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CHAPTER 1: Introduction 

 

 

Background 

Proteins that bind small molecules can act as therapeutics by sequestering ligands, 

stimulating signaling pathways, delivering other molecules to sites of action, and serving as 

in vivo diagnostics1. Improving biotechnological applications in these fields requires 

understanding the chemical basis of protein-small molecule interaction. Computational 

modeling serves as a test of how well these interactions are understood. Expansive protein 

structural information combined with powerful algorithms have allowed computational 

methods to grow significantly. Although the computational design of proteins that can bind 

to any ligand is not yet possible2, recent successes small molecule-macromolecule design 

suggest that it is within reach (highlighted below). Protein-ligand interactions are difficult 

to model, and current methods still fail to predict optimal amino acid identities even in the 

first shell around the ligand3. Correct side chain identity and positions play just as an 

important role as correct ligand positions when modeling protein-small molecule 

interactions. I hypothesize that an iterative protocol that extensively searches the protein 

sequence space, side chain conformation, and ligand positions, along with an updated 

scoring function, will overcome this challenge. Creating new interfaces or even modifying 

existing ones requires computational tools that sample and select native-like interactions. 

Even with current challenges, rational protein optimization and de novo design hold much 

potential for the future of protein bioengineering. 
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The objective of this thesis proposal was to develop a computational protocol to 

design a ligand binding pocket within (βα)8 barrel proteins4 for a target molecule. A library 

of 10,000 small molecules is available to us through the Vanderbilt High Throughput 

Screening Facility (http://www.vanderbilt.edu/hts/). Imidazole glycerol phosphate 

synthase (HisF, PDB 1THF)5 provides the (βα)8 barrel protein scaffold that will be screened 

against the small molecule library. The computational design program RosettaLigand6,7 of 

the Rosetta8,9 modeling suite will be used to generate models, and the best scoring models 

are chosen for successive rounds of dock and design. This iterative approach builds upon 

the best models round after round, and optimizes the protein-ligand interface by searching 

and selecting the best residues for tight binding. Previous studies have shown the 

importance of experimental and structural validation for computational design 

methodologies2. This serves to not only verify predicted models, but to also test the current 

scoring function and sampling efficiency during computational calculations. 

Accuracy of the computational models will be assessed through experimental 

characterization of protein variants, each optimized to bind one small molecule out of the 

library of screened compounds. Nuclear magnetic resonance (NMR)- based screening 

experiments allow detection of strong to weak binding of the target, determination of 

binding affinities, and verification of the binding site at atomic-level detail10,11. This 

approach creates a detailed map of the designed interfaces and captures how binding is 

affected by the chemical environment. The experimentally-determined binding affinities 

will be compared to those predicted by RosettaLigand, providing feedback on the accuracy 

of the energy function and sampling efficiency. Caveats in the programs are then addressed. 

Once established, this protocol can be applied to strategies in creating novel therapeutic 
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proteins and/or proteins with biotechnological capabilities. Applications include: 

developing recombinant proteins against disease mechanisms that proceed by binding or 

not binding a small molecule, design of biocatalysts, design of biosensors, modulating 

disease pathways, and development of proteins that inhibit enzymes. 

Thesis Focus 

The focus of my thesis has been to design proteins that bind small molecules. I 

approached this goal via three specific aims: (Aim 1) Identify small molecule scaffolds with 

intrinsic HisF Affinity (1a) Create HisF cysteine-less variant protein, and screen for 

scaffolds with intrinsic HisF affinity (1b) Structural verification and thermodynamic 

characterization of protein-ligand interaction as starting point for Aim IIb (Aim 2) 

Computational Design of Protein-Small Molecule Interfaces (2a) Develop and benchmark a 

protocol to simultaneously dock ligands and design the protein binding interface (2b) 

Design novel protein-ligand interfaces from a library of 10,000 small molecules (Aim 3) 

Experimentally Verify Subset of Designed Protein-Ligand Interfaces (3a) Express and 

purify variant proteins, 15N-labeled for HMQC NMR titration (3b) Structural verification 

and thermodynamic characterization of protein-ligand interaction. Aims 1 and 2 have been 

completed, and Aim 3 has one successful design, with others in progress. Research 

presented encompasses significance and holds merit for many reasons, which have been 

outlined below. 

Significance 

Protein-based therapeutics play an important part in today’s medical society: They 

can serve to alter enzymatic or regulatory activity, to target a special activity, as a vaccine, 

or even in diagnostics1. As of 2008, over 130 therapeutic proteins had been approved for 



 4 

use in humans for treatment of more than 30 different diseases1. The market for clinical 

protein therapeutics reached about $94 billion in 201012. US biologic sales reached $63 

billion in 201213. Therapeutic enzyme sales reached $1.4 billion in sales in 201213. As of 

2008, biopharmaceuticals in the USA account for one in four submissions for Food and 

Drug Administration (FDA) approval14. Protein-small molecule interactions are central to 

many biological processes including enzymatic catalysis, receptor-small molecule signaling, 

transporter selectivity, modulating ligand activity, and regulating homeostasis14. The 

ability to manipulate these functions would be a biotechnological advance. As of 2009, 

more than 50 engineered protein scaffolds have been described15. Although most approved 

biologics are antibodies, as of 2013, over 50 non-antibody ‘alternative scaffolds’ have been 

proposed as possible drug candidates16. Computationally engineering novel interfaces 

between proteins and small molecules holds great value in biotechnology and serves as a 

stringent test of understanding of the chemical basis of molecular recognition. Thus, 

computational design of protein-ligand interfaces represents an important step towards 

the development of novel therapeutics. 

Successes in computational design highlight the power and potential of computational 

methods applied to biotechnological applications: Even with much to achieve, many 

computational milestones have been reached in recent years. Here I present just a few 

examples, highlighting the breadth of these achievements. In 2016, Huang et al de novo 

designed a four-fold symmetric TIM-barrel protein17. In 2015, Huang et al designed a green 

fluorescent protein to be a self-reporting biosensor18. In 2014, Penchovsky described the 

methods for designing small molecule-sensing ribozymes19. In 2014, Piece et al identified 

multiple mutations that improved the affinity and specificity of a therapeutic T-cell 
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receptor20. In 2013 Procko et al describe the design of a protein that binds the active site of 

a lysozyme protein and inhibits the enzyme21. In 2013, Bjelic et al designed proteins to 

catalyze the Morita–Baylis–Hillman reaction, which forms a carbon–carbon bond between 

the α-carbon of a conjugated carbonyl compound and a carbon electrophile22. In 2013, Mills 

et al designed an amino acid dependent metalloprotein23. In 2011 Fleishman et al designed 

a protein to bind a conserved region on the influenza hemagglutinin stem24. In 2010, 

Ashworth et al used optimized protein-DNA interactions to rival that of the wild-type by 

altering the cleavage specificity for three contiguous base pair substitutions25. In 2010 

Baker et al created an enzyme catalyst for a biomolecular Diels-Alder reaction, which 

produces a cyclohexene26. In 2009, Chen et al redesigned an enzyme to bind substrates that 

previously had no specificity for the wild type enzyme27. In 2009, Keating et al created a 

computational framework for designing protein-interaction specificity, and used this 

framework to design bZIP-binding peptides28. In 2008, Wand et al designed a di-metal 

metalloprotein to bind zinc29. In 2008, Baker et al designed a biocatalyst to carry out the 

Kemp elimination, deprotonation of a carbon by a base30. In 2008, Jiang et al described the 

de novo design of retro-aldol enzymes31. In 2006 Sood and Baker developed a 

computational approach to increase the affinity of peptides that bind to proteins32. In 2007 

Humphris and Kortemme published a ‘multi-constraint’ design protocol to optimize 

protein-protein interactions33. In 2003, Kortemme and Morozov describe a hydrogen 

binding potential to improve specificity in protein-protein complexes34. Computational 

design accomplishments demonstrate the potential of computational modeling and 

contribute to the growing body of understanding how molecules recognize one another. 
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Computational design of protein-ligand interfaces is not a solved problem: The 

ultimate goal of automated design of binding to any target is still out of reach2. The 

problem is complicated by the many degrees of freedom by the ligand and its placement in 

the binding pocket35. The problem is further complicated by the program’s ability (or 

inability) to recognize strong as well as weak binding interactions35. Reported successes of 

designed receptors and their novel binding ligands could not be experimentally 

reproduced2. Other studies have investigated whether protein-ligand binding and enzyme 

active sites could be predicted by ligand-binding affinity rather than structural stability36. 

Two successfully designed proteins do bind a rigid steroid hormone, but also details the 

other 15 designs which were computationally favorable but showed no experimental 

indication of binding37. Computational enzyme design, which tackles a similar problem, has 

seen some successes (a few highlighted above), but turnover rates are minimal compared 

to wild type35. Among the many unsuccessful attempts, the computational successes, 

especially those involving small molecule – macromolecule recognition, demonstrate that 

protein-ligand interface design is an achievable goal. My research conducted over the past 

six years contributes to the evolving body of knowledge surrounding interface design, and 

will be applied to future projects dedicated to making the goal a reality. 

Ligand flexibility as well as side chain rotamers must be sampled to create an optimal 

binding interface: Computational protein design seeks to identify amino acid sequences that 

are compatible with a given three dimensional (3D) protein structure. Specifically for 

interface design, structure coordinates of the protein scaffold and ligand are input, and the 

design algorithm proceeds through iterative rounds of sequence-conformational searching, 

followed by evaluation of the resulting designed sequences. This requires a search 
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algorithm that can rapidly sample the vast sequence and conformational space, and a 

scoring function that can identify low energy designs. To reduce the complexity of the 

search space, discrete conformations of the side chains (rotamers) are sampled during 

design6,7. Knowledge-based potentials that rely on statistical parameters derived from 

databases of known protein properties are used to increase the accuracy of scoring 

functions6. A large number of docking algorithms have been developed based on a variety 

of search algorithms, all which seek to identify the lowest free energy pose of the ligand in 

the protein binding site38. Successful applications have been described with various 

algorithms, but frequently the protein flexibility is not taken into account6. Ligand 

flexibility plays a crucial part in protein-ligand interactions and must be included to 

accurately model the interface at atomic level detail6,7. Ligand flexibility is treated similarly 

to side chain conformations, where pre-generated discrete ligand conformations are all 

docked into the protein. Allowing side chain and ligand flexibility more closely mimics a 

native-like protein-ligand complex and enhances the chance of approaching the lowest 

energy conformation possible. 

RosettaLigand predicts protein-small molecule interactions: Rosetta, a protein 

modeling software suite for protein structure prediction and design9, has been successfully 

used to tackle a number of computational projects involving macromolecule-small 

molecule interactions. Since its development, Rosetta has been expanded to other 

macromolecule modeling systems, available as a versatile, rapidly developing set of tools 

applicable to many challenges39. Many of the successes highlighted above are Rosetta 

achievements. Rosetta seeks to find the lowest energy conformation of a model by 

combining discrete side chain conformation (rotamer) optimization with Monte Carlo 
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minimization9. This includes sampling random perturbations of the backbone torsion 

angles, rigid body degrees of freedom, and rotamer conformations, followed by an all-over 

local minimization to resolve clashes9. The energy function that Rosetta uses to 

discriminate between native-like and non-native-like atom arrangements includes a van 

der Waals-like attractive and repulsive potential, solvation term, hydrogen bonding 

potential, electrostatics potential, rotamer probability, and protein backbone angle 

probabilities6. RosettaLigand is an application within Rosetta that was originally developed 

to dock small molecules into a protein with full protein and ligand flexibility6,7. 

RosettaLigand does indeed recover the native pose of the experimentally determined 

crystal structure; the best scoring models are within 2 Å root mean square deviation 

(RMSD) compared to the crystal structure6,7. This is significant because for this 

methodology to be valid, there must be confidence that the lowest energy models are 

sampled, accepted, and correctly scored. Using the 3D coordinates of the protein and ligand 

as input files, the RosettaLigand protocol involves optimized placement of the ligand, 

optimized positioning of the surrounding residue side chains, and a minimization to 

resolve clashes. Protein sequence optimization can be included in the protocol if needed40. 

RosettaLigand allows for protein backbone flexibility, side chain rotamer searching, and 

full ligand flexibility, all of which are necessary for accurately modeling the interface6,7. For 

each model, RosettaLigand calculates an ‘interface energy’ as the total score of the protein-

ligand complex minus the total score of the apo-protein7. Published literature describes the 

RosettaLigand method, protocol options, and tips for model analysis41. 

(βα)8 barrel proteins provide a good scaffold for design: (βα)8 barrels, also known as 

TIM-barrels, are frequently observed among soluble enzymes in metabolic pathways42. The 
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tertiary structure traditionally consists of 8 repeating (βα) units folded into a barrel 

structure43. TIM-barrels are widely seen in the Protein Data Bank (PDB); a ScopTree search 

for ‘TIM beta-alpha barrel’ in the PDB returns more than 2000 crystal structures. These are 

often crystallized with ligands, noting their diverse sequences, range of reaction 

mechanisms, and affinities for different ligands, despite all maintaining the same fold4. 

Their functions are widespread, and there are instances of TIM-barrels used and/or 

investigated as protein therapeutics. GlcCerase has been used to treat Gaucher disease44. 

Heparanase is being investigated as a therapeutic target for antitumor therapy45. On the 

agricultural side, design of chitinases are being investigated as an approach to bio-

pesticides46. The TIM-barrel chosen for this proposal, imidazole glycerol phosphate 

synthase (HisF), catalyzes a ring closure in the histidine biosynthesis pathway42. Being 

highly characterized, HisF provides an advantageous scaffold for computational and 

experimental studies. There are multiple structures determined by x-ray crystallography 

with high resolution, providing various starting points as the input structure for 

computational studies. I utilized PDB 1THF (1.45 Å)5. HisF is native to a thermophile, 

therefore highly stable and tolerant to mutation, and has been previously used for design, 

providing a stable protein for experimental studies47,48. Additionally, using a protein 

scaffold with an assigned 2D spectrum is advantageous because of the difficulty that comes 

with resonance assignment and/or crystallization. The literature HisF 2D spectrum 

provides the starting point for the experimental validation49. HisF has been crystallized in 

complex with its native substrate, prfar (PDB 1OX5), by inactivating the protein’s cyclase 

signaling residue50. This provides insight into the binding motif of the native substrate and 

possibly about other naively binding ligands. The prfar active site sits at the top of the (βα)8 
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barrel (as most TIM-barrels), with prfar binding in a deep cleft stretching across the top of 

the barrel50. There is a cysteine (Cys9) in the HisF binding pocket, therefore a HisF 

cysteine-less variant protein will be created, expressed, and purified. Replacing the 

cysteine with serine (C9S_HisF) gives confidence that small molecule binding is not due to 

covalent interactions with the cysteine. The interactions for binding should be driven by 

non-covalent interactions, including hydrogen bonding, dipole dipole interactions, 

electrostatics, van der Waals, hydrophobic effects, and geometric/shape complementarity. 

In our lab, C9S_HisF purifications yield almost 1 g of pure protein from a 12-L growth. 

Selecting HisF as the protein scaffold for this proposal provides the computational 

reliability and experimental stability needed for this research project. 

15N-HMQC NMR allows for detection of small conformational changes induced by 

ligand binding: Small molecule binding, predicted to be in the milli to sub-micromolar 

range, must be detectable to verify that the ligand is indeed bound in the protein-ligand 

binding pocket. Nuclear magnetic resonance (NMR) experiments provide an alternative for 

protein-ligand characterization when crystallization (the traditional method) is difficult. 

NMR spectroscopy has emerged as a reliable tool in identifying binding, elucidating the 

interacting residues, and calculating the binding affinity51,52. Binding can be detected by 

two-dimensional 15N-heteronuclear multiple quantum correlation NMR (2-D 15N-HMQC 

NMR)10. Observation of 15N- or 1H-amide chemical shift peak changes in the protein-ligand 

complex spectrum when compared to the apo protein spectrum, indicates a change in the 

environment of that 15N- or 1H-amide pair, likely due to ligand binding. An advantage of 

15N-HMQC NMR is that quality spectra can be rapidly obtained10,11, in ~30 minutes. As 

noted above, the assigned 2D spectrum allows one to correlate the peak shifts to the actual 
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residue in the protein. The ability to verify even weak binding is crucial for validation of 

interface design studies. 

Design of proteins to bind biologically relevant small molecules can be applied to 

disease treatment strategies: Receptor-small molecule signaling regulates biological 

pathways, and disease may occur when this signaling is disrupted. The literature contains 

reviews and examples of computational methods as a tool in combatting disease53. In 

diseases that progress by proliferation of damaged cells, such as cancer, an approach to 

treatment could be to stop a signaling pathway in the damaged cells. Knudsen et al describe 

small molecule depletion as a strategy in prostate cancer treatment54. Hao et al used 

experimental methods combined with computational methods to identify a high-affinity 

ligand for CRIP1 (cysteine-rich intestinal protein 1 has been identified as a novel marker 

for early detection of cancers)55. Isitivan et al describe the successful application of their 

methods to design a bioactive peptide analogue with cytotoxic effects on tumor cells only56. 

Bellows et al describe a framework for the discovery of entry inhibitors for HIV-157. Sievers 

et al show that computer-aided, structure-based design can yield specific peptide inhibitors 

of amyloid formation, a strategy against Alzheimer’s disease58. Development of proteins as 

therapeutics is still only in its infancy, yet more than 100 different proteins/peptides have 

been approved for clinical use by the FDA, with many more in the development stage1. 

Based on the several thousand different genes in the human genome, bioengineered 

recombinant proteins represent a class with the potential to grow into one of the leading 

areas of disease treatment1. Even with current challenges, recombinant proteins comprise 

the majority of approved FDA biotechnology treatments1. Reliable computational methods 
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would allow therapeutic development to expand, due combinations that could eliminated 

and/or pushed forward for experimental testing. 

Innovation 

Research presented contains various novel aspects. On the computational side, 

RosettaLigand was tested many ways in its ability to recapture sidechains necessary for 

protein-ligand interaction. My RosettaLigand manuscript was the first to benchmark 

RosettaLigand with the inclusion of sequence design40. On the experimental side, NMR-

obtained data was used as the basis for a computational benchmark, and HisF was used as 

a scaffold in identifying naïve binders. I am the first to conduct a RosettaLigand benchmark 

using only NMR experimental data. Because interface design presents such a complex 

challenge, my project functions as a ‘stepping stone’ in elucidating where RosettaLigand 

can be improved. It is commonly accepted in the directed evolution field that it is easier to 

begin engineering when some desired activity is present59, which I have incorporated into 

my approach. The experimentally determined naïve binders serve as the starting point for 

design, therefore both design successes and failures expand knowledge about the program. 

Hopefully, these methods and results will be applied in subsequent experiments which 

then contribute to the evolving nature of computational work. In various ways, my projects 

ask RosettaLigand to distinguish a binding ligand from non-binding ligands, and to 

recognize binding interactions. In order to understand its capabilities and limitations, I 

have systematically assessed the program’s ability to identify interactions favorable for 

binding. Below I have expanded on the novel themes of my project, in a broad and narrow 

sense. 
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Engineered protein scaffolds are emerging as next-generation therapeutics: 

Biotechnological advances such as recombinant proteins and protein engineering have 

paved the way for a field of study which focuses on introducing novel binding properties 

into naturally occurring proteins, termed ‘engineered protein scaffolds’60. Ideal candidates 

for scaffold engineering include proteins that are soluble and thermostable15. Once the 

protein is chosen and a scaffold is identified, chemical diversity is introduced into the 

binding site by means of in-vitro mutagenesis techniques, creating a library of variant 

proteins to be tested for binding61. Applications for medical therapies include serving as 

agonists, antagonists, enzyme inhibitors, and antidotes62. Although only a few engineered 

protein scaffolds have advanced to clinical development, over 50 have been described, 

showing their promise as a future medical therapy63. 

Computational methods emerging as a tool to aid in high throughput screening: Drug 

discovery relies on high-throughput screening as one of the established methods in 

identifying lead compounds to pursue64. The strong increase in both the number of 

available compounds as well as molecular targets has created a massive database to screen, 

in some cases exceeding one million compounds64. The need for optimized, accelerated 

methods in screening has been pointed out in the literature64. With the growing database of 

experimental structures of ligands bound to proteins, in silico screening methods have 

emerged as a possible ‘stepping stone’ tool in the drug discovery process. Review articles 

highlight successes, such as the ability to recapture the native binding pose, but also point 

out caveats, such as scoring methods and the need for robust benchmark experiments65. An 

in-depth review provides insight into the challenges we still face with virtual screening, 

such as incorporation of protein flexibility/conformational changes, treatment of active site 
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water molecules, ligand flexibility/conformers, scoring functions that accurately assess 

interactions, and post-processing analysis38. Since RosettaLigand is a docking program, 

assessing the ability to distinguish interacting ligands from non-interacting ligands is of 

particular interest. 

Computational benchmarks uncover the strengths/weaknesses of computational 

methods: Computational benchmarks allow one to assess the strengths/weaknesses of a 

computational method. A closer look into current virtual screening/docking methods 

reveals that although the end goal is the same, the approach varies among different 

programs66. Benchmark studies for small molecule docking programs in self-assessment 

and comparative assessments have shown the importance of such computational 

experiments67. Metrics to compare different programs reveal that no one computational 

program handles all complexes well67. Some programs handle certain ligand/protein 

systems better, some programs are better at docking ligands versus protein-ligand 

interface design, etc. Benchmarks enable the computational community to grow by 

exposing and addressing persistent problems/caveats within similar programs. Constant 

changes and updates to the program necessitate the need for new benchmarks, or even a 

repeat of previous ones. In 2015, Conchuir et al dedicated an entire manuscript to 

standardized benchmarks for Rosetta protocols68. The original RosettaLigand papers 

highlight that the program can recover the native ligand position and side chain residues of 

protein-ligand crystal structures6,7. Subsequent benchmarks expand upon these and test 

the capabilities of RosettaLigand in more ‘real-world’ scenario cases, such competing in 

challenges that assess many docking programs at once69 and applying the program as a 

strategic tool to combat disease70. A blind evaluation of RosettaLigand, using private data 
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from a real drug discovery company, performed on average comparable with that of the 

best commercially available current small molecule docking programs71. Experiments have 

tested the program’s ability in virtual high throughput screening, after optimizing the 

ligand placement step72. Specifically, I have tested RosettaLigand in recovering the protein-

ligand interface residues, recovering the crucial interacting residues if mutated to alanine, 

and identifying the interacting residues based on experimental data. Specific to the 

research of my second manuscript, NMR-obtained data can expand the breadth of 

benchmarks, by including data that cannot or has not yet been obtained by crystallography. 
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CHAPTER 2: Computational Design of Protein-Small Molecule Interfaces 

 

 

Allison, Brittany; Combs, Steven; DeLuca, Sam; Lemmon, Gordon; Mizoue, Laura; Meiler, 

Jens, “Computational Design of Protein- Small Molecule Interfaces”. Journal of Structural 
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Contribution 

 I am the first author of this manuscript. I contributed the bulk of the: abstract, 

introduction, RosettaLigand computational setup and analysis, figures 1 – 5, tables 1 and 2, 

conclusion, and supplemental information. I also reviewed the parts that the other authors 

contributed. 

Abstract 

The computational design of proteins that bind small molecule ligands is one of the 

unsolved challenges in protein engineering. It is complicated by the relatively small size of 

the ligand which limits the number of intermolecular interactions. Furthermore, near-

perfect geometries between interacting partners are required to achieve high binding 

affinities. For apolar, rigid small molecules the interactions are dominated by short-range 

van der Waals forces. As the number of polar groups in the ligand increases, hydrogen 

bonds, salt bridges, cation-π, and π-π interactions gain importance. These partial covalent 

interactions are longer ranged, and additionally, their strength depends on the 

environment (e.g. solvent exposure). To assess the current state of protein-small molecule 

interface design, we benchmark the popular computer algorithm Rosetta on a diverse set of 
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43 protein-ligand complexes. On average, we achieve sequence recoveries in the binding 

site of 59% when the ligand is allowed limited reorientation, and 48% when the ligand is 

allowed full reorientation. When simulating the redesign of a protein binding site, sequence 

recovery among residues that contribute most to binding was 52% when slight ligand 

reorientation was allowed, and 27% when full ligand reorientation was allowed. As 

expected, sequence recovery correlates with ligand displacement. 

