
COMPILER-ASSISTED CONCURRENCY ABSTRACTION FOR

RESOURCE-CONSTRAINED EMBEDDED DEVICES

By

Janos Sallai

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

May, 2008

Nashville, Tennessee

Approved:

Professor Janos Sztipanovits

Professor Akos Ledeczi

Professor Xenofon Koutsoukos

Professor Sandeep Neema

Professor Miklos Maroti

Acknowledgements

I would like to thank my advisors, Professor Akos Ledeczi and Professor Janos Szti-

panovits, for their guidance and support. I had the pleasure to working in the sensor networks

research group at the Institute for Software Integrated Systems at Vanderbilt University, in

a team that, under Akos’s leadership, earned wide recognition over the last few years. I

am grateful to have had the chance to be a member of this group and to contribute to its

success.

The motivating examples and the initial problem formulation of my work came, in large

part, from Professor Miklos Maroti. My special thanks go to Miklos for his inspiration,

enthusiasm and encouragement.

I owe special thanks to the other two members of my committee, Professor Xenofon

Koutsoukos and Professor Sandeep Neema, for their inspiring questions and suggestions

regarding my work. Altogether, I could not have wished for a better Ph.D. committee.

The research in this work was sponsored by the NSF ITR program on Foundations on

Hybrid and Embedded Software Systems. Support for my graduate studies was provided

in part by the DARPA/IXO NEST program (F33615-01-C-1903), the ORISE program at

the Oak Ridge National Laboratory, the United Technologies Research Center, Crossbow

Technologies, Inc. and the NSF NeTS program.

ii

Table of Contents

List of Figures . vi

List of Abbreviations . ix

I Introduction . 1

1.1 Wireless sensor networks . 1

1.2 Requirements . 1

1.2.1 Functionality . 2

1.2.2 Resource constraints . 2

1.2.3 Development effort . 3

1.3 Research directions . 4

1.3.1 Multithreading . 4

1.3.2 Event-driven programming . 5

1.4 Problem statement . 7

1.5 Contributions of this dissertation . 8

1.6 Organization . 9

II Compiler-assisted threading . 11

2.1 Background and related work . 11

2.1.1 Event-driven model . 11

2.1.2 Multithreading . 15

2.1.3 State machines . 18

2.1.4 Macroprogramming . 19

2.2 Motivation . 21

2.2.1 Motivating example: I2C packet level interface 21

2.2.2 Problem formulation . 22

2.3 Organization . 23

2.4 Approach . 23

2.4.1 TinyVT’s thread abstraction . 24

2.4.2 Assumptions . 26

2.5 Language constructs . 27

2.5.1 Thread definition . 28

2.5.2 The yield statement . 29

2.5.3 The await statement . 30

2.5.4 Immediate and deferred return 31

iii

2.6 The TinyVT compiler . 32

2.6.1 Pattern based code transformation 35

2.6.2 Allocation of automatic variables 40

2.6.3 The local control flow graph . 46

2.6.4 Code generation . 55

2.7 Case study . 61

2.7.1 I2C packet-level interface . 61

2.7.2 The Surge application . 62

2.7.3 A simple multihop packet forwarding engine 64

2.8 Discussion . 66

2.8.1 TinyVT versus multithreading . 66

2.8.2 TinyVT versus event-oriented programming 70

2.8.3 Applicability . 71

2.8.4 Limitations . 71

III Semantics . 74

3.1 Background and related work . 74

3.1.1 Syntax . 74

3.1.2 Formal semantics . 75

3.1.3 Operational semantics . 76

3.1.4 Denotational semantics . 77

3.1.5 Axiomatic and algebraic semantics 79

3.2 Problem statement . 80

3.3 Organization . 82

3.4 Approach . 82

3.4.1 Alternatives . 82

3.4.2 Operational semantics with abstract state machines 83

3.4.3 Modeling threads as automata . 83

3.4.4 Compositionality . 84

3.5 Abstract State Machines . 85

3.5.1 Mathematical background . 85

3.5.2 The Abstract State Machine Language 87

3.6 Operational semantics of C . 90

3.6.1 Layer 1: Statements . 91

3.6.2 Layer 2: Expressions . 93

3.6.3 Layer 3: Memory allocation and initialization 94

iv

3.6.4 Layer 4: Functions . 95

3.7 Semantics of TinyVT . 96

3.7.1 Layer 1: Statements . 96

3.7.2 Layer 2: Expressions . 97

3.7.3 Layer 3: Memory allocation and initialization 97

3.7.4 Layer 4: Functions . 98

3.8 Compositionality . 99

3.8.1 Modeling TinyVT threads as finite automata 100

3.8.2 Compositionality of automata . 101

3.8.3 AsmL model . 102

3.8.4 Mapping TinyVT threads to TinyVT automata 110

3.9 Discussion . 113

IV Conclusion and future work . 116

4.1 Contributions . 116

4.2 Future work . 118

Appendices

A Sample TinyVT Source and the Generated C Code . . . 121

A.1 Sample TinyVt source code . 121

A.2 Compiler output (simplified) . 121

B Formal Semantics of TinyVT Automata in AsmL 124

B.1 Static, behavioral and compositional semantics 124

B.2 Example of a concrete system . 126

References . 128

v

List of Figures

Figure Page

1 Pseudocode of a packet-oriented I2C driver 22

2 Resolving the immediate return statement 36

3 Resolving ireturn in presence of dreturn 37

4 Resolving the yield statement (C) . 38

5 Resolving the yield statement (nesC/TinyOS) 38

6 Partial resolution of dreturn statements 39

7 Building the scope tree . 42

8 Scope structure and the generated allocation structure 43

9 Generation of the allocation data structure 44

10 Removing declarations and rewriting references 45

11 Main method of the LCFG builder . 47

12 The generic resolve method of the LCFG builder 48

13 Resolving statements . 48

14 Resolving the await statement . 48

15 Resolving compound statements . 49

16 Resolving the if-else construct . 50

17 Tracking targets of break and continue . 51

18 Resolving for loops . 52

19 Resolving the continue statement . 52

20 Resolving the break statement . 52

vi

21 Resolving the goto statement . 53

22 Retrieving label nodes . 53

23 Resolving labeled statements . 53

24 Storage of thread state . 55

25 Helper functions to manage thread state 56

26 Return type of the block functions . 56

27 Block function of a simple non-await node 57

28 Block function of a non-await node with branching 57

29 Block function of an await node . 57

30 Dispatching logic for block functions . 58

31 Example of a function generated from an inlined event handler 59

32 Example of a generated error handler . 59

33 Example of a generated event handler stub 60

34 Generated thread initialization code . 60

35 Packet-oriented I2C driver in TinyVT . 62

36 The surge application in TinyVT . 63

37 Multihop packet forwarding in TinyVT . 64

38 TA state . 102

39 TA transition . 102

40 The Abstract Data Model of TinyVT Automata 103

41 Behavioral aspect of TA state . 103

42 Behavior of a TA step . 104

vii

43 Deciding acceptance of an input . 104

44 Querying enabled transitions . 105

45 Querying the current state . 105

46 The IAbstractTA interface . 106

47 TA implementing the IAbstractTA interface 106

48 Abstract Data Model of TA composition 107

49 Behavioral aspect of the IAbstractTA interface 107

50 Deciding acceptance of an input in composition 108

51 Behavior of the TA composition step . 108

52 TA composition step helper methods . 109

viii

List of Abbreviations

ADT Abstract Data Type

ASM Abstract State Machines

AsmL Abstract State Machine Language

AST Abstract Syntax Tree

ASVM Application Specific Virtual Machines

BNF Backus-Naur Form

DPC Deferred Procedure Call

FA Finite Automaton

FIFO First In First Out

FSMD Finite State Machines with Datapath

HOL Higher-Order Logic

IPC Inter-process communication

LCFG Local Control Flow Graph

MCU Microcontroller Unit

MMU Memory Management Unit

MOS MANTIS Operating System

OS Operating System

OSM Object State Model

POSIX Portable Operating System Interface

RAM Random Access Memory

RISC Reduced Instruction Set Computer

SR Synchronous Reactive

SRAM Static Random-Access Memory

TA TinyVT Automaton

VCC Voltage at the Common Collector

ix

VM Virtual Machine

WSN Wireless Sensor Network

x

Chapter I

Introduction

1.1 Wireless sensor networks

In the mid 1960’s, Gordon A. Moore observed that the number of transistors on an

integrated circuit for minimum component cost doubles every two years. While the semicon-

ductor industry did indeed increase the complexity of products as Moore had predicted, it

was only lately that a new, unorthodox way of perceiving the effects of development trends

in microelectronics has emerged. Applying Moore’s law toward reduced size and cost, rather

than increase in capability, has opened a new perspective, fostering research in a new appli-

cation domain: wireless sensor networks (WSN) are envisioned as large networks of small,

inexpensive devices that communicate with low-power radios, are potentially ad-hoc deployed

and suitable for unattended operation. Potential application scenarios range from precision

agriculture [11] through seismic monitoring [39] to military surveillance [72, 51, 50, 77] –

typically leveraging that the sensor nodes are deeply embedded in the environment.

Power and resource constraints, as well as application requirements inherent to the WSN

domain may render traditional operating systems and the corresponding programming ab-

stractions inadequate for sensor nodes. Contemporary mainstream operating systems and

development tools rely on the assumption that system memory and storage are abundant,

and that processing power and communication bandwidth are ever-increasing resources. In

contrast, a typical sensor node [66, 24, 43] is running on batteries and is built around a mi-

crocontroller with only a few kilobytes of internal SRAM. Consequently, memory is a scarce

resource, and computation, as well as communication, are expensive in terms of power con-

sumption.

1.2 Requirements

While it is obvious that traditional operating systems are too heavyweight for resource

constrained sensors, the requirements for operating systems and development tools for wire-

less nodes are, interestingly, very much analogous to those in general purpose computing.

The intrinsic concurrency of applications, as well as the demand for development tools to

offer productivity, program safety and reliability, mandate that operating system design-

ers address challenges similar to those in general purpose computing, but in presence of

constraints specific to the WSN domain. The scope of research in this field goes beyond

operating systems concepts and their implementations. In fact, it is never the operating

1

system (or runtime) alone that is used to attack the problem, but an entire toolchain, which

may or may not include an OS , libraries, build tools (compilers, linkers, etc.), analysis tools,

debugging and code distribution support, runtime services, monitoring or management soft-

ware, and a general know-how encompassing patterns and best practices of the particular

toolchain.

Clearly, sensor operating systems and the complementary development toolchains must

be able to satisfy the functional requirements of WSN applications. At the same time,

it must be achieved in the presence of resource constraints, while offering the developers

productivity in terms of coding effort, maintainability, and program reliability.

1.2.1 Functionality

From the aspect of functionality, sensor nodes are often required to respond to external

events in a time-critical manner, while running several concurrent tasks with best-effort

semantics [44, 32, 8, 13, 33, 46, 75].

As an example, let us consider an acoustic shooter location application, where the sensor

network acts as distributed microphone array to pinpoint shot sources [77, 72, 50]. This

application requires that three tasks be running on a node concurrently. Individual wireless

nodes are accepting event data through the I2C interface from the acoustic daughter board,

timestamp them, and forward them to the sensor fusion node. When an event of interest oc-

curs, nodes are also required to act as message relays in a multihop routing network. Notice

that while messages are being forwarded, nodes keep listening for acoustic events. Concur-

rently, in order to relate event timestamps taken at different locations, nodes are running

a distributed time synchronization algorithm. It builds on distributed leader election, and

uses linear regression on received message timestamps to compensate for clock skews.

In this scenario, handling acoustic event data is time-critical: a jitter of one millisecond

corresponds approximately to one foot of distance error, which decreases the precision of the

localization algorithm. Multihop routing, on the other hand, is best-effort: the redundancy of

the measurements allows for a certain degree of message loss. Time synchronization requires

that its underlying timestamping primitives have low jitter, however, timing requirements of

other aspects of the algorithm are relaxed.

1.2.2 Resource constraints

In the absence of significant hardware constraints, real-time operating systems meet

the above functional requirements. However, when hardware resources are tight, existing

solutions prove to be too heavyweight.

2

MCU speed and functionality is typically limited due the requirement that devices need

to operate on battery with and anticipated application lifetime of several months. Memory

constraints, on the other hand, are related to manufacturing costs. Even in low-end micro-

controllers, the transistors implementing the integrated SRAM constitute more than three

quarters of the total transistor count. In high-end embedded processors, such as the Intel

XScale, this number is close to 90% [33].

A representative sensor platform, the Berkeley MICA2 mote, is equipped with an Atmel

ATMega128L RISC microcontroller, with 4kB of on-chip SRAM and 128kB of flash, oper-

ating at 7.2MHz. Typical values for power consumption at 3V VCC are 8mA and 3.2mA

when MCU is active and idle, respectively [71]. Using various power save modes, power

consumption can be reduced to a couple of hundreds of microamperes.

The implications of the resource constraints are twofold. First, since both the operating

system and the application must fit into a few kilobytes of RAM , traditional operating

system services are cumbersome to implement. Particularly, multithreading becomes chal-

lenging, because each thread would require a separate stack. Second, power constraints

dictate that program code be efficient, minimizing the time spent in active mode.

1.2.3 Development effort

Finding a balance between functionality, resource-awareness and the productivity a tool

provides is a challenging problem. As a rule, the higher the level of abstraction that a

toolchain provides, the harder it becomes to support these abstractions while meeting tight

resource constraints.

Depending on the level of abstraction the operating system and development tools pro-

vide, the programming effort to create a WSN application can vary significantly. For instance,

developing applications for a a bare event-driven operating system is hard: programmers need

to concentrate on subtle details of error-prone tasks, such as manual management of control

flow and stack. In contrast, macroprogramming techniques, virtual machines and scripting

engines offer short development time by shielding the programmers from low-level details

(typically at the price of reduced flexibility and increased resource usage).

Code reuse across projects or across different hardware platforms can significantly reduce

development time. Examples of code reuse include libraries, frameworks [79, 58], component

architectures [32] or virtual machines [54, 55, 47].

Safety and reliability are important factors in embedded system development. It is hard

to recover sensor nodes from run-time errors. As a result, they are typically programmed to

reboot when a critical fault is detected. Tracing down the cause of a fault, and debugging

3

a deployed WSN in general, are yet unsolved challenges. Researchers, therefore, mostly

focus on static analysis, along with development tools that provide correct-by-construction

applications with respect to properties such as race conditions, memory ownership, stack

overflow, component compositionality, etc.

Maintenance effort of sensor network applications is also an important factor to con-

sider. The cost of migration from one hardware platform to another, finding and fixing

software errors and modifying source code to enhance functionality heavily depends on the

comprehensibility of the sources. While the level of abstraction the programming environ-

ment provides will obviously have a significant effect on maintenance costs, the intrinsics

and constraints of the underlying execution model are equally important factors to con-

sider. For instance, independently from the implementation language, locking is challenging

in a multithreaded system [52]. Similarly, in event-driven systems, the lack of explicit lan-

guage support to express linear control flow cripples the comprehensibility of event-driven

programs [20]. Alternatively, from a coarse-grained perspective, maintainability (and also

reliability) of an application can be improved through structure, which is typically enforced

by the development toolchain [32], and patterns [31, 41], i.e. best practices for the given

toolchain or application domain.

1.3 Research directions

Most programming environments for wireless sensor nodes are based on one of the two

dominating programming abstractions for networked embedded systems: event-driven or

multi-threaded programming. In the event-driven paradigm, programs consist of a set of

actions that are triggered by events from the environment or from other software components.

Actions are implemented as event handlers: functions that perform a computation and then

return to the caller. Event handlers run to completion without blocking, hence, they are

never interrupted by other event handlers. This eliminates the need for locking, since event

handlers are atomic with respect to each other. Furthermore, because of run-to-completion

semantics, all event handlers can use a single shared stack.

1.3.1 Multithreading

In the multithreaded approach, execution units are separate threads with independent,

linear control flow. Threads can block, yielding control to other threads that execute con-

currently. Since the execution of threads is interleaved (assuming one physical processor),

data structures that are accessed by multiple threads may need locking. Each thread has its

4

own stack and administrative data structures (thread state, stack pointer, etc.) resulting in

memory usage overhead which may become prohibitive in resource-constrained systems.

Although the two abstractions were shown to be duals [49], there has been a lot of

discussion about the advantages and drawbacks of both approaches in the literature [76,

52, 2]. Multithreading, especially preemptive multithreading, is commonly criticized for

the nondeterministic interleaved execution of conceptually concurrent threads [53]. Various

locking techniques are used to reduce (or eliminate) nondeterminism from multithreaded

programs. Unfortunately, identifying critical sections, as well as choosing the appropriate

lock implementations for the critical sections are error prone tasks. Suboptimal locking may

lead to performance degradation, while omitting locks or using the wrong kind of locks result

in bugs that are notoriously hard to find.

The most compelling advantage of multithreading is that the thread abstraction offers a

natural way to express sequential program execution. Since threads can be suspended and

resumed, blocking calls are supported: when a long-running operation is invoked, the thread

is suspended until the operation completes and the results are available. Threads offer a

natural way to model and implement conceptually independent or loosely coupled services

used within the same WSN application. Using threads forces the programmer to think of the

application as a set of services, and promotes the functional decomposition of sensor node

software.

The event-driven approach, in contrast, does not have this feature. Consequently, se-

quential execution involving multiple event handler invocation contexts is hard to express,

and the corresponding event-driven code is hard to read.

1.3.2 Event-driven programming

A typical event-driven program consists of an event dispatcher (also called scheduler)

and a set of event handlers. Depending on the requirements, applications may include a

large number of event handlers, and, thus, the implementation can become very complex.

To mitigate complexity, state-of-the-art event-driven operating systems for wireless sensor

nodes [40, 44], however, allow for modularization of event-driven code.

Within an application, event handlers can be partitioned such that those that belong to

the implementation of the same conceptual service are enclosed in a module. This is a widely

applied design principle in software engineering, commonly called functional or horizontal

decomposition. The list of such modules may include sensing, multihop routing, timer sub-

system, etc. With such horizontal modularization in place, the event-driven application is

not a set of event handlers any more: it is structured as set of event-driven service modules,

5

enclosing event handlers that implement the service logic. Horizontal structuring implies a

high level of isolation between modules, preventing or discouraging direct service to service

interactions. This allows for developing modules separately, and promotes reuse.

To further enhance reusability and portability of event-driven code, monolithic services

can be subdivided into layers, where layers implement subservices at different levels of ab-

straction. This vertical decomposition has a number benefits. First, common functionality

can be refactored from modules into a shared, low-level service (e.g. a dissemination and

a data collection service can use the same packet forwarding engine). This, of course, re-

quires that the low-level service have a well defined interface, capturing the description of

the service at the abstraction level which the service provides.

This way, stacks of services can built, where each layer of the stack implements an abstract

service relying on the concepts of the underlying abstraction level. All layers, except for the

lowermost one, are decoupled from concrete platform features. For example, a timer stack

can be built such that timers are built from alarms, alarms are built from counters, and

counters are implemented by directly interfacing with the hardware. Service stacks are

essential to enable portability across hardware platforms, and to allow for reuse even if the

hardware-software boundary changes with the evolution of hardware.

An important benefit that comes from vertical decomposition is that a complex service

is refactored to a stack consisting of abstract services that are simpler to implement, since

they are also built on a set of abstractions that hide the underlying complexity. This greatly

simplifies the implementation of individual services, and promotes reuse of code not only

between applications, but also between different platforms.

Vertical layering in an event-driven application implies that, for performance reasons,

there is direct communication between layers, without involving the event-driven dispatcher.

Although the implementation of an abstract service is still just a collection of event handlers,

they are not necessarily invoked directly by the dispatcher: interacting layers may invoke

each other’s event handlers. In a clean event-driven application, however, all invocation

contexts, directly or indirectly, must originate from the dispatcher.

The sensor network community is slightly biased toward the event-driven paradigm. The

reason behind this tendency is twofold. First, the event-driven model reflects intrinsic prop-

erties of the domain: sensor nodes are driven by interaction with the environment in the

sense that they react to changes in the environment, rather than being interactive or batch

oriented. Second, the limited physical memory inhibits the use of per thread stacks, thus

limiting the applicability of the multi-threaded approach. It is important to note here that

Moore’s law has an unorthodox interpretation here: it is applied toward reduced size and

6

cost, rather than increase in capability, therefore, the amount of available physical resources

is not expected to change as the technology advances.

1.4 Problem statement

I have identified an number of issues that can have significant implications on reliability

and maintainability of event-driven code, and also on the coding effort required to develop

event-driven applications.

• Manual control flow management. Unlike the thread abstraction, the event-driven

paradigm does not offer linear control flow. The program execution is split up into

actions that are executed in response to events. It is often required, however, that an

event triggers different actions depending on the program state. Traditional program-

ming languages — unaware of the underlying event-driven runtime — does not allow

for defining control flow spanning multiple event invocations. Neither do they support

executing different actions depending on both event type and program state, hence the

logical ordering of event invocations is not captured.

To tackle this issue, services have to be implemented as state machines, constituting

essentially manual control flow management. Without explicit language support, these

state machines are implemented as a set of event handlers, in an unstructured, ad-hoc

manner. As a result, the program code is often incomprehensible, error-prone and hard

to debug.

• Manual stack management. Sharing information between event handlers also lacks

language support, and hence, programmers tend to use global variables, which is also

error-prone and often suboptimal with respect to static memory usage.

Efficient allocation of variables that are shared between multiple event handlers is a

challenging task in the presence of resource constraints. In a thread-oriented program-

ming model, such variables are created on the local stack, and destroyed when they go

out of scope. A similar, manual stack management approach appears in some event-

driven components: variables with non-overlapping lifetime can be placed into a union

allocated in static memory, thus the component consumes no more static memory than

the memory required by the maximal set of concurrently used variables. However, such

optimizations can be extremely tedious when the component logic is complex.

• Yield emulation. Long-running computations should be avoided in event-driven

systems, because they deteriorate overall system responsiveness, since event handlers

7

execute atomically and cannot be preempted. This problem also manifests itself in

cooperative multi-threading, however, such systems commonly provide a yield opera-

tion, by which the running computation may relinquish control and let other threads

execute. This, however, is not possible in an event-driven programming paradigm.

Consider the multiplication of two fairly large matrices — a computation that is pro-

hibitive in an event-driven system that has to handle various other events (e.g. message

routing) concurrently. The most straightforward solution to this problem is to break up

the outermost loop of the matrix multiplication algorithm, and to manage the control

flow with a state machine emulating the loop. Also, since the loop is broken up into

two event handlers, manual stack management is required for the loop’s local variables.

This workaround, although typically tedious, will always work. However, this has se-

rious implications: since it is cumbersome to emulate yield in event-driven systems,

existing code which is not structured in an event-aware fashion can be extremely com-

plex to port. This applies to computationally intensive algorithms, such as encryption

key generation or data compression.

• Non-blocking split-phase operations. Since the event-driven paradigm does not

allow blocking wait, complex operations must be implemented in a split-phase style: an

operation request is a function that typically returns immediately, and the completion

is signaled via a callback. This separation of request and completion, however, renders

the use of split-phase operations impossible from within C control structures (such as

if, while, etc.).

Manual management of control flow can become particularly tedious and error-prone

as the complexity of the programs increase. Breaking up the code into event handlers

inhibit the use of loops and conditionals with blocking wait. As a result, even a simple

control flow that can be expressed linearly with a few nested loops, may result in very

complex state machines. Moreover, the resulting event-driven code will most probably

be suboptimal, unclear, hard to debug, and often incorrect.

1.5 Contributions of this dissertation

In this work, I present a compiler-assisted concurrency abstraction that allows for

thread-like programming, but retains the benefits associated with an event-driven execution

context. I introduce TinyVT, an extension to ANSI C with explicit language support for the

thread abstraction, including blocking statements. This virtual threading abstraction allows

for implementing services, that have logically linear control flow, as if they had their own,

8

independent threads of execution. The abstraction of a thread is provided by the language: a

compiler will translate TinyVT code — containing multiple, conceptually concurrent threads

— to C (or nesC [32]) assuming a simple event-driven execution context (e.g. SOS [40] or

TinyOS [44]), by identifying and sequencing primitive blocks of source code that contain no

blocking statements.

A common drawback of event-driven systems is that the lifetime of a local variable is

limited to the execution context of the event handler in which the variable is declared.

Typically, C compilers allocate local variables with automatic storage duration on the stack.

Since in event-driven systems, the stack is unrolled every time the event handler completes,

the values of such variables are not preserved between consecutive event invocations.

Consequently, variables that are accessed from more than one event handlers must be

global, allocated in static memory. To overcome this issue (termed manual stack manage-

ment), I introduce a compiler-managed memory allocation technique that seamlessly

provides C-style scoping and automatic allocation of variables local to a thread, eliminating

the need for declaring global variables for information sharing between related actions.

Although its significance is often understated or not even recognized, the precise spec-

ification of semantics is essential to any programming language. Vague and informal

semantics may result in incompatibilities between tools that are built on conflicting assump-

tions of the ambiguous, incomplete or nonexistent specification. Semantic ambiguities may

lead to undesired software behavior.

I specify the operational semantics of TinyVT threads using the Abstract State Machine

(ASM) formalism (formerly known as Evolving Algebras [34]), building on an existing formal

semantics specification for C. The notion of a thread, defined as an independent unit of

computation with conceptually linear control flow, is missing from C, since the C language

is a legacy of an era in which multithreading had not yet existed. Therefore, I investigate the

compositional semantics of TinyVT threads by mapping them to a finite automaton based

representation, the semantics of which is given in the Abstract State Machine Language

(AsmL) [37].

1.6 Organization

This dissertation is structured as follows. In Chapter 2, I set the context of my work by

introducing the related work in systems research for resource-constrained platforms, high-

lighting the main research directions and introducing the research problem. After giving

an overview of the approach in Section 2.4, along of the definition of TinyVT threads, a

9

compiler-assisted concurrency abstraction for event-driven systems, I present a language ex-

tension of ANSI C in Section 2.5, and describe the compiler that translates code expressing

conceptually concurrent threads to standard C code in Section 2.6.

In Chapter 3, I specify the semantics of the language extension, and investigate the com-

positional and interaction semantics of the model of computation defined by TinyVT threads.

Following a brief literature review on approaches to formal semantics specification in gen-

eral, and that of the C language in particular, in Section 3.7, I present the semantics of the

TinyVT language extension by extending the work of Gurevich and Huggins on the formal

semantics of ANSI C [35] (Section 3.6) using the Abstract State Machines (ASM) [34] ap-

proach. In Section 3.8, I investigate the compositional and interaction semantics of TinyVT

threads by mapping such systems to a finite automata based representation, the structural

and behavioral semantics of which I specify formally in the Abstract State Machine Language

(AsmL) [37].

Finally, in Chapter 4, I discuss the advantages, as well as the limitations of the TinyVT

approach, highlighting points of possible improvement and future research directions.

10

Chapter II

Compiler-assisted threading

2.1 Background and related work

Operating systems, programming models, and development tools for wireless sensor nodes

have been a very active research area in the recent years. In this section, I present a detailed

review on the event-driven and the multithreaded approach to sensor node programming,

and also highlight some alternative research directions.

2.1.1 Event-driven model

In the event-driven paradigm, programs consist of a set of actions that are triggered by

events from the environment or from other software components. Actions are implemented

as event handlers: functions that perform a computation and then return to the caller. Event

handlers are executed in a serialized manner: once an event handler is invoked, it cannot

be preempted and must run to completion. As a result, event handlers are atomic with

respect to each other, hence the execution model is free from race conditions. An important

implication of the lack of data races is that there is no need for locking in the event-driven

programming model.

Runtime support for event-driven systems is fairly simple. A central component of the

runtime is the scheduler (also called dispatcher). The scheduler, running in a loop, maintains

a queue of events that have occurred (either externally to the system, or created internally

by event handlers). While the queue is not empty, the scheduler removes an event from the

queue based on the scheduling policy (which can range from a simple FIFO to sophisticated

priority queues), and invokes the corresponding event handler. The event handler runs to

completion, running the computation associated with its triggering event. Furthermore, it

may create new events and place them on the schedulers queue. After the event handler

returns, the scheduler dispatches the handler corresponding to the event that is at the head

of the queue.

Implementing an event-driven system is cheap in terms of memory usage. Events can be

modeled as function pointers to the corresponding event handlers, which, when stored in the

scheduler queue, do not consume more than a couple of bytes each. An important advantage

of the event-driven model over multithreading is that it can be implemented using a single

stack that is shared between the scheduler and all event handlers. When an event handler is

invoked, it can safely use the stack (for storing function return addresses, registers, automatic

11

local variables), because it is guaranteed not to be interrupted by other event handlers. When

the handler completes, the stack is unwound, and the next scheduled handler can take it

over. Also, it is possible to precisely estimate the stack usage of an event-driven system with

static analysis: the maximum stack usage of the whole system is the maximum of the stack

usage of the individual event handlers. This allows system programmers to prevent stack

overflows while avoiding overallocation of stack (such as in [68, 13]), which results in better

RAM usage.

At any time, only one event handler can be active in the system. The active event handler

must be completely executed before the next one can be scheduled, therefore, every event

handler depends on the previous one to terminate in time. Long running handlers can ”jam”

the scheduler queue and increase the overall system latency. This, however, can be avoided

by breaking up long tasks into smaller pieces, each of which, on completion, trigger the next

piece with application-specific events, in a sequential manner.

In embedded systems, external events often manifest themselves as interrupt request.

Serving interrupts, however, violates the atomicity assumption of the event handlers, and

thus might undermine basic assumptions of the event-driven model. When an interrupt

occurs, the currently executing handler is stopped and the control is passed to the interrupt

handler. The interrupt handler can use the shared stack to store its return address, save

registers and allocate variables. Typically, what the interrupt handler does is that it serializes

the triggering hardware event by placing an event on the event queue. Then it unrolls the

stack, returns, and the execution of the interrupted handler is resumed.

Letting interrupts interfere with the event-driven execution contexts can be a source of

several problems. First, if there are variables which are shared between interrupt handlers

and event handlers, race conditions may occur. In such systems, appropriate locking is

required to avoid data races. Locking, in its simplest form, can be achieved by temporarily

(and selectively) disabling interrupts. Second, execution times of event handlers become

nondeterministic, as they can be interrupted arbitrarily. To ensure strict timing guarantees,

interrupts typically need to be disabled. This, however, can lead to decreased responsiveness

and overall throughput of the system. Third, stack usage of the system is affected by

interrupt handling strategies as well. If interrupts are allowed to preempt each other, the

stack can go arbitrarily. That is, maximum stack size becomes unpredictable: freedom from

potential stack overflows cannot be guaranteed.

SOS

SOS [40] is lightweight operating system for wireless senor nodes built around the concepts

of general purpose operating systems. Namely, SOS provides separation of kernel and user

12

space, borrowing ideas from previous work on microkernels, such as Exokernel [26] or the

Mach kernel [67].

The kernel is lean and modular: it provides only a minimal hardware abstraction for

applications. Importantly, it deserializes interrupts, assuring that atomicity of userspace

event handlers with respect to each other is retained. As a result, SOS provides a clean

event-driven execution environment. This has many advantages, e.g. there are no data

race conditions in user modules, there is no need for locking, and the whole system can be

implemented to use a single stack.

However, timely response to interrupts is only possible in kernel drivers. As a result, the

implementation of an application that requires strict timing has to split into kernel code and

user modules, where the former might prove to be a highly nontrivial task.

TinyOS and the nesC language

TinyOS [44] is probably the most popular operating system in the wireless sensor networks

domain. In TinyOS, the event-driven model was chosen over the multithreaded approach due

to the memory overhead of the threads. However, the execution model of TinyOS differs from

that of clean event-driven systems. TinyOS defines two kinds of execution contexts: tasks

and events. Tasks are scheduled by a FIFO scheduler, have run-to-completion semantics,

and are atomic with respect to other tasks. TinyOS models interrupt service requests as

asynchronous events: events can interrupt tasks, as well as other asynchronous computations.

