THE INVESTIGATION OF TITANIUM DIOXIDE NANOPARTICLE FILMS CREATED THROUGH ELECTROPHORETIC DEPOSITION

By

Howard Charles Titzel

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Physics

May, 2011

Nashville, TN

Approved:

Professor James H Dickerson

Professor Yaqiong Xu

ACKNOWLEDGEMENTS

I express my utmost gratitude to Professor James Dickerson for the opportunity to work with him on this project. I am grateful for his advice, guidance, and mentorship through the course of this research. His energy and commitment to teaching made working in the laboratory a rewarding experience.

I would also like to thank Dr. Sameer Mahajan, Dr. Isabel Gonzalo de Juan, and Alex Krejci for their guidance, encouragement, and friendship over the course of the past two years.

TABLE OF CONTENTS

		Page
ACKN	NOWLEDGEMENTS	ii
LIST	OF TABLES	V
LIST	OF FIGURES	vi
Chapt	ter	
I.	INTRODUCTION	1
II.	CHARACTERISTIC PROPERTIES AND THE SYNTHESIS OF TITANIUM DIOXIDE NANOPARTICLES	3
	Particle Synthesis Properties of TiO2 Nanoparticles in the Anatase Phase	3 5
III.	THE USE OF CENTRIFUGATION FOR SIZE DEPENDENT PARTICLE SEPARATION	7
	Calculations for Particle Separation by Centrifugation Results from Previous Centrifugation Studies Experiments with Centrifugation Suspension Preparation Parameters Examined During Centrifugation Experiments on the Effect of Radial Distance on the Particle Diameter Experiments on the Effect of Angular Velocity on the Particle Diameter Experiments on the Effect of Centrifugation Time on Particle Diameter Effectiveness of size separation through centrifugation	7 9 10 12 12 12 14 15 16
IV.	ELECTROPHORETIC DEPOSITION OF THIN FILMS USING TITANIUM DIOXIDE SUSPENSIONS	17
	Fundamentals of Electrophoretic Deposition	17 24

	Electrophoretic Deposition using Commercially Purchased	26
	Suspension Preparation	20
	Deposition Process	28
	Results and Discussion	29
	Electrophoretic Deposition using Eu Doped TiO ₂ Sol-Gel Suspension	31
V.	CONCLUSION	36
Apper	ndix	
A.	SIZE DATA REPORTS FOR SUSPENSION PREPARATION USING WATER	38
В.	SIZE DATA REPORTS FOR CENTRIFUGATION EXPERIMENTS EVALUATING THE EFFECTS DISTANCE FROM THE AXIS OF ROTATION ON PARTICLE DIAMETER	44
C.	SIZE DATA REPORTS FOR CENTRIFUGATION EXPERIMENTS EVALUATING THE EFFECTS ANGULAR VELOCITY ON PARTICLE DIAMETER	60
D.	SIZE DATA REPORTS FOR CENTRIFUGATION EXPERIMENTS EVALUATING THE CENTRIFUGATION TIME ON PARTICLE DIAMETER	70
E.	SIZE DATA REPORTS AND MOBILITY MEASUREMENTS FOR THE THREE SUSPENSIONS PREPARED WITH THE TIO ₂ NANOPOWDERS	78
REFE	RENCES	90

LIST OF TABLES

Table		Page
 Electrophoretic model polydispersion index for the electrophoretic 	bility, Zeta potential, particle size, and the values for the three suspensions used c deposition experiment	27

LIST OF FIGURES

Figure Page			
1. Flow chart depicting the sol-gel particle synthesis process4			
2. Forces acting on a particle in a suspension during centrifugation: buoyancy force, drag force, gravitational force			
 Doctor Ralf Kaegi's centrifugation data for the extraction of TiO₂ nanoparticles from rainwater9 			
 Numerical and graphical data for the particle size, polydispersion index, and the associated standard deviation based on the radial distance from the axis of rotation during centrifugation14 			
 Numerical and graphical data for the particle size, polydispersion index, and the associated standard deviation based on the angular velocity during centrifugation			
 Numerical and graphical data for the particle size, polydispersion index, and the associated standard deviation based on the amount of time the suspension underwent centrifugation			
7. Schematic of electrophoretic deposition process			
8. Graphical depiction of the diffuse double layer surrounding a particle and the zeta potential measurement locations, where (a) is the surface layer, (b) is the Stern layer, and (c) is the diffuse layers of the counter-ions20			
9. Depiction of the particle dispersed electrostatically, the distorted double layer due to the motion of the particle during electrophoretic deposition, and the change in ion distribution at the electrode22			
10. Particle-particle interaction energy and force diagrams based on the DLVO theory			
 SEM images of the deposition on electrodes from suspension 1 (A), suspension 2 (B), and suspension 3 (C). Deposition from suspension 1 shows only a few large agglomerations of particles on the electrode. Deposition from suspension 2 shows a patch of densely packed particles approximately 200nm each in diameter while suspension 3 produced no deposition			

12. S expe susp	SEM imagery of the results from electrophoretic deposition eriments and dip casting of two different electrodes using the sol-gel pensions from our collaborators	32
13. S expe susp char elec	Spectrophotometer results from the electrophoretic deposition eriments and dip casting of two different electrodes using the sol-gel pensions from our collaborators, showing a different absorption racteristics between the film created through dip casting and ctrophoretic deposition	34

CHAPTER 1

INTRODUCTION

The creation of thin films of TiO₂ nanoparticles is of particular interest to scientists and industry due to its properties and the variety of applications. As a photocatalyst, TiO₂ is the preferred material due to its photocatalytic activity, chemical stability, nontoxicity, and low cost compared to other materials.¹ Additionally, TiO₂'s important properties include a large band gap, high electric resistivity, a high dielectric constant, and high oxidative power.^{2, 3} These properties lead to applications as capacitors in microelectronic devices, gas sensors, dye-based solar cells, optical filters, antireflection coatings, and sterilization materials.^{1, 3, 4}

To create these thin films with TiO₂ nanoparticles, two major processes must be employed: 1) the creation of nanoparticles that have the desired shape and properties needed for the specific use for which they are produced; and 2) deposition to create the films of these particles. For both of these major processes, there are numerous methods to achieve the desired result. The scope of this paper is limited to the particle synthesis produced through the solgel process, the size separation of particles using centrifugation techniques, and the creation of films using electrophoretic deposition.

This paper is organized in three separate chapters. Chapter II will cover the basic properties and a brief synopsis of the process to synthesize the

nanoparticles used in the following research. Chapter III focuses on the centrifugation techniques employed to separate particles by size, making particles greater than 30nm precipitate out of the suspension, and particles 30nm and below remain in the suspension. Chapter IV discusses the films created through electrophoretic deposition for particles commercially produced by Nanostructured & Amorphous Materials, Inc (Nanoamor) and through the sol-gel method by our collaborators in Spain.*¹ The results show that the suspension produced by Professor Rodrigo Moreno and his group have better size characteristics and are a better suspension to perform electrophoretic deposition than the suspension produced with water or ethanol from the nanoparticles purchased from Nanoamor.

^{*}Professor Rodrigo Moreno, Instituto de Cermamica y Vidrio, Consejo Superior de Investigaciones Científicas, Madrid, Spain.

CHAPTER II

CHARACTERISTIC PROPERTIES AND THE SYNTHESIS OF TITANIUM DIOXIDE NANOPARTICLES

The unique crystal structure, photocatalytic activity, and photoluminescence properties of titanium dioxide nanoparticles lead to the variety of applications previously mentioned. Titanium dioxide is found to have three prominent crystal phases: anatase, rutile, and brookite.⁵ In nature, the most commonly found crystal phase is rutile due to its stability. However, due to temperatures most commonly used in the heating process during nanoparticle synthesis, the anatase phase becomes the most stable phase.^{5, 6} Because the anatase and rutile phases are the most commonly phases used in the preparation of suspensions for electrophoretic deposition, only the properties and synthesis of these two phases will be analyzed in this paper.

Particle Synthesis

There are several methods used to synthesize TiO₂, including the hydrothermal method, chemical vapor deposition, electrodeposition, and the sol-gel method.^{5, 7, 8} Because the sol-gel method is the most employed nanoparticle preparation method, the research in this section will focus on that method of synthesis. The sol-gel method is the most common nanoparticle preparation method because it is an easily controlled and variable process that is effective,

efficient. and relatively inexpensive.⁹ The sol-gel method involves four separate steps: formulation of a sol containing the TiO₂ precursor, deposition of the sol on the desired mold, evaporation of the solvent to create the gel, and application of the heat treatment to achieve the desired phase and size of TiO² particles.¹⁰ A flow chart of this process is depicted in Figure 1. The addition of nitric acid is used

Figure 1 Flow chart depicting the sol-gel particle synthesis process.⁷

to adjust the pH of the suspension, increasing the surface charge of the particle and thereby maximizing the zeta potential of the suspension.⁷

During the heating processes, temperatures are chosen that affect both the particle size and the crystal phase of the nanoparticles.⁴ Temperatures kept between 300°C and 500°C produce only TiO₂ particles that are in the anatase phase and are 20nm in diameter. Between 500°C and 900°C, the nanoparticles begin to transition from the anatase phase to the rutile phase. This phase of transition is complete at temperatures above 900°C, where all the nanoparticles are in the rutile phase and are 110nm or larger in diameter.⁴ Because particle

sizes that are less than 30nm in diameter are preferred in the research in this paper, the phase of interest for this research is on particles in the anatase phase.

Properties of TiO₂ Nanoparticles in the Anatase Phase

One of the major differences between the nanoparticle and bulk material properties is the difference in the surface area to volume ratio, which is inversely related to the particle size: for a sphere this ratio is $\frac{3}{r}$. This increased surface area to volume ratio changes the surface charge of the particle the affects the physical and chemical behaviors of the particle.⁴ The most prevalent of these changes is the difference in bond lengths of TiO₂. This change in bond length changes the lattice structure of the particle, causing different mass densities and different electronic band structures.⁵ As the particle size decreases, the band gap energy increases; in the anatase phase at room temperature, this band gap change is 0.1-0.2eV for particles 2nm in diameter.^{5, 11, 12}

This change in the band gap has an impact on the optical properties of the particles based on their sizes. A property of interest in the scientific community is the absorption of the material, which is important in the production of solar cell technology to minimize the amount of light reflected from the material and maximize the amount of light absorbed by the material. Because TiO_2 is an indirect band gap material, the absorption is proportional to the photon energy and the band gap energy based on the relationship¹³

$$\alpha \propto \frac{\left(\hbar\omega - E_{gap}\right)^2}{\hbar\omega}$$

Because the change of the band gap is directly related to the size of the nanoparticle, the ability to create a film of a specific absorption quality is possible and provides promise for future research and development.

CHAPTER III

THE USE OF CENTRIFUGATION FOR SIZE DEPENDENT PARTICLE SEPARATION

Because the strength of the films created through electrophoretic deposition is largely dependent on the particle size in the suspension, the ability to separate the particles in a suspension by size is of particular interest to the scientific community.¹⁴ Numerous methods have been employed to separate suspended nanoparticles by size, including magnetic separation, selective precipitation, filtration, centrifugation, electrophoresis, and chromatographic methods.¹⁵ In the experiments conducted in this paper, the desired particle sizes were those less than 30nm. Due to its non-destructive nature and the availability of equipment in most labs, centrifugation became the focus of particle size separation methods for this paper.

Calculations for Particle Separation by Centrifugation

Treating the particles as spheres, one can analyze the forces that are acting on the particle through the centrifugation process. Looking at the kinematics of a particle in a suspension prior to centrifugation, three different forces can be identified: gravity, buoyancy, and drag (Figure 2).¹⁶ The combination of the force due to gravity and the buoyancy force can be found through the equation

$$F = \frac{4}{3}\pi \left(\frac{x}{2}\right)^3 \left(\rho_p - \rho_f\right)g$$

where ρ_p is the known density of the TiO₂ particle and ρ_f is the density of the

liquid the particle is suspended in.¹⁶ To simplify the calculation for the force of drag, the assumption is made that there is little fluid turbulence, and the particle is small and moving with a slow velocity. These assumptions cause the Reynolds number, the number that expresses the ratio of inertial forces to the viscous forces associated with the motion of the particle through the liquid, to be approximately one and insignificant in the calculation of the drag forces. With these assumptions, the force of drag can be defined as $F_d = 3\pi v_p x \mu$, where v_p is the velocity of the particle and μ is the viscosity of the suspension.^{16, 17}

Replacing the gravitational acceleration with the acceleration due to centrifugation and solving for the particle diameter, we arrive at the equation

$$x = \sqrt{\frac{18\mu v_r}{(\rho_p - \rho_f)r\omega^2}}$$

This equation defines the size of the particle that is in equilibrium, known as the cut size, at a given radius from the center of the rotating axis, known as the locus of zero vertical velocity.^{16, 18} However, these calculations are based on processes using a hydrocyclone, where the

Figure 2 Forces acting on a particle in a suspension during centrifugation: buoyancy force, drag force, gravitational force.¹⁶

suspension is able to be inserted into the spinning centrifuge with a set angular velocity at a desired radius from the axis of rotation, thus allowing the larger particles to sediment and be removed from the liquid, and the smaller particles to be left in the suspension and removed with the overflow liquid during the centrifugation.¹⁶ Using the Drucker centrifuge, the suspension must be placed in centrifuge tubes during the experiments. This process creates a gradient of force due to the distance from the axis of rotation, where the forces at the bottom of the tube greater than at the top. Because the suspensions were uniformly distributed prior to the centrifugation, particles of the same size would be subjected to different forces based on their initial position in the centrifuge tube.