Introduction 

Engineering protein-small molecule interactions is key for advancement of several 

grand challenges in computational biology. Protein-small molecule interactions are the 

basis for enzymatic catalysis, receptor-small molecule signaling, and transporter selectivity 

and are thus essential for carrying out biological processes and maintaining overall 

homeostasis in the body. Designed proteins that bind small molecule targets can act as 

therapeutics by sequestering ligands, stimulating or extinguishing signaling pathways, 

delivering other molecules to sites of action, and serving as in vivo diagnostics1. For 

example, small molecule depletion has been suggested as a strategy for treatment of 

prostate cancer54, cocaine abuse73, and bacterial infection74 Proteins that bind small 

molecules also have applications in environmental chemistry and food chemistry as 

biosensors75. Thus, the ability to engineer highly precise and specific interactions at protein 

interfaces can serve in many capacities. 

Computational design of protein-small molecule interfaces continues to present 

challenges. Although the creation of new enzymes is a landmark achievement in protein 

design31,30, 26,76, the success rate is low and the designed proteins are poor catalysts 

compared to naturally-occurring enzymes. To help pinpoint the causes, a systematic study 
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was conducted introducing mutations into the active site of three designed retro-aldolases 

(RA34, RA45, and RA95) derived from the TIM-barrel scaffold IGPS. In RA34 and RA95, 

mutations that increase substrate binding affinity and thereby enzymatic activity involve 

increases in side chain volume and hydrophobicity, including G233F/I/V/Y in RA3477 and 

T51Y, T83K, S110H, M180F and R182M in RA9578. In contrast, many improvements to the 

RA45 design arose from large-to-small mutations including W8A/T/V, F133L, V159C, and 

R182V/I78. In all cases, key functional groups that engage the ligand are introduced or 

removed. These observations indicate that neither the hydrophobic packing nor the 

positioning of substrate within the binding pocket were optimal in the initial designs. 

Similarly, a previously reported successful computational design of a protein-small 

molecule interface79 did not withstand close examination80. 

Rosetta, a protein modeling software suite for protein structure prediction and 

design9, has been successfully used to tackle a number of interface design problems. Some 

of these successes include creating novel enzymes31, 30, 26, altering the specificity of 

protein-peptide32, protein-DNA25, and protein-protein interfaces34. Rosetta seeks to find 

the lowest energy conformation for a design by combining discrete side chain 

conformation (rotamer) optimization with Monte Carlo minimization9. This includes 

sampling random perturbations of the backbone torsion angles, rigid body degrees of 

freedom, and rotamer conformations, followed by an all-over local minimization to resolve 

clashes9. These methods enable much faster and larger exploration of sequence and 

conformational space compared to experimental methods such as phage display81. 

The energy function that Rosetta uses to discriminate between native-like and non-native-

like atom arrangements includes a van der Waals-like attractive and repulsive potential, 
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solvation term, hydrogen bonding potential, electrostatics potential, rotamer probability, 

and (φ, ψ) angle probabilities in the protein backbone6. The total energy of the system is 

computed as a weighted sum of all interactions with weights optimized through a series of 

benchmarks. All energy functions are pairwise decomposable (i.e. they depend on no more 

than two interacting partners). This design of the energy function maximizes algorithm 

speed since interaction energies can be pre-computed and stored. However, it also limits 

the accuracy of the energy function, particularly electrostatic and partial covalent 

interactions which vary greatly in strength depending on the environment of the 

interacting partners. Experimental characterization of some of the best scoring designs is 

used to validate and improve the computational protocols. In this way, both design 

successes and failures help test and expand our understanding of the fundamental forces 

involved in molecular recognition. 

RosettaLigand is an application within Rosetta that was originally developed to dock 

small molecules into a protein with full protein and ligand flexibility6,7. 82. In these studies, 

we expand RosettaLigand to include amino acid optimization (design) at the protein-small 

molecule interface. Using the full-atom energy function and Monte Carlo minimization 

procedure, RosettaLigand optimizes the small molecule and protein side chain rotamers 

simultaneously6. RosettaLigand allows for protein backbone flexibility, side chain rotamer 

searching, and full ligand flexibility, all of which are necessary for accurately modeling the 

interface6,7. Figure 1 details each step of the ligand docking protocol. For each model, 

RosettaLigand calculates an ‘interface energy’ as the total score of the protein-ligand 
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complex minus the total score of the apo-protein 83. The accuracy of models in terms of 

ligand placement is determined by computing the root-mean-square distance (RMSD) over 

all ligand atoms between model and co-crystal structure. RosettaLigand is the foundation76 

of a number of the successfully design enzymes30,31,77, with the before-mentioned caveat 

that the computationally predicted residues are often sub-optimal even in the first shell 

surrounding the ligand. In order to understand its capabilities and limitations, the present 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flowchart of small molecule docking with design. The RosettaLigand 
protocol was modified to include interface design (dotted line box). From the 
input coordinates, the small molecule is allowed to rotate and translate before 
sequence optimization of nearby residues. After 6 cycles of small molecule 
perturbation, side chain rotamer sampling, and Monte Carlo (MC) minimization, a 
final gradient-based minimization of the protein is performed to resolve any 
clashes. (Reprinted from Journal of Structural Biology.) 
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work systematically assesses RosettaLigand’s ability to design protein-small molecule 

interfaces. This analysis is an important, and so far omitted, benchmark to identify design 

challenges that can currently be solved and to work towards improvements needed to 

achieve consistent success. 

Recovering native protein-small molecule interfaces in sequence and conformation 

is a benchmark for designing novel interfaces. Creating new interfaces or even modifying 

existing ones requires computational tools that sample and select native-like interactions. 

In this study, we examine how RosettaLigand performs in sequence recovery within 

protein-small molecule interfaces while allowing for small molecule reorientation and side 

chain conformational changes. The benchmark consists of two parts. Part one tests overall 

sequence recovery when all residues within the protein-small molecule interface are 

allowed to change identity. Part two simulates a protein-small molecule design more 

closely by mutating up to five residues that contribute most to the interaction with the 

small molecule to Alanine. This effectively removes the binding site’s memory of the native 

ligand. In the design experiment a scoring bonus is given to the starting sequence. These 

experiments test RosettaLigand’s ability to distinguish between native and non-native 

binding interaction and whether RosettaLigand can identify key mutations needed to bind 

the small molecule while limiting the total number of mutations. The results illustrate the 

types of ligands that Rosetta handles best and provide insights into weaknesses where 

continued method development is required. 

Results and Discussion 

The setup of the experiments allows us to determine overall protein-ligand interface 

sequence recovery as well as an optimal strategy for re-designing proteins to recognize 
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different small molecules using a minimal set of mutations. For this purpose separate 

measures for sequence recovery among the residues critical for ligand binding are 

determined. We investigate how sequence recovery varies with ligand size, binding affinity, 

and RosettaLigand interface energy. We appreciate that sequence recovery measures have 

one critical limitation: they assume that the native protein-small molecule interface is 

optimal for tight small molecule binding, which is certainly incorrect. In result, if a position 

fails to recover to the native amino acid it can be because of an actual failure of the design 

algorithm or because the alternate amino acid is tolerated or even favorable in an actual 

protein-small molecule interface – a distinction that only the experiment can make. 

Therefore, we do not expect a 100% success rate for sequence recovery. This poses a 

dilemma for the development of protein design algorithms: at what point can we stop 

optimizing for increased sequence recovery? Ideally, one wants to capture native-like 

designs and interactions that would be seen in nature, but not to a point where the 

algorithm over-fits the designs. To circumvent part of this problem, we developed a 

Position-Specific Scoring Matrix (PSSM) recovery measure84 which computes the fraction 

of residues that revert to an amino acid observed in evolution. PSSM recovery is a more 

robust measure of design success as it tolerates mutations that have been observed in 

evolution. 

Experimental Setup: A set of 43 high resolution protein-small molecule crystal 

structures were selected from the Community Structure-Activity Resource (CSAR) 

database and used directly in testing. In practice, however, the task is often to redesign a 

binding site to recognize a (different) specific small molecule. In this setting, one is 

interested in identifying the minimal number of mutations needed to achieve the desired 
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functionality and avoiding additional mutations that provide little or no benefit. This can be 

achieved by including a ‘favor native’ residue bonus (FNRB) energy that must be overcome 

before a mutation is accepted. 

The starting sequences in the CSAR benchmark set are already (close to) optimal for 

binding the target small molecule. Therefore, we created mutant proteins that are expected 

to have reduced or no binding to the target small molecule. First, the five residues that 

contribute most to small molecule binding according to the RosettaLigand energy function 

were determined and then sequentially mutated to Alanine. Next, these artificial mutants 

were employed to test RosettaLigand’s ability to recognize sub-optimal interactions and 

replace them with those that are optimal for binding. 

A total of four experiments were conducted: (1) re-designing the protein-small 

molecule interface in the native protein without reorienting the ligand (Design Native), (2) 

re-designing the protein-small molecule interface in the native protein with ligand 

reorientation (Dock/Design Native), (3) re-designing the protein-small molecule interface 

in the Alanine mutants using a FNRB without reorienting the ligand (Design Alanine 

Mutants), and (4) re-designing the protein-small molecule interface in the Alanine mutants 

using a FNRB and ligand reorientation (Dock/Design Alanine Mutants). The latter 

experiment tests if RosettaLigand can identify critical mutations and distinguish them from 

arbitrary sequence changes. For each experiment, 1000 models were generated, filtered by 

RosettaLigand interface energy, and the top 50 were selected for analysis. 

Trends for sequence recovery across all four experiments: The ligand RMSD, 

sequence recovery, number of mutations, and interface energy from each experiment were 

averaged to identify trends across experiments (Table 1). As expected, comparison of the 



 24 

Design (1, 3) vs. Dock/Design (2, 4) experiments shows that lower RMSDs and better 

interface scores are observed when an optimal ligand pose is inputted and allowed to move 

only slightly (0.1 Å translation, 2° rotation) versus when the ligand pose needs to be 

identified (2 Å translation, 360° rotation). The conformational space increases if the ligand 

is allowed to reorient and other binding poses with different sequences achieve favorable 

interface scores. Large changes in ligand position alter the interactions with the protein 

and encourage mutations. Unfortunately, other than extensive experimental studies, there 

is no way to test the plausibility of these alternative protein-small molecule interfaces. 

Applying a FNRB that favors retention of the native amino acid (3, 4) yields fewer 

mutations and higher sequence recovery only when the ligand is allowed full reorientation. 

The highest sequence recovery, lowest number of mutations, and best interface energy is 

observed in experiment (1) where the ligand is held in its approximate initial pose and no 

Table 1 

 

Table 1 
Varying parameters of experiments and sequence recovery results. 

 Design  

Native (1) 

Dock/Design  

Native (2) 

Design  

Alanine Mutants (3) 

Dock/Design 

Alanine Mutants (4) 

Ligand Translation (Å)[a] 0.1 2.0 0.1 2.0 

Ligand Rotation (deg)[a] 2 360 2 360 

     

Ligand RMSD (Å) 0.5 ± 0.4 2.2 ± 1.0 0.7 ± 0.6 2.4 ± 1.0 

Sequence Recovery (%) 64.0 ± 12.4 36.6 ± 11.9 59.8 ± 14.2 48.7 ± 11.9 

Number of Mutations 6.5 ± 2.5 11.5 ± 3.4 7.2 ± 2.6 9.3 ± 2.7 

Interface Energy (REU)[b] -19.0 ± 5.4 -15.1 ± 3.5 -17.5 ± 5.2 -14.1 ± 3.5 

[a] Reorientation allowed from initial pose during docking 
[b] REU – Rosetta Energy Units  

(Reprinted from Journal of Structural Biology.) 
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alanine mutations are introduced into the sequence. However, in the design of novel 

protein-small molecule interfaces, full ligand reorientation must be allowed in order for the 

ligand to search the entire binding pocket for optimal placement (4). 

Trends in recovery of wild type (WT) residues across Alanine mutants experiments: 

Similar results occur when introducing Alanine mutations in the binding site. To maximize 

sequence recovery, these had to be converted to the native amino acid overcoming the 

FNRB. For each experiment, the ligand RMSD, sequence recovery, recovery of WT residue, 

retention of Alanine, and mutation to another residue were determined for each model and 

averaged (Table 2). Since both of these experiments include a FNRB, the only variable is 

whether or not the ligand was allowed full reorientation. The penalty for allowing full 

ligand movement is larger in recovering the specific WT residue (51.7% vs. 26.8%) than 

the penalty in overall sequence recovery (58.9% vs. 47.6%). This result was not surprising 

because in cases where the ligand position is not recovered there is a minimal chance that 

the correct residue will be selected. Considering that the chance of randomly selecting the 

Table 2 

 Table 2 
Recovery of wild type (WT) residue from the Alanine mutants experiments 

 Design  

Alanine Mutants (3) 

Dock/Design 

Alanine Mutants (4) 

Ligand RMSD (Å) 0.7 ± 0.6[a] 2.5 ± 1.0[a] 

Sequence Recovery (%) 58.9 ± 14.4[a] 47.6 ± 11.8a] 

Alanine Mutations Recovered to WT (%) 51.7 ± 32.8 26.8 ± 20.5 

Alanine Mutations Designed to Other Amino 

Acids (%) 

26.5 ± 25.1 36.8 ± 17.1 

Alanine Mutations Remaining Alanine (%) 21.8 ± 25.2 36.3 ± 22.4 

[a] The slight differences in values compared to Table 1 are due to exclusion of data from 
the native complexes.  

(Reprinted from Journal of Structural Biology.) 
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correct residue is 5% (1 out of 20), RosettaLigand’s ability to recover 26.8% of WT residues 

under the most stringent conditions represents a significant improvement. Some designs 

have been selected to show the diversity of ligands that have high sequence and wild type 

recovery versus ones that have low recoveries (Figure 2). 

Detailed analysis of the Dock/Design Alanine mutants experiment (4): Since the 

ultimate goal is to use RosettaLigand to design novel protein-small molecule interfaces, we 

took an in-depth look at the results from the experiment that most closely resembles this 

scenario. Sequence recovery was plotted against a number of variables to see if 

RosettaLigand performs better with different types of ligand and/or protein properties 

(Figure 3, Figure 18 (SF1)). As seen in previous results, sequence recovery decreases with 

 

 

 

 

 

 

 

 

 

 

Figure 2: Examples of the best and worst designs from each experiment. Best designs from each 
experiment (A, B, C, D) are shown in contrast to the worst designs from each experiment (Panels E, F, G, 
H). For experiment 1 Design Native, a best design model had a sequence recovery of 90% (A), while a 
worst design model had a sequence recovery of 58% (E). For experiment 2 Dock/Design Native, a best 
design model had a sequence recovery of 80% (B), while a worst design model had a sequence recovery 
of 51% (F). For experiment 3 Design Alanine Mutants, a best design model had a wild type recovery of 
94% (C), while a worst design model had a wild type recovery 8% (G). For experiment 4 Dock/Design 
Alanine Mutants, a best design model had a wild type recovery of 55% (D), while a worst design model 
had a wild type recovery 10% (H). (Reprinted from Journal of Structural Biology.) 
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increasing RMSD (Figure 3A). Binding pocket crowdedness measures how tightly packed 

the ligand is in binding pocket, calculated as the number protein/ligand atom pairs within 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Sequence recovery from Dock/Design Alanine Mutants experiment. Increasing RMSD 
decreases the sequence recovery (A). Ligand atoms in contact with ~2-3 protein atoms show the 
best recoveries (B). Ligands having very many hydrogen bond donors and acceptors show a 
decrease in recovery (C). Ligands containing 1-3 rotatable bonds achieve the best recoveries (D). 
The number of rings in a ligand has slight correlation with recovery; having many rings decreases 
the range of recoveries (E). Amphipathic ligands have better recoveries than more hydrophilic 
and hydrophobic ligands (F). These results imply that RosettaLigand best recovers the protein-
ligand interface when the ligand has a moderate number of hydrogen bond donors and acceptors, 
is amphipathic, and when the binding pocket is not too loose or too crowded. (Reprinted from 
Journal of Structural Biology.) 
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3 Angstroms of each other, divided by the total number of ligand atoms. A high 

crowdedness indicates a ligand surrounded by protein contacts, whereas low crowdedness 

indicates that only a portion of the ligand is in contact with the protein. Sequence recovery 

was best when the ligand had 2-3 protein contacts per atom (Figure 3B). As crowdedness 

deviated from this range, recovery decreased, implying that RosettaLigand has difficulties 

in tightly packed as well as under-packed protein/small molecule interfaces. For the 

number of ligand hydrogen bond donors and acceptors, WT recovery remained consistent 

until there is a drop at 13+ donors/acceptors (Figure 3C). A complex hydrogen bonding 

network would be more difficult to recover than a simple network, so this was expected. 

For number of ligand rotatable bonds, ligands with 1, 2, or 3 rotatable bonds surprisingly 

have the best recoveries on average (Figure 3D). Ligands with rigid ring systems have a 

decreased range of recoveries, not the highest but also not the lowest values (Figure 3E). 

One would expect that since rings provide the ligand a more defined shape, it would be 

easier for RosettaLigand to identify the correct binding pose. LogP, a measure of 

lipophilicity comparing the concentration of ligand in octanol vs water, shows the best 

recoveries for ligands with a logP around zero (between ~-2.5 and 2.5, Figure 3F). As the 

ligand becomes more hydrophilic, sequence recovery decreases. Aside from a few outliers, 

as the number of ligand atoms increases, recovery decreases (Figure 18A (SF1) A). Our 

interpretation is that larger ligands have fewer well-defined contacts that are more difficult 

to recover. Surprisingly, the number of residues considered for design has little impact on 

sequence recovery; one may expect that more residues in the binding pocket would 

decrease recovery, but this was not the case (Figure 18 (SF1) B). Binding affinity showed 

little effect on recovering the interface (Figure 18 (SF1) C). There appears to be a drop in 
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recovery for very tight binders, however there are few of these complexes to begin with. 

Binding affinity normalized by ligand molecular weight does not influence recovery (Figure 

18 (SF1) D). Topological polar surface area (Figure 18 (SF1) E) and van der Waals surface 

area (Figure 18 (SF1) F) both show the same trend; as surface area increases, maximum 

recovery decreases. This was not surprising, considering that surface area and number of 

ligand atoms correlate with each other. Ligand interface energy correlates little with 

sequence recovery (Figure 18 (SF1) G) even if the interface energies were normalized by 

small molecule molecular weight (Figure 18 (SF1) H). Taken together, these results suggest 

that RosettaLigand is biased towards non-polar or slightly polar ligands for achieving 

maximum recovery. For moderately sized ligands, the interface was recovered better than 

larger ligands. Interfaces with many hydrogen bond donors and acceptors were difficult to 

recover. Overall, there seems to be a preference for ligands that are moderately sized and 

not too polar, because interfaces containing ligands with these properties are recovered 

the best. However, correlations were generally weak with many outliers confirming that 

there is no single parameter that identifies an interface that is easier to design. 

The same parameters were analyzed for recovery of Alanine mutants to the wild 

type residue (Figure 4 and Figure 19 (SF2)). Trends are more difficult to discern because in 

sequence recovery varies in a larger range. Not surprisingly, most of the complexes with 

high RMSDs had low recovery rates, while those with low RMSDs displayed a wider range 

of recovery rates, from very high to very low (Figure 4A). Similar to sequence recovery, 

ligands with 2-3 protein contacts per atom showed the best WT recoveries (Figure 4B). The 

number of ligand hydrogen bond donors and acceptors shows a trend, where recovery 

drops with 9+ donors/acceptors (Figure 4C). It is expected that under the more stringent 
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condition of only measuring alanine to WT recovery, a simpler hydrogen bonding network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Alanine mutant to Wild Type recovery from Dock/Design Alanine Mutants experiment. Most 
complexes with high RMSDs had low Alanine to WT recovery, whereas complexes with low RMSDs had 
a range of WT recovery (A). Ligand atoms in contact with ~2-3 protein atoms show the best recoveries 
(B). WT recovery drops when the ligand has 9 or more hydrogen bond donors and acceptors (C). As the 
number of ligand rotatable bonds increases, the maximum WT recovery decreases (D). Ligands with 
zero rings have the lowest recoveries; ligands with 3 rings, although they do not reach maximum 
recovery, the average is the highest (E). Amphipathic ligands have better recoveries than more 
hydrophilic ligands (F). Positive correlation seen between sequence recovery and the recovery of the 
alanine mutants to WT (G). These results imply that RosettaLigand best recovers the WT residues when 
the ligand has less than 8 hydrogen bond donors and acceptors, contains fewer rotatable bonds, 
contains more rings, is amphipathic, and when the binding pocket is not too loose or too crowded. 
(Reprinted from Journal of Structural Biology.) 



 31 

is easier to recover, also compared with overall sequence recovery which dropped after 

13+ donors/acceptors. As the number of ligand rotatable bond increases, the maximum 

recovery decreases (Figure 4D). Ligands containing at least one ring have better recovery 

than ligands without rings (Figure 4E). Ligands with 1 or 2 rings reach the highest 

maximum, while ligands with 3 rings have the best average. This confirms that 

protein/ligand interfaces for rigid ligands are easier to design for RosettaLigand. As seen 

with sequence recovery, amphipathic ligands with a logP between -2.5 and 2.5 have the 

highest WT recoveries (Figure 4F). Hydrophobic ligands perform well, and hydrophilic 

ligands worst. Comparing overall sequence recovery to WT sequence recovery shows a 

positive correlation (Figure 4G), which demonstrates as expected that the complexes that 

recovered the most of the interface had the best chance of recovering the specific WT 

residues; instances where interface sequence recovery was very low resulted in very low 

WT recovery as well. This implies that Rosetta is able to discern which protein residues are 

most critical for ligand binding when most of the non-critical residues are correct as well. 

Other than a few outliers, increasing the number of ligand atoms decreases the maximum 

recovery (Figure 19 (SF2) A). The number of residues considered for design (Figure 19 

(SF2) B) and the binding affinity (Figure 19 (SF2) C) had little impact on WT recovery. 

Lower normalized binding affinities had a better chance of recovering the WT residues 

(Figure 19 (SF2) D). As seen with sequence recovery, ligands with a high topological polar 

surface area have decreased recoveries (Figure 19 (SF2) E). Van der Waals surface area 

(Figure 19 (SF2) F), Rosetta interface energy (Figure 19 (SF2) G), and normalized Rosetta 

interface energy (Figure 19 (SF2) H) show no effect on WT recovery. Overall, the trends for 

WT recovery correlate with sequence recovery, which is expected. Rosetta performed best 
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when the ligand contains a small/moderate number of hydrogen bond donors and 

acceptors, at least one ring, low number of rotatable bonds, moderately sized, and 

amphipathic.  

