformational comparison of two cross-link isomers: R (left) and S (right) reduced cross-links.

Table 7-3. Chemical shifts comparison of two cross-link isomers.

	$\mathrm{X}^{7} \mathrm{~N}^{2} \mathrm{H}^{\mathrm{a}}$	Me	H_{α}	β_{1}	β_{2}	γ_{1}	γ_{2}	$\mathrm{Y}^{19} \mathrm{~N}^{2} \mathrm{H}^{\mathrm{a}}$
R-cross-link	7.19	1.03	3.82	1.82	1.63	3.71	2.82	8.06
S-cross-link	7.47	1.17	3.28	1.09	2.77	4.00	2.84	7.89

${ }^{\text {a }}$ chemical shift was measured in water at $13{ }^{\circ} \mathrm{C}$.

It was surmised in previous chapters (Chapter III and Chapter IV) that the major carbinolamine cross-link might possess additional hydrogen bonds between the hydroxyl group and N3 of dG, and O of C^{20}, which corresponds to the γ_{1} position. If the hydroxyl group is located in that position, in cases of both the R - and the S-reduced cross-link conformation, the R-may not face with any problem whereas S - may conflict with being crowded sterically. The hydroxyl group may crowd with the C_{α} or vice versa. If hydroxyl group located in γ_{2} direction, which was regarded as minor carbinolamine cross-link species, then there will be no clashes with the current conformation. However, this hypothesis may not be well enough to be tested yet. Alternatively, a long time observation for boosting the cross-link reaction may answer for this question. If it can provide the similar amount of cross-links then, it can be explained by slow kinetics for acquiring high yield cross-link by the S-crotonaldehyde dG adduct. In this case, it can be an issue of just slow kinetics by the methyl stereochemistry, otherwise, the conformational preference may rule over the cross-linked duplex based on the methyl stereochemistry. A long time experiment was needed to address this question since it may indirectly answer for the cross-link formation differences between two isomers. The NMR investigation was carried out for the S-CpdG adduct with long incubation at $37^{\circ} \mathrm{C}$. At basic condition, the cross-link peak resonance was observed after about 70 days (data not shown). However, the amount was less than 9%, which implies both thermodynamic and kinetic issues: The methyl direcitionaliy can be attributed to the slow kinetics while the methyl stereochemistry affects the stability of the duplex.

Interstrand cross-links generation is common phenomenon in a biological process. It has been recognized that those cross-links may cause detrimental effect since it requires additional repair process in both strands. Thus, this structural study of crotonaldehyde-induced cross-link may give insights into understanding the interstrand cross-linked DNA adducts by α, β-unsaturated aldehydes.

Figure 7-16. Stability of base pairing. The imino peaks were represented in the spectra with different temperatures. At $73^{\circ} \mathrm{C}$, imino peaks of Y^{19} and X^{7} were disappeared in the case of fully reduced S-crotonaldehyde cross-link (left) while both were present in the case of fully reduced R-crotonaldehyde cross-link (right).

CHAPTER VIII

Conclusion

This dissertation describes the study of monitoring acrolein and crotonaldehyde-derived γ-OH-PdG adducts by NMR in the $5^{\prime}-\mathrm{CpG}-3^{\prime}$ sequence. A spectroscopic characterization of interstrand carbinolamine cross-links was carried out. The reasons for the low amounts of cross-link formation by the S-crotonaldehyde-derived adduct were investigated. Further structural analyses of the fully reduced crotonaldehyde-derived cross-links were conducted as models of interstrand carbinolamine DNA cross-links.

Advances in the preparation of specifically labeled samples have made it possible to trace the chemistry of DNA adducts induced by the α, β-unsaturated family by applying a variety of heteronuclear multidimensional NMR experiments. The site-specifically labeled acrolein and the crotonaldehydederived dG adducts, labeled at the gamma carbon by ${ }^{13} \mathrm{C}$, or the N^{2} of the opposite dG or the N^{2} of the adducted dG by ${ }^{15} \mathrm{~N}$, were extensively studied by NMR spectroscopy. All adducts were in equilibrium with 3 or 4 different chemical species that were traceable by NMR and could be quantified by ${ }^{13} \mathrm{C}$ direct detection 1D NMR. A carbinolamine was determined by NMR spectroscopy as a dominant interstrand DNA cross-link form in comparison with corresponding other chemical species: the imine species was anticipated to have chemical shifts around 140 ppm but it was below the level of detection. Molecular modeling studies predicted the difference between a carbinolamine and other species by virtue of maintaining Watson-Crick hydrogen bonding. As
postulated, the conservation of and the participation of the N^{2} proton in WatsonCrick hydrogen bonding played an important role for the stability of a carbinolamine type cross-link. If the duplex is destabilized by enzyme digestion or deprotonation in mass spectrometry, the carbinolamine cross-link forms, presumably, changed into either imine or pyrimidopurione.

The $\mathrm{M}_{1} \mathrm{dG}$ adduct was the first DNA adduct demonstrated to constitute a reactive intermediate within duplex DNA. The presence of a significant amount of aldehyde species was detected in both acrolein and crotonaldehyde-derived dG adducts while conserving hydrogen bonding between pairing bases. Modeling the aldehyde species in a duplex further supported the hypothesis that generating a cross-link form. The structure of the S-crotonaldehyde-derived OPdG (S-COPdG) adduct rationalized the hindering effect by the methyl group at the α position for enabling a cross-link reaction from the S-CPdG adduct in duplex DNA. In addition, the instability of the cross-linked duplex itself was presumed as another reason for the low cross-linking yield not only for the carbinolamine type cross-link but also for the pyrimidopurinone. However, the significance of the aldehyde species should not be underestimated since it can occur in other biological reactions, for instance, making interstrand cross-link and protein-DNA cross-linked complex.

Structural refinement was attempted for the fully reduced R - and S -crotonaldehyde-derived cross-links as models for carbinolamine cross-links. In the R-crotonaldehyde cross-link, without the hydroxyl group, the cross-link was chemically stable and the adduct moiety was located in the minor groove of the DNA. Hydrogen bonding was completely conserved, which was confirmed by NOESY experiment in water. In the S-crotonaldehyde cross-link, the cross-link
was also chemically stable and hydrogen bonding was maintained as well. All NMR data agreed with the stable duplex DNA. Therefore, results for the reduced model duplexes for carbinolamine cross-links suggested the possible interstrand cross-link formation in the 5^{\prime}-CpG-3' sequence, which is independent of the methyl stereochemistry. This finding does not clearly provide an explanation for the lack of cross-link formation by the S-crotonaldehyde-dG adduct, but it does illustrate the conformational differences of the cross-link chain results from the methyl stereochemistry, which may lead to a better understanding of the crotonaldehyde-induced interstrand cross-link. As the stability issue of the S-crotonaldehyde-derived carbinolamine cross-link remains elusive based on the reduced model study, it may need to be considered in conjunction with the hydroxyl group. Otherwise, the energy barrier between the aldehyde and the cross-link needs to be taken into account. It may be helpful to understand why the S-crotonadlehdye-derived dG adduct fails to form a crosslink, in contrast with the R-crotonaldehyde adduct.

All of my experimental data and hypotheses explain the difference between acrolein and R - and S-crotonaldehydes-derived adducts, although all what share the common feature of forming exocyclic γ-OH-PdG adducts initially. Furthermore, the structural aspect of the interstrand cross-link was studied. This work leads to the conclusion that the duplex can accommodate an interstrand dG-dG cross-link without destabilizing the duplex. Additional melting studies have been carried out for both reduced cross-links. While increasing the temperature, it turned out that fully reduced R-crotonaldehyde cross-link has thermally stable than that of the S-crotonaldehyde cross-link by 10 degrees difference. Therefore, the methyl stereochemistry affects the stability of the
duplex in thermodynamic point, while the study of the ring-opend species explain the slow formation of cross-link by the methyl group in kinetic point of view.

Future Directions

The NMR investigation of acrolein and crotonaldehyde-derived γ-OHPdG adducts gave insight into the potentially different mutagenic roles of various chemical species via ring-opening. It also indicated the possibility of a stable carbinolamine cross-link in a duplex. Therefore, the mutagenesis to its structure is important in understanding the biological function of these adducts. Importantly, interstrand DNA cross-links arising from α, β-unsaturated aldehydes are believed to be significant sources of genotoxicity and mutagenicity. DNA-peptide cross-links are already known to be another source of toxicity in the cell.

There are other relevant α, β-unsaturated aldehydes such as HNE. The HNE adducts show different stereoselective cross-link formation. It will be of interest to investigate these adducts, and examine the structural differences. Finally, structural studies on these adducts may be of great interest to delineate the mutations associated with α, β-unsaturated aldehydes.

APPENDIX A

ATOM TYPE AND ATOMIC PARTIAL CHARGES

A1. The parameterization of the acrolein-derived carbinolamine cross-link, for the AMBER 8.0 forcefield.

A2. The parameterization of the acrolein-derived pyrimidopurinone cross-link, for the AMBER 8.0 forcefield.

A3. The parameterization of the crotonaldehyde-derived carbinolamine cross-link, for the AMBER 8.0 forcefield.

A4. The parameterization of the crotonaldehyde-derived pyrimidopurinone crosslink, for the AMBER 8.0 forcefield.

A5. The parameterization of theN2-(3-oxo-1-methyl-propyl)-dG aldehyde for the AMBER 8.0 forcefield.

A6. The parameterization of the fully reduced crotonaldehyde cross-link for the AMBER 8.0 forcefield.

APPENDIX B

DISTANCE RESTRAINTS

B1. NOE Distance Restraints Used in rMD Calculations for the Oligodeoxynucleotide $5^{\prime}-\mathrm{d}(\mathrm{GCTAGCXAGTCC})-3^{\prime} \cdot 5^{\prime}-(\mathrm{GGACTCGCTAGC})-3 ', \mathrm{X}=N^{2}$-(3-Oxo-1(S)-methyl-propyl)-dG Adduct

res_\#	res_name	atm_name	res_\#	res_name	atm_name	upper_bnd
1	GUA	H2'1	1	GUA	H1'	3.83
1	GUA	H2'1	1	GUA	H3'	2.81
1	GUA	H2'1	1	GUA	H8	2.96
1	GUA	H2'2	1	GUA	H1'	2.38
1	GUA	H2'2	1	GUA	H3'	3.97
1	GUA	H2'2	1	GUA	H8	4.96
1	GUA	H3'	1	GUA	H1'	4.93
1	GUA	H3'	1	GUA	H8	6.26
1	GUA	H4'	1	GUA	H1'	2.88
1	GUA	H4'	1	GUA	H2'1	4.24
1	GUA	H4'	1	GUA	H2'2	4.31
1	GUA	Q5'	1	GUA	H2'1	3.83
1	GUA	Q5'	1	GUA	H2'2	5.67
1	GUA	Q5'	1	GUA	H3'	2.97
1	GUA	Q5'	1	GUA	H8	6.09
2	CYT	H5	1	GUA	H1'	5.1
2	CYT	H5	1	GUA	H2'1	3.4
2	CYT	H5	1	GUA	H2'2	3.18
2	CYT	H6	1	GUA	H1'	3.42
2	CYT	H6	1	GUA	H2'1	4.3
2	CYT	H6	1	GUA	H2'2	2.71
2	CYT	H2'1	2	CYT	H1'	3.97
2	CYT	H2'1	2	CYT	H5	4.48
2	CYT	H2'1	2	CYT	H6	2.34
2	CYT	H2'2	2	CYT	H1'	2.54
2	CYT	H2'2	2	CYT	H6	4.6
2	CYT	H3'	2	CYT	H6	4.14
2	CYT	H4'	2	CYT	H1'	3.88
2	CYT	H4'	2	CYT	H2'1	5.12
2	CYT	H4'	2	CYT	H2'2	4.97
2	CYT	H5	2	CYT	H6	2.49
2	CYT	H6	2	CYT	H1'	4.09
3	THY	H6	2	CYT	H2'2	2.39
3	THY	H6	2	CYT	H3'	4.98
3	THY	M	2	CYT	H1'	6.73
3	THY	M	2	CYT	H2'2	4.27
3	THY	M	2	CYT	H5	4.29
3	THY	M	2	CYT	H6	3.71

3	THY	H1' $^{\prime}$	3	THY	H2' $^{\prime} 1$
3	THY	H1' $^{\prime}$	3	THY	H2' $^{\prime}$
3	THY	H1' $^{\prime}$	3	THY	H6 $^{\prime}$
3	THY	H2'2 $^{\prime}$	3	THY	H3' $^{\prime}$

6	CYT	H2'2	6	CYT	H3'	2.99
6	CYT	H2'2	6	CYT	H6	3.69
6	CYT	H3'	6	CYT	H6	5.91
6	CYT	H5	6	CYT	H6	2.45
6	CYT	H5'1	6	CYT	H2'1	4.7
7	S	H8	6	CYT	H2'1	5.38
7	S	H8	6	CYT	H2'2	4.05
7	S	H1'	7	S	H2'1	3.01
7	S	H1'	7	S	H2'2	2.99
7	S	H3'	7	S	H1'	5.09
7	S	H3'	7	S	H2'1	2.72
7	S	H3'	7	S	H8	5.74
7	S	H3g	7	S	H1a	3.63
7	S	H3g	7	S	Qb	4.12
7	S	H4'	7	S	H1'	4.29
7	S	H4'	7	S	H2'1	4.86
7	S	H4'	7	S	H2'2	4.63
7	S	H5'1	7	S	H1'	4.8
7	S	H5'1	7	S	H2'1	4.51
7	S	H5'1	7	S	H2'2	5.32
7	S	H5'2	7	S	H1'	5.53
7	S	H8	7	S	H1'	5.78
7	S	H8	7	S	H2'1	2.65
7	S	H8	7	S	H2'2	4.71
7	S	M	7	S	H1a	2.75
7	S	M	7	S	H3g	4.57
7	S	M	7	S	Qb	3.92
7	S	M	18	CYT	H1'	5.14
7	S	M	19	GUA	H1'	3.41
7	S	M	19	GUA	H4'	3.72
8	ADE	H1'	7	S	H3g	5.1
8	ADE	H4'	7	S	H3g	3.68
8	ADE	H8	7	S	H1'	4.89
8	ADE	H8	7	S	H2'2	3.55
8	ADE	H2'1	8	ADE	H3'	2.67
8	ADE	H2'1	8	ADE	H8	2.53
8	ADE	H2'2	8	ADE	H1'	2.59
8	ADE	H2'2	8	ADE	H8	4.71
8	ADE	H3'	8	ADE	H1'	5.26
8	ADE	H8	8	ADE	H1'	5.17
9	GUA	H8	8	ADE	H2'1	4.69
9	GUA	H8	8	ADE	H2'2	2.89
9	GUA	H1'	9	GUA	H2'2	2.67
9	GUA	H2'1	9	GUA	H8	2.95
9	GUA	H2'2	9	GUA	H8	5.75
9	GUA	H3'	9	GUA	H8	6.29
9	GUA	H1'	10	THY	H6	3.95
10	THY	M	9	GUA	H2'1	4.55
10	THY	M	9	GUA	H2'2	4.03

10	THY	M	9	GUA	H8	4.44
10	THY	H1'	10	THY	H2'1	3.19
10	THY	H1'	10	THY	H2'2	2.49
10	THY	H1'	10	THY	H6	4.49
10	THY	H2'1	10	THY	H6	2.71
10	THY	H2'2	10	THY	H6	4.58
10	THY	H4'	10	THY	H2'1	4.99
10	THY	H5'1	10	THY	H6	3.96
10	THY	M	10	THY	H6	3.64
10	THY	H1'	11	CYT	H5	5.33
11	CYT	H5	10	THY	H2'1	4.33
11	CYT	H5	10	THY	H2'2	2.92
11	CYT	H6	10	THY	H2'1	3.83
11	CYT	H2'1	11	CYT	H1'	3.12
11	CYT	H2'1	11	CYT	H3'	2.75
11	CYT	H2'1	11	CYT	H5	5.53
11	CYT	H2'1	11	CYT	H6	2.31
11	CYT	H2'2	11	CYT	H1'	2.43
11	CYT	H2'2	11	CYT	H6	3.66
11	CYT	H3'	11	CYT	H1'	6.41
11	CYT	H4'	11	CYT	H1'	3.94
11	CYT	H5	11	CYT	H6	2.52
11	CYT	H6	11	CYT	H1'	5.35
12	CYT	H5	11	CYT	H6	6.21
12	CYT	H6	11	CYT	H3'	5.59
12	CYT	H3'	12	CYT	H1'	5.38
12	CYT	H3'	12	CYT	H6	2.91
12	CYT	H4'	12	CYT	H1'	5.2
12	CYT	H4'	12	CYT	H6	6.02
12	CYT	H5	12	CYT	H6	2.43
12	CYT	H6	12	CYT	H1'	4.09
12	CYT	Q5'	12	CYT	H1'	4.84
12	CYT	Q5'	12	CYT	H6	3.62
13	GUA	H2'1	13	GUA	H1'	3.25
13	GUA	H2'1	13	GUA	H3'	2.76
13	GUA	H2'1	13	GUA	H8	2.72
13	GUA	H2'2	13	GUA	H1'	2.46
13	GUA	H2'2	13	GUA	H3'	4.9
13	GUA	H3'	13	GUA	H8	5.79
13	GUA	H8	13	GUA	H1'	3.92
13	GUA	Q5'	13	GUA	H2'1	3.91
13	GUA	Q5'	13	GUA	H2'2	6.4
13	GUA	Q5'	13	GUA	H3'	3.05
13	GUA	Q5'	13	GUA	H8	6.13
14	GUA	H8	13	GUA	H1'	5.58
14	GUA	H8	13	GUA	H2'2	2.77
14	GUA	H8	13	GUA	H3'	5.8
14	GUA	H2'1	14	GUA	H1'	3.93
14	GUA	H2'1	14	GUA	H3'	2.66

14	GUA	H2'1	14	GUA	H8	2.65
14	GUA	H2'2	14	GUA	H1'	2.42
14	GUA	H2'2	14	GUA	H3'	2.81
14	GUA	H2'2	14	GUA	H8	5.64
14	GUA	H3'	14	GUA	H1'	5.31
14	GUA	H3'	14	GUA	H8	5.48
14	GUA	H4'	14	GUA	H1'	4.13
14	GUA	H8	14	GUA	H1'	5.76
15	ADE	H3'	15	ADE	H1'	5.23
15	ADE	H4'	15	ADE	H1'	4.45
15	ADE	H4'	15	ADE	H2'1	4.76
15	ADE	H4'	15	ADE	H2'2	5.43
15	ADE	H4'	15	ADE	H3'	2.88
15	ADE	H5'1	15	ADE	H1'	4.72
15	ADE	H5'1	15	ADE	H3'	3.98
15	ADE	H5'2	15	ADE	H1'	5.03
15	ADE	H8	15	ADE	H1'	4.36
15	ADE	H1'	16	CYT	H6	2.86
15	ADE	H2'1	16	CYT	H5	4.84
15	ADE	H2'1	16	CYT	H6	5.58
15	ADE	H2'2	16	CYT	H5	3.58
15	ADE	H2'2	16	CYT	H6	2.77
15	ADE	H3'	16	CYT	H6	5.93
15	ADE	H8	16	CYT	H5	4.22
15	ADE	H8	16	CYT	H6	5.58
16	CYT	H1'	16	CYT	H2'1	5.04
16	CYT	H2'2	16	CYT	H1'	2.38
16	CYT	H2'2	16	CYT	H2'1	2.1
16	CYT	H2'2	16	CYT	H6	3.81
16	CYT	H4'	16	CYT	H2'1	5.3
16	CYT	H5	16	CYT	H2'1	6.47
16	CYT	H5	16	CYT	H6	2.61
16	CYT	H6	16	CYT	H1'	6.18
16	CYT	H6	16	CYT	H2'1	2.68
16	CYT	H1'	17	THY	M	6.21
16	CYT	H2'1	17	THY	H6	3.7
16	CYT	H2'1	17	THY	M	3.39
16	CYT	H2'2	17	THY	M	3.88
16	CYT	H5	17	THY	M	3.72
16	CYT	H6	17	THY	M	3.64
17	THY	H1'	17	THY	H2'1	4.66
17	THY	H1'	17	THY	H2'2	2.37
17	THY	H1'	17	THY	H6	4.61
17	THY	H2'1	17	THY	M	6.07
17	THY	M	17	THY	H6	3.02
17	THY	H1'	18	CYT	H6	2.95
18	CYT	H5	17	THY	H2'1	4.06
18	CYT	H5	17	THY	H2'2	5.14
18	CYT	H5	17	THY	M	6.14

18	CYT	H6	17	THY	H2'2	2.32
18	CYT	H2'1	18	CYT	H1'	5.32
18	CYT	H2'1	18	CYT	H5	4.95
18	CYT	H2'2	18	CYT	H1'	2.48
18	CYT	H2'2	18	CYT	H6	3.67
18	CYT	H5	18	CYT	H6	2.58
19	GUA	H8	18	CYT	H1'	5.58
19	GUA	H8	18	CYT	H2'1	4.01
19	GUA	H8	18	CYT	H2'2	2.83
19	GUA	H1'	19	GUA	H4'	3.92
19	GUA	H2'1	19	GUA	H3'	2.67
19	GUA	H2'1	19	GUA	H8	2.47
19	GUA	H2'2	19	GUA	H3'	2.98
19	GUA	H2'2	19	GUA	H8	3.76
19	GUA	H3'	19	GUA	H8	5.78
19	GUA	H8	19	GUA	H1'	5.1
20	CYT	H5	19	GUA	H2'1	3.59
20	CYT	H5	19	GUA	H2'2	3.7
20	CYT	H5	19	GUA	H8	5.35
20	CYT	H6	19	GUA	H1'	3.57
20	CYT	H6	19	GUA	H2'1	4.94
20	CYT	H6	19	GUA	H2'2	2.81
20	CYT	H1'	20	CYT	H2'1	7.32
20	CYT	H1'	20	CYT	H2'2	2.49
20	CYT	H2'1	20	CYT	H5	5.2
20	CYT	H2'1	20	CYT	H6	2.4
20	CYT	H5	20	CYT	H6	2.63
21	THY	M	20	CYT	H1'	6.91
21	THY	M	20	CYT	H2'1	3.44
21	THY	M	20	CYT	H2'2	3.4
21	THY	M	20	CYT	H5	4.05
21	THY	H2'1	21	THY	H1'	5.31
21	THY	H2'1	21	THY	M	6.85
21	THY	H2'2	21	THY	H1'	2.53
21	THY	H2'2	21	THY	H2'1	2.17
21	THY	H3'	21	THY	H2'2	2.87
21	THY	H4'	21	THY	H1'	4.43
21	THY	H4'	21	THY	H2'1	3.89
21	THY	H6	21	THY	H2'1	2.56
21	THY	H6	21	THY	H2'2	4.08
22	ADE	H8	21	THY	H2'1	5.82
22	ADE	H8	21	THY	H2'2	3.14
22	ADE	H2'1	22	ADE	H3'	2.8
22	ADE	H2'2	22	ADE	H3'	3.43
22	ADE	H3'	22	ADE	H1'	3.96
22	ADE	H4'	22	ADE	H1'	4.89
22	ADE	H4'	22	ADE	H2'1	3.76
22	ADE	H4'	22	ADE	H2'2	5.04
23	GUA	H8	22	ADE	H1'	6.5

23	GUA	H8	22	ADE	H2'1	3.43
23	GUA	H8	22	ADE	H2'2	2.93
23	GUA	H2'1	23	GUA	H8	2.29
23	GUA	H2'2	23	GUA	H3'	2.82
23	GUA	H2'2	23	GUA	H8	4.98
23	GUA	H3'	23	GUA	H1'	5.12
23	GUA	H3'	23	GUA	H8	4.57
23	GUA	H4'	23	GUA	H1'	4.26
23	GUA	H4'	23	GUA	H2'1	4.44
23	GUA	H4'	23	GUA	H2'2	4.22
24	CYT	H5	23	GUA	H1'	5.46
24	CYT	H5	23	GUA	H2'1	5.79
24	CYT	H5	23	GUA	H2'2	3.92
24	CYT	H5	23	GUA	H8	3.76
24	CYT	H6	23	GUA	H2'2	2.53
24	CYT	H6	23	GUA	H3'	6.28
24	CYT	H6	23	GUA	H8	5.09
24	CYT	H2'1	24	CYT	H1'	5.75
24	CYT	H2'1	24	CYT	H3'	2.55
24	CYT	H2'2	24	CYT	H1'	2.51
24	CYT	H2'2	24	CYT	H3'	6.12
24	CYT	H3'	24	CYT	H6	3.14
24	CYT	H4'	24	CYT	H1'	4
24	CYT	H5	24	CYT	H6	2.51
24	CYT	H6	24	CYT	H1'	3.88

B2. NOE Distance Restraints Used in rMD Calculations for the Oligodeoxynucleotide $5^{\prime}-\mathrm{d}(\mathrm{GCTAGCXAGTCC})-3 \cdot \cdot 5 '-(G G A C T C Y C T A G C)-3 ', \mathrm{X}$ and $\mathrm{Y}=$ fully reduced R -crotonaldehyde-derived $d G$ - $d G$ cross-link

Class1							
res_\#	res_name	atm_name	res_\#	res_name	atm_name	low_bnd	up_bnd
1	GUA	H1'	1	GUA	H8	3.51	4.45
1	GUA	H2'2 $^{\prime 2}$	1	GUA	H3'	2.61	3.35
1	GUA	H3'	1	GUA	H8	4.03	5.7
2	CYT	H5	1	GUA	H8	3.66	4.97
2	CYT	H2'1	2	CYT	H6	1.88	2.19
2	CYT	H2'2 2	2	CYT	H6	3.86	6.05
2	CYT	H4'	2	CYT	H2'1	3.76	5.32
2	CYT	H4'	2	CYT	H2'2	3.01	4.28
2	CYT	H5	2	CYT	H6	2.31	2.46
3	THY	M	2	CYT	H6	3.53	4.6
5	GUA	H3'	5	GUA	H1'	3.37	3.68
5	GUA	H8	5	GUA	H1'	3.33	3.98
5	GUA	H2'1	6	CYT	H6	3.62	5.46
6	CYT	H5	5	GUA	H2'2	2.73	2.92
6	CYT	H5	5	GUA	H8	3.51	3.9
6	CYT	H6	5	GUA	H1'	3.02	3.22

6	CYT	H6	5	GUA	H2'2	2.47	2.65
6	CYT	H1'	6	CYT	H2'1	2.76	3.88
6	CYT	H1'	6	CYT	H2'2	2.02	2.25
6	CYT	H1'	6	CYT	H3'	3.7	4.71
6	CYT	H1'	6	CYT	H6	3.17	3.81
6	CYT	H2'1	6	CYT	H3'	2.38	2.58
6	CYT	H2'1	6	CYT	H6	2.21	2.45
6	CYT	H2'2	6	CYT	H3'	2.61	3.2
6	CYT	H2'2	6	CYT	H6	2.95	4.39
6	CYT	H3'	6	CYT	H6	3.17	3.52
6	CYT	H5	6	CYT	H6	2.29	2.42
7	X	H2x1	7	X	H1x	2.16	2.98
7	X	H2x1	7	X	M	2.63	3.79
7	X	H2x2	7	X	H1x	2.3	3.05
7	X	H2x2	7	X	M	2.67	3.78
7	X	M	7	X	H1x	2.15	2.86
8	ADE	H2	7	X	M	4	5.09
8	ADE	H4'	7	X	M	4.11	5.57
8	ADE	H8	7	X	H1'	2.88	3.16
8	ADE	H2'1	8	ADE	H8	2.1	2.42
8	ADE	H2'2	8	ADE	H8	3.3	4.85
8	ADE	H8	8	ADE	H1'	3.42	4.06
9	GUA	H8	9	GUA	H1'	3.38	4
10	THY	H6	9	GUA	H1'	2.67	3.43
10	THY	M	9	GUA	H1'	4.58	6.91
10	THY	M	9	GUA	H2'1	3.47	4.48
10	THY	M	9	GUA	H3'	4.2	5.42
10	THY	M	9	GUA	H8	3.53	4.48
10	THY	H1'	10	THY	H6	3.58	4.35
10	THY	M	10	THY	H6	2.81	3.54
10	THY	H1'	11	CYT	H6	3.41	4.38
11	CYT	H5	10	THY	H2'1	3.18	5.55
11	CYT	H5	10	THY	H6	3.29	3.59
11	CYT	H2'1	11	CYT	H5	4.05	5.89
11	CYT	H5	11	CYT	H6	2.25	2.38
11	CYT	H1'	15	ADE	H2	3.72	4.2
12	CYT	H3'	12	CYT	H1'	3.96	5.79
12	CYT	H4'	12	CYT	H1'	3.06	3.23
12	CYT	H6	12	CYT	H1'	3.47	4.61
13	GUA	H1'	13	GUA	H3'	3.82	5.06
13	GUA	H3'	13	GUA	H8	4.62	7.3
13	GUA	H1'	14	GUA	H8	3.43	3.91
14	GUA	H1'	14	GUA	H8	3.5	5.14
14	GUA	H3'	14	GUA	H8	3.81	5.59
15	ADE	H8	14	GUA	H8	4.54	6.59
15	ADE	H2	15	ADE	H1'	4.03	5.08
15	ADE	H2'1	15	ADE	H1'	2.95	3.45
15	ADE	H2'2	15	ADE	H1'	2.3	2.4
15	ADE	H3'	15	ADE	H1'	3.54	4.41

