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CHAPTER I

INTRODUCTION

The thesis addresses the problem of building observers from component-based

models of continuous dynamic systems. We build models using bond graphs, which

provide a domain independent, energy-based, topological scheme for capturing the

dynamic behavior of physical systems [9]. The observer plays an important part in

online diagnosis schemes by providing reliable estimates of system state and system

output in the presence of noise in the measurements and discrepancies in the system

model. The estimated outputs are compared against the observed measurements to

compute the system residuals. Non-zero residuals imply faults in the system.

The TRANSCEND (TRANSient based Continuous ENgineering Diagnosis) [12]

provides such a model based system for monitoring and diagnosis of complex dynamic

systems. As shown in Fig. I.1, the observer tracks the residuals

r = y − ŷ,

i.e. the difference between the actual and the predicted observations. A non-zero

residual triggers the fault diagnosis process.

We use the FACT [6] (Fault Adaptive Control Technology) system developed in

the Generic Modeling Environment for diagnosis applications. It allows us to build

component-oriented bond graph models of our systems and also provides a run time

environment for carrying out fault diagnosis.

The steps involved in building the observer involve transforming the component-

based bond graph model of the physical system to its corresponding block diagram
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Figure I.1: TRANSCEND System Architecture

model and generating the state space equations and the output equations from this

model. The observer is implemented as a Kalman filter.

I.1 Main Contributions

A previous implementation [6] of the observer in the FACT system did not ex-

plicitly use the causality information from the bond graph while generating equations

for the system. Instead, it used a more brute force approach by generating equations

for every component in the bond graph model and manipulating them over multiple

iterations till all the equations could be represented in the state space form. This

method of manipulating the multiple equations fragments simultaneously made the

equation generation process inefficient and computationally complex. It was clear

that this complexity could be significantly reduced by exploiting the computational

causality of the bonds in the bond graphs [8].

The main contribution of the thesis is to implement an efficient equation gener-

ation mechanism for the component based modeling paradigm in FACT. Assigning

causalities to the bonds captures the cause effect relationship between the bond graph
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elements and considering these causalities in the equation generation algorithm signif-

icantly simplifies the process of deriving the state and output equations of the system.

We use these models to construct a Kalman filter based observer to track continuous

system behavior for linear systems. We also provide a mechanism for extending the

modeling paradigm to include n-port elements that play an important part in the

modeling on multi-domain physical systems.

I.2 Organization of Thesis

The thesis is organized as follows.

Chapter II of the thesis provides a background of the various components involved

in designing state space observers, the Bond Graph Modeling Language, the concept

of causality, equation generation, and Kalman filters. Chapter III provides a detailed

overview of the implementation details, which includes the extensions made to the

modeling paradigm, the algorithms used for equation generation, followed by the

building of the Kalman filter from the generated equations. The simulation and the

experimental results are discussed in Chapter IV. Chapter V elaborates on the future

work and provides the conclusion for the thesis.
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CHAPTER II

BUILDING OBSERVERS FROM BOND GRAPH

MODELS

This chapter gives a brief overview of the process of building observers from bond

graph models and presents a background for the problems addressed in the thesis.

An overview of the bond graph modeling language that is used to construct the input

models for our system is presented at the beginning of this chapter. In this chapter,

we also explain the concept of causality in bond graphs, followed by the process

of generating mathematical equations from the given bond graph models. Lastly,

we discuss Kalman filters and show how they can be built based on the generated

equations.

II.1 Bond Graph Modeling Language

The bond graph modeling language is a physics-based modeling language that

provides a uniform, lumped-parameter, energy-based, topological framework for mod-

eling across multiple physical domains. Bond graphs [3] are a domain independent

language for modeling physical systems. The physical processes are directly repre-

sented as vertices in a directed graph, and the edges represent the ideal exchange

of energy between the vertices. It is possible to model systems involving more than

one physical domain like the thermal, electrical, fluid or mechanical domains using

bond graphs. Bond graphs capture the exchange of energy involved in the physical

process by making use of bonds. The various commonly used elements used in bond

graphs are energy storage elements(C and I), energy dissipation elements (R), en-

ergy transformation elements (TF and GY), and input output elements (Se and Sf).
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The connecting edges, called bonds, represent energy pathways between the elements.

Each bond is associated with two variables: effort and flow. Every bond has a power

direction and a computational causality direction [9]. Connections in the system are

modeled by two idealized elements: 0- (or parallel) and 1- (or series) junctions. For

a 0- (1-) junction, the efforts (flows) of all incident bonds are equal, and the sum of

flows (efforts) is zero [2].

II.2 Causality in Bond Graphs

In bond graphs, the inputs and the outputs associated with the system components

are characterized by effort causality and flow causality. Causality assignment is a

process by which the bond variables effort and flow are partitioned into input-output

sets. There exist four types of causal constraints in bond graphs [1].

1. Mandatory causality - The constitutive laws force the output port to take on

a fixed causality that cannot be changed. Sources Se and Sf have mandatory

effort and flow causality, respectively.

2. Preferred causality - For the storage elements C and I, causality can be de-

termined by the integral or derivative form of their behaviors. The preferred

causality here refers to the integral causality form for these elements.

3. Constrained causality - For TF, GY, 0- and 1-junction elements, there are rela-

tions between the causality of the different ports of the elements defined by the

algebraic relations between the variables associated with these ports.

4. Indifferent causality - Indifferent causality means that causal constraints on

a port are not determined by the internal constraints of the component. The

linear resistor element R exhibits indifferent causality since both power variables

5



- effort and flow - can be specified as input or output ports depending on the

relations that hold for the adjacent junction.

Most traditional causality assignment procedures use a local constraint propaga-

tion scheme to label bond causality. From some starting point, usually one of the

source elements, causality is assigned sequentially, until all element ports are labeled.

These causality assignment procedures must also satisfy the four causality types and

the fundamental causal constraints.