PSSM recovery results: The Position-Specific Scoring Matrix (PSSM) identifies amino 

acid mutations that are tolerated in homologous proteins. Thus, evaluating protein designs 

based on PSSM score provides a more robust assessment of favorable mutations than 

sequence recovery alone84. By tolerating amino acids seen in evolution a more robust 

judgment of RosettaLigand’s ability to capture biological sequences is made. Evolutionarily 

advantageous mutations may contribute to the interface in ways other than stability or low 

energy, and it is important to consider these mutations as well. In addition to designing in 

residues that contribute to binding and promote strong interactions, we also want to 

design an interface that is native-like. Is the most optimal protein-ligand interface, one that 

could be seen in nature, the lowest in energy? This is a fair question to consider, and one 

that can be assessed with PSSM recovery. PSSM recovery is expected to be higher than 

sequence recovery. However, it also has its limitations: 1) not all amino acids tolerated or 

beneficial will have been sampled in evolution, 2) the space of known related protein 

sequences might be incomplete, and 3) some mutation seen in other proteins might alter 

specificity and are not tolerated for the particular small molecule in the benchmark. The 

average sequence recovery and average PSSM recovery of every structure in each dataset 

are plotted in Figure 5. As noted earlier, applying a FNRB improves the sequence recovery, 

which is helpful because recovery is more difficult in the experiments that include mutated 

alanine residues. It was expected that allowing full ligand movement would decrease the 

sequence recovery compared to allowing slight ligand movement. Because PSSM views a 
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mutation favorably if the new amino acid is frequently seen at that position, PSSM recovery 

will always be higher than sequence recovery, where all mutations are counted as 

incorrect. The percentage of PSSM recovery was also computed on a per residue basis 

(Figure 6A). Glycine, Alanine, Leucine, Valine, and Threonine were frequently recovered, 

while Tryptophan and Glutamine were often mutated. Cysteine was omitted as it was not 

included during design. All four data sets exhibit similar biases in terms of PSSM recovery. 

The change in sequence composition provides information about overall biases in sequence 

design. Sequence composition change is calculated as (design_count-

native_count)/(design_count). The sequence composition difference per residue is plotted 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Sequence and PSSM recovery of the experiments. The sequence recovery for each 
experiment was calculated (A). The PSSM recovery for experiment was calculated (B). For both 
plots, error bars are 1 standard deviation from the mean. Sequence recovery, although reported 
earlier, is included in this form for a side-by-side comparison to PSSM recovery. Applying a 
bonus to the native sequence improves the sequence when the ligand is allowed full 
reorientation. Allowing the ligand full reorientation decreases the sequence recovery when 
compared to its similar experiment that only allows slight ligand reorientation. (Reprinted from 
Journal of Structural Biology.) 
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in Figure 6B and Table 3 (ST1). Sequence composition remains consistent for Glutamine, 

Isoleucine, Methionine, Proline, Threonine, and Valine. There are large negative biases to 

design out Phenylalanine and Tryptophan. While some degree of unfavorable mutation can 

be tolerated or even desired at certain positions in a ligand binding pocket, one would not 

expect to see such a significant loss of aromatic residues. Poor recovery of aromatic amino 

acids may reflect the absence of π-π and cation-π interaction scoring terms in the Rosetta 

energy function. 

Sequence recovery, alanine to wild-type recovery, and PSSM recovery provide 

feedback to evaluate RosettaLigand’s performance in designing protein-small molecule 

interfaces. The results demonstrate that by recovering native-like interactions, 

RosettaLigand shows promise as a tool for designing novel protein-small molecule 

 

 

 

 

 

 

 

 

 

 

Figure 6: Heatmap of PSSM recovery per residue for each experiment (A). Dark blue indicates that these 
residues are mutated to residues with good PSSM scores, while light blue indicates a mutation to a residue 
seldom seen at that particular position.  Heatmap of change in sequence composition for each experiment 
(B). Sequence composition change is calculated as (design_count-native_count)/(design_count).  White 
indicates a residue that remains consistent in composition, red indicates a residue that is designed out of 
the sequences, blue indicates a residue that is designed into the sequences. Cys was omitted as it was not 
involved in design. (Reprinted from Journal of Structural Biology.) 
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interfaces. In silico, the best assessment of accuracy is to compare designs to the sequences 

of the protein-ligand complexes in the benchmark set. Other algorithms that seek to 

computationally design protein-small molecule interfaces include OSPREY85 and 

PocketOptimizer86. In a number of studies computationally designed mutations in protein-

small molecule interfaces were experimentally verified. For example when redesigning an 

enzyme for target substrates27, design of a peptide inhibitor which rescues regulatory 

activity87, and to predict mutations that arise from drug resistance88. Some methodological 

improvements that can be considered to improve RosettaLigand performance further 

include: continuous flexibility of rotamers85, continuous backbone flexibility89, local 

backrub motions90, and computing partition functions over molecular ensembles91. 

However, the first critical step is to perform an experimental verification of RosettaLigand 

designed protein-small molecule interfaces. 

Conclusions 

RosettaLigand has been used previously to dock small molecules into proteins, 

allowing full ligand and protein flexibility and recovering small molecule position and most 

interface side chain conformations within 2 Å of the experimental structure. The results 

described here have expanded the methods further to include sequence optimization and 

performed stringent tests on them following the protocol typically used when designing 

novel protein-small molecule interfaces. We designed experiments to test RosettaLigand’s 

ability to recover the sequence and ligand position while reorienting the small molecule 

and applying a native sequence bonus. In addition to sequence recovery, we tested 

RosettaLigand’s ability to recover WT residues from those that were intentionally mutated. 

Most of the trends we saw were expected, such as lower sequence recovery with higher 
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ligand RMSD and higher sequence recovery with fewer rotatable bonds. As overall 

sequence recovery increased, recovery of WT residues increased as well. This implies that 

RosettaLigand can recognize residues necessary for binding and not over-design the 

interface. Recognizing ligand properties that maximize the recovery of native-like 

interactions and also recognizing the ligand properties that Rosetta struggled with is two-

fold: (1) It gives us crucial feedback for improving the algorithm, and (2) it gives us an 

advantage in designing novel interfaces, by starting out with designs for ligands that have 

shown good results. 

Many factors contribute to the difficulty in computationally designing protein-small 

molecule interfaces. The design algorithm must sample the correct ligand and side chain 

identity and conformation and also have a comprehensive energy function that can 

distinguish between interactions that promote binding and those that abolish it. One may 

naively assume that because the binding pocket is significantly smaller than the entire 

protein, interface design is less challenging than complete protein design. However, there 

are several arguments why this is not the case: 1) As the protein-small molecule interface is 

small compared to the core of a protein, there is less tolerance for error, 2) varying 10 

positions with all 20 amino acids yields 2010 = 1013 sequences which is near the limit of the 

sequence space that can be screened experimentally92,93, and 3) designing protein-small 

molecule interfaces requires often precise positioning of interacting functional groups 

which is more challenging than optimizing apolar van der Waals interactions. 

RosettaLigand can more successfully design sites for apolar small molecules whose binding 

is dominated by van der Waals interactions. This was seen in many of the sequence 

recovery plots, where recoveries were the worst for ligands that were very hydrophilic, 
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contained many hydrogen bond donors and acceptors, and had high topological polar 

surface areas. An in-depth analysis of recovery by polar vs apolar amino acids reveals that 

for all experiments, sequence recovery and PSSM recovery for apolar residues was higher 

than for polar residues (Table 4 (ST2)). For example, in the Dock/Design Alanine Mutants 

experiment, apolar residues at the protein-ligand interface had sequence recovery of 

62.4% while, polar residues were recovered 32.8%. Also, PSSM recovery shows that apolar 

residues were recovered 78.7%, while polar residues recovered 63.1%. Additional energy 

terms will likely be needed for accurate design of interfaces that rely primarily on partial 

covalent interactions. 

Materials and Methods 

Compilation of a benchmark of 43 protein-ligand complexes: The Community 

Structure-Activity Resource (CSAR) database94 contains a diverse set of protein-small 

molecule crystal structures and includes information on binding affinities. The full dataset 

of 343 complexes was filtered to obtain a suitable subset for the present study. First, 

complexes where metal ions or water molecules were deemed critical for the interaction 

were excluded since design of interfaces that contain more than two interaction partners 

requires further modification of the design algorithms. From the remaining set, proteins 

containing more than 800 amino acids were excluded to limit the time needed in the 

protein minimization step, leaving 102 complexes. Half of these contained ligands with 

more than 3 rotatable bonds, and these were excluded to limit the degrees of freedom of 

the ligand. Lastly, complexes where the ligand was at the interface of two protein chains 

were excluded. The final benchmark set contained 43 protein-ligand crystal structures, 
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with resolutions better than 2.50 Å and ligand molecular weights varying between 70 – 400 

g/mol. 

Preparing the benchmark set: Files from the Community Structure-Activity 

Resource (CSAR) dataset94 were prepared as described previously95. The ligand atom 

coordinates were extracted from the input files, and the script ‘mol_file_to_params.py’ was 

used to create .params files that describe chemical properties of each ligand and assign 

each ligand a Rosetta atom type. BioPython was used to align residue names, and convert 

non-canonical residues to their canonical base residues. Neutralizing caps were removed 

from the N- and C-termini of the protein chain. Protein chains were relabeled 

alphabetically, and the ligand was given the chain identifier ‘X’ and residue code ‘INH’ in 

each file. This dataset was filtered to exclude protein chains longer than 800 amino acids, 

ligands with more than 3 rotatable bonds, metal ions and water molecules tightly bound at 

the interface (within 3.0 Å of protein or ligand), leaving 43 complexes that were used for 

the native complexes datasets (Table 5 (ST3)). 

Determining critical residues in the protein-ligand interface: For each of the 43 

protein-small molecule complexes, RosettaLigand was used to generate 100 ‘relaxed’ 

models, employing a Rosetta protocol that relies on gradient minimization and side chain 

repacking. The contribution of each residue to the interface energy was determined as the 

difference in per-residue energy in the free and bound forms of the protein, and averaged 

among the 100 models generated. The residues with the highest contributions to ligand 

binding were mutated sequentially to Alanine to create five new complexes (e.g. in the first 

complex only the residue contributing most to the stability of the interface was mutated, in 
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the second complex the two highest contributors were mutated, etc.). The final Alanine-

modified benchmark set contained 5x43=215 complexes. 

Determining residues in the design sphere: Interface residues were selected for 

design and repacking based on four distances measured between the Cα of a protein 

residue and the closest non-hydrogen atom of the ligand. Residues within 6 Å were 

designed (i.e. side chains can change to any other amino acid, excluding cysteine). Residues 

within 6-8 Å were considered for design only if the residue was pointing towards the ligand 

(i.e. the distance between Cβ and any non-hydrogen ligand atom was less than the distance 

between Cα and the same ligand atom). Residues within 8-10 Å were repacked (i.e. side 

chain rotamers were sampled but residues were not mutated). Residues within 10-12 Å 

were repacked only if the residue was pointing towards the ligand. The cutoff values were 

chosen to ensure that the design sphere was small enough to allow for mutations close to 

the ligand, yet large enough to include the longest residue, Arginine, in the sphere as well. 

Determining the optimal favor native residue bonus (FNRB): In interface design, 

only the protein residues within the known or putative ligand binding site are allowed to 

mutate. Designs with the lowest number of mutations are preferred to minimize 

perturbation of the protein fold. In order to achieve this, a small energy bonus is added to 

keep the original residue unless introducing an alternate amino acid results in a significant 

energetic gain. The ‘favor native’ residue bonus (FNRB) is typically chosen in the range of 

the per residue standard deviation of the RosettaLigand score. The optimal FNRB cannot be 

determined by simply redesigning protein-ligand complexes with their native sequence 

since an increased bonus will always result in increased sequence recovery. Instead, we 

first determine the five most critical binding residues and mutate these amino acids to 
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Alanine. These mutants are then redesigned using RosettaLigand to test whether the 

Alanine reverts to the correct residue. 

Of the 43 complexes in the benchmark, a subset was randomly selected to establish 

the optimal FNRB. This subset contained no duplicate proteins or ligands. For each 

experiment, the ligand was allowed full reorientation (2 Å translation, 360˚ rotation) with 

FNRB values between 0.5 and 1.5. One thousand designs were generated for each Alanine 

mutant with each bonus and then the models with the top 50 interface scores were 

selected for analysis. As expected, when the FNRB is increased, the sequence recovery 

increases (number of mutations decreases). However, the percent reversion of Alanine to 

WT residue increases until FNRB = 1.0 and then decreases as FNRB is increased further. 

Based on these results, FNRB = 1.0 was applied for the subsequent experiments. 

Description of each experiment: Four sequence recovery experiments (percentage 

of designed residues that are identical to native residues) were conducted on the full 

dataset of 43 complexes. Design Native (1) probed sequence recovery of the native 

complexes when there was no FNRB and the ligand was allowed limited reorientation (0.1 

Å translation, 2˚ rotation). Dock/Design Native (2) probed sequence recovery of the native 

complexes when there was no FNRB and the ligand was allowed full reorientation (2 Å 

translation, 360˚ rotation). Design with Alanine Mutants (3) probed sequence recovery and 

Alanine-to-WT recovery of the native and Alanine mutant complexes when there was a 

FNRB and the ligand was allowed slight reorientation. Lastly, Dock/Design with Alanine 

Mutants (4) probed sequence recovery and alanine-to-WT recovery of the native and 

Alanine mutant complexes when there was a FNRB and the ligand was allowed full 

reorientation. 
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Determining the number of residues considered for design to compute sequence 

recovery: In the experiments that allowed full ligand movement, the total number of 

residues that interact with the ligand is a moving target. To report overall sequence 

recovery as a percentage, the number of residues at the interface was chosen as the 

average number of residues considered for design. This is still somewhat problematic as 

not all residues were necessarily allowed to change in each of the docking/design 

trajectories. We counterbalance this limitation by also reporting the absolute number of 

mutations (Table 7 (ST5)). However, these numbers are not comparable from complex to 

complex because the number of residues at the interface varies depending on the ligand 

size and the shape of the binding pocket. 

Individual ligand parameters determined by the BCL The BioChemistryLibrary 

(BCL) is a software suite tailored for small molecule modeling, and contains a variety of 

small molecule descriptors96. The ligand parameters calculated by the BCL include: number 

of hydrogen bond donors and acceptors, number of ligand rings, number of atoms, 

topological polar surface area97, van der Waals surface area (computed using the BCL's 

algorithm, which considers the overlapping spheres of neighboring atoms), and logP98. 

Evaluating RosettaLigand design performance using Position Specific Scoring 

Matrices (PSSMs) PSSM data provide a more quantitative insight into specific residues that 

are successes/failures when subjected to design. PSSMs were generated from the native 

protein sequences using BLAST99. The designed residues were then scored using the PSSM. 

Thus, a residue of a type frequently seen at that position would have a positive PSSM score, 

while a residue seldom seen at that position would have a negative PSSM score. The 
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percent PSSM recovery is a measure of the percentage of residues with favorable 

mutations. 

Acknowledgments 

Work in the Meiler laboratory is supported through NIH (R01 GM099842). B.A. is 

supported through the National Science Foundation Graduate Research Fellowship 

Program, grant number DGE-0909667. 

  



 43 

CHAPTER 3: Experimental and Computational Identification of Naïve Binders to a TIM-

Barrel Protein Scaffold 

 

 

Brittany Allison, Alex Geanes, Brian Bender, Jens Meiler 

 

Contribution 

 Once completed, I will be the first author of this manuscript. I contributed the bulk 

of the: introduction, NMR experimental setup and analysis, RosettaLigand analysis, figures 

7 – 15, conclusion, and supplemental information. I also reviewed the parts that the other 
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Abstract 

Proteins evolved to recognize a wide variety of small molecules. Given the large 

number of such proteins, this process must have happened many times independently. A 

low, baseline affinity for the small molecule in question must have existed by chance in the 

naïve protein that provided a benefit for the organism for evolution to kick it into gear. For 

such a low affinity in the µM range it would be sufficient if the protein binds to a 150-250 

g/mol fragment of a larger small molecule. We hypothesize that this baseline affinity exists 

as soon as a small molecule binding pocket in a protein is present, i.e. in a gene duplication 

event a second copy of the protein emerges that is free to evolve to recognize additional 

ligands. In this study we focus on (βα)8 barrels, also known as TIM-barrels, that are 

frequently observed among soluble enzymes in metabolic pathways. For imidazole glycerol 

phosphate synthase (HisF), we experimentally determine small molecule fragments with 
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intrinsic binding affinity. Two mutations introduced into HisF, D130V and D176V, allow 

rCdRP (MW 348 g/mol) to bind at Kd = 0.2 µM100. Of around 3500 small molecule 

fragments screened, 28 displayed intrinsic binding affinity for HisF with a MW range of 174 

– 258 g/mol, dissociation constants ranging between 338 – 1112 µM. These molecules 

cluster into 7groups. In a second experiment we use RosettaLigand to test the ability of 

computational methods to mimic this process in silico and identify the binding pocket for 

these fragments. This is an important question for engineering novel proteins or enzymes 

in silico that would leverage such built-in binding pockets. Results indicate that interacting 

residues were most successfully recovered when there are strong interactions, such as 

hydrogen bonds. 

Introduction 

Evolutionary pathways to small molecule binding pockets in proteins provide 

insight about the similarity of binding in similar proteins. Protein-small molecule 

recognition is highly specific, and the ability to recapture this functionality would be a great 

asset. Literature suggests the importance for some intrinsic affinity to a small molecule to 

begin with59. This initial intrinsic affinity is needed to have some benefit for the organism 

that evolution needs to ‘kick into gear’, i.e. the signal to optimize upon. The possibility that 

a binding pocket on the surface of a protein is likely to emerge by chance given the fold. For 

example (βα)8 barrels have a fold that almost automatically creates a pocket between the 

eight βα loops on one side of the barrel101,102. In cases of enzyme pathways, where the 

product of one enzyme becomes the substrate for the next enzyme, the binding pocket does 

not need to be ‘reinvented’, but rather only modified101. We hypothesize that once 

functional groups such as charges, hydrogen bond donors, acceptors are positioned by 
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evolution to bind one small molecule, they are likely promiscuous in recognizing 

parts/fragments of other small molecules by chance. This would be important as it would 

spare nature from re-inventing the wheel over and over again, and would also be 

applicable in cases of small molecule binding. Studies have re-established enzymatic 

activity and as well as binding events of TIM-barrels onto similar TIM-barrels with only a 

few mutations, namely HisF and similar proteins48. A gene duplication event creates a 

second copy of the protein, and the second copy evolves to tightly bind a new small 

molecule for which an intrinsic affinity to a fragment has been existing102. The present 

experiment is designed to test this, by identifying fragments with intrinsic binding affinity 

to HisF. Then the ‘gene duplication event’ would be introducing mutations suggested by 

follow-up computational or experimental studies.  

Computational engineering of small molecule binding pockets has been difficult, and 

even successes have been met with limitations. Morin et al attempted to design a protein to 

bind a peptide, and although the protein crystal structure superimposed with the 

computationally predicted structure, the peptide did not bind3. Tinberg et al described two 

successfully designed proteins which do bind a rigid steroid hormone, but also details the 

other 15 designs which were computationally favorable but showed no experimental 

indication of binding37. Reported successes of designed receptors and their novel binding 

ligands could not be experimentally reproduced2. Computational enzyme design, which 

tackles a similar problem, has seen some successes (Kemp elimination reaction30, Diels-

Alder reaction26, retro-aldol enzymes31), but turnover rates are minimal compared to wild 

type35. Allison et al described a computational benchmark, which achieved 27% success in 

recovering residues necessary for protein-ligand interaction after being manually changed 
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to alanine40. As computational methods continue to evolve, successes as well as limitations 

highlight where improvement is needed. 

Leveraging evolutionary principles aids the process for computational design of 

small molecule binding pockets. We argue that the computational re-engineering of 

proteins to recognize small molecules can be accelerated by mimicking nature’s approach 

of repurposing existing ligand binding pockets with an intrinsic ability to recognize a small 

molecule of interest or a fragment thereof. This approach has several advantages: (1) 

Optimization of an existing binding pocket with an intrinsic affinity is an easier task than de 

novo design of a new binding pocket; (2) an intrinsic affinity for the small molecule of 

interest or a fragment thereof indicates the general ability of the protein to bind molecules 

of this structure; (3) as computational design is usually conducted in an iterative loop with 

experimental verification, an intrinsic affinity for the ligand of interest provides a baseline 

signal to improve upon. This avoids a situation where a protein that does not bind a certain 

small molecule is computationally re-engineered and still does not recognize the target 

protein. In such cases it is difficult to assess where the computational approach failed. 

Results of experiments allow for further improvement of computational design 

algorithms. The iterative nature of developing and improving computational algorithms 

requires systematic experiments to test their accuracy and reliability. For this purpose, the 

ability to predict native-like protein-ligand interactions needs to be systematically 

benchmarked. Since the mid-1990’s, successful application of x-ray crystallography and 

NMR structure information have greatly influenced the growth of computational 

programs38. Specifically to small molecule docking, the interaction is dependent on highly 

specific ligand and side chain positioning. As discussed above, computational algorithms 
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fail to achieve 100% accuracy in such predictions. To further improve computational 

algorithms, we suggest to test their ability to predict intrinsic affinity of a small molecule 

fragment to a protein and position these fragments accurately. This approach has several 

advantages: (1) accurate prediction of binding for a small molecule fragment is a stringent 

test of the computational algorithm, as only few interactions are needed to confer the low 

affinity, little room for error is left; (2) the low-medium affinity of the small molecule 

allows usage of HMQC-NMR experiments for detecting ligand binding, experiments that 

provide feedback on the location of the binding pocket at the level of amino acid resolution, 

give direct access to dissociation constants to determine binding affinity, and can be 

conducted in medium throughput so that many proteins/small molecule pairs can be 

tested.  

HisF provides a scaffold for design of small molecule binding pockets. (βα)8 barrels, 

also known as TIM-barrels, consist of 8 repeating (βα) units and are frequently observed 

among soluble enzymes in metabolic pathways42. It is estimated that 10% of enzymes have 

adopted this fold, despite sequence diversity and catalyzing a wide variety of reactions101. 

TIM-barrels comprise a superfold widely seen in the Protein Data Bank (PDB), often 

containing bound ligands4. The TIM-barrel chosen for this proposal, HisF, is advantageous 

because there are multiple structures determined by x-ray crystallography with high 

resolution, providing a good starting point for computational studies. HisF is native to a 

thermophile, therefore highly stable and tolerant to mutation, and has been previously 

used for design47,102. HisF from Thermotoga maritima (bacterial) has been crystallized with 

a resolution of 1.45 Å5, which serves as a good starting point for computational 

designs/analysis (Figure 7). Using a protein scaffold with a high quality resolution crystal 
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structure is important for follow-up computational studies. Using a protein scaffold with a 

residue resonance assigned 2D spectrum is advantageous because of the difficulty that 

comes with resonance assignment; the HisF literature 2D spectrum provides a crucial 

starting point for the experimental studies49. HisF’s native role as an enzyme catalyzes a 

ring closure (cyclase reaction) in the histidine biosynthesis pathway50. 

The HisF native binding pocket contains functional groups to bind aromatic and 

negatively charged moieties. HisF from yeast has been crystallized in complex with its 

native substrate, Prfar50 (Figure 7A). The prfar cyclase reaction of HisF is tightly coupled to 

an ammonia-producing glutaminase reaction of HisH50. The active site is deactivated by 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. HisF and its native substrate, Prfar. (A) HisF taken from yeast in complex with Prfar 
[Chaudhuri, B., et al. Biochemistry 2003, 42 (23), 7003-12.], which provides insight on the 
binding mode of HisF’s native substrate. Interacting residues G332, D245, A523, G475, G501, 
D474, S500, D404, S402, and T365 highlighted in magenta. (B) HisF taken from Thermotoga 
maritima [Lang, D., et al. Science 2000, 289 (5484), 1546-50.], the protein used to screen for 
naïve binders. Ribbon representation shows the repeating beta sheet/alpha helix units in the 
protein fold, with the beta sheets forming the core and the helices surrounding them. Residues 
corresponding to those in Panel A include: G82, D11, A223, G177, G203, D176, S201, D130, 
A128, and T104, highlighted in magenta. (C) Native substrate of HisF, Prfar.  
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pre-soaking with acivicin which inactivates the protein50. This offers insight into the 

binding motif of the native substrate and possibly about other fragments as well. The prfar 

active site sits at the top of the (βα)8 barrel, with prfar binding in a deep cleft stretching 

across the top of the barrel50. The phosphate groups of prfar bind to specific ends of the 

barrel, and each phosphate forms 4 hydrogen bonds with protein groups50. The prfar 

glycerol phosphate group interacts with Gly524, Ala523 (corresponds to 1THF Ala223), 

Gly475 (Gly177), and Gly501 (Gly203)50. The glycerol hydroxyl groups interact with Asp245 

(Asp11), Lys258, Asp474 (Asp176), and Ser500 (Ser200)50. Asp245 (Asp11) and Asp404 

(Asp130) shown to have essential roles in the cyclase reaction mechanism42,103. There is a 

cysteine (C9) in the HisF binding pocket, therefore a HisF cysteine-less variant protein will 

be created, expressed, and purified for screening. Replacing the cysteine with serine 

(C9S_HisF) gives confidence that small molecule binding is not due to covalent interactions 

with the cysteine. The interactions we want to see for binding are the non-covalent 

interactions, including hydrogen bonding, dipole dipole interactions, electrostatics, van der 

Waals, hydrophobic effects, and geometric/shape complementarity. 