15	ADE	H4'	15	ADE	H1'	3.07	3.21
15	ADE	H8	15	ADE	H1'	3.47	4.31
16	CYT	H1'	15	ADE	H2	3.32	3.52
16	CYT	H5	15	ADE	H2'2	3.46	4.44
16	CYT	H5	15	ADE	H8	3.4	3.66
16	CYT	H6	15	ADE	H1'	3.15	3.38
16	CYT	H6	15	ADE	H2'1	3.18	3.85
16	CYT	H6	15	ADE	H2'2	2	2.66
16	CYT	H6	15	ADE	H8	3.73	5.1
16	CYT	H2'1	16	CYT	H6	1.82	2.47
16	CYT	H3'	16	CYT	H6	3.31	4.07
16	CYT	H4'	16	CYT	H2'1	3.76	4.81
16	CYT	H5	16	CYT	H6	2.36	2.48
16	CYT	H6	16	CYT	H1'	3.36	3.7
16	CYT	H2'2	17	THY	M	3.9	6.82
17	THY	H6	16	CYT	H1'	4	5.41
17	THY	H6	16	CYT	H3'	4.14	6
17	THY	M	16	CYT	H3'	3.69	4.67
17	THY	M	16	CYT	H5	4.06	5.13
17	THY	M	16	CYT	H6	3.49	4.44
17	THY	H1'	17	THY	H6	3.08	3.79
17	THY	M	17	THY	H6	2.83	3.57
17	THY	H1'	18	CYT	H6	3.79	4.87
18	CYT	H5	17	THY	H6	3.12	3.44
18	CYT	H2'1	18	CYT	H1'	2.92	6.26
18	CYT	H2'2	18	CYT	H1'	2.25	2.35
18	CYT	H3'	18	CYT	H6	3.54	4.48
19	Y	H3x1	7	X	H2x1	2.08	2.92
19	Y	H3x1	7	X	H2x2	2.06	2.81
19	Y	H3x1	7	X	M	3.29	6.38
19	Y	H3x2	7	X	H2x2	2.16	2.88
19	Y	H3x2	7	X	M	2.83	4.59
19	Y	H8	18	CYT	H1'	3.72	4.85
19	Y	H8	18	CYT	H2'2	3.01	3.43
19	Y	H1'	19	Y	H8	3.56	5.13
20	CYT	H1'	19	Y	H3x2	2.26	2.62
20	CYT	H5	19	Y	H8	3.53	4.52
20	CYT	H6	19	Y	H2'1	3.12	3.93
21	THY	H5'1	20	CYT	H1'	3.39	5.13
22	ADE	H8	21	THY	H2'1	4.01	6.51
22	ADE	H3'	23	GUA	H8	3.81	5.02
23	GUA	H1'	23	GUA	H3'	3.58	4.16
24	CYT	H1'	24	CYT	H3'	3.65	4.57
Class2							
res_\#	res_name	atm_name	res_\#	res_name	atm_name	low_bnd	up_bnd
1	GUA	H2'1	1	GUA	H8	2.12	2.3
1	GUA	H2'2	1	GUA	H8	2.97	4.96
1	GUA	H4'	1	GUA	H2'1	2.94	3.96
2	CYT	H6	1	GUA	H2'2	2.4	2.6

2	CYT	H1'	2	CYT	H6	3.19	3.81
3	THY	M	2	CYT	H2'2	3.7	5.24
3	THY	H1'	3	THY	H6	3.14	3.79
3	THY	H2'1	4	ADE	H8	3.07	3.35
4	ADE	H4'	4	ADE	H2'1	3.24	4.01
4	ADE	H4'	4	ADE	H2'2	3.45	4.39
4	ADE	H1'	5	GUA	H8	2.76	3.33
4	ADE	H3'	5	GUA	H8	3.68	4.59
5	GUA	H8	4	ADE	H2'1	2.81	3.38
5	GUA	H8	4	ADE	H2'2	2.37	2.83
5	GUA	H2'2	5	GUA	H8	2.73	4.16
5	GUA	H4'	5	GUA	H1'	2.77	2.97
5	GUA	H2'1	6	CYT	H5	4	6.14
6	CYT	H5	5	GUA	H1'	3.61	4.61
6	CYT	H2'2	6	CYT	H2'1	1.8	2.1
7	X	H8	6	CYT	H2'2	3.09	3.58
7	X	H3'	7	X	H1'	3.13	4.01
7	X	H3'	7	X	H8	3.43	4.71
8	ADE	H3'	8	ADE	H8	3.32	4.66
9	GUA	H8	8	ADE	H3'	4.43	5.72
9	GUA	H8	8	ADE	H8	3.79	5.7
9	GUA	H2'1	9	GUA	H8	2.24	2.4
9	GUA	H3'	9	GUA	H1'	3.51	4.31
9	GUA	H2'2	10	THY	H6	2.06	2.74
9	GUA	H2'2	10	THY	M	3.32	4.52
10	THY	H6	9	GUA	H2'1	2.75	3.49
10	THY	H6	9	GUA	H8	3.72	5.16
10	THY	H2'1	10	THY	H6	2.08	2.28
10	THY	H2'2	10	THY	H6	3	4.63
10	THY	H3'	10	THY	H6	3.17	4.28
11	CYT	H5	10	THY	H3'	3.65	5.42
11	CYT	H5	10	THY	M	4.33	5.84
11	CYT	H6	10	THY	H2'1	3.03	4.45
11	CYT	H6	10	THY	H6	3.67	5.67
11	CYT	H1'	11	CYT	H2'1	2.59	5.47
11	CYT	H1'	11	CYT	H2'2	2.04	2.19
11	CYT	H2'1	11	CYT	H6	2	2.17
11	CYT	H4'	11	CYT	H2'1	3.12	4.04
12	CYT	H5	11	CYT	H6	3.39	4.34
12	CYT	H3'	12	CYT	H6	2.77	3.09
12	CYT	H4'	12	CYT	H3'	2.47	2.92
13	GUA	H1'	13	GUA	H8	3.21	3.91
13	GUA	H2'1	13	GUA	H8	2.1	2.3
13	GUA	H2'2	13	GUA	H8	2.7	4.06
14	GUA	H8	13	GUA	H2'2	2.31	2.52
14	GUA	H1'	14	GUA	H3'	3.26	3.97
14	GUA	H2'1	14	GUA	H8	2	2.29
16	CYT	H5	15	ADE	H2'1	3.29	4.12
16	CYT	H6	15	ADE	H3'	3.84	5.01

17	THY	H6	16	CYT	H2'1	2.87	4.16
17	THY	M	16	CYT	H1'	4.9	7.9
17	THY	M	16	CYT	H2'1	3.02	3.93
17	THY	H2'1	17	THY	H6	1.94	2.09
18	CYT	H1'	8	ADE	H2	3.81	4.48
18	CYT	H2'1	18	CYT	H3'	2.43	2.85
18	CYT	H2'1	18	CYT	H5	3.7	5.24
18	CYT	H2'1	18	CYT	H6	2.1	2.24
18	CYT	H2'2	18	CYT	H3'	2.85	3.35
18	CYT	H6	18	CYT	H1'	3.19	3.96
19	Y	H3x1	7	X	H1x	2.16	2.42
19	Y	H3x2	7	X	H2x1	2.09	2.59
19	Y	H8	18	CYT	H2'1	2.85	3.13
19	Y	H2'1	19	Y	H8	2.1	2.29
19	Y	H2'2	19	Y	H8	2.5	3.54
19	Y	H3'	19	Y	H8	3.53	4.95
20	CYT	H6	19	Y	H2'2	2.05	2.82
20	CYT	H5	20	CYT	H6	2.26	2.42
20	CYT	H2'2	21	THY	M	3.69	6.24
21	THY	M	20	CYT	H2'1	3.07	4.04
21	THY	M	20	CYT	H3'	3.79	4.9
21	THY	H1'	21	THY	H6	3.16	4.65
22	ADE	H1'	23	GUA	H8	3.04	3.34
22	ADE	H2'1	23	GUA	H8	2.77	3.2
22	ADE	H2'2	23	GUA	H8	2.27	2.83
23	GUA	H2'2	23	GUA	H8	2.79	4.05
24	CYT	H1'	24	CYT	H2'1	2.87	4.32
24	CYT	H1'	24	CYT	H2'2	2.12	2.29
24	CYT	H2'1	24	CYT	H3'	2.42	2.64
24	CYT	H3'	24	CYT	H6	2.94	3.29
24	CYT	H5	24	CYT	H6	2.43	2.57
Class3							
res_\#	res_name	atm_name	res_\#	res_name	atm_name	low_bnd	up_bnd
1	GUA	H4'	1	GUA	H2'2	3.21	4.12
2	CYT	H6	1	GUA	H8	3.56	5.01
2	CYT	H2'1	2	CYT	H5	3.66	5.24
5	GUA	H3'	5	GUA	H8	3.33	5.03
6	CYT	H6	5	GUA	H3'	3.7	4.75
7	X	H5'1	6	CYT	H2'2	2.89	3.5
7	X	H8	6	CYT	H2'1	2.97	3.56
7	X	H1x	7	X	H1'	3.29	4.55
8	ADE	H1'	7	X	H1x	3.33	4.96
8	ADE	H1'	7	X	M	2.94	4.35
9	GUA	H1'	8	ADE	H2	3.54	3.93
10	THY	H6	9	GUA	H3'	3.34	4.99
10	THY	H2'1	10	THY	M	4.49	7.47
11	CYT	H1'	11	CYT	H6	3.3	3.81
11	CYT	H1'	12	CYT	H6	3.7	5.93
14	GUA	H8	13	GUA	H2'1	2.88	4.21

14	GUA	H8	13	GUA	H3'	3.52	4.7
15	ADE	H4'	15	ADE	H2'1	3.29	4.66
15	ADE	H4'	15	ADE	H2'2	3.47	4.71
15	ADE	H4'	15	ADE	H8	4.05	5.75
16	CYT	H1'	15	ADE	H1'	3.37	4.7
16	CYT	H5	15	ADE	H1'	3.82	4.79
17	THY	H2'1	17	THY	M	4.31	7.3
17	THY	H3'	18	CYT	H6	4	5.82
18	CYT	H5	17	THY	M	4.82	7.75
19	Y	H3x2	19	Y	H3x1	1.65	1.88
20	CYT	H6	19	Y	H8	3.5	4.98
21	THY	H6	20	CYT	H2'1	2.42	3.8
21	THY	H2'1	21	THY	H6	1.82	2.05
23	GUA	H3'	23	GUA	H8	3.29	5.05
24	CYT	H1'	24	CYT	H6	3.46	4.77
Class4							
res_\#	res_name	atm_name	res_\#	res_name	atm_name	low_bnd	up_bnd
4	ADE	H8	3	THY	H3'	3.98	5.93
6	CYT	H4'	6	CYT	H2'2	2.66	3.02
7	X	H1'	7	X	M	4.04	5.62
7	X	H2x2	7	X	H2x1	1.65	1.84
7	X	H3'	8	ADE	H8	3.89	5.53
11	CYT	H3'	12	CYT	H6	3.5	4.73
12	CYT	H6	11	CYT	H2'1	3.04	5.53
16	CYT	H2'1	16	CYT	H5	3.92	5.32
18	CYT	H4'	18	CYT	H2'1	3.73	5.91
19	Y	H8	18	CYT	H6	3.79	5.26
20	CYT	H1'	7	X	M	5.19	8.54
20	CYT	H6	19	Y	H3'	3.83	5.32
20	CYT	H2'1	20	CYT	H5	4.22	6.6
21	THY	H3'	22	ADE	H8	3.54	5.01
24	CYT	H5	23	GUA	H8	3.46	4.24
24	CYT	H6	23	GUA	H3'	3.92	5.93
Class5							
res_\#	res_name	atm_name	res_\#	res_name	atm_name	low_bnd	up_bnd
2	CYT	H3'	3	THY	H6	3.47	4.83
3	THY	H3'	3	THY	H6	2.86	4.21
6	CYT	H2'1	6	CYT	H5	4.3	5.68
20	CYT	H1'	7	X	H1x	3.54	5.07
20	CYT	H4'	7	X	M	4.91	8.03
20	CYT	H3'	20	CYT	H6	2.94	4.28
21	THY	H6	20	CYT	H3'	3.07	4.38

B3. NOE Distance Restraints Used in rMD Calculations for the Oligodeoxynucleotide 5'-d(GCTAGCXAGTCC)-3'•5'-(GGACTCYCTAGC)-3', X and Y = fully reduced S -crotonaldehyde-derived dG-dG cross-link

res_\#	res_name	atm_name	res_\#	res_name	atm_name	low_bnd	up_bnd
1	GUA	H1'	1	GUA	H4'	3.109	3.384
1	GUA	H2'1	1	GUA	H8	2.02	2.435
1	GUA	H2'2	1	GUA	H8	3.032	3.771
1	GUA	H3'	1	GUA	H8	3.382	4.52
1	GUA	H8	1	GUA	H1'	3.2	4.08
2	CYT	H5	1	GUA	H8	3.485	4.012
2	CYT	H5	1	GUA	H2'2	3.104	3.376
2	CYT	H6	1	GUA	H1'	2.933	3.171
2	CYT	H6	1	GUA	H2'2	2.602	2.749
2	CYT	H1'	2	CYT	H4'	2.9	3.089
2	CYT	H2'2	2	CYT	H6	3.047	3.856
2	CYT	H5	2	CYT	H6	2.364	2.468
3	THY	H6	2	CYT	H1'	3.501	4.055
3	THY	M	2	CYT	H6	3.512	3.671
3	THY	M	2	CYT	H5	4.098	4.428
5	GUA	H8	4	ADE	H1'	3.189	3.477
5	GUA	H8	4	ADE	H2'2	2.23	2.93
5	GUA	H1'	5	GUA	H4'	2.992	3.189
5	GUA	H2'1	5	GUA	H8	2.328	2.446
5	GUA	H2'2	5	GUA	H1'	2.378	2.529
5	GUA	H2'2	5	GUA	H8	3.124	3.729
5	GUA	H3'	5	GUA	H8	3.724	4.858
5	GUA	H8	5	GUA	H1'	3.395	3.928
6	CYT	H5	5	GUA	H8	3.441	3.896
6	CYT	H6	5	GUA	H1'	3.027	3.258
6	CYT	H6	5	GUA	H2'2	2.446	2.931
6	CYT	H1'	6	CYT	H4'	2.744	2.94
6	CYT	H2'1	6	CYT	H1'	2.876	3.059
6	CYT	H2'1	6	CYT	H6	2.532	2.648
6	CYT	H2'1	6	CYT	H3'	2.026	2.643
6	CYT	H2'2	6	CYT	H4'	3.094	3.374
6	CYT	H2'2	6	CYT	H1'	2.304	2.413
6	CYT	H2'2	6	CYT	H2'1	1.803	2.189
6	CYT	H3'	6	CYT	H6	3.113	3.399
6	CYT	H5	6	CYT	H6	2.406	2.512
7	X	H3'	7	X	H5'1	2.927	3.849
7	X	H4'	7	X	H5'1	2.418	2.547
8	ADE	H1'	7	X	M	3.129	3.284
8	ADE	H8	7	X	H1'	3.046	3.285
8	ADE	H1'	8	ADE	H4'	2.707	2.857
8	ADE	H2'1	8	ADE	H8	2.455	2.583
8	ADE	H2'1	8	ADE	H3'	2.106	2.538
8	ADE	H2'2	8	ADE	H1'	2.393	2.518

8	ADE	H2'2	8	ADE	H2'1	1.809	2.08
9	GUA	H8	8	ADE	H2'1	2.898	3.097
9	GUA	H8	8	ADE	H2'2	2.15	2.807
9	GUA	H2'1	9	GUA	H8	2.51	2.646
9	GUA	H2'2	9	GUA	H2'1	1.803	2.084
9	GUA	H8	9	GUA	H1'	3.265	4.029
10	THY	H6	9	GUA	H1'	3.236	3.81
10	THY	H6	9	GUA	H2'1	2.939	3.421
10	THY	H6	9	GUA	H2'2	2.296	2.884
10	THY	M	9	GUA	H8	3.647	3.866
10	THY	M	9	GUA	H2'2	3.664	3.945
10	THY	H2'1	10	THY	H6	2.242	2.364
10	THY	H2'2	10	THY	H6	3.095	3.81
10	THY	H6	10	THY	H1'	3.315	3.711
10	THY	M	10	THY	H6	2.671	3.712
11	CYT	H5	10	THY	H6	3.371	3.806
11	CYT	H6	10	THY	H2'1	3.151	3.831
11	CYT	H1'	11	CYT	H4'	2.798	3.001
11	CYT	H2'1	11	CYT	H1'	2.95	3.153
11	CYT	H2'1	11	CYT	H6	2.248	2.366
11	CYT	H2'1	11	CYT	H3'	2.197	2.637
11	CYT	H5	11	CYT	H6	2.415	2.547
12	CYT	H6	11	CYT	H2'2	2.306	3.016
12	CYT	H1'	12	CYT	H4'	2.651	3.186
12	CYT	H3'	12	CYT	H5'2	2.981	3.227
12	CYT	H3'	12	CYT	H6	2.825	2.991
12	CYT	H6	12	CYT	H1'	3.306	3.721
13	GUA	H2'1	13	GUA	H8	2.364	2.491
13	GUA	H2'2	13	GUA	H8	3.233	3.976
13	GUA	H2'2	13	GUA	H3'	2.572	3.074
13	GUA	H8	13	GUA	H1'	3.35	4.323
14	GUA	H8	13	GUA	H2'1	3.161	3.546
14	GUA	H8	13	GUA	H2'2	2.57	3.053
14	GUA	H1'	14	GUA	H4'	3.032	3.252
14	GUA	H8	14	GUA	H1'	3.328	3.998
15	ADE	H3'	15	ADE	H5'2	2.57	2.746
15	ADE	H3'	15	ADE	H4'	2.623	2.761
15	ADE	H4'	15	ADE	H5'1	2.522	2.654
15	ADE	H4'	15	ADE	H5'2	2.42	2.545
15	ADE	H8	15	ADE	H1'	3.452	4.019
16	CYT	H5	15	ADE	H8	3.387	3.881
16	CYT	H6	15	ADE	H1'	2.996	3.269
16	CYT	H6	15	ADE	H2'2	2.585	2.681
16	CYT	H2'1	16	CYT	H6	2.524	2.673
16	CYT	H2'1	16	CYT	H3'	2.008	2.626
16	CYT	H3'	16	CYT	H5'1	3.25	3.647
16	CYT	H3'	16	CYT	H5'2	2.838	2.989
16	CYT	H3'	16	CYT	H6	3.177	3.439
16	CYT	H5	16	CYT	H6	2.443	2.543

16	CYT	H6	16	CYT	H1'	3.257	3.9
17	THY	H6	16	CYT	H2'1	2.85	3.093
17	THY	M	16	CYT	H6	3.56	3.779
17	THY	M	16	CYT	H5	4.094	4.375
17	THY	M	16	CYT	H3'	3.665	3.945
17	THY	M	16	CYT	H2'1	3.161	4.084
17	THY	M	17	THY	H6	2.693	3.751
18	CYT	H5	17	THY	H6	3.252	3.507
18	CYT	H2'1	18	CYT	H1'	2.722	3.524
18	CYT	H2'1	18	CYT	H6	2.093	2.52
18	CYT	H2'2	18	CYT	H1'	2.391	2.518
18	CYT	H2'2	18	CYT	H2'1	1.8	2.221
18	CYT	H3'	18	CYT	H6	3.103	3.552
18	CYT	H5	18	CYT	H6	2.466	2.559
19	Y	H8	18	CYT	H2'1	2.827	2.997
19	Y	H8	18	CYT	H2'2	2.838	3.032
19	Y	H1'	19	Y	H4'	3.089	3.325
19	Y	H2'2	19	Y	H3'	2.696	2.91
19	Y	H3'	19	Y	H4'	2.647	2.791
19	Y	H8	19	Y	H2'2	2.89	3.146
19	Y	H8	19	Y	H2'1	2.28	2.395
20	CYT	H5	19	Y	H8	3.444	3.943
20	CYT	H6	19	Y	H1'	2.673	2.84
20	CYT	H1'	20	CYT	H4'	2.882	3.064
20	CYT	H2'1	20	CYT	H3'	1.974	2.625
21	THY	M	20	CYT	H5	4.086	4.472
21	THY	M	20	CYT	H2'1	2.887	3.415
23	GUA	H8	22	ADE	H1'	2.844	3.363
23	GUA	H8	22	ADE	H2'1	3.094	3.361
23	GUA	H8	22	ADE	H2'2	2.211	2.849
23	GUA	H2'1	23	GUA	H8	2.087	2.419
23	GUA	H2'2	23	GUA	H8	3.084	3.707
23	GUA	H3'	23	GUA	H8	3.453	4.317
24	CYT	H5	23	GUA	H8	3.338	3.794
24	CYT	H1'	24	CYT	H4'	2.88	3.081
24	CYT	H3'	24	CYT	H6	2.999	3.308
Class2							
res_\#	res_name	atm_name	res_\#	res_name	atm_name	low_bnd	up_bnd
2	CYT	H2'1	2	CYT	H6	2.206	2.369
2	CYT	H6	2	CYT	H1'	3.418	4.26
3	THY	M	2	CYT	H3'	4.019	4.513
3	THY	M	2	CYT	H2'1	2.984	3.26
3	THY	M	2	CYT	H2'2	3.663	4.174
3	THY	H2'2	3	THY	H2'1	1.804	2.117
3	THY	H3'	3	THY	H6	3.191	4.152
5	GUA	H8	4	ADE	H2'1	3.104	3.59
6	CYT	H5	5	GUA	H2'2	3.097	3.549
6	CYT	H3'	6	CYT	H4'	2.755	2.974
7	X	H2x1	7	X	H1x	2.587	2.841

7	X	H2x1	7	X	M	2.63	2.891
7	X	H2x1	7	X	H2x2	1.8	2.105
7	X	$\mathrm{H} 2 \times 2$	7	X	M	2.761	3.053
7	X	H4'	7	X	H5'2	2.368	2.592
7	X	M	7	X	H1'	3.979	4.442
7	X	M	7	X	H1x	2.208	2.482
8	ADE	H4'	7	X	M	3.282	3.661
8	ADE	H8	7	X	H2'2	2.617	2.864
8	ADE	H2'2	8	ADE	H8	3.111	4.07
9	GUA	H2'1	9	GUA	H1'	2.845	3.201
10	THY	M	9	GUA	H3'	4.176	4.856
10	THY	M	9	GUA	H2'1	3.055	4.377
11	CYT	H6	10	THY	H1'	3.355	4.199
11	CYT	H2'2	11	CYT	H2'1	1.804	2.188
12	CYT	H6	11	CYT	H1'	3.27	3.861
12	CYT	H6	11	CYT	H2'1	2.842	3.155
12	CYT	H3'	12	CYT	H4'	2.481	3.173
12	CYT	H5	12	CYT	H6	2.42	2.635
13	GUA	H1'	13	GUA	H4'	3.281	3.726
13	GUA	H2'1	13	GUA	H3'	2.435	2.689
13	GUA	H2'2	13	GUA	H1'	2.406	2.61
14	GUA	H4'	14	GUA	H5'1	2.388	2.628
14	GUA	H4'	14	GUA	H5'2	2.329	2.523
15	ADE	H1'	15	ADE	H4'	3.081	3.422
15	ADE	H2'2	15	ADE	H1'	2.355	2.575
15	ADE	H3'	15	ADE	H5'1	2.96	3.912
15	ADE	H3'	15	ADE	H1'	3.38	4.185
16	CYT	H6	15	ADE	H2'1	3.195	3.863
16	CYT	H2'2	16	CYT	H3'	3.008	3.304
16	CYT	H2'2	16	CYT	H2'1	1.801	2.18
16	CYT	H3'	16	CYT	H4'	2.491	2.945
17	THY	M	16	CYT	H2'2	3.735	4.212
17	THY	H3'	17	THY	H6	3.232	4.253
17	THY	H6	17	THY	H1'	3.094	3.757
19	Y	H3x1	7	X	H1x	2.371	2.586
19	Y	H3x1	7	X	H2x1	2.375	2.878
19	Y	H3x2	7	X	H2x1	2.316	2.568
19	Y	H1'	19	Y	H2'2	2.443	2.621
19	Y	H3x1	19	Y	H3x2	1.8	2.049
19	Y	H8	19	Y	H3'	3.461	4.625
20	CYT	H6	19	Y	H2'2	2.614	2.863
20	CYT	H2'1	20	CYT	H1'	2.691	2.951
20	CYT	H2'2	20	CYT	H2'1	1.8	2.158
20	CYT	H5	20	CYT	H6	2.302	2.491
21	THY	M	20	CYT	H3'	3.666	4.118
21	THY	H2'2	21	THY	H6	2.945	3.563
23	GUA	H2'2	23	GUA	H1'	2.297	2.49
23	GUA	H8	23	GUA	H1'	3.231	3.956
24	CYT	H6	23	GUA	H2'2	2.278	2.813

24	CYT	H2'2	24	CYT	H1'	2.214	2.398
24	CYT	H2'2	24	CYT	H3'	2.972	3.528
24	CYT	H5	24	CYT	H6	2.409	2.594
24	CYT	H6	24	CYT	H1'	3.304	3.813
Class3							
res_\#	res_name	atm_name	res_\#	res_name	atm_name	low_bnd	up_bnd
2	CYT	H5	1	GUA	H2'1	3.464	5.145
2	CYT	H6	1	GUA	H2'1	3.143	4.035
3	THY	H2'2	3	THY	H4'	3.193	4.277
3	THY	M	3	THY	H6	2.658	2.989
5	GUA	H3'	5	GUA	H1'	3.375	4.385
6	CYT	H5'1	5	GUA	H1'	3.019	3.53
6	CYT	H3'	6	CYT	H5'2	2.684	3.026
7	X	H8	6	CYT	H2'1	2.913	3.417
7	X	H8	6	CYT	H2'2	3.133	3.552
7	X	H1'	7	X	H2'2	2.222	2.526
7	X	H1'	7	X	H2'1	2.751	3.351
8	ADE	H2'1	8	ADE	H1'	2.726	3.131
8	ADE	H3'	8	ADE	H8	3.43	4.369
9	GUA	H8	8	ADE	H1'	2.641	3.648
9	GUA	H2'2	9	GUA	H4'	3.294	4.039
9	GUA	H2'2	9	GUA	H1'	2.208	2.453
9	GUA	H2'2	9	GUA	H8	3.311	4.258
9	GUA	H3'	9	GUA	H8	3.287	4.458
10	THY	H2'2	11	CYT	H5	3.241	4.455
11	CYT	H5	10	THY	H2'1	3.19	4.419
11	CYT	H6	11	CYT	H1'	3.195	3.755
14	GUA	H2'1	14	GUA	H8	2.066	2.328
14	GUA	H3'	14	GUA	H1'	3.394	4.129
18	CYT	H2'2	18	CYT	H6	2.982	3.984
19	Y	H3x2	7	X	H1x	2.623	3.725
19	Y	H3x2	7	X	M	3.372	4.074
19	Y	H1'	19	Y	H3'	3.365	4.206
19	Y	H1'	19	Y	H2'1	2.922	3.561
19	Y	H8	19	Y	H1'	3.451	4.396
20	CYT	H5	19	Y	H2'2	2.414	3.138
20	CYT	H5	19	Y	H1'	3.056	3.593
20	CYT	H3'	20	CYT	H6	3.055	4.057
21	THY	M	20	CYT	H2'2	3.815	4.724
21	THY	H2'2	21	THY	H4'	3.15	4.129
21	THY	H3'	21	THY	H6	3.135	4.212
Class4							
res_\#	res_name	atm_name	res_\#	res_name	atm_name	low_bnd	up_bnd
2	CYT	H5	1	GUA	H1'	3.383	4.379
2	CYT	H2'1	2	CYT	H4'	3.155	4.518
2	CYT	H2'2	2	CYT	H4'	3.077	3.796
3	THY	H2'1	3	THY	H4'	2.877	3.897
3	THY	H2'2	3	THY	H3'	2.499	2.985
4	ADE	H8	3	THY	H2'1	3.531	6.964

6	CYT	H5	5	GUA	H1'	3.365	4.483
6	CYT	H2'2	6	CYT	H6	3.225	4.05
6	CYT	H2'2	6	CYT	H3'	2.792	3.285
6	CYT	H3'	6	CYT	H5'1	3.124	3.942
6	CYT	H6	6	CYT	H1'	3.275	4.356
7	X	H2x2	7	X	H1x	2.712	3.214
7	X	H8	7	X	H3'	3.225	4.534
8	ADE	H2	7	X	M	4.414	6.86
8	ADE	H3'	8	ADE	H1'	3.351	4.763
11	CYT	H5	10	THY	M	4.554	7.459
11	CYT	H2'2	11	CYT	H1'	2.18	2.544
12	CYT	H5	11	CYT	H6	3.351	4.552
13	GUA	H3'	13	GUA	H8	3.581	5.678
14	GUA	H2'2	14	GUA	H8	2.59	3.471
14	GUA	H3'	14	GUA	H8	3.306	4.634
16	CYT	H5	15	ADE	H2'2	3.109	4.032
16	CYT	H6	15	ADE	H8	3.562	5.937
17	THY	H2'2	17	THY	H3'	2.534	3.147
17	THY	H1'	18	CYT	H6	3.271	4.121
18	CYT	H5	17	THY	H2'1	2.933	3.561
18	CYT	H5	17	THY	H2'2	3.309	4.962
18	CYT	H6	17	THY	H2'1	3.221	5.998
19	Y	H3x1	7	X	H2x2	2.707	3.353
20	CYT	H5	19	Y	H2'1	3.416	5.456
20	CYT	H2'2	20	CYT	H1'	2.292	2.71
20	CYT	H2'2	20	CYT	H3'	2.852	3.526
21	THY	H2'1	21	THY	H4'	3.092	3.877
22	ADE	H1'	22	ADE	H3'	3.46	4.478
23	GUA	H8	22	ADE	H8	3.638	5.234
Class5							
res_\#	res_name	atm_name	res_\#	res_name	atm_name	low_bnd	up_bnd
4	ADE	H8	3	THY	H1'	2.5	3.5
7	X	H8	7	X	H1'	3.186	4.06
8	ADE	H2	8	ADE	H1'	3.542	6.33
8	ADE	H8	8	ADE	H1'	3.498	5.439
14	GUA	H8	13	GUA	H1'	3.102	4.299
18	CYT	H6	18	CYT	H1'	3.271	4.437
19	Y	H3x1	7	X	M	3.922	5.725
19	Y	H8	18	CYT	H1'	3.556	6.26
res_\#	res_name	atm_name	res_\#	res_name	atm_name	low_bnd	up_bnd
1	GUA	H8	1	GUA	H4'	4	5.5
1	GUA	H8	2	CYT	H6	4.5	5.5
2	CYT	H6	1	GUA	H3'	4	5.5
2	CYT	H6	2	CYT	H3'	3.5	5
2	CYT	H1'	3	THY	M	3.5	5
3	THY	H6	2	CYT	H3'	4	5.5
3	THY	H6	3	THY	H3'	3.5	5
3	THY	H6	4	ADE	H8	4.5	5.5