II.3 Generating Mathematical Models from BG

Topological bond graph models may be converted into a typical mathematical

representation for system behavior by deriving the equations from the topological

model. The flow variables associated with the inductive elements and the effort vari-

ables associated with the capacitive elements form the state variables of the system.

Thus, our goal is to parse the bond graph I and C elements (one port or multi port)

and generate the state equations individually for each state variable. This forms the

state space model or the process model [4], as it models the transformation of the

process state. Also, in order to link the output variables and the state variables, we

need to derive the output equations.

Output equations need to be generated for all measured variables on the system.

The equations for these variables are expressed in terms of the state variables and the

input variables. These form the measurement model [4] that describes the relationship

between the process state and the measurements.

6



II.4 Building Kalman Filters

Observers play an important part in model based diagnosis [10]. Residuals are

computed as the difference between the observations and the predicted normal behav-

ior. Whenever a non-zero residual is detected, the diagnosis algorithm is triggered.

This is depicted in Fig. II.1 [10].

Figure II.1: Model Based Diagnosis

Here, u is the system input, y is the predicted normal behavior, is the estimated

output, and r is the non-zero residual that triggers fault diagnosis.

In this thesis, we follow the FACT system and rebuild the Kalman filter based

observer for diagnosis purposes. The Kalman filter [4] is a set of mathematical equa-

tions that provides an efficient computational (recursive) means to estimate the state

of the process.

We adopt the form of Kalman filter implementation that addresses the general

problem [4] of generating the best estimate of the state of a discrete-time controlled

process that is governed by the linear stochastic difference equation

xk = Axk−1 + Bxk−1 + wk−1

with a measurement z ε Rm that is

7



zk = Hxk + vk

The random variables wk and vk represent the process and measurement noise

respectively. The n × n matrix A in the difference equation relates the state variable

at the previous time step k -1 to the state at the current step k. The n × l matrix

B relates the optional control input u to the state x. The m × n matrix H in the

measurement equation relates the state to the measurement zk. These matrices are

obtained from the coefficients of the state and the output equations that are generated

from the bond graph model.
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CHAPTER III

IMPLEMENTING KALMAN FILTERS FROM

BOND GRAPH MODEL

This chapter begins with an overview of the modeling environment used to create

component-based bond graph models. The chapter mainly discusses the algorithms

for the efficient generation of state space equations, followed by the application of

these equations in implementing the Kalman filter.

III.1 Modeling Environment

The Generic Modeling Environment (GME) provides a framework for defining

custom modeling languages. Fault Adaptive Control Technology (FACT) [6] is a tool

suite in GME which is used to build bond graph models graphically, and then use

these models to construct model-based diagnosers. The following section discusses

the aspects of FACT used in our implementation and the extensions made to FACT

in order to provide modeling support for the n-port components.

III.1.1 Introduction to FACT

The FACT modeling paradigm defines the language for component-oriented mod-

eling of physical systems using bond graphs [6]. FACT has two main components:

(1) a design-time environment for modeling and model transformation, and (2) a

run-time environment consisting of the model-based reasoner components [5]. The

FACT modeling language provides a Bond Graph aspect to describe the hybrid bond

graph model of the component or system, a Failure Propagation aspect to describe
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the Temporal Fault Propagation model of the component or system, and an Inter-

face aspect to describe the inputs and outputs of the system or plant [6]. The Bond

Graph aspect allows the user to create bond graph models using various elements

like signal ports, decision functions, energy ports, capacitors, inductances, resistors,

transformers, gyrators, sources of flow/effort, zero and one junctions, etc. It allows

the creation of hierarchical models.

III.1.2 Extensions for n-port elements

The R, C and I elements in the original FACT modeling paradigm are 1-port

elements. However, to model physical systems involving multiple domains, and vector

elements, the 1-port elements can be extended to n-port elements. For example, an

n-port resistance can be used to depict convection in a thermo-fluid system, where the

thermal resistance is modulated by the volume flow rate from the hydraulic domain.

An n-port capacitance can be used to depict the temperatures of different bodies

taking part in heat transfer. Similarly, an n-port inductance can be used to represent

quantities like the mutual inductance in a motor or a generator system. There is an

n-port transfer matrix associated with an n-port element that is used to represent

the relation between its inputs and outputs.

In order to construct bond graph models for such systems that contain n-port ele-

ments, we have extended the current FACT paradigm to support multi-port elements

as shown in Fig. III.1.

An additional element is added to the BGElement class i.e., NPort, along with

the OnePort and TwoPort elements. The NPort element class is further subclassed

as nR - the n-port resistance and the NPortStorage class, which represents nC and

nI, as shown in Fig. III.2. Associated with all the n-port elements, we have an

attribute n that gives the number of bonds that will be connected to this element.

10



Figure III.1: Bond Graph Elements Class Hierarchy

Also, as described above we have an n × n transfer matrix associated with every

n-port element.

Along with the transfer matrix we have a vector of initial values of length n for

the n-port storage elements - nC and nI. These are the values that will be used as

the initial values for the integration operation.

Also, as shown in Fig. III.3, we have a few additional constraints associated with

the n-port elements. We need to ensure that an n-port element has been connected to

exactly n number of bonds. Apart from that, we also need to check that the transfer

matrix entered for the n-port element has a non-null value, and that the value has

been specified in the right format.

If the initial value attribute is left null, a set of default values of all zeros is

assumed. Also, for all bonds connecting to an n-port element its mandatory for the

user to provide the ordering of those bonds from 1 to n with respect to the n-port

element, such that every bond associated with the n-port element has a distinct

number that lies between 1 and n.

11



Figure III.2: Class Hierarchy for N-port Elements
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Figure III.3: Constraints for N-port Elements

III.2 Efficient methods for generating State Space

Models

In order to derive the state space model, we need to represent the component-

oriented bond graph model using a block diagram and other data structures that

capture the details of all the nodes and bonds in the bond graph model. The equation

generation algorithm identifies the state, input and the output variables for the given

model and works on these data structures to generate the corresponding equations.