Evolution and studies of the HisF small molecule binding pocket serve as examples 

of repurposing. Gene duplication, one of the major factors in evolution, allows for the 

adjustment and reuse of functional proteins102. Enzymes with the TIM-barrel fold comprise 

10% of all enzymes with a known structure, indicating how diverse functionality can be 

within the same protein fold101. Along the histidine synthesis pathway, the enzyme 

precursor to HisF is HisA (HisH), also a TIM-barrel, and both of these contain phosphate 

binding sites100. Another TIM-barrel protein often compared to HisF, 

phosphoribosylanthranilate isomerase (TrpF), catalyzes a chemically equivalent reaction 
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and also contains a phosphate binding site100. Via only one mutation, the TrpF reaction was 

able to be (weakly) established onto HisA (D127V), HisF (D130V), as well as a HisA/HisF 

(D127V) chimera by a mechanism different than the TrpF mechanism100. This indicates 

that a new functionality can indeed be introduced with a single mutation100. Studies 

probing the stability of fusing two halves of HisF have produced a stable sequence and 

structure symmetric protein, by directed evolution104 as well as computational methods47. 

One half of HisF, along with a flavodoxin-like protein, were fused together to yield a stable 

chimera which also bound a phosphorylated compound due to the HisF binding site 

remaining intact105. Examples of protein design led by evolution have been reviewed102. 

Results 

Hits identified in first round of screening were identified by screening a large subset 

of fragments. The literature residue assignments for the 2D 1H-15N NMR 15N-HisF 

spectrum49 were transferred in a stepwise fashion to our 15N-C9S_HisF spectrum. Of the 

assignments that could be confidentially transferred, 63 residues were determined to be 

 

Figure 8. HisF putative binding site determined. Via a series of NMR experiments and assignment 
transferal, 63 residues were identified as the putative binding site (magenta), as residues that may 
interact with naively binding ligands in the binding pocket. These residues are identified in magenta 
on ribbon representation (A) and surface representation (B). (C) HMQC-NMR spectrum of C9S_HisF, 
putative binding site residues labelled. 
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the putative binding site, based on residues that were within 8 Å of the center of the 

binding pocket (Figure 8). Residues pointed out specifically by the literature during other 

structure/catalysis studies were included in this set as well. The focus of this study is to 

identify ligands that bind in the binding pocket, therefore attention was focused to this 

putative binding site. The Vanderbilt fragment library was used to screen a subset of the 

fragment library in order to identify ligands with native binding affinity for the protein, 

C9S_HisF (Figure 9). Due to the volume of ligands to be screened, it was most fitting to 

perform NMR experiments within a 96 well plate setup10, 11. The 15N-heteronuclear 

multiple quantum correlation (15N-HMQC) NMR experiment allows for rapid detection of 

small conformational changes induced by ligand binding11. A change in the environment of 

the measured atoms causes the peaks to shift, an indication of ligand binding. Mapping 

peak shifts to the corresponding residues in the protein allows for detailed binding 

analysis. Of 3,456 compounds screened, identified 25 as hits. Of these 25, only 13 fit a true 

single binding event curve; 13 hits out of 3456 screened = 0.3% hit rate. The 12 excluded 

hits all exhibited evidence of binding, but data suggested a very weak or multiple binding 

event. These pseudo-hits are excluded for future analysis purposes, but are included for 

identifying matches (Figure 20 (SF3)). 

The identified hits were used to search for similar fragments. Used chemcart (a web 

based tool to query and retrieve chemical structures, reactions, data) to search for ligands 

similar to the 25 hits, to possibly identify more naïve binders without having to screen the 

entire library [http://www.deltasoftinc.com/products-overview.html]. For matching 

ligands, the search was filtered by atomic charge, bond type, and match primary fragment. 

Search was limited to ligands with 0 – 3 rotatable bonds because this is the range of the 
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original binders. 86 ‘matching ligands’ were screened, and of these 15 were determined to 

be hits; 15 hits out of 86 screened = 17% hit rate in selecting matches. This gives a total of 

28 hits with intrinsic binding affinity for C9S_HisF, the ‘naïve binders’.  

 

Figure 9. Schematic representation of the process of identifying the naïve binders 
from a 96-well plate setup using NMR experiments. (A) On a 96-well tube rack, each 
NMR tube contains 12 compounds at ~600 µM each, already prepared from the 
Vanderbilt Small Molecule Library facility. 100 µM 15N-C9S-HisF is added day of 
NMR screening. NMR data is analyzed, and wells displaying peaks shifts (dotted line) 
are then ordered from the facility with one compound per well. (B) Compounds are 
screened with only one compound per well, with 100 µM C9S-HisF. NMR data is 
analyzed, and wells displaying peak shifts (dotted line) move on to the next step. (C) 
Compounds are screened titration-style, with 40, 80, 160, 400, 800, and 1200 µM 
compound with 100 µM HisF. Binding curves and Kd are calculated, and 
these compounds are termed the ‘naïve binders’. See text for full details of 
the method. 
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Binding curves and dissociation constants were calculated for each ligand. Peak 

assignments were collected for each C9S-HisF-ligand complex with [ligand] at 0, 40, 80, 

160, 400, 800, and 1200 µM, imported these to Excel. The 1H and 15N resonances are 

combined into one term, and then measured from the [ligand] at 0 µM. Those residues 

whose combined shift at 1200 µM is one standard deviation higher than the average of all 

1200 µM combined shifts106 are identified as the ‘significantly shifting residues’ for that 

protein-ligand complex. Dissociation constants were determined by measuring the 

chemical shift changes as a function of ligand concentration, along with binding curves, 

created by GraphPad Prism [GraphPad Prism version 6.04 for Windows, GraphPad 

Software, La Jolla California USA, www.graphpad.com]. The significant shift residues within 

 

Figure 10. An example of the dataset collected for every naïve binder. (A) 2D image of compound 
VU0139210. (B) Overlay of HMQC-NMR spectra of compound at 0, 40, 80, 160, 400, 800, and 
1200 µM with 100 µM HisF reveals peaks that shift with increasing ligand concentration. Most 
significantly shifting peaks have been identified on zoomed in inserts. (C) The plotted binding 
curve of normalized chemical shift change (%) vs ligand concentration (µM) gives a Kd of 290 ± 
10 µM.  
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each set that did not follow the binding shifting pattern were quantitatively identified as 

‘outlier residues’ and excluded from Kd calculation. Figure 10 highlights a naïve binding 

 

Figure 11. Naïve binding ligands and binding data. VU compound number, 2D structure, pymol 
image of C9S_HisF highlighting significantly shifting residues (magenta) and significantly 
shifting residues not included in binding data (cyan), binding curve of normalized chemical 
shift change (%) vs ligand concentration (µM). 
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ligand, with its accompanying titration spectra and binding curve. 

Discussion 

The 28 naïve binders bind weakly, dissociation constants range between 338 – 1112 

µM (-19.80 - -16.85 kJ/mol) (Figure 11). They range in molecular weight between 174 – 

258 g/mol, and vary between 21 – 34 atoms. They contain 3 – 8 hydrogen bond 

donors+acceptors, and contain 1 – 3 aromatic rings. Flexibility ranges between 0 – 3 

rotatable bonds. LogP ranges between 1.66 – 5.06. Within the group of 28 ligands, 23 

contain a carboxylic acid group, 6 contain a sulfur, and 5 contain a halogen. 

As a group, the 28 naïve binding ligands contain similar moieties. Of the 28, all 

contain at least one aromatic ring, 23 contain a carboxylic acid group, 6 contain a sulfur, 

and 5 contain halogens. Many of the ligands are a carboxylic acid attached to a nitrogen 

ring group. This is not surprising, considering prfar’s phosphate group and nitrogen-

 

 

 

 

 

 

 

 

 

Figure 12: Analysis of significantly shifting residues for all naïve binders reveals a preferred 
binding spot. Of all 28 naïve binders including the outlier residues (A, B), residues that shift most 
frequently (red) shift 15 - 21 times, residues shift 3 - 10 times (orange), and residues that shift 
least frequently (yellow) 1 - 2 times. These numbers include the outlier residues (see text for 
explanation). Excluding the outlier residues (C, D), does not change the overall binding hotspot, 
but the loop drops from the red/orange category to the orange/yellow category, with the core of 
the barrel displaying the most peak shifts. 
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containing ring group. Crystal structures of HisF show phosphate or sulfate ions in complex 

with HisF where the prfar phosphate groups bind42,5. 

A C9S_HisF binding pocket hotspot appeared after analyzing the compiled data of 

the significantly shifting residues from the 28 naïve binders. Within the putative binding 

site, a preferred binding mode emerged (Figure 12). Among the 63 residues selected as the 

putative binding site, 36 never displayed any peak shifts, therefore believed to not interact 

with the binders. The majority of these residues are located on the beta sheet extension 

residues (residues 132 – 141), the tightly packed area within the beta barrel (residues 198 

– 200), or the tightly packed area within the beta barrel which then extends to the surface 

(residues 7 – 11). The remaining 27 interacting residues have been grouped by frequency 

as a significantly shifting residue: shift 15 – 21 times (Asp130, Ser144, Val127, Gly80, 

Ala128, Tyr143, S201, Leu170), 3 – 10 times (Phe49, Val100, Thr142, Asp85, Lys146, 

Val12, Asp51, Leu169, Gly145), or 1 – 2 times (Glu71, Phe77, Gly166, Thr171, Ile173, 

Asp174, Ile198, Ala106, Gly181, Gly202). Hot spot for interaction includes the catalytic 

residue Asp130 and many surrounding residues, as well as the nearby loop (residues 142 – 

144). Interestingly, catalytic residue Asp11 displayed no peak shifts. Although both Asp11 

and Asp130 facilitate catalysis, only Asp130 shows binding activity. Another highly 

interacting residue, Ala128, interacts with prfar50. The term ‘barrel’ in (βα)8 barrel may 

deceivingly convey that a ligand may bind to any of the beta barrel residues within this 

large open space. However, the HisF surface representation shows that the hot spot 

residues are indeed the ones that are most accessible (Figure 12B). Residues on the Asp11 

side are tightly packed and would not provide the shape complementarity/support for a 

sustainable interaction. Looking at prfar in complex with HisF, the hotspot residues are 
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also near to where prfar’s more cyclic end is bound. This provides insight to why many of 

the naïve binders are acids attached to rings, mimicking the prfar binding mode. Not all 

residues in the binding hot spot contributed to the binding interaction. Thr171, near 

hotspot residues L170 and D130, never displayed peak shifts. 

Some residues that shift may not contribute to the binding interaction. Of the 

shifting residues during the titration, some of these exhibit significant shifts yet were 

quantitatively identified as outliers. These ‘outlier’ residues were excluded from Kd 

calculations but still included on the figures. These outliers occurred at most 10 times 

(Gly80 and Tyr143), 3 – 5 times (6 residues), once or twice (15 residues), or not at all (40 

residues, including the 36 that did not shift at all). Many of the reoccurring outliers appear 

in the binding hotspot. Tyr143 is located on the highly flexible loop and points out into 

solvent, away from the binding pocket. Gly80 sits at the top of the barrel and near/above 

the cyclic-end phosphate binding region of prfar, therefore possibly easily perturbed by 

solvent and/or binding events. Outlier residues that occur 3 – 5 times (Val12, Leu169, 

Ser201, Val127, Ser144, Leu170) are all located in the hot spot binding site, with the 

exception of V12 located at the top of the barrel. Excluding the outliers does not change the 

hot-spot binding landscape. Val127, Ala128, Asp130, Leu170, and Ser201 remain as the 

highly shifting residues even with the outliers excluded. These beta sheet residues all 

reside in the HisF binding region and are all near the catalytic residue Asp130, as described 

above. Excluding the outliers, the loop (residues Thr142, Tyr143, Ser144, Gly145, Lys146) 

seems less involved in binding, but moreso a mode for structural stability/ geometric 

complementarity for the ligand interacting with the hot-spot residues. 
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Similar naïve binders induce similar significant shifts. Many of the naïve binders can 

be grouped by functional groups and similar moieties. Analysis of Kd and significant 

shifters within these groups provides insight. VU0220254 (490 ± 12 µM) and VU0125402 

(919 ± 32 µM) are both a 3-ring system containing a sulfate group; the two molecules are 

identical with the exception that VU0220254 has a methyl group extending from one of the 

rings. These 2 binders perturb the same significant shifters in only the loop region, an 

indication of weaker binders. But VU0220254 also perturbs Val127 within the binding 

pocket, therefore not surprising that VU0220254 has a tighter interaction; perhaps the 

extended bulkiness of the methyl group allows for added shape/structural 

complementarity. VU0406256 (493 ± 9 µM) and VU0432858 (1112 ± 45 µM) are both acids 

connected to a 2 ring system containing nitrogen; the molecules are identical except 

VU0406256 contains a sulfur and VU0432858 contains an oxygen. The 2 ligands both 

perturb the same residues in the hotspot binding region, and in the lesser binding region 

(Asp51, Gly80, Asp130, Leu170). Both also perturb Tyr143 (loop residue) but it is an 

outlier for VU0406256. These similar peak shifts, especially for ligands that contain prfar-

like moieties, may indicate similar Kd. However, VU0406256 also perturbs Ala128 and 

Leu169, two residues deeper in the binding pocket. These additional interactions allow for 

tighter binding, and VU0406256 is indeed the tighter binder. The sulfur perhaps makes 

contacts that the oxygen cannot, due to larger size and larger electron cloud density. 

VU0050234 (357 ± 8 µM), VU0139210 (466 ± 9 µM), and VU0417470 (780 ± 26 µM) are all 

acids connected to a 3-ring system containing nitrogen and/or oxygen. Unlike other cases 

of similar ligands, VU0050234 perturbs less significant shifters than the other two, yet is 

the tightest binder. The interacting residues, Val127, Ala128, and Ser144 allow for a tight 
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interaction structurally supported by the loop. VU0139210, in a close second, perturbs 

many of the hopspot residues, therefore not surprising that is it on the tighter end of the 

spectrum within this set of binders. VU0417470, the bulkiest of these 3 due to an extended 

group containing oxygen and methyl, interacts with many of the same residues as the other 

two, yet is a mid range binder, perhaps due to the added bulkiness (which does deviate 

from the prfar likeness). VU0151854 (338 ± 8 µM), VU0068924 (442 ± 10 µM), and 

VU0348342 (649 ± 19 µM), are all acids attached to a nitrogen-containing 2-ring system 

which is then attached to another ring. VU0151854 and VU0068924 are identical except 

that VU0068924 has an additional nitrogen; VU0348342 was included due to the same core 

group. VU0151854 and VU0068924 both perturb the same hotspot residues (Val127, 

Asp130, Gly145) as well as Val12; Ser144 and Leu170 were perturbed but outlier residues. 

VU0151854 additionally interacts with Ser201 and Gly202 at the bottom of the hotspot 

region, contributing to the slightly tighter interaction. VU0348342, although a similar 

molecule, interacted with different residues spanning all around the putative binding site, 

therefore a mid-range binder. VU0043592 (677 ± 11 µM), VU0411521 (747 ± 13 µM), and 

VU0130956 (791 ± 38 µM) are all acids attached to a hexene ring, then attached to a 2-ring 

system. The three molecules are identical with varying placements of nitrogen and sulfur. 

The binding range of all 3 molecules is very similar, considering that two molecules contain 

a sulfur and one does not (unlike examples noted above, where the inclusion/exclusion of 

sulfur influenced the binding). The sulfur-containing molecules (VU0043592 and 

VU0411521) do however perturb most of the same residues (Gly80, Asp130, Thr142) and 

the loop residues which were outliers, whereas VU0130956 perturbs Ser144 and Val127, a 

different binding mode all together. The sulfur containing molecules highly perturb the 
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loop region, but this may not decrease/increase the binding activity, which is why all three 

molecules have close a close Kd range. VU0410940 (798 ± 14 µM), VU0036194 (814 ± 32 

µM), VU0034387 (986 ± 48 µM), and VU0412981 (920 ± 30 µM) are the halogen-containing 

molecules; they are all an acid attached to a nitrogen/oxygen 5-member ring that is then 

attached to a 6-member ring, with either chlorine or fluorine attached to the 6-member 

ring. The molecules all perturb Val127, Leu170, and Ser201 (and Ala128 including an 

outlier), all residues within the hotspot binding pocket. This set of four molecules all 

similarly bind in the ~800 – 900 µM range, yet none of these bind as tightly as other 

molecules noted above, that interacted with the same set of residues. The halogens possibly 

interact in a way that prohibits tighter binding. The last group of similar ligands, 

VU0151829 (919 ± 30 µM), VU0411490 (659 ± 17 µM), VU0412315 (882 ± 27 µM), 

VU0410879 (897 ± 31 µM), VU0151819 (805 ± 26 µM), VU0412310 (856 ± 30 µM), 

VU0042480 (1022 ± 34 µM), are all acids attached to a 2,3-nitrogen-containing ring 

attached to another ring system. Being similar to the prfar structure, an acid attached to a 

nitrogen-containing ring, it is not surprising that this is the largest group. Within this 

group, it is interesting to note the role that methyl groups play in binding. For example, 

VU0151819 (805 ± 26 µM) has only a benzene ring. Adding one methyl group to the 

benzene weakens binding to 1022 ± 34 µM, but adding two methyl groups tightens binding 

to 659 ± 17 µM. However, adding the methyl group to the nitrogen ring seems to not impact 

binding, binding remains in the similar range 856 ± 30 µM. 

In addition to comparing the ligand binding positions among similar fragments, we 

also want to assess how well these experimental results could be reproduced 
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computationally. Computational methods in protein-ligand design seek to find the lowest 

energy model of a protein-ligand complex. Ideally, this model emulates native-like 

positions and properties of protein-ligand complexes found in nature. Rosetta, a protein 

modeling software suite for protein structure prediction and design9, seeks to find the 

lowest energy conformation of a model, which would ideally be a native-like conformation. 

Some of these successes include creating novel enzymes31,77,30, altering the specificity of 

protein-peptide32, protein-DNA25, and protein-protein interfaces34, and designing proteins 

that bind a selected surface of a virus24. RosettaLigand is an application within Rosetta, 

developed to dock small molecules into a protein with full protein and ligand flexibility6,7. 

Using the 3D coordinates of the protein and ligand as input files, the RosettaLigand 

protocol involves optimized placement of the ligand, optimized positioning of the 

 

 

 

 

 

 

 

 

 

 

Figure 13: Flowchart of RosettaLigand small molecule docking. From 
the input coordinates, the small molecule is allowed to rotate and 
translate (transform mover) to an optimal placement. Side chain 
rotamer sampling allows for optimal side chain positioning. A final 
gradient-based minimization of the protein is performed to resolve 
any clashes, and the final model and accompanying scores are output. 
See text for detailed description. 



 62 

surrounding residue side chains, and a minimization to resolve clashes7. In this study, we 

ask RosettaLigand to recapture the correct ligand binding position by identifying the 

residues that contribute to the protein ligand interaction. The small molecules were docked 

into C9S-HisF using RosettaLigand as described previously41,107 (Figure 13). In addition to 

generating the protein-ligand interface score83, scores are calculated for each residue 

within a radius of the ligand molecule (6 Å for sidechain atoms, 7 Å for backbone atoms). 

This ddg calculation measures the strength of contribution of each side chain in its 

predicted interaction with the ligand. Through the subsequent rounds of models created, 

the final top 10 by interface score were selected for analysis. In computational studies, 

analysis is usually done by a percentage or number of the top models, rather than only the 

one top model. Of the top 10 models selected, the ddg interactions of all these were pooled 

together, then filtered by the top 200 interacting residues. These computationally 

determined interacting residues were then compared to the experimentally determined 

significant shift residues (excluding the outliers). The number of significant shift residues 

contained in the list of ddg interacting residues, divided by the total number of 

experimental significant shifts, gives the RosettaLigand percent recovery. This ddg 

calculation analysis serves as a useful tool in determining whether or not the 

computational program recognizes when a residue interacts with a ligand. 

Of the 28 naïve binding ligands, Rosetta achieved an average significant shift 

recovery of 53%, ranging from 0% - 100%. Rosetta achieved a 100% recovery for 2 of the 

complexes, VU0410879 and VU0411521 (Figure 14A, B). VU0410879 (Kd 897 µM) and 

VU0411521 (Kd 747 µM) both contain an acid group, nitrogen in their rings, and 6 H-bond 

donors + acceptors. In contrast, Rosetta recovered 0% of the significant shifts for one of the 
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complexes, VU0034387 (Figure 14C). VU0034387 (Kd 986 µM) contains an acid group, a 

halogen, no nitrogen, and only 4 H-bond donors + acceptors. More examples in each 

category would be needed to elucidate a trend. 

Trends in recovery indicate the reliability and accuracy of computational methods. 

Comparing the RosettaLigand significant shift recovery against a number of metrics reveal 

a trend (Figure 15). Comparing significant shift recovery vs ligand hydrogen bond donors + 

acceptors, recovery improved with more hydrogen donors + acceptors. Ligands with less 

than 4 H-bond donors + acceptors achieved less than 40% recovery, while ligands with 

more than 7 donors + acceptors achieved more than 60% recovery. This implies that 

RosettaLigand has a better chance at recognizing a residue interacting with a ligand when 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Highlighted examples of Rosetta significant shift recovery. Rosetta computationally 
identifies all of the experimentally determined interacting residues for two naïve binders, 
VU0410879 (A) and VU0411521 (B), seen in blue. Rosetta does not recognize any of the 
experimentally determined interacting residues, VU0034387 (C), seen in red. 
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it is a strong interaction, such as a hydrogen bond. We do expect that there is a cap to this 

number, where ligands with many H bond donors and acceptors (10+) may see a decrease 

in recovery, due to a very complex hydrogen bonding network40. Another trend was seen in 

comparing recovery to ligand topological surface area (TPSA), which is a measure of how 

much of the surface area of a molecule is taken up by polar atoms and their attached 

hydrogens, with a lower TPSA indicating less polar molecules, and a larger TPSA indicating 

more polar molecules. Ligands with a higher TPSA had a higher chance of high recoveries, 

indicating the program recognizes interactions when the ligand contains more polar atoms. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Significant shift recovery by Rosetta. (A) Recovery improved with more hydrogen 
donors + acceptors. (B) Ligands with a higher TPSA had a higher chance of recoveries, 
indicating the program recognizes interactions when the ligand contains more polar atoms. 
(C) Ligands with a very low logP (1.5 – 2.5) had a 60%+ recovery, where ligands with a very 
high logP (4.5 – 5.5) had lower than 30% recovery. Ligands in the middle range showed no 
trend. This implies that in extreme cases of lipophilicity, Rosetta may have an easier or more 
difficult time identifying protein-ligand interactions. (D) Number of ligand atoms showed no 
significant trend, however of the 11 ligands with 23 – 26 atoms, all but one produced a 60%+ 
higher recovery. 
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This is consistent with more hydrogen bond donors + acceptors have higher recovery. 