4	ADE	H8	3	THY	H3'	4.5	5.5
4	ADE	H8	3	THY	H2'	3	4
4	ADE	H8	3	THY	H2'	2	3.5
4	ADE	H8	4	ADE	H1'	3.5	4.5
4	ADE	H8	4	ADE	H3'	4	5
4	ADE	H8	4	ADE	H2'	2	4
4	ADE	H8	4	ADE	H2'	3.5	4.5
4	ADE	H8	5	GUA	H8	4.5	5.5
5	GUA	H8	4	ADE	H3'	4.5	5.5
5	GUA	H8	5	GUA	H4'	4	5.5
5	GUA	H8	6	CYT	H6	4.5	5.5
6	CYT	H6	5	GUA	H3'	4.5	5.5
6	CYT	H6	5	GUA	H2'	3	5
6	CYT	H5	6	CYT	H2'	4	5
6	CYT	H6	7	X	H8	4.5	5.5
7	X	H8	6	CYT	H1'	3.5	5
7	X	H8	6	CYT	H3'	4.5	5.5
7	X	H8	8	ADE	H8	4.5	5.5
8	ADE	H1'	7	X	H1x	3	6
8	ADE	H8	7	X	H3'	4.5	5.5
8	ADE	H8	7	X	M	4	5.5
8	ADE	H2	8	ADE	H1'	4	5.5
8	ADE	H2	9	GUA	H1'	4	5.5
8	ADE	H8	9	GUA	H8	4.5	5.5
8	ADE	H2	17	THY	H1'	4	5.5
8	ADE	H2	18	CYT	H1'	4	5.5
9	GUA	H8	8	ADE	H3'	4.5	5.5
9	GUA	H8	9	GUA	H4'	4	5.5
9	GUA	H1'	10	THY	M	3	4.5
9	GUA	H8	10	THY	H6	4.5	5.5
10	THY	H6	9	GUA	H3'	4	5.5
10	THY	H6	10	THY	H3'	3.5	5
10	THY	H6	11	CYT	H6	4.5	5.5
11	CYT	H6	10	THY	H3'	4	5.5
11	CYT	H5	11	CYT	H2'	3.5	5
11	CYT	H6	11	CYT	H3'	3.5	5
11	CYT	H6	12	CYT	H6	4.5	5.5
12	CYT	H6	11	CYT	H3'	4	5.5
13	GUA	H8	13	GUA	H4'	4	5.5
13	GUA	H8	14	GUA	H8	4.5	5.5
14	GUA	H8	13	GUA	H3'	4.5	5.5
14	GUA	H8	15	ADE	H8	4.5	5.5
15	ADE	H2	10	THY	H1'	4	5.5
15	ADE	H2	11	CYT	H1'	4	5.5
15	ADE	H8	14	GUA	H3'	4.5	5.5
15	ADE	H2	15	ADE	H1'	4	5.5
15	ADE	H8	15	ADE	H3'	4	5
15	ADE	H8	15	ADE	H4'	4	5.5
15	ADE	H2	16	CYT	H1'	3.7	5.5

15	ADE	H2	16	CYT	H2'	4	6
16	CYT	H6	15	ADE	H3'	4.5	5.5
16	CYT	H6	16	CYT	H4'	4	5.5
16	CYT	H1'	17	THY	M	3.5	4.5
16	CYT	H6	17	THY	H6	4.5	5.5
17	THY	H6	16	CYT	H3'	4	5.5
18	CYT	H5	17	THY	M	4	5
18	CYT	H6	17	THY	H6	4.5	5.5
18	CYT	H6	17	THY	H3'	4	5.5
19	Y	H1'	7	X	H1x	3	6
19	Y	H8	18	CYT	H6	4.5	5.5
19	Y	H8	18	CYT	H3'	4.5	5.5
19	Y	H8	19	Y	H4'	4	5.5
20	CYT	H1'	7	X	M	3	6
20	CYT	H1'	7	X	H2x1	3	6
20	CYT	H1'	19	Y	H3x1	3	4.5
20	CYT	H1'	19	Y	H3x2	3	4.5
20	CYT	H6	19	Y	H8	4.5	5.5
20	CYT	H6	19	Y	H3'	4.5	5.5
20	CYT	H6	20	CYT	H1'	3.5	4.5
20	CYT	H1'	21	THY	M	3.5	5
21	THY	H6	20	CYT	H1'	2.5	4
21	THY	H6	20	CYT	H3'	4	5.5
21	THY	H6	21	THY	H1'	3.5	4.5
22	ADE	H8	21	THY	H1'	2.5	3.5
22	ADE	H8	21	THY	H6	4.5	5.5
22	ADE	H8	21	THY	H3'	4	5.5
22	ADE	H8	21	THY	H2'	3	4
22	ADE	H8	21	THY	H2'	2	3.5
22	ADE	H8	22	ADE	H1'	3.5	4.5
22	ADE	H8	22	ADE	H3'	4	5
22	ADE	H8	22	ADE	H2'	2	4
22	ADE	H8	22	ADE	H2'	3.5	4.5
23	GUA	H8	22	ADE	H3'	4.5	5.5
23	GUA	H8	23	GUA	H4'	4	5.5
24	CYT	H6	23	GUA	H8	4.5	5.5
24	CYT	H6	23	GUA	H3'	4.5	5.5

APPENDIX C

PDB FILES

C1. PDB File of the S-crotonaldehyde-derived N^{2}-(3-oxo-1(S)-methyl-propyl)-dG containing in $\mathrm{d}(\mathrm{GCTAGCXAGTCC}) \bullet \mathrm{d}(\mathrm{GGACTCGCTAGC)}$

REMARK							
Атом	1	H5T	DG5	1	5.907	-7.381	-3.181
Атом	2	05'	DG5	1	6.565	-8.008	-2.811
Атом	3	C5'	DG5	1	6.540	-7.923	-1.388
Атом	4	H5 ' 1	DG5	1	7.272	-8.624	-0.980
Атом	5	H5'2	DG5	1	5.553	-8.203	-1.013
Атом	6	C4'	DG5	1	6.887	-6.507	-0.893
Атом	7	H4'	DG5	1	7.829	-6.189	-1.339
Атом	8	O4'	DG5	1	5.848	-5.601	-1.265
Атом	9	C1'	DG5	1	5.527	-4.841	-0.115
Атом	10	H1'	DG5	1	6.295	-4.075	0.034
Атом	11	N9	DG5	1	4.217	-4.160	-0.239
Атом	12	C8	DG5	1	2.947	-4.669	-0.102
Атом	13	H8	DG5	1	2.760	-5.718	0.098
ATOM	14	N7	DG5	1	1.995	-3.783	-0.254
Атом	15	C5	DG5	1	2.691	-2.586	-0.494
Атом	16	C6	DG5	1	2.236	-1.238	-0.740
Атом	17	06	DG5	1	1.086	-0.804	-0.837
Атом	18	N1	DG5	1	3.264	-0.330	-0.899
Атом	19	H1	DG5	1	3.009	0.636	-1.047
Атом	20	C2	DG5	1	4.576	-0.664	-0.870
Атом	21	N2	DG5	1	5.446	0.292	-1.046
Атом	22	H21	DG5	1	6.423	0.054	-1.021
ATOM	23	H22	DG5	1	5.135	1.257	-1.135
Атом	24	N3	DG5	1	5.045	-1.892	-0.671
Атом	25	C4	DG5	1	4.051	-2.814	-0.483
Атом	26	C3'	DG5	1	6.984	-6.470	0.651
ATOM	27	н3'	DG5	1	7.101	-7.466	1.086
Атом	28	C2'	DG5	1	5.635	-5.858	1.019
Атом	29	H2 '1	DG5	1	4.845	-6.608	0.959
Атом	30	H2 '2	DG5	1	5.653	-5.385	2.000
Атом	31	O3'	DG5	1	7.977	-5.578	1.144
Атом	32	P	DC	2	9.556	-5.892	1.125
ATOM	33	01P	DC	2	9.935	-6.519	2.415
Атом	34	O2P	DC	2	9.926	-6.564	-0.145
Атом	35	05'	DC	2	10.124	-4.384	1.075
Атом	36	C5'	DC	2	10.058	-3.533	2.214
ATOM	37	H5'1	DC	2	11.008	-3.598	2.747
Атом	38	H5 '2	DC	2	9.263	-3.856	2.888
Атом	39	C4'	DC	2	9.791	-2.073	1.813
Атом	40	H4	DC	2	10.443	-1.809	0.978
ATOM	41	O4'	DC	2	8.420	-1.911	1.441
ATOM	42	C1'	DC	2	7.826	-0.890	2.233
Атом	43	H1'	DC	2	7.944	0.073	1.723
Атом	44	N1	DC	2	6.381	-1.172	2.481
Атом	45	C6	DC	2	5.948	-2.444	2.774
Атом	46	H6	DC	2	6.676	-3.245	2.852
ATOM	47	C5	DC	2	4.622	-2.691	2.938
ATOM	48	H5	DC	2	4.279	-3.690	3.156
Атом	49	C4	DC	2	3.729	-1.596	2.788
Атом	50	N4	DC	2	2.443	-1.774	2.855
ATOM	51	H41	DC	2	2.073	-2.690	3.030
Атом	52	H42	DC	2	1.840	-0.973	2.695

ATOM	53	N3	DC	2	4.121	-0.364	2.541
ATOM	54	C2	DC	2	5.448	-0.127	2.398
Атом	55	02	DC	2	5.782	1.040	2.194
АTOM	56	C3'	DC	2	10.061	-1.122	2.992
ATOM	57	H3'	DC	2	10.669	-1.615	3.754
АтOM	58	C2'	DC	2	8.650	-0.854	3.517
ATOM	59	H2 '1	DC	2	8.351	-1.663	4.185
ATOM	60	H2'2	DC	2	8.566	0.107	4.024
ATOM	61	O3'	DC	2	10.723	0.044	2.507
ATOM	62	P	DT	3	11.431	1.119	3.482
АTOM	63	01P	DT	3	11.816	0.438	4.745
ATOM	64	02P	DT	3	12.478	1.816	2.697
ATOM	65	05'	DT	3	10.253	2.178	3.773
Атом	66	C5'	DT	3	9.952	2.645	5.081
ATOM	67	H5'1	DT	3	10.783	3.251	5.447
ATOM	68	H5'2	DT	3	9.802	1.805	5.760
Атом	69	C4'	DT	3	8.678	3.500	5.052
ATOM	70	H4'	DT	3	8.801	4.306	4.327
ATOM	71	O4'	DT	3	7.562	2.675	4.704
ATOM	72	C1 ${ }^{\prime}$	DT	3	6.536	2.925	5.646
Атом	73	H1'	DT	3	6.043	3.867	5.383
ATOM	74	N1	DT	3	5.525	1.838	5.705
ATOM	75	C6	DT	3	5.894	0.529	5.942
ATOM	76	H6	DT	3	6.945	0.285	6.029
ATOM	77	C5	DT	3	4.955	-0.443	6.090
ATOM	78	C7	DT	3	5.420	-1.864	6.365
ATOM	79	H71	DT	3	5.660	-1.967	7.424
ATOM	80	H72	DT	3	4.628	-2.572	6.119
ATOM	81	H73	DT	3	6.295	-2.100	5.761
Атом	82	C4	DT	3	3.530	-0.127	5.968
ATOM	83	04	DT	3	2.585	-0.904	6.093
ATOM	84	N3	DT	3	3.253	1.189	5.684
ATOM	85	H3	DT	3	2.284	1.460	5.603
ATOM	86	C2	DT	3	4.175	2.200	5.594
ATOM	87	02	DT	3	3.775	3.354	5.449
ATOM	88	C3'	DT	3	8.363	4.100	6.436
ATOM	89	H3'	DT	3	9.232	4.122	7.098
ATOM	90	C2'	DT	3	7.296	3.142	6.951
ATOM	91	H2 ' 1	DT	3	7.751	2.216	7.306
Атом	92	H2 '2	DT	3	6.677	3.602	7.719
Атом	93	O3'	DT	3	7.743	5.370	6.286
Атом	94	P	DA	4	8.438	6.759	6.687
ATOM	95	01P	DA	4	9.557	6.524	7.634
Атом	96	O2P	DA	4	8.685	7.527	5.442
Атом	97	O5'	DA	4	7.214	7.446	7.481
ATOM	98	C5'	DA	4	6.827	7.005	8.778
ATOM	99	H5 ' 1	DA	4	7.202	7.728	9.506
ATOM	100	H5'2	DA	4	7.266	6.032	9.006
ATOM	101	C4'	DA	4	5.298	6.895	8.914
ATOM	102	H4'	DA	4	4.833	7.746	8.416
ATOM	103	O4'	DA	4	4.806	5.673	8.345
ATOM	104	C1 ${ }^{\prime}$	DA	4	3.844	5.163	9.253
Атом	105	H1'	DA	4	2.937	5.775	9.198
Атом	106	N9	DA	4	3.459	3.748	9.039
Атом	107	C8	DA	4	4.235	2.614	9.118
ATOM	108	н8	DA	4	5.307	2.654	9.269
Атом	109	N7	DA	4	3.569	1.493	8.997
ATOM	110	C5	DA	4	2.239	1.930	8.863
ATOM	111	C6	DA	4	0.979	1.290	8.732
ATOM	112	N6	DA	4	0.805	-0.015	8.663
ATOM	113	H61	DA	4	-0.128	-0.377	8.505
ATOM	114	H62	DA	4	1.610	-0.620	8.660
Атом	115	N1	DA	4	-0.156	1.992	8.661
Атом	116	C2	DA	4	-0.066	3.315	8.690
АТОм	117	H2	DA	4	-1.002	3.857	8.624

ATOM	118	N3	DA	4	1.032	4.057	8.794
ATOM	119	C4	DA	4	2.164	3.297	8.883
Атом	120	C3 ${ }^{\prime}$	DA	4	4.886	6.876	10.405
ATOM	121	H3'	DA	4	5.698	7.167	11.074
ATOM	122	C2'	DA	4	4.516	5.410	10.598
АтОм	123	H2 '1	DA	4	5.414	4.798	10.706
ATOM	124	H2 '2	DA	4	3.840	5.261	11.437
ATOM	125	O3'	DA	4	3.710	7.631	10.664
ATOM	126	P	DG	5	3.713	9.230	10.829
ATOM	127	01P	DG	5	4.115	9.855	9.546
АтОм	128	O2P	DG	5	4.444	9.582	12.072
ATOM	129	05'	DG	5	2.138	9.497	11.044
ATOM	130	C5'	DG	5	1.481	9.121	12.249
Атом	131	H5 ' 1	DG	5	1.410	9.999	12.892
ATOM	132	H5'2	DG	5	2.055	8.354	12.774
Атом	133	C4 ${ }^{\prime}$	DG	5	0.073	8.568	11.975
Атом	134	H4'	DG	5	-0.446	9.232	11.281
ATOM	135	O4'	DG	5	0.167	7.251	11.425
ATOM	136	C1 ${ }^{\prime}$	DG	5	-0.691	6.384	12.149
ATOM	137	H1'	DG	5	-1.699	6.422	11.727
АтОм	138	N9	DG	5	-0.195	4.986	12.136
ATOM	139	C8	DG	5	1.089	4.532	12.312
Атом	140	H8	DG	5	1.914	5.214	12.479
ATOM	141	N7	DG	5	1.219	3.231	12.247
Атом	142	C5	DG	5	-0.093	2.782	12.032
ATOM	143	C6	DG	5	-0.643	1.456	11.873
ATOM	144	06	DG	5	-0.067	0.367	11.864
ATOM	145	N1	DG	5	-2.014	1.445	11.708
ATOM	146	H1	DG	5	-2.459	0.544	11.615
ATOM	147	C2	DG	5	-2.781	2.562	11.715
ATOM	148	N2	DG	5	-4.075	2.401	11.676
ATOM	149	H21	DG	5	-4.647	3.225	11.731
ATOM	150	H22	DG	5	-4.473	1.469	11.599
ATOM	151	N3	DG	5	-2.321	3.803	11.837
ATOM	152	C4	DG	5	-0.963	3.852	11.987
ATOM	153	C3'	DG	5	-0.734	8.466	13.282
Атом	154	H3'	DG	5	-0.231	9.006	14.087
Атом	155	C2'	DG	5	-0.721	6.966	13.556
ATOM	156	H2 ' 1	DG	5	0.186	6.698	14.101
Атом	157	H2 '2	DG	5	-1.606	6.644	14.096
Атом	158	O3'	DG	5	-2.055	8.972	13.097
Атом	159	P	DC	6	-3.050	9.278	14.337
ATOM	160	01P	DC	6	-2.243	9.412	15.575
Атом	161	O2P	DC	6	-3.927	10.408	13.938
ATOM	162	O5'	DC	6	-3.960	7.954	14.488
ATOM	163	C5 ${ }^{\prime}$	DC	6	-4.993	7.644	13.556
Атом	164	H5'1	DC	6	-4.566	7.577	12.554
ATOM	165	H5 '2	DC	6	-5.730	8.450	13.555
Атом	166	C4'	DC	6	-5.726	6.323	13.863
Атом	167	H4'	DC	6	-6.528	6.202	13.132
Атом	168	O4'	DC	6	-4.804	5.240	13.737
ATOM	169	C1'	DC	6	-4.858	4.481	14.934
ATOM	170	H1'	DC	6	-5.688	3.771	14.847
Атом	171	N1	DC	6	-3.592	3.730	15.152
ATOM	172	C6	DC	6	-2.414	4.355	15.475
ATOM	173	H6	DC	6	-2.416	5.422	15.666
Атом	174	C5	DC	6	-1.260	3.641	15.532
ATOM	175	H5	DC	6	-0.329	4.134	15.768
ATOM	176	C4	DC	6	-1.343	2.245	15.267
ATOM	177	N4	DC	6	-0.277	1.501	15.241
ATOM	178	H41	DC	6	0.624	1.901	15.428
Атом	179	H42	DC	6	-0.408	0.511	15.057
ATOM	180	N3	DC	6	-2.465	1.621	14.990
Атом	181	C2	DC	6	-3.607	2.344	14.963
Атом	182	02	DC	6	-4.653	1.723	14.778

ATOM	183	C3 ${ }^{\prime}$	DC	6	-6.332	6.236	15.278
Атом	184	H3'	DC	6	-6.519	7.217	15.720
Атом	185	C2'	DC	6	-5.245	5.477	16.028
Атом	186	H2'1	DC	6	-4.425	6.144	16.289
ATOM	187	H2 '2	DC	6	-5.645	4.984	16.912
Атом	188	O3'	DC	6	-7.475	5.384	15.298
Атом	189	01P	DS	7	-9.034	7.156	16.212
Атом	190	P	DS	7	-8.990	5.900	15.422
Атом	191	02P	DS	7	-9.607	5.864	14.073
ATOM	192	O5'	DS	7	-9.603	4.691	16.313
Атом	193	C5'	DS	7	-9.316	4.587	17.707
ATOM	194	H5'1	DS	7	-10.161	5.006	18.256
ATOM	195	H5'2	DS	7	-8.438	5.191	17.944
Атом	196	C4'	DS	7	-9.059	3.144	18.208
Атом	197	O4'	DS	7	-7.853	2.623	17.633
Атом	198	H4'	DS	7	-9.907	2.515	17.945
Атом	199	C3'	DS	7	-8.831	3.178	19.748
Атом	200	O3'	DS	7	-9.108	1.996	20.516
Атом	201	H3'	DS	7	-9.286	4.061	20.205
Атом	202	C2'	DS	7	-7.306	3.259	19.771
Атом	203	H2 '2	DS	7	-6.890	3.006	20.745
ATOM	204	H2 ' 1	DS	7	-6.952	4.237	19.438
ATOM	205	C1 ${ }^{\prime}$	DS	7	-7.049	2.183	18.713
ATOM	206	H1'	DS	7	-7.450	1.232	19.077
ATOM	207	N9	DS	7	-5.627	1.943	18.387
Атом	208	C4	DS	7	-5.061	0.698	18.196
Атом	209	N3	DS	7	-5.705	-0.514	18.183
Атом	210	C8	DS	7	-4.573	2.825	18.416
ATOM	211	H8	DS	7	-4.704	3.884	18.603
Атом	212	N7	DS	7	-3.408	2.277	18.202
Атом	213	C5	DS	7	-3.707	0.914	18.064
Атом	214	C6	DS	7	-2.859	-0.231	17.867
Атом	215	06	DS	7	-1.641	-0.277	17.709
Атом	216	N1	DS	7	-3.532	-1.434	17.889
Атом	217	H1	DS	7	-2.972	-2.270	17.822
ATOM	218	C2	DS	7	-4.877	-1.558	18.027
ATOM	219	N2	DS	7	-5.313	-2.807	18.020
ATOM	220	H2	DS	7	-4.614	-3.538	17.937
Атом	221	C1a	DS	7	-6.689	-3.276	18.134
Атом	222	C1m	DS	7	-7.031	-4.021	16.845
Атом	223	H1m	DS	7	-8.058	-4.382	16.869
Атом	224	H2m	DS	7	-6.921	-3.348	15.996
ATOM	225	H3m	DS	7	-6.354	-4.866	16.713
Атом	226	H1a	DS	7	-7.379	-2.435	18.260
Атом	227	c2b	DS	7	-6.816	-4.208	19.343
Атом	228	H2b	DS	7	-6.473	-3.681	20.230
Атом	229	H1b	DS	7	-6.192	-5.091	19.202
ATOM	230	C3g	DS	7	-8.257	-4.628	19.589
Атом	231	H3g	DS	7	-8.995	-3.884	19.843
ATOM	232	02g	DS	7	-8.592	-5.812	19.496
Атом	233	P	DA	8	-10.537	1.257	20.634
Атом	234	01P	DA	8	-10.957	1.307	22.054
Атом	235	O2P	DA	8	-11.461	1.789	19.604
Атом	236	O5'	DA	8	-10.153	-0.275	20.228
Атом	237	C5 ${ }^{\prime}$	DA	8	-10.339	-1.411	21.090
ATOM	238	H5'1	DA	8	-10.556	-2.268	20.452
Атом	239	H5'2	DA	8	-11.227	-1.258	21.706
Атом	240	C4 ${ }^{\prime}$	DA	8	-9.160	-1.825	22.008
Атом	241	H4'	DA	8	-9.268	-2.891	22.182
Атом	242	O4'	DA	8	-7.894	-1.653	21.378
ATOM	243	C1 ${ }^{\prime}$	DA	8	-6.924	-1.523	22.401
Атом	244	H1'	DA	8	-6.680	-2.510	22.813
Атом	245	N9	DA	8	-5.686	-0.877	21.891
Атом	246	C8	DA	8	-5.414	0.467	21.763
Атом	247	H8	DA	8	-6.166	1.229	21.923

ATOM	248	N7	DA	8	-4.177	0.751	21.455
ATOM	249	C5	DA	8	-3.587	-0.517	21.352
Атом	250	C6	DA	8	-2.280	-0.985	21.076
Атом	251	N6	DA	8	-1.239	-0.205	20.849
ATOM	252	H61	DA	8	-0.344	-0.620	20.619
АтОм	253	H62	DA	8	-1.365	0.794	20.864
ATOM	254	N1	DA	8	-2.011	-2.290	21.010
ATOM	255	C2	DA	8	-3.007	-3.141	21.221
ATOM	256	H2	DA	8	-2.755	-4.193	21.160
ATOM	257	N3	DA	8	-4.270	-2.858	21.519
АтОм	258	C4	DA	8	-4.503	-1.514	21.570
ATOM	259	C3 ${ }^{\prime}$	DA	8	-9.092	-1.114	23.383
ATOM	260	H3'	DA	8	-9.679	-0.203	23.333
Атом	261	C2'	DA	8	-7.630	-0.693	23.480
ATOM	262	H2'1	DA	8	-7.587	0.371	23.253
ATOM	263	H2'2	DA	8	-7.210	-0.870	24.471
Атом	264	O3'	DA	8	-9.479	-1.781	24.592
ATOM	265	P	DG	9	-9.565	-3.376	24.845
ATOM	266	01P	DG	9	-9.792	-3.570	26.298
ATOM	267	O2P	DG	9	-10.560	-3.935	23.898
ATOM	268	O5'	DG	9	-8.105	-3.978	24.510
ATOM	269	C5 ${ }^{\prime}$	DG	9	-7.956	-5.244	23.870
ATOM	270	H5 '1	DG	9	-8.002	-5.114	22.788
ATOM	271	H5 '2	DG	9	-8.778	-5.899	24.166
Атом	272	C4 ${ }^{\prime}$	DG	9	-6.649	-5.963	24.243
ATOM	273	H4'	DG	9	-6.634	-6.921	23.719
Атом	274	O4'	DG	9	-5.524	-5.198	23.825
ATOM	275	C1 ${ }^{\prime}$	DG	9	-4.607	-5.113	24.903
Атом	276	H1'	DG	9	-3.907	-5.952	24.861
Атом	277	N9	DG	9	-3.868	-3.834	24.814
ATOM	278	C8	DG	9	-4.367	-2.556	24.831
ATOM	279	H8	DG	9	-5.423	-2.355	24.973
ATOM	280	N7	DG	9	-3.472	-1.623	24.630
ATOM	281	C5	DG	9	-2.275	-2.343	24.495
ATOM	282	C6	DG	9	-0.919	-1.917	24.252
Атом	283	06	DG	9	-0.474	-0.786	24.052
Атом	284	N1	DG	9	-0.009	-2.955	24.257
Атом	285	H1	DG	9	0.963	-2.714	24.135
ATOM	286	C2	DG	9	-0.347	-4.255	24.429
Атом	287	N2	DG	9	0.622	-5.125	24.483
Атом	288	H21	DG	9	0.381	-6.084	24.654
Атом	289	H22	DG	9	1.590	-4.814	24.447
ATOM	290	N3	DG	9	-1.585	-4.700	24.617
Атом	291	C4	DG	9	-2.510	-3.694	24.643
Атом	292	C3 ${ }^{\prime}$	DG	9	-6.522	-6.233	25.754
ATOM	293	H3'	DG	9	-7.466	-6.019	26.260
Атом	294	C2'	DG	9	-5.448	-5.230	26.171
ATOM	295	H2'1	DG	9	-5.924	-4.277	26.406
ATOM	296	H2 '2	DG	9	-4.854	-5.573	27.016
Атом	297	O3'	DG	9	-6.137	-7.590	25.968
Атом	298	P	DT	10	-6.154	-8.287	27.428
ATOM	299	01P	DT	10	-6.271	-9.753	27.226
ATOM	300	02P	DT	10	-7.162	-7.605	28.277
Атом	301	05'	DT	10	-4.692	-7.972	28.031
Атом	302	C5 ${ }^{\prime}$	DT	10	-3.537	-8.621	27.513
ATOM	303	H5'1	DT	10	-3.553	-8.575	26.423
Атом	304	H5'2	DT	10	-3.551	-9.672	27.809
ATOM	305	C4'	DT	10	-2.223	-7.994	27.995
ATOM	306	H4'	DT	10	-1.407	-8.580	27.566
Атом	307	O4'	DT	10	-2.091	-6.662	27.523
ATOM	308	C1 ${ }^{\prime}$	DT	10	-1.244	-5.999	28.437
Атом	309	H1'	DT	10	-0.216	-6.341	28.283
ATOM	310	N1	DT	10	-1.331	-4.525	28.245
Атом	311	C6	DT	10	-2.532	-3.852	28.375
Атом	312	н6	DT	10	-3.415	-4.403	28.673

ATOM	313	C5	DT	10	-2.618	-2.517	28.122
ATOM	314	C7	DT	10	-3.952	-1.809	28.297
ATOM	315	H71	DT	10	-3.858	-1.055	29.079
Атом	316	H72	DT	10	-4.222	-1.301	27.372
Атом	317	H73	DT	10	-4.741	-2.512	28.567
ATOM	318	C4	DT	10	-1.440	-1.768	27.681
Атом	319	04	DT	10	-1.389	-0.579	27.372
Атом	320	N3	DT	10	-0.284	-2.506	27.615
Атом	321	H3	DT	10	0.568	-2.011	27.393
Атом	322	C2	DT	10	-0.158	-3.842	27.900
ATOM	323	02	DT	10	0.955	-4.363	27.848
ATOM	324	C3'	DT	10	-2.028	-7.972	29.523
Атом	325	H3'	DT	10	-2.947	-8.267	30.033
Атом	326	C2'	DT	10	-1.710	-6.498	29.803
Атом	327	H2'1	DT	10	-2.622	-5.990	30.115
Атом	328	H2'2	DT	10	-0.933	-6.369	30.554
Атом	329	O3'	DT	10	-0.951	-8.844	29.860
Атом	330	P	DC	11	-0.569	-9.220	31.384
Атом	331	01P	DC	11	-1.762	-9.019	32.243
Атом	332	02P	DC	11	0.083	-10.554	31.372
ATOM	333	O5'	DC	11	0.530	-8.117	31.793
Атом	334	C5 ${ }^{\prime}$	DC	11	1.867	-8.161	31.299
Атом	335	H5'1	DC	11	1.856	-8.160	30.207
Атом	336	H5'2	DC	11	2.347	-9.081	31.635
ATOM	337	C4 ${ }^{\prime}$	DC	11	2.709	-6.968	31.787
Атом	338	H4'	DC	11	3.741	-7.142	31.498
ATOM	339	O4'	DC	11	2.250	-5.800	31.111
ATOM	340	C1'	DC	11	2.164	-4.756	32.054
ATOM	341	H1'	DC	11	3.168	-4.340	32.201
Атом	342	N1	DC	11	1.247	-3.682	31.556
Атом	343	C6	DC	11	-0.117	-3.733	31.741
Атом	344	H6	DC	11	-0.579	-4.620	32.155
ATOM	345	C5	DC	11	-0.893	-2.672	31.407
ATOM	346	H5	DC	11	-1.961	-2.713	31.564
Атом	347	C4	DC	11	-0.246	-1.534	30.862
ATOM	348	N4	DC	11	-0.930	-0.471	30.564
Атом	349	H41	DC	11	-1.919	-0.442	30.729
ATOM	350	H42	DC	11	-0.426	0.312	30.160
ATOM	351	N3	DC	11	1.045	-1.477	30.624
Атом	352	C2	DC	11	1.812	-2.545	30.952
Атом	353	02	DC	11	3.019	-2.441	30.727
Атом	354	C3'	DC	11	2.572	-6.746	33.319
ATOM	355	H3'	DC	11	1.963	-7.549	33.738
ATOM	356	C2'	DC	11	1.748	-5.461	33.353
Атом	357	H2 ' 1	DC	11	0.698	-5.749	33.337
ATOM	358	H2 '2	DC	11	1.953	-4.858	34.237
ATOM	359	O3'	DC	11	3.698	-6.601	34.201
Атом	360	P	DC3	12	5.266	-6.529	33.814
Атом	361	01P	DC3	12	5.591	-7.558	32.798
Атом	362	O2P	DC3	12	6.018	-6.542	35.093
Атом	363	05'	DC3	12	5.433	-5.061	33.181
ATOM	364	C5'	DC3	12	6.699	-4.572	32.743
Атом	365	H5'1	DC3	12	6.765	-4.656	31.657
ATOM	366	H5'2	DC3	12	7.506	-5.169	33.174
АTOM	367	C4'	DC3	12	6.925	-3.105	33.151
ATOM	368	H4'	DC3	12	7.817	-2.744	32.634
ATOM	369	O4'	DC3	12	5.810	-2.305	32.765
Атом	370	C1'	DC3	12	5.520	-1.408	33.821
ATOM	371	H1'	DC3	12	6.172	-0.533	33.724
ATOM	372	N1	DC3	12	4.087	-0.996	33.780
ATOM	373	C6	DC3	12	3.077	-1.893	34.030
ATOM	374	H6	DC3	12	3.329	-2.930	34.227
Атом	375	C5	DC3	12	1.782	-1.486	34.019
ATOM	376	H5	DC3	12	0.989	-2.191	34.219
ATOM	377	C4	DC3	12	1.532	-0.120	33.719