We consider the example of a two tank system for explaining the various parts in

the following sections. Fig. III.4 shows the basic structure of a two tank system. It

consists of a source of flow Sf , two tanks with capacities C1 and C2, and pipes with

13



Figure III.4: Schematic Diagram of a Two Tank System

resistances R1, R2 and R12. Our goal is to measure the outflow rate from tanks 1

and 2 through pipes R1 and R2, respectively.

III.2.1 Data Structures

The basic data structures involved in the Equation Generation algorithm are the

Block Diagram representation of a BG model, a mapping of bond numbers to the

actual bond connections in the BG model, a mapping of junctions in the BG to their

determining bonds and a flat data structure containing the information about all the

nodes in a BG and the connections between them.

Block Diagram Representation

The block diagram (BD) formalism is a widely used graphical, computational

scheme for describing simulation models of continuous and hybrid systems [7].

Fig. III.5 and Fig. III.6 show the causality assignment and the block diagram

structure for every type of element in a bond graph [2]. The Sf, Se, C, and I elements

have a single unique block diagram representation because their incident bonds have

only one possible causal assignment, assuming integral causality for the C and the I

elements. The R, TF and GY elements allow two causal representations each, and

each one produces a different BD representation. A junction with m incident bonds

14



Figure III.5: Fixed and Multi-port Variable Causality Assignments and BD represen-
tation

can have m possible BD configurations. Mapping a junction structure to its BD is

facilitated by the notion of the determining bond, which captures the causal structure

for the junction.

Fig.III.7 shows the bond graph model of the two tank system and Fig. III.8 shows

its corresponding block diagram model.

In the BD model of the two tank system, there is a block corresponding to every

node of the BG model and there are Output blocks corresponding to every output

port in the BG model. The Flow1 and Flow2 outputs represent the volume flow rates

measured at pipes R1 and R2, respectively.

Bond Graph Class - A Flat Data Structure

The input for the Equation Generation system is a GME Model constructed using

the extended FACT paradigm. This model represents a simple or a hierarchical bond

graph. To operate on this model, we first need to convert it to a flat model and then

represent the flat model using an appropriate local data structure like an object so

that it can be accessed by various parts of the algorithm without the overhead of

15



Figure III.6: 1- and 2-port Variable Causality Assignments and BD representation

Figure III.7: A GME Bond Graph Model of a Two Tank System

16



Figure III.8: A Block Diagram Model of a Two Tank System

opening or closing text files or the model files. This ensures fast access time making

the algorithm more efficient.

The class BondGraph stores the various details about a given Bond Graph Model

including the specifications for all the nodes in the bond graphs and the connections

that exist between them.

The BondGraph class stores certain properties that are applicable to the entire

bond graph. They can be enumerated as follows:

1. Total number of nodes in the bond graph

2. Total number of junctions in the bond graph

3. Total number of hybrid junctions in the bond graph

4. List of fixed junctions

17



Figure III.9: Template of the Node Data Structure

5. List of determining bonds

6. Sample time

Fig. III.9 shows the data that is stored for every node in the bond graph.

The various data fields can be explained as below:

1. Node identifier

2. Name of the node

3. Type of the node

4. Number of bonds that it is connected to

5. Whether or not it is a potential fault candidate

6. The listing of bonds connected to this node

7. State of the node(On/Off - This parameter is applicable only when the node

under consideration is a hybrid junction. In case of a junction in a continuous

system, this parameter will default to an ”on” value)

8. Whether or not the node (junction) is hybrid

18



9. Index of the node (junction) in the bond graph

10. The parameter n for an n-port element

11. A list of bonds that cannot act as the determining bond for this node (junction).

The bond graph stores the above data for every node in the form of a vector or an

array of the size of the number of nodes in the flat bond graph model. Some of the

properties stated above are populated while generating the data structure from the

Bond Graph GME model, whereas certain others can only be filled in during the later

parts of the algorithm. For instance, since this data structure has been specifically

designed for its use in generating the causality assignment for the bond graph, some

of its properties like the determining bonds list, etc. can only be populated during

the process of running the causality update algorithm.

For storing the connectivity information for the bond graph, that is to capture

the connections between different nodes, each node in the above data structure stores

a set of nodes that it connects to. Thus, the size of this set will be equal to the

number of bonds associated with this node. The order in which the various nodes

appear in this list does not matter as long as we are not dealing with n-port elements.

However, for n-port elements nR, nC and nI, the order is important because the user

associates a distinct number between 1 to n with every bond connected to an n-port

element, and thus the connecting nodes should be listed in the same order as specified

by the user. This helps to associate the index of the connecting node in the list to

the appropriate row in the n × n matrix supplied by the user, in the later parts of

the algorithm.

The node data structure generated for the two tank system is as follows:

Node 1 - TwoTankSystem/TTS/R1

bg.node(1).name = ’//TwoTankSystem/TTS/R1’;

bg.node(1).type = ’R’;

19



bg.node(1).numBonds = 1;

bg.node(1).fault = 0;

bg.node(1).bond(1)= 8;

Node 2 - //TwoTankSystem/TTS/R2

bg.node(2).name = ’//TwoTankSystem/TTS/R2’;

bg.node(2).type = ’R’;

bg.node(2).numBonds = 1;

bg.node(2).fault = 0;

bg.node(2).bond(1) = 9;

Node 3 - //TwoTankSystem/TTS/R12

bg.node(3).name = ’//TwoTankSystem/TTS/R12’;

bg.node(3).type = ’R’;

bg.node(3).numBonds = 1;

bg.node(3).fault = 0;

bg.node(3).bond(1) = 7;