Another slight trend was seen with ligand logP, which is a measure of lipophilicity 

comparing the concentration of ligand in octanol vs water, with a low logP indicating less 

lipophilic (more polar; less likely to dissolve in a fatty substance like octanol) and a higher 

logP indicating more lipophilic (less polar, more fatty). Ligands with a very low logP (1.5 – 

2.5) had a 60%+ recovery, where ligands with a very high logP (4.5 – 5.5) had lower than 

30% recovery. Ligands in the middle range (logP 2.5 – 4.5) showed no trend. This implies 

that in extreme cases of lipophilicity, RosettaLigand may have an easier or more difficult 

time identifying protein-ligand interactions. These three trends are all consistent with one 

another. The number of ligand atoms showed no significant trend, however of the 11 

ligands with 23 – 26 atoms, all but one produced a 60%+ recovery. Identifying where 

computational methods do recognize native-like trends shows reliability and accuracy of 

the scoring function of these programs. 

Comparing the RosettaLigand significant shift recovery against a number of metrics 

showed no trend. These include: Kd, ligand weight, ligand flexibility (number of rotatable 

bonds), ligand aromaticity, and RosettaLigand interface score. It was surprising that 

significant shift recovery vs RosettaLigand interface score didn’t show a trend, we did 

expect to see that complexes with a lower interface energy would give a better chance at 

recovering the significant shift residues. One may have also expected to see a correlation 

between the Kd and recovery, where RosettaLigand would have recovered more significant 

shift residues for the more tightly binding ligands. Identifying where computational 

methods do not recognize trends where there should be a trend shows how these 

programs can be improved. 
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Another point of interest was to assess whether similar ligands captured the same 

recovery by Rosetta, since these ligands probed similar significant shift residues. 

VU034842, VU0151854, and VU068924, which all contain an acid attached to a 2-ring 

nitrogen (containing) system, received 33 – 50% recovery from Rosetta. VU0050234, 

VU0417470, and VU0139210, which all contain an acid group attached to a 3-ring nitrogen 

(containing) system, received 60 – 67% recovery from Rosetta. VU0410940, VU0036194, 

VU0034387, VU0412981, which all contain an acid attached to groups of halogen, oxygen, 

and nitrogen-containing rings, received 0 – 50% recovery from Rosetta. VU0220254 and 

VU0125402, both a 3-ring system containing a sulfate group, received 20% and 25% 

recovery from Rosetta, respectively. Overall the highest recoveries were seen for ligands 

that are acids attached to a nitrogen-containing ring (although not always the case). 

We also chose to assess how well Rosetta recovered the residues that are a part of 

the ‘binding hotspot’, on a residue-by-residue basis. Within the mid to highest range of 

residues that exhibit peak shifts (orange and red regions on Figure 12), Rosetta 

performance in recovering these varied but was overall successful. In order of increasing 

times as a significant shift, the Rosetta recovered: Leu169 80%; Asp51 100%; Gly80 100%; 

Tyr143 100%; Gly145 44%; Ser144 92%; Val127 0%; Asp130 100%; Ala128 100%; 

Leu170 0%; Ser201 19% (Table 8 (ST6)). Analysis about Asp130 and Leu170 never being 

recovered is included in the supplemental information. Computational programs gain 

reliability by consistently reproducing experimentally determined data. To see the majority 

of this set perform above 90% recovery shows where the program does indeed capture 

native-like interactions. 
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There are a number of residues that Rosetta often identified as interacting with the 

ligand, but are not on the significant shifts list. Residues that Rosetta often identifies as 

contributing to the protein-ligand interaction include 82 – 84 and 103 – 105, which are not 

surprising because these residues lie in a glycine loop region near the binding pocket and a 

loop region near the binding hotspot loop, respectively. One residue of interest is Ser101, 

which never experimentally occurred as a significantly shifting residue, yet Rosetta often 

identified as contributing to the interaction. 

Conclusion 

Studying evolutionary pathways of binding and similar protein binding pockets 

provides insight on the nature of protein-small molecule recognition, as well as the types of 

ligands that may interact with a protein. The ability to accurately predict ligand docking 

and even design in binding interactions would be a great asset. Of ~3500 fragments 

screened, 28 displayed intrinsic binding affinity for C9S_HisF, Kd ranging between 338 – 

1112 µM. Within the group of 28 ligands, they contain 3 – 8 hydrogen bond 

donors+acceptors, and 23 contain a carboxylic acid group. Many ligands contained similar 

moieties, and could be grouped into one of seven groups by similarity. NMR experiments 

provide atomic-detail insight into protein-ligand interactions by tracking the chemical shift 

peaks, allowing for analysis of the preferring binding mode. Val127, Ala128, Asp130, 

Leu170, and Ser201 are the most frequently interacting residues. This was not surprising, 

because these residues are near where the ribose moiety of prfar interacts with HisF in its 

wild type state50. This ribose moiety is also connected to an acid group as well as an 

imidazole ring, which explains why many of the binding fragments contain an acid and a 

nitrogen-containing ring. Just as HisF and similar proteins catalyze similar substrates48, 
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ligands with intrinsic binding affinity for HisF are similar as well. The experimental results 

compared to a computational benchmark revealed that RosettaLigand achieved an average 

significant shift recovery of 53%, ranging from 0% - 100%. RosettaLigand better recovered 

the residues necessary for interaction when binding is driven by strong interactions, such 

as hydrogen bonds. Ligands with a higher TPSA had a higher chance of high recoveries, 

indicating the program recognizes interactions when the ligand contains more polar atoms. 

Computational benchmarks, such as this one, provide necessary insight to improve the 

algorithms. The computational algorithm methods could be enhanced by the ability to 

recognize binding even when the interactions are weak. They could also be enhanced by a 

metric to gauge when backbone atoms interact with a ligand, rather than side chain atoms 

only.  

Methods 

Assignment transferal from literature spectrum and identification of putative binding 

site. The literature assigned 2D 1H-15N NMR 15N-HisF spectrum was performed with buffer 

of 10 mM MES pH 6.8, 50 mM KCl, 1 mM EDTA, 5% 2H2O, on a 600 MHz spectrometer 

TROSEY experiment at 30° C, and 96.8% of the backbone resonances (239 residues) had 

been assigned49. Due to screening setup 96-well plate style and the nature of the 

experiment, the final experiment conditions needed for these studies were a SoFast 

HMQC108 of 15N-C9S_HisF at 25° C. The following experiments were performed and 

assignments were transferred from the original literature conditions through a step-wise 

fashion: 15N-HisF TROSEY at 30° C  15N-C9S_HisF TROSEY at 30° C  15N-C9S_HisF 

SoFastHMQC at 30° C  15N-C9S_HisF SoFastHMQC at 25° C. All other conditions (buffer, 

pH, NMR 600 MHz spectrometer) remained constant. Assignments were transferred step 
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by step, only carrying over assignments that could be transferred with confidence. 

Reasonably so, many assignments in the binding pocket, could not be transferred in the 

HisF to C9S_HisF step. Of the 239 original assignments, 150 of these were confidently 

transferred. Of these 150, a set of 63 residues were determined to be the putative binding 

site, based on residues that were within 8 Å of the center of the binding pocket. Residues 

pointed out specifically by the literature during other structure/catalysis studies were 

included in this set as well, (Ile42, Glu71, Lys99, Glu167, Thr178)109,42. The focus of this 

study is to identify ligands that bind in the binding pocket, therefore we focused our 

attention to this specific set of residues. 

Screening process. The strategy was to use the Vanderbilt fragment library to screen 

(using NMR experiments on a 96 well plate11) a subset of the fragment library in order to 

identify ligands with native binding affinity for the protein, C9S_HisF. Screening takes place 

using a 600 MHz magnet, at 298 K. NMR processing is done using Topsin for crude analysis 

and Sparky for in-depth analysis. Excel is used for data processing. GraphPad Prism is used 

to create binding curves and calculate dissociation constants. The detailed methods follow. 

Express and purify large amounts of protein, 15N-C9S_HisF (to screen one plate requires 

~250 mg of protein). Store at -30° C, let thaw at 4° C a few days before screen; spin down 

(3700 rpm, 4° C, ~15 min) to remove precipitate before measuring A280 for concentration. 

Three plates were screened from the fragment library, termed ‘representative plates’ 

because they are a random representation of the fragment library, containing many 

different ligand scaffolds, containing 12 compounds per well = 1,152 compounds per plate. 

3 plates = 3,456 ligands screened total. Well setup: ligands are 2 µL of 200 mM each (so, 24 

µL total) = ~17 mM each ligand in 24 µL total. Previous screening benchmarks have shown 
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that 100 µM C9S-HisF in a 600 µL NMR sample provide good quality spectra. Based on the 

conditions of the assigned 2D NMR HisF spectrum49, each sample should be 100 µM 

protein, 10% D2O, 4% DMSO, filled to 600 µL with MES (NMR) buffer (MES buffer: 10 mM 

MES, 50 mM KCl, 1 mM EDTA, ph 6.8, stored at room temperature). Add protein/buffer 

solution to the 96 well tray of ligands, then transfer these to the corresponding NMR tubes 

in the rack. The final concentrations are ~600 µM ligand with ~100 µM protein. The NMR 

rack is ready to be screened; each SoFast NMR experiment takes ~35 minutes x 96 

experiments = 56 hours = 2.5 days. NMR spectra are processed and analyzed one by one in 

Topspin software [Version 3.2, Bruker] and Sparky [Goddard and Kneller, SPARKY 3, 

UCSF], to identify spectra displaying peak shifts compared to the reference C9S_HisF 

spectrum. Of the 3 representative plates screened, 32 spectra were selected to move on for 

further screening in sets of 4 (2 µL @ 200 mM of each ligand + 12 µL d6-DMSO, for a total of 

20 µL @ 20 mM). Of this set, 23 spectra were selected to move on for further screening one-

by-one (2 µL @ 200 mM of ligand + 18 µL d6-DMSO, for a total of 20 µL @ 20 mM). Of these 

92 ligands screened and spectra analyzed, 25 spectra displayed significant peak shifts, 

therefore these corresponding ligands were identified as hits. Once identified as hits, these 

ligands went through a final titration step, to observe how the peaks shift with ligand 

concentration. The ligands are ordered as 8 µL @ 200 mM of ligand + 32 µL d6-DMSO, for a 

total of 40 uL @ 40 mM, then distributed to the 96 well rack to give varying ligand 

concentrations. Six different [ligand] per well: 40, 80, 160, 400, 800, and 1200 µM, with 100 

µM C9S_HisF. SoFast HMQC NMR experiments run, and all spectra analyzed in Sparky. Peak 

assignments transferred to the reference spectra ([ligand] = 0 µM), then step by step 



 71 

transferred to the spectra corresponding to 40, 80, 160, 400, 800, and 1200 µM ligand. This 

process is repeated for each of the ligands. 

Processing raw NMR titration data. Each protein-ligand complex has a set of peak 

assignments, for [ligand] at 0, 40, 80, 160, 400, 800, and 1200 µM, import these to Excel. All 

residue assignments have an assignment in the 1H and the 15N dimension, which are 

combined into one term and then the change being compared to the original position of 

that peak at [ligand] 0 µM. The ‘combined shift’ seen in the 1H and 15N is combined into one 

term by the equation: 

(((NewHydrogenAssign-StandardHydrogenAssign)^2)+(((NewNitrogenAssign-

StandardNitrogenAssign)/6.5)^2))^(1/2) (Assign = assignment; Standard = assignment 

at [ligand] 0 µM)110,111. 

𝜕𝑐𝑠𝑑 =  √(𝐻𝑥 −  𝐻0)2 + ((𝑁𝑥 − 𝑁0) 6.5⁄ )2 

Complete ‘combined shift’ for [ligand] at 40, 80, 160, 400, 800, and 1200 µM. 

Calculate average of all combined shifts at [ligand] 1200 µM, then calculate standard 

deviation. Identify residues where the combined shift change at 1200 µM is at least one 

standard deviation higher than average at 1200 µM106, these are the ‘significant shifter’ 

residues. Normalize these shifts to each other, so the combined shift change remains 

comparable from residue to residue. The normalization equation adds the combined shifts 

at 40, 80, 160, 400, 800, and 1200 µM together, then divides the individual combined shift 

by that total sum; the result is a decimal representing how much each [ligand] contributes 

to the total shift within 1.00. Some data points within the significant shifters do not follow 

the same pattern as the others. These were quantitatively identified as ‘outliers’ and 

excluded from Kd calculation. Identify data points (ligand concentration points) within a 
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residue set that are more than one standard deviation above or below the average 

normalized shifts within that [ligand]. Calculate the average and standard deviation for 

each [ligand]. Establish an upper (avg + stdev) and lower (avg – stdev) limit for each 

[ligand]. Use the “if then” function in excel to find the outliers. Based on observations in the 

data, excluded [ligand]s 40 µM and 80 µM due to possible human error in pipetting. The 

criteria to be an outlier in this case: two data points outside of the standard deviation of the 

average at that [ligand]. These residues were determined to be ‘outliers’ and therefore 

excluded from Kd calculations (but still included in images highlighting the significant 

shifters). Copy data over to Graphpad Prism to create binding curve and calculate Kd based 

on a non-linear regression curve equation112. GraphPad Prism is a comprehensive curve 

fitting software used to analyze and graph scientific data [GraphPad Prism version 6.04 for 

Windows, GraphPad Software, La Jolla California USA, www.graphpad.com]. 

Computational software: Rosetta and RosettaLigand. Rosetta is a protein modeling 

software suite for protein structure prediction and design9. Rosetta seeks to find the lowest 

energy conformation of a model by combining discrete side chain conformation (rotamer) 

optimization with Monte Carlo minimization9. This consists of sampling random 

perturbations of the backbone torsion angles, rigid body degrees of freedom, and rotamer 

conformations, followed by an all-over local minimization to resolve clashes9. The energy 

function that Rosetta uses to discriminate between native-like and non-native-like atom 

arrangements includes a van der Waals-like attractive and repulsive potential, solvation 

term, hydrogen bonding potential, electrostatics potential, rotamer probability, and protein 

backbone angle probabilities6. 
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RosettaLigand, an application within Rosetta, docks small molecules into a protein 

with full protein and ligand flexibility6,7. Using the 3D coordinates of the protein and ligand 

as input files, the RosettaLigand protocol involves optimized placement of the ligand, 

optimized positioning of the surrounding residue side chains, and a minimization to 

resolve clashes. Protein sequence optimization can be included in the protocol if needed40. 

RosettaLigand allows for protein backbone flexibility, side chain rotamer searching, and 

full ligand flexibility, all of which are necessary for accurately modeling the interface6,7. For 

each model, RosettaLigand calculates an ‘interface energy’ as the total score of the protein-

ligand complex minus the total score of the apo-protein83. Rosetta can also calculate the 

ddg, a prediction of how much every residue contributes to the protein-ligand interaction. 

Published literature describes the RosettaLigand method, protocol options, and tips for 

model analysis41. 

Computational screening process. The small molecules were docked into a model of 

C9S_HisF using RosettaLigand as described previously41,107. Mol files of the ligands were 

used to generate ligand conformers using confab. The mol files were then converted into 

Rosetta-readable params and pdb file. Since the binding site was unknown, ligands were 

placed in the center of the large convex face of C9S_HisF using the StartFrom mover in 

RosettaScripts113. The entire width of this pocket (10 Å) was used as the potential binding 

region and defined the box size (radius) as 6 Å such that the scoring grid would cover a 

space just larger than the potential binding pocket. In the first round of docking, the ligand 

was allowed freedoms of 1 Å step sizes and full 360o rotation in the Transform mover72. 

5000 models were generated in the first round of docking. The models were sorted by 

overall Rosetta energy and then the top 10% were sorted by interface energy. The top 50 
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models by interface energy were used as input in the second round of docking. In the 

second round of docking, ligand movement was reduced to 0.2 Å step sizes and 45o rotation 

in the Transform mover. Again 5000 models were generated (100 from each parent 

model), and the same sorting scheme was used to identify the top 50 models. To ensure 

model diversity, no more than 4 models from a single parent model (or less than 10% of 

the 50 models) were allowed in the final set of 50 models. These 50 models were then used 

in a last round of docking in which the ligand freedom was reduced further to 0.04 Å step 

sizes and 5o rotation in the Transform mover. 5000 models were generated. After the top 

10% by Rosetta energy score and sorting by interface score, the top 10 models were 

selected for analysis. In every stage of docking the InterfaceScoreCalculator83 was used to 

determine the interface score of the ligand-protein complex. This is calculated by scoring 

the model of the complex and then moving the ligand 1000 Å away from the protein and 

rescoring. In addition to generating the total interface score, interface scores are calculated 

for each residue within a radius of the ligand molecule (6 Å for sidechain atoms, 7 Å for 

backbone atoms). This measures the strength of contribution of each side chain in its 

predicted interaction with the ligand. Through the subsequent rounds of models created, 

the final top 10 by interface score were selected for analysis. 

Computationally determined ‘interacting residues’ and percent recovery by 

RosettaLigand. Of the top 10 models selected, the ddg interactions of all these were pooled 

together, then filtered by the top 200 interacting residues. This gives about 20 interacting 

residues per protein-ligand complex model. The interactions range from strongest ~-2 

Rosetta energy units (REU) to weakest -0.1 REU (used -0.1 as a cutoff because anything 

smaller than that was deemed too weak of an interaction to count). These computationally 
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determined interacting residues were then compared to the experimentally determined 

significant shift residues (excluding the outliers). The number of significant shift residues 

contained in the list of interacting residues, divided by the total number of significant 

shifts, gives the percent recovered by RosettaLigand. 
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Summary 

Proteins that bind small molecules (ligands) can be used as biosensors, signal 

modulators, and sequestering agents. When naturally occurring proteins for a particular 

target ligand are not available, artificial proteins can be computationally designed. We 

present a protocol based off of RosettaLigand to redesign an existing protein pocket to bind 

a target ligand. Starting with a protein structure and the structure of the ligand, Rosetta can 

optimize both the placement of the ligand in the pocket and the identity and conformation 

of the surrounding sidechains, yielding proteins that bind the target compound. 

Introduction 

Proteins which bind to small molecules (i.e. ligands) are involved in many biological 

processes such as enzyme catalysis, receptor signaling, and metabolite transport. Designing 

these interactions can produce reagents which can serve as biosensors, in vivo diagnostics, 

signal modulators, molecular delivery devices, and sequestering agents1,54,75,3,114. 
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Additionally, the computational design of proteins which bind small molecules serves as a 

critical test of our understanding of the principles that drive protein/ligand interactions. 

While in vitro techniques for the optimization of protein/ligand interactions have shown 

success115, these are limited in the number of sequence variants which can be screened, 

and often require at least a modest starting affinity which to further optimize59. 

Computational techniques allow searching larger regions of sequence space and permit 

design in protein scaffolds with no detectable intrinsic affinity for the target ligand. 

Computational and in vitro techniques are often complementary and starting activity 

achieved via computational design can often be improved via in vitro techniques37. 

Although challenges remain, computational design of small molecule interactions have 

yielded success on a number of occasions35,114 and further attempts will refine our 

predictive ability to generate novel ligand binders. 

The Rosetta macromolecular modeling software suite9,116 has proven to be a robust 

platform for protein design, having produced novel protein folds8,117, protein/DNA 

interactions25, protein/peptide interactions118, protein/protein interactions24, and novel 

enzymes31,77,30. Technologies for designing protein/ligand interactions have also been 

developed and applied3,40,37. Design of ligand binding proteins using Rosetta approaches 

the problem in one of two way. One method derives from enzyme design, where predefined 

key interactions to the ligand are emplaced onto a protein scaffold and the surrounding 

context is subsequently optimized around them37. The other derives from ligand docking, 

in which the interactions with a movable ligand is optimized comprehensively40,3. Both 

approaches have proven successful in protein redesign, and features from both can be 
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combined using the RosettaScripts system113, tailoring the design protocol to particular 

design needs. 

Here we present a protocol derived from RosettaLigand ligand docking6,7,41, which 

designs a protein binding site around a given small molecule ligand (Figure 16). After 

preparing the protein and ligand structures, the placement of the ligand in the binding 

pocket is optimized, followed by optimization of sidechain identity and conformation. This 

process is repeated iteratively, and the proposed designs are sorted and filtered by a 

number of relevant structural metrics, such as predicted affinity and hydrogen bonding. 

This design process should be considered as part of integrated program of computational 

and experimental work, where proteins designed computationally are tested 

experimentally and the experimental results are used to inform subsequent rounds of 

computational design. 

Materials 

(1) A computer running a Unix-like operating system such as Linux or MacOS. Use of a 

multi-processor computational cluster is recommended for productions runs, although test 

runs and small production runs can be performed on conventional laptop and desktop 

systems. 

(2) Rosetta: The Rosetta modeling package can be obtained from the RosettaCommons 

website (https://www.rosettacommons.org/software/license-and-download). Rosetta 

licenses are available free to academic users. Rosetta is provided as source code and must 

be compiled before use. See the Rosetta Documentation 

(https://www.rosettacommons.org/docs/latest/) for instructions on how to compile 
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Rosetta. The protocol in this paper has been tested with Rosetta weekly release version 

2015.12.57698.  

(3) A program to manipulate small molecules: OpenBabel119 is a free software package 

which allows manipulation of many small molecule file formats. See http://openbabel.org/ 

for download an installation information. The protocol in this paper has been tested with 

OpenBabel version 2.3.1. Other small molecule manipulation programs can also be used. 

 

Figure 16. Flowchart of ligand design protocol. This protocol based on 
RosettaLigand includes interface design (dotted line box). From the input 
coordinates, the ligand is allowed to rotate and translate before sequence 
optimization of nearby residues. After several cycles of small molecule 
perturbation, side chain rotamer sampling, Monte Carlo (MC) 
minimization, and a final gradient-based minimization of the protein to 
resolve any clashes, the final model is output. Most variables in this 
protocol are user-defined, and the user will determine which variables 
best fit the protein-ligand complex in the study. 
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(4) A ligand conformer generation program: We recommend the BCL120 which is freely 

available from http://meilerlab.org/index.php/bclcommons for academic use but does 

require an additional license to the Cambridge Structural Database121 for conformer 

generation. The protocol in this paper has been tested with BCL version 3.2. Other 

conformer generation programs such as Omega122, MOE123, or RDKit124 can also be used. 

(5) The structure of the target small molecule in a standard format such as SDF or SMILES 

(see Note 3). 

(6) The structure of the protein to be redesigned, in PDB format (see Note 1&2). 

Methods 

Throughout the protocol $(ROSETTA) represents the directory in which Rosetta has been 

installed. File contents and commands to be run in the terminal are in italics. The use of a 

bash shell is assumed – users of other shells may need to modify the syntax of command 

lines. 

(1) Pre-relax the protein structure into the Rosetta scoring function125. Structure from non-

Rosetta sources or structures from other Rosetta protocols can have minor structural 

variations resulting in energetic penalties which adversely affect the design process (see 

Note 4&5).  

$(ROSETTA)/main/source/bin/relax.linuxgccrelease -ignore_unrecognized_res -

ignore_zero_occupancy_false -use_input_sc -flip_HNQ -no_optH false -

relax:constrain_relax_to_start_coords -relax:coord_constrain_sidechains -relax:ramp_constraints false 

-s PDB.pdb 

For convenience, rename the output structure. 

mv PDB_0001.pdb PDB_relaxed.pdb 
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(2) Prepare the ligand 

(2.1) Convert the small molecule to SDF format, including adding hydrogens as needed (see 

Note 6). 

obabel LIG.smi --gen3D -O LIG_3D.sdf 

obabel LIG_3D.sdf -p 7.4 -O LIG.sdf 

(2.2) (Generate a library of ligand conformers (see Note 7&8). 

bcl.exe molecule:ConformerGenerator -top_models 100 -ensemble_filenames LIG.sdf -

conformers_single_file LIG_conf.sdf 

(2.3) Convert the conformer library into a Rosetta-formatted “params file” (see Note 9). 