Results from Previous Centrifugation Studies

The goal of the research from this chapter was to develop a process to consistently obtain particles of a given size through simple centrifugation. While there are studies on the size separation of particles by centrifugation for gold nanoparticles and nanorods and the use of density gradients in the suspensions,

study one was of particular interest. 19, 20 Doctor Ralf Kaegi, the head of the particle laboratory at the Swiss Federal Institute of Aquatic Science, conducted an experiment to investigate how TiO₂ nanoparticles used in

Figure 3 Doctor Ralf Kaegi's centrifugation data for the extraction of TiO2 nanoparticles from rainwater.²⁰

paint were introduced to the natural waterways by rains.²⁰

Doctor Kaegi and his team collected the water that ran off the painted surface and used a two-step centrifugation process, as indicated by Figure 3. In the first step, Kaegi and his team were able to reduce the particle size down to 300nm using a Megafuge swing bucket rotor and at a speed of 1500rpm, thus applying and average centrifugal acceleration 330 times that of gravity. He then removed the top 40mL of the centrifuged liquid, and ran in the centrifuge again at a speed of 4300rpm, thus applying and average centrifugal acceleration 2700 times that of gravity and reducing the particle size in the suspension to 20nm. This approach was the foundation for the research that follows in this chapter.

Experiments with Centrifugation

Extensive experiments were conducted in the laboratory to determine the whether we could separate the commercially prepared nanoparticles by size through centrifugation. In the following section, the suspension preparation method, the parameters that were examined, and the results of the experiments are discussed. The centrifugation experiments were conducted with both the Drucker Model 755VES centrifuge, capable of angular speeds up to 3500rpm and a maximum centrifugal acceleration of 2200g, and the Beckman Coulter Allegra 64R centrifuge, capable of speeds up to 21,000rpm and a maximum centrifugal acceleration of speeds up to 21,000rpm and a maximum the associated rotor. The Malvern Zetasizer Nano series is an instrument that uses the Dynamic Light Scattering technique to determine the size of particles

suspended in a liquid, with published accuracy as low as 0.6nm. In order to find the diameter of the particles in the suspension, there must be a concentration that is high enough to measure the motion of the particles within the suspension. The experiments using the Beckman Coulter centrifuge are not included in this paper, as the suspensions were too dilute for the Malvern Zetasizer to produce accurate size reports for the particles in the suspension. The desired outcome of these experiments is to remove the nanoparticles that are greater than 30nm or agglomerations that form to achieve suspensions that are comparable to particle sizes that are seen in the sol-gel nanoparticles.

Suspension Preparation

The suspension preparation method was kept as uniform as possible throughout the course of the experiments. The suspensions were prepared with 40mL of ethanol or water added to 45 mg of TiO₂ nanopowder from a commercial supplier, higher than previously used by the research group to ensure that the sample was not too dilute by the end of the centrifugation process. Certain iterations of the experiment required more of the suspension to be extracted at the desired height of the centrifuge tube, but the concentration was kept the same for these iterations. Once the nanopowders and solvent were combined in the centrifuge tube, the mixture was manually agitated for 30 seconds and placed in the ultrasonicator for 15 minutes.

Parameters Examined During Centrifugation

Using the equation derived above for the particle diameter during centrifugation, $x = \sqrt{\frac{18\mu v_r}{(\rho_p - \rho_f)r\omega^2}}$, the parameters to be analyzed can be extracted.¹⁶ Both the distance from the axis of rotation (r) and angular velocity are inversely proportional to the particle size and were analyzed in the experiments below. The density of the fluid was a factor analyzed during initial centrifugation experiments. This was done by trying two different liquids: ethanol and water. The difference in the density, viscosity, and dielectric constant of the two solvents were of interest to us for electrophoretic deposition. In initial experiments, the attempts to create suspensions with water were not successful due to its instability because the suspensions would precipitate at low rpm settings or if left to the effects of gravity overnight. Using the Zetasizer to determine the diameter of the particles remaining in the suspension, the size reports indicated a concentration of TiO₂ that was too low to be measured, as shown in the size quality reports in Appendix A. Therefore, all experiments conducted below use ethanol as the solvent to prepare the suspension. Additionally, because one of the variables in the equation for the desired particle diameter is the radial velocity of the particle during the centrifugation, there is an implicit time variable that must be explored.¹⁶

Experiments on the Effect of Radial Distance on the Particle Diameter

Because the prepared suspensions must be placed in a plastic centrifuge as a part of a closed system, there is no effective way to change the distance of the suspension from the axis of rotation. To analyze the effect this change had on the particle size, a syringe was used to extract the suspension from two locations in the centrifuge tube: the 30mL and the 15mL mark on the centrifuge tube. These two values were chosen to be far enough into the solution to avoid any sort of surface effects of particles on top of the liquid and to be far enough from the bottom of the centrifuge tube to avoid extracting some of the particles that were part of the sedimentation.

Using the equation $g = (1.118 \times 10^{-5})r\omega^2$ to determine the centrifugal acceleration in units of earth's gravity, and measuring the radial difference between the 30mL and the 15mL mark on the centrifuge to be 4.7 cm, the change in location that the sample was extracted was subjected to would differ by a factor of 4.7 g's. To isolate effect that the 4.7cm difference of radial distance has on the particle, samples were obtained from the 30mL and 15mL marks at four distinct angular velocities for 15 minutes each (Figure 4). Initially, the particle size from the sample extracted from the 30mL mark was larger than that of the particle extracted from the 15mL mark, which does not coincide with the expected results using the calculations above. However, as the angular velocities were increased, the difference between the sizes of the particles at each of the two positions was essentially negligible given the associated standard deviation. Appendix B contains the reports generated by the Malvern Zetasizer for these results. By this experiment, the conclusion is made that the particle size is not dependent upon its location within the centrifuge tube so long as these particles are not a part of the sedimentation at the bottom of the tube.

Figure 4 Numerical and graphical data for the particle size, polydispersion index, and the associated standard deviation based on the radial distance from the axis of rotation during centrifugation.

Experiments on the Effect of Angular Velocity on Particle Diameter

To isolate the effects of the angular velocity on the particle size, the same suspension was used for centrifugation, the sample was extracted from 15mL mark on the centrifuge tube, and the time period that each suspension underwent centrifugation was kept constant at 15 minutes. The diameter of the particles still in suspension was measured as the angular velocity of the centrifuge was varied from 1500rpm to 3500rpm in 500rpm intervals. The results show that the change in sampled particle size when centrifuged from 1500rpm to 2000rpm is significant, but that subsequent intervals do not seem to make a significant

change, especially with respect to the standard deviation of the particle size, as indicated by the error bars in the graph in Figure 5. Appendix C contains the reports generated by the Malvern Zetasizer for these results.

Figure 5 Numerical and graphical data for the particle size, polydispersion index, and the associated standard deviation based on the angular velocity during centrifugation.

Experiments on the Effect of Centrifugation Time on Particle Diameter

The last parameter analyzed was the amount of time that a suspension endured centrifugation. This was done by using the same suspension, extracting the sample from the 15mL mark on the centrifuge tube, and keeping the angular velocity constant at 3500rpm. The time interval was measured in 30 minute intervals, ranging from 30 minutes to 120 minutes. The results indicate that there is little effect on the ability to separate the commercial nanoparticles by size using a constant angular velocity and increasing the amount of time. These results are depicted in Figure 6 and detailed reports printed in Appendix D.

Figure 6 Numerical and graphical data for the particle size, polydispersion index, and the associated standard deviation based on the amount of time the suspension underwent centrifugation.

Effectiveness of Size Separation through Centrifugation

Through the centrifugation techniques employed, nanoparticles less than 30nm in diameter were not able to be separated and stay suspended in the solvent at concentrations that could be measured with the Malvern Zetasizer. It was possible to separate nanoparticles down to 150nm with concentrations high enough to be evaluated by the Malvern Zetasizer. However, achieving particles smaller than 30nm at a sufficient concentration for EPD was not possible with the centrifugation methods used in these experiments.

CHAPTER IV

ELECTROPHORETIC DEPOSITION OF THIN FILMS USING TITANIUM DIOXIDE SUSPENSIONS

Scientists and industrial leaders have been using various deposition techniques to make thin films of nanoparticles, including chemical vapor deposition, sputtering, dip casting, and electrophoretic deposition.²¹ In the creation of films made from titanium dioxide nanoparticles, electrophoretic deposition is a favored method due the short time period required for deposition, the ability to deposit a film on a non uniform surface, the small equipment footprint and associated costs, and the ability to control the thickness of the films.²² This section will provide an overview of the fundamentals of electrophoretic deposition, how each of the variables in the deposition process affects the creation of thin films, what variables were analyzed in the course of this research, and an analysis of the films created with the sol-gel suspension from our collaborators and the suspensions prepared with the commercially produced titanium dioxide nanoparticles.

Fundamentals of Electrophoretic Deposition

The basic concept behind electrophoretic deposition for TiO_2 nanoparticles, as shown in Figure 7, is simple: voltage is applied to a suspension; the charged nanoparticles move towards the electrode of opposite charge (electrophoresis) and form a stable deposition of a desired thickness on its surface (deposition).²³

While the concept sounds simple, the physics behind the process has proven to be more difficult to explain.

Electrophoresis is governed by four different forces. When the voltage is applied to the electrodes, an electric field is created that interacts with the surface charge of the nanoparticle, producing a force that moves the particle towards the electrode of the opposite

Figure 7 Schematic of electrophoretic deposition process.²³

charge.²⁴ The other three forces work to counter the force due to the electric field. The drag created by the viscosity of the fluid reduces the ability of the particle to move in the suspension. Additionally, the ions from the solvent used in the suspension surround the particle, and exert a force due to the electric field in the opposite direction, which retards motion. Lastly, the distortion in the double layer, described later in this chapter, caused by the displacement between the center of the positive and negative charges cause the particle's motion toward the electrode to be inhibited.²⁴

The combination of all these forces is used to calculate the electrophoretic mobility of the particles, which describes the particles' ability to move in a specific solvent under an electric field, as defined by the equation

$$\mu_e = \frac{v}{E} = \frac{\epsilon\zeta}{\eta}$$

where v is the velocity of a particle in the electric field (E), ϵ is the dielectric constant for the solvent used, ζ is the zeta-potential of the particles in the

suspension, and η is the viscosity of the liquid in the suspension.²⁵ The viscosity of the liquid is one of the characteristics of the suspension that inhibits the free movement of the particles towards the electrode, as indicated by the equation above.²⁴

The electrophoretic mobility of a particle depends on these interrelated properties of the nanoparticles and the solvent used to prepare the suspension. The size of the particles in the suspension is directly related to the stability of the suspension and the quality of the films created by the deposition. The larger the particles are, the more they tend to sediment due to the effects of gravity. To make a uniform film, the effects of gravity must be overcome to deposit the particles onto the electrode and avoid the creation of a film with a thickness gradient as the particles settle. The electric field must be increased to avoid the creation of a nonuniform film on the electrode due to force of gravity. This can be done in one of three ways: use a particle with a larger charge to mass ratio, increase the size of the electric double layer of the particle, or increase the voltage applied across the electrodes. Additionally, the smaller the particles are, the higher the ratio is between the surface charge and the mass of the particle, increasing the mobility of the particle.²⁶ While the charged particle is suspended in a liquid, ions of the opposite charge are attracted to the particle, and ions with the same charge of the particle are attracted to the first layer of ions, essentially creating two concentric spheres of opposite charge about the particle called the double layer, as depicted in Figure 8. The potential difference between the two ionic layers is known as the zeta potential, another suspension characteristic that

Figure 8 Graphical depiction of the diffuse double layer surrounding a particle and the zeta potential measurement locations, where (a) is the surface layer, (b) is the Stern layer, and (c) is the diffuse layers of the counter-ions.²²

plays a vital role in electrophoretic deposition.²³ The zeta potential, related to the suspension characteristics through the equation $\mu_e = \frac{v}{E} = \frac{\epsilon\zeta}{\eta}$, is used to determine the stability of the suspension, the direction and velocity of a particle during EPD, and can predict which electrode the particles would be deposited on.²²

The dielectric constant of the liquid used for the suspension must be in a range that optimizes the particles ability to move towards the electrode. The dielectric constant of a body is the ratio of capacitance of two plates in a vacuum to the capacitance of two plates with the body in between, thus getting a mathematical factor of the ability of the medium to hold a charge.²⁵ Using a liquid with dielectric constant that is too low will cause little to no deposition due to the insufficient dissociative energy, and those liquids with high dielectric constants reduce the size of the double layer region in the particles.²² The conductivity of the suspended particle proves to be an important factor in the ability of the

particle to be deposited. In studies by Ferrari and Moreno, they found that particles had to be within a specific range of conductivity values for both polar and nonpolar suspensions.²⁷ If the conductivity values were too low or two high, the particles would not deposit on the electrode, no matter how strong the intensity of the electric field was or the length of time the electric field was applied.²⁷

Additionally, attention must be paid to the solvents' ability to keep the nanoparticles suspended. Stable suspensions allow for particles to maintain a uniform dispersion throughout the liquid, limiting agglomeration, and allowing the particles to move toward, and deposit on, the electrode separately.²⁸ The stability is widely characterized by the zeta potential, where the higher the absolute value of the zeta potentional is, the more stable the suspension is; though this is not a steadfast rule.²² The best was to characterize the stability of a suspension is to observe that it has a slow rate of settling, shows little propensity to flocculate, and forms dense and strongly adhering deposits.^{22, 23} Once we take all of the suspension characteristics together, we find that the best solvents to use are ones that allow for a stable suspension of the desired particles, have low viscosity, high dielectric constants, and low conductivity.²² The deposition process is the coagulation of the particles on the electrode, producing a stable film of dense mass.