Node 4 - //TwoTankSystem/TTS/C1

bg.node(4).name = ’//TwoTankSystem/TTS/C1’;

bg.node(4).type = ’C’;

bg.node(4).numBonds = 1;

bg.node(4).fault = 0;

bg.node(4).bond(1) = 10;
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Node 5 - //TwoTankSystem/TTS/C2

bg.node(5).name = ’//TwoTankSystem/TTS/C2’;

bg.node(5).type = ’C’;

bg.node(5).numBonds = 1;

bg.node(5).fault = 0;

bg.node(5).bond(1) = 11;

Node 6 - //TwoTankSystem/TTS/Sf

bg.node(6).name = ’//TwoTankSystem/TTS/Sf’;

bg.node(6).type = ’Sf’;

bg.node(6).numBonds = 1;

bg.node(6).fault = 0;

bg.node(6).bond(1) = 10;

Node 7 - //TwoTankSystem/TTS/OJ

bg.node(7).name = ’//TwoTankSystem/TTS/OJ’;

bg.node(7).type = ’OneJunction’;

bg.node(7).numBonds = 3;

bg.node(7).state = 1;

bg.node(7).index = 1;

bg.node(7).hybrid = 0;

bg.node(7).bond(1) = 10;

bg.node(7).bond(2) = 11;

bg.node(7).bond(3) = 3;
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Node 8 - //TwoTankSystem/TTS/OJ1

bg.node(8).name = ’//TwoTankSystem/TTS/OJ1’;

bg.node(8).type = ’OneJunction’;

bg.node(8).numBonds = 2;

bg.node(8).state = 1;

bg.node(8).index = 2;

bg.node(8).hybrid = 0;

bg.node(8).bond(1) = 10;

bg.node(8).bond(2) = 1;

Node 9 - //TwoTankSystem/TTS/OJ2

bg.node(9).name = ’//TwoTankSystem/TTS/OJ2’;

bg.node(9).type = ’OneJunction’;

bg.node(9).numBonds = 2;

bg.node(9).state = 1;

bg.node(9).index = 3;

bg.node(9).hybrid = 0;

bg.node(9).bond(1) = 11;

bg.node(9).bond(2) = 2;

Node 10 - //TwoTankSystem/TTS/ZJ1

bg.node(10).name = ’//TwoTankSystem/TTS/ZJ1’;

bg.node(10).type = ’ZeroJunction’;

bg.node(10).numBonds = 4;

bg.node(10).state = 1;

bg.node(10).index = 4;
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bg.node(10).hybrid = 0;

bg.node(10).bond(1) = 6;

bg.node(10).bond(2) = 7;

bg.node(10).bond(3) = 4;

bg.node(10).bond(4) = 8;

Node 11 - //TwoTankSystem/TTS/ZJ2

bg.node(11).name = ’//TwoTankSystem/TTS/ZJ2’;

bg.node(11).type = ’ZeroJunction’;

bg.node(11).numBonds = 3;

bg.node(11).state = 1;

bg.node(11).index = 5;

bg.node(11).hybrid = 0;

bg.node(11).bond(1) = 7;

bg.node(11).bond(2) = 5;

bg.node(11).bond(3) = 9;

bg.numNodes = 11;

bg.numJunctions = 5;

bg.numHybridJunctions = 0;

Causality Assignment

Bond Graph models imply a causal structure and algorithms like the Sequential

Causality Assignment Procedure (SCAP) [8] applied to well-formed BG models assign

causal directions to all bonds in the model.
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Figure III.10: Algorithm for assigning Bond numbers

After executing SCAP, every junction in the BG model is assigned a determining

bond; this data is further used in the equation generation algorithm. The determining

bond assignment for the two tank system model can be given as:

JunctionName ---> DeterminingBond

TwoTankSystem/TTS/OJ ---> TwoTankSystem/TTS/R12

TwoTankSystem/TTS/OJ1 ---> TwoTankSystem/TTS/R1

TwoTankSystem/TTS/OJ2 ---> TwoTankSystem/TTS/R2

TwoTankSystem/TTS/ZJ1 ---> TwoTankSystem/TTS/C1

TwoTankSystem/TTS/ZJ2 ---> TwoTankSystem/TTS/C2

Assigning Bond Numbers

The equations that are generated have effort and flow variables associated with

different bonds. In order to generate these equations, we need to assign numbers to all

the bonds in the bond graph model. The algorithm for assigning the bond numbers

shown in Fig. III.10 operates on the the list of nodes that is a part of the BondGraph

class described above.

The algorithm AssignBondNumbers iterates over all the nodes in the bond graph.
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For every node, it iterates over all the connecting nodes associated with that particular

node. If that pair of nodes has already been assigned a bond number (the order of

nodes in the pair is immaterial), then it skips over to the next node, else it adds it to

the bonds data structure; the index of the pair in the data structure automatically

becomes the bond number associated with that pair.

Following is the bond number assignment made by the algorithm for the given

two tank BG model.

Bond 1: R1 - OJ1

Bond 2: R2 - OJ2

Bond 3: R12 - OJ

Bond 4: C1 - ZJ1

Bond 5: C2 - ZJ2

Bond 6: Sf - ZJ1

Bond 7: OJ - ZJ1

Bond 8: OJ - ZJ2

Bond 9: OJ1 - ZJ1

Bond 10:OJ2 - ZJ2

Storing variable coefficients

For a given input model, we need to extract the sets of input, state and output

variables. Input variables are associated with the flows and efforts associated with

Sf and Se blocks respectively. State variables are the efforts on the capacitances and

the flows through the inertias. The flow through a one-junction or an effort at a

zero-junction to which a sensor has been connected, form the output variables.

Thus, for the two tank system, we observe that f6, i.e., the flow associated with
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Sf is the input variable, e4 and e5, i.e., the efforts on the two capacitances are the

state variables, and f1 and f2, i.e., the flows measured at the two one junctions are

the output variables.