In contrast to SOS, TinyOS does not have clear kernel/user mode separation. Interrupt

contexts are not necessarily serialized in device drivers: the corresponding asynchronous

event can propagate even to application-level modules. This duality provides a flexible

concurrency model, and easy interfacing with the hardware, however, it can introduce race

conditions and may necessitate locking.

nesC [32], the implementation language of TinyOS addresses this issue by providing

language support for atomic sections and by limiting the use of potentially ”harmful” C

language features, such as function pointers and dynamic memory allocation. nesC is a

static language in the sense that program structure, including the static call graph and

statically allocated variables, are known compile time, allowing for whole-program analysis

and compile-time data-race detection.

TinyOS provides a set of reusable system components with well-defined, bidirectional

interfaces.

Common OS services are factored out into software components, which allows applica-

tions to include only those services that are needed In fact, the core OS requires just a

13

few hundred bytes of RAM. There are two kinds of components in nesC: modules and con-

figurations. Modules contain executable code, while configurations define composition by

specifying encapsulated components and static bindings between them. A nesC application

is defined as a top-level configuration.

Since the event-driven paradigm does not allow blocking wait, complex operations must

be implemented in a split-phase style: an operation request is a function that typically re-

turns immediately, and the completion is signaled via a callback. This separation of request

and completion is captured in nesC’s bidirectional interfaces. Bidirectional interfaces pro-

vide a means to define a set of related (possibly split-phase) operations. Interfaces declare

commands and events, both of which are essentially function declarations. A component

providing an interface must provide the implementations of the interface’s commands, and

may signal events through the interface. A component that uses an interface can call the

commands, and must implement callback functions for the events.

TinyGALS and galsC

TinyGALS [15] defines a globally asynchronous and locally synchronous a programming

model for event-driven systems. Software components are composed locally through syn-

chronous method calls to form modules, and modules communicate through asynchronous

message passing. Local synchrony within a module refers to the flow of control being in-

stantaneously transferred from caller to callee, while asynchrony means that the control

flow between modules is serialized through the use of FIFO queues. However, if modules

are decoupled through message passing, sharing global state asynchronously would incur

performance penalties. To tackle this, the TinyGALS programming model defines guarded

synchronous variables that are read synchronously and updated asynchronously.

The galsC [16] language attacks a substantial problem of event-driven programming,

namely that managing concurrency with the event-driven paradigm lacks explicit language

support. It is an extension of nesC that provides high-level constructs, such as ports and

message queues, to express TinyGALS concepts. TinyGALS ensures safety through model

semantics. As a tradeoff, galsC could impose limitations on the program structure. Tiny-

GALS modules are decoupled through message passing, and synchronous control flow is

limited to the module scope. As a result, control flow from an interrupt context cannot

propagate outside the module: hence, all tasks that are timing critical must be implemented

within the module. This is the price paid for containing potential data races within the

module implementing the interrupt handler.

14

2.1.2 Multithreading

In the multithreaded approach, the units of execution are separate threads with indepen-

dent, linear control flow. Threads can block, yielding control to other threads that execute

concurrently. Since the execution of threads is interleaved, data structures that are accessed

by multiple threads may need locking. Each thread has its own stack and administrative

data structures (thread state, stack pointer, etc.) resulting in memory usage overhead which

may become prohibitive in resource-constrained systems.

Although the two abstractions were shown to be duals [49], there has been a lot of

discussion about the advantages and drawbacks of both approaches in the literature [76]

[52] [2]. Multithreading, especially preemptive multithreading, is commonly criticized for

the nondeterministic interleaved execution of conceptually concurrent threads [53]. Various

locking techniques are used to reduce (or eliminate) nondeterminism from multithreaded

programs. Unfortunately, identifying critical sections, as well as choosing the appropriate

lock implementations for the critical sections are error prone tasks. Suboptimal locking may

lead to performance degradation, while omitting locks or using the wrong kind of locks result

in bugs that are notoriously hard to find.

The most compelling advantage of multithreading is that the thread abstraction offers

a natural way to express conceptually concurrent threads of execution, each with indepen-

dent, linear control flow. Since threads can be suspended and resumed, blocking calls are

supported: when a long-running operation is invoked, the thread is suspended until the

operation completes and the results are available.

Contiki and Protothreads

Contiki [22] is an event-driven operating system for memory-constrained devices. Contiki

is built using Protothreads [23], a programming abstraction that makes it possible to write

eventdriven programs in a thread-like style with minimal memory overhead.

Protothreads are not threads in the traditional sense: protothreads are a non-obvious,

albeit standard-compliant C constructs. In the simplest, most portable implementation, a

protothread is a function, the body of which is nested into a switch statement. Depending on

the value of a thread state variable (analogous to a program counter), a call to the function

implementing a protothread will transfer control to different case labels at the code nested

in the switch block. This way, a protothread can block or yield by advancing the program

counter followed by a return. Next time the function implementing the protothread is called,

thread execution will resume at the next case label.

The immediate advantage of using protothreads is that explicit state machines can be

15

eliminated from event-driven code. The code is typically shorter (3 times, according to [20]),

and easier to understand due to its linear control flow. Protothreads are portable across

compilers and across platforms: no special libraries, no OS support, no assembly coding is

required, only a standard-compliant C compiler. The execution overhead of a protothread is

in the order of a few processor cycles: a jump, the destination address of which is dependent

on a variable. Since the effective execution model is still event-driven, such system can be

implemented using a single stack. In fact, the memory required by a protothread is merely

a byte or word that stores the program counter.

On the downside, protothreads have a number of shortcomings. First, local automatic

variables in a protothread are not retained between subsequent calls to the thread, because

the stack is unwound every time the protothread blocks. The easiest way to overcome this

limitation is declaring variables local to a thread as static, allocating them in the data section

of the memory instead of the stack frame. In case of protothreads that need to be reentrant,

however, further workarounds may be required.

Second, Standard C does not allow for nested case statements. This limitation disallows

using switch statements within protothreads, because the body of a protothread gets nested

in a preprocessor-generated switch statement.

Third, compiler related problems may also arise. Although protothread constructs are

valid C programs, some compilers may or may not honor arbitrary C code within a body of a

switch statement, along with arbitrarily placed labels. Furthermore, compiler optimizations

might also be source of problems. For example, the compiler might decide to move a variable

into a register, which results in the value of such variables being lost between subsequent

calls to the thread. Similarly, the compiler might decide to move loop invariant code out of

the loop, which could break a protothread that blocks in that loop.

NutOS

NutOS is the operating system of the EtherNut device, a tiny, Ethernet-enabled device

designed for networked embedded applications. NutOS supports cooperative multithreading,

and provides kernel-user separation. In contrast to Contiki, threads in NutOS are managed

by the operating system: when a thread reaches a yield point, it is the OS scheduler that

decides which thread to schedule next. There is a per thread stack and a thread control

block belonging to each thread, which, obviously, increases the application’s overall memory

requirements. The EtherNut, based on the same Atmel microcontroller as most of the state-

of-the-art wireless sensor nodes, is, however, equipped with an external SRAM chip (32kB

for the first version, 512kB for subsequent versions), which relieves programmers and OS

designers from dealing with memory constraints.

16

Mantis OS

A good example of operating system concepts scaled down to a wireless sensor platform

is the MANTIS OS (MOS) [1, 8]. The primary design objective of MOS was to provide

productivity: ease of use and a moderate learning curve. As the programming environment

that MOS provides is similar to that of general purpose OS’es, little training is required for

programmers to achieve productivity and be able to expedite prototyping of wireless sensor

network applications.

The MANTIS OS has a layered architecture. The kernel consists of a preemptive sched-

uler, device drivers, network stack, etc., while the applications are running in user space.

Since the target platforms have no MMUs and do not offer privilege separation, MOS does

not provide memory protection or virtual memory, unlike general purpose operating systems.

MOS provides preemptive multithreading with time-slicing. Multithreading is a very

expressive abstraction for programming concurrent applications, because threaded code has

linear control flow. This, however, comes at a cost. First, a separate stack is required for

each thread, which results in significant memory usage. Considering that a typical target

platform has only 4kB of RAM, this imposes a tight limitation on the number of concurrent

threads the OS can support. Second, data that can be modified by concurrent threads must

be protected with locks to assure mutual exclusion. Locking, on one hand, decreases system

performance, on the other hand, it is a very hard task and a common source of bugs.

RETOS

RETOS [13] is built along traditional OS concepts and provides kernel and userspace

separation, emulates memory protection on MMU-less hardware and supports multithread-

ing. To achieve this in presence of resource constraints, RETOS relies on a static analysis

toolchain.

As multithreading inevitably dictates that a separate stack is required for each thread,

allocating a fixed-size stacks would be either wasteful or unsafe. With static stack depth

analysis techniques, however, it is possible to estimate stack sizes for each thread, and

allocate memory for the stacks accordingly. RETOS employs a stack depth analyzer that

runs on binary code. To further decrease the memory requirements, RETOS maintains only

one kernel stack. This implies that threads executing in kernel mode cannot be preempted.

On MMU-less microcontrollers, there is no hardware support to protect kernel data

structures from accidental corruption by malignant applications. For this reason, RETOS

employs software based memory protection mechanism, which is a combination of comple-

mentary static and dynamic safety checks. In the compiled binary, the destination fields

of memory write machine instructions are inspected. Similarly, the source fields of read

17

instructions can also be checked to prevent data access by untrusted code. While it is pos-

sible to statically check pc-relative jumps, direct and indirect addressing, safety of indirect

addressing can only be assured runtime.

Virtual machines

While multithreading virtualizes the microcontroller by presenting an execution context

to the threads in which they can operate with the assumption of exclusive usage of the MCU,

virtual machines (VM) provide a similar, but higher level of abstraction. A VM provides

a virtual CPU (or CPUs) with an instruction set which is different from that of the host

platform.

Several virtual machines have been proposed for wireless sensor nodes. VM* [47] and

CVM [21] are derivatives of the Java virtual machine, targeting resource-constrained devices.

Maté [54] is a stack based VM for sensor nodes that aims to provide high code density and

thus inexpensive code updates. As an extension of Maté, application specific virtual ma-

chines (ASVM) [55] have been proposed to allow programmers to introduce domain specific

instructions in the virtual machine’s instruction set.

Although programs running on top of VM execute three to ten times slower than native

code, the flexibility these tools provide through portability, development time, and code

update costs, often prove to be a reasonable tradeoff in WSN applications.

2.1.3 State machines

Object State Model

The Object State Model (OSM) [46] employs attributed state machines to express event-

based program behavior. The application of finite state machine (FSM) concepts is a natural

choice for the domain: actions are executed depending on the input event and the actual

state, whereas imperative languages, such as C, lack explicit support to associate actions with

both events and program state. OSM extensively borrows concepts from previous work on

state machine based programming formalisms, for example, hierarchical modeling, parallel

composition and broadcast-based communications from Harel’s StateCharts [42], concurrent

events from SyncCharts [3], as well as explicit state variables from Finite State Machines

with Datapath (FSMD) [29].

Through support for hierarchy and attribution of states with shared variables, OSM offers

efficient allocation of shared state, leveraging the knowledge of the lifetime of variables. This

way, OSM eliminates the need for manual stack management.

Semantically, an OSM specification can be mapped to the synchronous reactive (SR) [25]

18

model of computation. In practice, OSM specification is translated to Esterel [7], a syn-

chronous language[6], which then can be compiled into efficient C code by the Esterel com-

piler.

The SR paradigm offers deterministic concurrency through static scheduling, which com-

puted by the compiler. In the SR model of computation, programs are executed in a lockstep

manner with one or more clocks. In particular, Esterel modules communicate with signals,

the presence of which is checked by the module in the beginning of every step. Within a

step, all modules that check a specific signal will see it either present or absent, but never

both. Signals do not persist across steps: a signal is present in a reaction if and only if it is

emitted by the program or is made present by the environment.

One apparent shortcoming of the SR paradigm in connection with wireless sensor nodes is

its high latency in serving external events. From the implementation point of view, interrupts

need to be buffered between clock ticks. This implies that if an interrupt occurred shortly

after the synchronous clock fired, the corresponding signal will only be present at the next

clock tick. This delay can be conservatively estimated by adding the worst case execution

times of each module. There are, consequently, certain time-critical operations that are

common to wireless sensor nodes, e.g. radio communications or event timestamping, which

are cumbersome to implemented using the OSM toolchain.

2.1.4 Macroprogramming

All previously mentioned programming models assume that sensor network programming

is done in a bottom-up manner. Namely, programs are written from the point of view of

individual node in the network, which cooperates with others to solve the given problem.

There is, however, a number of systems that use a top- down approach to sensor network

programming. In contrast with the bottom-up approach, where the programmer writes the

behavior of each node to achieve a global behavior, top-down approach is to write global

behavior and node-level behavior is automatically generated. Programs are specified in a

high level language which assumes that the sensor network is the target platform. That

is, programmers implement a central program that, conceptually, has access to the entire

network. This top-down approach allows programmers to focus on high- level algorithms,

hiding the low-level details (tasking individual sensors, communications, resource manage-

ment, etc.). It is typically a compiler or a runtime (or a combination of the two) which

maps the high-level specification to efficient code running on individual nodes. In the sensor

network literature, this style of programming is termed macroprogramming.

19

Sensor network as a parallel/distributed computer

Regiment [62] is a functional programming language that allows for centrally program-

ming wireless sensor networks. It is built around a high-level programming concept called

abstract regions [78], an abstraction that encompasses neighborhood discovery, enumeration

and data sharing. Regiment models sensor data generated within a user-specified region as

a data stream. Being a functional language, Regiment has a number of advantages over

declarative languages. Regiment is side-effect free. Consequently, programs written in Regi-

ment will be free from software errors resulting from erroneous variable updates. Since it is

not possible to modify the value of a variable once it is assigned, the concept of global state

does not exist in Regiment. This relieves the compiler from explicitly managing global state,

and yields the way to various compiler optimizations (tasking of nodes based on topology,

etc.).

The Pleiades [48] programming language has similar objectives, however, it takes an

imperative approach. Pleiades extends the nesC language [32] with the cfor construct, that

specifies parallel execution of the body of the cfor loop across multiple nodes. Parallel code

has to be serializable, that is, the global state after the loop has completed must not depend

on the interleaving of execution within the cfor block. The most important contribution

of Pleiades is that it features a centralized programming model and pushes the burden of

concurrency control and synchronization to the compiler and runtime.

Database centric approach

Cougar [80] and TinyDB [59] treat the sensor network as a distributed database. Database

queries can be expressed in an SQL-like, declarative language. Queries may include sensor

attributes (e.g. individual sensor readings), arithmetic functions of attributes, selection with

attributes as arguments, as well as aggregate functions of attributes (average, sum, minimum

or maximum). Both Cougar and TinyDB provide support for temporal and data streaming

concepts that specify when sensors should be sampled, as well as the frequency and the du-

ration of sampling. In addition, TinyDB supports event based queries, which are triggered

or terminated by other queries or by software running on the sensor node.

Although, SQL queries are interpreted at the base station (typically a PC) and mapped

to low-level commands which are disseminated in the sensor network, the evaluation of

conditionals and the computation of aggregates are pushed into the sensor network.

It is important to note, however, that these systems were designed for simple monitoring

applications. TinyDB and Cougar lack support for arbitrary computation at the nodes; and

obviously, communication primitives are not exposed through the query interface. Therefore,

database centric approaches are not suitable for general-purpose application development.

20

2.2 Motivation

While many operating systems approaches have been shown to be feasible for wireless

sensor nodes, the WSN research community is somewhat biased towards the event-driven

paradigm. The primary reason for this is that an event-driven runtime is easy to implement

and to port, and that event-driven systems typically have a small memory footprint. On

platforms with very limited physical memory, other approaches (e.g. multithreading) may

prove prohibitively expensive in terms of resource usage, leaving an event-driven operating

system the only feasible choice.

Programming event-driven systems, however, can be very difficult. Since event-driven

programs need to be implemented as a set of event-handlers, the logical sequentiality of

event invocations is not possible to express in traditional programming languages, such as C.

Hence, programs often have to be implemented as explicit state machines, which is a tedious

and error prone task (often referred to as manual control flow management). Furthermore, as

there is no language support for information sharing between event handlers, programmers

have to manually allocate the shared variables, emulating the C stack. Both manual control

flow and stack management can grow very complicated as the size and complexity of the

application increases. Hence, implementing event-driven applications that are both reliable

and memory efficient requires a major effort.

I demonstrate the inherent complexity of event-oriented programming through an exam-

ple, which shows that managing control flow manually can be challenging, even in simple

applications.

2.2.1 Motivating example: I2C packet level interface

Let us consider the implementation of a packet-level interface for the I2C bus that oper-

ates above the byte-oriented hardware interface. The corresponding module should provide

split-phase operations to write a packet to, and to read a packet from the bus. We only

present packet sending; reading a packet works analogously.

The hardware interface provides the following operations. Starting of the send opera-

tion is requested with the sendStart command, to which the hardware responds with a

sendStartDone event. Sending a byte is also implemented in a split-phase style: the hard-

ware signals the completion of the write command with a writeDone event. After all the

bytes are written, the bus has to be relinquished with a sendEnd command, the completion

of which is acknowledged with the sendEndDone event.

The following pseudocode (Fig. 1) describes the procedure that writes a variable-length

packet to the bus, using the byte-oriented hardware interface:

21

1procedure{I2CPacket.writePacket }{length , data}

2call I2C.sendStart

3wait for I2C.sendStartDone

4for index = 0 to length

5call I2C.write(data[index])

6wait for I2C.writeDone

7index = index + 1

8endfor

9call I2C.sendEnd

10wait for I2C.sendEndDone

11signal writePacketDone

12end

Figure 1: Pseudocode of a packet-oriented I2C driver. This code illustrates

the packet writing functionality only. The control logic of reading a packet

is similar.

Expressing this behavior in a linear fashion, however, is not possible in an event-driven

system. The code must be broken up into a writePacket command and three event handlers,

and the control flow must be managed manually. Variables that are accessed from more

than one event handlers (length, data, and index) must be global and statically allocated.

Typically, manual control flow is implemented with a state machine: a global static variable

stores the component state, while the transitions of the state machine are coded into the

event handlers. Commonly, only a restricted subset of input events is allowed at a given

point of execution. Because of this, actions in the event handlers must be protected against

improper invocation patterns (e.g. writePacket can only be called again after the previous

packet sending is finished).

As a result, a corresponding event-driven solution is typically much more involved than

the above pseudocode: the I2CPacket module of TinyOS 1.1 (with packet read and write

functionality), for example, consists of more than a hundred lines of code.

2.2.2 Problem formulation

The purpose of this work is to create a tool that

• allows for event-driven programming by describing conceptually concurrent threads of

computation in an intuitive way,

• automates tedious tasks such as manual control flow and stack management,

• maps it to efficient code, that does not rely on run-time multithreading support and

avoids the need for stacks for each thread, and

• protects from common programming errors.

22

2.3 Organization

This chapter is structured as follows. First, in Section 2.4 I present TinyVT’s approach to

providing a thread abstraction on top of an event-driven runtime. I define and characterize

TinyVT threads, and state the assumptions on the event-driven runtime hosting them. The

TinyVT language, an extension of C, is presented in Section 2.5. Then, Section 2.6 gives a

detailed description on the TinyVT compiler, outlining how the thread abstraction is resolved

to simple C code. To illustrate TinyVT’s capabilities, Section 2.7 presents a case study,

implementing a data collection application using TinyVT threads. The chapter concludes

with discussing TinyVT’s strengths and limitations with respect to multithreading and event-

oriented programming, respectively.

2.4 Approach

My approach to eliminating manual control flow management and manual stack man-

agement from event-driven programming is the following.

Related event handlers, for instance, those that constitute the implementation of the

same service, are wrapped in a container and handled as a unit. To every container, local

state is assigned, which evolves in reaction to incoming events. The container supports

dispatching event handlers not only based on event kind but also on local state. In order

to achieve this, multiple event handler implementations can be defined for the same event

type within a container, which are associated to different configurations of the local state.

In response to an event, the container carries out a computation, which computes a return

value and changes the local state (and thereby the behavior of the thread in response to the

next input event).

The definition of this evolving state and evolving behavior (i.e. the control flow) is

given using well-known, well-understood programming constructs common to procedural

languages, such as C. Specifically, I extend the C language with and additional construct

to define such a container, called the thread definition, which, like the implementation of a

function, has a linear control flow, and offers nested scopes that may contain local variables

with automatic storage duration, alleviating the need for manual stack management. The

thread definition provides a programming abstraction which emulates that the thread defi-

nition has an independent local thread of execution, thereby relieving the burden of manual

control flow management from the programmer. Within the thread definition, the language

extension provides a special await statement, which is an opaque, blocking statement from

the perspective of the local execution thread. The await construct wraps an exit point of an

event handler and an entry point of another handler (and part of the event handler’s code)

23

in one statement. This is similar to how a function invocation expression shields that control

is passed to the implementation of the function and later returned to the caller – all this

during the execution of the function invocation expression. From the thread’s perspective,

the await statement is like any other statement and is executed in line with other statements,

as the thread’s control flow defines it.

This programming abstraction, called TinyVT, is achieved with a language extension and

the corresponding compiler, which translates TinyVT specific language constructs to plain

C code, which can operate on top of a lightweight event-driven execution engine.

2.4.1 TinyVT’s thread abstraction

A TinyVT thread is a computational agent with local state, conceptually independent

thread of execution, and source code with linear control flow. From the thread’s point of

view, it is perceived that the TinyVT thread has its own thread of execution, executing

the statements that constitute the thread’s source code sequentially, or with jumps between

them if the C control structures in the source code define so.

In contrast with traditional multithreading, where the operating system or a user-space

threading library creates an abstraction of a virtual processor on which the thread is exclu-

sively executing, the abstraction of an independent execution thread in TinyVT is provided

by the TinyVT language. Threads are ”compiled away” (resolved) by the compiler, reducing

the thread to a set of event handlers. Therefore, TinyVT is a compiler assisted threading

abstraction.

Control flow of a thread is defined over statements in the source code of the thread,

not over binary machine instructions. The key enabler of TinyVT’s thread abstraction is

the await statement, which is an opaque, blocking statement in terms of the thread’s local

control flow, but a wrapper of an exit and an entry point from a lower-level, fine-grained

perspective. The conceptual, local control flow of the thread is unaware of the fact that,

while an await statement is being executed, control is first passed to the environment and

then it returns to the thread, all within the same opaque statement.

In TinyVT terminology, yielding is returning control to the caller to the originator of

the event that triggered the current execution step of the thread. It is important to note

that TinyVT threads have explicit yield points. All yield points are associated with await

or yield statements in the thread’s source code. Since the environment is event-driven where

event handlers run to completion, calls to external functions never cause the thread to yield.

Therefore, the programmer has complete control over yielding. This is unlike in traditional

24

multithreading, where library functions may block and yield, without the caller being aware

of it or being able to control it.

Program vs. execution of program

In TinyVT terminology, thread, without ambiguity, can refer to the source code of the

program and to its conceptually independent thread of execution, because there is a di-

rect correspondence between the two. TinyVT threads are static in the sense that they

are implicitly instantiated and cannot be spawned dynamically at runtime. Therefore, the

source code of a TinyVT thread can only have one thread of execution, and the thread of

execution is, conceptually, local to the thread. This is unlike the terminology of traditional

multithreading, where distinction must be made between the program (a series of machine

instruction), and the execution of the program, because the same code might be concurrently

executed by multiple threads of execution, each having its own context (state).

Context

TinyVT threads also have local state, that is, context. The local thread state contains

control flags and variables, including a variable storing the last yield point, which is much

like an instruction pointer that specifies where the thread’s execution should continue in

response to an external event. Compiler-managed local automatic variables are also part of

the thread’s context, emulating the semantics of ANSI C’s automatic storage duration by

allocating them to static memory. It is important to note that, in TinyVT, threads have

no stacks associated with them, unlike in traditional multithreading. A TinyVT thread

will always use the stack of the triggering event to store local variables, pass parameters and

return values. Therefore, the context of a TinyVT thread does not contain a local, dedicated

stack.

Interaction with the environment

From the environment’s point of view, execution of a thread progresses in uninterrupted

execution steps, in response to function calls (events) from the environment. The thread

maps each input event to

• an execution of a series of statements in the thread’s source code, which varies depend-

ing on the local state,

• a new local state, and therefore, a new behavior which will govern the response to the

next event,

25

• and a return value, returned to the originator of the input event (i.e. caller of the event

handler function).

Therefore, a TinyVT thread constitutes a higher level of abstraction than just a set of event

handlers. Since a thread has local state, the thread has a history: the behavior of the thread

in response to an external event depends not only on the kind of the event received, but also

on previously received events.

The thread’s environment perceives the TinyVT thread as a set of event handlers (the

”program”), while the abstraction of a local, independent thread of execution (the ”execution

of the program”) is not visible from the outside. From the environment’s point of view, the

thread is a passive software artifact, the execution of which is driven by the environment.

That is, the TinyVT thread (i.e. event handlers corresponding to the thread) has the control

only when it is executing in response to an event from the environment (i.e. a function call to

one of the event handlers), and relinquishes control when the execution of the event handler

completes.

A TinyVT thread perceives its environment as a set of functions, which the thread may

invoke. If multiple TinyVT threads are defined in a program, they perceive each other as

part of the environment, that is, as a set of event handlers.

2.4.2 Assumptions

A TinyVT thread thread is running on top of a lightweight event-driven runtime. The

thread has the following assumptions on the runtime environment.

• Initialization service. The thread cannot accept events before it is initialized. The

runtime environment must guarantee to call the thread’s initialization function before

sending events to the thread (i.e. calling functions that are implemented as event

handlers inlined in the await statements of the thread). The name of the initialization

function is identical to the name of the thread, it has void return return type and an

empty argument list.

• Event dispatcher. The execution of a TinyVT thread is driven by its environment.

The thread has the control only if the environment passes it to the thread by sending

an event. From the environment’s point of view, the thread is a passive software entity:

it executes only in response to external events. The thread assumes all calls to the

event handlers it implements originate, directly or indirectly, from the event-driven

dispatcher, which is assumed to be part of the thread’s environment. The dispatcher

dispatches events in a serialized manner. The next event is not dispatched until the

26

currently executing handler returns. Asynchronous execution contexts, for example,

interrupt handlers, are not allowed to call into the threads. They may interact with the

dispatcher, placing events to the dispatcher’s event queue, which will be dispatched, in

a deferred manner, to the TinyVT thread that implements a corresponding handler.

• Deferred procedure call service. To implement the TinyVT specific yield and

ireturn statements (see later), the environment is required to provide a deferred proce-

dure call (DPC) service. The DPC service must provide an API to request the deferred

execution of a function, the handler of which is implemented by the thread. The DPC

service must guarantee that DPC request is serviced after the function call request-

ing the DPC returns to the requester. This will imply that the deferred event will

be sent to the thread after the event handler that requested the DPC completes. In

most event-driven systems, the event dispatcher provides a DPC service, to allow for

software generated events.

• Runtime error handler. A non-reentrance violation, or reception of an event on

which the thread does not explicitly block, but otherwise reacts to, causes a runtime

error. The environment assumed to provide a means to handle run-time errors, by

providing a function a call of which causes thread execution to halt. The C code

generated from a thread will invoke this halt function if a runtime error occurs.

2.5 Language constructs

TinyVT extends the C language with five additional keywords: thread, yield, await,

dreturn and ireturn. They are used to define a TinyVT thread, explicitly specify yield

points, perform blocking wait, and set the return values of the events that drive the thread’s

execution. This section defines the syntax of these language constructs by extending the

phrase structure grammar of the ANSI C language (as specified in Appendix A of the C99

standard [28], pages 409–416). Explanations of TinyVT’s language constructs are presented

with the corresponding grammar segments. Words in italics are nonterminals and non-literal

terminals, typewriter words and symbols are literal terminals. The opt subscript indicates

that the nonterminal it follows is optional. The production rules of the C grammar are not

repeated in this section, only those C production rules are described that are changed in

TinyVT.

27

2.5.1 Thread definition

The thread definition is used to define a piece of code with an independent, linear control

flow. The thread definition has a name and an implementation:

thread-definition:
’thread’ identifier compound-statement

Thread definition starts with the thread keyword. Since thread is a keyword, its use as

an identifier is not allowed in the translation unit.

The thread name is used by the TinyVT compiler to mangle the identifiers in the gen-

erated code (to include the thread name in the identifiers). The purpose of the mangling is

to allow multiple TinyVT threads coexist in one translation unit, thereby guaranteeing that

the identifiers used internally in the generated code are unique to each thread.

A thread definition implicitly adds a function definition to the global scope, with an

empty argument list and void return type. The name of the function is identical to the name

of the thread. Therefore, a translation unit must not have two thread definitions with the

same name.

This function is called by the execution environment to initialize the thread, that is,

bootstrap the thread’s execution by running it until the first await statement. If multiple

threads are defined in the same translation unit, their initialization order depends on the

semantics of the execution environment.

The compound statement holds the implementation code of the TinyVT thread, and

defines a scope under the global scope. Its syntax is identical to that of C compound

statements. Additional TinyVT specific statements (await, yield) can also be used within

the implementation of the thread and its nested compound statements (except inside inlined

event handlers, see later), while the use of return statement is not allowed. Outside thread

definitions, await and yield are not allowed.

TinyVT extends the syntax of C statement as follows:

28

statement:
await-statement
yield-statement
dreturn-statement
ireturn-statement
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

The defined thread is static, that is, it is implicitly instantiated. After the program is

loaded and initialized, the thread is blocked at the first await statement and ready to accept

events from its environment.

Non-static variables declared within the thread’s implementation have automatic storage

duration, similarly to local non-static variables in function definitions. Therefore, they are

(conceptually) deallocated after the thread’s execution leaves the scope in which the variable

is defined. The semantics of static variables within threads is identical to that of static

variables in C.

Thread definitions cannot be nested in C language constructs: they must be defined top

level in the translation unit. Therefore, TinyVT alters the C syntax of translation unit by

extending the external-declaration rule as follows:

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
thread-definition
function-definition
declaration

A thread definition implicitly adds a function definition for every event kind to the

translation unit’s global scope, for which an event handler exists inlined in any of the thread’s

await statements.

2.5.2 The yield statement

TinyVT provides the yield statement to allow the temporarily suspension of the thread’s

execution to allow other software artifacts (external to the thread), managed by the thread’s

event-driven scheduler, to execute. From the thread’s point of view, relinquising control

29

and then the return of control back to the thread is hidden. The yield command is opaque:

conceptually, yield is a blocking statement, that is, execution of yield completes only after

control is passed back to the thread.

The syntactic production rule of the yield statement is the following:

yield-statement:
’yield’

Since yield is a keyword, its use as an identifier is not allowed in the translation unit.

2.5.3 The await statement

The await statement allows temporarily relinquishing control and blocking on an external

event, on which thread execution resumes. The await statement has the following syntax:

await-statement:
’await’ ’(’ function-definition-listopt ’)’

Where the production rule for function-definition-list is:

function-defintion-list:
function-definition
function-definition-list

The use of await as an identifier is not allowed throughout the translation unit: it is a

reserved keyword. The function definitions inlined in the await statement (also referred to

as the inlined event handlers) specify

a. the kinds of events on which the the await statement should block, and

b. the code that should be executed in response to the event that resumes thread execu-

tion.

The name and the type signature of the inlined function definition specifies the event

kind, while the compound statement defines the the code with which thread execution re-

sumes when an event of the specified kind is received while blocking at the enclosing await

statement.