Theories to explain the deposition mechanisms at the electrode include particle neutralization at the electrode, coagulation at the electrode due to the formation of ions from the reactions of the particle and the electrode, and the

effects of double-layer distortion during electrophoresis followed by the coagulation of the particles at the electrode due to the applied electric field.²⁸ While the effects of the interactions between the particle and the electrode do cause some coagulation play role in the deposition process, Sarkar and Nicholson searched for definitive proof and conducted an experiment to determine if one or all of these theories were correct. After placing a dialysis

electrodes membrane between the during an EPD, they were able to get a deposition on the membrane and still register a current between the plates. Because deposition was seen on the membrane and a current was still measured between the two plates due to the ions passing through the membrane, Sarkar and Nicholson determined that the particle/electrode interaction and the charge neutralization at the electrode did not play a part in the deposition of materials²³

This section will explain the basics of

Figure 9 Depiction of the particle dispersed electrostatically(a), the distorted doubly layer due to the motion of the particle during electrophoretic deposition(b), and the change in ion distribution at the electrode(c).²⁸

the effects of double-layer distortion and how it affects coagulation at the electrode surface. As briefly noted earlier, charged particles suspended in a liquid will attract ions of opposite charge and create a sphere around the charged

particle. As the particle moves in the liquid, this sphere becomes distorted and the distribution of charge changes, causing the ions to be more heavily distributed on the trailing side. As a result of this distortion, the tail will become so thin and stretched out that the next particle in motion will approach close enough for van der Waals attractive force to be stronger than that of the repulsion force cause by the double-layer interaction and will induce deposition (Figure 9).²² This is what gives the nanoparticle films created through EPD their strength.

Mathematically, this process is described by the DLVO theory, named after Derjaguin, Landau, Verwey, and Overbeek.^{29, 30} This theory combines the effect of van der Waals attractive forces and the counter forces of the ion surrounding the particle to describe the motion of a charged particle through a liquid. Mathematically, this is often depicted as

$$V_{TOTAL} = V_A + V_R$$

where V_A is the van der Waals attractive force and V_R is the electrostatic repulsive force.^{22, 31, 32} After applying Derjaguin's approximation, V_A and V_R are reduced to the following two equations:

$$V_{A} = -\frac{A_{H}}{6D} \left(\frac{a_{1}a_{2}}{(a_{1} + a_{2})} \right); V_{R} = 2\pi r \varepsilon \Psi_{0}^{2} ln \left[1 + e^{(-\kappa D)} \right]$$

where A_H is Hamaker's constant, $a_{1,2}$ are the radius of two different sized particles that are interacting, D is the distance between the surfaces of the two interacting particles, ε is the permittivity of the solvent, Ψ_0 is the surface potential, and κ is the reciprocal of the double layer thickness.^{31, 32} As shown in Figure 10, there is an energy barrier that particles must overcome to irreversibly adhere to

Figure 8 Particle-particle interaction energy and force diagrams based on the DLVO theory.²³ each other, and the graph indicates the minimum electric field required for coagulation at the electrode.²³ As the deposition is occurring on the electrode, the electric field will become weaker due to the increased resistance of the electrode caused by the deposited material as well as the decreased concentration of the charged particles near the electrode. Therefore, it is common practice to apply an electric field that maintains a constant current between the electrodes, thus keeping a constant electric field and constant rate of deposition.²³

Variables and Parameters for Electrophoretic Deposition

In 1940, Hugo Christiaan Hamaker studied the process of electrophoretic deposition and, based on the principle of conservation of mass, derived the equation

$m = \mu ESct$

This equation defines the mass that is deposited on an electrode based on the

electrophoretic mobility of the particles in the suspension (μ), the electric field across the electrodes (E), the surface area of the electrodes (S), and the concentration of the particles in the suspension (c), and the time that the deposition was occurring (t).³³ While this equation may not be exact in determining the amount of deposition that occurs, because of changing concentrations of particles around the electrode or a change in the electric field due to previously deposited material on the electrode, it does provide a relationship between the key factors of EPD that can be varied in the deposition process.

For the scope of the research discussed in this paper, the electrophoretic mobility of the particles in each suspension was noted but was not varied in order to research its effect on the characteristics of the deposited materials. A change in the electrophoretic mobility of the particles would have required adjusting the pH of the suspension, and adjusting both the pH and the electrophoretic mobility were omitted from the research parameters. The electric field used for the deposition was created by applying a constant voltage to the electrodes as opposed to the constant current setting. While deposition with constant current is the preferred method amongst the leaders in electrophoretic deposition, research performed in our lab was done with a constant voltage applied to avoid the effects of electrolysis that would be prevalent at the electrode and would cause an environment that would not be conducive to quality film formation.³⁴ The surface area of the electrodes was not varied during the research on the electrophoretic deposition iterations using the commercially prepared

nanopowders or the iterations using the sol-gel suspensions, as the electrode sizes, deposition depth, and volume of the suspension that the electrodes were exposed to remained constant. However, the surface areas of the electrodes were not the same between each of those two experiments. Similarly, the sol-gel suspensions had the same concentration for all performed deposition experiments and the concentration of the suspensions made from the Nanoamor nanopowders were the same for all deposition experiments conducted with the ethanol based suspensions. Time was the other variable used to see how the deposition was affected. The time of deposition was changed in both a continuous and continual manner; that is, the length of the time interval was changed, as was the number of times the interval was repeated. Additionally, an artificial field gradient was created for a set of electrodes by making an indentation on the surface of the steel electrode to see if there was any change in the nanoparticles propensity to deposit where a field gradient existed. The details of the parameters associated with each experiment will be elaborated on in the following sections.

Electrophoretic Deposition Using Commercially Purchased TiO₂ Nanopowder

As indicated in the previous chapter, numerous attempts were made to achieve a suspension made from TiO₂ nanopowder (Nanoamor, 99% purity, 10nm APS) that was stable, that had small particle diameters, and that were concentrated enough to make quality depositions after the centrifugation processes. Because the suspensions prepared with water were unstable and

flocculation was visually evident, the solvent chosen for the preparation of the nanopowder suspension was ethanol. Three suspensions were used to analyze the difference between two different voltages applied to the electrodes, the effects of an electric field gradient produced by the indentation in the electrode, and the effects of multiple depositions on the same electrode. The rest of this section will describe the procedure, expected results, and the actual results.

Suspension preparation

All three suspensions were created by adding 50mL of ethanol to 50mg of TiO₂ nanopowder purchased from a Nanoamor that was placed in a 50mL centrifuge tube. The mixture was manually agitated for 30 seconds and placed in the ultrasonicator for 15 minutes. Three of the suspensions were then placed in the centrifuge to separate out the large agglomerations. Suspension 1 was then placed in the centrifuge for 30 minutes at 2000rpm, suspension 2 was placed in the centrifuge for 90 minutes at 3500rpm, and suspension 3 was placed in the centrifuge for 90 minutes at 3500 followed by a 30 minutes in a larger centrifuge for 30 minutes at 15,000rpm. Due to the extra centrifugation in suspension 3, the concentration of the nanoparticles became too low for the Malvern DLS system

Zeta Potential Electrophoretic Particle Size Quality of Size Mobility (µ) (ζ) (nm) Data (PDI) Suspension 1 -0.3672 -18.40 268.0 0.352 -0.2023 Suspension 2 -10.10 179.1 0.104 Suspension 3 -0.0053 -0.27 0.465** 379.4

to get accurate readings on particle size and zeta

potential. The characteristics of these three suspensions are

Table 1 Electrophoretic mobility, Zeta potential, particle size, and the polydispersion index values for the three suspensions used for the electrophoretic deposition experiment.

shown in Table 1 and the full data reports are shown in Appendix E. By analyzing the data at in this table, the high value of zeta potential and electrophoretic mobility of suspension 1 should indicate better suspension stability and better particle mobility in the suspension. Therefore, electrophoretic deposition experiments using suspension 1 should have a larger amount of deposited materials on the electrodes than the electrodes from the other two suspensions.

Deposition Process

To conduct the electrophoretic deposition experiments in the lab, the electrodes, thin sheets of steel cut into one inch long by one-half inch wide strips, were placed between microscope slides to create a separation distance of one centimeter separation. Voltage was applied to these electrodes through copper tape on the inside of the glass slides. The voltage was checked at the leads and the electrode with a voltmeter to ensure that the proper voltage was applied to the electrodes. Beginning with suspension 1, a 20mL beaker was filled with 12.5mL of the prepared suspension and placed in the EPD chamber. Working through the Labview software, 50 Volts DC was applied to the electrodes and the electrodes were lowered into the suspension for 15 minutes. After the 15 minute time period, the electrodes were extracted and allowed to dry with the voltage applied for 5 minutes, at which point the voltage is turned off.

This process is repeated with a second set of steel electrodes, except this time, 70 Volts DC was applied to the system. For the next set of electrodes, this

process was repeated three times with the same set of electrodes, with a one minute time period between each interval where the voltage was not applied. These three processes were performed with each of the three prepared suspensions, and were repeated again with electrodes with intentional indentations to observe the effects of an electric field gradient.

Results and Discussion

The results for electrophoretic deposition using the suspensions created from the nanopowders failed to produce uniform films on the steel electrodes. During the EPD process, suspension 1 had a large amount of flocculation and associated sedimentation around both electrodes, indicating a lack of stability in that suspension. The electrodes showed a faint white deposition around the edges and a heavy white deposition at the meniscus for each of the depositions. The EPD performed with 70 Volts caused many more particles to adhere to the electrodes, however with no significant changes were observed for the electrodes that were exposed to multiple depositions or experienced an electric field gradient.

The SEM images from the electrodes using suspension one showed large agglomerations on the electrode, but no densely pack materials. Depositions with suspension 2 produced a small amount of flocculation and precipitation, though this was concentrated beneath the negative electrode. Again, the electrodes that underwent electrophoretic deposition in suspension 2 only had visual indications of a film on the outer edges of the negative electrodes and on

Figure 11 SEM images of the deposition on the electrodes from suspension 1 (A), suspension 2 (B), and suspension 3 (C). Deposition from suspension 1 shows only a few large agglomerations of particles on the electrode. Deposition from suspension 2 shows a patch of densely packed particles approximately 200nm each in diameter while suspension 3 produced no deposition

the meniscus for both the positive and negative electrodes with the only changes in the amount deposited using multiple depositions or different voltages during the EPD. Depositions with suspension 2 showed small patches of densely packed particles, but were only seen using the higher voltages. Again, no change was seen when using multiple depositions or when an electric field gradient was created. Suspension 3 showed no flocculation or sedimentation during the experiment, and showed no signs of deposition on the electrode visually or with under SEM. Most of results meet expectations due to the characteristics of the suspensions used.

The zeta-potentials of the suspensions were relatively small and sedimentation was evident after periods of inactivity or a lack of agitation, indicating a lack of stability of the suspensions. Thus, the flocculation observed in during the electrophoretic deposition was anticipated. Another anticipated result was that there was more deposition on the edges of the electrodes, as there were more particles near the edges of the electrodes that were subject to the effects of the electric field applied. Additionally, the deposition occurred primarily on the positive electrode, as expected given the negative zeta potential. I would have expected there to have been an increased deposition either on the peak of the created indentation on the positive electrode, or a concentrated group of particles opposite the peak on the negative electrode, since the electric field gradient would be larger at the point of indentation, and the electric field would be greater due to the decreased distance between the plates. Due to the instability of the suspension using the nanopowders and the consequential inability to make consistent uniform films with these suspensions, the focus of the researched shifted to the sol-gel suspensions provided by our collaborators.

Electrophoretic Deposition Using Eu doped TiO₂ Sol-gel Suspension

The sol-gel suspensions used for electrophoretic deposition were obtained from Dr. Rodrigo Moreno and his group, from the Institute of Ceramics and Glass(CSIC), in Madrid, Spain. This suspension had a ratio of water to Ti(IV)isopropoxide that was 1:50, with a small amount of acetate and nitric acid that was used to adjust the pH and introduce europium (2%) into the suspension.

31

Due to the high water content of the suspension, low voltage was used to prevent electrolysis at the electrode. The first experiments were performed using steel electrodes, where it became evident that films could be created that were of much higher quality compared to the previous nanopowder suspensions. The original parameters for the sol-gel deposition process remained the same as the process for the nanopowders: one inch long by one-half inch wide steel electrodes separated by one centimeter. The first deposition was performed with

Figure 12 SEM imagery of the results from electrophoretic deposition experiments and dipcasting of two different electrodes using the sol-gel suspensions from our collaborators.

an applied voltage of 2.5 Volts, a 10 minute deposition time, and a 5 minute annealing time, based on preliminary research performed by a former group member. Next, a film was produced by dip casting to observe the similarities and differences between these films and the films produced through electrophoretic deposition. Looking at the films with the SEM, there was very little visual difference between the two films. In fact, the film created through dip-casting seemed to be more uniform and less brittle than the film created through EPD. After consulting one of my group members, Dr. Isabel Gonzalo de Juan, she suggested that the brittleness of the film possibly could be attributed to electrolysis at the electrode and that I needed observe into the change in pH and the change in conductivity of the suspension compared with the voltage applied during an electrophoretic deposition experiment.

Due to a small supply of the europium doped TiO₂ sol-gel suspension, the electrophoretic deposition was conducted using the same 40mL sample, using steel electrodes, and a deposition time of 10 minutes. The experiments were done repeatedly, decreasing the voltage first in .25V increments, then in .05V increments until the pH of the suspension remained unchanged. After completing the experiments, the optimal voltage to maximize the electric field and not encounter electrolysis was determined to be 1.9V. Additionally, the substrate used for deposition was changed from using steel electrodes to ITO to eliminate the flexibility or deformations of the steel as a source of the brittleness and to better observe the optical properties of the film.

To examine the qualities under the SEM and using spectrophotometric analysis, films were created using both dip casting and electrophoretic deposition. The electrodes used to create the dip cast were placed in the electrode holder with one centimeter separation. They were then lowered into a 25mL beaker for 10 minutes and raised out of the suspension to dry for 25 minutes. The electrodes that were used create films through EPD underwent the

33

same process except also had 1.9V applied throughout the process. Visually, both films looked uniform and did not appear to have much cracking or flaking with the exception of the bottom of the electrode, where the liquid accumulated during the drying process. Looking at the films under the SEM, both films appear to have a deposition of the TiO₂ nanoparticles. Both the dip cast and the films produced with EPD have TiO₂, but the dip cast film looks life it precipitated in the shape of tree branches where the EPD film appeared to be more uniformly deposited, as seen in Figure 12. Spectrophotometric analysis was performed on both the films using the Varian Cary 5000 UV-VIS-NIR Spectrophotometer to compare the absorption of the two films (Figure 13). The results show that there is a distinct difference in the absorption characteristics of the two films, where the films created through EPD have an absorption peak that is shifted towards the

UV range. This suggests that the electrophoretic deposition either attracts or repels material that is not attracted or repelled through the dip casting process. This is the case for both the positive and negative electrode, so the material that is present in the dip cast film is likely charge neutral.

