TABLE OF CONTENTS

ACKNOWLEDGEMENT	ii	i
LIST OF TABLES	vi	i
LIST OF FIGURES	vii	i
LIST OF SCHEMES	xiv	V
LIST OF ABBREVIATIONS	xx	7

Chapter

I. INTRODUCTION

	 a. Study of DNA and DNA Damage by Using NMR Spectroscopy b. DNA Adducts of acrolein and crotonaldehyde c. Synthesis of Modified Oligodeoxynucleotides d. Structural Studies of Oligonucleotides by NMR Spectroscopy e. Structural Refinements of DNA f. Dissertation Statement 	1 11 26 27 35 40
II.	MATERIALS AND METHODS	
	 a. Oligodeoxynucleotide Synthesis b. Sample Preparation c. NMR Spectroscopy d. Molecular Modeling e. Distance and Torsion Restraints f. Restrained Molecular Dynamics Calculations 	42 48 49 51 52 53
III.	SPECTROSCOPIC CHARACTERIZATION OF INTERSTRAND CARBINOLAMINE CROSS-LINKS FORMED IN THE 5'-CpG-3' SEQUENCE BY THE ACROLEIN-DERIVED γ-OH-1,N ² -PROPANO-2'- DEOXYGUANOSINE DNA ADDUCT	

a.	Introduction	 56
b.	Results	 57
c.	Discussion	 71

IV.	SPECTROSCOPIC FORMATION OF INTERSTRAND CARBINOLAMINE DNA CROSS-LINKS CROTONALDEHYDE- AND ACETALDEHYDE-DERIVED α-CH ₃ -γ-OH-1,N ² -PROPANO-2'- DEOXYGUANOSINE ADDUCTS IN THE 5'-CpG-3' SEQUENCE	
	a. Introduction b. Results c. Discussion	78 79 100
V.	ORIENTATION OF THE CROTONALDEHYDE-DERIVED N ² -(3-OXO- 1(S)-METHYL-PROPYL)-DEOXYGUANOSINE DNA ADDUCT HINDE INTERSTRAND CROSS-LINK FORMATION IN THE 5'-CpG-3' SEQUENCE	ERS
	a. Introductionb. Resultsc. Discussion	106 108 126
VI.	SOLUTION STRUCTURE OF THE FULLY REDUCED DNA INTERSTRAND CROSS-LINK ARISING FROM RING OPENING OF CROTONALDEHYDE-DERIVED <i>R</i> -α-CH ₃ -γ-OH-1, <i>N</i> ² -PROPANO-2'- DEOXYGUANOSINE ADDUCT IN THE 5'-CpG-3' SEQUENCE	
	a. Introductionb. Resultsc. Discussion	132 134 153
VII.	SOLUTION STRUCTURE OF THE FULLY REDUCED DNA INTERSTRAND CROSS-LINK ARISING FROM RING OPENING OF CROTONALDEHYDE-DERIVED S-α-CH ₃ -γ-OH-1,N ² -PROPANO-2'- DEOXYGUANOSINE ADDUCT IN THE 5'-CpG-3' SEQUENCE	
	a. Introductionb. Resultsc. Discussion	157 159 178
VIII.	CONCLUSIONS	186
APPI	ENDIX	
A.	ATOM TYPE AND ATOMIC PARTIAL CHARGES	190
В.	DISTANCE RESTRAINTS	196
C.	PDB FILES	216
REFE	ERENCES	252