Multiple handlers of the same event kind may exist within a thread, but only in different

await statements. One await statement must not have two inlined function definitions with

the same name and signature. No inlined await handlers with the same name but different

signature are allowed within a thread: if multiple event handlers with the same name are

present (inlined in different await statements), they must have identical signatures.

The set of all event kinds specified in inlined event handlers within a thread define the

list of input events to the thread, i.e. the input events to which the thread reacts, either by

30

resuming execution or with a runtime error. (A runtime error occurs on reentrance violation,

or when the event is not handled at the current await statement.)

For every event kind to which the thread reacts, a function definition, with the corre-

sponding name and type signature, is created in the global scope. This has several conse-

quences:

• No two threads, within the same translation unit may react to the the same event kind.

• Function definitions with the same name must not exist in the global scope.

• If a function declaration (forward declaration) with the same name exists in the global

scope, the signature of the function definition that corresponds to the event kind must

be identical to the signature of the global function declaration.

From within the thread, invoking an event handler defined by the thread will always

result in runtime error (reentrance violation). However, the thread may take the address of

the event handler and use it, i.e. passing it as a function argument.

It is possible that the await statement contains no inlined event handlers. If no inlined

event handlers are given, the thread’s execution blocks permanently at the await statement,

that is, the thread will never resume and the execution of the await statement will never

complete.

The C return statement cannot be used within inlined event handlers, only the TinyVT

specific dreturn and ireturn statements are allowed. The use of one or the other is mandatory:

every exit point of the function’s body must be explicitly designated with ireturn or dreturn.

TinyVT does not allow for non-local jumps and targets of non-local jumps within inlined

await handlers, since this would violate the requirement that every exit points within the

inlined event handler must be explicitly marked with dreturn or ireturn. That is, goto

statements with target labels outside the event handler, continue and break statements that

correspond to iteration statements outside the await statement are not permitted. Also, a

goto or a switch statement that is outside the await statement cannot reference a label inside

an inlined event handler.

2.5.4 Immediate and deferred return

Conceptually, a TinyVT thread never returns. For this reason, the return statement is

not allowed within the thread’s implementation. However, the external events that drive the

thread’s execution, do return – although such a transfer of control flow outside the thread

is always encapsulated in a TinyVT statement (await or yield), which also contain entry

31

points through which control comes back to the thread. Event handlers inlined in await

statements must use either dreturn or ireturn to specify the handler’s return value. All exit

points of an inlined event handler must be marked with either dreturn or ireturn, even if the

function returns void. Their syntax is the following:

dreturn-statement:
’dreturn’ expression
’dreturn’

ireturn-statement:
’ireturn’ expression
’ireturn’

Both ireturn and dreturn are keywords; using them as identifiers is not allowed. They

can only be used within inlined event handlers within an await statement. An ireturn or

dreturn may only have an expression if the return type of the enclosing event handler is

non-void.

When a dreturn statement (which stands for deferred return) is executed, the enclosing

event handler’s return value is set to the value of the expression (if given), however, control is

not returned to the caller of the event immediately. Execution of the thread continues with

the statements following the enclosing await statement until the next yield point is reached.

Control is then returned to the originator of the event that triggered the execution step.

In contrast, ireturn means immediate return. If an expression is given, it is evaluated

and the return value of the event handler is set to the value of the expression, and control is

returned to the originator of the event (i.e. the caller of the event handler). The scheduler

will resume the execution of the thread starting with the first statement that follows the

await statement.

2.6 The TinyVT compiler

TinyVT provides language features to express a threading abstraction. Conceptually, a

TinyVT thread has its own independent thread of execution, which executes the statements

of the thread according to the thread’s local control flow, as defined by the order of statements

and the semantics of C control structures (if, for, while, etc.).

The execution of a TinyVT thread is driven by interaction with the thread’s environment.

In response to an external stimulus, execution of a blocked thread resumes at the last yield

point. The thread runs until control reaches a yield point, it blocks and returnins control

to the originator of the triggering stimulus. Yield points are hidden within statements,

shielding the thread from the fact that control leaves from, and later, returns to the thread.

The key enabler of the threading abstraction is the await statement, which is, conceptually,

32

a blocking statement, while, from the environment’s point of view, it is in fact a yield point

and an entry point at the same time.

Thread execution progresses in uninterrupted steps, executing a series of instructions

from one yield point to another. Between the execution of two consecutive steps, the thread

is blocked. An execution step is always triggered by an external event, which manifests itself

as a function call from the environment.

The TinyVT compiler is a source-to-source translator. By analyzing the source code of

a TinyVT thread, it generates blocks of C code that corresponds to execution steps, and

synthesizes the logic which sequences the execution of such blocks of code, dispatching them

based on input event kind and thread state. This way, the transformation decreases the level

of abstraction of the program code, by resolving virtual threads written using TinyVT to a

set of event handlers given in the C language.

The TinyVT compiler performs the the following tasks:

• Resolving syntactic shorthand notations. TinyVT threads can be rewritten with-

out using the yield, dreturn and ireturn statements, such that the only TinyVT

specific language construct the resulting code contains is the await statement. Subse-

quent compiler tasks will be simpler to implement after this syntactic normalization.

• Allocation of shared variables. TinyVT allows for nested scopes with automatic

local variables. Since, however, the stack is unrolled every time the thread yields,

automatic variables declared in a compound statement that contains a yield point

cannot be allocated on the stack. To emulate the semantics of ANSI C’s automatic

storage duration, the TinyVT compiler moves the declarations of such variables to the

global scope. Based on the observation that variables of non-overlapping scopes are

never alive at the same time, they can be allocated to the same memory region. The

TinyVT compiler achieves this by generating a type of nested structs and unions

that encapsulates all such automatic declarations, and allocates a variable of this type

in the global scope. References to the automatic variables are replaced by references

to the corresponding members of the generated data structure.

• Construction of local control flow graph. To facilitate program analysis and code

generation, a control flow graph is generated which captures local control flow within

a thread, but hides the fact that control flow may temporarily leave the thread, by

enclosing the points where the control flow leaves the thread and the points where it

returns to the thread in await statements. The local control flow graph (LCFG) is built

such that every await statement of a thread becomes a node of the graph, allowing for

easy querying of yield points and input event kinds. Each non-await node of the graph

33

contains a sequence of syntactically correct C statements, and an optional conditional

expression to support branching. Since yield points may appear nested within C control

structures such as loops (for, while, etc.) or selection statements (e.g. if statements),

the block of code between yield points (i.e. between await statements) might not be a

syntactically correct series of C statements. For example, it may contain do but no the

ending while. The compiler, therefore, preforms code transformation on the TinyVT

source to generate multiple LCFG nodes from such blocks of code by rewriting the

fractured C control structures to syntactically correct C statements. Finally, a pruning

pass ensures that no unreachable blocks exist in the LCFG to avoid unnecessary work

in further compiler passes.

• Identification of yield points. TinyVT requires that yield points be explicitly

specified in TinyVT threads, and provides language constructs such as await, yield

and ireturn to achieve this. The latter two are rewritten using await in the syntactic

normalization pass, and every await statement is converted to a node in the local

control flow graph. Identifying yield points, thus, falls back to locating await nodes in

the LCFG.

• Enumeration of input events. When an input event occurs, execution of the thread

resumes starting with the first instruction of the corresponding event handler inlined

in the await statement at which the is thread blocking. Await statements may contain

more than one event handlers. When an event occurs, control will be passed to the

handler the name and signature of which matches those of the input event. Therefore,

to enumerate all possible input events of a thread, the compiler must inspect all event

handlers in all await statements. This is achieved by visiting all await nodes of the

LCFG and building the set of function signatures of inlined event handlers encountered

within the await statements.

• Generation of C code implementing primitive blocks. When an event occurs,

the execution of the thread progresses uninterrupted from one yield point to the next

one. The corresponding C code is generated by dumping the C code inside non-await

nodes of the call flow graph, which will be dispatched from the generated event handlers

(see later).

• Generation of code that maintains thread state. TinyVT threads are not always

input enabled. First, TinyVT threads are not reentrant, that is, no inputs are accepted

while the thread is executing. Inputs are only allowed after the execution has reached

a yield point and the thread is blocked. Second, even when the thread is blocked, it

34

accepts only those events that are explicitly specified in the await statement corre-

sponding to the current yield point. The compiler has to keep track of thread state

in order to protect against the violation of the above input rules. To protect against

reentrance violations, it generates code that sets a flag when the thread resumes and

clears the flag when the thread yields. When an event occurs that finds the flag set,

a runtime error is raised. Also, the position of the last yield point has to be stored as

part of the thread state, such that when the thread resumes, the control can be passed

to the inlined event handler that matches the input event. If the event is not accepted

at the current yield point, a runtime error occurs.

• Synthesis of local control logic. The compiler synthesizes the logic that, on an

external event, inspects the thread state and passes control to the event handler with

the same event kind, that is inlined in the await statement at which the thread last

yielded. Before the next yielding, the generated code writes the position of the new

yield point to the thread state and returns control to the caller of the triggering event.

2.6.1 Pattern based code transformation

To simplify further code analysis and translation, the compiler applies a series of pattern

based code transformation steps after parsing the TinyVT source.

First of all, the compiler attaches an await statement with an empty body (i.e. with no

event handlers inlined) after the last statement in the source code of the thread. This assures

that if control reaches the last statement of the thread, the thread blocks permanently. If

this implied trailing await statement later turns out to be unreachable, no corresponding

code will be emitted by the compiler.

Then, the compiler removes syntactic sugar: statements, such as yield and ireturn,

which are shorthand notations for alternative, more verbose, but semantically equivalent

constructs. Then, the compiler carries out a pattern-based code transformation partly re-

solving dreturn statements to C code.

Although, for efficiency, these pattern based transformations are applied to the abstract

syntax tree of the TinyVT thread, they are simple enough to be implemented with text

processing tools, using, for instance, regular expressions. Therefore, in order to increase the

readability of the description of the transformation passes, the illustrative examples will be

given in a textual form.

Identifiers in declarators that are generated by the TinyVT compiler and that are used

internally within the generated code are prefixed with double underscore, and are mangled

to include the name of the thread, as well. This mangling is required to prevent such

35

declarations, generated from multiple threads within the same translation unit, from colliding

with each other in the global namespace. This mangling, however, is omitted from the source

code examples throughout this section, in order to help comprehension.

Resolving yield and ireturn statements

The first pass of the TinyVT compiler resolves syntactic shorthand notations. This pass

rewrites all ireturn and yield statements, leaving only two TinyVT specific statements in

the thread code: await and dreturn. Resolving yield and ireturn statements requires

only pattern based source translation, where the structure of the program remains the same,

and the input and output of the transformation are semantically equivalent.

Resolving ireturn statements

According to the semantics of the TinyVT language, the ireturn statement returns

control to the caller of the enclosing event handler without executing any statements that

follow the enclosing await statement. After yielding, the thread will be resumed by a deferred

function call from the environment, starting the computation step with the first statement

after the await statement that contains the ireturn. Hence, the ireturn statement is

semantically equivalent to a dreturn, plus a yield statement immediately following the

enclosing await statement. If dreturn and ireturn statements are mixed within an await

statement, we must remember the type of return statement through which the inlined event

handler was exited. The yield statement only needs to be executed if the event handler

exited through an ireturn statement.

To demonstrate the transformation that resolves and ireturn statement replacing it

with dreturn, yield and pieces of C code, consider the example in Fig. 2. This code

is transformed to a semantically equivalent form by changing ireturn to dreturn, and

inserting a yield statement after the await block.

1await(void myEvent () {

2/* block of arbitrary C code

3containing no return statement */

4ireturn;

5});

1await(void myEvent () {

2/* block of arbitrary C code

3containing no return statement */

4dreturn;

5});

6yield ();

Figure 2: The code on the left, containing an ireturn statement, and its semantically

equivalent counterpart, shown on the right.

If, however, both ireturn and dreturn statements are used within an await block, the

yield inserted after the await block has to be executed conditionally, only if the event

36

handler exited through an ireturn. To remember the kind of return statement used, the

translated code uses a flag, which is cleared when the event handler starts executing, and

set only if an ireturn statement is used.

In the example in Fig. 3, both ireturn and dreturn statements are enclosed within the

same await statement. Notice that the flag selected by the YIELD AFTER AWAIT MASK mask

is cleared in the first statement of the event handler, and it is set in the code corresponding

to the ireturn statement. The yield statement is executed only if the flag is set.

1await(void myEvent () {

2/* block 1 of arbitrary C code

3containing no return statement */

4ireturn;

5/* block 2 of arbitrary C code

6containing no return statement */

7dreturn;

8});

1await(void myEvent () {

2__clear_flag(__yield_after_await);

3/* block 1 of arbitrary C code

4containing no return statement */

5__set_flag(__YIELD_AFTER_AWAIT_MASK);

6dreturn;

7/* block 2 of arbitrary C code

8containing no return statement */

9dreturn;

10});

11if(__is_set_flag(__YIELD_AFTER_AWAIT_MASK))

12yield ();

Figure 3: The code on the left shows an await statement containing both ireturn and dreturn

statements. The code on the right shows its semantic equivalent without ireturn statements.

The TinyVT compiler generates code such that YIELD AFTER AWAIT MASK designates

one bit of the thread state. However, it can be easily implemented also as a variable on the

stack, since its value is only used within one execution step.

The function definitions of clear flag, set flag and is set flag, as well as the

value of the YIELD AFTER AWAIT MASK constant, are generated by the compiler, and are

discussed later in this section.

Resolving yield statements

The yield statement is syntactic sugar. It is equivalent to calling an external function

requesting a deferred event, followed by an await statement that blocks the thread on that

event. Replacing the yield statement with a function call and an await statement will

result in semantically equivalent code.

The code generated from yield statements is specific to the deferred procedure call

(DPC) service the environment offers. The code, which the yield statement is translated

to, is given as part of the configuration of the TinyVT compiler.

Below are two examples of how a yield statement is resolved. The first example as-

sumes that a DPC service provides the dpc request function, with a function pointer as

a parameter. When thread execution reaches the await statement, the thread yields. The

37

DPC service guarantees that it will dispatch the callback function, to which the function

pointer points, in a deferred manner, which will resume thread execution.

1dpc_request (& deferred_proc)

2await(

3void deferred_proc () { dreturn; }

4);

Figure 4: Resolving the yield statement (C)

The second example uses the TinyOS [44] scheduler as the DPC service, and is written in

the nesC [32] language, which is a superset of C. The post statement requests the deferred

execution of the deferred proc() task, the function declaration of which is prefixed with

the task specifier.

1post deferred_proc ();

2await(

3task void deferred_proc () { dreturn; }

4);

Figure 5: Resolving the yield statement (nesC/TinyOS)

Handling return values

Since TinyVT threads never exit (conceptually, at any point in time, a thread is either

executing or blocking on an event), the use of the C return statement is not allowed within

a thread. However, it is often required that results of a computation be returned to the

originator of an event that triggered the current execution step. This can be achieved using

the dreturn and ireturn statements. Every event handler must have a TinyVT return

statement (dreturn or ireturn), even those returning void, in order to explicitly specify

the type of return the programmer intends to use. Neither dreturn, nor ireturn is an

implied default.

Since ireturns are reduced to dreturns in the previous compiler pass, it is sufficient to

discuss the resolving of dreturns below.

The type of the returned data is specific to the triggering event: the return type is part

of the function definition of the event handler which is inlined in the the await statement.

To guarantee that the type of the returned data always matches the return type of the

event handler, a dreturn (or an ireturn) statement is allowed only within event handlers,

embedded in an await statement. TinyVT disallows dreturn (and ireturn) statements

outside inlined event handlers, because the execution of such code may be triggered by

multiple events, potentially requiring different return types.

38

It is important to note that the dreturn statement does not constitute a yield point.

When control reaches a dreturn statement, control is not returned to the originator of the

event that triggered the current execution step. Instead, the return value (if dreturn is

followed by an expression) is stored in a temporary variable, and control is passed to the

first statement that follows the enclosing await statement. It is the temporary variable that

is returned when the execution reaches a yield point.

Generating the code that achieves this functionality is accomplished in two distinct steps.

First, the dreturn statement is replaced by saving the return value (for non-void event

handlers) to the rval temporary variable (the declaration of which is generated by a

subsequent code generation step), and by transferring control after the last statement of the

event handler with a goto statement. The second step, which generates the code that declares

and returns the temporary variable, is discussed later in the discussion of local control flow

graph based transformations.

The following example in Fig. 6 illustrates the pattern based step of resolving dreturn

statements.

1await(

2char myEvent1 () {

3/* block 1 of arbitrary C code

4containing no return statement */

5dreturn ’a’;

6/* block 2 of arbitrary C code

7containing no return statement */

8dreturn toupper(’b’);

9}

10int myEvent2 () {

11/* block 3 of arbitrary C code

12containing no return statement */

13dreturn 42;

14}

15);

1await(

2char myEvent1 () {

3/* block 1 of arbitrary C code

4containing no return statement */

5__rval = ’a’;

6goto __exit_myEvent1;

7/* block 2 of arbitrary C code

8containing no return statement */

9__rval = toupper(’b’);

10goto __exit_myEvent1;

11__exit_myEvent1:

12}

13int myEvent2 () {

14/* block 3 of arbitrary C code

15containing no return statement */

16__rval = 42;

17goto __exit_myEvent2;

18__exit_myEvent2:

19}

20);

Figure 6: Partial resolution of dreturn statements. The await statement on the left has two

event handlers inlined, the first one returning a char, the second one and int. The result

of the transformation is shown on the right.

Notice that, in contrast with the translation rules that resolve syntactic sugar, in this

translation step the semantic equivalence of input and output source code is not retained,

since this step accomplishes only a subtask of resolving dreturn statements. The resolution

of dreturns will be completed in a subsequent step.

39

Deterministic subexpression evaluation order

For many arithmetic expressions, as well as for function invocation expressions, the spec-

ification of the semantics of the C language does not prescribe a deterministic ordering of

subexpression evaluation. As a consequence of this, the subexpressions of, for instance, the

statement i = f() + g(); can be evaluated in any order, varying from compiler to compiler,

from platform to platform or even from run to run of the same binary. TinyVT, however,

requires that the order of function calls made by the thread always be deterministic, there-

fore, expressions that include function call subexpressions with undefined evaluation order

are not allowed in the generated code.

Currently, the compiler issues a warning message if such expressions are encountered,

and leaves it to the programmer to modify the sources.

2.6.2 Allocation of automatic variables

The allocation of some variables within TinyVT threads, which have automatic storage

duration semantics, cannot be handled by the stack-based automatic variable allocation

scheme of the C compiler.

As the stack is unrolled every time the thread yields, automatic variables declared in a

compound statement that contains a yield point cannot be allocated on the stack, because

they would not be accessible in the code following the yield point. To tackle this issue,

TinyVT provides a abstraction that allows for automatic local variables in threads with

semantics identical to that of ANSI C’s automatic storage duration irrespective of potential

yield points in the enclosing compound statement.

The TinyVT compiler’s automatic variable allocator algorithm consists of three stages.

First, a scope tree is built, which reveals which automatic variables, if any, have to be

allocated by the TinyVT compiler, and which of those are never active at the same time,

and hence can be allocated to the same memory area. Then, the source code of a global

hierarchical data structure, consisting of nested structs and unions is generated, which

encapsulates the declarations of automatic variables as nested members. Finally, declarations

of compiler-managed automatic variables are removed from the AST, and all references

to them are rewritten such that they refer to the corresponding members of the global

hierarchical data structure, which is allocated in static memory.

Building the scope tree

In order to compute which variables may share the same memory region, the compiler

computes the scope tree of the thread. Nodes of the scope tree represent either compound

40

statements within the thread that contain at least one await statement, or variable decla-

rations that are directly contained in such a compound statement. It is not necessary that

the await statement be a direct child of the compound statement in the AST: any depth of

nesting is sufficient. However, for every node in the scope tree that corresponds to a variable

declaration, the compound statement that is the (direct) parent of the variable in the AST

must be a node in the scope tree.

Nodes of the scope tree that correspond to compound statements are referred to as

scope nodes, while those that represent variable declarations are called declaration nodes.

Declaration nodes are always leaf nodes in the scope tree. A scope node is typically an

internal node, except for the rare case when the corresponding compound statement does

not contain any variable declarations.

The TinyVT compiler builds the scope tree from the abstract syntax tree (AST) which

is the result of the pattern based transformation steps. Since the C language has constructs

with nested statements (e.g. the statements specifying the branches of an if-else construct,

or statements that constitute a compound statement between the ’{’ and ’}’ symbols), the

AST is an inherently recursive data structure. Therefore, the parser implements the building

of the scope tree with a set of recursive functions that visit the nodes of the AST recursively.

The prototype TinyVT compiler, including the scope tree builder, is written in Java. The

scope tree building algorithm is explained in this section with excerpts (with simplifications)

from the compiler source.

The scope tree is represented as a set of nodes of type Node. Each node object has

a unique identifier (a positive integer). Node is an abstract class that has two subclasses:

ScopeNode and DeclarationNode. Scope nodes contain a list of references to their direct

children: the set of children of type DeclrationNode, or ScopeNode, can be accessed with

the getChildDeclarationNodes, or getChildScopeNodes methods, respectively. Declara-

tion nodes contain a reference to the AST of the variable declaration, which will allow for

extracting the variable declaration as a string (getDeclarationAsString method), as well

as the identifier of the variable declaration (getIdentifier method). The scope tree has a

dedicated root node which is used as a handle to the scope tree of a thread.

The input of the scope tree building algorithm is the abstract syntax tree. To avoid

lengthy description of abstract production rules that define the structure of the AST, the al-

gorithms below use helper functions to extract information from the AST. The corresponding

function names are self explanatory: the AST getFirstDeclaration(AST ast) function, for

instance, returns the subtree corresponding to the first declaration of the compound state-

ment the AST of which is given as a parameter. The scope tree building algorithm is

41

bootstrapped by invoking the visitCompoundStatement function with the AST of the body

of the thread definition as a parameter. It returns the root of the thread’s scope tree.

First, the visitCompoundStatement method creates a new scope tree node for the com-

pound statement. It iterates through all the declarations, generates the corresponding dec-

laration nodes, and adds them to the scope node’s list of children.

This is followed by an iteration over all statements that are directly contained within the

compound statement. These statements can be compound statements, or other C control

structures that contain nested compound statements.

The getEnclosedCompoundStatements helper function, called with an AST node, re-

turns the list of such indirectly contained compound statements, but not the compound

statements nested within them. If called with the AST of a compound statement as the pa-

rameter, the parameter is returned. Since the local automatic variables can be allocated on

the stack if the parent compound statement contains no yield points, compound statements

without nested awaits do not have to be visited. The hasAwait helper function checks

if the compound statement, the AST of which is given as a parameter, contains a nested

await statement. For enclosed compound statements containing a nested await statement,

visitCompoundStatement is called recursively. The returned node is added to the list of

children of the current scope node.

1Node visitCompoundStatement(AST compoundStatement) {

2ScopeNode scopeNode = new ScopeNode ();

3

4AST currentDeclaration = getFirstDeclaration(compoundStatement);

5do {

6scopeNode.addChild(new DeclarationNode(currentDeclaration));

7} while ((currentDeclaration =

8getNextDeclaration(currentDeclaration)) != null);

9

10AST currentStatement = getFirstStatement(compoundStatement);

11do {

12for(Iterator it = currentStatement.getEnclosedCompoundStatements ();

13it.hasNext ();) {

14AST enclosedCompoundStatement = (AST) i.next ();

15if(hasAwait(enclosedCompoundStatement))

16scopeNode.addChild(

17visitCompoundStatement(enclosedCompoundStatement));

18}

19} while ((currentStatement =

20getNextStatement(currentStatement)) != null)

21

22return scopeNode;

23}

Figure 7: Building the scope tree.

42

Code generation

Variables in leaf nodes of the scope tree must be allocated to static memory. A straight-

forward way of doing this would be changing their declarations to static, or moving them to

the global scope (with appropriate rewriting of names to avoid name collisions). However,

it is easy to recognize that some of these local automatic variables are never active con-

currently, because they are declared in non-overlapping scopes within the TinyVT thread.

Allocating them to separate memory areas would be suboptimal, which is a critical issue,

since potential target platforms are assumed to have only a few kilobytes of RAM.

The TinyVT compiler avoids this by allowing such variables to share static memory, by

allocating them in a global allocation structure. This is achieved by wrapping declarations

within a scope into a struct, and structs corresponding to non-overlapping child scopes

into an union. This, of course, can be done recursively, by allowing the unions representing

the subscopes of a scope be members of the struct that corresponds to the parent scope.

Please refer to Figure 8 for an example on how the generated allocation structure relates to

the scopes containing compiler-managed automatic variables in the TinyVT source code.

1{ /* scope1 */

2int a;

3

4{ /* scope2 */

5char b;

6void* c;

7

8{ /* scope3 */

9char d[10];

10} /* end scope3 */

11{ /* scope4 */

12double e;

13} /* end scope4 */

14

15} /* end scope2 */

16{ /* scope5 */

17int (*f)();

18} /* end scope5 */

19

20} /* end scope1 */

1struct {

2int a;

3union {

4struct {

5char b;

6void* c;

7union {

8struct {

9char d[10];

10} __scope3;

11struct {

12double e;

13} __scope4;

14} subscopes;

15} __scope2;

16struct {

17int (*f)();

18} __scope5;

19} subscope;

20} __scope1;

Figure 8: The code on the left represents the conceptual scope structure of a TinyVT thread

with compiler-managed automatic variables. The code on the right is the corresponding

compiler-generated allocation structure. Notice the structural resemblance.

The allocation structure is generated by the following recursive function called with the

root of a thread’s scope tree as a parameter. For every scope node, a struct variable, with

the name scopeX is generated, where X is to be substituted with the unique identifier of

the scope node. Such a struct has a member named subscopes, which is declared as a

union. Furthermore, the struct contains all variable declarations that are direct children of

43

the scope node. The subscopes union contains the structs generated from the child scope

nodes recursively, by calling the printAllocationStructure method with the child scope

nodes as a parameter.

1void printAllocationStructure(ScopeNode n) {

2out.println("struct {");

3

4for (Iterator it = n.getChildDeclarationNodes (). iterator ();

5it.hasNext ();) {

6DeclarationNode dn = (DeclarationNode) it.next ();

7out.println(n.getDeclarationAsString ()) + ";");

8}

9

10out.println("union {");

11for (Iterator it = n.getChildScopeNodes (). iterator ();

12it.hasNext ();) {

13printAllocationStructure((ScopeNode) it.next());

14}

15out.println("} subscopes;");

16

17out.println("} __scope" + n.getUniqueID () + ";");

18}

Figure 9: Generation of the allocation data structure.

Code transformation

The TinyVT compiler traverses the scope tree once more, and when visiting a declaration

node, it removes the corresponding declaration from the AST, and replaces all references to

the variable with the reference to the corresponding member of the generated data structure.

Initially, the visitNode method is called with the root of the scope tree and an empty

string given as parameters. First, it attaches scopeX to the path string, X being the unique

identifier of the scope node, which represents the prefix of the path to the declarations of the

scope in the generated data structure. The path is a series of enclosing struct and union

identifiers, from the outside inwards, separated with the ’.’ literal.

Then, direct subscopes are traversed iteratively, recursively calling visitNode with the

node of the subscope and the path concatenated with ”.subscopes.” as a parameter.1

Finally, for every declaration node that is a direct child of the scope node, the corre-

sponding variable declaration is removed from the AST, and references to the variable are

changed to reflect the corresponding member of the generated data structure. That is, an

identifier that refers to the declared variable, is replaced with the identifier prefixed with

the path to the corresponding member within the global allocation structure. For instance,

considering the example in Figure 8, references to variable e in scope4 will be replaced with

e prepended by its path string:

1subscopes is the identifier of the union that holds the structs that correspond to the subscopes.

44

scope1.subscope. scope2.subscope. scope4.e

That is, an expression statement, such as e = 1.0; in scope 4 would be rewritten as:

scope1.subscope. scope2.subscope. scope4.e = 1.0;

The source code of the visitNode function is the following.

1void visitNode(ScopeNode n, String path) {

2path = path + "__scope" + n.getUniqueID ();

3

4for(Iterator it = n.getChildScopeNodes (). iterator ();

5it.hasNext ();) {

6visitNode((ScopeNode) it.next(), path + ".subscopes.");

7}

8

9for(Iterator it = n.getChildDeclarationNodes (). iterator ();

10it.hasNext ();) {

11DeclarationNode dn = (DeclarationNode) it.next ();

12removeFromAST(dn);

13rewriteReferences(dn, path + "." + dn.getIdentifier ());

14}

15}

Figure 10: Removing variable declarations and rewriting references to

point to the generated allocation structure.

Limitations

The prototype TinyVT compiler has several limitations related to compiler-managed

automatic variable allocation. The most significant ones are the following:

• First, the algorithm explained above assumes that declarations of automatic variables

have no initializers. (A static variable, though, may have an initializer.)

• Second, the types used to declare the automatic variables must be available in the

global scope. For example, if an automatic variable is declared as a struct, and the

struct is defined elsewhere within the thread (preceding the variable declaration), the

declaration cannot be moved to the global scope.

• Types used in automatic variable declarations cannot refer to types that are not avail-

able in the global scope. For instance, the declarations

double a; int b[sizeof(a)];

cannot be refactored by the compiler, since, after moving the declarations to the global

scope, references to variables within the declarations are not rewritten.

Nevertheless, the above scenarios can easily be avoided by manual code refactoring in

most cases. For example, stripping initializers from declarators, by turning them into assign-

ment statements will solve the first issue, while manually moving definitions of tagged types

45

(struct, union) to the global scope will solves the second issue. Many, if not all of such

refactoring steps can be implemented programmatically. Such transformations, however, are

beyond the scope of this work.

2.6.3 The local control flow graph

To enable further code analysis and transformation, the compiler builds the local control

flow graph (LCFG) of the thread. Each node in the LCFG represents either a single await

statement or a set of consecutive statements without any await statements, jumps to other

nodes or target points of jumps from other nodes. A block of code belonging to a node

has exactly one entry point and only one exit. The LCFG is a directed graph: a directed

edge between nodes represents a jump in the control flow. There is a dedicated entry block

representing the piece of code with which the execution of the thread starts.

In contrast with the typical definition of control flow graphs, the LCFG generated by

the TinyVT compiler does not forbid local jumps within the code block of a node, which

allows for treating C control structures (if, for, while, etc.) as ordinary statements if they

contain no nested await statements.

The LCFG only captures local control flow: it does not describe the interaction with

the thread’s environment. Although an await statement defines a yield point at which

control leaves the thread, as well as an entry point at which thread execution resumes, the

control flow graph treats all statements, including await statements, opaquely, hiding the

fact that control flow is not retained by the thread while the await statement is executing.

The same holds for function invocation expressions. When the thread calls an external

function, it temporarily relinquishes control to the implementation of the function, which,

on completion, returns to the thread. Function calls are also opaque: they are handled

uniformly with other types of expressions.

Building the LCFG

The TinyVT compiler builds the control flow graph from the abstract syntax tree (AST)

which is the output of the variable allocation step. The LCFG is built using a set of recursive

functions that visit the nodes of the AST recursively.

The LCFG building algorithm is explained in this section with excerpts (with simplifica-

tions) from the compiler source.

The input of the LCFG building algorithm is the abstract syntax tree. Similarly to the

scope tree building algorithm, we rely on helper functions to extract information from the

AST. The corresponding function names are self explanatory:

46

• boolean isAwaitStatement(AST ast) returns true only if the subtree given as a pa-

rameter corresponds to an await statement, or,

• AST getConditionExpression(AST ast) returns the subtree corresponding to the

condition expression of the if, for, while, etc. statement the AST of which is given

as a parameter.