CHAPTER V

CONCLUSION

The research in this paper discussed the characteristics of titanium dioxide nanoparticles, the size separation techniques employed through centrifugation, and the electrophoretic deposition of thin film of TiO₂ nanoparticles onto a substrate. Reviewing the results from this work, size separation of nanoparticles below 100nm was not achieved with the centrifugation methods employed, suspensions prepared with the TiO2 nanopowders were not stable and proved problematic in electrophoretic deposition experiments, and the films created through electrophoretic deposition had fundamental differences than those created by dip casting when using sol-gel suspensions.

Future research using centrifugation for size separation of nanoparticles in a suspension prepared using a solvent and nanopowders should focus on the creation of a stable suspension. Suspension stability could be achieved through a different solvent being used, or using water with another solvent that would adjust the pH in the suspension high enough so that the zeta potential would be increased, thereby increasing the stability of the suspension.

Continued research in the electrophoretic deposition experiments using the sol-gel suspension provides many opportunities for growth in the scientific and industrial communities. Because the band gap of materials increases as the size of the nanoparticle decreases, it would be possible to tailor a material, whether it

36

is with one layer of nanoparticles or multiple layers of nanoparticles, to achieve a desired band gap. Such technology would be welcome in optics and in photovoltaics, where the band gap of the material is essential in the efficiency and cost effectiveness of the solar cell.

APPENDIX A

SIZE DATA REPORTS FOR SUSPENSION PREPARATION USING WATER

Size Distribution Report by Intensity

Sample Details	
Sample Name	TiO2 in Water, 1500rpm, 15min
SOP Name:	TiO2 Size in water glass.sop
General Notes:	

File Name:	DATA.dts	Dispersant Name:	Water
Record Number:	22	Dispersant RI:	1.330
Material RI:	2.49	Viscosity (cP):	0.8874
Material Absorbtion:	0.40	Measurement Date and Time:	Thursday, July 15, 2010 11:2.

System

Temperature (°C):	25.1	Duration Used (s):	70
Count Rate (kcps):	117.3	Measurement Position (mm):	4.65
Cell Description:	Glass cuvette with re	ound apert Attenuator:	7

Results

			Diam. (nm)	% Intensity	Width (nm)
Z-Average (d.nm):	1985	Peak 1:	393.3	100.0	31.67
PdI:	0.985	Peak 2:	0.000	0.0	0.000
Intercept:	1.10	Peak 3:	0.000	0.0	0.000
Docult quality :		ult quality r	oport		

Sample Name TiO2 in Water, 1500rpm, 15min Record Number: 22

Results Table

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	0.0
0.5365	0.0	91.28	0.0
0.6213	0.0	105.7	0.0
0.7195	0.0	122.4	0.0
0.8332	0.0	141.8	0.0
0.9649	0.0	164.2	0.0
1.117	0.0	190.1	0.0
1.294	0.0	220.2	0.0
1.499	0.0	255.0	0.0
1.736	0.0	295.3	0.0
2.010	0.0	342.0	18.8
2.328	0.0	396.1	69.4
2.696	0.0	458.7	11.8
3.122	0.0	531.2	0.0
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.0	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
22	1985	393.3	0.000	0.000	13586.4

Size Distribution Report by Intensity Sample Details Sample Name: TiO2 in Water, 2500rpm, 15 min SOP Name: TiO2 Size in water glass.sop General Notes: File Name: DATA.dts Dispersant Name: Water Record Number: 18 Dispersant RI: 1.330 Material RI: 2.49 Viscosity (cP): 0.8861 Material Absorbtion: 0.40 Measurement Date and Time: Thursday, July 15, 2010 9:19: System Temperature (°C): 25.0 Duration Used (s): 80 Count Rate (kcps): 227.3 Measurement Position (mm): 4.65 Cell Description: Glass cuvette with round apert... Attenuator: 8 Results Diam. (nm) % Intensity Width (nm) Z-Average (d.nm): 877.9 Peak 1: 377.7 100.0 54.33 Pdl: 0.903 Peak 2: 0.000 0.0 0.000 0.000 0.0 0.000 Intercept: 1.02 Peak 3: Result quality : POOR - see result quality report Size Distribution by Intensity 40

Sample Name TiO2 in Water, 2500rpm, 15 min Record Number: 18

Results Table

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	0.0
0.5365	0.0	91.28	0.0
0.6213	0.0	105.7	0.0
0.7195	0.0	122.4	0.0
0.8332	0.0	141.8	0.0
0.9649	0.0	164.2	0.0
1.117	0.0	190.1	0.0
1.294	0.0	220.2	0.0
1.499	0.0	255.0	0.0
1.736	0.0	295.3	14.4
2.010	0.0	342.0	31.4
2.328	0.0	396.1	34.3
2.696	0.0	458.7	19.1
3.122	0.0	531.2	0.9
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.0	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
18	877.9	377.7	0.000	0.000	6615.6

Size Distribution Report by Intensity

Sample Details

Sample Name:	TiO2 in Water, 3500rpm, 15min
SOP Name:	TiO2 Size in water glass.sop
General Notes:	

File Name:	DATA.dts	Dispersant Name:	Water
Record Number:	23	Dispersant RI:	1.330
Material RI:	2.49	Viscosity (cP):	0.8883
Material Absorbtion:	0.40	Measurement Date and Time:	Thursday, July 15, 2010 11:2.

System			
Temperature (°C):	25.0	Duration Used (s):	80
Count Rate (kcps):	86.6 Measurer	nent Position (mm):	4.65
Cell Description:	Glass cuvette with round apert	. Attenuator:	9

Results

			Diam. (nm)	% Intensity	Width (nm)
Z-Average (d.nm):	1565	Peak 1:	272.1	100.0	22.63
PdI:	0.896	Peak 2:	0.000	0.0	0.000
Intercept:	1.25	Peak 3:	0.000	0.0	0.000
Result quality :	POOR - see res	ult quality r	eport		

Sample Name TiO2 in Water, 3500rpm, 15min Record Number: 23

Results Table

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	0.0
0.5365	0.0	91.28	0.0
0.6213	0.0	105.7	0.0
0.7195	0.0	122.4	0.0
0.8332	0.0	141.8	0.0
0.9649	0.0	164.2	0.0
1.117	0.0	190.1	0.0
1.294	0.0	220.2	4.4
1.499	0.0	255.0	49.3
1.736	0.0	295.3	46.3
2.010	0.0	342.0	0.0
2.328	0.0	396.1	0.0
2.696	0.0	458.7	0.0
3.122	0.0	531.2	0.0
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1/18	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.30	0.0	4145	0.0
20.21	0.0	4001	0.0
32.07	0.0	6420	0.0
37.04	0.0	7459	0.0
43.02 50.75	0.0	8635	0.0
5877	0.0	1 000-4	0.0
30.77	0.0	1.00004	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
23	1565	272.1	0.000	0.000	838.6

APPENDIX B

SIZE DATA REPORTS FOR CENTRIFUGATION EXPERIMENTS EVALUATING THE EFFECTS OF DISTANCE FROM THE AXIS OF ROTATION ON PARTICLE DIAMETER

Size Distribution Report by					nsity	
Sample D	etails					
	Sample Name	TiO2 in et	hanol, 15min	, 1000rpm, 30	mL mark	
	SOP Name:	TiO2 Size Et	hanol Glass.sop			
	General Notes:					
	File Name:	Radius Com	parison.dts	Dispersant N	ame: Ethanol	
R	ecord Number:	1		Dispersar	nt RI: 1.361	
	Material RI:	2.59		Viscosity	(cP): 1.1170	
Mater	rial Absorbtion:	0.10	Measure	ement Date and T	ime: Wednesda	y, July 21, 2010 1
System						
Те	mperature (°C):	20.0		Duration Use	d(s): 60	
Col	unt Rate (kcps):	326.2	Measur	ement Position (mm): 1 .25	
C	ell Description:	Glass cuvett	e with round ape	t Attenu	ator: 4	
Results						
				Diam. (nm)	% Intensity	Width (nm)
Z-4	Average (d.nm):	411.8	Peak 1:	516.7	97.6	285.7
	PdI:	0.342	Peak 2:	5176	2.4	488.0
	Intercept:	0.921	Peak 3:	0.000	0.0	0.000
R	esult quality :	Good				
			Size Distributio	n by Intensity		
	10					
	8				·/····	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	۶. <u>1</u>				/	
, in the second s				/	· · · · · · · · · · · · · · · · · · ·	:
to be	a ∎ 4 +·····			·····/··	·····.	
1	= +					
	2			·····	·····	
	0.1	1	10	100 (d.pm)	1000	10000
			Size	(a.nm)		
			Record 1: T	iO2 in Ethanol #1 1		

Sample Name TiO2 in ethanol, 15min, 1000rpm, 30mL mark Record Number: 1

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	0.0
0.5365	0.0	91.28	0.1
0.6213	0.0	105.7	0.8
0.7195	0.0	122.4	1.7
0.8332	0.0	141.8	2.6
0.9649	0.0	164.2	3.2
1.117	0.0	190.1	3.8
1.294	0.0	220.2	4.3
1.499	0.0	255.0	5.0
1.736	0.0	295.3	6.0
2.010	0.0	342.0	7.2
2.328	0.0	396.1	8.3
2.696	0.0	458.7	9.2
3.122	0.0	531.2	9.6
3.615	0.0	615.1	9.3
4.187	0.0	712.4	8.4
4.849	0.0	825.0	7.0
5.615	0.0	955.4	5.2
6.503	0.0	1106	3.3
7.531	0.0	1281	1.7
8.721	0.0	1484	0.6
10.10	0.0	1718	0.1
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.2
28.21	0.0	4801	0.8
32.67	0.0	5560	1.4
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.0	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Re	ж#	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
		d.nm	d.nm	d.nm	d.nm	kcps
	1	411.8	516.7	5176	0.000	546877.4

	Size Distri		eport by little	nsity			
ample Details							
Sample Name	TiO2 in ethar	⁻ iO2 in ethanol, 15min, 2000rpm, 30mL mark					
SOP Name:	TiO2 Size Ethan	ol Glass.sop					
General Notes:							
File Name:	Radius Comparis	son.dts	Dispersant N	ame: Ethanol			
Record Number:	3		Dispersar	nt RI: 1.361			
Material RI:	2.59		Viscosity	(cP): 1.1170			
Material Absorbtion:	0.10	Measure	ement Date and T	Time: Wednesda	y, July 21, 201		
ystem							
Temperature ( °C):	20.0		Duration Use	<b>d (s):</b> 60			
Count Rate (kcps):	339.4	Measur	ement Position (I	<b>mm):</b> 4.65			
Cell Description:	Glass cuvette wi	th round aper	t Attenu	ator: 6			
esults							
			Diam. (nm)	% Intensity	Width (nm)		
Z-Average (d.nm):	217.4	Peak 1:	258.0	98.3	97.97		
PdI:	0.145	Peak 2:	61.71	1.7	9.898		
Intercept:	0.953	Peak 3:	0.000	0.0	0.000		
Result quality :	Good						
	S	Size Distribution	n by Intensity				
16+		<b>.</b>					
14							
10				\			
	:		· · · · · / · ·		· · · · · ·		
≥ 10 10	:				:		
1 isi 8		· · · · · · · · · · · · · · · · · · ·	••••••	· · · · · · · · · · · · · · · · · · ·			
<u><u><u></u></u> 6+</u>							
4							
	÷	÷	:/				
2							
0++++	····i	·····i		· · · · ›···i			
0.1	1	10	100 (d.nm)	1000	10000		
		Size	(d.nm)				
		Record 3: T	iO2 in Ethanol #1 1				
		Record 3: T	iO2 in Ethanol #1 1				

# Size Distribution Report by Intensity

Sample Name TiO2 in ethanol, 15min, 2000rpm, 30mL mark Record Number: 3

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.4
0.4632	0.0	78.82	0.3
0.5365	0.0	91.28	0.5
0.6213	0.0	105.7	1.6
0.7195	0.0	122.4	3.6
0.8332	0.0	141.8	6.3
0.9649	0.0	164.2	9.3
1.117	0.0	190.1	12.0
1.294	0.0	220.2	13.7
1.499	0.0	255.0	14.0
1.736	0.0	295.3	12.9
2.010	0.0	342.0	10.5
2.328	0.0	396.1	7.4
2.696	0.0	458.7	4.3
3.122	0.0	531.2	1.7
3.615	0.0	615.1	0.3
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.1	7456	0.0
50.75	0.4	8635	0.0
58.77	0.6	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

	Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
l		d.nm	d.nm	d.nm	d.nm	kcps
	3	217.4	258.0	61.71	0.000	109430.9

	Size Dist	ribution R	eport by Inte	nsity	
Sample Details					
Sample Name	TiO2 in etha	anol, 15min	, 3000rpm, 30	mL mark	
SOP Name:	TiO2 Size Etha	anol Glass.sop			
General Notes:					
File Name:	Radius Compa	arison.dts	Dispersant N	ame: Ethanol	
Record Number:	5		Dispersa	nt RI: 1.361	
Material RI:	2.59		Viscosity	(cP): 1.1170	
Material Absorbtion:	0.10	Measur	ement Date and	Fime: Wednesda	y, July 21, 2010
System					
Temperature (°C):	20.0		Duration Use	<b>d (s):</b> 70	
Count Rate (kcps):	226.5	Measur	ement Position (	<b>mm):</b> 4.65	
Cell Description:	Glass cuvette	with round ape	rt Attenu	lator: 6	
lesults					
			Diam. (nm)	% Intensity	Width (nm)
Z-Average (d.nm):	173.1	Peak 1:	196.5	100.0	72.89
PdI:	0.120	Peak 2:	0.000	0.0	0.000
Intercept:	0.964	Peak 3:	0.000	0.0	0.000
Result quality :	Good				
		Size Distributio	n by Intensity		
16					
14					
12+					
₹ 10					
			:		
tens	÷				
<u> </u>	:	:		1	
4+					
2+	:	:			:
01		10	100	1000	10000
0.1	I	Size	(d.nm)	1000	10000
		Becord 5: T	iO2 in Ethanol #1 1		
	L				