$(ROSETTA)/main/source/src/python/apps/public/molfile_to_params.py -n LIG -p LIG --

conformers-in-one-file LIG_conf.sdf 

This will produce three files: LIG.params, a Rosetta-readable description of the ligand; 

LIG.pdb, a selected ligand conformer; LIG_conformers.pdb, the set of all conformers (see 

Note 11). 

(3) Place the ligand into the protein (see Note 12&13). 

(3.1) Identify the location of desired interaction pockets. Visual inspection using programs 

like PyMol or Chimera126 is normally the easiest method (see Note 14). Use the structure 

editing mode of PyMol to move the LIG.pdb file from step 2.3 into the starting 

conformation. Save the repositioned molecule with its new coordinates as a new file 

(LIG_positioned.pdb) (see Note 15). 

(3.2) If necessary, use a text editor to make the ligand to be residue 1 on chain X (see Note 

16). 
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(3.3) Using a structure viewing program, inspect and validate the placement of the ligand 

(LIG_positioned.pdb) in the binding pocket of the protein (PDB_relaxed.pdb) (see Note 17). 

(4) Run Rosetta design 

(4.1) Prepare a residue specification file. A Rosetta resfile allows specification of which 

residues should be designed and which shouldn’t.  A good default is a resfile which permits 

design at all residues at the auto-detected interface (see Note 18). 

ALLAA 

AUTO 

start 

1 X NATAA 

(4.2) Prepare a docking and design script(design.xml) This particular protocol is based off 

of RosettaLigand docking using the RosettaScripts framework6,7, 41. It will optimize the 

location of ligand in the binding pocket (low_res_dock), redesign the surrounding 

sidechains (design_interface), and refine the interactions in the designed context 

(high_res_dock). To avoid spurious mutations, a slight energetic bonus is given to the input 

residue at each position (favor_native). 

<ROSETTASCRIPTS> 

    <SCOREFXNS> 

        <ligand_soft_rep weights=ligand_soft_rep /> 

        <hard_rep weights=ligandprime /> 

    </SCOREFXNS> 

    <TASKOPERATIONS> 
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        <DetectProteinLigandInterface name=design_interface cut1=6.0 cut2=8.0 

cut3=10.0 cut4=12.0 design=1 resfile="PDB.resfile"/> # see Note 19 

    </TASKOPERATIONS> 

    <LIGAND_AREAS> 

        <docking_sidechain chain=X cutoff=6.0 add_nbr_radius=true all_atom_mode=true 

minimize_ligand=10/> 

        <final_sidechain chain=X cutoff=6.0 add_nbr_radius=true all_atom_mode=true/> 

        <final_backbone chain=X cutoff=7.0 add_nbr_radius=false all_atom_mode=true 

Calpha_restraints=0.3/> 

    </LIGAND_AREAS> 

    <INTERFACE_BUILDERS> 

        <side_chain_for_docking ligand_areas=docking_sidechain/> 

        <side_chain_for_final ligand_areas=final_sidechain/> 

        <backbone ligand_areas=final_backbone extension_window=3/> 

    </INTERFACE_BUILDERS> 

    <MOVEMAP_BUILDERS> 

        <docking sc_interface=side_chain_for_docking minimize_water=true/> 

        <final sc_interface=side_chain_for_final bb_interface=backbone 

minimize_water=true/> 

    </MOVEMAP_BUILDERS> 

    <SCORINGGRIDS ligand_chain=X width=15> # see Note 20 

        <vdw grid_type=ClassicGrid weight=1.0/> 

    </SCORINGGRIDS>     
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    <MOVERS> 

        <FavorNativeResidue name=favor_native bonus=1.00 /> # see Note 21&22 

        <Transform name=transform chain=X box_size=5.0 move_distance=0.1 angle=5 

cycles=500 repeats=1 temperature=5 rmsd=4.0 /> # see Note 23 

        <HighResDocker name=high_res_docker cycles=6 repack_every_Nth=3 

scorefxn=ligand_soft_rep movemap_builder=docking/> 

        <PackRotamersMover name=designinterface scorefxn=hard_rep 

task_operations=design_interface/> 

        <FinalMinimizer name=final scorefxn=hard_rep movemap_builder=final/> 

        <InterfaceScoreCalculator name=add_scores chains=X scorefxn=hard_rep /> 

        <ParsedProtocol name=low_res_dock> 

            <Add mover_name=transform/> 

        </ParsedProtocol> 

        <ParsedProtocol name=high_res_dock> 

            <Add mover_name=high_res_docker/> 

            <Add mover_name=final/> 

        </ParsedProtocol> 

    </MOVERS> 

    <PROTOCOLS> 

        <Add mover_name=favor_native/> 

        <Add mover_name=low_res_dock/> 

        <Add mover_name=design_interface/> # see Note 24 

        <Add mover_name=high_res_dock/> 
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        <Add mover_name=add_scores/> 

    </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

(4.3) Prepare an options file (“design.options”). Rosetta options can be specified either on 

the command line or in a file. It is convenient to put options which do not change run-to-

run (such as those controlling packing/sidechain placement and scoring) in an options file 

rather than the command line. 

-packing 

 -ex1 

 -ex2 

 -linmem_ig 10 

-restore_pre_talaris_2013_behavior # see Note 25 

(4.4) Run the design application (see Note 26&27). This will produce a number of output 

PDB files (named according to the input file names), and a summary score file 

(“design_results.sc”). 

$(ROSETTA)/main/source/bin/rosetta_scripts.linuxgccrelease @design.options -

parser:protocol design.xml -extra_res_fa LIG.params -s "PDB_relaxed.pdb LIG_positioned.pdb" 

-nstruct <number of output models> -out:file:scorefile design_results.sc 

(5) Selection of the Designs 
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A rule of thumb is that filtering should remove unlikely solutions, rather than selecting the 

single “best” result. Successful designs are typically good across a range of relevant metrics, 

rather than being the best structure on a single metric (see Note 28). 

The metrics to use can vary based on the desired properties of the final design. Good 

standard metrics include the predicted interaction energy of the ligand, the stability score 

of the complex as a whole, the presence of any clashes127, shape complementarity of the 

protein/ligand interface128, the interface area, the energy density of the interface (binding 

energy per unit of interface area), and the number of unsatisfied hydrogen bonds formed 

on binding.  

(5.1) Prepare a file (metric_thresholds.txt) specifying thresholds at which to filter runs. 

IMPORTANT: The exact values of the thresholds need to be tuned for your particular 

system (see Note 29). 

req total_score value < -1010                # measure of protein stability 

req if_X_fa_rep value < 1.0                    # measure of ligand clashes 

req ligand_is_touching_X value > 0.5  # 1.0 if ligand is in pocket 

output sortmin interface_delta_X        # binding energy 

(5.2) Filter on initial metrics from the docking run. 

perl $(ROSETTA)/main/source/src/apps/public/enzdes/DesignSelect.pl -d <(grep SCORE 

design_results.sc) -c metric_thresholds.txt -tag_column last > filtered_designs.sc 

 

awk '(print $NF “.pdb”)' filtered_designs.sc  > filtered_pdbs.txt 
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(5.3) Calculate additional metrics (see Note 30). Rosetta’s InterfaceAnalyzer129 calculates a 

number of additional metrics. These can take time to evaluate, though, so are best run on 

only a pre-filtered set of structures. After the metrics are generated, the structures can be 

filtered as in steps 5.1-5.2.  

$(ROSETTA)/main/source/bin/InterfaceAnalyzer.linuxgccrelease -interface A_X -

compute_packstat -pack_separated -score:weights ligandprime -no_nstruct_label -

out:file:score_only design_interfaces.sc -l filtered_pdbs.txt -extra_res_fa LIG.params 

Contents of metric_thresholds2.txt, an example filtering file used with design_interfaces.sc, 

the output scorefile from the InterfaceAnalyzer. 

req packstat value > 0.55                     # packing metric; 0-1 higher better 

req sc_value value > 0.45                     # shape complementarity; 0-1 higher better 

req delta_unsatHbonds value < 1.5    # unsatisfied hydrogen bonds on binding 

req dG_separated/dSASAx100 value < -0.5 # binding energy per contact area 

output sortmin dG_separated              # binding energy 

 

(6) Manual inspection of selected sequences. While automated procedures are continually 

improving and can substitute to a limited extent130, there is still no substitute for expert 

human knowledge in evaluating designs. Visual inspection of interfaces can capture 

system-specific requirements that are difficult to encode into an automated filter. (see Note 

31). 

(7) Extract protein sequences from the final selected designs into FASTA format. 
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$(ROSETTA)/main/source/src/python/apps/public/pdb2fasta.py $(cat 

final_filtered_pdbs.txt) > selected_sequences.fasta 

(8) Iteration of design. Only rarely will the initial design from a computational protocol give 

exactly the desired results. Often it is necessary to perform iterative cycles of design and 

experiment, using information learned from experiment to alter the design process (Figure 

17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Interface Design with RosettaLigand. (A,B) Comparison in improvements in Interface 
Score and Total Score for top models from an initial placement, docking without sequence 
design, and docking with design for a hydrophilic and hydrophobic ligand, respectively. (C) 
Sequence logo of mutation sites among the top models from a round of interface design [Crooks 
et al. Genome Research 2004 14, 1188-1190.]. For most positions, the consensus sequence is the 
native sequence. Amino acids with side chains that directly interact with the ligand show a high 
prevalence to mutation as seen in the positions with decreased consensus. (D) Example of a 
typical mutation introduced by RosettaLigand. The protein structure is represented in cartoon 
(cyan). The native alanine (pink) is mutated to a lysine residue (green) to match ionic 
interactions with the negatively charged ligand (green). Image generated in PyMol. 
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Notes 

(1) High resolution experimental structures determined in complex with a closely related 

ligand are most desirable, but not required. Experimental structures of the unliganded 

protein and even homology models can be used107,131. 

(2) While Rosetta can ignore chainbreaks and missing loops far from the binding site, the 

structure of the protein should be complete in the region of ligand binding. If the binding 

pocket is missing residues, remodel these with a comparative modeling protocol, using the 

starting structure as a template. 

(3) Acceptable formats depend on the capabilities of your small molecule handling 

program. OpenBabel can be used to convert most small molecule representations, including 

SMILES and InChI, into the sdf format needed by Rosetta. 

(4) The option “-relax:coord_constrain_sidechains” should be omitted if the starting 

conformation of the sidechains are from modeling rather than experimental results. 

(5) Rosetta applications encode the compilation conditions in their filename. Applications 

may have names which end with *.linuxgccrelease, *.macosclangrelease, *.linuxiccrelease, 

etc. Use whichever ending is produced on for your system. Applications ending in “debug” 

have additional error checking which slows down production runs. 

(6) It is important to add hydrogens for the physiological conditions under which you wish 

to design. At neutral pH, for example, amines should be protonated and carboxylates 

deprotonated. The “-p” option of OpenBabel uses heuristic rules to reprotonate molecules 

for a given pH value. Apolar hydrogens should also be present. 

(7) Visually examine the produced conformers and manually remove any which are folded 

back on themselves or are otherwise unsuitable for being the target design conformation. 
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(8) It is unnecessary to sample hydrogen position during rotamer generation, although any 

ring flip or relevant heavy atom isomeric changes should be sampled. 

(9) molfile_to_params.py can take a number of options – run with the “-h” option for 

details. The most important ones are: “-n”, which allows you to specify a three letter code to 

use with the PDB file reading and writing, permitting you to mix multiple ligands; “-p”, 

which specifies  output file naming; “--recharge”, which is used to specify the net charge on 

the ligand if not correctly autodetected;  “--nbr_atom”, which allows you to specify a 

neighbor atom (see Note 10) 

(10) Specifying the neighbor atom is important for ligands with offset “cores”. The 

neighbor atom is the atom which is superimposed when conformers are exchanged. By 

default the neighbor atom is the “most central” atom. If you have a ligand with a core that 

should be stable when changing conformers, you should specify an atom in that core as the 

neighbor atom. 

(11) LIG.params expects LIG_conformers.pdb to be in the same directory, so keep them 

together when moving files to a new directory. If you change the name of the files, you will 

need to adjust the value of the PDB_ROTAMERS line in the LIG.params file. 

(12) Rosetta expects the atom names to match those generated in the molfile_to_params.py 

step. Even if you have a starting structure with the ligand correctly placed, you should align 

the molfile_to_params.py generated structure into the pocket so that atom naming is 

correct. 

(13) Other methods of placing the ligand in the pocket are also possible. Notably, Tinberg et 

al.37 used RosettaMatch76 both to place the ligand in an appropriate scaffold and to place 

key interactions in the scaffold.  
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(14) Other pocket detection algorithms can also be used132 

(15) If you have a particularly large pocket, or multiple potential pockets, save separate 

ligand structures at different positions and perform multiple design runs. For a large 

number of locations, the StartFrom mover in RosettaScripts can be used to randomly place 

the ligand at multiple specified locations in a single run. 

(16) Being chain X residue 1 should be the default for molfile_to_params.py produced 

structures. Chain identity is important as the protocol can be used to design for ligand 

binding in the presence of cofactors or multiple ligands. For fixed-location cofactors, simply 

change the PDB chain of the cofactor to something other than X, add the cofactor to the 

input protein structure, and add the cofactors’ params file to the -extra_res_fa 

commandline option. For designing to multiple movable ligands, including explicit waters, 

see Lemmon, et al.95. 

(17) To refine the initial starting position of the ligand in the protein, you can do a few 

“design” runs as in step 4, but with design turned off. Change the value of the design option 

in the DetectProteinLigandInterface tag to zero. A good starting structure will likely have 

good total scores and good interface energy from these runs, but will unlikely to result in 

ideal interactions. Pay more attention to the position and orientation of the ligand than to 

the energetics of this initial placement docking run (see Note 18). 

(18) The exact resfile to use will depend on system-specific knowledge of the protein 

structure and desired interactions. Relevant commands are ALLAA (allow design to all 

amino acids) PIKAA (allow design to only specified amino acids) NATAA (disallow design 

but permit sidechain movement) and NATRO (disallow sidechain movement). The AUTO 
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specification allows the DetectProteinLigandInterface task operation to remove design and 

sidechain movement from residues which are “too far” from the ligand. 

(19) Change the name of the resfile in the XML script to match the full path and filename of 

the resfile you’re using. The cut values decide which residues with the AUTO specification 

to design. All residues with a C-beta atom within cut1 Angstroms of the ligand will be 

designed, as will all residues within cut2 which are pointing toward the ligand. The logic in 

selecting sidechains is similar for cut3 and cut4, respectively, but with sidechain flexibility 

rather than design. Anything outside of the cut shells will be ignored during the design 

phase, but may be moved during other phases. 

(20) The grid width must be large enough to accommodate the ligand. For longer ligands, 

increase the value to at least the maximum extended length of the ligand plus twice the 

value of box_size in the Transform mover. 

(21) Allison et al. found that a value of 1.0 for the FavorNativeSequence bonus worked best 

over their benchmark set40. Depending on your particular requirements, though, you may 

wish to adjust this value. Do a few test runs with different values of the bonus and examine 

the number of mutations which result. If there are more mutations than desired, increase 

the bonus. If fewer than expected, decrease the bonus. 

(22) More complicated native favoring schemes can be devised by using 

FavorSequenceProfile instead of FavorNativeSequence. For example, you can add weights 

according to BLOSUM62 relatedness scores, or even use a BLAST-formatted position 

specific scoring matrix (PSSM) to weight the bonus based on the distribution of sequences 

seen in homologous proteins. 
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(23) The value of box_size sets the maximum rigid body displacement of the ligand from 

the starting position. The value of rmsd sets the maximum rmsd from the starting position. 

Set these to smaller values if you wish to keep the designed ligand closer to the starting 

conformation, and to large values if you want to permit more movement. These are limits 

for the active sampling stage of the protocol only. Additional movement may occur during 

other stages of the protocol. 

(24) The provided protocol only does one round of design and minimization. Additional 

rounds may be desired for further refinement. Simply replicate the low_res_dock, 

design_interface, and high_res_dock lines in the PROTOCOLS section to add additional 

rounds of design and optimization. Alternatively, the EnzRepackMinimize mover may be 

used for finer control of cycles of design and minimization (although it does not 

incorporate any rigid body sampling). 

(25) Refinement of the Rosetta scorefunction for design of protein/ligand interfaces is an 

area of current active research. The provided protocol uses the standard ligand docking 

scorefunction which was optimized prior to the scorefunction changes which occurred in 

2013 and thus requires an option to revert the behavior. Decent design performance has 

also been seen with the “enzdes” scorfunction (which also requires the -

restore_pre_talaris_2013 option) and the standard “talaris2013” scorefunction. 

(26) Use of a computational cluster is recommended for large production runs. Talk to your 

local cluster administrator for instructions on how to launch jobs on your particular cluster 

system. The design runs are “trivially parallel” and can either be manually split or run with 

an MPI-compiled version. If splitting manually, change the value of the -nstruct option to 

reduce the number of structures produced by each job, and use the options -out:file:prefix 
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or -out:file:suffix to uniquely label each run. The MPI version of rosetta_scripts can 

automatically handle distributing structures to multiple CPUs, but requires Rosetta to be 

compiled and launched in cluster-specific ways. See the Rosetta documentation for details. 

(27) The number of output models needed (the value passed to -nstruct) will depend on 

the size of the protein pocket and the extent of remodeling needed. Normally,  1000-5000 

models is a good sized run for a single starting structure and protocols. At a certain point, 

you will reach “convergence” and the additional models will not show appreciable metric 

improvement or sequence differences. If you have additional computational resources, it’s 

often better to run multiple smaller runs (100-1000 models) with slightly varying 

protocols (different starting location, number of rounds, extent of optimization, native 

bonus, etc.), rather than have a larger number of structures from the identical protocol. 

(28) Relevant metrics can be determined by using “positive controls”. That is, run the 

design protocol on known protein-ligand interactions which resemble your desired 

interactions. By examining how the known ligand-protein complexes behave under the 

Rosetta protocol, you can identify features which are useful for distinguishing native-like 

interactions from non-native interactions. Likewise, “negative controls”, where the design 

protocol is run without design (see Note 17) can be useful for establishing baseline metric 

values. 

(29) The thresholds to use are system-specific. A good rule of thumb is to discard at least a 

tenth to a quarter by each relevant metric. More important metrics can receive stricter 

thresholds. You may wish to plot the distribution of scores to see if there is a natural 

threshold to set the cut at. You will likely need to do several test runs to adjust the 

thresholds to levels which give the reasonable numbers of output sequences. 
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(30) Other system-specific metric values are available through the RosettaScripts interface 

as “Filters”. Adding “confidence=0” in the filter definition tag will turn off the filtering 

behavior and will instead just report the calculated metric for the final structure in the final 

score file. Many custom metrics, such as specific atom-atom distances, can be constructed 

in this fashion. 

(31) Certain automated protocol can ease this post-analysis. For example, Rosetta can 

sometimes produce mutations with minor influence on binding energy. While the native 

bonus (see Notes 21&22) mitigates this somewhat, explicitly considering mutation-by-

mutation reversions, as with the protocol of Nivon et al.130 can further reduce the number 

of such “spurious” mutations seen. 
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CHAPTER 5: Conclusion and Future Directions 

 

 

Macromolecule-small molecule interactions drive much of the world around us. Out 

of an infinite number of possibilities, nature has created receptor-based interfaces that 

proceed with accuracy and precision every time (and when these are disrupted, 

illness/disease occur). If we could understand and then recapture such accurate and 

precise interactions, the biotechnology field would burst in numerous directions. By 

carrying out our experiments and sharing the results with the scientific community, we 

collectively contribute to making this a reality. Successes, as well as failures, provide 

insight into our understanding and what questions to ask next. During my time as a PhD 

student, my research and results contribute to the rapidly growing knowledge set we have 

about protein-ligand binding, and especially how this knowledge can be applied to 

computational modeling. I have established benchmark datasets, protocols, and data 

analysis pipelines that have already been used by other lab members, and available for 

anyone who would need to repeat or update any of my experiments in the future. Looking 

towards the future, I see many ways that my project can spin into subsequent projects of a 

similar nature. 

Summarization of key findings and future directions: Computational Design of Protein 

Small Molecule Interfaces (manuscript). This experiment allowed us to determine overall 

protein-ligand interface sequence recovery as well as an optimal strategy for re-designing 

proteins to recognize different small molecules using a minimal set of mutations. The 

benchmark consisted of two parts. Part one tested overall sequence recovery when all 
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residues within the protein-small molecule interface are allowed to change identity. Part 

two simulated a protein-small molecule design more closely by mutating up to five 

residues that contribute most to the interaction with the small molecule to alanine (and a 

scoring bonus was applied to the starting sequence in this step, therefore mutations had to 

be better than the starting residue for the mutation to occur). We used RosettaLigand on a 

diverse set of 43 protein-ligand complexes (from the CSAR dataset, filtered to our needs). 

On average, we achieve sequence recoveries in the binding site of 59% when the ligand is 

allowed limited reorientation (ie starts in the correct binding position), and 48% when the 

ligand is allowed full reorientation. When simulating the redesign of a protein binding site, 

sequence recovery among residues that contribute most to binding was 52% when slight 

ligand reorientation was allowed, and 27% when full ligand reorientation was allowed. One 

key finding, which was expected, is that recovery of the correct ligand position is a pre-

requisite for recovering the residues necessary for binding. This makes a strong argument 

for computational programs solely dedicated to optimizing algorithms for ligand docking 

(virtual high throughput screening). A question about measuring sequence recovery 

however, is that when the ligand position is not recovered, do the subsequent mutations 

actually support binding interactions? This would be a follow-up study of interest. Another 

point of interest is how we define ‘sequence recovery’. In my manuscript, I focus on 

recovery as recapturing the wild type residue, but there could be tolerable mutations that 

would produce the same result, for example a non-polar residue swapped out for a 

similarly sized non-polar residue (ie Val to Leu), or a hydrogen bond donor swapped out 

for another (ie Ser to Thr). We account for this phenomenon by including Position-Specific 

Scoring Matrix (PSSM) analysis, which identifies amino acid mutations that are tolerated in 



 98 

homologous proteins. While PSSM recovery has its limitations (described in the text), this 

allows for a more robust judgment of the program’s ability to capture residues favorable 

for interaction. The PSSM recovery was calculated over overall sequence recovery, but if a 

similar benchmark is conducted in the future, it would be of interest to also include PSSM 

recovery specifically of the alanine to wild-type mutations. I would also look deeper for 

alternative ways to account for ‘similar residue’ mutations, which would require an 

extensive search of docking/design programs and their measure of recoveries. Also for 

future studies, reporting the recovery on a residue by residue basis (as was done for the 

PSSM recovery) would provide valuable insight to which residues RosettaLigand recovers 

often or seldom. Recovery could be unfairly biased by certain residues that are never 

recovered (as what happened in my second manuscript, discussed below), and we could 

investigate underlying causes. Identifying caveats in the program sets the stage for future 

projects. For example, it is known that Rosetta struggles with π-π interactions, which was 

reflected in this paper by phenylalanine and tryptophan often designed out. An entire 

manuscript was dedicated to experiments investigating and hopefully improving this 

problem (Combs et al, ‘Partial Covalent Interactions in Rosetta’, results published soon). 