ATOM	378	N4	DC3	12	0.314	0.335	33.666
АTOM	379	H41	DC3	12	-0.459	-0.285	33.824
ATOM	380	H42	DC3	12	0.184	1.299	33.377
Атом	381	N3	DC3	12	2.481	0.760	33.480
ATOM	382	C2	DC3	12	3.770	0.345	33.522
ATOM	383	02	DC3	12	4.636	1.202	33.343
Атом	384	C3'	DC3	12	7.145	-2.922	34.668
Атом	385	H3'	DC3	12	7.188	-3.888	35.178
Атом	386	C2'	DC3	12	5.910	-2.144	35.108
Атом	387	H2 ' 1	DC3	12	5.145	-2.853	35.421
ATOM	388	H2'2	DC3	12	6.121	-1.443	35.917
ATOM	389	O3'	DC3	12	8.314	-2.153	34.940
ATOM	390	H3T	DC3	12	8.459	-2.113	35.908
TER							
ATOM	391	H5T	DG5	13	1.770	11.245	32.412
Атом	392	O5'	DG5	13	2.133	11.932	31.815
Атом	393	C5'	DG5	13	2.107	11.444	30.475
Атом	394	H5'1	DG5	13	2.476	12.226	29.808
ATOM	395	H5'2	DG5	13	1.080	11.209	30.186
Атом	396	C4'	DG5	13	2.985	10.190	30.297
ATOM	397	H4'	DG5	13	3.991	10.403	30.654
Атом	398	O4'	DG5	13	2.424	9.121	31.052
Атом	399	C1'	DG5	13	2.318	8.016	30.179
Атом	400	H1'	DG5	13	3.308	7.560	30.070
ATOM	401	N9	DG5	13	1.400	6.988	30.714
Атом	402	C8	DG5	13	0.029	6.898	30.654
ATOM	403	H8	DG5	13	-0.584	7.668	30.201
ATOM	404	N7	DG5	13	-0.461	5.813	31.203
ATOM	405	C5	DG5	13	0.681	5.121	31.644
Атом	406	C6	DG5	13	0.849	3.849	32.306
Атом	407	06	DG5	13	-0.004	3.043	32.685
Атом	408	N1	DG5	13	2.171	3.514	32.532
ATOM	409	H1	DG5	13	2.356	2.614	32.950
ATOM	410	C2	DG5	13	3.216	4.315	32.214
Атом	411	N2	DG5	13	4.419	3.870	32.450
ATOM	412	H21	DG5	13	5.193	4.444	32.160
Атом	413	H22	DG5	13	4.559	2.930	32.811
ATOM	414	N3	DG5	13	3.113	5.502	31.632
ATOM	415	C4	DG5	13	1.817	5.848	31.360
Атом	416	C3'	DG5	13	2.997	9.743	28.809
Атом	417	H3'	DG5	13	2.701	10.561	28.148
АTOM	418	C2 ${ }^{\prime}$	DG5	13	1.932	8.646	28.843
ATOM	419	H2 ' 1	DG5	13	0.931	9.079	28.885
ATOM	420	H2'2	DG5	13	2.025	7.952	28.008
Атом	421	$03{ }^{\prime}$	DG5	13	4.198	9.130	28.322
ATOM	422	P	DG	14	5.671	9.782	28.457
ATOM	423	01P	DG	14	5.556	11.163	28.987
Атом	424	02P	DG	14	6.392	9.582	27.178
Атом	425	O5'	DG	14	6.308	8.844	29.619
Атом	426	C5'	DG	14	7.398	7.931	29.434
Атом	427	H5'1	DG	14	7.844	7.778	30.418
ATOM	428	H5'2	DG	14	8.169	8.397	28.818
Атом	429	C4'	DG	14	7.103	6.516	28.877
ATOM	430	H4'	DG	14	7.900	5.876	29.246
Атом	431	O4'	DG	14	5.897	5.930	29.348
ATOM	432	C1 ${ }^{\prime}$	DG	14	5.691	4.776	28.544
ATOM	433	H1'	DG	14	6.361	3.973	28.870
Атом	434	N9	DG	14	4.290	4.301	28.625
ATOM	435	C8	DG	14	3.146	4.964	28.253
ATOM	436	H8	DG	14	3.173	5.964	27.839
ATOM	437	N7	DG	14	2.041	4.297	28.463
ATOM	438	C5	DG	14	2.493	3.082	29.000
Атом	439	C6	DG	14	1.778	1.919	29.458
ATOM	440	06	DG	14	0.564	1.728	29.518
ATOM	441	N1	DG	14	2.601	0.896	29.882

ATOM	442	H1	DG	14	2.157	0.034	30.159
ATOM	443	C2	DG	14	3.953	0.972	29.896
Атом	444	N2	DG	14	4.600	-0.100	30.261
Атом	445	H21	DG	14	5.604	-0.076	30.232
ATOM	446	H22	DG	14	4.101	-0.962	30.469
АтОм	447	N3	DG	14	4.658	2.035	29.515
ATOM	448	C4	DG	14	3.871	3.066	29.075
ATOM	449	C3'	DG	14	7.050	6.369	27.343
ATOM	450	H3'	DG	14	6.543	7.245	26.951
ATOM	451	C2'	DG	14	6.087	5.201	27.127
АтОм	452	H2'1	DG	14	5.223	5.556	26.564
ATOM	453	H2'2	DG	14	6.553	4.378	26.596
ATOM	454	O3'	DG	14	8.279	6.225	26.611
Атом	455	P	DA	15	9.515	5.227	26.963
ATOM	456	01P	DA	15	10.478	5.340	25.840
ATOM	457	O2P	DA	15	10.004	5.538	28.328
Атом	458	05'	DA	15	8.948	3.713	26.936
ATOM	459	C5 ${ }^{\prime}$	DA	15	9.537	2.693	27.739
Атом	460	H5'1	DA	15	9.337	2.900	28.791
ATOM	461	H5 '2	DA	15	10.619	2.707	27.595
Атом	462	C4'	DA	15	9.036	1.274	27.415
ATOM	463	H4'	DA	15	9.504	0.594	28.130
ATOM	464	O4'	DA	15	7.625	1.180	27.581
Атом	465	C1 ${ }^{\prime}$	DA	15	7.111	0.335	26.567
Атом	466	H1'	DA	15	7.181	-0.713	26.876
ATOM	467	N9	DA	15	5.699	0.702	26.310
Атом	468	C8	DA	15	5.205	1.873	25.783
ATOM	469	H8	DA	15	5.852	2.665	25.429
ATOM	470	N7	DA	15	3.899	1.959	25.771
Атом	471	C5	DA	15	3.507	0.723	26.310
Атом	472	C6	DA	15	2.262	0.114	26.603
ATOM	473	N6	DA	15	1.086	0.687	26.431
ATOM	474	H61	DA	15	0.246	0.188	26.701
Атом	475	H62	DA	15	1.041	1.614	26.042
ATOM	476	N1	DA	15	2.199	-1.111	27.121
Атом	477	C2	DA	15	3.337	-1.755	27.350
Атом	478	H2	DA	15	3.246	-2.751	27.764
Атом	479	N3	DA	15	4.574	-1.321	27.131
ATOM	480	C4	DA	15	4.592	-0.058	26.614
Атом	481	C3'	DA	15	9.396	0.784	25.999
Атом	482	H3'	DA	15	9.952	1.551	25.455
Атом	483	C2'	DA	15	8.022	0.570	25.363
ATOM	484	H2 ' 1	DA	15	7.740	1.480	24.835
Атом	485	H2 '2	DA	15	8.001	-0.276	24.680
Атом	486	O3'	DA	15	10.166	-0.413	26.102
ATOM	487	P	DC	16	10.783	-1.189	24.822
Атом	488	01P	DC	16	10.875	-0.248	23.679
ATOM	489	02P	DC	16	12.011	-1.894	25.268
ATOM	490	O5'	DC	16	9.657	-2.294	24.483
Атом	491	C5 ${ }^{\prime}$	DC	16	9.382	-3.347	25.400
Атом	492	H5 ' 1	DC	16	9.314	-2.937	26.410
ATOM	493	H5'2	DC	16	10.201	-4.068	25.384
Атом	494	C4'	DC	16	8.067	-4.083	25.110
Атом	495	H4'	DC	16	7.919	-4.801	25.919
Атом	496	O4'	DC	16	6.962	-3.188	25.127
ATOM	497	C1 ${ }^{\prime}$	DC	16	5.985	-3.727	24.260
Атом	498	H1'	DC	16	5.482	-4.566	24.755
ATOM	499	N1	DC	16	4.995	-2.684	23.871
ATOM	500	C6	DC	16	5.401	-1.457	23.403
Атом	501	H6	DC	16	6.460	-1.269	23.265
ATOM	502	C5	DC	16	4.481	-0.492	23.143
Атом	503	H5	DC	16	4.798	0.478	22.793
Атом	504	C4	DC	16	3.114	-0.818	23.356
Атом	505	N4	DC	16	2.178	0.069	23.191
Атом	506	H41	DC	16	2.418	1.001	22.906

ATOM	507	H42	DC	16	1.229	-0.204	23.420
ATOM	508	N3	DC	16	2.704	-1.997	23.770
Атом	509	C2	DC	16	3.630	-2.947	24.031
Атом	510	02	DC	16	3.213	-4.041	24.411
ATOM	511	C3'	DC	16	8.027	-4.867	23.784
АтОм	512	H3'	DC	16	8.925	-4.681	23.190
ATOM	513	C2'	DC	16	6.794	-4.273	23.087
Атом	514	H2 ' 1	DC	16	7.113	-3.461	22.433
Атом	515	H2'2	DC	16	6.226	-5.006	22.517
ATOM	516	O3'	DC	16	7.907	-6.254	24.104
АтОм	517	P	DT	17	7.787	-7.422	22.998
ATOM	518	01P	DT	17	8.355	-8.664	23.578
ATOM	519	O2P	DT	17	8.315	-6.922	21.703
Атом	520	O5'	DT	17	6.190	-7.607	22.894
Атом	521	C5 ${ }^{\prime}$	DT	17	5.571	-8.196	21.759
Атом	522	H5'1	DT	17	5.848	-9.250	21.700
Атом	523	H5'2	DT	17	5.908	-7.694	20.851
ATOM	524	C4'	DT	17	4.041	-8.089	21.848
Атом	525	H4'	DT	17	3.688	-8.675	22.698
ATOM	526	O4'	DT	17	3.640	-6.732	22.008
Атом	527	C1'	DT	17	2.427	-6.544	21.307
ATOM	528	H1'	DT	17	1.596	-6.946	21.897
ATOM	529	N1	DT	17	2.206	-5.103	21.005
Атом	530	C6	DT	17	3.264	-4.281	20.667
Атом	531	H6	DT	17	4.262	-4.700	20.626
ATOM	532	C5	DT	17	3.067	-2.965	20.386
Атом	533	C7	DT	17	4.264	-2.102	20.020
ATOM	534	H71	DT	17	4.271	-1.928	18.944
Атом	535	H72	DT	17	4.184	-1.135	20.517
Атом	536	H73	DT	17	5.198	-2.578	20.323
Атом	537	C4	DT	17	1.726	-2.383	20.457
ATOM	538	04	DT	17	1.419	-1.212	20.243
ATOM	539	N3	DT	17	0.730	-3.270	20.794
ATOM	540	H3	DT	17	-0.215	-2.916	20.819
ATOM	541	C2	DT	17	0.894	-4.611	21.041
ATOM	542	02	DT	17	-0.096	-5.305	21.266
Атом	543	C3 ${ }^{\prime}$	DT	17	3.372	-8.608	20.561
ATOM	544	H3'	DT	17	4.135	-8.897	19.835
Атом	545	C2 ${ }^{\prime}$	DT	17	2.601	-7.388	20.049
Атом	546	H2 '1	DT	17	3.212	-6.855	19.319
Атом	547	H2 '2	DT	17	1.637	-7.654	19.618
Атом	548	O3'	DT	17	2.518	-9.709	20.854
ATOM	549	P	DC	18	1.990	-10.719	19.706
Атом	550	01P	DC	18	1.631	-11.999	20.363
Атом	551	O2P	DC	18	2.980	-10.745	18.600
ATOM	552	05'	DC	18	0.643	-10.032	19.146
Атом	553	C5'	DC	18	-0.575	-10.086	19.882
Атом	554	H5 ' 1	DC	18	-0.430	-9.640	20.867
Атом	555	H5'2	DC	18	-0.864	-11.130	20.018
Атом	556	C4'	DC	18	-1.730	-9.362	19.176
Атом	557	H4'	DC	18	-2.652	-9.603	19.710
ATOM	558	$04{ }^{\prime}$	DC	18	-1.543	-7.955	19.238
Атом	559	C1 ${ }^{\prime}$	DC	18	-2.038	-7.388	18.042
Атом	560	H1'	DC	18	-3.126	-7.278	18.108
Атом	561	N1	DC	18	-1.386	-6.062	17.835
ATOM	562	C6	DC	18	-0.023	-5.962	17.686
Атом	563	H6	DC	18	0.579	-6.863	17.688
ATOM	564	C5	DC	18	0.561	-4.744	17.561
ATOM	565	H5	DC	18	1.631	-4.667	17.448
Атом	566	C4	DC	18	-0.292	-3.609	17.585
ATOM	567	N4	DC	18	0.209	-2.415	17.488
Атом	568	H41	DC	18	1.193	-2.289	17.350
Атом	569	H42	DC	18	-0.434	-1.632	17.526
Атом	570	N3	DC	18	-1.598	-3.673	17.742
Атом	571	C2	DC	18	-2.166	-4.896	17.870

ATOM	572	02	DC	18	-3.388	-4.925	18.015
ATOM	573	C3'	DC	18	-1.914	-9.762	17.699
Атом	574	H3'	DC	18	-1.143	-10.473	17.396
ATOM	575	C2'	DC	18	-1.723	-8.430	16.965
ATOM	576	H2 '1	DC	18	-0.685	-8.363	16.643
АтОм	577	H2 '2	DC	18	-2.378	-8.320	16.103
ATOM	578	O3'	DC	18	-3.206	-10.338	17.526
Атом	579	P	DG	19	-3.674	-11.038	16.147
Атом	580	01P	DG	19	-4.772	-11.985	16.465
ATOM	581	02P	DG	19	-2.479	-11.543	15.425
Атом	582	O5'	DG	19	-4.288	-9.808	15.313
ATOM	583	C5'	DG	19	-5.464	-9.146	15.759
Атом	584	H5 ' 1	DG	19	-5.383	-8.927	16.825
Атом	585	H5'2	DG	19	-6.324	-9.801	15.610
Атом	586	C4 ${ }^{\prime}$	DG	19	-5.715	-7.827	15.021
Атом	587	H4'	DG	19	-6.699	-7.463	15.324
Атом	588	O4'	DG	19	-4.750	-6.846	15.392
Атом	589	C1 ${ }^{\prime}$	DG	19	-4.535	-6.058	14.240
Атом	590	H1'	DG	19	-5.405	-5.413	14.078
Атом	591	N9	DG	19	-3.333	-5.201	14.357
Атом	592	C8	DG	19	-1.998	-5.526	14.306
Атом	593	H8	DG	19	-1.651	-6.548	14.208
ATOM	594	N7	DG	19	-1.192	-4.496	14.395
ATOM	595	C5	DG	19	-2.063	-3.398	14.501
Атом	596	C6	DG	19	-1.834	-1.975	14.608
Атом	597	06	DG	19	-0.773	-1.348	14.653
Атом	598	N1	DG	19	-2.998	-1.232	14.650
Атом	599	H1	DG	19	-2.902	-0.230	14.719
ATOM	600	C2	DG	19	-4.238	-1.773	14.596
Атом	601	N2	DG	19	-5.262	-0.971	14.618
Атом	602	H21	DG	19	-6.177	-1.377	14.549
Атом	603	H22	DG	19	-5.124	0.035	14.653
ATOM	604	N3	DG	19	-4.499	-3.067	14.504
Атом	605	C4	DG	19	-3.371	-3.833	14.467
Атом	606	C3'	DG	19	-5.699	-7.948	13.483
ATOM	607	H3'	DG	19	-5.556	-8.982	13.164
ATOM	608	C2 ${ }^{\text {' }}$	DG	19	-4.490	-7.083	13.115
Атом	609	H2 ' 1	DG	19	-3.579	-7.680	13.179
Атом	610	H2 '2	DG	19	-4.581	-6.622	12.134
Атом	611	O3'	DG	19	-6.931	-7.426	12.991
Атом	612	P	DC	20	-7.385	-7.507	11.444
Атом	613	01P	DC	20	-8.729	-8.136	11.391
ATOM	614	02P	DC	20	-6.289	-8.088	10.629
Атом	615	O5'	DC	20	-7.526	-5.951	11.052
Атом	616	C5'	DC	20	-8.550	-5.130	11.614
Атом	617	H5'1	DC	20	-8.546	-5.241	12.699
Атом	618	H5 '2	DC	20	-9.521	-5.464	11.245
ATOM	619	C4 ${ }^{\prime}$	DC	20	-8.388	-3.632	11.285
ATOM	620	H4'	DC	20	-9.220	-3.092	11.740
Атом	621	O4'	DC	20	-7.157	-3.164	11.842
Атом	622	C1'	DC	20	-6.423	-2.547	10.797
ATOM	623	H1'	DC	20	-6.760	-1.508	10.703
Атом	624	N1	DC	20	-4.956	-2.573	11.037
Атом	625	C6	DC	20	-4.248	-3.749	11.002
Атом	626	H6	DC	20	-4.785	-4.686	10.901
ATOM	627	C5	DC	20	-2.893	-3.728	11.095
Атом	628	H5	DC	20	-2.335	-4.651	11.067
Атом	629	C4	DC	20	-2.269	-2.458	11.235
Атом	630	N4	DC	20	-0.980	-2.354	11.366
Атом	631	H41	DC	20	-0.408	-3.178	11.380
ATOM	632	H42	DC	20	-0.606	-1.425	11.527
ATOM	633	N3	DC	20	-2.930	-1.325	11.306
Атом	634	C2	DC	20	-4.278	-1.359	11.210
Атом	635	02	DC	20	-4.859	-0.276	11.271
Атом	636	C3 ${ }^{\prime}$	DC	20	-8.353	-3.335	9.770

ATOM	637	H3'	DC	20	-8.836	-4.115	9.176
Атом	638	C2 ${ }^{\prime}$	DC	20	-6.855	-3.286	9.527
Атом	639	H2 '1	DC	20	-6.444	-4.292	9.470
Атом	640	H2 '2	DC	20	-6.618	-2.731	8.627
ATOM	641	O3'	DC	20	-8.808	-2.035	9.417
ATOM	642	P	DT	21	-10.348	-1.632	9.257
Атом	643	01P	DT	21	-10.903	-2.337	8.075
Атом	644	O2P	DT	21	-11.035	-1.749	10.567
Атом	645	05^{\prime}	DT	21	-10.164	-0.070	8.885
ATOM	646	C5'	DT	21	-9.712	0.881	9.849
Атом	647	H5 ' 1	DT	21	-9.389	0.373	10.760
ATOM	648	H5'2	DT	21	-10.552	1.525	10.114
ATOM	649	C4'	DT	21	-8.548	1.771	9.369
Атом	650	H4'	DT	21	-8.499	2.619	10.054
Атом	651	O4'	DT	21	-7.290	1.104	9.434
Атом	652	C1 ${ }^{\prime}$	DT	21	-6.470	1.706	8.447
Атом	653	H1'	DT	21	-6.214	2.722	8.764
Атом	654	N1	DT	21	-5.222	0.927	8.200
Атом	655	C6	DT	21	-5.269	-0.387	7.781
Атом	656	H6	DT	21	-6.231	-0.829	7.556
Атом	657	C5	DT	21	-4.131	-1.126	7.666
Атом	658	C7	DT	21	-4.207	-2.563	7.178
ATOM	659	H71	DT	21	-3.511	-2.697	6.350
ATOM	660	H72	DT	21	-3.913	-3.236	7.984
ATOM	661	H73	DT	21	-5.209	-2.814	6.831
Атом	662	C4	DT	21	-2.830	-0.544	7.992
ATOM	663	04	DT	21	-1.744	-1.119	7.957
Атом	664	N3	DT	21	-2.862	0.782	8.355
ATOM	665	H3	DT	21	-1.975	1.234	8.524
Атом	666	C2	DT	21	-3.990	1.567	8.409
Атом	667	02	DT	21	-3.864	2.775	8.605
Атом	668	C3 ${ }^{\prime}$	DT	21	-8.684	2.335	7.940
Атом	669	H3'	DT	21	-9.581	1.948	7.450
Атом	670	C2 ${ }^{\text {' }}$	DT	21	-7.418	1.806	7.256
Атом	671	H2 ' 1	DT	21	-7.622	0.820	6.838
ATOM	672	H2'2	DT	21	-7.034	2.473	6.486
ATOM	673	O3'	DT	21	-8.707	3.760	8.000
Атом	674	P	DA	22	-9.041	4.679	6.716
ATOM	675	01P	DA	22	-9.571	5.974	7.212
Атом	676	O2P	DA	22	-9.870	3.891	5.769
Атом	677	05'	DA	22	-7.609	4.937	6.016
Атом	678	C5 ${ }^{\prime}$	DA	22	-6.714	5.962	6.448
ATOM	679	H5 ' 1	DA	22	-6.400	5.771	7.476
Атом	680	H5 '2	DA	22	-7.235	6.921	6.425
Атом	681	C4'	DA	22	-5.465	6.083	5.549
Атом	682	H4'	DA	22	-5.003	7.047	5.741
Атом	683	O4'	DA	22	-4.526	5.077	5.915
ATOM	684	C1'	DA	22	-3.992	4.557	4.719
ATOM	685	H1'	DA	22	-3.249	5.257	4.321
Атом	686	N9	DA	22	-3.352	3.239	4.952
Атом	687	C8	DA	22	-3.915	1.984	4.904
ATOM	688	H8	DA	22	-4.977	1.826	4.755
Атом	689	N7	DA	22	-3.065	1.001	5.055
Атом	690	C5	DA	22	-1.839	1.669	5.205
Атом	691	C6	DA	22	-0.493	1.259	5.376
ATOM	692	N6	DA	22	-0.100	0.002	5.464
ATOM	693	H61	DA	22	0.871	-0.213	5.651
ATOM	694	H62	DA	22	-0.800	-0.723	5.470
Атом	695	N1	DA	22	0.499	2.148	5.466
Атом	696	C2	DA	22	0.182	3.437	5.423
ATOM	697	H2	DA	22	1.007	4.134	5.508
Атом	698	N3	DA	22	-1.026	3.976	5.285
Атом	699	C4	DA	22	-2.005	3.029	5.169
Атом	700	C3'	DA	22	-5.805	5.909	4.039
Атом	701	H3'	DA	22	-6.887	5.881	3.894

ATOM	702	C2 ${ }^{\prime}$	DA	22	-5.206	4.525	3.787
ATOM	703	H2'1	DA	22	-5.919	3.763	4.102
Атом	704	H2'2	DA	22	-4.919	4.376	2.745
Атом	705	O3'	DA	22	-5.245	6.759	3.030
Атом	706	P	DG	23	-4.643	8.239	3.241
Атом	707	01P	DG	23	-4.613	8.904	1.916
Атом	708	O2P	DG	23	-5.311	8.922	4.376
Атом	709	05'	DG	23	-3.140	7.833	3.643
Атом	710	C5 ${ }^{\prime}$	DG	23	-2.097	8.788	3.792
Атом	711	H5'1	DG	23	-1.830	8.855	4.848
ATOM	712	H5'2	DG	23	-2.433	9.776	3.469
ATOM	713	C4 ${ }^{\prime}$	DG	23	-0.838	8.413	2.986
Атом	714	H4'	DG	23	-0.035	9.078	3.309
Атом	715	O4'	DG	23	-0.439	7.064	3.243
Атом	716	C1'	DG	23	-0.090	6.461	2.006
Атом	717	H1'	DG	23	0.948	6.704	1.763
Атом	718	N9	DG	23	-0.251	4.984	2.047
Атом	719	C8	DG	23	-1.401	4.234	1.958
ATOM	720	H8	DG	23	-2.384	4.686	1.883
Атом	721	N7	DG	23	-1.208	2.941	1.989
ATOM	722	C5	DG	23	0.185	2.820	2.099
ATOM	723	C6	DG	23	1.045	1.664	2.183
Атом	724	06	DG	23	0.750	0.469	2.213
Атом	725	N1	DG	23	2.387	1.977	2.239
ATOM	726	H1	DG	23	3.040	1.210	2.285
Атом	727	C2	DG	23	2.866	3.243	2.232
Атом	728	N2	DG	23	4.163	3.388	2.211
Атом	729	H21	DG	23	4.530	4.323	2.209
ATOM	730	H22	DG	23	4.775	2.575	2.207
Атом	731	N3	DG	23	2.117	4.341	2.174
ATOM	732	C4	DG	23	0.777	4.067	2.115
Атом	733	C3'	DG	23	-1.001	8.580	1.461
ATOM	734	H3'	DG	23	-1.947	9.066	1.214
Атом	735	C2 ${ }^{\prime}$	DG	23	-1.001	7.130	0.981
Атом	736	H2'1	DG	23	-2.017	6.742	1.050
Атом	737	H2'2	DG	23	-0.621	7.012	-0.033
Атом	738	O3'	DG	23	0.097	9.343	0.965
ATOM	739	P	DC3	24	0.283	9.738	-0.591
ATOM	740	01P	DC3	24	-0.926	9.344	-1.356
Атом	741	O2P	DC3	24	0.740	11.149	-0.654
Атом	742	05'	DC3	24	1.500	8.776	-1.038
Атом	743	C5 ${ }^{\prime}$	DC3	24	2.840	9.062	-0.643
ATOM	744	H5'1	DC3	24	2.889	9.147	0.444
Атом	745	H5'2	DC3	24	3.139	10.020	-1.071
Атом	746	C4'	DC3	24	3.858	8.002	-1.094
ATOM	747	H4'	DC3	24	4.859	8.391	-0.893
Атом	748	$04{ }^{\prime}$	DC3	24	3.710	6.796	-0.356
Атом	749	C1'	DC3	24	4.057	5.689	-1.178
Атом	750	H1'	DC3	24	4.947	5.197	-0.770
Атом	751	N1	DC3	24	2.930	4.712	-1.216
ATOM	752	C6	DC3	24	1.620	5.126	-1.286
ATOM	753	H6	DC3	24	1.401	6.188	-1.318
ATOM	754	C5	DC3	24	0.618	4.209	-1.295
ATOM	755	H5	DC3	24	-0.410	4.532	-1.337
Атом	756	C4	DC3	24	0.987	2.838	-1.232
ATOM	757	N4	DC3	24	0.084	1.903	-1.182
ATOM	758	H41	DC3	24	-0.890	2.149	-1.159
Атом	759	H42	DC3	24	0.403	0.945	-1.082
Атом	760	N3	DC3	24	2.233	2.418	-1.187
ATOM	761	C2	DC3	24	3.223	3.342	-1.195
ATOM	762	O2	DC3	24	4.380	2.918	-1.191
ATOM	763	C3'	DC3	24	3.778	7.632	-2.582
Атом	764	H3'	DC3	24	2.732	7.572	-2.892
ATOM	765	C2 ${ }^{\text {' }}$	DC3	24	4.387	6.234	-2.574
Атом	766	H2'1	DC3	24	3.968	5.614	-3.368

ATOM	767	H2'2	DC3	24	5.472	6.289	-2.685
ATOM	768	O3'	DC3	24	4.513	8.506	-3.437
ATOM	769	H3T	DC3	24	5.461	8.494	-3.194
TER							
END							

C2. PDB File of the fully reduced R-crotonaldehyde-derived cross-link in d(GCTAGCXAGTCC) •d(GGACTCYCTAGC)

REMARK							
ATOM	1	H5T	DG5	1	8.496	-3.959	-2.697
Атом	2	O5'	DG5	1	9.141	-4.676	-2.770
Атом	3	C5 ${ }^{\prime}$	DG5	1	9.341	-5.123	-1.441
Атом	4	H5'1	DG5	1	10.389	-5.392	-1.288
Атом	5	H5'2	DG5	1	8.718	-5.999	-1.255
Атом	6	C4'	DG5	1	8.961	-4.008	-0.455
ATOM	7	H4'	DG5	1	9.787	-3.297	-0.367
ATOM	8	O4'	DG5	1	7.788	-3.340	-0.923
Атом	9	C1'	DG5	1	7.025	-3.016	0.222
Атом	10	H1'	DG5	1	7.503	-2.184	0.759
Атом	11	N9	DG5	1	5.638	-2.634	-0.136
Атом	12	C8	DG5	1	4.517	-3.426	-0.223
ATOM	13	H8	DG5	1	4.541	-4.494	-0.077
ATOM	14	N7	DG5	1	3.418	-2.785	-0.508
Атом	15	C5	DG5	1	3.840	-1.451	-0.617
Атом	16	C6	DG5	1	3.120	-0.243	-0.921
ATOM	17	06	DG5	1	1.929	-0.089	-1.186
Атом	18	N1	DG5	1	3.917	0.880	-0.940
Атом	19	H1	DG5	1	3.449	1.761	-1.092
Атом	20	C2	DG5	1	5.245	0.867	-0.685
ATOM	21	N2	DG5	1	5.861	2.015	-0.693
ATOM	22	H21	DG5	1	6.805	2.013	-0.356
ATOM	23	H22	DG5	1	5.327	2.871	-0.825
ATOM	24	N3	DG5	1	5.959	-0.220	-0.408
Атом	25	C4	DG5	1	5.198	-1.355	-0.390
Атом	26	C3'	DG5	1	8.613	-4.577	0.935
Атом	27	H3'	DG5	1	8.833	-5.643	1.013
Атом	28	C2 ${ }^{\text {' }}$	DG5	1	7.126	-4.291	1.059
ATOM	29	H2 ' 1	DG5	1	6.564	-5.109	0.611
Атом	30	H2'2	DG5	1	6.826	-4.119	2.093
ATOM	31	O3'	DG5	1	9.204	-3.889	2.010
Атом	32	P	DC	2	10.779	-3.922	2.292
ATOM	33	01P	DC	2	10.980	-4.592	3.592
ATOM	34	O2P	DC	2	11.462	-4.409	1.075
Атом	35	O5'	DC	2	10.989	-2.339	2.442
ATOM	36	C5 ${ }^{\prime}$	DC	2	10.552	-1.667	3.617
ATOM	37	H5'1	DC	2	11.423	-1.463	4.241
Атом	38	H5'2	DC	2	9.873	-2.303	4.187
ATOM	39	C4 ${ }^{\prime}$	DC	2	9.830	-0.348	3.306
Атом	40	H4'	DC	2	10.453	0.245	2.635
ATOM	41	O4'	DC	2	8.540	-0.556	2.723
Атом	42	C1'	DC	2	7.660	0.441	3.220
Атом	43	H1'	DC	2	7.850	1.394	2.714
Атом	44	N1	DC	2	6.236	0.034	3.066
Атом	45	C6	DC	2	5.859	-1.268	3.283
ATOM	46	H6	DC	2	6.622	-1.986	3.567
ATOM	47	C5	DC	2	4.561	-1.642	3.130
Атом	48	H5	DC	2	4.265	-2.665	3.293
ATOM	49	C4	DC	2	3.635	-0.629	2.745
ATOM	50	N4	DC	2	2.395	-0.932	2.515
Атом	51	H41	DC	2	2.054	-1.851	2.681
ATOM	52	H42	DC	2	1.790	-0.172	2.211
Атом	53	N3	DC	2	3.975	0.622	2.538
ATOM	54	C2	DC	2	5.271	0.987	2.705
Атом	55	02	DC	2	5.544	2.171	2.533