Sample Name TiO2 in ethanol, 15min, 3000rpm, 30mL mark Record Number: 5

#### Results Table

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	0.6
0.5365	0.0	91.28	2.8
0.6213	0.0	105.7	6.1
0.7195	0.0	122.4	9.8
0.8332	0.0	141.8	12.8
0.9649	0.0	164.2	14.5
1.117	0.0	190.1	14.7
1.294	0.0	220.2	13.3
1.499	0.0	255.0	10.7
1.736	0.0	295.3	7.6
2.010	0.0	342.0	4.5
2.328	0.0	396.1	2.1
2.696	0.0	458.7	0.5
3.122	0.0	531.2	0.0
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.0	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
5	173.1	196.5	0.000	0.000	73012.0

	Size Dist	ribution R	eport by Inte	nsity	
Sample Details					
Sample Name	TiO2 in ethanol, 15min, 3500rpm, 30mL mark				
SOP Name:	TiO2 Size Etha	nol Glass.sop			
General Notes:					
File Name:	Badius Compa	rison dts	Dispersant N	ame: Ethanol	
Record Number:	7		Dispersa	nt RI: 1.361	
Material RI:	2.59		Viscosity	(cP): 1.1170	
Material Absorbtion:	0.10	Measure	ement Date and T	Time: Wednesda	y, July 21, 2010 1
System					
Temperature (°C):	20.0		Duration Use	<b>d (s):</b> 60	
Count Rate (kcps):	339.7	Measur	ement Position (	<b>mm):</b> 4.65	
Cell Description:	Glass cuvette v	with round ape	rt Attenu	ator: 7	
Results					
			Diam. (nm)	% Intensity	Width (nm)
Z-Average (d.nm):	151.6	Peak 1:	167.4	100.0	54.04
Pdl:	0.083	Peak 2:	0.000	0.0	0.000
Intercept:	0.957	Peak 3:	0.000	0.0	0.000
Result quality :	Good				
		Size Distributio	n by Intensity		
20 ₁	·····:	·····	·····	·····	·····
+			^		
15+			·····		
x (%			· · · · · · · · · · · · · · · · · · ·		
<u> </u>					
5+					
0.1	1	10	100	1000	10000
		Size	(d.nm)		
		- Record 7. T	iO2 in Ethanol #1 1		
	L	1000107.1			

Sample Name TiO2 in ethanol, 15min, 3500rpm, 30mL mark Record Number: 7

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	1.6
0.5365	0.0	91.28	5.0
0.6213	0.0	105.7	9.3
0.7195	0.0	122.4	13.5
0.8332	0.0	141.8	16.1
0.9649	0.0	164.2	16.6
1.117	0.0	190.1	14.9
1.294	0.0	220.2	11.5
1.499	0.0	255.0	7.2
1.736	0.0	295.3	3.4
2.010	0.0	342.0	0.9
2.328	0.0	396.1	0.0
2.696	0.0	458.7	0.0
3.122	0.0	531.2	0.0
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.0	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
7	151.6	167.4	0.000	0.000	39349.0

	Size Distribution Report by Intensity						
Sample Details							
Sample Name	TiO2 in ethanol, 15r	nin, 1000rpm, 15ı	mL mark				
SOP Name:	TiO2 Size Ethanol Glass.	sop					
General Notes:							
File Name:	Radius Comparison.dts	Dispersant Na	ame: Ethanol				
Record Number:	2	Dispersar	t RI: 1.361				
Material RI:	2.59	Viscosity	(cP): 1.1170				
Material Absorbtion:	0.10 <b>Me</b> a	surement Date and T	ime: Wednesda	y, July 21, 2010			
System							
Temperature (°C):	20.0	Duration Used	<b>i (s):</b> 70				
Count Rate (kcps):	236.6 Mea	asurement Position (r	<b>nm):</b> 4.65				
Cell Description:	Glass cuvette with round	apert Attenu	ator: 7				
Results							
		Diam. (nm)	% Intensity	Width (nm)			
Z-Average (d.nm):	329.5 Peak	<b>1:</b> 410.3	98.5	183.9			
PdI:	0.183 Peak	<b>2:</b> 79.66	1.5	14.67			
Intercept:	0.918 <b>Peak</b>	3: 0.000	0.0	0.000			
Result quality :	Good						
	Size Distri	oution by Intensity					
12		· · · · · · · · · · · · · · · · · · ·					
+							
10		· · · · · /					
<u>چ</u> 8+	·····÷·····÷··	·····.					
tens +							
_ 4		••••••					
2+							
0.1	1 10	100	1000	10000			
		Size (d.nm)					
	Record	2: TiO2 in Ethanol #1 1					
	1.00010						

Sample Name TiO2 in ethanol, 15min, 1000rpm, 15mL mark Record Number: 2

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.4
0.4632	0.0	78.82	0.4
0.5365	0.0	91.28	0.3
0.6213	0.0	105.7	0.2
0.7195	0.0	122.4	0.5
0.8332	0.0	141.8	1.3
0.9649	0.0	164.2	2.7
1.117	0.0	190.1	4.7
1.294	0.0	220.2	6.9
1.499	0.0	255.0	9.1
1.736	0.0	295.3	10.8
2.010	0.0	342.0	11.8
2.328	0.0	396.1	12.0
2.696	0.0	458.7	11.2
3.122	0.0	531.2	9.7
3.615	0.0	615.1	7.6
4.187	0.0	712.4	5.3
4.849	0.0	825.0	3.1
5.615	0.0	955.4	1.4
6.503	0.0	1106	0.4
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.2	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

ĺ	Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
l		d.nm	d.nm	d.nm	d.nm	kcps
	2	329.5	410.3	79.66	0.000	27412.5

Size Distribution Report by Intensity						
Sample Details						
Sample Name	TiO2 in ethan	ol, 15min,	2000rpm, 15	mL mark		
SOP Name:	TiO2 Size Ethand	ol Glass.sop				
General Notes:						
File Name:	Radius Comparis	son.dts	Dispersant N	ame: Ethanol		
Record Number:	4		Dispersa	nt RI: 1.361		
Material RI:	2.59		Viscosity	(cP): 1.1170		
Material Absorbtion:	0.10	Measure	ement Date and T	lime: Wednesda	y, July 21, 2010	
ystem						
Temperature (°C):	20.0		Duration Use	<b>d (s):</b> 60		
Count Rate (kcps):	337.7	Measur	ement Position (	<b>mm):</b> 4.65		
Cell Description:	Glass cuvette wit	th round ape	t Attenu	ator: 6		
esults						
			Diam. (nm)	% Intensity	Width (nm)	
Z-Average (d.nm):	209.9	Peak 1:	229.2	100.0	77.36	
Pdl:	0.152	Peak 2:	0.000	0.0	0.000	
Intercept:	0.950	Peak 3:	0.000	0.0	0.000	
Result quality :	Good					
	S	ize Distributio	n by Intensity			
20		·····	·····	·····	·····	
			$\land$			
® +						
10+·····	· · · · · · · · · · · · · · · · · · ·		•••••••••••••••••	\		
- Inte						
5+						
+						
0+	·····i	10	100	1000	10000	
0.1	1	Size	(d.nm)	1000	10000	

Sample Name TiO2 in ethanol, 15min, 2000rpm, 15mL mark Record Number: 4

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	0.0
0.5365	0.0	91.28	0.0
0.6213	0.0	105.7	1.6
0.7195	0.0	122.4	4.9
0.8332	0.0	141.8	9.1
0.9649	0.0	164.2	13.0
1.117	0.0	190.1	15.5
1.294	0.0	220.2	16.0
1.499	0.0	255.0	14.6
1.736	0.0	295.3	11.6
2.010	0.0	342.0	7.8
2.328	0.0	396.1	4.2
2.696	0.0	458.7	1.5
3.122	0.0	531.2	0.2
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8./21	0.0	1484	0.0
10.10	0.0	1/18	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.30	0.0	4145	0.0
20.21	0.0	5560	0.0
32.07	0.0	6420	0.0
1282	0.0	7456	0.0
50.75	0.0	8635	0.0
5877	0.0	1 000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
4	209.9	229.2	0.000	0.000	108881.0

	Size Dis	tribution R	eport by Inte	ensity			
Sample Details							
Sample Name	TiO2 in eth	anol, 15min	, 3000rpm, 15	mL mark			
SOP Name:	TiO2 Size Eth	anol Glass.sop					
General Notes:		•					
File Name:	Radius Comp	arison.dts	Dispersant N	lame: Ethanol			
Record Number:	6		Dispersa	nt RI: 1.361			
Material RI:	2.59		Viscosity	(cP): 1.1170			
Material Absorbtion:	0.10	Measure	ement Date and	Time: Wednesda	y, July 21, 2010		
System							
Temperature (°C):	20.0		Duration Use	<b>d (s):</b> 70			
Count Rate (kcps):	235.0	Measur	ement Position (	<b>mm):</b> 4.65			
Cell Description:	Glass cuvette	with round ape	t Attenu	lator: 6			
Results							
			Diam. (nm)	% Intensity	Width (nm)		
Z-Average (d.nm):	171.9	Peak 1:	195.3	100.0	68. <mark>1</mark> 8		
Pdl:	0.113	Peak 2:	0.000	0.0	0.000		
Intercept:	0.966	Peak 3:	0.000	0.0	0.000		
Result quality :	Good						
		Size Distributio	n by Intensity				
10							
16	:			:			
14			· · · · · · · · · · · · · · · · · · ·				
12		:	÷ / · /	:			
> 10			· · · · · · · · · · · · · · · · · · ·				
+8 str	;	:	:	:	:		
<u>É</u> 6 [†]							
4			••••••				
2			·····/	•••			
0							
0.1	1	10 Size	(d.nm)	1000	10000		
	[	Decent 0.7		I			
		Hecord 6: 1	102 in Ethanoi #1 1				

Sample Name TiO2 in ethanol, 15min, 3000rpm, 15mL mark Record Number: 6

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	0.6
0.5365	0.0	91.28	2.5
0.6213	0.0	105.7	5.6
0.7195	0.0	122.4	9.4
0.8332	0.0	141.8	12.7
0.9649	0.0	164.2	14.9
1.117	0.0	190.1	15.4
1.294	0.0	220.2	14.1
1.499	0.0	255.0	11.3
1.736	0.0	295.3	7.7
2.010	0.0	342.0	4.2
2.328	0.0	396.1	1.5
2.696	0.0	458.7	0.1
3.122	0.0	531.2	0.0
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	0000	0.0
37.84	0.0	0439	0.0
43.82	0.0	7430	0.0
50.75	0.0	1 000 - 1	0.0
50.77	0.01	1.0004	0.01

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
6	171.9	195.3	0.000	0.000	75769.9

Distribution R	eport by Inte	nsity	
ethanol, 15min,	3500rpm, 15	mL mark	
e Ethanol Glass.sop	-		
Comparison.dts	Dispersant N	ame: Ethanol	
	Dispersa	nt RI: 1.361	
	Viscosity	(cP): 1.1170	
Measure	ement Date and	Fime: Wednesda	y, July 21, 2010
	Duration Use	<b>d (s):</b> 60	
Measur	ement Position (	<b>mm):</b> 4.65	
vette with round aper	t Attenu	lator: 7	
	Diam. (nm)	% Intensity	Width (nm)
Peak 1:	177.5	100.0	76.40
Peak 2:	0.000	0.0	0.000
Peak 3:	0.000	0.0	0.000
Size Distribution	n by Intensity		
	$\Box$		
		:	
	•••••••		
		·····	
		·····	
10	100	1000	10000
Size	(d.nm)		
Record 8: T	O2 in Ethanol #1 1		
	Record 8: Ti	Record 8: TiO2 in Ethanol #1 1	Record 8: TiO2 in Ethanol #1 1

Sample Name TiO2 in ethanol, 15min, 3500rpm, 15mL mark Record Number: 8

#### **Results Table**

	iony
d.nm % d.nm %	6
0.4000 0.0 68.06	1.2
0.4632 0.0 78.82	3.6
0.5365 0.0 91.28	6.6
0.6213 0.0 105.7	9.4
0.7195 0.0 122.4	11.7
0.8332 0.0 141.8	12.9
0.9649 0.0 164.2	13.0
1.117 0.0 190.1	12.0
1.294 0.0 220.2	10.2
1.499 0.0 255.0	8.0
1.736 0.0 295.3	5.6
2.010 0.0 342.0	3.4
2.328 0.0 396.1	1.7
2.696 0.0 458.7	0.6
3.122 0.0 531.2	0.1
3.615 0.0 615.1	0.0
4.187 0.0 712.4	0.0
4.849 0.0 825.0	0.0
5.615 0.0 955.4	0.0
6.503 0.0 1106	0.0
7.531 0.0 1281	0.0
8.721 0.0 1484	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
42.82 0.0 7456	0.0
50.75 0.0 8635	0.0
5877 0.0 1.00004	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
8	151.2	177.5	0.000	0.000	41975.7

# APPENDIX C

# SIZE DATA REPORTS FOR CENTRIFUGATION EXPERIMENTS EVALUATING THE EFFECTS OF ANGULAR VELOCITY ON PARTICLE DIAMETER

	Size Distribution	Report by Inten	sity	
Sample Details				
Sample Name:	#21500RPM@15min D	Glass 1		
SOP Name:	mansettings.dat			
General Notes:				
File Name:	Radius Comparison.dts	Dispersant Na	me: Ethanol	
Record Number:	69	Dispersant	RI: 1.361	
Material RI:	2.59	Viscosity (	<b>:P):</b> 1.1170	
Material Absorbtion:	0.10 <b>Mea</b>	surement Date and Ti	me: Wednesda	y, August 04, 201
ystem				
Temperature (°C):	19.9	Duration Used	<b>(s):</b> 70	
Count Rate (kcps):	200.3 Mea	surement Position (m	<b>m):</b> 4.65	
Cell Description:	Glass cuvette with round	apert Attenua	tor: 6	
lesults				
		Diam. (nm)	% Intensity	Width (nm)
Z-Average (d.nm):	319.3 Peak	1: 338.4	100.0	134.0
PdI:	0.286 Peak 2	2: 0.000	0.0	0.000
Intercept:	0.942 Peak	<b>3:</b> 0.000	0.0	0.000
Result quality :	Good			
	Size Distrib	ution by Intensity		
14 _T	·····			·····;
12+				
10				
× · · ·				
sity (	: : : : : : : : : : : : : : : : : : : :			:
ef 6			••••	
4+		·····/····		
2				
			\	
0.1	1 10	100	1000	10000
	:	Size (d.nm)		
	Record 69: #2-	-1500RPM@15min D Gla	ass 1	

Sample Name: #2--1500RPM@15min D Glass 1 Record Number: 69

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	0.2
0.5365	0.0	91.28	0.8
0.6213	0.0	105.7	1.4
0.7195	0.0	122.4	1.8
0.8332	0.0	141.8	2.5
0.9649	0.0	164.2	3.7
1.117	0.0	190.1	5.6
1.294	0.0	220.2	8.2
1.499	0.0	255.0	10.9
1.736	0.0	295.3	13.0
2.010	0.0	342.0	14.0
2.328	0.0	396.1	13.3
2.696	0.0	458.7	11.1
3.122	0.0	531.2	7.8
3.615	0.0	615.1	4.3
4.187	0.0	712.4	1.4
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.0	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
69	319.3	338.4	0.000	0.000	64581.7

# Size Distribution Report by Intensity

#### Sample Details

Sample Name: #4--2000@15min D Glass 1 SOP Name: mansettings.dat General Notes:

File Name:	Radius Comparison.	dts Dispersant Name:	Ethanol
Record Number:	71	Dispersant RI:	1.361
Material RI:	2.59	Viscosity (cP):	1.1170
Material Absorbtion:	0.10	Measurement Date and Time:	Wednesday, August 04, 201.