The local control flow graph is represented as a set of nodes of type Node. Each node

object has a unique identifier (a positive integer), a list of statements, an optional conditional

expression, and reference to a node (or two nodes) that correspond to edges in the control

flow graph. A node with a conditional expression has two references to next nodes: one that

specifies the next node that is executed if the expression evaluates to true, and the other for

the false branch. Nodes without conditional expressions have only one next node reference.

The call graph has a dedicated entry node which is used as a handle to the graph.

The buildLCFG method, described below, bootstraps the control flow graph building

process. Its only parameter is the AST of the thread definition, and it returns the entry

node of the thread’s LCFG. The buildLCFG method is implemented as follows. First, it

creates an empty node which going to be the entry node of the LCFG with its unique

identifier explicitly set to 1, which will eventually be returned. Then, it calls the resolve

method with the AST of the thread’s implementation and the entry node as parameters,

which will build the rest of the graph and link it to the entry node.

1Node buildLCFG(AST thread) {

2Node entryNode = new Node (1);

3resolve(getCompoundStatement(thread), entryNode);

4return entryNode;

5}

Figure 11: The main method of the Local Control Flow Graph builder.

The generic resolve method delegates the graph building task to specialized resolve

methods (resolveAwait, resolveIf, resolveFor, etc.) based on the kind of statement

the AST subtree represents, given as the first parameter. The second parameter specifies

the current node of the LCFG to which the code corresponding to the AST subtree will be

appended, possibly linking new nodes to it. The resolve method returns the node to which

the next siblings of the AST should be linked, i.e. where graph building from the subsequent

lines of source code should continue. All specialized resolve methods have identical type

signatures, and the semantics of the parameters and return value are the same as with the

generic resolve method.

47

1Node resolve(AST statement , Node entryNode) {

2if(isAwaitStatement(statement))

3return resolveAwait(statement , entryNode);

4if(isIfStatement(statement))

5return resolveIf(statement , entryNode);

6if(isForStatement(statement))

7return resolveFor(statement , entryNode);

8/* ... and so on , for other statement types */

9

10/* finally , default to an expression statement */

11return resolveStatement(statement , entryNode);

12}

Figure 12: The generic resolve method of the LCFG builder.

If the type of the AST is such that it does not require special handling (e.g. it represents

a C statement with no nested statements), the graph building task is delegated to the

resolveStatement method. It simply adds the statement to the node given as a parameter,

and returns the same node.

1Node resolveStatement(AST statement , Node entryNode) {

2entryNode.add(statement);

3return entryNode;

4}

Figure 13: Resolving statements.

The LCFG is constructed such that for every await statements a new node is created.

Therefore, the resolveAwait method creates a new node (awaitNode), adds the await

statement to it, and links to it from the entry node. Since awaitNode must not contain

any other statements, the method creates a new node (exitNode) which is linked from the

await node and then returned. This way, subsequently called resolve methods cannot add

C statements to the await node, only to the new node that is returned.

1Node resolveAwait(AST awaitStatement , Node entryNode) {

2Node awaitNode = new Node ();

3entryNode.setNext(awaitNode);

4awaitNode.add(awaitStatement);

5Node exitNode = new Node ();

6awaitNode.setNext(exitNode);

7return exitNode;

8}

Figure 14: Resolving the await statement.

Below I describe the resolve methods for a representative set of C language constructs:

compound statement, if statement, for statement (with break and continue) and goto

48

statement (with target labeled statements). The methods that resolve other C statement

kinds are built using similar techniques, and their description is omitted.

The following method describes how nodes are built from compound statements. If the

compound statement contains no await statements, no jumps to the outside and no target

points of jumps from the outside, it is handled as a simple statement, delegating the graph

building task to the resolveStatement method. Otherwise, the compound statement must

be traversed: the resolveCompoundStatement method walks through the direct children of

the compound statement’s AST, which represent the directly nested statements. The nodes

of the LCFG are build recursively by delegating the graph building task of the individual

statements to the generic resolve method. Finally, the resolveCompoundStatement will

return the node that resulted from resolving the last nested statement of the compound

statement.

1Node resolveCompoundStatement(AST compoundStatement , Node entryNode) {

2if(! hasAwaitOrNonLocalJump(compoundStatement)) {

3return resolveStatement(compoundStatement , entryNode);

4} else {

5Node currentNode = entryNode;

6AST currentStatement = getFirstStatement(compoundStatement);

7do {

8currentNode = return resolve(statement , entryNode);

9} while

10((currentStatement = getNextStatement(currentStatement)) != null)

11return currentNode;

12}

13}

Figure 15: Resolving compound statements.

As we saw it with the compound statement, an if-else statement can be handled as a

simple statement if it has no nested awaits, jumps to the outside or target points of jumps

from the outside. Otherwise, to resolve an if-else statement, the resolveIf method builds

a subgraph with branching, links a common exit node to both branches where they join, and

returns the exit node.

First, two new nodes are created for the entry points of the true and false branches. The

conditional expression is added to the entry node of the if-else statement, which links to

the entry node of the true branch if the condition evaluates to true, and to the node of

the false branch otherwise. Both branches are built recursively by calling resolve, which

returns exit nodes of the respective branches. The exit nodes of the branches link to a newly

created common exit node, with which the resolveIf method eventually returns.

49

1Node resolveIf(AST ifStatement , Node entryNode) {

2if(! hasAwaitOrNonLocalJump(ifStatement)) {

3return resolveStatement(ifStatement , entryNode);

4} else {

5Node trueBranchEntryNode = new Node ();

6Node falseBranchEntryNode = new Node ();

7Node exitNode = new Node ();

8entryNode.add(getConditionExpression(ifStatement));

9entryNode.setNextOnTrue(trueBranchEntryNode);

10Node trueBranchExitNode = resolve(

11getTrueBranchStatement(ifStatement),

12trueBranchEntryNode);

13trueBranchExitNode.setNext(exitNode);

14if(getFalseBranchStatement(ifStatement) == null) {

15entryNode.setNextOnFalse(exitNode);

16} else {

17entryNode.setNextOnFalse(falseBranchEntryNode);

18Node falseBranchExitNode = resolve(

19getFalseBranchStatement(ifStatement),

20falseBranchEntryNode);

21falseBranchExitNode.setNext(exitNode);

22}

23return exitNode;

24}

25}

Figure 16: Resolving the if-else construct.

It is possible that the else branch of the if statement is missing. In that case, getFalse-

BranchStatement will return null, and the the exit node will be linked directly from the

entry node if the condition evaluates to false.

Methods building the LCFG subgraph for iteration statements have a structure similar

to that of resolveIf. There are two additional statements that may be nested in iterations

and need special treatment: continue and break. The LCFG builder must keep track of

the target nodes of potential continue and break statements, and link to them if such

statements are encountered.

Continue and break statements must be the last statements in graph nodes, since they

constitute the single allowed exit point of the code within the node. Therefore, the enclosing

statement (compound statement, if-else statement, etc.) of break or continue that is

nested in the iteration statement being resolved must be broken up into its constituent

statements, even if the enclosing statement does not contain any await statements.

The code in Fig. 18 illustrates the behavior of the resolveFor method. The logic of

the resolve methods for other iteration statements (while, do-while) are very similar, and

hence their code is omitted.

Two member variables of the LCFG builder class are declared to hold the target nodes

that should be linked to on continue and on break. Initially they are set to null, as

there exists no enclosing iteration statement. If an iteration statement is being traversed,

50

continueNode will refer to the condition testing node, while breakNode to the exit node of

the iteration.

1Node continueNode = null;

2Node breakNode = null;

Figure 17: Tracking targets of break and continue.

As before, first we check if the for statement needs to be broken up or it can be added

to the current node as an opaque statement. If it needs to be broken up, the initialization

statement of the for loop is added to the current node, and the following new graph nodes

are created: a loop header node containing the loop condition, an entry node for the loop

body, and an exit node. The loop header node links to the loop body entry node if the loop

condition evaluates to true, and it links to the exit node on false. The exit node of the loop

body is computed by calling resolve on the statement that constitutes the body of the loop.

The exit node of the loop body links back to the loop header node.

While the LCFG builder resolves the body of the loop, it might encounter continue or

break statements. Before calling resolve, the continueNode and breakNode variables are

set to the loop header node and to the exit node, respectively (saving the current values

that may belong to an enclosing iteration statement to temporary variables). Later, when

a continue or break is encountered, they will link to the continueNode or breakNode,

respectively. (After the resolve method returns, the saved values of continueNode and

breakNode are restored.)

Continue statements are resolved as follows. The entry node is linked to the node

the continueNode variable contains, which was previously set by the resolve method that

processed the enclosing iteration statement. Since statements that follow the continue

statement might not be dead code (e.g. labeled statements that are jump targets), the

resolveContinue method creates an empty exit node and returns it. The exit node is not

linked from the continue node, though.

51

1Node resolveFor(AST forStatement , Node entryNode) {

2if(! hasAwaitOrNonLocalJump(forStatement)) {

3return resolveStatement(forStatement , entryNode);

4} else {

5entryNode.add(getInitStatement(forStatement));

6Node loopHeaderNode = new Node ();

7entryNode.setNext(loopHeaderNode);

8loopHeaderNode.add(getConditionExpression(forStatement));

9Node exitNode = new Node ();

10loopHeaderNode.setNextOnFalse(exitNode);

11Node loopBodyEntryNode = new Node ();

12loopHeaderNode.setNextOnTrue(loopBodyEntryNode);

13Node savedContinueNode = continueNode;

14Node savedBreakNode = breakNode;

15continueNode = loopHeaderNode;

16breakNode = exitNode;

17Node loopBodyExitNode = resolve(getLoopBodyStatement(forStatement),

18loopBodyEntryNode);

19continueNode = savedContinueNode

20loopBodyExitNode.add(getUpdateStatement(forStatement));

21loopBodyExitNode.setNext(loopHeaderNode);

22return exitNode;

23}

24}

Figure 18: Resolving for loops.

1Node resolveContinue(AST continueStatement , Node entryNode) {

2entryNode.setNext(continueNode);

3Node exitNode = new Node ();

4return exitNode;

5}

Figure 19: Resolving the continue statement.

The method that resolves break statements is very similar to resolveContinue, except

that it links the entryNode to the node specified in the continueNode variable.

1Node resolveBreak(AST breakStatement , Node entryNode) {

2entryNode.setNext(continueNode);

3Node exitNode = new Node ();

4return exitNode;

5}

Figure 20: Resolving the break statement.

The LCFG builder must resolve goto statements the jump targets of which are outside

the LCFG node that contains the goto statement, since such a goto statement constitutes

the single allowed exit point of the code within an LCFG node. The resolveGoto method

unconditionally links from the current entry node a label node, which will link to the actual

52

target statement when the corresponding labeled statement is resolved. It returns a newly

created empty node.

1Node resolveGoto(AST gotoStatement , Node entryNode) {

2Node labelNode = getLabelNode(getLabel(gotoStatement));

3entryNode.setNext(labelNode);

4Node exitNode = new Node ();

5return exitNode;

6}

Figure 21: Resolving the goto statement.

The getLabelNode helper method maintains a map of label nodes associated to labels.

If a node exists in the map associated to the label given as a parameter, it is returned.

Otherwise, a new node is created, put in the map, and returned.

1Node getLabelNode(String label) {

2Node labelNode = (Node)labelNodeMap.get(label);

3if (labelNode == null) {

4labelNode = new Node ();

5labelNodeMap.put(label , labelNode);

6}

7return labelNode;

8}

Figure 22: Retrieving label nodes.

The resolveLabeledStatement method creates a new node that will contain the state-

ment (statementNode), and links to it from the entry node, and also from the labelNode

returned by the getLabelNode helper function. The statement of the labeled statement is

resolved recursively with the resolve method (since it may be a statement that must be bro-

ken up into its constituent statements because, for instance, it contains an await). Finally,

the exit node returned by resolving the statement is returned by resolveLabelStatement.

1Node resolveLabeledStatement(AST labeledStatement , Node entryNode) {

2Node statementNode = new Node ();

3entryNode.setNext(statementNode);

4Node labelNode = getLabelNode(getLabel(labeledStatement));

5labelNode.setNext(statementNode);

6Node exitNode = resolveStatement(getStatement(labeledStatement),

7statementNode);

8return exitNode;

9}

Figure 23: Resolving labeled statements.

Once the entire thread definition is resolved, the final step of the LCFG builder is sim-

plifying and pruning the graph. Nodes A and B are merged if neither contains an await

53

statement, there is a directed edge from A to B and no other edge leads to node B. Finally,

since the buildLCFG method only returns the entry node of the thread, nodes not reachable

from the entry node are automatically removed from the graph.

Identification of yield points

Execution of a TinyVT thread progresses in discrete uninterrupted steps. On an external

event, a thread resumes execution with the statement at which the thread last yielded.

The thread, therefore, must keep track of the location of the last yield point, that is, the

identifier of the last yield point must be stored as part of the thread’s state. For further

code generation, it is required that the compiler computes the size of the state space, and

that it identifies all possible yield points.

Yield points are explicitly described in the source code of a thread: TinyVT provides

language constructs to specify yield points, and, in the same time, it guarantees that the

thread does not yield anywhere else. Since the syntactic normalization step translated all

yield and ireturn statements to await statements, all of which are wrapped in special

await nodes of the local control flow graph, identifying yield points requires enumerating

the await nodes of the LCFG. The compiler assigns consecutive positive integers 1..n (unique

identifiers of yield points) to await nodes of the LCFG, and remembers the highest number

assigned. The number of yield points is stored in the yieldPointCount variable. This

information will later be used by the code generator.

Since there is a direct mapping between yield points and await statements, the terms

identifier of a yield point and identifier of an await statement can be used interchangeably.

It is important to note that they are different from the identifiers of graph nodes, however.

Enumeration of input events

When thread execution resumes in response to an external event, control is passed to an

event handler inlined in the await statement that corresponds to the current thread state.

Since multiple await statements may contain handlers of the same kind of event, control

must pass to the thread through a compiler-generated common event handler stub, which

dispatches the inlined event handlers after inspecting the thread state. In order to generate

these event handler stubs, the compiler inspects all await nodes to construct the set of all

event kinds (i.e. all unique function signatures of inlined event handlers), and builds a data

structure that assigns to each event kind the identifier of the await node which contains a

corresponding handler.

54

2.6.4 Code generation

The code generation step of the compiler consists of four parts. First, the code that

implements querying and altering the thread state is generated. Then, for every node of

the local control flow graph, the compiler outputs a function that contains the code within

the node (referred to as a block function). In the third step, every inlined event handler is

turned into a function definition. Finally, event handler stubs are generated for every event

type the thread may accept, which dispatch the functions generated from the inlined event

handlers depending on the current thread state.

Thread state and common functions

The thread state is stored either in an eight-bit-wide or in a sixteen-bit-wide unsigned

integer variable. The compiler computes the number of bits required to store the state with

the formula

stateBits = log2(yieldPointCount) + 2.

The two extra bits are used for guarding the yield statement generated from ireturn

statements, and for testing for reentrance violations. If stateBits is less than or equal

to eight, the state t type will be defined as uint8 t, otherwise as uint16 t. The types

uint8 t and uint16 t are defined in the C99 standard stdint.h file.

The compiler generates the following state related code. The thread state is stored in

the state variable, the two least significant bits of which are the two flags, while the rest

of the bits store the last yield point.

1__state_t __state;

Figure 24: Storage of thread state. The state t type is defined either

as uint8 t or as uint16 t, depending on the number of await nodes in

the LCFG.

Helper functions are generated to set, clear and check the flags, as well as to get and set

the last yield point. The bool type is defined in the C99 standard stdbool.h file.

55

1enum { __EXECUTING_MASK = 1,

2__YIELD_AFTER_AWAIT_MASK = 2 };

3

4inline bool __is_set_flag(__state_t flag_mask)

5{ return __state & flag_mask; }

6inline void __set_flag(__state_t flag_mask)

7{ __state |= flag_mask; }

8inline void __clear_flag(__state_t flag_mask)

9{ __state &= ~flag_mask; }

10

11typedef __state_t __yield_point_t;

12inline __yield_point_t __get_yield_point () { return __state >> 2; }

13inline void __set_yield_point(__yield_point_t yp) {

14__state = (yp << 2) | (__state & 3); }

Figure 25: Helper functions to manage thread state.

Generating code from LCFG nodes

Nodes of the control flow graph are turned into C functions, where the unique identifier

of the node is encoded in the function name (e.g. block0 or block5 for nodes with

unique id 0 or 5, respectively). The block functions have an empty argument list, and

return the identifier of integer type next block t of the block that should be executed

next. It will always be the identifier of a node linked from the current node. If a node

contains a conditional expression, the id of the next block is chosen runtime, after evaluating

the expression. The block functions generated from await blocks always return a reserved

constant, YIELD BLOCK, causing the thread to yield (no subsequent blocks will be executed).

First, the typedef for the block identifiers, and the definition of the YIELD BLOCK

constant are created.

1typedef uint16_t __next_block_t;

2enum {__YIELD_BLOCK = 0};

Figure 26: Return type of the block functions.

Then, block function definitions are generated. There are three different kinds of graph

nodes, resulting in different code:

• Non-await nodes without branching. The generated block function contains the

list of statements within the node, and returns the identifier of the node to which there

is an out-edge in the LCFG (i.e. the node that should be executed next). The example

below is generated from node with identifier 1. It contains one statement (a printf),

and returns the identifier of the next node.

56

1__next_block_t __block1 () {

2printf("__block1\n");

3return 2;

4}

Figure 27: Block function of a simple non-await node.

• Non-await nodes with branching. Such nodes have two out-edges and contain a

conditional expression. The generated function consists of the list of statements in the

node, followed by returning the identifier of the next node, which is chosen runtime by

evaluating the condition expression. The example code below is generated from node

2, which links to node 3 if its conditional expression evaluates to true, and to node 5

otherwise. It contains one statement, followed by evaluating a conditional expression,

and returns the appropriate node identifier.

1__next_block_t __block2 () {

2printf("__block2\n");

3if(isReady)

4return 3;

5else

6return 5;

7}

Figure 28: Block function of a non-await node with branching.

• Await nodes. The block functions that are generated from await nodes contain the

code which is executed when the thread yields on encountering the await statement.

The generated code will save the identifier of the yield point that corresponds to the

await statement in the thread state. The identifier of the yield point had previously

been assigned to the await statement when the yield points were enumerated in a

previous compiler pass. Since no more statements will be executed within this execution

step, the block function returns the YIELD BLOCK constant, from which the function’s

caller will know that the thread needs to yield.

1__next_block_t __block4 () {

2__set_yield_point (2);

3return __YIELD_BLOCK;

4}

Figure 29: Block function of an await node.

57

Inlined event handlers

The TinyVT compiler generates a separate function for every inlined event handler.

The signature (specifiers, return type, and argument list) of the generated function will

be identical to that of the inlined event handler, and the name of the generated function

is mangled to include the identifier of the yield point associated with the enclosing await

statement. This mangling is required since multiple await statements may block on the

same event kind. However, they may have different event handler implementations inlined.

The generated event handler, after executing the inlined code, will call the block function

of the node that is linked from the await node that holds the enclosing await statement.

The block function will return the identifier of the next node, and the next node’s block

function will be called next. This way, block functions are dispatched iteratively until a

YIELD BLOCK is returned, which causes the inlined event handler to return.

Before generating the functions for the inlined event handlers, the compiler generates

the helper function dispatch next block, which dispatches a block function based on the

block function identifier, given as a parameter. The helper function returns the id of the

block that should be executed next, or the YIELD BLOCK constant, if the thread should

yield. Since the name of the block function is mangled such that it ends with the identifier

of the block, the lines containing ”case X: return blockX();” can be generated in an

iteration over all LCFG nodes, writing the unique identifier of the node in place of X. The

code below was generated from an LCFG with six nodes.

1__next_block_t __dispatch_next_block(__next_block_t next___block) {

2switch (next___block) {

3case 0: return __block0 ();

4case 1: return __block1 ();

5case 2: return __block2 ();

6case 3: return __block3 ();

7case 4: return __block4 ();

8case 5: return __block5 ();

9default: return __YIELD_BLOCK;

10}

11}

Figure 30: Dispatching logic for block functions.

Below is an example of a function generated from the myEvent event handler inlined

in the await statement with unique identifier 1. Notice that the compiler generates the

declaration of the rval variable with the appropriate type. Lines 3 to 6 contain the body

of the inlined event handler, which is followed by the code that sets the next block and

iteratively dispatches the block functions until YIELD BLOCK is returned. In preparation

58

for yielding, the flag indicating that the thread is executing is cleared. Finally, the function

returns with the value stored in the temporary rval variable.

1char __myEvent_await1 () {

2char __rval;

3{ printf("await1/myEvent\n");

4__rval = ’a’;

5}

6{ __next_block_t __next_block = 1;

7while ((__next_block = __dispatch_next_block(__next_block))

8!= __YIELD_BLOCK);

9}

10__clear_flag(__EXECUTING_MASK);

11return __rval;

12}

Figure 31: Example of a function generated from an inlined event handler.

A dedicated event handler, the name of which is mangled to include ” halt” after the

event name, is also generated for every event kind the thread reacts to. This handler is called

if a runtime error occurs, when the thread cannot handle the received event. The default

implementation of these error handlers halts the execution of the program. Although the

function does have a return statement if the function’s return type is non void, control

never reaches it. The implementation of the halt() function is specific to the execution

environment (e.g. exit() on POSIX, or while(1) in TinyOS). (In the prototype TinyVT

compiler, the return expression is chosen arbitrarily to be a recursive function call, because

it is the easiest to generate, since this way the return statement can be generated without

inspecting the return type.)

1char myEvent_halt () {

2halt ();

3return myEvent_halt ();

4}

Figure 32: Example of a generated error handler.

Event handler stubs

For every event kind the thread reacts to, an event handler stub is generated that matches

the function signature of the corresponding inlined event handler(s). Such an event handler

stub includes a switch control structure, which dispatches the event handler generated from

the await node the identifier of which matches that of the the current yield point. A runtime

error occurs if either the thread is currently executing a step (reentrance violation), or if the

received event is not accepted in the current state.

59

To generate the event handler stub, the compiler uses the data structure, built when

enumerating the input events, that assigns to each event kind (signature of event handler)

the identifiers of await statements that contain a handler of that event kind inlined. For

every event kind, an event handler stub, such as the one below, is generated. For every

await statement that includes a handler of the event, a line in the form of ”case X: return

EVENTNAME awaitX();” is added to the switch construct, where EVENTNAME and X are

replaced with the name of the event and the identifier of the await statement’s yield point,

respectively.

1char myEvent () {

2if(__is_set_flag(__EXECUTING_MASK))

3return myEvent_halt ();

4__set_flag(__EXECUTING_MASK);

5switch(__get_yield_point ()) {

6case 1: return __myEvent_await1 ();

7case 2: return __myEvent_await2 ();

8default: return myEvent_halt ();

9}

10}

Figure 33: Example of a generated event handler stub.

For the implicit initialization event, the compiler generates the following code, which

bootstraps the thread named myThread, by executing all statements up to the first yield

point. Initially, the flag indicating that the thread is executing is set. Then, starting from

the block function with identifier 1, which corresponds to the entry node of the thread, block

functions are dispatched iteratively until YIELD BLOCK is returned, indicating that the first

yield point is reached. Finally, the flag indicating that the thread is executing is cleared,

and the myThread function returns.

1void myThread () {

2__next_block_t __next_block = 1;

3__set_flag(__EXECUTING_MASK);

4while ((__next_block = __dispatch_next_block(__next_block))

5!= __YIELD_BLOCK);

6__clear_flag(__EXECUTING_MASK);

7}

Figure 34: Generated thread initialization code.

For reference, a simple TinyVT application, along with the corresponding compiler output

is given in Appendix A.

60

2.7 Case study

To illustrate the expressiveness of the TinyVT through three examples. First, I show

that the I2C packet-level interface, used as a motivating example in Section 2.2. Then, I

present the TinyVT implementation of the main component of TinyOS’s Surge application.

Surge is a simple sensing program that collects sensor readings and forwards them to a sink

node using an underlying routing service. Since it captures an important aspect of WSN

applications, Surge, or a similar sense-and-forward algorithm is often used as a benchmark

application in the literature [8, 1, 27, 40, 47, 55, 56, 60, 62]. Finally, I present a simple

packet forwarding service that accepts messages from the application layer as well as from

the radio driver, and sends them to the parent node in a multihop routing topology.

2.7.1 I2C packet-level interface

We illustrate the expressiveness of TinyVT by rewriting the I2C packet-level interface

example, described previously in Section 2.2, using the thread abstraction.

Below I present the source code of the i2c writepacket thread. Notice how this code

resembles the pseudocode presented Section 2.2.

In the idle state, i.e. when no client request is being processed, the thread blocks on

the i2cpacket write command. If a client request comes in, the inlined implementation of

the command is executed, requesting access to the I2C bus by calling the i2c sendStart

command. The thread blocks as the next await statement is reached. Once access to the bus

is granted, the underlying byte-level I2C service invokes the i2c sendStartDone callback

function. This manifests itself in the thread as an occurrence of the i2c sendStartDone

event, which resumes the the execution of the thread. Since the corresponding event handler

returns with a deferred return statement, the return value will be saved in an automatic

temporary variable, and the same event context will continue running the code up to the

next blocking statement. That is, the initialization of the index variable, the evaluation of

the loop condition, as well as writing the first byte to the I2C bus will take place before the

thread blocks again.

The packet is written out byte by byte to the bus, waiting for an i2c writeDone callback

after each i2c write request. Finally, the thread requests releasing of the bus by issuing

the i2c sendEnd call and blocks until the i2c sendEndDone occurs. After the I2C bus is

released, completion of packet transmission is reported to the client by invoking the client’s

i2cpacket writeDone callback function.

This algorithm is running in an infinite service loop, hence, once a packet transmission

is complete, the service is reset to the idle state, awaiting new packet transmission requests.

61

1thread i2c_writepacket {

2while (1) {

3uint8_t *packet_data , packet_length;

4

5await(void i2cpacket_write(uint8_t length , uint8_t* data) {

6packet_data = data;

7packet_length = length;

8i2c_sendStart ();

9dreturn;

10}

11);

12

13await(void i2c_sendStartDone () { dreturn; }

14);

15

16{

17uint8_t index;

18for(index =0; index <packet_length; ++index) {

19i2c_write(packet_data[index]);

20await(void i2c_writeDone () { dreturn; }

21);

22} /* end for */

23}

24

25i2c_sendEnd ();

26await(void i2c_sendEndDone () { dreturn; }

27);

28

29i2cpacket_writeDone ();

30} /* end while */

31} /* end thread */

Figure 35: Packet-oriented I2C driver in TinyVT. Notice the resemblance

with the pseudocode presented in Fig. 1.

2.7.2 The Surge application

Surge is a simple sense-and-forward data collection application, a TinyOS based imple-

mentation of which is publicly available in the TinyOS source code repository at source-

forge.net. Driven by a periodic timer, Surge samples the ADC to acquire a sensor reading,

wraps it in a data packet and hands it over to the routing service which will forward it to a

designated sink node in a multihop topology.

The corresponding TinyVT implementation is rather simple. First, the timer is started

with period TIMER RATE. Then, control enters a loop in which sensor readings are acquired

and transmitted. The execution of the code within the loop is triggered by the timer fired

event, a callback from the timer service. In response to the fired event, the thread requests a

sensor reading from the ADC subsystem and blocks until the sample is acquired. Acquisition

is reported by the adc dataReady callback from the ADC module, which provides the read

value as a parameter. In the corresponding event handler, the sensor reading is written to

62

the message packet and the length of the packet’s payload is set to 2 (the size of the uint16 t

type).

Then, the packet is handed over to the routing service by calling the multihop send

function. However, since the routing service might not be able to accept the request (it can

be in a busy state), the request might return FAIL. Therefore, the thread keeps retrying

sending the packet until it is accepted by the routing layer. Notice that the corresponding

while loop contains the yield statement. The yield statement passes the control to the

dispatcher in the event-driven runtime, which may schedule other services (e.g. the routing

service or the radio stack) before continuing the execution of the current thread.

Once the routing layer accepted the packet, the thread blocks on the multihop sendDone

event, a callback signaling that the packet has been transmitted over the radio. After that,

control returns to the beginning of the body of the outer loop, blocking on the next fired

event from the timer.

1thread surge {

2timer_start(TIMER_REPEAT , TIMER_RATE);

3

4while (1) {

5Msg msg;

6

7await(void timer_fired () {

8adc_getData ();

9dreturn;

10}

11);

12

13await(void adc_dataReady(uint16_t reading) {

14(uint16_t *)msg.data)[0] = reading;

15msg.length = 2;

16dreturn;

17}

18);

19

20while(multihop_send (&msg) != SUCCESS) {

21yield;

22} // end while

23

24await(void multihop_sendDone () {

25dreturn;

26}

27);

28} // end while

29} // end thread

Figure 36: The surge application in TinyVT.

63

2.7.3 A simple multihop packet forwarding engine

The third example presented in this section illustrates how TinyVT can be used to

implement a simple multihop packet forwarding service. It provides a multihop send ser-

vice function to the clients, and reports the completion of the packet transmission via the

multihop sendDone callback. The actual transmission of the packet is delegated to the un-

derlying radio stack, which provides a radio send service function and signals completion

via the radio sendDone callback. The multihop service is also forwarding packets it received

over the radio. The radio stack indicates packet reception bye invoking the radio receive

handler.

1thread multihop {

2Msg msg , *msgPtr1;

3msgPtr1 = &msg;

4

5while (1) {

6Msg *msgPtr2;

7msgPtr2 = NULL;

8

9await(Msg* radio_receive(Msg* m) {

10Msg* tmpMsgPtr = msgPtr;

11msgPtr1 = m;

12dreturn tmpMsgPtr;

13}

14result_t multihop_send(Msg* m) {

15msgPtr2 = msgPtr1;

16msgPtr1 = m;

17dreturn SUCCESS;

18}

19);

20

21while(radio_send(parent_address (), msgPtr1) != SUCCESS) {

22// yield;

23dpc_request (& deferred_proc);

24await (void deferred_proc () { dreturn; }

25Msg* radio_receive(Msg* m) {

26dpc_cancel (& deferred_proc);

27dreturn m;

28}

29);

30} // end while

31

32await(void radio_sendDone(Msg* m) {

33if(msgPtr2 != NULL) {

34multihop_sendDone ();

35msgPtr1 = msgPtr2;

36}

37dreturn;

38}

39Msg* radio_receive(Msg* m) { dreturn m; }

40);

41} // end while

42} // end thread

Figure 37: Multihop packet forwarding in TinyVT.

The corresponding TinyVT implementation (Fig. 37) runs a service loop, in which, the

64

thread first initializes the msgPtr2 variable to NULL and then it waits for a radio receive

or a multihop send event. Notice that the corresponding await statement on line 9 has

two inlined event handlers. The occurence of either of these events resumes the execution

of the thread. On a radio receive event, the pointer to the received packet is stored in

the msgPtr1 local variable, and the pointer to an unused message structure is passed back

to the radio stack. If a multihop send event occurs, the pointer to the unused packet is

saved to msgPtr2, and the pointer to the client’s packet is saved in msgPtr2. After the await

statement, msgPtr1 points to the packet to be sent.

The while loop on line 21 requests the transmission of the packet from the radio stack.

Similarly to the previous example, the service returns FAIL when busy, therefore the thread

keeps repeating the radio send call until the packet is accepted by the radio stack. The

thread must yield in the loop body to allow other events to be dispatched between consecutive

retries. However, TinyVT’s yield statement is not safe to use in this situation, because a new

radio packet might be received in the meantime, and such event must be handled. Therefore,

the loop body contains a deferred procedure call (DPC) request, and blocks on either the

the DPC callback or a message reception event. In the case when a radio receive event

occurs before the DPC is serviced, the received packet is dropped and the DPC request is

canceled.