LIST OF TABLES

Table	Р	age
1-1.	The number of structures solved by X-ray and NMR techniques, which are deposited in Protein Data Bank as of Oct 11, 2005	7
5-1.	Chemical shifts (ppm) of non-exchangeable protons in the oligodeoxynucleotide 5'-d(GCTAGCXAGTCC)-3'• 5'-(GGACTCGCTAGC)-3'	110
5-2.	Root Mean Square Deviations (RMSD)	124
6-1.	Chemical shifts (ppm) of non-exchangeable protons in the oligodeoxynucleotide 5'-d(GCTAGCXAGTCC)-3' • 5'-(GGACTCYCTAGC)-3'	137
6-2.	Root Mean Square Deviations (RMSD)	151
7-1.	Chemical shifts (ppm) of non-exchangeable protons in the oligodeoxynucleotide 5'-d(GCTAGCXAGTCC)-3' • 5'-(GGACTCYCTAGC)-3'	162
7-2.	Root Mean Square Deviations (RMSD)	176
7-3.	Chemical shifts comparison of two cross-link isomers	183

LIST OF FIGURES

Figure

1-1.	A diagrammatic figure and a 3-D model of deoxyribose nucleic acid 2
1-2.	Watson- Crick base pairs maintained by Hydrogen bondings 2
1-3.	Examples of Mis-paired Bases
1-4.	Some α,β -unsaturated aldehydes
1-5.	Formation of exocyclic propano-dG adduct by the reaction between α,β-unsaturated aldehyde and deoxyguanosine via Michael addition
1-6.	Major acrolein-derived dG adducts 11
1-7.	Base pairing of PdG adduct with different opposite bases with syn (PdG)•anti (base) Hoogstein base pairing
1-8.	Different mechanisms between PdG and M ₁ dG adduct in duplex DNA by ring-opening process
1-9.	Major crotonaldehyde-derived dG adducts
1-10.	Proposed mechanism of the formation of crotonaldehyde via aldol type condensation reaction of acetaldehyde
1-11.	A typical 2D NOESY spectrum of a 12-mer oligonucleotide, 5'-(GCTAGCGAGTCC)-3'•5'-(GGACTCGCTAGC)-3'
1-12.	Sequential assignment pattern of an oligodeoxynucleotide by NOESY spectroscopy
1-13.	Heteronuclear NMR experiments
1-14.	Inverse-gated decoupling pulse sequence
1-15.	A schematic view of triple resonance experiments
3-1.	(A) ¹ H-decoupled ¹³ C HSQC spectrum of single-stranded oligodeoxynucleotide 5'-d(GCTAGCXAGTCC)-3'; $X = \gamma^{-13}$ C-OH PdG adduct; (B) ¹ H-coupled ¹³ C HSQC spectrum 58

	(C) ¹³ C spectrum of single-stranded oligodeoxynucleotide 5'-d(GCTAGCXAGTCC)-3'; $X = \gamma^{-13}$ C-OH PdG adduct	59
3-2.	¹³ C spectrum of oligodeoxynucleotide annealed with its complement to yield the duplex 5'-d(GCTAGCXAGTCC)-3' •5'-d(GGACTCGCTAGC)-3', $X = \gamma$ - ¹³ C-OH PdG adduct	61
3-3.	$^{15}\text{N-NOESY}$ HSQC spectra indicate that both base pairs in the 5'-CpG-3' γ -OH-PdG induced interstrand cross-link remain intact	62
3-4.	¹³ C spectrum of oligodeoxynucleotide annealed with its complement to yield the duplex 5'-d(GCTAGCXAGTCC)-3' \cdot 5'-d(GGACTCGCTAGC)-3', X= γ - ¹³ C-OH PdG adduct, collected as a function of temperature	64
3-5.	(A) ¹³ C spectrum of oligodeoxynucleotide annealed with its mismatched complement to yield the X•T duplex 5'-d(GCTAGCXAGTCC)-3' •5'-d(GGACT <u>T</u> GCTAGC)-3', $X = \gamma^{-13}$ C-OH PdG adduct. (B) ¹³ C spectrum of oligodeoxynucleotide annealed with its mismatched complement to yield the X•A duplex 5'-d(GCTAGCXAGTCC)-3' •5'-d(GGACT <u>A</u> GCTAGC)-3', $X = \gamma^{-13}$ C-OH PdG adduct	66
3-6.	Accumulation of the trapped DNA-peptide complexes formed by OH-PdG modified oligodeoxynucleotides in single-stranded (ss γ -OH-PdG) and double-stranded DNAs containing either γ -OH-PdG•A or γ -OH-PdG•T mismatch	67
3-7.	Molecular modeling studies acrolein-induced interstrand cross-linking in the 5'-CpG-3' DNA sequence context	70
4-1.	¹³ C HSQC spectra of <i>R</i> -and <i>S</i> -α-CH ₃ -γ-OH-PdG adducts in the oligodeoxynucleotide 5'-d(GCTAGCXAGTCC)-3' at 15 °C & 37 °C \dots	82
4-2.	DNA—peptide cross-linking involving <i>R</i> - and <i>S</i> -α-CH ₃ -γ-OH-PdG adducts	83
4-3.	van't Hoff analysis of the epimerization of R -and S - α -CH ₃ - γ -OH-PdG adducts in the oligodeoxynucleotide 5'-d(GCTAGCXAGTCC)-3'	84
4-4.	¹³ C NMR spectra of oligodeoxynucleotide annealed with its complement to yield the duplex 5'-d(GCGAGCXAGTCC)-3' • 5'-d(GGACTCGCTAGC)-3', $X = R - \alpha - CH_3 - \gamma^{-13}C$ -OH-PdG adduct	88