ATOM	56	C3'	DC	2	9.589	0.452	4.598
ATOM	57	H3'	DC	2	9.981	-0.089	5.464
Атом	58	C2'	DC	2	8.069	0.576	4.681
Атом	59	H2 ' 1	DC	2	7.673	-0.249	5.272
Атом	60	H2 '2	DC	2	7.756	1.536	5.093
Атом	61	O3'	DC	2	10.194	1.729	4.489
ATOM	62	P	DT	3	10.649	2.552	5.793
Атом	63	01P	DT	3	11.037	1.575	6.831
ATOM	64	O2P	DT	3	11.612	3.585	5.360
Атом	65	O5'	DT	3	9.293	3.264	6.266
ATOM	66	C5 ${ }^{\prime}$	DT	3	8.884	4.526	5.747
ATOM	67	H5'1	DT	3	8.832	4.468	4.656
Атом	68	H5 '2	DT	3	9.632	5.277	6.018
Атом	69	C4'	DT	3	7.517	4.984	6.293
Атом	70	H4'	DT	3	7.358	6.018	5.998
Атом	71	O4'	DT	3	6.497	4.166	5.721
Атом	72	C1'	DT	3	5.654	3.776	6.786
Атом	73	H1'	DT	3	5.014	4.630	7.048
ATOM	74	N1	DT	3	4.781	2.618	6.426
Атом	75	C6	DT	3	5.160	1.313	6.679
ATOM	76	H6	DT	3	6.152	1.118	7.060
Атом	77	C5	DT	3	4.304	0.281	6.467
Атом	78	C7	DT	3	4.755	-1.131	6.811
Атом	79	H71	DT	3	4.119	-1.521	7.607
ATOM	80	H72	DT	3	4.637	-1.772	5.939
Атом	81	H73	DT	3	5.796	-1.144	7.135
Атом	82	C4	DT	3	2.964	0.519	5.933
ATOM	83	04	DT	3	2.130	-0.346	5.671
ATOM	84	N3	DT	3	2.660	1.840	5.710
Атом	85	H3	DT	3	1.714	2.079	5.440
Атом	86	C2	DT	3	3.496	2.906	5.941
Атом	87	O2	DT	3	3.074	4.033	5.728
ATOM	88	C3'	DT	3	7.422	4.857	7.832
Атом	89	H3'	DT	3	8.413	4.780	8.283
Атом	90	C2 '	DT	3	6.642	3.561	7.944
ATOM	91	H2 ' 1	DT	3	7.310	2.723	7.754
Атом	92	H2 '2	DT	3	6.151	3.447	8.908
ATOM	93	O3'	DT	3	6.640	5.849	8.493
ATOM	94	P	DA	4	6.982	7.421	8.410
Атом	95	01P	DA	4	8.366	7.569	7.915
Атом	96	O2P	DA	4	6.596	8.073	9.676
Атом	97	O5'	DA	4	5.976	7.872	7.231
ATOM	98	C5 '	DA	4	4.920	8.816	7.405
Атом	99	H5 ' 1	DA	4	4.629	9.142	6.410
Атом	100	H5'2	DA	4	5.308	9.695	7.917
ATOM	101	C4'	DA	4	3.627	8.354	8.111
Атом	102	H4'	DA	4	2.809	8.835	7.572
Атом	103	O4'	DA	4	3.380	6.958	8.038
Атом	104	C1'	DA	4	2.526	6.634	9.118
Атом	105	H1'	DA	4	1.495	6.932	8.898
ATOM	106	N9	DA	4	2.598	5.171	9.343
ATOM	107	C8	DA	4	3.703	4.416	9.650
Атом	108	H8	DA	4	4.661	4.878	9.860
ATOM	109	N7	DA	4	3.511	3.119	9.604
Атом	110	C5	DA	4	2.148	3.027	9.280
ATOM	111	C6	DA	4	1.248	1.964	9.041
ATOM	112	N6	DA	4	1.550	0.681	9.083
Атом	113	H61	DA	4	0.834	0.006	8.830
Атом	114	H62	DA	4	2.468	0.426	9.391
ATOM	115	N1	DA	4	-0.025	2.180	8.733
ATOM	116	C2	DA	4	-0.441	3.437	8.666
ATOM	117	H2	DA	4	-1.486	3.583	8.424
Атом	118	N3	DA	4	0.278	4.537	8.854
ATOM	119	C4	DA	4	1.579	4.264	9.150
Атом	120	C3'	DA	4	3.462	8.799	9.575

ATOM	121	H3'	DA	4	4.399	9.176	9.987
Атом	122	C2'	DA	4	3.067	7.489	10.265
ATOM	123	H2'1	DA	4	3.968	7.034	10.679
Атом	124	H2 '2	DA	4	2.320	7.638	11.044
Атом	125	O3'	DA	4	2.453	9.809	9.609
ATOM	126	P	DG	5	2.036	10.614	10.945
Атом	127	01P	DG	5	1.503	11.932	10.541
Атом	128	O2P	DG	5	3.137	10.528	11.926
Атом	129	05'	DG	5	0.831	9.715	11.486
Атом	130	C5 ${ }^{\prime}$	DG	5	-0.409	9.641	10.801
Атом	131	H5 ' 1	DG	5	-0.241	9.382	9.756
Атом	132	H5'2	DG	5	-0.902	10.613	10.846
ATOM	133	C4 ${ }^{\prime}$	DG	5	-1.320	8.585	11.438
Атом	134	H4'	DG	5	-2.330	8.702	11.043
Атом	135	O4'	DG	5	-0.838	7.276	11.127
Атом	136	C1'	DG	5	-0.927	6.517	12.318
Атом	137	H1'	DG	5	-1.979	6.260	12.491
Атом	138	N9	DG	5	-0.140	5.261	12.286
ATOM	139	C8	DG	5	1.194	5.059	12.534
Атом	140	H8	DG	5	1.882	5.879	12.688
Атом	141	N7	DG	5	1.555	3.801	12.572
Атом	142	C5	DG	5	0.362	3.109	12.304
ATOM	143	C6	DG	5	0.059	1.702	12.174
ATOM	144	06	DG	5	0.810	0.724	12.211
Атом	145	N1	DG	5	-1.281	1.448	11.955
ATOM	146	H1	DG	5	-1.561	0.490	11.827
Атом	147	C2	DG	5	-2.224	2.408	11.822
Атом	148	N2	DG	5	-3.442	2.038	11.547
ATOM	149	H21	DG	5	-4.084	2.769	11.304
Атом	150	H22	DG	5	-3.686	1.054	11.466
Атом	151	N3	DG	5	-1.987	3.708	11.906
Атом	152	C4	DG	5	-0.677	4.002	12.147
ATOM	153	C3'	DG	5	-1.354	8.694	12.975
Атом	154	H3'	DG	5	-0.965	9.647	13.342
Атом	155	C2 ${ }^{\prime}$	DG	5	-0.482	7.515	13.385
Атом	156	H2'1	DG	5	0.569	7.773	13.267
ATOM	157	H2'2	DG	5	-0.703	7.180	14.396
Атом	158	O3'	DG	5	-2.631	8.417	13.510
ATOM	159	P	DC	6	-3.809	9.496	13.536
ATOM	160	01P	DC	6	-3.470	10.544	14.522
Атом	161	O2P	DC	6	-4.187	9.860	12.154
Атом	162	O5'	DC	6	-4.930	8.525	14.141
ATOM	163	C5 ${ }^{\prime}$	DC	6	-5.564	7.531	13.345
ATOM	164	H5 ' 1	DC	6	-5.018	7.393	12.410
Атом	165	H5'2	DC	6	-6.569	7.876	13.103
ATOM	166	C4 ${ }^{\prime}$	DC	6	-5.667	6.166	14.044
Атом	167	H4'	DC	6	-6.469	5.607	13.562
Атом	168	O4'	DC	6	-4.485	5.394	13.913
Атом	169	C1 ${ }^{\prime}$	DC	6	-4.554	4.380	14.897
Атом	170	H1'	DC	6	-5.226	3.583	14.559
Атом	171	N1	DC	6	-3.196	3.840	15.150
ATOM	172	C6	DC	6	-2.139	4.692	15.331
Атом	173	H6	DC	6	-2.329	5.762	15.323
Атом	174	C5	DC	6	-0.885	4.195	15.471
Атом	175	H5	DC	6	-0.047	4.858	15.591
Атом	176	C4	DC	6	-0.743	2.780	15.418
Атом	177	N4	DC	6	0.447	2.266	15.405
ATOM	178	H41	DC	6	1.246	2.860	15.350
Атом	179	H42	DC	6	0.510	1.257	15.315
ATOM	180	N3	DC	6	-1.740	1.942	15.249
ATOM	181	C2	DC	6	-2.991	2.454	15.137
Атом	182	02	DC	6	-3.923	1.667	15.018
Атом	183	C3'	DC	6	-5.980	6.218	15.541
ATOM	184	H3'	DC	6	-5.640	7.165	15.966
Атом	185	C2 ${ }^{\prime}$	DC	6	-5.164	5.062	16.124

ATOM	186	H2'1	DC	6	-4.394	5.471	16.776
ATOM	187	H2'2	DC	6	-5.787	4.360	16.675
Атом	188	O3'	DC	6	-7.371	6.042	15.743
ATOM	189	01P	X	7	-7.249	7.447	17.817
ATOM	190	P	X	7	-8.059	6.411	17.147
АтOM	191	02P	X	7	-9.498	6.631	16.894
ATOM	192	05'	x	7	-7.902	5.068	17.998
ATOM	193	C5'	X	7	-8.678	3.916	17.716
ATOM	194	H5'1	X	7	-8.631	3.703	16.648
ATOM	195	H5'2	x	7	-9.718	4.103	17.990
АTOM	196	C4'	X	7	-8.166	2.693	18.487
ATOM	197	$04{ }^{\prime}$	x	7	-6.919	2.277	17.928
ATOM	198	H4'	x	7	-8.897	1.892	18.382
Атом	199	C3'	x	7	-7.936	2.988	19.984
ATOM	200	O3'	X	7	-8.260	1.898	20.831
ATOM	201	H3'	x	7	-8.443	3.900	20.306
Атом	202	C2'	X	7	-6.423	3.139	20.031
ATOM	203	H2'1	X	7	-6.139	4.134	19.690
ATOM	204	H2'2	X	7	-6.024	2.923	21.023
Атом	205	C1'	x	7	-6.029	2.073	19.009
Атом	206	H1'	x	7	-6.247	1.093	19.438
ATOM	207	N9	X	7	-4.591	2.085	18.640
ATOM	208	C4	X	7	-3.872	0.967	18.293
ATOM	209	N3	X	7	-4.389	-0.262	18.016
ATOM	210	C8	x	7	-3.650	3.075	18.799
ATOM	211	H8	X	7	-3.916	4.090	19.055
Атом	212	N7	X	7	-2.414	2.682	18.636
ATOM	213	C5	X	7	-2.539	1.320	18.320
ATOM	214	C6	X	7	-1.558	0.302	18.035
Атом	215	06	x	7	-0.329	0.390	17.973
Атом	216	N1	x	7	-2.116	-0.946	17.814
Атом	217	H1	x	7	-1.459	-1.704	17.681
ATOM	218	C2	X	7	-3.466	-1.204	17.772
ATOM	219	N2	X	7	-3.816	-2.446	17.427
ATOM	220	H2	x	7	-3.085	-3.145	17.339
ATOM	221	C1x	X	7	-5.169	-2.871	17.065
ATOM	222	H1x	x	7	-5.898	-2.127	17.385
ATOM	223	Cmx	x	7	-5.506	-4.184	17.775
Атом	224	H1m1	x	7	-5.326	-4.079	18.844
Атом	225	H1m2	x	7	-4.882	-4.993	17.391
Атом	226	H1m3	x	7	-6.558	-4.423	17.623
Атом	227	C2x	x	7	-5.315	-3.078	15.542
ATOM	228	H2x1	X	7	-4.626	-3.861	15.228
Атом	229	H 2 x 2	X	7	-6.319	-3.461	15.361
Атом	230	P	DA	8	-9.770	1.512	21.205
ATOM	231	01P	DA	8	-10.067	2.018	22.560
Атом	232	O2P	DA	8	-10.656	1.841	20.069
Атом	233	O5'	DA	8	-9.598	-0.081	21.265
Атом	234	C5 ${ }^{\prime}$	DA	8	-9.618	-0.868	20.084
ATOM	235	H5'1	DA	8	-9.102	-0.331	19.287
ATOM	236	H5'2	DA	8	-10.655	-1.008	19.780
ATOM	237	C4 ${ }^{\prime}$	DA	8	-8.943	-2.242	20.246
Атом	238	H4'	DA	8	-9.351	-2.914	19.494
Атом	239	O4'	DA	8	-7.551	-2.108	20.000
Атом	240	C1'	DA	8	-6.834	-2.478	21.165
ATOM	241	H1'	DA	8	-6.439	-3.493	21.049
Атом	242	N9	DA	8	-5.726	-1.519	21.335
ATOM	243	C8	DA	8	-5.785	-0.186	21.672
ATOM	244	H8	DA	8	-6.724	0.317	21.871
ATOM	245	N7	DA	8	-4.624	0.420	21.686
ATOM	246	C5	DA	8	-3.737	-0.619	21.360
ATOM	247	C6	DA	8	-2.340	-0.721	21.191
Атом	248	N6	DA	8	-1.497	0.286	21.293
Атом	249	H61	DA	8	-0.519	0.141	21.068
Атом	250	H62	DA	8	-1.871	1.187	21.531

ATOM	251	N1	DA	8	-1.755	-1.874	20.883
ATOM	252	C2	DA	8	-2.525	-2.943	20.719
ATOM	253	H2	DA	8	-2.022	-3.869	20.475
Атом	254	N3	DA	8	-3.846	-3.001	20.817
Атом	255	C4	DA	8	-4.396	-1.797	21.143
ATOM	256	C3'	DA	8	-9.114	-2.891	21.625
Атом	257	H3'	DA	8	-9.993	-2.504	22.145
Атом	258	C2 ${ }^{\prime}$	DA	8	-7.831	-2.460	22.324
Атом	259	H2'1	DA	8	-7.959	-1.453	22.721
ATOM	260	H2'2	DA	8	-7.549	-3.143	23.122
ATOM	261	O3'	DA	8	-9.205	-4.300	21.454
ATOM	262	P	DG	9	-9.439	-5.306	22.685
Атом	263	01P	DG	9	-9.927	-4.531	23.844
Атом	264	02P	DG	9	-10.222	-6.456	22.187
ATOM	265	05'	DG	9	-7.944	-5.791	23.017
Атом	266	C5'	DG	9	-7.214	-6.604	22.110
Атом	267	H5'1	DG	9	-7.169	-6.109	21.139
Атом	268	H5'2	DG	9	-7.731	-7.556	21.992
ATOM	269	C4 ${ }^{\prime}$	DG	9	-5.779	-6.876	22.588
Атом	270	H4'	DG	9	-5.332	-7.637	21.945
ATOM	271	O4'	DG	9	-4.998	-5.689	22.480
Атом	272	C1'	DG	9	-4.170	-5.614	23.623
Атом	273	H1'	DG	9	-3.288	-6.249	23.497
Атом	274	N9	DG	9	-3.756	-4.222	23.901
ATOM	275	C8	DG	9	-4.561	-3.143	24.157
Атом	276	H8	DG	9	-5.639	-3.219	24.156
ATOM	277	N7	DG	9	-3.914	-2.031	24.381
ATOM	278	C5	DG	9	-2.568	-2.407	24.272
ATOM	279	C6	DG	9	-1.347	-1.652	24.391
Атом	280	06	DG	9	-1.188	-0.446	24.577
Атом	281	N1	DG	9	-0.207	-2.417	24.268
Атом	282	H1	DG	9	0.679	-1.940	24.345
ATOM	283	C2	DG	9	-0.212	-3.743	24.002
ATOM	284	N2	DG	9	0.946	-4.348	23.983
Атом	285	H21	DG	9	0.925	-5.338	23.807
ATOM	286	H22	DG	9	1.807	-3.839	24.166
Атом	287	N3	DG	9	-1.311	-4.478	23.874
ATOM	288	C4	DG	9	-2.465	-3.755	24.005
ATOM	289	C3'	DG	9	-5.704	-7.369	24.046
Атом	290	H3'	DG	9	-6.697	-7.561	24.457
Атом	291	C2 ${ }^{\prime}$	DG	9	-5.061	-6.167	24.725
Атом	292	H2'1	DG	9	-5.844	-5.453	24.978
ATOM	293	H2'2	DG	9	-4.489	-6.440	25.605
ATOM	294	03 '	DG	9	-4.899	-8.539	24.126
Атом	295	P	DT	10	-4.544	-9.278	25.512
ATOM	296	01P	DT	10	-5.315	-8.657	26.612
ATOM	297	O2P	DT	10	-4.599	-10.743	25.304
Атом	298	O5'	DT	10	-3.019	-8.821	25.717
Атом	299	C5'	DT	10	-2.003	-9.147	24.776
Атом	300	H5'1	DT	10	-2.169	-8.595	23.847
Атом	301	H5'2	DT	10	-2.049	-10.216	24.558
ATOM	302	C4'	DT	10	-0.604	-8.820	25.325
Атом	303	H4'	DT	10	0.144	-9.243	24.654
ATOM	304	O4'	DT	10	-0.428	-7.405	25.389
Атом	305	C1'	DT	10	-0.069	-7.047	26.710
ATOM	306	H1'	DT	10	1.025	-7.038	26.790
ATOM	307	N1	DT	10	-0.634	-5.710	27.045
Атом	308	C6	DT	10	-2.002	-5.513	27.120
ATOM	309	H6	DT	10	-2.656	-6.338	26.856
ATOM	310	C5	DT	10	-2.517	-4.310	27.495
ATOM	311	C7	DT	10	-4.020	-4.140	27.640
ATOM	312	H71	DT	10	-4.551	-5.056	27.385
Атом	313	H72	DT	10	-4.252	-3.871	28.671
ATOM	314	H73	DT	10	-4.352	-3.327	26.995
ATOM	315	C4	DT	10	-1.634	-3.176	27.761

ATOM	316	04	DT	10	-1.976	-2.036	28.067
ATOM	317	N3	DT	10	-0.295	-3.456	27.656
Атом	318	H3	DT	10	0.360	-2.704	27.806
ATOM	319	C2	DT	10	0.255	-4.676	27.357
ATOM	320	02	DT	10	1.470	-4.806	27.432
АтОм	321	C3 ${ }^{\prime}$	DT	10	-0.398	-9.401	26.734
ATOM	322	H3'	DT	10	-1.147	-10.165	26.953
ATOM	323	C2'	DT	10	-0.611	-8.168	27.599
ATOM	324	H2'1	DT	10	-1.675	-8.056	27.791
ATOM	325	H2'2	DT	10	-0.077	-8.236	28.537
АтОм	326	O3'	DT	10	0.908	-9.938	26.886
ATOM	327	P	DC	11	1.390	-10.662	28.246
ATOM	328	01P	DC	11	0.227	-10.869	29.135
Атом	329	O2P	DC	11	2.265	-11.799	27.895
Атом	330	O5'	DC	11	2.309	-9.515	28.909
ATOM	331	C5 '	DC	11	3.563	-9.181	28.325
Атом	332	H5 ' 1	DC	11	3.397	-8.789	27.322
ATOM	333	H5'2	DC	11	4.162	-10.088	28.230
Атом	334	C4 ${ }^{\prime}$	DC	11	4.372	-8.157	29.134
ATOM	335	H4'	DC	11	5.332	-8.017	28.637
Атом	336	O4'	DC	11	3.681	-6.914	29.141
ATOM	337	C1 ${ }^{\prime}$	DC	11	3.526	-6.457	30.467
ATOM	338	H1'	DC	11	4.343	-5.770	30.700
Атом	339	N1	DC	11	2.207	-5.771	30.582
Атом	340	C6	DC	11	1.042	-6.481	30.393
ATOM	341	H6	DC	11	1.115	-7.533	30.123
Атом	342	C5	DC	11	-0.161	-5.869	30.519
ATOM	343	H5	DC	11	-1.066	-6.427	30.346
ATOM	344	C4	DC	11	-0.153	-4.486	30.821
Атом	345	N4	DC	11	-1.268	-3.829	30.937
ATOM	346	H41	DC	11	-2.140	-4.268	30.734
ATOM	347	H42	DC	11	-1.188	-2.823	31.092
ATOM	348	N3	DC	11	0.945	-3.787	31.016
Атом	349	C2	DC	11	2.141	-4.407	30.891
ATOM	350	02	DC	11	3.143	-3.726	31.121
ATOM	351	C3'	DC	11	4.634	-8.591	30.586
Атом	352	H3'	DC	11	4.386	-9.647	30.723
ATOM	353	C2'	DC	11	3.642	-7.711	31.341
Атом	354	H2 ' 1	DC	11	2.699	-8.254	31.394
Атом	355	H2 '2	DC	11	3.976	-7.483	32.345
Атом	356	O3'	DC	11	5.998	-8.364	30.943
Атом	357	P	DC3	12	6.570	-8.695	32.417
ATOM	358	01P	DC3	12	7.991	-9.102	32.355
Атом	359	O2P	DC3	12	5.594	-9.519	33.154
ATOM	360	O5'	DC3	12	6.512	-7.228	33.063
ATOM	361	C5 ${ }^{\prime}$	DC3	12	7.430	-6.223	32.671
Атом	362	H5 ' 1	DC3	12	7.276	-5.967	31.620
ATOM	363	H5 '2	DC3	12	8.446	-6.604	32.786
ATOM	364	C4'	DC3	12	7.264	-4.970	33.534
Атом	365	H4'	DC3	12	8.144	-4.340	33.404
Атом	366	O4'	DC3	12	6.134	-4.223	33.130
ATOM	367	C1'	DC3	12	5.549	-3.590	34.252
Атом	368	H1'	DC3	12	5.666	-2.507	34.142
Атом	369	N1	DC3	12	4.098	-3.919	34.300
ATOM	370	C6	DC3	12	3.630	-5.185	34.045
ATOM	371	H6	DC3	12	4.345	-5.972	33.824
Атом	372	C5	DC3	12	2.292	-5.420	34.027
ATOM	373	H5	DC3	12	1.920	-6.407	33.808
ATOM	374	C4	DC3	12	1.433	-4.315	34.296
Атом	375	N4	DC3	12	0.143	-4.469	34.319
ATOM	376	H41	DC3	12	-0.261	-5.332	34.023
Атом	377	H42	DC3	12	-0.411	-3.627	34.468
Атом	378	N3	DC3	12	1.866	-3.118	34.614
Атом	379	C2	DC3	12	3.197	-2.895	34.607
Атом	380	02	DC3	12	3.585	-1.776	34.928

ATOM	381	C3'	DC3	12	7.089	-5.270	35.029
ATOM	382	H3'	DC3	12	6.492	-6.173	35.173
ATOM	383	C2'	DC3	12	6.299	-4.061	35.505
Атом	384	H2 ' 1	DC3	12	5.615	-4.335	36.309
Атом	385	H2'2	DC3	12	6.977	-3.276	35.842
ATOM	386	O3'	DC3	12	8.330	-5.369	35.704
ATOM	387	H3T	DC3	12	8.748	-6.183	35.399
TER							
ATOM	388	H5T	DG5	13	-3.655	5.441	35.367
Атом	389	O5'	DG5	13	-3.773	6.392	35.263
ATOM	390	C5'	DG5	13	-2.469	6.903	35.026
ATOM	391	H5'1	DG5	13	-1.924	6.955	35.968
Атом	392	H5'2	DG5	13	-2.524	7.907	34.600
Атом	393	C4'	DG5	13	-1.691	5.991	34.067
ATOM	394	H4'	DG5	13	-0.646	6.301	34.058
Атом	395	O4'	DG5	13	-1.772	4.645	34.529
Атом	396	C1'	DG5	13	-1.756	3.846	33.364
Атом	397	H1'	DG5	13	-0.759	3.890	32.910
ATOM	398	N9	DG5	13	-2.069	2.427	33.666
Атом	399	C8	DG5	13	-3.277	1.774	33.706
ATOM	400	H8	DG5	13	-4.212	2.277	33.520
Атом	401	N7	DG5	13	-3.199	0.505	34.013
Атом	402	C5	DG5	13	-1.819	0.281	34.145
Атом	403	C6	DG5	13	-1.047	-0.898	34.466
ATOM	404	06	DG5	13	-1.411	-2.046	34.739
Атом	405	N1	DG5	13	0.314	-0.668	34.496
ATOM	406	H1	DG5	13	0.911	-1.468	34.617
ATOM	407	C2	DG5	13	0.884	0.533	34.248
ATOM	408	N2	DG5	13	2.185	0.599	34.237
Атом	409	H21	DG5	13	2.578	1.454	33.886
Атом	410	H22	DG5	13	2.750	-0.230	34.398
Атом	411	N3	DG5	13	0.221	1.648	33.991
ATOM	412	C4	DG5	13	-1.131	1.460	33.940
ATOM	413	C3'	DG5	13	-2.247	6.015	32.623
Атом	414	H3'	DG5	13	-3.061	6.735	32.528
ATOM	415	C2'	DG5	13	-2.746	4.578	32.460
Атом	416	H2'1	DG5	13	-3.759	4.491	32.851
ATOM	417	H2'2	DG5	13	-2.696	4.235	31.427
ATOM	418	O3'	DG5	13	-1.274	6.265	31.615
Атом	419	P	DG	14	-0.286	7.547	31.642
Атом	420	01P	DG	14	-0.093	8.023	30.259
АTOM	421	O2P	DG	14	-0.739	8.485	32.694
ATOM	422	O5'	DG	14	1.020	6.756	32.162
ATOM	423	C5'	DG	14	2.360	7.081	31.789
Атом	424	H5'1	DG	14	2.930	7.186	32.710
ATOM	425	H5'2	DG	14	2.393	8.040	31.272
ATOM	426	C4'	DG	14	3.086	6.017	30.933
Атом	427	H4'	DG	14	4.148	6.106	31.147
Атом	428	O4'	DG	14	2.655	4.705	31.293
Атом	429	C1'	DG	14	2.204	4.072	30.109
ATOM	430	H1'	DG	14	3.058	3.577	29.636
ATOM	431	N9	DG	14	1.157	3.064	30.383
Атом	432	C8	DG	14	-0.206	3.215	30.358
ATOM	433	H8	DG	14	-0.676	4.178	30.202
ATOM	434	N7	DG	14	-0.877	2.110	30.560
ATOM	435	C5	DG	14	0.129	1.146	30.732
ATOM	436	C6	DG	14	0.073	-0.267	31.014
Атом	437	06	DG	14	-0.896	-0.996	31.218
ATOM	438	N1	DG	14	1.310	-0.869	31.094
ATOM	439	H1	DG	14	1.322	-1.873	31.174
ATOM	440	C2	DG	14	2.477	-0.203	30.943
ATOM	441	N2	DG	14	3.571	-0.910	30.958
Атом	442	H21	DG	14	4.392	-0.433	30.633
ATOM	443	H22	DG	14	3.516	-1.926	30.999
ATOM	444	N3	DG	14	2.587	1.098	30.711

ATOM	445	C4	DG	14	1.375	1.727	30.618
ATOM	446	C3'	DG	14	2.850	6.197	29.415
Атом	447	H3'	DG	14	2.539	7.217	29.186
ATOM	448	C2'	DG	14	1.724	5.209	29.202
ATOM	449	H2 '1	DG	14	0.792	5.641	29.560
АтОм	450	H2 '2	DG	14	1.636	4.906	28.160
ATOM	451	O3'	DG	14	3.899	5.782	28.535
Атом	452	P	DA	15	5.439	6.182	28.754
Атом	453	01P	DA	15	6.150	6.098	27.461
ATOM	454	O2P	DA	15	5.495	7.425	29.550
АтОм	455	05'	DA	15	5.885	4.965	29.701
ATOM	456	C5 ${ }^{\prime}$	DA	15	7.158	4.343	29.624
Атом	457	H5'1	DA	15	7.510	4.214	30.646
Атом	458	H5'2	DA	15	7.864	4.998	29.114
Атом	459	C4 ${ }^{\prime}$	DA	15	7.145	2.951	28.956
Атом	460	H4'	DA	15	7.823	2.317	29.525
Атом	461	O4'	DA	15	5.854	2.345	28.976
Атом	462	C1 ${ }^{\prime}$	DA	15	5.597	1.845	27.674
Атом	463	H1'	DA	15	6.031	0.843	27.584
Атом	464	N9	DA	15	4.145	1.784	27.419
Атом	465	C8	DA	15	3.265	2.805	27.144
Атом	466	H8	DA	15	3.588	3.836	27.053
ATOM	467	N7	DA	15	2.013	2.427	27.049
ATOM	468	C5	DA	15	2.092	1.048	27.301
Атом	469	C6	DA	15	1.148	0.010	27.463
Атом	470	N6	DA	15	-0.158	0.186	27.482
Атом	471	H61	DA	15	-0.769	-0.612	27.608
Атом	472	H62	DA	15	-0.521	1.114	27.349
ATOM	473	N1	DA	15	1.533	-1.244	27.690
Атом	474	C2	DA	15	2.835	-1.502	27.748
Атом	475	H2	DA	15	3.114	-2.535	27.904
Атом	476	N3	DA	15	3.835	-0.633	27.661
ATOM	477	C4	DA	15	3.388	0.641	27.463
Атом	478	C3'	DA	15	7.638	2.938	27.501
Атом	479	H3'	DA	15	8.174	3.848	27.229
ATOM	480	C2 ${ }^{\prime}$	DA	15	6.341	2.783	26.729
ATOM	481	H2 ' 1	DA	15	5.840	3.745	26.646
ATOM	482	H2'2	DA	15	6.512	2.337	25.752
Атом	483	O3'	DA	15	8.428	1.771	27.328
Атом	484	P	DC	16	9.517	1.621	26.164
Атом	485	01P	DC	16	10.814	2.070	26.708
Атом	486	O2P	DC	16	8.991	2.238	24.924
ATOM	487	05'	DC	16	9.560	0.017	25.996
Атом	488	C5 ${ }^{\prime}$	DC	16	9.308	-0.613	24.747
Атом	489	H5 ' 1	DC	16	10.103	-1.340	24.578
Атом	490	H5'2	DC	16	9.366	0.112	23.936
Атом	491	C4'	DC	16	7.973	-1.371	24.660
ATOM	492	H4'	DC	16	8.055	-2.304	25.217
ATOM	493	O4'	DC	16	6.805	-0.662	25.079
Атом	494	C1 ${ }^{\prime}$	DC	16	5.692	-1.404	24.582
Атом	495	H1'	DC	16	5.487	-2.238	25.267
ATOM	496	N1	DC	16	4.445	-0.613	24.395
Атом	497	C6	DC	16	4.482	0.743	24.187
Атом	498	H6	DC	16	5.440	1.246	24.198
Атом	499	C5	DC	16	3.325	1.430	23.986
ATOM	500	H5	DC	16	3.342	2.500	23.859
Атом	501	C4	DC	16	2.112	0.684	23.998
Атом	502	N4	DC	16	0.954	1.275	23.937
Атом	503	H41	DC	16	0.907	2.264	24.024
Атом	504	H42	DC	16	0.143	0.670	24.066
ATOM	505	N3	DC	16	2.071	-0.615	24.150
Атом	506	C2	DC	16	3.224	-1.296	24.325
Атом	507	02	DC	16	3.140	-2.518	24.403
Атом	508	C3'	DC	16	7.636	-1.623	23.186
Атом	509	H3'	DC	16	7.698	-0.648	22.704