Each equation that is generated is represented in terms of the state and the input

variables. Thus, for every variable for which we need to generate an equation we

need to associate it with a map; the key of this map is the state or the input variable

index and the value is the coefficient associated with that variable for that particular

equation. Initially, for each state or input variable in the map, the coefficient value is

equal to zero. The value part keeps on getting updated during the equation generation

process. When the equation generation algorithm has been executed for a given

variable, we finally get a map which will have non-zero coefficient values for all the

state and input variable taking part in the equation. If we need to generate the

equations in symbolic form, this coefficient value is represented as a string instead of

representing it in a numeric form.

III.2.2 State Equation Generation Algorithm

The GenerateStateEquations algorithm is used to generate the state equations

given a Block Diagram bd. This block diagram is a computational representation

of the given bond graph; it has blocks corresponding to every element in the bond

graph. It also captures the connections between the different blocks in the form of

input and output signals.

As seen in the previous section, for a given physical system represented by a bond

graph, we have the flows through the inertias and the efforts on the capacitances as

the state variables. The basic EquationGeneration algorithm described in Fig. III.13

is called for each of these state variables. The goal of the basic equation generation
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algorithm is to represent a given flow or an effort variable associated with a particular

bond in terms of state variables and input variables of the system.

For a capacitive element, with an associated effort e, flow f, and capacitance C,

we have the state variable e represented as

ė =
1

C
· f

Similarly, for an inductive element, with an associated effort e, flow f, and induc-

tance I, we have the state variable f represented as

ḟ =
1

I
· e

The basic principle in generating equations from a block diagram is to backtrack

from the block under consideration till a point where we end up with a set of effort

or flow signals associated with blocks that either represent the input variables of the

system or the state variables.

We illustrate the working of this algorithm by stepping through the equation gen-

eration process for one of the state variables of the two tank system. Fig. III.11

shows the execution trace for the equation generation algorithm for e5. The pa-

rameters passed to the GenerateFurther function i.e., the Basic Equation Generation

algorithm, are the coefficient, the bond variable (The variable is typically represented

as a 〈 flow, bond number 〉 variable or an 〈 effort, bond number 〉 variable) and the

name of the source block. We keep on backtracking till we reach a state variable or

an input variable at which point we prune that branch of the tree. As we can see in

Fig. III.11, the branches get pruned when we reach the state variables e4 and e5.

The state equation generation algorithm is as shown in Fig. III.12.

By running this algorithm, we are able to obtain the representation of every state
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Figure III.11: Equation Generation trace for state variable e5

variable in the system in terms of the input and the state variables of the system,

with the corresponding coefficients stored in a data structure. These coefficients are

further used for calculating the A and the B matrices of the observer.

The execution of this algorithm for the two tank system model generates the

following output:

IN NUMERIC FORM

de4/dt = -0.0240798 e4 + 0.00841728 e5 + 61.867 f6

de5/dt = 0.00841728 e4 - 0.012684 e5

IN SYMBOLIC FORM

de4/dt = ((((-1*(1/C1))/R12))+(-1*(1/C1))/R1)e4 +(-1*((-1*(1/C1))/R12))e5

+(1/C1)f6

de5/dt = ((1/C2)/R12)e4 +(((-1*((1/C2)/R12)))+(-1*(1/C2))/R2)e5
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Figure III.12: Algorithm for generating State Space Equations
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III.2.3 Output Equation Generation Algorithm

The output equation generation algorithm invokes the basic equation generation

algorithm for the output variables in exactly the same way as the state equation

generation algorithm that invoked the basic equation generation algorithm for the

state variables. In order to identify the output variable, we scan the Block Diagram

for Output blocks and then trace back from them till we reach a block representing

either a One Junction or a Zero Junction. A sensor connected to a one junction

implies that the flow at that junction is measured, whereas a sensor connected to a

zero junction implies that the effort at that junction is to be measured. To measure

the flow or effort at a one or a zero junction respectively, we consider the determining

bond for the junction, and then invoke the basic equation generation algorithm for

these parameters.

For the two tank system model, f1 and f2 are the output variables. The equations

generated for these variables are given as:

IN NUMERIC FORM

f1 = 0.000253165 e4

f2 = 6.89655e-005 e5

IN SYMBOLIC FORM

f1 =((1)/R1)e4

f2 = ((1)/R2)e5

III.2.4 Basic Equation Generation Algorithm

The basic equation generation algorithm encapsulates the basic step of backtrack-

ing required to generate an equation for any variable. This algorithm will be called

multiple times for generating an equation for a given state or an output variable. It
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takes as its input, a source block blk in a Block Diagram that has been derived from

a bond graph, the variable v for which we are interested in generating an equation for

in the form of 〈is effort, bond number 〉 (the Boolean value is effort indicates whether

we are determining an effort or a flow, and the bond number indicates the bond corre-

sponding to the variable), the coefficient which is the multiplier of this variable in the

entire equation of which the variable is a part, and the row id.( The variable under

consideration is a part of the equation that is being generated for another variable w.

So, the row id gives the row corresponding to the variable w.)

The algorithm is as shown in Fig. III.13

The equation generation procedure aims at expressing any given variable in terms

of state variables and input variables. So, the algorithms checks for this condition in

the very beginning. It terminates when it finds that v is either a state variable or an

input variable, by storing the value of the coefficient for v. If the variable v is not

a state or an input variable, the behavior of the algorithm varies depending on the

type of block blk.

The working of the algorithm for the equation generation of a state variable in

the two tank system can be seen in Fig. III.11.

III.2.5 Extension for Transformers and Gyrators

The following condition checks are added to the basic equation generation algo-

rithm so that it can handle bond graphs having transformer and gyrator elements.

If the block type corresponds to a Transformer block TF, we get the node number

corresponding to the bond number that was passed as an argument. Also, get the

transformer ratio value n. Then we find out if the bond that is passed is an input to

the TF or an output, and also find its corresponding input or output index. We also

find the node corresponding to the other bond of the transformer as we need that to
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Figure III.13: Basic Equation Generation Algorithm

Figure III.14: Causal assignments and corresponding equations for a Transformer

continue the equation generation. For a transformer, we have the following two cases

as shown in Fig. III.14.