4-5.	¹⁵ N HSQC spectrum of <i>R</i> -α-CH ₃ -γ-OH-PdG in the oligodeoxynucleotide 5'-d(GCTAGC <u>X</u> AGTCC)-3'• 5'-d(GGACTC <u>Y</u> CTAGC)-3'	. 89
4-6.	Triple resonance ¹ H ¹⁵ N ¹³ C spectrum of <i>R</i> -α-CH ₃ -γ-OH-PdG in the oligodeoxynucleotide 5'-d(GCTAGC <u>X</u> AGTCC)-3'• 5'-d(GGACTC <u>Y</u> CTAGC)-3', confirming the presence of cross-linked carbinolamine	. 90
4-7.	Chemical species arising from <i>S</i> -α-CH ₃ -γ-OH-PdG in the oligodeoxynucleotide 5'-d(GCTAGC <u>X</u> AGTCC)-3'• 5'-d(GGACTC <u>Y</u> CTAGC)-3' as a function of pH	. 93
4-8.	¹³ C NMR of S -α-CH ₃ -γ-OH-PdG in the oligodeoxynucleotide 5'-d(GCTAGCXAGTCC)-3'•5'-d(GGACTTGCTAGC)-3'	. 94
4-9.	Molecular modeling of carbinolamine interstrand cross-links formed in the 5'-CpG-3' sequence by the R - and S - α -CH ₃ - γ -OH-PdG adducts	. 97
4-10.	Molecular modeling of aldehydes formed in duplex DNA when adducts are placed opposite dC in the complementary strand	. 97
4-11.	Molecular modeling of diastereomeric carbinolamine and pyrimidopurinone cross-links formed by R-COPdG aldehyde, arising from $R-\alpha$ -CH ₃ - γ -OH-PdG adduct	. 99
5-1.	Expanded plot of a NOESY spectrum in D_2O buffer at a mixing time of 250 ms showing the sequential NOE connectivities for the N^2 -(3-oxo-1(<i>S</i>)-methyl-propyl)-dG adduct at pH 9.3	109
5-2.	Expanded plot of a NOESY spectrum at a mixing time of 250 ms showing NOE connectivities for the imino protons for the base pairs from $C^2 \cdot G^{23}$ to $C^{11} \cdot G^{14}$	112
5-2.	Expanded plots showing the assignments of the opened form resonances	114
5-3.	Chemical Sifts Differences of nonexchangeable aromatic and sugar protons of the modified and unmodified oligodeoxynucleotides	115
5-4.	Expanded tile plots showing NOEs between the DNA and opened form adduct protons (τ_m = 350 ms)	120
5-5.	Stereoview of five superimposed structures emergent from the simulated annealing rMD protocol of IniA	121