ATOM	510	C2 ${ }^{\prime}$	DC	16	6.157	-1.982	23.244
ATOM	511	H2 ' 1	DC	16	5.648	-1.520	22.406
Атом	512	H2'2	DC	16	5.986	-3.053	23.261
Атом	513	O3'	DC	16	8.456	-2.498	22.411
ATOM	514	P	DT	17	8.654	-4.076	22.690
Атом	515	01P	DT	17	8.634	-4.301	24.148
Атом	516	O2P	DT	17	9.812	-4.534	21.895
Атом	517	O5'	DT	17	7.325	-4.744	22.059
Атом	518	C5'	DT	17	6.588	-5.720	22.792
Атом	519	H5'1	DT	17	6.448	-5.377	23.817
ATOM	520	H5'2	DT	17	7.165	-6.643	22.830
Атом	521	C4 ${ }^{\prime}$	DT	17	5.200	-6.019	22.215
Атом	522	H4'	DT	17	4.741	-6.774	22.855
Атом	523	O4'	DT	17	4.367	-4.869	22.254
Атом	524	C1 ${ }^{\prime}$	DT	17	3.462	-4.962	21.173
Атом	525	H1'	DT	17	2.651	-5.658	21.413
Атом	526	N1	DT	17	2.930	-3.609	20.872
Атом	527	C6	DT	17	3.785	-2.541	20.690
ATOM	528	H6	DT	17	4.849	-2.735	20.673
Атом	529	C5	DT	17	3.308	-1.271	20.592
ATOM	530	C7	DT	17	4.273	-0.116	20.383
ATOM	531	H71	DT	17	4.218	0.562	21.236
Атом	532	H72	DT	17	5.293	-0.475	20.258
Атом	533	H73	DT	17	3.969	0.430	19.489
ATOM	534	C4	DT	17	1.872	-1.013	20.681
Атом	535	04	DT	17	1.333	0.091	20.664
Атом	536	N3	DT	17	1.092	-2.142	20.778
Атом	537	H3	DT	17	0.088	-2.027	20.748
ATOM	538	C2	DT	17	1.544	-3.436	20.819
Атом	539	02	DT	17	0.741	-4.358	20.773
Атом	540	C3'	DT	17	5.188	-6.567	20.779
ATOM	541	H3'	DT	17	6.190	-6.589	20.349
ATOM	542	C2 ${ }^{\prime}$	DT	17	4.298	-5.560	20.046
ATOM	543	H2'1	DT	17	4.928	-4.800	19.587
ATOM	544	H2'2	DT	17	3.666	-6.033	19.299
Атом	545	O3'	DT	17	4.648	-7.879	20.856
ATOM	546	P	DC	18	4.289	-8.798	19.585
Атом	547	01P	DC	18	4.837	-8.201	18.346
ATOM	548	O2P	DC	18	4.600	-10.201	19.923
Атом	549	05'	DC	18	2.706	-8.599	19.577
Атом	550	C5'	DC	18	1.826	-9.444	18.853
Атом	551	H5'1	DC	18	1.536	-10.295	19.473
ATOM	552	H5'2	DC	18	2.351	-9.832	17.981
Атом	553	C4 ${ }^{\text {' }}$	DC	18	0.562	-8.671	18.413
Атом	554	H4'	DC	18	-0.300	-9.031	18.973
ATOM	555	O4'	DC	18	0.701	-7.275	18.647
Атом	556	C1 ${ }^{\prime}$	DC	18	-0.104	-6.563	17.737
Атом	557	H1'	DC	18	-1.139	-6.541	18.106
Атом	558	N1	DC	18	0.465	-5.198	17.569
Атом	559	C6	DC	18	1.821	-5.031	17.426
Атом	560	H6	DC	18	2.451	-5.914	17.401
ATOM	561	C5	DC	18	2.358	-3.785	17.379
ATOM	562	H5	DC	18	3.425	-3.657	17.320
ATOM	563	C4	DC	18	1.452	-2.692	17.463
Атом	564	N4	DC	18	1.883	-1.465	17.530
ATOM	565	H41	DC	18	2.826	-1.248	17.314
ATOM	566	H42	DC	18	1.153	-0.760	17.619
Атом	567	N3	DC	18	0.152	-2.829	17.569
Атом	568	C2	DC	18	-0.372	-4.079	17.614
Атом	569	02	DC	18	-1.594	-4.177	17.656
ATOM	570	C3'	DC	18	0.313	-8.799	16.899
Атом	571	H3'	DC	18	1.268	-9.037	16.433
Атом	572	C2 ${ }^{\prime}$	DC	18	-0.027	-7.376	16.449
Атом	573	H2'1	DC	18	0.768	-7.009	15.804
Атом	574	H2 '2	DC	18	-0.971	-7.311	15.933

ATOM	575	O3'	DC	18	-0.601	-9.819	16.483
ATOM	576	C3x	X	19	-5.148	-1.839	14.628
Атом	577	H3x1	X	19	-5.898	-1.097	14.906
ATOM	578	H3x2	X	19	-5.341	-2.141	13.597
ATOM	579	N2y	X	19	-3.823	-1.184	14.677
АтОм	580	H13	X	19	-3.833	-0.196	14.923
Атом	581	C2y	x	19	-2.627	-1.739	14.453
Атом	582	N1y	x	19	-1.527	-0.952	14.702
ATOM	583	C6y	X	19	-0.213	-1.397	14.664
Атом	584	06y	X	19	0.664	-0.586	14.968
Атом	585	H15	x	19	-1.674	0.016	14.959
Атом	586	N3y	X	19	-2.520	-3.019	14.072
Атом	587	C4y	x	19	-1.242	-3.482	14.002
ATOM	588	C5y	x	19	-0.089	-2.778	14.264
Атом	589	N7y	x	19	1.026	-3.606	14.049
Атом	590	C8y	X	19	0.503	-4.747	13.682
Атом	591	H14	x	19	1.094	-5.615	13.437
Атом	592	N9y	x	19	-0.871	-4.748	13.634
ATOM	593	C1'y	X	19	-1.819	-5.766	13.123
Атом	594	04 'y	x	19	-2.419	-6.525	14.148
Атом	595	H1'y	x	19	-2.619	-5.234	12.601
Атом	596	C2'y	x	19	-1.241	-6.824	12.187
ATOM	597	H6	X	19	-0.971	-6.419	11.212
ATOM	598	H7	x	19	-0.410	-7.350	12.657
Атом	599	C3'y	x	19	-2.467	-7.726	12.110
Атом	600	03 'y	x	19	-3.418	-7.103	11.278
Атом	601	H9	x	19	-2.233	-8.734	11.767
ATOM	602	C4'y	X	19	-2.984	-7.694	13.557
ATOM	603	H10	X	19	-4.073	-7.633	13.558
Атом	604	C5'y	x	19	-2.533	-8.947	14.315
Атом	605	H11	x	19	-3.048	-9.823	13.918
Атом	606	H12	x	19	-1.458	-9.072	14.178
ATOM	607	05 'y	x	19	-2.812	-8.820	15.696
Атом	608	Py	x	19	-2.204	-9.849	16.759
ATOM	609	O2Py	X	19	-2.676	-11.197	16.381
ATOM	610	01Py	x	19	-2.470	-9.335	18.110
ATOM	611	P	DC	20	-3.696	-7.591	9.784
ATOM	612	01P	DC	20	-2.515	-7.232	8.969
Атом	613	O2P	DC	20	-4.196	-8.982	9.833
Атом	614	O5'	DC	20	-4.888	-6.580	9.425
ATOM	615	C5 ${ }^{\prime}$	DC	20	-6.056	-6.505	10.239
Атом	616	H5 ' 1	DC	20	-5.911	-7.061	11.167
ATOM	617	H5'2	DC	20	-6.894	-6.955	9.705
Атом	618	C4'	DC	20	-6.398	-5.053	10.606
Атом	619	H4'	DC	20	-7.257	-5.056	11.277
Атом	620	O4'	DC	20	-5.300	-4.440	11.274
Атом	621	C1'	DC	20	-5.040	-3.185	10.669
ATOM	622	H1'	DC	20	-5.632	-2.415	11.177
ATOM	623	N1	DC	20	-3.586	-2.874	10.743
Атом	624	C6	DC	20	-2.646	-3.808	10.387
Атом	625	H6	DC	20	-2.979	-4.783	10.044
ATOM	626	C5	DC	20	-1.322	-3.503	10.464
Атом	627	H5	DC	20	-0.590	-4.236	10.170
Атом	628	C4	DC	20	-0.974	-2.211	10.940
Атом	629	N4	DC	20	0.276	-1.872	11.074
ATOM	630	H41	DC	20	0.987	-2.527	10.846
ATOM	631	H42	DC	20	0.467	-0.946	11.451
ATOM	632	N3	DC	20	-1.863	-1.292	11.250
Атом	633	C2	DC	20	-3.177	-1.598	11.137
Атом	634	02	DC	20	-3.987	-0.702	11.354
ATOM	635	C3'	DC	20	-6.755	-4.198	9.387
Атом	636	H3'	DC	20	-6.891	-4.827	8.505
Атом	637	C2'	DC	20	-5.536	-3.303	9.228
Атом	638	H2 ' 1	DC	20	-4.801	-3.811	8.606
Атом	639	H2 '2	DC	20	-5.800	-2.331	8.810

ATOM	640	O3'	DC	20	-7.921	-3.437	9.673
Атом	641	P	DT	21	-9.006	-3.128	8.535
Атом	642	01P	DT	21	-10.239	-2.643	9.190
Атом	643	O2P	DT	21	-9.071	-4.307	7.648
ATOM	644	05^{\prime}	DT	21	-8.346	-1.923	7.712
ATOM	645	C5 ${ }^{\prime}$	DT	21	-8.571	-0.561	8.059
Атом	646	H5'1	DT	21	-8.387	-0.415	9.125
Атом	647	H5 '2	DT	21	-9.610	-0.310	7.841
Атом	648	C4 ${ }^{\prime}$	DT	21	-7.654	0.379	7.263
ATOM	649	H4'	DT	21	-7.998	1.403	7.391
Атом	650	O4'	DT	21	-6.336	0.252	7.789
ATOM	651	C1 ${ }^{\prime}$	DT	21	-5.463	0.159	6.687
Атом	652	H1'	DT	21	-5.347	1.166	6.270
Атом	653	N1	DT	21	-4.120	-0.345	7.107
Атом	654	C6	DT	21	-3.693	-1.639	6.860
Атом	655	H6	DT	21	-4.383	-2.352	6.436
Атом	656	C5	DT	21	-2.426	-2.035	7.154
Атом	657	C7	DT	21	-2.013	-3.463	6.820
ATOM	658	H71	DT	21	-2.710	-3.917	6.115
Атом	659	H72	DT	21	-1.016	-3.456	6.381
Атом	660	H73	DT	21	-1.982	-4.066	7.728
Атом	661	C4	DT	21	-1.466	-1.092	7.732
ATOM	662	04	DT	21	-0.284	-1.317	7.991
ATOM	663	N3	DT	21	-1.973	0.161	7.974
Атом	664	H3	DT	21	-1.345	0.872	8.322
Атом	665	C2	DT	21	-3.240	0.594	7.661
Атом	666	02	DT	21	-3.504	1.777	7.831
Атом	667	C3'	DT	21	-7.611	0.017	5.759
ATOM	668	H3'	DT	21	-8.432	-0.652	5.491
Атом	669	C2 ${ }^{\prime}$	DT	21	-6.262	-0.690	5.689
Атом	670	H2 ' 1	DT	21	-6.376	-1.715	6.041
Атом	671	H2 '2	DT	21	-5.836	-0.661	4.686
Атом	672	O3'	DT	21	-7.537	1.096	4.832
Атом	673	P	DA	22	-8.558	2.341	4.805
Атом	674	01P	DA	22	-8.767	2.727	3.395
ATOM	675	02P	DA	22	-9.714	2.080	5.684
ATOM	676	O5'	DA	22	-7.592	3.407	5.509
ATOM	677	C5 ${ }^{\prime}$	DA	22	-7.756	4.815	5.404
Атом	678	H5 ' 1	DA	22	-7.803	5.207	6.419
Атом	679	H5 '2	DA	22	-8.695	5.053	4.906
Атом	680	C4'	DA	22	-6.587	5.532	4.688
Атом	681	H4'	DA	22	-6.579	6.561	5.031
ATOM	682	O4'	DA	22	-5.361	4.909	5.059
Атом	683	C1'	DA	22	-4.720	4.441	3.889
Атом	684	H1'	DA	22	-4.030	5.222	3.548
Атом	685	N9	DA	22	-3.976	3.190	4.146
Атом	686	C8	DA	22	-4.383	1.891	3.948
ATOM	687	H8	DA	22	-5.400	1.639	3.672
Атом	688	N7	DA	22	-3.453	0.989	4.129
Атом	689	C5	DA	22	-2.355	1.775	4.507
Атом	690	C6	DA	22	-1.022	1.491	4.863
ATOM	691	N6	DA	22	-0.522	0.274	4.882
Атом	692	H61	DA	22	0.421	0.131	5.227
Атом	693	H62	DA	22	-1.132	-0.476	4.619
Атом	694	N1	DA	22	-0.164	2.445	5.215
ATOM	695	C2	DA	22	-0.606	3.697	5.208
Атом	696	H2	DA	22	0.106	4.458	5.502
Атом	697	N3	DA	22	-1.813	4.127	4.862
Атом	698	C4	DA	22	-2.660	3.107	4.538
Атом	699	C3 ${ }^{\prime}$	DA	22	-6.663	5.503	3.143
ATOM	700	H3'	DA	22	-7.686	5.406	2.775
Атом	701	C2 ${ }^{\text {' }}$	DA	22	-5.834	4.268	2.852
Атом	702	H2 ' 1	DA	22	-6.430	3.380	3.048
Атом	703	H2 '2	DA	22	-5.450	4.256	1.831
Атом	704	O3'	DA	22	-5.940	6.526	2.465

ATOM	705	P	DG	23	-6.300	8.090	2.466
ATOM	706	01P	DG	23	-7.186	8.383	1.321
ATOM	707	O2P	DG	23	-6.665	8.521	3.830
ATOM	708	O5'	DG	23	-4.811	8.599	2.137
ATOM	709	C5 ${ }^{\prime}$	DG	23	-3.871	8.882	3.168
ATOM	710	H5 ' 1	DG	23	-4.047	8.227	4.023
ATOM	711	H5 ' 2	DG	23	-4.038	9.907	3.502
ATOM	712	C4'	DG	23	-2.403	8.724	2.735
ATOM	713	H4	DG	23	-1.799	9.383	3.359
ATOM	714	O4'	DG	23	-1.959	7.386	2.965
ATOM	715	C1 ${ }^{\prime}$	DG	23	-1.051	7.026	1.945
ATOM	716	H1'	DG	23	-0.065	7.453	2.150
ATOM	717	N9	DG	23	-0.955	5.546	1.832
ATOM	718	C8	DG	23	-1.957	4.662	1.517
ATOM	719	H8	DG	23	-2.973	4.993	1.349
ATOM	720	N7	DG	23	-1.581	3.411	1.442
ATOM	721	C5	DG	23	-0.219	3.460	1.780
ATOM	722	C6	DG	23	0.778	2.421	1.899
ATOM	723	06	DG	23	0.672	1.202	1.749
ATOM	724	N1	DG	23	2.040	2.894	2.191
ATOM	725	H1	DG	23	2.776	2.211	2.279
ATOM	726	C 2	DG	23	2.332	4.203	2.367
ATOM	727	N2	DG	23	3.587	4.491	2.590
ATOM	728	H21	DG	23	3.753	5.425	2.918
ATOM	729	H22	DG	23	4.275	3.756	2.723
ATOM	730	N3	DG	23	1.449	5.197	2.264
ATOM	731	C4	DG	23	0.178	4.767	1.985
ATOM	732	C3 ${ }^{\prime}$	DG	23	-2.111	9.060	1.260
ATOM	733	H3'	DG	23	-3.008	9.413	0.746
ATOM	734	C2'	DG	23	-1.667	7.701	0.718
ATOM	735	H2 ' 1	DG	23	-2.553	7.158	0.392
ATOM	736	H2 ' 2	DG	23	-0.964	7.797	-0.103
ATOM	737	O3'	DG	23	-1.084	10.040	1.175
ATOM	738	P	DC3	24	-0.676	10.751	-0.211
ATOM	739	O1P	DC3	24	-1.751	10.601	-1.210
ATOM	740	O2P	DC3	24	-0.112	12.085	0.087
ATOM	741	O5'	DC3	24	0.538	9.815	-0.680
ATOM	742	C5 ${ }^{\prime}$	DC3	24	1.818	9.930	-0.087
ATOM	743	H5 '1	DC3	24	1.751	9.713	0.981
ATOM	744	H5 ' 2	DC3	24	2.172	10.954	-0.207
ATOM	745	C4 ${ }^{\prime}$	DC3	24	2.815	8.971	-0.744
ATOM	746	H4	DC3	24	3.823	9.258	-0.447
ATOM	747	O4 ${ }^{\prime}$	DC3	24	2.590	7.645	-0.315
ATOM	748	C1	DC3	24	3.125	6.760	-1.277
ATOM	749	H1'	DC3	24	4.147	6.501	-0.984
ATOM	750	N1	DC3	24	2.281	5.542	-1.327
ATOM	751	C6	DC3	24	0.910	5.641	-1.352
ATOM	752	H6	DC3	24	0.456	6.627	-1.325
ATOM	753	C5	DC3	24	0.153	4.519	-1.366
ATOM	754	H5	DC3	24	-0.924	4.589	-1.348
ATOM	755	C4	DC3	24	0.833	3.270	-1.355
ATOM	756	N4	DC3	24	0.156	2.168	-1.269
ATOM	757	H41	DC3	24	-0.790	2.225	-0.939
ATOM	758	H42	DC3	24	0.710	1.324	-1.134
ATOM	759	N3	DC3	24	2.147	3.157	-1.378
ATOM	760	C2	DC3	24	2.892	4.283	-1.357
ATOM	761	O 2	DC3	24	4.116	4.163	-1.388
ATOM	762	C3 ${ }^{\prime}$	DC3	24	2.742	8.941	-2.277
ATOM	763	H3'	DC3	24	1.718	9.122	-2.613
ATOM	764	C2 ${ }^{\prime}$	DC3	24	3.135	7.507	-2.619
ATOM	765	H2 ' 1	DC3	24	2.406	7.090	-3.314
ATOM	766	H2'2	DC3	24	4.131	7.464	-3.059
ATOM	767	O3'	DC3	24	3.639	9.860	-2.877
ATOM	768	H3T	DC3	24	3.247	10.736	-2.787
TER							

C3. PDB File of the fully reduced S-crotonaldehyde-derived cross-link in d(GCTAGCXAGTCC) •d(GGACTCYCTAGC)

REMARK							
ATOM	1	H5T	DG5	1	1.740	-9.135	-2. 566
ATOM	2	O5'	DG5	1	2.342	-8.580	-2.066
ATOM	3	C5 ${ }^{\prime}$	DG5	1	3.599	-8.521	-2.734
ATOM	4	H5 '1	DG5	1	3.443	-8.257	-3.781
ATOM	5	H5 ' 2	DG5	1	4.078	-9.501	-2.690
ATOM	6	C4 ${ }^{\prime}$	DG5	1	4.559	-7.489	-2.121
ATOM	7	H4	DG5	1	5.514	-7.554	-2.645
ATOM	8	O4'	DG5	1	4.026	-6.186	-2.312
ATOM	9	C1 ${ }^{\prime}$	DG5	1	3.960	-5.530	-1.056
ATOM	10	H1 ${ }^{\prime}$	DG5	1	4.851	-4.909	-0.915
ATOM	11	N9	DG5	1	2.745	-4.686	-1.023
ATOM	12	C8	DG5	1	1.430	-5.071	-0.933
ATOM	13	H8	DG5	1	1.139	-6.111	-0.866
ATOM	14	N7	DG5	1	0.573	-4.085	-0.966
ATOM	15	C5	DG5	1	1.388	-2.951	-1.106
ATOM	16	C6	DG5	1	1.078	-1.553	-1.255
ATOM	17	06	DG5	1	-0.016	-0.994	-1.327
ATOM	18	N1	DG5	1	2.196	-0.752	-1.354
ATOM	19	H1	DG5	1	2.040	0.240	-1.427
ATOM	20	C2	DG5	1	3.465	-1.216	-1.312
ATOM	21	N2	DG5	1	4.431	-0.341	-1.337
ATOM	22	H21	DG5	1	5.354	-0.694	-1.169
ATOM	23	H22	DG5	1	4.226	0.653	-1.422
ATOM	24	N3	DG5	1	3.803	-2.495	-1.222
ATOM	25	C4	DG5	1	2.718	-3.318	-1.122
ATOM	26	C3 ${ }^{\prime}$	DG5	1	4.825	-7.694	-0.626
ATOM	27	H3 ${ }^{\prime}$	DG5	1	4.527	-8.689	-0.291
ATOM	28	C2 ${ }^{\prime}$	DG5	1	3.950	-6.622	0.011
ATOM	29	H2 ' 1	DG5	1	2.953	-7.030	0.160
ATOM	30	H2 ' 2	DG5	1	4.347	-6.262	0.958
ATOM	31	O3'	DG5	1	6.210	-7.504	-0.409
ATOM	32	P	DC	2	6.879	-7.594	1.049
ATOM	33	O1P	DC	2	8.237	-8.150	0.885
ATOM	34	O2P	DC	2	5.907	-8.231	1.964
ATOM	35	O5	DC	2	6.986	-6.019	1.376
ATOM	36	C5 ${ }^{\prime}$	DC	2	7.836	-5.194	0.589
ATOM	37	H5 ' 1	DC	2	7.494	-5.215	-0.446
ATOM	38	H5 ' 2	DC	2	8.843	-5.609	0.624
ATOM	39	C4'	DC	2	7.908	-3.733	1.046
ATOM	40	H4	DC	2	8.671	-3.239	0.443
ATOM	41	O4 ${ }^{\prime}$	DC	2	6.666	-3.062	0.848
ATOM	42	C1 ${ }^{\prime}$	DC	2	6.363	-2.320	2.021
ATOM	43	H1'	DC	2	6.853	-1.338	1.983
ATOM	44	N1	DC	2	4.885	-2.174	2.130
ATOM	45	C6	DC	2	4.084	-3.288	2.197
ATOM	46	H6	DC	2	4.554	-4.267	2.200
ATOM	47	C5	DC	2	2.732	-3.156	2.229
ATOM	48	H5	DC	2	2.102	-4.031	2.271
ATOM	49	C4	DC	2	2.205	-1.838	2.164
ATOM	50	N4	DC	2	0.922	-1.631	2.131
ATOM	51	H41	DC	2	0.284	-2.391	2.201
ATOM	52	H42	DC	2	0.611	-0.665	2.075
ATOM	53	N3	DC	2	2.950	-0.760	2.093
ATOM	54	C2	DC	2	4.299	-0.901	2.090
ATOM	55	O 2	DC	2	4.969	0.129	2.042
ATOM	56	C3 ${ }^{\prime}$	DC	2	8.308	-3.571	2.514
ATOM	57	H3'	DC	2	8.683	-4.509	2.939

ATOM	58	C2 ${ }^{\prime}$	DC	2	7.001	-3.128	3.155
ATOM	59	H2 '1	DC	2	6.421	-4.013	3.411
Атом	60	H2'2	DC	2	7.191	-2.525	4.037
Атом	61	O3'	DC	2	9.282	-2.544	2.579
Атом	62	P	DT	3	10.112	-2.246	3.916
Атом	63	01P	DT	3	9.837	-3.297	4.916
Атом	64	O2P	DT	3	11.496	-1.935	3.509
Атом	65	05'	DT	3	9.426	-0.901	4.423
Атом	66	C5'	DT	3	9.747	0.325	3.800
Атом	67	H5 ' 1	DT	3	9.507	0.250	2.740
ATOM	68	H5'2	DT	3	10.819	0.515	3.895
ATOM	69	C4 ${ }^{\prime}$	DT	3	8.979	1.499	4.408
Атом	70	H4'	DT	3	9.314	2.411	3.918
Атом	71	O4'	DT	3	7.592	1.318	4.146
Атом	72	C1 ${ }^{\prime}$	DT	3	6.882	1.545	5.349
Атом	73	H1'	DT	3	6.649	2.614	5.425
Атом	74	N1	DT	3	5.630	0.739	5.353
Атом	75	C6	DT	3	5.658	-0.630	5.539
ATOM	76	H6	DT	3	6.617	-1.126	5.609
Атом	77	C5	DT	3	4.509	-1.348	5.634
ATOM	78	C7	DT	3	4.576	-2.847	5.870
Атом	79	H71	DT	3	4.057	-3.364	5.064
Атом	80	H72	DT	3	5.610	-3.192	5.923
Атом	81	H73	DT	3	4.068	-3.079	6.806
ATOM	82	C4	DT	3	3.211	-0.688	5.524
Атом	83	04	DT	3	2.115	-1.234	5.625
Атом	84	N3	DT	3	3.272	0.665	5.280
ATOM	85	H3	DT	3	2.409	1.187	5.220
ATOM	86	C2	DT	3	4.417	1.415	5.190
Атом	87	02	DT	3	4.327	2.617	4.972
Атом	88	C3'	DT	3	9.184	1.659	5.922
ATOM	89	H3'	DT	3	10.003	1.036	6.290
ATOM	90	C2 ${ }^{\text {' }}$	DT	3	7.849	1.194	6.485
Атом	91	H2 '1	DT	3	7.914	0.124	6.662
Атом	92	H2 '2	DT	3	7.580	1.703	7.408
ATOM	93	O3'	DT	3	9.446	3.023	6.187
Атом	94	P	DA	4	9.671	3.593	7.673
ATOM	95	01P	DA	4	9.883	2.468	8.607
ATOM	96	O2P	DA	4	10.640	4.702	7.582
Атом	97	O5'	DA	4	8.219	4.203	7.922
Атом	98	C5 ${ }^{\prime}$	DA	4	7.774	5.305	7.149
Атом	99	H5 ' 1	DA	4	7.696	5.012	6.102
ATOM	100	H5 '2	DA	4	8.504	6.112	7.233
Атом	101	C4 ${ }^{\prime}$	DA	4	6.420	5.823	7.629
Атом	102	H4'	DA	4	6.191	6.740	7.086
ATOM	103	O4'	DA	4	5.405	4.867	7.364
Атом	104	C1 ${ }^{\prime}$	DA	4	4.588	4.764	8.512
Атом	105	H1'	DA	4	3.806	5.530	8.491
Атом	106	N9	DA	4	3.985	3.415	8.537
Атом	107	C8	DA	4	4.618	2.194	8.556
ATOM	108	H8	DA	4	5.696	2.110	8.587
ATOM	109	N7	DA	4	3.814	1.161	8.507
ATOM	110	C5	DA	4	2.545	1.769	8.491
ATOM	111	C6	DA	4	1.210	1.304	8.442
ATOM	112	N6	DA	4	0.862	0.038	8.344
ATOM	113	H61	DA	4	-0.108	-0.199	8.186
ATOM	114	H62	DA	4	1.594	-0.645	8.284
Атом	115	N1	DA	4	0.175	2.139	8.446
Атом	116	C2	DA	4	0.431	3.441	8.473
ATOM	117	H2	DA	4	-0.430	4.098	8.472
ATOM	118	N3	DA	4	1.621	4.031	8.495
ATOM	119	C4	DA	4	2.644	3.133	8.505
Атом	120	C3'	DA	4	6.420	6.134	9.130
ATOM	121	H3'	DA	4	7.425	6.068	9.554
Атом	122	C2 ${ }^{\prime}$	DA	4	5.524	5.030	9.687

| ATOM | 123 | H2'1 | DA | | 4 | 6.139 | 4.155 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | 9.897