From the given equations we see that, if the variable that we are considering for

equation generation var is e1, then we need to call the basic equation generation

algorithm for e2 with the coefficient value multiplied by n. If the variable var is e2,

then we need to call the basic equation generation algorithm for e1 with the coefficient

value divided by n. Similarly, if var is f1, then we need to call the basic equation

generation algorithm for f2 with the coefficient value divided by n and if var is f2,

then we need to call the basic equation generation algorithm for f1 with the coefficient

value multiplied by n.

Now, if the block type corresponds to a Gyrator block GY, we get the node number

corresponding to the bond number that was passed as an argument. Also, get the
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Figure III.15: Causal assignments and corresponding equations for a Gyrator

gyrator ratio value r. Then we find out if the bond that is passed is an input to the

GY or an output, and also find its corresponding input or output index. We also

find the node corresponding to the other bond of the transformer as we need that to

continue the equation generation. For a gyrator, we have the following two cases as

shown in Fig. III.15.

From the given equations we see that, if the variable that we are considering for

equation generation var is e1, then we need to call the basic equation generation

algorithm for f2 with the coefficient value multiplied by r. If the variable var is e2,

then we need to call the basic equation generation algorithm for f1 with the coefficient

value multiplied by r. Similarly, if var is f1, then we need to call the basic equation

generation algorithm for e2 with the coefficient value divided by r and if var is f2,

then we need to call the basic equation generation algorithm for e1 with the coefficient

value divided by r.

III.2.6 Extensions to SCAP

In order to assign causalities to a BG model containing n-port elements, it is

necessary to extend SCAP [8] to assign appropriate causalities to the bonds connected

to the n-port elements. The n-port capacitance nC and the n-port inductance nI have

a preferred integral causality, thus nC determining the effort on all n incident bonds
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Figure III.16: Causality Assignment for nC and nI

and nI determining the flow for all n incident bonds. Fig. III.16 shows nC and nI in

preferred integral causalities.

The n-port resistance nR exhibits indifferent causality just like its single port

counterpart. The next chapter explains the handling of n-port elements in greater

detail with the help of a sample system.

III.3 Building the Kalman Filter

The Kalman filter provides a mechanism for estimating the state of a discrete-time

controlled process that is governed by a set of linear stochastic difference equations.

After identifying the state and the output variables of the system and after gener-

ating the corresponding equations for them using the state and the output equation

generation algorithms, we obtain the matrices A, B, C and D such that they satisfy

the following equations:

˙X(t) = FX(t) + GU(t)

Y (t) = CX(t) + DU(t)

The second equation is in the form expected by the Kalman filter. However, we

36



need to transform the first equation from continuous to discrete form to get it in the

following form:

X(t) = AX(t− 1) + BU(t− 1)

To convert from the continuous to discrete form, the method previously used [6]

was the Zero Order Hold Discretization method. However, this is a crude approximate

discretization and may not suffice to represent the dynamics of complex systems in

a sufficiently accurate manner. First Order Hold, and Impulse trains are some of the

other methods that can be used for the purpose of discretization. These methods are

implemented by the c2d function in MATLAB [13] and will be used in the future to

get more accurate results.

The values of the measurement noise covariance R, the process noise covariance

Q, and the initial values for the set of state variables X, the initial values for the set

of input variables U and the initial values for the estimation error covariance P are

user-defined. Similarly, the period for which the simulation is run and the sampling

frequency are all user-defined.

Fig. III.17 [4] shows the complete operation of the Kalman filter, including all the

equations. Based on the values of the matrices A, B, C, D (after converting F, G to

discrete time A, B) and the user inputs, the time update or the predictor equations [4]

are executed for projecting forward (in time) the current state and error covariance

estimates for the next time step.

These are followed by the execution of the measurement update or the correc-

tor equations [4] that are responsible for the feedback i.e. for incorporating a new

measurement into the a priori estimate to obtain an improved a posteriori estimate.

This process is continued for period equal to the one entered by the user at the given

sampling frequency.
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Figure III.17: Kalman Filter Equations for Process and Measurement Model

For the two tank system example that we have considered, the values for matrices

A, B, C and D generated by our implementation are as follows:

The values of matrices A, B, C and D are given as:

A matrix:

[0.999759 8.41728e-005 ; 8.41728e-005 0.999873]

B matrix:

[0.61867 0]

C matrix:

[0 6.89655e-005; 0.000253165 0]

D matrix:

[0 0]

The Kalman filter is built based on the above matrices and it takes the outputs

from the Simulink model to produce a set of estimated output values. The set of

estimated output values and the system generated output values for f1 and f2 are

plotted against time in Fig. III.18
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Figure III.18: Observer and System Output for a Two Tank System
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By looking at the plot, it can be observed that our implementation of the observer

closely tracks the system output. It does so in the presence of noise as well.
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CHAPTER IV

EXPERIMENTAL RESULTS

In order to test our system for generating the state space and the output equations

and the building of the Kalman filter, we consider two different systems.

IV.1 Hydraulic Actuator System

A simplified model of a hydraulic actuator system is shown in Fig. IV.1 [11].

Figure IV.1: A simplified model for the Hydraulic Actuator

The actuator is composed of a single chamber, piston of cross sectional area A

and volume of the chamber Vo. The pressure difference between the right and the

left sides of the chamber produces the force for piston displacement. The piston is

connected to the load which is modeled as a simple mass spring damper system.