5-6.	Stereoview of five superimposed structures emergent from the simulated annealing rMD protocol of IniB	122
5-7.	A CPK representation of the part of the <i>S</i> -COPdG adduct in a duplex	123
5-8.	Complete relaxation matrix calculations on the average structure emergent from the simulated annealing rMD protocol showing sixth root residuals (R_1^x) for each nucleotide	125
5-9.	A side view of the refined structure, rMD_{avg} from the minor groove	130
5-10.	The comparison of Base stacking of the base pairs $C^{6} \cdot G^{19}$, $X^{7} \cdot C^{18}$, and $A^{8} \cdot T^{17}$ the oligodeoxynucleotide containing the N^2 -(3-oxo-1(<i>S</i>)-methyl-propyl)-dG adduct and unmodified oligodeoxynucleotide	131
6-1.	Expanded plot of a NOESY spectrum in D_2O buffer at a mixing time of 150 ms showing the sequential NOE connectivities from the aromatic to anomeric protons	135
6-2.	Expanded plot of a NOESY spectrum in D ₂ O buffer at a mixing time of 150 ms showing the sequential NOE connectivities from the aromatic to H3' protons	136
6-3.	Expanded plot of a NOESY and DQF-COSY spectra in D_2O buffer \dots	139
6-4.	Tile plot of a NOESY spectrum in D ₂ O buffer at a mixing time of 350 m	140
6-5.	Expanded plot of a NOESY spectrum at a mixing time of 200 ms showing NOE connectivities for the imino protons for the base pairs from $C^2 \bullet G^{23}$ to $C^{11} \bullet G^{14}$	142
6-6.	Expanded tile plot of a NOESY spectrum at a mixing time of 200 ms showing couplings from selected imino protons to DNA protons	143
6-7.	Chemical Sifts Differences of non-exchangeable aromatic and sugar protons of the unmodified and cross-liked oligodeoxynucleotides	145
6-8.	Expanded plot of DQF-COSY spectrum	147
6-9.	Streoview of five superimposed structures emergent from the simulated annealing rMD protocol of IniA	148
6-10.	Streoview of five superimposed structures emergent from the simulated annealing rMD protocol of IniB	149

6-11.	A CPK representation of the fully reduced <i>R</i> -crotonaldehyde cross-link	150
6-12.	Complete relaxation matrix calculations on the average structure emergent from the simulated annealing rMD protocol showing	150
	sixth root residuals (R_1^{*}) for each nucleotide	152
6-13.	A side view of the refined structure rMD_{avg} from the minor groove \dots	155
6-14.	A top view of the refined structure, rMD _{avg} for base stacking interaction	156
7-1.	Expanded plot of a NOESY spectrum in D_2O buffer at a mixing time of 250ms showing the sequential NOE connectivites from the aromatic to anomeric protons	160
7-2.	Expanded plot of a NOESY spectrum in D ₂ O buffer at a mixing time of 250ms showing the sequential NOE connectivites from the aromatic to anomeric protons	161
7-3.	Expanded plot of a NOESY ($\tau_m = 60 \text{ ms}$) and DQF-COSY spectra in D ₂ O buffer	164
7-4.	Tile plot of a NOESY spectrum in D_2O buffer at a mixing time of 350 ms	165
7-5.	Expanded plot of a NOESY spectrum at a mixing time of 250 ms showing NOE connectivities for the imino protons for the base pairs from $C^2 \bullet G^{23}$ to $C^{11} \bullet G^{14}$	167
7-6.	Expanded tile plot of a NOESY spectrum at a mixing time of 250 ms showing couplings from selected imino protons to DNA protons	168
7-7.	Chemical Sifts Differences of non-exchangeable aromatic and sugar protons of the unadducted and cross-liked	160
7-8.	Expanded plot of DQF-COSY spectrum	172
7-9.	Streoview of five superimposed structures emergent from the simulated annealing rMD protocol of IniA	173
7-10.	Streoview of five superimposed structures emergent from the simulated annealing rMD protocol of IniB	174
7-11.	A CPK representation of the fully reduced <i>R</i> -crotonaldehyde cross-link	175