#### System

Temperature (°C):	20.0	Duration Used (s):	70
Count Rate (kcps):	231.8	Measurement Position (mm):	4.65
Cell Description:	Glass cuvette with re	ound apert Attenuator:	6

#### Results

			Diam. (nm)	% Intensity	Width (nm)
Z-Average (d.nm):	220.0	Peak 1:	260.0	100.0	110.9
PdI:	0.145	Peak 2:	0.000	0.0	0.000
Intercept:	0.953	Peak 3:	0.000	0.0	0.000
Result quality :	Good				



Sample Name: #4--2000@15min D Glass 1 Record Number: 71

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	0.0
0.5365	0.0	91.28	0.8
0.6213	0.0	105.7	2.5
0.7195	0.0	122.4	4.8
0.8332	0.0	141.8	7.4
0.9649	0.0	164.2	9.8
1.117	0.0	190.1	11.7
1.294	0.0	220.2	12.7
1.499	0.0	255.0	12.7
1.736	0.0	295.3	11.6
2.010	0.0	342.0	9.7
2.328	0.0	396.1	7.4
2.696	0.0	458.7	4.9
3.122	0.0	531.2	2.7
3.615	0.0	615.1	1.1
4.187	0.0	712.4	0.2
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.0	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
71	220.0	260.0	0.000	0.000	74737.5

#### Size Distribution Report by Intensity Sample Details Sample Name: #6--2500@15min D Glass 1 SOP Name: mansettings.dat General Notes: File Name: Radius Comparison.dts Dispersant Name: Ethanol Record Number: 72 Dispersant RI: 1.361 Material RI: 2.59 Viscosity (cP): 1.1170 Material Absorbtion: 0.10 Measurement Date and Time: Wednesday, August 04, 201... System Temperature (°C): 20.0 Duration Used (s): 60 Count Rate (kcps): 366.6 Measurement Position (mm): 4.65 Cell Description: Glass cuvette with round apert... Attenuator: 6 Results Diam. (nm) % Intensity Width (nm) 261.5 100.0 Z-Average (d.nm): 218.4 Peak 1: 113.6 0.000 Pdl: 0.191 Peak 2: 0.000 0.0 Intercept: 0.946 Peak 3: 0.000 0.0 0.000 Result quality : Good Size Distribution by Intensity . . . . . . . . . . . . . . . . . . 14 12 10 Intensity (%) 8 6 4 2 0 0.1 1 10 100 1000 10000 Size (d.nm) Record 72: #6--2500@15min D Glass 1

Sample Name: #6--2500@15min D Glass 1 Record Number: 72

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	0.0
0.5365	0.0	91.28	0.8
0.6213	0.0	105.7	2.4
0.7195	0.0	122.4	4.8
0.8332	0.0	141.8	7.5
0.9649	0.0	164.2	9.9
1.117	0.0	190.1	11.7
1.294	0.0	220.2	12.7
1.499	0.0	255.0	12.5
1.736	0.0	295.3	11.4
2.010	0.0	342.0	9.6
2.328	0.0	396.1	7.3
2.696	0.0	458.7	4.9
3.122	0.0	531.2	2.8
3.615	0.0	615.1	1.3
4.187	0.0	712.4	0.3
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.0	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
72	218.4	261.5	0.000	0.000	118177.
# Size Distribution Report by Intensity

#### Sample Details

Sample Name: #8--3000@15min D Glass 1

SOP Name: mansettings.dat

General Notes:

File Name:	Radius Comparison.	dts Dispersant Name:	Ethanol
Record Number:	75	Dispersant RI:	1.361
Material RI:	2.59	Viscosity (cP):	1.1170
Material Absorbtion:	0.10	Measurement Date and Time:	Wednesday, August 04, 201

#### System

Temperature (°C):	20.0	Duration Used (s):	70
Count Rate (kcps):	219.7	Measurement Position (mm):	
Cell Description:	Alass cuvette with round apert Attenuator:		5

#### Results

			Diam. (nm)	% Intensity	Width (nm)
Z-Average (d.nm):	178.2	Peak 1:	206.1	100.0	72.38
PdI:	0.131	Peak 2:	0.000	0.0	0.000
Intercept:	0.961	Peak 3:	0.000	0.0	0.000
Result quality :	Good				



Sample Name: #8--3000@15min D Glass 1 Record Number: 75

#### **Results Table**

Size	Intensity	Size	Intensity	
d.nm	%	d.nm	%	
0.4000	0.0	68.06	0.0	
0.4632	0.0	78.82	0.1	
0.5365	0.0	91.28	1.6	
0.6213	0.0	105.7	4.4	
0.7195	0.0	122.4	8.1	
0.8332	0.0	141.8	11.7	
0.9649	0.0	164.2	14.4	
1.117	0.0	190.1	15.4	
1.294	0.0	220.2	14.7	
1.499	0.0	255.0	12.3	
1.736	0.0	295.3	9.0	
2.010	0.0	342.0	5.4	
2.328	0.0	396.1	2.4	
2.696	0.0	458.7	0.5	
3.122	0.0	531.2	0.0	
3.615	0.0	615.1	0.0	
4.187	0.0	712.4	0.0	
4.849	0.0	825.0	0.0	
5.615	0.0	955.4	0.0	
6.503	0.0	1106	0.0	
7.531	0.0	1281	0.0	
8.721	0.0	1484	0.0	
10.10	0.0	1718	0.0	
11.70	0.0	1990	0.0	
13.54	0.0	2305	0.0	
15.69	0.0	2669	0.0	
18.17	0.0	3091	0.0	
21.04	0.0	3580	0.0	
24.36	0.0	4145	0.0	
28.21	0.0	4801	0.0	
32.67	0.0	5560	0.0	
37.84	0.0	6439	0.0	
43.82	0.0	7456	0.0	
50.75	0.0	8635	0.0	
58.77	0.0	1.000e4	0.0	

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

ſ	Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
l		d.nm	d.nm	d.nm	d.nm	kcps
	75	178.2	206.1	0.000	0.000	190900.5

			Size Di	stribution R	eport by Inte	nsity	
Sam	ole Details						
	Sample Na	ame:	#103500@	15min D Glass 1			
	SOP N	ame:	mansettings	.dat			
	General No	otes:	-				
	File Na	ame:	Radius Com	parison.dts	Dispersant N	ame: Ethanol	
	Record Num	iber:	77		Dispersa	nt RI: 1.361	
	Materia	al RI:	2.59		Viscosity	(cP): 1.1170	
	Material Absorb	tion:	0.10	Measur	ement Date and	Time: Wednesda	y, August 04, 201.
Syste	em						
	Temperature	(°C):	20.0		Duration Use	<b>d (s):</b> 60	
	Count Rate (ke	cps):	405.5	Measur	ement Position (	<b>mm):</b> 4.65	
	Cell Descrip	tion:	Glass cuvett	e with round ape	rt Attenu	lator: 6	
Resu	lts						
					Diam. (nm)	% Intensity	Width (nm)
	Z-Average (d.	nm):	172.1	Peak 1:	197.1	100.0	79.32
		Pdl:	0.153	Peak 2:	0.000	0.0	0.000
	Intere	cept:	0.953	Peak 3:	0.000	0.0	0.000
	Result qual	lity :	Good				
				Size Distributio	n by Intensity		
	44+++++						
	14				$\square$		
	12+						
	10 •						
	° 8↓·····	• • • • •					
	6					· <del>\</del>	·····
	4+····						
	2+						
	0.1		1	10	100	1000	10000
				Size	(d.nm)		
				Record 77: #10	3500@15min D Gla	ass 1	
			-				

Sample Name: #10--3500@15min D Glass 1 Record Number: 77

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.2
0.4632	0.0	78.82	1.4
0.5365	0.0	91.28	3.8
0.6213	0.0	105.7	6.8
0.7195	0.0	122.4	9.8
0.8332	0.0	141.8	12.2
0.9649	0.0	164.2	13.5
1.117	0.0	190.1	13.6
1.294	0.0	220.2	12.4
1.499	0.0	255.0	10.3
1.736	0.0	295.3	7.6
2.010	0.0	342.0	4.9
2.328	0.0	396.1	2.6
2.696	0.0	458.7	1.0
3.122	0.0	531.2	0.2
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.0	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
77	172.1	197.1	0.000	0.000	130730.8

# APPENDIX D

# SIZE DATA REPORTS FOR CENTRIFUGATION EXPERIMENTS EVALUATING THE CENTRIFUGATION TIME ON PARTICLE DIAMETER

Size Distribution F	Report by Inte	nsity	
#43500 RPM@30min 1			
mansettings dat			
manoottingotaat			
Radius Comparison.dts	Dispersant N	ame: Ethanol	
96	Dispersar	nt RI: 1.361	
2.59	Viscosity	(cP): 1.1170	
0.10 Measu	rement Date and T	ime: Monday, A	ugust 09, 2010 3:1
20.0	Duration Use	<b>d(s):</b> 60	
455.0 Measu	rement Position (	<b>mm): 4.</b> 65	
Glass cuvette with round ap	ert Attenu	ator: 6	
	Diam. (nm)	% Intensity	Width (nm)
142.9 Peak 1:	169.9	100.0	73.89
0.142 Peak 2:	0.000	0.0	0.000
0.945 Peak 3:	0.000	0.0	0.000
Good			
Size Distributi	on by Intensity		
· · · · · · · · · · · · · · · · · ·			
		:	:
	·····/		
····÷····	······	·····	·····÷
		l	
		, <u>\</u>	
			10000
1 10	100	1000	10000
1 10 Siz	100 e (d.nm)	1000	10000
	Size Distribution F #43500 RPM@30min 1 mansettings.dat Radius Comparison.dts 96 2.59 0.10 Measu 20.0 455.0 Measu Glass cuvette with round apo 142.9 Peak 1: 0.142 Peak 2: 0.945 Peak 3: Good Size Distributi	Size Distribution Report by Inte #43500 RPM@30min 1 mansettings.dat Radius Comparison.dts Dispersant N 96 Dispersar 2.59 Viscosity 0.10 Measurement Date and T 20.0 Duration Used 455.0 Measurement Position (n Glass cuvette with round apert Attenu 142.9 Peak 1: 169.9 0.142 Peak 2: 0.000 0.945 Peak 3: 0.000 Good Size Distribution by Intensity	Size Distribution Report by Intensity #43500 RPM@30min 1 mansettings.dat Radius Comparison.dts Dispersant Name: Ethanol 96 Dispersant RI: 1.361 2.59 Viscosity (cP): 1.1170 0.10 Measurement Date and Time: Monday, Av 20.0 Duration Used (s): 60 455.0 Measurement Position (mm): 4.65 Glass cuvette with round apert Attenuator: 6 Diam. (nm) % Intensity 142.9 Peak 1: 169.9 100.0 0.142 Peak 2: 0.000 0.0 0.0 Good Size Distribution by Intensity

Sample Name: #4--3500 RPM@30min 1 Record Number: 96

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	2.6
0.4632	0.0	78.82	4.8
0.5365	0.0	91.28	7.1
0.6213	0.0	105.7	9.4
0.7195	0.0	122.4	11.2
0.8332	0.0	141.8	12.2
0.9649	0.0	164.2	12.4
1.117	0.0	190.1	11.6
1.294	0.0	220.2	10.0
1.499	0.0	255.0	7.7
1.736	0.0	295.3	5.3
2.010	0.0	342.0	3.0
2.328	0.0	396.1	1.3
2.696	0.0	458.7	0.3
3.122	0.0	531.2	0.0
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	0439	0.0
43.82	0.0	1450	0.0
50.75	0.1	1 000 - 1	0.0
JØ.//	1.0	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
96	142.9	169.9	0.000	0.000	146670.9