A centrifugal pump system is defined in terms of its input voltage and current,

internal variables such as torque and angular velocity and output variables, such as

fluid pressure and fluid flow rate. The energy transmitted to the pump is expended

in turning the veins of the pump rotor. In the process, the fluid is pushed out with

a certain pressure and flow rate. This flow of the liquid helps in moving the piston

cylinder of the actuator system back and forth which in turn is connected to the load.
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Table IV.1: Description of the Actuator Parameters

Parameter Description
A Cross sectional area of the piston
V0 Volume of the chamber
β Bulk density of the fluid
Rv Resistance of the valve
Se Effort source
pr Chamber’s pressure at right side
pl Chamber’s pressure at left side

pr − pl Pressure difference
M Mass
k Spring stiffness
B Damping coefficient

u(t) Displacement of the mass

IV.1.1 Equation Generation for the Hydraulic Actuator Sys-
tem

Fig.IV.2 shows the bond graph model of the actuator system described above.

When this BG model is fed as an input to our implementation of the Equation

Generation Algorithm, the following state equations are generated for state variables

f5, e6, e7 and e8.

Figure IV.2: A GME Bond Graph Model of Hydraulic Actuator System
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IN SYMBOLIC FORM

df5/dt = (-1*B friction)*(1/Mass) f5 - ((1/Mass)*TF2)e6 - (1/Mass)e7 + ((1/Mass)*TF)

e8

de6/dt = ((1/C2)*TF2) f5 - ((1/C2)/R pipe) e6 + ((1/C2)/R pipe) e10

de7/dt = (1/C spring) f5

de8/dt = (-1*(1/C1)*TF2) f5 + (-1*((1/C1)/R valve)) e8 + (((1/C1)/R valve)*TF1)

e9

In the above equations, f5 is the flow associated with the inertia Mass, e6 is

the effort associated with the capacitance C2, e7 is the effort associated with the

capacitance C spring, and e8 is the effort associated with the capacitance C1. Effort

e9 associated with the source of effort Se and the effort e10 associated with the source

of effort Se cap are the input variables of the system.

The following output equations are generated for the system:

f5 = f5

e6 = e6

e8 = e8

f13 = (TF2) f5,

where f5 is the Velocity sensor, e6 is the Cap 2 sensor, e8 is the Cap 1 sensor and f13

senses the pressure difference.

The Simulink model for this system and one of the outputs (pressure output) is

shown in Fig. IV.3 and IV.4, respectively.

IV.1.2 Observer runs with measurement noise and modeling
errors in the system model

For the purpose of analyzing the behavior of the observer under the presence of

noise in the measurement and/or modeling errors, we consider a part of the actuator

system described in the previous subsection. The current implementation of our
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Figure IV.3: Simulink Model of the Hydraulic Actuator System
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Figure IV.4: Pressure Output of the Hydraulic Actuator System
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Figure IV.5: A GME Bond Graph Model of a part of the Hydraulic Actuator System

observer only supports linear systems; hence, we restrict ourselves to a part of the

hydraulic actuator.

Fig. IV.5 shows the bond graph model of the part of the actuator system under

consideration. The different components in the bond graph model are explained as

below:

R is the resistance of the pipe connected from the pump to the cylinder of the

actuator. Se represents the effort output of the centrifugal pump that drives the

actuator. The transformer TF1 models the conversion of mechanical energy to fluid

energy. The resistive element R valve is used to control the flow of the liquid through

the pipes. The capacitance C1 models the variable volume of the right hand side of

the cylinder.

From the bond graph model, we observe that the system contains one state vari-

able, i.e. the effort associated with the capacitance C1, one input variable i.e. the

effort imposed by Se, and two measured variables - flow through R valve and effort

across the capacitance C1.
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Our system generates the following causality assignment for the given bond graph:

JunctionName ---> DeterminingBond

Component/1J1 ---> Component/R valve

Component/0J ---> Component/C1

Component/TF Bug ---> Component/TF1

Component/0J1 ---> Component/Se

The bond numbers are assigned as follows: Bond 1: R valve - 1J1

Bond 2: R - 0J1

Bond 3: R Cap - 0J

Bond 4: C1 - 0J

Bond 5: Se - 0J1

Bond 6: TF1 - 0J1

Bond 7: TF1 - TF Bug

Bond 8: 1J1 - TF Bug

Bond 9: 1J1 - 0J

The following equations are generated by our system.

State space equations:IN NUMERIC FORM

de4/dt = -0.1001e4+0.0001e5

IN SYMBOLIC FORM

de4/dt = (((-1*((1/C1)/R valve))) +(-1*(1/C1))/ R Cap) e4 +(((1/C1)/ R valve)/

TF1) e5

Output equations:

IN NUMERIC FORM
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f1 = -1e-005 e4 + 1e-005 e5

e4 = 1e4

IN SYMBOLIC FORM

f1 = (-1*((1)/ R valve)) e4 + (((1)/R valve)/ TF1) e5

e4 = (1)e4

The A, B, C, D matrices generated for the building of Kalman filter from the

above equations are shown below.

A matrix

[0.998999]

B matrix

[1e-006]

C matrix

[-1e-005 1]

D matrix

[1e-005 0]

The other parameters fed as an input to the Kalman filter are

Initial value of for X = [0.0]

Error covariance matrix P = Identity matrix of size 1 = [1]

Multiplier for the process noise covariance matrix Q = 1e-7

Multiplier for the measurement noise covariance matrix R = 1e-7

Sampling time T = 0.01 seconds

Period for which the model is run = 200 seconds

The output values for Cap 1 and R valve generated by simulating the Simulink model

are fed into the filter.

We analyze the performance of our observer by taking multiple runs of the model

under different noise levels, and also, by taking multiple runs with small errors in
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Figure IV.6: Measured and Observed values for Actuator for a measurement noise of
2 percent

model parameters along with some noise. Also, for each run, we calculate the mean

squared value of the error in order to verify the working of the observer.

Figures IV.6, IV.7, IV.8 plot the measured and the observed outputs for noise

values of 2, 5 and 8 percent in the measurement respectively. From Table IV.2, we

can see that the mean square error increases as the measurement noise increases.