Once the packet is accepted by the radio stack, the thread blocks on the completion

event of the transmission (and also on message reception, in which case the received packet

is discarded). When transmission is complete, the thread decides if the transmitted packet

came from the client or from the radio, by checking the value of msgPtr2 (radio receive

leaves it NULL, while multihop send uses it as temporary storage). In the former case,

the multihop sendDone callback of the client is invoked. Finally, control returns to the

beginning of the service loop and the thread is ready to accept the next packet.

65

2.8 Discussion

TinyVT’s thread abstraction is a tool that allows for intuitively expressing computation

in event-driven systems. The abstraction provided by the language enables the programmer

to describe the control flow of a service as if the service had its own, dedicated thread of

execution. The source code of TinyVT programs, which may contain multiple threads and

arbitrary C code, is translated by the TinyVT compiler to C code, which runs on top of a

simple event-driven runtime. The compiler’s task is to bridge the large semantic gap between

the TinyVT code that relies on a thread abstraction and the resulting C code, where threads

are resolved to a set of related event handlers and declarations representing local thread

state.

However, all abstractions come at a cost. Below, I investigate the advantages and dis-

advantages of TinyVT over the traditional multithreading model, as well as event-oriented

programming, with respect to functionality, computational overhead and memory usage.

2.8.1 TinyVT versus multithreading

Although TinyVT offers a thread-like programming abstraction capable of expressing

linear control flow, it is important to note that TinyVT threads are very much unlike threads

in the traditional sense: there is no explicit execution context associated with a TinyVT

thread. It is compiled to a set of event handlers, each of which run in the context of its

caller, and use the caller’s stack to store local variables and function invocation related data

such as parameters, return address, registers, etc.

While in traditional threading, context management and continuation support comes

from the operating system or from the hardware essentially for free, TinyVT has to address

these issues at compile time.

The event-driven code generated by the TinyVT compiler requires no multi-threading

OS support, nor does it introduce dependence upon a threading library. TinyVT threads are

virtual in the sense that they only exist as an abstraction to express event-driven computation

in a sequential fashion, and are transformed into (non-sequential) event-driven code by the

TinyVT compiler.

TinyVT threads are driven by interaction with their environment. Although a TinyVT

thread is programmed assuming an independent thread of execution, it requires a series of

external stimuli – either from the underlying event-driven runtime, or from other threads –

to trigger thread execution. Since TinyVT threads are compiled to a set of event handlers,

implemented as C function definitions, these stimuli are simple function invocations.

Since TinyVT source code is translated to C, the threading abstraction is hardware

66

independent. Unlike operating system kernels or user-space threading libraries, which must

be implemented in a platform-specific way (often programmed in assembly), TinyVT does

not have to be ported. TinyVT threads are portable as long as there exists a C compiler for

the target platform, and an event-driven runtime is available with the assumptions described

in Section 2.4.2.

Functionality

Unlike preemptive multithreading, TinyVT threads are not preemptible. Functionally,

TinyVT’s thread abstraction is closer to that of cooperative multithreading, but more limited

in the following respects:

• TinyVT threads are static. Unlike in traditional multithreading, where threads

must be programmatically spawned and can be explicitly cancelled, TinyVT threads

are static. This means that a thread is automatically instantiated after the program

is loaded, and ready to accept events from the environment. A TinyVT thread never

exits. It either runs in an infinite loop, or is permanently blocking after the end of the

control flow is reached (at the implicit empty ”await();” statement).

• No built-in IPC mechanisms. In a cooperative multithreaded programming en-

vironment, threads synchronize and communicate using inter-process communication

(IPC) mechanisms, such as signals or mutexes. IPC mechanisms are implemented by

the runtime (kernel or threading library): for example, when a thread sends a signal

to another, the runtime may choose to block the sender thread and schedule a third

thread of higher priority than the recipient of the signal, deferring signal delivery.

TinyVT provides no language support for POSIX-like IPC mechanisms. This has two

important implications. First, TinyVT threads can communicate directly with each

other via function calls, without going through the runtime. Second, as the runtime (i.e.

the dispatcher) does not intercept thread-to-thread calls, the caller thread explicitly

defines which thread will be executing next, therefore, the runtime does not have

control over this.

• No thread priorities. In traditional multithreading, the scheduler chooses which

threads to run of those that are ready by inspecting the thread priorities. TinyVT

offers no such functionality, since the event-driven runtime is not aware of the tread

abstraction. The event dispatcher invokes the event handlers that are generated by

the TinyVT compiler from the TinyVT source code.

67

However, priority aware event dispatching can be used to mimic priority based schedul-

ing schemes of multithreading systems. While TinyVT does not provide language sup-

port for assigning priorities to TinyVT threads, nothing prevents the programmer to

assign priorities to events that a thread accepts. Instead of setting the priority of a

thread to N, the scheduler – implemented, for example, using a priority queue – should

be configured such that it assigns priority N to all events designated to the thread. A

discussion of such a scheduler implementation is beyond the scope of this work, though.

Performance

The overhead associated with the thread abstraction in traditional multithreading sys-

tems originates from context switching. Context switching between threads is usually com-

putationally expensive: it involves the saving of registers, stack and instruction pointers,

and other thread specific control structures of one thread, and restoring those of the newly

scheduled thread afterwards. In case of preemptive multithreading, context switching is car-

ried out by the operating system kernel, while in cooperative multithreading, this task can

optionally be outsourced to a threading library.

TinyVT effectively avoids the need for context switching in the traditional sense. When

a TinyVT thread resumes, it is executing using the context (i.e. the stack) of the triggering

event. Since all events – directly or indirectly – originate from the event dispatcher, the whole

system can use a single stack. A context switch in the TinyVT sense is just a function call,

where some registers that are used by the caller need to be saved temporarily for the time of

the function invocation, and restored thereafter. This is very inexpensive computationally,

commonly resulting in no more than a few dozens of machine instructions. Since the C

compiler is aware of the whole static call flow graph within the same translation unit, the

compiler can optimize register allocation or automatically inline functions, which results in

drastically decreasing (or even eliminating) the cost of TinyVT context switches.

RAM usage

On wireless sensor nodes, RAM is a precious resource. Sensor nodes are typically

equipped with only a few kilobytes of RAM, which holds both the stack and statically

allocated variables. Typically, there is no heap, since dynamic memory management is not

used. This is primarily because the overhead associated with dynamic memory allocation,

which is mostly due to fragmentation, is prohibitive on platforms with such small amount

of memory.

68

Stack

One of the often touted disadvantages of multithreading operating systems for sensor

nodes is their excessive memory requirements. Each thread requires a dedicated stack,

where, when the thread is suspended, the machine state corresponding to the thread is

saved. Also, the thread’s stack is used for storing automatic local variables, as well as for

passing function parameters and return values. As a result, the number of concurrent threads

is drastically limited in such systems. For instance, the MANTIS operating system running

on the Berkeley MICA2 mote cannot have more than six threads active at a time [8].

TinyVT avoids this problem by assuming an event-driven runtime with a single stack,

which is unrolled every time an event handler, dispatched by the runtime, completes. Since

event handlers cannot be preempted before they complete, the maximum stack usage of the

whole system is the maximum of the stack usage of the individual event handlers.

Statically allocated memory

TinyVT stores the thread state (the identifier of the last yield point and two Boolean

flags) in static memory. Depending on the number of yield points within a thread, thread

state occupies as little as one or two bytes.

In multithreading, static memory contains global variables and variables designated with

the ”static” storage class specifier. TinyVT, in addition, allocates compiler-managed au-

tomatic variables in static memory. The amount of static memory required for their storage

equals to the sum of the sizes of compiler-managed variables which may be active concur-

rently (i.e. those with overlapping scopes). Notice that, in multithreading systems, such

variables are stored on the stack. That is, TinyVT, in fact, trades stack space for static

memory.

Depending on their placement within the code, TinyVT’s yield statements may be very

expensive in terms of memory usage. The allocation of local non-static variables within

a compound statement that contains a blocking wait (yield or await) is managed by the

compiler, therefore, it is suggested that yielding be avoided if possible where large local

data structures are declared. One important feature of TinyVT is that yield points are

explicit, and thus, the programmer has complete control over which variables will be subject

to compiler-managed or C’s native stack based automatic variable allocation.

69

2.8.2 TinyVT versus event-oriented programming

Functionality

Pure event-driven programs – where the term pure refers to the constraint that all event

invocations, directly or indirectly, must originate from the single-threaded event dispatcher –

can always be implemented as TinyVT threads if they are free from recursive event handlers.2

The simplest way to achieve this would be wrapping each handler of the event-driven program

in a separate await statement, placed in an infinite loop within a TinyVT thread.

The TinyVT language allows for combining standard C code and TinyVT threads within

the same translation unit. Therefore, if the module is such that using TinyVT does not offer

any benefits, programming event handlers as C functions is preferred. TinyVT is not a silver

bullet. It is widely known that not all patterns of control flow can be conveniently expressed

in a thread-like fashion. Nevertheless, the programmer can always fall back to using plain

event-driven C code in such cases, and write TinyVT threads only when it is convenient.

Performance

Since TinyVT threads are translated to a set of event handlers by the TinyVT com-

piler, the generated code will never be better than the best hand-written code with the same

functionality. Every time an event is dispatched to a thread, the generated code checks for

non-reentrance violation and reads the current thread state to check which handler imple-

mentation should be executed. Before the event handler returns, the generated code updates

the thread state. The corresponding instructions, typically not more than ten, constitute a

performance overhead if the event should always be accepted irrespective of the thread state,

or, in the latter case, if the thread state does not change in response to the event.

In a typical use case for TinyVT, events trigger in different actions depending on the

thread’s local state. In such a case, the state and flag checks and updates described above,

must also be done in the corresponding hand-written code. As the complexity of the program

increases, however, manual control flow management becomes harder. This is where the use

of TinyVT pays off, since the thread abstraction can relieve the programmer of the burden

of implementing the module as an explicit state machine.

The generated code involves a number of C functions, a series of which is executed in

response to a single triggering event. However, an optimizing C compiler, that carries out

constant propagation and automatic inlining, can inline most of these functions, thereby

eliminating (or drastically reducing) the corresponding performance overhead.

2Recursive event handlers are rarely used in event-driven systems on memory-constrained platforms, as
recursion, in general, is considered ”harmful” because of potentially extensive stack growth.

70

RAM usage

TinyVT can be thought of as an extension of the event-driven paradigm where the action

in response to an event depends not only on the event kind, but also on the local state of

the module. In order to dispatch event handlers based on event kind and local state, the C

code generated from the thread maintains the threads local state.

The TinyVT compiler typically allocates one byte per thread in static RAM to hold

the thread state (two bytes if the number of yield points is more than 63.) Hand written

modules, in which manual control flow management is required, also use at least one byte

for this purpose, therefore, TinyVT’s thread state variable typically does not contribute to

the memory usage overhead.

TinyVT’s most important asset with respect to memory usage is the compiler-managed

allocation of local variables with C’s automatic storage duration semantics. The allocator

algorithm uses the nesting of scopes in TinyVT threads to find out which variables are never

active at the same time, since it is always safe to allocate such variables to the same memory

area. Manually creating such an allocation in hand written code is a very tedious and

time consuming task. Manual allocation, however, may result in better memory allocation

because the programmer has better knowledge on variable lifetime that what the compiler

can extract from the nesting of scopes. However, as programs evolve (e.g. new features

are added or old ones are removed), even small changes to the program logic may require a

complete overhaul of the allocation, which drastically increases the maintenance effort. The

most important advantage of TinyVT’s compiler-managed memory allocation feature is that

it relieves the programmer from this complex and tedious task.

2.8.3 Applicability

Overall, TinyVT is best suited to replace the traditional (pure) event-oriented approach if

the program’s control flow is reasonably complex but it is natural to describe using C control

structures. In such use cases, TinyVT can take over the management of local automatic

variables from the programmer, which results in better static memory usage than declaring

them as global or static, which is the common programming practice in event-driven systems.

2.8.4 Limitations

Asynchronous events

TinyVT threads are assumed to execute on top of a pure event-driven runtime, in which

only the event dispatcher may call into the event handlers. The dispatcher is assumed to be

single threaded, meaning that at most one event handler may be executing in the system at a

71

time. Specifically, interrupt handlers, or other external threads of execution may not invoke

the event handlers directly: such calls must go through, and be serialized by, the event

dispatcher. This assumption is essential, since the atomicity of event handler executions

cannot be guaranteed otherwise, and race conditions could occur.

Some event driven operating systems (e.g. Contiki [22] or TinyOS [44]), however, do

not forbid asynchronous invocation contexts to propagate into event handler code. The

rationale for this is that the operating system does not need to have a well-defined kernel

this way: device driver code and application code can be handled uniformly. Also, this

approach allows timely response to interrupts, even in high-level components well above the

hardware-software boundary.

TinyVT is not particularly well suited for such non-pure event-driven systems. Since

threads are guarded against reentrance, an event is only accepted if the thread is blocked.

Even if an asynchronous event and a dispatcher-invoked event which it interrupts never

access the same set of variables, TinyVT disallows the asynchronous event, since there are

potential race conditions in the compiler-generated code. In particular, the dispatcher-

invoked event would set the next state of the thread to some value on completion, however,

the asynchronous event might set the next thread state to a different value. Typically, the

former would win, however, it is possible that the next thread state, which is represented

on two bytes, is set to an inconsistent value if the dispatcher-invoked handler is interrupted

after the first, but before the second byte is written.

Nevertheless, TinyVT threads can be used in such systems. The programmer, however,

must make sure that no events arrive while the thread is executing, only when the thread is

blocked.

Access to the context of the triggering event

Currently, TinyVT does not support accessing local variables declared within inlined

event handlers from the code that follows the enclosing await statement. This seems nat-

ural, since such access would violate C’s scoping rules. However, the code following the

await statement is always executed within the context of the triggering event, and variables

declared in the event handler are still alive on the stack until the next yield point is reached.

Therefore, a possible enhancement of the TinyVT language could include a feature to

support sharing data between the inlined event handlers and the code following the enclosing

await using the stack. This would reduce the static RAM requirements of TinyVT programs,

because now, variable sharing is only possible through global, static or compiler-managed

local variables. One possible solution for this would be providing a new TinyVT keyword

to access the data associated with the current invocation context, containing kind of the

72

triggering event, its parameters, return value (the rval variable) and variables declared

locally in the inlined event handler.

Whole-program analysis

The prototype implementation of the TinyVT compiler processes each thread separately.

In many cases, however, better memory usage would be achievable through whole-program

analysis. For example, if the state of a thread can be represented using only four bits,

another four bits are wasted in the byte that is allocated for the thread state. To prevent

this, thread state handling could be factored out to a common component, which allocates

a variable to hold the global system state, and provides thread-specific state accessor and

mutator functions.

Also, whole-program analysis could improve compiler-assisted memory management by

identifying scopes in different threads with non-overlapping lifetimes. This would result in

better static memory usage, however, computing such allocation is a nontrivial task, and

requires that the compiler build and analyze the global control flow graph.

Compiler-assisted memory management

Currently, the TinyVT compiler computes the allocation of compiler-managed variables

using the information on the nesting of their scopes. However, in many cases, a variable does

not need to stay active until the control exits the compound statement in which the variable

is declared: it only needs to be active until it is last accessed. Fine-grained knowledge if

variable usage patterns would enable more aggressive compiler-assisted variable allocation

strategies, since the compiler could have a more fine-grained picture of the usage patterns of

the variables.

One way of achieving this is through compile-time functions, such as alloc() and free(),

where alloc() must be called before the first use of the variable, and free() would inform

the compiler that the variable is not needed any more. These functions would be completely

resolved by the compiler and would not appear in the generated C code. In fact, compile-

time functions are just a form of annotations that are used to control the behavior of the

compiler.

Such a feature would improve on the static memory usage of TinyVT programs. Never-

theless, code that is as good as or better than the memory allocation code generated by the

prototype TinyVT compiler is already very hard to produce manually.

73

Chapter III

Semantics

3.1 Background and related work

Writing and comprehending computer programs requires understanding the precise mean-

ing of the constructs of the programming language used. For many languages, while the

syntax is properly specified, semantics is described informally, typically in a natural lan-

guage (e.g. in English), with examples of code and the description of the expected behavior

of a computer that executes it. Unfortunately, such textual specification of semantics can

be unintentionally ambiguous, if not misleading. A good example of this is the word ”or”

in a natural language, which, without additional disambiguation, can mean disjunction,

but exclusive disjunction as well. Semantic ambiguities can lead to incorrect software, as

programmers and development tools may have different, conflicting assumptions about the

vaguely defined semantics. Clearly, formal specification of semantics for a programming

language is of key importance.

Before immensing into the review of various approaches to formal specification of seman-

tics, some terms and concepts that are essential to understand these approaches need to be

described.

3.1.1 Syntax

The syntax of a programming language defines the well-formed sentences that can be

described in the language. Syntax is only concerned with form and structure, not with the

underlying meaning of programs. For textual languages, syntax defines how input symbols

(characters) are used to form valid sentences (programs). For graphical languages, syntax

defines the elements of the language (graphical artifacts such as shapes, connections, textual

annotations, etc.) and the set of rules specifying what configurations of those are valid.

Concrete syntax

The concrete syntax of a programming language is concerned with representation, that

is, how programs are expressed as linear streams of characters or, for graphical languages, as

sets of two-dimensional graphical objects. The concrete syntax of a textual language can be

specified in terms of production rules, for example using the Backus-Naur (BNF) notation .

The set of production rules that unambiguously describe which sentences are syntactically

well-formed elements of the language is called the grammar of the language.

74

Abstract syntax

The abstract syntax, on the other hand, is concerned exclusively with the structure of

the language, focused around relations between language elements, such as, for example, hi-

erarchy and sequentiality. The conversion from concrete syntax to abstract syntax is called

parsing. Parsing includes reading a linear stream of input symbols and transforming it into

a tree, called the abstract syntax tree (AST). A common practice is that nonterminals rep-

resenting operations will become roots of subtrees in an AST, and their children will be the

subphrases corresponding to the operands. The AST is an unambiguous, abstract represen-

tation of a well-formed program, which reveals the program’s structure and is independent

from the concrete physical (textual or graphical) representation. Language elements that

are used for disambiguation in the concrete syntax are omitted from the AST. As a result,

the production rules that describe the structure of an AST, referred to as abstract produc-

tion rules, are typically simpler than the production rules for the concrete syntax of a given

language.

It is typically the AST, not the linear program code, which is the subject of program

analysis and transformation, and which is used for code generation by the compiler. Often,

formal semantics of a language is defined against the elements of the abstract syntax tree, as

it excludes elements of the input language which have no effect on the semantics (parentheses,

identation, etc. that are defined in the concrete syntax).

3.1.2 Formal semantics

Formal semantics of a language aims to formally specify the rigorous mathematical mean-

ing of syntactically well-formed sentences in the given programming language. Formal se-

mantics is specified in terms of well understood mathematical concepts, often (but not nec-

essarily) by describing the behavior of a concrete or abstract machine while executing a

program in the language. The following section describes several approaches to specifying

the formal semantics of programming languages, including translational, operational, deno-

tational, axiomatic, algebraic and action semantics.

The most widely applied approaches to specifying the formal semantics of a programming

language are operational, denotational and axiomatic semantics. These approaches and their

variants are described in the following paragraphs, based on [73]. For further details and

discussion of approaches not described here, please refer to [73].

75

3.1.3 Operational semantics

Translational semantics

Compilers that convert source code in a given programming language to machine code im-

plicitly specify the semantics of the language. This is, in fact, a translation from a high-level

language to a low-level, machine-oriented one, which is closely related to a specific machine

architecture. This machine does not need to be an actual, physical machine; an abstract

machine with a small number of well-defined primitive constructs will suffice, assuming that

they are capable of unambiguously describing the machine’s behavior.

One apparent disadvantage of the translational approach is that the semantics of the

source language is defined only as well as the target language of the translator. If certain

aspects of the semantics of the target language are not clearly understood, semantics of source

language constructs that map to these aspects cannot be specified, either. Furthermore, low-

level machine code may provide little insight into the essential nature of the source language,

as it might not be the proper level of abstraction at which certain properties of a high-level

language can be conveniently examined.

Traditional operational semantics

While translational semantics specify what a program does in terms of low-level machine

instructions, operational semantics concentrates on how a computation is performed. Op-

erational semantics describe computation using a precisely defined abstract machine, which

is specified in terms of mathematical or logical concepts. This abstract machine eliminates

the shortcomings of a concrete computer such as limitations on the available memory and

storage space, word size, precision of arithmetics, etc., while focuses exclusively how the

abstract state of the machine is altered as the program executes.

The basic components of a operational semantics specification are the following:

• an abstract machine,

• the state (also called the configuration) of the machine,

• a dedicated configuration called the initial state,

• a function that maps one configuration to another,

• and a final configuration.

The program the meaning of which is being investigated is represented as a function that

iteratively alters the machine state. The final state carries the output of the program.

76

Structural operational semantics

While traditional operational semantics describes computation in terms of steps of a

hypothetical abstract machine, structural operational semantics [65] describes computation

by a set of logical deduction rules that turn programs into a set of logical inferences. This

allows for proving properties of the language directly from the logical definition of language

constructs using logical deduction.

In the structural operational semantics approach, language constructs are described as

inference rules: a set of premises, an optional condition and a conclusion. An inference rule

with an empty set of premises is called an axiom. Inference rules are used to describe the

structure of language constructs similarly to production rules of the grammar that define

the syntax of the language. To describe the evaluation of expressions, an abstraction of the

memory of a computer, called the store, is used. The store is represented as a finite list of

numerals. Since the evaluation of an expression does not change the state of the machine,

inference rules about the evaluation of expressions do not include the state of the store in

the conclusion (the store is read, but not written). Commands that represent a steps of the

machine, however, do alter the machine’s configuration. Therefore, inference rules describing

commands include the current input list, the current output list and the store.

Structural operational semantics allows for reasoning about the semantic equivalence of

two language constructs. Semantic equivalence of two constructs holds whenever, for the

same initial state, both constructs will drive the abstract machine to the same final state

or both will cause the machine to halt. Proving semantic equivalence relies on natural

deduction, building up the proof from axioms and inference rules that describe even the

smallest details of the changes in the machine’s configuration.

3.1.4 Denotational semantics

Based on the observation that both programs and the objects they manipulate are ab-

stract mathematical objects, denotational semantics [74] takes the approach of associating a

phrase of the programming language with the mathematical object to which it corresponds

(a number, a tuple, a function, etc.). The mathematical object is called the denotation of

the phrase.

As defined in the abstract production rules of the language, the abstract syntax tree of

a phrase corresponding to a language construct consists of subphrases. This hierarchical

structure of the language is essential to the specification of denotational semantics: The

denotation of a language construct is defined in terms of the denotation of its subphrases.

77

The specification of the denotation of a phrase can be thought of as a recursive, higher-

order function. Prior research on lambda calculus studied higher-order functions extensively,

and thus the notations used in denotational semantics borrow much from those in lambda

calculus.

Formally, denotational semantics of a language is defined as a mapping between syntactic

elements and a semantic domain. For simplicity, syntactic elements are given in terms of

concepts in the abstract syntax, not the concrete syntax: The abstract production rules

that describe the structure of the AST are simpler and easier to handle than the BNF

specification of the grammar. The syntactic categories typically used are, for example,

numerals, expressions, commands and identifiers. Each element in the syntactic domain

is associated with one of these categories. Abstract production rules describe the possible

structure of the elements of the syntactic domain. The semantic domain is defined as sets of

mathematical objects, such as boolean or integer values, and functions with precisely defined

domains and codomains.

The connection between the syntactic and semantic domains is defined in terms of se-

mantic functions and semantic equations. Semantic functions map objects of the syntactic

domain to objects in the semantic domain, while semantic equations describe, using math-

ematical operations, how the semantic functions behave on different patterns of syntactic

objects. For every abstract production rule, a semantic equation defines the meaning of

the phrase that corresponds to the production rule. The meaning of a phrase is defined in

terms of the meaning of its immediate subphrases. As a result, the denotational semantic

specification of a programming language will have a similar structure to that of the abstract

production rules of the syntactic elements.

Denotational semantics is a powerful and expressive approach that allows for proving

properties of programming languages and the correctness of programs. For example, to

prove semantic equivalence of language constructs, it is sufficient to show that they have

identical denotations in the semantic domain.

Action semantics

Denotational semantics, as well as many of the previously described approaches, pro-

duce notationally dense and sometimes cryptic specifications. Programmers who want to

learn or implement a programming language rarely consult its formal semantic specification,

since there is a disconnect between the concepts these formal approaches employ and the

way programmers view programming languages. In fact, sometimes the most fundamental

elements of a language are the hardest to formally describe, such as control flow, contin-

uations, parameter passing or scoping. Formal description of these concepts may become

78

so obscured such that it requires considerable effort to identify them in the specification of

semantics. Action semantics [61] was created to tackle this issue. Action semantics is, in

fact, a denotational approach, where the constituents of semantic domain directly reflect

familiar computational concepts, specifically actions, data and yielders (not yet evaluated

pieces of data).

3.1.5 Axiomatic and algebraic semantics

Unlike the previously described approaches, where semantics of a program is described

in terms of a real or abstract machine, axiomatic and algebraic approaches to formal spec-

ification of semantics aim to specify the meaning of a phrase with predicate logic, without

relying on the concept machine state.

Axiomatic semantics

In axiomatic semantics [45], the semantics of a phrase (or a program) is described with

logical assertions on values and variables, omitting details on how the computation is carried

out. The phrase the semantic meaning of which is being described is tagged with an initial

assertion and a final assertion: logical formulas that must evaluate to true before and after

the phrase, respectively. The relation between the initial and the final assertions capture the

semantics of the phrase.

In axiomatic semantics, semantic equivalence of two phrases does not necessarily require

that assuming an identical initial state, the execution of both phrases result in identical final

states (or non-termination). Instead, two phrases are equivalent, if the two phrases produce

the same final assertions given the initial assertions are the same. The assumptions might

not include all variables in the code, and might not require the variables to hold a certain

value, as it is merely the invariant relationship between the initial and final assertions that

specifies the semantics of a piece of code.

In contrast with operational and denotational semantics, proofs in the axiomatic approach

are static. That is, while the previous approaches check the program by concentrating on

how the state of the machine evolves as the program is being executed, proofs in axiomatic

semantics can be elaborated by static analysis of the source code of the program.

Beside semantic equivalence and correctness proofs, the axiomatic semantics approach

provides a means to formal specification of programs. Instead of describing the semantic

meaning of programs that already exists, this technique can be used in the reverse situation:

given the initial and final assertions, derive a program for which these assertions hold.

79

Algebraic semantics

Algebraic semantics [38] takes a similar approach to that of axiomatic semantics in the

sense that the specification of programs is expressed without relying on the concept of a

machine. However, while axiomatic semantics builds on predicate logic, the theoretical

foundations of algebraic semantics lie in abstract algebra. Instead of using only logical

assertions over values and variables, algebraic semantics rely on describing the properties of

operations over abstract objects.

The algebraic approach is naturally applicable to simple, low-level objects such as Boolean

values with operations on them such as conjunction, disjunction, implication, etc., but lends

itself to easily describing more complex operations on abstract data types (ADT) , as well.

In fact, algebraic semantics is an ideal vehicle for the specification of ADTs, because the

specification omits specifics of the actual representation of data and the implementation of

the operations, while focuses on the properties of operations that manipulate data. This

aligns well with the objectives of the object-oriented programming paradigm, promoting

information hiding through encapsulation and polymorphism.

3.2 Problem statement

The previous chapter described the main ideas behind the design of TinyVT, along with

source code examples and the description of the behavior of the machine executing these

pieces of code. However, the fact that this description is given informally in a natural

language, renders it inadequate as a formal semantics specification. While this informal

description is a good starting point to learn and understand TinyVT, and is even helpful when

implementing a TinyVT compiler, by no means is it guaranteed to be free from ambiguities

or from the overspecification of language features.

Since TinyVT is an extension of the C language, the semantics of which has already

been specified, TinyVT’s formal semantics can be given by building on an existing formal

semantics specification for C.

The notion of a thread, defined as an independent unit of computation with conceptually

linear control flow, is missing from C, since the C language is a legacy of an era in which

multithreading had not yet existed. Today, thread support in C is provided in the form

of external libraries. Specification of semantics of such systems, however, proved to be

problematic. In fact, Boehm argues that, for languages that were originally designed without

thread support and to which a library of threading primitives was later added, a pure, library-

based threading approach, in general, cannot guarantee correctness of the resulting code [9].

TinyVT, however, takes a nontraditional approach to providing the thread abstraction.

80

TinyVT provides language constructs that allow for describing computation by defining the

control flow using C control structures, assuming that the computation has an independent

execution thread. Unlike traditional multithreading, where the abstraction of a virtual pro-

cessor is provided by the operating system or a user-space threading library, the abstraction

of the local execution thread that TinyVT offers is provided by the language and the com-

piler. The TinyVT compiler is a source-to-source translator, which translates the source

code relying on the thread abstraction to plain C code, by rewriting TinyVT thread defini-

tions as a set of event handlers. Since threads are resolved to C code that is assumed to be

run in a single-threaded manner, Boehm’s observation does not apply to TinyVT. TinyVT’s

semantics specification can, therefore, allow for investigating threading-related properties of

systems, such as interleaving of thread execution and interaction between threads.

The specification of TinyVT’s formal semantics includes the following four areas.

• Semantics of TinyVT-specific constructs. TinyVT extends the C language with

a number of new language constructs that are used to define threads, to communicate

between a thread and its environment (which may include other threads, software

entities external to a thread, or hardware), and to manage control flow. It is crucial

that the semantics of these language constructs be precisely specified.

• Semantics of ANSI C constructs. Most but not all C language constructs are

allowed within TinyVT threads. A subset of those that are allowed, however, have

different semantics when used within a TinyVT thread than the original C semantics.

Although TinyVT’s specification of semantics can reuse elements from a formal se-

mantics specification for C, it is essential that all such differences be unambiguously

described.

• Interaction semantics of TinyVT threads. TinyVT extends the C language with

threading support, however, the concept of threads is not present in the C language.

Semantics of interaction between a thread and its environment needs to be formally

described, with particular interest in control flow and communication semantics.

• Compositional semantics of TinyVT threads. TinyVT threads can be composed

to form a composite software module. We are interested in the semantics of compo-

sition, particularly in identifying properties that are preserved through composition

of TinyVT threads. Furthermore, the compositional semantics should allow for in-

vestigating the factors that influence whether a composition of a set of threads or a

complete system (which also includes the event-driven runtime) is deterministic or not

(with a suitable definition of determinism).

81

3.3 Organization

This section is organized as follows. First, the approach to specifying the formal semantics

of TintVT is outlined. I argue that the operational approach with a specification that is

based on abstract state machines (ASM) can meet the requirements described in the problem

statement. Following a brief introduction to abstract state machines and the AsmL language,

a formal specification of the C language, given by Gurevich and Huggins, is described. I give

the formal semantics of TinyVT by extending this specification to include the semantics of

the language extensions introduced by TinyVT.

Compositionality of TinyVT threads is explored at a higher level of abstraction than

the abstraction levels used in the specification of semantics of C by Gurevich and Huggins.

Therefore, following the work of Chen et al. on semantic anchoring [14], I describe a mapping

from TinyVT threads to a finite automata based model, the behavioral and compositional

semantics of which I define formally in the AsmL language. This approach allows for exam-

ining the properties of composition of threads as parallel composition of finite automata.

Finally, I will show that the finite automaton to which a TinyVT thread is mapped is

always deterministic (i.e. for the same initial configuration, whenever two traces agree on

the inputs they will agree on the outputs and the final state as well), and that composition

preserves determinism.