ATOM	188	O3'	DC	6	-4.437	8.068	16.530
ATOM	189	01P	x	7	-5.934	9.281	18.132
Атом	190	P	x	7	-4.845	8.285	18.068
Атом	191	O2P	X	7	-3.622	8.486	18.875
Атом	192	O5'	x	7	-5.440	6.866	18.469
Атом	193	C5 ${ }^{\prime}$	x	7	-6.775	6.462	18.193
Атом	194	H5 ' 1	x	7	-6.880	6.204	17.138
Атом	195	H5 '2	X	7	-7.463	7.271	18.439
ATOM	196	C4'	X	7	-7.117	5.242	19.068
Атом	197	O4'	x	7	-6.272	4.189	18.623
ATOM	198	H4'	X	7	-8.153	4.965	18.905
Атом	199	C3 '	x	7	-6.826	5.568	20.559
ATOM	200	O3'	X	7	-7.619	5.090	21.648
Атом	201	H3'	X	7	-6.746	6.650	20.672
Атом	202	C2 ${ }^{\prime}$	x	7	-5.450	4.937	20.722
Атом	203	H2'2	X	7	-5.282	4.568	21.732
Атом	204	H2 '1	X	7	-4.711	5.700	20.497
Атом	205	C1'	x	7	-5.429	3.798	19.687
Атом	206	H1'	x	7	-5.878	2.904	20.124
Атом	207	N9	x	7	-4.058	3.450	19.218
ATOM	208	C4	X	7	-3.658	2.215	18.747
ATOM	209	N3	X	7	-4.458	1.144	18.452
Атом	210	C8	x	7	-2.896	4.186	19.309
Атом	211	H8	x	7	-2.885	5.224	19.614
Атом	212	N7	x	7	-1.806	3.531	19.011
Атом	213	C5	X	7	-2.283	2.262	18.666
Атом	214	C6	X	7	-1.594	1.061	18.283
Атом	215	06	x	7	-0.386	0.847	18.197
ATOM	216	N1	X	7	-2.434	0.007	17.983
Атом	217	H1	X	7	-1.990	-0.856	17.712
Атом	218	C2	X	7	-3.794	0.071	18.010
ATOM	219	N2	X	7	-4.404	-0.991	17.488
ATOM	220	H2	x	7	-3.810	-1.793	17.298
Атом	221	C1x	x	7	-5.808	-1.141	17.060
Атом	222	H1x	X	7	-5.870	-2.034	16.429
Атом	223	Cmx	x	7	-6.653	-1.394	18.299
Атом	224	H1m1	x	7	-7.694	-1.572	18.035
ATOM	225	H1m2	x	7	-6.582	-0.520	18.937
ATOM	226	H1m3	x	7	-6.260	-2.252	18.843
Атом	227	C2x	X	7	-6.396	0.028	16.218
Атом	228	H 2 x 2	X	7	-6.260	0.977	16.729
Атом	229	H 2 x 1	X	7	-7.472	-0.126	16.144
ATOM	230	P	DA	8	-9.108	4.495	21.561
Атом	231	01P	DA	8	-9.852	5.102	20.437
Атом	232	O2P	DA	8	-9.681	4.507	22.923
ATOM	233	O5'	DA	8	-8.704	2.991	21.219
Атом	234	C5 ${ }^{\prime}$	DA	8	-9.627	2.029	20.743
Атом	235	H5'1	DA	8	-9.743	2.157	19.667
Атом	236	H5'2	DA	8	-10.595	2.169	21.227
Атом	237	C4 ${ }^{\prime}$	DA	8	-9.117	0.607	21.043
Атом	238	H4'	DA	8	-9.667	-0.113	20.435
Атом	239	O4'	DA	8	-7.722	0.533	20.750
ATOM	240	C1 ${ }^{\prime}$	DA	8	-7.040	0.046	21.894
ATOM	241	H1'	DA	8	-7.055	-1.049	21.873
Атом	242	N9	DA	8	-5.636	0.516	21.931
ATOM	243	C8	DA	8	-5.150	1.748	22.293
ATOM	244	H8	DA	8	-5.809	2.557	22.584
Атом	245	N7	DA	8	-3.848	1.870	22.204
Атом	246	C5	DA	8	-3.447	0.592	21.783
ATOM	247	C6	DA	8	-2.206	-0.022	21.482
ATOM	248	N6	DA	8	-1.026	0.567	21.505
ATOM	249	H61	DA	8	-0.223	0.058	21.154
Атом	250	H62	DA	8	-0.979	1.543	21.743
ATOM	251	N1	DA	8	-2.138	-1.295	21.095
Атом	252	C2	DA	8	-3.273	-1.977	20.999

ATOM	253	H2	DA	8	-3.181	-3.005	20.680
ATOM	254	N3	DA	8	-4.502	-1.550	21.252
ATOM	255	C4	DA	8	-4.526	-0.238	21.627
Атом	256	C3'	DA	8	-9.267	0.209	22.519
Атом	257	H3'	DA	8	-10.056	0.764	23.033
ATOM	258	C2'	DA	8	-7.889	0.531	23.068
Атом	259	H2 ' 1	DA	8	-7.791	1.605	23.224
Атом	260	H2 ' 2	DA	8	-7.695	-0.021	23.982
Атом	261	O3'	DA	8	-9.424	-1.195	22.626
ATOM	262	P	DG	9	-10.776	-1.878	23.117
ATOM	263	01P	DG	9	-11.152	-1.286	24.419
ATOM	264	O2P	DG	9	-11.742	-1.900	21.999
Атом	265	05'	DG	9	-10.205	-3.366	23.375
Атом	266	C5'	DG	9	-9.512	-3.697	24.578
ATOM	267	H5'1	DG	9	-10.132	-4.410	25.121
Атом	268	H5'2	DG	9	-9.387	-2.814	25.205
Атом	269	C4 ${ }^{\prime}$	DG	9	-8.120	-4.320	24.356
Атом	270	H4'	DG	9	-8.172	-5.069	23.565
Атом	271	O4'	DG	9	-7.139	-3.334	24.032
Атом	272	C1'	DG	9	-5.902	-3.722	24.605
ATOM	273	H1'	DG	9	-5.435	-4.513	24.011
Атом	274	N9	DG	9	-4.965	-2.579	24.748
Атом	275	C8	DG	9	-5.257	-1.274	25.043
Атом	276	H8	DG	9	-6.267	-0.947	25.224
ATOM	277	N7	DG	9	-4.224	-0.477	25.081
Атом	278	C5	DG	9	-3.142	-1.327	24.815
ATOM	279	C6	DG	9	-1.721	-1.084	24.722
ATOM	280	06	DG	9	-1.091	-0.030	24.786
ATOM	281	N1	DG	9	-0.979	-2.231	24.533
Атом	282	H1	DG	9	0.018	-2.119	24.433
Атом	283	C2	DG	9	-1.516	-3.468	24.434
Атом	284	N2	DG	9	-0.684	-4.466	24.338
ATOM	285	H21	DG	9	-1.094	-5.370	24.205
ATOM	286	H22	DG	9	0.319	-4.319	24.283
Атом	287	N3	DG	9	-2.816	-3.739	24.486
ATOM	288	C4	DG	9	-3.587	-2.624	24.664
Атом	289	C3'	DG	9	-7.630	-4.995	25.653
ATOM	290	H3'	DG	9	-8.345	-4.826	26.462
ATOM	291	C2'	DG	9	-6.322	-4.273	25.957
Атом	292	H2 ' 1	DG	9	-6.535	-3.460	26.647
Атом	293	H2 '2	DG	9	-5.562	-4.942	26.354
Атом	294	O3'	DG	9	-7.426	-6.389	25.478
ATOM	295	P	DT	10	-7.276	-7.378	26.747
ATOM	296	01P	DT	10	-7.891	-6.723	27.924
Атом	297	O2P	DT	10	-7.718	-8.730	26.354
ATOM	298	05'	DT	10	-5.689	-7.389	26.997
ATOM	299	C5 ${ }^{\prime}$	DT	10	-4.780	-8.100	26.163
Атом	300	H5'1	DT	10	-4.827	-7.705	25.147
Атом	301	H5'2	DT	10	-5.066	-9.154	26.141
Атом	302	C4 ${ }^{\prime}$	DT	10	-3.328	-7.999	26.678
Атом	303	H4'	DT	10	-2.706	-8.704	26.124
ATOM	304	O4'	DT	10	-2.841	-6.667	26.479
ATOM	305	C1'	DT	10	-2.278	-6.240	27.708
ATOM	306	H1'	DT	10	-1.277	-6.685	27.800
АTOM	307	N1	DT	10	-2.174	-4.757	27.811
ATOM	308	C6	DT	10	-3.293	-3.975	28.030
ATOM	309	H6	DT	10	-4.268	-4.440	28.027
Атом	310	C5	DT	10	-3.180	-2.639	28.250
ATOM	311	C7	DT	10	-4.428	-1.820	28.530
ATOM	312	H71	DT	10	-4.285	-0.803	28.160
ATOM	313	H72	DT	10	-5.292	-2.248	28.027
ATOM	314	H73	DT	10	-4.602	-1.777	29.604
Атом	315	C4	DT	10	-1.875	-1.987	28.203
ATOM	316	O4	DT	10	-1.662	-0.797	28.397
ATOM	317	N3	DT	10	-0.817	-2.823	27.948

ATOM	318	н3	DT	10	0.106	-2.410	27.927
ATOM	319	C2	DT	10	-0.891	-4.188	27.811
ATOM	320	02	DT	10	0.151	-4.830	27.770
Атом	321	C3'	DT	10	-3.220	-8.301	28.188
Атом	322	H3'	DT	10	-4.064	-8.881	28.565
ATOM	323	C2'	DT	10	-3.187	-6.893	28.756
Атом	324	H2 ' 1	DT	10	-4.188	-6.468	28.756
Атом	325	H2'2	DT	10	-2.763	-6.878	29.753
Атом	326	O3'	DT	10	-1.980	-8.866	28.577
ATOM	327	P	DC	11	-1.633	-10.419	28.428
ATOM	328	01P	DC	11	-1.865	-10.837	27.031
ATOM	329	02P	DC	11	-2.298	-11.129	29.540
Атом	330	05'	DC	11	-0.047	-10.358	28.712
Атом	331	C5 ${ }^{\prime}$	DC	11	0.452	-10.187	30.031
Атом	332	H5'1	DC	11	1.028	-11.075	30.291
Атом	333	H5'2	DC	11	-0.372	-10.095	30.741
Атом	334	C4'	DC	11	1.363	-8.962	30.179
Атом	335	H4'	DC	11	2.183	-9.036	29.462
Атом	336	O4'	DC	11	0.675	-7.729	29.992
Атом	337	C1 ${ }^{\prime}$	DC	11	1.374	-6.736	30.713
ATOM	338	H1'	DC	11	2.295	-6.465	30.183
Атом	339	N1	DC	11	0.536	-5.523	30.931
Атом	340	C6	DC	11	-0.809	-5.641	31.176
Атом	341	H6	DC	11	-1.235	-6.639	31.200
ATOM	342	C5	DC	11	-1.572	-4.531	31.351
Атом	343	H5	DC	11	-2.635	-4.625	31.502
ATOM	344	C4	DC	11	-0.910	-3.274	31.284
ATOM	345	N4	DC	11	-1.584	-2.171	31.399
ATOM	346	H41	DC	11	-2.580	-2.191	31.373
Атом	347	H42	DC	11	-1.070	-1.303	31.237
Атом	348	N3	DC	11	0.383	-3.140	31.110
Атом	349	C2	DC	11	1.129	-4.254	30.928
ATOM	350	02	DC	11	2.342	-4.097	30.819
ATOM	351	C3'	DC	11	1.933	-8.910	31.607
Атом	352	H3'	DC	11	1.361	-9.570	32.264
ATOM	353	C2 ${ }^{\prime}$	DC	11	1.710	-7.451	32.017
Атом	354	H2'1	DC	11	0.866	-7.406	32.707
ATOM	355	H2'2	DC	11	2.589	-7.003	32.465
ATOM	356	O3'	DC	11	3.303	-9.283	31.623
Атом	357	P	DC3	12	4.069	-9.685	32.989
Атом	358	01P	DC3	12	5.356	-10.318	32.647
Атом	359	02P	DC3	12	3.130	-10.361	33.908
ATOM	360	05 ${ }^{\text {' }}$	DC3	12	4.400	-8.230	33.580
ATOM	361	C5 ${ }^{\prime}$	DC3	12	5.337	-7.392	32.919
Атом	362	H5'1	DC3	12	5.074	-7.302	31.863
ATOM	363	H5'2	DC3	12	6.322	-7.856	32.981
ATOM	364	C4'	DC3	12	5.405	-5.989	33.530
Атом	365	H4'	DC3	12	6.362	-5.544	33.258
Атом	366	O4'	DC3	12	4.372	-5.141	33.067
Атом	367	C1'	DC3	12	4.303	-4.029	33.940
Атом	368	H1'	DC3	12	4.903	-3.212	33.521
ATOM	369	N1	DC3	12	2.899	-3.569	34.103
Атом	370	C6	DC3	12	1.847	-4.450	34.161
ATOM	371	H6	DC3	12	2.047	-5.510	34.069
АTOM	372	C5	DC3	12	0.577	-3.980	34.299
ATOM	373	H5	DC3	12	-0.257	-4.662	34.311
ATOM	374	C4	DC3	12	0.414	-2.570	34.398
Атом	375	N4	DC3	12	-0.766	-2.031	34.514
ATOM	376	H41	DC3	12	-1.577	-2.579	34.332
ATOM	377	H42	DC3	12	-0.769	-1.012	34.473
ATOM	378	N3	DC3	12	1.417	-1.724	34.406
ATOM	379	C2	DC3	12	2.670	-2.200	34.249
Атом	380	02	DC3	12	3.594	-1.392	34.263
ATOM	381	C3'	DC3	12	5.249	-5.946	35.049
ATOM	382	H3'	DC3	12	4.399	-6.564	35.348

ATOM	383	C2'	DC3	12	4.917	-4.476	35.275
ATOM	384	H2 '1	DC3	12	4.220	-4.367	36.106
Атом	385	H2'2	DC3	12	5.825	-3.906	35.470
Атом	386	O3'	DC3	12	6.430	-6.331	35.726
ATOM	387	H3T	DC3	12	6.518	-7.288	35.616
TER							
ATOM	388	H5T	DG5	13	0.298	8.166	35.679
Атом	389	O5'	DG5	13	0.068	9.051	35.365
Атом	390	C5 ${ }^{\prime}$	DG5	13	0.614	9.167	34.062
Атом	391	H5 ' 1	DG5	13	0.750	10.219	33.807
ATOM	392	H5'2	DG5	13	-0.063	8.710	33.340
ATOM	393	C4 ${ }^{\prime}$	DG5	13	1.969	8.450	34.010
Атом	394	H4'	DG5	13	2.686	8.971	34.648
Атом	395	O4'	DG5	13	1.768	7.118	34.472
Атом	396	C1'	DG5	13	2.076	6.210	33.424
Атом	397	H1'	DG5	13	3.093	5.825	33.555
Атом	398	N9	DG5	13	1.108	5.090	33.477
Атом	399	C8	DG5	13	-0.264	5.129	33.508
Атом	400	H8	DG5	13	-0.818	6.052	33.402
Атом	401	N7	DG5	13	-0.834	3.975	33.734
ATOM	402	C5	DG5	13	0.249	3.085	33.817
ATOM	403	C6	DG5	13	0.327	1.669	34.084
Атом	404	06	DG5	13	-0.566	0.861	34.350
Атом	405	N1	DG5	13	1.622	1.184	34.073
ATOM	406	H1	DG5	13	1.731	0.186	34.168
Атом	407	C2	DG5	13	2.717	1.956	33.863
Атом	408	N2	DG5	13	3.876	1.372	33.792
Атом	409	H21	DG5	13	4.621	1.943	33.435
ATOM	410	H22	DG5	13	3.936	0.358	33.855
Атом	411	N3	DG5	13	2.701	3.267	33.687
Атом	412	C4	DG5	13	1.435	3.771	33.652
Атом	413	C3'	DG5	13	2.526	8.372	32.586
ATOM	414	H3'	DG5	13	2.130	9.170	31.955
Атом	415	C2 ${ }^{\prime}$	DG5	13	2.032	7.004	32.123
Атом	416	H2 ' 1	DG5	13	1.010	7.083	31.751
ATOM	417	H2'2	DG5	13	2.681	6.568	31.364
Атом	418	O3'	DG5	13	3.938	8.464	32.667
ATOM	419	P	DG	14	4.851	8.694	31.360
ATOM	420	01P	DG	14	3.996	9.299	30.315
Атом	421	O2P	DG	14	6.087	9.372	31.792
Атом	422	O5'	DG	14	5.208	7.177	30.954
Атом	423	C5'	DG	14	6.112	6.412	31.746
ATOM	424	H5 ' 1	DG	14	5.735	6.354	32.767
Атом	425	H5'2	DG	14	7.070	6.933	31.767
Атом	426	C4'	DG	14	6.360	4.982	31.237
ATOM	427	H4'	DG	14	7.211	4.577	31.783
Атом	428	O4'	DG	14	5.232	4.141	31.475
Атом	429	C1'	DG	14	4.977	3.413	30.283
Атом	430	H1'	DG	14	5.636	2.540	30.234
Атом	431	N9	DG	14	3.565	2.959	30.257
ATOM	432	C8	DG	14	2.419	3.698	30.107
ATOM	433	H8	DG	14	2.445	4.757	29.893
ATOM	434	N7	DG	14	1.311	3.024	30.285
ATOM	435	C5	DG	14	1.757	1.718	30.536
Атом	436	C6	DG	14	1.055	0.492	30.835
ATOM	437	06	DG	14	-0.146	0.280	31.003
ATOM	438	N1	DG	14	1.886	-0.604	30.956
Атом	439	H1	DG	14	1.438	-1.502	31.037
Атом	440	C2	DG	14	3.229	-0.553	30.804
ATOM	441	N2	DG	14	3.872	-1.689	30.797
ATOM	442	H21	DG	14	4.814	-1.643	30.451
ATOM	443	H22	DG	14	3.361	-2.568	30.819
Атом	444	N3	DG	14	3.928	0.556	30.595
ATOM	445	C4	DG	14	3.135	1.666	30.463
Атом	446	C3'	DG	14	6.695	4.910	29.743

ATOM	447	H3'	DG	14	6.949	5.896	29.343
Атом	448	C2 ${ }^{\prime}$	DG	14	5.384	4.381	29.173
Атом	449	H2 '1	DG	14	4.668	5.199	29.085
ATOM	450	H2'2	DG	14	5.536	3.888	28.219
Атом	451	O3'	DG	14	7.764	3.982	29.573
Атом	452	P	DA	15	8.707	3.983	28.268
ATOM	453	01P	DA	15	10.109	4.057	28.727
Атом	454	O2P	DA	15	8.190	4.982	27.308
Атом	455	05'	DA	15	8.456	2.533	27.639
ATOM	456	C5 ${ }^{\prime}$	DA	15	9.185	1.383	28.047
Атом	457	H5'1	DA	15	9.058	1.246	29.121
Атом	458	H5'2	DA	15	10.245	1.539	27.842
АтОм	459	C4 ${ }^{\prime}$	DA	15	8.719	0.106	27.318
Атом	460	H4'	DA	15	9.367	-0.725	27.603
Атом	461	O4'	DA	15	7.379	-0.156	27.726
Атом	462	C1 ${ }^{\prime}$	DA	15	6.560	-0.119	26.572
ATOM	463	H1'	DA	15	6.472	-1.142	26.191
Атом	464	N9	DA	15	5.217	0.402	26.877
Атом	465	C8	DA	15	4.746	1.688	26.774
Атом	466	H8	DA	15	5.396	2.525	26.557
Атом	467	N7	DA	15	3.455	1.811	26.941
Атом	468	C5	DA	15	3.061	0.490	27.211
Атом	469	C6	DA	15	1.834	-0.140	27.504
Атом	470	N6	DA	15	0.698	0.504	27.626
Атом	471	H61	DA	15	-0.151	-0.005	27.836
Атом	472	H62	DA	15	0.689	1.497	27.485
Атом	473	N1	DA	15	1.752	-1.451	27.721
Атом	474	C2	DA	15	2.869	-2.162	27.633
Атом	475	H2	DA	15	2.769	-3.229	27.793
ATOM	476	N3	DA	15	4.093	-1.722	27.366
Атом	477	C4	DA	15	4.123	-0.370	27.180
ATOM	478	C3'	DA	15	8.703	0.231	25.779
Атом	479	H3'	DA	15	9.464	0.916	25.399
Атом	480	C2'	DA	15	7.296	0.730	25.530
Атом	481	H2'1	DA	15	7.232	1.794	25.731
Атом	482	H2'2	DA	15	6.971	0.528	24.515
Атом	483	O3'	DA	15	8.710	-1.011	25.100
Атом	484	P	DC	16	10.028	-1.839	24.779
Атом	485	01P	DC	16	10.661	-2.247	26.052
ATOM	486	02P	DC	16	10.800	-1.095	23.765
Атом	487	O5'	DC	16	9.293	-3.104	24.102
Атом	488	C5 ${ }^{\prime}$	DC	16	8.534	-4.031	24.876
ATOM	489	H5'1	DC	16	8.470	-3.695	25.912
ATOM	490	H5'2	DC	16	9.073	-4.979	24.863
ATOM	491	C4 ${ }^{\prime}$	DC	16	7.098	-4.283	24.367
Атом	492	H4'	DC	16	6.777	-5.228	24.804
ATOM	493	O4'	DC	16	6.148	-3.297	24.759
Атом	494	C1 ${ }^{\prime}$	DC	16	4.983	-3.526	23.979
Атом	495	H1'	DC	16	4.441	-4.399	24.363
Атом	496	N1	DC	16	4.078	-2.341	23.934
Атом	497	C6	DC	16	4.595	-1.086	23.742
ATOM	498	H6	DC	16	5.672	-0.993	23.639
Атом	499	C5	DC	16	3.775	-0.002	23.702
Атом	500	H5	DC	16	4.189	0.983	23.570
ATOM	501	C4	DC	16	2.379	-0.235	23.876
ATOM	502	N4	DC	16	1.552	0.767	23.958
Атом	503	H41	DC	16	1.890	1.704	23.945
ATOM	504	H42	DC	16	0.579	0.529	24.141
ATOM	505	N3	DC	16	1.863	-1.433	24.034
Атом	506	C2	DC	16	2.688	-2.507	24.034
Атом	507	02	DC	16	2.158	-3.614	24.114
Атом	508	C3 ${ }^{\prime}$	DC	16	6.942	-4.429	22.852
Атом	509	H3'	DC	16	7.694	-3.833	22.329
Атом	510	C2'	DC	16	5.539	-3.868	22.600
ATOM	511	H2 ' 1	DC	16	5.633	-2.981	21.978

ATOM	512	H2'2	DC	16	4.888	-4.596	22.125
ATOM	513	O3'	DC	16	7.037	-5.791	22.484
ATOM	514	P	DT	17	6.950	-6.258	20.947
Атом	515	01P	DT	17	7.800	-7.454	20.789
Атом	516	02P	DT	17	7.130	-5.082	20.069
ATOM	517	05'	DT	17	5.414	-6.695	20.843
Атом	518	C5 ${ }^{\prime}$	DT	17	4.897	-7.693	21.704
Атом	519	H5'1	DT	17	5.126	-7.434	22.737
Атом	520	H5'2	DT	17	5.369	-8.647	21.468
ATOM	521	C4'	DT	17	3.379	-7.817	21.568
ATOM	522	H4'	DT	17	3.034	-8.563	22.286
ATOM	523	O4'	DT	17	2.768	-6.565	21.866
Атом	524	C1'	DT	17	1.852	-6.249	20.833
Атом	525	H1'	DT	17	0.878	-6.685	21.080
ATOM	526	N1	DT	17	1.747	-4.766	20.704
Атом	527	C6	DT	17	2.842	-4.004	20.340
Атом	528	H6	DT	17	3.780	-4.507	20.126
Атом	529	C5	DT	17	2.757	-2.649	20.262
Атом	530	C7	DT	17	3.975	-1.859	19.815
Атом	531	H71	DT	17	4.886	-2.451	19.919
ATOM	532	H72	DT	17	3.853	-1.580	18.769
Атом	533	H73	DT	17	4.060	-0.947	20.407
Атом	534	C4	DT	17	1.516	-1.957	20.616
Атом	535	04	DT	17	1.353	-0.741	20.656
ATOM	536	N3	DT	17	0.462	-2.786	20.925
Атом	537	H3	DT	17	-0.441	-2.357	21.080
ATOM	538	C2	DT	17	0.510	-4.161	20.963
ATOM	539	02	DT	17	-0.520	-4.782	21.189
ATOM	540	C3'	DT	17	2.937	-8.257	20.169
Атом	541	H3'	DT	17	3.784	-8.632	19.587
Атом	542	C2'	DT	17	2.382	-6.960	19.584
Атом	543	H2'1	DT	17	3.199	-6.406	19.124
ATOM	544	H2'2	DT	17	1.593	-7.147	18.859
ATOM	545	O3'	DT	17	1.944	-9.256	20.325
Атом	546	P	DC	18	1.541	-10.263	19.135
ATOM	547	01P	DC	18	2.715	-10.452	18.257
Атом	548	O2P	DC	18	0.866	-11.432	19.733
ATOM	549	05'	DC	18	0.445	-9.372	18.371
ATOM	550	C5 ${ }^{\prime}$	DC	18	-0.842	-9.187	18.939
Атом	551	H5'1	DC	18	-0.736	-8.852	19.972
Атом	552	H5'2	DC	18	-1.358	-10.148	18.944
АTOM	553	C4 ${ }^{\prime}$	DC	18	-1.705	-8.171	18.180
ATOM	554	H4'	DC	18	-2.720	-8.253	18.570
ATOM	555	O4'	DC	18	-1.271	-6.837	18.398
Атом	556	C1'	DC	18	-1.801	-6.041	17.359
ATOM	557	H1'	DC	18	-2.842	-5.787	17.581
ATOM	558	N1	DC	18	-0.983	-4.799	17.240
Атом	559	C6	DC	18	0.386	-4.878	17.153
Атом	560	H6	DC	18	0.843	-5.860	17.075
Атом	561	C5	DC	18	1.140	-3.754	17.207
Атом	562	H5	DC	18	2.212	-3.818	17.161
ATOM	563	C4	DC	18	0.452	-2.515	17.341
Атом	564	N4	DC	18	1.135	-1.423	17.487
ATOM	565	H41	DC	18	2.126	-1.432	17.408
АTOM	566	H42	DC	18	0.606	-0.567	17.651
ATOM	567	N3	DC	18	-0.855	-2.412	17.423
ATOM	568	C2	DC	18	-1.596	-3.542	17.347
Атом	569	02	DC	18	-2.818	-3.412	17.391
ATOM	570	C3'	DC	18	-1.775	-8.389	16.663
ATOM	571	H3'	DC	18	-0.890	-8.928	16.317
ATOM	572	C2 ${ }^{\prime}$	DC	18	-1.759	-6.950	16.123
ATOM	573	H2'1	DC	18	-0.839	-6.797	15.559
Атом	574	H2 '2	DC	18	-2.617	-6.741	15.490
Атом	575	O3'	DC	18	-2.956	-9.121	16.349
ATOM	576	01P	Y	19	-2.018	-9.820	14.109

ATOM	577	P	Y	19	-3.278	-9.655	14.862
ATOM	578	02P	Y	19	-4.254	-10.759	14.952
Атом	579	O5'	Y	19	-4.042	-8.384	14.262
ATOM	580	C5'	Y	19	-5.274	-7.954	14.816
ATOM	581	H5'1	Y	19	-5.162	-7.802	15.891
ATOM	582	H5'2	Y	19	-6.029	-8.723	14.648
ATOM	583	C4'	Y	19	-5.735	-6.642	14.180
Атом	584	O4'	Y	19	-4.892	-5.576	14.616
Атом	585	H4'	Y	19	-6.753	-6.438	14.513
ATOM	586	C3'	Y	19	-5.721	-6.686	12.643
Атом	587	O3'	Y	19	-6.936	-6.113	12.189
ATOM	588	H3'	Y	19	-5.611	-7.704	12.266
Атом	589	C2'	Y	19	-4.488	-5.844	12.337
Атом	590	H2 '2	Y	19	-4.541	-5.368	11.363
Атом	591	H2'1	Y	19	-3.613	-6.489	12.397
Атом	592	C1	Y	19	-4.495	-4.830	13.481
Атом	593	H1'	Y	19	-5.251	-4.068	13.273
Атом	594	N9	Y	19	-3.185	-4.169	13.710
Атом	595	C4	Y	19	-3.006	-2.842	14.020
Атом	596	N3	Y	19	-3.992	-1.928	14.232
Атом	597	C8	Y	19	-1.917	-4.680	13.578
Атом	598	H8	Y	19	-1.732	-5.725	13.366
ATOM	599	N7	Y	19	-0.960	-3.805	13.744
ATOM	600	C5	Y	19	-1.648	-2.617	14.048
ATOM	601	C6	Y	19	-1.189	-1.286	14.372
Атом	602	06	Y	19	-0.036	-0.863	14.500
Атом	603	N1	Y	19	-2.216	-0.383	14.573
Атом	604	H1	Y	19	-1.936	0.556	14.824
ATOM	605	C2	Y	19	-3.544	-0.691	14.494
Атом	606	N2	Y	19	-4.410	0.300	14.709
Атом	607	H2	Y	19	-4.023	1.220	14.909
Атом	608	C3x	Y	19	-5.879	0.155	14.773
ATOM	609	H3x2	Y	19	-6.339	1.031	14.312
Атом	610	H3x1	Y	19	-6.199	-0.714	14.195
Атом	611	P	DC	20	-7.400	-6.046	10.647
ATOM	612	01P	DC	20	-6.253	-6.335	9.761
ATOM	613	O2P	DC	20	-8.677	-6.781	10.497
ATOM	614	05^{\prime}	DC	20	-7.685	-4.465	10.567
Атом	615	C5'	DC	20	-8.654	-3.852	11.415
Атом	616	H5 ' 1	DC	20	-8.479	-4.153	12.449
Атом	617	H5'2	DC	20	-9.648	-4.190	11.122
Атом	618	C4'	DC	20	-8.604	-2.319	11.353
ATOM	619	H4'	DC	20	-9.417	-1.923	11.957
Атом	620	O4'	DC	20	-7.366	-1.877	11.898
Атом	621	C1 ${ }^{\prime}$	DC	20	-6.739	-0.957	11.021
Атом	622	H1'	DC	20	-6.931	0.068	11.367
Атом	623	N1	DC	20	-5.277	-1.258	10.987
ATOM	624	C6	DC	20	-4.830	-2.519	10.671
Атом	625	H6	DC	20	-5.558	-3.307	10.494
Атом	626	C5	DC	20	-3.499	-2.773	10.596
Атом	627	H5	DC	20	-3.150	-3.761	10.344
ATOM	628	C4	DC	20	-2.621	-1.697	10.887
Атом	629	N4	DC	20	-1.337	-1.891	10.903
Атом	630	H41	DC	20	-0.965	-2.809	10.789
Атом	631	H42	DC	20	-0.764	-1.099	11.187
ATOM	632	N3	DC	20	-3.020	-0.479	11.163
Атом	633	C2	DC	20	-4.349	-0.235	11.221
ATOM	634	02	DC	20	-4.685	0.921	11.453
Атом	635	C3 ${ }^{\prime}$	DC	20	-8.732	-1.798	9.913
Атом	636	H3'	DC	20	-8.813	-2.661	9.251
ATOM	637	C2 ${ }^{\text {' }}$	DC	20	-7.383	-1.146	9.644
Атом	638	H2 '1	DC	20	-6.797	-1.828	9.033
Атом	639	H2 '2	DC	20	-7.486	-0.194	9.134
Атом	640	O3'	DC	20	-9.864	-0.974	9.620
Атом	641	P	DT	21	-10.229	0.446	10.306