Next, we run the observer for a measurement noise of 2 percent and by introducing

errors of 2, 5 and 8 percent in the parameter values of the input torque Se and the

valve resistance Rvalve simultaneously. When the torque is increased and the resistance

decreased, the volume displaced increases whereas, when the torque is decreased and

the valve resistance increased, we observe that the volume displaced decreases. This
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Figure IV.7: Measured and Observed values for Actuator for a measurement noise of
5 percent
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Figure IV.8: Measured and Observed values for Actuator for a measurement noise of
8 percent
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Figure IV.9: Measured and Observed values for Actuator for a measurement noise of
2 percent, Se increased by 2 percent and R valve decreased by 2 percent

concurs with the expected behavior of the system. Figures IV.9, IV.10 and IV.11

show the plots for the same.

Table IV.2: Mean Square Error Values

Noise % Error % in Se Error % in Rvalve Mean squared error Error %
2 0 0 1.09712e-7 1.622e-7
5 0 0 1.27299e-7 1.953e-7
8 0 0 1.48611e-7 2.017e-7
2 +2 -2 1.18849e-7 1.455e-7
2 -5 +5 9.01745e-8 1.27e-7
2 +8 -8 1.51785e-7 1.647e-7
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Figure IV.10: Measured and Observed values for Actuator for a measurement noise
of 2 percent, Se decreased by 5 percent and R valve increased by 5 percent
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Figure IV.11: Measured and Observed values for Actuator for a measurement noise
of 8 percent, Se increased by 2 percent and R valve decreased by 8 percent
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Figure IV.12: Bond Graph model of the system with an n-port element

IV.2 N-port system

This section discusses the causality assignment, equation generation and the gen-

eration of observer plots for a system containing an n-port element. We consider an

equivalent of a two tank system that uses a 2-port capacitance, instead of 2 single

port capacitances. The values of the parameters have been chosen to be equivalent

to those used in the two tank system example in the last chapter. The purpose of

this example is to explain and verify the working of our system for an n-port element,

and not to suggest a possible application of n-port elements.

Fig. IV.12 shows the bond graph model of the system, where Sf represents the

flow source, Rs represent the pipe resistances and nC is an n-port capacitance with

n=2.

The matrix values entered for nC are

[1/C1 0; 0 1/C2]
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where C1 and C2 correspond to the values of the two capacitances used in the equiv-

alent system with 2 one-port capacities. By making use of the extended version

of SCAP that supports n-port elements, the causalities get assigned in such a way

that nC determines the effort at both the zero junctions connected to it. The bond

assignment for the system is as shown below:

Bond 1: R1 - OJ1

Bond 2: R2 - OJ2

Bond 3: R12 - OJ

Bond 4: nC - ZJ1

Bond 5: nC - ZJ2

Bond 6: Sf - ZJ1

Bond 7: OJ - ZJ1

Bond 8: OJ - ZJ2

Bond 9: OJ1 - ZJ1

Bond 10:OJ2 - ZJ2

The flow associated with Sf is the input variable f6. The efforts e4 and e5

associated with nC are the two state variables in the system and the volume flow

rates measured at the two one junctions, namely f1 and f2 are the output variables

of the system.

The state equations generated for the system are:

IN NUMERIC FORM

de4/dt = -0.0240798 e4 + 0.00841728 e5 + 61.867 f6

de5/dt = 0.00841728 e4 - 0.012684 e5

IN SYMBOLIC FORM

de4/dt = ((((-1*(1/nC(1,1)))/R12))+(-1*(1/nC(1,1)))/R1)e4 +(-1*((-1*(1/nC(1,1)))/R12))e5
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+(1/nC(1,1))f6

de5/dt = ((1/nC(2,2))/R12)e4 +(((-1*((1/nC(2,2))/R12)))+(-1*(1/nC(2,2)))/R2)e5

The output equations generated for the system are:

IN NUMERIC FORM

f1 = 0.000253165 e4

f2 = 6.89655e-005 e5

IN SYMBOLIC FORM

f1 =((1)/R1)e4

f2 = ((1)/R2)e5

The values of the Kalman filter matrices A, B, C, D are: The values of matrices

A, B, C and D are given as:

A matrix:

[0.999759 8.41728e-005 ; 8.41728e-005 0.999873]

B matrix:

[0.61867 0]

C matrix:

[0 6.89655e-005; 0.000253165 0]

D matrix:

[0 0]

We see that these values correspond to those generated for the equivalent two

tank system model considered in the previous chapter, and are thus able to verify the

working of our implementation for an n-port system.

The plot of the measured and the observed volume flow rate outputs against time

is as shown in Fig. IV.13.
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Figure IV.13: Observer and System Output for a Two Tank System implemented
using nC
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From the above two examples the correctness of our implementation can be veri-

fied.
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CHAPTER V

CONCLUSIONS

After testing the implementation of our system for different component-based

bond graph models of linear systems, we have verified the working of the our equation

generation algorithm and our Kalman filter implementation. Also, by running the

observer for multiple sets of data containing measurement noise and modeling errors,

we observed, as expected, that the mean squared error increased with the increase

in the measurement noise or with the increase in the deviation of model parameters

from their nominal values, however, the observer still managed to track the system

dynamics within acceptable error bounds.

V.1 Future Work

The current system works for models of linear systems. However, most com-

plex systems contain a number of non linearities, and an important extension to the

current algorithm will be to support such non-linearities by extending the equation

generation algorithm to handle modulated elements and function blocks and changing

the implementation of the observer from the Kalman filter to the Extended Kalman

Filter. This will also allow us to build bond graph models containing n-port elements

where the transfer matrix coefficients will not have to be constant values.

Another extension to our present implementation would be to support hybrid

systems which are modeled as Hybrid Bond Graphs. The causality assignment and

the equation generation algorithm will have to take the junction state into account,

and make the effective changes to the system model.
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