#### Size Distribution Report by Intensity Sample Details Sample Name: #7--3500 RPM@60min 1 SOP Name: mansettings.dat General Notes: File Name: Radius Comparison.dts Dispersant Name: Ethanol Record Number: 100 Dispersant RI: 1.361 Material RI: 2.59 Viscosity (cP): 1.1170 Material Absorbtion: 0.10 Measurement Date and Time: Monday, August 09, 2010 3:3. System Temperature (°C): 20.0 Duration Used (s): 60 Count Rate (kcps): 276.9 Measurement Position (mm): 4.65 Cell Description: Glass cuvette with round apert... Attenuator: 6 Results Diam. (nm) % Intensity Width (nm) Z-Average (d.nm): 124.5 Peak 1: 140.4 100.0 46.82 Pdl: 0.109 Peak 2: 0.000 0.000 0.0 0.000 0.0 0.000 Intercept: 0.961 Peak 3: Result quality : Good Size Distribution by Intensity 16 ..... 14 . . . . . . . . . . . . 12 ......... % 10-. . . . . . . . . . . Intensity . . . . . . . . . 8 . . . . . . . . 1..... 6 . . . . . . . . . . . . . . . . 4 2 0 нi 0.1 10 100 1000 1 10000 Size (d.nm) Record 100: #7--3500 RPM@60min 1

Sample Name: #7--3500 RPM@60min 1 Record Number: 100

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	2.6
0.4632	0.0	78.82	6.1
0.5365	0.0	91.28	10.2
0.6213	0.0	105.7	13.8
0.7195	0.0	122.4	15.9
0.8332	0.0	141.8	16.0
0.9649	0.0	164.2	14.1
1.117	0.0	190.1	10.6
1.294	0.0	220.2	6.6
1.499	0.0	255.0	3.0
1.736	0.0	295.3	0.7
2.010	0.0	342.0	0.0
2.328	0.0	396.1	0.0
2.696	0.0	458.7	0.0
3.122	0.0	531.2	0.0
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8./21	0.0	1484	0.0
10.10	0.0	1/18	0.0
10.54	0.0	1990	0.0
13.34	0.0	2305	0.0
10.09	0.0	2009	0.0
21.04	0.0	2580	0.0
21.04	0.0	3380 4145	0.0
29.00	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.5	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
100	124.5	140.4	0.000	0.000	89266.9

# Size Distribution Report by Intensity

#### Sample Details

Sample Name: #9--3500 RPM@90min 1

SOP Name: mansettings.dat General Notes:

File Name:	Radius Comparison.	dts Dispersant Name:	Ethanol
Record Number:	102	Dispersant RI:	1.361
Material RI:	2.59	Viscosity (cP):	1.1170
Material Absorbtion:	0.10	Measurement Date and Time:	Monday, August 09, 2010 3:5.

#### System

Temperature ( °C):	20.0	Duration Used (s):	70
Count Rate (kcps):	184.5	Measurement Position (mm):	4.65
Cell Description:	Glass cuvette with r	ound apert Attenuator:	6

#### Results

			Diam. (nm)	% Intensity	Width (nm)
Z-Average (d.nm):	116.1	Peak 1:	132.5	100.0	49.04
PdI:	0.116	Peak 2:	0.000	0.0	0.000
Intercept:	0.969	Peak 3:	0.000	0.0	0.000
Result quality :	Good				



Sample Name: #9--3500 RPM@90min 1 Record Number: 102

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	5.1
0.4632	0.0	78.82	8.3
0.5365	0.0	91.28	11.4
0.6213	0.0	105.7	13.7
0.7195	0.0	122.4	14.6
0.8332	0.0	141.8	14.0
0.9649	0.0	164.2	11.9
1.117	0.0	190.1	8.9
1.294	0.0	220.2	5.6
1.499	0.0	255.0	2.7
1.736	0.0	295.3	0.8
2.010	0.0	342.0	0.0
2.328	0.0	396.1	0.0
2.696	0.0	458.7	0.0
3.122	0.0	531.2	0.0
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.6	8635	0.0
DO.//	2.3	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
102	116.1	132.5	0.000	0.000	59476.6



Sample Name: #11--3500 RPM@120min 1 Record Number: 104

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	6.8
0.4632	0.0	78.82	9.0
0.5365	0.0	91.28	10.7
0.6213	0.0	105.7	11.8
0.7195	0.0	122.4	12.0
0.8332	0.0	141.8	11.3
0.9649	0.0	164.2	9.9
1.117	0.0	190.1	8.0
1.294	0.0	220.2	5.8
1.499	0.0	255.0	3.6
1.736	0.0	295.3	1.9
2.010	0.0	342.0	0.7
2.328	0.0	396.1	0.1
2.696	0.0	458.7	0.0
3.122	0.0	531.2	0.0
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.2	6439	0.0
43.82	1.1	7456	0.0
50.75	2.5	8635	0.0
58.77	4.6	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
104	109.7	131.0	0.000	0.000	39972.4

# APPENDIX E

# SIZE DATA REPORTS AND MOBILITY MEASUREMENTS FOR THE THREE SUSPENSIONS PREPARED WITH THE TIO₂ NANOPOWDERS FROM NANOAMOR AND ETHANOL

Size Dis	tribution R	eport by Inte	nsity					
Sample Name TiO2 in ethanol, 30min, 2000rpm								
mansettings.c	lat							
0								
Radius Comp	arison.dts	Dispersant N	ame: Ethanol					
133		Dispersar	nt RI: 1.361					
2.59		Viscosity	(cP): 1.1170					
0.10	Measur	ement Date and T	<b>ime:</b> Tuesday, A	ugust 24, 2010 1				
20.0		Duration Use	<b>d(s):</b> 80					
139.4	Measur	ement Position (	<b>mm):</b> 1.25					
Glass cuvette	with round ape	t Attenu	ator: 3					
		Diam. (nm)	% Intensity	Width (nm)				
268.0	Peak 1:	543.3	57.0	265.3				
0.352	Peak 2:	171.7	41.0	51.13				
0.948	Peak 3:	4805	2.0	724.1				
Good								
	Size Distributio	n by Intensity						
		$\sim$	$\frown$					
i		:/						
		:::::::::::::::::::::::::::::::::::::::						
		1	\•	•				
1	10	100	1000	10000				
1	10 Size	100 (d.nm)	1000	10000				
	TiO2 in eth mansettings.c Radius Comp 133 2.59 0.10 20.0 139.4 Glass cuvette 268.0 0.352 0.948 Good	TiO2 in ethanol, 30min, mansettings.dat Radius Comparison.dts 133 2.59 0.10 Measure 20.0 139.4 Measure Glass cuvette with round aper 268.0 Peak 1: 0.352 Peak 2: 0.948 Peak 3: Good Size Distribution	Size Distribution Report by me         TiO2 in ethanol, 30min, 2000rpm mansettings.dat         Radius Comparison.dts       Dispersant Na         133       Dispersant Na         133       Dispersant Na         2.59       Viscosity         0.10       Measurement Date and To         20.0       Duration Used         139.4       Measurement Position (no)         Glass cuvette with round apert       Attenu         268.0       Peak 1:       543.3         0.352       Peak 2:       171.7         0.948       Peak 3:       4805         Good       Size Distribution by Intensity	Size Distribution Report by Intensity         TiO2 in ethanol, 30min, 2000rpm mansettings.dat         Radius Comparison.dts       Dispersant Name: Ethanol         133       Dispersant RI: 1.361         2.59       Viscosity (cP): 1.1170         0.10       Measurement Date and Time: Tuesday, A         20.0       Duration Used (s): 80         139.4       Measurement Position (mm): 1.25         Glass cuvette with round apert       Attenuator: 3         Diam. (nm) % Intensity         268.0       Peak 1: 543.3       57.0         0.352       Peak 2: 171.7       41.0         0.948       Peak 3: 4805       2.0         Good				

Sample Name TiO2 in ethanol, 30min, 2000rpm Record Number: 133

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	0.6
0.5365	0.0	91.28	2.0
0.6213	0.0	105.7	3.8
0.7195	0.0	122.4	5.3
0.8332	0.0	141.8	6.2
0.9649	0.0	164.2	6.5
1.117	0.0	190.1	6.5
1.294	0.0	220.2	6.4
1.499	0.0	255.0	6.3
1.736	0.0	295.3	6.3
2.010	0.0	342.0	6.5
2.328	0.0	396.1	6.6
2.696	0.0	458.7	6.6
3.122	0.0	531.2	6.4
3.615	0.0	615.1	5.9
4.187	0.0	712.4	5.1
4.849	0.0	825.0	4.1
5.615	0.0	955.4	3.1
6.503	0.0	1106	2.0
7.531	0.0	1281	1.1
8.721	0.0	1484	0.5
10.10	0.0	1718	0.1
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.1
21.04	0.0	3580	0.2
24.36	0.0	4145	0.4
28.21	0.0	4801	0.7
32.67	0.0	5560	0.8
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.0	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
133	268.0	543.3	171.7	4805	980243.3

	Zeta	Potentia	al Report			
Sample Details						
Sample Name	TiO2 in ethand	ol, 30min,	2000rpm			
SOP Name:	mansettings.dat					
General Notes:						
File Name:	Radius Compariso	on.dts	Dispe	rsant Name:	Ethanol	
Record Number:	134		Di	spersant RI:	1.361	
Date and Time:	Tuesday, August 2	24, 2010 12	:09: Vi	scosity (cP):	1.1170	
		Dispe	rsant Dielectr	ic Constant:	25.2	
System						
Temperature ( °C):	20.0			Zeta Runs:	12	
Count Rate (kcps):	71.4	Mea	asurement Po	sition (mm):	4.50	
Cell Description:	Zeta dip cell			Attenuator:	7	
Results						
			Mean (mV)	Area (°	%)	Width (m\
Zeta Potential (mV):	-18.4	Peak 1:	-18.4	100.0		11.8
Zeta Deviation (mV):	11.8	Peak 2:	0.00	0.0		0.00
Conductivity (mS/cm):	8.69e-4	Peak 3:	0.00	0.0		0.00
Result quality :	Good					
	Ze	eta Potential [	Distribution			
400000 _T	· · · · · · · · · · · · · · · · · · ·		<u>.</u>	· · · · · · · · · · · · · · · · · · ·		· · · · · ·
+		٨		-		
300000						
- nuts						
<u></u> 200000+			\			
Tot						
100000	••••••	•••••		••••••		
+						
0+	-100		0	100		200
		Zeta P	otential (mV)			
		Record 13	4: 2000@30 1			

	Electroph	oretic N	<i>I</i> obility Re	port			
Sample Details							
Sample Name	TiO2 in ethand	ol, 30min	, 2000rpm				
SOP Name:	mansettings.dat						
General Notes:							
File Name:	Radius Compariso	on.dts	Disper	sant Name:	Ethano	I	
Record Number:	134		Dis	persant RI:	1.361		
Date and Time:	Tuesday, August	24, 2010 12	2:0 Vis	cosity (cP):	1.1170		
		Disper	rsant Dielectri	c Constant:	25.2		
System							
Temperature (℃):	20.0			Zeta Runs:	12		
Count Rate (kcps):	71.4 Measurement Position (mm):			4.50			
Cell Description:	Zeta dip cell			Attenuator:	7		
lesults			Moon (umom		(9/)	Width (m\/)	
	0.0070	Dealed		(VS) Alea	(70)		
Mobility (µmcm/vs):	-0.3672	Peak 1:	-0.367	100.0	)	0.235	
Conductivity (mS/cm):	8 600 4	Peak 2:	0.00	0.0		0.00	
Result quality :	Good	reak 3.	0.00	0.0		0.00	
<b>,</b>							
	Electropi	horetic Mobi	lity Distribution				
400000		:		:::::::::::::::::::::::::::::::::::::::			
" 300000 + · · ···							
- onuts		÷ / `					
<u>ँ</u> 200000		····/····	\	•••••			
		:/	<u>\</u>				
-		:/					
0++		<u>-</u>		+ + +		+i	
-3	-2 -	-1 Mobilit	0 V (umcm/Vs)	1	2	3	
		WODIII	y (µmon// vo)				
		Record 13	4: 2000@30 1				
	·						

#### Size Distribution Report by Intensity Sample Details Sample Name TiO2 in ethanol, 90min, 3500rpm SOP Name: mansettings.dat General Notes: File Name: Radius Comparison.dts Dispersant Name: Ethanol Record Number: 132 Dispersant RI: 1.361 Material RI: 2.59 Viscosity (cP): 1.1170 Material Absorbtion: 0.10 Measurement Date and Time: Wednesday, August 18, 201.. System Temperature (°C): 20.0 Duration Used (s): 60 Count Rate (kcps): 462.8 Measurement Position (mm): 4.65 Cell Description: Glass cuvette with round apert... Attenuator: 6 Results % Intensity Diam. (nm) Width (nm) 199.7 100.0 63.54 Z-Average (d.nm): 179.1 Peak 1: Pdl: 0.104 Peak 2: 0.000 0.0 0.000 Intercept: 0.941 Peak 3: 0.000 0.0 0.000 Result quality : Good Size Distribution by Intensity 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Intensity (%) 10 . . . . . 5 0 -+-10 1000 10000 0.1 1 100 Size (d.nm)

Record 132: 3500@30 1

Sample Name TiO2 in ethanol, 90min, 3500rpm Record Number: 132

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	0.0
0.5365	0.0	91.28	1.0
0.6213	0.0	105.7	3.9
0.7195	0.0	122.4	8.3
0.8332	0.0	141.8	12.7
0.9649	0.0	164.2	15.9
1.117	0.0	190.1	17.0
1.294	0.0	220.2	15.6
1.499	0.0	255.0	12.4
1.736	0.0	295.3	8.1
2.010	0.0	342.0	4.0
2.328	0.0	396.1	1.2
2.696	0.0	458.7	0.0
3.122	0.0	531.2	0.0
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.0	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

F	Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
		d.nm	d.nm	d.nm	d.nm	kcps
Γ	132	179.1	199.7	0.000	0.000	149197.8