ATOM	642	01P	DT	21	-11.582	0.829	9.860
ATOM	643	02P	DT	21	-9.932	0.374	11.750
Атом	644	$05{ }^{\prime}$	DT	21	-9.189	1.473	9.633
Атом	645	C5	DT	21	-8.826	2.675	10.292
ATOM	646	H5'1	DT	21	-8.525	2.446	11.315
АтОм	647	H5'2	DT	21	-9.692	3.335	10.327
ATOM	648	C4'	DT	21	-7.663	3.399	9.600
Атом	649	H4'	DT	21	-7.454	4.312	10.160
Атом	650	O4'	DT	21	-6.503	2.573	9.638
ATOM	651	C1'	DT	21	-5.839	2.749	8.408
АтОм	652	H1'	DT	21	-5.360	3.735	8.415
ATOM	653	N1	DT	21	-4.802	1.704	8.174
ATOM	654	C6	DT	21	-5.104	0.449	7.678
Атом	655	H6	DT	21	-6.128	0.198	7.461
Атом	656	C5	DT	21	-4.125	-0.463	7.439
ATOM	657	C7	DT	21	-4.500	-1.827	6.885
Атом	658	H71	DT	21	-3.901	-2.594	7.377
ATOM	659	H72	DT	21	-5.554	-2.042	7.054
Атом	660	H73	DT	21	-4.284	-1.852	5.817
ATOM	661	C4	DT	21	-2.725	-0.146	7.722
Атом	662	04	DT	21	-1.763	-0.888	7.535
ATOM	663	N3	DT	21	-2.514	1.110	8.233
ATOM	664	H3	DT	21	-1.565	1.416	8.389
Атом	665	C2	DT	21	-3.472	2.073	8.409
Атом	666	02	DT	21	-3.122	3.208	8.704
Атом	667	C3'	DT	21	-7.911	3.792	8.128
Атом	668	H3'	DT	21	-8.958	3.659	7.844
Атом	669	C2 ${ }^{\prime}$	DT	21	-6.993	2.798	7.413
Атом	670	H2'1	DT	21	-7.505	1.840	7.344
Атом	671	H2'2	DT	21	-6.664	3.134	6.434
ATOM	672	03 '	DT	21	-7.485	5.140	7.935
ATOM	673	P	DA	22	-7.801	5.977	6.582
ATOM	674	01P	DA	22	-9.093	6.661	6.772
Атом	675	02P	DA	22	-7.613	5.083	5.421
ATOM	676	O5'	DA	22	-6.622	7.080	6.528
ATOM	677	C5'	DA	22	-5.284	6.741	6.867
ATOM	678	H5'1	DA	22	-5.190	5.654	6.834
ATOM	679	H5'2	DA	22	-5.096	7.044	7.897
Атом	680	C4'	DA	22	-4.172	7.332	5.970
Атом	681	H4'	DA	22	-3.892	8.328	6.318
Атом	682	O4'	DA	22	-3.109	6.396	6.135
Атом	683	C1'	DA	22	-2.961	5.662	4.930
ATOM	684	H1'	DA	22	-2.119	6.112	4.393
ATOM	685	N9	DA	22	-2.662	4.232	5.150
ATOM	686	C8	DA	22	-3.516	3.152	5.153
ATOM	687	H8	DA	22	-4.592	3.265	5.133
Атом	688	N7	DA	22	-2.920	1.986	5.170
ATOM	689	C5	DA	22	-1.560	2.345	5.201
ATOM	690	C6	DA	22	-0.338	1.634	5.224
Атом	691	N6	DA	22	-0.243	0.320	5.259
Атом	692	H61	DA	22	0.668	-0.112	5.341
ATOM	693	H62	DA	22	-1.087	-0.202	5.426
Атом	694	N1	DA	22	0.838	2.259	5.231
Атом	695	C2	DA	22	0.834	3.587	5.232
Атом	696	H2	DA	22	1.800	4.073	5.239
ATOM	697	N3	DA	22	-0.223	4.386	5.197
Атом	698	C4	DA	22	-1.398	3.700	5.198
ATOM	699	C3'	DA	22	-4.453	7.357	4.450
ATOM	700	H3'	DA	22	-5.463	7.697	4.213
Атом	701	C2 ${ }^{\prime}$	DA	22	-4.241	5.893	4.120
ATOM	702	H2'1	DA	22	-5.083	5.311	4.490
Атом	703	H2'2	DA	22	-4.087	5.730	3.055
ATOM	704	03 '	DA	22	-3.461	8.030	3.678
Атом	705	P	DG	23	-3.426	9.610	3.462
Атом	706	01P	DG	23	-3.378	10.285	4.774

ATOM	707	O2P	DG	23	-4.473	9.953	2.478
ATOM	708	O5'	DG	23	-1.982	9.737	2.750
ATOM	709	C5 ${ }^{\prime}$	DG	23	-0.774	9.814	3.507
ATOM	710	H5 '1	DG	23	-0.908	9.293	4.459
ATOM	711	H5 ' 2	DG	23	-0.570	10.861	3.726
ATOM	712	C4'	DG	23	0.457	9.195	2.807
ATOM	713	H4 ${ }^{\prime}$	DG	23	1.348	9.624	3.258
ATOM	714	O4'	DG	23	0.451	7.798	3.079
ATOM	715	C1 ${ }^{\prime}$	DG	23	0.991	7.094	1.983
ATOM	716	H1'	DG	23	2.085	7.068	2.053
ATOM	717	N9	DG	23	0.422	5.719	1.974
ATOM	718	C8	DG	23	-0.903	5.353	1.967
ATOM	719	H8	DG	23	-1.698	6.089	2.026
ATOM	720	N7	DG	23	-1.111	4.063	1.881
ATOM	721	C5	DG	23	0.183	3.521	1.902
ATOM	722	C6	DG	23	0.661	2.157	1.878
ATOM	723	06	DG	23	0.038	1.096	1.839
ATOM	724	N1	DG	23	2.035	2.054	1.882
ATOM	725	H1	DG	23	2.424	1.125	1.930
ATOM	726	C2	DG	23	2.869	3.116	1.919
ATOM	727	N2	DG	23	4.146	2.865	1.897
ATOM	728	H21	DG	23	4.725	3.633	2.178
ATOM	729	H22	DG	23	4.481	1.907	1.998
ATOM	730	N3	DG	23	2.484	4.387	1.912
ATOM	731	C4	DG	23	1.124	4.532	1.934
ATOM	732	C3 ${ }^{\prime}$	DG	23	0.509	9.357	1.268
ATOM	733	H3'	DG	23	-0.442	9.779	0.945
ATOM	734	C2'	DG	23	0.552	7.913	0.767
ATOM	735	H2 ' 1	DG	23	-0.458	7.630	0.472
ATOM	736	H2 ' 2	DG	23	1.237	7.791	-0.068
ATOM	737	O3'	DG	23	1.520	10.185	0.669
ATOM	738	P	DC3	24	3.123	10.124	0.900
ATOM	739	01P	DC3	24	3.713	11.196	0.067
ATOM	740	O2P	DC3	24	3.418	10.080	2.339
ATOM	741	05 ${ }^{\prime}$	DC3	24	3.612	8.732	0.258
ATOM	742	C5 ${ }^{\prime}$	DC3	24	3.795	8.604	-1.137
ATOM	743	H5 '1	DC3	24	4.536	9.335	-1.466
ATOM	744	H5 ' 2	DC3	24	2.849	8.807	-1.639
ATOM	745	C4'	DC3	24	4.293	7.201	-1.491
ATOM	746	H4'	DC3	24	5.312	7.063	-1.127
ATOM	747	O4'	DC3	24	3.461	6.203	-0.946
ATOM	748	C1'	DC3	24	3.658	5.010	-1.672
ATOM	749	H1'	DC3	24	4.481	4.442	-1.223
ATOM	750	N1	DC3	24	2.417	4.194	-1.629
ATOM	751	C6	DC3	24	1.192	4.759	-1.381
ATOM	752	H6	DC3	24	1.120	5.827	-1.224
ATOM	753	C5	DC3	24	0.092	3.971	-1.280
ATOM	754	H5	DC3	24	-0.866	4.407	-1.045
ATOM	755	C4	DC3	24	0.281	2.572	-1.429
ATOM	756	N4	DC3	24	-0.727	1.775	-1.241
ATOM	757	H41	DC3	24	-1.515	2.134	-0.738
ATOM	758	H42	DC3	24	-0.511	0.781	-1.242
ATOM	759	N3	DC3	24	1.445	2.015	-1.696
ATOM	760	C2	DC3	24	2.529	2.813	-1.797
ATOM	761	02	DC3	24	3.613	2.281	-2.038
ATOM	762	C3'	DC3	24	4.223	6.951	-3.001
ATOM	763	H3 ${ }^{\prime}$	DC3	24	3.334	7.443	-3.403
ATOM	764	C2'	DC3	24	4.039	5.438	-3.097
ATOM	765	H2 ' 1	DC3	24	3.250	5.204	-3.814
ATOM	766	H2 ' 2	DC3	24	4.968	4.946	-3.391
ATOM	767	O3'	DC3	24	5.391	7.364	-3.689
ATOM	768	H3T	DC3	24	5.510	8.309	-3.545
TER							
END							

REFERENCES

Arnott, S. and Hukins, D. W. L. (1972) Biochem.Biophys.Res.Comm., 47, 1504-1509.
Bashford, D. and Case, D. A. (2000) Annu Rev Phys Chem, 51, 129-152.
Basu, A. K., O'Hara, S. M., Valladier, P., Stone, K., Mols, O. and Marnett, L. J. (1988) Chem Res Toxicol, 1, 53-59.

Benamira, M., Singh, U. and Marnett, L. J. (1992) J Biol Chem., 267, 22392-22400.
Boelens, R., Scheek, R. M., Dijkstra, K. and Kaptein, R. (1985) J Magn Reson, 62, 378-386.
Borgias, B. A. and James, T. L. (1990) J Magn Reson, 87, 475-487.
Brown, T., Kennard, O., Kneale, G. and Rabinovich, D. (1985) Nature, 315, 604-606.
Budiawan and Eder, E. (2000) Carcinogenesis, 21, 1191-1196.
Burcham, P. C. and Marnett, L. J. (1994) J.Biol.Chem., 269, 28844-28850.
Cajelli, E., Ferraris, A. and Brambilla, G. (1987) Mutat Res, 190, 169-171.
Case, D. A., Dardden, T.A., Cheatham III, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Merz, K.M., Wang, B., Pearlman, D.A., Crowley, M. Brozell, S., Tsui, V., Gohlke, H., Mongan, J., Hornak, V., Cui, G., berroza, P., Schafmeister, C., Caldwell, J.W., Ross, W.S., and Kollman, P.A., 2004, AMBER 8,

Chemistry, I.-.-I. U. o. P. a. A. (1998) Pure Appl. Chem., 70, 117-142.
Cho, Y.-J., Wang, H., Kozekov, I. D., Kurtz, A. J., Jacob, J., Voehler, M., Smith, J., Harris, T. M., Lloyd, R. S., Rizzo, C. J. and Stone, M. P. (2006) Chem Res Toxicol, 19, 195-208.

Cho, Y. J., Kim, H. Y., Huang, H., Slutsky, A., Minko, I. G., Wang, H., Nechev, L. V., Kozekov, I. D., Kozekova, A., Tamura, P., Jacob, J., Voehler, M., Harris, T. M., Lloyd, R. S., Rizzo, C. J. and Stone, M. P. (2005) J Am Chem Soc, 127, 17686-17696.

Chung, F.-L., Nath, R. G., Nagao, M., Nishikawa, A., Zhou, G.-d. and Randerath, K. (1999) Mutat Res, 424, 71-81.

Chung, F. L., Chen, H. J. and Nath, R. G. (1996) Carcinogenesis, 17, 2105-2111.
Chung, F. L. and Hecht, S. S. (1983) Cancer Res, 43, 1230-1235.
Chung, F. L., Nath, R. G., Nagao, M., Nishikawa, A., Zhou, G. D. and Randerath, K. (1999) Mutat Res, 424, 71-81.

Chung, F. L., Tanaka, T. and Hecht, S. S. (1986) Cancer Res, 46, 1285-1289.
Chung, F. L., Young, R. and Hecht, S. S. (1984) Cancer Res, 44, 990-995.
Chung, F. L., Zhang, L., Ocando, J. E. and Nath, R. G. (1999) IARC Sci Publ, 45-54.
Cohen, S. M., Garland, E. M., St John, M., Okamura, T. and Smith, R. A. (1992 Jul 1) Cancer Res, 52, 3577-3581.

Crawford, J. L., Kolpak, F. J., Wang, A. H., Quigley, G. J., van Boom, J. H., van der Marel, G. and Rich, A. (1980) Proc Natl Acad Sci U S A, 77, 4016-4020.

Curren, R. D., Yang, L. L., Conklin, P. M., Grafstrom, R. C. and Harris, C. C. (1988) Mutat Res, 209, 1722.

Czerny, C., Eder, E. and Runger, T. M. (1998) Mutat Res, 407, 125-134.
De Bont, R. and van Larebeke, N. (2004) Mutagenesis, 19, 169-185.
de los Santos, C., Zaliznyak, T. and Johnson, F. (2001) J Biol Chem, 276, 9077-9082.
DeCorte, B. L., Tsarouhtsis, D., Kuchimanchi, S., Cooper, M. D., Horton, P., Harris, C. M. and Harris,p T. M. (1996) Chem.Res.Toxicol., 9, 630-637.

Dedon, P. C., Plastaras, J. P., Rouzer, C. A. and Marnett, L. J. (1998) Proc Natl Acad Sci U S A, 95. 95, 11113-11116.

Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J Biomol NMR, 6, 277293.

Dickopf, S., Alexiev, U., Krebs, M. P., Otto, H., Mollaaghababa, R., Khorana, H. G. and Heyn, M. P. (1995) Proc Natl Acad Sci U S A, 92, 11519-11523.

Dooley, P. A., Tsarouhtsis, D., Korbel, G. A., Nechev, L. V., Shearer, J., Zegar, I. S., Harris, C. M., Stone, M. P. and Harris, T. M. (2001) J Am Chem Soc, 123, 1730-1739.

Dooley, P. A., Zhang, M., Korbel, G. A., Nechev, L. V., Harris, C. M., Stone, M. P. and Harris, T. M. (2003) J Am Chem Soc, 125, 62-72.

Eder, E. and Hoffman, C. (1992) Chem Res Toxicol, 5, 802-808.
Eder, E. and Hoffman, C. (1993) Chem Res Toxicol, 6, 486-494.
Eder, E., Schuler, D. and Budiawan (1999) IARC Sci Publ, 219-232.
Erskine, P. T., Newbold, R., Roper, J., Coker, A., Warren, M. J., Shoolingin-Jordan, P. M., Wood, S. P. and Cooper, J. B. (1999) Protein Sci, 8, 1250-1256.

Fernandes, P. H., Kanuri, M., Nechev, L. V., Harris, T. M. and Lloyd, R. S. (2005) Environ Mol Mutagen, 45, 455-459.

Foster, P. L., Eisenstadt, E. and Miller, J. H. (1983) Proc Natl Acad Sci USA, 80, 2695-2698.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Stefanov, B. B., Liu, A., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T. A., Al-Lham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B. G., Chen, W., Wong, M. W., Andres, J. L., Head-Gordon, M., Reploge, E. S. and Pople, J. A., 1998, GAUSSIAN98,

Gao, X. and Patel, D. J. (1988) J Am Chem Soc, 110, 5178-5182.

Geacintov, N. E., Cosman, M., Hingerty, B. E., Amin, S., Broyde, S. and Patel, D. J. (1997) Chem.Res.Toxicol., 10, 111-146.

Gotfredsen, C. H., Spielmann, H. P., Wengel, J. and Jacobsen, J. P. (1996 Nov-Dec) Bioconjug Chem, 7. 7, 680-688.

Hare, D., Shapiro, L. and Patel, D. J. (1986) Biochemistry, 25, 7445-7456.
Harris, C. M., Zhou, L., Strand, E. A. and Harris, T. M. (1991) J.Am.Chem.Soc., 113, 4328-4329.
Hashim, M. F. and Marnett, L. J. (1996) J.Biol.Chem., 271, 9160-9165.
Hecht, S. S., Upadhyaya, P. and Wang, M. (1999) IARC Sci Publ, 147-154.
Hunter, W. N., Brown, T. and Kennard, O. (1986) J Biomol Struct Dyn, 4, 173-191.
IARC (1999) IARC Sci Publ, 71, 109-125.
Izard, C., Valadaud-Barrieu, D., Fayeulle, J. P. and Testa, A. (1980) Mutat Res, 77, 341-344.
Kalnik, M. W., Kouchakdjian, M., Li, B. F. L., Swann, P. F. and Patel, D. J. (1988) Biochemistry, 27, 108115.

Kan, L. S., Chandrasegaran, S., Pulford, S. M. and Miller, P. S. (1983 Jul) Proc Natl Acad Sci U S A, 80, 4263-4265.

Kanuri, M., Minko, I. G., Nechev, L. V., Harris, T. M., Harris, C. M. and Lloyd, R. S. (2002) J Biol Chem, 277, 18257-18265.

Kastan, M. B. and Bartek, J. (2004) Nature, 432, 316-323.
Kawanishi, M., Matsuda, T., Nakayama, A., Takebe, H., Matsui, S. and Yagi, T. (1998) Mutat Res, 417, 65-73.

Kawanishi, M., Matsuda, T., Sasaki, G., Yagi, T., Matsui, S. and Takebe, H. (1998) Carcinogenesis, 19, 69-72.

Keepers, J. W. and James, T. L. (1984) J.Magn.Reson., 57, 404-426.

Kennard, O. (1985) J.Biomol.Struct.Dyn., 3, 205-226.
Khullar, S., Varaprasad, C. V. and Johnson, F. (1999) J Med Chem, 42, 947-950.
Kim, H.-Y. H., Voehler, M., Harris, T. M. and Stone, M. P. (2002) J Am Chem Soc, 124, 9324-9325..

Kim, S. G., Lin, L. J. and Reid, B. R. (1992) Biochemistry, 31, 3564-3574.
Kneale, G., Brown, T., Kennard, O. and Rabinovich, D. (1985) J.Mol.Biol., 186, 805-814.
Kopka, M. L., Goodsell, D. S., Baikalov, I., Grzeskowiak, K., Cascio, D. and Dickerson, R. E. (1994) Biochemistry, 33, 13593-13610.

Kouchakdjian, M., Eisenberg, M., Live, D., Marinelli, E., Grollman, A. P. and Patel, D. J. (1990) Biochemistry, 29, 4456-4465.

Kozack, R. E. and Loechler, E. L. (1997 Aug) Carcinogenesis, 18. 18, 1585-1593.

Kozekov, I. D., Nechev, L. V., Moseley, M. S., Harris, C. M., Rizzo, C. J., Stone, M. P. and Harris, T. M. (2003) J Am Chem Soc, 125, 50-61.

Kozekov, I. D., Nechev, L. V., Sanchez, A., Harris, C. M., Lloyd, R. S. and Harris, T. M. (2001) Chem Res Toxicol, 14, 1482-1485.

Kurtz, A. J. and Lloyd, R. S. (2003) J Biol Chem, 278, 5970-5976.
Lao, Y. and Hecht, S. S. (2005) Chem Res Toxicol, 18, 711-721.
Lindahl, T. (2000) Mutat Res, 462, 129-135.

Liu, H., Spielmann, H. P., Ulyanov, N. B., Wemmer, D. E. and James, T. L. (1995) J Biomol NMR, 6. 6, 390-402.

Liu, H., Tonelli, M. and James, T. L. (1996) J Magn Reson Series B, 111, 85-89.
Liu, Y.-S., Zhao, C., Bergbreter, D. E. and Romo, D. J. (1998) J. Org. Chem., 63, 3471-3473.
Longstaff, C. and Rando, R. R. (1987) Biochemistry, 26, 6107-6113.
Lu, X. J. and Olson, W. K. (2003) Nucleic Acids Res, 31, 5108-5121.
Lukin, M. and de Los Santos, C. (2006) Chem Rev, 106, 607-686.
Mao, H., Reddy, G. R., Marnett, L. J. and Stone, M. P. (1999) Biochemistry 38, 13491-13501.
Mao, H., Schnetz-Boutaud, N. C., Weisenseel, J. P., Marnett, L. J. and Stone, M. P. (1999) Proc Natl Acad Sci U S A, 96. 96, 6615-6620.

Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., Wright, P. E. and Wuthrich, K. (1998) J Mol Biol, 280, 933-952.

Marnett, L. J. (1999) Mutat Res, 424. 424, 83-95.
Marnett, L. J. (2000) Carcinogenesis, 21, 361-370.
Marnett, L. J., Basu, A. K., O'Hara, S. M., Weller, P. E., Rahman, A. F. M. M. and Oliver, J. P. (1986) J Am Chem Soc, 108, 1348-1350.

Marnett, L. J., Huird, H. K., Hollstein, M. C., Levin, D. E., Esterbauer, H. and Ames, B. N. (1985) Mutat Res, 148, 25.

Marnett, L. J., Riggins, J. N. and West, J. D. (2003) J Clin Invest, 111, 583-593.
Minko, I. G., Washington, M. T., Kanuri, M., Prakash, L., Prakash, S. and Lloyd, R. S. (2003) J Biol Chem, 278, 784-790.

Mori, S., Abeygunawardana, C., Johnson, M. and vanZul, P. C. M. (1995) J Magn Reson, 108, 94-98.
Moriya, M., Zhang, W., Johnson, F. and Grollman, A. P. (1994) Proc Natl Acad Sci U S A, 91, 1189911903.

Mu, D., Bessho, T., Nechev, L. V., Chen, D. J., Harris, T. M., Hearst, J. E. and Sancar, A. (2000) Mol Cell Biol, 20, 2446-2454.

Nath, R. G., Chen, H. J., Nishikawa, A., Young-Sciame, R. and Chung, F. L. (1994) Carcinogenesis, 15, 979-984.

Nath, R. G. and Chung, F.-L. (1994) Proc. Natl. Acad. Sci. U.S.A., 91, 7491-7495.
Nath, R. G., Ocando, J. E. and Chung, F. L. (1996) Cancer Res, 56, 452-456.
Nechev, L. V., Harris, C. M. and Harris, T. M. (2000) Chem Res Toxicol, 13, 421-429.
Nechev, L. V., Kozekov, I. D., Harris, C. M. and Harris, T. M. (2001) Chem Res Toxicol, 14, 1506-1512.
Nechev, L. V., Zhang, M., Tsarouhtsis, D., Tamura, P. J., Wilkinson, A. S., Harris, C. M. and Harris, T. M. (2001) Chem Res Toxicol, 14, 379-388.

Nelson, D. L. and Cox, M. M. (2000) Third Edition,
Norman, D., Live, D., Sastry, M., Lipman, R., Hingerty, B. E., Tomasz, M., Broyde, S. and Patel, D. J. (1990) Biochemistry, 29, 2861-2875.

Oliver, S. G. (1996) Nature, 379, 597-600.
Patel, D. J., Kozlowski, S. A., Ikuta, S. and Itakura, K. (1984 Jul 3) Biochemistry, 23, 3207-3217.
Patel, D. J., Shapiro, L. and Hare, D. (1987) Q Rev Biophys., 20, 35-112.
Piotto, M., Saudek, V. and Sklenar, V. (1992) J Biomol NMR, 2, 661-665.
Ramu, K., Fraiser, L. H., Mamiya, B., Ahmed, T. and Kehrer, J. P. (1995) Chem Res Toxicol, 8, 515-524.
Reddy, G. R. and Marnett, L. J. (1996) Chem Res Toxicol., 9, 12-15.
Refolo, L. M., Bennett, C. B. and Humayun, M. Z. (1987) J Mol Biol., 193, 609-636.
Reid, B. R. (1987) Q Rev Biophys., 20, 2-28.
Riggins, J. N., Daniels, J. S., Rouzer, C. A. and Marnett, L. J. (2004) J Am Chem Soc, 126, 8237-8243.
Riggins, J. N., Pratt, D. A., Voehler, M., Daniels, J. S. and Marnett, L. J. (2004) J Am Chem Soc, 126, 10571-10581.

Sako, M., Inagaki, S., Esaka, Y. and Deyashiki, Y. (2003) Bioorg Med Chem Lett, 13, 3497-3498.
Sako, M., Yaekura, I. and Deyashiki, Y. (2002) Nucleic Acids Res Suppl, 21-22.
Salazar, M., Fedoroff, O. Y., Miller, J. M., Ribeiro, N. S. and Reid, B. R. (1993) Biochemistry, 32, 42074215.

Sanchez, A., Minko, I., Kurtz, A. J., Kanuri, M., Moriya, M. and Lloyd, R. S. (2003) Chem Res Toxicol., 16, 1019-1028.

Schnetz-Boutaud, N. C., Saleh, S., Marnett, L. J. and Stone, M. P. (2001) Adv Exp Med Biol 500, 513-516.
Schnetz-Boutaud, N. C., Saleh, S., Marnett, L. J. and Stone, M. P. (2001) Biochemistry, 40, 15638-15649.
Seto, H., Okuda, T., Takesue, T. and Ikemura, T. (1983) Bull Chem Soc Jpn, 56, 1799-1802.

Seto, H., Seto, T., Takesue, T. and Ikemura, T. (1986) Chem Pharm Bull, 34, 5079-5085.
Shetty, H. U. and Nelson, W. L. (1985) J Pharm Sci, 74, 968-971.
Sklenar, V., Piotto, M. and Leppik, R. a. S., V. (1993) J Magn Reson, 102, 241-245.
Smith, J. A., Bifulco, G., Case, D. A., Boger, D. L., Gomez-Paloma, L. and Chazin, W. J. (2000) J Mol Biol, 300, 1195-1204.

Smith, R. A., Cohen, S. M. and Lawson, T. A. (1990) Carcinogenesis, 11, 497-498.
Smith, R. A., Williamson, D. S., Cerny, R. L. and Cohen, S. M. (1990) Cancer Res, 50, 3005-3012.
Sonar, S., Marti, T., Rath, P., Fischer, W., Coleman, M., Nilsson, A., Khorana, H. G. and Rothschild, K. J. (1994) J Biol Chem, 269, 28851-28858.

Stryer, L. (1988) Third Edition,
Talluri, S. a. W., G. (1996) J. of Magnetic Resonance, 112, 200-205.
Theruvathu, J. A., Jaruga, P., Nath, R. G., Dizdaroglu, M. and Brooks, P. J. (2005) Nucleic Acids Res, 33, 3513-3520.

Topal, M. D. and Fresco, J. R. (1976) Nature, 263, 285-289.
Treitman, R. D., Burgess, W. A. and Gold, A. (1980) Am Ind Hyg Assoc J, 41, 796-802.
Tsui, V. and Case, D. A. (2000) Biopolymers, 56, 275-291.
Upthagrove, A. L. and Nelson, W. L. (2001) Drug Metab Dispos, 29, 1114-1122.
Van De Ven, F. J. M. and Hilbers, C. W. (1988) Eur.J.Biochem., 178, 1-38.
VanderVeen, L. A., Hashim, M. F., Nechev, L. V., Harris, T. M., Harris, C. M. and Marnett, L. J. (2001) J Biol Chem, 276, 9066-9070.

VanderVeen, L. A., Hashim, M. F., Shyr, Y. and Marnett, L. J. (2003) Proc Natl Acad Sci U S A, 100, 14247-14252.

Velez-Cruz, R., Riggins, J. N., Daniels, J. S., Cai, H., Guengerich, F. P., Marnett, L. J. and Osheroff, N. (2005) Biochemistry, 44, 3972-3981.

Wang, M., McIntee, E. J., Cheng, G., Shi, Y., Villalta, P. W. and Hecht, S. S. (2000) Chem Res Toxicol, 13, 1149-1157.

Washington, M. T., Minko, I. G., Johnson, R. E., Haracska, L., Harris, T. M., Lloyd, R. S., Prakash, S. and Prakash, L. (2004) Mol Cell Biol, 24, 6900-6906.

Washington, M. T., Minko, I. G., Johnson, R. E., Wolfle, W. T., Harris, T. M., Lloyd, R. S., Prakash, S. and Prakash, L. (2004) Mol Cell Biol, 24, 5687-5693.

Watson, J. D. and Crick, F. H. (1953) Nature, 171, 737-738.
Weisenseel, J. P., Moe, J. G., Reddy, G. R., Marnett, L. J. and Stone, M. P. (1995) Biochemistry, 34, 50-64.
Weisenseel, J. P., Reddy, G.R., Marnett, L.J., \& Stone, M.P. (2002) Chem Res Toxicol, 15, 140-152.

Williams, S. D. and David, S. S. (1998) Nucleic Acids Res, 26, 5123-5133.
Wishart, D. S., Bigam, C. G., Yao, J., Abildgaard, F., Dyson, H. J., Oldfield, E., Markley, J. L. and Sykes, B. D. (1995) J Biomol NMR, 6, 135-140.

Wolfle, W. T., Johnson, R. E., Minko, I. G., Lloyd, R. S., Prakash, S. and Prakash, L. (2005) Mol Cell Biol, 25, 8748-8754.

Yang, I.-Y., Johnson, R., Grollman, A.P., \& Moriya, M. (2002) Chem. Res. Toxicol.. 15, 160-164.
Yang, I. Y., Chan, G., Miller, H., Huang, Y., Torres, M. C., Johnson, F. and Moriya, M. (2002) Biochemistry, 41, 13826-13832.

Yang, I. Y., Hossain, M., Miller, H., Khullar, S., Johnson, F., Grollman, A. and Moriya, M. (2001) J Biol Chem, 276, 9071-9076.

[^0]: ${ }^{\text {t }}$ Reproduced in part with permission from J. Am. Chem. Soc. 2005, 127, 17686-17696. Copyright 2005 American Chemical Society.

[^1]: ${ }^{\dagger}$ Reproduced in part with permission from Chem. Res. Toxicol. 2006, 19, 195-208. . Copyright 2006 American Chemical Society.

[^2]: ${ }^{1}$ Furthermore, the ratio of each species is dependent on the temperature and the pH changes. In general, ring-closed form was favored at an acidic condition or higher temperature. At the higher temperature $\left(65^{\circ} \mathrm{C}\right)$, the transition from the carbinolamine to the exocyclic adducts was detectable by HSQC experiments while the existence of imine was not (data not shown).

[^3]: ${ }^{2}$ The hydrogen bonds between carbinolamine hydroxyl and the oxygen in the sugar ring of C^{20} is also possibly suggested.

[^4]: ${ }^{3}$ The ratio of aldehyde to hydrate is different: more aldehydes than hydrates in the case of crotonaldehyde adducts due to, presumably, existence of methyl group.