3.4 Approach

3.4.1 Alternatives

One of the most obvious means of specifying the formal semantics of a programming

language is the translational approach. This can be achieved by choosing a target language

for which a formal specification of semantics already exists. Then, one needs to formally de-

scribe a set of translation rules that map TinyVT program code to the target language. This

approach would certainly be suitable to specify TinyVT’s semantics: C lends itself to being

the target language of the translation; and the formal description of the TinyVT compiler

could serve as a set of transformation rules. While such a formal semantics specification

adequately describes a particular compiler, it tends to be too inflexible as a language speci-

fication. This approach implies that all compilers must implement certain language features

in one particular way, resulting in unnecessarily overspecifying the language. Another disad-

vantage of the translational approach is that the resulting specification is very cumbersome

to reason about: it would not be the right level of abstraction to examine the interaction

semantics and compositional semantics of TinyVT threads.

82

The operational and denotational approaches eliminate these shortcomings of the trans-

lational approach, since they are used to specify the semantics of a language formally, in

terms of logical or mathematical concepts. Significant research has been conducted on for-

mally specifying the semantics of the C language, using the operational and the denotational

approaches: Gurevich and Huggins gave the formal (operational) semantics of C using the

abstract state machines approach (formerly called evolving algebras) [35]. Norrish formalized

the operational semantics of C in Isabelle/HOL [63]. Sethi used the denotational approach to

describe the semantics of C control structures and declarations [70]. Cook and Subramanian

formalized the semantics of a subset of C in the Boyer-Moore theorem prover [18]. Cook

et al. used the denotational approach to derive a denotational semantic specification for C

in temporal logic [17]. Similarly, Papaspyrou, in his Ph.D. thesis [64], provides a complete

denotational semantics specification or C.

3.4.2 Operational semantics with abstract state machines

To specify the formal semantics of TinyVT, I chose to extend the work of Gurevich and

Huggins, which follows the operational approach. This work specifies the semantics of C

using abstract state machines (evolving algebras). One compelling property of an abstract

state machines based specification is that the semantics can be described on multiple ab-

straction levels, where a lower abstraction level is a refinement of a higher one. In their

work, Gurevich and Huggins used four abstraction layers, which specify the semantics of

control flow, evaluation of expression, memory allocation and initialization, and function

invocations, respectively. Although these four layers are sufficient to describe the formal

semantics of TinyVT, exploring the interaction and compositional semantics of threads re-

quires a higher level of abstraction, where threads are handled as first class objects while

omitting unnecessary details.

In this work, I specify the semantics of TinyVT using five abstraction layers. Within the

the same framework that Gurevich and Huggins used, I describe the semantics of control

flow, evaluation of expression, memory allocation and initialization, and function invocations

in TinyVT. To investigate the interaction semantics and compositional semantics of TinyVT

threads, I introduce a fifth layer of abstraction.

3.4.3 Modeling threads as automata

TinyVT threads are software artifacts with a reactive behavior: The execution of a thread

is triggered (or resumed) by an event from the thread’s environment. As a reaction to this

event, the thread carries out a computation, alters the local state, and returns control to

83

the originator of the event. While carrying out a computation, a thread may send events

to its environment (which may include other threads, other software or hardware entities).

The thread’s reaction to an external event depends on the local state. The state of a thread

is not exposed to its environment: local state can only be altered by the thread’s local

computation.

The above characteristics of TinyVT threads make them an ideal subject of being modeled

as finite automata (FA): Events to which the thread reacts are modeled as input actions,

while events that the thread generates are modeled as output actions. I model returns from

threads (after completing a computation in reaction to an external event) as output actions,

while returns from the environment (in response to an event from the thread) are modeled

as input actions. The automaton has a local state which can only be altered in response

to an input, and only in ways defined by the automaton’s transition relation. I model

compositions of TinyVT threads as parallel composition of finite automata. When two

threads are composed, outputs of one may be inputs to the other. One important property

of the definition of automata composition I define is that, in such a case, the corresponding

input and output actions are instantaneous.

Structurally, I define the FA that I use on the fifth layer of TinyVT’s specification of

semantics as a 6-tuple of state set, initial state, input, output and internal actions, transition

relation. I specify this static structure (also called static semantics or structural semantics),

as well as the corresponding behavior (dynamic semantics or behavioral semantics) in the

AsmL language.

Given an automaton as a (concrete) set of states, initial state, actions and transitions,

the behavioral semantics unambiguously specifies how it operates. Due to the separation of

structural and behavioral semantic specifications, however, the behavioral semantics speci-

fication does not use the concrete data model of the automaton, since it is specified only in

terms of concepts specified in the structural semantics. As a result of this, to assign formal

behavioral semantics to TinyVT threads, it is sufficient to describe a mapping from a thread

(or more precisely, from the abstract syntax tree of a thread) to the structural model of the

finite automata.

3.4.4 Compositionality

Similarly, I define the structural and behavioral semantics of automata composition sep-

arately. The static structure of the composition of two finite automata is defined uniquely

by the static structure of its parts, where actions are matched by name. When specifying

the structural semantics of the composite in AsmL, I do not compute the state set and

84

transition relation of the composite explicitly. This computation can be omitted because

the result is never used in the specification of behavioral semantics of composition. The

behavioral specification defines how a composite reacts to external events, specifically, how

external events are dispatched to the parts and how events that are shared between parts

are handled. The state set and transitions of the composite are implicitly defined by the

behavioral semantics. Assigning behavioral semantics to a composition of TinyVT threads,

it is sufficient to provide a mapping from a set of interacting threads to the data models of

a set of corresponding finite automata.

I show that the composition of finite automata is also a finite automaton. This allows for

hierarchically modeling composition of TinyVT threads, that is, not only automata, but also

compositions of automata can be parts of a composition. I will also show that the mapping

from TinyVT thread to automaton always results in a deterministic finite automaton, and

that determinism is preserved through composition. As a result, a system that consists

exclusively of TinyVT threads is always deterministic.

3.5 Abstract State Machines

Abstract State Machines (formerly known as evolving algebras) [34, 10] is a mathemat-

ical formalism which allows for describing arbitrary states of arbitrary algorithms on their

natural abstraction level. Abstract state machines (ASM) allow for separating concerns that

are at different abstraction levels, e.g. specification-level concerns from design-level concerns,

without introducing a gap between the different levels. Data and operations can be repre-

sented in terms of the concepts of the particular problem domain in an abstract manner,

that is, there is no prescribed means of representing objects and actions.

3.5.1 Mathematical background

State

The notion of state in ASM terminology is not an indivisible entity, but rather an ar-

bitrarily complex (or simple) first-order structure. ASM state is significantly more general

than a state of a finite state machine (FSM), or than being just a set or a function. A

state is a collection of domains (sets, called universes in ASM terminology, each of which

represents a particular kind of object) along with relations and functions defined on them.

The number of the universes together with their integrity constraints, and the functions

with their arity, domain, and range, are considered as part of the signature of the state. A

universe can be completely abstract, meaning that there is no knowledge available about

the elements and about their representation in a certain language or system. Alternatively,

85

if the domain elements have certain properties, or are in relation with other objects, or are

subject to manipulation, then the corresponding constraints, predicates or functions need to

be formalized. The ASM approach, however, does not designate any particular notation for

this formalization. Functions are either static, which means that the value of the function

can not change as the state evolves, or dynamic, meaning that function values can be al-

tered. Functions with Boolean values are called predicates, which can be used to represent

various constraints. Boolean operations, the equality sign, and static names true, false and

undef are always part of the vocabulary. The universes and the static functions provide the

basic structure of the modeled system, while dynamic functions, which change as the system

evolves, reflect the system’s dynamic aspect.

Updates

An abstract machine operates by changing the abstract state, that is, by changing the

structures. Through these changes, the signature of the state, as well as the predicates

(which can be treated as characteristic functions) must remain fixed. It is the functions that

can be altered, namely the value of certain functions for certain arguments can be changed.

Notice that changing the value of a variable is just a specialization of this concept: The

variable can be represented as a nullary function, changing the value of which alters the

value of the variable.

State transformation is achieved by the simultaneous execution of finitely many rules.

According to Gurevich’s definition, ASM M is a finite set of rules that define guarded

function updates. Applying one step to state A produces the next state A′ of the same

signature, as follows. First, all guards of the rules of M are evaluated in A, according to the

standard interpretation of classical logic. Then, for all rules for which the guard evaluated

true, all arguments and update values are computed in A. Finally, the function values in

A are replaced simultaneously by the newly computed update values for the arguments in

question (assuming no contradicting updates), yielding A′. As a result of a step, A′ will

differ from A in the values of the functions updated by a rule in M that could fire in A.

Simultaneous execution of rules

The fact that updates within a step are executed simultaneously proved to be particularly

useful in many application areas of ASMs. It allows for modeling updates as macrosteps:

At a particular level of abstraction, one intends to hide the low-level implementation details

(microsteps), which results in simpler high-level models omitting unnecessary details and

premature sequentialization. Also, it provides a natural way to model synchronous systems,

where a global clock tick can be modeled as a single machine step.

86

Locality of updates

As a consequence of ASM state not being an indivisible mathematical entity, executing

an update step only changes a part of the state, i.e. only a few functions for selected

arguments, that appear in the rules the guard predicates of which evaluated true in the

given step. Everything not affected by the rules remains unchanged. This, with careful

design of models, can prevent combinatorial explosion of state space, which is a common

problem with many formal modeling languages that rely on a global, holistic interpretation

of systems. This feature of the ASM approach promote modularizing ASM models, such

that most updates local to a module will change variables that are only used locally.

Nondeterminism

Nondeterminism is a notion that is essential to modeling reactive systems, or, in general,

systems at a high-level of abstraction without prematurely committing to certain design de-

cisions. To support nondeterminism, ASM provides the choose rule, with multiple subrules,

exactly one of which will be chosen nondeterministically to be executed.

3.5.2 The Abstract State Machine Language

Although the ASM approach does not specify what formalism should be used to describe

ASM models, it is convenient to use one of the ASM-based tools (ASM WorkBench [12],

XASM [4], ASMGofer [69], AsmL [37]). The Abstract State Machine language (AsmL),

developed at Microsoft Research, is an executable specification language based on the theory

of Abstract State Machines. Below a brief overview of AsmL is presented, only to the extent

required for understanding AsmL code later in this chapter. Detailed description of the

language is beyond the scope of this work. For in-depth details please refer to [36].

The syntax of AsmL resembles that of imperative, object-oriented programming lan-

guages. It borrows many features from modern object-oriented languages, such as interfaces,

classes, inheritance, overloaded functions and operators, etc. AsmL also supports properties

(as in C#), exception handling and assertions.

AsmL defines basic types - such as Boolean, Integer or String - and allows for the

definition of user defined types. Operations on built-in types are available either natively in

the AsmL language, or through the AsmL library.

Types

Universes in ASM models are represented as types in AsmL. The language has built-in

types, such as Null, Integer, String, etc. By default, a variable of type T cannot have an

87

undefined value (null). To allow a variable to hold null value, the type should be specified

with the ”?” type modifier, as ”T?”.In addition, it provides three type families for collections

of values: Sets, sequences and maps can be defined as follows.

• Set of T - Unordered, finite collections of distinct elements of type T

• Seq of T - Ordered, finite sequences of elements of type T

• Map of T to S - Tables that map distinct keys of type T to values of type S

There are several ways to create user-defined types. Tuples can be defined in the form of

(T1,T2) where both T1 and T2 are types. Alternatively, arbitrary user-defined compound

types can be defined using the structure keyword:
structure Person

name as String

age as Integer

The third alternative to create user-defined types is the notion of class. Classes in AsmL

can be defined similarly to classes in other object-oriented languages. A class definition

contains both data (fields) and operations on the date (methods).

class Vector2D

var X as Integer

var Y as Integer

AsmL supports inheritance (but not multiple inheritance):

class Vector3D extends Vector2D

var Z as Integer

For all types except for classes, the semantics of equality is based on value. Two variables

are equal if they have the same structure and the values of the elements are equal. In

contrast, two instances of a class are never equal. Classes have reference semantics. There

are no pointers in AsmL, hence, classes provide the only means to share memory, and it is

the only form of aliasing available.

One particularly helpful language feature is that classes can be defined incrementally.

For example, the two code segments below are equivalent.
class Circle

var O as Integer

var R as Integer

class Circle

var isFilled as Boolean

class Circle

var O as Integer

var R as Integer

var isFilled as Boolean

In addition to incremental additions to a class definition, incremental modifications (e.g.

adding modifiers or adding an interface the class implements) are also allowed.

88

Variables

Variables in AsmL are equivalent to dynamic nullary functions in the underlying ASM

model. To declare a variable of a simple type, one would write, for example:

var i as Integer

Depending on the scope, variables can be global, local or instance-based. Global variables

are accessible from all code, while local variables are only accessible from within the block

where they are defined. Instance-based variables are accessible through their encapsulating

object using the ’.’ operator.

Updates

Execution of AsmL programs progresses in discrete steps. Updates do not occur until

the step in which they are executed is completed, therefore, the updated value of a variable

can only be observed in the next step. The following piece of AsmL code demonstrates this.
var a as Integer = 0

var b as Integer = 0

Main()

step

a := 1

b := 2

WriteLine(a) // a is still 0 here

WriteLine(b) // b is still 0 here

step

// updates of previous step visible here

WriteLine(a) // a is 1 here

WriteLine(b) // b is 2 here

step

// swap values of a and b

a := b

b := a

step

// updates of previous step visible here

WriteLine(a) // a is 2 here

WriteLine(b) // b is 1 here

This synchronous deferred update semantics allows for swapping the values of two vari-

ables without using a temporary variable. Consider the fourth step in the above example:

Since updates only occur at the end of the step, the values of a and b on the left-hand-side of

the update operation will evaluate to 1 and 2. The update of the variables will be deferred

until the end of the step.

Reflecting ASM’s approach to function updates, all variable updates that are executed

within a single step are simultaneous in AsmL. Updates in AsmL can be either complete or

partial. Multiple partial updates are allowed within an execution step as long as they are

consistent.

The following example demonstrates a complete update of a variable of a structured type.

89

var p as Person = Person ("Jane Doe", 33)

Main()

step

p := Person ("Jane Smith", 34)

Alternatively, the code below, containing two consistent partial updates has the same

effect.
var p as Person = Person ("Jane Doe", 33)

Main()

step

p.name := "Jane Smith"

p.age := 34

Methods

Methods are named operations that can be invoked in various contexts. A method

definition includes the name of the method, and may optionally specify a finite number of

arguments and a return value. AsmL distinguishes two kinds of operations: functions and

update procedures. Although syntactically equivalent, functions have no effect on the state

variables, while execution of update procedures alters the values of state variables after the

update step is completed. An update procedure that increments the value of global variable

i with a delta value given as a parameter is programmed as follows.
Increment(delta as Integer)

i := i + delta

A dedicated function, Main() serves as a global entry point to an AsmL program.

3.6 Operational semantics of C

In [35] Gurevich and Huggins specify the formal operational semantics of C using the

Abstract State Machine approach1. An ASM based formal specification may include several

layers of abstraction, each layer being the refinement of a higher-level one. This way, language

features can be examined at the desired level of abstraction at which irrelevant details are

omitted. This layering, at the same time, gives better structure to the formal specification,

and makes it easier to comprehend.

The specification of C semantics by Gurevich and Huggins is only concerned with behav-

ioral aspects of a C program, and assumes that all syntactic information is resolved by the

syntactic analyser, and is available to the ASMs that define the program behavior. Instead

of operating on an abstract syntax tree (AST) of the C code, the ASMs assume that the

1[35] uses the term Evolving Algebras, since it was written before the approach was renamed to Abstract
State Machines. For the sake of clarity, I use the term Abstract State Machine is used in this dissertation.

90

syntactic analyser outputs the static data structures (a set of static functions) on which the

ASMs operate.

The C semantics specified by Gurevich and Huggins is comprised of four layers:

• Statements

• Expressions

• Memory allocation and initialization

• Functions

The rest of this section gives a brief overview of each of these layers, highlighting the

techniques the authors used, and focusing on the details which are required to understand

TinyVT’s specification of semantics, which will be presented later in this chapter.

3.6.1 Layer 1: Statements

The first layer models C statements, including those that define C control structures (do,

while, for, if, etc.). Two universes are defined at this layer of abstraction: tasks and tags.

Tasks represent units of computation by the C program interpreter, such as execution of a C

statement, evaluation of an expression or initialization of a variable. The set of tasks contains

all tasks that may occur during the execution of the program, and it depends on a partic-

ular program being executed. A distinguished dynamic nullary function, CurTask : task

indicates the current task. The static function NextTask : task → task ensures that tasks

are executed in the given order. (The abstract syntax of a given C program unambiguously

defines the NextTask function.) Initially, at this layer of abstraction, CurTask is set to the

first statement in the program. After the last statement of the program, CurTask is set to

undef .

Transferring control to a specific task by modifying the value of CurTask is a recurrent

theme in this specification. Gurevich and Huggins define the MoveTo macro that transfers

control to the task given as parameter:
MoveTo(Task)

CurTask := Task

The universe tags contains labels that are assigned to tasks with the static TaskType :

task → tag function, indicating the nature of the task (e.g. wether the task is an execution

of a statement or an initialization of a variable, etc.).

91

This layer of abstraction specifies the semantics of all types of C statements: expression,

selection, iteration, jump, labeled and compound statements. The following paragraphs ex-

plain, through a representative subset of the above statement kinds, how the ASM approach

is used to specify the semantics of C. For further details, the reader should refer to [35].

Expression statements

In C, an expression statement means evaluating an expression. At this level of abstrac-

tion, it is assumed that the evaluation of the expression is handled by an external function

TestV alue : task → result, where result is an universe of results. The expression is evalu-

ated even if the resulting value is never used, since the evaluation may have side-effects. As

this layer of abstraction of the semantics specification is only concerned with control flow,

the ASM rule for an expression statement is as simple as proceeding to the next task.
if TaskType(CurTask) = expression then

MoveTo(NextTask(CurTask))

Selection statements

C specifies two kinds of selection statements: if and switch. The if statement has two

forms: ”if(expression) statement” and ”if(expression) statement else statement”.

To give and idea how the semantics of selection statements is defined, without being com-

plete, I only present the semantics of the latter here.

The semantics of the if-else statement relies on the external function TestV alue to eval-

uate the guard expression. If the result TestValue returns is non-zero, the task in the true

branch is executed. Otherwise, if the result is zero, execution continues with the false branch.

The static functions TrueTask : task → task and FalseTask : task → task are used to

query for the true and false branches in an if statement.
if TaskType(CurTask) = branch then

if TestValue(CurTask) != 0 then

MoveTo(TrueTask(CurTask))

elseif TestValue(CurTask) = 0 then

MoveTo(FalseTask(CurTask))

The statements in both branches link to the task following the if statement with the

static NextTask function.

Statements in the true or false branches can potentially be compound statements. Gure-

vich and Huggins do not give special rules for compound statements: A compound statement

is a list of statements linked together with the static NextTask function. The first task

within the compound statement is linked from the last task preceding it, and the last task

of the compound statement is linked to the first task following it.

92

Iteration statements

Similar to the if statement, the semantics of iteration statements are also specified using

the TestV alue, TrueTask and FalseTask functions.

Jump statements

The break statement within a switch statement or a goto statement indicate that

control should be unconditionally transferred to the task specified by the default label, or by

the corresponding label, respectively. The break and continue statements unconditionally

transfer control to the first task of the enclosing iteration statement or the first task following

the enclosing iteration statement, respectively. All this information is available statically,

and is encoded in the static NextTask function.

The return statement, at this layer of abstraction, is modeled by setting CurTask to

undef and halting program execution.

3.6.2 Layer 2: Expressions

The second layer of abstraction in the operational semantics specification of C deals

with expressions. Refining the first layer, the TestV alue function is concretized: At the

second layer, it is an internal dynamic function. Furthermore, tasks with expression tags

(which model expression statements in the first layer) are now expanded, representing the

internal structure of expressions. This level of abstraction incorporates the notion of a store

abstraction, and uses several functions to represent memory read/write operations. Also, C

built-in types are handled at this level, with static functions to return the size of a type and

to convert memory locations to results of a given type. Identifiers (identifier expressions)

are mapped to memory locations, using a static function, as well.

All kinds of expressions are modeled at the second layer, except for function invocations.

For now, a function invocation is modeled with an external FunctionV alue : task → result

function, which returns the result, i.e. the return value of the function.

Evaluation order of subexpressions

Undefined evaluation order

According to the C standard, for many binary expressions in C (binary arithmetic op-

erations, assignment operation, etc.) the order of evaluation of subexpressions is undefined.

This means that C compilers are free to generate code with arbitrary fixed evaluation order,

or, can take advantage of this ambiguity to implement compiler optimizations. As a result,

93

for the same source code, the evaluation order of subexpressions may be different from plat-

form to platform (hardware and operating system), moreover, it may even vary between

subsequent executions of the same binary on the same platform.

The ASM based semantics specification uses the choose construct to model this nonde-

terminism. For all binary operations with undefined execution order, a dynamic function

V isited : task → {neither, left, right, both} is used to mark which subexpressions have al-

ready been evaluated. Initially, V isited is set to neither, and a nondeterministic choice is

made to decide if the left or the right subexpression is to evaluate first. After evaluating the

chosen subexpression, the value of the V isited function is updated for the parent statement

accordingly. Then, the other subexpression is evaluated, setting the value of V isited to both.

To allow for jumping between subexpressions depending on the nondeterministic choice, the

MoveTo macro is redefined, such that it inspect the value of V isited to set CurTask to the

subexpression which has not been evaluated yet.

Omitted subexpressions

For some expressions, subexpressions may or may not be evaluated, depending on certain

conditions. For example, if the first (left) operand of a logical OR expression evaluates to

a non-zero value (TRUE), the result of the expression is known, hence the second (right)

operand will not be evaluated. Similarly, for the logical AND operation, the evaluation of

the second operand is omitted if the first operand evaluates to zero (FALSE). Gurevich and

Huggins model this by linking the subexpressions with TrueTask and FalseTask instead of

NextTask, hence, skipping the evaluation of the left operand based on the result from the

evaluation of the right operand.

3.6.3 Layer 3: Memory allocation and initialization

The third layer extends the previous layer with the semantics of memory allocation and

initialization. The tags universe is extended with the declaration element, representing

variable declaration tasks. Declaration tasks are linked in the proper order with statement

tasks with the static NextTask function.

C distinguishes between static and non-static variables. Static variables are initialized at

most once, only the first time the declaration task is executed. Every time the declaration

task of a static variable is executed, it assigns the same memory area to the declared variable.

For non-static variables, the declaration task executes the initializer unconditionally, and

assigns a new memory area to the variable.

Special care is needed when treating local automatic variables that are declared (with

94

optional initializers) in a scope that can be entered with a non-local jump. In such case,

memory must be allocated to the variable, but the initialization, if present, is skipped.

Gurevich and Huggins solve this by redefining the semantics of the non-local goto statement:

Instead of an unconditional jump, the goto statement now transfers control to a series of

indirect initialization task that allocate the memory for the local automatic variables within

the scope being entered.

3.6.4 Layer 4: Functions

The fourth layer of abstraction specifies the semantics of function definitions and function

invocations. Since a C function may have multiple active incarnations at a given moment

(e.g. as a result of recursion), a task alone is insufficient to capture to which incarnation of

the function it belongs. Overcoming this issue requires modeling the stack as a universe. The

universe stack consists of positive integers, each representing a different stack frame, whith

a distinguished element StackRoot = 1. The functions StackNext : stack → stack and

StackPrev : stack → stack are used to navigate the stack. The unary function StackTop

represents the top of the stack. Store-related functions are now changed to reflect state stored

on the stack. The FunctionV alue function, introduced in the second layer of abstraction is

now eliminated.

Function invocation, from the caller’s point of view, is modeled as follows. Similarly to

most binary operation expressions, the evaluation order of function arguments is undefined in

C. This nondeterministic evaluation is modeled analogously to binary operation expressions

in the second layer. Once the arguments are computed, a new frame is pushed to the stack

by incrementing StackTop. The values of the arguments, as well as the return task, are

associated with the new top of the stack, and control is transferred to the first task of the

function. The ReturnTask : stack → task function is updated to return the task following

the function invocation expression for the current top of the stack. When the function

finishes, control is returned to this task. After the function returns, the result is available at

the top of the stack.

From the callee’s aspect, execution of a function consists of three steps. First, memory

is allocated for the arguments, as described in layer three. Then, the function’s body (a

compound statement) is executed. Finally, the return statement is redefined to associate

the optional return value with the top of the stack, and pass control back to the return task

associated with the top of the stack.

Since previous abstraction layers did not handle functions, there was no distinction be-

tween local and global variables. This layer of abstraction defines a static GlobalV ar :

95

task → bool function to check if a variable is global or not. The specification of seman-

tics assigns all global variables to StackRoot. This way, when global variables need to be

accessed, StackRoot is used instead of the actual top of the stack in the corresponding func-

tions. To bootstrap a C program, this abstraction layer of the semantics specification sets

the initial value of CurTask to the first global variable declaration, or, if none present, to

the first task of the main() function.

3.7 Semantics of TinyVT

This section defines the semantics of TinyVT as an extension to the C semantics of

Gurevich and Huggins. The four levels of abstraction allow for exploring distinct aspects of

the semantics of TinyVT separately.

3.7.1 Layer 1: Statements

The first layer of abstraction models C control structures. TinyVT extends the C lan-

guage with four statements: await, yield, dreturn and ireturn.

The await statement

We will model the await statement as a selection statement: Since an await statement

may include multiple event handlers, the type of the received event will specify which one of

the inlined function bodies will be executed. Because the semantics of function invocations

are not specified until the fourth layer, for now, we define an external ResumeTask : task →
task function which, for an await task, returns the first task of the inlined event handler the

thread execution should continue with.
if TaskType(CurTask) = await then

Moveto(ResumeTask(CurTask))

ResumeTask may return undef in the case when an unexpected event is received by the

thread. In such situation, the execution of the program halts.

The yield statement

The yield statement is syntactic sugar. It is equivalent to requesting the deferred exe-

cution of the deferredEvent event handler, followed by an await statement with a single

deferredEvent handler inlined. The deferred execution request is a function call to the event

dispatcher (a service external to a thread), which is handled as an expression statement at

this abstraction level. This expression statement is linked to the await statement with an

empty-bodied event handler of deferredEvent with NextTask.

96

The ireturn statement

TinyVT’s syntax does not allow the return statement within threads. Instead, two return-

like constructs are specified: ireturn and dreturn.

The dreturn statement may appear in the body of inlined event handlers within await

statements. It may or may not be followed by an expression defining the return value.

The ireturn statement is a shorthand notation to specify that a yield statement should be

executed immediately after the enclosing await statement. A more complete discussion of

the ireturn (and dreturn) will be presented in the fourth layer of abstraction. For now,

ireturn is specified as an unconditional jump to a yield operation, which is then linked with

NextTask to the task following the enclosing await block.

The dreturn statement

Similarly to the syntax of ireturn, the dreturn statement may appear in the body of

inlined event handlers within await statements, and may or may not be followed by an

expression defining the return value. It is modeled as an unconditional jump to the task

following the enclosing await block.

Limitations on jump statements

TinyVT syntax does not allow for jumps into or out of the body of inlined event handlers

of await statements. This restriction applies to goto, break and continue statements, and

forbids switch statements the body of which incudes an await statement with a case label in

the inlined event handler.

For other uses of jump statements, the semantics defined by Gurevich and Huggins apply.

3.7.2 Layer 2: Expressions

For many binary operations, the C standard does not define an evaluation order for the

subexpressions representing the operands.

TinyVT, however, requires that the order of function calls made by the thread should

always be deterministic, therefore, expressions that include function call subexpressions with

undefined evaluation order are not allowed in the generated code.

3.7.3 Layer 3: Memory allocation and initialization

Memory allocation and initialization within TinyVT threads is identical to that in stan-

dard C.

97

3.7.4 Layer 4: Functions

The caller’s story

Similarly to binary mathematical operations, for function invocations, the C standard

does not define a fixed evaluation order of arguments. TinyVT, however, forbids this nonde-

terminism by requiring that the order of function calls made by the thread be deterministic.

Apart from the evaluation order of function arguments, the caller’s story is identical that in

the specification given by Gurevich and Huggins.

The callee’s story

Event handlers in TinyVT are similar to C function definitions in many respect. However,

there can be multiple different event handlers for the same event type inlined in different

await statement. It depends on the actual thread state which of these is going to be executed

in response to a function call from the environment.

In response to a function call from the environment, control is passed to an event handler

stub within the thread that is common to all events of the same kind. First, memory is

allocated for the parameters, identically to C function definitions. Then, memory is allocated

to the return value if the return type is non-void.

We define a dynamic function ThreadState : task which defines where the execution of

the thread should be resumed at the next call to the thread. Initially, ThreadState is set to

the task corresponding to the first await statement of the thread.

A static function ResumeTask : (task, task)→ task is called to find out which handler

body of which await block to jump to. The first argument of ResumeTask is the current

task that identifies the event handler stub, the second argument is the current thread state,

and it returns the first task of a particular event handler within the await block at which

the thread is currently blocked.

The semantics of dreturn and ireturn statements are expanded at this level of abstrac-

tion. If the return statement is followed by an expression, it is evaluated, and the result is

placed in the memory allocated for the return value. After this, the control leaves the inlined

function body as it is specified in the first layer.

The execution of the function ends when an await statement is reached. At this point,

ThreadState is set to the identifier of the await task reached, the return value is associated

with the top of the stack and control is passed to ReturnTask.

98

3.8 Compositionality

Compositionality is an important notion in designing and analyzing complex systems. For

a reasonably complex system that is built of a large number of components, proving that

certain properties hold for the system as a whole can be very complicated. Compositionality

provides a constructive approach to proving system properties. Instead of the entire system

being the subject of analysis, it is sufficient to ensure that the properties in question hold

for its constituents, commonly called components, if it can be shown that properties are

preserved through composition. The essence of compositionality is that properties of the

composite are a function of properties of its components.

In this section, the compositionality of TinyVT threads is investigated. Since ensuring

predictable operation is one of the fundamental design goals in embedded systems, the

property I will closely look at is determinism. I define determinism as follows. A system is

deterministic if, whenever two program traces agree on the inputs, they always agree on the

outputs and the final state, as well. While such a definition of determinism is meaningless in

embedded systems in general, since not only the ordering but the timing of the inputs affect

the outputs, it is suitable for TinyVT threads that are shielded from the environment with

an event-driven runtime that serializes external events. I will show that show that TinyVT

threads are deterministic in this sense, and that the (parallel) composition operation that I

define preserves this property.

While the previously presented four abstraction layers of the semantic specification suf-

ficiently describe the semantics of TinyVT, the level of detail is too fine-grained to examine

the compositional behavior of TinyVT threads. The ASM approach, however, provides a

means to describe the semantics of the language at the level of abstraction that is most suited

to investigate the property in question. This section describes TinyVT automata (TA), an

abstract model that hides irrelevant details and allows for examining interaction between

different threads and between threads and the environment, focusing on control flow and

communication. The abstract model retains details that are related to externally observable

communication and control, such as tasks related to passing control (i.e. calling functions

external to a thread or awaiting external events) and local thread state that affects control

flow. Irrelevant details, such as tasks corresponding to individual C statements that are not

related to passing control across thread boundaries, or local state not affecting control flow

are not modeled.

The model described below allows for hierarchical composition, that is, a composition of

threads may also be subject to composition. This way, a complex system can be modeled

99

as a hierarchical composition where the leaves of the composition tree are TinyVT threads

and the non-leaf nodes nodes are composites.