Also based on my results, future Rosetta project could investigate: design and recovery 

among complex hydrogen-bond networks, design/recovery among highly flexible ligands, 

and design/recovery among binding guided by weak interactions. Another area to 

investigate would be if there should be some type of stringency or allowance (an applied 

weight, like FNRB) based on binding pocket crowdedness, calculated as the number 

protein/ligand atom pairs within 3 Å of each other, divided by the total number of ligand 

atoms. Highest recoveries were seen between 2 – 3 contacts; why does the program 
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struggle when the pocket is very tight or very loose, is a valuable question to consider. In 

the computational community, we often discuss under what condition the program is ‘most 

successful’, compared to where the program struggles. But within any range of ‘most 

successful’, there are just as many data points that indicate less successful recoveries. For 

example, we note that alanine to wild type recovery is best when the correct ligand 

position is recovered (within 2 Å is accepted), but within 2 Å there are many data points 

with recovery below 25%. Also, recovery is best when number of ligand hydrogen bond 

donors + acceptors is less than 8, but within that range there are many with recoveries 

under 25%. I think it would be interesting to look at the data points that, even under the 

most optimal conditions, still struggle with recovery. RosettaLigand, like many docking 

programs, saw no trend in recovery vs binding affinity. It would be a huge accomplishment 

for a docking program to make such a correlation. Because ligand binding is governed by 

numerous factors, all of which are not well incorporated into the algorithms (or maybe 

even known yet), the programs fail to make reliable and consistent binding affinity 

correlations. In addition to new ideas and projects to pursue, it is also interesting to repeat 

benchmarks with updated versions of the program, to make direct comparisons of 

progress. The literature has pointed out the value of reliable and consistent benchmarks, to 

truly assess how the program is improving and how programs compare to one 

another133,67. Since I published this manuscript, DeLuca et al combined two steps in the 

docking protocol into one step (rotation and translation combined into transform), and 

saw improved ligand position recoveries of 10 – 15% 72. (Using the very same CSAR dataset 

of 43 protein-ligand complexes that I created.) Since the ‘transform’ update has been 

incorporated into the program, we should repeat my experiment with this new addition. 
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We should also repeat the benchmark to optimize the ‘favor native residue bonus’, as new 

algorithm incorporations may change the bonus needed in allowing mutations. As I 

mentioned earlier, available structural information guides computational studies. The 

CSAR database contains a diverse set of protein-small molecule crystal structures and 

includes information on binding affinities, and at the time of my computational 

experiments, contained 343 complexes94. As of 2013, they have added more complexes to 

the database, possibly including complexes that meet our filtering standards134. Every 

benchmark provides more insight and guides new ideas to be explored. 

Summarization of key findings and future directions: Experimental and Computational 

Identification of Naïve Binders to a TIM-Barrel Protein Scaffold (manuscript). In this study, 

we experimentally identified ligands with intrinsic binding affinity for a protein, and then 

used computational methods to re-create the experiment. Of ~3500 small molecules 

screened, 28 displayed intrinsic binding affinity for C9S_HisF, dissociation constants 

ranging between 338 – 1112 µM. The computational docking program RosettaLigand was 

assessed in its ability to recapture the correct ligand binding position by identifying the 

residues that contribute to the protein-ligand interaction. One key finding indicated that 

interacting residues were most successfully recovered when there are strong bonds 

contributing to the interaction, such as hydrogen bonds. On the experimental side, it should 

be noted that HisF from Thermotoga maritima provides a very stable and easy protein to 

work with, therefore allowing us to produce enough protein for the screening experiments. 

Working with a protein that is difficult to express and purify would significantly decrease 

the chance to carry out the experiments needed. It should also be noted that the 15N-HMQC-

NMR experiment was a reliable tool in identifying the naïve binders. For follow up studies 
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and continuing forward, I propose some thoughts. C9S_HisF was screened at 100 µM, but 

experiments carried out afterwards (Designed C9S_HisF binds VU0068924 more tightly), 

high quality spectra were produced at 50 µM. If someone were to repeat this experiment or 

conduct a similar one, I would suggest screening at 50 µM, even if only at the titration stage, 

to reduce the amount of protein that needs to be produced. Also, considering the size of the 

binding pocket, it would be of interest to expand the Chemcart search for ‘similar ligands’ 

to include ligands with more flexibility (4+ rotatable bonds) and increased molecular 

weight. These were excluded to filter the search to ligands that would be included in the 

small molecule library, but if there are larger ligands available to us, these could be 

screened also. It would also be advantageous to have more of the binding pocket residues 

resonance assigned on the 2D spectrum. Many assignments were lost transferring from 

HisF to C9S_HisF. Even if a full assignment cannot be done, one could seek out alternative 

assignment transfer routes. For example, would it have been more advantageous to do the 

TROSY to HMQC and 30° C to 25° C transfers first, and the HisF to C9S_HisF transfer last? 

This could be something to investigate, especially if follow-up studies continue to use the 

C9S_HisF 2D assigned spectrum. A C9S_HisF crystal structure would also be advantageous, 

as well as C9S_HisF crystallized with some of the naïve binders. Crystal structure validation 

of the binding position and interacting side chains would add great depth to the 

computational analysis. This project could also be expanded by conducting a similar 

screening experiment with a different TIM-barrel. The limiting factor, however, is the 

necessity of a resonance assigned 2D spectrum. A quick search in the journal of 

Biomolecular NMR Assignments gave no results for indole-3-glycerol phosphate synthase 

and phosphoribosyl anthranilate isomerase, two TIM-barrels often compared to HisF135,136. 
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These proteins do have crystal structures in complex with bound ligands, so perhaps NMR 

studies could be used as a ‘crude’ way to identify ligands that cause peak shifts, and then 

repeat crystallization conditions in hopes of elucidating the complex structure and 

confirming the bound ligand in that way. Another approach would be to use a different 

protein altogether, one that is thermostable, has a resonance assigned 2D spectrum, and 

has an apo and ligand-bound crystal structure. Results on the computational side provide 

insight and ideas in moving forward as well. As reflected in my manuscript above, 

RosettaLigand recovery was highest when binding is dominated by strong polar 

interactions. Recovery is highest at 6 – 8 hydrogen bond donors + acceptors; recovery 

increases as topological surface area approaches 100, and decreases as LogP approaches 5. 

Also as noted above, digging deeper into our measure of recovery provided valuable 

insight. Val127 and L170, pointing away from the ligand, were never computationally 

recovered as ‘interacting residues’, yet experimental results indicated that they do. These 

results could guide a Rosetta project that investigates how the ddg is calculated for protein-

ligand interactions, to not only include side chain measurements but backbone 

measurements as well. In addition to the computational analysis included in this 

manuscript, identified naïve binders will also be used as the starting point for designing 

tighter interactions, to be published in a later manuscript. 

As I review the body of work presented, I am proud of my results and what I have 

accomplished over the past six years. I look forward to seeing how the field of protein-

ligand continues to grow, and how my research contributes to future computational and 

experimental projects. 
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APPENDIX 

 

 

Appendix A: Computational Design of Protein-Small Molecule Interfaces 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 (Supplement Figure 1): Sequence recovery from Dock/Design Alanine Mutants experiment. 
Aside from a few outliers, increasing the number of ligand atoms decreases the recovery (A). Number of 
residues considered for design has little effect on recovery (B). Weak/moderate binders have the 
maximum recoveries, but overall no trend (C). The binding affinity normalized by ligand molecular 
weight shows no effect on recovery (D). Increasing the topological polar surface area (E) and increasing 
the van der Waals surface area (F) decreases the chance to achieve maximum recoveries. The Rosetta 
interface energy (G) and the Rosetta interface energy normalized by ligand molecular weight (H) have 
little effect on recovery. These results imply that for parameters correlated with ligand size, 
RosettaLigand recovers the interface better for moderately sized ligands over larger ligands. (Reprinted 
from Journal of Structural Biology.) 
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Figure 19 (SF2): Alanine Mutant to Wild Type recovery from Dock/Design Alanine Mutants 
experiment. Aside from a few outliers, increasing the number of ligand atoms decreases the 
maximum recovery of WT residues (A). Number of residues considered for design (B) and binding 
affinity (C) have little effect on recovery. Binding has little effect on recovery (C). The binding 
affinity normalized by ligand molecular weight shows a drop in recovery as the ratio increases (D). 
Ligands with the highest topological polar surface areas do not achieve the maximum recoveries 
(E). Van der Waals surface area (F), Rosetta interface energy (G), and Rosetta interface energy 
normalized by ligand molecular weight (H) have little effect on recovery. (Reprinted from Journal 
of Structural Biology.) 



 105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 (ST2): Sequence recovery and PSSM recovery results by polar vs nonpolar amino acids 
(AA). (Reprinted from Journal of Structural Biology.) 

 

 

Table 3 (Supplement Table 1): Sequence composition difference per residue from PSSM recovery. 
(Reprinted from Journal of Structural Biology.) 

 

Supplement Table 2 
Sequence recovery and PSSM recovery results by polar vs nonpolar amino acids (AA). 

 Design  

Native (1) 

Dock/Design  

Native (2) 

Design  

Alanine Mutants (3) 

Dock/Design 

Alanine Mutants (4) 

Ligand Translation (Å)[a] 0.1 2.0 0.1 2.0 

Ligand Rotation (deg)[a] 2 360 2 360 

     

Nonpolar AA Sequence Recovery (%) 70.4 ± 19.9 48.8 ± 22.1 68.5 ± 20.2 62.4 ± 19.3 

Polar AA Sequence Recovery (%) 58.1 ± 18.4 24.7 ± 19.1 44.9 ± 21.5 32.8 ± 19.3 

Nonpolar AA PSSM Recovery (%) 81.2 ± 17.9 71.1 ± 20.8 81.0 ± 17.6 78.7 ± 17.1 

Polar AA PSSM Recovery (%) 77.0 ± 16.4 55.0 ± 21.6 72.3 ± 17.9 63.1 ± 19.8 

[a] Reorientation allowed from initial pose during docking 
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Table 6 (ST4): Results from favor native residue bonus benchmark. (Reprinted from Journal of 
Structural Biology.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 (ST3): Dataset of complexes in benchmark. (Reprinted from Journal of Structural Biology.) 

 Table S4 
Results from favor native residue bonus benchmark 

Favor Native  

Residue Bonus (REU) 

Alanine Mutants  

Recovery (%) 

Sequence  

Recovery (%) 

Number of  

Mutations 

0.50 31.0 ± 18.8 33.8 ± 15.2 12.8 ± 4.7 

0.75 32.3 ± 19.6 39.3 ± 14.4 11.8 ± 4.4 

1.00 33.1 ± 21.0[a] 46.0 ± 13.6 10.5 ± 4.1 

1.25 31.1 ± 21.0 54.1 ± 13.0 8.9 ± 3.6 

1.50 30.4 ± 22.3 59.9 ± 13.1 7.8 ± 3.3 

[a] For subsequent experiments, the favor native residue bonus was chosen to be 
1.0 because at this value, the most wild type residues were recovered from the 
incorrect alanines. 
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----- 

 

----- 

Table 7 (ST5): Raw data from Design Native, Dock/Design Native, Design Alanine Mutants, and 
Dock/Design Alanine Mutants experiments. (See below; PDFs will be provided in thesis directory). 
(Reprinted from Journal of Structural Biology.) 
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Supplementary Scripts and Commands 

METHOD_WEIGHTS ref 0.0497258 -2.46822 0.817984 0.234042 0.349976 -0.379306 1.68114 -0.4552 

0.548527 -0.392527 -0.615286 0.0697327 -1.36984 -0.383895 1.0298 0.963313 0.180077 -0.436006 

0.445645 0.130317  

fa_atr 0.8 

fa_rep 0.4 

fa_sol 0.6 

hack_elec 0.25 

pro_close 1 

fa_pair 0.8 

hbond_sr_bb 2 

hbond_lr_bb 2 

hbond_bb_sc 2 

hbond_sc 2 

dslf_ss_dst 0.5 

dslf_cs_ang 2 

dslf_ss_dih 5 

dslf_ca_dih 5 

atom_pair_constraint 1 

coordinate_constraint 1 

angle_constraint 1 

dihedral_constraint 1 

omega 0.5 

fa_dun 0.4 

p_aa_pp 0.5 

chainbreak 1 

ref 1 

 

Ligand weights. The ref line corresponds to each residue (in alphabetical order), and 

following those are the weight terms with their weights. 

 

-in 

 -path 

  -database /insert_path/rosetta_database/ 

 -file 

  -s /insert_path/XXXXX.pdb 

  -extra_res_fa / insert_path /INH.params 

-out 

 -pdb 

 -nstruct 9 

 

-parser 

 -protocol /insert_path/xml_script.xml 

 

-packing 

 -ex1 

 -ex2 

 -linmem_ig 10 

 

Options file, used to specify the input, output, parser file, and packing options. For input files, 

one must specify the path to the Rosetta database, path to the ligand PDB file(s), and the path 
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to the ligand params file. For output, one must specify the type of file to be output (pdb) and 

number of structures to generate. For the parser, one must specify the path to the XML parser 

file. For packing, these are standard options to include for side chain repacking. 

<ROSETTASCRIPTS> 

 

 <SCOREFXNS> 

  <ligand_soft_rep weights=ligand_soft_rep 

  </ligand_soft_rep> 

  <hard_rep weights=ligandprime> 

  </hard_rep> 

 </SCOREFXNS> 

 <TASKOPERATIONS> 

  <DetectProteinLigandInterface name=design_interface cut1=6.0 cut2=8.0 cut3=10.0 

cut4=12.0 design=1 resfile="/insert_path/Resfile"/> 

 </TASKOPERATIONS> 

 <LIGAND_AREAS> 

  <docking_sidechain chain=X cutoff=6.0 add_nbr_radius=true all_atom_mode=true 

minimize_ligand=10/> 

  <final_sidechain chain=X cutoff=6.0 add_nbr_radius=true all_atom_mode=true/> 

  <final_backbone chain=X cutoff=7.0 add_nbr_radius=false all_atom_mode=true 

Calpha_restraints=0.3/> 

 </LIGAND_AREAS> 

 <INTERFACE_BUILDERS> 

  <side_chain_for_docking ligand_areas=docking_sidechain/> 

  <side_chain_for_final ligand_areas=final_sidechain/> 

  <backbone ligand_areas=final_backbone extension_window=3/> 

 </INTERFACE_BUILDERS> 

 <MOVEMAP_BUILDERS> 

  <docking sc_interface=side_chain_for_docking minimize_water=true/> 

  <final sc_interface=side_chain_for_final bb_interface=backbone 

minimize_water=true/> 

 </MOVEMAP_BUILDERS> 

 <MOVERS> 

 single movers 

  <FavorNativeResidue name=favor_native bonus=1.25/> 

  <ddG name=calculateDDG jump=1 symmetry=0 per_residue_ddg=1 repack=0 

scorefxn=hard_rep/> 

  <Translate name=translate chain=X distribution=uniform angstroms=2.0 cycles=50/> 

  <Rotate name=rotate chain=X distribution=uniform degrees=360 cycles=1000/> 

  <SlideTogether name=slide_together chain=X/> 

  <HighResDocker name=high_res_docker cycles=6 repack_every_Nth=3 

scorefxn=ligand_soft_rep movemap_builder=docking/> 

  <PackRotamersMover name=designinterface scorefxn=hard_rep 

task_operations=design_interface/> 

  <FinalMinimizer name=final scorefxn=hard_rep movemap_builder=final/> 

  <InterfaceScoreCalculator name=add_scores chains=X scorefxn=hard_rep 

native="/insert_path/2087.pdb"/> 

 compound movers 

  <ParsedProtocol name=low_res_dock> 

   <Add mover_name=translate/> 

   <Add mover_name=rotate/> 

   <Add mover_name=slide_together/> 

  </ParsedProtocol> 

  <ParsedProtocol name=high_res_dock> 

   <Add mover_name=high_res_docker/> 

   <Add mover_name=final/> 

  </ParsedProtocol> 

 </MOVERS> 

 <PROTOCOLS> 

  <Add mover_name=low_res_dock/> 

  <Add mover_name=favor_native/> 

  <Add mover_name=designinterface/> 

  <Add mover_name=high_res_dock/> 

  <Add mover_name=calculateDDG/> 

  <Add mover_name=add_scores/> 
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 </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

XML Script, for the experiments discussed in this study, used to assign values for the cut-off 

points to detect the protein-small molecule interface, a value for the favor native residue 

bonus, and values for ligand translation and rotation. In 

TASKOPERATIONS:DetectProteinLigandInterface, one must specify values to determine 

which residues surrounding the ligand are allowed to be designed and/or repacked (details 

in the text above), and specify the path to the resfile. In MOVERS:FavorNativeResidue, one 

must assign a value to the bonus. In MOVER:Translate, one must assign a value (in Å) to how 

much the ligand is allowed to translate from its original position. In MOVER:Rotate, one must 

assign a value to how much the ligand is allowed to rotate (in deg) from its original position 

(360 being full rotation allowed). 

ALLAA 

AUTO 

 

start 

 

Resfile, used to indicate that residues considered for design and repack are limited to the 
cut-off points specified above. 

/insert_path/rosetta_scripts.default.linuxgccrelease -out:prefix 2028_$f-  

@/insert_path/flags.txt >& log.$f.txt 

 

Executable, which is the script to run the program. One must specify the path to the 

executable and the path to the options files (seen as ‘flags.txt’). One may choose to specify an 

output prefix, which was useful for scripts used in analysis because all designs generated 

from the same parent complex had the same handle at the beginning of the filename. 

# needs native pdb XXXX.pdb 

# needs list of score files XXXX*score.sc 

# option 1: 4-letter PDB code (XXXX) 

# option 2: number X of amino acids mutated 

 

# calculate the ddg. outputs average, standard deviation, etc... 

/insert_path/ddg_mover_collater.py $1*score.sc > $1_scores.txt; 

 

# construct map of residue names to ids 

grep "ATOM   ....  CA" $1.pdb | awk '(aaid = int( substr( $0, 23, 4)); aaname = $4; print "AAID", 

aaid, "AANAME", aaname)' > $1_map.txt; 
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# find X residues with strongest interaction to ligand to be mutated 

cat $1_scores.txt | awk '(if( pr == 1) print $0; if($1 == "ref") pr = 1;)' | sort -nk2 | awk -v 

num=$2 '(lin++; if( lin > 1 && lin <= num+1) print "AAMUTATE", $1, $2 )' > $1_top_$2_mutate.txt; 

 

# create human readable file describing mutants 

cat $1_map.txt $1_top_$2_mutate.txt | awk -v pdb=$1 '( if ($1 == "AAID") aa_name[$2] = $4; if( $1 

== "AAMUTATE") print "MUTATION " aa_name[$2], $2 " ALA FILE " pdb "_" ++i ".pdb ENERGY " $3 

".";)' > $1_top_$2.txt; 

 

# copy native pdb into XXXX_0.pdb (no mutations) 

cp $1.pdb $1_0.pdb; 

 

# create X mutant pdb files adding the mutations one by one in order of strong to weaker 

interactions 

cat $1_top_$2.txt | awk -v pdb=$1 '( lin++; system("/home/allisoba/scripts/mutate_to_ala.awk " 

pdb "_" lin-1 " " $3 " > " pdb "_" lin ".pdb;");)'; 

 

Script to create Alanine mutant pdbs. This script is run in the directory with the native pdb 

code and score files, and needs the 4-letter code (as designated in the executable script, 

which matches the native code), and the number of subsequent Alanine mutated PDBs you 

wish to create (in our case, 5). This script sorts the score file by per-residue-ddg, to 

determine which residues contribute most to the protein-small molecule interface. These 

residues are then mutated to Alanine in a new file designated by XXXX_1.pdb (one Alanine 

mutation), XXXX_2.pdb (two Alanine mutations), and so on until the number specified has 

been reached. This script creates the XXXX_top_Y.txt file which will be needed later. 

#!/usr/bin/env python2.5 

 

from operator import itemgetter 

import numpy 

import sys 

from optparse import OptionParser 

from  Bio.PDB import * 

import warnings 

from Bio.PDB import PDBExceptions 

warnings.simplefilter('ignore',PDBExceptions.PDBConstructionWarning) 

 

usage = "%prog [options] <list of score files>" 

parser = OptionParser(usage) 

parser.add_option("--num_top_total",dest="num_top_total",help="first, filter out the top total 

score structures using this many models, default=10",default="100000") 

parser.add_option("--num_top_ddg",dest="num_top_ddg",help="second, take the top X by ddg and 

generate the statistics,default=10",default="100000") 

parser.add_option("--pdb",dest="pdb",help="input pdb for mapping the per-residue ddgs. Probably 

best to use the input or output struc from the ddg analysis",default="") 

parser.add_option("--stdev_putty",dest="stdev_putty",help="map the mean per-residue ddg to 

occupancy and stdev of ddgs to bfactor so it can be shown as putty",action="store_true") 

(options,args)=parser.parse_args() 

 

def line_of_floats(line_of_strings): 

 line_of_numbers = [] 

 for string in line_of_strings: 

  number = float(string) 

  line_of_numbers.append(number) 

 return line_of_numbers 
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header = [] 

models = [] 

for score_file in args: 

 score_lines = open(score_file,'r').readlines() 

 

 for line in score_lines: 

  line = line.strip().split() 

  if line[0] == 'SEQUENCE:': 

   continue 

  if line[1] == 'total_score': 

   trash = line.pop(0) 

   trash = line.pop(-1) 

   header = line 

  else: 

   trash = line.pop(0) 

   trash = line.pop(-1) 

   models.append(line_of_floats(line)) 

 

sort_total_score = sorted(models, key=itemgetter(0),reverse=True) 

top_scores = sort_total_score[0:int(options.num_top_total)] 

 

sort_total_ddg = sorted(top_scores, key=itemgetter(1),reverse=True) 

 

top_ddgs = sort_total_ddg[0:int(options.num_top_ddg)] 

 

top_ddgs = numpy.array(top_ddgs,dtype=float) 

 

mean = numpy.mean(top_ddgs, axis=0) 

st_dev = numpy.std(top_ddgs, axis=0) 

max = numpy.max(top_ddgs, axis=0) 

min = numpy.min(top_ddgs,axis=0) 

median = numpy.median(top_ddgs,axis=0) 

#print mean 

 

def strip_path(pdb): 

 return pdb.split('/')[-1] 

 

per_res_dict = () 

 

print '%20s %10s %10s %10s %10s %10s' % ('score','mean','st_dev','min','max','median') 

min_mean = 0 

for i in range(len(header)): 

 if header[i].split('_')[0] == 'residue': 

  field = header[i].split('_')[2] 

  per_res_dict[field] = (mean[i],st_dev[i]) 

  if min_mean > mean[i]: 

   min_mean = mean[i] 

 else: 

  field = header[i] 

 

 print '%20s %10s %10s %10s %10s %10s' % (field, str(round(mean[i],3)), 

str(round(st_dev[i],3)), str(round(min[i],3)), str(round(max[i],3)), str(round(median[i],3))) 

 

if not options.pdb == "": 

 print 'mapping b-factors to',options.pdb 

 PDBParse = PDBParser(PERMISSIVE=1) 

 struct = PDBParse.get_structure('X',options.pdb) 

 atoms = struct.get_atoms() 

 curr_residue_id = 0 

 prev_res_id = 0 

 for atom in atoms: 

  residue_id = atom.get_parent().get_id()[1] 

  if residue_id is not prev_res_id: 

   curr_residue_id += 1 

   prev_res_id = residue_id 

  #print residue_id, curr_residue_id, prev_res_id,per_res_dict[str(curr_residue_id)] 

  if options.stdev_putty: 

   atom.set_occupancy(per_res_dict[str(curr_residue_id)][0]) 

   atom.set_bfactor(per_res_dict[str(curr_residue_id)][1]) 
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  else: 

   atom.set_bfactor(per_res_dict[str(curr_residue_id)][0]) 

 io=PDBIO() 

 io.set_structure(struct) 

 io.save(strip_path(options.pdb)[0:-4]+'_ddg_b-factor.pdb') 

 print 'writing',strip_path(options.pdb)[0:-4]+'_ddg_b-factor.pdb' 

  

 pymol_script = open(strip_path(options.pdb)[0:-4]+'_ddg_b-factor.pml','w') 

 pymol_script.write("hide everything\n" 

  "show cartoon\n" 

  "cartoon putty\n") 

 if options.stdev_putty: 

  pymol_script.write("spectrum q, minimum="+str(min_mean)+", 

maximum="+str(abs(min_mean))+"\n") 

 else: 

  pymol_script.write("spectrum b, minimum="+str(min_mean)+", 

maximum="+str(abs(min_mean))+"\n") 

 pymol_script.close() 

 

The ddg_mover_collater.py script that is called in the preceding script. 