	Zeta	Potentia	al Report				
Sample Details							
Sample Name	TiO2 in ethanol, 90min, 3500rpm						
SOP Name:	mansettings.dat						
General Notes:							
File Name:	Radius Comparison	.dts	Dispe	rsant Name:	Ethanol		
Record Number:	135		Di	spersant RI:	1.361		
Date and Time:	Tuesday, August 24	, 2010 12:	23: Vi	scosity (cP):	1.1170		
		Dispe	rsant Dielectri	ic Constant:	25.2		
System							
Temperature ( °C):	20.0			Zeta Runs:	13		
Count Rate (kcps):	233.3	Mea	asurement Po	sition (mm):	4.50		
Cell Description:	Zeta dip cell			Attenuator:	6		
Results							
			Mean (mV)	Area (°	%)	Width (m)	
Zeta Potential (mV):	-10.1	Peak 1:	-10.1	100.0		10.5	
Zeta Deviation (mV):	10.5	Peak 2:	0.00	0.0		0.00	
Conductivity (mS/cm):	0.00111	Peak 3:	0.00	0.0		0.00	
Result quality :	Good						
	Zeta	Potential C	Distribution				
500000 [······							
400000							
<u>0</u>		/		÷			
تي 300000 ······		•••••				•••••	
P 200000							
100000							
				:			
-200	-100	+	0	100	i	200	
		Zeta P	otential (mV)				
		Record 13	5: 3000@90 1				

TiO2 in ethance	ol, 90min	, 3500rpm						
mansettings.dat								
General Notes:								
Radius Compariso	on.dts	Dispersan	it Name:	Ethanol				
135 Dispersant RI:			1.361	1.361				
Tuesday, August 2	24, 2010 12	2:2 Viscos	sity (cP):	1.1170				
	Disper	sant Dielectric C	onstant:	25.2				
20.0		Zet	ta Runs:	13				
233.3	Mea	surement Positio	on (mm):	4.50				
Zeta dip cell		Atte	enuator:	6				
		Mean (µmcm/Vs	) Area	(%)	Width (mV)			
-0 2023	Peak 1:	-0 202	100 (	)	0.210			
0.2101	Peak 2:	0.00	0.0		0.00			
0.00111	Peak 3:	0.00	0.0		0.00			
Good								
Electroph	noretic Mobi	lity Distribution						
		··· <del>·</del> ································						
		. : 						
	····/							
	·····/···	···;		•••				
	<i>.</i>							
					:			
-2 -	1	0 1		2	3			
	Mobilit	y (μmcm/Vs)						
	Record 13	5: 3000@90 1						
	TiO2 in ethance mansettings.dat	TiO2 in ethanol, 90min mansettings.dat Radius Comparison.dts 135 Tuesday, August 24, 2010 12 Disper 20.0 233.3 Mea Zeta dip cell -0.2023 Peak 1: 0.2101 Peak 2: 0.00111 Peak 3: Good Electrophoretic Mobi	TiO2 in ethanol, 90min, 3500rpm mansettings.dat  Radius Comparison.dts Dispersant 135 Disper Tuesday, August 24, 2010 12:2 Viscos Dispersant Dielectric C  20.0 20.0 24 233.3 Measurement Positic Zeta dip cell Mean (µmcm/Vs  -0.2023 Peak 1: -0.202 0.2101 Peak 2: 0.00 0.00111 Peak 3: 0.00 Good  Electrophoretic Mobility Distribution  Electrophoretic Mobility Distribution  -2 -2 -1 0 1 Mobility (µmcm/Vs)  Record 135: 3000@90 1	TiO2 in ethanol, 90min, 3500rpm mansettings.dat Radius Comparison.dts Dispersant Name: 135 Dispersant RI: Tuesday, August 24, 2010 12:2 Viscosity (cP): Dispersant Dielectric Constant: 20.0 Zeta Runs: 233.3 Measurement Position (mm): Zeta dip cell Attenuator: Mean (µmcm/Vs) Area -0.2023 Peak 1: -0.202 100.0 0.2101 Peak 2: 0.00 0.0 0.00111 Peak 3: 0.00 0.0 Good Electrophoretic Mobility Distribution Electrophoretic Mobility Distribution	TiO2 in ethanol, 90min, 3500rpm mansettings.dat Radius Comparison.dts Dispersant Name: Ethanol 135 Dispersant RI: 1.361 Tuesday, August 24, 2010 12:2 Viscosity (cP): 1.1170 Dispersant Dielectric Constant: 25.2 20.0 Zeta Runs: 13 233.3 Measurement Position (mm): 4.50 Zeta dip cell Attenuator: 6 Mean (µmcm/Vs) Area (%) -0.2023 Peak 1: -0.202 100.0 0.2101 Peak 2: 0.00 0.0 0.00111 Peak 3: 0.00 0.0 Good Electrophoretic Mobility Distribution Electrophoretic Mobility Distribution			

# Electrophoretic Mobility Report



Sample Name TiO2 in ethanol, 90min 3500rpm, 30min 15000rpm Record Number: 131

#### **Results Table**

Size	Intensity	Size	Intensity
d.nm	%	d.nm	%
0.4000	0.0	68.06	0.0
0.4632	0.0	78.82	0.0
0.5365	0.0	91.28	0.0
0.6213	0.0	105.7	0.0
0.7195	0.0	122.4	0.0
0.8332	0.0	141.8	0.0
0.9649	0.0	164.2	0.0
1.117	0.0	190.1	15.7
1.294	0.0	220.2	32.1
1.499	0.0	255.0	32.8
1.736	0.0	295.3	17.7
2.010	0.0	342.0	1.7
2.328	0.0	396.1	0.0
2.696	0.0	458.7	0.0
3.122	0.0	531.2	0.0
3.615	0.0	615.1	0.0
4.187	0.0	712.4	0.0
4.849	0.0	825.0	0.0
5.615	0.0	955.4	0.0
6.503	0.0	1106	0.0
7.531	0.0	1281	0.0
8.721	0.0	1484	0.0
10.10	0.0	1718	0.0
11.70	0.0	1990	0.0
13.54	0.0	2305	0.0
15.69	0.0	2669	0.0
18.17	0.0	3091	0.0
21.04	0.0	3580	0.0
24.36	0.0	4145	0.0
28.21	0.0	4801	0.0
32.67	0.0	5560	0.0
37.84	0.0	6439	0.0
43.82	0.0	7456	0.0
50.75	0.0	8635	0.0
58.77	0.0	1.000e4	0.0

Right click the table to change the displayed parameters and/or change the number of columns. Use the Edit -Copy Table command to copy the data for pasting into a third party spreadsheet or graphing package.

Rec #	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
	d.nm	d.nm	d.nm	d.nm	kcps
131	379.4	242.3	0.000	0.000	1195.4

	Zeta	Potentia	al Report			
Sample Details Sample Name: SOP Name: General Notes:	TiO2 in ethand mansettings.dat	ol, 90min	3500rpm, 3(	0min 1500	0rpm	
File Name: Record Number:	Radius Compariso	on.dts	Dispers Dis	sant Name: persant RI:	Ethanol 1.361	
Date and Time:	Tuesday, August 2	24, 2010 12 Dispe	28: Vise rsant Dielectric	cosity (cP): : Constant:	1.1170 25.2	
System Temperature ( °C): Count Rate (kcps): Cell Description:	20.0 49.1 Zeta dip cell	Mea	asurement Pos	Zeta Runs: ition (mm): Attenuator:	100 4.50 10	
Results			Mean (mV)	Area (9	%)	Width (m)
Zeta Potential (mV):	-0.266	Peak 1:	-0.266	100.0		8.84
Zeta Deviation (mV):	8.84	Peak 2:	0.00	0.0		0.00
Conductivity (mS/cm):	8.64e-4	Peak 3:	0.00	0.0		0.00
Result quality :	POOR - See res	sult quality	report			
	Ze	ta Potential [	Distribution			
2500000 2000000						
Star 1500000						
►		)	/			
0+ -200	-100	Zeta F	0 Potential (mV)	100	I	200
	Rec	cord 136: 300	0@90, 15000@3	0 1		

	Electrophoretic Mobility Report									
Sam	ple De	etails								
		Sample Name:	TiO2 in ethand	ol, 90mir	n 3500rpm, 30m	in 150	00rpm			
		SOP Name:	mansettings.dat							
	G	eneral Notes:								
		File Name:	Radius Compariso	on.dts	Dispersant I	Name:	Ethanol			
	Re	cord Number:	136		Dispersa	ant RI:	1.361			
	0	Date and Time:	Tuesday, August 2	24, 2010 12	2:2 Viscosity	y (cP):	1.1170			
				Disper	rsant Dielectric Con	stant:	25.2			
Syst	tem									
	Ten	nperature (°C):	20.0		Zeta	Runs:	100			
	Cou	nt Rate (kcps):	49.1	Mea	surement Position	(mm):	4.50			
	Ce	II Description:	Zeta dip cell		Atten	uator:	10			
Res	ults				Moon (umom/\/o)	A.r.o.o	(0/)	Width (m)/)		
					Mean (µmcm/vs)	Area	(%)	width (mv)		
	Mobil	ity (µmcm/Vs):	-0.005304	Peak 1:	-0.00530	100.0	)	0.176		
Mot	Dility De	ev. (μmcm/vs):	0.1763	Peak 2:	0.00	0.0		0.00		
C	onduc: Re	tivity (mS/cm):	8.64e-4	Peak 3:	0.00	0.0		0.00		
		Sur quanty .		an quanty						
			Electroph	noretic Mobi	ility Distribution					
		2500000	:	:			:			
		2000000 - · · · · ·			··./					
	unts	1500000+								
	al Co									
	Tota	1000000			/					
		500000		·••••••						
		0	· · · ·	;	; <u>, ;</u>			•i		
		-3	-2	-1 Mobil	0 1		2	3		
					uy (μποπ/νδ)					
			Reco	ord 136: 300	0@90, 15000@30 1					

# REFERENCES

- 1. C. Yu, D. Cai, K. Yang, J. C. Yu, Y. Zhou and C. Fan, Journal of Physics and Chemistry of Solids **71** (9), 1337-1343 (2010).
- 2. X. Zhang, M. Jin, Z. Liu, D. A. Tryk, S. Nishimoto, T. Murakami and A. Fujishima, The Journal of Physical Chemistry C **111** (39), 14521-14529 (2007).
- 3. D. Mardare and G. I. Rusu, Journal of Non-Crystalline Solids **356** (28-30), 1395-1399 (2010).
- 4. M. M. Viana, V. F. Soares and N. D. S. Mohallem, Ceramics International **36** (7), 2047-2053 (2010).
- 5. X. Chen and S. S. Mao, Chemical Reviews **107** (7), 2891-2959 (2007).
- 6. Z.-W. Qu and H. Zhu, Journal of Computational Chemistry **31** (10), 2038-2045 (2010).
- 7. C. Su, B. Y. Hong and C. M. Tseng, Catalysis Today **96** (3), 119-126 (2004).
- 8. C.-C. Wang and J. Y. Ying, Chemistry of Materials **11** (11), 3113-3120 (1999).
- 9. J. Zhao, Journal of Applied Physics **104** (5), 053515-053515-053515 (2008).
- 10. Y. Chen and D. D. Dionysiou, in *Sol-Gel Methods for Materials Processing*, edited by P. Innocenzi, Y. L. Zub and V. G. Kessler (Springer Netherlands, 2008), pp. 67-75.
- 11. N. Serpone, D. Lawless and R. Khairutdinov, The Journal of Physical Chemistry **99** (45), 16646-16654 (1995).
- 12. K. Madhusudan Reddy, C. V. Gopal Reddy and S. V. Manorama, Journal of Solid State Chemistry **158** (2), 180-186 (2001).
- 13. J. Stapleton, (2011).
- 14. N. Sato, M. Kawachi, K. Noto, N. Yoshimoto and M. Yoshizawa, Physica C: Superconductivity **357-360** (Part 2), 1019-1022 (2001).
- 15. L. Bai, X. Ma, J. Liu, X. Sun, D. Zhao and D. G. Evans, Journal of the American Chemical Society **132** (7), 2333-2337 (2010).
- 16. R. G. Holdich, *Fundamentals of Particle Technology*. (Midland Information Technology and Publishing, Loughborough, UK, 2002).
- 17. J. M. Valverde and A. Castellanos, Chemical Engineering Journal **140** (1-3), 296-304 (2008).

- 18. P. Yang, C. Lu, N. Hua and Y. Du, Materials Letters **57** (4), 794-801 (2002).
- 19. K. Park, H. Koerner and R. A. Vaia, Nano Letters **10** (4), 1433-1439 (2010).
- R. Kaegi, A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser, S. Zuleeg, H. Simmler, S. Brunner, H. Vonmont, M. Burkhardt and M. Boller, Environmental Pollution **156** (2), 233-239 (2008).
- 21. M. Zarbov, I. Schuster and L. Gal-Or, Journal of Materials Science **39** (3), 813-817 (2004).
- 22. L. Besra and M. Liu, Progress in Materials Science 52 (1), 1-61 (2007).
- 23. P. Sarkar and P. S. Nicholson, Journal of the American Ceramic Society **79** (8), 1987-2002 (1996).
- 24. O. O. Van der Biest and L. J. Vandeperre, Annual Review of Materials Science **29** (1), 327-352 (1999).
- 25. R. J. Hunter, *Foundations of Colloid Science*, 2nd ed. (Oxford University Press, Oxford, 2001).
- 26. P. Ratanatriwong and S. Barringer, Journal of Electrostatics **65** (10-11), 704-708 (2007).
- 27. B. Ferrari and R. Moreno, Materials Letters **28** (4-6), 353-355 (1996).
- 28. B. Ferrari and R. Moreno, Journal of the European Ceramic Society **30** (5), 1069-1078 (2010).
- 29. E. J. W. Verwey, The Journal of Physical and Colloid Chemistry **51** (3), 631-636 (1947).
- 30. B. V. Derjaguin and L. Landau, Acta Physicochim URSS 14, 633-652 (1941).
- 31. S. Bhattacharjee, M. Elimelech and M. Borkovec, The Croatian Chemical Society **71**, 883-903 (1998).
- 32. T. Missana and A. Adell, Journal of Colloid and Interface Science **230** (1), 150-156 (2000).
- 33. H. C. Hamaker, Transactions of the Faraday Society **36**, 279-283 (1940).
- S. Mahajan, D. Kavich, M. Redigolo and J. Dickerson, Journal of Materials Science 41 (24), 8160-8165 (2006).