7-12.	Complete relaxation matrix calculations on the average structure emergent from the simulated annealing rMD protocol showing sixth root residuals (R_1^x) for each nucleotide	177
7-13.	A side view of the refined structure, rMD_{avg} from the minor groove	179
7-14.	A top view of the refined structure, rMD _{avg} , for base stacking interaction	180
7-15.	Conformational comparison of two cross-link isomers: <i>R</i> (left) and <i>S</i> (right) reduced cross-links	183
7-16.	Stability of base pairing	185

LIST OF SCHEMES

Schen	Page
1.1.	A schematic illustration of DNA damage induced cancer development
1-2.	Lipid Peroxidation pathways
1-3.	Equilibrium Chemistry of the γ-OH-PdG Adduct in the 5'-CpG-3' Sequence Context in Duplex DNA
1-4.	Equilibrium Chemistry of the R - and S - α -CH ₃ - γ -OH-PdG Adducts in the 5'-CpG-3' Sequence in Duplex DNA
1-5.	Synthetic scheme of the fully reduced <i>R</i> -crotonaldehyde cross-link
1-6.	Strategy for the NMR-generated structural refinement of the oligodeoxynucleotides
2-1.	Synthesis of the 4-Amino-2- ¹³ C-butane-1,2-diol 45
2-2.	Synthesis of 4- ¹⁵ N-Amino-2-butane-1,2-diol
2-3.	Synthesis of Oligodeoxynucleotides Containing Site-Specific ¹⁵ N, ¹³ C Isotopes
2-4.	Preparation of the stereoisomeric ¹³ C-labeled amino diols used for site-specific synthesis of adducts in oligodeoxynucleotides 47
2-5.	Site-specific synthesis of the ¹³ C-labeled oligodeoxynucleotides containing stereoselective crotonaldehyde adducts
5-1.	Oligonucleotide sequence (top) and the chemical structure of the N ² - $(S-\alpha$ -CH ₃ - γ -OH-1,N ² -propano-2')-deoxyguanosine adducts and nomenclature
6-1.	5'-CpG-3' Oligonucleotide and the chemical structure of the fully reduced <i>R</i> -crotonaldehyde cross-link
7-1.	5'-CpG-3' Oligonucleotide and the chemical structure of the fully reduced <i>S</i> -crotonaldehyde cross-link

LIST OF ABBREVIATIONS

1D	one-dimensional
2D	two-dimensional
CORMA	complete relaxation matrix analysis
COSY	correlation spectroscopy
δ	chemical shift in ppm
$\Delta\delta$	change in chemical shift
d1	delay (in NMR)
dA	deoxyadenosine
dC	deoxycytosine
dG	deoxyguanosine
dT	deoxythymidine
DNA	deoxyribonucleic acid
DQF-COSY	double-quantum filtered COSY
FID	free induction decay
HSQC	heteronuclear single quantum
HPLC	high performance liquid chromatography
HOPdG	hydroxyl PdG
$M_1 dG$	3-(2'-Deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2-
	alpha]purin-10(3H)-one
MARDI	matrix assisted laser desorption ionization
MARDIGRAS	matrix analysis of relaxation for discerning the geometry of
	an aqueous structure
MD	molecular dynamics
N-type	C3'-endo sugar (A form)
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
NOESY	NOE spectroscopy
OPdG	oxo-propenyl-dG
PdG	propano deoxyguanosine
PEM	potential energy minimization
ppm	part per million
R_1^x	sixth root residual index
rMD	restrained MD
rmsd	root mean square deviation
S-type	C2'-endo sugar (B form)
T1	logitudinal relaxation
T2	transverse relaxation
$\tau_{\rm m}$	mixing time (s_in NMR)
	initial guilte (0) in third,
IUCSI	total correlation spectroscopy