3.8.1 Modeling TinyVT threads as finite automata

Formally, a TinyVT thread is modeled as a TinyVT Automaton (TA), a kind of finite

automaton similar to I/O Automaton [57] and Interface Automaton [19], but with different

behavioral semantics. The TA is defined as a 6-tuple < S, s0, Ain, Aout, Ah, T >, where

• S is a finite set of states,

• s0 ∈ S is the initial state,

• Ain is a finite set of input actions, Aout is a finite set of output actions, and Ah is a

finite set of internal (hidden) actions. The set of input, output and internal actions

are pairwise disjoint, that is, Ain ∩ Aout = �, Ain ∩ Ah = � and Aout ∩ Ah = �.

A = Ain ∪ Aout ∪ Ah denotes the set of all actions.

• T : S × A× S is a transition relation.

If a ∈ Ain, then (si, a, sj) ∈ T is called an input transition. Similarly, if a ∈ Aout or

a ∈ Ah, then (si, a, sj) ∈ T is called an output or internal transition, respectively. An action

a is enabled in state s if there exists a transition (si, a, sj) for some state sj.

We denote the set of enabled input, output and internal actions in state s with Ain(s),

Aout(s) and Ah(s), respectively. The set of enabled actions at state s is denoted with A(s).

Similarly to Interface Automata and unlike IO Automata, the TinyVT automaton is

not required to be input-enabled, that is, Ain(s) = Ain need not necessarily hold for any

state s ∈ S. For a state s ∈ S, Ain \ Ain(s) denotes the set of illegal inputs, that is,

input actions that are not enabled when the current state is s. Furthermore, A(s) = �
is allowed, to allow for modeling a final state from which no transitions originate. Unlike

Interface Automata, TinyVT automaton assigns lower priorities to input transitions than to

non-input (i.e. output or internal) ones. As a result, a TA is input enabled only if there is

at least one enabled input transition and there are no enabled output or internal transitions

at the given state.

Notice that the above definition of TinyVT automata allows for modeling nondetermin-

ism, since T is a relation, not a function. For instance, (si, a, sj) ∈ T and (si, a, sk) ∈ T are

allowed to hold at the same time, meaning that, from state si, for action a, the next state is

randomly chosen to be either sj or sk.

100

3.8.2 Compositionality of automata

Two TinyVT automata M1 and M2 are composable if for every a ∈ A1 ∩ A2 either

a ∈ A1in
∩A2out or a ∈ A1out∩A2in

. This means, that every action that is shared between the

two automata, denoted as Shared(M1, M2) = A1 ∩A2, is an input of one and and output of

the other.

The composition of automata M1 and M2 is denoted as M1‖M2, where ‖ is the (parallel)

composition operator. If M1 and M2 are composable, their composition M1‖M2 is defined

as

• SM1‖M2 = S1 × S2,

• s0M1‖M2
= (s01 , s02),

• AinM1‖M2
= Ain1 ∪ Ain2 \ Shared(M1, M2),

• AoutM1‖M2
= Aout1 ∪ Aout2 \ Shared(M1, M2),

• AhM1‖M2
= Ah1 ∪ Ah2 ∪ Shared(M1, M2),

• TM1‖M2 = {((si1 , si2), a, (sj1 , si2)) | (si1 , a, sj1) ∈ T1 ∧ a ∈ A1 \ A2}
∪{((si1 , si2), a, (si1 , sj2)) | (si2 , a, sj2) ∈ T2 ∧ a ∈ A2 \ A1}
∪{((si1 , si2), a, (sj1 , sj2)) | (si1 , a, sj1) ∈ T1 ∧ (si2 , a, sj2) ∈ T2 ∧ a ∈ Shared(M1, M2)}.

The rule describing how the transition relation of the composition is computed consists

of three parts. The fist and second rules describe that if an action is accepted by one of the

components but not the other, a transition is generated for the composite that advances the

state of the component that accepts the action but leaves the state of the other component

unaltered. The third rule describes that if an action is accepted by both components (which

can happen only if it is an input action to one and an output action to the other) the state

of both components are advanced.

At a given state, it is possible that a shared action is output by one of the components but

not accepted by the other. Such states are called illegal states. We do not explicitly exclude

illegal states from the composition, for two reasons. First, it is convenient to define the

transition relation structure of the composite without constraints, leaving it to the behavioral

semantics to specify how the automaton behaves. Second, depending on the environment,

illegal states may or may not be reachable. For example, a composition which contains illegal

states will work reliably in an environment that never drives the composition into an illegal

state.

101

3.8.3 AsmL model

TinyVT automaton

The specification of semantics of the TinyVT automaton is split into two parts. First,

the static data structures are specified, then the dynamic (behavioral) semantics is defined.

The specification of semantics is given in the AsmL language, which, beside serving as a

formal specification of semantics, allows for simulating a TinyVT automaton or a network

of TinyVT automata using the AsmL tools.

Static data model

States are modeled as an AsmL class with two members, an optional unique name of the

state and a Boolean value indicating wether the state is the initial state.

1class State

2const name as String

3const initial as Boolean

Figure 38: TA state.

Action is modeled as a String, which holds the name of the action.

Transition is modeled as an AsmL structure, with the source and destination states, as

well as the action associated with the transition as members.

1structure Transition

2const src as State

3const dst as State

4const action as String

Figure 39: TA transition.

A TinyVT automaton is modeled as an abstract class. The automaton’s set of states,

set of input, output and internal actions, as well as the transition relation are modeled

as abstract properties. The concrete data sources for these properties can be provided by

subclassing.

102

1abstract class AbstractTA

2abstract property inputActions as Set of String

3get

4abstract property outputActions as Set of String

5get

6abstract property internalActions as Set of String

7get

8abstract property states as Set of State

9get

10abstract property transitions as Set of Transition

11get

Figure 40: The Abstract Data Model of TinyVT Automata.

Notice that the properties only have accessors (get), not mutators (set), hence they

cannot be modified as the state of the machine evolves.

Behavioral model

The behavioral model is described by continuing the implementation of the above classes

and abstract classes by specifying variables that are dynamic, i.e. the values of which are

changing while the state of the automaton evolves, and by specifying methods that manip-

ulate the data structures.

The Boolean variable active is included as a field in the State class, to indicate wether

the given state is the current state of the automaton, the state set of which it belongs.

Furthermore, a constructor is provided, which sets the active flag if the state is the initial

state.

1class State

2var active as Boolean

3State(name as String , initial as Boolean)

4active = initial

Figure 41: Behavioral aspect of TA state.

The dynamic behavior of the automaton is specified by the Step method. The Step

method has an argument of type String?, which, when the argument value is not null

(empty input), defines an input to the automaton and directs the automaton to execute a

corresponding input transition. The value of the argument can be null, in which case the

automaton can take an internal or an output transition. After the transition is executed,

the corresponding action is available as the return value of the Step method.

The assertion require Accepts(a) is used to verify that the automaton accepts the

action at the current state. The EnabledTransitions method computes the set of input

transitions that are enabled at the current state for the input action given as parameter,

103

or the set of enabled output or internal transitions, if the parameter is null. If multiple

transitions are enabled, a nondeterministic choice is made to randomly select one. The

selected transition is executed by clearing the active flag of the source state and setting the

active flag of the destination state simultaneously in one AsmL step.

1abstract class AbstractTA

2Step(a as String ?) as String?

3require Accepts(a)

4let transition = any t | t in EnabledTransitions(a)

5step

6transition.src.active := false

7transition.dst.active := true

8return transition.action

Figure 42: Behavior of a TA step.

The helper methods of the AbstractTA class are implemented as follows. The Accepts

method returns true if the set of enabled transitions for the action given as a parameter is

nonempty, otherwise it returns false.

1abstract class AbstractTA

2Accepts(a as String ?) as Boolean

3return Size(EnabledTransitions(a)) > 0

Figure 43: Deciding acceptance of an input.

The EnabledTransitions methods constructs the the set of enabled input transitions at

the current state for the input action given as a parameter, or the set of enabled output or

internal transitions if the parameter is null. Notice that an input transition is enabled only

if there are no output or internal transitions originating from the current state.

104

1abstract class AbstractTA

2EnabledTransitions(a as String ?) as Set of Transition

3if a = null

4return EnabledOutputTransitions ()

5union EnabledInternalTransitions ()

6else

7return EnabledInputTransitions(a)

8

9EnabledOutputTransitions () as Set of Transition

10return { t | t in transitions where t.src = CurrentState () and

11t.action in outputActions }

12

13EnabledInternalTransitions () as Set of Transition

14return { t | t in transitions where t.src = CurrentState () and

15t.action in internalActions }

16

17EnabledInputTransitions(a as String) as Set of Transition

18if Size(EnabledOutputTransitions ()) = 0 and

19Size(EnabledInternalTransitions ()) = 0

20

21return { t | t in transitions where t.src = CurrentState () and

22a in inputActions and t.action = a }

23else

24return {}

Figure 44: Querying enabled transitions.

The CurrentState method returns the current state by selecting the one from the state

set with the active flag set. The assertion require Size(activeStates) = 1 asserts that

no more than one state is active at a time.

1abstract class AbstractTA

2CurrentState () as State

3let activeStates as Set of State =

4{ s | s in states where s.active = true }

5

6require Size(activeStates) = 1

7return any s | s in activeStates

Figure 45: Querying the current state.

Composition of automata

Composition of automata is modeled as an abstract class, which contains references to

its components. To allow for modeling hierarchical composition of automata, a common

practice in software design, the AsmL model uses the Composite pattern[30]. Properties and

operations of the components that are used when specifying the data model or the behavioral

semantics of the composite are factored out to an interface. Since a composite can also be a

component of a composite which is higher in the composition hierarchy, both the automaton

class and the composite class needs to implement this common interface.

105

Static data model

The data aspect of the IAbstractTA interface contains the properties necessary for spec-

ifying of behavioral semantics of composition. Notice that neither the set of states, nor the

transition relation is exposed through this interface.

1interface IAbstractTA

2property inputActions as Set of String

3get

4property outputActions as Set of String

5get

6property internalActions as Set of String

7get

Figure 46: The IAbstractTA interface specifies the Abstract Data Model

of parts in a composition.

The AbstractTA class is modified incrementally to implement the IAbstractTA interface

as follows.

1abstract class AbstractTA implements IAbstractTA

Figure 47: TA implementing the IAbstractTA interface.

The data model of the composition is modeled as an abstract class. It implements the

IAbstractTA interface. The parts of the composite are given as an abstract property of

type Set of IAbstractTA, this way, components of a composite may be both automata

and composites.

The sets of shared, internal, input and output actions are computed from the internal,

input and output actions of the components, according to the definition of composition rules.

106

1abstract class AbstractComposite implements IAbstractTA

2abstract property components as Set of IAbstractTA

3get

4property sharedActions as Set of String

5get

6return { a | c in components , a in c.inputActions }

7intersect { a | c in components , a in c.outputActions }

8property internalActions as Set of String

9get

10return { a | c in components , a in c.internalActions }

11union sharedActions

12property inputActions as Set of String

13get

14return { a | c in components , a in c.inputActions }

15- internalActions

16property outputActions as Set of String

17get

18return { a | c in components , a in c.outputActions }

19- internalActions

Figure 48: Abstract Data Model of TA composition.

Behavioral model

In the behavioral model, two methods are added incrementally to the IAbstractTA in-

terface: Accepts and Step.

1interface IAbstractTA

2Accepts(a as String) as Boolean

3Step(a as String ?) as String

Figure 49: Behavioral aspect of the IAbstractTA interface.

The above two methods are implemented by the AbstractComposite class as follows.

Accepts returns true if any of the components accept the input, internal or empty action

in the current state. Building the state structure of the composite, which is the power set

of the state sets of the parts, and computing the composite’s transition relation would be a

complex task in AsmL, because the type of the composite state can be an arbitrary n-tuple,

where n is the number of leaf AbstractTA instances in the composition hierarchy. Instead,

the return value of Accepts is computed on the fly by delegating the call to the Accepts

methods of the components. This way, the state set and transition relation of the composite

do not have to be explicitly computed.

If Accept is called with null as parameter, true is returned if any of the components

have output or internal transitions enabled. If the parameter not null, but an input action,

Accepts return true if no components have output or internal actions enabled and there is

a component that accepts the input action, given as parameter, at the current state. In any

other cases, Accepts returns false.

107

1abstract class AbstractComposite implements IAbstractTA

2Accepts(a as String ?) as Boolean

3if (a = null)

4return (exists c in components where c.Accepts(a))

5else

6if Accepts(null)

7return false

8else

9return (exists c in components where c.Accepts(a)

10and a in inputActions)

Figure 50: Deciding acceptance of an input in composition.

The Step method is broken into two parts, depending on wether the action, given as an

argument indicates that an input transition or an output/internal transition is to be taken.

If the argument is null, that is, an empty input, an output transition is taken, otherwise,

an input transition is executed. The assertion require Accepts(a) guarantees that there

exists a part that accepts the input action or empty input.

1abstract class AbstractComposite implements IAbstractTA

2Step(a as String ?) as String

3require Accepts(a)

4if a = null

5step

6return OutputOrInternalStep ()

7else

8step

9return InputStep(a)

Figure 51: Behavior of the TA composition step.

As a reaction to an input action, the composite forwards the input action to the contained

component the set of input actions of which contains the given action. The component takes

the corresponding transition, and, as a result, the state of the composite also changes.

As a reaction to an empty input, an internal or an output transition is taken. First, a

component is selected that accepts the empty input, i.e. has an output or internal transition

enabled at the current state. Then, the Step method of the selected component is invoked,

which causes the selected component to take either an internal or an output transition. If an

internal transition of the component was taken, the Step method of the composite returns

null. If the selected component took an output transition, where the output action is an

output action of the composite, the output action is returned by the Step method of the

composite. However, if the selected component took an output transition, but the resulting

output action is a shared action, that is, it is an input to another component within the

composite, the corresponding input action of the latter is taken within the same step of the

Abstract State Machine. The output transition of the former and the input transition of

108

the latter is executed simultaneously by the composite, taking the form of a single internal

action.

1abstract class AbstractComposite implements IAbstractTA

2InputStep (a as String) as String

3let cs as Set of IAbstractTA = { c | c in components

4where a in c.inputActions }

5require Size(cs) = 1

6choose c in cs

7return c.Step(a)

8

9OutputOrInternalStep () as String

10let cs as Set of IAbstractTA = { c | c in components

11where c.Accepts(null) }

12choose c in cs

13let outputAction = c.Step(null)

14if outputAction in sharedActions

15return InputStep(outputAction)

16else

17return outputAction

Figure 52: TA composition step helper methods.

For reference, the compete AsmL sources, along with a simple example on how to instan-

tiate the abstract classes to simulate a composition of TAs is given in Appendix B.

According to the behavioral semantics of the composite described above, composition of

two deterministic TAs is always deterministic.

When an input event is sent to the composite, it forwards the event to its component

the input event set of which contains this event. This component can be uniquely identified,

since an event can only be accepted by one component.

As a reaction to the event, the component takes a (potentially empty) series of inter-

nal transitions followed by an output transition. Since the component is assumed to be

deterministic, the input uniquely determines the component’s output and new state.

If the output of the component is an input to the other component, it is sent as an

input to the other component, which in turn, will take a deterministic series of transitions,

resulting in a new state and returning an output. This process continues until the output of

one part is not an input to the other, in which case, it is output by the composite.

Since the composite does not interact with the environment while computing the output

in response to an input, the component’s state (which is a tuple consisting of the states of

the components) is evolving according to the deterministic rules described above. Since the

state uniquely specify the output, the output is deterministic, as well.

109

3.8.4 Mapping TinyVT threads to TinyVT automata

This section explains how TinyVT threads can be mapped to TinyVT automata. The

mapping requires only static information, which is statically extractable from the source

code of TinyVT threads and available as an abstract syntax tree and a static control flow

graph. The target of the mapping is the static data model of the TinyVT automaton.

Function invocations and await statements are the only points where a thread may inter-

act with its environment. A thread interacts with its environment by receiving and passing

control (optionally along with some data) from and to its environment, respectively. There

are four types of such interactions:

• When a thread is blocked, it can receive control and resume executing after receiving

an event (a function call) from the environment. This is expressed in TinyVT as an

await statement with an inlined event handler.

• When a thread yields, control is passed back to the source of the awaited event that

triggered the actual execution context when the control reaches the next await state-

ment.

• Threads may call out to external functions. While the external function is execut-

ing, the thread temporarily relinquishes control to the implementation of the called

function.

• When an external function is executing as a result of a call by the thread, the thread

waits until a return from the external function passes control back to the thread.

There are four kinds of thread state associated with these interactions:

• Blocking state: The thread is blocked and is waiting for an external event which will

cause the thread to resume computation.

• Yielding state: The thread has reached the end of the current execution context which

was triggered by the most recently accepted event and is ready to return control to the

originator of that event.

• Calling state: Thread execution has reached an invocation of an external function and

the thread is ready to pass control to the external function.

• Waiting state: The thread is waiting for the external function it has previously invoked

to finish and return the control back to the thread.

110

Assumptions

For the sake of simplicity, let us assume that every await statement has exactly one

inlined event handler. Furthermore, we will assume that control flow within a thread does

not depend on the values of function parameters or return values or global, static or shared

variables. This simplifying assumption allows us to model only the control flow aspect of the

interactions between threads such that the the resulting TinyVT automata will always be

deterministic. Later I will explain that the above simplifying assumptions can be relaxed,

at the cost of increased complexity of mapping rules and increased model size.

States

The first await statement in the thread maps to a blocking state which is the initial state

of the TA. All other await statements map to two states: a yielding state, an output transition

from which returns control to the event that triggered the thread’s current execution context,

and a blocking state, an input transition from which will resume thread execution. The

destination of transition from the yielding state is corresponding blocking state.

For every function invocation, two states are generated in the data model of the TA:

a calling state, a transition from which will generate an output action and pass control to

an external function, and a waiting state, an input transition from which represents the

return from the function call. The destination of transition from the calling state is the

corresponding waiting state.

Actions

Each awaited event maps to an input action and an output action. The input action,

enabled at some blocking state, represents passing the control from the originator of the

event to the thread, while the output action, enabled in some yielding state, represents the

return to the caller.

For every external function that is invoked by the tread, an output action and an input

action is generated. The output action, enabled at some calling state, corresponds to the

function invocation, and the input action, enabled at some waiting state, to the return from

the external function.

Transitions

For every blocking state, an input transition is generated, where the input action corre-

sponds to the event that is specified in the await statement that maps to the blocking state.

The destination state of the transition will be the next call or yield state in the control flow

graph (whichever appears first).

111

For every yielding state, an output transition is generated. The output action corresponds

to the event that that triggered the current execution context. The destination state of the

transition is a blocking state that is the mapping of the same await statement as the yielding

state.

We generate an output transition from every calling state. The output action corresponds

to the external function being called, the destination state is the waiting state that is the

mapping of the same function invocation as the calling state.

Finally, an input transition is generated for every waiting state. The input action corre-

sponds to the return from the external function for which the thread is waiting, the destina-

tion state is the next call state or yield state in the control flow graph (whichever appears

first).

The resulting TinyVT automaton is deterministic, since there is at most one out-transition

from every state.

Relaxing the assumptions

The following paragraphs explain that threads can be mapped to TinyVT automata even

if the initial simplifying assumptions are relaxed. Without these assumptions, the mapping

will be more complex and the resulting automata will increase in size (number of states,

as well as number of transitions), but determinacy is still guaranteed. It is important to

note, however, that this increase in size and complexity of mapping is irrelevant when the

specification of behavioral semantics is in focus: Once there is a mapping defined from thread

to automaton, the behavioral semantics of the automaton will apply to the thread that is

mapped to an automaton. Therefore, in the following paragraphs, I will argue that we can

always give a mapping from thread to automaton, but the details on how we can efficiently

give a mapping is irrelevant.

Await statements with multiple events

As a consequence of the initial assumptions, namely that every await statement has

exactly one inlined event handler and that the threads are free from data dependencies,

the output event on the transitions originating from a yielding state can be unambiguously

computed. When the control reaches an await statement and the thread yields, it needs to

yield (return control) to the originator of the triggering event of the actual execution context.

However, if the first assumption is relaxed, and we allow for multiple inlined event handlers

within an await statement, it is not possible to unambiguously tell what is the triggering

event of the actual execution context, if the await statement that is the entry point of the

current execution context has more than one triggering events.

112

To overcome this problem, the triggering event has to be encoded into the automaton’s

state. Instead of generating a single yielding state for an await statement, we generate as

many yielding states as many different events the previous await statement has, and tag

each of the yielding states with the event names. Similarly, the the event names of the

preceding await statement are encoded in the calling and waiting states generated from

function invocations. When generating the transitions, the destination state is chosen such

that the event name tags of the source and destination states are identical. Blocking states

have no event name tags: They are join points of branches with different event name tags.

Data dependencies

The mapping as described above fails to capture scenarios where the control flow of a

thread depends not only on the type of events received from the environment, but also on

some data values that are passed along with the events. A straightforward way of handling

data dependencies of this kind is treating two events of the same type but of different data

values as separate input actions. That is, for an await statement with one embedded event

handler which has a 8-bit integer parameter, 256 different input actions will be generated.

Similarly, for return values of external functions, a separate input action has to be generated

for all possible values. The same technique should be applied to output actions, to model

the different data values that are inputs to some other automata in a composition.

More sophisticated handling of data dependencies can be achieved by using predicate

abstractions [5]. Instead of generating a separate action for every possible function argument

and return value from external functions called by the thread, it is possible to identify sets

of values for which the control flow of the thread is identical. These sets can be described

with predicates over the function arguments and over return values from external functions

called by the tread. It is sufficient to create one input action for every such set, reducing the

number of input actions in the TA model.

Dependencies of control flow on static and shared variables can, for example, be handled

by encoding the variable values in the states of the TinyVT automaton. A global variable

that is read and written by multiple threads need to be factored out into a separate TA, and

accessed with getters and setters.

3.9 Discussion

Formal specification of semantics is essential for programming languages and program-

ming models. The lack of such a specification, or informal/incomplete specifications can lead

to semantic ambiguities, often resulting in unexpected program behavior or system failure.

113

The existence of a formal specification of semantics will help the general acceptance of a

language. Also, it is important for programmers, compiler writers and tool integrators, as

well. Clearly, programmers need to know the exact meaning of the language phrases they

use, while the developer of the compiler must ensure that the compiler adheres to the seman-

tics of the language. Without a formal specification of semantics, these parties may have

different assumptions on the language, leading ambiguous and incorrect programs.

In this chapter, I presented the formal semantics of TinyVT language and analyzed the

compositional behavior of TinyVT threads. An important part of this work is the observation

that, in contrast with library based threading approaches in C, it is possible to unambiguously

define the semantics of TinyVT threads, since threads are mapped to single-threaded C code

by the TinyVT compiler, and thus, the ambiguities observed by Boehm do not surface [9].

Language semantics

I formalized the the operational semantics of the TinyVT language using the Abstract

State Machines (ASM) approach (formerly known as Evolving Algebras [34]). Gurevich and

Huggins gave a formal semantics specification for the ANSI C language in [35], which has been

used as a starting point in specifying the semantics of the TinyVT language. Since TinyVT

is an extension of C, it was sufficient to describe the meaning of the new language constructs

which TinyVT introduced, and altering the semantics of some C language constructs, the

behavior of which is altered when used within TinyVT threads.

The Abstract State Machines approach has been an excellent vehicle to formalize the

semantics of the new language constructs, because it allows for structuring the specification

into different abstraction layers where each layer is a refinement of a higher-level one. Such

a layering gives a better structure to the specification, and makes it possible to define the

semantics of language features by omitting irrelevant details that hinder comprehension.

Specifically, the first abstraction layer of the specification describes the control flow se-

mantics of a TinyVT thread. This layer captures that each thread (conceptually) has its

own, independent thread of execution, the control flow of which is specified by the C con-

trol structures within the thread’s source code. Blocking statements (await and yield) are

handled as opaque statements at this abstraction level.

The fact that a thread’s independent control flow is just an abstraction — which is

provided by the language and the compiler — is only revealed in the fourth abstraction

layer of the specification of semantics. The fourth layer describes C function definitions and

function invocations. Since TinyVT’s await and yield statements are essentially calls to

and returns from C functions, their semantics is also described here. Therefore, while the

first layer describes how control flow of a thread is perceived from the thread’s point of view,

114

the fourth layer specifies that, from the outside, the environment perceives the thread as a

set of function definitions that implement event handlers.

Compositional semantics

I defined the compositional behavior of TinyVT threads by following the semantic anchor-

ing approach developed by Chen et al. [14]. First, I defined a finite automata based model

(referred to as a semantic unit in Chen’s terminology), called TinyVT automata (TA), which

is sufficient to capture the interaction patterns between TinyVT threads, assuming that they

are running on top of a pure event-driven runtime. TinyVT automata hide the details of

the thread’s computation by modeling it as a series of internal actions, however, it exposes

the points where control flow leaves or returns to the thread by modeling them as output or

input actions, respectively.

The specification of the TinyVT automaton is given in the AsmL language [37], and

consists of two parts: structural (static) and behavioral (dynamic) semantics. The structural

semantics specify the abstract data model of the automaton, which is, in this case a tuple

including states, actions and transitions. The behavioral semantics define the operational

rules of the automaton in terms of concepts defined in the structural semantics. I showed

that a mapping is possible from TinyVT threads to the structural model of the TinyVT

automaton, thereby establishing behavioral semantics for TinyVT threads. Specifically, I

explained how the static structure of a thread, given as the static control flow graph, can be

mapped to states, actions and transitions of the automaton. I described the compositional

semantics — the structural and the behavioral aspects separately — of TinyVT automata in

AsmL. Since the semantics of TinyVT threads can be anchored to that of TinyVT automata,

the behavior of composite TinyVT automata reveals the semantics of systems composed of

TinyVT threads.

I also showed that the resulting TinyVT automaton is always deterministic, and that

determinism is preserved through composition. This implies that TinyVT threads, as well

as compositions of TinyVT threads are always deterministic. In such a composition, the

execution of conceptually concurrent TinyVT threads is interleaved, and the points of inter-

leaving are always either yield points or function call sites. It is important to note, however,

that these findings will not hold if the assumptions on the event-driven runtime are relaxed,

for instance, by allowing asynchronous invocation contexts (e.g. interrupts) propagate into

TinyVT threads.

115

Chapter IV

Conclusion and future work

In this work, I presented TinyVT, a compiler-assisted threading abstraction which en-

ables programming event-driven software components as if they had their own, independent

thread of execution. TinyVT bridges the gap between multithreading and the event-oriented

programming model in the sense that it provides the intuitiveness and expressiveness of the

former, while retaining the advantages of the latter — such as small memory footprint or the

lack of need for locking. This section reiterates the contributions of my work, and highlights

some future research directions in the realm of compiler-assisted concurrency abstractions.

4.1 Contributions

Thread abstraction for event-driven systems

The novelty of this work is that TinyVT provides language support to describe event-

based computation with threads, in a well structured, linear fashion, without compromising

the expressiveness of the implementation language. TinyVT’s thread abstraction is trans-

parent: the underlying event-driven execution model remains exposed to the programmer,

therefore, both threads and event-driven code may coexist within an application. Since

TinyVT is an extension to the C programming language, mixing TinyVT threads and C

code is allowed. The TinyVT compiler will only process the code within TinyVT threads,

leaving any event-driven C code unmodified.

Automated management of control flow

Event-driven programs consist of a set of event handlers, but their logical sequentiality

cannot be described without explicit language support. Therefore, programmers need to im-

plement event-driven applications as explicit state machines, manually managing the control

flow. The abstraction of a thread that TinyVT introduces is a simple language extension

that provides a means to express linear control flow in event driven programs, using C control

structures (if, while, etc.) and blocking operations.

While TinyVT’s thread abstraction helps automate tedious and error prone tasks in

event-oriented programming, it does not hide the event-driven nature of the applications. In

fact, the syntax of TinyVT requires that the programmer explicitly specify yield points in a

thread, and guarantees that thread execution never blocks between yield points. This feature

ensures that the programmer is aware of the control flow between conceptually concurrent

116

threads. Calls to functions external to the thread explicitly state which thread the control is

passed to; similarly, TinyVT’s await statement is used to explicitly specify the thread which

the control is received from. This stands in contrast to the approach of general-purpose

multithreading, where control flow is governed by the scheduling policies of the operating

system or a user-space threading library, and the programmer has no insight into inter-thread

control flow (except for locking decisions).

Compiler-managed allocation of local variables

TinyVT’s most important asset is that the compiler automates the tasks that program-

mers traditionally do by hand: manual control flow management and manual stack manage-

ment. As the complexity of applications keeps growing — and this is what is happening in

the WSN domain —, such tasks are becoming increasingly hard to manage in the presence

of severe resource-constraints.

TinyVT allows for declaring variables that are shared between event handlers as local

variables using C’s scoping rules. The compiler identifies these declarations and allocates

the variables to static memory. By analyzing the structure of nested scopes in TinyVT

threads, the compiler may assign multiple variables to the same memory region if the scopes

of those variables are never active concurrently. This intelligent variable allocation is, in

fact a compile-time, static emulation of the C stack, in compliance with the semantics of C’s

automatic storage duration.

For a reasonably complex event-driven program, memory efficient manual stack emulation

is a prohibitively complicated task. However, the TinyVT compiler can easily cope with

this complexity, and thus, produce better quality and more reliable code than an average

programmer.

Formal specification of language semantics

An entire chapter of this dissertation is dedicated to the semantics of TinyVT threads.

Although its importance is often understated, it is imperative that the semantics of a pro-

gramming language be formally specified. The lack of a specification, or an informal or

incomplete one can lead to semantic ambiguities that often manifest themselves in system

failures or undesired behavior.

I provide the operational semantics of TinyVT’s language constructs using the Abstract

State Machines (ASM) formalism (formerly known as Evolving Algebras [34]), by building

on an existing formal semantics specification of C [35].

In [9], Boehm showed that it is not possible to unambiguously specify the semantics

of multithreaded programs implemented in the C language using threading libraries. An

117

important finding of this work is that, in contrast to library based threading approaches in

C, the compositional semantics of TinyVT can be specified.

To help specifying the compositional semantics of TinyVT threads, I present a semantic

unit, called TinyVT automata, the structural, behavioral and compositional semantics of

which is specified using the ASM formalism in the AsmL language [37]. I show that the static

structure of TinyVT threads (precisely, the local control flow graph) can be mapped to the

structural specification of a TinyVT automaton. This way, the behavioral and compositional

semantics of TinyVT automata will directly apply to the threads, as well.

4.2 Future work

New language features

A possible future research direction is introducing new language features to improve

the expressiveness of the TinyVT language. Currently, it is not possible to define (and

redefine) default behavior in response to input events: for all event kinds that are accepted

by a blocking thread, an event handler must be explicitly specified within the corresponding

await statement. A syntactic shortcut, similar to the try-catch-finally construct in modern

procedural languages, could alleviate this requirement and would allow for cleaner, less

verbose TinyVT sources.

Currently, TinyVT applies C scoping rules to local variables. Therefore, parameter values

and local variables of an event handler cannot be accessed from the code following the await

statement in which the event handler is inlined. In such cases, information must be shared

using static, global or compiler-managed local variables. However, extending the TinyVT

language with a feature that allows information sharing on the C stack could improve the

overall memory usage of the applications.

A generalized blocking statement could allow for controlled reentrance in TinyVT threads,

a feature that is currently not available. Call sites in threads — which are currently defined

using ANSI C’s function call expressions — could be separated to a function invocation and

waiting for the return value, allowing for incoming events in between the two. This way, a

thread could accept and service incoming events while it has a function call pending, which

is a recurring pattern in event-driven services.