# parameter 1 - four letter PDB code of native 

# parameter 2 - how many models to keep?  

echo "+++0 usage: get_best_design_models.inp <four letter PDB code of native> <how many models to 

keep>"; 

# 

# grep score, interface score, and rmsd 

echo "+++1 computing score, interface score, and rmsd"; 

/bin/ls $1_*_????.pdb | awk '(system ("/home/allisoba/scripts/interf_tot_rmsd.inp " $1 ";"))' > 

interf_tot_rmsd.out; 

# 

# get top $2 by interface score 

echo "+++2 copy best interface score models to best_interface_models"; 

mkdir best_interface_models; 

sort -nk3 interf_tot_rmsd.out | head -n $2 > best_interface_models.txt; 

sort -nk3 interf_tot_rmsd.out | head -n $2 | awk '(system("cp " $1 " best_interface_models"))'; 

# 

# tar and zip all models 

echo "+++4 tar and zip all models into all_models.tgz"; 

tar -czf $1_models.tgz $1*_????.pdb; 

rm -f $1*_????.pdb; 

 

Script to get the best design models by interface energy. Once all the models for a complex 

have been generated (in our case, we generate 1000 designs per input pdb), one should then 

filter these by interface energy, and then only keep the top models for analysis. The script 

should be run as: get_best_design_models.inp <four letter PDB code of native> <how many 

models to keep>. This script takes the filename and score from every design and puts in them 

in a separate file which is sorted by value, then the script copies the top designs into a new 

directory, best_interface_models, and then all designs are zipped into a file in case one needs 

them again at a later point. At this point, the top 50 designs are in their own directory, ready 

for analysis.  
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more $1_top_*.txt $1.pdb $3/*.pdb | awk -v mut_num=$2 '( 

 if( $1 == "MUTATION") 

 ( 

  mut++; 

  mut_num_seq[mut] = $3; 

  mut_num_aa[mut] = $2; 

 ) 

 if( substr($1,length($1)-2,3) == "pdb") file = $1;  

 if( $1 == "ATOM" && $3 == "N")  

 (  

  tmp_seq[++num_pdb] = $4; 

 )  

 if( $1 != "ATOM" && $1 != "REMARK" && last == "ATOM") 

 (  

 

  num_seq++; 

  filename[num_seq] = file;  

  score[num_seq] = 0;  

  rep[num_seq] = 0; 

  atr[num_seq] = 0;  

  hbb[num_seq] = 0; 

  hsc[num_seq] = 0; 

  cou[num_seq] = 0; 

  sol[num_seq] = 0; 

  rms[num_seq] = 0; 

  for( i = 1; i <= num_pdb; i++)  

   if( tmp_seq[i] == "ASN") seq[num_seq,i] = "N";  

   else if( tmp_seq[i] == "ASP") seq[num_seq,i] = "D";  

   else if( tmp_seq[i] == "GLU") seq[num_seq,i] = "E";  

   else if( tmp_seq[i] == "GLN") seq[num_seq,i] = "Q";  

   else if( tmp_seq[i] == "TYR") seq[num_seq,i] = "Y";  

   else if( tmp_seq[i] == "TRP") seq[num_seq,i] = "W";  

   else if( tmp_seq[i] == "LYS") seq[num_seq,i] = "K";  

   else if( tmp_seq[i] == "PHE") seq[num_seq,i] = "F";  

   else if( tmp_seq[i] == "ARG") seq[num_seq,i] = "R";  

   else seq[num_seq,i] = substr(tmp_seq[i],0,1);  

  tmp_num = num_pdb;  

  num_pdb = 0; 

  ala_rev[num_seq] = 0; 

  ala_ala[num_seq] = 0; 

  ala_mut[num_seq] = 0; 

  for( i = 1; i <= mut_num; i++) 

  ( 

        if( tmp_seq[mut_num_seq[i]] == mut_num_aa[i]) ala_rev[num_seq]++; 

   else if( tmp_seq[mut_num_seq[i]] == "ALA") ala_ala[num_seq]++; 

   else ala_mut[num_seq]++; 

  ) 

 ) 

 if( $1 == "interface_delta_X") score[num_seq] = $2; 

 if( $1 == "if_X_fa_rep") rep[num_seq] = $2; 

 if( $1 == "if_X_fa_atr") atr[num_seq] = $2; 

 if( $1 == "if_X_hbond_bb_sc") hbb[num_seq] = $2; 

 if( $1 == "if_X_hbond_sc") hsc[num_seq] = $2; 

 if( $1 == "if_X_hack_elec") cou[num_seq] = $2; 

 if( $1 == "if_X_fa_sol") sol[num_seq] = $2; 

 if( $1 == "ligand_rms_no_super_X") rms[num_seq] = $2;  

 last = $1;  

) END (  

 min_score_min_rms = 0; 

 min_score_max_rms = 0; 

 for( j = 1; j <= tmp_num; j++) 

 (  

  p[j] = 0;  

  for(k=2;k<=num_seq;k++) if(seq[1,j]!=seq[k,j]) p[j] = 1; 

 )  

 print tmp_num;  

 printf " 100 x        ";  

 for( j = 1; j <= tmp_num; j++) if( p[j]) printf int(j/100);  

 printf "   0 -99.000\n";  

 printf "  10 x        ";  

 for( j = 1; j <= tmp_num; j++) if( p[j]) printf (int(j/10))%10;  
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 printf "   0 -99.000\n";  

 printf "   1 x        ";  

 for( j = 1; j <= tmp_num; j++) if( p[j]) printf j%10;  

 printf "   0 -99.000     rms ala_tot ala_rev ala_ala ala_mut     rep     atr     sol     

hbb     hsc     cou filename\n"; 

 for( i = 1; i <= num_seq; i++) 

 (  

  printf "%3d: %7.3f  ", i, score[i];  

  eq_seq = 0;  

  for( j = 1; j <= tmp_num; j++) if(p[j]) 

  ( 

   printf seq[i,j];  

   if( seq[i,j] != seq[1,j]) eq_seq++; 

  )  

  if( eq_seq != 0) sc_seq = score[i] / eq_seq;  

  else sc_seq = -98;  

  printf " %3d %7.3f %7.2f %7d %7d %7d %7d %7.3f %7.3f %7.3f %7.3f %7.3f %7.3f 

%s\n", eq_seq, sc_seq, rms[i], mut_num, ala_rev[i], ala_ala[i], ala_mut[i], rep[i], atr 

[i], sol[i], hbb[i], hsc[i], cou[i], filename[i]; 

  if( i > 1) 

  ( 

   tot_mut     += eq_seq; 

   tot_ala_rev += ala_rev[i]; 

   tot_ala_ala += ala_ala[i]; 

   tot_ala_mut += ala_mut[i]; 

   tot_rms += rms[i]; 

   if( i == 2 || rms[i] < min_rms) min_rms = rms[i]; 

   if( i == 2 || rms[i] > max_rms) max_rms = rms[i]; 

   tot_score += score[i]; 

if( i == 2 || score[i] < min_score) min_score = score[i]; 

if( i == 2 || score[i] > max_score) max_score = score[i];  

   if( rms[i] <= 2) 

   ( 

    if( score[i] < min_score_min_rms) min_score_min_rms = score[i]; 

   )  

   else 

   ( 

    if( score[i] < min_score_max_rms) min_score_max_rms = score[i]; 

   ) 

  ) 

 ) 

 pos_num = 0; for( j = 1; j <= tmp_num; j++) if( p[j]) pos_num++; 

 printf "NUMBER_MODELS                        %5d\n", num_seq-1; 

 printf "SEQUENCE_LENGTH                      %5d\n", tmp_num; 

 printf "POSITIONS_MUTATED_FROM_WT_BY_ROSETTA %5d\n", pos_num; 

 printf "POSITIONS_MUTATED_TO_ALA_MANUALLY    %5d\n", mut_num; 

 printf "SCORE_AVERAGE                        %7.3f\n", tot_score / ( num_seq-1); 

 printf "SCORE_MIN                            %7.3f\n", min_score; 

 printf "SCORE_MAX                            %7.3f\n", max_score; 

printf "RMS_AVERAGE                          %5.2f\n", tot_rms / ( num_seq-1); 

printf "RMS_MIN                              %5.2f\n", min_rms; 

printf "RMS_MAX                              %5.2f\n", max_rms; 

 printf "SCORE_DELTA_RMS_BELOW_2A             %7.3f\n", min_score_min_rms - 

min_score_max_rms; 

 printf "AVERAGE_MUTATIONS_IN_BINDING_SITE    %5.1f %5.0f %%\n", tot_mut     / ( num_seq-

1), 100 * tot_mut     / ( num_seq-1) / pos_num; 

 printf "ALA_REVERTED_TO_WILDTYPE             %5.1f %5.0f %%\n", tot_ala_rev / ( num_seq-

1), 100 * tot_ala_rev / ( num_seq-1) / mut_num; 

printf "ALA_NOT_REVERTED_TO_WILDTYPE         %5.1f %5.0f %%\n", mut_num - ( tot_ala_rev / 

( num_seq-1)), 100 * (1 - tot_ala_rev / ( num_seq-1) / mut_num);  

 printf "ALA_KEPT_INCORRECT_ALA               %5.1f %5.0f %%\n", tot_ala_ala / ( num_seq-

1), 100 * tot_ala_ala / ( num_seq-1) / mut_num; 

 printf "ALA_MUTATED_TO_OTHER_AA              %5.1f %5.0f %%\n", tot_ala_mut / ( num_seq-

1), 100 * tot_ala_mut / ( num_seq-1) / mut_num; 

)' 

 

Script that performs sequence recovery and Alanine to wild type recovery analysis, called 

“seq_complex_compare.inp”. This script is run in the directory that contains the native PDB, 
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the Alanine mutants file XXXX_top_Y.txt, and the best_interface_models directory. The script 

is run as: seq_complex_compare.inp <4-letterPDB code> <number of Alanine mutations in 

original PDB> <best_interface_models>. The results can be output into a file by adding “> 

analysis.txt” at the end of the command. The output file includes the statistics averaged 

from the top 50 best models, providing results such as sequence recovery, Alanine to wild 

type recovery, interface score, and RMSD. From here, these numbers can be input into an 

Excel sheet to make graphs. 

 

Appendix B: Experimental and Computational Identification of Naïve Binders to a TIM-

Barrel Protein Scaffold 

 

Discussion 

12 binders that were not included in set of ‘naïve binders’. Some of the ligands identified as 

hits were not included in the group of ‘naïve binders’. Although these ligands caused 

significant (interesting) peak shifts in the NMR spectra of residues in the binding pocket, 

the binding curves either fit more of a straight line (saturation could not be guesstimated) 

and/or indicated a binding event other than one-site specific binding (Figure 20 (SF3)). 

These were included in the search for matching ligands, but excluded in the overall naïve 

binder set. 
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Figure 20 (SF3 )Average normalized chemical shift (%) vs [Ligand] (µM) for compounds that 
induced peak shifts but were not included in the ‘naïve binders’ set.  
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Inclusion vs exclusion of Val127 and Leu170 in significant shift recovery 

Upon an in-depth look at the recovery of specific residues, it was noticed that Val127 and 

Leu170 were never recovered by Rosetta (0% recovery) (Table 8 (ST6)), despite the fact 

that both of these residues are often identified experimentally as residues interacting with 

the ligand. Looking at these residues in pymol reveals that that both of these residue side 

chains point away from the ligand. Because the HMQC-NMR experiment measures the 

backbone H and NH, we believe that these residues contribute to the ligand binding 

interaction via the backbone atoms, not the side chain atoms. Considering that ddg is the 

predicted interaction of a residue with the ligand, and because these side chains point 

away, we suspect this is the reason why Rosetta excluded these residues. We conducted a 

follow-up analysis of recovery, excluding Val127 and Leu170, to assess how this may 

change the landscape of significant shift recovery (Figure 21 (SF4)). The average recovery 

jumped to 67%, a 14% increase. Rosetta achieved 100% recovery for an additional 5 

protein-ligand complexes, bringing the total to 7 complexes. In comparing the recovery 

against the same metrics as above, surprisingly no new or different trends emerge (Figure 

22 (SF5)). The only change is ligand number of atoms ‘clustering’ trend reverts to no trend 

at all. As expected, the significant shift recovery for most of the complexes jumps higher, 

allowing for the majority of the complexes to have a 75% or higher recovery. 
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Table 8 (ST6). Residue recovery. Broken down by 
individual residues, Rosetta recovery of the residues 
identified in the ligand-binding hot spot. 

 

 

 

 

 

 

 

 

 

Figure 21 (SF4). Comparison of significant shift 
recovery with inclusion (A) and exclusion (B) of V127 
and L170. Percent recovery, 0-24% (red), 25-49% 
(orange), 50-74% (yellow), and 75-100% (green).  
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Scripts and Commands 

Options file, used to specify the input, output, parser file, and packing options. For input files, 

one must specify the path to the Rosetta database, path to the ligand PDB file(s), and the path 

to the ligand params file. For output, one must specify the type of file to be output (pdb) and 

number of structures to generate. For the parser, one must specify the path to the XML parser 

file. For packing, these are standard options to include for side chain repacking. 

-in 

 -path 

  -database /path_to_database/database/ 

 -file 

  -s /path_to_pdb/filename.pdb 

  -extra_res_fa /path_to_params/ligand.params 

-out 

 -level 300 

 -pdb_gz 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 (SF5). Significant shift recovery by Rosetta, excluding V127 and L170. Trends remain 
consistent as previously shown, with the exception of ligand number of atoms which now shows 
no trend.  
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 -path 

  -pdb /path_to_output_files/ 

  -score /path_to_output_files 

 -nstruct 100 

 -mute all 

 -unmute protocols.jd2.JobDistributor  

 

-parser 

 -protocol /path_to_RosettaScripts/RosettaScripts.xml 

 

-packing 

 -ex1 

 -ex2 

 -linmem_ig 10 

 

 

XML Script, for the experiments discussed in this study, used to assign values for the cut-off 

points to detect the protein-small molecule interface, a value for the favor native residue 

bonus, and values for ligand translation and rotation. In 

TASKOPERATIONS:DetectProteinLigandInterface, one must specify values to determine 

which residues surrounding the ligand are allowed to be designed and/or repacked (details 

in my first manuscript), and specify the path to the resfile. In Transform, must specify how 

much ligand movement is allowed. 

<ROSETTASCRIPTS> 

 

 <SCOREFXNS> 

  <ligand_soft_rep weights=ligand_soft_rep> 

   <Reweight scoretype=fa_elec weight=0.42/> 

   <Reweight scoretype=hbond_bb_sc weight=1.3/> 

   <Reweight scoretype=hbond_sc weight=1.3/> 

   <Reweight scoretype=rama weight=0.2/> 

  </ligand_soft_rep> 

  <hard_rep weights=ligandprime> 

   <Reweight scoretype=fa_intra_rep weight=0.004/> 

   <Reweight scoretype=fa_elec weight=0.42/> 

   <Reweight scoretype=hbond_bb_sc weight=1.3/> 

   <Reweight scoretype=hbond_sc weight=1.3/> 

   <Reweight scoretype=rama weight=0.2/> 

  </hard_rep> 

 </SCOREFXNS> 

 <SCORINGGRIDS ligand_chain="X" width="16"> 

  <vdw grid_type="ClassicGrid" weight="1.0"/> 

 </SCORINGGRIDS> 

 <TASKOPERATIONS> 

  <DetectProteinLigandInterface name=design_interface cut1=6.0 cut2=8.0 cut3=10.0 

cut4=12.0 design=1 resfile="/path_to_resfile/Resfile_dock"/> 

 </TASKOPERATIONS> 

 <LIGAND_AREAS> 

  <docking_sidechain chain=X cutoff=6.0 add_nbr_radius=true all_atom_mode=true 

minimize_ligand=10/> 

  <final_sidechain chain=X cutoff=6.0 add_nbr_radius=true all_atom_mode=true/> 

  <final_backbone chain=X cutoff=7.0 add_nbr_radius=false all_atom_mode=true 

Calpha_restraints=0.3/> 

 </LIGAND_AREAS> 

 <INTERFACE_BUILDERS> 

  <side_chain_for_docking ligand_areas=docking_sidechain/> 
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  <side_chain_for_final ligand_areas=final_sidechain/> 

  <backbone ligand_areas=final_backbone extension_window=3/> 

 </INTERFACE_BUILDERS> 

 <MOVEMAP_BUILDERS> 

  <docking sc_interface=side_chain_for_docking minimize_water=true/> 

  <final sc_interface=side_chain_for_final bb_interface=backbone 

minimize_water=true/> 

 </MOVEMAP_BUILDERS> 

 <MOVERS> 

 single movers 

  <StartFrom name=start_from_X chain=X> 

   <Coordinates x=25.325 y=35.021 z=22.716/> 

  </StartFrom> 

  <FavorNativeResidue name=favor_native bonus=1.0/> 

  <ddG name=calculateDDG jump=1 per_residue_ddg=1 repack=0 scorefxn=hard_rep/> 

  <Transform name="transform" chain="X" box_size="5.0" move_distance="1.0" 

angle="360" cycles="500" temperature="5" initial_perturb="5.0"/> 

  <HighResDocker name=high_res_docker cycles=1 repack_every_Nth=1 

scorefxn=ligand_soft_rep movemap_builder=docking/> 

  <PackRotamersMover name=designinterface scorefxn=hard_rep 

task_operations=design_interface/> 

  <FinalMinimizer name=final scorefxn=hard_rep movemap_builder=final/> 

  <InterfaceScoreCalculator name=add_scores chains=X scorefxn=hard_rep/> 

 </MOVERS> 

 <PROTOCOLS> 

  <Add mover_name=start_from_X/> 

  <Add mover_name=transform/> 

  <Add mover_name=favor_native/> 

  <Add mover_name=high_res_docker/> 

  <Add mover_name=final/> 

  <Add mover_name=calculateDDG/> 

  <Add mover_name=add_scores/> 

 </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

Resfile, used to indicate that residues considered for design and repack are limited to the 

cut-off points specified above. 

#These commands will be applied to all residue positions that lack a specified behavior in the 

body: 

NATAA              # allow only native residues (for docking only; no design allowed) 

AUTO 

start 

 

Appendix C: Designed C9S_HisF Binds VU0068924 More Tightly 

 

VU0068924 was identified as a naïve binder to C9S_HisF with a binding affinity of 442 ± 10 

µM. VU0068924 properties include: 245 g/mol, 6 hydrogen bond donors + acceptors, 2 

rotatable bonds, 3 rings, contains an acid group, LogP 4.22, and TPSA 68 Å2. Using 

RosettaLigand, the six mutations L50V, G80A, A128T, D130M, S144W, T171A were 



 127 

introduced into the protein, 6166_C9S_HisF (computational analysis done by lab member 

Brian Bender). The program suggested these mutations would induce tighter binding. 

6166_C9S_HisF was expressed and purified, and I carried out the 15N-HMQC-NMR titration 

style experiments. The NMR samples were set up as: 6166_C9S_HisF at 50 µM with 

VU0068924 at 0 µM (reference spectrum), and 2.5, 5, 10, 20, 30, 40, 60, 80, 200, 400, and 

600 µM. Due to the tight binding nature of this protein-ligand complex, the ligand 

concentrations had to be lowered and measured at smaller increases compared to the 

setup of the naïve binders measured with C9S_HisF. Raw data processing, excel analysis, 

dissociation constant, and binding curves were calculated as described previously. Indeed, 

the binding affinity increased to 23 ± 2 µM (Figure 23 (SF6)). The next step was to further 

investigate this tighter binder, and assess which mutations contribute most to the binding. 

Protein variants were created for a ‘back titration’, where each mutation was reverted back 

to wild type one by one, giving 6 daughter proteins from the original designed 6 mutation 

protein: MinusL50V_6166_C9S_HisF, MinusG80A_6166_C9S_HisF, 

MinusA128T_6166_C9S_HisF, MinusD130M_6166_C9S_HisF, MinusS144W_6166_C9S_HisF, 

and MinusT171A_6166_C9S_HisF. These daughter proteins were expressed and purified as 

previously described, 15N-HMQC-NMR titration style experiments performed, each protein 

measured with 0, 2.5, 5, 10, 20, 30, 40, 60, 80, 150, 250, and 500 µM ligand, and data 

analysis carried out in the same way as 6166_C9S_HisF. Dissociation constants were 

calculated: MinusL50V_6166_C9S_HisF Kd = 36 ± 2 µM; MinusG80A_6166_C9S_HisF Kd = 

38 ± 2 µM, MinusA128T_6166_C9S_HisF Kd = 30 ± 4 µM, MinusD130M_6166_C9S_HisF Kd = 

187 ± 32 µM, MinusS144W_6166_C9S_HisF Kd = 106 ± 7 µM, and 

MinusT171A_6166_C9S_HisF Kd = 62 ± 3 µM (Figure 24 (SF7)). This project is still in 
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progress, as 6166_C9S_HisF continues to be further characterized, and the other naïve 

binders being docked/designed into C9S_HisF with RosettaLigand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 (SF6). Designed 6166_C9S_HisF binds VU0068924 more tightly. (A) Chemical structure of 
VU0068924. (B) Overlay of titration style spectra, 6166_C9S_HisF measured with 0, 2.5, 5, 10, 20, 30, 
40, 60, 80, 200, 400, and 600 µM ligand. (C) Surface representation of Rosetta model, VU0068924 
docked 6166_C9S_HisF. (D) Cartoon representation of Rosetta model, mutations L50V, G80A, A128T, 
D130M, S144W, T171A highlighted in magenta. (E) Binding curve and binding affinity calculated. 
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Figure 24 (SF7). Back titration of 6166_C9S_HisF with each mutation reverted back to wild 
type. Binding curves and binding affinities calculated. These results suggest that mutations 
D130M, S144W, and T171A contribute most to the tighter interaction 
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Summarization of key findings and future directions: Designed_C9S_HisF binds VU0068924 

more tightly. The key finding of this project thus far, is that RosettaLigand was used to dock 

naïve binder VU0068924 while allowing mutations in the C9S_HisF binding pocket. 

RosettaLigand designed in 8 mutations that would induce tighter binding, and we decided 

upon 6 (L50V, G80A, A128T, D130M, S144W, T171A) to experimentally test, 

designed_C9S_HisF. The binding affinity increased from ~442 µM to ~23 µM. The back 

titration of designed_C9S_HisF suggests that mutations D130M, S144W, and T171A 

contribute most to the tighter interaction. In moving forward with computationally 

designing C9S_HisF to more tightly bind the other naïve binders, I propose some thoughts 

based on knowledge gained through this experiment and previous experiments. On the 

computational side, I suggest optimizing the favor native residue bonus. With designing in 

mutations, it is imperative that this metric is benchmarked and optimized. When analyzing 

designs, the ddg should be output and reviewed but not necessarily taken into account, 

based on results above. On the experimental side, I suggest a fresh 2D resonance 

assignment transfer from HisF to C9S_HisF. With the subsequent designs, even more 

assignments are lost, therefore we should start off with as many peak assignments as 

possible. I suggest expressing and purifying, and performing the NMR experiments all in 

triplicate to establish confidence that the results are consistent and reproducible. Thorough 

and confirmed sequencing at each step is also necessary. For the designs that induce 

binding that approaches the lower end of the micro-molar scale, other approaches to 

calculate Kd should be considered. In this range (~5 – 50 µM), intermediate exchange 

becomes as issue, and the NMR spectrum resonances broaden which cause the peaks to 

disappea51. Also, once there are many designs that indicate tighter binding, all designs and 
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their ligands should be tested against the other designs computationally and 

experimentally, to produce a matrix of results to analyze. This matrix would allow us to 

elucidate how small changes in a ligand affect RosettaLigand design choices, and also if 

RosettaLigand is unnecessarily inputting or excluding certain mutations from the designs. 
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