Support for asynchronous events

The C code generated by the TinyVT compiler has minimal requirements on the underly-

ing event-driven runtime, one of them being that all event handler invocations must originate

– directly or indirectly – from the dispatcher, which is assumed to be single-threaded. In

118

practice, especially when working close to the hardware-software boundary, it is often de-

sirable to allow asynchronous interrupt contexts to call into the event-driven code. One

possible point of improvement is relaxing this assumption, such that we only require the

runtime to guarantee that no events are sent to the thread unless the thread is blocked. This

change would allow interrupt contexts call into TinyVT threads, and it would also permit

using schedulers that may have more than one event handlers executing at at time (e.g. with

time slicing).

Such a small change in assumptions, however, would imply an avalanche of nontrivial

changes to the language, compiler and, most importantly, to the compositional semantics

of TinyVT threads. A desirable new language feature would be a specifier for an event

handler definition, which could be used to express that the event has no effect on the control

flow of the thread. Therefore, although an ongoing computation could be interrupted, race

conditions on defining control flow could be prevented. Also, the compiler must be changed

such that it generates reentrant, thread safe code, which would include some sort of a locking

mechanism to provide mutually exclusive access to internal data structures (thread state and

flags).

The compositional semantics of TinyVT threads would drastically change if asynchrony

is allowed in TinyVT. The granularity of interleavings of threads would decrease to the

level of binary machine instructions, leading to obstacles to creating a sound specification of

semantics, as observed by Boehm in [9].

With proper locking and synchronization, however, TinyVT threads with support for

asynchrony could have a whole new range of use cases, such as programming kernel services or

device drivers in traditional operating systems, or implementing an entire OS using TinyVT

threads, along the lines of Contiki [20] or TinyOS [44].

Whole-program analysis

Whole-program analysis techniques have the potential for additional gains in the perfor-

mance and resource usage of TinyVT programs. The prototype TinyVT compiler processes

thread definitions separately, generating disjoint blocks of C code (function definitions and

variable declarations) from individual threads. However, analysis of scope structures and

inter-thread communication patterns could possibly reveal that a pair of variables, each

declared in a different thread, are never active at the same time, hence allowing for more

aggressive compiler-managed variable allocation algorithms.

This is a very promising research direction, since this information is already captured in

TinyVT programs. In contrast, such a memory allocation scheme would be very complicated

119

to implement in traditional event driven systems with no explicit support for the definition

of control flow involving multiple event handler invocations.

120

Appendix A

Sample TinyVT Source and the Generated C Code

In this appendix, I present a sample TinyVT program, and the C code that corresponds

to the output of the TinyVT compiler. To improve comprehension of the generated code, a

simplified version is presented (mangling of declarators with the thread’s name is removed,

preprocessor-generated lines are discarded, etc.).

A.1 Sample TinyVt source code

thread sample_thread {

printf("__block0\n");

await(char myEvent () {

return ’a’;

});

printf("__block1\n");

printf("__block2\n");

while (1) {

printf("__block3\n");

await(char myEvent () {

return ’b’;

});

}

// await (); implicit

}

A.2 Compiler output (simplified)

typedef uint8_t __state_t;

__state_t __state;

typedef __state_t __yield_point_t;

inline __yield_point_t __get_yield_point () {

return __state >> 2;

}

inline void __set_yield_point(__yield_point_t yp) {

__state = (yp << 2) | (__state & 3);

}

enum {

EXECUTING_MASK = 1,

YIELD_POINT_MASK = 2

};

inline bool __is_set_flag(__state_t flag_mask) {

return __state & flag_mask;

121

}

inline void __set_flag(__state_t flag_mask) {

__state |= flag_mask;

}

inline void __clear_flag(__state_t flag_mask) {

__state &= ~flag_mask;

}

// ----------------------------

typedef uint16_t __next_block_t;

enum {YIELD_BLOCK = 0};

// ----------------------------

// block implementations (returning next block id)

__next_block_t __block0 () {

printf("__block0\n");

__set_yield_point (1);

return YIELD_BLOCK;

}

__next_block_t __block1 () {

printf("__block1\n");

return 2;

}

__next_block_t __block2 () {

printf("__block2\n");

if(1)

return 3;

else

return 5;

}

__next_block_t __block3 () {

printf("__block3\n");

return 4;

}

__next_block_t __block4 () {

__set_yield_point (2);

return YIELD_BLOCK;

}

__next_block_t __block5 () {

__set_yield_point (3);

return YIELD_BLOCK;

}

// ----------------------------

// dispatch next block (specified by id of block)

__next_block_t __dispatch_next_block(__next_block_t next___block) {

switch (next___block) {

case 0: return __block0 ();

case 1: return __block1 ();

case 2: return __block2 ();

case 3: return __block3 ();

case 4: return __block4 (); // yield hitting await 2

case 5: return __block5 (); // yield hitting await 3

default: return YIELD_BLOCK;

}

}

// ----------------------------

// inlined event handlers

122

char __myEvent_await1 () {

char __rval;

{

printf("myEvent inlined in await1\n");

__rval = ’a’;

}

__next_block_t next___block = 1;

while ((next___block = __dispatch_next_block(next___block)) != YIELD_BLOCK);

__clear_flag(EXECUTING_MASK);

return __rval;

}

char __myEvent_await2 () {

char __rval;

printf("myEvent inlined in await2\n");

__rval = ’b’;

__next_block_t next___block = 2;

while ((next___block = __dispatch_next_block(next___block)) != YIELD_BLOCK);

__clear_flag(EXECUTING_MASK);

return __rval;

}

char __myEvent_halt () {

printf("Unexpected myEvent\n");

while (1);

return myEvent_halt ();

}

// ----------------------------

// event handler stubs

char myEvent () {

if(__is_set_flag(EXECUTING_MASK))

return myEvent_halt ();

__set_flag(EXECUTING_MASK);

switch(__get_yield_point ()) {

case 1: return __myEvent_await1 ();

case 2: return __myEvent_await2 ();

default: return __myEvent_halt ();

}

}

void initEvent () {

__next_block_t __next_block = 1;

__set_flag(EXECUTING_MASK);

while ((__next_block = __dispatch_next_block(__next_block)) != YIELD_BLOCK);

__clear_flag(EXECUTING_MASK);

}

123

Appendix B

Formal Semantics of TinyVT Automata in AsmL

The structural, behavioral and compositional semantics of TinyVT automata are de-

scribed using the ASM approach in the AsmL language. Below, I provide the corresponding

AsmL sources — a collection of AsmL structures and abstract classes. Also, a sample code

that demonstrates how these abstract classes can be instantiated to allow for simulating a

composition of TAs is presented.

B.1 Static, behavioral and compositional semantics

// Abstract data model

class State

const name as String

const initial as Boolean

structure Transition

const src as State

const dst as State

const action as String

abstract class AbstractTA

abstract property inputActions as Set of String

get

abstract property outputActions as Set of String

get

abstract property internalActions as Set of String

get

abstract property states as Set of State

get

abstract property transitions as Set of Transition

get

interface IAbstractTA

property inputActions as Set of String

get

property outputActions as Set of String

get

property internalActions as Set of String

get

abstract class AbstractTA implements IAbstractTA

abstract class AbstractComposite implements IAbstractTA

abstract property components as Set of IAbstractTA

get

property inputActions as Set of String

get

return { a | c in components , a in c.inputActions } - internalActions

property outputActions as Set of String

get

return { a | c in components , a in c.outputActions } - internalActions

property internalActions as Set of String

get

return { a | c in components , a in c.internalActions } union sharedActions

property sharedActions as Set of String

124

get

return { a | c in components , a in c.inputActions }

intersect { a | c in components , a in c.outputActions }

// Abstract behavioral model

class State

var active as Boolean

State(name as String , initial as Boolean)

active = initial

abstract class AbstractTA

Step(a as String ?) as String

require Accepts(a)

let transition = any t | t in EnabledTransitions(a)

step

transition.src.active := false

transition.dst.active := true

return transition.action

CurrentState () as State

let activeStates as Set of State = {s | s in states where s.active = true }

require Size(activeStates) = 1

return any s | s in activeStates

Accepts(a as String ?) as Boolean

return Size(EnabledTransitions(a)) > 0

EnabledTransitions(a as String ?) as Set of Transition

if a = null

return EnabledOutputTransitions () union EnabledInternalTransitions ()

else

return EnabledInputTransitions(a)

EnabledOutputTransitions () as Set of Transition

return { t | t in transitions where t.src = CurrentState () and

t.action in outputActions}

EnabledInternalTransitions () as Set of Transition

return { t | t in transitions where t.src = CurrentState () and

t.action in internalActions}

EnabledInputTransitions(a as String) as Set of Transition

if Size(EnabledOutputTransitions ()) = 0 and Size(EnabledInternalTransitions ()) = 0

return { t | t in transitions where t.src = CurrentState () and

a in inputActions and t.action = a}

else

return {}

WriteCurrentState ()

Write(CurrentState (). name + " ")

interface IAbstractTA

Accepts(a as String) as Boolean

Step(a as String ?) as String

WriteCurrentState ()

abstract class AbstractTA implements IAbstractTA

abstract class AbstractComposite implements IAbstractTA

Step(a as String ?) as String

require Accepts(a)

if a = null

step

return OutputOrInternalStep ()

else

step

return InputStep(a)

125

// if input event is not null , the event is sent to the TA that

// accepts it , and null will be returned

InputStep (a as String) as String

let cs as Set of IAbstractTA = { c | c in components where a in c.inputActions }

// assert that there ’s only one such component

require Size(cs) = 1

choose c in cs

return c.Step(a)

// if input event is null , a TA which can move (i.e. can take an output

// or an internal step) will step , if the output is consumed by another

// TA , both will step , if not , the output will be returned

OutputOrInternalStep () as String

let cs as Set of IAbstractTA = { c | c in components where c.Accepts(null) }

choose c in cs

let outputAction = c.Step(null)

if outputAction in sharedActions

return InputStep(outputAction)

else

return outputAction

Accepts(a as String ?) as Boolean

if (a = null)

return (exists c in components where c.Accepts(a))

else

if Accepts(null)

return false

else

return (exists c in components where c.Accepts(a) and a in inputActions)

WriteCurrentState ()

step foreach ta in components

ta.WriteCurrentState ()

Write(" ")

WriteLine ("")

B.2 Example of a concrete system

The following code illustrates an instantiation of the abstract classes that define structural

and behavioral semantics of TinyVT automata and composition of TinyVT automata.

// concrete classes

class TA extends AbstractTA

var states_ as Set of State

var inputActions_ as Set of String

var outputActions_ as Set of String

var internalActions_ as Set of String

var transitions_ as Set of Transition

override property states as Set of State

get

return states_

override property inputActions as Set of String

get

return inputActions_

override property outputActions as Set of String

get

return outputActions_

override property internalActions as Set of String

get

return internalActions_

override property transitions as Set of Transition

126

get

return transitions_

class Composite extends AbstractComposite

var components_ as Set of IAbstractTA

override property components as Set of IAbstractTA

get

return components_

class MySystem

var conf as Composite

// send an input to the composite and drive by feeding in nulls

// until an output is returned

React(e as String) as String

var a as String

step

a := conf.Step(e)

conf.WriteCurrentState ()

step until a in conf.outputActions

a := conf.Step(null)

conf.WriteCurrentState ()

step

conf.WriteCurrentState ()

step

return a

Main()

step

// actions

onReq = "onReq"

onResp = "onResp"

startReq = "startReq"

startResp = "startResp"

// states of TA0

s0_0 = new State("s0_0", true)

s0_1 = new State("s0_1", false)

s0_2 = new State("s0_2", false)

s0_3 = new State("s0_3", false)

// transitions of TA0

t0_01 = Transition(s0_0 ,s0_1 ,startReq)

t0_12 = Transition(s0_1 ,s0_2 ,onReq)

t0_23 = Transition(s0_2 ,s0_3 ,onResp)

t0_30 = Transition(s0_3 ,s0_0 ,startResp)

// instantiate TA0

ta0 = new TA({s0_0 , s0_1 , s0_2 , s0_3},{" startReq","onResp "},{" onReq"," startResp "},

{},{t0_01 ,t0_12 ,t0_23 ,t0_30 })

// states of TA1

s1_0 = new State("s1_0", true)

s1_1 = new State("s1_1", false)

// transitions of TA1

t1_01 = Transition(s1_0 ,s1_1 ,onReq)

t1_10 = Transition(s1_1 ,s1_0 ,onResp)

// instantiate TA1

ta1 = new TA({s1_0 , s1_1},{"onReq "},{" onResp "},{},{t1_01 ,t1_10 })

// instantiate the composition of TA0 and TA1

conf = new Composite ({ta0 ,ta1})

// instantiate the system

sys = new MySystem(conf)

// start the system with startReq as an input

step

WriteLine ("Input event: " + startReq)

f = sys.React(startReq)

step

WriteLine (" Output event: " + f)

127

References

[1] Abrach, H., Bhatti, S., Carlson, J., Dai, H., Rose, J., Sheth, A., Shucker,
B., Deng, J., and Han, R. Mantis: system support for multimodal networks of
in-situ sensors. 2nd ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA) (2003), 50–59. 2.1.2, 2.7

[2] Adya, A., Howell, J., Theimer, M., Bolosky, W. J., , and Douceur, J. R.
Cooperative task management without manual stack management. Proceedings of the
USENIX Annual Technical Conference (2002), 289–302. 1.3.1, 2.1.2

[3] André, C. Representation and analysis of reactive behaviors: A synchronous approach.
In Proc. CESA 96 (jul 1996). 2.1.3

[4] Anlauff, M. Xasm - an extensible, component-based asm language. In ASM ’00:
Proceedings of the International Workshop on Abstract State Machines, Theory and
Applications (London, UK, 2000), Springer-Verlag, pp. 69–90. 3.5.2

[5] Ball, T., Majumdar, R., Millstein, T., and Rajamani, S. K. Automatic
predicate abstraction of c programs. SIGPLAN Not. 36, 5 (2001), 203–213. 3.8.4

[6] Benveniste, A., Caspi, P., Edwards, S. A., Halbwachs, N., Guernic, P. L.,
and de Simone, R. The synchronous languages 12 years later. Proceedings of the
IEEE 91, 1 (2003), 64–83. 2.1.3

[7] Berry, G., and Gonthier, G. The esterel synchronous programming language:
Design, semantics, implementation. Science of Computer Programming 19, 2 (1992),
87–152. 2.1.3

[8] Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker,
B., Gruenwald, C., Torgerson, A., and Han, R. Mantis os: an embedded
multithreaded operating system for wireless micro sensor platforms. Mob. Netw. Appl.
10, 4 (2005), 563–579. 1.2.1, 2.1.2, 2.7, 2.8.1

[9] Boehm, H. J. Threads cannot be implemented as a library. Tech. rep., Hewlett-
Packard, nov 2004. 3.2, 3.9, 4.1, 4.2

[10] Börger, E. High level system design and analysis using abstract state machines. In
FM-Trends 98: Proceedings of the International Workshop on Current Trends in Applied
Formal Method (London, UK, 1999), Springer-Verlag, pp. 1–43. 3.5

[11] Butler, Z., Corke, P., Peterson, R., and Rus, D. Networked cows: Virtual
fences for controlling cows. In Proc. of WAMES (2004). 1.1

[12] Castillo, G. D. The asm workbench - a tool environment for computer-aided analysis
and validation of abstract state machine models tool demonstration. In TACAS 2001:

128

Proceedings of the 7th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (London, UK, 2001), Springer-Verlag, pp. 578–581.
3.5.2

[13] Cha, H., Choi, S., Jung, I., Kim, H., Shin, H., Yoo, J., and Yoon, C. The
retos operating system: kernel, tools and applications. In IPSN ’07: Proceedings of the
6th international conference on Information processing in sensor networks (New York,
NY, USA, 2007), ACM Press, pp. 559–560. 1.2.1, 2.1.1, 2.1.2

[14] Chen, K., Sztipanovits, J., and Neema, S. Toward a semantic anchoring infras-
tructure for domain-specific modeling languages. In EMSOFT ’05: Proceedings of the
5th ACM international conference on Embedded software (New York, NY, USA, 2005),
ACM, pp. 35–43. 3.3, 3.9

[15] Cheong, E., Liebman, J., Liu, J., , and Zhao, F. Tinygals: A programming model
for event-driven embedded systems. Proceedings of the 18th Annual ACM Symposium
on Applied Computing (SAC’03) (mar 2003). 2.1.1

[16] Cheong, E., and Liu, J. galsc: a language for event-driven embedded systems.
Proceedigs of Design, Automation and Test in Europe 2 (2005), 1050–1055. 2.1.1

[17] Cook, J., Cohen, E., and Redmand, T. A formal denotational semantics for c.
Tech. Rep. 409D, Trusted Information Systems, sep 1994. 3.4.1

[18] Cook, J., and Subramanian, S. A formal semantics for c in nqthm. Tech. Rep.
517D, Trusted Information Systems, oct 1994. 3.4.1

[19] de Alfaro, L., de Alfaro, L., and Henzinger, T. A. Interface automata.
SIGSOFT Softw. Eng. Notes 26, 5 (2001), 109–120. 3.8.1

[20] Dunkels, A. Programming Memory-Constrained Networked Embedded Systems. PhD
thesis, Swedish Institute of Computer Science, Feb. 2007. 1.2.3, 2.1.2, 4.2

[21] Dunkels, A., Finne, N., Eriksson, J., and Voigt, T. Run-time dynamic linking
for reprogramming wireless sensor networks. In SenSys ’06: Proceedings of the 4th
international conference on Embedded networked sensor systems (New York, NY, USA,
2006), ACM Press, pp. 15–28. 2.1.2

[22] Dunkels, A., Grnvall, B., and Voigt, T. Contiki - a lightweight and flexible
operating system for tiny networked sensors. EmNetSI (nov 2004). 2.1.2, 2.8.4

[23] Dunkels, A., Schmidt, O., and Voigt, T. Using protothreads for sensor node
programming. The Workshop on Real-World Wireless Sensor Networks (jun 2005).
2.1.2

[24] Dutta, P., Grimmer, M., Arora, A., Bibyk, S., and Culler, D. Design of a
wireless sensor network platform for detecting rare, random, and ephemeral events. In
Proc. of IPSN/SPOTS (Apr. 2005). 1.1

129

[25] Edwards, S. A. The Specification and Execution of Heterogeneous Synchronous Re-
active Systems. PhD thesis, University of California, Berkeley, 1997. 2.1.3

[26] Engler, D. R., Kaashoek, M. F., and O’Toole, J. Exokernel: An operating sys-
tem architecture for application-level resource management. Symposium on Operating
Systems Principles (1995), 251–266. 2.1.1

[27] Fok, C.-L., Roman, G.-C., and Lu, C. Mobile agent middleware for sensor net-
works: An application case study. In Proc. of the 4th Int. Conf. on Information Pro-
cessing in Sensor Networks (IPSN’05) (April 2005), IEEE, pp. 382–387. 2.7

[28] for Standardization, I. O. ISO/IEC 9899-1999, Programming Languages – C.
1999. 2.5

[29] Gajski, D. D., and Ramachandran, L. Introduction to high-level synthesis. IEEE
Design and Test of Computers 11, 4 (oct/dec 1994), 44–54. 2.1.3

[30] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, nov 1994. 3.8.3

[31] Gay, D., Levis, P., and Culler, D. Software design patterns for tinyos. In LCTES
’05: Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on Languages, com-
pilers, and tools for embedded systems (New York, NY, USA, 2005), ACM Press, pp. 40–
49. 1.2.3

[32] Gay, D., Levis, P., v. Behren, R., Welsh, M., Brewer, E., and Culler, D.
The nesc language: A holistic approach to networked embedded systems. SIGPLAN
(2003). 1.2.1, 1.2.3, 1.5, 2.1.1, 2.1.4, 2.6.1

[33] Gu, L., and Stankovic, J. A. t-kernel: providing reliable os support to wireless
sensor networks. In SenSys ’06: Proceedings of the 4th international conference on
Embedded networked sensor systems (New York, NY, USA, 2006), ACM Press, pp. 1–
14. 1.2.1, 1.2.2

[34] Gurevich, Y. Evolving algebras 1993: Lipari guide. 9–36. 1.5, 1.6, 3.5, 3.9, 4.1

[35] Gurevich, Y., and Huggins, J. K. 1.6, 3.4.1, 3.6, 1, 3.6.1, 3.9, 4.1

[36] Gurevich, Y., Rossman, B., and Schulte, W. Semantic essence of asml. Theor.
Comput. Sci. 343, 3 (2005), 370–412. 3.5.2

[37] Gurevich, Y., Schulte, W., and Veanes, M. Toward industrial strength abstract
state machines. Tech. Rep. MSR-TR-2001-98, Microsoft Research, oct 2001. 1.5, 1.6,
3.5.2, 3.9, 4.1

[38] Guttag, J. V., and Horning, J. J. The algebraic specification of abstract data
types. Acta Inf. 10 (1978), 27–52. 3.1.5

[39] G.Wener-Allen, Johnson, J., Ruiz, M., Lees, J., and Welsh, M. Monitoring
volcanic eruptions with a wireless sensor networks. In Proc. of EWSN (2005). 1.1

130

[40] Han, C., Kumar, R., Shea, R., Kohler, E., and Srivastava, M. A dynamic
operating system for sensor nodes. In Proceedings of the 3rd international Conference
on Mobile Systems, Applications, and Services (jun 2005), 163–176. 1.3.2, 1.5, 2.1.1,
2.7

[41] Handziski, V., J.Polastre, J.H.Hauer, C.Sharp, A.Wolisz, and D.Culler.
Flexible hardware abstraction for wireless sensor networks. In Proceedings of the 2nd
European Workshop on Wireless Sensor Networks (EWSN 2005) (2005). 1.2.3

[42] Harel, D. Statecharts: A visual formalism for complex systems. Science of Computer
Programming 8, 3 (June 1987), 231–274. 2.1.3

[43] Hill, J., and Culler, D. Mica: a wireless platform for deeply embedded networks.
IEEE Micro 22, 6 (2002), 12–24. 1.1

[44] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., , and Pister,
K. System architecture directions for network sensors. Proc. of the 9th International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IX) (nov 2000). 1.2.1, 1.3.2, 1.5, 2.1.1, 2.6.1, 2.8.4, 4.2

[45] Hoare, C. A. R. An axiomatic basis for computer programming. Commun. ACM 12,
10 (1969), 576–580. 3.1.5

[46] Kasten, O., and Rmer, K. Beyond event handlers: Programming wireless sensors
with attributed state machines. The Fourth International Conference on Information
Processing in Sensor Networks (IPSN) (apr 2005). 1.2.1, 2.1.3

[47] Koshy, J., and Pandey, R. Vmstar: synthesizing scalable runtime environments
for sensor networks. In SenSys ’05: Proceedings of the 3rd international conference on
Embedded networked sensor systems (New York, NY, USA, 2005), ACM Press, pp. 243–
254. 1.2.3, 2.1.2, 2.7

[48] Kothari, N., Gummadi, R., Millstein, T., and Govindan, R. Reliable and
efficient programming abstractions for wireless sensor networks. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2007) (jun 2007). 2.1.4

[49] Laurer, H. C., and Needham, R. M. On the duality of operating system structures.
SIGOPS Operating Systems Review 13, 2 (1979), 3–19. 1.3.1, 2.1.2

[50] Lédeczi, A., Nádas, A., Völgyesi, P., Balogh, G., Kusý, B., Sallai, J., Pap,
G., Dóra, S., Molnár, K., Maróti, M., and Simon, G. Countersniper system
for urban warfare. ACM Transactions on Sensor Networks 1, 1 (Nov. 2005), 153–177.
1.1, 1.2.1

[51] Lédeczi, A., Völgyesi, P., Maróti, M., Simon, G., Balogh, G., Nádas, A.,
Kusý, B., Dóra, S., and Pap, G. Multiple simultaneous acoustic source localization
in urban terrain. In Proc. of IPSN (Apr. 2005). 1.1

131

[52] Lee, E. What’s ahead for embedded software? IEEE Computer (sep 2000), 16–26.
1.2.3, 1.3.1, 2.1.2

[53] Lee, E. The problem with threads. IEEE Computer (feb 2006), 33–42. 1.3.1, 2.1.2

[54] Levis, P., and Culler, D. Maté: a tiny virtual machine for sensor networks. In
ASPLOS-X: Proceedings of the 10th international conference on Architectural support
for programming languages and operating systems (New York, NY, USA, 2002), ACM
Press, pp. 85–95. 1.2.3, 2.1.2

[55] Levis, P., Gay, D., and Culler, D. Active sensor networks. In Proceedings of
the 2nd USENIX/ACM Symposium on Network Systems Design and Implementation
(NSDI) (may 2005). 1.2.3, 2.1.2, 2.7

[56] Liu, H., Roeder, T., Walsh, K., Barr, R., and Sirer, E. G. Design and imple-
mentation of a single system image operating system for ad hoc networks. In MobiSys
’05: Proceedings of the 3rd international conference on Mobile systems, applications,
and services (New York, NY, USA, 2005), ACM, pp. 149–162. 2.7

[57] Lynch, N. A., and Tuttle, M. R. Hierarchical correctness proofs for distributed al-
gorithms. In PODC ’87: Proceedings of the sixth annual ACM Symposium on Principles
of distributed computing (New York, NY, USA, 1987), ACM, pp. 137–151. 3.8.1

[58] Madden, S., Franklin, M., Hellerstein, J., and Hong, W. Tag: a tiny ag-
gregation service for ad-hoc sensor networks. In 5th Symposium on Operating Systems
Design and Implementation (OSDI) (dec 2002). 1.2.3

[59] Madden, S. R., Franklin, M. J., Hellerstein, J. M., and Hong, W. Tinydb:
an acquisitional query processing system for sensor networks. ACM Trans. Database
Syst. 30, 1 (2005), 122–173. 2.1.4

[60] McCartney, W. P., and Sridhar, N. Abstractions for safe concurrent program-
ming in networked embedded systems. In SenSys ’06: Proceedings of the 4th interna-
tional conference on Embedded networked sensor systems (New York, NY, USA, 2006),
ACM, pp. 167–180. 2.7

[61] Mosses, P. D. Action Semantics, vol. 26 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1992. 3.1.4

[62] Newton, R., Morrisett, G., and Welsh, M. The regiment macroprogramming
system. In IPSN ’07: Proceedings of the 6th international conference on Information
processing in sensor networks (New York, NY, USA, 2007), ACM Press, pp. 489–498.
2.1.4, 2.7

[63] Norrish, M. C formalized in HOL. PhD thesis, Cambridge University, 1998. 3.4.1

[64] Papaspyrou, N. A Formal Semantics for the C Programming Language. PhD thesis,
1998. 3.4.1

132

[65] Plotkin, G. D. A Structural Approach to Operational Semantics. Tech. Rep. DAIMI
FN-19, University of Aarhus, 1981. 3.1.3

[66] Polastre, J., Szewczyk, R., and Culler, D. Telos: Enabling ultra-low power
wireless research. In Proc. of IPSN/SPOTS (Apr. 2005). 1.1

[67] Rashid, R., Julin, D., Orr, D., Sanzi, R., Baron, R., Forin, A., Golub,
D., and Jones, M. B. Mach: a system software kernel. In Proceedings of the 1989
IEEE International Conference, COMPCON (San Francisco, CA, USA, 1989), IEEE
Comput. Soc. Press, pp. 176–178. 2.1.1

[68] Regehr, J., Reid, A., and Webb, K. Eliminating stack overflow by abstract
interpretation. Trans. on Embedded Computing Sys. 4, 4 (2005), 751–778. 2.1.1

[69] Schmid, J. Executing asm specifications with asmgofer. Web page at:
http://www.tydo.de/AsmGofer/, 1999. 3.5.2

[70] Sethi, R. A case study in specifying the semantics of a programming language. In
POPL ’80: Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (New York, NY, USA, 1980), ACM, pp. 117–130. 3.4.1

[71] Shnayder, V., Hempstead, M., rong Chen, B., Allen, G. W., and Welsh,
M. Simulating the power consumption of large-scale sensor network applications. In
SenSys (2004), pp. 188–200. 1.2.2

[72] Simon, G., Maróti, M., Lédeczi, A., Balogh, G., Kusý, B., Nádas, A., Pap,
G., Sallai, J., and Frampton, K. Sensor network-based countersniper system. In
In Proc. of ACM SenSys (New York, NY, USA, 2004), ACM Press, pp. 1–12. 1.1, 1.2.1

[73] Slonneger, K., and Kurtz, B. L. Formal syntax and semantics of programming
languages. Addison-Wesley Publishing Company, 1995. 3.1.2

[74] Stoy, J. E. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, Cambridge, MA, USA, 1981. 3.1.4

[75] Titzer, B. L. Virgil: objects on the head of a pin. In OOPSLA ’06: Proceedings of
the 21st annual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications (New York, NY, USA, 2006), ACM Press, pp. 191–208.
1.2.1

[76] v. Behren, R., Condit, J., and Brewer, E. Why events are a bad idea (for
high-concurrency servers). HotOS IX (may 2003). 1.3.1, 2.1.2

[77] Volgyesi, P., Balogh, G., Nadas, A., Nash, C., and Ledeczi, A. Shooter
localization and weapon classification with soldier-wearable networked sensors. 5th In-
ternational Conference on Mobile Systems, Applications, and Services (MobiSys) (2007).
1.1, 1.2.1

133

[78] Welsh, M., and Mainland, G. Programming sensor networks using abstract regions.
In 1st Symposium on Networked Systems Design and Implementation (NSDI 2004) (mar
2004). 2.1.4

[79] Whitehouse, K., Sharp, C., Brewer, E., and Culler, D. Hood: a neighborhood
abstraction for sensor networks. In MobiSys ’04: Proceedings of the 2nd international
conference on Mobile systems, applications, and services (New York, NY, USA, 2004),
ACM Press, pp. 99–110. 1.2.3

[80] Yao, Y., and Gehrke, J. E. The cougar approach to in-network query processing
in sensor networks. ACM Sigmod Record 31, 3 (sep 2002). 2.1.4

134

	List of Figures
	List of Abbreviations
	Introduction
	Wireless sensor networks
	Requirements
	Functionality
	Resource constraints
	Development effort

	Research directions
	Multithreading
	Event-driven programming

	Problem statement
	Contributions of this dissertation
	Organization

	Compiler-assisted threading
	Background and related work
	Event-driven model
	Multithreading
	State machines
	Macroprogramming

	Motivation
	Motivating example: I2C packet level interface
	Problem formulation

	Organization
	Approach
	TinyVT's thread abstraction
	Assumptions

	Language constructs
	Thread definition
	The yield statement
	The await statement
	Immediate and deferred return

	The TinyVT compiler
	Pattern based code transformation
	Allocation of automatic variables
	The local control flow graph
	Code generation

	Case study
	I2C packet-level interface
	The Surge application
	A simple multihop packet forwarding engine

	Discussion
	TinyVT versus multithreading
	TinyVT versus event-oriented programming
	Applicability
	Limitations

	Semantics
	Background and related work
	Syntax
	Formal semantics
	Operational semantics
	Denotational semantics
	Axiomatic and algebraic semantics

	Problem statement
	Organization
	Approach
	Alternatives
	Operational semantics with abstract state machines
	Modeling threads as automata
	Compositionality

	Abstract State Machines
	Mathematical background
	The Abstract State Machine Language

	Operational semantics of C
	Layer 1: Statements
	Layer 2: Expressions
	Layer 3: Memory allocation and initialization
	Layer 4: Functions

	Semantics of TinyVT
	Layer 1: Statements
	Layer 2: Expressions
	Layer 3: Memory allocation and initialization
	Layer 4: Functions

	Compositionality
	Modeling TinyVT threads as finite automata
	Compositionality of automata
	AsmL model
	Mapping TinyVT threads to TinyVT automata

	Discussion

	Conclusion and future work
	Contributions
	Future work

	Sample TinyVT Source and the Generated C Code
	Sample TinyVt source code
	Compiler output (simplified)

	Formal Semantics of TinyVT Automata in AsmL
	Static, behavioral and compositional semantics
	Example of a concrete system

	References

